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Résumé

Cette thèse comprend trois chapitres dans lesquels sont développés des outils de com-

paraison et d’analyse dynamique des modèles linéaires d’évaluation d’actifs.

Dans le premier chapitre, j’introduis la notion de facteurs inutiles par intermittence; il

s’agit de facteurs dont la pertinence n’est pas figée dans le temps (parfois utiles, parfois

inutiles). Sous ce nouveau cadre théorique, je développe une méthode d’inférence sur les

primes de risque. A chaque période, ma méthode permet d’estimer de façon consistante la

prime de risque des facteurs utiles, tout en étant robuste à la présence de facteurs inutiles par

intermittence. Empiriquement, j’analyse le modèle Fama-French à cinq facteurs. Il apparait

qu’à l’exception du marché, tous les facteurs de ce modèle sont inutiles par intermittence,

même s’ils demeurent pertinents 90% du temps.

Dans le second chapitre, je développe une méthode d’inférence sur les paramètres dy-

namiques d’un facteur d’actualisation stochastique (SDF) mal spécifié. J’étends au cadre des

SDF conditionnels, l’analyse de Gospodinov, Kan & Robotti (2014); les coefficients et les

covariances varient ici dans le temps. Cette nouvelle méthode permet d’éliminer les effets

négatifs des facteurs inutiles, et de restaurer la pertinence des facteurs importants, le tout en

étant robuste aux erreurs de spécification du modèle. Empiriquement, j’analyse l’évolution

de 1963 à 2016, de la pertinence de certains modèles d’évaluation d’actifs. Il apparait que

les modèles Fama-French à trois et à cinq facteurs sont les deux meilleurs modèles sur les 50

dernières années. Cependant depuis 2000, le meilleur modèle est le modèle à quatre facteurs

de Carhart, suivi du modèle Fama-French à cinq facteurs. Une analyse des modèles possédant

des facteurs non échangeables sur les marchés montre que certains de ces facteurs possèdent

aussi un pouvoir explicatif sur les rendements observés. La pertinence d’un modèle à capital

humain, inspiré de Lettau & Ludvigson (2001) et Gospodinov et al. (2014), est à ce propos
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mise en évidence.

Le troisième chapitre propose une méthode de classification des modèles Fama-French,

en fonction du niveau de préférence des investisseurs pour les moments d’ordre élevé. Les

résultats indiquent que l’ajout de facteurs comme stratégie d’amélioration des performances

des modèles d’évaluation, n’est efficace que lorsque les investisseurs ont un niveau de préférence

assez faible pour les moments d’ordre élevé. Lorsque la préférence pour ces moments devient

importante, le modèle à quatre facteurs de Carhart (1997) est plus performant que tous les

modèles Fama-French. Les résultats indiquent par ailleurs que le modèle à capital humain

analysé dans le deuxième chapitre possède un pouvoir explicatif sur les rendements observés,

uniquement pour les investisseurs dont le niveau de préférence pour les moments d’ordre élevé

est nul ou très faible.

Mots clés: Facteurs inutiles, Prime de risque, Facteurs d’actualisation stochastique, Modèles

mal spécifiés, Distance de Hansen-Jagannathan, Fonctions de divergence, Moments d’ordre

élevé.

iv



Abstract

This thesis has three chapters in which I develop tools for comparisons and dynamic

analysis of linear asset pricing models.

In the first chapter, I introduce the notion of dynamically useless factors: factors that

may be useless (uncorrelated with the assets returns) at some periods of time, while relevant

at other periods of time. This notion bridges the literature on classical empirical asset pricing

and the literature on useless factors, where both assume that the relevance of a factor remains

constant through time. In this new framework, I propose a modified Fama-Macbeth procedure

to estimate the time-varying risk premia from conditional linear asset pricing models. At each

date, my estimator consistently estimates the conditional risk premium for every useful factor

and is robust to the presence of the dynamically useless ones. I apply this methodology to

the Fama-French five-factor model and find that, with the exception of the market, all the

factors of this model are dynamically useless, although they remain useful 90% of the time.

In the second chapter, I infer the time-varying parameters of a potentially misspecified

stochastic discount factor (SDF) model. I extend the model of Gospodinov et al. (2014) to

the framework of conditional SDF models, as the coefficients and the covariances are allowed

to vary over time. The proposed misspecification-robust inference is able to eliminate the

negative effects of potential useless factors, while maintaining the relevance of the useful ones.

Empirically, I analyze the dynamical relevance of each factor in seven common asset pricing

models from 1963 to 2016. The Fama-French’s three-factor model (FF3) and five-factor model

(FF5) have been the overall best SDFs in the last 50 years. However, since 2000, the best SDF

is CARH (FF3 + momentum factor), followed by FF5 as the second best. Apart from traded

factors, the results bring a nuance on non-traded factors. We analyze the relevance, for linear

pricing, of a human capital model inspired by Lettau & Ludvigson (2001) and Gospodinov
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et al. (2014).

The third chapter proposes a method for ranking Fama-French linear factor models ac-

cording to investors’ preference for higher-order moments. I show that adding a new Fama-

French factor to a prior Fama-French model systematically leads to a better model, only when

the preference for higher-order moments is moderate (in absolute value). When the preference

for higher-order moments is important or extreme, the four-factor model of Carhart (1997)

has a better pricing ability than all the Fama-French models. An analysis of models with non-

traded factors confirms the relevance, for linear pricing, of the human capital model analyzed

in the second chapter. However, I show that this relevance is effective only for investors with

null or very low preferences for higher-order moments.

Keywords: Useless factors, Risk premium, Stochastic discount factors, Misspecified models,

Hansen-Jagannathan distance, Discrepancy functions, Higher-order moments.
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Avant-propos
Foreword

Expliquer l’évolution des rendements des actifs financiers est une préoccupation récurrente

depuis au moins les années 1960. Sharpe (1964) et Lintner (1965) ont posé les bases de ce qui

est aujourd’hui un champ de recherche florissant en asset pricing: l’explication des rendements

à partir d’un nombre réduit de facteurs observés et d’un modèle linéaire. Le CAPM a été

le premier modèle de ce genre, et a été suivi par une multitude de modèles à facteurs dont

les plus populaires sont entre autres: les modèles Fama-French, le CAPM intertemporel, le

CAPM conditionnel, le modèle avec momentum de Carhart, etc...

L’une des motivations souvent évoquées pour justifier le développement de nouveaux

modèles est l’aspect dynamique des marchés. Un modèle à facteur doit prendre en compte

l’évolution de l’information disponible afin d’être le plus précis possible. Cette préoccupation

est au centre de cette thèse.

La prise en compte de la dynamique des marchés impose le développement de nouveaux

outils d’analyse et d’explication des rendements. Les modèles avec des paramètres constants

doivent ainsi faire place à des modèles avec des paramètres qui varient dans le temps. Aussi,

la significativité des facteurs ne doit plus être analysée de façon absolue, mais plutôt avec

une certaine nuance. En effet, un facteur important hier peut ne plus l’être aujourd’hui, et

vice-versa. Dès lors, les questions relatives à l’estimation de primes de risque dynamiques ou

encore à l’évaluation dynamique de l’importance des facteurs, deviennent d’un intérêt certain.

Ces deux points font l’objet des chapitres 1 et 2.

La spécificité des marchés et celle des agents qui y opèrent est aussi un élément de

différenciation des modèles d’asset pricing. Elle est donc de ce fait, une motivation crédible

à l’élaboration de modèles à facteurs. Ceux-ci peuvent être dès lors pour la circonstance,
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opérationnels pour certains marchés et éventuellement moins adaptés pour d’autres. De ce

point de vue, il est intéressant de savoir comment évoluent les performances des modèles à

facteurs en fonction des caractéristiques des agents qui les appliquent. Nous analysons cette

question dans le chapitre 3. Dans ce chapitre, les performances des modèles Fama-French sont

évaluées en fonction des niveaux de préférence des agents pour les moments d’ordre élevé.

Les trois articles de cette thèse s’inscrivent dans une logique de développement de nou-

veaux outils économétriques, permettant de déterminer les conditions sous lesquelles un mo-

dèle à facteur donné est plus performant qu’un autre. Les conditions d’analyse considérées

reposent sur la dynamique des marchés et l’hétérogénéité des agents. Nous ne proposons pas

de nouveau modèle ici, mais présentons une analyse qui devrait permettre de choisir le meilleur

modèle à facteurs selon les circonstances prises en compte (différentes périodes d’analyse ou

encore différentes fonctions d’utilité). Tous les modèles linéaires à facteurs connus ne sont pas

considérés; nous sélectionnons quelques-uns comme modèles de référence dans les trois arti-

cles. Néanmoins, les différentes analyses présentées dans cette thèse peuvent être appliquées

à tous les modèles linéaires à facteurs utilisés en asset pricing.
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Chapter 1

Time-varying risk premia with

intermittently useless factors ∗

1.1 Introduction

Following the initial CAPM model of Sharpe (1964) and Lintner (1965), numerous papers

emphasize evidence in favor of time variation in betas (Bollerslev, Engle & Wooldridge, 1988;

Jagannathan & Wang, 1996).1 As stressed by Engle, Lilien & Robins (1987), the time-

variation of uncertainty in assets returns leads to a variation of compensation required by risk

averse agents, as the payoffs of the risky assets change through time. The time variation in

betas is therefore a natural motivation for time variation in risk premia.

When the betas are assumed to be constant, the risk premia are generally estimated

through the two-step procedure proposed by Fama & MacBeth (1973). Recently, Gagliardini,

Ossola & Scaillet (2016) (hereafter GOS) have developed a new method for inference on the

time-varying risk premium, as the classical Fama-MacBeth procedure is not suitable when

the betas are assumed to be time-varying. The method proposed by GOS is also a two-step

procedure, with the estimation of the matrices that link the betas to the instruments as the

first step. As for the Fama-MacBeth procedure, this new method also depends on how good
∗ I am grateful to René Garcia and Ilze Kalnina for their invaluable guidance. For useful suggestions and

comments, I would like to thank Marine Carrasco, Benoit Perron, Kokouvi Tewou and the participants of the
CESG 2017.

1For additional evidence, see also Ferson & Harvey (1991), Petkova & Zhang (2005) and Ang & Chen (2007).
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the betas are estimated. Therefore, having a factor with null or small betas in the model

could jeopardize inference abilities in GOS’ method and lead to unreliable results for the

time-varying risk premium estimation (see Kan & Zhang, 1999b; Kleibergen, 2009, for the

link between small-beta factors and the Fama-MacBeth procedure).

The literature associates small betas with useless factors (as opposed to useful factors),

defined as factors that are uncorrelated with all the asset returns. Kan & Zhang (1999b) and

Kleibergen (2009) show that when the betas are null or when they converge quickly enough to

0, the Fama-MacBeth procedure provides misleading results. As Kleibergen (2009) proposes

statistics that are reliable regardless of whether the model includes a useless factor, some

papers propose to correct the Fama-MacBeth procedure in the presence of useless factors

(see, for example, Bryzgalova, 2016; Kleibergen & Zhan, 2018). However, they all assume

that the relevance of factors is constant through time, which means these corrections cannot

be applied when the betas are time-varying.

Time-variation in the relevance of factors is a matter of course when we assume that the

loadings are time-varying and when we want to estimate time-varying risk premia. As the

agents update their beliefs, the returns are continuously updated and the sensitivity of the

assets with respect to the risk factors changes accordingly over time. Then, due to phenomena

such as crisis, asymmetries, or momenta, it is entirely possible to have a factor that is useful

in a given time period and useless in another one. This motivates us to introduce the notion of

dynamically useless factors: in essence, risk factors that are useless at least in one time period.

Contrary to the classical literature on useless factors, where the relevance (or the irrelevance)

of every factor is constant through time, this new notion opens up to the possibility of having

a factor that is useful in a given time period and useless in another one. Capturing the

intermittent uselessness property of a factor is important because it tells us when the factor is

relevant and when it is not. Thus, it opens-up the possibility for an investor to build stronger

dynamic strategies and correctly estimate the premia that will prevent him from dynamic

risks.

We propose a method to infer the time-varying risk premia of factors in the presence of a

dynamically useless factor. For that purpose, we adapt the shrinking procedure introduced by

Bryzgalova (2016) to a conditional factor model, in order to consistently estimate the time-

varying risk premia of factors for periods where they are useful and achieve robustness to the
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presence of potential dynamically useless factors. In our theoretical framework, the number

of assets is large, which means our approach can be applied on large equity data sets, thereby

eliminating data snooping (see, for example, Lo & Mackinlay, 1990; White, 2000; Gagliardini

et al., 2016).

Concretely, we propose the following modified Fama-Macbeth procedure to estimate the

risk premia. In the first step, we estimate the betas at every time period using high frequency

data. This step allows us to identify the time periods for which any factor is useless. This

in turn allows us to define a penalty function for the second step. The second step uses this

penalty function to estimate a semi-parametric dynamic model for risk premia, while also im-

posing the cross-sectional asset pricing restrictions. Thus, we use two types of data according

to their sampling frequency: a low-frequency, e.g. monthly, data set for the estimation of

the risk premia, and a high-frequency data set for the estimation of the betas. In a frame-

work with a large number of assets, a large number of periods (months), and a large number

of high-frequency observations in every period, our estimator consistently estimates the risk

premia of any factor when it is useful, and shrinks its risk premium to zero when it is useless.

In our empirical application, we consider three models: the three-factor model of Fama

& French (1993), the four-factor model of Carhart (1997), and the five-factor model of Fama

& French (2015). We estimate monthly risk premia by using both daily and monthly data.

Our results show that all the factors from the aforementioned models display months where

they are not priced, even if they are all found to be relevant. Overall, we find that the

principal factors of the Fama-French models are likely dynamically useless, as they all incur

times where their risk premia are insignificant (even if they all remain useful at least 90% of

the time). Nevertheless, the market return can be considered as an “always useful” factor, as

the times where it has an insignificant risk premium are negligible. We also find that none of

the five factors of the Fama-French five-factor model is redundant when daily information on

factors are taken into account. This result is particularly interesting, as the main argument

used against the Fama-French five-factor model is that some factors would become redundant

when we add the operating profitability factor (RMW) and the investment factor (CMA)

to the original Fama-French three factors. We find some additional information from those

new factors. First, the risk premium of the profitability factor RMW (Robust Minus Weak)

is never insignificant during recessions. Hence, investors should continue to build strategies
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on profitability during recessions. Second, the risk premium of the investment factor CMA

(Conservative Minus Aggressive) is insignificant mostly at dates where the dynamic of the

default spread changes sign. Thus, for agents, the most important consideration regarding

investment strategies is not the gap between the top-rated stocks’ returns and the bottom-

rated stocks’ returns; rather, it is the dynamics of that gap. The strategies on investment

should be executed as long as that gap maintains a monotonic dynamic.

This paper is related to the literature that studies the effect of useless factors on the

Fama-MacBeth estimation of risk premium in the arbitrage pricing theory framework. As

Kan & Zhang (1999b) point out, the risk premium estimation by the Fama-MacBeth method

is erroneous when there are factors with null betas. Moreover, Kleibergen (2009) shows that

in the presence of such factors or when the number of assets is large, linear factor models

based on the Fama-MacBeth estimator give misleading results. This finding is confirmed

by Kleibergen & Zhan (2015) and Burnside (2016), as they document that when the model

includes factors weakly correlated with the assets being priced, the standard estimation meth-

ods lead to unreliable risk premia estimation. Likewise, Gospodinov et al. (2014) analyze the

effect of misspecification and factor irrelevance on asset-pricing models. They show that the

inclusion of factors uncorrelated with the priced assets leads to unreliable statistical infer-

ence. Moreover, Gospodinov, Kan & Robotti (2017) show that using optimal and invariant

estimators like GMM does not solve the inference problem stressed above, but rather makes

estimations worse. All the papers referenced above assume constant betas in their theoretical

framework; from this perspective, they are different from this paper.

Under the assumption of constant betas, some papers propose to restore the inference

properties of the estimators when the model includes useless factors. Gospodinov et al.

(2014) and Feng, Giglio & Xiu (2017) propose a selection procedure which eliminates the

useless and the redundant factors from the model and restores the inference properties of the

useful ones. Kleibergen (2009) proposes some statistics that are reliable regardless of whether

the model includes a useless factor. Gospodinov et al. (2017) characterize the asymptotic

properties of the stochastic discount factor parameters when the rank conditions are not

satisfied. Bryzgalova (2016) proposes an improvement of the Fama-MacBeth approach by

considering a penalized Lasso as second step, and by penalizing according to the nature of

the factors. Finally, Giglio & Xiu (2017) propose a three-pass method in order to recover
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information from omitted factors and obtain valid risk premia estimations.

The rest of the paper is organized as follows. Section 2 provides the motivation behind

the importance of considering dynamically useless factors. Section 3 presents the model, the

estimation procedures, and the asymptotic properties of our estimator. Section 4 presents

the results of the Monte-Carlo simulations. Section 5 presents the results of the empirical

applications. Section 6 concludes.

1.2 Dynamically useless factors: motivation and definition

We present here the reasons of considering dynamically useless factors in a conditional

estimation of the risk premium.

1.2.1 Empirical motivation

In the arbitrage pricing theory of Ross (1976), the expected return of an asset is explained

by a linear combination of macroeconomic variables (risk factors) with their respective betas.

One of the main empirical constraints of this theory is that there are no predetermined factors

to use, making it difficult to know how many factors are needed and which to consider. Many

papers analyze this issue and try to propose a pattern for the choice of the factors that would

best explain the returns (see, for example, Fama & French, 1993; Carhart, 1997; Fama &

French, 2015)

The difficulty in choosing the right factors becomes more important when we consider

that the agents continuously update their beliefs and accordingly, their risk premia. Moreover

due to anomalies such as momentum (in stocks) or asymmetries,2 the set of risk factors that

explain the equity returns may change over time. A factor that explains the returns today

may not have the same explanatory power tomorrow and vice versa. Let us illustrate this

behavior by analyzing the explanatory power of the default spread on equity returns (the

default spread is proxied by the difference of yields between Moody’s Baa-rated and Aaa-rated

corporate bonds). For that purpose, we examine the dynamics of the correlation between the
2The “leverage effect” is for example a source of asymmetries on the market. A negative shock to an equity

market leads to a much more important movement of the volatility than a positive shock. The reader can refer
to Black (1976), Engle & Ng (1993) and Bekaert & Wu (2000) for a deeper analysis of the “leverage effect” on
markets
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default spread and some market portfolios. The default spread has been used as a risk factor

in several papers, among which are Jagannathan & Wang (1996), Petkova (2006) and GOS.

Figure 1.1 shows the evolution of the covariances between the default spread and the

returns of 6 Fama-French portfolios sorted on size and book-to-market. The covariances

are estimated from January 1986 to December 2015 and are updated every 60 days. We

see that across time, the default spread displays small covariances with the returns of the

portfolios. However, there are periods where some jumps occur. Let us see if this leads to a

modification of the explanatory power of the chosen factor on the returns. For that purpose,

we perform in every 60 days period, an OLS regression of each portfolio returns on the factor.

According to the p-values of the coefficients (see table 1.1), it appears that the default spread

generally displays insignificant correlations with each of the 6 portfolios. However, around

2008 (following the financial crisis), these correlations have been significant. In that period,

the default spread had an explanatory power on some of the 6 portfolios returns; this was not

true for example between 07/08/2008 and 30/10/2008 or between 29/01/2009 and 14/10/2009.

This example illustrates our previously introduced concept of a dynamically useless factor.3

Table 1.1: OLS regressions of 6 Fama-French portfolio returns on the default spread

Date Port1 Port2 Port3 Port4 Port5 Port6
07/08/2008–30/10/2008 -1.25 -1.13 -1.18 -1.17 -1.16 -1.37
31/10/2008–28/01/2009 1.10∗ 0.98 1.14 0.86∗∗ 0.92 1.31
29/01/2009–24/04/2009 5.21 5.45 7.03 3.16 4.79 7.66
27/04/2009–21/07/2009 0.40 0.35 0.26 0.25 0.41 0.52
22/07/2009-14/10/2009 0.67 0.77 1.12 0.12 0.40 0.66
15/10/2009–11/01/2010 -0.72 −1.02∗∗ −1.21∗ -0.29 -0.53 -1.11
12/01/2010–08/04/2010 11.86∗ 12.78∗ 14.35 8.89 8.72 12.69
The table presents the coefficients from the ols regressions of 6 Fama-French portfolio returns on the
factor default spread.
The portfolios are 6 Fama-French portfolios sorted on size and book-to-market We estimate 6 linear
models where the default spread is the regressor in each model, and the returns of the portfolio i is the
dependent variable in the model i (i = 1, . . . , 6). The stars give the degree of significance under the
null hypothesis that the coefficient is zero (we use the Bonferroni correction by dividing each significance
level by 6, in order to avoid multi-test bias). The factor is useless with regard to the 6 portfolios if
all the coefficients are insignificant. The standard errors are estimated using heteroscedasticity and
autocorrelation consistent covariance estimators, following Newey & West (1987)
The 6 portfolios are the 6 Fama-French sorted by size and book-to-market; Port1=SMALL/LoBM,
Port2=ME1/BM2, Port3=SMALL/HiBM, Port4=BIG/LoBM, Port5=ME2/BM2, Port6=BIG/HiBM.

3In order to add some diversification into the portfolios, we follow Lewellen, Nagel & Shanken (2010) and
add five industry portfolios to the first six portfolios; we obtain similar results by doing so
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Figure 1.1: 60 days covariances between 6 Fama-French portfolio returns and the default spread

Evolution of the covariances between the default spread and the returns of 6 Fama-French portfolios sorted on size
and book-to-market. The covariances are estimated from January 1986 to December 2015 and are updated every
60 days. Port1=SMALL/LoBM, Port2=ME1/BM2, Port3=SMALL/HiBM, Port4=BIG/LoBM, Port5=ME2/BM2,
Port6=BIG/HiBM.

The previous illustration helped us to introduce the notion of dynamically useless factors.

Now, we propose a general illustration of how the set of factors that explains equity returns

may change across time. For that purpose, we consider 25 Fama-French portfolios sorted on

size and book-to-market and perform a principal component analysis on their daily returns

from July 1964 to December 2015. Then, we select the first three principal components and

analyze their correlations with the four empirical factors of Carhart (1997) (the Fama-French

three factors plus the momentum). Figure 1.2 illustrates the evolution of the correlations

between the first two principal components and the selected empirical factors (the correlations

are updated every 60 days). We see that the first principal component is highly correlated

to the market excess return, and this correlation does not fluctuate. So, the market excess

return is always a useful factor when explaining the returns of the chosen 25 Fama-French

portfolios. On the other hand, the second principal component displays volatile correlations

with all the four empirical factors, even if the correlations with the market excess return and
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the momentum seem to be lesser than those with the two other factors (SMB and HML).

In order to have more accurate information about how much the factors SMB and HML are

linearly linked to the second principal component (regardless of the sign of the correlation),

we represent the absolute values of the correlations in figure 1.3. There, we see that the

magnitude of the correlation with the size factor SMB is generally higher. Nonetheless, there

are some periods where this magnitude is very low (the lowest value is 0.08), and some others

where the correlation with the value factor HML is higher (from 1964 to 1965). So, unlike

the first principal component, the second one does not clearly have a perfect match with one

of the four empirical factors. Thus, if for example we want to build an empirical two-factor

model with the explanation of the returns of the selected 25 Fama-French portfolios as goal,

the first factor has to be the excess market return and the second one has to be, depending

on the period, the size factor SMB, or the value factor HML, or another one that we cannot

clearly identify. This means that the second empirical factor should not be the same across

time. Therefore, if we build a two-factor model by taking the market excess return as the first

factor and a given factor as the second, the second factor could be dynamically useless. This

result is confirmed by figure 1.4, which presents the evolution of the adjusted R-squared from

the OLS regressions of the principal components on the four selected empirical factors (we

perform rolling-window regressions on 60 days windows). The four empirical factors seem to

explain quite well the first principal component, as the smallest adjusted R-squared is 0.83.

On the other hand, these four empirical factors do not always explain very well the second and

the third principal components; the smallest adjusted R-squared is -0.06 for the second and

-0.07 for the third. This result tells us that if we are looking for a second and a third empirical

factor to explain the dynamics of our 25 portfolio returns from July 1964 to December 2015

(in addition to the market excess return), the other three factors from Carhart (1997) may

not be always exhaustive.
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Figure 1.2: Correlations between the principal components and some empirical factors

(a) First principal component (b) Second principal component

Figure 1.3: Magnitudes of the correlations

(a) First principal component (b) Second principal component

Figure 1.4: Adjusted R-squared from the linear regression of the principal components on the 4
empirical factors of Carhart(1997)
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Following the two previous empirical facts, let us examine whether some of the Carhart

factors are dynamically useless. We consider again for this purpose the daily returns of the 25

Fama-French portfolios sorted on size and book-to-market, from July 1964 to December 2015.

We subdivide the data into several time-periods where the number of days in each period is

fixed. Then, we analyze the correlations between the portfolio returns and the factors in each

period and determine the number of periods where each factor is useless 4 (see table 1.2). We

see that among the four factors, only the Momentum is dynamically useless. Moreover, by

varying the number of days in each period, we see that the probability of being useless (defined

here as the ratio between the number of periods where a factor is useless and the total number

of periods) declines as the number of days in each period grows. This result tells us that we

have to work with relatively small data periods in order to analyze the “dynamically useless

property” of factors. This is precisely the reason why we need high-frequency data.

Table 1.2: Probability of being useless according to the number of days in each period

20 days 60 days 120 days 252 days 1260 days
(648 periods) (216 periods) (108 periods) (51 periods) (10 periods)

Rm-Rf 0 0 0 0 0
SMB 0 0 0 0 0
HML 0 0 0 0 0
Mom 0.64 0.48 0.29 0.27 0
We regress in every period, the daily returns of 25 Fama-French portfolios sorted on size and book-to-market on
the four factors. The periods are obtained by grouping the initial data (12965 days) into fixed sized windows. We
have a different number of periods following the number of days in each period. For each factor, the probability
of being useless is estimated as the number of periods where the factor is useless divided by the total number of
periods. A factor is considered as useless in a given period if for all the portfolios,his betas are not significantly
different to zero at 5% level of significance. We use the Bonferroni correction to avoid multi-test bias, by taking
0.05/25 as size of the tests.

The illustrations above show that if we consider a linear factor model, it is possible to

have a dynamically useless factor among all factors (since all the factors may not be important

at the same time). For robustness check, we have added 30 industry portfolios to the initial

25 Fama-French portfolios and have obtained very similar results.
4In every period, we estimate the betas of each factor, and we test at the 5% significance level (using a

Bonferroni correction to avoid multi-tests bias), if each beta is zero or not. A factor is useless at a given period
if all his betas are not significantly different to zero

12



1.2.2 Formalization and definition

We present here how we formalize the ideas of a useful factor, useless factor and, dynam-

ically useless factor.

Let us consider a factor f ≡ {ft}t=1...T with ft ∈ R, and let us suppose that the model

has n given assets. The beta (sensitivity) of the asset i w.r.t the factor f at time period t

is given by bit. Following Kan & Zhang (1999b), the factor f is useless in period t if for all

assets i, bit = 0. So, if in a given time period the assets’ excess returns are uncorrelated with

a factor, this factor will be deemed useless at this period. Contrary to the classical (static)

definition, we consider in this paper that a factor may be useless at t and not anymore at

t+ 1.

Empirically, the assumption of having a null correlation between returns and risk factors

is very strong. Actually, we can always have a very small correlation between at least one

return and the factor. Therefore, we extend the definition of a “useless factors” in the sense of

Kan & Zhang (1999b) to factors that exhibit small sensitivities to all the assets.5 Kleibergen

(2009) shows that, when such type of factors are included in the factor model, the asymptotic

properties of the Fama-MacBeth estimator become unreliable. At each date t, let us assume

that the sensitivities are observed through some specific information. If that specific infor-

mation for date t is collected over Dt periods, then we will say, when the number of periods

Dt is large, that a factor has a small correlation with an asset i at date t if bit = cit√
Dt

(cit a

scalar).

By the formalization presented above, we consider bt =
(
b1t , . . . , b

n
t

)′
the vector of betas

at time t, and consider the following definitions:

Definition 1. Assuming that the number of periods Dt is large, a factor f is

(i) strongly useless at t if bit = 0 for all assets i;

(ii) weakly useless at t if bit = 1√
Dt
cit for all assets i (with cit scalars that are non-null at least

for one asset i);

(iii) useless at t if it is weakly useless or strongly useless at t.

(iv) useful at t if bit = cit for all assets i (with cit scalars that are non-null at least for one asset

i)
5Following Kleibergen (2009), a loading b is considered here as small if b̂ = op( 1√

T
), with T the size of the

sample from which b̂ is estimated.
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Following definition 1, it is important to note that useless factors are defined only accord-

ing to the values of betas. Once the correlation between a factor and one of the priced assets is

non-null, that factor is considered as useful regardless of whether its subsequent risk premium

is null or not. Hence, useless factors as analyzed in this paper are different from irrelevant

factors, which are usually defined as factors with either zero betas or zero risk premia (see for

example Gospodinov et al., 2014).

Definition 2. A dynamically useless factor is a factor that is useless at least once. So for

such a factor, there exists at least one time t0 such that for all assets i, bit0 = op( 1√
Dt0

) .

By Definition 2 and following the argument presented above (see subsection 1.2.1), some

may argue that all the risk factors are eventually dynamically useless. However, we use this

definition here assuming that there is at least one factor that is always useful when explaining

equity returns (the market return is likely to have this property). Also, Definition 2 also

includes factors which are useless in all periods throughout the sample. Therefore, it includes

the conventional time-invariant definition of a useless factor.

1.3 The model

The model is presented in this section. Inspired by Kan & Zhang (1999b) and Cosemans,

Frehen, Schotman & Bauer (2016), we write the simplest model to explain our theoretical

framework. Therefore, we use a two-factor model as we want to consider a model with an

always useful factor and a dynamically useless one. However, the results are still valid for the

general case with more than 2 factors.

1.3.1 The dynamics

Let (Ω,F ?, P ) be a probability space. The flow of information available on the market

is represented by the filtration F ?
d , d = 1, 2, . . . (d defined in a high-frequency rate); so we

start here with some high-frequency data. We consider that these high-frequency data are

grouped in lower frequency samples, let’s say at a monthly level. So every month, we have a

sub-sample of our high-frequency data. We want to estimate the risk premium every month.

Note that we choose a month-to-month analysis just for simplification. In fact, usefulness

of factors are likely to be observed over sub-samples of different sizes. Also, the high-frequency
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information is assumed to be independent from one month to another. Concretely, we assume

that the information used from month to month is not necessarily the same or does not

necessarily come from the same data. The only requirement (as we will see below) is the

consistency of the high-frequency estimates.

Denote by Dt the number of observations in the sub-sample obtained in month t. For

precision, let us suppose that our high-frequency data are sampled at a daily frequency;6 then

Dt is the number of days in the month t. Throughout the paper, the subscript t refers to

months and the subscript d to days. For convenience we denote Ft,d the information available

at the day d of the month t, and Ft the information available at the end of the month t. So

we have for every month t and for any day d in the chosen month:

Ft,d ≡ F ?
D1+···+Dt−1+d

Ft ≡ Ft,Dt .

There are K = 2 factors named us and ūs. We assume that the factor us is useful at every

period, and the factor ūs is dynamically useless. The objective is to consistently estimate the

risk premia of us at every period, and do the same for the factor ūs at periods where it is

useful. Throughout the paper, us is considered as factor 1, and ūs as factor 2. There are n

assets observed through T months (periods); n and T are both assumed large.

Assumption 1. The excess return Rit of the asset i in month t is defined by:

Rit = φ0
t + ait + bi,ust · fust + bi,ūst · f ūst + εit

= φ0
t + ait + (bit)

′ · ft + εit,
(1.1)

where ait, bit, ft and εit are random variables; with ait and εit admitting values in R, whereas

bit = (bi,1t , b
i,2
t )′ and ft = (f1

t , f
2
t )′ both admit values in R2. ait and bit are Ft−1-measurable. On

the other hand, ft and εit are Ft-measurable. For any month t, all the processes in model (1.1)

are covariance stationary and ergodic. Moreover, E(εit|Ft−1) = 0 and Cov(εit, ft|Ft−1) = 0

for any assets i and for any month t. The pricing error φ0
t is Ft−1-measurable and is included

each month in order to consider a potential misspecification of the model.

In our framework, the intercept ait captures measurement errors of the risk-free rate for
6We will use daily data in our simulations.
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any asset i. We can see it as a difference between the zero-beta rate and the risk free rate. Kan,

Robotti & Shanken (2013) consider that this difference appears following a disequilibrium on

the risk-free borrowing/lending market in the economy (when the risk-free borrowing rate

is different of the risk-free lending rate). Assumption 1 follows the idea of GOS about the

dynamics of the excess returns and allows the coefficients to vary over time.

In order to know every month, whether a factor is useless or not and evaluate the corre-

sponding price of risk, we need to estimate the time-varying values of the loadings. In order

to do so, we have to fill in the lack of monthly information due to the monthly unobservabil-

ity.7 Therefore, we use the daily data to overcome this lack of information and use monthly

rolling-window estimations to get the betas. So we build daily frequency models each month,

by assuming that the loadings and the intercepts are constant in each of these models. The

link between the daily data and the monthly data is set so that the monthly information is

captured from the beginning to the last day of the month.

Assumption 2. Every month t, we have the following daily model for each asset i:

Rit,d = ait + (bit)
′ · ft,d + ηit,d; (1.2)

where ait, bit, ft,d and ηit,d are random variables; with ait and ηit,d admitting values in R,

whereas bit = (bi,1t , b
i,2
t )′ and ft,d = (f1

t,d, f
2
t,d)
′ both admit values in R2. ait and bit are assumed

constant over any month t and are Ft−1-measurable. On the other hand, ft,d and ηit,d are

Ft,d-measurable. For any month t, ft,d and ηit,d are covariance stationary and ergodic, condi-

tionally to the information available up to the month t− 1. Moreover, E(ηit,d|Ft−1) = 0 and

Cov(ηit,d, ft,d|Ft−1) = 0 for any assets i and for any month t; also, E(ηit,d|ft,d) = 0.

By Assumption 2, we can estimate the betas every month, using a monthly-window

estimation. By doing the monthly estimation on daily data, we assume that the daily values

of the factors are observed. Now let us consider the following additional assumptions.

Assumption 3. For any month t, n−1eigmax(Σε,t)
L2→ 0 when n → ∞; where Σε,t =

V ar(εt|Ft−1) is the conditional covariance matrix of the errors εt =
(
ε1
t , . . . , ε

n
t

)′
given Ft−1,

7Generally, we can estimate the betas following three procedures: (i) by using rolling sample estimates
(Fama & MacBeth, 1973), (ii) by using macroeconomic variables as conditional instruments (Gagliardini et al.,
2016), (iii) by mixing the two previous procedures, using prior information on firm characteristics (Cosemans
et al., 2016).
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and eigmax(Σε,t) its largest eigenvalue.

Assumption 4. There are no asymptotic arbitrage opportunities in the economy. So there

is no portfolio (pn) such that and lim
n→∞

P (C(pn) = 0, pn ≥ 0) = 1 and lim inf
n→∞

P (pn > 0) > 0;

(with C(pn) the cost of the portfolio).

Assumption 5. There exist constants Ma > 0 and Mb > 0 such that for any i, t and d;

‖bit‖2 ≤Mb, and |ait| ≤Ma

Assumptions 3 and 4 are Assumptions APR.3 and APR.4 from GOS. Assumption 5 says

that the sensitivities and the intercepts are bounded. The boundedness of the sensitivities is

a necessary condition for Assumption APR.2(ii) of GOS.

Assumption 6. Under Assumptions 1-5, if the two factors are useful in month t then there

exists a unique Ft−1-measurable random variable νt in R2 such that for all assets i,

ait = (bit)
′
νt.

Assumption 6 says that for any month t, for any asset i and under Assumptions 1-4,

the difference between the zero-beta rate and the risk free rate (ait) is linearly linked to the

sensitivity of assets w.r.t. the useful factors. So with no asymptotic arbitrage opportunities,

the non-idiosyncratic parts of the excess returns are fully explained by the systematic risk

measured by the betas. Assumption 6 is an asset pricing restriction from which we have

the conditional risk premium of GOS. By introducing this restriction into (1.1), we have

E(Rit|Ft−1) = φ0
t + (bit)

′ (νt + E(ft|Ft−1)) in any month t where the two factors are useful.

So for those months, the real conditional risk premium is λt = νt + E(ft|Ft−1).

Assumption 6 is relatively weak, as we show that the equality proposed there is true in the

case of a finite number of assets (subsection A3.1 in appendix). Moreover, by Proposition 1 of

GOS, we know that this relation is true for a continuum of assets. We make this assumption

here as we have a large countable number of assets.

In months where the dynamically useless factor ūs is useless, its risk premium is not

identified. In order to estimate the risk premium of the useful factor us in this case, we

consider the following assumption.
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Assumption 7. Under assumptions 1-5, if the factor us is the only useful factor in month

t, then there exists a unique (up to a Op( 1√
T

) term) Ft−1-measurable random variable νust in

R such that for all assets i:

ait = bi,ust νust +Op(
1√
T

)

As for Assumption 6, Assumption 7 gives a linear relation between the intercepts and

the loadings of the useful factor. Here because the factor ūs is useless, there is a term which

vanished as the number of months T becomes large.

1.3.2 Functional specification

The dynamics of the variables depend on available information. We assume that on the

last day of any month t, all the information from the month can be summarized into a unique

monthly variable Zt ∈ Rp, which is common to all assets. So Z is defined such that for any

variable x, E(x|Ft−1,Dt−1) = E(x|Ft−1) = E(x|Zt−1). Let us now consider the following

assumption, which states the link between the dynamics of the factors and the instrument Z.

Assumption 8. At any period t, E(ft|Ft−1) = E(ft|Zt−1) = FZt−1, with F ∈ M (2 × p),

the set of matrices with 2 rows and p columns.

Assumption 8 is Assumption FS.2 of GOS. This assumption gives some restrictions about

which kind of instruments we have to choose for Z (see GOS for more details). If the two

factors are useful in month t, νt = λt − E(ft|Ft−1) = λt − FZt−1. So we can rewrite the

model (1.1) as follows (for the months t where the two factors are useful):

Rit = φ0
t + (bit)

′(λt − FZt−1 + ft) + εit. (1.3)

Let us denote F j the row j of the matrix F (j = 1, 2). On the other hand, if in month

t the factor ūs is useless, then νust = λust − E(fust |Ft−1) = λust − F 1Zt−1; and νūst is not

identified as T is large. In that particular case as T →∞, the equation (1.1) becomes:

Rit = (φ0
t +Op(

1√
T

)) + bi,ust (λust − F 1Zt−1 + fust ) + εit. (1.4)

Let us consider at each period t the variable φt such that φt = λt − FZt−1 + ft =

(λust − F 1Zt−1 + fust , λūst − F 2Zt−1 + f ūst )′ if the two factors are useful at t, and φt =
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(λust − F 1Zt−1 + fust , 0)′ if the factor ūs is useless at t. Then if the factor ūs is useless in

month t, the equation (1.1) can take the following formulation ( as T →∞ );

Rit = (φ0
t +Op(

1√
T

)) + (bit)
′
φt + εit. (1.5)

When the two factors are useful at t, the Op( 1√
T

) term is equal to 0, following Assumption 6.

In that particular case, we have as given in equation (1.3): Rit = φ0
t + (bit)

′
φt + εit.

1.3.3 Risk premium with a dynamically useless factor

We propose a two-step estimation procedure. For that purpose, we define some additional

quantities. Let us consider at any month t, the (n× 2) matrix of betas Bt = (b1t , · · · , bnt )′ and

denote Bj the jth column of B. We also consider the quantities

‖Bus
t ‖ = ‖B1

t ‖ = sup
i=1,...,n

|bi,ust | ‖Būs
t ‖ = ‖B2

t ‖ = sup
i=1,...,n

|bi,ūst |.

As we assume that the number of assets is large, we need to define the spurious properties

for the case when n is going to the infinity. For that purpose, we consider the following

assumptions.

Assumption 9. There exist α ∈ [0.25; 0.5), ρ1 > 0 and ρ2,t > 1 at each month t, such that:

(i) n2α

T → ρ1 as T →∞ ,

(ii) Dt
T → ρ2,t as Dt →∞ .

Assumption 10. When the number of assets n is going to infinity,

(i) the factor ūs is strongly useless at t if ‖Būs
t ‖ = sup

i
|bi,ūst | = 0,

(ii) the factor ūs is weakly useless at t if ‖Būs
t ‖ = sup

i
|bi,ūst | =

cBt√
T
(with cBt a non-null scalar),

(iii) The factor ūs is useful at t if ‖Būs
t ‖ = cAt (with cAt a non-null scalar).

Assumption 9 links the parameters n, T and Dt. The three parameters become large

when n is large. Assumption 10 states that, asymptotically, the spurious properties are

defined according to the infinity-norms of the vectors of betas. The idea here is the same

as when the number of assets is finite. Now let us present the two steps of our estimation

procedure.
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First step

We estimate the betas every month from the model (1.2). So we use a discrete-time

model sampled at an increasing frequency over the months. This approach is similar to the

one proposed by Ang & Kristensen (2012), except that we consider here that the betas are

constant in each period.

b̂it =
(

1
Dt

∑
d

(
ft,d − f̄t

) (
ft,d − f̄t

)′)−1 (
1
Dt

∑
d

(
ft,d − f̄t

) (
Rit,d − R̄it

))
is the estimated

sensitivity of the factor to the asset i (the elements with the bar represent the means on

the daily data8). We replace the real betas in the model (1.5) by the estimated ones. So we

have the following feasible monthly model:

Rit = φ0
t + (b̂it)

′
φt + εit. (1.6)

Second step

We propose a shrinkage estimator for φt whose second component takes the value 0 in

months where the factor ūs is useless. So we introduce from the model (1.6) the following

Lasso-modified estimator with Φt = (φ0
t , φ

us
t , φ

ūs
t )′ = (φ0

t , (φt)
′)′ , τn > 0 and s > 2 two tuning

parameters.

Φ̂t =

φ̂0
t

φ̂t

 = argmin
Φ

 n∑
i=1

(
Rit − (1

...(b̂it)′)Φ
)2

+ τn
T s/2

2∑
j=1

|φj |
‖B̂j

t ‖s

 . (1.7)

This estimator uses the shrinkage mechanism proposed by Bryzgalova (2016). The driving

force of the penalty term relies on the nature of the factor; so every month t where the factor

ūs is useless, we have Φ̂t = (φ̂0
t , φ̂

us
t , 0)′ .

Since E(ft|Ft−1) = FZt−1, we consider the model ft = FZt−1 + ut, with ut the id-

iosyncratic error such that E(ut|Ft−1) = 0. We can then estimate F trough a SURE re-

gression as F̂ =
(

1
T

∑
t
ftZ

′
t−1

)(
1
T

∑
t
Zt−1Z

′
t−1

)−1
. The same way, by considering the model

fust = F 1Zt−1 + uust (for the months where the factor ūs is useless), we can estimate F̂ 1

through an OLS regression as F̂ 1 =
(

1
T

∑
t
fust Z

′
t−1

)(
1
T

∑
t
Zt−1Z

′
t−1

)−1
.

8We have f̄t = 1
Dt

∑
d

ft,d and R̄it = 1
Dt

∑
d

Rit,d.
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From the previous and following the definition of φt, our estimated risk premium in month

t is given as following:


λ̂t = φ̂t + F̂Zt−1 − ft if φ̂ūst 6= 0

λ̂t =

λ̂ust
λ̂ūst

 =

φ̂ust + F̂ 1Zt−1 − fust
0

 if φ̂ūst = 0

As the months where the dynamically useless factor ūs is useless are identified through

the value of φ̂ūst , our estimated risk premium in month t can be summarized as bellow:


λ̂t = φ̂t + F̂Zt−1 − ft if the two factors are useful at t

λ̂ust = φ̂ust + F̂ 1Zt−1 − fust if the factor ūs is useless at t.

λ̂ūst = 0 if the factor ūs is useless at t.

(1.8)

When the factor ūs is useless, its risk premium is not identified. We aim to consistently

estimate the risk premium of the factor us at every month t, and to consistently estimate the

risk premium of the dynamically useless factor ūs in months where this factor is useful.

Equation (1.8) shows how our estimator is different from the one proposed by Bryzgalova

(2016). Indeed, we have an additional term to φt, which is the difference between the value of

the factor and his conditional expected value
(
E(ft|Ft−1)−ft = FZt−1−ft

)
. This additional

term is not null, as ft is Ft-measurable.

1.3.4 Asymptotic properties

We present here the asymptotic properties of the time-varying risk premium estimator.

For that purpose, we use some additional assumptions

Assumption 11. For any given month t, we have as n→∞

(i) 1
n

∑
i
bitε

i
t
p→ 0, 1

n

∑
i
bit(bit)

′ p→ Qt and 1
n

∑
i
bit

p→ qt; with Qt and Q̃t =

1 (qt)
′

qt Qt

 two non

singular finite matrices .

(ii) 1
n

∑
i
bi,ust (bi,ust )′ p→ Qust and 1

n

∑
i
bi,ust

p→ qust ; with Qust and Q̃ust =

 1 qust

qust Qust

 two non

singular finite matrices.

(iii) 1
n

∑
i
εit

p→ 0, and 1
n

∑
i

(
εit
)2 p→ σ2

t ; with σ2
t a finite scalar.
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(iv) 1√
n

∑
i
βitε

i
t
d→ N (0,Σβt) with Σβt = plim

n→∞

(
1
n

∑
i

(εit)2βit(βit)
′
)
, and (βit)

′ = ( 1
...(bit)

′ ).

Assumption 12. As T →∞,

(i) QZ = E(Zt−1Z
′
t−1) is a full rank matrix

(ii) 1
T

∑
t

(Zt−1 ⊗ ut)
p→ 0

(iii) 1√
T

∑
t

(Zt−1 ⊗ ut)
d→ N (0,Σu), with Σu = E

(
Zt−1Z

′
t−1 ⊗ utu

′
t

)
.

(iv) 1√
T

∑
t
Zt−1u

us
t

d→ N (0,Σus
u ), with Σus

u = E
(
(uust )2Zt−1Z

′
t−1

)
Assumption 11 is the central limit theorem (CLT) for the cross-sectional errors each

month t. Assumption 12 is Assumption A.2(b) of GOS.

Proposition 1. Under Assumptions 1-9, if τn
n → τ0 > 0 as n → ∞, then we have at every

month t:

φ̂t = φt + op(1). (1.9)

From Assumptions 9 and 12 and by applying the LLN, we have F̂ = F +op(1) as n→∞.

Then by Proposition 1 and by the definition of φt we have as n→∞,


λ̂t

p→ λt if the two factors are useful at t

λ̂t
p→

λust
0

 if the factor ūs is useless at t.
(1.10)

At each date t, the consistency holds for the useful factor. When the dynamically useless

factor ūs is useless in a given month t its estimated risk premium is shrunk to 0. This value

is just a target value, as the risk premium of the factor ūs is not identified in months where

this factor is useless.

For the next proposition, remember thatQZ ≡ E
(
Zt−1Z

′
t−1

)
, as defined as in Assumption

12(i).

Proposition 2. Under Assumptions 1-12, if τn√
n
→ τ0 > 0 as n → ∞, then we have at each

month t:

(i) if the two factors are useful at t,

nα(λ̂t − λt)
d→ N

(
0, ρ1(Z ′t−1 ⊗ I2)ΣF (Zt−1 ⊗ I2)

)
, (1.11)
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with

ΣF =
(
Q−1
Z ⊗ I2

)
Σu

(
Q−1
Z ⊗ I2

)
; (1.12)

(ii) if the factor ūs is useless at t,

nα(λ̂ust − λust ) d→ N
(
0, ρ1Z

′
t−1Σus

F Zt−1
)
, (1.13)

with

Σus
F = Q−1

Z Σus
u Q

−1
Z . (1.14)

The standard error of the risk premium is influenced by the errors-in-variable from the

first step, that is why the convergence rate of the second-step estimator is of the order of

α ∈ [0.25, 0.5).

1.4 Simulations

In this section, we evaluate: (i) the robustness of the shrinking procedure to variations

in tuning parameters, (ii) the ability for the procedure to detect periods where the factor is

useless and (iii) the ability for the estimator to restore reliable asymptotic properties.

In all of our simulations, we consider the 255 portfolios used in our empirical analysis

(see the description of the data below) and perform a principal components analysis (pca) on

them in order to select the first two principal components (since our theoretical framework

relies on two factors). We also work with the convergence rate α = 0.25. We choose this value

as we show in the appendices that there is an arbitrage to be realized; the asymptotic bias of

the estimator increases with its convergence rate. Thus, we achieve precise estimation at the

expense of a smaller rate of convergence. We choose α = 0.25 as it is a small but yet fair rate

of convergence.

1.4.1 Tuning parameters and detection of dynamically useless factors

We perform a Principal Component Analysis (PCA) on the returns and extract the first

two principal components as factors. Then, as we have daily and monthly data, we have both

factors 1 and 2 at the monthly level and at the daily level.

23



Spurious replacements. During the simulations, we call a spurious replacement the pro-

cess by which factors 2 in both daily and monthly levels are replaced in certain dates by

useless factors. At the monthly level, a spurious replacement at date t will consist of replac-

ing monthly factor 2 at t, by the real consumption per capita at t. At the daily level, a spurious

replacement at date t will consist of replacing the Dt values of daily factor 2 in month t, by

Dt parameters generated from a normal distribution whose mean and variance are calibrated

on the real consumption per capita. Spurious replacements will therefore leave unchanged

factor 1, and generate a new factor 2, which will be likely dynamically useless. As the con-

sumption is generally uncorrelated with traded returns,9 dates where spurious replacements

are performed are those where factor 2 will be useless.

We perform 500 Monte-Carlo replications where at each replication, Nspur months are

randomly selected, “spurious replacements” are performed in each of the selected months, and

risk premia are estimated in all of the T months. At each replication, we also estimate the

shrinkage probability as the probability to shrink the risk premium of factor 2 to 0 over the

Nspur dates where this factor is useless.

Table 1.3: Shrinkage probabilities when the tuning parameters s and τ vary

Nspur = 50 Nspur = 100 Nspur = 500
τ = 1 τ = 50 τ = 200 τ = 1 τ = 50 τ = 200 τ = 1 τ = 50 τ = 200

s = 3 0.998 1 1 0.997 1 1 0.997 1 1
s = 6 0.997 0.999 1 0.997 0.999 0.999 0.997 0.999 0.999
s = 12 0.996 0.998 0.999 0.996 0.998 0.999 0.997 0.998 0.999
We perform 500 Monte-Carlo replications where at each replication, we randomly select Nspur months, simulate the useless factor
to insert in those dates, and estimate the risk premia in all the T = 617 dates. The useless factor here is a random variable mimicking
the real consumption per capita.
We estimate at each replication the shrinkage probability, as the probability to shrink the risk premium of the second factor to 0,
over the Nspur dates where this factor is useless. The probabilities presented in this table are the mean of the shrinkage probabilities
over the 500 Monte-Carlo replications.

Table 1.3 presents the shrinkage probabilities across the Monte-Carlo process. We see

that the estimator performs very well at detecting the dates where the second factor is use-

less. For all the selected values of the tuning parameters τ and s, it successfully recognizes the

dates where a useless factor has been introduced as second factor, with an accuracy greater

than 99.8%. This result confirms the robustness of the shrinking procedure to tuning param-
9Bryzgalova (2016) also uses consumption to generate useless factors.
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eters variation, as presented by Bryzgalova (2016). Furthermore, the shrinkage ability of the

estimator is not reduced when the number of “spurious dates” Nspur increases. In fact, the

shrinkage probability is greater than 0.99 when Nspur = 50, as much as when Nspur = 100

or 500

Now that we know that the estimator will always detect the dates where a factor is

useless, we have to measure its probability of performing false detections. A false detection

here stands for shrinking the risk premium of a factor to zero when that factor is not useless,

and vice versa. Table 1.4 presents the probability for the estimator, to make a false detection

during the shrinkage process in the Monte-Carlo. We see that this probability is close to 0 for

all of the selected tuning parameters. We can therefore conclude that the estimator performs

very well for the detection of dynamically useless factors and is strongly robust to variations

in tuning parameters. We will use the values τ = 50 and s = 3 in the remaining simulations

and in the empirical application.

Table 1.4: Probability of having an erroneous shrinkage

Nspur = 50 Nspur = 100 Nspur = 500
τ = 1 τ = 50 τ = 200 τ = 1 τ = 50 τ = 200 τ = 1 τ = 50 τ = 200

s = 3 0 0 0 0 0 0 0.002 0 0
s = 6 0 0 0 0 0 0 0.002 0 0
s = 12 0 0 0 0 0 0 0.003 0.001 0.001
We perform 500 Monte-Carlo replications where at each replication, we randomly select Nspur months, simulate the useless factor
to insert in those dates, and estimate the risk premia in all the T = 617 dates. The useless factor here is a random variable mimicking
the real consumption per capita.
We estimate at each replication the probability of having an erroneous shrinkage as the probability, over the Nspur dates, to shrink
the risk premium when the factor is not useless or to not shrink it when the factor is useless. The probabilities presented in this table
are the mean of these probabilities over the 500 Monte-Carlo replications.

1.4.2 Shrinking procedure and volatility of factors

As seen in the previous subsection, the estimator performs very well for the detection of

dynamically useless factors. As the shrinking procedure relies on the correlations between the

returns and the factors,10 we verify in this subsection whether noises in the data influence the

procedure, besides correlations. We know that a factor is useless when it is uncorrelated with
10Following Bryzgalova (2016) the proposed estimator is a penalized-Lasso, with the penalization depending

on the values of the betas.
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the asset returns. This absence of correlation can come from either the nature of the factor or

from noisy variations in the values of the factor. Therefore, we have to verify if the shrinkage

ability of the estimator is robust to noisy variations.

We analyze the dynamics of the shrinkage probabilities following the volatility of a sim-

ulated factor. As previously, we perform a PCA on the returns and extract the first two

principal components (factor 1 and factor 2). We measure the volatility σ2d of the daily fac-

tor 2 and consider 500 different values σs (s = 1, . . . , 500), between 1/2× σ2d and 100× σ2d.

Then, we perform 500 replications where for each replication s: (a) we randomly select be-

tween 100 and 500 Nspur months; (b) we perform “spurious replacements” in each of the

selected Nspur months with the difference that, here for replication s, daily factor 2 is re-

placed by parameters generated from N (0, σ2
s) (the other aspects of “spurious replacements”

remain as presented above); and (c) we measure the shrinkage probability of the estimator.

Figure 1.5 presents the evolution of the shrinkage probability, following the standard

error of the noise. We see that this shrinkage probability is greater than 0.9 as soon as
std(factor2)

σ ≤ 0.08. Therefore, our estimator systematically shrinks the risk premia of factor

2 to 0, only at periods where the standard error of this factor is 12.5 times greater than its

standard error over the periods where it is useful (12.5 = 1/0.08). Since a 12.5-times larger

standard error can objectively be considered as huge, we can therefore conclude that the

shrinkage ability of the estimator is robust to noisy variations in the factors data.

1.4.3 Ability to restore asymptotic properties

Again, we perform a PCA on the returns and take the first two principal components as

factor 1 and factor 2.

Analysis around a randomly selected date

We randomly select a date t0 and perform a “spurious replacement” at this date. We

then consider the model with the new dynamically useless factor as the real DGP. From that,

in each month t: (a) we estimate b̂it by an OLS regression of daily returns in month t on daily

factors in month t; (b) we estimate Φ̂t =
(
φ̂0
t , φ̂

′
t

)′
by (1.7); (c) we estimate the covariance

matrix (Σ) of the residuals ε̂it in (1.6); (d) we estimate the risk premium λ̂t,? =
(
λ̂us

′
t,? , λ̂

ūs ′
t,?

)′
by (1.8).
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We perform 1000 Monte-Carlo replications on each of the dates t0 − 1, t0 and t0 + 1.

For each replication s, we estimate the monthly returns following equation (1.6): R̂it,s =(
1, (b̂it,s)

′
)

Φ̂t + ε̂it,s. Note that b̂it,s is generated from a normal distribution with mean and

variance calibrated on the empirical betas b̂it obtained above, while ε̂it,s is generated from a

normal distribution with mean 0 and variance Σ. Using R̂it,s and b̂it,s, we estimate Φ̂t,s =(
φ̂0
t,s, φ̂

′
t,s

)′
and deduce the risk premium λ̂t,s =

(
λ̂us

′
t,s , λ̂

ūs ′
t,s

)′
. In each replication, we test

the nulls H0 : λust = λust,? and H0 : λūst = λūst,?, with λt,? the empirical value of the risk

premium according to the DGP obtained after the spurious replacements described above.

The simulations are performed for various values of n (200, 600, 1000, 2500, and 5000) and

the rejection probabilities are estimated for each date over the 1000 replications. To simplify

notations, the tests will next be denoted without the time-subscripts. Therefore, we will

simply write H0 : λus = λus? and H0 : λūs = λūs? while acknowledging that these tests are

performed each month t.

Table 1.5 presents the rejection probabilities at t0−1, t0 and t0 +1. For the always useful

factor (factor 1), we see that the equality between the true risk premium and the estimated

one is never rejected at t0 − 1 and t0 + 1. Moreover, the rejection probability for the test

H0 : λus = λus? decreases as n increases. For large values of n (precisely, for n greater than

1000), inference properties are restored for factor 1 at the period t0 (remember that t0 is the

period where a useless factor has been introduced as factor 2).

For the dynamically useless factor (factor 2), we first see that the null of H0 : λūs = λūs?

is never rejected at t0. This is not surprising, as we have previously shown that the estimator

is able to perfectly recognize periods where a factor is useless. Secondly, as for the test on

factor 1, we see that the rejection probability also decreases as n increases (remember, we

need n ≥ 1000 for a full restoration of the inference properties related to factor 1). For factor

2, the restoration of inference properties at t0 − 1 and t0 + 1 requires a much higher value of

n. These inference properties are fully restored in the simulations for n > 2500. Therefore,

the more assets we have, the better the estimator will perform.
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Figure 1.5: Evolution of the shrinkage probability following the standard error of the noise

Figure 1.6: Histogram of the t-stats around t0, and gaussian distribution

The two lines of figures present the histograms from the distribution of respectively the factor 1 and 2, at t0 − 1, t0 and
t0 + 1. t0 = 0 is a random date where the second factor is replaced by a useless factor.
For the factor 1, we present the simulations for n = 200, whereas the simulations for the factor 2 are presented for
n = 2500. The dashed line is the density of the standard normal distribution.
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Table 1.5: Rejection probabilities around a random spurious date t0

H0 : λus = λus? (panel A)
1% 5% 10%

-1 0 +1 -1 0 +1 -1 0 +1
n = 200 0.001 0.170 0.002 0.014 0.300 0.015 0.041 0.388 0.048
n = 600 0 0.018 0 0 0.074 0 0 0.138 0.001
n = 1000 0 0.002 0 0 0.015 0 0 0.055 0
n = 2500 0 0 0 0 0 0 0 0.001 0
n = 5000 0 0 0 0 0 0 0 0 0

H0 : λūs = λūs? (panel B)
1% 5% 10%

-1 0 +1 -1 0 +1 -1 0 +1
n = 200 0.569 0 0.525 0.683 0 0.618 0.726 0 0.659
n = 600 0.315 0 0.263 0.424 0 0.402 0.507 0 0.481
n = 1000 0.201 0 0.170 0.308 0 0.293 0.398 0 0.383
n = 2500 0.040 0 0.026 0.115 0 0.081 0.197 0 0.141
n = 5000 0.002 0 0.001 0.029 0 0.016 0.069 0 0.057

We randomly select a date between 1 and T (date 0), and insert in that date, a simulated useless factor
as the second factor of the model. The simulated useless factor is a random variable mimicking the real
consumption per capita. We also consider the previous date (date -1) and the next one (date +1), and
perform 1000 Monte-Carlo experiments at each of the three selected dates.
At each replication, we estimate the risk premium and the t-statistics associated to the tests presented.
We compare the t-statistics with the critical values from the different tests sizes, and reject the null
if the t-stat is greater than the critical value. Panel A presents the results for the useful factor, while
panel B presents those for the dynamically useless one. The results are presented for different values of
the number of assets (n).

Analysis on all the sample and usage according to the number of assets n

We repeat the same experiment as previously, except that before the Monte-Carlo, the

spurious replacements are performed on Nspur random dates. We also perform estimations

at all the T periods in each of the 1000 replications. We then estimate the mean and the

median of the rejection probabilities over the T periods for factor 1 (the useful factor), and

over T −Nspur periods for factor 2 (the dynamically useless factor).

We see in Tables 1.6 and 1.7 that the means and the medians of the rejection probabilities

for the useful factor are almost the same as the means and the medians for the dynamically

useless factor (over the dates where this factor is useful). This similarity is particularly true

for large values of n. This confirms again that the ability of the estimator to reduce the effects

of “useless dates” increases with n.
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Table 1.6: Rejection probabilities over time with Nspur = 50

H0 : λus = λus? (panel A)
1% 5% 10%

mean median mean median mean median
n = 200 0.117 0.029 0.179 0.095 0.224 0.162
n = 600 0.036 0 0.068 0.003 0.097 0.015
n = 1000 0.018 0 0.038 0 0.057 0.001
n = 2500 0.004 0 0.010 0 0.017 0
n = 5000 0.001 0 0.003 0 0.005 0

H0 : λūs = λūs? (panel B)
1% 5% 10%

mean median mean median mean median
n = 200 0.115 0.026 0.176 0.088 0.222 0.146
n = 600 0.036 0 0.068 0.004 0.096 0.013
n = 1000 0.018 0 0.038 0 0.057 0.002
n = 2500 0.004 0 0.011 0 0.018 0
n = 5000 0.001 0 0.003 0 0.006 0

We randomly select 50 dates between 1 and T, and insert in these dates, a simulated
useless factor as the second factor of the model. The simulated useless factor is a
random variable mimicking the real consumption per capita. We perform 1000
Monte-Carlo experiments.
At each replication, we estimate at all the dates, the risk premium and the t-
statistics associated to the tests. We compare the t-statistics with the critical values
from the different tests sizes, and reject the null if the t-stat is greater than the
critical value. For the useful factor, the mean and the median in each replication
are the mean value and the median value of all the rejection probabilities over the T
dates. For the dynamically useless factor, the mean and the median are estimated
over the dates where this factor is useful (T − 50 dates).
The results presented here are the mean and the median over the Monte-Carlo ex-
periments. Panel A presents the results for the useful factor, while panel B presents
those for the dynamically useless one. The results are presented for different values
of the number of assets (n).
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Table 1.7: Rejection probabilities over time with Nspur = 100

H0 : λus = λus? (panel A)
1% 5% 10%

mean median mean median mean median
n = 200 0.145 0.043 0.210 0.126 0.257 0.197
n = 600 0.053 0 0.091 0.007 0.123 0.025
n = 1000 0.029 0 0.055 0 0.078 0.004
n = 2500 0.008 0 0.018 0 0.029 0
n = 5000 0 0 0.006 0 0.011 0

H0 : λūs = λūs? (panel B)
1% 5% 10%

mean median mean median mean median
n = 200 0.087 0.010 0.141 0.048 0.183 0.097
n = 600 0.024 0 0.047 0.001 0.070 0.004
n = 1000 0.011 0 0.025 0 0.039 0
n = 2500 0.002 0 0.006 0 0.011 0
n = 5000 0 0 0.001 0 0.003 0

We randomly select 100 dates between 1 and T, and insert in these dates, a simu-
lated useless factor as the second factor of the model. The simulated useless factor
is a random variable mimicking the real consumption per capita. We perform 1000
Monte-Carlo experiments.
At each replication, we estimate at all the dates, the risk premium and the t-
statistics associated to the tests. We compare the t-statistics with the critical values
from the different tests sizes, and reject the null if the t-stat is greater than the
critical value. For the useful factor, the mean and the median in each replication
are the mean value and the median value of all the rejection probabilities over the T
dates. For the dynamically useless factor, the mean and the median are estimated
over the dates where this factor is useful (T − 100 dates).
The results presented here are the mean and the median over the Monte-Carlo ex-
periments. Panel A presents the results for the useful factor, while panel B presents
those for the dynamically useless one. The results are presented for different values
of the number of assets (n).
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When we consider all the periods (instead of just one period t0 as previously), we see that

the restoration of inference properties in the “useful dates” requires much less assets than

what being suggested by the previous analysis around the random date t0. While considering

the mean and median of the rejection probabilities, it appears that the restoration is overall

reached for n ≥ 600, for both factor 1 and factor 2. So even if there are some dates around

which the correction requires a very large number of assets, this is not always the case. On

average, we do not need a very large number of assets to achieve corrections in most of the

“useful dates”.

1.5 Empirical analysis

1.5.1 Data

As we assume that n is large, our setting is suitable for large equity data sets. Therefore,

we can apply our estimator on both individual assets and portfolios. For our analysis, we

consider excess returns over the risk-free rate on 255 portfolios: 25 portfolios sorted by size

and investment, 25 portfolios sorted by book-to-market and investment, 25 portfolios sorted

by book-to-market and operating profitability, 25 portfolios sorted by operating profitability

and investment, 25 portfolios sorted by size and book-to-market, 25 portfolios sorted by size

and long-term reversal, 25 portfolios sorted by size and momentum, 25 portfolios sorted by

size and operating profitability, 25 portfolios sorted by size and short term reversal, and 30

industry portfolios. Moreover, we consider the five Fama-French factors and the momentum

factor. All of these portfolios and factors are from Kenneth French’s website; we use both the

daily data from 01/07/1964 to 31/12/2015 and the monthly data from July 1964 to December

2015. We also consider for the same frequencies and for the same span, the real consumption

per capita (using the consumer price index for all urban consumers as deflator); this variable is

used in simulations to calibrate the properties of the dynamically useless factor. On the other

hand, we consider as instruments the term spread (proxied by the difference between the yields

on 10-year treasury and the yields on 3-month treasury bill), and the default spread (proxied

by the difference between the yields on Moody’s BAA bonds and the yields on Moody’s AAA

bonds). The instruments and the consumption variable are all from the Federal Reserve Bank

of St-Louis.
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As emphasized above, we need factors observed at a high-frequency in order to examine

the “dynamically useless” property. So, the factors have to be displayed at least in a daily

frequency. Then, for reason of availability, we only analyze three empirical models here: the

three-factor model of Fama & French (1993), the four-factor model of Carhart (1997), and

the five-factor model of Fama & French (2015). We group the daily data in monthly periods

and estimate, for each model, the risk premium of all the factors.

1.5.2 Dynamics of the risk premia and financial implications

Relevance of the factors

Table 1.8 presents the dynamics of the time-varying risk premia in the selected models.

In each model, all of the factors have dates with insignificant risk premia (at the 5% level of

significance). The market is the factor that is more often rewarded, since its risk premium

in all of the three models remains significant more than 95% of the time. The market can

therefore be considered as “always useful”, as the chance of having that factor rewarded by a

null risk premium is negligible. This confirms what we assumed in our model, as we previously

stated that the market is likely to be an “always useful” factor.

On the other hand, the size factor SMB is the factor that is more often linked to an

insignificant risk premium. It is unrewarded 8.7% of the time in the Fama-French 3 model,

10.2% of time in the Carhart model, and 9.6% in the Fama-French 5 model. Hence, this factor

is still rewarded around 90% of the time.

Moreover, we see that the results are very stable across the models. The introduction

of new factors on the initial three Fama-French factors does not cause any distortion in the

results. This stability in the results tells us that the new factors do not bring any multi-

collinearity issue, and therefore none of the factors in these models is redundant. This result

is particularly interesting for the Fama-French five-factor model of Fama & French (2015), as

the main argument used again this model is that some factors would become redundant when

we add the operating profitability factor (RMW) and the investment factor (CMA) to the

original three factors of Fama & French (1993) (See for example Hou, Xue & Zhang, 2014).

While this redundancy issue can serve as an argument for those trying to explain or predict

asset returns, it is clearly not an issue here, as the information brought by the additional

factors are quite different. It should be noted for the Fama-French five-factor model that, the
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only month where three factors were unrewarded at the same time is January 1970 (Mkt-Rf,

HML, and CMA). Also, the last month for which two factors were unrewarded at the same

time is March 1976.

Additional dynamical evidences

Figures 1.7 and 1.8 illustrate the evolution of the instruments (default spread and term

spread), and present (in shaded) the US recessions according to the National Bureau of

Economic Research (NBER). The figures also show (in red) the months where each factor is

unrewarded.

We see that the risk premium of the profitability factor RMW is never insignificant during

recessions; this indicates that investors should continue to build strategies on profitability

even during recessions. We also see that the risk premium of the investment factor CMA is

insignificant mostly at periods where the dynamic of the default spread changes sign. So,

when the investment factor becomes unrewarded, the default spread is at its peak or trough,

depending on its dynamics on previous dates. Therefore, for agents, the most important

consideration regarding investment strategies should not be the gap between the top-rated

stocks’ returns and the the bottom-rated stocks’ returns; rather, it is the dynamics of that gap.

The strategies on investment should be performed as long as that gap exhibits a monotonic

dynamic in a recent past.
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Table 1.8: Empirical risk premia

risk premium (×100) std. error (×100) insignificant risk
premia (number of
months over 617)

percentile percentile
mean 20 40 60 80 mean 20 40 60 80

Fama-French (1993)
Mkt-Rf -0.16 -2.81 -1.05 0.55 2.49 0.32 0.15 0.22 0.30 0.45 26 (0.042)
SMB 0.13 -0.61 -0.09 0.34 0.83 0.22 0.13 0.19 0.21 0.27 54 (0.087)
HML 0.12 -0.93 -0.17 0.43 1.23 0.21 0.09 0.15 0.20 0.28 47 (0.076)

Carhart (1997)

Mkt-Rf -0.15 -2.70 -0.96 0.46 2.36 0.40 0.22 0.32 0.38 0.51 31 (0.050)
SMB 0.14 -0.57 -0.08 0.34 0.83 0.24 0.17 0.21 0.25 0.30 63 (0.102)
HML 0.13 -0.86 -0.17 0.42 1.20 0.24 0.12 0.18 0.24 0.29 48 (0.078)
Mom 0.11 -1.51 -0.37 0.57 1.64 0.38 0.17 0.25 0.34 0.51 44 (0.071)

Fama-French (2015)

Mkt-Rf -0.11 -2.71 -1.05 0.56 2.41 0.27 0.15 0.21 0.28 0.37 24 (0.039)
SMB 0.15 -0.56 -0.04 0.38 0.85 0.21 0.16 0.17 0.22 0.28 59 (0.096)
HML 0.12 -0.91 -0.17 0.47 1.16 0.23 0.14 0.19 0.22 0.28 41 (0.066)
RMW 0.06 -0.84 -0.22 0.29 0.95 0.10 0.06 0.07 0.10 0.14 25 (0.040)
CMA 0.08 -0.76 -0.14 0.35 0.92 0.16 0.10 0.13 0.17 0.23 34 (0.055)

The table gives the dynamics of the risk premia in the chosen models. The means and the percentiles are estimated over the T dates (T = 617). The last
column gives the number of months over the 617, where the risk premium of the factor is insignificant at the level of significance 5%.
The numbers in brackets are the ratios between the number of periods where the risk premium is insignificant, and the overall number of periods. They give
the probability for each factor, of being unrewarded.
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Figure 1.7: Default spread and dates where the risk premium of the factor is zero

The figure presents the evolution of the monthly default spread from 1964 to 2015; and for every factor, the dates where its associated risk premium is insignificant (red
crosses). The shaded bands represent the US recessions, according to the data of the National Bureau of Economic Research (NBER)
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Figure 1.8: Term spread and dates where the risk premium of the factor is zero

The figure presents the evolution of the monthly term spread from 1964 to 2015; and for every factor, the dates where its associated risk premium is insignificant
(red crosses). The shaded bands represent the US recessions, according to the data of the National Bureau of Economic Research (NBER)
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1.6 Conclusion

There are several factors that have been used in the literature to explain assets returns.

Following the dynamics on the markets and due to specific phenomena such as shocks, asym-

metries, or momenta, the correlations of these factors with assets returns continuously change

through time. Thus, the set of factors that explain assets returns might also change through

time.

In this paper, we consider this eventuality and show that given a prior selection of factors,

they are not all always important at the same time. Hence, we show that a factor can be

useless in a given period and no longer be so in another one. We introduce the notion of a

dynamically useless factor as a factor that is useless in at least one time period (assuming that

there is at least one factor that is always useful). Then, we propose a method to consistently

estimate the conditional risk premium of a factor in all of the periods in which it is useful,

assuming that the model includes a dynamically useless factor.

We consider two sets of data in our theoretical framework: a periodic data set as we

estimate the risk premium every period, and a high-frequency dataset that helps us overcome

the periodic unobservabilities and characterize the factors. Assuming that the number of

periods, the number of assets, and the number of high-frequency dates in each period are all

large, our estimator is consistent in every period for which the factor is useful, and equal to

0 when the factor is useless.

Empirically, we show through the shrinking mechanism of our estimator, that the principal

factors of the Fama-French models are likely dynamically useless, as they all experience times

where their risk premia are insignificant. Nevertheless, the market return can be considered

as an “always useful” factor, as the times where it has an insignificant risk premium are

very negligible. We also show that the profitability factor RMW and the investment factor

CMA in the Fama-French five-factor model bring additional and very different information

on risk premia. In fact, it appears that: (i) investors should continue to build strategies on

profitability during recessions; and (ii) the strategies on investment should be performed as

long as the gap between the returns on top rated stocks and on bottom-rated stocks maintains

a monotonic dynamic in a recent past.
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Appendices for Chapter 1 (A)

A1 Dynamicaly useless factors and risk premium estimation

We present in this section why the presence of a dynamically useless factor can distort the estima-
tion of the time-varying risk premium, when the conventional methods are used. Some papers present
in that vein (in the time-invariant framework), how the asymptotic distribution of the risk premium is
distorted when a useless factor is included in the model (see for example Kleibergen, 2009; Kleibergen
& Zhan, 2015); we do not follow that idea. Here we just present how the presence of a useless factor
leads, for the conventional time-varying risk premium estimation, to a failure of the rank condition
(singularity of the loadings matrix). For that purpose, we focus our analysis on GOS, who propose a
method to test the time-varying properties of the risk premia in an arbitrage pricing framework.11 We
analyze a simplified version of the model presented in that paper.

A1.1 Theoretical framework of GOS

We present here the outline of the theoretical framework used in GOS and show how the time-
varying risk premium estimator is defined in that paper.

We have (Ω,F , P ) a probability space and S : Ω → Ω the measurable function that describes
the dynamics. If ω ∈ Ω is the state of the world at time 0, St(ω) is its state at time t with St

equivalent to t successive applications of S. S is assumed to be measure-preserving and ergodic. The
flow of information available in the market is represented by the filtration Ft, t = 1, 2, . . . , where
Ft = {S−t(A), A ∈ F0} with F0 a given sub sigma-field of F and S−t the inverse application of St.
There is a large number of assets randomly selected in the sub-space [0, 1].12 The excess return Rt(γ)
is defined at date t = 1, 2, . . . , T for a given asset γ ∈ [0, 1] by:

Rt(γ) = at(γ) + bt(γ)
′
ft + εt(γ). (A.1)

11GOS assume that there is non-degeneracy in the factor sensitivities across assets, so their model does not
consider useless factors

12GOS show that under a suitable sampling mechanism, the model is robust to reordering of the assets.
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Where (at(γ), bt(γ)′)′ ∈ R × RK with bt(γ) the sensitivity of the factor ft ∈ RK to the asset γ.
εt(γ) represent errors. All these variables are defined on the probability space and their conditional
specifications are: at(γ) = at

(
γ, St−1(ω)

)
, bt(γ) = bt

(
γ, St−1(ω)

)
, εt(γ) = εt (γ, St(ω)), and ft(ω) =

f(St(ω)).
Under assumptions APR.1 to APR.4 from GOS, at(γ) = bt(γ)′νt. So the real risk premia at time

t is given by
λt = νt + E (ft|Ft−1) .

Factor sensitivities and risk premia at t are defined conditionally with respect to an instrument
Zt−1 which may include past observations of the factors and some macroeconomic variables. Stock-
specific instruments Zt−1(γ) are also used to describe the dynamics of factor sensitivities. The following
two assumptions show how the variables are linked to instruments;

Assumption FS 1. For any γ ∈ {γ1, . . . , γn} and t = 1, 2, . . . , the factor loadings are given by
bt(γ) = B(γ)Zt−1 + C(γ)Zt−1(γ), with Bt(γ) ∈ RK×p and Ct(γ) ∈ RK×q.

Assumption FS 2. (i) The risk premia vector is given by λt = ΛZt−1, with Λ ∈ RK×p. (ii) For any
t, E(ft|Ft−1) = FZt−1, with F ∈ RK×p.

From the previous assumptions and by sub-scripting assets by i (assuming there are n assets),
the following notations are defined: Bi = B(γi), Ci = C(γi), Zi,t−1 = Zt−1(γi). The initial model is
rewritten as follows:

Rit = x
′

itβi + εit (A.2)

with

x
′

it =
(
x
′

1,it, x
′

2,it

)
β
′

i =
(
β
′

1,i, β
′

2,i

)
x
′

1,it =
(

[vech(Xt)]
′
, Z
′

t−1 ⊗ Z
′

i,t−1

)
β
′

1,i =
(

[Np(ν
′ ⊗ Ip)vec(B

′

i)]
′
, [(ν′ ⊗ Iq)vec(C

′

i)]
′
)

x
′

2,it =
(
f
′

t ⊗ Z
′

t−1, f
′

t ⊗ Z
′

i,t−1

)
β
′

2,i =
(

[vec(B′i)]
′
, [vec(C ′i)]

′
)

ν = vec(Λ− F ) Np = 1
2D

+
p (Ip2 +Wp)

The duplication matrix Dp is the p× p matrix such that for every p× p matrix A, Dpvech(A) =
vec(A) (D+

p is its Moore-Penrose inverse). The commutation matrix Wp is the p2 × p2 matrix such
that for every p× p matrix A, vec(A′) = Wpvec(A). Xt is a p× p matrix such that

(Xt)k,l =

 Z2
t−1,k if k = l

2Zt−1,k · Zt−1,l if k 6= l

The estimation procedure presented by GOS is based on a two-step estimation. At the first
one, the sensitivity βi is estimated from the equation (A.2) through an OLS regression. By defining
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β
′

3,i =
(

[Np(Ip ⊗B
′

i)]
′ ; [(Ip ⊗ C

′

i)]
′
)′
, we have β1,i = β3,iν. Then at the second step, the parameter ν

is estimated by a WLS regression of β̂2,i on β̂3,iν. At the end, we have

vec
[
Λ̂
′
]

= ν̂ + vec
[
F̂
′
]
,

where F̂ is obtained by a SURE regression of factors on instruments Zt−1. The estimated risk premia
at t is then given by

λ̂t = Λ̂Zt−1. (A.3)

A1.2 GOS and dynamically useless factors

Let us take the simplified case with k = 1, p = 1 and q = 0; where k is the number of factors,
p is the number of common instruments, and q is the number of specific instruments. So we just
have one factor and there are no asset-specific instruments. We can use the setting q = 0 because
the model presented by the authors has the classical time-invariant coefficients model as a particular
case (this one corresponds to the setting Zt = 1 and Zi,t = 0 for all t); therefore, their model is still
valid even when q = 0. With k = 1, p = 1 and q = 0, the model (A.2) becomes easier to write with
x
′

it =
(
Z2
t−1; ftZt−1

)
, β′i = (Biν;Bi) and ft, Zt−1, Bi ∈ R. Here β2i = β3i = Bi.

Let us suppose firstly that the considered factor is dynamically strongly useless at time period t0.
The sensitivity of the asset i w.r.t this factor at t0 is bit0 = 0. From Assumption FS.1, it follows that
for any asset i, Bi = 0. Let us consider now any time period t, which is not necessarily a period where
the factor is useless. From the first step regression, we obtain β̂′i = (β̂1i; β̂2i)

′ , and then perform the
second step regression on the model β̂1i = β̂3iν + ζi. For simplicity, we estimate ν through an OLS

estimation, so we have ν̂ =
1
n

∑
i β̂3iβ̂1i

1
n

∑
i β̂

2
3i

(we can use the OLS instead of the WLS as GOS, since we

just look at the consistency of the final estimator). From Lemma 3 of GOS, we have as n, T → ∞
(with n = O(T γ), γ > 0),

1
n

∑
i

β̂2
3i = 1

n

∑
i

β2
3i + op(1) = 1

n

∑
i

B2
i + op(1) = op(1). (A.4)

We obtain the same result if the factor is dynamically weakly useless. Indeed in that case for all
assets i, Bi = Ci√

T
(with Ci non-null at least for one asset). So when n and T go to infinity, we will

have from Lemma 3 of GOS as n, T →∞ (with n = O(T γ), γ > 0),

1
n

∑
i

β̂2
3i = 1

n

∑
i

β2
3i + op(1) = 1

nT

∑
i

C2
i + op(1) = op(1). (A.5)

Therefore as T → ∞, the model displays an asymptotic multicollinearity on the dependent vari-
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able; so we cannot say anything about the consistency of ν̂. Having a dynamically useless factor leads
to singular loadings matrix and therefore to identification issues for the GOS estimator.

A2 Robustness checks

We perform two exercises for robustness checks. In the first one, we add an additional instrument
to the two initial instruments. In the second exercise, we keep the instruments as in the paper, but
we change the frequency of periods from the month to the quarter.

A2.1 Additional instrument

We add the dividend yield13 as third instrument and repeat the empirical analysis. It appears
that the results are almost the same as those we had previously (see table A.1). They are strongly
robust to the addition of the third instrument, as the gap between the later and the former results for
the risk premia and for the standards errors, is of order of 0.01%.

A2.2 Quarterly analysis

We perform a quarterly analysis, to check if the qualitative results about the profitability and
the investment factors are robust to a variation of the period frequency. Figure A.1 shows that the
conclusion we had on those factors still hold. The risk premium of the profitability factor RMW
(Robust Minus Weak) is never insignificant during crisis, and the risk premium of the investment
factor CMA (Conservative Minus Aggressive) is mostly insignificant in quarters where the dynamic of
the default spread changes sign.

13The dividend yield is also used by Gagliardini et al. (2016) as common instrument for their robustness
checks. Our data are from the database of the Federal Reserve Bank of St-Louis
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Figure A.1: Default spread and dates where the risk premium of the factor is zero (quarterly analysis)

The figure presents the evolution of the quarterly default spread from 1964 to 2015; and for every factor, the dates where its associated risk premium is
insignificant (red crosses). The shaded bands represent the US recessions, according to the data of the National Bureau of Economic Research (NBER)
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Table A.1: Empirical risk premia with the dividend yield as additional instrument

risk premium (×100) std. error (×100) insignificant risk
premia (number of
months over 617)

percentile percentile
mean 20 40 60 80 mean 20 40 60 80

Fama-French (1993)
Mkt-Rf -0.16 -2.94 -1.04 0.59 2.50 0.28 0.15 0.23 0.31 0.39 29 (0.047)
SMB 0.13 -0.58 -0.09 0.31 0.86 0.23 0.15 0.20 0.25 0.29 62 (0.100)
HML 0.12 -0.92 -0.18 0.42 1.23 0.20 0.11 0.15 0.20 0.30 42 (0.068)

Carhart (1997)

Mkt-Rf -0.15 -2.77 -0.97 0.50 2.38 0.33 0.18 0.27 0.34 0.44 27 (0.044)
SMB 0.14 -0.58 -0.05 0.30 0.86 0.22 0.15 0.20 0.24 0.28 70 (0.113)
HML 0.13 -0.88 -0.15 0.41 1.21 0.24 0.13 0.18 0.25 0.31 49 (0.079)
Mom 0.11 -1.51 -0.37 0.55 1.57 0.35 0.18 0.26 0.32 0.47 41 (0.066)

Fama-French (2015)

Mkt-Rf -0.11 -2.70 -1.06 0.55 2.37 0.25 0.13 0.22 0.27 0.33 27 (0.044)
SMB 0.16 -0.54 -0.03 0.37 0.87 0.23 0.15 0.20 0.25 0.30 72 (0.117)
HML 0.12 -0.92 -0.16 0.46 1.19 0.25 0.15 0.20 0.25 0.35 45 (0.073)
RMW 0.06 -0.86 -0.23 0.27 0.96 0.13 0.07 0.11 0.13 0.19 30 (0.049)
CMA 0.08 -0.74 -0.17 0.35 0.94 0.21 0.13 0.17 0.21 0.29 46 (0.075)

The table gives the dynamics of the risk premia in the chosen models. The means and the percentiles are estimated over the T dates (T = 617). The last
column gives the number of months over the 617, where the risk premium of the factor is insignificant at the level of significance 5%.
The numbers in brackets are the ratios between the number of periods where the risk premium is insignificant, and the overall number of periods. They give
the probability for each factor, of being unrewarded.
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A3 Proofs

A3.1 Motivation for Assumption 6

By Proposition 1 of GOS, the result in Assumption 6 is true when we have a continuum of assets.
We assume in the paper a large countable number of assets. So to motivate Assumption 6, we show
here that the equation in Assumption 6 is still true when the number of assets is finite. Therefore, we
consider here that n is finite.

Let us consider a month t where the two factors are useful. We also consider Bt = (b1t , · · · , bnt )′

the matrix of betas as defined previously, and At = (a1
t , · · · , ant )′ . Following GOS, we define et as the

residual of the orthogonal projection of At on Bt;

et = At −Bt(B
′

tBt)−1B
′

tAt.

Let us assume by contradiction that the relation ait = bitνt does not hold for any νt ∈ R2. So

inf
ν∈R2

n∑
i=1

(
ait − (bit)

′
ν
)2

> 0, and then
n∑
i=1

(
ait − (bit)

′
νt,∞

)2
> 0 with νt,∞ =

(
n∑
i=1

bit(bit)
′
)−1( n∑

i=1
bita

i
t

)
.

Therefore e′tet > 0 and ‖et‖2 > 0.

Following GOS, we define the portfolio qt =
(
δ0,t

...δ′t
)
, with δt = et

‖et‖2
, δ0,t = −i′nδt, and in the

n-vector of ones (we represent a portfolio here with the vector of the weights on the risk-free asset and
on the n risky assets). Then C(qt) = 0 and following their arguments,

P (qt > 0|F0) ≥ 1−
(
n−1eigmax(Σε,t)

)
n‖et‖−2

As the two factors are useful, Assumption APR.2 from GOS is satisfied. So following their
arguments, 1

n‖et‖
2 L2→ γ, with γ 6= 0. Then by Assumption 3, it follows that P (qt > 0|F0) L2→ 1;

so P (qt > 0) → 1. Therefore we have a contradiction with Assumption 4, since (qt) displays an
asymptotic arbitrage opportunity. So we conclude that ait = (bit)

′
νt,∞, with νt,∞ uniquely defined and

Ft−1-measurable. �

A3.2 Motivation for Assumption 7

As previously, we assume that the number of assets n is finite and show that the equation in
Assumption 7 is true in that case.

If the factor ūs is strongly useless in mouth t, then bi,ūst = 0 for all assets i. In that case, the
initial model (1.1) becomes

Rit = ait + bi,ust fust + εit, (A.6)
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and then we conclude following the same argument as previously (since the factor us is useful).
If the factor ūs is weakly useless in mouth t then as T is large, there is for any assets i, a scalar

cit such that bi,ūst = cit√
T
. The model (1.1) becomes then,

Rit =φ0
t + ait + bi,ust fust + bi,ūst f ūst + εit

=φ0
t +

(
ait + cit√

T
f ūst

)
+ bi,ust fust + εit

(A.7)

Let us consider the following model, where for each month t and for any asset i, lit is a given scalar
and ξit is a random variable with the same moments assumptions as εit (see Assumption 1). ait, b

i,us
t

and fust are also defined as in Assumption 1.

Rit = φ0
t +

(
ait + lit√

T

)
+ bi,ust fust + ξit . (A.8)

The conditional covariance matrix of model (A.8) is Σξ,t = cov(ξit, ξ
j
t |Ft−1). As T → ∞, we have

Σξ,t ≡ Σε,t + op(1); so n−1eigmax(Σξ,t)
L2→ 0 as n→∞. So by the same argument as in the motivation

for Assumption 6, there is an unique Ft−1-measurable random variable νust ∈ R such that ait + lit√
T

=
bi,ust νust . Therefore, ait = bi,ust νust +Op( 1√

T
). �

In the next proofs, we use the following result;

Result 1. When the number of assets n is going to infinity,
(i) If the factor ūs is useless at t, then ‖B̂ūst ‖ = Op( 1√

T
), as T →∞

(ii) If the factor ūs is useful at t, then ‖B̂ūst ‖ converges to a positive number different from 0 (
‖B̂ūst ‖ = Op(1) ).

Proof of Result 1
We follow here the argument of Bryzgalova (2016). As B̂ūst is a consistent estimator of Būst , we

have:
B̂ūst = Būst + 1√

T
ΨB̂ūst

+ op(
1√
T

), (A.9)

with ΨB̂ūst
, a random variable such that ΨB̂ūst

a∼ N (0,ΣB̂ūst ). The result follows by Assumption 10. �

A3.3 Proof of Proposition 1

We look at the properties of φ̂t depending on whether the dynamically useless factor ūs is useless

or not at t. In the following parts of the proofs, we denote (βit)
′ = (1

...(bit)
′ ).

We have Φ̂t =

φ̂0
t

φ̂t

 = argmin
Φ

LT,n,Dt(Φ), with LT,n,Dt convex for every T, n,Dt in N∗ and
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given by:

LT,n,Dt(Φ) =
n∑
i=1

(
Rit − (βit)

′
Φ
)2

+ τn
T s/2

2∑
j=1

|φj |
‖B̂jt ‖s

.

Therefore, Φ̂t = argmin
Φ

LT,n,Dt(Φ) = argmin
Φ

1
nLT,n,Dt(Φ). For the next, we consider the following

functions:

Ln,Dt(Φ) ≡ 1
n

n∑
i=1

(
Rit − (βit)

′
Φ
)2

LT,n(Φ) ≡ τn
nT s/2

2∑
j=1

|φj |
‖B̂jt ‖s

. (A.10)

So we have
Φ̂t = argmin

Φ
(Ln,Dt(Φ) + LT,n(Φ)) .

If the two factors are useful in month t

As the two factors are useful at t, then following the result 1 and Assumption 9 we have: ‖B̂jt ‖ =
Op(1) as n→∞ (j = 1, 2). So as n→∞, we have for all Φ in R3;

LT,n(Φ) = op(1). (A.11)

Let us now determine the p-limit of Ln,Dt as n→∞. For that purpose, we consider the following
matrices: Rt =

(
R1
t , . . . , R

n
t

)′
, βt =

(
β1
t , . . . , β

1
t

)′
and εt =

(
ε1
t , . . . , ε

n
t

)′
. We have;

Ln,Dt(Φ) = 1
n

(
Rt − β̂tΦ

)′ (
Rt − β̂tΦ

)
= 1
n

(Rt − βtΦ− êtΦ)
′
(Rt − βtΦ− êtΦ) (with êt = β̂t − βt)

= 1
n

[
(Rt − βtΦ)

′
(Rt − βtΦ)− 2 (Rt − βtΦ)

′
êtΦ + Φ

′
ê
′

têtΦ
]

We have êt =
(
ê1
t , . . . , ê

n
t

)′
, with êit a R3 vector such as (êit)

′ = (β̂it)
′ − (βit)

′ for all asset i. Let us
consider the following lemma

Lemma 1. For each asset i; if we define êit = β̂it − βit, with βit = (1
...(bit)

′)′ (bit the sensitivity of the
asset i at time t), then under Assumptions 1-5 and 9 we have:

sup
i
‖êit‖ = op(1) as n→∞. (A.12)

By using the Cauchy-Schwarz inequality with the previous lemma, we have as n→∞:

∣∣∣∣ 1n (Rt − βtΦ)
′
êtΦ
∣∣∣∣ ≤ 1

n

∑
i

|
(
Rit − (βit)

′
Φ
)
| · |êitΦ| ≤ sup

i
‖êit‖

(
1
n

∑
i

∣∣∣(Rit − (βit)
′
Φ
)∣∣∣ · ‖Φ‖) = op(1).
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∣∣∣∣ 1nΦê
′

têtΦ
∣∣∣∣ ≤ 1

n

∑
i

|Φ
′
(êit)

′
| · |êitΦ| ≤ ‖Φ‖

(
1
n

∑
i

‖(êit)
′
‖ · ‖êit‖

)
‖Φ‖ ≤

(
sup
i
‖êit‖

)2
‖Φ‖2 = op(1).

Moreover from the equation (1.3), Rit = (βit)
′Φt+εit. So by the assumption 11, we have as n→∞;

1
n

(Rt − βtΦ)
′
(Rt − βtΦ) = (Φ− Φt)

′

(
1
n

∑
i

βit(βit)
′

)
(Φ− Φt) + 1

n

∑
i

(εit)2 − 2(Φ− Φt)
′

(
1
n

∑
i

βitε
i
t

)
= (Φ− Φt)

′
Q̃t(Φ− Φt) + σ2

t + op(1).

Then it follows that as n→∞,

Ln,Dt(Φ) = (Φ− Φt)
′
Q̃t(Φ− Φt) + σ2

t + op(1) (A.13)

By equations (A.11) and (A.13), we have as n→∞,

LT,n,Dt(Φ) = (Φ− Φt)
′
Q̃t(Φ− Φt) + σ2

t + op(1) (A.14)

Let us denote L(Φ) = (Φ − Φt)
′
Q̃t(Φ − Φt) + σ2

t . As LT,n,Dt(Φ) is convex for all Φ in R3,
we have by the convexity lemma of Pollard (1991); sup

Φ
|LT,n,Dt(Φ) − L(Φ)| = op(1). Therefore,

Φ̂t = argmin
Φ

LT,n,Dt(Φ) p−→ argmin
Φ

L(Φ) = Φt �

If the dynamically useless factor ūs is useless in month t

In the present case ‖B̂1
t ‖ = Op(1), ‖B̂2

t ‖ = Op( 1√
T

) (as T → ∞) and Φt = (φ0
t , φ

us
t , 0)′ by

definition. Following Assumption 9, we have as n→∞

LT,n(Φ) = τ̃0|φūs| (τ̃0 > 0). (A.15)

In order to find the p-limit of Ln,Dt , we consider the matrices Rt and εt as defined previously. We

also consider the matrices κt =
(
κ1
t , . . . , κ

n
t

)′
and būst =

(
b1,ūst , . . . , bn,ūst

)′
, with κit =

(
1, bi,ust

)′
for all

i. In the next, we denote Φus =
(
φ0, φus

)′
. We have

Ln,Dt(Φ) = 1
n

n∑
i=1

(
Rit − (β̂it)

′
Φ
)2

= 1
n

n∑
i=1

(
Rit − φ0 − b̂i,ust φus − b̂i,ūst φūs

)2

= 1
n

(
Rt − κ̂tΦus − b̂ūst φūs

)′ (
Rt − κ̂tΦus − b̂ūst φūs

)
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= 1
n

(
Rt − κtΦus − ẽtΦus − b̂ūst φūs

)′ (
Rt − κtΦus − ẽtΦus − b̂ūst φūs

)
(with ẽt = κ̂t − κt)

= 1
n

[
(Rt − κtΦus)

′
(Rt − κtΦus)− 2 (Rt − κtΦus)

′ (
ẽtΦus + b̂ūst φ

ūs
)

+
(
ẽtΦus + b̂ūst φ

ūs
)′ (

ẽtΦus + b̂ūst φ
ūs
)]
.

Following Lemma 1, we have as n→∞, sup
i
‖ẽit‖ = op(1). Moreover as the factor ūs is useless at

t, sup
i
|b̂i,ūst | = op(1) by Assumption 10. So following the same argument as previously, we have

1
n

[
−2 (Rt − κtΦus)

′ (
ẽtΦus + b̂ūst φ

ūs
)

+
(
ẽtΦus + b̂ūst φ

ūs
)′ (

ẽtΦus + b̂ūst φ
ūs
)]

= op(1).

Since Φt = (φ0
t , φ

us
t , 0)′ , we have by the equation (1.5) Rit = πiT +(βit)

′Φt+εit = πiT +(κit)
′Φust +εit

(with πiT an Op( 1√
T

)-term). Therefore by Assumptions 9 and 11 and following the same argument as
previously,

Ln,Dt(Φ) = (Φus − Φust )
′
Q̃ust (Φus − Φust ) + σ2

t + op(1). (A.16)

By equations (A.15) and (A.16), we have as n→∞,

LT,n,Dt(Φ) = (Φus − Φust )
′
Q̃ust (Φus − Φust ) + σ2

t + τ̃0|φūs|+ op(1) (A.17)

Let us denote L(Φ) = (Φus − Φust )′Q̃ust (Φus − Φust ) + σ2
t + τ̃0|φūs|. We have argmin

Φ
L(Φ) =

((Φust )′ , 0)′ = (φ0
t , φ

us
t , 0)′ = Φt. As LT,n,Dt is convex, we can conclude following Pollard (1991) that

Φ̂t
p−→ Φt as n→∞. �

Proof of Lemma 1

As êit is a R3 vector, let us denote for all asset i, the scalar ki such that |êi,kit | = sup
k=1,2,3

|êi,kt | (where

êi,kt is the kth element of êit). As all the norms in R3 are equivalent, there is a scalar c > 0 such that
sup
i
‖êit‖ ≤ c|ê

i,ki
t | for at least one i.

We have êit = β̂it − βit for all asset i. As β̂it is consistent, lim
Dt→∞

P
(
‖êit‖ > ξ

)
= 0 for all ξ > 0. For
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all ξ > 0, we have by the Markov inequality;

P

(
sup
i
‖êit‖ ≥ ξ

)
≤

n∑
i=1

P
(
c|êi,kit | ≥ ξ

)
≤

n∑
i=1

P
(
êi,kit ≥ ξ/c

)
1{êi,kit >0} +

n∑
i=1

P
(
−êi,kit ≥ ξ/c

)
1{êi,kit <0}

≤
n∑
i=1

E(êi,kit )
ξ/c

1{êi,kit >0} +
n∑
i=1

E(−êi,kit )
ξ/c

1{êi,kit <0}

≤ c

ξ

n∑
i=1

∣∣∣E(êi,kit )
∣∣∣1{êi,kit >0} + c

ξ

n∑
i=1

∣∣∣E(−êi,kit )
∣∣∣1{êi,kit <0}

≤ c

ξ

n∑
i=1

∣∣∣E(êi,kit )
∣∣∣

≤ c

ξ

n∑
i=1

∣∣∣E(E(êi,kit |ft,d))
∣∣∣ .

(A.18)

By definition, (βit)
′ = (1

...(bit)
′) for all i; moreover, we have

b̂it − bit =
[

1
Dt

∑
d

(ft,d − f̄t)(ft,d − f̄t)
′

]−1 [
1
Dt

∑
d

(ft,d − f̄t)ηit,d

]
.

b̂it is obtained through an OLS regression on daily data according to the model (1.2). Following
Assumption 2, we have E(ηit,d|ft,d) = 0. Therefore,

E(b̂it − bit|ft,d) =
[

1
Dt

∑
d

(ft,d − f̄t)(ft,d − f̄t)
′

]−1 [
1
Dt

∑
d

(ft,d − f̄t)E(ηit,d|ft,d)
]

= 0

(A.19)

By the definition of βit , we then have E(êit|ft,d) = E(β̂it − βit |ft,d) = 0 for all assets i; therefore,
E(êi,kit |ft,d) = 0 for all i.

We know from Assumption 9 that Dt becomes large as soon as n becomes large. So as n → ∞,
we have from equation (A.18) and for all ξ > 0,

lim
n→∞

P

(
sup
i
‖êit‖ ≥ ξ

)
≤ lim
n→∞

(
c

ξ

n∑
i=1

∣∣∣E(E(êi,kit |ft,d))
∣∣∣) = 0 .

�
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A3.4 Proof of Proposition 2

As previously we consider a given month t and proceed following whether the dynamically useless
factor ūs is useless or not at t.

If the two factors are useful in month t

We are going first to present the asymptotic properties of the estimator F̂ . We have f ′t = Z
′

t−1F
′+

u
′

t (by transposing the initial relation). Then, F̂ − F =
(

1
T

T∑
t=1

utZ
′

t−1

)(
1
T

T∑
t=1

Zt−1Z
′

t−1

)−1

by a
SURE regression. Therefore we have:

vec(F̂ )− vec(F ) =

[ 1
T

T∑
t=1

Zt−1Z
′

t−1

]−1

⊗ I2

( 1
T

T∑
t=1

Zt−1 ⊗ ut

)

By applying the CLT with Assumption 12, we have as T →∞

√
T
(
vec(F̂ )− vec(F )

)
d→ N (0,ΣF ) . (A.20)

Moreover, we have λt = φt + FZt−1 − ft = φt + (Z ′t−1 ⊗ I2)vec(F ) − ft. So now, we consider the
following lemma.

Lemma 2. If the two factors are useful in month t, we have as n→∞

√
n(φ̂t − φt) = Op(1).

Using Lemma 2 and Assumption 9, we have as n→∞,

nα(λ̂t − λt) =
(

1
n0.5−α

)√
n(φ̂t − φt) +

(
nα√
T

)
(Z
′

t−1 ⊗ I2)
(√

T
(
vec(F̂ )− vec(F )

))
a∼ Op(

1
n0.5−α ) + ρ

1/2
1 N

(
0, (Z

′

t−1 ⊗ I2)ΣF (Zt−1 ⊗ I2)
)

d→ N
(

0, ρ1(Z
′

t−1 ⊗ I2)ΣF (Zt−1 ⊗ I2)
) (A.21)

This ends the proof. �

It should be noted that by equation (A.21), it appears that the smaller α is, the more precise
the asymptotic convergence will be. So there is a trade-off to make on the estimator, between its
convergence rate and its asymptotic bias. The reduction of the asymptotic bias is performed at the
expense of the convergence rate. In the paper, we have chosen to reduce the convergence rate as much
as possible.
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Proof of Lemma 2

Our proof follows the arguments of Knight & Fu (2000), as they propose a framework for asymp-

totic analysis on lasso-type estimators. We have Φt = (φ0
t , (φt)

′)′ and (βit)
′ = (1

...(bit)
′). To prove

Lemma 2, it is sufficient to show that as n→∞, v =
√
n(Φ̂t − Φt) is Op(1).

We have the following function;

LT,n,Dt(Φ) =
n∑
i=1

(
Rit − (β̂it)

′
Φ
)2

+ τn
T s/2

2∑
j=1

|φj |
‖B̂jt ‖s

.

Let us consider vt =
√
n(Φ̂t−Φt). We also consider the vectors Rt, βt, εt and êt as defined previously.

We have as equation (1.3), Rt = βtΦt + εt; therefore by straightforward calculus,

LT,n,Dt(Φ̂t) =
(
εt − βt

vt√
n
− êt(Φt −

vt√
n

)
)′ (

εt − βt
vt√
n
− êt(Φt −

vt√
n

)
)

+ τn
T s/2

2∑
j=1

|φjt + vjt√
n
|

‖B̂jt ‖s

= An(vt) +Bn(vt)

≡ Hn(vt).

vt =
√
n(Φ̂t−Φt) minimizesHn(v); so it minimizes also Hn(v)−Hn(0) = (A(v)−A(0))+(B(v)−B(0)).

As for all i, êt = op(1) when n→∞;

An(v)−An(0) =
(
εt − βt

v√
n
− êt(Φt −

v√
n

)
)′ (

εt − βt
v√
n
− êt(Φt −

v√
n

)
)
− ε

′

tεt

=
(
εt − βt

v√
n

)′ (
εt − βt

v√
n

)
− ε

′

tεt + op(1)

= − 2√
n
v
′
β
′

tεt + 1
n
v
′
β
′

tβtv + op(1)

= −2v
′

(
1√
n

n∑
i=1

βitε
i
t

)
+ v

′

(
1
n

n∑
i=1

βit(βit)
′

)
v + op(1)

d→ −2v
′
Ã+ v

′
Q̃tv,

(A.22)

where Ã is a variable such as
(

1√
n

n∑
i=1

βitε
i
t

)
d→ Ã, and Q̃t is defined as in Assumption 11. Moreover
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because the two factors are useful, we have as n→∞;

Bn(v)−Bn(0) = τn
T s/2

2∑
j=1

1
‖B̂jt ‖s

(
| v

j

√
n

+ φjt | − |φ
j
t |
)

= τn√
n

1
T s/2

2∑
j=1

1
‖B̂jt ‖s

(
vjsign(φjt )1φjt 6=0 + |vj |1φjt

)
p→ 0

(A.23)

We have Hn(v)−Hn(0) d→ −2v′Ã+ v
′
Q̃tv ≡ H(v). As Hn and H are convex, then we conclude

following the argument of Knight & Fu (2000), that
√
n(Φ̂t − Φt) = argmin

v
(Hn(v)−Hn(0)) d→

argmin
v

H(v) = Q̃−1
t Ã. �

If the dynamically useless factor ūs is useless in month t

Since for all t, ft = FZt−1 + ut, we also have fust = F 1Zt−1 + uust (with F 1 the first row of the

matrix F ). So (F̂ 1 − F 1)′ =
(

1
T

T∑
t=1

Zt−1Z
′

t−1

)−1(
1
T

T∑
t=1

Zt−1u
us
t

)
. As previously by the CLT and

Assumption 12, we have
√
T (F̂ 1 − F 1)

′ d→ N (0,ΣusF ) (A.24)

Now let us consider the following lemma;

Lemma 3. If the dynamically useless factor ūs is useless in month t, we have as n→∞

√
n(φ̂t − φt) = Op(1).

Following the same argument as previously (see the case A3.4), we conclude using the previous
lemma. �

Proof of Lemma 3

Let us consider the vectors Rt, Φus, κt, βūst , ẽt and εt defined as previously. We also consider the
vectors πT =

(
π1
T , . . . , π

n
T

)′ 14 and vt =
√
n(Φ̂t−Φt). Following the equation (1.5), vt is the minimum

of Hn(v) = An(v) +Bn(v) with;

An(v) =
(
πT + εt − κt

vus√
n
− ẽt(Φust + vus√

n
)− b̂ūst (φūst + v2

√
n

)
)′ (

πT + εt − κt
vus√
n
− ẽt(Φust + vus√

n
)− b̂ūst (φūst + v2

√
n

)
)

14 with πiT an Op( 1√
T

)-term for each i
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Bn(v) = τn
T s/2

2∑
j=1

|φjt + vj√
n
|

‖B̂jt ‖s
.

We have here v = (v0, v1, v2)′ = (v0, vus, vūs)′ and V us = (v0, vus) =
√
n(Φ̂us − Φust ). Moreover by

Assumption 9 we have as n→∞, b̂ūst = op(1), ẽt = op(1), and πT = op(1). Therefore,

An(v)−An(0) d→ −2(V us)
′
Ã2 + (V us)

′
Q̃ust V

us,

where Ã2 is a variable such as
(

1√
n

n∑
i=1

κitε
i
t

)
d→ Ã2, and Q̃ust is defined as in Assumption 11. Moreover

because the factor ūs is useless at t, we have as n→∞;

Bn(v)−Bn(0) = τn
T s/2

2∑
j=1

1
‖B̂jt ‖s

(
| v

j

√
n

+ φjt | − |φ
j
t |
)

= τn√
n

1
T s/2

2∑
j=1

1
‖B̂jt ‖s

(
vjsign(φjt )1φjt 6=0 + |vj |1φjt

)
p→ τ̃0|vūs|. (τ̃0 > 0)

(A.25)

Let us denote H(v) = −2(V us)′Ã2 + (V us)′Q̃ust V us + τ0|v2|. As vt =
√
n(Φ̂t − Φt) minimizes

Hn(v)−Hn(0), we have following the same argument as previously,

√
n(Φ̂t − Φt) = argmin

v
(Hn(v)−Hn(0)) d→ argmin

v
H(v)

. �
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Chapter 2

Dynamical relevance of factors in

misspecified asset pricing models∗

2.1 Introduction

In the asset pricing literature, linear factor models have been used extensively to explain

asset returns. Since the initial CAPM,1 various factor models have been developed to overcome

the drawbacks from the empirical failures observed in some models. However, the debate

regarding which model is the best remains inconclusive; as the empirical performance of

an asset pricing model depends on the specificities of the market from which the data are

collected, and on the properties of the assets to which the model is applied. The multiplicity

of proposed factors (and therefore of models) is another problem in this regard, as there are

more than 300 factors that have been declared significant over the years (see Harvey, Liu &

Zhu, 2016).

Nevertheless, the literature has established some principles on which we can rely. From

the works of Bollerslev et al. (1988), Ferson & Harvey (1991) or Jagannathan & Wang (1996),

we know that alphas and betas are time-varying. This time variation can be analyzed through

conditional models or approximated through moving rolling-window estimations. As alphas

and betas measure systematic risk of assets in comparison to risk factors, having time-varying
∗I am grateful to René Garcia for his invaluable guidance. For useful suggestions and comments, I would

like to thank Bertille Antoine, Prosper Dovonon, Jean-Marie Dufour, and the participants of the CEA 2018.

1See Sharpe (1964) and Lintner (1965).
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alphas and betas is a sufficient motivation for a dynamical analysis of the parameters of

stochastic discount factor models (hereafter SDF models).2 Nagel & Singleton (2011) perfectly

address this issue by proposing an optimal GMM estimator for conditional SDF models.

However, they do not correct for misspecifications, induced by discrepancies between the

priced SDFs and the admissible ones.

Kan & Robotti (2009) and Kan et al. (2013) have recently shown that inference on SDF

models should be performed through misspecification-robust processes. Indeed, as models are

approximations of reality, there are always some differences between real and empirical SDFs.

These differences have to be taken into account, otherwise some irrelevant factors might be

mistakenly identified as priced (see Gospodinov et al., 2014). Note that the three papers

just mentioned above are built on frameworks in which the SDF parameters are not time-

varying. This is clearly a limitation since strategies on markets are conditioned by available

information and vary through time and over business cycles. Therefore, having a conditional

SDF with time-varying parameters is a more realistic specification. However, this implies

a more challenging misspecification issue, as pricing errors are more severe for conditional

models than for unconditional models (see Ghysels, 1998). This paper intends to develop a

misspecification-robust inference method for conditional SDF parameters.

More specifically, we infer the time-varying parameters of potentially misspecified SDF

models. The misspecification here refers to issues that lead to a divergence between the

actual SDF and the chosen one. We extend the model of Gospodinov et al. (2014) to the

framework of conditional models, as the parameters and the covariances are allowed to vary

over time. Misspecifications are measured with the Hansen-Jagannathan distance (hereafter

HJ-distance; see Hansen & Jagannathan, 1997), which results from the minimization of a

quadratic function of pricing errors. We do not look at nonlinear sources of misspecification.3

In practice, researchers generally analyze misspecification by introducing some differences

between the true DGPs and some simulated misspecified DGPs (for example addition or

omission of a variable, introduction of multicollinearity, etc...). This approach is clearly
2The SDF parameters are the parameters that allow to express the stochastic discount factor as a linear

function of risk factors
3The reader can refer to Almeida & Garcia (2012) for a more general measure, effective on both linear and

nonlinear sources of misspecification. The authors use the theory of minimum discrepancy estimators, and
present asymptotic properties for the Cressie-Read family of discrepancies. Note that unlike here, they use an
unconditional model.
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limited, as it is very difficult to consider all differences. That is why a general SDF approach

is better, since misspecifications are summarized by a distance that is a function of pricing

errors.

In the proposed conditional model, the SDF parameters are time-varying and linked to a

set of observable common instruments. While defining the useless factors the same way as Kan

& Zhang (1999b) (factors that are uncorrelated with all the priced asset returns), we show

that when inferences are performed without correction for misspecifications, the inclusion

of a useless factor in the SDF model leads to unreliable inference results. However, our

misspecification-robust inference is able to eliminate the negative effects of potential useless

factors, while maintaining the relevance of the useful ones.

As stressed by Pondi (2017), a risk factor can be dynamically useless meaning useless in

one period, and useful in another one. We pursue this idea by analyzing the time-varying

importance of the factors in several linear asset pricing models from 1963 to 2016. The idea

is to see how the significance of these factors evolves through time, assuming that the chosen

SDFs are potentially (and probably) misspecified. Seven SDFs are chosen as benchmarks: (i)

the CAPM; (ii) the three-factor model of Fama & French (1993), FF3; (iii) the four factor

model of Carhart (1997), CARH; (iv) the five-factor model of Fama & French (2015), FF5; (v)

a human capital model inspired by Lettau & Ludvigson (2001) and Gospodinov et al. (2014),

C-LAB; (vi) the Consumption - CAPM; (vii) the Durable Consumption - CAPM of Yogo

(2006). The data are monthly for the first four SDFs and quarterly for the last three. We

measure the linear pricing ability of each of these SDFs for a set of 43 Fama-French portfolios

from 1963 to 2016.4

Our results indicate that SDFs with just traded factors are obviously more relevant for

the pricing of asset returns. However, as for the size factor SMB in FF3 and CARH, or for

the profitability factor RMW in FF5, a traded factor can also be totally irrelevant (in the

mentioned models, these two factors are not relevant at any date). Moreover, we show that

additional factors do not systematically lead to better SDFs. A comparison of the SDFs is

performed using as criterion the relevance frequency of the SDF, defined as the ratio between

the number of periods where at least one factor other than the constant factor in the SDF is

priced, and the total number of periods. It shows that FF3 and FF5 have been the overall
4Following Lewellen et al. (2010), the 43 portfolios include 17 Fama-French industry portfolios in addition

to the 25 Fama-French size and book-to-market portfolios, and the one month T-bill rate.
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best SDFs in the last 50 years. However, since 2000, the best SDF is CARH, followed by FF5

as the second best.

As the results confirm the advantage of using SDFs with traded factors, they also bring

a nuance on non-traded factors. In fact, it appears that the C-LAB and the D-CCAPM have

some relevance for the linear pricing of our portfolios. However, the CCAPM is not able to

provide any linear risk-adjustment in connection with the selected portfolios. Since any SDF

is theoretically linked to the consumption (by the Euler identity), this may call for further

analysis of its relevance for pricing nonlinear risk-adjustments.

Besides the aforementioned articles, this paper is linked to papers that analyze the ef-

fects of useless factors on inference in asset pricing models and solve the ensuing problems.

Gospodinov et al. (2017) address that issue by characterizing the asymptotic behavior of a

GMM estimator under the failure of the rank conditions. Kleibergen & Zhan (2018) propose

a test for the risk premia on mimicking portfolios of non-traded factors. Kleibergen & Zhan

(2015) analyze the effects of a weak correlation between the observed proxy factors and the

true unobserved ones, and build a sample distribution for the R2 following the estimation

of risk premia. Bryzgalova (2016) develops a penalized estimator that detects the useless

factors in the model and restores the inference properties for the risk premia associated with

the useful factors. Unlike these papers, our analysis relies on a conditional model and our

inference process is designed for time-varying parameters.

On papers that build inference methods for time-varying parameters, Gagliardini et al.

(2016) propose to infer the dynamics of the risk premia associated to risk factors when the

number of assets is large. Kelly, Pruitt & Su (2017) use an Instrumented Principal Component

Analysis to estimate the factors when the betas are time-varying. These two papers rely on

regression models, where the returns are expressed as linear functions of the factors. This

paper is different from that perspective, since our analysis is built on an SDF model and since

we infer on SDF parameters instead of betas or risk premia. Unlike Burnside (2016) or Kan

& Zhang (1999a), who use unconditional SDF models, the SDF model here is conditional.

After Nagel & Singleton (2011), inference on conditional SDF models has also been an-

alyzed by Gagliardini & Ronchetti (2014), who introduce a conditional version of the HJ-

distance as a kernel-based GMM estimator. We do not use that distance here since our

framework includes potential useless factors, doing so can therefore create identification is-
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sues. Moreover, we do not follow Antoine, Proulx & Renault (2018), who use that conditional

HJ-distance to estimate pseudo-true SDFs. For inference purposes, the pseudo-true SDFs in

this paper are selected based on theoretical considerations.

Finally, this paper is linked to Feng et al. (2017), which evaluates the contribution of new

factors to asset pricing models, in comparison to prior factors. That paper proposes a way to

assess the real contribution of each new factor in the literature in comparison to those already

found. The main difference here is that we analyze the dynamical relevance of the factors in

several well-known and widely used asset pricing models.

The rest of the paper is organized as follows. Section 2 presents the formalization of the

model. Section 3 reports results from the Monte Carlo simulations. Section 4 presents the

empirical analysis. Section 5 concludes.

2.2 Time-varying SDF parameters: formalization

2.2.1 The model

The model below is a conditional version of the unconditional model proposed by Kan &

Robotti (2009) and Gospodinov et al. (2014). Throughout the paper, the terms “conditional

SDF parameters” and “time-varying SDF parameters” are used interchangeably.

Let us consider the following SDF:

yt = f̃
′
tλt, (2.1)

where f̃t = (1, f ′t )
′ a (k + 1)-vector with ft a k-vector of risk factors at time t, and λt =

(λ0
t , . . . , λ

k
t )
′ the vector of SDF parameters at time t. Following the idea of Gagliardini et al.

(2016), we assume that f̃t is known at time t while λt is known at time t − 1.5 A factor

is priced at a given time if its SDF parameter is statistically significant at that time. Also,

the pricing ability of the SDF is measured at each date conditionally to all past available

information.

Moreover, let us consider the gross returns on n portfolios at time t, Rt. If the SDF
5Formally, if {Ft}t=1,2,... is the filtration that characterizes the flow of information, then f̃t is Ft-measurable

and λt is Ft−1-measurable.
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correctly prices the n portfolios at time t, then by denoting 1n the n-vector of 1, we have:

Et−1(ytRt) = 1n . (2.2)

To define the dynamics, we assume that the SDF parameters are linked to p observed common

instruments that are summarized in a p-dimensional vector Z. Then we consider the following

assumptions.

Assumption 1. There exists a ((k + 1)× p) - matrix Λ, such that the conditional SDF

parameters at time t are given by the following relation;

λt = ΛZt−1. (2.3)

Assumption 2. The matrix U = E(RtR
′
t) is nonsingular.

Assumption 1 is the assumption FS1 of Gagliardini et al. (2016). The variables in Zt are

financial or macroeconomic variables that are common to all assets. We assume that the SDF

parameters are linear functions of lagged common instruments.6 Assumption 2 is satisfied as

soon as the selected assets are well diversified. This assumption is likely to be always verified

for portfolios, as the classification criteria of individual assets into portfolios are different from

one portfolio to another.

By assumption 1, the pricing error at time t depends on the estimation of Λ and is given

by (with vec the vectorization operator):

et(Λ) ≡ Et−1(ytRt)− 1n = Et−1
(
Rt(f̃

′
t ⊗ Z

′
t−1)

)
vec(Λ′)− 1n. (2.4)

Because the matrix Λ is constant, we define a constant pricing error e(Λ), as the expectation

of the pricing errors through time. Denoting D = E
(
Rt(f̃

′
t ⊗ Z

′
t−1)

)
, this aggregate pricing

error is given by:

e(Λ) ≡ E (et(Λ)) = E
(
Rt(f̃

′
t ⊗ Z

′
t−1)

)
vec(Λ′)− 1n = Dvec(Λ′)− 1n . (2.5)

6Unlike Gagliardini et al. (2016), there is no specific instrument here. Specific instruments take into account
that a particular instrument can impact some parameters but not all of them. When the number of assets is
not large, we can just consider any specific instrument as a common instrument.
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The HJ-distance (δHJ) is built from the pricing error and gives the degree of misspecifi-

cation of the model. The model is correctly specified when δHJ = 0 and misspecified when

δHJ > 0. Following Hansen & Jagannathan (1997) and by assumption 2, the HJ-distance of

the model is given by δHJ =
(
e(Λ∗)

′
U−1e(Λ∗)

) 1
2 ; with the (pseudo-true) optimal matrix Λ∗

chosen such that:

vec(Λ′∗) = argmin
Λ

e(Λ)′U−1e(Λ). (2.6)

Let us consider now the (p(k + 1) + n) - vector Yt = (Z ′t−1
... f ′t ⊗ Z

′
t−1

... R′t)
′ and its

covariance matrix, V = (Vij)1≤i,j≤3 (every Vij is a block matrix). Following the argument of

Kan & Robotti (2009), we can derive vec(Λ̂′) by replacing U−1 in (2.6) by V −1
33 . By denoting

V̂ and D̂ respectively the empirical counterparts of V and D, the optimal matrix Λ̂ and the

HJ-distance from the model are estimated by:

vec(Λ̂′) = (D̂′ V̂ −1
33 D̂)−1(D̂′ V̂ −1

33 1n), (2.7)

δ̂HJ =
(
1′nV̂ −1

33 1n − 1′nV̂ −1
33 D̂vec(Λ̂′)

)1/2
. (2.8)

Therefore, the sample estimate of the SDF vector at each date t is given by λ̂t = Λ̂Zt−1.

2.2.2 Choice of the instruments in Z

The choice of the instruments raises some issues. By equation (2.7), we see that vec(Λ̂′)

is obtained by an OLS regression of V̂ −1/2
33 1n on V̂ −1/2

33 D̂. As D̂ = 1
T−1

∑T
t=2Rt(f̃

′
t ⊗ Z

′
t−1).

vec(Λ̂′) is not invariant to a change on Z and would vary according to the selected instruments.

To solve the issue, an idea would be to choose the instruments which lead to the smallest HJ-

distance. However, as shown by Kan & Robotti (2009), we cannot compare the relevance

of two different models by comparing their HJ-distance (especially when the models are not

nested).

As solution, we follow Gagliardini et al. (2016) and select all the instruments they use

for their analysis and for their robustness checks: the term spread, the default spread and

the dividend yield. The three are used at the same time here, in order to have the complete

information we could get from potential instruments. The importance of the three selected

variables with regard to forecasting stock returns (for the dividend yield) or capturing the
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variation in expected returns (for the term spread and the default spread) has been proven

in the literature (see for example Fama & French, 1989; Jagannathan & Wang, 1996; Jensen,

Mercer & Johnson, 1996; Petkova, 2006).

In this paper (and according to the literature), the term spread is measured as the dif-

ference of interest rates between 10-year Treasury bill and 3-month Treasury bill, and the

default spread is measured as the difference of yields between Moody’s Baa-rated and Aaa-

rated corporate bonds. In the empirical analysis, the data on the three instruments are from

the Federal Reserve Economic Data.

2.2.3 Asymptotic properties

The asymptotic properties of the estimated conditional SDF are presented, assuming that

the model is potentially misspecified and without considering the particular case of having

a useless factor in the model. A case with a useless factor, which can be considered as an

extreme case of misspecification, will be considered in the next subsection.

In the following, remember that Yt = (Z ′t−1
... f ′t ⊗Z

′
t−1

... R′t)
′ and D = E

(
Rt(f̃

′
t ⊗ Z

′
t−1)

)
.

We note V = (Vij)1≤i,j≤3 = V ar(Yt) , and µ = (µ′1, µ
′
2, µ

′
3)′ = E(Yt). We also consider the

vector φ and the random vector rt(φ) defined as:

φ =

 µ

vech(V )

 and rt(φ) =

 Yt − µ

vech
(
(Yt − µ)(Yt − µ)′ − V

)
 ,

with vech the half-vectorization operator.7

Proposition 1. If the model is potentially misspecified,

√
T (vec(Λ̂′)− vec(Λ′∗))→ N

(
0p(k+1),Σ

)
, (2.9)

where Σ is a p(k + 1)× p(k + 1) - matrix such as

Σ =
(
∂vec(Λ′∗)
∂µ′

... ∂vec(Λ
′
∗)

∂vec(V )′ ·Dp(k+1)+n

)
S0

(
∂vec(Λ′∗)
∂µ′

... ∂vec(Λ
′
∗)

∂vec(V )′ ·Dp(k+1)+n

)′
; (2.10)

7The half-vectorization operator is defined for symmetric matrices, and is equivalent to a vectorization
applied on the lower triangular part of the initial matrix
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with Dp(k+1)+n a duplication matrix, and S0 =
∞∑

j=−∞
E
(
rt(φ)rt+j(φ)′

)
.

The expressions of the derivatives ∂vec(Λ′)
∂µ′

≡ (∂vec(Λ
′)

∂µ
′
1

...∂vec(Λ
′)

∂µ
′
2

...∂vec(Λ
′)

∂µ
′
3

) and ∂vec(Λ′)
∂vec(V )′ in the

previous proposition are given by the following lemma.

Lemma 1. If we denote e ≡ e(Λ) and H ≡ D
′
V −1

33 D; the derivatives in Proposition 1 are

given by the following expressions:

∂vec(Λ′)
∂µ
′
1

= −H

 Ip

0kp×p

⊗ e′V −1
33 µ3 −

(
vec(Λ′)

)′  Ip

0kp×p

⊗HD′V −1
33 µ3 (2.11)

∂vec(Λ′)
∂µ
′
2

= −H

0p×kp
Ikp

⊗ e′V −1
33 µ3 −

(
vec(Λ′)

)′ 0p×kp
Ikp

⊗HD′V −1
33 µ3 (2.12)

∂vec(Λ′)
∂µ
′
3

= −H

µ1

µ2

⊗ e′V −1
33 −

(
vec(Λ′)

)′ µ1

µ2

⊗HD′V −1
33 (2.13)

∂vec(Λ′)
∂vec(V )′ =

H
 Ip 0p×kp

0kp×p Ikp

 ... 0p(k+1)×n

⊗ (01×p(k+1)
... − e′V −1

33

)

−

(vec(Λ′))′
 Ip 0p×kp

0kp×p Ikp

 ... e′V −1
33

⊗ (0p(k+1)×p(k+1)
... HD′V −1

33

)
(2.14)

Proposition 1 (with lemma 1) gives the asymptotic variance associated with the estimation

of the matrix Λ. This variance is different, depending on whether e = 0 or not (meaning on

whether the model is correctly specified or not). It is therefore important to consider any

potential missecification while testing for the relevance of the factors in the model. Note

that we do not know here, whether the asymptotic variance increases or decreases following

a misspecification.8 However, having an asymptotic variance which depends on the pricing

errors is a sufficient motivation for a misspecification-robust inference.

Under a potential model misspecification, the asymptotic distribution of the time-varying

SDF parameters is given by the following proposition (which is a corollary of Proposition 1).

8Kan & Robotti (2009) show for example that when factors and returns are multivariate elliptically dis-
tributed, misspecifications increase the asymptotic variance of the parameters
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Proposition 2. If the SDF is potentially misspecified, then at each date t,

√
T (λ̂t − λ∗t )→ N

(
0k+1, (Ik+1 ⊗ Z

′
t−1)Σ(Ik+1 ⊗ Zt−1)

)
, (2.15)

with Σ defined as in Proposition 1.

2.2.4 Asymptotic properties in the presence of a useless factor

Let us assume that the SDF includes a useless factor along with some useful ones. Under

that assumption, we present here the asymptotic behaviors of the SDF parameters associated

with the useful factors. The idea is to: (i) present the inference issues arising from the presence

of the useless factor and (ii) present how a misspecification-robust inference procedure can

eliminate these issues.

The estimation of the conditional SDF parameters in our model relies on the estimation

of the matrix Λ, as the instruments are observable. So, the misspecification issues should first

be assessed with regard to the estimation of that matrix. As Λ is constant, the covariance

matrix of vec(Λ̂′) is defined with unconditional expectations. Therefore, the useless factors

need to be analyzed here according to the classical definition of Kan & Zhang (1999b).

Definition 1. Let us consider a factor g = {gt}, where for all t, gt belongs to R. A useless

factor is a factor which is uncorrelated with asset returns. So if g is useless, then E(Rtgt) =

0n×1.

The useless factors are defined here the same way as in Gospodinov et al. (2014). Now

suppose that a useless factor g is added to k initial factors, which are assumed to be all useful.

Therefore, the SDF takes the following form:

yt = f̃
′
tλ
us
t + gtλ

ūs
t . (2.16)

Following the theoretical framework, we assume that at each date t, λust = ΛusZt−1 and

λūst = ΛūsZt−1 (with Λus a (k + 1) × p - matrix, and Λūs a 1 × p - matrix ). By denoting

Λ = (Λ′us
... Λ′ūs)

′ , the aggregate pricing error is therefore given by

e(Λ) = E(et(Λ)) = E
[
Et−1

(
Rt(f̃

′
t ⊗ Z

′
t−1)

)
vec(Λ′us) + Et−1 (Rtgt)Z

′
t−1vec(Λ

′
ūs)− 1n

]
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= E
(
Rt(f̃

′
t ⊗ Z

′
t−1)

)
vec(Λ′us)− 1n

= e(Λus) . (2.17)

The matrix Λ is obtained through a minimization of a quadratic function of the aggregate

pricing error e(Λ). As the matrix Λūs associated with the useless factor is not identified, we

follow Gospodinov et al. (2014) and consider the following assumptions.

Assumption 3. For a useless factor g, the pseudo-true value of the matrix Λūs is set such

that Λ∗ūs = 01×p.

Assumption 4. (i) The number of assets n is such that n > p(k + 2); (ii) The processes

(R′t, f
′
t , gt) are jointly stationary and ergodic, with finite fourth moments; (iii) et(Λus) −

E(et(Λus)) defines a martingale difference sequence; (iv) If we denote Dus ≡ E(Rt(f̃
′
t⊗Z

′
t−1))

and Dūs ≡ E(RtgtZ
′
t−1), the column rank of both the matrices Dus and (Dus

... Dūs) is p(k+1).

Assumption 3 is consistent with Gospodinov et al. (2014) as they show that the SDF

parameter of a useless factor is symmetrically distributed around 0. As the true value of

Λ∗ūs is actually not identifiable, this seems to be a “natural choice” according to their words.

There is another motivation for this assumption; since useless factors are not correlated to

priced returns, they should not be rewarded (by being useless, they do not characterize any

risk). So the risk premium linked to a useless factor should be null. One way to achieve that

condition is to set at 0, the SDF parameters associated with useless factors.

Assumption 4 is the assumption 1 from Gospodinov et al. (2014). Note that Dus is a

n× p(k + 1) matrix, and (Dus
... Dūs) is a n× p(k + 2) matrix.

Proposition 3. Under assumptions 3 and 4, we have as T →∞:

(i) if the SDF is correctly specified, vec(Λ̂′us−Λ′us) = Op(T−1/2); but its asymptotic distribution

is not normal;

(ii) if the SDF is misspecified, vec(Λ̂′us − Λ′us) = Op(1); so vec(Λ̂′us) is not consistent.

The previous proposition shows that when the SDF includes a useless factor, a con-

ventional estimation procedure would lead to inference issues on the matrix associated with

the useful factors (Λ′us). These issues would be even worse when the model is misspecified.

Proposition 3 is a multivariate version of Proposition 1 of Gospodinov et al. (2014).9

9We present in appendices, some asymptotic behaviors of the vector vec(Λ̂
′
ūs).
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The presence of a useless factor in an asset pricing model is generally presented as an

issue only for the estimation of the risk premium, this one being following Fama & MacBeth

(1973), a second-step estimator which depends on the estimation of the betas.10 Proposition

3 shows that under the general SDF approach, useless factors generate inference issues even

for first-step estimators like SDF parameters.

Note that although the presence of a useless factor does not necessarily mean the SDF is

misspecified, a useless factor leads here to a failure of conditions for consistency and asymptotic

normality. This may increase the pricing errors, and therefore increase the HJ-distance. So,

having a useless factor in the SDF model have similar consequences on the HJ-distance than

any kind of misspecification. Therefore, by solving misspecification issues, our estimator

should also be able to correct issues from having useless factors in the SDF.

In the next subsection, we show that in the presence of a useless factor, our misspecification-

robust conditional model can actually provide standard statistics for inference on Λ.

Wald tests in the presence of a useless factor

Gospodinov et al. (2014) show that the t-statistics built with misspecification-robust

standard errors are normal, even when the asymptotic behaviors of the estimators are not

standard (following the inclusion of a useless factor in the SDF). Likewise, we analyze the

asymptotic behavior of the Wald tests on Λ, with misspecification-robust variance matrices.

Starting from the model (2.16), we consider the empirical counterpart of the asymptotic

variance Σ, as presented in Proposition 1. We can write Σ̂ as follows (with Σ̂11 a p(k + 1)×

p(k + 1) - matrix, and Σ̂22 a p× p - matrix):

Σ̂ =

Σ̂11 Σ̂12

Σ̂21 Σ̂22

 , (2.18)

with Σ̂11 and Σ̂22 respectively the covariance matrices associated with
√
Tvec(Λ̂′us) and

√
Tvec(Λ̂′ūs).
10The beta-estimator of useless factors have non-standard limit behaviors; this compromises inferences on

risk premia
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Let us consider the following Wald statistics:

W (vec(Λ̂′us)) = T
(
vec(Λ̂′us)− vec(Λ

′
us)
)′

(Σ̂11)−1
(
vec(Λ̂′us)− vec(Λ

′
us)
)

(2.19)

W (vec(Λ̂′ūs)) = T
(
vec(Λ̂′ūs)

)′
(Σ̂22)−1

(
vec(Λ̂′ūs)

)
(2.20)

W (vec(Λ̂′us)) and W (vec(Λ̂′ūs)) are respectively the statistics associated with the Wald tests

on the useful factors and on the useless factor.

Let us also consider Dus ≡ E(Rt(f̃
′
t ⊗ Z

′
t−1)) and Dūs ≡ E(RtgtZ

′
t−1) as defined in

Assumption 4; D̂us and D̂ūs their empirical counterparts (which are assumed to be consis-

tent). As saw previously, vec(Λ̂′) =
(
vec(Λ̂us)

′
vec(Λ̂ūs)

′
)′

can be obtained through an OLS

regression on the following model:

Û−
1
2 1n = Û−

1
2 D̂usvec(Λ

′
us) + Û−

1
2 D̂ūsvec(Λ

′
ūs) + ε . (2.21)

Assumption 5. If we denote D̃ūs ≡ Û−
1
2 D̂ūs and M̂ūs ≡ In − D̃ūs(D̃

′
ūsD̃ūs)−1D̃

′
ūs, then

√
TD̃

′
usM̂ūsε

p→ rε ∼ N (0p(k+1), Vrε) . (2.22)

As a motivation, note that from (2.21), we have M̂ūsÛ
− 1

2 1n = M̂ūsD̃usvec(Λ
′
us) + M̂ūsε.

Assumption 5 is a regularity condition on the errors of this model.11

The following proposition gives the asymptotic behaviors of the two Wald statistics

W (vec(Λ̂′us)) and W (vec(Λ̂′ūs)).

Proposition 4. If the model is misspecified, then under assumptions 3, 4 and 5, we have as

T →∞:

W (vec(Λ̂′us))
d→ χ2(p(k + 1)) and W (vec(Λ̂′ūs))

d→ χ2(p) , (2.23)

with W (vec(Λ̂′us)) and W (vec(Λ̂′ūs)) respectively defined as in (2.19) and (2.20).

Proposition 4 follows the conclusions of Gospodinov et al. (2014). It shows that although

the inclusion of a useless factor leads to asymptotically non-standard estimators, we can still

perform reliable inferences by using misspecification-robust covariance matrices.
11Since the model includes a useless factor we know, from the results of Gospodinov et al. (2014), that

r
′
εV
−1
rε rε is dominated by a chi-squared distribution. Assumption 5 is a sufficient condition for that result.
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2.3 Monte Carlo simulations

Two exercises are performed in this section. The first is to measure the rejection prob-

abilities of the tests on vec(Λ′)12. For that exercise, we follow the idea of Gospodinov et al.

(2014). However, we consider that all the models are potentially misspecified, so the pricing

errors in the simulations are set to their empirical values.13 The second exercise is to compare

the mean of the conditional SDF parameters to the unconditional SDF parameter from Kan

& Robotti (2009).

Misspecification and pseudo-true values of estimates

Since the model is misspecified, we do not have the real value of vec(Λ′).14 For our

subsequent analysis, we will choose its empirical counterparts as pseudo-true value.

The mean vector and the covariance matrix associated with the vector Yt = (Z ′t−1
... f ′t ⊗

Z
′
t−1

... R′t)
′ are respectively given by µ = (µ′1

... µ′2
... µ′3)′ and V = (Vij)1≤i,j≤3 (recall that

Vij is the covariance matrix between elements i and j from the vector Yt). Therefore, D =

E
(
Rt(f̃

′
t ⊗ Z

′
t−1)

)
=
(
V31 + µ3µ

′
1 , V32 + µ3µ

′
2

)
. By denotingX =

(
V̂31 + µ̂3µ̂

′
1 , V̂32 + µ̂3µ̂

′
2

)
,

the pseudo-true values of vec(Λ′) is defined by:

vec(Λ′∗) = (X ′ V̂ −1
33 X)−1(X ′ V̂ −1

33 1n), (2.24)

and the pseudo-true value of the SDF vector at each date t is defined by λ∗t = Λ∗Zt−1.

2.3.1 Rejection probabilities of the Wald tests on vec(Λ′)

Under assumption 3, we show that there is no size distortion when testing if the row

vectors of Λ are respectively equal to their real counterparts (even when the model includes

a useless factor). Testing for each row of Λ is equivalent to testing for each p consecutive

elements of vec(Λ′). The reason for doing so is that, as λt = ΛZt−1, the ith parameter of λt is
12Any potential size distortion of the t-tests on the conditional parameter λt would be a consequence of a

size distortion of the t-tests on ~(Λ
′
); as at each date t, λ̂t = Λ̂Zt−1

13Gospodinov et al. (2014) set the pricing error to zero to simulate a correctly specified model (and accord-
ingly adjust the mean of the returns R during the simulations). They show that a misspecification-robust test
is efficient on both a correctly specified and a misspecified model, while a classic test is efficient only when the
model is correctly specified. When the model is correctly specified, the misspecification-robust statistic and
the classical one are identical

14Because of the misspecification, some parameters are not fully identified.
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obtained by a scalar product of the ith row of Λ with the instruments. Therefore, by testing

for the row vectors of Λ, we are able to obtain a first information about the unconditional

relevance of each factor. This unconditional relevance will be later compared with the results

of Gospodinov et al. (2014) to see if our conditional model is coherent with the literature. Note

that testing for the time-varying relevance of the factors is the second step of our analysis.

As λt = ΛZt−1, we can deduce the time-varying distribution of λt from the distribution of

vec(Λ′).

For the simulations, we consider three different specifications as linear factor models: (i)

a model with a constant and a useful factor (model 1), (ii) a model with a constant and a

useless factor (model 2), (iii) a model with a constant, a useful and a useless factor (model 3).

As data, we use the monthly gross returns on: the one-month T-bill rate, the 25 Fama-French

portfolios sorted on size and book-to-market, and the 17 Fama-French industry portfolios.

The data are from Jul 1963 to Dec 2016, so the number of periods is T = 642 and the

number of assets is n = 43. We also consider the market return as the factor from which

the characteristics of the normal random variable used as useful factor during the simulations

are calibrated. The market factor and all the returns are from Kenneth French’s website. As

usual, the useless factor is generated as a random variable uncorrelated with the returns.15

The simulation design is the same as in Gospodinov et al. (2014), with the exception that the

empirical value of Λ is considered as the pseudo-true value of that matrix (denoted Λ∗ or Λ∗)

during the simulations. We perform 10 000 Monte Carlo replications. For each replication, we

simulate a normal random variable whose characteristics are calibrated on the mean and the

variance of Yt = (Z ′t−1
... f ′t ⊗Z

′
t−1

... R′t)
′ , and we estimate the matrix Λ̂. As Λ is a (k+ 1)× p -

matrix, we perform k + 1 Wald tests to assess the equality between the row vectors of Λ̂ and

those of Λ∗. Four sample sizes are considered: T = 200, T = 600, T = 1000, and T = 2500.

Table 2.1 shows the rejection probabilities from the Wald tests on H0 : Λi = Λ∗i (with

Λi the row vector of Λ associated with the ith factor). We see that when the misspecified

SDF does not include a useless factor (model 1), there is no size distortion, as the empirical

sizes from the tests are very close to the nominal sizes. This result holds even for relatively

small sample sizes. When the misspecified SDF includes a useless factor (models 2 and 3),

there is almost no size distortion for the tests on vectors associated with the useless factor;
15We will use a normal distribution with mean 0 and variance 1 in our simulations, to generate a useless

factor
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on the other hand, there is an under-rejection for the tests on vectors associated with the

useful factors. This under-rejection is not necessarily bad, as it just shows that the model is

conservative on the useful factors when there is a potential useless factor in the SDF. The

most important observation here is that the model is able to recognize the useless factors,16

and that the estimated row vectors of Λ are equal to the pseudo-true values, even when the

misspecified SDF contains useless factors. However, we need to verify if the estimated row

vectors associated with the useful factors are different from the null vector, as this would

mean they are effectively significant.

The previous analysis shows that the conditional model is able to detect the useless

factors and shrink the value of the row vectors associated with them to 01×p. Next, we need

to measure the ability of the conditional model to properly detect useful factors. Indeed, the

real values of the row vectors of Λ associated with the useful factors are different from 01×p.

So, we need to assess how often in the simulations these row vectors are different from the

null vector.

Table 2.2 presents the rejection probabilities from the Wald tests on H0 : Λi = 0p. The

objective here is to see how the power of this test evolves, relatively to the useful factors. We

see that when the misspecified SDF does not contain a useless factor, the power of the test

is 1. Therefore, without any useless factor, the useful factors are always correctly identified

by the conditional model. On the other hand, when there is a useless factor in the SDF, the

power of the test decreases with the nominal size. For the useful factors, the test rejects the

null H0 : Λi = 0p with a probability greater than 0.8 only when the nominal size is 0.1. So, in

order for the model to detect the useful factors with a success rate of at least 80%, the type-1

error could be increased to 0.1 (instead of the usual 0.05 in empirical analysis).17

Note that as the real value of the row vector associated with a useless factor is 01×p, the

results for the tests on the useless factors in Table 2.2 are the same as in Table 2.1 (the two

tests are identical for useless factors).

16Remember that according to assumption 3, the real value of the row vector associated with a useless factor
is set to 01×p. So, the proximity between the rejection probabilities and the nominal sizes actually means that
the model performs well at detecting the useless factors.

17Here, increasing the ability of the model to detect properly the useful factors is equivalent to decreasing
the type-2 error. One way to achieve this goal is to increase the type-1 error; this is what we will do here.
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Table 2.1: Rejection probabilities from the Wald tests on H0 : Λi = Λ∗i

size = 10% size = 5% size = 1%
200 600 1000 2500 200 600 1000 2500 200 600 1000 2500

Model 1 constant (Λ0) 0.098 0.098 0.098 0.099 0048 0.049 0.047 0.049 0.012 0.011 0.009 0.010
useful (Λ1) 0.109 0.102 0.105 0.104 0.057 0.053 0.053 0.050 0.013 0.013 0.012 0.009

Model 2 constant (Λ0) 0.001 0 0 0 0 0 0 0 0 0 0 0
useless (Λ2) 0.155 0.110 0.105 0.100 0.083 0.055 0.051 0.047 0.020 0.009 0.009 0.009

Model 3
constant (Λ0) 0.007 0.001 0 0 0.002 0 0 0 0 0 0 0
useful (Λ1) 0.010 0.001 0 0 0.003 0 0 0 0 0 0 0
useless (Λ2) 0.153 0.109 0.104 0.094 0.080 0.055 0.051 0.046 0.017 0.010 0.009 0.009

We perform 10 000 Monte-Carlo replications. At each replication, we generate returns, factors and instruments from a multivariate normal
distribution with characteristics calibrated to the empirical mean and the empirical variance of Yt = (Z′t−1 , f

′
t ⊗ Z

′
t−1 , R

′
t)
′ . The mean of a

useless factor is set to 1, and the covariance between a useless factor and the returns (or the instruments) is set to zero. We then estimate Λ and
test for each row i of that matrix, the null H0 : Λi = Λ∗i . Λ0 is the row vector associated with the constant factor parameter, while Λ1 and Λ2
are associated respectively to the useful factor parameter and the useless factor parameter. The Wald statistics are compared to the critical values
from the χ2 distribution with p levels of freedom. The table gives the rejection probabilities across the replications
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Table 2.2: Rejection probabilities from the Wald tests on H0 : Λi = 01×p

size = 10% size = 5% size = 1%
200 600 1000 2500 200 600 1000 2500 200 600 1000 2500

Model 1 constant (Λ0) 1 1 1 1 1 1 1 1 1 1 1 1
useful (Λ1) 1 1 1 1 1 1 1 1 1 1 1 1

Model 2 constant (Λ0) 0.691 0.771 0.787 0.800 0.564 0.666 0.691 0.707 0.329 0.450 0.480 0.494
useless (Λ2) 0.155 0.110 0.105 0.100 0.083 0.055 0.051 0.047 0.020 0.009 0.009 0.009

Model 3
constant (Λ0) 0.820 0.882 0.893 0.905 0.724 0.815 0.836 0.847 0.496 0.640 0.672 0.700
useful (Λ1) 0.687 0.812 0.836 0.855 0.560 0.717 0.751 0.782 0.303 0.498 0.554 0.591
useless (Λ2) 0.153 0.109 0.104 0.094 0.080 0.055 0.051 0.046 0.017 0.010 0.009 0.009

We perform 10 000 Monte-Carlo replications. At each replication, we generate returns, factors and instruments from a multivariate normal
distribution with characteristics calibrated to the empirical mean and the empirical variance of Yt = (Z′t−1 , f

′
t ⊗ Z

′
t−1 , R

′
t)
′ . The mean of a

useless factor is set to 1, and the covariance between a useless factor and the returns (or the instruments) is set to zero. We then estimate Λ and
test for each row i of that matrix, the null H0 : Λi = 01×p. Λ0 is the row vector associated with the constant factor parameter, while Λ1 and Λ2
are associated respectively to the useful factor parameter and the useless factor parameter. The Wald statistics are compared to the critical values
from the χ2 distribution with p levels of freedom. The table gives the rejection probabilities across the replications
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2.3.2 Importance of using misspecification-robust tests

As shown by Gospodinov et al. (2014), when the SDF is misspecified and the tests on the

SDF parameters are performed without taking into account pricing errors, researchers could

mistakenly conclude that a useless factor is priced. So, by using SDF models, they confirm the

results obtained with linear factor models, about inference in the presence of useless factors.18

In this paper, we do not present the comparison between the results from a conventional

test (built under the assumption that the model is correctly specified and the HJ-distance is

0), and the results from our misspecification-robust test. These results are similar to those

of Gospodinov et al. (2014) and are available upon request.19 Instead, we present here an

illustration to show how the correction proposed improves inferences. For this purpose, we

consider again model 3 as presented in the previous subsection (a constant, a useful and a

useless factor). Following the simulations made in that model and presented in Table 2.1, we

compare the distributions of each row vector of Λ, with the χ2(3) distribution (as we have

p = 3 instruments in Z, the row vectors of Λ are of dimension 3). We also perform the same

simulation process with conventional standard errors, assuming that the model is correctly

specified and that the pricing error is 0.

Figures 2.1 and 2.2 present the distributions of the row vectors associated with the useful

factor and the useless factor, when using respectively no correction and the misspecification

correction. We see that the misspecification-robust Wald test is able to correct the distortions,

particularly for the useless factor. With this correction, a useless factor is much less likely

to be declared priced. However, we can observe that the misspecification-robust Wald test

create a little divergence in the result of the row vector associated with the useful factor. But

this little divergence does not generate a big issue, as we have seen in the previous subsection

(we can still have a reasonable statistical power for the test H0 : Λ1 = 01×p, where Λ1 is the

row vector associated with the useful factor).
18See Kan & Zhang (1999b); Kleibergen (2009); Bryzgalova (2016); Pondi (2017).
19When the model is correctly specified, the misspecification-robust test and the conventional test have

similar results. But when the model is misspecified, the conventional test performs poorly.
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Figure 2.1: Wald statistics (with no correction) and χ2(3) distribution

We analyze the Wald statistics from the test H0 : Λi = Λi∗, where Λi is the ith row vector of Λ. The first line and the
second line figures respectively present the results for the useful factor, and the results for the useless factor (for different
values of T during the simulations). Λ2

∗ = 01×3 is taken as the real value of the row vector associated with the useless
factor.
The dashed line is the χ2(3) distribution; we consider that distribution because we have p = 3 instruments in Z, so the
row vectors are of dimension 3.

Figure 2.2: Misspecification-robust Wald statistics and χ2(3) distribution
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2.4 Empirical analysis

In this section, we perform two exercises. In the first, we analyze the coherence of our

model with the literature. In the second, we analyze the dynamical relevance of the factors

in some popular models, which are used in this paper as benchmarks.

2.4.1 Benchmarks and data

Seven asset pricing models are used as benchmarks:20 (i) the CAPM (the market excess

return Mkt-Rf as unique factor); (ii) the three-factor model of Fama & French (1993), FF3

(CAPM factor plus the size factor SMB and the value factor HML); (iii) the four factor model

of Carhart (1997), CARH (FF3 factors plus the momentum factor Mom); (iv) the five-factor

model of Fama & French (2015), FF5 (FF3 factors plus the profitability factor RMW and the

investment factor CMA); (v) a human capital model inspired by Lettau & Ludvigson (2001)

and Gospodinov et al. (2014), C-LAB (CAPM factor plus the consumption-wealth ratio Cay

and the growth rate in per capita labor income Lab); (vi) the consumption CAPM, CCAPM

(the growth rate in real per capita non-durable consumption Cnd as unique factor); (vii) the

durable CCAPM of Yogo (2006), D-CCAPM (CAPM and CCAPM factors plus the growth

rate in real per capita durable consumption Cd).21

Furthermore, we consider as returns the gross return on the one-month T-bill rate, the

gross returns of 25 Fama-French portfolios sorted on size and book-to-market, and the gross

returns of 17 Fama-French industry portfolios; so n = 43 (all the returns are from Kenneth

French’s website). As indicated in subsection 2.2.2, three financial variables are considered

as instruments: the default spread, the term spread and the dividend yields. For CAPM,

FF3, CARH, and FF5, we have monthly data from Jul 1963 to Dec 2016, whereas for C-

LAB, CCAPM, and D-CCAPM, we have quarterly data from Q3 1963 to Q4 2016. As lagged

variables, the instruments go from Jun 1963 to Nov 2016 in monthly models, and from Q2

1963 to Q3 2016 in quarterly models. The monthly sample has T = 642 months, and the

quarterly sample has T = 214 quarters.
20For a complete description of each SDF, see Gospodinov et al. (2014).
21The Fama-French factors and the momentum are from K. French’s website. The consumption wealth ratio

is from Martin Lettau’s website. The labor income, the durable and the non-durable consumption are from
the Bureau of Economic Analysis.
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2.4.2 Coherence of the model with the literature

As emphasized above, the SDF parameter estimator presented in this paper is a con-

ditional version of the unconditional SDF parameter estimator proposed by Kan & Robotti

(2009) and Gospodinov et al. (2014) (hereafter GKR). Similar to this paper, GKR analyze

the relevance of the factors in some popular linear asset pricing models. As our model esti-

mates firstly an unconditional row vector for each factor in the SDF, it would be interesting

to compare the coherence between the significance of these row vectors and the significance

of their associated factors, following the selection process of GKR. Precisely, for a given SDF,

we want to see if the row vector of Λ associated with a factor is significant only when this

factor is significant according to GKR. For that comparison, we simply consider the SDFs

used by GKR that are: the CAPM, the FF3, the C-LAB, the CCAPM, and the D-CCAPM.

Table 2.3 presents, for the selected SDFs, the significance of the row vectors of Λ for each

factor, as well as the significance of their associated factors in GKR. We observe that, for each

factor in the selected SDFs, there is a coherence between the significance of the associated row

vector according to our model and its significance according to GKR. In all the SDFs, the row

vector of Λ associated with a given factor is: (i) significant for the factors with a significant

SDF parameter in GKR; (ii) insignificant for those with an insignificant SDF parameter in

GKR.

Note that if the row vector of Λ associated with a factor is significant, this does not

mean that the conditional SDF parameters associated with that factor will all be significant

through time. In fact, the significance of a row vector as analyzed above does not tell us

anything about each component of that vector; for example, some may be significant if we

perform single t-tests on them, and some others may not (recall that a vector can be significant

with only one of its components being significant). Since λt = ΛZt−1, the conditional SDF

parameter (at time t) associated with a factor is therefore, as a scalar product, the sum of

terms whose significance is not known. Then it can be significant or not, no matter the results

we have on the significance of the row vectors of Λ.
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Table 2.3: Significance of the row vectors of Λ̂ and coherence with GKR

Monthly models
significance Wald stat significance coherence with

GKR (H0 : Λi = 01×p) Λ̂i GKR
CAPM Mkt-Rf yes 12.52

(∗∗∗)
yes yes

FF3
Mkt-Rf yes 20.32

(∗∗∗)
yes yes

SMB no 0.99 no yes
HML yes 24.00

(∗∗∗)
yes yes

Quarterly models
significance Wald stat significance coherence with

GKR (H0 : Λi = 01×p) Λ̂i GKR
CCAPM Cnd no 1.65 no yes

D-CCAPM
Mkt-Rf no 2.02 no yes
Cnd no 2.20 no yes
Cd no 3.93 no yes

C-LAB
Mkt-Rf no 2.52 no yes
Cay no 4.20 no yes
Lab no 2.50 no yes

For each model, we estimate the matrix Λ̂ and we test whether the row vectors of this matrix are significant or
not. Then we compare if the result on the significance of the row vector associated with a given factor, is coherent
with the selection process of GKR. The Wald tests here are performed at 10%, 5% and 1% level of significance
(the results are summarized respectively by ∗, ∗∗ and ∗ ∗ ∗). The critical values of the Wald tests are estimated
from the distribution χ2(p) (with p = 3 the number of instruments), and are respectively equal to 6.25, 7.81 and
11.34.

2.4.3 Comparisons with the unconditional estimator of GKR

We compare the SDF parameters of the conditional model (λt) with those of GKR un-

conditional model (λ). Two exercises are performed here. First, we compare the mean of the

conditional parameters with the unconditional one; second, we compare at every month (or

every quarter) for both types of estimators.

Average conditional parameter vs unconditional parameter

Our aim here is to see if the conditional parameters can be presented as a result of a

temporal disaggregation of the information brought by the unconditional parameter. For

that purpose, we test if the mean of the conditional estimators, is equal through time, to the

value of the unconditional estimator.
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Table 2.4 presents the p-values from the test of H0 : E(λt) = λ. The asymptotic variance

used for the test is estimated through bootstrap; the table provides the results for different

number of replications in the bootstrap process (599, 999, and 9999). It appears that, except

for the market factor Mkt-Rf in CAPM, FF3, and FF5, the null is globally accepted. So, on

average and for most factors, the unconditional SDF parameter is the mean of the conditional

SDF parameters. This means that, for some factors, the information brought by the condi-

tional SDF parameters proposed in this paper is a temporal disaggregation of the information

brought by the unconditional parameter of Kan & Robotti (2009). Nonetheless, as the test

is rejected for the market factor in three different SDFs, this result cannot be generalized.

This indicates that, even if there is a link between the unconditional and the conditional SDF

parameters, the information brought by both types of parameters is, not surprisingly, very

different. Note in this regard that the unconditional model can be viewed as a particular case

of the conditional model, with one instrument (p = 1) and Zt = 1 at each period t.

Conditional parameters vs unconditional parameters

For each SDF benchmark, we aim to observe here how often the conditional parameter is

equal to the unconditional parameter. The idea is to make sure that the difference between

the two is not caused by noise.

Table 2.5 summarizes the information on the p-values from the tests H0 : λt = λ and gives

the frequency at which the null is rejected (a test is performed every month or quarter, so we

have T decisions at the end). Like previously, the asymptotic variances used for the tests are

estimated through bootstrap. We observe that in all the SDFs, the probability of rejection22

is non-null at least for one factor other than the constant factor. This confirms that there is

a real difference between our conditional parameter and the non-conditional parameter from

GKR. Note that in each SDF with only traded factors (CAPM, FF3, CARH, and FF5), the

market factor Mkt-Rf is the factor with the highest probability of rejection (respectively 0.74,

0.62 0.52, 0.62). On the other hand, factors for which the difference between both estimators is

never significant are: the size factor SMB in FF3 and CARH, the profitability factor RMW in

FF5, the non-durable consumption factor Cnd in CCAPM and D-CCAPM, the labor income

factor Lab in C-LAB, and the market factor Mkt-Rf in D-CCAPM and C-LAB.

22What we call here probability of rejection is the ratio between the number of rejection through time, and
the overall number of periods (months or quarters)
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Table 2.4: p-values from the test of H0 : E(λt) = λ

Monthly models
nrep = 599 nrep = 999 nrep = 9999

CAPM Int 0.114 0.114 0.106
Mkt-Rf 0.007 0.007 0.007

FF3

Int 0.084 0.083 0.086
Mkt-Rf 0.010 0.011 0.011
SMB 0.543 0.543 0.558
HML 0.174 0.168 0.161

CARH

Int 0.211 0.206 0.200
Mkt-Rf 0.118 0.109 0.105
SMB 0.461 0.457 0.475
HML 0.681 0.673 0.666
Mom 0.495 0.498 0.491

FF5

Int 0.308 0.313 0.310
Mkt-Rf 0.004 0.005 0.005
SMB 0.987 0.987 0.987
HML 0.216 0.212 0.212
RMW 0.600 0.599 0.595
CMA 0.523 0.528 0.526

Quarterly models
nrep = 200 nrep = 600 nrep = 1000

CCAPM Int 0.487 0.495 0.492
Cnd 0.503 0.510 0.509

D-CCAPM

Int 0.049 0.055 0.052
Mkt-Rf 0.326 0.326 0.337
Cnd 0.527 0.531 0.535
Cd 0.077 0.079 0.090

C-LAB

Int 0.465 0.455 0.459
Mkt-Rf 0.701 0.693 0.699
Cay 0.208 0.206 0.204
Lab 0.770 0.767 0.768

The table presents the results of the test of the equality between the mean of the
conditional SDF parameters and the unconditional parameter of GKR. The asymptotic
variances are estimated through bootstrap; nrep bootstrap replications are performed.
By defining M = E(λt)− λ, the test is equivalent to H0 : M = 0.
At each replication s, a bootstrap sample is generated and the matrix Λ∗,s is estimated.
The conditional parameter at t is estimated through the relation λ∗,st = Λ∗,sZt−1. The
unconditional parameter λ∗,s is estimated by replicating GKR. Thereafter, we define
M∗,s = 1

T

∑T

t=1 λ
∗,s
t − λ∗,s. The asymptotic variance of M is therefore given by

1
nrep−1

∑nrep

s=1 (M∗,s − M̄∗)(M∗,s − M̄∗)′ , with M̄∗ = 1
nrep

∑nrep

s=1 M∗,s
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Table 2.5: Summary of the results from the tests H0 : λt = λ

Monthly models
p-values rejection of the null

(number of periods
over 642)

percentiles
mean 20 40 60 80

CAPM Int 0.247 0.002 0.037 0.140 0.593 299 (0.47)
Mkt-Rf 0.092 0 0.001 0.008 0.120 475 (0.74)

FF3

Int 0.258 0.005 0.051 0.192 0.551 254 (0.40)
Mkt-Rf 0.168 0.001 0.005 0.041 0.353 397 (0.62)
SMB 0.627 0.466 0.523 0.650 0.834 0 (0)
HML 0.480 0.220 0.355 0.556 0.764 20 (0.03)

CARH

Int 0.261 0.019 0.099 0.243 0.477 211 (0.33)
Mkt-Rf 0.209 0.004 0.015 0.108 0.481 335 (0.52)
SMB 0.499 0.261 0.405 0.533 0.724 0 (0)
HML 0.529 0.181 0.445 0.649 0.851 19 (0.03)
Mom 0.338 0.098 0.177 0.339 0.623 70 (0.11)

FF5

Int 0.347 0.053 0.175 0.356 0.668 123 (0.19)
Mkt-Rf 0.149 0.001 0.004 0.042 0.313 396 (0.62)
SMB 0.137 0.013 0.023 0.052 0.195 380 (0.59)
HML 0.182 0.013 0.030 0.096 0.338 319 (0.50)
RMW 0.438 0.187 0.285 0.480 0.723 0 (0)
CMA 0.243 0.028 0.065 0.192 0.486 233 (0.36)

Quarterly models
p-values rejection of the null

(number of periods
over 214)

percentiles
mean 20 40 60 80

CCAPM Int 0.523 0.273 0.436 0.605 0.833 10 (0.05)
Cnd 0.514 0.336 0.408 0.531 0.707 0 (0)

D-CCAPM

Int 0.344 0.095 0.183 0.328 0.644 25 (0.12)
Mkt-Rf 0.511 0.244 0.336 0.606 0.805 0 (0)
Cnd 0.633 0.389 0.540 0.733 0.866 0 (0)
Cd 0.298 0.031 0.095 0.288 0.600 62 (0.29)

C-LAB

Int 0.358 0.076 0.178 0.389 0.675 18 (0.08)
Mkt-Rf 0.423 0.173 0.289 0.438 0.679 0 (0)
Cay 0.403 0.073 0.214 0.520 0.736 31 (0.14)
Lab 0.568 0.407 0.511 0.593 0.739 0 (0)

The table presents the results from the tests of the equality between the conditional SDF parameters and
the unconditional parameter by GKR; note that there are T tests, as we have T periods. The asymptotic
variances are estimated through bootstrap; nrep bootstrap replications are performed. By defining Dt =
λt − λ, the test at period t is equivalent to H0 : Dt = 0.
At each replication s, a bootstrap sample is generated and the matrix Λ∗,s is estimated. The conditional
parameter at t is estimated through the relation λ∗,st = Λ∗,sZt−1. The unconditional parameter λ∗,s is
estimated by replicating GKR. Thereafter, we define at every period t, D∗,st = λ∗,st −λ∗,s. The asymptotic
variance ofDt is therefore given by 1

nrep−1
∑nrep

s=1 (D∗,st −D̄t
∗)(D∗,st −D̄t

∗)′ , with D̄t∗ = 1
nrep

∑nrep

s=1 D∗,st
The numbers in brackets are the probabilities for each factor, to have a significant difference between the
two types of estimators. They are obtained by the ratios between the number of periods where the null is
rejected, and the overall number of periods. The tests are performed at 5% level of significance.
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2.4.4 Dynamical relevance of the factors

We analyze the relevance of each factor in the selected benchmark models. This relevance

is assessed through the significance of the SDF parameter, which is tested at each period

t of the samples (642 periods for monthly SDFs and 214 periods for quarterly SDFs). For

each factor, the relevance frequency is the ratio between the number of periods where its

SDF parameter is significant and the overall number of periods. This relevance frequency is

presented below either as a probability or as a percentage.

Traded and non-traded factors

Table 2.6 presents the results for the dynamical relevance of the factors in each of the

seven SDFs used as benchmark. We see that except for the CCAPM, all of the benchmarks

are relevant for the linear pricing of the selected portfolios. In fact, all of the factors are

significant during some periods between 1963 and 2016. With the exception of factors with

relevance frequencies equal to 0, the least significant factors are the consumption-wealth factor

Cay in C-LAB and the durable consumption factor Cd in D-CCAPM; both are relevant 28%

of the time.

Not surprisingly, SDFs with only traded factors are those with the highest dynamical

significance. However, we can see that in some of these SDFs, not all the traded factors are

significant through time. This is particularly the case for the size factor SMB in FF3 and

CARH, and for the profitability factor RMW in FF5; the relevance frequency of the two

factors is equal to 0 in each of these SDFs. Moreover, we see that adding a supplementary

factor to a prior SDF does not always have the same consequences on the relevance of the

prior factors. For example, the transition CAPM → FF3 leads to a decrease of the relevance

frequency of the market factor Mkt-Rf, from 0.64 to 0.58, whereas the transition FF3 → FF5

leads to an increase of the relevance frequency of the same factor, from 0.58 to 0.67.
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Table 2.6: Dynamical relevance of the factors

Monthly models
p-values significance

at 5% (over
642 periods)

significance
at 10% (over
642 periods)

percentiles
mean 20 40 60 80

CAPM Int 0.267 0.016 0.078 0.264 0.556 199 (0.31) 290 (0.45)
Mkt-Rf 0.181 0.001 0.009 0.062 0.374 371 (0.58) 414 (0.64)

FF3

Int 0.259 0.012 0.088 0.185 0.519 192 (0.30) 277 (0.43)
Mkt-Rf 0.204 0.002 0.019 0.123 0.435 306 (0.48) 370 (0.58)
SMB 0.578 0.388 0.465 0.611 0.770 0 (0) 0 (0)
HML 0.198 0.011 0.067 0.147 0.399 222 (0.35) 307 (0.48)

CARH

Int 0.212 0.003 0.045 0.144 0.447 268 (0.42) 345 (0.54)
Mkt-Rf 0.234 0.006 0.038 0.196 0.502 269 (0.42) 328 (0.51)
SMB 0.598 0.408 0.545 0.637 0.783 0 (0) 0 (0)
HML 0.207 0.022 0.086 0.169 0.309 190 (0.30) 272 (0.42)
Mom 0.142 0.008 0.018 0.035 0.243 416 (0.65) 459 (0.71)

FF5

Int 0.312 0.059 0.208 0.328 0.553 123 (0.19) 168 (0.26)
Mkt-Rf 0.157 0.001 0.008 0.061 0.285 363 (0.57) 433 (0.67)
SMB 0.251 0.098 0.146 0.216 0.358 0 (0) 148 (0.23)
HML 0.288 0.064 0.135 0.257 0.495 91 (0.14) 195 (0.30)
RMW 0.511 0.320 0.396 0.525 0.696 0 (0) 0 (0)
CMA 0.319 0.026 0.126 0.341 0.645 197 (0.31) 234 (0.36)

Quarterly models
p-values significance

at 5% (over
214 periods)

significance
at 10% (over
214 periods)

percentiles
mean 20 40 60 80

CCAPM Int 0.729 0.553 0.669 0.834 0.941 0 (0) 0 (0)
Cnd 0.452 0.254 0.315 0.450 0.655 0 (0) 0 (0)

D-CCAPM

Int 0.745 0.586 0.694 0.804 0.891 0 (0) 0 (0)
Mkt-Rf 0.693 0.512 0.677 0.782 0.897 0 (0) 0 (0)
Cnd 0.559 0.335 0.471 0.614 0.794 0 (0) 0 (0)
Cd 0.375 0.074 0.196 0.401 0.695 5 (0.02) 60 (0.28)

C-LAB

Int 0.537 0.239 0.456 0.611 0.813 0 (0) 0 (0)
Mkt-Rf 0.520 0.206 0.421 0.607 0.820 0 (0) 0 (0)
Cay 0.293 0.075 0.149 0.294 0.460 23 (0.11) 61 (0.28)
Lab 0.516 0.200 0.380 0.572 0.859 0 (0) 0 (0)

The table presents the dynamics of the relevance of the factors in the asset-pricing models used as benchmark. Every
period t, we perform a bilateral test on H0 : λt = 0; the “p-values” columns give the dynamics of the p-values of these
tests.
The numbers in brackets are the probabilities for each factor, to have a significant SDF parameter. They are obtained by
the ratios between the number of periods where the SDF parameters are significant, and the overall number of periods.
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As the results confirm the advantage of using SDFs with traded factors, they bring a

nuance on non-traded factors, as it appears that the C-LAB and the D-CCAPM carry some

relevance for linear pricing. Although none of the factors of these two SDFs survives during the

selection process of GKR, our conditional model shows that these SDFs possess some linear

pricing abilities. The consumption-wealth ratio Cay of C-LAB and the durable consumption

Cd of D-CCAPM are priced 28% of the time.

The results on the CCAPM are striking, as they show that this SDF is not able to provide

any linear risk-adjustment in connection with the selected portfolios. So, unlike C-LAB and

D-CCAPM, the results from GKR regarding the irrelevance of CCAPM for capturing linear

risk-adjustment are completely confirmed by our conditional analysis. Since any SDF is

theoretically linked to consumption through the Euler identity, this result calls for further

analysis of the relevance of the CCAPM for pricing non-linear risk-adjustments.

We know that the relevance of a given factor depends not only on that factor, but also

on the other factors in the SDF. We may have a factor which is relevant in a given SDF but

not in another one. This result is confirmed by our model, as we observe that the market

excess return is not relevant in D-CCAPM and in C-LAB, even if it is relevant in CAPM,

FF3, CARH and FF5. In order to see in each of our benchmarks, how the relevance of prior

factors evolves after an addition of new factors in the SDF, we perform a case by case analysis.

Case by case analysis: transitions in monthly SDFs

In this part, we present an analysis of the four SDFs with only traded factors (CAPM,

FF3, CARH and FF5). For each factor in these SDFs, we want to see how the dynamics (and

the relevance) of the SDF parameters change when we move from one SDF to another. We

analyze the following transitions: CAPM to FF3, FF3 to CARH, and FF3 to FF5. We only

consider SDFs with traded factors here, because they share several factors.

CAPM to FF3. The addition of the size and value factors (SMB and HML) to the initial

market factor Mkt-Rf does not change the dynamic of the SDF parameters associated with

the latter. Figures 2.3 and 2.4 show that Mkt-Rf has the same dynamics in both CAPM and

FF3. However, its relevance frequency decreases during the transition, as presented in Table

2.6 (64% to 58%).
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GKR show though their unconditional model that, in FF3, the size factor SMB is irrel-

evant, while the market factor Mkt-Rf and the value factor HML are relevant; our results

concur with their conclusion. Indeed, in FF3, the relevance frequencies of Mkt-Rf and HML

are respectively 0.58 and 0.48; while the relevance frequency of SMB is 0. Note that since the

late 1990s the value factor is mainly irrelevant, unlike the market factor. It should also be

noted that during the last US recession, the market factor has been relevant in some months

whereas the value factor has been mainly irrelevant.

FF3 to CARH. Adding the momentum factor Mom to the three factors of FF3 leads to

an important modification of the dynamics of the SDF parameters associated with the size

factor SMB and the value factor HML. It also results in a slight modification of the dynamics

of the SDF parameters associated with the market factor Mkt-Rf (see Figures 2.4 and 2.5).

These changes suggest that a part of the information explained by the additional momentum

factor was already explained by the three factors of FF3. In other words, there is a correlation

between the momentum factor and the FF3 factors.

The relevance frequency of the market factor (from 0.58 to 0.51) and the value factor

(from 0.48 to 0.42) both decrease after the transition, whereas the relevance of the size factor

remains the same at 0%. So, although the additional momentum factor has an important

relevance frequency (0.71), we cannot conclude here (at least not yet), which of the SDF

between FF3 and CARH is better. A global comparison between the SDFs will be presented

later.

FF3 to FF5. As previously, the addition of the profitability factor RMW and the invest-

ment factor CMA to the three factors of FF3 leads to changes in the dynamics of the SDF

parameters associated with the FF3 factors. However, in this case the changes are more

pronounced, as the volatility of the SDF parameters increases drastically (Figures 2.4 and

2.6).

Again, similar to the previous transition, we cannot determine yet whether FF5 is better

than FF3, as Table 2.6 shows that the relevance frequency of the value factor HML decreases

after the transition (0.42 to 0.30). However, it should be noted that the relevance frequency

of the size factor SMB, with a value of 0.23, is no longer null in FF5.

84



Figure 2.3: Evolution of the SDF-parameters (CAPM)

The figure presents the evolution of the conditional SDF-parameters associated with the market factor Mkt-Rf in
CAPM. The red dots are the insignificant SDF-parameters, according to the tests performed every period. The straight
horizontal line is the line y = 0; and the vertical shaded bands represent US recessions, according to the National Bureau
of Economic Research (NBER).

Figure 2.4: Evolution of the SDF-parameters (FF3)

The figure presents the evolution of the conditional SDF-parameters associated with the factors of FF3. The red dots are
the insignificant SDF-parameters, according to the tests performed every period. The straight horizontal line is the line
y = 0; and the vertical shaded bands represent US recessions, according to the National Bureau of Economic Research
(NBER).
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Figure 2.5: Evolution of the SDF-parameters (CARH)

The figure presents the evolution of the conditional SDF-parameters associated with the factors of CARH. The red dots
are the insignificant SDF-parameters, according to the tests performed every period. The straight horizontal line is
the line y = 0; and the vertical shaded bands represent US recessions, according to the National Bureau of Economic
Research (NBER).
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Figure 2.6: Evolution of the SDF-parameters (FF5)

The figure presents the evolution of the conditional SDF-parameters associated with the factors of FF5. The red dots are
the insignificant SDF-parameters, according to the tests performed every period. The straight horizontal line is the line
y = 0; and the vertical shaded bands represent US recessions, according to the National Bureau of Economic Research
(NBER).
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Figure 2.7: Evolution of the SDF-parameters (D-CCAPM)

The figure presents the evolution of the conditional SDF-parameters associated with the factors of D-CCAPM. The red
dots are the insignificant SDF-parameters, according to the tests performed every period. The straight horizontal line
is the line y = 0; and the vertical shaded bands represent US recessions, according to the National Bureau of Economic
Research (NBER).
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Figure 2.8: Evolution of the SDF-parameters (C-LAB)

The figure presents the evolution of the conditional SDF-parameters associated with the factors of C-LAB. The red
dots are the insignificant SDF-parameters, according to the tests performed every period. The straight horizontal line
is the line y = 0; and the vertical shaded bands represent US recessions, according to the National Bureau of Economic
Research (NBER).

2.4.5 Dynamical relevance of the SDFs: general comparisons

A general comparison of the benchmarks is performed here. As a comparison criterion,

we use the number of periods where at least one factor other than the constant factor in the

SDF is priced (relevant months or quarters). We consider here that the higher this number,

the better the SDF. We will subsequently consider the relevance frequency of the SDF as the

ratio between the number of periods where at least one factor other than the constant factor

in the SDF is priced, and the total number of periods. The selected criteria give the frequency

at which each SDF is able to price at least a part of the linear adjustment induced by the

selected portfolios.

We will use for the current analysis Figures 2.9 and 2.10, which provide respectively, for

all the monthly SDFs and quarterly SDFs, dates where no factor in the SDF other than the

constant factor is relevant (irrelevant months or quarters). The figures combined summarize

information about the relevance of each SDF and provide the dates for which each of them can

be considered as irrelevant. These two figures are completed for the purposes of our analysis

by Table 2.7, which presents the relevance frequency of the SDFs in the last decades.
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SDFs with only traded factors

On Figure 2.9, we observe that FF3 and FF5 are the two best SDFs, as these are the

two SDFs with the smallest number of irrelevant months (respectively 128 and 125 months).

Therefore, FF3 is not surprisingly an overall better SDF than CAPM. Moreover, we see that

adding a new traded factor to FF3 does not guarantee a better model; CARH has more

irrelevant months than FF3 while FF5 and FF3 have almost the same number of irrelevant

months. Nonetheless, it should be noted that the relevance of the benchmarks follows various

dynamics.

Table 2.7 shows that, until the 1990s, FF3 was the best SDF. Since the 2000s, FF5 and

CARH have better relevance frequencies. FF5 was better than CARH until the 1970s, but

since then it is no longer the case. Thus, although FF3 and FF5 have been overall the best

SDFs in the last 50 years, the dynamical analysis shows that CARH is the best SDF since the

year 2000, followed by FF5, which is the second best in that period.

SDFs with non-traded factors.

Figure 2.10 shows that the number of irrelevant quarters is quite the same between C-

LAB and D-CCAPM (respectively 153 and 154). Hence, the overall relevance of these two

SDFs is the same. Moreover, the dynamics of the relevance of the two SDFs do not differ

much from each other. However, from Table 2.7, we see that C-LAB has been a better SDF

until the 1990s. Since the 2000s, the relevance frequency of D-CCAPM is higher between the

two.
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Table 2.7: Relevance frequencies of the benchmarks over decades

Monthly models
overall 60s-70s 80s 90s 00s-10s

CAPM 0.645 0.540 0.633 0.783 0.672
FF3 0.801 0.889 0.917 0.933 0.569
CARH 0.757 0.480 0.842 0.925 0.877
FF5 0.805 0.803 0.783 0.917 0.755

Quarterly models
overall 60s-70s 80s 90s 00s-10s

CCAPM 0 0 0 0 0
D-CCAPM 0.280 0.091 0.325 0.550 0.279
C-LAB 0.285 0.182 0.400 0.600 0.132
The table gives the relevance frequencies of the SDFs in the last decades.
For each decade, the relevance frequency is estimated as the ratio between
the number of relevant months (or quarters) in the decade, and the total
number of months (or quarters) in the same decade. The overall relevance
frequencies are those estimated on all the sample. For each SDF, the
relevant periods (months or quarters) are the periods where at least one
factor other than the constant factor in the SDF is priced.

Figure 2.9: Relevance of the monthly SDFs through time

The figure presents the evolution of the relevance of the monthly SDFs through time. The red dots are the months where
no factor in the SDF other than the constant factor is significant, and the numbers in brackets are the total number of
these months (there are 642 months in the sample). The vertical shaded bands represent US recessions, according to the
National Bureau of Economic Research (NBER)
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Figure 2.10: Relevance of the quarterly SDFs through time

The figure presents the evolution of the relevance of the quarterly SDFs through time. The red dots are the quarters
where no factor in the SDF other than the constant factor is significant, and the numbers in brackets are the total
number of these quarters (there are 214 quarters in the sample). The vertical shaded bands represent US recessions,
according to the National Bureau of Economic Research (NBER)

2.5 Conclusion

There are always some empirical differences between the priced SDF models and the

admissible ones. These differences generate pricing errors, which must be taken into account

during inferences processes on SDF parameters, otherwise some irrelevant factors may be

mistakenly presented as priced. Moreover, as markets strategies are dynamics, the SDFs

parameters must be analyzed under a dynamical perspective (with conditional SDF models),

and subsequent inference strategies must be developed.

In this paper, we develop a misspecification-robust inference method for conditional SDF

models. Our inference method is designed for time-varying SDF parameters. Simulations show

that even in an extreme case where a useless factor is included in the model, our method is

able to eliminate the negative effects of the useless factor and restore the relevance of the
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useful factors.

Empirically, we apply our method on seven popular SDF models, and analyze their dy-

namical relevance from 1963 to 2016. For models with only traded factors, the results show

that FF3 and FF5 have been the overall best SDFs in the last 50 years. However, since 2000,

the best SDF is CARH. These results confirm that having more factors does not systemati-

cally lead to better SDFs; an SDF with three factors can outperform another with four or five

factors. For models with non-traded factors, the results show that C-LAB and D-CCAPM

carry some relevance for linear pricing, while CCAPM is not able to provide any linear-risk

adjustment throughout the period of the analysis.

93



Appendices for Chapter 2 (B)

B1 Robustness checks; bootstrapped variances

The time-varying SDF parameters presented in this paper rely on estimation of the covariance

matrix V = Cov(Yt), with Yt = (Z ′t−1
... f ′t ⊗ Z

′

t−1
... R′t)

′ (see equation (2.7)). We need to robustly
estimate this covariance, so that the model will produce reliable empirical results.

The results presented in the paper are obtained by estimating V as a robust order 2 matrix.
Instead of using a conventional covariance matrix, this choice is the one which give the better results
for the data used and according to the asymptotic variances presented in propositions 1 and 2. In
this section we test the robustness of this strategy. Specifically, using non-parametric methods, we
estimate V here as a conventional covariance matrix and perform all the relevance tests23 presented
in the paper. For each test here, asymptotic variances are estimated by bootstrap.

Table B.1 shows the relevance frequencies of factors in each of the benchmarks. The results
obtained in the paper are confirmed on several aspects. The size factor SMB is never relevant in
FF3 and CARH, while the profitability factor RMW is never relevant in FF5. On SDFs with non-
tradable factors, the results about factors with a 0% relevance frequency are also confirmed. However,
it should be noted in all these SDFs the constant factor carry some relevance (0.44% in CCAPM, 8%
in D-CCAPM and 49% in C-LAB). Nonetheless, as the constant factor is not considered as a factor of
interest in our analysis24, this is not an issue. Therefore, we can also conclude here that D-CCAPM
and C-LAB are able to provide linear risk-adjustments while CCAPM cannot.

Results from Table B.2 confirm that since the 2000s CARH is the best SDF, followed by FF5.
However, FF5 is still a better overall SDF. On the other hand, results on SDFs with non-tradable factors
show that C-LAB is a better SDF than D-CCAPM (overall and over the last decades). This contradicts
a bit the results obtained in the paper, as we concluded that the two SDFs have a similar overall

23What we call relevance tests here are the tests about the relevance frequencies of factors in the selected
benchmarks

24Recall that the relevance frequency of a SDF is defined in the paper as: the ratio between the number of
periods where at least one factor other than the constant factor in the SDF is priced and the total number of
periods
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relevance and that D-CCAPM is better since the 2000s (C-LAB being better until the 1990s). This
difference can be explained by the fact that while the relevance frequency of the durable consumption
factor Cd in D-CCAPM is the same in the paper as in here (0.28), the relevance frequency of the
consumption-wealth ratio Cay in C-LAB has increased from 0.28 in the paper, to 0.56 in the current
analysis.
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Table B.1: Dynamical relevance of the factors (bootstrapped variances)

Monthly models
p-values rejection of the null

(number of periods
over 642)

percentiles
mean 20 40 60 80

CAPM Int 0.085 0 0 0 0.020 537 (0.84)
Mkt-Rf 0.115 0 0 0.005 0.155 465 (0.72)

FF3

Int 0.062 0 0 0.001 0.022 527 (0.82)
Mkt-Rf 0.145 0 0.003 0.033 0.262 406 (0.63)
SMB 0.566 0.339 0.436 0.658 0.803 0 (0)
HML 0.201 0.016 0.067 0.131 0.386 224 (0.35)

CARH

Int 0.029 0 0 0 0.026 551 (0.86)
Mkt-Rf 0.173 0 0.005 0.079 0.366 351 (0.55)
SMB 0.486 0.266 0.384 0.515 0.728 0 (0)
HML 0.189 0.005 0.045 0.118 0.339 265 (0.41)
Mom 0.127 0.001 0.004 0.015 0.226 429 (0.67)

FF5

Int 0.028 0 0 0.002 0.037 539 (0.84)
Mkt-Rf 0.130 0 0.002 0.026 0.191 420 (0.65)
SMB 0.135 0.010 0.020 0.068 0.217 356 (0.55)
HML 0.194 0.015 0.039 0.113 0.351 296 (0.46)
RMW 0.373 0.139 0.233 0.388 0.593 0 (0)
CMA 0.238 0.009 0.050 0.188 0.492 257 (0.40)

Quarterly models
p-values rejection of the null

(number of periods
over 214)

percentiles
mean 20 40 60 80

CCAPM Int 0.149 0.006 0.043 0.121 0.268 95 (0.44)
Cnd 0.334 0.134 0.176 0.275 0.580 0 (0)

D-CCAPM

Int 0.437 0.098 0.225 0.608 0.799 17 (0.08)
Mkt-Rf 0.569 0.321 0.430 0.642 0.832 0 (0)
Cnd 0.406 0.196 0.241 0.387 0.656 0 (0)
Cd 0.309 0.034 0.107 0.303 0.591 59 (0.28)

C-LAB

Int 0.191 0.003 0.015 0.103 0.396 105 (0.49)
Mkt-Rf 0.403 0.105 0.255 0.438 0.687 0 (0)
Cay 0.166 0.002 0.014 0.079 0.282 119 (0.56)
Lab 0.329 0.083 0.166 0.296 0.613 0 (0)

The table presents the dynamics of the relevance of the factors in the asset-pricing models used as bench-
mark. Every period t, we perform a bilateral test on H0 : λt = 0; the “p-values” columns give the dynamics
of the p-values of these tests. The asymptotic variances are estimated through bootstrap; nrep bootstrap
replications are performed.
At each replication s, a bootstrap sample is generated and the matrix Λ∗,s is estimated. Then the
conditional parameters are estimated through the relation λ∗,st = Λ∗,sZt−1. The asymptotic variance of
λt is therefore given by 1

nrep−1
∑nrep

s=1 (λ∗,st − λ̄∗t )(λ∗,st − λ̄∗t )′ , with λ̄∗t = 1
nrep

∑nrep

s=1 λ∗,st .
The numbers in brackets are the probabilities for each factor, to have a significant SDF parameter. They
are obtained by the ratios between the number of periods where the SDF parameters are significant, and
the overall number of periods. The tests are performed at 5% level of significance.
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Table B.2: Relevance frequencies of the benchmarks over decades (bootstrapped variances)

Monthly models
overall 60s-70s 80s 90s 00s-10s

CAPM 0.724 0.626 0.675 0.817 0.794
FF3 0.765 0.707 0.833 0.942 0.676
CARH 0.723 0.389 0.833 0.900 0.877
FF5 0.902 0.965 0.933 0.958 0.789

Quarterly models
overall 60s-70s 80s 90s 00s-10s

CCAPM 0 0 0 0 0
D-CCAPM 0.275 0.091 0.325 0.550 0.265
C-LAB 0.556 0.454 0.700 0.775 0.441
The table gives the relevance frequencies of the SDFs in the last decades.
For each decade, the relevance frequency is estimated as the ratio between
the number of relevant months (or quarters) in the decade, and the total
number of months (or quarters) in the same decade. The overall relevance
frequencies are those estimated on all the sample. For each SDF, the
relevant periods (months or quarters) are the periods where at least one
factor other than the constant factor in the SDF is priced.
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B2 Proofs

B2.1 Proof of Equation (2.4)

As the SDF yt is a scalar, we have:

ytRt = Rtyt = Rtvec(y
′

t) = Rtvec(λ
′

tf̃t) = Rtvec(Z
′

t−1Λ
′
f̃t) = Rt

(
(f̃
′

t ⊗ Z
′

t−1)vec(Λ
′
)
)

= Rt

(
(f̃
′

t ⊗ Z
′

t−1)
)
vec(Λ

′
) (B.1)

The result follows. �

B2.2 Proof of Proposition 1

We follow for this proof the argument of Kan & Robotti (2009). With the definitions of φ and
rt(φ) in section 2.2.3 , we have by the argument of Hansen & Singleton (1982),

√
T (φ̂− φ)→ N

(
0 (s+n)(s+n+3)

2
, S0

)
, (B.2)

with
s = p(k + 1) and S0 =

∞∑
j=−∞

E
(
rt(φ)rt+j(φ)

′
)
. (B.3)

We have Yt =


Zt−1

ft ⊗ Zt−1

Rt

, µ = E(Yt) =


µ1

µ2

µ3

, and V = var(Yt) =


V11 V22 V33

V21 V22 V23

V31 V32 V33

. The

matrix D can be written as following:

D = E
(
Rt(f̃

′

t ⊗ Z
′

t−1)
)

= E
(
Rt

[
(1, f

′

t )⊗ Z
′

t−1

])
=
(
E
(
RtZ

′

t−1

)
, E

(
Rt[f

′

t ⊗ Z
′

t−1]
))

=
(
cov(Rt, Z

′

t−1) + E(Rt)E(Z
′

t−1) , cov(Rt, f
′

t ⊗ Z
′

t−1) + E(Rt)E(f
′

t ⊗ Z
′

t−1)
)

=
(
V31 + µ3µ

′

1 , V32 + µ3µ
′

2

)
. (B.4)

D is a function of φ. Therefore, vec(Λ′) is a function of φ. Then, by the delta method, we have:

√
T (vec(Λ̂

′
)− vec(Λ

′

∗))→ N

0s,
(
∂vec(Λ′∗)
∂φ′

)
S0

(
∂vec(Λ′∗)
∂φ′

)′ , (B.5)
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with ∂vec(Λ
′
∗)

∂φ′
=
(
∂vec(Λ

′
∗)

∂µ
′
1

... ∂vec(Λ
′
∗)

∂µ
′
2

... ∂vec(Λ
′
∗)

∂µ
′
3

... ∂vec(Λ
′
∗)

∂vech(V )′

)
.

We know that the duplication matrix Ds+n is a
(
(s+ n)2 × 1

2 (s+ n)(s+ n+ 1)
)
- matrix such

that vec(V ) = Ds+nvech(V ). Therefore,

∂vec(Λ′∗)
∂vech(V )′ = ∂vec(Λ′∗)

∂vec(V )′ ·
∂vec(V )
∂vech(V )′ = ∂vec(Λ′∗)

∂vec(V )′ ·Ds+n. (B.6)

It follows that Σ =
(
∂vec(Λ′∗)
∂µ′

... ∂vec(Λ
′
∗)

∂vec(V )′ ·Dp(k+1)+n

)
S0

(
∂vec(Λ′∗)
∂µ′

... ∂vec(Λ
′
∗)

∂vec(V )′ ·Dp(k+1)+n

)′
is the asymp-

totic variance of
√
T (vec(Λ̂′)− vec(Λ′∗). This completes the proof. �

B2.3 Proof of Lemma 1

We have ∂vec(Λ
′
)

∂φ′
=
(
∂vec(Λ

′
)

∂µ
′
1

... ∂vec(Λ
′
)

∂µ
′
2

... ∂vec(Λ
′
)

∂µ
′
3

... ∂vec(Λ
′
)

∂vec(V )′ ·Dp(k+1)+n

)
. Now let us determine

the expressions of the derivatives in brackets.

Expression of ∂vec(Λ′ )
∂µ′

First of all let us note that

∂vec(Λ′)
∂µ
′
1

= ∂vec(Λ′)
∂vec(D)′ ·

∂vec(D)
∂µ
′
1

∂vec(Λ′)
∂µ
′
2

= ∂vec(Λ′)
∂vec(D)′ ·

∂vec(D)
∂µ
′
2

∂vec(Λ′)
∂µ
′
3

= ∂vec(Λ′)
∂vec(D)′ ·

∂vec(D)
∂µ
′
3

.

(B.7)

By equation (B.4), we have

dD =
(
dV31 + (dµ3)µ

′

1 + µ3(dµ
′

1) , dV32 + (dµ3)µ
′

2 + µ3(dµ
′

2)
)

(B.8)

dvec(D) =

 dvec(V31) + (µ1 ⊗ In)dvec(µ3) + (Ip ⊗ µ3)dvec(µ1)
dvec(V32) + (µ2 ⊗ In)dvec(µ3) + (Ikp ⊗ µ3)dvec(µ2)

 , (B.9)
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with d, the total differential as defined by Magnus & Neudecker (2007). Therefore,

∂vec(D)
∂µ
′
1

=

Ip ⊗ µ3

0kpn×p

 =

 Ip

0kp×p

⊗ µ3

∂vec(D)
∂µ
′
2

=

 0np×kp
Ikp ⊗ µ3

 =

0p×kp
Ikp

⊗ µ3

∂vec(D)
∂µ
′
3

=

µ1 ⊗ In
µ2 ⊗ In

 =

µ1

µ2

⊗ In .
(B.10)

Now we consider the following result;

Result 1. If we differentiate with respect to µ to get the Jacobian matrix, then for H = (D′V −1
33 D)−1,

∂vec(Λ′)
∂vec(D)′ = −H ⊗ e

′
V −1

33 −
(
vec(Λ

′
)
)′
⊗HD

′
V −1

33 . (B.11)

We deduce the expressions of ∂vec(Λ
′
)

∂µ
′
1

, ∂vec(Λ
′
)

∂µ
′
2

and ∂vec(Λ
′
)

∂µ
′
3

through straightforward developments,
using (B.7), (B.10) and (B.11).

Expression of ∂vec(Λ′ )
∂vec(V)′

As vec(Λ′) = (D′V −1
33 D)−1(D′V −1

33 1n) = H(D′V −1
33 1n), we have:

dvec(Λ
′
) =

(
1
′

nV
−1
33 D ⊗ Ip(k+1)

)
dvec(H)+

(
H ⊗ 1

′

nV
−1
33

)
dvec(D)+

(
1
′

n ⊗HD
′
)
dvec(V −1

33 ). (B.12)

Let us consider the following result

Result 2.
∂vec(V −1

33 )
∂vec(V )′ = −

(
0n×p(k+1)

... V −1
33

)
⊗
(

0n×p(k+1)
... V −1

33

)
. (B.13)

∂vec(D)
∂vec(V )′ =

 Ip 0p×kp 0p×n
0kp×p Ikp 0kp×n

⊗ (0n×p
... 0n×kp

... In

)
. (B.14)

∂vec(H)
∂vec(V )′ = −Kp(k+1),p(k+1)

H
 Ip 0p×kp 0p×n

0kp×p Ikp 0kp×n

⊗ (0p(k+1)×p(k+1)
... HD′V −1

33

)
−H

 Ip 0p×kp 0p×n
0kp×p Ikp 0kp×n

⊗ (0p(k+1)×p(k+1)
... HD′V −1

33

)
(B.15)
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+
(

0p(k+1)×p(k+1)
... HD′V −1

33

)
⊗
(

0p(k+1)×p(k+1)
... HD′V −1

33

)
.

By the previous result, we can make the following developments (where K is a commutation
matrix as defined by Magnus & Neudecker (2007, p.54) and s = p(k + 1));

(
1
′

n ⊗HD
′
) ∂vec(V −1

33 )
∂vec(V )′ = −

(
01×p(k+1)

... 1
′

nV
−1
33

)
⊗
(

0p(k+1)×p(k+1)
... HD

′
V −1

33

)
; (B.16)

(
H ⊗ 1

′

nV
−1
33

) ∂vec(D)
∂vec(V )′ =

H
 Ip 0p×kp

0kp×p Ikp

 ... 0p(k+1)×n

⊗ (01×p(k+1)
... 1′nV −1

33

)
; (B.17)

(
1
′

nV
−1
33 D ⊗ Is

) ∂vec(H)
∂vec(V )′ = −K1,s

(
Is ⊗ 1′nV −1

33 D
)H

 Ip 0p×kp 0p×n
0kp×p Ikp 0kp×n

⊗ (0s×s
... HD′V −1

33

)
− 1

′

nV
−1
33 DH

 Ip 0p×kp 0p×n
0kp×p Ikp 0kp×n

⊗ (0s×s
... HD′V −1

33

)

+ 1
′

nV
−1
33 D

(
0s×s

... HD′V −1
33

)
⊗
(

0s×s
... HD′V −1

33

)

= −H

 Ip 0p×kp 0p×n
0kp×p Ikp 0kp×n

⊗ (01×s
... (vec(Λ′))′D′V −1

33

)

− (vec(Λ
′
))
′

 Ip 0p×kp 0p×n
0kp×p Ikp 0kp×n

⊗ (0s×s
... HD′V −1

33

)

+
(

01×s
... (vec(Λ′))′D′V −1

33

)
⊗
(

0s×s
... HD′V −1

33

)
. (B.18)

The expression of ∂vec(Λ
′
)

∂vec(V )′ is obtained by summing (B.16), (B.17) and (B.18). This completes the
proof of Lemma 1 �

Proof of Result 1
We have dvec(Λ′) =

(
1′nV −1

33 ⊗ Ip(k+1)

)
dvec

(
(D′V −1

33 D)−1D
′
)
. The result follows by applying

the results (A16) and (A17) from Kan & Robotti (2009). �

Proof of Result 2 - (B.13)
First of all, note that by the chain rule and by the theorem 3 in Magnus & Neudecker (2007,
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p.171),
∂vec(V −1

33 )
∂vec(V )′ = ∂vec(V −1

33 )
∂vec(V33)′ ·

∂vec(V33)
∂vec(V )′ =

(
−V −1

33 ⊗ V
−1
33
)
· ∂vec(V33)
∂vec(V )′ . (B.19)

Moreover, we have V33 = AV A
′ , with A =

(
0n×p(k+1)

... In

)
. So ∂vec(V33)

∂vec(V )′ = A ⊗ A, and ∂vec(V −1
33 )

∂vec(V )′ =

−
(
V −1

33 A⊗ V −1
33 A

)
= −

(
0n×p(k+1)

... V −1
33

)
⊗
(

0n×p(k+1)
... V −1

33

)
. �

Proof of Result 2 - (B.14)
We will use here the expression of dvec(D) as given by (B.9). We have V31 = AV B1 and V32 =

AV B2, with A =
(

0n×p
... 0n×kp

... In
)
, B1 =

(
Ip

... 0p×kp
... 0p×n

)′
and B2 =

(
0kp×p

... Ikp
... 0kp×n

)′
.

So ∂vec(V31)
∂vec(V )′ = B

′

1 ⊗A,
∂vec(V32)
∂vec(V )′ = B

′

2 ⊗A and ∂vec(D)
∂vec(V )′ =

B′1
B
′

2

⊗A. The result follows. �

Proof of Result 2 - (B.15)
We note as previously s = p(k + 1). We have H = (D′V −1

33 D)−1; so by the chain rule,

∂vec(H)
∂vec(V )′ = −(H ⊗H) · ∂vec(D

′
V −1

33 D)
∂vec(V )′ . (B.20)

Let us determine the expression of ∂vec(D
′
V −1

33 D)
∂vec(V )′ . By applying the total differential, we have

d(D′V −1
33 D) = (dD′)V −1

33 D +D
′(dV −1

33 )D +D
′
V −1

33 (dD). Therefore,

dvec(D
′
V −1

33 D) = (D
′
V −1

33 ⊗ Ip(k+1))dvec(D
′
) + (D

′
⊗D

′
)dvec(V −1

33 ) + (Ip(k+1) ⊗D
′
V −1

33 )dvec(D)︸ ︷︷ ︸
Ξ

= (D
′
V −1

33 ⊗ Ip(k+1))Kn,p(k+1)dvec(D) + Ξ

= Kp(k+1),p(k+1)(Ip(k+1) ⊗D
′
V −1

33 )dvec(D) + Ξ

= (Kp(k+1),p(k+1) + I(p(k+1))2)(Ip(k+1) ⊗D
′
V −1

33 )dvec(D) + (D
′
⊗D

′
)dvec(V −1

33 )

= (Ks,s + Is2)(Is ⊗D
′
V −1

33 )dvec(D) + (D
′
⊗D

′
)dvec(V −1

33 ) (B.21)

We already have ∂vec(V −1
33 )

∂vec(V )′ and ∂vec(D)
∂vec(V )′ (resp. in equations B.13 and B.14). By using these expressions,

we have:

∂vec(D′V −1
33 D)

∂vec(V )′ = (Ks,s + Is2)

 Ip 0p×kp 0p×n
0kp×p Ikp 0kp×n

⊗ (0s,s
... D

′
V −1

33

)
−
(

0s,s
... D

′
V −1

33

)
⊗
(

0s,s
... D

′
V −1

33

)
.

(B.22)
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By the properties of the commutation matrix, (H ⊗H)Ks,s = Ks,s(H ⊗H) (as H is a s× s -matrix).
Therefore by using (B.20) and(B.22), we have the result through a straightforward calculation. �

B2.4 Proof of Proposition 2

We have λt = vec(λ′t) = vec(Z ′t−1Λ′Ik+1) = (Ik+1⊗Z
′

t−1)vec(Λ′); the result follows by proposition
1. �

B2.5 Proof of Proposition 3

In this proof, I consider the useful factors as the firsts factors, whereas the useless factor is the
second factor. Subsequently, I consider the following notations: D1 ≡ Dus, D2 ≡ Dūs, Λ1 ≡ Λus and
Λ2 ≡ Λūs. I analyze here both the distributions of vec(Λ̂1) and vec(Λ̂2), even if proposition3 is only
about vec(Λ1).

Case 1: the SDF is correctly specified

As the factor 2 is useless, D2 = 0n×p. So we have 1n = D1vec(Λ
′

1) +D2vec(Λ
′

2) = D1vec(Λ
′

1). D1

and D2 are expectations (as well as U , defined in assumption 2). So I use their empirical counterparts
D̂1, D̂2 and D3 (which are assumed to be consistent), and therefore consider the following linear model:

Û−
1
2 1n = Û−

1
2 D̂1vec(Λ

′

1) + Û−
1
2 D̂2vec(Λ

′

2) + ε

= D̃1vec(Λ
′

1) + D̃2vec(Λ
′

2) + ε.
(B.23)

I consider here the matrices D̃1 ≡ Û−
1
2 D̂1 and D̃2 ≡ Û−

1
2 D̂2. I also consider the projection matrices

M̂1 = In − D̃1(D̃′1D̃1)−1D̃
′

1 and M̂2 = In − D̃2(D̃′2D̃2)−1D̃
′

2, so I can have the two following models:

M̂1Û
− 1

2 1n = M̂1D̃2vec(Λ
′

2) + M̂1ε (B.24)

M̂2Û
− 1

2 1n = M̂2D̃1vec(Λ
′

1) + M̂2ε. (B.25)

Then I consider the following additional assumption;

Assumption 6.
(i) The error vector in the model (B.23) is such that E(εε′ |D1, D2) = Σ (conditional homoskedasticity)
(ii) vec

(√
T Û−

1
2 D̂2

)
= vec

(√
TD̃2

)
p→ w2 ∼ N (0np, Inp)

(iii)
√
T Û−

1
2

(
1n − D̂1vec(Λ

′

1)
)

p→ w1 ∼ N (0n, Vw1) (when the SDF is correctly specified)

Assumption 6(i) is a regularity condition on the errors of the model (B.23). Assumptions 6(ii and
iii) are coherent with assumptions made by Gospodinov et al. (2014) (see the proof of their proposition
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1 in the supplemental material). Like them I also assume that w1 and w2 are independent of each
other, to satisfy the non-correlation between the useless factor and the useful ones. By assumption
6(ii), we have

√
TD̃2 =

√
T Û−

1
2 D̂2

d→ vec−1(w2) = W2; with vec−1 the inverse vectorization operator
and W2 a n× p - matrix.

Note that M̂1 is a consistent estimator of the matrix M1 = In − U−
1
2D1(D′1U−1D1)−1D

′

1U
− 1

2 ,
and M̂2 converges towardMw2 = In−W2(W ′

2W2)−1W
′

2 (withW2 = vec−1(w2), defined as previously).
From the model (B.25), we have;

√
T (vec(Λ̂

′

1)− vec(Λ
′

1)) =
√
T

[(
D̃
′

1M̂2D̃1

)−1
D̃
′

1M̂2Û
− 1

2 1n −
(
D̃
′

1M̂2D̃1

)−1
D̃
′

1M̂2D̃1vec(Λ
′

1)
]

=
(
D̃
′

1M̂2D̃1

)−1
D̃
′

1M̂2
√
T
(
Û−

1
2 1n − D̃1vec(Λ

′

1)
)

=
(
D̃
′

1M̂2D̃1

)−1
D̃
′

1M̂2Û
− 1

2
√
T
(

1n − D̂1vec(Λ
′

1)
)

p→
(
D
′

1U
− 1

2Mw2U
− 1

2D1

)−1
D
′

1U
− 1

2Mw2U
− 1

2w1 (B.26)

Therefore, we have vec(Λ̂′1) − vec(Λ′1) = Op(T−
1
2 ); the consistency follows. Mw2 is a function of the

random variable w2, which follows a normal distribution. Since w1 also follows a normal distribution,
the asymptotic distribution of vec(Λ̂′1) is given as a ratio of two distributions: the first one is the
product of two normal distributions, and the second one is a normal distribution. This completes the
proof for the “correctly specified case”. �

Lemma 2. (asymptotic properties of vec(Λ̂′2) when the SDF is correctly specified)
If the SDF is correctly specified, the asymptotic behavior of the row vector associated with the useless
factor is such that:

vec(Λ̂
′

2) = Op(1) (B.27)

Proof of Lemma 2. From the model (B.24), we have:

vec(Λ̂
′

2) =
(
D̃
′

2M̂1D̃2

)−1
D̃
′

2M̂1Û
− 1

2 1n

=
(
D̃
′

2M̂1D̃2

)−1
D̃
′

2M̂1Û
− 1

2

(
1n − D̂1vec(Λ

′

1)
)

(as D̃1 = Û−
1
2 D̂1, and M̂1D̃1 = 0)

=
(

(
√
TD̃2)

′
M̂1(
√
TD̃2)

)−1
(
√
TD̃

′

2)M̂1
√
T Û−

1
2

(
1n − D̂1vec(Λ

′

1)
)

d→ (W
′

2M1W2)−1W2M1w1 (B.28)

Therefore, vec(Λ̂′2) = Op(1). �
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Case 2: the SDF is misspecified

Here, we do not have no more the equality 1n = D1vec(Λ
′

1), since the error vector is not null ( we
have e(Λ1) = D1vec(Λ

′

1)− 1n = Op(1) ). I still consider assumption 6(i and ii), as well as the matrices
M̂1, M̂2, Mw2 and W2 as defined previously. We have;

vec(Λ̂
′

1)− vec(Λ
′

1) =
(
D̃
′

1M̂2D̃1

)−1
D̃
′

1M̂2Û
− 1

2 1n −
(
D̃
′

1M̂2D̃1

)−1
D̃
′

1M̂2D̃1vec(Λ
′

1)

=
(
D̃
′

1M̂2D̃1

)−1
D̃
′

1M̂2

(
Û−

1
2 1n − D̃1vec(Λ

′

1)
)

p→
(
D
′

1U
− 1

2Mw2U
− 1

2D1

)−1
D
′

1U
− 1

2Mw2U
− 1

2

(
1n −D1vec(Λ

′

1)
)

≡
(
D
′

1U
− 1

2Mw2U
− 1

2D1

)−1
D
′

1U
− 1

2Mw2U
− 1

2 (−e(Λ1)) (B.29)

Therefore, vec(Λ̂′1)− vec(Λ′1) = Op(1). This completes the proof for the “misspecified case”. �

Lemma 3. (asymptotic properties of vec(Λ̂′2) when the SDF is misspecified)
If the SDF is misspecified, the asymptotic behavior of the row vector associated with the useless factor
is such that:

vec(Λ̂
′

2) = Op(
√
T ) (B.30)

Proof of Lemma 3. From the model (B.24), we have:

1√
T
vec(Λ̂

′

2) =
(

(
√
TD̃

′

2)M̂1(
√
TD̃2)

)−1
(
√
TD̃

′

2)M̂1Û
− 1

2 1n
p→ (W2M1W2)−1

W2M1U
− 1

2 1n (B.31)

Therefore, vec(Λ̂′2) = Op(
√
T ) �

B2.6 Proof of Proposition 4

We still have a SDF with the constant factor, k useful factors and a useless factor. Then I still
consider the notations and the additional assumption made in the previous proof.

Asymptotic properties of W(vec(Λ̂′1))

We know that:

vec(Λ̂
′

1) =
(
D̃
′

1M̂2D̃1

)−1
D̃
′

1M̂2Û
− 1

2 1n

=
(
D̃
′

1M̂2D̃1

)−1
D̃
′

1M̂2

(
D̃1vec(Λ

′

1) + D̃2vec(Λ
′

2) + ε
)

= vec(Λ
′

1) +
(
D̃
′

1M̂2D̃1

)−1
D̃
′

1M̂2ε (B.32)
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So vec(Λ̂′1)− vec(Λ′1) =
(
D̃
′

1M̂2D̃1

)−1
D̃
′

1M̂2ε. Therefore, by Assumption 5,

W (vec(Λ̂
′

1)) =
[(√

TD̃
′

1M̂2ε
)′ (

D̃
′

1M̂2D̃1

)−1
]

(Σ̂11)−1
[(
D̃
′

1M̂2D̃1

)−1√
TD̃

′

1M̂2ε

]
p→ r

′

ε

(
D
′

1U
− 1

2Mw2U
− 1

2D1

)−1 (
Avar(

√
Tvec(Λ̂

′

1))
)−1 (

D
′

1U
− 1

2Mw2U
− 1

2D1

)−1
rε ,

(B.33)

where Avar(
√
Tvec(Λ̂′1)) is the asymptotic variance of

√
Tvec(Λ̂′1) (remember that D̃1 ≡ U−

1
2 D̂1 and

D̃2 ≡ U−
1
2 D̂2).

We have by Assumption 5,
(
D̃
′

1M̂2D̃1

)−1√
TD̃

′

1M̂2ε
p→
(
D
′

1U
− 1

2Mw2U
− 1

2D1

)−1
rε . Therefore,

Σ11 = Avar(
√
Tvec(Λ̂

′

1)) = Avar

[(
D̃
′

1M̂2D̃1

)−1√
TD̃

′

1M̂2ε

]
=
(
D
′

1U
− 1

2Mw2U
− 1

2D1

)−1
Vrε

(
D
′

1U
− 1

2Mw2U
− 1

2D1

)−1
(B.34)

Since rε follows a normal distribution, we have by replacing in (B.33):

W (vec(Λ̂
′

1)) p→ r
′

εV
−1
rε rε ∼ χ

2(s) . (B.35)

Asymptotic properties of W(vec(Λ̂′2))

We know that vec(Λ̂′2) =
(
D̃
′

2M̂1D̃2

)−1
D̃
′

2M̂1Û
− 1

2 1n. Therefore, by assumption 6,

W (vec(Λ̂
′

2)) =
[
1
′

nÛ
− 1

2 M̂1(
√
TD̃2)

(
D̃
′

2M̂1D̃2

)−1
]

(Σ̂22)−1
[(
D̃
′

2M̂1D̃2

)−1
(
√
TD̃

′

2)M̂1Û
− 1

2 1n
]

=
[
1
′

nÛ
− 1

2 M̂1(
√
TD̃2)

(
(
√
TD̃

′

2)M̂1(
√
TD̃2)

)−1
]
T 2(Σ̂22)−1

[(
(
√
TD̃

′

2)M̂1(
√
TD̃2)

)−1
(
√
TD̃

′

2)M̂1Û
− 1

2 1n
]

p→
[
1
′

nU
− 1

2M1W2

(
W
′

2M1W
′

2

)−1
]
T 2
(
Avar(

√
Tvec(Λ̂

′

2))
)−1

[(
W
′

2M1W
′

2

)−1
W
′

2M1U
− 1

2 1n
]
.

(B.36)

Again, by assumption 6, we have:

(
(
√
TD̃

′

2)M̂1(
√
TD̃2)

)−1
(
√
TD̃

′

2)M̂1Û
− 1

2 1n
p→
(
W
′

2M1W2

)−1
W
′

2M1U
− 1

2 1n
p→
(
W
′

2M1W2

)−1
vec(1

′

nU
− 1

2M1W2Ip)

p→
(
W
′

2M1W2

)−1 (
Ip ⊗ 1

′

nU
− 1

2M1

)
vec(W2)

p→
(
W
′

2M1W2

)−1 (
Ip ⊗ 1

′

nU
− 1

2M1

)
w2

106



Therefore,

Σ22 = Avar(
√
Tvec(Λ̂

′

2))

= Avar

[
T
(

(
√
TD̃

′

2)M̂1(
√
TD̃2)

)−1
(
√
TD̃

′

2)M̂1Û
− 1

2 1n
]

= T 2
[(
W
′

2M1W2

)−1 (
Ip ⊗ 1

′

nU
− 1

2M1

)]
Inp

[(
Ip ⊗ 1

′

nU
− 1

2M1

)′ (
W
′

2M1W2

)−1
]

= T 2
(
W
′

2M1W2

)−1
[(
Ip ⊗ 1

′

nU
− 1

2M1

)(
Ip ⊗ 1

′

nU
− 1

2M1

)′](
W
′

2M1W2

)−1

(B.37)

By replacing in (B.36), we have:

W (vec(Λ̂
′

2)) p→ 1
′

nÛ
− 1

2M1W2

((
Ip ⊗ 1

′

nU
− 1

2M1

)(
Ip ⊗ 1

′

nU
− 1

2M1

)′)−1

W
′

2M1U
− 1

2 1n (B.38)

Note that W ′

2M1U
− 1

2 1n =
(
Ip ⊗ 1′nU−

1
2M1

)
vec(W2) =

(
Ip ⊗ 1′nU−

1
2M1

)
w2. Therefore,

var(W ′

2M1U
− 1

2 1n) =
(
Ip ⊗ 1′nU−

1
2M1

)
Inp

(
Ip ⊗ 1′nU−

1
2M1

)′
=
(
Ip ⊗ 1′nU−

1
2M1

)(
Ip ⊗ 1′nU−

1
2M1

)′
.

Since w2 follows a normal distribution, we have from equation (B.38);

W (vec(Λ̂
′

2)) p→
(

(Ip ⊗ 1
′

nU
− 1

2M1)w2

)′ [
var

(
(Ip ⊗ 1

′

nU
− 1

2M1)w2

)]−1 (
(Ip ⊗ 1

′

nU
− 1

2M1)w2

)
∼ χ2(p)

107



Chapter 3

Linear asset pricing models and

nonlinear risk-adjustments∗

3.1 Introduction

Stochastic discount factor models (hereafter SDF models) are a general representation of

asset pricing models. They provide an appealing interpretation of the valuation mechanisms,

as they link asset prices to the expected discounted value of their future payoffs. Once the

SDF is known, agents can deduce asset prices from their future payoffs. Therefore, having a

good estimation of SDFs is a key aspect of asset pricing.

One of the most common ways to approximate SDFs is to use linear factor models.

The first attempt was the CAPM, with SDFs proxied as linear functions of the portfolio of

aggregate wealth (Sharpe, 1964; Lintner, 1965). Since then, several linear factor models have

been proposed to improve SDFs approximations.1 However, the extreme multiplicity of factors

proposed in the existing literature proves that it is very difficult to find an overall best linear

factor model for that purpose.2 Therefore, the question about the conditions under which a

linear approximation is better than another is of interest.

Besides linear approximations, there are also nonlinear approximations encompassing
∗I am grateful to René Garcia for his invaluable guidance.

1As few examples of later SDFs approximations through linear factor models, see: Fama & French (1993);
Jagannathan & Wang (1996); Carhart (1997); Fama & French (2015)

2See Harvey et al. (2016) for precision on the “factors zoo” in asset pricing literature

108



specifications where SDFs are polynomial functions of factors (see Chapman, 1997; Harvey &

Siddique, 2000), and specifications where any particular form is given to SDFs, then estimated

through semi-parametric or non-parametric methods (see Dittmar, 2002; Wang, 2003; Almeida

& Garcia, 2017). Nonlinear approximations have the advantage of being more informative (as

they are less restrictive) and are especially required when returns are non-normal. Moreover,

nonlinear SDFs are suitable for pricing higher-order systematic comoments (Almeida & Garcia,

2017).

Many linkages have been established between linear factor models in Arbitrage Pricing

Theory (APT) and higher-order moments, as additional factors from CAPM can capture

some of these moments. CAPM assumes that investors only care about means and variances,

since systematic risks in that model are measured as contributions to the variance of the

market returns. But we know from Scott & Horvath (1980) that preferences for higher-order

moments also matter, particularly when the distribution of the expected utility is not fully

determined by means and variances, when the returns have asymmetric distributions, or in the

presence of tail risks. Harvey & Siddique (2000) explain in this vein how portfolios’ skewness

influence asset returns, while Chung, Johnson & Schill (2006) (hereafter CJS) show that the

size and the value factors (SMB and HML) from the Fama-French’s three-factor model become

insignificant when systematic comoments of orders 3-10 are added in the model

This paper aims to generalize the idea of CJS by analyzing the influence of higher-order

moments on the pricing abilities of linear factors models. The idea is to explain, according

to investors’ preferences for higher-order moments, how evolves the relevance of linear factor

models in APT. We assume that there are some investors whose behaviors cannot be fully

characterized with means and variances and therefore, analyze how their pricing strategies

evolve according to their preferences for higher-order moments. Unlike CJS, we do not add

systematic higher-order comoments as factors, but rather measure the explanatory power of

linear factor models with respect to the optimal SDFs induced by various levels of preference

for higher order moments. In general, analysis are performed on a limited number of higher-

order moments, the most popular being the skewness and the kurtosis.3 We do not adopt

such a method in this paper since our analysis is more global: all higher-order moments are
3 The effects of these two moments on asset pricing models have been widely analyzed in the literature.

For an exhaustive presentation of skewness and kurtosis implications for asset pricing models, see Kraus &
Litzenberger (1976); Harvey & Siddique (2000); Dittmar (2002).
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considered at the same time.

More specifically, we analyze the pricing abilities of some popular linear factor models

(benchmarks) according to investors’ preferences for higher-order moments. As each investor

has particular preferences, the pricing strategies are not the same among investors. Therefore,

the pricing abilities of benchmarks vary according to investors’ characteristics. In order to

explain these differences, we measure the pricing errors between linear factor models and the

optimal SDF estimated by the discrepancy minimization method from Almeida & Garcia

(2017). Under a no-arbitrage condition, this optimal SDF can price all higher-order related

exposures to risk. Therefore, we use it as the “reference SDF”. Four linear factor models are

used as benchmarks: (i) the CAPM; (ii) the three-factor model of Fama & French (1993),

FF3; (iii) the four-factor model of Carhart (1997), CARH; and (iv) the five-factor model of

Fama & French (2015), FF5. The analysis covers 642 months from July 1963 to December

2016.

The results show that: (i) for investors with moderate preferences for higher-order mo-

ments (in absolute value), the benchmarks can be ranked as follows: CAPM ≺ FF3 ≺ CARH

∼ FF5;4 (ii) for investors with important preferences for higher-order moments, the ranking

is CAPM ≺ FF3 ≺ FF5 ≺ CARH; and (iii) for investors with extreme preferences for higher-

order moments, the ranking is CAPM ≺ FF5 ≺ FF3 ≺ CARH. A dynamic analysis confirms

that since the year 2000, FF5 and CARH are the two best models for investors with moderate

preferences for higher-order moments. For investors for whom these preferences are important

or extreme, CARH is the best model.

We also analyze some linear factor models with non-traded factors. The results confirm

the conclusions of Pondi (2018), as we observe that the human capital model analyzed in that

paper and inspired by Lettau & Ludvigson (2001) and Gospodinov et al. (2014) is relevant

for linear pricing. However, we show that this relevance is effective only for investors with

null or very low preferences for higher-order moments.

This paper is linked to the literature of analyzing non-normal asset returns. We use the

same non-linear optimization method as Almeida, Ardison & Garcia (2018), but unlike them,

we do not analyze or propose a performance measure. Also, we generalize the idea of Chung

et al. (2006), as we do not propose a particular specification with higher-order moments.
4Read the sign ≺ as “have a lower pricing ability than”, and the sign ∼ as “have a similar pricing ability

than”
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However, the goal of this paper is different, since we do not just want to see if some higher-

order moments can explain anomalies. The objective here is to measure how preferences for

higher-order moments can influence the pricing abilities of linear factor models. This paper is

also related to papers analyzing the usefulness of higher-order moments for explaining returns

on markets (see Harvey & Siddique, 2000; Ando & Hodoshima, 2006; Smith, 2007), and to

papers comparing the pricing abilities from different asset pricing models (see Barillas &

Shanken, 2018). However, we limit our analysis to the Fama-French factor models.

Finally, this paper is related to those analyzing the links between optimal portfolios and

higher-order moments (see Jondeau & Rockinger, 2006). However, our goal is not to propose

an optimal portfolio. Optimal portfolio problems are only used here, as dual problems, in

order to overcome dimensionality issues from the initial problems.

The rest of the paper is organized as follows: section 2 presents the links between optimal

SDFs and preferences for higher-order moments. Section 3 presents the model used to compare

linear factor models. Section 4 presents the analysis and the discussions. Section 5 concludes.

3.2 Nonlinear risk-adjustments: optimal SDF and higher-order

moments

Conditions for an optimal SDF are presented in this section. We emphasize limits from

conventional SDF estimation methods and present a recent method which aims to correct

some of these limits.

3.2.1 Conditions for an optimal SDF

Let us consider an investor facing an intertemporal consumption and portfolio choice

problem. Optimal decisions are summarized by the Euler equation

E(mtRt − 1n) = 0n , (3.1)

where mt is the SDF at time t, Rt the gross return on n assets at t, 1n the n-vector of 1 and

0n the n-vector of 0. We assume that there are T periods, so that t ∈ {1, . . . , T}.

To define his dynamic strategy, the investor must evaluate the SDF at every period t.
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Each period represents a state of nature, where decisions should be updated. The performance

of a strategy can then be assessed with performance measures, summarized by the following

equation (see Chen & Knez, 1996):

α(R) = E(mtRt)− 1n . (3.2)

We assume that the market is incomplete, as the number of time periods (states of nature)

is likely bigger than the number of priced assets in the market. The conditions that guarantee

consistency of the performance measures presented above are derived under the following

assumptions:5

Assumption 1. If two portfolios have the same payoffs in every state of nature, then they

should have the same price.

Assumption 2. If the payoff of a portfolio is (almost surely) non-negative and certainly

strictly positive in some states of nature, then the price of that portfolio should be strictly

positive.

Assumption 1 is the law of one price as formulated by Garcia (2018). This assumption is

a sufficient condition for the existence of an admissible SDF. Assumption 2 is the no-arbitrage

condition as presented by Cochrane (2001). This assumption is a necessary and a sufficient

condition for the existence of a strictly positive admissible SDF.

Because the market is incomplete, there may be a large set of admissible SDFs. Therefore,

it could be hard to find the optimal one, which must be strictly positive in every state of

nature. In general, some restrictions are made to overcome that difficulty. (i) The most

common restriction is to write SDFs as functions of variables. Such a strategy is clearly

limited, as all specifications cannot be considered. With that method, it is difficult to clearly

define which factors should be considered and which specification is the best. This is why

factor models have led to what is called today “the factor zoo” (see Harvey et al., 2016;

Feng et al., 2017). (ii) Another restriction strategy is to estimate SDFs by using the mean-

variance frontier of asset returns, like Hansen & Jagannathan (1991). That strategy does
5For a deeper presentation on consistency of performance measures in asset pricing, see Almeida & Garcia

(2017)
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not consider higher-order related exposures to risk.6 SDFs estimated through that method

fail to satisfy the strictly positivity constraint, as it may produce negative SDFs in some

state of nature. Even the constrained Hansen-Jagannathan does not always achieve strictly

positivity constraint, particularly when the priced returns are non-normal or when there are

tail risks (see Almeida et al., 2018). (iii) Finally, a utility-based estimation can be used. As

presented by Cochrane (2001), the value of a SDF at t can be interpreted as the marginal rate

of substitution between periods t and t+ 1.7 Therefore, once the investor’s utility is known,

we can easily estimate the SDF. However, utility-based estimations are not always accurate

since they require equilibrium models with representative agents.

Following the issues emphasized above, we can say that optimal SDFs should be estimated

without any restriction either on investor’s utility, or on functional specifications applied on

SDFs. As a solution, Almeida & Garcia (2017) recently proposed a method which optimizes

on all the set of strictly positive admissible SDFs and relaxes the restrictions listed above.

This method is utility-free and consider all higher-order related exposures to risk.

3.2.2 Finding the optimal SDF

Almeida & Garcia (2017) consider that the optimal SDF minimizes a convex discrepancy

function φ, defined by:

φ(m, γ) ≡ φγ(m) = mγ+1 − 1
γ(γ + 1) (γ ∈ R) . (3.3)

The nature of the discrepancy function depends on the value of γ. As an example, for the

popular Hansen & Jagannathan (1991)’s method (hereafter HJ method), the optimal SDF is

obtained though the minimization of a quadratic function of pricing errors (which matches

with the case γ = 1).8 For a given value of γ, the optimal SDF m∗γ is given as a solution of
6What we call “higher-order related exposures to risk” is all information from higher-order comoments with

respect to asset returns
7More precisely, mt is the rate at which the investor is willing to substitute its consumption at t for

consumption at t+ 1
8For an exhaustive presentation of popular particular cases associated with the discrepancy functions pre-

sented here, see Almeida & Garcia (2017).
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the following problem:

m∗γ ≡ (m∗γ,1, . . .m∗γ,T ) = argmin
m

E(φγ(m))

s.t.

∣∣∣∣∣∣∣∣∣
E (m(Rt − 1n)) = 0n (i)

E(m) = 1 (ii)

m� 0 (iii)

(3.4)

As precision, (iii) is a consequence of the arbitrage-free assumption, (ii) is taken without loss

of generality, and (i) is a consequence of (3.1).

As Problem (3.4) is solved on a T -dimensional space, we can use its dual counterpart

to reduce dimensionality issues and solve it on a n-dimensional space,9 following Borwein &

Lewis (1991). The dual problem is given as follow:

λ∗γ = arg
α∈R

sup
λ

α− E
(
φ∗,+γ (α+ λ

′(Rt − 1n))
)
. (3.5)

φ∗,+γ is a convex conjugate of φγ and is defined by φ∗,+γ (z) = sup
w>0

zw − φγ(w) . By denoting

λ∗γ the solution of this dual problem for a given value γ, the optimal SDF at t is given by:

m∗γ,t =



(
1 + γλ∗

′
γ (Rt − 1n)

) 1
γ
1{1+γλ′γ(Rt−1n)>0}(λγ) if γ > 0(

1 + γλ∗
′

γ (Rt − 1n)
) 1
γ if γ < 0

exp
(
λ∗
′

0 (Rt − 1n)
)

if γ = 0

(3.6)

Almeida & Garcia (2017) show that the dual problem from (3.4) can be interpreted as

an optimal portfolio problem under the following HARA utility function:

u(w) = −1
γ + 1 (1− γw)

γ+1
γ (1− γw > 0) , (3.7)

where wt = −λ′γ(Rt − 1n) is interpreted as “the agent’s wealth” at t and γ is the same

parameter as in (3.3). Since wt also depends on γ, we write it without γ for simplicity. The

condition (1 − γw) > 0 comes from the SDF estimation, as 1 − γwt ≡ 1 + γλ
′
γ(Rt − 1n) > 0

(see Almeida et al., 2018, for more details about estimation procedures).
9The number of assets n is smaller than the number of periods T , as the market is incomplete.
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By a Taylor expansion of this utility function around the expected optimal wealth, the

weights given to any higher-order moments have the following form:

W (γ) = g(γ) (1− γE(wt))h(γ) , (3.8)

with g and h two functions whose expressions depend on the orders of moments.10 As the

weights mainly depend on γ, we can say that γ is an indicator of the level of preference for

higher-order moments. For each γ, the optimal SDF m∗γ is consistent with preferences for all

higher-order moments, under the proportions (or the weights) indicated by the value of γ.

It is important to emphasize that each value of γ corresponds to a utility function in the

dual problem (3.7). Therefore, as the initial discrepancy function depends on γ, there is a

different discrepancy function for each type of investors (according to their utility functions

in the dual problem). Each γ characterizes a different attitude toward risk and therefore, a

different pricing strategy. In this paper, we will analyze these differences according to the

levels of preference for higher-order moments (which are also characterized, as seen above, by

the values taken by γ).

Moreover, about the dual optimal portfolio problem, note that γ = 1 matches with a

quadratic utility (so that the initial problem is equivalent to HJ), γ = 0 matches with an

exponential utility and γ = −1 matches with a logarithmic utility.

3.3 The model

Linear factor models are widely used in asset pricing literature, as the idea of linking

asset returns with observable or estimated variables is appealing. In general, the pricing

abilities of these models are measured according to their linear exposures to risk, without

any consideration for heterogeneity among investors.11 In this paper, we want to assess the

pricing ability of linear factor models according to investors’ preferences. We characterize

heterogeneity with the levels of preference for higher-order moments among investors.

As emphasized above, the Almeida & Garcia (2017)’s method provides an optimal SDF

which is utility-free and which consider all higher-order related exposures to risk. That method
10We will talk more deeply about the expressions of g and h later.
11Linear factor models in asset pricing are mainly equilibrium models with homogeneity of beliefs among

investors.
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also assures strictly positivity in every states of nature. Therefore, we are going to consider

the optimal SDF from Almeida & Garcia (2017) as the “reference SDF” and measure the

pricing errors between that reference and linear factor models. As we already know the limits

of linear factor models (particularly for pricing nonlinear exposures to risk), the purpose of

our analysis is to compare the most popular of these models, and to evaluate how their pricing

abilities evolve according to investors’ preferences for higher-order moments (remember that

for each level of preference for higher-order moments γ, there is an optimal SDF m∗γ).

3.3.1 Heterogeneity among investors: values of γ and preferences for higher-
order moments

As seen above in equation (3.7), the dual problem used to estimate the optimal SDF can

be interpreted as an optimal portfolio problem under a HARA utility function.12 By a Taylor

expansion of that utility function around the expected optimal wealth, we have the following

proposition.

Proposition 1. The weight associated with a moment of order p ≥ 2, is given as follow:

Wp(γ) = 1
p! (−1)p+1

p−2∏
j=0

(1− jγ) · (1− γE(wt))
1
γ
−(p−1)

. (3.9)

Since 1−γE(wt) > 0, the sign ofWp(γ) only depends on the value of (−1)p+1
p−2∏
j=1

(1−jγ).

Therefore, the sign of Wp(γ) only depends on γ. Note that the weight associated with the

moment of order 1 is (1− γE(wt))
1
γ . Now let us consider the following assumption.

Assumption 3.

(i) Each investor is risk-averse and has a positive marginal utility. His utility function is such

that u′ > 0 and u′′ < 0.

(ii) There is a strict consistency in preference direction for all investors on the market, and

for all moments of order p. So, for all p ∈ N∗, we have u(p) > 0, or u(p) < 0, or u(p) = 0

Assumptions 3(i)-(ii) are assumptions A1, A2 and A3 from Scott & Horvath (1980).

Under these assumptions, they show that odd moments are weighted positively while even

12 For a value of γ, that utility function is given by u(w) = −1
γ+1 (1− γw)

γ+1
γ , with (1− γw) > 0.
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moments are weighted negatively (we will call this result “conditions on the signs of weights”).

Therefore, we should have:

(order 3) (1− γ) > 0 (order 4) − (1− γ)(1− 2γ) < 0

(order 5) (1− γ)(1− 2γ)(1− 3γ) > 0 (order 6) − (1− γ)(1− 2γ)(1− 3γ)(1− 4γ) < 0

. . . . . .

Proposition 2. The weight associated with a moment of order p ≥ 3 is consistent with the

“conditions on the signs of weights” if and only if γ < 1
p−2 . So, if we want to satisfy these

conditions for all higher-order moments, we must consider γ such that γ ≤ 0.

Proposition 2 does not concern the weights associated with the moments or orders 1 and

2. These weights satisfy the “conditions on the signs of weights” without any restriction on γ

since they are respectively given by (1− γE(wt))
1
γ which is positive, and −(1− γE(wt))

1
γ
−1

which is negative.13

When γ ≤ 0, all the weights associated with higher-order moments are non-null. More-

over, the further the value of γ is below 0, the more preferences for odd moments increase and

the more preferences for even moments decrease. For our analysis, we will assume negative

values for γ, and consider two additional particular cases: γ = 1 and γ = 0.5. For precision,

γ = 1 corresponds to the case where all preferences for higher-order moments are null (HJ

model), while γ = 0.5 corresponds to the case where the preference for skewness is non-null,

and all the preferences for a moment of an order above 3 are null.14 Therefore, we are going

to perform analysis for the following values of γ: -3, -2, -1, 0, 0.5 and 1 (Almeida et al., 2018,

use values from -3.5 to 1). Moreover, we will assume that the preference for higher-order

moments is (i) moderate when γ = 1, γ = 0.5 and γ = 0, (ii) important when γ = −1 and

γ = −2, and (iii) extreme when γ = −3.
13Remember that the utility in the dual optimal portfolio problem is given under the condition (1−γwt) > 0

(see (3.7)).
14Following Scott & Horvath (1980), the case γ = 0.5 corresponds to a situation where an investor is willing

to choose an asset with the greater skewness, even if that asset has a lower expected value in comparison to
another.
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3.3.2 Estimation and analysis procedures

In this subsection, we present the data and the linear factor models used as benchmarks

in this paper. We also present how the relevance of each benchmark will be assessed, and how

the pricing abilities of these benchmarks will be compared.

Data and benchmark models

Four linear factor models are used as benchmarks: (i) the CAPM; (ii) the three-factor

model of Fama & French (1993), FF3; (iii) the four-factor model of Carhart (1997), CARH;

and (iv) the five-factor model of Fama & French (2015), FF5. These linear factor models

are among the most popular in asset pricing and have the particularity of being nested in

each other. This will make the comparison among them much easier and will help us to see

whether the pricing ability of a factor model, after an addition of new factors, depends on the

preferences of investors (or precisely, on their preferences for higher-order moments).

As returns, we use 25 Fama-French monthly portfolios sorted on size and book-to-market,

from July 1963 to December 2016. These data are from Kenneth French’s website. Since the

goal of this paper is not to explain returns, we only use these portfolios instead of adding

additional portfolios, like Gospodinov et al. (2014). The relevance of SDFs is not analyzed

here with respect to returns, but rather with respect to an estimated optimal nonlinear SDF.

Therefore, even if the selected portfolios exhibit a factor structure, they are unlikely to be a

source of data snooping.15

Benchmarks relevance: inference on the benchmarks parameters

Let us denote y = f ′θ, a linear factor model with θ a k-dimensional parameter and f a

vector of factors. We consider a given value γ and the subsequent optimal SDF m∗γ , estimated

by the Almaida-Garcia method. To estimate the parameter θγ in our selected benchmarks,

we follow Hansen & Jagannathan (1997) and solve the following optimization problem:

θ∗γ = argmin
θ
‖f ′θ −m∗γ‖ . (3.10)

15For robustness checks, we will apply the correction method proposed by Lewellen et al. (2010), and will
add industry portfolios to the initial 25 portfolios
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δγ = min
θ
‖f ′θ −m∗γ‖ is a distance that measures the linear discrepancy between the linear

factor model and the optimal SDF m∗γ . Therefore, the optimal parameter θ∗γ can be obtained

through an Ordinary Least Squares (OLS) regression of m∗γ on the factors f . We are going

to use that strategy.16

Note that the relevance of benchmarks as presented in this paper, implies a statistical

analysis of the significance of the factors from each linear factor model (i.e. an analysis of

the significance of θγ , for each value of γ). Moreover, it is important to emphasize that we

could have used a more general method like Weighted Least Squares (WLS) to estimate θ∗γ .

However, this strategy is not suitable in the present case, because we have to use a unique

model-free weighting matrix for comparison purposes (as for the HJ distance).

Benchmarks comparisons

Our comparisons rely on a measurement of the goodness-of-fits between the benchmarks

and the optimal SDF. For every value of γ, the idea is to measure how each linear factor

model (benchmark) explains the optimal SDF m∗γ , and then to compare the results among

benchmarks. Benchmarks comparisons come after estimations of the benchmarks parameters.

For that purpose, we will use Akaike Information Criteria (AIC)17 and F-tests. We present

below, how the F-statistics will be estimated and interpreted.

Let us assume that we have two linear models: a simple model (model 1), nested in a

much more complex model (model 2). Let us also assume that the two specifications are given

as follows:

(model 1) yt =
K1∑
l=1

αlft t = 1, . . . , T (3.11)

(model 2) yt =
K1∑
l=1

αlft +
K2∑
l=1

βlgt t = 1, . . . , T (3.12)

The idea of the F-test is to measure whether the reduction of the residual sum of squares

induced by moving from model 1 to model 2 (a gain), is canceled by the relative reduction of
16For inference purposes, heteroskedasticity and autocorrelation consistent standard errors will be estimated

following Newey & West (1987)
17Akaike Information Criteria will be estimated according to the formula AIC = 2K+TLog(RSS/T ), where

K is the number of parameters in the model, T the size of the sample on which the model is applied and RSS
the residual sum of squares from the model.
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the degree of freedom (a loss). For that purpose, we test the null H0 : β1 = · · · = βK2 = 0. By

denoting RSS the residual sum of squares, the F-stat follows the Fisher-Snedecor distribution

F (K2, T −K1 −K2), and is given by:

F = (RSS1 −RSS2)/K2
RSS2/(T −K1 −K2) (3.13)

If the null is not rejected, then there is no evidence that the complex model (model 2)

is better than the simple model (model 1). On the other hand, if the null is rejected, the

probability of having a better fit with model 2 is higher than the size of the test; therefore,

model 2 is selected.

For our pairwise comparisons, we will use the AIC as a complementary criterion. If the

null is rejected while model 2 has a lower AIC than model 1, then we will conclude that model

2 is better. In all cases, we will only interpret the results for which there is coherence between

the results from AIC and those from F-tests.

For the ranking of more than 2 models, we will still just consider consistent results between

AIC and F-tests, with the exception that for this special case, we will assume that two models

have similar explanatory power if the two criteria (AIC and F-tests) permute them in their

respective rankings, while keeping the same structure among the rankings. As an illustration,

suppose that we try to compare four models M1, M2, M3 and M4. Suppose, moreover,

that AIC and F-tests respectively give the following rankings: M1 ≺ M2 ≺ M3 ≺ M4, and

M1 ≺ M3 ≺ M2 ≺ M4. Then, we will conclude that models M2 and M3 have similar

explanatory power and consider the following as the final ranking: M1 ≺M2 ∼M3 ≺M4.

3.4 Analysis and discussions

The main point of this section is to analyze the relevance of benchmarks and compare

their pricing abilities with respect to the optimal SDF m∗γ , induced by a level of preference

for higher-order moments γ. As presented above, consistency in preference direction is satisfy

for any higher-order moment when γ ≤ 0. However, we will also analyze the particular

cases γ = 0.5 and γ = 1, which will be considered as for the case γ = 0, like cases where

the preference for higher-order moments is moderate (remember that the further γ is below

0, the more the weights on higher-order moments increase in absolute value). Moreover,
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for simplicity, we will call “p-value of a factor”, the p-value of the t-test on the parameter

associated with that factor. Also, during the analysis, we will sometimes associate values of

γ with their corresponding utility functions in the dual optimal portfolio problem (see (3.5)

and (3.7)).

3.4.1 Significance of factors and preference for higher-order moments

Table 3.1 presents the p-values from the t-tests on the regression parameters, following the

OLS regressions of the optimal SDF on benchmarks. It appears that overall, all the factors in

benchmarks are relevant when preferences match with the classical HJ case (γ = 1). Moreover,

all the p-values increase as γ decreases. Therefore, the more the preference for higher-order

moments increases, the more some factors become insignificant. This is particularly the case

for the size factor SMB in FF3, CARH and FF5, and for the value factor HML, the profitability

factor RMW and the investment factor CMA, all in FF5.

Note that the size factor SMB becomes insignificant very quickly (from γ = 0). On

the other hand, HML, RMW and CMA become insignificant in FF5 when the preference for

higher-order moments becomes relatively high (from γ = −2 for RMW, and from γ = −3 for

the two others). Furthermore, note that the market factor Mkt-Rf is the only factor which

is always relevant, irrespective of the benchmark and the level of preference for higher-order

moments.

As there are some particularities associated with the benchmarks, we now analyze specif-

ically some of these benchmarks.

Significance of factors in FF3. In FF3, the market factor Mkt-Rf and the value factor

HML are significant for all of the selected values of γ. Their p-values indicate that these two

factors are relevant even when the weights on higher-order moments are very high. This is

not the case for the size factor SMB, whose significance is relatively weak, even for quadratic

preferences (the p-value of this factor is 0.096 when γ = 1).

Significance of factors in CARH. For CARH, observations are quite the same as for FF3,

with the exception that here, the relevance of the size factor SMB is relatively more effective

when preferences are quadratic or exponential (p-value at 0.074 and 0.076 respectively when

γ = 1 and γ = 0). We still note that the market factor and the value factor are significant
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even when the preference for higher-order moments is very high. Furthermore, although the

momentum factor Mom is significant for all the selected values of γ, its significance becomes

weak when the preference for higher-order moments becomes extreme; its p-value is 0.081

when γ = −3.

Significance of factors in FF5. FF5 is very different from the two benchmarks analyzed

above, since, in addition to the size factor, all the other factors - with the exception of the

market - become insignificant when the preference for higher-order moments becomes high.

Moreover, unlike the previous two benchmarks, the significance of the size factor is stronger

for quadratic and exponential preferences (p-values at 0.005 and 0.010 respectively when γ = 1

and γ = 0). Note that even if the profitability factor RMW and the investment factor CMA

are both insignificant for γ = −2 and γ = −3, these two factors are relevant for quadratic,

exponential and logarithmic preferences.

Table 3.1: P-values from t-tests on the regression parameters

values of γ
-3 -2 -1 0 0.5 1

CAPM Int. 0 0 0 0 0 0
Mkt-Rf 0.033 0.034 0.012 0 0 0

FF3

Int. 0 0 0 0 0 0
Mkt-Rf 0.014 0.010 0.002 0 0 0
SMB 0.297 0.292 0.251 0.114 0.093 0.096
HML 0.001 0 0 0 0 0

CARH

Int. 0 0 0 0 0 0
Mkt-Rf 0.011 0.009 0.002 0 0 0
SMB 0.301 0.295 0.252 0.101 0.076 0.074
HML 0 0 0 0 0 0
Mom 0.081 0.078 0.058 0.004 0 0

FF5

Int. 0 0 0 0 0 0
Mkt-Rf 0.009 0.008 0.001 0 0 0
SMB 0.213 0.201 0.121 0.010 0.005 0.005
HML 0.135 0.051 0.009 0 0 0
RMW 0.218 0.147 0.039 0 0 0
CMA 0.108 0.093 0.060 0.015 0.008 0.006

The table gives the p-values from the t-tests on the regression parameters, as
the optimal SDF is regressed on each benchmark though the OLS method. The
tests are performed with robust standard errors, estimated following Newey &
West (1987)
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3.4.2 Benchmarks comparisons

Table 3.2 presents AIC from regressions of the optimal SDF on benchmarks. We can

see that when the preference for higher-order moments is moderate, adding an additional

Fama-French factor to a prior benchmark leads to a better asset pricing model. For γ = 1,

γ = 0.5 and γ = 0, the following ranking remains true among the benchmarks: CAPM

≺ FF3 ≺ CARH ≺ FF5 (read the sign ≺ as “have a lower pricing ability than”). On the

other hand, when the preference for higher-order moments becomes important, there are some

permutations in the previous ranking. To understand these permutations, let us analyze the

results from Table 3.3.

Table 3.3 presents the results from the F-tests used to pairwise compare benchmarks. It

appears that regardless of the level of preference for higher-order moments, FF3, CARH, and

FF5 have better pricing abilities than CAPM. Moreover, we see that CARH is always better

than FF3, and that FF3 is better than FF5 only when the preference for higher-order moments

becomes extreme (γ = −3). Finally, we observe that FF5 is better than CARH only when

the preference for higher-order moments is moderate. The pricing ability of CARH becomes

better than that of FF5 when the preference for higher-order moments becomes important

(CARH is better than FF5 for γ = −1, γ = −2 and γ = −3).

From the results presented above, it appears that adding new factors to a prior asset pric-

ing model does not always improve the pricing ability of the model. In some circumstances, it

is better to perform asset pricing with much simpler models. On some level, these results con-

firm the conclusions of Kozak, Nagel & Santosh (2017).18 In our analysis, distinctions among

asset pricing models are made according to the levels of agents’ preferences for higher-order

moments. Under that perspective, we see that FF3, CARH and FF5 are all improvements

from CAPM. When the preference for higher-order moments is moderate we have the follow-

ing ranking among benchmarks: CAPM ≺ FF3 ≺ CARH ≺ FF5. On the other hand, when

the preference for higher-order moments becomes important, the ranking is CAPM ≺ FF3 ≺

FF5 ≺ CARH. Lastly, when the preference for higher-order moments becomes extreme, the

ranking becomes CAPM ≺ FF5 ≺ FF3 ≺ CARH.
18 Kozak et al. (2017) show that a relatively small number of estimated factors explain the SDF better than

empirical 4-factor or 5-factor models
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Table 3.2: Benchmarks comparisons with AIC

values of γ
-3 -2 -1 0 0.5 1

CAPM 136.91 9.98 -176.44 -338.43 -375.07 -385.90
FF3 133.67 2.70 -194.21 -374.33 -417.10 -429.77
CARH 132.17 0.04 -199.88 -383.02 -426.19 -438.54
FF5 136.15 4.40 -195.65 -383.73 -429.38 -442.59
The table gives Akaike information criteria from regressions of the optimal
SDF on benchmarks

Table 3.3: Benchmarks comparisons with F-tests

values of γ
-3 -2 -1 0 0.5 1

CAPM
CAPM vs FF3 0 0 0 0 0 0
CAPM vs CARH 0 0 0 0 0 0
CAPM vs FF5 0 0 0 0 0 0

FF3 FF3 vs CARH 0.005 0.001 0 0 0 0
FF3 vs FF5 0.176 0.072 0.002 0 0 0

CARH CARH vs FF5 1 1 1 0.013 0 0
The table gives the p-values from the F-tests on nested models among benchmarks.
A non-rejection of the null means that the simple specification is better than the
complex.

3.4.3 Time-consistency of results: dynamic analysis

In this subsection, we aim to determine how time-consistent the previous results are. For

that purpose, we perform the previous analysis under two different periods of time: before

2000 and since 2000 (results in tables 3.4 and 3.5). We chose 2000 as threshold following

the results from Pondi (2018) according to which, major changes have been observed in

the pricing abilities of benchmarks since 2000. These changes can partly be explained by

the intensification of activities on the markets since 2000. Figure 3.1 shows in this vein,

with constant May 2018 dollars, the evolution of the inflation adjusted S&P 500 index from

January 1871 to July 2018.19 We see that since 2000, the index has reached levels never

reached before, and the amplitudes of its cycles are much higher.

For the period before 2000, we observe that when the preference for higher-order moments

is moderate (γ = 1, γ = 0.5, γ = 0), the following ranking holds among benchmarks: CAPM

≺ CARH ≺ FF3 ≺ FF5. On the other hand, when the preference for higher-order moments

is important or extreme, we have the following ranking: CAPM ≺ FF5 ≺ CARH ≺ FF3. So,
19See Shiller (2000) for a presentation on the construction of historic S&P 500 prices

124



Figure 3.1: Evolution of the monthly S&P 500 index

Inflation adjusted S&P 500 index, with constant May 2008 dollars. The red line indicates January 2000.
Data source: Shiller (2000), and multpl economic data provider (www.multpl.com)

the rankings we have for the period 1963-1999 are different from the overall rankings obtained

above. If FF5 is still the best benchmark when the preference for higher-order moments

is moderate, FF3 appears to be the best benchmark when the preference for higher-order

moments is important or extreme (instead of CARH in the overall analysis).

For the period since 2000, we observe that when the preference for higher-order moments

is moderate, we have CAPM ≺ FF3 ≺ CARH ≺ FF5. This result is the same as the overall

result. So since 2000, FF5 is the best benchmark for pricing assets on markets where investors

have moderate preferences for higher-order moments. When these preferences are important

or extreme (particularly for γ = −2 and γ = −3), we have contradictory results between AIC

ranking and F-tests. Therefore, we do not interpret results for these levels of preference.20

20 One reason for contradictory results between AIC and F-tests may be the relatively small size of the
sample “since 2000” (204 months, while the sample “before 2000” has 438 months)
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Table 3.4: Benchmarks comparisons with AIC (dynamic analysis)

Before 2000
values of γ

-3 -2 -1 0 0.5 1
CAPM 43.90 -14.34 -107.85 -208.28 -235.06 -243.02
FF3 37.91 -23.80 -126.06 -243.85 -277.59 -287.83
CARH 39.56 -22.51 -125.12 -242.72 -276.39 -286.70
FF5 40.75 -21.29 -124.49 -246.07 -281.96 -292.59

Since 2000
values of γ

-3 -2 -1 0 0.5 1
CAPM 12.94 -8.93 -36.77 -66.25 -75.58 -77.98
FF3 14.37 -8.13 -37.01 -68.14 -78.16 -80.74
CARH 14.51 -8.08 -37.91 -70.91 -81.64 -83.95
FF5 15.23 -7.73 -38.02 -72.31 -83.85 -87.10
The table gives Akaike information criteria from regressions of the optimal
SDF on benchmarks

Table 3.5: Benchmarks comparisons with F-tests (dynamic analysis)

Before 2000
values of γ

-3 -2 -1 0 0.5 1

CAPM
CAPM vs FF3 0 0 0 0 0 0
CAPM vs CARH 0 0 0 0 0 0
CAPM vs FF5 0 0 0 0 0 0

FF3 FF3 vs CARH 0.374 0.204 0.122 0.160 0.178 0.161
FF3 vs FF5 0.268 0.185 0.063 0.001 0 0

CARH CARH vs FF5 0.175 0.184 0.077 0 0 0

Since 2000
values of γ

-3 -2 -1 0 0.5 1

CAPM
CAPM vs FF3 0.055 0.027 0.008 0.001 0.001 0
CAPM vs CARH 0.019 0.009 0.001 0 0 0
CAPM vs FF5 0.012 0.004 0 0 0 0

FF3 FF3 vs CARH 0.041 0.036 0.011 0.001 0 0.001
FF3 vs FF5 0.030 0.018 0.004 0 0 0

CARH CARH vs FF5 0.092 0.056 0.030 0.006 0.002 0.001
The table gives the p-values from the F-tests on nested models among benchmarks. A
non-rejection of the null means that the simple specification is better than the complex.
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3.4.4 Robustness checks

In this subsection, we check to see if our qualitative results are coherent regardless of the

returns on which the model is applied. For that purpose, we add 10 industry portfolios to

the initial 25 Fama-French portfolios and perform the same analysis as previously.21 We use

robustness checks to define the final rankings. Among the ranking presented in the previous

sub-sections, only the robust ones will be kept.

Overall analysis

The results in tables 3.6 and 3.7 give the following rankings: when γ = 1, γ = 0.5 and

γ = 0, we have CAPM ≺ FF3 ≺ FF5 ≺ CARH. When γ = −1, we have CAPM ≺ FF3 ∼ FF5

≺ CARH. When γ = −2 and γ = −3, we have CAPM ≺ FF5 ≺ FF3 ≺ CARH. Therefore,

the results are consistent with those obtained in section 3.4.2, particularly for the cases where

the preference for higher-order moments is either important or extreme.

Note that the ranking obtained in section 3.4.2, for the case of moderate preferences for

higher-order moments, is not fully confirmed here: FF5 is not better than CARH after the

addition of the 10 industry portfolios. However, as FF5 remains the second-best model for

that level of preference, we can still conclude that FF5 and CARH are the two best models

when the preference for higher-order moments is moderate. Therefore, for a moderate level

of preference for higher-order moments, we adopt the following final ranking: CAPM ≺ FF3

≺ CARH ∼ FF5.

In summary, the final rankings over the entire sample are given as follows: (i) CAPM

≺ FF3 ≺ CARH ∼ FF5 for investors with moderate preferences for higher-order moments;

(ii) CAPM ≺ FF3 ≺ FF5 ≺ CARH for investors with important preferences for higher-order

moments; (iii) CAPM ≺ FF5 ≺ FF3 ≺ CARH for investors with extreme preferences for

higher-order moments.
21We just add 10 industry portfolios here instead of 17 as in Pondi (2017) and Pondi (2018), because the

solving program of problem (3.4) does not converge when we have both a large γ (in absolute value) and a
large number of assets. With 35 portfolios, the program converges for all the selected values of γ
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Table 3.6: Benchmarks comparisons with AIC (with additional returns)

values of γ
-3 -2 -1 0 0.5 1

CAPM 198.86 125.69 -46.49 -234.88 -277.71 -289.43
FF3 197.24 122.42 -56.02 -258.20 -305.79 -318.80
CARH 195.23 117.97 -70.36 -286.60 -332.22 -341.06
FF5 200.62 125.50 -54.76 -263.03 -313.97 -329.20
The table gives Akaike information criteria from regressions of the optimal
SDF on benchmarks.
10 industry portfolios are added to the initial 25 Fama-French portfolios used
for table 3.2.

Table 3.7: Benchmarks comparisons with F-tests (with additional returns)

values of γ
-3 -2 -1 0 0.5 1

CAPM
CAPM vs FF3 0.002 0 0 0 0 0
CAPM vs CARH 0 0 0 0 0 0
CAPM vs FF5 0.006 0.001 0 0 0 0

FF3 FF3 vs CARH 0.002 0 0 0 0 0
FF3 vs FF5 0.491 0.353 0.044 0 0 0

CARH CARH vs FF5 1 1 1 1 1 1
The table gives the p-values from the F-tests on nested models among bench-
marks. A non-rejection of the null means that the simple specification is better
than the complex.
10 industry portfolios are added to the initial 25 Fama-French portfolios used
for table 3.3.

Dynamic analysis

We perform again the dynamic analysis (before 2000 and since 2000), after the addition

of 10 industry portfolios. The results are presented in tables 3.8 and 3.9.

For the period 1963-1999, we observe that when the preference for higher-order moments

is important or extreme, the ranking is CAPM ≺ FF5 ≺ CARH ≺ FF3. This result is the

same as the one obtained in subsection 3.4.3. When the preference for higher-order moments

is moderate, the ranking is CAPM ≺ FF5 ≺ FF3 ≺ CARH; this result, on the other hand,

does not confirm the one obtained above.
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Table 3.8: Benchmarks comparisons with AIC (dynamic analysis with additional returns)

Before 2000
values of γ

-3 -2 -1 0 0.5 1
CAPM 105.89 55.66 -35.23 -130.60 -158.69 -166.62
FF3 102.18 49.67 -47.36 -153.54 -186.21 -195.55
CARH 103.31 50.56 -47.08 -154.30 -186.91 -196.09
FF5 105.58 53.11 -43.88 -150.42 -183.65 -193.65

Since 2000
values of γ

-3 -2 -1 0 0.5 1
CAPM 45.01 33.21 7.84 -27.11 -38.43 -41.33
FF3 47.28 35.19 9.10 -27.20 -39.08 -42.11
CARH 44.62 32.05 4.63 -35.07 -48.25 -51.32
FF5 45.58 33.19 5.68 -33.43 -46.37 -49.22
The table gives Akaike information criteria from the regressions of the optimal
SDF on benchmarks
10 industry portfolios are added to the initial 25 Fama-French portfolios used
for table 3.4.

Table 3.9: Benchmarks comparisons with F-tests (dynamic analysis with additional returns)

Before 2000
values of γ

-3 -2 -1 0 0.5 1

CAPM
CAPM vs FF3 0 0 0 0 0 0
CAPM vs CARH 0 0 0 0 0 0
CAPM vs FF5 0.001 0 0 0 0 0

FF3 FF3 vs CARH 0.158 0.112 0.047 0.012 0.013 0.016
FF3 vs FF5 0.507 0.532 0.551 0.368 0.195 0.093

CARH CARH vs FF5 1 1 1 1 1 1

Since 2000
values of γ

-3 -2 -1 0 0.5 1

CAPM
CAPM vs FF3 0.142 0.102 0.046 0.010 0.005 0.005
CAPM vs CARH 0.002 0.001 0 0 0 0
CAPM vs FF5 0.002 0.001 0 0 0 0

FF3 FF3 vs CARH 0.001 0 0 0 0 0
FF3 vs FF5 0.002 0.001 0 0 0 0

CARH CARH vs FF5 0.128 0.166 0.146 0.375 0.611 1
The table gives the p-values from the F-tests on nested models among benchmarks. A
non-rejection of the null means that the simple specification is better than the complex.
10 industry portfolios are added to the initial 25 Fama-French portfolios used for table 3.5.
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For the period 2000-2016, we observe that when the preference for higher-order moments

is moderate, the ranking is CAPM ≺ FF3 ≺ FF5 ≺ CARH; this result partially confirms

the one obtained in subsection 3.4.3. The exception here originates from the permutation

between CARH and FF5 as first and second best, respectively. Therefore, we will adopt the

following final ranking when the preference for higher-order moments is moderate: CAPM ≺

FF3 ≺ CARH ∼ FF5. As we did not have coherent results in subsection 3.4.3 for γ < 0, we

do not analyze the cases γ = −1, γ = −2 and γ = −3 here.

In summary, the final ranking over the period 1963-1999 is given as follows: CAPM ≺

FF5 ≺ CARH ≺ FF3 for investors with important or extreme preferences for higher-order

moments. Also, the final ranking over the period 2000-2016 is given as follows: CAPM ≺ FF3

≺ CARH ∼ FF5 for investors with moderate preferences for higher-order moments.

3.4.5 Additional analysis: models with non-traded factors

In general, linear asset pricing models with non-traded factors have poor pricing abilities.

However, as shown by Pondi (2018) the relevance of these models can be emphasized with

dynamical analysis. In this sub-section, we analyze some model with non-traded factors under

various levels of preference for higher-order moments. The idea is to see whether the relevance

of these models evolves according to preferences for higher-order moments.

We consider three new models: (i) the human capital model analyzed in Pondi (2018) and

inspired by Lettau & Ludvigson (2001) and Gospodinov et al. (2014), C-LAB, (ii) the con-

sumption CAPM, CCAPM, and (iii) the durable CCAPM of Yogo (2006), D-CCAPM.22

New data are quarterly from Q3 1963 to Q4 2016.

Table 3.10 presents the results from the t-tests on the regression parameters of the models.

We see that models with non-traded factors are globally insignificant, irrespective of the

level of preference for higher-order moments (the intercept is the only “factor” constantly

significant). However, it appears that for γ = 1 and γ = 0.5, the consumption-wealth ratio

Cay in C-LAB is significant. Therefore, the relevance of C-LAB for linear pricing is effective

only when the preference for higher-order moments is null of very low.
22 For a deeper presentation of the three models and data sources, see Pondi (2018).
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Table 3.10: P-values from t-tests on the regression parameters (quarterly models)

values of γ
-3 -2 -1 0 0.5 1

CCAPM Int. 0 0 0 0 0 0
Cnd 0.357 0.370 0.281 0.126 0.097 0.113

D-CCAPM

Int. 0 0 0 0 0 0
Mkt-Rf 0.526 0.505 0.418 0.275 0.223 0.181
Cnd 0.471 0.464 0.389 0.221 0.200 0.250
Cd 0.928 0.820 0.843 0.878 0.982 0.864

C-LAB

Int. 0 0 0 0 0 0
Mkt-Rf 0.501 0.480 0.376 0.195 0.133 0.097
Cay 0.890 0.991 0.693 0.121 0.040 0.017
Lab 0.186 0.200 0.266 0.561 0.755 0.930

The table gives the p-values from the t-tests on the regression parameters, as the
optimal SDF is regressed on each quarterly model though the OLS method. The tests
are performed with robust standard errors, estimated following Newey & West (1987)

3.4.6 Coherence of the results with Chapter 2

In Pondi (2018) (Chapter 2), a ranking analysis is performed among Fama-French models

by using the dynamical (misspecification-robust) significance of the factors.23 Although the

ranking criterion used in this paper is different, we propose in this subsection to assess in

which extend our results are coherent with the rankings from that paper. Since Chapter 2

measures model misspecifications with a Hansen–Jagannathan distance, only our results from

investors with moderate preferences for higher-order moments are considered for comparison

purposes.

Our dynamical analysis has established, among investors with moderate preferences for

higher-order moment, that FF5 and CARH are the two best Fama-French models since 2000

(followed by FF3 and CAPM). This result is exactly the same as in Chapter 2. Moreover, our

static analysis (over the last 50 years) has also established the same ranking. This is a little

bit different from the results in Chapter 2. There, the two models with the highest relevance

frequencies over the last 50 years are FF5 and FF3 (followed by CARH and CAPM). The

difference may be explained by the fact that Chapter 2 does not consider non-linear SDFs and

therefore, cannot fully capture momentum-driven risk-adjustments. Overall the results from

this paper are consistent with those from Chapter 2.
23For the ranking purpose, the criterion used in Pondi (2018) is the following: a model is significant at time

t if at least one of its factors, other than the constant factor, is significant at t
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3.5 Conclusion

In this paper, we analyze the pricing abilities of the Fama-French linear factor models

according to investors’ characteristics. We assume that investors’ preferences are not fully

characterized by the mean and the variance. Also, we assume that there is a heterogeneity

among investors, whose pricing strategies depend on their preferences for higher-order mo-

ments. We show that: (i) for investors with moderate preferences for higher-order moments

(in absolute value), the benchmarks can be ranked as follows: CAPM ≺ FF3 ≺ CARH ∼

FF5; (ii) for investors with important preferences for higher-order moments, the ranking is

CAPM ≺ FF3 ≺ FF5 ≺ CARH; and (iii) for investors with extreme preferences for higher-

order moments, the ranking is CAPM ≺ FF5 ≺ FF3 ≺ CARH. Furthermore, we show that

although the relevance for linear pricing of the human capital model analyzed in Pondi (2018)

is confirmed, this relevance is effective only for investors with null or very low preferences for

higher-order moments.
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Appendices for Chapter 3 (C)

C1 Proofs

C1.1 Proof of Proposition 1

The HARA utility function of the dual optimal portfolio problem is given by u(w) = −1
γ+1 (1− γw)

γ+1
γ ,

(with (1− γw) > 0). A Taylor expansion of that utility function around the expected optimal wealth
gives:

u(wt) = u(E(wt)) + (1− γE(wt))
1
γ (wt − E(wt))

+ 1
2(−1)(1− γE(wt))

1
γ−1(wt − E(wt))2

+ 1
3!(1− γ)(1− γE(wt))

1
γ−2(wt − E(wt))3

+ 1
4!(−1)(1− γ)(1− 2γ)(1− γE(wt))

1
γ−3(wt − E(wt))4

+ . . .

(C.1)

It follows that,

E (u(wt)) = u(E(wt))

+ 1
2(−1)(1− γE(wt))

1
γ−1E

(
(wt − E(wt))2)

+ 1
3!(1− γ)(1− γE(wt))

1
γ−2E

(
(wt − E(wt))3)

+ 1
4!(−1)(1− γ)(1− 2γ)(1− γE(wt))

1
γ−3E

(
(wt − E(wt))4)

+ . . .

(C.2)

Therefore, Proposition 1 is true for orders 2, 3 and 4. Let us suppose by induction that the proposition
is true for an order p ≥ 4. We are going to show that the relation also holds for p+ 1.

By the assumption in induction, we have u(p)(wt) = (−1)p+1∏p−2
j=0(1 − jγ) · (1 − γwt)

1
γ−(p−1).
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Therefore,

u(p+1)(wt) = (−1)p+2
p−1∏
j=0

(1− jγ) · (1− γwt)
1
γ−p . (C.3)

The result follows. �

C1.2 Proof of Proposition 2

By Proposition 1, the weight Wp(γ) associated with a moment of order p ≥ 3 is given as follow:

Wp(γ) = −Wp−1(γ) · (p− 1)!
p! (1− (p− 2)γ) (1− γE(wt))−1 (C.4)

If p is odd, then by the “conditions on the signs of weights”, Wp > 0 and Wp−1 < 0. Therefore,
(1− (p− 2)γ) > 0; so γ < 1

p−2 .
If p is even, we have Wp < 0 and Wp−1 > 0. The result follows by the same argument as previously.
When p is very large, then γ ≤ lim

p→∞

(
1
p−2

)
= 0. �
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