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Résumé 

La schizophrénie (SCZ) et le trouble bipolaire (TB) sont des troubles mentaux graves 

qui présentent tous deux des symptômes affectifs et psychotiques. La SCZ est un trouble 

psychotique primaire caractérisé par des symptômes d’idées délirantes et d’hallucinations. Le 

TB est principalement un trouble de l'humeur primaire défini des périodes de manie et de 

dépression. En 2010, ces troubles contribuaient respectivement à 7,4% et 7,0% de la charge 

mondiale de morbidité. La prévalence élevée (~ 0,4% pour la SCZ et ~ 2,4% pour le TB) et la 

forte héritabilité estimée (~ 80%) suggèrent toutes deux une forte influence génétique. Les 

données disponibles démontrent qu'il existe des chevauchements génétiques entre les deux 

conditions, mais également des composantes génétiques spécifiques à chaque maladie.  

Au cours de la dernière décennie, des études d’association pan-génomiques ont identifié 

des centaines de loci génétiques associés à ces maladies. De plus, d’autres méthodes ont permis 

de mettre en relief la contribution d’autres types de variations génétiques comme les rares 

variations du nombre de copies (CNV), de rares polymorphismes de nucléotide simple (SNV) 

et des mutations de novo (MDN). Bien que notre connaissance de l'architecture génétique de 

ces conditions est en progression, une grande partie de l'héritabilité demeure toujours non 

résolue et inexpliquée. 

Une longue histoire de faible mélange génétique combiné à la pratique répandue de 

mariages consanguins (50% des unions sont consanguines) rend les familles pakistanaises 

prometteuses pour des études génétiques médicales basées sur la population. Des études 

épidémiologiques ont démontré que la consanguinité est associée à un risque accru de nombreux 

traits. L’étude de familles a largement été appliquée dans la cartographie génétique des 

caractères mendéliens et complexes. Cependant, peu d’études ont eu recours à de grandes 

familles consanguines multiplexes pour étudier en profondeur le rôle de la consanguinité dans 

les troubles neuropsychiatriques tels que la SCZ et le TB.  

Les CNVs ont été impliquées dans la SCZ et le TB depuis la découverte des délétions 

22q11.2. Malgré que ces derniers soient rares dans la population, ils contribuent de manière 

significative au risque. Des études d'association de CNV ont révélé un enrichissement de 
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délétions et de duplications rares et un taux plus élevé de CNV de novo dans les cas relatifs aux 

témoins. De plus, le séquençage du génome de familles SCZ a révélé une charge accrue de rares 

CNVs exonics chez les sujets SCZ ainsi que de l'hétérogénéité génétique. L'utilisation de 

grandes familles de multiplexes pourrait être statistiquement puissante pour étudier le rôle des 

CNVs co-ségrégant avec la maladie et éventuellement pathogènes. 

Afin de mieux comprendre l'hétérogénéité génétique et résoudre l’héritabilité manquante 

de ces deux troubles mentaux, nous avons utilisé du génotypage et du séquençage de l'exome 

afin  d’examiner le profil génétique de grandes généalogies consanguines multiplexes d’origine 

Parkistanaise. Chacune de ces familles comportait plus de dix membres affectés par la SCZ ou 

le TB. Dans cette thèse, nous caractérisons la population d’origine, ce qui comprend le mélange 

génétique et la consanguinité récente de notre cohorte. Nous avons testé si le niveau de 

consanguinité était associé au phénotype binaire et à ses dimensions sous-phénotypiques. Nous 

avons également inclus un grand ensemble de données de populations contrôles externes et 

appariées afin de calculer et comparer le coefficient de consanguinité. Notre approche, qui 

comprenait une analyse de liaison, une cartographie de l’auto-zygosité, la détection de cycles 

homozygotie et une analyse de ségrégation de variantes homozygotes délétères rares, nous a 

conduit à rejeter l’hypothèse d’un modèle de transmission récessif sur ces familles (malgré leur 

forte consanguinité).  

Par la suite, nous avons examiné si des CNVs co-ségrégaient avec le phénotype dans 

certaines familles. Cette étude comportait plusieurs étapes: 1 - une comparaison systématique 

entre différents algorithmes de détection de CNVs. 2 - une validation croisée de vrais CNVs ou 

de faux positifs par des approches in silico ou expérimentales, 3 - le développement d’un logiciel 

de ségrégation et d'annotation. Cette étude met de l’avant à la fois les avancées méthodologiques 

et les limites de l’exploration des CNVs. Au final, aucun des CNVs identifiés ne semblent 

contribuer à la variance génétique de la SCZ et du TB des familles examinées dans cette étude. 

Les résultats présentés dans cette thèse étayent une hypothèse alternative qui impliquerait des 

interactions polygéniques entre à la fois des variants rares et des variants communs. 

Mots-clés: Pakistanais, familles multiplexes, consanguinité, génotypage, séquençage de 

l'exome, schizophrénie, trouble bipolaire, variation du nombre de copies 
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Abstract 

Schizophrenia (SCZ) and bipolar disorder (BP) are two major psychiatric disorders. SCZ 

is a primary psychotic disorder that typically involves symptoms of delusions and 

hallucinations, by comparison BP is a mood disorder engaging mania and depression but it can 

also involve psychosis. A 2010 estimation of these disorders highlighted that they respectively 

contributed to ~7.4% and ~7.0% of the global burden of disease. The high prevalence (~0.4% 

for SCZ and ~2.4% for BP) and estimated heritability (~80%) suggest a strong genetic influence. 

Evidence shows that there are some genetic overlaps between the two conditions but also 

disorder-independent genetic components. Over the past decade, genome-wide association 

studies (GWAS) identified hundreds of SCZ and BP loci, and other approaches identified 

various forms of potential genetic risk factors, for instance rare copy number variants (CNVs), 

rare single nucleotide variants (SNVs) and de novo mutations (DNMs). While our knowledge 

of the genetic architecture of these conditions grow, a large of portion of the genetic heritability 

of each disorder still remains unexplained.  

The combination of a long history of genetic admixture, and the tradition of 

consanguineous marriages (50% of unions are consanguineous), makes Pakistani families 

promising for population based medical genetics studies. Consanguinity has previously been 

associated with an increased risk of numerous traits in epidemiological studies. Family-based 

designs have been widely applied in the genetic mapping of Mendelian and complex traits. 

However, few studies have used large multiplex consanguineous families to thoroughly 

investigate the role of consanguinity in neuropsychiatric disorders such as SCZ and BP. CNVs 

have been implicated in SCZ and BP since the discovery of 22q11.2 deletions, however, most 

of them are rare in the population but contribute significantly to the risk. Association studies of 

CNVs found enrichment of rare deletions and duplications, and a higher rate of de novo CNVs 

in cases relative to controls. Whole-genome sequencing of multiplex SCZ families reported 

increased burden of rare, exonic CNV in SCZ probands and genetic heterogeneity. Using large 

multiplex families could be statistically powerful to investigate the role of segregating, and 

possibly pathogenic, CNVs.  
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In order to better understand the genetic heterogeneity and look for missing heritability 

of these two common disorders in Pakistani families, we used SNP genotyping and whole-

exome sequencing to examine the genetic profile of ten large multiplex consanguineous 

pedigrees; each of these families involved more than ten members affected by SCZ or BP. In 

this thesis, we characterized the population background which includes admixture and recent 

inbreeding of our cohort. We tested if the inbreeding level was associated with the binary 

phenotype and its subphenotype dimensions. We also included large external dataset of matched 

population control individuals to compute and compare the inbreeding coefficient. Our 

approach, which included linkage analysis, autozygosity mapping, runs of homozygosity (ROH) 

and rare deleterious homozygous variants segregation analysis, led us to reject the hypothesis 

of a recessive inheritance model across these families (despite of their high inbreeding). We 

subsequently looked if any CNV segregated across some of the families. This examination 

involved multiple steps: 1 - a systematic comparison of a range of CNV detection algorithms 

currently available through different platforms, 2 - a cross validation of true and false positive 

CNV calls through the use of in silico or experimental approaches, 3 - the development of our 

own segregation and annotation software. This effort both emphasized the methodological 

advances and limitations of CNV studies. In the end, none of the potentially pathogenic CNV 

identified appeared to account for the genetic variance of SCZ and BP observed in the families 

examined here. The results presented in this thesis provide support for an alternate hypothesis 

that would involve a polygenic pattern where both rare variants and common variants would be 

at play. 

Keywords: Pakistani, multiplex families, consanguinity, SNP chip genotyping, whole-exome 

sequencing, schizophrenia, bipolar disorder, copy number variants 
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Chapter 1: Introduction 

1.1 The introduction to schizophrenia and bipolar disorder 

1.1.1 The definition and clinical symptoms of schizophrenia and bipolar 

disorder 

Schizophrenia is a primary psychotic disorder, and bipolar disorder is a primary mood 

disorder, but it can also involve psychosis. Schizophrenia and bipolar disorder are characterized 

as mental and behavioral disorders in both Diagnostic and Statistical Manual of Mental 

Disorders fifth edition (DSM-5) and International Statistical Classification of Diseases and 

Related Health Problems 10th Revision (ICD-10). In DSM-5, the diagnostic criteria categorized 

schizophrenia spectrum and other psychotic disorders as including schizophrenia, other 

psychotic disorders, and schizotypal (personality) disorder. Bipolar disorder and related 

disorders are separated from the depressive disorders in DSM-5 as a bridge between the 

diagnostic classes of psychotic disorders and depressive disorders in terms of symptomatology, 

family history, and genetics1. 

Schizophrenia, by definition, is a disturbance that must last for six months or longer, 

including at least one month of delusions, hallucinations, disorganized speech, grossly 

disorganized or catatonic behavior, or negative symptoms1. Delusions are one type of positive 

symptom, and these usually involve a misinterpretation of perceptions or experiences. 

Hallucinations are also a type of positive symptom and may occur in any sensory modality (e.g. 

auditory, visual, olfactory, gustatory, and tactile). Persecutory delusions and auditory 

hallucinations are the most common and characteristic types in schizophrenia. Positive 

symptoms are well known because they are dramatic and the major target of antipsychotic drug 

treatments. Negative symptoms in schizophrenia, such as apathy and avolition, are commonly 

considered a reduction in normal functions and are associated with long periods of 

hospitalization and poor social functioning. Negative symptoms of schizophrenia determine 

whether a patient ultimately functions well or has a poor outcome. Current drug treatments are 
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limited in their ability to treat negative symptoms, but psychosocial interventions, along with 

antipsychotics, can be helpful in reducing negative symptoms. 

The symptoms of schizophrenia are widely subcategorized into five dimensions: not 

only positive and negative symptoms, but also cognitive symptoms, aggressive symptoms and 

affective symptoms2. These symptoms are not necessarily unique to schizophrenia. Positive 

symptoms can happen in other disorders, like bipolar disorder and schizoaffective disorder. 

Negative symptoms can occur or overlap with cognitive and affective symptoms but are 

moderately unique to schizophrenia. Cognitive symptoms of SCZ emphasize “executive 

dysfunction”, which includes problems representing and maintaining goals, allocating 

attentional resources, evaluating and monitoring performance, and utilizing these skills to solve 

problems. Other disorders, like autism, Alzheimer’s disease and other dementias can also be 

associated with cognitive dysfunctions similar to those seen in schizophrenia. Affective 

symptoms and aggressive symptoms are also prominent features of other mental disorders.  

Bipolar spectrum disorders are characterized by manic-depressive disorder or affective 

psychosis, where depressive and manic episodes alternate, which causes unusual shifts in mood, 

energy, activity levels, and the ability to carry out day-to-day tasks. Patients with bipolar I 

disorder (BP-I) have full-blown manic episodes or mixed episodes of mania plus depression, 

often followed by a depressive episode. Patients with bipolar I disorder can also have rapid 

switches from mania to depression and back. This switch occurs at least four times a year. 

Bipolar II disorder (BP-II) is characterized by at least one hypomanic episode that follows a 

depressive episode2.  

1.1.2 The neurobiological basis of schizophrenia and bipolar disorder 

The different symptoms of schizophrenia are hypothesized to be regulated by different 

brain regions2. Positive symptoms are hypothetically modulated by malfunctioning mesolimbic 

circuits, while negative symptoms are hypothetically linked to malfunctioning mesocortical 

circuits and may also involve mesolimbic regions such as the nucleus accumbens, which is part 

of the brain’s reward system and thus play a role in motivation and may also be involved in the 

increased rate of substance use and abuse behavior seen in schizophrenia patients. Affective 

symptoms are associated with the ventromedial prefrontal cortex, while aggressive symptoms 
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(related to impulse control) are associated with abnormal information processing in the 

orbitofrontal cortex and amygdala. Cognitive symptoms are associated with problematic 

information processing in the dorsolateral prefrontal cortex. The hypothetical model of 

allocating specific symptom dimensions to brain regions may seem oversimplified, but it assists 

research and has clinical value.  

Two neurotransmitters and their neuronal pathways in the brain ‒ dopamine and 

glutamate ‒ are the leading hypotheses for explaining the symptoms of schizophrenia, as well 

as the therapeutic effects and side effects of antipsychotic drugs2. One of the five dopamine 

pathways in the brain is the mesolimbic dopamine pathway. The hyperactivity of this pathway 

causes the positive symptoms of psychosis, such as delusions and hallucinations. Most 

antipsychotics work as dopamine antagonists, to block the dopamine receptor 2 (D2), resulting 

in the decrease of dopamine activity, and therefore stop of positive symptoms. The cognitive, 

negative and affective symptoms of schizophrenia are believed to be due to a deficit of dopamine 

activity in mesocortical projections to ventromedial prefrontal cortex. The balance between 

decreasing dopamine in the mesolimbic pathway and increasing dopamine in the mesocortical 

pathway generates a dilemma for the therapeutic effects of antipsychotics.  

The neurotransmitter glutamate has gained more attention in the pathophysiology of 

schizophrenia and other psychiatric disorders in recent years2. Glutamate, as a ubiquitous 

excitatory neurotransmitter, seems to be able to excite nearly any neuron in the brain and 

involves several types of receptors. Molecules targeting the glutamate synapses are serving as 

either antagonist, to block glutamate release presynaptically, or agonist to facilitate 

glutamatergic neurotransmission postsynaptically. A major hypothesis for the cause of 

schizophrenia is that glutamate activity at NMDA (N-methyl-d-aspartate) receptors is 

decreased, due to abnormalities in the formation of glutamatergic NMDA synapses during the 

neurodevelopment. This theory is partly based on the use of the NMDA receptor antagonists 

PCP (phencyclidine) and ketamine in normal human, which could mimic not only positive 

symptoms but also the cognitive, negative and affective symptoms of schizophrenia. The theory 

is also partly upheld by the formation of defective synapses at certain GABA interneurons at the 

cerebral cortex or hippocampus, which causes dysconnectivity of glutamate circuits. This 
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NMDA hypofunction hypothesis can connect the interaction of glutamate pathways and 

dopamine pathways, since they display an upstream-downstream relationship.  

Similarly, three principal neurotransmitters including norepinephrine, dopamine and 

serotonin have long been implicated in both the pathophysiology and treatment of mood 

disorders such bipolar disorder2. The neurotransmitter hypothesis suggests that dysfunction, 

generally due to underactivity of one or more of the three monoamines, may cause depression 

symptoms, while boosting one or more of the three monoamines in specific brain regions may 

be linked to symptoms of mania.  

1.2 The interest of consanguineous families and populations in 

neuropsychiatric disorders 

1.2.1 The historical research interest on consanguineous populations and 

pedigrees 

Consanguineous marriages (a couple related as second cousins or closer, equivalent to 

an inbreeding coefficient F≥0.0156 in their progeny) may have been practiced since the early 

existence of human society. The potential breeding populations has been estimated to be a 

minimum of 700 individuals to a maximum of 10,000 persons3–6 in the out-of-Africa migration 

of our human ancestors. 60,000-70,000 years ago, extensive inbreeding was basically inevitable, 

given their hunter-gatherer lifestyle, subdivision into separate small kindred groupings and the 

suggestion that they exited Africa in two distinct waves7,8.  

In Ancient Egypt, when pharaohs ruled, the political and religious leaders performed 

brother-sister or uncle-niece marriages in order to keep their bloodline pure. The mummy of 

King Tutankhamun was recently examined, with another ten royal mummies, through the DNA 

samples taken from their bones. The samples were subjected to microsatellite-based haplotyping 

and generational segregation of alleles within possible pedigrees, accounting for correlation of 

identified diseases with individual age, along with archeological and historical evidence. The 

construction of the five-generation pedigree identified an accumulation of malformations in 

Tutankhamun’s family, and also revealed that King Tut was beset by malaria and a bone disorder 

‒ possibly due to his incestuous origins: King Tut’s mother and father are siblings9. As for King 
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Tut himself, he married his half-sister and they did not successfully produce an heir (while 

having two stillborn daughters).  

The European royal dynasties of the Early Modern Age provide an example for studying 

inbreeding in human populations10. For example, King Charles II of Spain, from the Spanish 

Habsburg royal family, was physically and mentally disabled, infertile and extremely inbred. 

Following 16 generations (~200 years) of inbreeding in first cousins and uncles and nieces in 

the Spanish Habsburg kings, the inbreeding coefficient increased strongly along generations. A 

statistically significant inbreeding depression for survival to 10 years was detected. 

Furthermore, King Charles II was believed to suffer from two different genetic, which could 

explain most of the complex clinical profile of this king. He passed at the age of 38 and this led 

to the extinction of the dynasty11. Extended study by the same research group suggested the 

Habsburg royal family might have evolved under natural selection over three centuries to blunt 

the worst effects of inbreeding, based on their discovery that the childhood mortality decreased 

while the infant mortality increased over time. They proposed that the genetic basis of 

inbreeding depression was probably very different for infant and child survival in the Habsburg 

lineage12. Of note, this report caused controversial views among senior geneticists in the field10. 

The debate on how deleterious or harmless consanguineous unions could be started in 

1858, after the first structured clinical study on the biological effects of inbreeding was 

published13. It was later criticized as having a fallacious study design and conclusion, as most 

of the other early studies were regarded retrospectively7. The debate and early studies on 

consanguinity in Great Britain and USA led to a radical change of opinion of major public 

figures such as Charles Darwin on a matter of major personal and also scientific significance7. 

Charles Darwin, who was married to his first cousin Emma Wedgwood, was one of the first 

experimentalists to demonstrate the adverse effects of inbreeding and to question the 

consequences of consanguineous mating. Darwin’s opinion was somewhat changed by his son, 

George Darwin, who published a study on consanguinity in the late 19th century14,15. A more 

recent study (published in 2010) on a sample of 25 Darwin/Wedgewood families of four 

consecutive generations showed a significant positive association between childhood mortality 

(including 3 of Darwin’s 10 children) and inbreeding coefficient, which might be a result of 
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increased homozygosity of deleterious recessive alleles produced by the consanguineous 

marriages16.  

In different geographical regions, the public attitude towards consanguinity vary widely, 

and is mostly driven by religious and cultural beliefs17, especially religious ordinances in more 

traditional rural areas. In general, consanguineous marriage is permitted within Judaism, in some 

branches of Christianity7, Islam, Dravidian Hinduism, Buddhism, the Zoroastrian/Parsi religion, 

and the Confucian Tradition. However, the prevalence and specific types of marriage permitted 

vary according to the precepts and traditions of each religion and denomination and, in some 

cases, these characteristics appear to have altered significantly through time7,18. 

A study published in 2008 on the global prevalence of consanguineous unions defined 

four major global areas18: 1) Regions in which fewer than 1% of marriages are consanguineous, 

including North America, most of Europe, and Australasia; 2) Regions in which 1-10% of all 

marriages are consanguineous, such as the Iberian Peninsula, Japan and South America; 3) 

Regions where 20% to over 50% of current marriages are consanguineous, represented by North 

Africa, much of West, Central and South Asia; 4) Some populous countries such as Indonesia, 

where the status was defined as unknown since the information on consanguinity is partial. The 

same author updated the distribution map, in which the data was compiled from a 

comprehensive collection of references, and the majority of national consanguinity levels shown 

in the map are either the most recent study (up to 2015) or an average of several studies19. The 

updated map is included below, as a reference for consanguineous marriages in the Pakistani 

population, shown in Figure 1.  

The topic of consanguinity has its innate complexity and it cannot be easily regarded as 

a simplistic dichotomy of “good or bad”. Data suggest non-consanguineous progeny have a 

modest but statistically significant health advantage over their consanguineous counterparts, 

which is in alignment with the genetic concept of heterozygote advantage7. For instance, 

comparison of pre-reproductive mortality among children of first-cousin marriages, with similar 

mortality in the children of marriages of unrelated parents, revealed that there is a higher risk 

for late miscarriage, stillbirth or early death for a child of consanguineous marriages20.  
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More observations are drawn from the associations of increased morbidity with 

consanguinity. However, the associated variables are not enough to infer the causality21, which 

means we are not able to suppose that consanguinity of parents would cause certain conditions. 

In 1902, Garrod observed that the incidence of alkaptonuria, a rare disorder in the general 

population but frequent in children of first-cousin marriages, conformed to the pattern of 

recessive inheritance described by Gregor Mendel in his experiments with peas22. Based on 

discussions with Mendel’s advocate Bateson, who suggested that autozygosity increased the 

risk for the disease, Garrod deduced that alkaptonuria is a recessive disorder. Garrod was also 

careful to note that it was equally clear that only a minute proportion of the children of 

consanguineous unions are alkaptonuric.  

Consanguinity principally influences the incidence of rare recessive disorders. In fact, a 

lot of autosomal recessive disorders are found to have an association with consanguinity. In 

most cases, the affected individuals have the homozygous form of the causative mutation. They 

inherited identical mutations from each of the biologically related parents. Sometimes, it could 

also be compound heterozygote mutations in affected siblings. The consanguinity could also be 

associated with co-expression of different recessive disorders (pleiotropy), or co-existence of 

multiple mutations for a single disease phenotype (polygenic inheritance)7.  

With the increasing number of studies which employ homozygosity mapping23 to 

identify recessive disease loci, there has been empirical evidence convincingly implicating 

consanguinity and disorders affecting infancy and childhood, such as non-syndromic hearing 

loss24, intellectual and developmental disability, and some categories of congenital heart 

defects7. However, no single disorder, or group of disorders, affecting infancy and childhood 

have been consistently reported in consanguineous offspring since the reports of an association 

between consanguinity and a specific disorder originating from small endogamous communities 

(where a founder effect and a genetic drift could be predicted)7.  

Data on consanguinity and common disease of adulthood are confusing, contradictory 

and inconclusive7. Positive, neutral, and negative association with cardiovascular diseases, 

diabetes, and various cancers were reported. Despite extensive genome-wide association 

studies, the fraction of the heritable variance in complex human disorders that can be explained 

by identified loci remain low. Most of the investigations lacked adequate control for the multiple 
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non-genetic variables. Consanguinity would be expected to exert a greater influence on the 

etiology of complex diseases if rare autosomal recessive alleles were causally implicated, 

whereas if disease alleles that are common in the gene pool are involved, then intra-familial 

marriage would have a proportionately lesser effect25.   
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Figure 1. Global prevalence of consanguinity  

Reprinted from “Global Patterns & Tables of Consanguinity” by Bittles A.H. and Black M.L., 2015, retrieved from http://consang.net. 

Copyright 2015 by Alan Bittles. The global prevalence of consanguinity map was compiled from a comprehensive collection of 

references, and the majority of national consanguinity levels shown in the map are either the most recent study (up to 2015) or an average 

of several studies. The country Pakistan is indicated in the map with red arrow and red circle.

http://consang.net/
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1.2.2 The characteristics of Pakistani populations and their application in 

genetics research 

Pakistan lies on the postulated coastal route from Africa to Australia and the earliest settlers 

probably came to this area some 60,000 years ago. Evidence from Paleolithic period shows a later 

occupation dated to around 45,000 years ago26, indicating the Soanian culture of the Lower 

Paleolithic. Evidence of Neolithic settlements of modern humans have been found at Mehrgarh, 

dating back to the seventh millennium BCE, in the southern Pakistani province of Balochistan. 

This site predates the agrarian Harappan culture that flourished in the fertile Indus Valley from 

about 3300 to 1700 BCE, in what is today the Pakistani provinces of Sindh, Punjab and 

Balochistan. The Indus Valley Civilization was one of the three early civilizations along with 

Ancient Egypt and Mesopotamia, and one of the most widespread.  

Invaders including the Aryans, Macedonians, Arabs, Mongols, etc. have all contributed to 

the ethnic variety of Pakistan’s population27. In present-day Pakistan, the Balochis (origin from 

Aleppo, Syria), Brahuis (Turko-Iranian origin), Makranis (origin from central and southern Africa) 

and Sindhis (admixed) constitute the major southern populations of Pakistan. The major northern 

ethnic groups include the Balti (Tibetan origin), Burushos (Greek origin suspected), Hazara (Tartar 

origin, descents of Genghis Khan’s army), Kalash kafirs (descendants of Alexander the Great's 

army), Kashmiris, Pathans (Greek contribution28) and Punjabis (admixed). The Y-chromosome 

variations confirmed some of the claimed origin of the populations, but not all of them29–31.  

The long history of admixture and the tradition of consanguineous marriages (50% of 

unions are consanguineous) made Pakistani populations a good candidate for studying population 

genetics and medical genetics. However, most studies focused on investigating the role of 

consanguinity on the epidemiology of mortality/morbidity of certain conditions, especially in the 

Pakistani communities in European countries such as the UK. Recently, some studies started to 

look at the homozygous predicted loss-of-function mutations in adult Pakistani with related 

parents, by linking genetic data with the phenotypic data involving lifelong health records or 

biochemical and disease traits, to systematically understand the phenotypic consequences of 

complete disruption of genes32,33. These studies are based on the principal that consanguineous 

unions are more likely to result in offspring carrying homozygous loss-of-function mutations.  
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1.2.3 The genetics of consanguinity and inbreeding in neuropsychiatry 

Consanguinity has also been reported to be a risk factor for psychiatric conditions34. 

Associations between consanguinity and common behavioral and psychiatric disorders have been 

reported in specific communities such as depression in South India35 and Tourette syndrome in 

Iran36.  

Prior attempts to explore the relationship between inbreeding and schizophrenia across 

various population isolates, in which consanguineous marriages are frequent, have shown both 

positive and negative results depending on the studied population and sample size37–39, e.g. earlier 

studies in Sudan, Norway, and Saudi Arabia have failed to reveal elevated rates of schizophrenia 

in the progeny of consanguineous parents37,38,40; however, schizophrenia spectrum psychosis has 

been associated with consanguinity in genealogy-based studies in Dagestan41,42, the Dalmatian 

Islands, Croatia43, in Israeli Bedouins44, South Indian Tamil communities45 and in Egypt39. These 

studies were primarily based on epidemiological data and did not include in-depth comparisons 

between the genomic architecture of affected individuals and that of control individuals. Few 

genetic studies have investigated the molecular genetic factors that could support the link between 

consanguinity and psychiatric disorders. Nevertheless, some susceptibility loci have been reported 

previously using genome-wide linkage analysis in schizophrenia and bipolar disorder in extended 

pedigrees and population isolates46–48.  

Genetic data can be used to estimate the degree of consanguinity in an individual 

(inbreeding coefficient). The inbreeding coefficient (F) measures the proportion of loci at which 

the offspring of a consanguineous union is expected to inherit identical gene copies from both 

parents. An individual for whom F is greater than or equal to 0.0156 is deemed to be 

consanguineous. Knight et al investigated five Pakistani children with schizophrenia who were 

descendants of a first-cousin marriage, and using homozygosity analysis and inbreeding 

coefficients, they reported two distinct candidate loci49.  

Genetic data can also be used to identify homozygous chromosomal regions (runs of 

homozygosity, ROH) resulting from consanguinity. Kurotaki et al recruited nine schizophrenia 

subjects from first-cousin marriages and 92 unaffected control individuals from the Japanese 
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population. When they compared the distribution of ROHs in offspring of first-cousin marriages 

and offspring of non-consanguineous marriages, they detected many ROHs in ≥ 3 affected 

individuals, including one previously reported50. In another study using 178 schizophrenia cases 

and 144 unrelated Caucasian controls from outbred populations, Lencz et al used a whole-genome 

homozygosity association approach and identified nine ROHs that were significantly more 

common in schizophrenia cases than in controls; thus suggesting that recessive effects of relatively 

high penetrance might explain a significant proportion of the genetic liability for this disorder51. 

Following the extension of their cohort to 9,388 cases and 12,456 controls, the same group 

estimated that the odds of developing schizophrenia were increased by 17% for each 1% increase 

in genome-wide autozygosity52.  

A large study conducted by the Psychiatric Genomics Consortium failed to replicate the 

significant association between ROH burden and schizophrenia after doubling the sample size53. 

Another group studied the genome wide ROH burden in a homogeneous Irish cohort of 1,606 

cases and 1,794 controls and reported no excess of ROH in schizophrenic cases by comparison to 

controls54. In another study conducted using a cohort of 506 individuals with bipolar disorder and 

510 unaffected individuals from the United Kingdom, no excess of ROHs was observed55. In 

summary, results are mixed, and no definitive conclusion has thus far been drawn. The degree to 

which schizophrenia risk loci identified in genetic isolates are likely to be also found in outbred 

populations is questionable, but the identification of gene products that may contribute to the 

phenotypic expression of the disorder could provide useful clues towards successful treatment 

regiments7.  

There have been few detailed studies on the possible influence of consanguinity on bipolar 

disorder, other than a case-control study in the Nile delta region of Egypt based on 64 DNA 

polymorphisms and self-reported parental relationships, with bipolar I disorder more prevalent 

among the progeny of consanguineous parents39.  

The phenotypic complexity of schizophrenia, bipolar disorder and other psychiatric 

disorders is a major concern. The accumulating evidence of the substantial polygenic component 

to the risk of schizophrenia and bipolar disorder involving thousands of common alleles of very 

small effect, implicates that the effect of consanguinity on these disorders is probably lesser and 
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an individual’s risk of developing them requires a conjunction of rare high-penetrant single 

nucleotide variants (SNVs), rare copy number variants (CNVs), and common SNVs with 

epigenetic and environmental factors.  

1.3 The overview of the genetics of schizophrenia and bipolar 

disorder 

1.3.1 The prevalence and heritability of schizophrenia and bipolar disorder 

Schizophrenia (SCZ) and bipolar disorder (BP) are two non-fatal mental disorders that 

respectively contribute to ~7.4% and ~7.0% towards the global burden of disease in 201056. Based 

on previous studies, SCZ has a lifetime prevalence of 0.4%57. Bipolar spectrum disorder has an 

aggregate lifetime prevalence of about 2.4% (0.6% for BP, 0.4% for BP-II and 1.4% for 

subthreshold BP)58.  

A family history of SCZ and BP is a major risk factor for the development of these 

disorders. The genetic influences driving SCZ/BP found through familial aggregation studies were 

first described by clinicians and researchers before the era of molecular genetics. Familial studies 

were used to estimate the effects of genetics on phenotypic variance ‒ twin studies were the most 

commonly used. The concordance between monozygotic twins versus dizygotic twins estimates 

the genetic variance that explains phenotypic variance ‒ commonly referred to as heritability. A 

meta-analysis of schizophrenic twin studies estimated heritability in SCZ at 81% (95% CI, 73%-

90%), while common or shared environmental influences was estimated to be 11% (95% CI, 3%-

19%), suggesting a strong genetic influence59. The most recent and largest BP twin study also 

estimates a strong heritability (75%)60. A more comprehensive meta-analysis of the heritability on 

complex traits in humans can be visualized with the MaTCH (Meta-Analysis of Twin Correlations 

and Heritability) webtool, where one can view the collection of twin studies for SCZ and BP, albeit 

the estimates of heritability and shared environment may slightly differ61. Theoretically, the 

heritability of a phenotype may differ between populations due to differences in non-additive and 

additive genetic factors and environmental factors (i.e. differential selection pressures). However, 

in practice, heritability of some traits can be similar across different ethnic populations 62.  
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1.3.2 The overlap of genetic components of schizophrenia and bipolar 

disorder 

SCZ and BP likely share a genetic origin. Nonetheless, the discrete disease entities, with 

distinct etiology and pathogenesis, are identified by current diagnostic conventions. In the end, the 

diagnosis of individuals with a mixture of prominent mood and psychotic symptoms somewhat 

depends on the psychiatrist’s subjectivity. The genetic correlation was previously calculated to be 

0.68 ± 0.04 SE between SCZ and BP, demonstrating a high level of genetic overlap between the 

disorders63. Familial coaggregation of SCZ and BP based on a meta-analysis of family studies 

showed that first-degree relatives of probands with SCZ had significantly increased rate of BP and 

first-degree relatives of probands with BP had marginally increased rates of SCZ64. The 

comorbidity between the disorders was estimated to be 63% in two million Swedish nuclear 

families – the largest population-based study to date65. Moreover, early linkage studies and meta-

analyses have identified some chromosomal regions privy to both SCZ and BP, suggesting further 

evidence for comorbidity.66  

Recently, copy number variants in certain genomic loci (e.g. 13q and 22q) were found to 

be strongly associated with SCZ and BP67. Candidate-gene association studies for both SCZ and 

BP also identified variants in the same genes, suggesting genetic overlap between the two 

disorders; DISC1 (Disrupted in Schizophrenia 1) and NRG1 (Neuregulin 1) are two examples of 

genes with variants driving the SCZ and/or BP phenotype(s)68. Additionally, genome-wide 

association studies (GWAS) have identified significant single nucleotide polymorphisms (SNPs) 

in similar regions of both SCZ and BP. Meta-analyses of GWAS data have shown significant 

association for ZNF804A in both SCZ and BP69. Furthermore, variants in CACNA1C were found 

recurrently shared between BP and other psychiatric disorders including SCZ70. In fact, pathway 

analysis implicated a role for calcium channel signaling genes in major psychiatric disorders71. 

Besides, polygenic risk analyses have demonstrated that the burden of small-effect SNPs 

contribute towards the phenotypes of SCZ and BP72.  

With the increasing evidence of shared genetic components, researchers in the field have 

proposed a dimensional spectrum, in which five classes of mental disorder are arranged on a single 
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axis and overlap due to shared risk factors: the changes of genotype influence one or more 

biological systems, and the relevant biological systems influence specific neural modules that 

comprise the key relevant functional elements of the brain. The abnormal functioning of the neural 

modules influences the domains of psychopathological experience and ultimately the clinical 

syndromes (Figure 2) 73,74.  

The aforementioned studies suggest that SCZ and BP have an overlap in genetic risk and 

probably share some genetic components for pathogenesis. This idea does not mean they can fit in 

a single-disease category regarding clinical symptoms, genetic susceptibility and biological 

mechanisms. SCZ tends to have a stronger neurodevelopmental component than BP on the 

gradient of pathology (Figure 2), which is consistent with the evidence showing that structural 

genomic variations such as CNVs can contribute to neurodevelopmental pathology75. Although 

CNVs do have a role in the risk of BP76,77, they appear to be smaller in size or in effect, compared 

to the CNVs observed in autism and SCZ78,79. A family study investigating the common genetic 

determinants of SCZ and BP also presented convincing evidence of unique genetic factors for each 

disorder (Figure 3)65.  

Despite the shared symptomology and genetics being substantial, a few studies also 

implicate the genetic architecture differences between these two disorders80,81. As the first 

evidence for a genetic basis under the differences, Ruderfer et al. created a polygenic risk score 

(PRS) from a case-only SCZ versus BP diagnosis in an independent sample. They showed the PRS 

was significantly different between BP and SCZ and there was a significant correlation between a 

BP PRS and the clinical dimension of mania in SCZ patients. They further extended this rational 

to a much larger sample size. They then identified genome-wide significant loci shared between 

disorders, and also genomic regions with disorder-independent causal variants and potassium ion 

response genes as contributing to differences in biology between disorders. Their PRS analysis 

identified several significant correlations within case-only phenotypes including SCZ PRS with 

psychotic features and age of onset in BP. This was the first time to discover specific loci that 

distinguish between BP and SCZ and identify polygenic components underlying multiple 

symptom dimensions82. Conventionally, large-scale genetic studies on SCZ and BP were carried 

out separately; a detailed review will be shown further in this thesis.  
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1.3.3 The history of genetic studies on schizophrenia and bipolar disorder 

The success of mapping genes responsible for Mendelian disorders in the linkage era 

(1980-2005) led researchers to search for co-segregating loci for psychiatric disorders. Many 

linkage studies have been conducted for both SCZ and BP. However, several linked loci were 

likely false positives due to lack of replication across multiple independent studies83. The family-

based design of individual linkage studies lacked power to detect positive signals, therefore 

necessitating a collaborative meta-analysis. A meta-analysis of linkage analyses of SCZ suggested 

many nominally significant chromosomal regions containing SCZ susceptibility loci, but only one 

genome-wide significant peak was detected in a region never implicated in SCZ84. The ‘aggregate’ 

genome-wide significant loci could not be replicated in a secondary analysis85. These loci likely 

do not confer risk directly to the phenotype or may only contribute a small portion to the 

heritability in the general population.  

The meta-analyses of linkage studies for BP detected no genome-wide significant locus 

with a rank-based genome scan method86. Alternatively, a combined analysis using the original 

genotype data, comprising the largest scale of BP meta-analysis, established genome-wide 

significant loci linked to BP on chromosome arms 6q and 8q87. These inconsistent results 

demonstrate that the linkage studies have low power to detect low effect-size genomic loci.  

Case-control association studies have been thought to be more powerful than linkage 

studies at detecting genes with small effect sizes, when performed with an adequately effective 

sample size. This method tests whether the allele or genotype frequencies differ significantly 

between cases and controls cohorts. It was initially applied to candidate genes, which were selected 

based on biological function or positional linkage associated with the disorder. The biological 

function consists of known and hypothesized functional pathway related to the disorder, or the 

target proteins of the antipsychotic drugs. For instance, genes involved in dopamine or serotonin 

neurotransmission tend to be implicated in psychiatric disorders. Approximately 1008 genes have 

been documented in the SzGene database ‒ an archive of all the candidate gene studies88 and meta-

analyses of SCZ. Amongst those genes with modest effect sizes and nominal significance, NRG1, 

DISC1, COMT and NRX1 were the top candidate genes. However, most of the associations have 

yet to be confirmed by meta-analysis, independent association studies or functional studies.  
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1.3.4 The family-based study designs in neuropsychiatric genetics research 

Family-based designs are unique in that they use relatives to assess the genetic and 

molecular epidemiology of disease. The most commonly used studies are of familial aggregation, 

twins, segregation, linkage, and association. The first three designs evaluate the potential genetic 

basis of disease using patterns of coaggregation, and the last two directly evaluate genetic markers, 

usually across the entire human genome, to look for potential risk factors89. 

The clustering of disease within families usually suggests that a disease may have a genetic 

component. The familial correlation of a trait could be estimated by comparing the overall 

population prevalence with the risk of disease to other family members based on their relatedness. 

Twin studies are more direct evidence of the genetic involvement, assuming they share the same 

environmental factors. The concordance rate of disease among monozygotic and dizygotic twins 

is the most commonly used method to calculate the heritability of a disease. Segregation analysis 

is a type of method performed on family data to establish the genetic inheritance of disease, by 

testing models of varying degrees of generality. Large pedigrees with many affected individuals 

are particularly informative both for establishing that genetic component is important and for 

identifying specific genes. Segregation analysis can be incorporated into further linkage analysis 

and association analysis, aiding on determining the best-fitting model for model-based linkage 

analysis and increasing power89.  

For many years, linkage analysis was the primary tool used for the genetic mapping of 

Mendelian and complex traits with familial aggregation. In linkage analysis, by investigating the 

cosegregation of genetic markers and a disease trait within families, one infers that the disease-

causing variants are nearby the markers. Linkage analysis has been greatly successful for mapping 

Mendelian traits but also notably successful in mapping variants that confer susceptibility to 

common diseases90. Parametric (model-based) linkage analysis is used with large pedigrees and 

non-parametric (model-free) linkage analysis is often used with affected sib-pairs. Linkage can be 

performed using all or a subset of markers, as single-point linkage analysis takes information from 

one marker at a time and multi-point combines information from closely spaced markers. The latter 

provides more power but requires more computational power. Many linkage studies have been 

conducted for both SCZ and BP. However, several linked loci were likely false positives due to 

lack of replication across multiple independent studies83. 
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Typical family designs of linkage include: parent–offspring trios; affected sibling pairs 

(sib-pairs); unselected sib-pairs or related individuals selected from the extremes of a quantitative 

trait distribution (for example, concordant or discordant sib-pairs); extended pedigrees with 

multiple affected individuals; consanguineous families; and families obtained from isolated 

populations. One of these designs, or a combination of them, may be chosen depending on the 

questions to be investigated90. Discordant sib-pairs have been useful in association analyses of 

SCZ in the Indonesian population91.  

Linkage analysis lost its predominance to linkage disequilibrium association mapping in 

recent years. Association studies are routinely carried out on a genome-wide basis on complex 

traits, examining common variants with a modest effect in large case-control populations. The 

most common family-based case-control designs for association studies are the use of case-parent 

trios (Transmission Disequilibrium Test, TDT) and sibling controls. The case-parent analysis looks 

across numerous trios to assess whether a specific allele or combination of alleles is preferentially 

transmitted to the cases, indicating an association between the corresponding allele and disease. 

This case-parent design has been extended to add additional family members, and it is very 

efficient for rare diseases. A common problem with the TDT is missing parental data, which could 

lead to bias. Family-based association (FBA) studies are closer to directly identifying disease 

variants and help address issues of population stratifications, however, recent FBA studies were 

confirming the significant loci discovered by GWAS92.  

Common variants detected by genome-wide association studies (GWAS) cannot account 

for much of the heritability of most common disorders. This observation led to an emerging view 

that rare variants could be responsible for a substantial proportion of complex diseases risk factors. 

This hypothesis draws attention back to linkage and other family-based methods to detect rare 

variants involved in disease etiology, especially with the increased availability of whole-exome 

and whole-genome sequence data. A recent publication investigated an Icelandic kindred 

containing ten individuals with psychosis (SCZ, schizoaffective disorder or psychotic bipolar 

disorder) and found all affected individuals carry a rare nonsense mutation in the gene RBM12, 

and this association was replicated in a Finnish family in which a second RBM12 truncating 

mutation segregates with psychosis93. A number of studies combining linkage analysis and 

WES/WGS reported the genetic contribution to BP94,95.  
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A combination of linkage and association methodologies should provide the most robust 

and powerful approach to identify and characterize the full range of disease-susceptibility 

variants90. Family study designs contribute to this combined approach by providing not only the 

ability to enrich for genetic loci containing rare variants, but also by: providing methods to control 

for heterogeneity and population stratification; allowing direct estimates of the genetic 

contribution of different loci; making it possible to follow the transmission of variants with 

phenotypes; revealing the effects of parental origin of alleles and other applications.  

 

1.3.5 Common disease ‒ common variants (CD/CV) hypothesis on the 

genetics of schizophrenia and bipolar disorder 

“Common disease ‒ common variants hypothesis” implies that a disease is caused by a 

combination of separate common alleles of modest effect. Since 2007, GWAS have been 

productive in psychiatric disorders through the development of high-throughput genotyping chips, 

the documentation by the HapMap Consortium96, the 1000 Genomes Project97, covering 

informative SNPs across genomes of different populations, and the collaborative effort of the 

Psychiatric Genomics Consortium (PGC). GWAS do not rely on any a priori selected candidate 

genes, as they investigate the associations between individual common genomic variations and 

disorders. 

Several large GWAS have been performed both on SCZ and BP. Selected studies are 

summarized in Table I, which includes the sample size of the study, the population ancestry, the 

number of genome-wide significant loci, and how many new loci were reported. This list is based 

on the NHGRI-EBI catalog of published GWAS and includes only the studies concentrating on 

the main SCZ/BP phenotypes, rather than endophenotypes, and the studies that were sufficiently 

powerful or representative and unique to a new population. As it is shown in the summary table, 

there is a linear relationship between the discovery sample size and number of reported loci from 

GWAS, according to their effect sizes for a trait. The statistical framework behind the study design 

of GWAS is consistent: a stringent significance level (p-values < 5 × 10-8) is usually set to account 

for type I error (false-positive) rate. Empirically, SNPs with a p-value less than this threshold are 

well replicated, which means that type I errors are well controlled. It also indicates that the 
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associations of SNPs which cannot be replicated had type II errors (false negative) due to their 

small effect size. Currently, in order to avoid the type II errors, efforts have been made to perform 

meta-analyses of the GWAS summary statistics or mega-analyses of raw genotype data (not only 

summary statistics), therefore increasing the sample size and statistical power98.  

The cumulative number of loci that have been reported for SCZ99 and the expected number 

of BP risk loci100 that could be found through GWAS were calculated (as shown in Figure 4). In 

the last decade, the sample sizes of SCZ and BP GWAS have increased from one thousand to one 

hundred thousand (with approximately equal case to control ratios), and they are still increasing 

with the aggregation of samples and data across organizations worldwide. This increase makes 

further discoveries on the pleiotropic nature of psychiatric disorders promising.  

The largest schizophrenia GWAS to date using case-control samples (34,241 cases and 

45,604 controls from PGC2) of mainly European ancestry have identified 128 significant 

independent associations spanning 108 conservatively defined loci101, which has provided 

substantial evidence on previously documented polygenic contribution to SCZ72,102. The polygenic 

component discovered through GWAS is similar to the results of meta-analyses of other complex 

traits such as human height103, inflammatory bowel disease104 and breast cancer105. The most 

notable associations in this study, which are relevant to major hypotheses of the etiology and 

treatment of schizophrenia, include DRD2 – the target of antipsychotic drugs; genes such as 

GRM3, GRIN2A, SRR, GRIA – involved in glutamatergic neurotransmission and synaptic 

plasticity; and associations with CACNA1C, CACNB2 and CACNA1I – encoding voltage-gated 

calcium channel subunits (this family of proteins have extended previous implications in SCZ and 

other psychiatric disorders)70,71,106–108. Those discovered loci are also enriched in genes containing 

de novo mutations in schizophrenia, autism, and intellectual disability101. Based on the PGC 

findings on schizophrenia, people estimated that 8,300 independent, mostly common SNPs, 

contribute to risk for schizophrenia, and these collectively account for 32% of the variance106. 

Further, an overwhelmingly polygenic disease architecture in which ≥71% of 1-Mb genomic 

regions harbor ≥1 variant influences schizophrenia risk109. The highly polygenic nature of the 

common variants contributing to the risk of SCZ are widely replicated. About 75% of the 108 loci 

continued to be genome-wide significant in the trans-ancestry analysis with the combination of a 

Chinese schizophrenia cases/controls and the data from PGC2110. The same study has identified 
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30 novel genome-wide significant loci, four of which were only significant in the Chinese sample. 

These findings indicated that most schizophrenia risk loci were shared across two ancestral 

populations. However, it also suggested common variants explaining the genetic variance are only 

partially overlapping between European and Chinese populations.  

Despite the increasing and unequivocal evidence for common SNPs contributing to 

schizophrenia risk, some important factors about the GWAS findings should be noted111:  

1) The associations are to genomic regions (loci), and not to genes. It is not certain which 

gene is involved for some of the loci since they encompass more than one gene, such as the 

major histocompatibility complex (MHC) locus. Functional evidence is arising for the 

involvement of risk alleles: a major study reported structurally diverse alleles of 

complement component 4 genes (C4A and C4B) in the MHC locus, which generated widely 

varying levels of C4A and C4B expression in the brain, and the allelic association to 

schizophrenia is related to increased expression of C4A112. 

2) Almost all the schizophrenia-associated SNPs are in non-coding regions of the genome, 

either intergenic or intronic, and the scarcity of evidence makes identifying the biological 

basis of these associations challenging. Further proof for these associations and their 

potential for therapeutic targeting calls for both caution and collaborative effort.  

Similar to the case of GWAS studies on schizophrenia, the GWAS on bipolar disorders 

started with smaller sample size (as summarized in Table I), and therefore most of the 

susceptibility loci were not replicated. The most often replicated genes are ANK and 

CACNA1C108,113. A milestone study was published in 2011 by PGC with a discovery dataset of 

7,481 European ancestry cases and 9,250 European ancestry controls71. They identified a new 

intronic locus in ODZ4, and they confirmed the genome-wide significant evidence of association 

for CACNA1C, though the odds ratio of the susceptibility were both at 1.14 (combined p-values 

are 1.52 × 10-8 and 4.40 × 10-8 for CACNA1C and ODZ4 respectively), which held a similar 

magnitude to the risk for schizophrenia101. The small effect size of the associated SNPs makes the 

signals undetectable under certain sample sizes, hence researchers have attempted to increase the 

sample size of the discovery GWAS after the PGC study, as shown in Table I. However, the 

number of novel susceptibility loci/genes for bipolar disorder was limited. Subsequent GWAS 

studies reported novel significant association inside or near genes/regions: an intergenic region on 
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9p21.3, EBBB2, TRANK1, MAD1L1, ADCY2, a region between MIR2113 and POU3F2100,114,115, 

for which the functional connection to BP is still uncertain. The largest non-European GWAS 

conducted on the Japanese population (2,964 BP cases and 61,887 controls) found a novel 

susceptibility locus at 11q12.2, a region known to contain regulatory genes for plasma lipid levels 

(FADS1/2/3). The most recent GWAS study by the PGC reported 30 susceptibility loci including 

18 novel ones116; the sample size of the discovery GWAS was tripled compared to their publication 

in 2011. It was comprised of 20,352 cases and 31,358 controls of European descent and combined 

an independent sample of 9,412 cases and 137,760 controls. These significant loci contain genes 

encoding ion channels and neurotransmitter transporters (CACNA1C, GRIN2A, SCN2A, SLC4A1), 

synaptic components (RIMS1, ANK3), immune and energy metabolism components, and multiple 

potential therapeutic targets for mood stabilizer drugs. It is also noteworthy that trans-ethnic 

replication analysis in BP GWAS could be a reasonable way to pinpoint the genuine susceptibility 

genes, based on the evidence that FADS genes were associated with BP in the new PGC data. In 

sum, there are approximately 40 loci that are significantly associated with the risk of BP from 

major GWAS studies, with the estimated variance explained by polygenic risk scores (based on 

the largest GWAS so far) being ~8% ‒ 4% on the liability scale.  

One could use GWAS data from human studies to create genetic predictors for disease and 

other complex traits by estimating the effect size at multiple loci in a discovery sample and using 

those estimated SNP effects in independent samples to generate a polygenic risk score (PRS) per 

individual. Additionally, they found that bipolar disorder type I is strongly genetically correlated 

with schizophrenia, while bipolar disorder type II correlated more with major depression. 

1.3.6 Common disease ‒ rare variants (CD/RV) hypothesis on the genetics of 

schizophrenia and bipolar disorder 

In contrast to the “common disease – common variants” model, which implies that a disease 

is caused by combinations of separate common alleles of modest effect, the alternative model of 

“common disease – rare variants” hypothesizes that some mutations predisposing to diseases are 

highly penetrant, individually rare, and of recent origin, even being specific to single cases or 

families117. A strong effect of the variants is possibly due to the severely reduced fitness of affected 

patients with schizophrenia and bipolar disorder118 (bipolar disorder appearing to be under weaker 
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negative selection). Since there is emerging evidence on the involvement of rare variants in 

schizophrenia and bipolar disorder, this thesis will introduce them by variant type separately.  

Rare copy number variants (CNVs) 

Copy number variants (CNVs) are chromosomal deletions and duplications that range in 

size from kilobases to megabases of DNA sequence, and they usually cannot be detected through 

conventional karyotyping119. The wide usage of microarrays made the discovery of CNVs 

accessible in large cohorts of patients and controls. Four major mechanisms account for the 

formation of CNVs: non-allelic homologous recombination (NAHR), non-homologous end 

joining (NHEJ), fork stalling and template switching (FoSTeS), and L1-mediated 

retrotransposition120. NAHR is responsible for forming the recurrent CNVs at the same 

chromosomes positions flanked by region-specific, highly repetitive DNA sequences, called low 

copy repeats (LCRs), which are DNA segments previously duplicated during evolution. 

Recombination between adjacent and homologous LCRs can occur and leads to deletions or 

duplications of the DNA stretches between the repeats121. NHEJ is more error-prone than NAHR 

because it occurs due to the aberrant repair of DNA double-strand breaks and is guided by the 

information contained within or near the DNA lesion for repair. It usually forms the breakpoints 

of CNVs within repetitive elements and it doesn’t require extensive sequence homology. 

Breakpoint analysis revealed that 70.8% of the deletions were attributed to either a nonhomology-

based mechanism (i.e. NHEJ) or microhomology-mediated breakpoint-induced replication 

(generalization of the FoSTeS mechanism), and 89.6% of the insertions/duplications were 

attributable to retrotransposition activity122.  

The first and most replicated evidence of structural variants being involved in psychiatric 

disorders is the case of 22q11.2 microdeletions, which were originally found to be associated with 

velo-cardio-facial syndrome (VCFS) through karyotyping123. The individuals with VCFS have 

high rates of psychiatric disorder, especially schizophrenia124. There is evidence demonstrating an 

increased prevalence of chromosome 22q11.2 deletions in schizophrenia patients compared to 

controls125. Additionally, this deletion is associated with multiple neuropsychiatric disorders, such 

as autism spectrum disorder (ASD) and intellectual disability (ID). Among the genes located in 

this region, two candidate genes are proposed to contribute to the SCZ phenotype: catechol‐o‐

methyl transferase (COMT) and proline dehydrogenase 1 (PRODH). COMT encodes the 
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postsynaptic enzyme known to regulate the degradation of dopamine and PRODH encodes an 

enzyme responsible for glutamate production in the mitochondria.  

New deletions including 1q21.1 (>1 Mb multi-allelic CNVs), 15q11.2 (470 kb) and 

15q13.3 (~1.5Mb) were firstly implicated in schizophrenia120,126 in 2008, and these findings were 

replicated in follow-up studies. Both CNVs in ancestrally matched schizophrenia cases and 

controls60 and large recurrent CNVs proposed to be under negative selection (because of reduced 

fecundity associated with schizophrenia) were examined59. These CNVs have also been observed 

in other patients with autism, mental retardation and other psychiatric disorders. Deletions of 

NRXN1 have been strongly linked to schizophrenia127,128. The successful replication of the NRXN1 

CNVs associated with SCZ might have been a result of high mutation rates and the negative 

selection acting against them. It has also been shown that rates of these CNVs stay similar in 

different populations and they are not affected by genetic drift. Meanwhile, the extreme rarity of 

pathogenic CNVs (frequency is usually less than 1%) even in patient populations requires very 

large sample size for reaching sufficient statistical power121. First, scattered studies were used to 

confirm previously reported CNVs and discover novel ones. Then, large consortia and 

collaborations were very helpful for increasing the sample size and ruling out false positives. How 

the most significant CNVs were originally discovered and further replicated in the largest CNV 

GWAS (SCZ cohort of 21,094 cases and 20,227 controls) to date is summarized in Table II. The 

frequency in cases and controls, the CNV effect sizes and significance levels are also included. 

The odds ratios of these CNVs range from approximately 2 to 60, with some extremely high effect 

sizes, such as for 22q11.2 and 3q29. CNVs with higher risk to develop SCZ (higher odds ratios) 

are rarer (lower frequencies in the population), because higher pathogenic mutations are eliminated 

from the population faster, due to lower fecundity among their carriers (the SCZ patients). 

Interestingly, these risks and protective CNVs were recurrent, predominantly mediated by NAHR 

mechanism129. 

Most SCZ-associated CNVs are also risk factors for developmental delay (DD) and autism 

spectrum disorders (ASD)130, and the frequencies of CNVs are even higher in DD and ASD 

compared to SCZ. Although there is no obvious evidence for the genetic link between SCZ and 

ASD/DD in family or twin studies, they did share the neurodevelopmental component on the 

hypothesized neuropsychiatric spectrum. In contrast, studies on BP have not produced robust 
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results. Some studies showed the accumulation of rare de novo CNVs in patients with BP, 

especially in those with early-onset BP77,131. These findings could not be replicated, probably due 

to small discovery sample size. Most CNVs implicated in SCZ did not play a significant role in 

BP, except duplications at 1q21.1, 16p11.2 and deletions at 3q29120,132, despite BP being known 

to share a genetic component with SCZ. A possible explanation could be that SCZ patients suffer 

from cognitive deficits, while BP patients are more cognitively functional and less impairment-

persistent. Structural variants such as CNVs associated with cognitive problems may therefore 

play a smaller role in BP. It is less clear whether large rare (or de novo) CNVs in BP have a smaller 

magnitude of contribution relative to ASD or SCZ.  

Rare single nucleotide variants (SNVs) and indels 

Next-generation sequencing (NGS) technology has revolutionized genomic research since 

its emergence and has empowered researchers studying health sciences. Researchers in 

neuropsychiatric genetics have applied both whole-exome sequencing (WES) and whole-genome 

sequencing (WGS) in finding genetic components of schizophrenia, bipolar disorder and other 

neuropsychiatric disorders. WES has allowed the identification of variants within the 1% protein-

coding regions (exons of genes) of the genome (the exome). WES has allowed scanning for 

variants at a single-base resolution, i.e. SNVs and indels, which are not detected through 

microarray genotyping. The variations in the exome are likely to have more severe consequences 

than variations in the remaining 99% genome, since the exome are protein-coding. WGS has not 

often been applied to large-scale studies due to its high cost per individual. Emerging studies that 

used WES and WGS to explore SNV and indels in schizophrenia and bipolar disorder, either in 

family-based design or population-based design, will be discussed.  

A family-based design is a powerful way to investigate rare and highly penetrant variants. 

One study conducted in families with multiple affected members from a Caucasian ancestry, has 

reported novel private missense variants within SHANK2 and SMARCA1 (X-linked)133. Both genes 

are noteworthy, as the SHANK protein family and the SMARCA protein have multiple plausible 

connections to schizophrenia and brain function133. In this study, they have examined ninety 

individuals across nine families with two to six individuals diagnosed as having schizophrenia or 

schizoaffective disorder. Another outstanding study investigated an Icelandic kindred containing 

ten individuals with psychosis (schizophrenia, schizoaffective disorder or psychotic bipolar 



 

 

39 

disorder) and the authors found all affected individuals carried a nonsense mutation in the RBM12 

gene93. They replicated the association in a Finnish family (with five individuals affected by 

psychosis) in which a second RBM12 truncating mutation segregates with psychosis. Even though 

the variants were not fully penetrant for psychosis, they found that carriers unaffected by psychosis 

resembled patients with schizophrenia in their non-psychotic phase and in their 

neuropsychological test profile, as well as in their life outcomes. RBM12 had not been associated 

with psychosis previously, but it may help to understand the pathogenesis of psychosis or lead to 

new targets for drug development. This work also provided a template for future familial studies 

of psychosis: the mutations involved are likely to be recent, incompletely penetrant but to lead to 

related phenotypes in carriers unaffected by psychosis. They are also likely to act together with 

other sequence variants.  

A combined family-based and case-control approach was used with 36 affected members 

with BP from 8 multiplex families, and a follow-up meta-analysis in 3 independent case-control 

samples134. The WES revealed an enrichment of rare segregating variants for gene sets previously 

identified in de novo studies of autism and schizophrenia and for targets of the fragile X mental 

retardation protein (FMRP) pathway. Similar studies carried in BP multiplex families also shed 

light on the disease pathology. WGS of 41 families, comprising 200 individuals affected with BP, 

lead to the discovery that these pedigrees had an increased burden of rare variants in genes 

encoding neuronal ion channels, including subunits of GABAA receptors and voltage-gated 

calcium channels. Targeted sequencing of 26 of these candidate genes in an additional 3,014 cases 

and 1,717 controls confirmed rare variant associations135. Cruceanu et al. (2017) explored highly 

penetrant rare variants in 40 well-characterized multiplex families (186 exomes, three to seven 

affected individuals across one to three generations) and found rare variants segregating with the 

disease in many genes of clinical interest; an enrichment of deleterious variants in G protein-

coupled receptor (GPCR) family genes was observed, which are potentially important drug targets. 

One variant in particular, a rare and functionally relevant nonsense mutation in the CRHR2 gene, 

as a member of GPCR family and the hypothalamic-pituitary-adrenal axis, segregated well in one 

of these families136. Another study combining WES, CNV and linkage analysis in 15 BP families 

(72 out of 117 subjects are affected) reported that rare predicted pathogenic variants shared among 

≥ 3 affected relatives were overrepresented in postsynaptic density (PSD) genes, with no 

enrichment in unaffected relatives. However, they found no difference in genome-wide burden of 
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likely gene-disruptive variants in affected versus unaffected relatives. They emphasized the 

observation of heterogeneity within and between families and a probable genetic model involving 

variants of modest effect and reduced penetrance94.  

Most recent, large-scale studies of rare variants in schizophrenia have used case-control 

approaches. They either showed an enriched burden of gene sets or pinpointed to a specific gene. 

Purcell et al. (2014) used exome sequences of 2,536 SCZ cases and 2,543 controls to demonstrate 

a polygenic burden primarily arising from rare (less than 1 in 10,000) disruptive mutations across 

many genes137. These variants were particularly enriched the following gene sets: the voltage-

gated calcium ion channel and the signaling complex formed by the activity-regulated 

cytoskeleton-associated scaffold protein (ARC) of the postsynaptic density, gene sets previously 

implicated by GWAS and CNV studies in SCZ and targets of the FMRP pathway. Analysis on 

WES of an extended dataset comprising 4,264 SCZ cases, 9,343 controls and 1,077 trios identified 

a genome-wide significant association between rare loss-of-function (LOF) variants in SETD1A 

(also known as KMT2F, encoding one of the methyltransferases that catalyzes the methylation of 

lysine residues in histone H3) and risk for schizophrenia138. Ten individuals with SCZ carried 

SETD1A LOF variants compared to only two heterozygous LOF variants in 45,376 exomes from 

individuals in the general population. They also identified carriers of LOF variants in SETD1A 

among samples with severe developmental disorders and notable neuropsychiatric phenotypes. 

They suggested the epigenetic dysregulation, specifically in the histone H3K4 methylation 

pathway, is an important mechanism in the pathogenesis of SCZ, based on the evidence that LOF 

variants in other genes in the same protein family result in dominant Mendelian disorders 

characterized by severe developmental phenotypes including intellectual disability. By analyzing 

coding-sequence and splice-site ultra-rare variants (URVs among 4,877 SCZ cases and 6,203 

controls) that were present in only 1 of 12,332 unrelated Swedish exomes and never seen in the 

Exome Aggregation Consortium (ExAC, 45,376 non-psychiatric individuals) cohort, researchers 

found that gene-disruptive and putatively protein-damaging URVs are more abundant among 

individuals with SCZ than among controls (p = 1.3 × 10-10) 139. This elevation rate was several 

times larger than an analogously elevated rate for de novo mutations, suggesting that most rare-

variant effects on SCZ risk are inherited. These genes with URVs were concentrated on brain-

expressed genes and genes whose RNAs have been found to interact with synaptically localized 
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proteins, suggesting synaptic dysfunction may mediate a large fraction of strong, individually rare 

genetic influences on SCZ risk.  

The role of rare variants in bipolar disorder has not yet been tested in large-scale 

population-based studies comprehensively140. The use of isolated populations might help finding 

variants with a recent origin, which may have drifted to higher frequency by chance. With the 

WES of 28 BP cases and 214 controls from the Faroe Islands and follow-up in a British sample of 

2025 cases and 1358 controls141, 17 variants in 16 genes in the single-variant analysis and 3 genes 

in the gene-based statistics were exome-wide significant. The replication confirmed the association 

with NOS1 and NCL but didn’t support the association of two genes (PITPNM2 and PIK3C2A) in 

significant BP and SCZ GWAS loci. In this sense, large-scale WES and WGS on BP cases and 

matched controls are necessary to explore the contribution of rare variants in BP pathogenesis.  

De novo mutations 

De novo mutations (DNM) are genetic alterations that are present for the first time in one 

family member as a result of a mutation in a germ cell (egg or sperm) of one of the parents, or a 

variant that arises in the fertilized egg itself during early embryogenesis. Additionally, novel 

mutations continue to arise through post-natal and adult life in both somatic and germ cells. Only 

mutations present in germline cells can be transmitted to the next generation142. A typical human 

genome varies at 4.1 million to 5.0 million sites from the reference human genome, and only 

40,000 to 200,000 of them have a frequency < 0.5% in a population143. Those rare genetic 

variations must have occurred as de novo mutations in an individual during human evolution, at 

the germline de novo mutation rate for SNVs in humans of 1.0 to 1.8 × 10-8 per nucleotide per 

generation. This number translates into 44 to 82 de novo single-nucleotide mutations in the genome 

of an average individual, with 1 to 2 affecting the coding sequence. Moreover, around 2.9 to 9 

small de novo indels (<50bp), ~0.16 large de novo indels and ~0.0154 de novo CNVs (larger than 

100 kb in length) are also present in an average individual144,145. 

De novo mutation frequencies vary between individuals and over time within an individual. 

The de novo rate of SNVs and CNVs shows strong parent-of-origin biases as well as parental age 

effects, and could be due either to local genomic architecture (segmental duplications) or to 

variations in specific genes (such as PRDM9) mediating homologous recombination146. The 
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epidemiological studies provided robust evidence for an association of advanced paternal age to 

ASD and SCZ147, as well as a risk factor for BP148.  

High-resolution genomic microarrays allowed the unbiased genome-wide analysis of de 

novo CNVs long before the same could be realized for de novo SNVs and indels. Genome-wide 

CNV data of a case-control study found more de novo and rare CNVs in SCZ cases with adult 

(15%) or young-onset (20%) than in controls (5%), and this association was independently 

replicated in patients with childhood-onset SCZ as compared with their parents149. Another study 

tested directly for association of de novo CNVs with SCZ, reporting a frequency of 10% (15 out 

of 152) in sporadic cases, 1.3% among (2 out of 159) unaffected individuals and none in 48 familial 

cases150. Notably, the results of this study confirmed the importance of microdeletions in the 

22q11.2 locus as three de novo 22q11.2 microdeletions were identified151. Similar to the findings 

of ASD, around 1% of SCZ cases carries two or more de novo CNV events. These two studies 

highlighted their findings by including notable candidate genes or regions such as ERBB4, 

SLC1A3, RAPGEF4, CIT, NRXN1 and the 16p11.2 region discussed earlier152.  

Before the popularization of exome sequencing, the search for de novo SNVs was mainly 

in candidate genes that encode proteins known to have physiological roles at the synapse. One 

study evaluated the contribution of de novo SNVs in the synaptic scaffolding protein SHANK3 in 

185 SCZ patients with unaffected parents and 285 unrelated controls and reported 2 de novo 

mutations in this gene153. The same group systematically re-sequenced 401 synapse-associated 

genes in 142 individuals with ASDs and 143 individuals with SCZ, and calculated a direct de novo 

mutation rate which is similar to previous indirect estimates, but a significant excess of potentially 

deleterious DNMs was observed in ASD and SCZ patients154.  

Girard et al. (2011) sequenced the exomes of 14 SCZ probands and their parents and 

identified 15 DNMs in eight probands. This is significantly more than expected considering the 

previously reported DNM rate (2.59 × 10-8 in this study versus 1.0-1.28 × 10-8 per position in a 

haploid genome). Additionally, 4 of the DNMs are nonsense mutations, which is more than what 

is expected by chance. This study suggested that DNMs may account for some of the heritability 

of SCZ while providing a candidate gene list155. In the same year, Xu et al. also examined rare de 

novo protein-altering mutations in the exomes of 53 sporadic SCZ cases, 22 unaffected controls 

and their parents. They reported 40 DNMs in 27 cases affecting 40 genes, including a potentially 
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disruptive mutation in DGCR2, a gene located in the SCZ-predisposing 22q11.2 microdeletion 

region. They assessed the evolutionary conservation of the affected nucleotide by using the phyloP 

conservation score, and the comparison between DNMs and privately inherited variants in sporadic 

cases of SCZ showed a statistically significant shift towards higher phyloP scores for DNMs. 

Based on the thorough comparison to rare inherited variants in SCZ cases, these identified DNMs 

tended to show a large excess of non-synonymous changes as well as a greater potential to affect 

protein structure and function. They proposed a major role and a large mutational target for DNMs 

in the high incidence and persistence of SCZ156.  

One study, which primarily focused on testing the association of de novo CNVs with BP 

in 185 trios, found that the frequencies of de novo CNVs were significantly higher in BP as 

compared with controls (426 trios), and the de novo DNMs were enriched among cases with an 

age at onset younger than 1877. A total of 23 de novo CNVs were detected and validated in their 

sample. They have also tested the SCZ samples from Xu et al.150 with the same methodology to 

confirm the high rate of de novo CNVs in SCZ. A similar study design, using 662 Bulgarian SCZ 

trios and 2,623 Icelandic controls, also reported a higher frequency of rare de novo CNVs in cases 

(5.1%) compared with controls (2.2%)157. They detected de novo CNVs that occurred at known 

SCZ loci and are known as pathogenic for other genomic disorders. Most significantly, multiple 

de novo CNVs spanned genes encoding members that are components of the postsynaptic density 

(PSD). The systematic analysis showed that de novo variants in cases were enriched for the PSD 

proteome by merging novel CNVs and proteomics data sets.  

With the combination of a USA cohort and the application of WES of previously reported 

Afrikaner probands, the same group observed an excess of de novo nonsynonymous SNVs as well 

as a higher prevalence of gene-disruptive DNMs in cases relative to controls158. They found 

recurrent de novo events within or across two distinct populations in four genes (LAMA2, DPYD, 

TRRAP and VPS39), and they examined to what extent the de novo events were determined by the 

developmental pattern of brain expression of the mutated genes. The results showed that DNMs 

accounted for genes with higher expression in prenatal development, and they affected genes with 

diverse functions and developmental profiles. These findings may help to understand the genomic 

and neural architecture of SCZ risk.  
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Another study tried to identify DNMs by WES of quads and trios comprising of a proband 

with SCZ (sporadic/singleton case), his/her unaffected parents and an available unaffected 

sibling159. This study was conducted on 399 persons, including 105 probands affected with SCZ, 

84 unaffected siblings and 210 unaffected parents. The identified genes harboring de novo 

potentially damaging mutations in probands with SCZ. Those genes were then subject to co-

expression analysis in different brain regions across development stages and protein interaction 

profiles. The results showed that 54 genes with damaging DNMs were significantly enriched in 

the dorsolateral and ventrolateral prefrontal cortex during fetal development, and they are involved 

in neuronal migration, synaptic transmission, signaling, transcriptional regulation and transport. 

This study is further evidence that disruptions of fetal development are critical to the 

pathophysiology of SCZ and is the first to apply genomic and transcriptome analyses to map 

critical neurodevelopmental processes in time and space in the brain. The enrichment of genes 

with DNMs was also detected in a Chinese SCZ cohort (45 trios) in transcriptional co-expression 

profile in prenatal frontal cortex and in prenatal temporal and parietal regions, and four genes 

(LRP1, MACF1, DICER1 and ABCA2) harboring DNMs were prioritized160.  

The largest exome sequencing study of DNMs in SCZ to date was published by Fromer et 

al. in 2014, using 623 SCZ trios161. They report: 1) DNMs affecting protein sequences occur in 

SCZ not at higher than expected rates; 2) genic recurrence of DNMs in SCZ is significant, 

especially with an increased case/control ratio of rare LOF variants; 3) genes with DNMs are 

enriched in specific biological processes pathogenic in SCZ; small DNMs (SNVs and indels) in 

particular are overrepresented among glutamatergic postsynaptic proteins, comprising activity-

regulated cytoskeleton-associated protein (ARC), N-methyl-D-aspartate receptor (NMDAR) 

complexes and fragile X mental retardation protein (FMRP); 4) genes with small DNMs are also 

enriched in the de novo genes implicated in other neurodevelopmental disorders, including autism 

and intellectual disability. These results were aligned to a parallel case-control study of rare 

variants137 (mentioned earlier in this chapter) and they were consistent to reported the robust and 

reproducible enrichment signals of LOF variants in ARC complex.  

Subsequent studies consistently found an increased proportion of nonsense DNMs and their 

occurrence in genes less tolerant to rare variation in sporadic probands, and genes with those 

DNMs overlapped with genes implicated in autism (such as AUTS2, CHD8 and MECP2) and 

intellectual disability (for example, HUWE1 and TRAPPC9)162. Interesting DNM genes discovered 
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in one ethnicity through WES and further re-sequenced in ethnically diverse SCZ cases resulted 

in finding extremely rare and potentially damaging variants in those genes, which could illuminate 

risk genes that increase the propensity to develop SCZ across ethnicities163. Additionally, 

functional exploration of the gene TBL1XR1 (previously associated with autism and epilepsy) 

harboring a DNM in a Japanese cohort (18 trios) concluded that they could alter Wnt/β-catenin 

signaling activity, through altering the interaction of TBL1XR1 with N-CoR and β-catenin.  

Alternative view on the contribution of de novo synonymous mutations reported that de 

novo near-splice site synonymous mutations changing exonic splicing regulators and those within 

frontal cortex-derived DNase I hypersensitivity sites are significantly enriched in ASD and SCZ, 

respectively. SETD1A was again found to harbor multiple functional de novo synonymous 

mutations164. A recent major study, the Deciphering Developmental Disorders (DDD) study, 

comprising of 7,930 individuals with a severe and undiagnosed developmental disorder and their 

parents, showed that DNMs in highly evolutionarily conserved fetal brain-active elements are 

significantly and specifically enriched in neurodevelopmental disorders, which established a 

robust estimate of the contribution of DNMs in regulatory elements to genetically heterogeneous 

disorders165.  

The first trio-based WES study on BP (79 probands) to investigate potential roles of DNMs 

in the disease pathogenesis of BP found significant enrichment of genes highly intolerant to 

protein-altering variants in the general population, similar to aforementioned reports in autism and 

SCZ166. They also observed significantly earlier disease onset among the BP probands with de 

novo protein-altering mutations when compared to non-carriers. However, the gene ontology 

enrichment analysis did not identify any significant enrichment.  

In summary, the historical genetic studies and molecular genetics in the last decade or so 

demonstrated strong evidence for the genetic contribution to the development of SCZ and BP. 

Recent studies have shown that the genetic architecture of these two neuropsychiatric disorders is 

very complex, heterogeneous, and likely follows an omnigenic model167. The convergence of 

common and rare variant studies and their consistent overlap at a broad functional level suggests 

that the common disease ‒ common variants and common disease ‒ rare variants hypotheses are 

complementary to explain the pathogenesis of the disorders.  
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Figure 2. Hypothesized model of the complex relationship between biological variation 

and some major forms of psychopathology.  

Reprinted from “The Kraepelinian dichotomy – going, going … but still not gone” by Nick 

Craddock and Michael J. Owen, 2010, British Journal of Psychiatry, 196, 92-95. Copy right 2018 

by Cambridge University Press. Reprinted with permission.  

This figure depicts a simplified model of the relationships between genotype and clinical 

phenotype. From the lowest tier, the structural variations contribute particularly to 

neurodevelopmental disorders and are associated particularly with enduring cognitive and 

functional impairment, while the single-base changes in genes (shown as asterisks) may influence 

one or multiple biological systems based on the involvement of genes in multiple functions and 

their interactions with each other and with the environmental exposures/experiences historically 

and dynamically. Furthermore, the relevant biological systems would influence the neural modules 

that comprises the relevant functional elements of the brain. The (abnormal) functioning of the 

neural modules together influences the domains of psychopathology and ultimately the clinical 
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syndromes. The decreasing proportion of neurodevelopmental contribution and reciprocal 

increasing proportion of episodic affective disturbance are shown along a simplified axis for some 

major clinical syndromes.  



 

 

48 

 

Figure 3. Variance accounted for by genetic, shared environmental, and non-shared 

environmental effects for schizophrenia and bipolar disorder.  

Reprinted from “Common genetic determinants of schizophrenia and bipolar disorder in 

Swedish families: a population-based study” by Paul Lichtenstein, Benjamin H Yip, Camilla 

Björk, Yudi Pawitan,Tyrone D Cannon, Patrick F Sullivan, and Christina M Hultman, 2009, 

The Lancet, 373, 234-239. Copy right 2009 by Elsevier. Reprinted with permission.  
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Figure 4. The relationship between the effective sample size and number of GWAS loci. 

(A) The maximum number of loci reported from recent genome-wide association studies 

(GWAS) for selected traits, including schizophrenia, given the effective sample size. 

Reprinted from “The genetics of diabetic complications” by  Emma Ahlqvist, Natalie R. van 

Zuydam, Leif C. Groop, Mark I. McCarthy, 99, 2015, Nature Reviews Nephrology, 11, 277-

287, copyright 2015 by Springer Nature. Reprinted with permission; and (B) the expected 
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number of bipolar disorder risk loci through GWAS and its relationship with the effective 

sample size of the study and genetic variance explained. Reprinted from “Genome-wide 

association study meta-analysis of European and Asian-ancestry samples identifies three 

novel loci associated with bipolar disorder” by Chen DT et al.100, 2013, Molecular 

Psychiatry, 18, 195-205. Copyright 2011 by Springer Nature. Reprinted with permission. 
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Table I. Major GWAS studies of schizophrenia and bipolar disorder from 2007 to 2017 

PMID Author Publication 

Date 

Journal Phenotypes GW 

significant 

loci 

# 

new 

loci 

Discovery 

cohort 

ancestry 

Replication 

cohort 

ancestry 

Discovery 

sample size 

18347602 Sullivan PF168  3/18/2008 Mol Psychiatry SCZ 0 0 European NR 828 

18677311 O'Donovan 

MC69 

7/30/2008 Nat Genet SCZ 1 1 European European 3,416 

19571811 Purcell SM72 7/1/2009 Nature SCZ, BP 1 1 European European 6,909 

19571809 Shi J169 7/1/2009 Nature SCZ 1 1 European European 7,593 

19571808 Stefansson 

H170 

7/1/2009 Nature SCZ 3 3 European European 16,161 

20713499 Huang J171 8/16/2010 Am J Psychiatry SCZ, BP, 

MDD 

1 1 European NR 4,186 

20832056 Ikeda M172 9/8/2010 Biol Psychiatry SCZ 0 0 Japanese Japanese 1,108 

21674006 Yamada K173  6/6/2011 PLoS One SCZ 0 0 Japanese Japanese 360 

21926974 Ripke S174 9/18/2011 Nat Genet SCZ 7 5 European European 21,856 

22037552 Yue WH175 10/30/2011 Nat Genet SCZ 2 0 Han Chinese Han Chinese 2,345 

22037555 Shi Y176 10/30/2011 Nat Genet SCZ 2 2 Han Chinese Han Chinese 10,218 

22688191 Bergen SE79 6/12/2012 Mol Psychiatry SCZ, BP 1 0 Swedish Swedish 4,646 

22883433 ISGC & 

WTCCC2*177 

8/7/2012 Biol Psychiatry SCZ 1 0 Irish European 3,400 

23894747 Aberg KA178 2/1/2013 JAMA Psychiatry SCZ 7 0 European European 6,298 
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Table I.     Major GWAS studies of schizophrenia and bipolar disorder from 2007 to 2017, continued 

PMID Author Publication 

Date 

Journal Phenotypes GW 

significant 

loci 

# 

new 

loci 

Discovery 

cohort 

ancestry 

Replication 

cohort 

ancestry 

Discovery 

sample size 

23453885 Smoller JW71  2/27/2013 Lancet ASD, 

ADHD, BP, 

MDD, SCZ 

4 0 European European 61,220 

23974872 Ripke S106 8/25/2013 Nat Genet SCZ 22 13 European European 32,143 

24043878 Wong EH179  9/16/2013 Schizophr Bull SCZ 1 1 Han Chinese Han Chinese 2,506 

24166486 Sleiman P180  10/29/2013 Sci Rep SCZ, BP 6 1 European European 48,070 

24253340 Lencz T181 11/19/2013 Nat Commun SCZ, BP 1 1 Ashkenazi 

Jewish 

European 2,544 

25056061 Ripke S101 7/22/2014 Nature SCZ 108 83 European European 87,534 

26198764 Goes FS182  7/21/2015 Am J Med Genet 

B Neuropsychiatr 

Genet 

SCZ 0 0 Ashkenazi 

Jewish 

NR 4,058 

26531332 Kim LH183 11/14/2015 Am J Med Genet 

B Neuropsychiatr 

Genet 

SCZ 0 1 Korean Korean 1,050 

27922604 Yu H184 12/6/2016 Mol Psychiatry SCZ 3 0 Han Chinese Han Chinese 10,154 

28991256 Li Z110 10/9/2017 Nat Genet SCZ 113 30 Han Chinese 

+ European 

Han Chinese 108,341 
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Table I.     Major GWAS studies of schizophrenia and bipolar disorder from 2007 to 2017, continued 

PMID Author Publication 

Date 

Journal Phenotypes GW 

significant 

loci 

# 

new 

loci 

Discovery 

cohort 

ancestry 

Replication 

cohort 

ancestry 

Discovery 

sample size 

17554300 WTCCC185 6/7/2007 Nature BP 1 1 European   4,806 

18317468 Sklar P186 3/4/2008 Mol Psychiatry BP 2 2 European European 3,469 

18711365 Ferreira 

MA108  

8/17/2008 Nat Genet BP 2 1 European   10,596 

19416921 Scott LJ113 5/5/2009 Proc Natl Acad 

Sci U S A 

BP 3 1 European   18,190 

19488044 Smith EN187 6/2/2009 Mol Psychiatry BP 4* 4* European European 3,049 

20351715 Liu Y188 3/30/2010 Mol Psychiatry BP, MDD 1 0 European   14,052 

20386566 Lee MT189  4/13/2010 Mol Psychiatry BP 2 2 Han Chinese Han Chinese 2,000 

21926972 Sklar P71 9/18/2011 Nat Genet BP 2 1 European European 16,731 

22182935 Chen DT100  12/20/2011 Mol Psychiatry BP 6 3 European European 14,755 

24280982 Ruderfer 

DM81 

11/26/2013 Mol Psychiatry BP 6 1 European   29,671 

24618891 Mühleisen114  3/11/2014 Nat Commun BP 5 2 European   24,025 

26806518 Hou L190 1/22/2016 Lancet BP 1 1 European   2,563 

27329760 Hou L115 6/21/2016 Hum Mol Genet BP 6 2 European European 34,950 

27890468 van Hulzen 

KJ191 

10/18/2016 Biol Psychiatry BP, ADHD 3 3 European   31,139 
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Table I.     Major GWAS studies of schizophrenia and bipolar disorder from 2007 to 2017, continued 

PMID Author Publication 

Date 

Journal Phenotypes GW 

significant 

loci 

# 

new 

loci 

Discovery 

cohort 

ancestry 

Replication 

cohort 

ancestry 

Discovery 

sample size 

28115744 Ikeda M192  1/24/2017 Mol Psychiatry BP 5 2 Japanese + 

European 

  81,582 

 Stahl EA116  8/7/2017 BioRxiv BP 30 18 European European 51,710 

 

*ISGC & WTCCC2: Irish Schizophrenia Genomics Consortium & the Wellcome Trust Case Control Consortium 2 
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Table II.  Reported CNV association to schizophrenia and bipolar disorder 

Locus CNV type Gene or region Direction Disorder Refs Reported 
p-value 

Cases 
CNV 
carrier 
% 

Control 
CNV 
carrier % 

Reported 
OR 

P value  
in 
GWAS* 

Cases 
CNV 
carrier % 
in 
GWAS* 

Control 
CNV 
carrier % 
in 
GWAS* 

OR 
in 
GWAS* 

22q11.21 Deletion Multigenic Risk SCZ 123 4.40E-40 0.29 0 Inf 6.2e-13 0.275 0 NA 

16p11.2 Duplication Proximal 
duplication 

Risk SCZ, BP 78, 63 2.90E-24 0.35 0.03 11.52 2.6e-10 0.299 0.020 13.8 

15q13.2-
13.3 

Deletion Multigenic Risk SCZ 119,125 5.60E-06 0.14 0.019 7.52 6.1e-6 0.142 0.015 10.55 

3q29 Deletion Multigenic Risk SCZ, BP 193, 63 1.50E-09 0.082 0.0014 57.65 6.2e-5 0.076 0 NA 

2p16.3 Deletion NRXN1 Risk SCZ 127,194 1.30E-11 0.18 0.02 9.01 9.4e-5 0.109 0.020 5.87 

16p11.2 Deletion Distal deletion Risk SCZ 195 2.90E-24 0.35 0.03 11.52 1.0e-4 0.052 0.005 12.68 

22q11.21 Duplication Multigenic Protective SCZ 196 8.60E-04 0.014 0.085 0.17 1.6e-4 0.019 0.114 0.18 

1q21.1 Deletion Multigenic Risk SCZ 119,125 4.10E-13 0.17 0.021 8.35 2.9e-4 0.156 0.030 5.42 

16p13.2 Duplication C16orf72/USP7 Risk SCZ 197 1.00E-04 0.254 0.0197 12.9 3.8e-4 0.114 0.015 9.02 

7q11.23 Duplication Williams-Beuren Risk SCZ 198 6.90E-05 0.066 0.0058 11.35 4.9e-4 0.062 0 NA 

15q11.2-
13.1 

Duplication AS/PWS Risk SCZ 199 5.60E-06 0.083 0.0063 13.2 6.6e-4 0.071 0 NA 

8q11.23 Duplication FAM150/RB1CC1 Risk SCZ 200 1.29E-05 0.106 0.014 8.58 9.2e-4 0.066 0 NA 

15q11.2 Deletion Multigenic Risk SCZ 119 2.50E-10 0.59 0.28 2.15 1.7e-3 0.450 0.232 1.8 

1q21.1 Duplication Multigenic Risk SCZ, BP 197, 63 4.10E-13 0.17 0.021 8.35 2.0e-3 0.090 0.010 6.28 

16q22.1 Duplication WWP2 Risk SCZ 128 NA NA NA NA 3.2e-3 0.024 0 NA 

7q36.3 Duplication WDR60/VIPR2 Risk SCZ 197,201 0.27 0.11 0.069 1.54 4.1e-3 0.062 0.005 12.12 

17q12 Duplication RCAD duplication Risk SCZ 128 0.0072 0.036 0.0054 6.64 0.009 0.076 0.020 3.81 

9q33.1 Deletion NA Risk SCZ 128 NA NA NA NA 0.02 0.043 0.010 4.02 

22q11.23 Duplication Multigenic Risk SCZ 128 NA NA NA NA 0.02 0.071 0.025 3.28 

5q21.2 Deletion NA Risk SCZ 128 NA NA NA NA 0.03 0.104 0.049 2.16 

8p22 Duplication SGCZ Risk SCZ 128 NA NA NA NA 0.03 0.024 0 NA 
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Table II.       Reported CNV association to schizophrenia and bipolar disorder, continued 

Locus CNV type Gene or region Direction Disorder Refs Reported 
p-value 

Cases 
CNV 
carrier 
% 

Control 
CNV 
carrier % 

Reported 
OR 

P value  
in 
GWAS* 

Cases 
CNV 
carrier % 
in 
GWAS* 

Control 
CNV 
carrier % 
in 
GWAS* 

OR 
in 
GWAS* 

9p24.2 Deletion SLC1A1 Risk SCZ 202 8.40E-03 0.033 0 Inf 0.03 0.038 0 NA 

16p12.1 Deletion Multigenic Risk SCZ 202 1.60E-03 0.15 0.057 2.72 0.03 0.123 0.035 3.22 

15q21.3 Duplication CGNL1 Risk SCZ 202 1.90E-03 0.32 0.19 1.71 0.04 0.327 0.168 1.99 

17q12 Deletion RCAD deletion Risk SCZ 203 0.0072 0.036 0.0054 6.64 0.04 0.019 0 NA 

16p13.11 Del/Dup Multigenic Risk SCZ 199 5.70E-05 0.31 0.13 2.3 0.08 0.398 0.272 1.49 

7q11.21 Duplication NA Protective SCZ 128 NA NA NA NA 0.09 0.123 0.188 0.76 

12q23.1 Duplication ANKS1B/UHRF1BP1
L 

Risk SCZ 128 NA NA NA NA 0.1 0.076 0.059 1.23 

1p36.33 Duplication Multigenic Risk SCZ 202 5.00E-04 0.065 0.0075 8.66 0.11 0.057 0.015 3.98 

5q33.1 Deletion NA Risk SCZ 202 NA NA NA NA 0.11 0.043 0.010 4.19 

9q21.33 Duplication AGTPBP1 Risk SCZ 197 NA NA NA NA 0.2 0.071 0.035 1.94 

9q34.3 Duplication C9orf62 Risk SCZ 79 1.40E-03 1.47 0.43 3.38 0.23 0.901 1.083 0.8 

6q24.2 Duplication PHACTR2 Risk SCZ 202 NA NA NA NA 0.26 0.038 0.010 4.03 

3q26.1 Deletion NA Risk SCZ 197 NA NA NA NA 0.27 0.019 0.005 3.5 

4q35.2 Deletion TRIML1/TRIML2 Risk SCZ 202 NA NA NA NA 0.35 0.081 0.044 1.82 

18q21.31 Duplication NEDD4L Risk SCZ 197 NA NA NA NA 0.39 0.009 0 NA 

11q25 Deletion GLB1L3/GLB1L2 Risk SCZ 197 3.00E-03 0.38 0.123 3 0.42 0.161 0.119 1.44 

9p24.2 Deletion GLIS3 Risk SCZ 202 8.40E-03 0.033 0 Inf 0.43 0.024 0.025 0.99 

18q23 Duplication GALR1 Risk SCZ 202 NA NA NA NA 0.57 0.019 0.015 1.22 

4q35.2 Duplication FAM149A/CYP4V2 Protective SCZ 202 NA NA NA NA 0.69 0.024 0.035 0.71 

2q37.2 Duplication AQP12A/KIF1A Risk SCZ 202 NA NA NA NA 0.72 0.341 0.262 1.34 

17p12 Deletion HNPP Risk SCZ 204 1.20E-03 0.094 0.026 3.62 0.82 0.057 0.049 1.06 

4q25 Duplication ELOVL6 Risk SCZ 202 NA NA NA NA 0.9 0.033 0.030 1 
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Table II.       Reported CNV association to schizophrenia and bipolar disorder, continued 

Locus CNV type Gene or region Direction Disorder Refs Reported 
p-value 

Cases 
CNV 
carrier 
% 

Control 
CNV 
carrier % 

Reported 
OR 

P value  
in 
GWAS* 

Cases 
CNV 
carrier % 
in 
GWAS* 

Control 
CNV 
carrier % 
in 
GWAS* 

OR 
in 
GWAS* 

10q11.21 Duplication Likely common CNV NA SCZ 128 NA NA NA NA NA NA NA NA 

 

This table is adapted from Sullivan et al. 2012102 and Marshall et al. 2017128.  *GWAS is the results on the breakpoint-level CNV association 

from Marshall et al. 2017.  



 

 

Chapter 2: the role of consanguinity in psychotic disorders 

2.1 Preface 

Pakistani families and populations are included in recent population genetics and 

medical genetics studies, due to the combination of a long history of genetic admixture and the 

higher rate of consanguineous marriages. Epidemiological studies dedicated to find the 

association of consanguinity with genetic traits and diseases, with the advent of high-throughput 

genotyping and sequencing technologies in the last decade, geneticists could directly calculate 

inbreeding coefficient and identify genomic regions that are identical because of ancient or 

recent common ancestors. However, few studies have examined the relationship between 

consanguinity and psychiatric disorders in a highly inbreed population.  

We combined genome-wide SNPchip genotyping and whole-exome sequencing to 

obtain the genetic profile of large multiplex consanguineous pedigrees. Besides characterizing 

the admixture and inbreeding population history, we applied different algorithms on both 

datasets to calculation the inbreeding coefficient and examined the contribution of 

consanguinity to the psychiatric phenotypes—schizophrenia and bipolar disorder—by the 

comparison between affected and unaffected family members, and further with a large dataset 

of population controls. We also tried to correlate the severity of subphentypes with the 

inbreeding. The results showed there’s no direct association between consanguinity and 

psychiatric phenotypes.  

The recessive mode of inheritance has been successfully implicated in many Mendelian 

diseases, recent population-based studies suggested an excess of homozygous segments in cases 

affected with schizophrenia, and the accumulation of rare homozygous variants are expected in 

a highly inbred population. We analyzed the genetic data of the available family members at 

different resolutions, in order to test the recessive model in the complex trait. Overall, this study 

confirmed population-specific and family-specific genetic background, and the phenotype 

profiling of the affected individuals in the pedigrees. Incapable of identifying causal 
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homozygous segments or variants, it rejected the hypothesis of recessive model of psychiatric 

disorders in these families. More complicated genetic inheritance, such as oligogenic or 

polygenic, is proposed to perform on comprehensive genetic data.  

Rational: Homozygosity mapping is a classical method used to map the causal region of 

Mendelian traits in consanguineous pedigrees. Since the high-density SNP chip data is available, 

runs of homozygosity (ROH) analysis is used to characterize genomic pattern of world 

populations, both the number and the length could reveal the history of ancient relatedness and 

recent inbreeding events. There are also studies reporting association of excess of ROH in 

psychiatric diseases like schizophrenia.  

Hypothesis: The high prevalence of schizophrenia and bipolar disorder in these Pakistani 

families suggest a recessive mode of inheritance. The possible causal loci could be located 

through homozygosity mapping even in large consanguineous pedigrees. The inbreeding, the 

ROH profile or specific homozygous variants which segregate in the pedigrees could contribute 

to the disease phenotypes.  

Methods: SNP chip array and whole-exome sequencing (WES) were generated for the affected 

and unaffected family members. Different statistical software was applied to calculate the 

inbreeding coefficient and detect ROHs, and some of them, such as PLINK, can incorporate 

data from different platforms. 

Specific objectives: (1) reconstruct the pedigree trees with genealogical information; (2) 

confirm the admixture and inbreeding background with genetic data; (3) characterize the ROHs 

with reference population controls and other world populations; (4) examine the association 

between inbreeding and psychiatric phenotype; (5) examine the association between ROHs and 

psychiatric phenotypes; (6) correlate the inbreeding and ROH profile with phenotypic 

symptoms; (7) use WES data to detect rare deleterious homozygous variants that are shared by 

the affected family members and segregating in the pedigrees; (8) additional analysis to detect 

candidate loci, such as linkage analysis and homozygosity mapping.  
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2.2 SNP microarray and whole-exome sequencing of large 

consanguineous Pakistani families does not support high-

penetrance deleterious homozygous variants as a direct cause 

for the psychiatric phenotypes 

Manuscript: SNP microarray and whole-exome sequencing of large consanguineous Pakistani 

families does not support high-penetrance deleterious homozygous variants as a direct cause for 

the psychiatric phenotypes 
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Abstract 

Schizophrenia and bipolar disorder are complex mental disorders with significant 

heritability. Epidemiological studies have suggested that consanguinity could contribute to the 

development of these two disorders; for instance, an excess of autozygosity was reported to be 

a risk factor in both cases. We aimed to further explore the contribution of consanguinity in 

psychotic/affective disorders. In ten large consanguineous Pakistani pedigrees with multiple 

affected individuals with schizophrenia, schizoaffective disorder, and bipolar disorder, we used 

genome-wide SNP genotyping (n = 275) and whole-exome sequencing (n = 230) to 

systematically investigate the correlation of consanguinity with the psychiatric phenotypes. We 

first estimated the relationship between the levels of inbreeding and the clinical symptoms. 

Neither the clinical categories nor the clinical dimensions were associated with the inbreeding 

coefficient. Secondly, we conducted genome-wide runs of homozygosity (ROHs) analyses, 

conventional linkage analyses and homozygosity mapping with the SNP genotyping data in each 

pedigree. Affected family members did not have larger or more numerous ROHs compared to 

their unaffected relatives. We did not identify homozygous regions shared by all the affected 

members from the same family, nor did we observe homozygous segments that were 

significantly more present in affected individuals than in unaffected family members. We did 

not identify any genome-wide significant loci in linkage analyses under recessive models. 

Thirdly, using whole-exome sequencing, we did not detect any rare loss-of-function or 

potentially damaging missense homozygous variants segregating in all the affected individuals 

of any family. Overall our results do not support either the levels of homozygosity or deleterious 

homozygous coding variants as the direct cause for the major mental disorders observed in our 

highly inbred Pakistani pedigrees. 

Keywords: inbreeding, runs of homozygosity, linkage analysis, homozygosity mapping, whole-

exome sequencing, bipolar disorder, schizophrenia  
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Introduction 

For cultural reasons, consanguineous marriages are frequent in North and Sub-Saharan 

Africa, the Middle East, and West, Central, and South Asia1. In particular, Pakistan has one of 

the highest rate of consanguineous marriages in the world. Consanguinity has been associated 

with increased risk for infant mortality25, congenital malformations205, neurological diseases206, 

and intellectual disability207, mainly through the involvement of recessive mutations in the 

etiology of these disorders208. 

Consanguinity has also been reported to be a risk factor for psychiatric conditions34. For 

instance, consanguinity was reported to be associated with increased risk for type I bipolar 

disorder in Egypt39. However, previous studies to explore the relationship between inbreeding 

and schizophrenia across various isolated populations, in which consanguineous marriages are 

frequent, have shown both positive and negative results depending on the studied population 

and the sample size37–39. These studies were primarily based on the epidemiological data. Fewer 

genetic studies have investigated the genomic architecture of affected individuals and that of 

control individuals that could support the link between consanguinity and psychiatric disorders. 

Nevertheless, some susceptibility loci have been reported historically using genome-wide 

linkage analysis in schizophrenia and bipolar disorder in extended pedigrees and population 

isolates46–48. Modern high-resolution genome-wide genetic data can be used to precisely estimate 

the degree of consanguinity in an individual (inbreeding coefficient) and to reliably identify 

chromosomal regions homozygous resulting from the consanguinity (runs of homozygosity). 

The inbreeding coefficient (F) could also be measured by the proportion of loci at which the 

offspring of a consanguineous union is expected to inherit identical gene copies from both 

parents. An individual for whom F ≥ 0.0156 is deemed to be the consequence of a 

consanguineous union. 

Homozygosity mapping is an efficient approach to map causative genes of rare recessive 

disorders in inbred populations23,209, but is much less applied in genetic studies of complex traits. 

A number of groups have used the homozygosity mapping method to investigate schizophrenia, 

both in consanguineous families and in unrelated population samples. Runs of homozygosity 

(ROHs) were shown to be significantly more common in cases with schizophrenia spectrum 

disorders than controls51. Earlier homozygosity analyses on Pakistani and Japanese’s offspring 
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of first-cousin marriages reported either candidate loci or shared ROHs among the schizophrenic 

probands, without identifying causative variants49,50. More recently, large-scale studies focused 

on whole-genome homozygosity association on Caucasian schizophrenia cases and unrelated 

controls. They showed evidence that some ROHs were significantly more common in 

schizophrenia cases than in controls51. There was also an increase in the odds of developing 

schizophrenia with the increase of genome-wide autozygosity52. As a result, it has been 

suggested that recessive mutations of relatively high penetrance effects might explain a 

significant proportion of the genetic liability for schizophrenia. However, contradicting results 

were also reported in population-based case-control studies, which failed to replicate the 

significant association between ROH burden and schizophrenia/bipolar disorder, when doubling 

the previous sample size53 or testing the same hypothesis in additional independent population 

cohorts54,55. Therefore, the results were mixed with positive and negative associations, and no 

definitive conclusion has thus far been drawn. Moreover, none of these studies were performed 

on large multiplex family cohort, particularly families from isolated population with a high 

degree of consanguinity. 

Over the last decade, rapid advances in genotyping and sequencing technologies have 

increased the power of genetic discovery and enabled the identification of many common and 

rare variants as risk factors for psychiatric disorders210. Therefore, we explored the role of 

consanguinity in major psychotic disorders (bipolar disorder and schizophrenia) in ten large 

multiplex consanguineous pedigrees from Pakistan using combined high-density of SNP chip 

genotyping and whole-exome sequencing (WES). First, we characterized the families and 

confirmed their high level of consanguinity, as well as the familial aggregation of multiple 

affected individuals with psychotic and affective disorders. We then computed the inbreeding 

coefficient for each individual using SNP genotyping data and investigated its correlation with 

the clinical presentation. We further investigated whether the lengths or the numbers of the 

ROHs were associated with the clinical status. We also performed conventional genome-wide 

linkage analyses, particularly under recessive models. Lastly, we systematically explored the 

deleterious homozygous coding variants within the ROHs shared more by affected than by 

unaffected relatives. We present a series of our results here. 
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Materials and Methods 

Samples and phenotyping 

Ten large consanguineous pedigrees (further referred to as MNS pedigrees) were 

recruited in the Sindh Province of Pakistan. Each individual was interviewed by a local 

psychiatrist (B.Q.) using a standardized evaluation that included DIGS, FIGS (v3.0) and detailed 

medical history. A consensual clinical diagnosis was subsequently reached with two additional 

expert psychiatrists (R.J., L.D.) who reviewed the DIGS and FIGS separately, and their 

diagnoses were made blindly to each other. Final diagnosis was made collectively through 

further discussion among the group in case of discrepancy. The final diagnosis of each 

individual was based on the DSM-IV criteria. All phenotypic information was digitalized and 

saved in a secured database. The scale for the assessment of positive and negative symptoms of 

DIGS were selected to present the severity of phenotype dimensions for patients with 

schizophrenia.  

The pedigree trees were constructed using the Progeny 9 software (Progeny Genetics 

LLC). Blood was drawn in Pakistan and delivered within 3-4 days to Dr. Rouleau’s laboratory 

(McGill University). DNA was extracted according to a standard salting-out protocol. The full 

description of the recruitment process and of the clinical assessment is detailed in the 

Supplementary text. Ethical approval of the research project was obtained prior to the study in 

all involved institutions. All participants have given their written informed consent. All research 

procedures were carried out according to the Declaration of Helsinki. 

Genome-wide SNP genotyping  

SNP genotyping data 

Internal Pakistani SNP genotyping was performed at the Genome Quebec Innovation 

Centre (Montréal, Québec, Canada) in two batches using Illumina HumanOmniExpress 

BeadChip v12 and v24 for 275 samples, including 124 affected and 151 unaffected individuals. 

The raw data was processed for genotype calling following the recommended GenCall threshold 

of 0.15 with Illumina GenomeStudio 2.0 software and its PLINK plugin (Illumina, Inc.). 

624,015 SNPs were finally retained for further analyses after keeping the overlapping SNPs 

from both arrays and excluding SNPs: (1) not located on the autosomal chromosomes, (2) 
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deviating from the Hardy-Weinberg Equilibrium with a threshold p-value < 1×10-4, (3) with a 

call rate less than 90%, (4) with a minor allele frequency < 0.01. Sex check with PLINK211 and 

kinship estimation with KING212 were used to check pedigree errors; no sex or Mendelian 

inheritance error was identified. Table III shows a summary of the available genotyping data 

after quality control. The SNP genotyping data were used to perform the calculation of 

inbreeding coefficient, analysis of runs of homozygosity, homozygosity mapping and linkage 

analysis.  

Human Genome Diversity Panel (HGDP) SNP genotyping data:  

Human Genome Diversity Panel (HGDP) data was downloaded from Stanford HGDP 

SNP genotyping data (http://hagsc.org/hgdp/files.html), corresponding to the genotyping data 

of 660,918 SNPs in 1,043 individuals from 51 different world populations.213 

Whole-exome sequencing (WES) 

Internal WES data: We performed WES for all the affected individuals and their 

unaffected first-degree relatives from all ten pedigrees. A total of 230 samples were used, 

including 123 affected and 107 unaffected individuals (Table III). DNA was captured by the 

Agilent SureSelect Human All Exon v4 or v5 kit (Agilent Technologies, Inc.). WES was 

performed using the Illumina HiSeq 2000 platform (paired-end, 100 cycles) at the Genome 

Quebec Innovation Centre (Montréal, Québec, Canada) and at the Macrogen Korean facility 

(Macrogen Inc.) in separate batches. The raw fastq files were aligned to the human reference 

genome (hg19) with Burrows-Wheeler Aligner (BWA)214. Duplicates were removed with the 

MarkDuplicates function in Picard tools. Genome Analysis Toolkit (GATK v3.5)215 was used 

to process the bam files and to call the variants with the HaplotypeCaller algorithm. Quality 

control by sample included sex check, estimation of the potential DNA contamination level, and 

depth of coverage. The latter was performed using the GATK DepthOfCoverage tool and 

VerifyBamID216. Eight samples were removed from the subsequent analysis due to possible 

contamination (VerifyBamID FREEMIX > 0.02). The remaining 222 samples (Table III) had 

an average coverage above 20X in 93.33±4.43% of the targeted regions. Finally, the VCF files 

were merged for all the samples and all genotypes were called with the GenotypeGVCF tool 

implemented in GATK215. All the variants were further recalibrated using GATK Variant 

http://hagsc.org/hgdp/files.html
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Quality Score Recalibration (VQSR) tool and annotated with Variant Effect Predictor (VEP 

version 88) based on GENCODE basic set version 19217. Segregation of the variants in each 

pedigree was performed by using an in-house script. Final variant segregation files for 10 

pedigrees included all the variants with a “PASS” filter of VQSR, corresponding to a minimum 

read depth (DP) ≥ 10 and a minimum genotype quality (GQ) ≥ 20.  

External WES data: Two external WES data sets were obtained and processed using the 

same bioinformatic procedures as the internal WES data. 

(1) EBI3222 WES data. The UK is home to the largest Pakistani population in Europe. 

Publicly available WES raw data of the comparable Pakistani samples with related parents from 

the Born in Bradford Study in UK32 were obtained from the European Genome-phenome 

Archive (EGAD00001001025, EGAD00001001026, EGAD00001001027, 

EGAD00001001079, EGAD00001001686) and the processed VCF file with individual 

genotypes was provide by Dr. Vagheesh Narasimhan from the Wellcome Sanger Institute with 

the institutional agreement. These EBI Pakistani samples were captured with the Agilent 

SureSelect V5 and sequenced by 75bp paired-end on HiSeq 2000 with an ~40x read-depth. A 

total number of 3,222 samples (EBI3222) were extracted from the VCF file; and we applied the 

same above-mentioned filtering criteria as for our WES internal data in term of VQSR, DP and 

GQ.  

(2) Sequencing data of the 1000 Genomes Project141: CHB (Han Chinese in Beijing, 

China), CEU (Utah Residents (CEPH) with Northern and Western European Ancestry), YRI 

(Yoruba in Ibadan, Nigeria) and PJL (Punjabi from Lahore, Pakistan) were also included in our 

study for population stratification, and the phase 3 release of the VCF files used to extract a 

subset of individuals.  

WES variant annotation and filtration 

Loss-of-function variants were defined as stop gain, splice acceptor, splice donor, and 

frameshift indel. Missense variants were considered to be rare if they were observed at a low 

frequency in the South Asian ExAC database and EBI3222 dataset (MAF < 0.01), and further 

considered as deleterious when the CADD44 phred score was ≥ 15. The filtered variants were 

further examined by referring to the allele frequency in larger database, such as Genome 
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Aggregation Database (gnomAD). As we aimed to assess the recessive hypothesis, we focused 

on homozygous variants shared by all affected family members in each pedigree. 

Alignment with external datasets 

We merged all the overlapping bi-allelic SNPs from our WES dataset, the EBI3222 WES 

dataset141 and the 1000 Genomes Project phase 3 release set141. Multidimensional scaling (MDS) 

with PLINK (v1.07)211 was performed to determine if our study subjects were closely clustered 

with EBI3222 healthy control samples and Punjabi population from Pakistan in the 1000 

Genomes Project.  

Estimation of inbreeding level 

We applied two methods to estimate the inbreeding coefficient (F) both in our dataset 

and in the external dataset of the EBI Pakistani samples (EBI3222). First, we used a method 

implemented in Fsuite218 to estimate the inbreeding coefficient. This method infers the full 

probability distribution of the identity-by-descent (IBD) status of the two alleles of an individual 

at each marker, along the genome, through a hidden Markov model219. This method requires the 

markers to be in minimal linkage disequilibrium, otherwise it would produce biased estimations 

of F. To avoid this bias, it is proposed to generate multiple random sparse genome maps 

(submaps with markers every 0.5 cM) and to take the median of the estimated F from different 

submaps. We tested different numbers of submaps (5, 100, 1000) to estimate F from our SNP 

chip genotyping data. All submaps generated similar and highly correlated values. 

Consequently, the median F was retained for our analysis. This method provided F for 

correlation with the phenotype. Correlation with dimensional phenotypes was done with 

Pearson’s test in SPSS v24. 

A second method was used to measure F, based on the proportion of the autosomal 

genome located in runs of homozygosity (ROH) divided by the total explored length220 

(FROH = ∑LROH / Ltotal). This second method is more suitable for WES data and was used for 

comparing F from our WES data with F from the external dataset. After extraction of the high-

quality SNPs (calling rate > 98% and MAF > 0.05), 73,380 WES SNPs remained. Applying the 

same thresholds, we also extracted 62,041 overlapping WES SNPs from the EBI3222 dataset. 

The ROHs were identified with PLINK (v1.07)211as recommended for WES data221. Parameters 
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were set by default, except the following: at least 20 SNPs were needed within a 1,000 kb 

window to call an ROH. This optimal number of SNPs within a 1,000 kb window was chosen 

to be close to the mean density of the data222. 

ROH analysis 

The default parameters were applied to map the ROHs shared by all the affected family 

members in each pedigree, regardless of the homozygous regions sharing with the unaffected 

family members of each family. We also used the ‘--homozyg-group’ function in the PLINK 

program to detect the ROHs and to obtain the pools of overlapping and potentially matching 

segments from the HomozygosityMapper. The number and the length of ROHs were estimated 

for each individual in each pedigree. The regions with the ROHs shared by all the affected 

family members in each pedigree, as well as those more prevalent in affected individuals than 

unaffected individuals in each pedigree (according to a Fisher’s test) were screened for all 

homozygous missense variants. The ROHs were also called for the overlapped genotyping set 

for HGDP samples and our samples to confirm the ROH profile of our samples with world 

populations.  

Homozygosity mapping 

In order to identify the putative homozygous-by-descent regions corresponding to the 

ROHs defined by PLINK, the SNP chip genotyping data of each pedigree was converted to AB 

format with individuals in columns and markers in rows and was uploaded to the 

HomozygosityMapper223 server listed under chip “Illumina: Illumina (any array not listed 

here)”. During the analysis, HomozygosityMapper reads the length of homozygous blocks in all 

affected samples for every marker and adds them to a homozygosity score for the respective 

marker. An optimal value of 500kb as the maximum block length was used for our genotyping 

chip, in order to avoid the inflation of homozygosity score. Genetic homogeneity within single 

families was required for our dataset, which meant to only detect regions in which all affected 

individuals are homozygous, and controls were not used to exclude homozygous stretches.  

Genome-wide linkage analysis 

Linkage analysis was performed on the SNP genotyping data with MLINK (two-point 

linkage) and SIMWALK (multiple-point linkage). The recessive inheritance model was used in  
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parametric analysis (two-point and multi-point) and one statistic designed for traits best modeled  

by recessive inheritance was chosen in non-parametric analyses. The regions with a LOD score 

of more than 3.0 (parametric analyses) and NPL−log [P value] > 3.0 were considered to show 

significant linkage with the phenotype in each pedigree. 

Results 

Aggregation of multiple affected individuals with psychotic and affective disorders in each 

pedigree and phenotype summary 

Altogether, 284 individuals were included in the study, 127 affected family members 

and 157 unaffected family members (Table III). Each pedigree included at least ten affected 

individuals diagnosed with schizophrenia, schizoaffective disorder or bipolar disorder 

(Supplementary Figure 1). The genetic origin and the clinical summary of each family is 

provided in Supplementary Table 1a and 1b and Supplementary Figure 2a and 2b. The high 

prevalence of these phenotypes in these pedigrees implicated they are inherited. Six out of the 

ten pedigrees mainly aggregated with schizophrenia are presented with the severity of their 

positive and negative symptoms in Supplementary Figure 7. The gradient by severity clearly 

showed that each patient had a medium to severe phenotype. The age of onset across phenotypes 

is shown in Supplementary Figure 3. The schizophrenia spectrum disorder and bipolar 

disorder have an age of onset spanning from puberty to 40s, and major depression disorder start 

to show syndromes in puberty, or 30s. Several pervasive developmental disorder patients from 

one family had their onset of the disease around 10 years old. 

Population characterization 

We used the SNP chip genotyping data to both characterize our Pakistani samples and 

enable its comparison to external samples. First, we determined the population admixture of our 

samples. By combining the HGDP data with our SNP genotyping data, we inferred the 

population admixture of our families and compared it with their self-reported ethnic 

background. Our samples clustered well with EBI3222 samples and Punjabi population from 

Pakistan in 1000 Genomes Project. As expected, they were also closer to Caucasian samples 

than to East Asian samples (Supplementary Figure 4). 

Degree of consanguinity and its correlation with the phenotype 
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The length of ROH is usually used to infer the population history and the number of 

ROHs is usually reflective of the degree of inbreeding, i.e., the longer the length of ROH is, the 

more recent the inbreeding happened. The more ROHs an individual carry, the more closely 

related are the parents. The recent inbreeding events of our studied pedigrees were confirmed 

by comparison with the other HGDP populations such as the South Asians, Native Americans, 

and Middle-East populations known to have high degree of consanguinity (Supplementary 

Figure 4). The level of inbreeding depicted through ROHs seemed higher in our families than 

in the general Central South Asian population as well as in the Middle-East populations 

(Supplementary Figure 4 & 5).  

The mean F of each pedigree, estimated using the SNP genotyping data, across the MNS 

pedigrees is 0.0758, which is greater than the kinship of a child from a first-cousin marriage 

(corresponding to an estimated F = 0.0625). The level of inbreeding varied from one pedigree 

to another with pedigree MNS03 showing the highest F (0.170) and pedigree MNS09 showing 

the lowest F (0.025) (Table IV). The distribution of inbreeding coefficient didn’t show 

significant difference between affected and unaffected family members in all samples and in 

each family (Supplementary Figure 7). Due to the smaller number of overlapping SNPs in the 

WES data, the estimated F is smaller in WES data than in genotyping data. However, the F 

estimate made using ROH from WES was highly correlated to the F estimate made using the 

FSuite and the SNPchip genotyping data (r = 0.987). Comparing the difference of F estimated 

from WES data in our pedigrees with the EBI population controls, we found that our pedigrees 

had a significantly higher F than the EBI Pakistani population controls (0.0667 ± 0.0301 vs 

0.0575 ± 0.0232; p-value = 7.53×10-5 – Figure 5). 

We tested if F was associated with both the categorical and quantitative phenotypes 

presented in the pedigrees. Overall, there was no significant difference between all the affected 

and all the unaffected individuals from all the pedigrees together (p-value = 0.7834 – Figure 5) 

nor was there any significant correlation between the F value and the positive and negative 

symptoms among all the affected individuals (Supplementary Figure 6 & 7). We further 

examined several scenarios concerning the association of ROHs with the disease affection status 

within each pedigree: 1) the total number of ROHs; 2) the total size of ROHs; 3) the average 

size of ROH; 4) the number of long ROHs (> 4Mb); 5) the number of very long ROHs (> 8Mb). 
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None of these tests showed any significant difference between the affected and the unaffected 

individuals in all pedigrees together and in each pedigree respectively (Table V and 

Supplementary Table 2). 

Homozygosity mapping 

The results of homozygosity mapping were mostly negative. Although the software 

assigned a higher score to some putative homozygous regions shared more frequently in affeted 

than unaffected family members, none of those regions remained as a true homozygous regions 

(examples shown in Supplementary Figure 8).  

Segregation of ROHs 

Our ROH analyses identified a large amount of putative ROH regions individual-wise 

and pedigree-wise. However, no homozygous regions were shared only by all the affected 

individuals in each pedigree. Using a Fisher’s exact test within each family, we identified 42 

ROHs that were more present in the affected individuals than in the unaffected ones (p-value ≤ 

0.05), but none of these remained significant after correction for multiple tests (Bonferroni 

correction, threshold set at p-value ≤ 1.89 × 10-5 for 2,648 ROH regions tested in total). 

Considering that long ROHs are due to recent inbreeding, ROHs larger than 1 Mb and containing 

over 250 SNPs were further examined. The large ROHs that were nominally associated with the 

disease phenotype were then aligned with the list of homozygous deleterious variants called 

from the corresponding WES data. Figure 6 illustrates such a potential candidate region in the 

MNS03 family on chr4:24676608-25036142 (Fisher’s exact p = 0.0016). Overall, this analysis 

failed to detect perfectly segregating ROHs or ROH that were more frequent in affected than in 

unaffected individuals.  

Homozygous variants from WES datasets 

In general, the WES genotype data were consistent with the results by the SNP chip 

genotype data with many homozygous variants in the ROH regions, but no segregating 

candidate homozygous variants were found in these ROH regions (Figure 6). A single variant 

with incomplete penetrance presented as homozygous variants in more affected family members 

than unaffected family members of pedigree MNS03 (rs74901868 in LGI2 gene, missense 

variant p.Gly61Ser) and this variant was predicted to be deleterious (CADD_phred score: 22.3). 
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However, this variant is quite common in the South Asian population (MAFExAC_SouthAsian = 

0.179) and in the European populations (MAFExAC_European=0.270). Moreover, no rare 

homozygous variant of interest could be identified in these shared ROHs among the affected 

individuals in each pedigree.  

Finally, we systematically looked for segregating homozygous variants, regardless of 

autozygosity mapping and ROHs, in each individual pedigree under the assumption of a 

recessive transmission. No such segregating rare damaging variant was identified in each 

pedigree. None of the functional variants (loss-of-function/LOF and missense variants) that 

appeared to be homozygous in all the affected family members remained as potential candidate 

variants after filtering for allele frequency (MAF ≤ 0.01 in ExAC South Asian and EBI3222). 

These potentially damaging homozygous variants were not private to any of our multiplex 

pedigrees, as they were also found in unrelated population control individuals (Table VI), and 

they were subsequently excluded when referring to the MAF in gnomAD. Additionally, the 

results of linkage analysis on the recessive inheritance model hardly show significant linkage to 

the phenotype in each family. We followed the linkage signal on chromosome 2 in one family 

(MNS05) to search for candidate variants in the region, and we failed to identify any interesting 

causal homozygous variants. Finally, we also tested if some of these homozygous variants 

partially segregated, by considering a scenario in which one or two individuals per family would 

be a phenocopy. However, this approach did not reveal any homozygous variants that partially 

segregated.  

Discussion 

To our knowledge, this is the first study to use large multiplex consanguineous pedigrees 

to investigate the role of inbreeding and autozygosity in psychiatric phenotypes. We used 

dimensional phenotypes224 to assess the role of consanguinity on specific symptomatic 

dimensions. No association was found between the symptom intensity and the inbreeding 

coefficient. Major studies identified polygenic components underlying multiple symptom 

dimensions (clinical quantitative measurements) of schizophrenia and bipolar disorder, where 

they have applied a simplified and adjusted LDPS (the lifetime dimensions of psychosis scale) 

based on DIGS82. Although our trial to explore the association between consanguinity, genomic 



 

 

73 

profile and phenotyping was primitive, we started from solid phenotype diagnosis of large 

extended pedigrees.  

Furthermore, the large multiplex pedigrees used in our study decrease the likelihood of 

identifying homozygous variants that would be segregating by chance. As we found no evidence 

of such association, we concluded that our results were not supporting a recessive mode of 

inheritance in these major psychiatric disorders. However, we cannot exclude that an 

unestablished recessive model plays a role in other consanguineous families, as it is well-

accepted that psychosis is associated with heterogeneous pathophysiological mechanisms. 

Despite the technical challenges for aligning different datasets generated from different 

technologies or platforms (SNP genotyping and WES data), we have confirmed the inbreeding 

of our families and primitively compared them with larger set of inbred healthy population 

controls. We would expect to see higher statistical power if our study size gets bigger, and we 

would also expect to have new findings if we have whole-genome sequencing data available. 

For all these reasons, we believe that our approach to systematically explore how consanguinity 

may contribute to the phenotype is of interest. More investigation is thus warranted before the 

recessive hypothesis can be excluded.  

The impact of consanguinity is more striking in autism and intellectual disability where 

two family-based studies comparing the affected probands with either unaffected parents or 

unaffected siblings have found positive results, hence the autosomal recessive model explains a 

large part of the instances of intellectual disability and syndromic autism in consanguineous 

families225,226. Although several case-controls association studies of genome-wide autozygosity 

with quantitative and disease phenotypes of schizophrenia and bipolar disorders have been 

reported in the last decade, the reports looking at the major psychotic and affective phenotypes 

are often inconsistent227. Newly published cohort study on Northern Ireland population 

concluded that children of consanguineous parents are at an increased risk for common disorders 

(OR, 3.01; 95% CI, 1.24-7.31) and psychoses (OR, 2.13; 95% CI, 1.29-3.51), through assessing 

the receipt of psychotropic medication in 363,960 individuals (609 of them, around 0.2% were 

born to consanguineous parents)228. With the emergence of more genetic and epidemiological 

evidence, despite the role of consanguinity being a promising hypothesis for schizophrenia and 
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bipolar disorder, the lack of very consistent positive results suggests that one or several 

unrevealed mechanism(s) are responsible for the genetic risk.  

The successful identification of protein-truncating variants and missense variants in non-

consanguineous multiplex families with psychosis has shed light on the rare dominant variant 

hypothesis93,132. Many publications have also reported the involvement of copy number 

variations (CNV) in psychotic disorders, a genetic factor that is not directly addressed by our 

analyses. Whole-genome sequencing might later reveal CNV or regulatory variants. 

Convergence of rare variants and common variants identified through genome-wide association 

studies was found upon genes that are implicated in predominant etiological hypotheses of 

schizophrenia101. More complex genetic models, like gene-environment interactions mediated 

by epigenetic changes have been proposed to explain the emergence of psychosis71. The missing 

heritability of the psychiatric phenotypes in our consanguineous families need to be thoroughly 

examined. From an overall health perspective, consanguinity is also a much wider and complex 

topic that involves major social, economic, and demographic influences. Consequently, some 

environmental adversities might also play a role in the emergence of psychosis in our 

consanguineous families. Consanguinity would be expected to exert a greater influence on the 

etiology of complex diseases if rare autosomal recessive alleles were causally implicated. 

Conversely if the disease alleles are common, then intra-familial marriage would have a 

proportionately smaller effect25. However, relationships between consanguinity and complex 

diseases of adulthood are still under-investigated, and more studies are needed before definitive 

conclusions are drawn. 
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Figure legends 

Figure 5: Froh_wes: Inbreeding coefficient estimated by the runs of homozygosity 

method using whole-exome sequencing data. aff: affected; unaff: unaffected; EBI3222: cohort 

of Pakistani control from the EBI consortium; NS.: not significant 

Figure 6: A – Run of homozygosity (ROH) region plot for chromosome 4 for all the 

family members in MNS03. Each row shows one individual (affected in red and unaffected in 

blue, the shared region highlighted in green). B - Variants from sequencing in the shared region, 

dark blue, cyan and grey depict heterozygous, homozygous variant and homozygous reference 

allele respectively. The order of individuals is the same as the top. No predicted pathogenic 

homozygous variant is segregating in all affected individuals in this ROH. The red star marks 

the only missense variant that is overrepresented in a homozygous form in affected individuals. 
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Tables 

Table III. Summary of the ten Pakistani families 

Pedigree 
Main 

phenotypes 

Marriages 
Number of 

samples 
DATA 

(1st, 2nd-cousin) Total (Aff/Unaff) Genotyping WES (Aff) WES (Unaff) 

MNS01 SCZ & SAF 12 (4, 7) 39 (13/26) 36 12 9 

MNS02 SCZ 7 (3,4) 28 (11/17) 26 4 10 

MNS03 SCZ & SAF 25 (12, 13) 31 (13/18) 28 12 11 

MNS04 SCZ 2 (2, 0) 23 (11/12) 23 11 8 

MNS05 BP 13 (2, 11) 22 (13/9) 22 13 6 

MNS06 SCZ 16 (10, 6) 31 (12/19) 31 12 16 

MNS07 SCZ, SAF & BP 11 (4, 5) 34 (19/15) 34 17 13 

MNS08 PDD, SCZ & BP 7 (1,6) 27 (10/17) 26 10 12 

MNS09 SCZ & BP 6 (1, 5) 26 (14/12) 26 14 11 

MNS10 BP 4 (1, 3) 23 (12/11) 23 12 9 

  110 (45, 62) 284 (127/157) 275 117 105 

SCZ: schizophrenia; SAF: schizoaffective disorder; BP: bipolar disorder; PDD: pervasive 

developmental disorder; Aff: affected; Unaff: unaffected. Marriages indicate the number of 1st 

and 2nd-cousin mating reported in the genealogical information.  

 

Table IV. Estimation of the mean inbreeding coefficient and mating types of individuals’ parents 

by pedigree 

Pedigree Total 

Number of 

inbred 

individuals 

Mean of 

F 

1st 

cousin 

2nd 

cousin 

Double 

1st cousin 
Outbred 

MNS01 36 17 0.034 4 7 7 18 

MNS02 26 25 0.151 0 0 25 1 

MNS03 28 28 0.170 0 0 28 0 

MNS04 23 16 0.030 3 13 2 5 

MNS05 22 18 0.058 5 4 9 4 

MNS06 31 31 0.094 4 5 22 0 

MNS07 34 30 0.057 15 5 10 4 

MNS08 26 23 0.036 9 12 3 2 

MNS09 26 22 0.025 6 19 0 1 

MNS10 23 23 0.092 13 1 9 0 

Total 275 233 0.0758 59 66 115 35 

F: inbreeding coefficient. Detailed inbreeding information of the inbred individuals was inferred 

as from 1st cousin, 2nd cousin and double 1st cousin mating.  



 

 

78 

 

 

 

Table V. Comparison of ROHs in affected and unaffected family members 

Runs of homozygosity 
Affected 

(n = 125) 

Unaffected 

(n = 150) 
Wilcoxon 

Test 

p-value  Mean SD Mean SD 

Total number of ROHs 25.51 19.21 25.81 18.44 0.755 

Total size of ROHs(Mb) 208.47 186.17 193.60 166.50 0.780 

Average size of ROHs(Mb) 6.86 3.12 6.44 2.66 0.244 

Total number of ROHs >4Mb_size (Mb) 0.18 0.17 0.17 0.15 0.585 

Total number of ROHs >8Mb_size (Mb) 0.15 0.15 0.13 0.13 0.605 

SD: standard deviation; Mb: mega-base 

 

Table VI. Summary statistics of homozygous variants shared by all the affected individuals in 

each family 

 MNS01 MNS02 MNS03 MNS04 MNS05 MNS06 MNS07 MNS08 MNS09 MNS10 

Number of affected 12 4 12 11 13 12 17 10 14 12 

Number of unaffected 9 10 11 9 6 16 13 12 12 9 

After filtering by segregation 

Number of SNPs 

homozygous in all 

affected individuals 

9898 16827 10818 7474 7930 8090 7480 4886 8447 9447 

Number of indels 

homozygous in all 

affected individuals 

1091 1957 1296 1015 994 1028 967 497 1068 1113 

Missense SNV 1683 2453 1660 1210 1370 1325 1229 1087 1375 1597 

LOF SNV 18 30 20 12 13 12 13 12 11 14 

LOF indel 97 120 110 86 95 99 94 58 88 97 

After filtering by allele frequency novel or rare (MAF<=0.01) in SAS 

Missense SNV 0 2 0 0 1 1 0 0 1 2 

LOF SNV 0 0 0 0 0 0 0 0 0 0 

LOF indel 6 7 5 2 7 2 5 0 3 5 

Number of family 

private SNV 
0 0 0 0 0 0 0 0 0 0 

LOF: loss of function; SNV: Single Nucleotide Variant; SAS: South Asian Population, in both 

ExAC South Asian population and EBI3222 Pakistani samples.  
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Figures 

Figure 5. FROH_WES of MNS pedigrees and population controls 

 

  



 

 

80 

Figure 6. Example of a putative ROH segment shared by all affected members in 

MNS03 

 



 

 

Chapter 3: The contribution of copy number variants in 

multiplex Pakistani families 

3.1 Preface 

This chapter is focused on detecting copy number variants (CNVs) from different 

platforms with different algorithms, since the direct experimental detection methods are still 

under development. The commonly used data nowadays are genotyping and sequencing, both 

WES and WGS. In this study, we used genotyping and WES data to call CNVs, usually one is 

complementary to the other or served as a cross validation.  

Here we tried to use the segregating CNVs in these families as a reference to test the 

sensitivity and specificity of five different detection algorithms. We noticed that the common 

filters, such as the size of CNVs, number of probes in one CNV, the confidence score generated 

from the calling algorithms and the intersection calls between algorithms, reduced the number 

of segregating CNVs as well as the individualized CNVs, which could be technical artifacts or 

false positives. Those parameters are not good predictors for segregating CNVs. The 

overlapping rate between different algorithms is limited.  

We proposed to combine the segregation analysis and further functional filters for 

possibly pathogenic CNVs. The CNVs appearing in multiple non-family members could be 

recurrent in a specific population, although it may not be shown in currently available database 

of genomic variants. In our results, segregating CNVs demonstrated an incomplete penetrance, 

where few CNVs are shared among affected family members, let alone CNVs shared only by 

affected but not in unaffected individuals. We combined the annotation of gene function and 

previous evidence of association to generate a shortlist of potential pathogenic CNVs. However, 

these CNVs require further validation.  

Rational: CNVs have been largely studied and replicated in major psychiatric disorders, 

however the detection of CNVs with available technologies and algorithms are still under 

development. By using our family cohorts which mainly aggregated with psychiatric 
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phenotypes, we could evaluate the performance of current CNV detection methods from genetic 

data, especially CNVs segregating in the families.  

Hypothesis: The performance of different CNV detection software on data from 

different platform is variable, and the overlap between them is low. Tuning the parameters of 

the software separately and together could contribute to a better sensitivity and specificity. The 

segregating CNVs in families could help filter the likely true positive CNVS.  

Methods: Use common software (PennCNV, QuantiSNP, CNVPartition, CoNIFER and 

XHMM) to detect CNVs from SNP chip genotyping data and whole-exome sequencing data, 

and compare the parameters of the software and filter the likely positive CNVs that segregate in 

the families 

Specific objectives: (1) to call CNV for the Pakistani families with PennCNV, 

QuantiSNP, and CNVPartition from SNP chip genotyping data; (2) to call CNVs for the 

Pakistani families with CoNIFER and XHMM from whole-exome sequencing data; (3) separate 

the segregating (shared) CNVs in the family members and define likely true positive CNVs; (4) 

evaluate the sensitivity and specificity of detecting likely true positive CNVs; (5) evaluate the 

contribution of the software parameters 
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3.2 Familial segregation analysis for copy number variations: 

new software and methodological recommendations 

Familial segregation analysis for copy number variations: new software and 

methodological recommendations 
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Abstract 

Background 

The detection of Copy Number Variations (CNVs) from large datasets remains challenging due 

to variable sensitivity and specificity offered by different software and approaches. Moreover, 

the parameters used for filtering true CNVs are not consistent in literature. Using whole-genome 

genotyping data (SNP chip) and whole-exome sequencing data (WES) from a large dataset 

(n = 243 individuals from 15 different families), we called CNVs using five common software 

(PennCNV, QuantiSNP, CNVPartition, CoNIFER and XHMM) and tried to estimate their 

sensitivity and specificity, as well as the best filtering parameters. Then, we developed and 

tested a new software called “SV-Segregation” to determine the segregation of CNVs. 

Results 

Using the genotyping dataset, 14.9% of the CNVs were overlapping with all three algorithms 

(PennCNV, QuantiSNP, CNVPartition), with a comparable concordance rate for duplication 

and deletion. Using the WES dataset, XHMM called more CNVs than CoNIFER. The overlap 

between CNVs called from genotyping and WES data was estimated to 5%. None of the 

classical parameters (size of the CNV, number of probes, quality score, number of algorithms 

detecting the CNV) can accurately determine true and false CNVs. Using all the CNV calls 

without filtering improved our segregation analysis, for which our new software SV-

Segregation was utilized. 

Conclusions 

Our results shed light on the importance of a complementary approach to efficiently detect 

CNVs. The familial design helped us to determine the sensitivity and the specificity of the 
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different methodologies, but optimizing the parameters of filtering is not straightforward. For 

familial segregation analysis, we recommend a thorough look at all segregating CNVs, 

independently of the quality measurement. Our new software – SV-Segregation – can be helpful 

for performing familial segregation analysis and is made freely available online. 
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Background 

Genetic variants refer to variations in DNA from the scale of one base-pair to larger structural 

variations229. Among the latest, copy number variations (CNVs) are defined as deletion, 

insertion or duplication of stretches of nucleotides longer than 50 bp230. In the last decade, CNVs 

have been mapped to the genomes of control individuals in the general population[3–7]. They 

have also been associated with evolutionary adaption235,236 and with a wide range of phenotypes, 

from rare diseases to complex traits including neuropsychiatry, obesity and cancer. Historically, 

the first primarily used methods to discover CNVs were microarrays with large-insert clones237 

(bacterial artificial chromosomes, BACs) or oligonucleotide arrays238. Later, comparative 

genomic hybridization (CGH) was developed to detect fine-scale structural variations in 

multiple samples233,239–241. The development of high-throughput methods with whole-genome 

genotyping (SNP array) and next-generation sequencing (whole-exome and whole-genome 

sequencing) has also opened the way to deeper assessment of CNVs. 

For SNP array, the algorithms use two summary measures at each SNP: a measure of normalized 

total signal intensity, and a measure of normalized allelic intensity ratio. The CNV detection 

algorithms based on exome sequencing data use the normalized read depth matrix to infer CNV 

status. Several bioinformatics tools based on different statistical methods have been developed 

recently. Despite the increasing interest of CNVs in genetics, and the wide use of microarrays 

and sequencing as CNV-discovery techniques, downstream bioinformatics pipelines can be 

improved. An accurate CNV detection remains challenging, with a high number of false-

positive calls, and an evaluation of the quality of the available tools is needed.  
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This is particularly relevant for family studies. Missing a CNV in one individual can affect the 

segregation in the whole family and the conclusion of the study. We aim to estimate the 

sensitivity and the specificity of well-known software, to determine the threshold of parameters 

to set for them and to develop reliable segregation analysis. 

We employed a large dataset, including genotyping and sequencing data from multiplex families 

(several affected individuals from each generation) to measure the sensitivity and specificity of 

five algorithms; three for SNP array data: PennCNV, QuantiSNP, CNVPartition; two for WES 

data: XHMM and CoNIFER. We then identified segregating CNVs using a new software called 

SV-Segregation (for Structural Variants-Segregation). This family design, followed by 

segregation analysis, was used to determine the performance of these algorithms and the 

influence of filtering parameters used by other studies. Segregating CNVs were considered to 

be likely positive, and we applied this definition to adjust the filtering parameters of each 

software. Then, we tested the overlap between the five software based on different parameters. 

 

Results 

The approach used the combined results of the five algorithms followed by a segregation 

analysis. A likely positive CNV was defined as a CNV identified in ≥ 2 related individuals 

(“segregating CNV”). On the contrary, a likely false-positive CNV was defined as identified in 

only one individual of the family. We acknowledge that our classification identified the de novo 

CNVs as false positives. Whereas de novo CNVs are often clinically significant, their frequency 

is so rare (~0.0154 per generation for CNVs larger than 100kb)143 that neglecting them should 

not impact the performance estimation of the tools. Recurrent CNVs were defined as CNVs 
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found in ≥ 10 unrelated individuals. They were excluded to avoid potential artifacts that would 

generate false signals.  

We identified a total of 10,944 likely false positive CNVs and 23,414 segregating CNVs (likely 

to be true positives in family design) and estimated the sensitivity and specificity of each 

algorithm (Table VII). QuantiSNP generated much more calls compared to the other algorithms 

but the specificity of the calls is lower. A similar trend was observed between deletion and 

duplication (Supplementary Table 3). Specificity and sensitivity for the CNVs located on the 

X chromosome are reported in Table VIII. Since most families are large and with multiple 

affected family members, our CNV segregation analyses and filtering candidate CNVs are based 

on CNVs found in affected family members. There was not significant difference between 

defining a likely positive CNV as identified in ≥ 2 or in ≥ 3 related individuals of one family in 

terms of the sensitivity and the specificity (Supplementary Table 4 and 5, based on analysis 

of CNVs found in all family members).  

We examined if the inbreeding in our studied families would increase homozygous duplications 

or deletions. A linear regression between the total size of the homozygous deletions/duplications 

and inbreeding coefficient was carried out, the resulting linear regression p-value is 0.233 for 

homozygous deletions and 0.374 for homozygous duplication respectively. The total size of 

CNVs was added from homozygous deletions and homozygous duplications of the autosomal 

regions of each individual and only limited to the likely positive CNV calls.  

Prediction of likely segregating CNVs 

Regarding the genotyping data, compared to non segregating CNVs, the segregating CNVs had 

significantly higher QC scores (as provided by the algorithms), larger sizes, and were identified 
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more frequently by two or three programs with a greater overlap in terms of size (Table IX). 

However, these features were poor predictors for segregating CNVs because some 

individualized CNVs could also show a very high-quality score (Figure 7).  

Regarding the WES data, the segregating CNVs were identified more frequently by two 

programs, with a greater overlap compared to the likely false positive CNVs; whereas the size 

of likely true and false calls did not differ (Table X). However, these features were, again, poor 

predictors of true and false-positive CNVs (Figure 7). 

We tried to filter the CNVs with some commonly used parameters. This strategy missed out a 

large portion of segregating CNVs. The usage of filtering parameters decreased the number of 

segregating CNVs (likely positive) and individualized ones (likely negative), consequently 

reducing the number of potential CNVs for each family. These parameters were widely used by 

other studies71,128. For example, if we only keep CNVs larger than 100kb, we would eliminate 

92% of individualized CNVs and 83% of the segregating CNVs; if we use a combination of 

parameters (CNV size >= 20kb, number of probes >= 5, confidence score >= 5 and detected by 

>= 2 algorithms), we could only obtain 21% of the segregating CNVs and 10% of individualized 

CNVs (Table XI).  

Overlap between true-positive CNVs from different sources and software 

Using the genotyping data, the three algorithms had a mutual overlap of 14.9%. Each 

combination of two algorithms achieved a similar overlap (between 15% and 30%) (Figure 8). 

For WES data, the two algorithms had an overlap of 26.3%, with XHMM calling more CNVs 

than CoNIFER (Figure 8). As WES data are inappropriate to detect non-exonic CNVs, we 

retained only exonic CNVs for comparison between WES and SNP array detection. A total of 

10,632 segregating CNVs were tested for overlap. WES alone and SNP array alone identified 

respectively 1,731 and 8,395 of these CNVs. 506 CNVs were detected by both techniques (5%). 
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SNP array algorithms identified more CNVs than algorithms using WES data, even in the exonic 

regions. The overlap between both techniques is limited, suggesting that combining different 

approaches could be helpful to identify more potential CNVs. 

Recommendation for familial segregation analysis and use of the SV-segregation software 

Our software SV-segregation was developed in the Python3 programming language. It is based 

on establishing consensus CNV calls by merging CNVs from multiple samples and calling 

algorithms, using user-defined thresholds of reciprocal overlap between individual calls. We 

compared the segregation results of CNVs in our 15 families with and without filters. The 

advantage of our data is that we have small pedigrees (each includes 3-5 affected individuals) 

and large multiplex pedigrees (each includes 10-17 affected individuals, the detailed summary 

of samples is shown in Supplementary Table 1 and Supplementary Table 2). We kept CNVs 

segregating in at least 5 affected individuals in large pedigrees and at least 2 affected individuals 

in small pedigrees for further analysis. As a result, we obtained a short list of 135 potential 

CNVs for 10 large pedigrees and 209 potential CNVs for 5 small pedigrees. The change of 

segregation pattern according to different filtering parameters in each pedigree is demonstrated 

in Supplementary Table 6. In these families, segregating CNVs have incomplete penetrance. 

Additionally, we found the stringent filters would rescue some CNVs close to the cut-off (for 

example, recurrent CNVs that are found across families).  

Moreover, potential CNVs require cautious interpretation based on other annotations, such as 

the frequency in public databases (DGV and 1000 Genomes), the exclusion of segmental 

duplications, previous evidence of pathogenicity, and thorough examination of the segregation. 

As a side proof, we visualized one representative CNV with its BAF and logR from raw 
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genotyping data (Figure 9). A short list of possibly pathogenic CNVs is included respectively 

in Supplementary Table 7 for large schizophrenia and bipolar disorder pedigrees and 

Supplementary Table 8 for small autism pedigrees. The results are interesting but preliminary 

since the potential candidate CNVs need to be further validated. Consequently, we recommend 

performing segregation before any filtering.  

Discussion 

In this study, we applied the most commonly used algorithms for CNV detection on matched 

samples of a family design, and we did not identify any clear rationale to filter CNVs based on 

a specific threshold in terms of size, overlap between different programs, number of SNPs, or 

QC score provided by the algorithms. Adjusting the parameters created a specific choice, which 

increased the confidence in the detected CNV, but could be missing some relevant variants. 

True CNVs can be called by one tool only. For familial segregation analysis, we recommend a 

thorough look at all segregating CNVs, independently of the quality measurement. However, in 

a case/control design, we might suggest to use stringent filters to improve the confidence in the 

results.  

In the clinical practice, detection of CNVs is done using CGH-array or FISH, which have a 

strong reliability and reproducibility, but their cost prevents their use in large-scale cohorts. In 

research, many genotyping or WES data are now available. Using these already-collected data 

to detect altered copy number of genes, and risk factors for human diseases, is promising. 

However, CNV calling is subjected to many artifacts and quality control is not standardized 

across the different cohorts. This lack of standardization decreases the reproducibility of CNV 

calls and compromises the comparability of the studies. Most of the time, researchers keep only 
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CNVs called by more than two algorithms, with a certain length or a specific quality score. 

Some studies argued that CNVs detected by SNP array are more reliable than if they are detected 

by WES242. The group who invented CoNIFER used CNVs detected by SNPchip as their first 

validation of CNVs called by CoNIFER and XHMM, and they would further validate a small 

number of CNVs by arrayCGH or qPCR. They reported higher overlapping rates between SNP 

array and WES, even though they have more stringent SVD cut-off to call CNVs. In our dataset, 

the average calls per individual are comparable to their method243–245. WES has been proposed 

to be better at detecting smaller exonic deletions, compared to SNP array 246. Only a small 

amount of studies have actually investigated systematic comparison of calls from both methods 

247, while others have suggested a complimentary approach of WES and SNP array to detect 

intragenic CNVs [21]. Here, we demonstrated that the overlap between these techniques is 

limited, and our potential pathogenic CNVs preferably need to be validated through 

experimental procedures.  

A statistical framework (iCNV) has recently been released. It combines SNP and sequencing 

data, by applying platform-specific normalization and utilizing allele-specific reads from 

integrating matched NGS and SNP array data by Hidden Markov Model248. This software should 

increase sensitivity and robustness, with the integration of two platforms for CNV detection, 

comparing to naive intersection or union of platforms. The integration of data from both 

sequencing and SNP array may result in a bias, due to different spatial coverage of exome-target 

regions and microarray probes. 

With a family-based design to calculate the sensitivity and specificity of CNVs detected by 

different algorithms and different techniques, we were able to cross-validate our calls and 

increase the detection of segregating CNVs. We also showed that using some filtering 
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parameters could not effectively separate true-positive from false-positive calls. Besides, the 

low percentage of overlap between the different algorithms did not reflect the different coverage 

of the targeted regions. Using different datasets and different software increased the number of 

detected true-positive CNVs. The family design is a very powerful tool to filter CNVs. 

Furthermore, ascertaining the pattern of segregation in families is helpful to determine the 

pathogenicity of a CNV. 

Methods 

Population 

The samples are members of 15 consanguineous Pakistani families. The description of these 

multiplex pedigrees is mentioned somewhere else [He Q et al, in preparation]. Half of these 

individuals are affected by various neuropsychiatric diseases (autism spectrum disorder, 

schizophrenia or bipolar disorder). Whole-genome genotyping was performed on 334 

individuals using the Infinium OmniExpress chip (Illumina).  

Whole-exome sequences (WES) were available for 241 individuals overlapping with 

genotyping data. DNA was captured by Agilent SureSelect 50M, Agilent SureSelect V4 and 

Agilent SureSelect V5. WES was performed using Illumina HiSeq 2000 platform (paired-end, 

101 cycles). The raw WES reads were subjected to an in-house pipeline through alignment, 

quality control and collection of coverage metrics (Burrows-Wheeler Aligner (BWA)214 and 

Genome Analysis Toolkit (GATK v3.5))215. 

Pipelines for CNV calling 

The pipeline for calling CNVs and adjusting parameters for identifying segregating CNVs is 

depicted in Supplementary figure 1. For genotyping data, the final reports were extracted from 
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GenomeStudio after classical quality control and three CNV calling algorithms were used: 

QuantiSNP249, PennCNV250, and CNVPartition. QuantiSNP v2.2 was used with MATLAB 

Compiler Runtime v7.9 and default parameters. For PennCNV, we first generated a population 

B allele frequency (PFB) file using the whole genotyping dataset. Then the detect_cnv.pl script 

was run using default parameters and the default lib/hh550.hmm model. CNVPartition was run 

directly from GenomeStudio with default parameters. Detailed information is provided in 

supplementary text.  

CNV calls from WES data were made using two software: XHMM and CoNIFER. Capture kit-

specific BED files were used to select the regions to be analyzed. High-complexity and GC-rich 

regions were excluded from the analysis. We followed the recommended workflow from the 

tutorial in XHMM using GATK generated DepthOfCoverage files (GATK v3.5)215. 251. 

CoNIFER243 calculates RPKM (reads per thousand bases per million reads) for each exome 

capture targets for each sample from aligned bam files, and the RPKM values were transformed 

into standardized z-scores based on the mean and standard deviation across all analyzed exomes 

and organized into an exon-by-sample matrix; the first 7 components were eliminated based on 

the inflection point of the scree plots (supplementary text and supplementary figure 2).  

Merging and annotation 

Before merging, we kept CNV calls larger than 1kb on autosomal chromosomes and X 

chromosomes (CN=2 is neutral for female and CN=1 is neutral for male). CNV outputs were 

combined for analysis using the merge function of the CNVision v1.73 software252. The script 

was slightly modified to return the higher value in terms of length, number of SNPs and 

confidence score for each merged CNV.  
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Annotation about mapping the CNV chromosome position to the genes it affects and whether it 

covers exonic or intronic location was performed by ANNOVAR253 (region-based annotation) 

and was based on the GRCh37/hg19 database.  

Software for segregation analysis 

Segregation analyses were done using an in-house Python script called SV-Segregation 

(Structural variant-Segregation). Firstly, raw calls from each same sample are filtered by user-

defined thresholds and de-fragmented into non-overlapping calls by type (deletion, duplication, 

inversion and translocation). Filtered calls are then merged by sample between callsets to 

generate a single unified callset for each sample. Finally, unified calls are overlapped between 

samples to generate a final consensus set of CNV calls, which are reported once per family, 

counting the occurrence of each call in all affected and non-affected family and non-family 

samples (as defined by a standard pedigree input file). In addition, variants are annotated with 

overlapping CNVs from external datasets (1000 Genomes Project, Database of Genomic 

Variants), as well as various UCSC tracks (RefSeq genes and exons, micro-exons, repeat regions 

and segmental duplications) and any other user-defined additional annotations. Each variant 

merging and annotation step uses independent user-defined thresholds of reciprocal overlap, to 

fine-tune the analysis as desired. An example of script is given in Supplementary text. The 

software is freely available here https://bitbucket.org/guyrouleaulab/sv_segregation. The 

parameters were set as follow: length comprises between 1 bp and 100 Mbp; an overlap of 25% 

between two CNVs is needed to be identified as a segregating CNV.  

CNV visualization and validation 
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Potential CNVs were manually examined in the Illumina Genome Viewer of GenomeStudio. 

The change of B allele frequency and LogR ratio is compared between copy number neutral and 

copy number variations.  
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Algorithm Likely false positive Likely true positive Sensitivity Specificity 

PennCNV 1530 18.85% 6586 81.15% 0.30 0.86 

QuantiSNP 7275 30.69% 16426 69.31% 0.74 0.32 

CNVpartition 3032 29.80% 7141 70.20% 0.32 0.72 

XHMM 999 31.97% 2126 68.03% 0.10 0.91 

CoNIFER 460 28.20% 1171 71.80% 0.05 0.96 

Table VII. Number and percentage of likely false positive CNVs and likely true positive CNVs in 

autosomal chromosomes and estimation of the sensitivity and the specificity for each 

software 

Likely false positive CNVs are singleton CNVs; likely true positive CNVs are defined as 

segregating CNVs (in >=2 family members).  
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Algorithm Likely false positive Likely true positive Sensitivity Specificity 

PennCNV 44 11.20% 349 88.80% 0.26 0.85 

QuantiSNP 195 14.21% 1177 85.79% 0.89 0.32 

CNVpartition 77 23.33% 253 76.67% 0.19 0.73 

XHMM 23 35.38% 42 64.62% 0.03 0.92 

CoNIFER 1 3.70% 26 96.30% 0.02 - 

Table VIII. Number and percentage of likely false positive CNVs and likely true positive CNVs in 

X chromosome and estimation of the sensitivity and the specificity for each software 

Likely false positive CNVs are singleton CNVs; likely true positive CNVs are defined 

as segregating CNVs (in >=2 family members).  
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Parameter Likely false positive 

(m ± sd) 

Likely true positive 

(m ± sd) 

p-value 

QC score 16.5 ± 68 31.4 ± 87 < 10-3 

Number of SNP 8.6 ± 13.6 10.5 ± 15.5 < 10-3 

Size 44 ± 123 kb 56 ± 132 kb < 10-3 

Number of algorithms 1.3 ± 0.5 1.5 ± 0.7 < 10-3 

Overlap in 3 algorithms 3 ± 10% 5 ± 17% < 10-3 

Overlap in 2 algorithms 6 ± 17% 10 ± 22% < 10-3 

Table IX. Features of likely false positive and likely true positive CNVs called from the 

genotyping data. 

 

 

Parameter Likely false positive 

(m ± sd) 

Likely true positive 

(m ± sd) 

p-value 

Size 77 ± 209 kb 87 ± 242 kb 0.184 

Number of algorithms 1.13 ± 0.34 1.26 ± 0.44 < 10-3 

Overlap in 2 algorithms 5 ± 17 % 12 ± 25% < 10-3 

Table X. Features of likely false positive and likely true positive CNVs called from the WES 

data. 
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 CNVs from SNPchip CNVs from WES 

 
Likely 

positives 

likely 

negatives 

Likely 

positives 

likely 

negatives 

total 20750 9635 2664 1309 

CNV size 

CNV size >=20 kb 10293 (50%) 4090 (42%) 1421 (53%) 643 (49%) 

CNV size >=100 kb 2597 (13%) 817 (8%) 525 (20%) 226 (17%) 

Number of probes     

number of probes >=5 13000 (63%) 5294 (55%)   

number of probes >=10 6489 (31%) 2320 (24%)   

Confidence score 

confidence score >=5 14762 (71%) 5465 (57%)   

Intersection between algorithms 
detected by >=2 

algorithms 8100 (39%) 1967 (20%) 701 (26%) 174 (13%) 

detected by >=3 

algorithms 
3082 (15%) 

551 (6%)   

Combination of filtering parameters* 

scenario 1 4818 (23%) 1089 (11%) 567 (10%) 139 (6%) 

scenario 2 4376 (21%) 941 (10%)   

scenario 3 4363 (21%) 935 (10%)   

scenario 4 1732 (8%) 274 (3%)   

 

Table XI. The consequence of using different filtering parameters.  

*Combination of filtering parameters: 

scenario 1: CNV size >= 20kb, and detected by >=2 algorithms;  

scenario 2: CNV size >= 20kb, number of probes >= 5 and confidence score >= 5;  

scenario 3: CNV size >= 20kb, number of probes >= 5, confidence score >= 5 and detected by 

>= 2 algorithms;  

scenario 4: CNV size >= 20kb, number of probes >= 5, confidence score >= 5 and detected by 

>= 3 algorithms



 

 

 

 

Figure 7. A- ROC curve of features of CNVs called from the genotyping data. B- ROC curve of features of CNVs called 

from the WES data 
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Figure 8. A-Venn diagram of true positive CNVs called from the genotyping data. B- Venn diagram of true positive CNVs 

called from the WES data 

 



 

 

 

 

Figure 9. An example of CNV demonstrated by genotyping intensity (7q31.1 deletion) 
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Chapter 4: Discussion 

4.1 The recessive hypothesis and copy number variation calling 

The laborious collection of the samples and the phenotypes took time and collaborative 

efforts from the Pakistani families, local psychiatrists, coordinators, English-speaking 

psychiatrists, and researchers. The detailed procedure and the construction of the pedigrees are 

included in the supplementary information of Chapter 2. The update of phenotype in these 

families was followed up and documented.  

In Chapter 2, we validated phenotypic diagnosis based on the profile of the scales on 

patients’ subphenotype dimensions. These families demonstrated an inherited pattern of 

schizophrenia and bipolar disorder. However, the mode of inheritance was complicated by the 

consanguineous relationships in these families. The observation on the high rate of 

consanguineous marriages and the high incidence of the major psychiatric disorders 

automatically introduced the first question: is consanguinity associated with the phenotypes? 

With the available genotyping and sequencing data, we were able to calculate the 

inbreeding coefficient for each individual with the corresponding methods. We noticed that the 

exact values of the inbreeding coefficients differed between genotyping and sequencing, but 

they had a high correlation ‒ the trend stayed the same. We also showed evidence of high 

inbreeding in these families, but we failed to correlate the inbreeding level with neither the 

binary phenotype nor the quantitative scale of subphenotypes. 

The preliminary comparison with matched population controls showed these extended 

pedigrees had slightly higher inbreeding levels. However, this comparison was underpowered 

since our sample size was small. It also brought challenges when we combined external controls 

to our own dataset. We have included different data sets for different purposes from different 

consortia, where each of them could be generated by multiple batches and multiple platforms. 

It is very important to establish systematic quality control procedures to align external resources 

with internal data sets.  

The concerns on combining sequencing data from different resources include the 

following: the expected sequencing coverage, the sequencing platforms/centers, and batch 
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effects. When we tried to align our WES data with the WES data of EBI3222, we had difficulties 

to make them comparable in absolute number of variants per individual. Even though the DNA 

library were both captured by the same kit and sequenced on the same Illumina sequencers, the 

difference could be due to the fact that the latter was sequenced with a lower expected coverage 

(~40X compared to the average of ~100X of our WES samples).  

We didn’t present our results about the comparison on the genomic burden of 

homozygous truncating variants and deleterious missense variants between our 

affected/unaffected family members and the matched population controls, because we had some 

statistical challenges. We need to apply statistical methods to controls these parameters, while 

risking losing real interesting candidate variants. However, the large data set of ~3000 Pakistani 

healthy controls provided a valuable reference for minor allele frequency, besides that of the 

South Asian population from ExAC dataset, when we need to filter rare variants in Pakistani 

population.  

Major technological issues about our SNP genotyping data worth to mention are: 1) 

currently available commercialized genotyping microarrays are designed to probe on 

informative SNPs of European ancestry; therefore, there could be some SNPs neglected by these 

microarrays that are specifically informative to Pakistani populations; 2) the coverage of our 

SNP genotyping array was about 700,000 SNPs genome-wide (1 SNP every 50 kb), much 

smaller compared to the most commonly used ones (~2,5 million SNPs) nowadays. This 

coverage continued to decrease when we tried to merge our SNP data with the external dataset 

such as HGDP data (~600,000 SNPs); we only get 300,000 overlapped SNPs and it generated 

low-resolution results. 

Despite the abovementioned technological issues, the long history of admixture and the 

recent inbreeding of Pakistani populations was well characterized in our data. The co-clustering 

of the families with other Pakistani populations, through admixture analysis with other world 

populations and the ROH analysis, showed longer ROHs in these families due to recent common 

ancestry. However, we noticed that the proportions of ancestry were different from one family 

to another, which suggests heterogeneity across families.  
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The conventional linkage analysis with SNP genotyping data was conducted in five out 

of the ten pedigrees, with different combinations of analyses in two different software, 

parametric and nonparametric, single-point, two-point and multi-point. The signals detected by 

these analyses were inconsistent, which is a common problem for most genetic analysis. The 

family structure of our pedigrees was too complicated for most available linkage analysis to 

compute, in which the consanguineous loops needed to be broken and the family structure was 

simplified. For the recessive model, the loci identified through linkage were further examined 

with autozygosity mapping results and homozygous variants from sequencing data ‒ we were 

not able to confirm the loci were positive. Nonetheless, in the future, other genetic models could 

be checked, and a thorough linkage analysis could be done for all ten pedigrees. Otherwise, we 

cannot conclude that the linkage analysis failed to detect peaks for these families.  

We also performed autozygosity mapping and ROH analysis on these pedigrees with 

different software. Our objective was to identify homozygous regions shared by the affected 

family members and not by the unaffected members. The methods were complementary, hence 

the signal detected by one could be validated by another. We were unable to find any 

homozygous regions segregating with the phenotypes. We further tried to find some 

homozygous regions presenting more often in affected than in unaffected (considering the 

possibility of phenocopies in each family), and zoomed in to identify rare homozygous 

deleterious variants. Most of the homozygous variants shared by majority of the affected 

members were also common in the Pakistani population, which ruled out their possible role as 

rare high-penetrant variants contributing to the phenotypes.  

Researchers studied the number, the size and distribution of ROH in both inbred and 

outbred populations and they found either positive or negative association between ROH and 

schizophrenia. We tested this hypothesis in these families by comparing the ROHs between 

affected and unaffected family members. We found no excess of ROHs associated with the 

phenotypes in terms of the size, number and length. The statistical methods used for the test 

varied from one study to another. The limitations in our results not only lied in choosing the 

appropriate methods while controlling certain covariates such as relatedness, but also 

calculating the power based on our sample size and the unknown effect size.  
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Another type of recessive rare variants ‒ the compound heterozygotes ‒ was also 

examined, resulting in no rare heterozygotes variants in the same gene observed more often in 

affected family members than in unaffected family members. In conclusion, the recessive model 

failed to explain the heritability of phenotypes in these families. The results could be confirmed 

as negative, if we excluded the following: 1) the possibility of imperfect phenotyping; 

neuropsychiatric disorders such as BP and SCZ are extremely heterogeneous. The evaluation of 

the severity and duration of the patient’s disorder are based on familial subjective descriptions 

of the patients to the psychiatrist and several diagnoses were seen in the same family. Since the 

combination of genomics and phenomics of common complex diseases is still at the early stage, 

a systematic and detailed phenotyping profile may be needed in the future, with the aid of other 

objective measurements of the phenotypes such as imaging data. Ideally, the same evaluation 

should be applied to all the family members including unaffected ones. 2) A later onset of the 

disease. The individual may not have expressed the phenotype at the time we conducted the 

study but may develop the disorders in several years, because the ages of onset has a wide range. 

3) Incomplete penetrance. To rule it out would require an examination on the full spectrum of 

the penetrance. However, for a recessive model, we considered variants shared by the majority 

of the affected family members, regardless of the genotypes of the unaffected relatives. 4) The 

disease could be polygenic or omnigenic, hence alternative hypotheses and methods are needed.  

In chapter 3, we focused on finding a better way to analyze CNVs in our families with 

popular bioinformatic tools. The CNVs were called from SNP genotyping data with three 

parallel software and from WES data with another two software. The algorithms take advantage 

of different data points and make CNV calls. The quality control should be the most important 

process in combining the calls. Researchers usually set CNVs as true positives if they are 

detected by more than one software and pass a threshold on size and density of covered SNPs, 

but interesting CNVs could be missed in the segregation analysis of a pedigree design by doing 

so. The filtering parameters we applied to get a cleaner set of candidate CNVs would increase 

the frequency of true positives. The trial solution was to carry out the minimal quality control 

for calls from each tool and include all segregating CNVs in at least two family members. In 

this way, we could evaluate the sensitivity and specificity of each tool and the rate of the 

overlapped calls. Surprisingly, the rate of false positives was very high, and the rate of true 
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positives was low. Henceforth the sensitivity and specificity were variable and indecisive. 

However, the method is not a good predictor of true and false positives. The mutual overlap of 

the software was also very low (~10%), so we suggest combining the calls from different 

approaches to increase the chance to identify potentially pathogenic CNVs.  

The segregation analysis of CNVs in these families failed to identify any CNV 

segregating perfectly among affected family members. The large number of affected individuals 

could be one reason that reduces the possibility of locating a shared CNV. We further loosened 

our criteria to detect CNVs by looking at the ones which are shared by more than half of the 

affected individuals and have been previously associated with neuropsychiatric disorders. The 

shortlist of these CNVs would demonstrate an incomplete penetrance. Recent studies reported 

an increased burden of rare, exonic CNVs in schizophrenia probands and genetic heterogeneity 

in multiplex families, and included singleton CNVs that have been associated with 

schizophrenia previously254. Other major studies conducted on case-control cohorts also 

reported a global enrichment of CNV burden among cases128. This means our analysis of CNVs 

would have to be combined with other types of deleterious variants to gain a thorough 

examination of potentially pathogenic and biologically relevant variants for affected individuals, 

even though the individuals were from a more homogeneous family.  

In summary, our attempts in finding rare homozygous deleterious SNVs and rare 

pathogenic CNVs segregating variants are not rewarding thus far. We could partially attribute 

this to the limitations of genetic data we were using. All the analyses we have done were based 

on SNP genotyping and WES data, in order to define a genomic landscape of the studied 

families, while referring to available family tree. The SNP genotyping data could not detect 

smaller CNVs, while WES dataset is only limited to exonic regions. WES samples are typically 

sequenced to a higher depth (100X versus 30X WGS), and the reads are focused on only ~2% 

of the genome. The enrichment step in WES, where DNA or RNA baits are used to hybridize 

with the coding regions of the genome, lead to non-uniform coverage, generating both regions 

with too much coverage and too little coverage (resulting in missed variant calls). The PCR-

based enrichment steps introduce GC bias and other biases; so, we may have missed rare 

variants. WGS could be the next strategy for finding causal variants, since our current data is 

limited by its coverage of full profile of the genome. WGS generates more uniform coverage of 
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the genome and it can take advantage of longer reads (compared to < 200 bp of the majority of 

human exons in WES), which allows for better determination of CNVs and other structural 

variations. Also, the regulatory variants from WGS data could be thoroughly analyzed and 

annotated. WGS is the trend for identifying SNVs and CNVs in family studies, which is more 

advantageous and informative than WES, but the latter is more cost-effective for most genetic 

studies. If the cost of WGS drops and the coverage of sequence increases in the next few years, 

it would be worthwhile to look through the whole genome for CNVs and even regulatory 

variants.  

4.2 Alternative hypotheses to explore 

Causal variants that aggregate in families usually have larger effect sizes than those 

found in sporadic cases. Additionally, the family-based designs are robust to confounding due 

to population admixture or substructure. Therefore, family-based designs can be a more 

powerful approach than population-based designs. In our case, even though we had enough 

power to detect extremely rare variants in these large families, we were not able to detect any 

one or any set of variants directly linked to the phenotype. What are the alternate hypotheses? 

Based on the literature review explored in the introduction, there are some statistical analyses 

we could apply to these families, on current WES and genotyping data. It includes the burden 

of rare variants and the polygenic risk of common variants.  

Fewer tests have been proposed for family-based studies, compared to population-based 

studies, of NGS data for rare-variant associations. They are also mostly designed for different 

family structures. For example, the transmission disequilibrium test (TDT) runs rare-variant 

association tests for nuclear families with no more than one affected child255; family-based 

association test (FBAT) analyzes sequence data in the rare-variant burden test on case-parent 

trio data256; there is another statistical approach applied to affected sibships in nuclear 

families257; RareIBD analyzes large extended families of arbitrary structure, assuming that only 

one founder in a family carries a rare variant in a given gene258; and a rare-variant extension of 

the generalized disequilibrium test (RV-GDT) for both nuclear and extended families also 

exists259. The last one claims that: it utilizes genotype differences of all discordant relative pairs 

to assess association within a family, it combines the single-variant GDT statistics over a 
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genomic region, and it increases power by incorporating the information beyond first-degree 

relatives. We have tried RV-GDT test with all ten families combined, and the association for 

each single one did not result in significant results.  

Other studies use simple statistical tests, such as non-parametric test or mixed-model 

analysis, to compare the genomic burden of rare deleterious variants (truncating and missense) 

between affected and unaffected94. This approach gives a direct comparison on the total number 

of variants. Alternatively, potentially etiologic variants are filtered based on their frequency; 

rare variants are more likely to have a recent origin and are, therefore, more population-specific 

than common variants. Using this strategy, it is important to have the correct reference 

population for the MAF. In addition to their frequency, variants can be filtered by their 

functional prediction and their cosegregation with the disease. In the latter case, we look for 

whether they are shared by a reasonable number of affected family members and minimum of 

unaffected family members. Another list of likely neutral variants can be constructed with the 

variants predicted to be non-pathogenic and shared by some unaffected relatives and a maximum 

of one affected relative. We could also explore the role of de novo variants in these families, as 

34 trios have WES data and 11 of them are from the same pedigree (MNS09).  

The polygenic scores can be used to determine whether common alleles associated with 

SCZ or BP in the general population also confer risk of the phenotypes in our families. It can be 

calculated based on summary statistics from the most recent mega-analyses260 of SCZ and BP, 

using the p-value threshold explaining the greatest variance for the relevant disorder. Of note, 

the largest GWAS thus far were done in European and East Asian populations, and they have 

reported overlapping GWAS loci and other loci specific to each ancestry. The polygenic scores 

of affected and unaffected individuals could later be subject to logistic regression, in order to 

obtain the difference between them.  

Using the raw data and summary statistics of large consortia has become the trend in the 

genetics field. We either use them as a reference, or directly align and compare them with our 

own data. It is beneficial for increasing the statistical power. However, quality assessment and 

quality control are necessary and important steps before applying them to any subsequent 

statistical analyses.  
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Beyond the genetic contribution, we could also investigate the role of epigenetics 

(heritable changes in gene expression, active versus inactive genes, a change in phenotype 

without a change in genotype). For complex diseases like SCZ and BP, other factors including 

age, environment, lifestyle and disease state could introduce epigenetic changes. Postmortem 

studies of human SCZ and BP brains show considerable alterations in the transcriptome261,262 of 

a variety of cortical structures, including multiple mRNAs that are downregulated in both 

inhibitory gamma-aminobutyric acid (GABA)-ergic and excitatory pyramidal neurons, 

compared with non-psychiatric subjects. Several reports show increased expression of DNA 

methyltransferases (DNMT1) in telencephalic GABAergic neurons263,264. Accumulating 

evidence suggests a critical role for altered DNA methylation processes in the pathogenesis of 

SCZ and related psychiatric disorders265. DNMT1 is selectively overexpressed in GABAergic 

interneurons of schizophrenic brains, whereas hypermethylation has been shown to repress 

expression of Reelin (a protein required for normal neurotransmission, memory formation and 

synaptic plasticity) in brain tissue from patients with schizophrenia and patients with bipolar 

illness and psychosis.  

Phenomics, large-scale phenotyping, was proposed to be the natural complement to genome 

sequencing as a route to rapid advances in biology266. The Consortium of Neuropsychiatric 

Phenomics (CNP) is a centrally funded project with a truly phenomic vision and focuses on a 

set of neural and psychological phenotypes. There is currently a broad chasm between the basic 

and clinical research strategies used to study these disorders. The ultimate goals of the CNP are 

to facilitate discovery of the genetic and environmental bases of variation in psychological and 

neural system phenotypes and to elucidate the mechanisms that link the human genome to 

complex psychological syndrome. The phenomics of neuropsychiatric disorders is still at the 

beginning stage, the challenges remain unsolved but there are tools267 and pilot neuroimaging 

data268 coming out that will help understand the complex dimensions of the neuropsychiatric 

phenotypes. The combination of genomics and phenomics will be the trend in the near future.  

  



 

 

Conclusion 

This thesis reviewed the historical interest on consanguineous populations/family and 

the genetic principles behind. It also gathered genetic studies on schizophrenia and bipolar 

disorder. With current available genotyping and sequencing data, it examined the role of 

consanguinity in psychiatric diseases in large multiplex consanguineous pedigrees. In addition 

to the negative results of the association analysis between consanguinity and the phenotypes, 

we were unable to identify risk genes with rare homozygous variants, to some extent which 

disproved the recessive mode of inheritance in these families. The last part of the thesis 

presented the current limitations of identifying CNVs, both in technology and methodology. We 

recommended to perform segregation analysis and function filters in a familial design. The 

resulting CNVs, along with other type of rare damaging variants, putative but inconclusive, that 

are segregating in these families showed incomplete penetrance and evidence of heterogeneity 

within and between families. A comprehensive examination of both rare and common variants 

are needed in these families, in order to estimate the effects of genetics on phenotypic variance. 
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Appendix 1: supplementary material for Chapter 2.2 

Supplementary text: phenotype evaluation, sample collection, and family tree construction  

The familial aggregation of major psychiatric disorders was noted by a local senior 

psychiatrist, Dr. Qasim, who has inquired into the family history and meticulously documented 

the complicated family trees under the advice and help from an Australian geneticist, Dr. Mike 

Denton and with a significant contribution from a local biologist, Mr. Mehtab Christian.  

 

1.1 Ascertainment of probands and families: The 10 large multiplex consanguineous pedigrees 

with major psychiatric disorders were recruited in Sindh (Pakistan). All interviews, clinical 

examinations, and blood collections were conducted on-site during numerous field trips. 

 

1.2 Clinical assessments: Dr. Qasim was trained to use DIGS and FIGS (v 3.0) at the beginning 

of the project in 2002. He then performed a DIGS, and a brief psychiatric, neurological and 

medical examination on each individual with psychiatric symptoms included in this project. 

All the families have been followed by Dr. Qasim during the ongoing project and newly 

identified affected individuals were marked. Two independent FIGS were also conducted on 

each by two reliable informants to recount the observed psychiatric symptoms and to confirm 

the reliability of the phenotype information. The interviews were conducted using an 

appropriate translation in Sindhi language. 

 

1.3 Confirmation of clinical diagnosis and evaluation of phenotyping work: Dr. Ridha Joober 

(Dept. of Psychiatry, McGill University) and Dr Lynn DeLisi (previously Dept. of Psychiatry, 

New York University, currently Dept. of Psychiatry, Harvard Medical School) have been 

responsible for the standardized evaluation of the clinical diagnoses after reviewing a copy of 

the DIGS, FIGS, along with a clinical narrative. A final diagnosis based on DSM-IV criteria 

and comments on each individual diagnosis was made by Dr. Joober and Dr. DeLisi, separately 

and blinded to each other. Whenever a discrepancy on final diagnosis occurred among the three 

psychiatrists, a teleconference was arranged. A final consensus diagnosis was usually reached 

by additional information provided by Dr. Qasim or by further discussion among the 
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psychiatrists. In case of uncertainty, notes were taken and the individual was marked on the 

pedigree with either “unknown” or “possibly affected” status. 

 

1.4 Blood sample collection and transformation of cell lines: A batch of blood specimens from 

one field trip were usually delivered to the DHL office in Hyderabad the same day. Then, blood 

samples were achemined in Dr. Rouleau’s laboratory (McGill University – Montreal – Canada) 

within 3–4 working days. Excellent quality (one incidence of sample mixed-up in total 

collection) and quantity of DNA was obtained for each sample. Dr. Rouleau’s lab. All DNA 

samples are available upon request. 

 

1.5 Demographic and genealogical information and ethical concerns: Mr. Mehtab Christian 

has been working with Dr. Qasim and local historians from each village to obtain detailed 

genealogical and demographic information. Most of the genealogical information was passed 

on and kept verbally by the senior people in the village. Approval of the research project by 

the local review committee of ethics, and in particular, consent and approval from each 

caste/community authority of the families were obtained prior to the study. An informed 

consent form in the local language was signed by each individual or by their guardian (parent 

or caste authority) if mentally incapable or illiterate. 

 

1.6 Reconstruction of pedigrees and phenotype database: Each pedigree was reconstructed 

using Progeny v9.0 standalone software, including all the collected samples, and integrating 

the final diagnoses (Supplementary figure 1). This work was performed under the supervision 

of Dr. Xiong, and was verified with Mr. Mehtab Christian. All information from DIGS, FIGS, 

and clinical summary (over 600 variables for each individual) were digitalized into a database 

with appropriate security administration. 

 

1.7 Common characteristics of these pedigrees: The relevant common features of these 

pedigrees and individuals are: (1) all collected individuals/pedigrees are Sindhi-speaking 

Muslims; (2) each pedigree belong to a different caste or clan and is located in an isolated 

village or small town; (3) most marriages within these pedigrees are consanguineous (97% of 

all marriages); inter-marriages of two sets of siblings, and/or first-cousin marriages (42% of 
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all marriages) are particularly common; and each community is known for long-term strict 

endogamy; (4) most marriages are arranged; therefore, most of the severely affected 

individuals are married (69%) and married early in life, so most of them have offspring (62%) 

prior to the onset or deterioration of disease; (5) some of these pedigrees might have common 

ancestors, according to the available genealogical information; e.g. MNS06 and MNS08, carry 

the same caste name; and pedigrees MNS03, 04, 07,and 09, belong to a major Baloch tribe in 

Sindh; (6) at least 10 affected individuals have been collected for each pedigree, as well as 

living parents, siblings, and other relatives; (7) though in general the phenotype is highly 

variable and diverse, each pedigree aggregated with one major phenotype, either 

schizophrenia, bipolar disorder or schizoaffective disorder.
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Supplementary Figure 1. Pedigree tree of the 10 MNS families 
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Supplementary Table 1a: Origin and description of MNS Pedigrees 

 

 

SCZ: schizophrenia; SAF: schizoaffective disorder; BP: bipolar disorder; PDD: pervasive developmental disorder 

  

Pedigree 
Location (village/town, 

District) 
Genealogy Ethnic origin Main phenotype 

Number of 

individuals 

collected 

(affected/ 

unaffected)  

MNS01 Nebharo Gaju, Thar Gaju Caste, Bhanbheer Clan Rajputs SCZ&SAF 39 (13/26) 

MNS02 Aliabad, Hyderabad Khosa Bloch Caste, Gohramani 

Clan 

Rind Baloch SCZ 28 (11/17) 

MNS03 Mari, Thatta Jokhia Caste, Kalaypota Clan Samma Baloch SCZ&SAF 31 (13/18) 

MNS04 Essa Nohrio, Mirpur Nohria Caste, Moora Clan Samma Baloch SCZ 23 (11/12) 

MNS05 Kandiaro, Naushahro Feroze Kalhora Caste Arabs BP 22 (11/11) 

MNS06 Bachal Soomro, Hyderabad  Soomra Caste, Mulla tribe Rajputs SCZ 31 (12/19) 

MNS07 Gujo, Thatta Palija Caste Samma Baloch SCZ, SAF&BP 34 (19/15) 

MNS08 Essa Soomro, Thatta Soomra Caste, Mulla tribe Rajputs PDD, SCZ&BP 27 (10/17) 

MSN09 Tando Ghulam Ali, Badin Notyar Caste Samma Baloch SCZ&BP 26 (14/12) 

MNS10 Baradi Panhwer, Dadu Panhwer Caste  Arabs BP 23 (12/11) 
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Supplementary Table 1b: Summary of individual characteristics of MNS Pedigrees 

 

 

  

Pedigrees 

Number of 

1st-cousin 

marriage 

Number of 

2nd-cousin & 

Bradri 

marriage 

Number of 

total 

marriages 

surveyed 

 
Number of 

individuals 

surveyed 

Number of 

symptomatic 

individuals 

identified  

Number of 

affected 

individuals 

married  

Number of 

affected 

individuals 

with children  

MNS01 4 7 12  118 16 12 12 

MNS02 3 4 7  121 19 14 14 

MNS03 12 13 25  138 35 21 20 

MNS04 2 0 2  193 10 5 5 

MNS05 2 11 13  88 14 12 11 

MNS06 10 6 16  155 19 5 5 

MNS07 4 5 11  231 25 21 20 

MNS08 1 6 7  176 12 6 4 

MSN09 1 5 6  81 17 11 8 

MNS10 3 1 4  51 13 8 8 

Total (%) 42 (41%) 58 (56%) 103 (100%)  1352 172 115 (69%) 51 (62%) 
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Supplementary Table 2: Comparison of ROHs in affected and unaffected family members in each family 

  MNS01 MNS02 MNS03 MNS04 MNS05 MNS06 MNS07 MNS08 MNS09 MNS10 

number of aff  13 10 12 11 13 13 17 10 14 12 

number of unaff  23 16 16 12 9 18 17 16 12 11 

total number                     

 mean±SD (aff) 12 ± 10.9 49.9 ± 13 51.4 ± 10 10.9 ± 6.9 18.8 ± 12.5 33.1 ± 11.6 24.4 ± 10.4 11.6 ± 7.1 12.1 ± 7.4 30.2 ± 17.2 

 mean±SD (unaff) 10.8 ± 14.4 54.7 ± 7 53.6 ± 9.1 8.4 ± 7.2 19.4 ± 10.4 39.9 ± 9.2 17.9 ± 12.1 16.6 ± 7.9 9.8 ± 5.6 32.4 ± 15.7 

Wilcoxon p-value 0.117 0.672 0.593 0.337 0.789 0.144 0.065 0.101 0.679 0.804 

total size (Mb)                     

 mean±SD (aff) 85.8 ± 107.7 377.4 ± 111.5 436.9 ± 133.6 85.4 ± 94 159.7 ± 138.6 217.2 ± 119.9 169.9 ± 94 77.4 ± 67.9 84.8 ± 76.3 229.1 ± 188.1 

 mean±SD (unaff) 105.8 ± 170.5 442.1 ± 110 501.6 ± 103 79.5 ± 119.9 150 ± 105.9 315.1 ± 134 129.1 ± 112.4 118.4 ± 87.9 49.7 ± 48.6 270.7 ± 151.1 

Wilcoxon p-value 0.169 0.310 0.159 0.525 0.896 0.062 0.099 0.121 0.403 0.260 

average size (Mb)                     

 mean±SD (aff) 5 ± 3.3 7.3 ± 1.6 8.4 ± 1.6 6.4 ± 4.1 7.1 ± 2.9 6.1 ± 2.1 6.6 ± 2.3 5.8 ± 2 5.9 ± 2.4 6.9 ± 2.3 

 mean±SD (unaff) 4.5 ± 4.5 8.1 ± 1.7 9.5 ± 2 6.9 ± 4 6.5 ± 3 7.6 ± 2 6.4 ± 3.1 7.1 ± 2.3 4.6 ± 1.9 8.3 ± 2.2 

Wilcoxon p-value 0.328 0.484 0.110 0.651 0.695 0.051 0.734 0.241 0.160 0.118 

>4Mb_size                     

 mean±SD (aff) 72.4 ± 100.9 326.1 ± 101.2 388.3 ± 127.8 73.5 ± 92.3 142.1 ± 131.2 178.5 ± 114 141.1 ± 84.3 64.1 ± 64.3 71.4 ± 70.6 197.8 ± 180.6 

 mean±SD (unaff) 95.5 ± 159 385.8 ± 115.6 455.2 ± 99.9 71 ± 117.5 133.1 ± 100.5 275.8 ± 134.3 110.8 ± 105.5 101.3 ± 85.1 38.2 ± 44.7 241 ± 141.3 

Wilcoxon p-value 0.673 0.310 0.174 0.580 0.893 0.075 0.179 0.133 0.410 0.211 

>4Mb_count                     

 mean±SD (aff) 5.9 ± 8 28.5 ± 8 30.7 ± 7.9 5.7 ± 5.1 10.9 ± 8.7 15.5 ± 8.4 12.8 ± 6.3 5.9 ± 5.4 5.8 ± 4.8 16.9 ± 13.2 

 mean±SD (unaff) 6.5 ± 10.3 30.8 ± 7.3 33.7 ± 5.9 4.4 ± 5.9 11.4 ± 7.5 22 ± 8.9 9.8 ± 8.4 9.2 ± 5.8 4 ± 3.6 19.6 ± 10.2 

Wilcoxon p-value 0.622 0.771 0.295 0.320 0.763 0.089 0.094 0.139 0.483 0.266 

>8Mb_size                     

 mean±SD (aff) 57.1 ± 80.7 251.2 ± 83.4 311.8 ± 126.7 58.9 ± 86.9 114.2 ± 110.2 139.1 ± 103.1 105.2 ± 75.6 52.1 ± 58.7 53.7 ± 60.5 151 ± 150.7 

 mean±SD (unaff) 82.1 ± 139.2 315.7 ± 111.3 375.9 ± 101.6 60.3 ± 103.7 101.3 ± 86.9 219.9 ± 123.8 84.4 ± 91 78 ± 79.6 27.9 ± 40.4 193.7 ± 126.8 

Wilcoxon p-value 0.625 0.220 0.159 0.756 1.000 0.082 0.285 0.215 0.568 0.260 

>8Mb_count                     

 mean±SD (aff) 3.2 ± 4.4 15.6 ± 4.6 17.7 ± 6.4 3.3 ± 3.9 6.1 ± 5.1 8.4 ± 5.7 6.5 ± 4.2 3.9 ± 4.3 2.8 ± 2.7 8.9 ± 8.2 

 mean±SD (unaff) 4.2 ± 6.9 18.5 ± 6.2 19.4 ± 3.8 2.7 ± 3.7 6 ± 4.8 12.2 ± 6.6 5.2 ± 5.5 5.1 ± 4.4 2 ± 2.6 11.3 ± 7.3 

Wilcoxon p-value 0.677 0.559 0.305 0.572 1.000 0.088 0.171 0.264 0.546 0.353 

 

Aff: affected individuals; unaff: unaffected individuals; Wilcoxon p-value, an exact p-value from unpaired Wilcoxon Rank Sum Test; 

4Mb_size, total size of ROHs larger than 4 megabases; 4Mb_count, number of ROHs larger than 4 megabases; 8Mb_size, total size of 

ROHs larger than 8 megabases; 8Mb_count, number of ROHs larger than 8 megabases.  
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Supplementary Figure 2a: Geographic and ethnic groups map of Pakistan 

 

 
 

(downloaded from http://www.lib.utexas.edu/maps/pakistan.html, January 24, 2009, and 

https://commons.wikimedia.org/wiki/File:Pakistan_ethnic_map.svg, January 17, 2018) 
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Supplementary figure 2b: Location and ethnic origin of MNS pedigrees in Sindh, Pakistan 
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Supplementary Figure 3. Age of onset by phenotypes in MNS pedigrees 
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Supplementary Figure 4. Population admixture and population stratification of our pedigrees with other populations and 

control dataset 
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Supplementary Figure 5. Distribution of total length and number of ROH compared to other world populations 
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Supplementary Figure 6. Phenotypic profiling of the pedigrees aggregated with schizophrenia 

 

The color gradient depicts the scale of the symptoms, orange color for negative symptoms and red for positive symptoms.  
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Phenotype SCZ SCZ SAF SAF SCZ SCZ SCZ SCZ PSY NOSSCZ SCZ SCZ MD SCZ SCZ SCZ SCZ SCZ SCZ SCZ SCZ SCZ SCZ SCZ SAF SCZ SCZ SCZ SAF SAF SCZ SCZ SCZ SCZ SCZ SCZ SCZ SCZ SCZ SCZ 2 phenotypesSCZ SCZ SCZ SCZ SAF SCZ SCZ SCZ SCZ SCZ SCZ SCZ SCZ SCZ SAF SAF SAF BP II? SAF SAF

Age of onset 30 35 44 22 35 25 28 25 29 17 24 27 41 18 20 22 30 18 28 18 40 23 15 45 18 16 15 16 18 25 15 15 23 20 34 30 30 16 30 15 54 40 20 20 26 25 20 15 15 25 15 25 31 15 34 16 25 16 23 25 30

U. Scale Negative Symptoms 24 40 20 19 22 11 27 0 28 23 25 96 51 23 16 0 0 25 0 12 0 25 105 26 4 22 51 32 0 0 41 105 0 73 12 67 20 0 26 53 56 20 13 3 17 27 116 22 0 15 0 120 0 19 87 25 10 13 28 2 111 0

1. Unchanged Face 0 0 0 0 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0 0 0 0 5 0 0 1 0 1 0 0 2 5 0 4 0 3 0 0 0 3 3 1 0 0 0 0 5 0 0 0 0 5 0 0 4 0 0 0 0 0 5

2. Movements decreased 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 5 0 0 0 0 1 0 0 3 5 0 4 0 3 0 0 0 3 2 1 0 0 0 0 5 0 0 0 0 5 0 0 4 0 0 0 0 0 5

3. Expressive Gesture 0 0 0 0 0 0 0 0 0 1 0 3 1 0 0 0 0 0 0 0 0 0 5 0 0 0 0 1 0 0 0 5 0 4 0 3 0 0 0 1 2 0 0 0 0 2 5 0 0 0 0 5 0 0 4 0 0 0 0 0 5

4. Eye Contact 0 0 0 1 1 1 2 0 2 0 0 5 2 1 0 0 0 1 0 0 0 0 5 0 0 1 4 0 0 0 2 5 0 3 0 3 0 0 0 1 2 0 0 0 2 2 3 0 0 0 0 5 0 0 4 1 0 0 0 0 5

5. Nonresponsivity (aff) 0 2 0 0 0 0 1 0 0 0 0 5 3 0 0 0 0 1 0 0 0 0 5 0 0 0 0 0 0 0 2 5 0 3 0 3 0 0 0 1 2 0 0 0 2 0 5 0 0 0 0 5 0 0 4 1 0 0 0 0 5

6. Inappropriate affect 2 2 0 1 3 0 0 0 0 0 0 4 3 0 0 0 0 0 0 0 0 0 5 0 0 0 4 0 0 0 2 5 0 3 0 3 0 0 0 1 2 0 0 2 0 2 5 0 0 0 0 5 0 0 4 2 3 0 0 0 5

7. Lack of vocal 0 0 0 0 0 0 0 0 0 0 0 3 2 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 5 0 3 0 3 0 0 0 0 1 0 0 0 0 0 5 0 0 0 0 5 0 0 4 . 0 0 0 0 5

8. Global rating, Aff Flat 2 2 0 0 1 0 1 0 0 0 0 4 2 0 0 0 0 0 0 0 0 0 5 0 0 0 4 0 0 0 2 5 0 4 0 3 0 0 0 3 2 1 0 1 1 2 5 0 0 0 0 5 0 0 4 2 1 0 0 0 5

u. Poverty of speech 0 0 0 0 0 0 0 0 0 1 0 4 2 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 1 5 0 3 0 3 0 0 0 2 2 1 0 0 1 0 5 0 0 0 0 5 0 0 3 0 0 0 0 0 4

10. Poverty of content 0 2 0 0 0 0 0 0 0 0 0 4 2 0 0 0 0 0 0 0 0 1 5 0 0 0 0 0 0 0 0 5 0 3 0 3 0 0 0 2 2 1 0 0 1 0 5 0 0 0 0 5 0 0 3 0 0 0 0 0 4

11. Blocking 2 0 0 0 1 0 1 0 u 2 0 4 1 0 0 0 0 0 0 0 0 0 5 2 0 0 0 0 0 0 1 5 0 2 0 1 0 0 0 3 2 0 0 0 0 0 5 0 0 0 0 5 0 0 3 0 0 0 0 0 4

12. Latency of Response 2 0 0 0 1 1 0 0 u 0 0 4 2 0 0 0 0 0 0 0 0 1 5 2 0 0 4 0 0 0 1 5 0 3 0 3 0 0 2 3 1 1 0 0 0 0 5 0 0 0 0 5 0 0 3 0 0 0 0 0 4

13. Global Rating Alogia 1 0 0 0 1 0 0 0 u 1 0 4 2 0 0 0 0 0 0 0 0 1 5 2 0 0 1 0 0 0 1 5 0 3 0 3 0 0 2 3 2 1 0 0 0 5 0 0 0 0 5 0 0 3 0 0 0 0 0 4

14. Hygiene 0 0 0 1 0 0 0 0 1 1 0 2 0 0 0 0 0 0 0 0 0 0 5 0 0 0 4 4 0 0 3 5 0 3 2 3 2 0 2 2 3 1 0 0 2 1 5 3 0 0 0 5 0 0 4 3 0 0 0 0 5

15. Inpersistence 3 4 2 4 3 3 4 0 4 4 3 4 3 3 2 0 0 2 0 2 0 3 u 2 2 2 0 4 0 0 3 u 0 3 2 3 2 0 2 2 3 1 0 0 2 2 5 3 0 0 0 5 0 4 4 3 0 3 0 0 5

16. Anergia 0 0 2 1 0 0 2 0 1 1 0 3 1 1 2 0 0 2 0 1 0 1 5 2 0 1 0 4 0 0 2 5 0 2 0 1 u 0 2 0 1 0 0 0 2 1 5 2 0 0 0 5 0 0 4 0 0 3 0 0 5

17. G. R. Apathy 2 2 2 1 1 1 2 0 3 3 3 4 2 2 2 0 0 2 0 1 0 1 5 2 0 1 2 4 0 0 2 5 0 3 2 2 2 0 2 2 3 1 0 0 2 1 5 3 0 0 0 5 0 3 4 2 0 3 0 0 5

18. Activities 4 4 2 3 1 1 2 0 3 1 3 4 3 3 2 0 0 3 0 1 0 3 5 2 0 1 4 1 0 0 2 5 0 3 1 3 2 0 2 3 3 1 2 0 0 2 5 2 0 2 0 5 0 0 4 2 1 1 4 0 4

1u. Sexual Activity 0 3 2 u u 1 u 0 0 0 0 4 u 2 2 0 0 u 0 2 0 3 u u u u u u 0 0 0 u 0 u u u u 0 u u u u 2 u u u u u 0 1 0 u 0 u u u u 1 4 0 u

20. Intimacy 0 3 2 1 2 2 3 0 3 u 3 4 3 2 2 0 0 3 0 1 0 3 u 2 u 2 4 u 0 0 2 5 0 3 u 3 2 0 2 3 3 u 2 0 0 2 5 2 0 2 0 5 0 0 4 2 1 1 4 0 4

21. Relationships 2 3 2 1 2 0 3 0 1 1 1 4 3 2 2 0 0 3 0 2 0 3 u 2 2 2 4 u 0 0 2 u 0 3 1 3 2 0 2 3 3 2 2 0 0 2 5 2 0 2 0 5 0 0 4 2 1 0 4 0 4

22. G.R. Asociality 2 3 2 1 2 1 3 0 2 1 3 4 3 2 2 0 0 3 0 2 0 3 5 2 0 2 4 u 0 0 2 5 0 3 1 3 2 0 2 3 3 1 2 0 0 2 5 2 0 2 0 5 0 0 4 2 1 1 4 0 4

23. Inattentiveness 1 3 2 3 1 0 1 0 2 1 3 4 3 2 0 0 0 2 0 0 0 1 5 2 0 3 4 4 0 0 2 u 0 2 0 3 2 0 2 3 3 2 1 0 0 2 5 1 0 2 0 5 0 4 4 1 0 0 2 0 5

24. Mental status test u 4 1 0 1 0 1 0 3 3 3 4 3 1 0 0 0 1 0 0 0 0 5 2 . 3 4 4 0 0 2 5 0 3 2 3 2 0 2 3 3 2 1 0 1 2 3 1 0 2 0 5 0 4 u 1 1 0 3 1 5

25. G.R. attention 1 3 1 1 1 0 1 0 3 2 3 4 3 2 0 0 0 2 0 0 0 1 5 2 0 3 4 4 0 0 2 5 0 3 1 3 2 0 2 3 3 2 1 0 1 2 5 1 0 2 0 5 0 4 4 1 1 0 3 1 5

V. Scale Positive Symptoms 55 63 27 73 70 64 51 0 13 78 87 20 16 46 30 0 0 15 0 10 0 39 40 78 18 94 90 75 14 40 45 55 36 20 34 24 52 0 52 38 45 25 81 97 45 21 18 71 42 35 38 56 11 111 79 69 60 85 16 87 62 0

1. Auditory Hall. 4 5 2 4 4 4 4 0 u 4 4 u 0 4 3 0 0 1 0 1 0 3 5 4 0 5 5 4 0 4 3 5 3 1 3 . 3 0 4 3 3 2 4 4 3 2 3 4 3 3 3 5 1 5 4 3 3 4 3 4 3

2. Voices Commenting 4 5 2 4 4 4 4 0 u 4 4 u 0 4 3 0 0 1 0 1 0 3 u 4 0 5 5 4 0 1 3 u 3 1 3 . 3 0 4 3 3 2 4 4 3 2 3 4 3 3 3 5 1 5 4 3 3 4 0 4 3

3. Voices conversing 4 5 2 4 4 4 4 0 u 4 4 u 0 4 3 0 0 1 0 1 0 3 u 4 0 5 5 4 0 1 3 u 3 1 3 . 3 0 4 3 3 2 4 4 3 2 3 4 3 3 3 5 1 5 4 3 3 4 3 4 3

4. Somatic Hall. 0 0 0 u u u 1 0 u 0 0 u 0 0 0 0 0 0 0 0 0 0 u 0 0 0 0 0 0 0 0 u 0 0 0 . 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5. Olfactory Hall. 0 0 0 0 0 0 0 0 u 0 0 u 0 0 0 0 0 0 0 0 0 0 u 0 0 0 0 0 0 0 0 u 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6. Visual Hall. u u 0 0 0 u 0 0 u 0 0 u 0 0 0 0 0 0 0 0 0 0 u 0 0 0 0 0 0 0 0 u 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 u 0 0 0 0 0 0 u

7. G.R. Hallucinations 4 4 2 4 4 4 4 0 u 4 4 u 0 4 3 0 0 1 0 1 0 3 u 0 0 5 5 4 . 3 3 5 3 0 3 . 3 0 3 3 3 0 3 4 2 2 3 4 2 3 2 5 0 5 0 3 3 3 3 4 2

8. Persecutory Dell. 4 5 2 4 4 4 4 0 u 4 4 u 4 4 3 0 0 2 0 1 0 2 5 4 4 5 5 4 0 4 3 5 3 1 3 . 4 0 4 3 3 2 4 4 3 2 0 4 3 2 3 5 1 5 4 3 3 4 3 4 4

u. Del. Of Jealousy 0 0 2 4 0 4 0 0 u 0 4 u 0 0 0 0 0 0 0 0 0 0 u 4 0 5 5 4 0 4 0 u 0 0 0 . 3 0 0 0 0 0 4 4 3 2 0 4 3 2 3 0 1 4 4 3 3 4 0 4 1

10. Del. Of Guilt 0 0 0 0 0 0 0 0 u 0 0 u 4 0 0 0 0 0 0 0 0 0 u 0 0 0 0 0 0 0 0 u 0 0 0 . 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 3 1 3 1 0

11. Del. Of Grandiose 0 0 0 4 4 3 1 0 u 3 4 u 0 2 2 0 0 0 0 0 0 2 u 4 4 5 4 4 2 4 3 u 3 1 3 . 4 0 4 3 3 1 4 4 3 2 0 4 3 2 1 0 1 5 1 3 3 4 0 4 0

12. Religious Del. 0 0 0 0 1 0 0 0 u 0 2 u 0 0 1 0 0 0 0 0 0 3 u 4 0 5 0 4 3 4 0 u 3 1 3 . 3 0 4 3 3 1 4 4 3 0 0 4 3 2 1 0 1 4 1 3 3 4 0 4 0

13. Somatic Del. 0 0 0 u u u 1 0 u 0 0 u 0 0 0 0 0 0 0 1 0 0 u 0 0 0 0 0 3 0 0 u 0 0 0 . 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

14. Del. Of reference 4 5 2 4 1 4 3 0 u 4 4 u 4 4 3 0 0 2 0 1 0 2 u 4 0 5 4 4 0 2 4 u 3 1 3 . 0 0 0 3 3 1 4 4 3 0 0 4 3 0 2 5 0 5 4 3 3 0 0 4 4

15. Del. Of Controlled 4 5 2 4 4 4 3 0 u 4 4 u 0 4 3 0 0 1 0 0 0 2 u 4 0 5 4 4 0 0 4 u 0 0 0 . 0 0 0 3 0 0 1 4 0 0 0 4 3 0 0 0 0 0 0 0 0 0 0 0 0

16. Del. Of Mind Reading u u u u 4 1 3 0 u 1 4 u 0 1 0 0 0 0 0 0 0 0 u 0 0 5 0 4 0 0 0 u 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

17. Del. Of Broadcasting 0 0 u u 1 0 0 0 u 0 1 u 0 u 0 0 0 0 0 0 0 0 u 0 0 0 0 0 0 0 0 u 3 0 0 . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18. Del. Insertion 4 u 2 3 4 1 0 0 u 4 1 u 0 4 2 0 0 0 0 0 0 1 u 4 0 0 0 0 0 0 0 u 0 0 0 . 0 0 0 0 3 0 4 4 0 0 0 0 0 0 0 5 0 4 0 0 0 0 0 0 0

1u. Del Withdrawal 4 u 2 u 1 0 3 0 u 4 4 u 0 u 0 0 0 0 0 1 0 1 u 4 0 0 4 0 0 0 0 u 0 0 0 . 0 0 0 0 3 0 4 4 0 0 0 0 3 0 2 5 0 4 0 0 0 0 0 0 0

20. G.R. Delusions 4 4 2 4 4 4 3 0 u 4 4 u . 4 3 0 0 1 0 1 0 2 u 4 4 5 4 4 0 4 0 u 3 2 3 . 4 0 4 0 3 1 4 4 3 1 0 4 3 2 . 5 1 4 4 3 3 3 1 4 4

21. Clothing 0 1 0 4 4 3 0 0 3 3 2 4 1 3 1 0 0 1 0 0 0 0 5 4 0 4 4 2 0 0 3 5 0 1 1 3 0 0 2 3 1 1 3 4 2 0 5 3 1 2 2 1 0 5 4 3 2 4 0 4 5

22. Behavior 0 0 0 2 1 1 0 0 1 4 4 0 0 0 0 0 0 0 0 0 0 0 5 u 0 u 4 u 0 0 0 5 0 u u 0 0 0 u 0 1 u 3 4 0 0 u 3 u 2 2 1 0 4 4 3 1 4 0 4 u

23. Aggressive 1 5 1 4 4 4 3 0 3 4 4 1 0 1 0 0 0 2 0 1 0 3 5 2 3 4 4 4 3 4 2 5 2 2 2 3 3 0 4 3 2 2 4 4 3 2 0 3 2 3 2 1 1 5 4 3 3 4 0 4 3

24. Repetitive 1 3 0 1 1 1 0 0 3 2 3 1 1 0 0 0 0 1 0 0 0 1 5 1 0 2 4 1 1 1 2 5 2 2 2 2 3 0 3 2 1 0 4 4 3 2 0 3 2 3 2 1 0 5 4 3 1 4 0 4 3

25. G.R. Behavior 1 4 0 4 4 4 1 0 3 4 4 2 . 2 0 0 0 1 0 0 0 1 5 3 3 4 4 4 2 4 2 5 2 2 2 2 3 0 4 3 2 2 4 4 2 2 1 3 2 3 2 1 1 5 4 3 3 4 0 4 3

26. Derailment 3 0 1 1 2 2 1 0 u 1 3 2 0 0 0 0 0 0 0 0 0 0 5 4 0 4 4 4 0 0 3 5 0 0 0 2 2 0 1 0 1 0 3 3 0 0 0 2 0 0 1 1 0 4 4 3 2 4 0 4 4

27. Tangentiality 0 0 0 1 1 0 0 0 u 1 1 2 0 0 0 0 0 0 0 0 0 0 u 0 0 0 0 0 0 0 0 u 0 0 0 2 0 0 0 0 0 0 2 2 0 0 0 0 0 0 0 1 0 4 4 3 2 4 0 4 4

28. Incoherence 3 4 1 2 2 2 2 0 u 3 3 2 1 0 0 0 0 0 0 0 0 3 u 4 0 4 4 0 0 0 3 5 0 0 0 2 2 0 1 0 2 2 2 3 0 0 0 2 0 0 1 1 0 4 4 3 2 4 0 1 4

2u. Illogicality 0 4 1 2 2 2 2 0 u 3 2 2 1 0 0 0 0 0 0 0 0 3 u 0 0 0 0 0 0 0 0 u 0 0 0 2 0 0 0 0 0 0 2 3 0 0 0 2 0 0 0 1 0 4 4 3 2 4 0 4 4

30. Circumstantiality 3 0 0 2 0 0 0 0 u 1 0 2 0 0 0 0 0 0 0 0 0 0 u 0 0 0 0 0 0 0 0 u 0 0 0 2 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 4 4 3 2 1 0 1 4

31. Pressure of Speech 0 0 0 4 3 2 2 0 u 4 3 0 0 1 0 0 0 0 0 0 0 0 u 4 0 4 4 4 0 0 2 u 0 2 0 0 3 0 3 0 0 2 3 4 0 0 0 3 0 0 0 0 1 4 0 3 3 4 0 4 0

32. Distractible Speech 0 0 0 1 0 0 0 0 u 1 3 0 0 0 0 0 0 0 0 0 0 0 u 4 0 4 4 4 0 0 0 u 0 0 0 2 0 0 0 0 0 2 0 4 0 0 0 0 0 0 2 0 0 4 0 3 2 4 0 4 0

33. Clanging 0 0 0 0 0 0 0 0 u 0 0 0 0 0 0 0 0 0 0 0 0 0 u 0 0 0 0 0 0 0 0 u 0 0 0 . 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 u 4 0 0 1 0 0 0

34. G.R. Thought Dis. 3 4 1 2 2 2 2 0 u 3 3 2 0 0 0 0 0 0 0 0 0 1 u 4 0 4 4 4 0 0 2 5 0 2 0 2 3 0 3 0 2 2 3 3 0 0 0 3 0 0 1 1 0 4 4 3 2 4 0 4 4

MNS07MNS01 MNS02 MNS03 MNS04 MNS06
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Supplementary Figure 7. Correlation of inbreeding coefficient with positive and negative 

symptoms 

 

The leftmost side is inbreeding coefficient estimated by FSuite with genotyping data, the left part 

of the figure depicts negative symptoms, and the right part shows positive symptoms. As 

expected, there is a strong correlation between symptoms but no correlation between the 

inbreeding coefficient and the symptoms (first row). Correlation plot done using corrplot R 

package. 
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Supplementary figure 7. Density plot of inbreeding in all samples and in samples of each family 
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Supplementary figure 8. Example results of homozygosity mapping for the pedigrees 

 

 

 

 

 

 

 

  

Genome-wide homozygosity in MNS01 MNS01_chr10 

Genome-wide homozygosity in MNS06 MNS06_chr19 
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The plots above demonstrate an example of HomozygosityMapper results in MNS01 and MNS06. Bar chats on the left show the genome-

wide homozygosity of one family, and interesting regions are emphasized in red color when the homozygosity score of that region 

higher than 80% of the maximum score reached in this analysis. MNS01 and MNS06 have a maximum homozygosity score on 

chromosome 10 and chromosome 19 respectively, and also indicate several other interesting regions. A closer inspection of underlying 

genotypes is shown on the right. The markers are placed on the x-axis while the samples are on the y-axis, with the affected family 

members on top in red IDs and with the unaffected family members on the bottom in green IDs. The genotypes are color-coded: unknown 

genotypes are displayed as grey boxes, heterozygous genotypes as blue boxes and stretches of homozygosity as red bars. The saturation 

of the red colour reflects length of the homozygous block. A single heterozygous marker (possibly a genotyping error) within the 

homozygous region is ignored by HomozygosityMapper. As in the plot, the homozygous stretch is shared both by the affected and 

unaffected family members, which rules out it to be a promising causative region. 
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Appendix 2: Supplementary material for Chapter 3.2 

Supplementary Text 

Calling CNVs from SNPchip genotyping data 

1. Preparation of intensity files for CNV calling 

In total, 367 Pakistani samples were processed, including 179 samples genotyped with 

OmniExpress v12 SNPchip and 188 samples genotyped with OmniExpress v24. We 

followed Illumina’s technical notes to create a custom cluster file for each SNPchip, in 

order to gain a more representative reference for the calculations of the normalized 

intensity values LogR Ratio (LRR) and normalized B allele frequency (BAF) in copy 

number analysis269. 4 out of the 179 samples were excluded from clustering because of low 

call rates (<0.98); 3 out of the 188 samples were examined due to very large CNV calls or 

that they have outlier LogRDev or BAlleleDev in the CN Metrics report. The autosomal 

SNPs were clustered for all samples, the X chromosome SNPs were clustered on female 

samples and Y chromosome SNPs on male samples. The SNP statistics was updated and 

saved after clutering, and used for next step of calling CNVs.  

 

2. Calling CNVs with three algorithms 

For CNVpatition (plug-in in GenomeStudio), two sets of parameters were used: confidence 

threshold 0 or 35. The number of raw calls of using “0” was higher but the raw calls 

included all the calls made by using stringent “35”.  

For pennCNV, a population B allele frequency (PFB) file was generated separately using 

175 samples out of 179 samples of OmniExpress v12 and 188 samples out of 188 samples 

of OmniExpress v24. We also tried to a combined PFB file with 363 out of 367 samples, 

the results of final CNV calls were largely overlapped. Other parameters of CNV calling 

followed the default setting of the software. X chromosome were treated specifically by 

providing gender information.   

As for QuantiSNP, we followed the default settings and used a configuration files (levels-

hd.dat and params.dat), by the command: run_quantisnp2.sh 

/home/apps/Logiciels/MATLAB/MATLAB_Compiler_Runtime/v7.9/v79 --outdir 
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quantisnp/ --levels quantisnp/levels-hd.dat --config quantisnp/params.dat --sampleid 

$variable --input-files quantisnp/quantisnp_$variable. 

Calling CNVs from whole-exome sequencing data 

1. Preparing coverage files for CNV calling 

243 DNA samples was captured by the Agilent SureSelect Human All Exon 38M, 50M, 

v4 and v5 kit (Agilent Technologies, Inc.). WES was performed using the Illumina 

HiSeq 2000 platform (paired-end, 100 cycles) at the Genome Quebec Innovation 

Centre (Montréal, Québec, Canada) and at the Macrogen Korean facility (Macrogen 

Inc.) in separate batches. The raw fastq files were aligned to human reference genome 

(hg19) with Burrows-Wheeler Aligner (BWA)214. Duplicates were removed with the 

MarkDuplicates function in Picard tools. Genome Analysis Toolkit (GATK v3.5)215 

was used to process the bam files. Depth of coverage was performed using the GATK 

DepthOfCoverage tool.  

2. Calling exome CNVs with XHMM and CoNIFER 

Since our samples were captured with different capture kit, we separated them by batch 

and processed with other samples in our database with the same capture kit to obtain a 

better normalization.  

XHMM includes the following process: 1) calculate DepthOfCoverage by sequencing 

target intervals with GATK; 2) combine GATK DepthOfCoverage outputs for multiple 

samples captured by the same target intervals; 3) create a list of targets with extreme 

GC content by GATK or with low complexity by PLINK/seq; 4) filter samples and 

targets by a range of target size, mean target read depth and mean sample read depth as 

default; 5) mean-center the targets, run principle component analysis (PCA) on the 

targets and normalize the mean-centered data using PCA information (using 

PVE_mean method to remove principle components which individually explain more 

variance than 0.7 times the average); 6) filter and z-score center the PCA-normalized 

data by sample; 7) filter the original read-depth data to be the same as filtered, 

normalized data.  

As for CoNIFER, the inflection point for the four capture kits fell on 4 or 5, we chose 

–SVD 7 for all of them consistently. The data suggested the smaller SVD number is 
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used, the more CNVs CoNIFER called, and a higher rate of intersecting calls with 

XHMM software. 

Familial segregation of CNVs 

We only included CNV calls from 15 families for segregation, and excluded 34 

Pakistani population controls since they were all males from different families and they 

were not sequenced. After merging the CNVs with CNVision, we exclude CNVs 

shorter than 1kb, and CNVs called “duplication” by one algorithm but “deletion” by 

other algorithms, and vice versa. The example of using the sv-segregation software is 

shown as follows:  

python segregation.py \ 

-i merged_PN_CN_QT_1kb.seg.input:popsv:genotyping \ 

-r chip \ 

-o chip_merged_segregation.output \ 

-cfg snpchip.cfg \ 

-min 1 \ 

-max 100000000 \ 

-p PAK366.ped  

In snpchip.cfg file, one has to assign the minimal and maximal size of the CNVs, the 

percentage of overlapping region between family members, and percentage of overlap 

with other public databases, and output CNV found in affected, unaffected or all 

samples. In the statistics in the main text and shortlist for our families, we focused on 

variants found in affected samples and search segregation variants. We used CNVs 

found in all samples when we want to compare the results of defining likely positive 

CNVs as shared by 2 and 3 family members, shown in Supplementary Table 4 and 

5.   
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Supplementary Table 1: summary of samples used for SNPchip genotyping 

 

Ped total cases controls female male 

ATM01 12 2 10 4 8 

ATM02 7 2 5 3 4 

ATM03 15 3 12 7 8 

ATM04 8 3 5 2 6 

ATM05 16 3 13 7 9 

MNS01 36 12 24 19 17 

MNS02 26 10 16 15 11 

MNS03 28 12 16 10 18 

MNS04 23 11 12 6 17 

MNS05 22 13 9 15 7 

MNS06 31 12 19 11 20 

MNS07 34 17 17 18 16 

MNS08 26 10 16 9 17 

MNS09 26 14 12 15 11 

MNS10 23 12 11 10 13 

PAKcontrols 34 0 34 0 34 

total 367 136 231 151 216 

  

ATM01-05 are small pedigrees with probands affected with autism; MNS01-10 are larges 

pedigrees with family members affected with schizophrenia and bipolar disorder; PAKcontrols are 

population controls collected in different families from the same geographic region.   
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Supplementary Table 2: summary of samples used for whole-exome sequencing 

 

Ped total cases controls female male 

ATM01 2 2 0 0 2 

ATM02 2 2 0 0 2 

ATM03 3 3 0 0 3 

ATM04 3 3 0 0 3 

ATM05 3 3 0 0 3 

MNS01 21 12 9 9 12 

MNS02 20 10 10 12 8 

MNS03 23 12 11 7 16 

MNS04 20 11 9 5 15 

MNS05 19 13 6 13 6 

MNS06 28 12 16 11 17 

MNS07 30 17 13 16 14 

MNS08 22 10 12 8 14 

MNS09 26 14 12 15 11 

MNS10 21 12 9 9 12 

PAKcontrols 0 0 0 0 0 

total 243 136 107 105 138 

 

ATM01-05 are small pedigrees with probands affected with autism; MNS01-10 are larges 

pedigrees with family members affected with schizophrenia and bipolar disorder; PAKcontrols 

are population controls collected in different families from the same geographic region.   
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Supplementary Table 3: Number and percentage of likely false positive CNVs and likely true 

positive CNVs for deletions and duplications, and the estimation of the sensitivity and the 

specificity for each software 

 

Algorithm Likely false positive Likely true positive Sensitivity Specificity 

deletion       

PennCNV 1255 18.49% 5533 81.51% 0.32 0.81 

QuantiSNP 4567 26.08% 12944 73.92% 0.76 0.32 

CNVpartition 2442 29.06% 5961 70.94% 0.35 0.64 

XHMM 416 28.30% 1054 71.70% 0.06 0.94 

CoNIFER 121 21.96% 430 78.04% 0.03 0.98 

duplication       

PennCNV 319 18.54% 1402 81.46% 0.22 0.92 

QuantiSNP 2903 38.39% 4659 61.61% 0.73 0.31 

CNVpartition 667 31.76% 1433 68.24% 0.22 0.84 

XHMM 606 35.23% 1114 64.77% 0.17 0.86 

CoNIFER 340 30.71% 767 69.29% 0.12 0.92 

 

Note: Likely false positive CNVs are singleton CNVs; likely true positive CNVs are defined as 

segregating CNVs (in >=2 family members).  
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Supplementary Table 4: Number and percentage of likely false positive CNVs and likely true 

positive CNVs in autosomal chromosomes and estimation of the sensitivity and the specificity for 

each software 

 

Algorithm False positive True positive Sensitivity Specificity 

Autosomal CNVs 

PennCNV 3029 36.29% 5317 63.71% 0.34 0.86 

QuantiSNP 15030 55.36% 12121 44.64% 0.77 0.31 

CNVpartition 5023 78.23% 1398 21.77% 0.09 0.77 

XHMM 1948 91.67% 177 8.33% 0.01 0.91 

CoNIFER 1352 97.69% 32 2.31% 0.00 0.94 

CNVs on chromosome  X 

PennCNV 45 12.71% 309 87.29% 0.27 0.91 

QuantiSNP 289 22.70% 984 77.30% 0.86 0.42 

CNVpartition 109 30.62% 247 69.38% 0.21 0.78 

XHMM 2 22.22% 7 77.78% 0.01 1.00 

CoNIFER 2 12.50% 14 87.50% 0.01 - 

 

 

Likely false positive CNVs are singleton CNVs; likely true positive CNVs are defined as 

segregating CNVs (in >=2 family members). The number is bigger than Table VII and Table VIII 

in the main text, since the analysis here was based on the segregation of CNVs found in all samples 

and the latter is based on CNVs found in affected samples. 
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Supplementary Table 5: Number and percentage of likely false positive CNVs and likely true 

positive CNVs in autosomal chromosomes and estimation of the sensitivity and the specificity for 

each software 

 

Algorithm False positive True positive Sensitivity Specificity 

Autosomal CNVs  

PennCNV 3657 43.82% 4689 56.18% 0.36 0.85 

QuantiSNP 17602 64.83% 9549 35.17% 0.72 0.28 

CNVpartition 6110 81.38% 1398 18.62% 0.11 0.75 

XHMM 1426 88.96% 177 11.04% 0.01 0.94 

CoNIFER 1032 96.99% 32 3.01% 0.00 0.96 

CNVs on chromosome  X 

PennCNV 64 18.08% 290 81.92% 0.26 0.88 

QuantiSNP 332 26.08% 941 73.92% 0.86 0.39 

CNVpartition 138 38.76% 218 61.24% 0.20 0.75 

XHMM 2 22.22% 7 77.78% 0.01 1.00 

CoNIFER 2 12.50% 14 87.50% 0.01 - 

 

 

Likely false positive CNVs are singleton CNVs; likely true positive CNVs are defined as 

segregating CNVs (in >=3 family members). The number is bigger than Table VII and Table VIII 

in the main text, since the analysis here was based on the segregation of CNVs found in all samples 

and the latter is based on CNVs found in affected samples.  



 

 

149 

Supplementary table 6: segregation pattern of CNVs with and without filtering parameters in 15 families 

 

 MNS01 MNS02 MNS03 MNS04 MNS05 MNS06 MNS07 MNS08 MNS09 MNS10 ATM01 ATM02 ATM03 ATM04 ATM05 

# affected 13 10 12 11 13 13 17 10 14 12 5 3 3 3 5 

                

unfiltered CNVs from SNPchip, segregating in # affected 

1 affected 554 1829 660 719 430 1778 1348 355 1044 512 99 170 139 622 212 

>=2 affected 87 318 55 49 97 94 215 48 216 137 38 14 18 63 36 

>=5 affected 16 10 7 1 15 6 9 2 13 18      

all affected 0 0 0 0 0 0 0 0 0 0 2 1 1 7 0 

                

unfiltered CNVs from WES, segregating in # affected 

1 affected 42 141 133 169 59 202 243 120 91 126 48 39 31 15 39 

>=2 affected 18 86 42 44 25 64 60 19 51 50 8 4 11 7 10 

>=5 affected 0 12 4 1 4 1 4 1 9 2      

all affected 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

                

Filtered CNVs from SNPchip: scenario 1*             

1 affected 57 279 59 162 59 383 116 42 86 44 17 18 22 58 16 

>=2 affected 12 42 18 15 31 26 34 15 33 27 14 7 8 14 16 

>=5 affected 2 3 3 0 5 0 4 1 4 7      

all affected 0 0 0 0 0 0 0 0 0 0 2 1 2 4 0 

                

* scenario 1: CNV size >= 20kb, and detected by >=2 algorithms;  

* scenario 3: CNV size >= 20kb, number of probes >= 5, confidence score >= 5 and detected by >= 2 algorithms;  

* scenario 4: CNV size >= 20kb, number of probes >= 5, confidence score >= 5 and detected by >= 3 algorithms.  
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Supplementary table 6: segregation pattern of CNVs with and without filtering parameters in 15 families, continued 

 

 MNS01 MNS02 MNS03 MNS04 MNS05 MNS06 MNS07 MNS08 MNS09 MNS10 ATM01 ATM02 ATM03 ATM04 ATM05 

# affected 13 10 12 11 13 13 17 10 14 12 5 3 3 3 5 

Filtered CNVs from WES: scenario 1*             

1 affected 6 16 13 26 15 31 26 20 14 18 8 6 5 4 3 

>=2 affected 5 5 15 10 6 16 11 6 9 12 3 1 1 1 1 

>=5 affected 0 0 1 0 1 1 2 1 0 0      

all affected 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

                

Filtered CNVs from SNPchip: scenario 3*             

1 affected 43 248 47 149 48 365 90 35 72 27 15 14 20 56 13 

>=2 affected 10 39 13 13 29 22 30 13 28 26 14 7 6 14 13 

>=5 affected 1 3 3 0 5 0 5 1 4 8      

all affected 0 0 0 0 0 0 0 0 0 0 2 1 1 4 0 

                

Filtered CNVs from SNPchip: scenario 4*             

1 affected 13 18 17 44 32 47 39 25 25 20 12 9 11 13 9 

>=2 affected 8 8 9 11 26 13 24 13 16 22 8 2 4 7 10 

>=5 affected 2 2 3 0 3 0 4 0 3 6      

all affected 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 

* scenario 1: CNV size >= 20kb, and detected by >=2 algorithms;  

* scenario 3: CNV size >= 20kb, number of probes >= 5, confidence score >= 5 and detected by >= 2 algorithms;  

* scenario 4: CNV size >= 20kb, number of probes >= 5, confidence score >= 5 and detected by >= 3 algorithms.  
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Supplementary table 7: A short list of candidate CNVs for small pedigrees aggregated with autism.  

family type+ A UA chr start end size Gene Func.refGene source algos* linked to Autism* 

ATM01 Del 2 0 1 1341167 1444657 103490 ANKRD65 exonic WES CO, XH 1p36.33 

ATM01 Dup 2 0 7 66648048 69064982 2416934 AUTS2 exonic WES CO, XH 7q11.21-q11.22 

ATM01 Dup 2 0 11 60899231 61017332 118101 VPS37C exonic WES CO 11q12.2 

ATM01 Del 2 0 17 43545526 43596393 50867 PLEKHM1 exonic WES CO 17q21.31 

ATM02 Del 2 0 8 104825219 105197239 372020 RIMS2 exonic SNPchip CN 8q22.3 

ATM02 Del 2 0 16 30199185 30234643 35458 BOLA2 exonic WES CO 16p11.2 

ATM04 Dup 2 0 8 75689462 75749982 60520 PI15 exonic SNPchip QT 8q21.11 

ATM04 Dup 2 0 10 37467445 37583900 116455 ANKRD30A exonic SNPchip QT 10p11.21 

ATM04 Dup 2 1 11 100036291 100072718 36427 CNTN5 exonic SNPchip PN, QT 11q22.1 

ATM04 Dup 2 0 12 9993452 10024007 30555 CLEC2B,KLRF1 exonic SNPchip CN, QT 12p13.31 

ATM04 Dup 2 0 12 83354429 83384628 30199 TMTC2 exonic SNPchip PN, QT 12q21.31 

ATM04 Dup 2 0 13 77803247 77854638 51391 MYCBP2 exonic SNPchip QT 13q22.3 

ATM04 Del 2 0 17 5337000 5365910 28910 C1QBP,DHX33 exonic WES CO, XH 17p13.2 

ATM04 Del 2 0 21 44835301 44870150 34849 SIK1 exonic SNPchip PN 21q22.3 

ATM05 Dup 2 0 2 130951339 130987236 35897 TUBA3E exonic WES XH 2q21.1 

ATM05 Del 2 0 2 132200865 132240453 39588 TUBA3D exonic WES XH 2q21.1 

ATM05 Del 2 0 6 73975404 74003177 27773 KHDC1 exonic SNPchip CN, QT 6q13 

ATM05 Dup 2 1 12 80731040 80775056 44016 OTOGL exonic SNPchip QT 12q21.31 

ATM05 Dup 2 0 14 20002199 20444740 442541 OR11H2 exonic WES CO 14q11.2 

ATM05 Dup 2 0 15 20833516 21052456 218940 POTEB exonic WES CO 15q11.2 

 

This table contains a preliminary list of prioritized CNVs in small pedigrees with autism affected probands. We kept CNVs present in 

at least 2 affected individuals and present more in affected than unaffected family members. We excluded those CNVs are present in 

1KG and DGV database. At last, we selected the ones which have been previouly linked to autism. Legend: +type: Del, deletion; Dup, 

duplication. A, number of affected carriers in the family, UA, number of unaffected carriers in the family. *CO, CoNIFER; XH, XHMM; 
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CN, CNVpartition; PN, PennCNV; QT, QuantiSNP; € These Cytoband regions have been previously associated to Autism according to 

AutDB Home (http://autism.mindspec.org/autdb/Welcome.do).  

  

http://autism.mindspec.org/autdb/Welcome.do
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Supplementary table 8: A short list of candidate CNVs for large pedigrees aggregated with schizophrenia and bipolar disorder 

family type A UA chr start end Size Gene Func.refGene source algos* 

to 

SCZ/BP 

CNV 

to SCZ GWAS to BD GWAS 

MNS02 Del 6 5 15 24385350 24472002 86652 PWRN2 ncRNA_exonic SNPchip CN, PN, QT 15q11.2  15q11.2 

MNS05 Del 6 2 15 24385350 24472002 86652 PWRN2 ncRNA_exonic SNPchip CN, PN, QT 15q11.2  15q11.2 

MNS03 Dup 5 4 16 16633361 16682080 48719 NPIPA8 intergenic SNPchip QT 16p13.11   

MNS05 Dup 6 5 16 66967835 67070714 102879 CBFB exonic WES CO, XH 16q22.1 16q22.1  

MNS03 Dup 6 0 1 65509 777481 711972 OR4F16 exonic WES CO, XH 1p36.33 1p36.33  

MNS03 Del 5 1 1 1634935 1669905 34970 CDK11A exonic WES CO, XH 1p36.33 1p36.33  

MNS10 Del 5 5 22 18626900 18629153 2253 TUBA8,USP18 intergenic SNPchip CN 22q11.21 22q11.21  

MNS01 Del 5 1 7 62154874 62159926 5052 NONE,ZNF733P intergenic SNPchip PN, QT 7q11.21   

MNS07 Dup 6 2 2 1.79E+08 1.79E+08 14967 PRKRA exonic WES CO, XH  2q31.2 2q31.2 

MNS10 Del 7 3 14 80082435 80115560 33125 NRXN3 intronic SNPchip CN  14q31.1 14q31.1 

MNS05 Del 8 0 20 25470505 25479064 8559 NINL exonic WES XH  20p11.21 20p11.21 

MNS01 Del 7 1 6 77020141 77024665 4524 IMPG1,HTR1B intergenic SNPchip CN, PN, QT  6q14.1  

MNS01 Del 6 0 12 70874726 70877258 2532 KCNMB4,PTPRB intergenic SNPchip QT  12q15 12q15 

MNS07 Del 6 0 7 6838829 6864382 25553 CCZ1B exonic WES XH    

MNS09 Del 6 0 16 55844456 55854444 9988 CES1 exonic WES XH  16q12.2 16q12.2 

MNS01 Del 5 0 3 6651929 6654060 2131 MIR4790,GRM7-AS3 intergenic SNPchip QT  3p26.1 3p26.1 

MNS02 Del 5 0 16 63574341 63582751 8410 CDH8,CDH11 intergenic SNPchip QT  16q21  

MNS05 Del 6 1 2 90010895 90240473 229578 MIR4436A,LOC654342 intergenic SNPchip CN, PN, QT  2p11.2 2p11.2 

MNS05 Dup 5 0 14 19255726 19328549 72823 NONE,OR11H12 intergenic SNPchip QT  14q11.2 14q11.2 

MNS09 Del 5 0 9 9796116 9805496 9380 PTPRD intronic SNPchip QT  9p23 9p23 

MNS02 Del 5 0 2 67629928 67637212 7284 ETAA1 exonic WES XH  2p14 2p14 

MNS02 Del 5 0 6 1.17E+08 1.17E+08 6568 KPNA5 exonic WES XH  6q22.1  

MNS02 Del 5 0 11 89059898 89073392 13494 NOX4 exonic WES XH    

MNS05 Del 5 0 19 49474159 49496516 22357 GYS1 exonic WES CO, XH  19q13.33 19q13.33 

MNS06 Dup 8 3 X 48054712 48248937 194225 SSX1 exonic WES CO, XH    

MNS09 Del 5 0 1 16972036 16974846 2810 MST1P2 ncRNA_exonic WES XH  1p36.13 1p36.13 

MNS09 Dup 5 0 8 39311550 39349526 37976 ADAM3A ncRNA_exonic WES XH    
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Supplementary Table 8: A short list of candidate CNVs for large pedigrees aggregated with schizophrenia and bipolar disorder, 

continued 

family type A UA chr start end Size Gene Func.refGene source algos* 

to 

SCZ/BP 

CNV 

to SCZ 

GWAS 

to BD 

GWAS 

MNS09 Dup 5 0 9 1.36E+08 1.36E+08 7441 CEL exonic WES XH  9q34.2  

MNS09 Dup 6 1 19 54783186 54784774 1588 LILRB2 exonic WES XH  19q13.42 19q13.42 

MNS10 Dup 5 0 5 1.39E+08 1.39E+08 3752 MATR3 exonic WES XH  5q31.2  

MNS01 Del 6 2 3 1.76E+08 1.76E+08 14260 NAALADL2,MIR7977 intergenic SNPchip CN, PN, QT  3q26.32 3q26.32 

MNS08 Del 5 1 13 54812498 54816326 3828 LINC00458,MIR1297 intergenic SNPchip QT  13q14.3 13q14.3 

MNS10 Del 8 4 12 70874726 70877258 2532 KCNMB4,PTPRB intergenic SNPchip QT  12q15 12q15 

MNS02 Del 5 1 5 64766600 64814448 47848 ADAMTS6,CENPK exonic WES XH  5q12.3 5q12.3 

MNS09 Dup 5 1 12 9586597 9590154 3557 DDX12P 

ncRNA_exoni

c WES XH  12p13.31 12p13.31 

MNS02 Del 6 3 5 1.43E+08 1.43E+08 11840 NR3C1 intronic SNPchip CN, PN, QT  5q31.3 5q31.3 

MNS05 Dup 5 2 7 33658726 33690732 32006 BBS9,BMPER intergenic SNPchip CN, PN, QT    

MNS06 Dup 8 5 X 48095238 48205223 109985 SSX1 exonic SNPchip CN, QT    

MNS07 Dup 5 2 11 51581931 51591253 9322 OR4C46,NONE intergenic SNPchip QT    

MNS09 Del 5 2 3 1.06E+08 1.06E+08 13681 CBLB,LINC00882 intergenic SNPchip QT    

MNS09 Dup 5 2 6 31964330 32013891 49561 C4A exonic SNPchip QT  6p21.33 6p21.33 

MNS09 Del 6 3 9 1.1E+08 1.1E+08 2629 KLF4,ACTL7B intergenic SNPchip CN, PN, QT  9q31.2  

MNS10 Del 5 2 8 1.16E+08 1.16E+08 1170 CSMD3,TRPS1 intergenic SNPchip QT  8q23.3  

MNS02 Del 5 2 2 1.41E+08 1.42E+08 55109 LRP1B exonic WES XH  2q22.1  

MNS02 Del 5 2 11 1.03E+08 1.03E+08 11927 DYNC2H1 exonic WES XH  11q22.3 11q22.3 

MNS02 Del 5 2 12 82824636 82872861 48225 METTL25 exonic WES XH  12q21.31  

MNS02 Del 5 2 17 5047964 5050491 2527 USP6 exonic WES XH  17p13.2 17p13.2 

MNS07 Del 6 3 14 99182585 99183589 1004 C14orf177 exonic WES XH  14q32.2  

 

This table contains a  preliminary list of prioritized CNVs in 10 large pedigrees aggregated with schizophrenia and bipolar disorder. We 

kept CNVs present in at least 5 affected individuals and present more in affected than unaffected family members. We excluded those 
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CNVs present in 1KG and DGV database except they have been previously reported to have an association to schizophrenia and bipolar 

disorder in large scale CNV studies. The left CNVs were checked if the cytoband regions if they are overlapped with significantly 

associated loci of schizophrenia and bipolar disorder genome-wide association studies. Legend: type: Del, deletion; Dup, duplication. 

A, number of affected carriers in the family, UA, number of unaffected carriers in the family. *CO, CoNIFER; XH, XHMM; CN, 

CNVpartition; PN, PennCNV; QT, QuantiSNP. SCZ, schizophrenia; BP, bipolar disorder; GWAS, genome-wide association studies.  
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 Supplementary Figure 1. Pipeline for CNV calling and processing 
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Supplementary Figure 2. Scree plots of SVD components CoNIFER, separated by capture 

kit.  

38M Capture Kit (suggested number of SVD components removed, --SVD 4) 

 

 

50M Capture Kit (suggested number of SVD components removed, --SVD 4) 
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V4s1, s2, s3 Capture Kit (suggested number of SVD components removed, --SVD 4) 
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V5 Capture Kit (suggested number of SVD components removed, --SVD 5) 
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