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RÉSUMÉ 
 
Il est connu que les déficits cognitifs sont une des comorbidités fréquentes des syndromes 

épileptiques de l’enfance à l’âge adulte. Ces déficits portent une atteinte significative au  

fonctionnement et à la qualité de vie des patients affectés. Ils sont typiquement reliés à 

l’étiologie, à l’âge à la première crise, au traitement par anticonvulsants ainsi qu’à la sévérité, 

durée, et type de crise. Cependant, la littérature livre des résultats plutôt divergents quant aux 

séquelles d'une convulsion isolée. 

 

Suite à un épisode de status épilepticus (SE) chez l'enfant, reconnu comme étant le type de 

convulsion le plus sévère puisque les symptômes persistent pour une durée d'au moins 30 

minutes, la littérature démontre des changements physiologiques significatifs qui sont reliés à 

des déficits cognitifs à long terme, notamment au niveau du développement, de l'intelligence 

globale, des capacités d'apprentissage et des fonctions exécutives. L'étude des troubles reliés 

au SE permet de soulever les séquelles qui pourraient être attribuées à des convulsions moins 

sévères, telles les convulsions fébriles (CF), le type de convulsions le plus fréquemment 

rencontré chez l'enfant pour lesquelles les séquelles cognitives demeurent peu connues. Il y a 

plusieurs types de CF (simple et complexe) et elles sont dans l'ensemble caractérisées par une 

crise survenant dans un contexte de fièvre en l'absence d'une infection du SNC. Bien que des 

changements physiologiques à la suite des CF plus sévères aient souvent été démontrés, les 

conséquences de ces convulsions sur la cognition sont peu étudiées et les résultats demeurent 

controversés. Quelques études ont porté sur l'impact des formes de CF les plus sévères sur les 

trajectoires développementales immédiatement suivant la convulsion et plusieurs études 

démontrent une intelligence globale normale plus tard dans la vie. Cependant, l'étude 
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standardisée, spécifique et objective mesurant l'évolution du développement de la petite 

enfance à l'âge scolaire n'a pas encore été effectuée.  

 

Cette thèse comporte deux objectifs principaux. Le premier objectif était de comprendre les 

déficits cognitifs suite à un épisode de SE à travers une revue de la littérature (Article 1). Le 

deuxième objectif était d'étudier le développement cognitif suite à une CF complexe de 

l'apparition de la convulsion jusqu'à l'âge scolaire, dans le contexte de facteurs de risques 

connus pour un développement moins favorable (Article 2). Plus précisément, nous avons 

investigué le développement à l'intérieur de la première année suivant la convulsion (Article 2, 

Infant Cohort). De plus, nous avons étudié le développement cognitif des enfants de 5 à 6 ans 

ayant une histoire de CF, afin d'évaluer les fonctions cognitives plus complexes de manière 

spécifique et standardisée. Nous avons évalué l'apprentissage, la mémoire, et les fonctions 

exécutives (Article 2, School-Age Cohort).  

 

Les résultats de l'étude clinique (Article 2)  ont démontré un développement cognitif 

demeurant dans la norme à l'intérieur de la première année suivant l'apparition de la 

convulsion, sans impact de la durée de la crise ou de l'âge à l'apparition de la crise. À l'âge 

scolaire, les résultats ont démontré que intelligence globale n'est pas affectée suite à une CF 

complexe. Par contre, des différences de groupes significatives ont indiqué des difficultés 

cognitives spécifiques, particulièrement au niveau des fonctions exécutives, de l'apprentissage 

et de la mémoire, qui s'aggravent en fonction de la durée de la convulsion. Des difficultés 

émotionnelles ont également été démontrées chez les enfants ayant subi une CF complexe, 
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particulièrement au niveau du perfectionism. Ces difficultés étaient modulées par l'âge au 

moment de la crise.  

 

L’ensemble de ces résultats démontre que, bien que le développement ne soit pas altéré dans la 

première année suivant une CF complexe, des séquelles cognitives sont apparentes à l’âge 

scolaire, caractérisées par des faiblesses significatives au niveau des fonctions exécutives, de 

l'apprentissage et de la mémoire. De façon générale, les résultats obtenus démontrent que les 

CF complexes peuvent affecter le développement de fonctions cognitives spécifiques, bien 

qu’à un degré moindre que ceux observés à la suite d'un SE. Il faudra plus de recherche pour 

approfondir notre compréhension de la nature hétérogène des CF et de leur impact sur le 

fonctionnement et la qualité de vie des enfants affectés. 

 

Mots-Clés: Convulsions fébriles, status épilepticus, convulsion fébrile complexe, cognition, 

comportement, émotion, développement, fonctions exécutives, neuropsychologie, enfant  

 
 
 
 
 
 
 
 
 
 
 
 
 
 



	 v	

ABSTRACT 
 
Cognitive impairment has consistently been shown to be a common comorbidity of epileptic 

syndromes throughout the lifespan, typically in relation to etiology, age at onset, treatment and 

seizure type, severity and duration, and significantly impacting function and quality of life in 

affected patients. However, evidence related to the impact of seizure events occurring in 

isolation, without defining or being part of any broader syndrome has been equivocal.  

 

Evidence supports significant physiological alterations following early-life status epilepticus 

(SE), arguably the most severe form of seizure as symptoms persist for at least 30 minutes, 

which has further been linked to long-term cognitive residua related to altered development, 

global intelligence, learning capacities and executive function, particularly as they occur in the 

developing brain. Understanding cognitive outcome following SE events can orient our 

understanding of the impact of less severe forms of seizures on the developing brain, namely 

febrile seizures. Febrile seizures (FS), which represent a group of seizures (i.e., simple and 

complex types) that occur in association with a febrile illness in the absence of a CNS 

infection, are the most common form of childhood seizure, for which cognitive outcome 

remains unclear. Although physiological alterations have been shown, particularly but not 

exclusively in the most severe forms of FS, cognitive and behavioral outcome has been 

understudied to date and remains controversial. Few studies have investigated the impact of 

development immediately following the most severe form of FS, and evidence demonstrates 

unaltered global intelligence in later life. However, the evolution of the impact of FS on 

cognitive development from infancy into childhood using standardized, specific and objective 

measures has yet to be studied. 
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The general objectives of the current thesis were two-fold. The first objective was to 

understand cognitive outcome following SE through a review of the literature (Article 1). The 

second objective was to investigate development and cognition following an initial complex 

FS from onset to school-age, in the context of known risk factors for poor outcome, including 

all types of complex features (Article 2). More specifically, we aimed to study development 

within the first year-post onset (Article 2, Infant Cohort). Furthermore, we aimed to examine 

cognitive development in a cohort of children old enough for cognitive functions to be 

sufficiently differentiated (i.e., school-age) to allow specific, objective and standardized 

assessment of the impact of different complex features on specific functions, particularly 

related to learning/memory and executive function (Article 2, School-age cohort).  

 

Results of the clinical investigation revealed normal cognitive and behavioral development 

within the first year-post complex FS onset as compared to controls, without impact of seizure 

duration or age at seizure onset. At school-age, results revealed unaltered global intelligence 

following early-life complex FS.  Significant group differences however indicated difficulties 

in specific cognitive domains, including executive functioning, and to a lesser extent, learning 

and memory in these children, as a function of seizure duration. Emotional challenges, 

particularly perfectionism, were further noted in children having suffered complex FS, as a 

function of precocity of seizure onset.  

 

Taken together, our findings demonstrate that although development was unaltered following 

early-life FS, cognitive sequelae are apparent at school-age, characterized by challenges in 
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executive functioning and learning/memory. Overall, the current results support the hypothesis 

that complex FS, even without meeting criteria for FSE, may affect the development of 

specific cognitive functions, although to a lesser extent than those observed following SE. 

Future research is nevertheless required to better understand the heterogeneous nature of FS, 

as well as their outcome and impact on quality of life.  

 

Key words: Febrile seizures, status epilepticus, complex febrile seizure, cognition, behavior, 

emotion, development, executive function, neuropsychology, children 
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INTRODUCTION 
 
Epilepsy encompasses a group of neurological illnesses characterized by epileptic seizures, 

which are due to abnormal excessive or synchronous electrical activity in the brain (Moorthy 

et al., 2018). Cognitive impairment is a common comorbidity of epilepsy, which further 

impacts functioning and quality of life. The most prominent cognitive difficulties observed in 

this population are memory impairments, mental slowing and attentional difficulties 

(Aldenkamo, 2006). It has been argued that the cognitive deficits observed largely depend on 

the pathophysiology of the seizure disorder per se, such that patients suffering from temporal 

lobe epilepsy are at higher risk of presenting memory impairments, patients suffering from 

frontal lobe epilepsy are at higher risk of presenting executive impairments, and those with 

altered thalamo-cortical networks are at higher risk of language and executive functioning 

impairments (Moorthy et al., 2018). The etiologies of cognitive deficits in epilepsy are 

multifactorial. Early age at seizure onset has been argued to be the best predictor of cognitive 

outcome, although several other risk factors have been identified, including seizure type and 

severity, seizure duration, and use of antiepileptic medication (Strauss, 1995; Aldenkamo, 

2006). Cognitive impairments in the context of epileptic disorders are generally considered 

lasting, particularly when seizure occurrences begin at younger ages (Moorthy et al., 2018). 

 

In considering the pediatric population more specifically, epileptic encephalopathies together 

form a group of conditions in which epileptic electrical discharges are associated with 

progressive cerebral dysfunction in the developing brain (Dulac, 2001; Khan & Baradie, 

2012). The International League Against Epilepsy (ILAE) has recognized eight age-related 
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syndromes under the rubric of "epileptic encephalopathies": early myoclonic encephalopathy 

and Ohtahara syndrome during the neonatal period, West syndrome and Dravet syndrome 

during infancy and myoclonic status in nonprogressive encephalopathies, Lennox-Gastaut 

syndrome, Landau-Kleffner syndrome and epilepsy with continuous spike waves during slow 

wave sleep during childhood (Engel, 2001). These syndromes are commonly characterized by 

severe and aggressive epileptogenic activity as manifested through EEG paroxysmal activity; 

seizures that are multiform and intractable, cognitive, behavioral and neurological deficits, as 

well as occasional early death (Yamatogi & Ohtahara, 1981; Donat, 1992; Dulac, 2001; 

Michael & Thomas, 2003). In particular, the EEG characteristics of epileptic discharges 

measured in each syndrome are age-related and vary according to the stage of brain maturity 

at the time the seizures occur (Yamatogi & Ohtahara, 1981; Donat, 1992; Khan & Baradie, 

2012). Specifically, EEG primarily demonstrates burst-suppression patterns in the neonatal 

period, progressing to hypsarrhythmia in infancy and slow generalized spike-wave discharges 

in childhood (Yamatogi & Ohtahara, 1981; Dulac, 2001). With increasing age, seizure and 

epileptogenic features will evolve from one stage to another, and evolutional changes from 

Ohtahara syndrome to West syndrome to Lennox-Gastaut syndrome are frequently observed 

with age (Donat, 1992; Michael & Thomas, 2003). Although epileptic encephalopathies are 

known to attenuate or even stop in adolescence and adulthood, persistent residual 

neurocognitive sequelae have been well documented (Yamatogi & Ohtahara, 1981; Michael & 

Thomas, 2003; Khan & Baradie, 2012). Developmental trajectories have been observed to be 

stunted in all syndromes, including significant psychomotor delays and deficits, as well as 

mental and cognitive retardation (Khan & Baradie, 2012). Language deficits have been well 

documented following Dravet syndrome and Landau-Kleffner syndrome. Learning difficulties 
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have been noted following Ohtahara syndrome. Frontal lobe deficits, including difficulties 

with judgment and the ability to control and anticipate behavior, have been observed in 

epilepsy with continuous spike waves during slow wave sleep (Michael & Thomas, 2003; 

Khan & Baradie, 2012).  

 

A constellation of several different clinical presentations commonly occurs in epileptic 

encephalopathies, including atonic seizures, astatic seizures, clonic seizures, epileptic spasms, 

myoclonic seizures, myoclonic-atonic seizures and tonic seizures (Khan & Baradie, 2012). 

When any of these symptoms occur for a duration longer than 30 minutes, the semiology is 

consistent with status epilepticus (SE), which is considered the most extreme and severe form 

of a seizure (Trinka, et al., 2015). Moreover, when any of the symptoms occur as a result of a 

febrile illness rather than a neurological condition, the semiology is consistent with febrile 

seizures (FS), the most common form of childhood seizure (Shinnar & Glauser, 2002). SE and 

FS may occur as an isolated seizure event without defining or being part of any broader 

syndrome. Although epileptic encephalopathies have been strongly and consistently associated 

with persistent long-term cognitive sequelae (Michael & Thomas, 2003; Khan & Baradie, 

2012), and isolated SE events have generally been shown to impact cognitive development 

(Sheppard & Lippé, 2012), much less is known about the impact of isolated FS events on 

cognition. Even though it is a significantly less severe form of seizure, it is the most 

commonly occurring one, and more research is required to better understand its impact on the 

developing brain and cognitive development. 

 

STATUS EPILEPTICUS 
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Status Epilepticus (SE) is the most severe form of a seizure. It's a transient occurrence of signs 

and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain 

(Trinka, et al., 2015).  According to its updated ILAE definition, "SE is a condition resulting 

either from the failure of the mechanisms responsible for seizure termination or from the 

initiation of mechanisms which lead to abnormally prolonged seizures" (ILAE, 2015). It is 

agreed that the seizure in question must persist for at least 30 minutes in order to meet criteria 

for SE, given that irreversible neuronal injury typically occurs after this length of time. Indeed, 

it is a condition that can have long-term physiological consequences, including neuronal 

injury, neuronal death and alterations of neuronal networks (ILAE, 2015). SE can either be 

classified as convulsive (i.e., with prominent motor symptoms and impairment of 

consciousness) or non-convulsive (i.e., without motor symptoms or impairment of 

consciousness), and EEG patterns are non-specific (Lowenstain, et al., 1998). It is not a 

disease entity, but rather an event with many different etiologies. At least half of patients 

presenting with SE do not suffer from any particular syndrome or epilepsy, rather the event is 

due to acute or remote central nervous system (CNS), or systemic illness (Maytal, et al., 

1989). Although SE can occur at any age, 40% of SE events occur prior to 2 years of age, 

owing to the volume of neurons and excitatory connections prior to functional specialization, 

argued to create an imbalance between excitatory and inhibitory connections, which increases 

the immature brain's vulnerability to hypersynchronization and SE (Shinnar, et al., 1997; 

Wasterlain, et al., 1993; Scott, et al., 1998). Febrile SE (FSE) is the most common etiology in 

children, in which high fever without any other provocation to the CNS induces the SE event 

(Fountain, 2000).  
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 Cognitive sequelae following SE 

Residual cognitive sequelae following SE in early life have been relatively well documented. 

Alterations in global intelligence, verbal and non-verbal intelligence and motor development 

have been demonstrated following early-life episodes lasting longer than one hour (Kolfen, et 

al., 1998; Dam, 1990; Van Esch, et al., 1996, Aicardi & Chevrie, 1970). More specifically, it 

has been argued that the age at which the SE event occurs will hinder the cognitive abilities 

under development at the time. Roy, et al. (2011) demonstrated that when an FSE event 

occurred prior to 11 months of age, hand-eye coordination and motor ability were most 

affected, but spared in children with FSE onset beyond 12 months of age, who in turn 

manifested difficulties in language and social behavior. When tested at 2 years of age, these 

children presented shortcomings in executive functioning, including self-monitoring and 

inhibition difficulties. Although age at onset is argued to be a principal predictor of subsequent 

cognitive sequelae, duration and frequency of seizures, as well as etiology are also important 

risk factors. 

 

Taken together, cognitive sequelae following SE, the most severe form of seizure, has been 

relatively well documented (Sheppard & Lippé, 2012). Understanding the impact of early life 

SE and FSE on cognitive development can begin to shed light on understanding cognitive 

sequelae following early life seizures that are less severe in nature, although the most 

common, namely, Febrile seizures (FS). 

 

FEBRILE SEIZURES 
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 Definition 

Febrile Seizures (FS) are the most common form of childhood seizure disorder. The 

International League Against Epilepsy (ILAE) defines a FS as "a seizure in association with a 

febrile illness in the absence of a CNS infection or acute electrolyte imbalance in children 

older than 1 month of age without prior afebrile seizures" (ILAE, 1993; Engel, 2006; Patel, et 

al., 2017). Since fever is associated with seizure in FS, neurological illness such as meningitis, 

encephalitis, and others must be excluded upon evaluation. Febrile Seizures usually occur 

within the first 24 hours of an illness, and fever typically reaches temperatures of 380C or 

higher (Leung & Robson, 2007; Berg & Shinnar, 1996). With regards to semiology, FS are 

mostly generalized and convulsive (i.e., generalized tonic-clonic seizures), however 

approximately 5% present with non-convulsive features, including unconsciousness, staring, 

eye deviation and atonia. (Pavlidou, 2013; Patel, et al., 2015). 

 

 Classification 

Febrile Seizures are classified as either simple or complex based on the duration and 

recurrence of the seizure, as well as the presence of focal features (ILAE, 1993; Shinnar & 

Glauser, 2002). Simple FS is characterized by an isolated, brief (fewer than 10 minutes) and 

generalized seizure, whereas complex FS is more severe and quite heterogeneous in its 

presentation. It is characterized by either focal onset, prolonged duration (lasting between 15 

and 30 minutes), occurring more than once during febrile illness, or a combination of different 

complex features. Febrile status epilepticus (FSE) is the most severe type of complex FS in 

which the seizure persists for at least 30 minutes. Although research has consistently 
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demonstrated benign outcomes following the occurrence of a simple FS, such that the affected 

children have been shown to develop similarly to otherwise healthy children who have not 

suffered seizures (Chang et al., 2000, Berg & Shinnar, 1996), evidence related to outcomes 

following complex FS remains unclear and controversial.  

 

 Epidemiology  

Febrile Seizures occur in 2% to 5% of children between the ages of six months and five years 

(Verity et al., 1985; Shinnar & Glauser, 2002; Pavlidou, et al., 2013). Epidemiological studies 

demonstrate that FS onset peaks at 18 months and that onset beyond the age of six is rare 

(Leung & Robson, 1991; Baumann, et al., 2000). The incidence has been documented to be 

slightly higher in boys than girls (male to female ratio 1.1:1 to 2:1), although some studies do 

not show any sex differences (Pavlidou, 2013; Stafstrom, 2002; Chung, 2014). In affected 

children, approximately 75% will suffer simple FS and 20% to 30% will suffer complex FS 

(Annegers, et al., 1987; Shinnar & Glauser, 2002; Patel, 2017). The national collaborative 

perinatal project (NCPP), a study that prospectively followed 1706 children having suffered 

FS from birth to 7 years of age, revealed that 28% of children presented with an initial 

complex FS, of which 4% were focal, 7.6% were prolonged and 16.2% were recurrent 

(Capovilla, et al., 2009). Febrile status epilepticus accounts for 5% of FS events and 25% of 

overall SE events in children (Berg & Shinnar, 1996; Maytal & Shinnar, 1990; Patel, et al., 

2017). Early results of the FEBSTAT study, a prospective and longitudinal multi-center study 

investigating the long-term impact of FSE on cerebral and cognitive development, reveal that 

it's presentation is focal in 67% of cases, and its onset peaks in relatively younger children 

(median age of 1.3 years) (Shinnar, et al., 2008). Moreover, although a seizure lasting at least 
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30 minutes is required to meet FSE criteria, the FEBSTAT study revealed a median seizure 

duration of 68 minutes and 24% of durations lasting more than two hours. 	

 

 Etiology 

As per their definition, FS are induced by a fever of at least 380C, typically associated with a 

systemic illness. The age-specific mechanisms involved in seizure development related to high 

fever are however quite debated and overall suggest multifactorial etiologies, including both 

environmental (including the systemic illness and fever itself) and genetic factors (Offringa, et 

al., 1994; Berg, et al., 1999; Audenaert, et al., 2006).  

 

The pathogenesis of FS remains unclear and has mostly been studied through animal models. 

Given that FS are age-dependent, there seems to be a temporal association between the 

immature CNS and the onset of FS, although this association has yet to be clearly established, 

a situation which is further complicated by the heterogeneity of FS presentations. It is 

suggested that fever arising from febrile illness is linked to an imbalance between excitatory 

and inhibitory transmissions leading to seizure activity (Pavlidou, 2007; Heida et al., 2009). 

More specifically, it is suggested that fever increases brain temperature, which in turn alters 

neuronal functioning through temperature-sensitive ion-channels and inflammatory processes 

promoting the secretion of cytokins, which together increase neuronal excitability and increase 

the probability of generating seizures (Leung & Robson, 2007; Pavlidou, et al., 2013; Reid, et 

al., 2009; Dubé et al., 2005; 2009). Overarching are on-going "chicken or the egg" debates 

arguing that either FS, particularly in cases of prolonged complex FS, may lead to hypoxic 

damage of the CNS and subsequently cause increased vulnerability to seizure activity, or fever 
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may trigger a seizure in pre-existing CNS disorders (Chang, et al., 2008). Taken together, FS 

have multifactorial and heterogeneous etiologies, leading to debates as to whether FS arise in 

otherwise healthy children, or as a result of an underlying although undetected predisposition, 

or whether this further depends on the type of FS suffered. 

 

 Risk Factors Associated this FS 

  Genetic Risk Factors  

Population-based studies show that FS tend to occur more frequently in first-degree relatives 

of children with FS. In particular, 25% to 40% of affected children show a positive family 

history of FS (Chung, 2014). Moreover, the incidence is 20% to 25% higher among siblings 

and 10% higher among parents of children with FS (Hauser, et al., 1985; Knudsen, et al., 

1996). Twin studies have similarly shown that predisposition to FS is higher among 

monozygotic twins (22%) than dizygotic twins (11%) (Waruiru, et al., 2004; Pavlidou, 2013). 

 

No single susceptibility gene has been specifically detected for FS (Patel, et al., 2015), 

although several gene loci have been associated with the onset of FS. In particular, linkage 

studies have proposed 11 chromososmal locations responsible for FS, including FEB1 to 

FEB11 (Sghazadeh, 2014). Moreover, mutations in two voltage-gated sodium channel genes 

(SCN1A and SCN1B) and GABAa receptor gene have been identified in seizure disorders that 

often initially present as FS, including Dravet syndrome and GEFS+ (a syndrome in which 

individuals present with complex FS beyond the age of 5 and later develop afebrile seizures) 

(Kang, et al., 2006; Kira, et al., 2010; Abou-Khalil, 2010). 

 



	 10	

  Environmental Risk Factors  

The principle environmental factor involved in FS is the fever event, usually related to 

systemic infection. The most common causes for fever in FS are those associated with 

influenza A, gastroenteritis, otitis media, respiratory infection and human herpes simplex 

virus-6 (Millichap & Millichap, 2006, Kwong et al., 2006; Van Zeij, et al., 2004; Pavlidou, 

2013). Other environmental factors related to poor outcome following FS include low family 

income and parental education (Leaffer, 2013). Developmental delay and neurological 

abnormalities prior to FS onset are further related to suboptimal outcome (Leaffer, 2013).  

  

  Risk of Initial FS 

The risk factors associated with the development of an initial FS include a positive family 

history of FS in first degree relatives, a neonatal stay longer than 28 days, known 

developmental delay and day-care attendance (Chung, 2014). Children presenting with more 

than two risk factors have an increased chance of developing a first FS by 28%, and pre-

existing developmental delay is most commonly associated with prolonged complex FS 

(Mastrangelo, et al., 2014). 

 

  Risk of FS recurrence 

Following an initial FS, up to one third of affected children will have a recurrence (Patel, et 

al., 2015). Age at onset is the strongest and most consistent risk factor. When seizure onset 

occurs in the infantile period (younger than 18 months), the risk of recurrence is 50% (Cendes 

& Sankar, 2011; Pavlidou, 2013). Other risk factors for recurrence include a family history of 

FS in first-degree relatives, pathological prenatal history, low height and short duration of the 
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fever episode, focality and recurrence of seizures within the same febrile episode (Waruiru, et 

al., 2004; Pavlidou, et al., 2008). Children presenting with all these factors have up to an 80% 

chance of recurrence, whereas children presenting none of these factors have approximately a 

4% chance of recurrence (Berg, et al., 1997; Patterson, 2013; Patel, 2015).  

 

  Risk of subsequent development of epilepsy 

Approximately 2% to 6% of children suffering FS will subsequently develop epilepsy 

(Baumer, 2004; Abou-Khalil, 2007; 2010). The risk of developing an epileptic syndrome 

following simple FS is similar to that of the general population (1% to 2% risk), whereas the 

risk is increased following complex FS (4% to 7% risk) (Verity & Golding, 1991; 

Vestergaard, et al., 2007; Baumer, 2004; Abou-Khalil, 2010). Moreover, 35% of adults 

suffering from temporal lobe epilepsy (TLE), the most common focal epilepsy in adults, have 

a positive history of complex and/or prolonged FS in childhood (Reid, et al., 2009; Abou-

Khalil, 2010). The main risk factors for later development of epilepsy include a positive 

family history of epilepsy, complex and/or prolonged FS and neurodevelopmental impairment 

(Abou-Khalil, 2010; Vestergaard, et al., 2007; Capovilla, et al., 2009). Causal links between 

these risk factors and the development of epilepsy are controversial and debated. It is argued 

that prolonged FS cause acute hippocampal damage resulting in residual hippocampal 

sclerosis, which represents the hallmark of TLE (Kira, et al., 2010). This hippocampal damage 

is argued to render the brain more vulnerable to seizures, which can eventually lead to 

epileptic syndromes (Barr et al., 1997; Harvey, et al., 1995; Wu, et al., 2005). 

 

 The impact of FS  
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Although research has shed significant light on the understanding of FS, despite certain links 

between FS and causes/consequences that remain unclear, outcome following FS is much less 

understood. Only relatively recently have FS been flagged as not being as benign as 

previously thought. Further investigations are required to bring better understanding to the 

impact of FS, given that they are the most common form of childhood seizure, particularly as 

they occur at a sensitive developmental age.  

 

CEREBRAL DEVELOPMENT 

 

From a structural perspective, neurons are developed and migrate to their final destination at 

approximately the 16th week of gestation, after which synapses and dendrites form 

connections, and axons begin to acquire myelin, which helps speed neural transmissions 

(Sidman & Rakic, 1973; Andersen, 2003). During the period immediately before birth, about 

50% of all neurons are eliminated in a process of programmed cell death (i.e., apoptosis), a 

phenomenon which is believed to increase the efficiency of synaptic transmission (Andersen, 

2003). Rapid cerebral development continues after birth, when the brain gains significant 

weight and volume. Processes involved in neuronal and network development begin to peak 

around the first year of life. Such processes include dendritic arborization and synaptogenesis, 

characterized by an explosion in the formation of neuronal connections, as well as myelination 

and synaptic pruning, characterized by the weeding of unnecessary connections and 

strengthening of utilized connections. The specialization of neurons and functions continue 

through infancy, childhood and into adolescence (Casaer, 1993, Andersen, 2003). The 

processes involved in cerebral development are argued to occur in a hierarchical manner, in 
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which neurons organize from the deepest layer to the outer-most layer and from posterior to 

anterior regions of the brain (Jernigan & Tallal, 1990; Andersen, et al., 2000). Moreover, the 

process of myelination is argued to similarly occur hierarchically from primary and sensory 

areas, to association areas and cortical regions, such that neurons involved in carrying sensory 

information are argued to be the first to acquire myelin, followed by neurons involved in 

carrying motor information, and so on in a hierarchical manner, until the myelination process 

reaches axons placed in the cortex (Casaer 1993; Hudspeth & Pribram, 1993; Staudt, et al., 

1993). Even though anterior cortical regions are argued to be the last to reach maturity, 

evidence suggests that many areas of the cortex begin to function in infancy, including early 

specialization of the frontal cortex (Anderson, 2001). In particular, frontal behavior-related 

metabolic changes have been detected in infants as young as 6 months of age (Chugani, et al., 

1987). EEG has been shown to change in relation to improved behavior during the first year of 

life (Bell & Fox, 1992), even though frontal regions show accelerated development from 7 to 

10 years of age.  

 

Understanding cerebral development through cellular and structural maturation can shed light 

on understanding how structure then relates to behavior and function and further, 

understanding of the mechanisms of how early life insults to the brain can impact cognitive 

development. Even though functional specialization occurs throughout childhood, into 

adolescence and even early adulthood, cognitive capacities begin specializing sufficiently 

enough at school-age (i.e., approximately 5 years of age) to allow for their specific evaluation 

through behavior (i.e., neuropsychological measures), in order to assess the impact of early 

life insults on particular cognitive capacities.  
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PLASTICITY VERSUS VULNERABILITY THEORIES 

 

Although the extent and location of early life injury to the brain predict severity of residual 

impairment, timing of the injury will dictate the nature of the impairments. Following insults 

to the brain in early life, it was traditionally believed that owing to a lack of functional 

specialization, the young brain was "plastic" and able to adapt to injury, in that abilities 

subsumed by the damaged region could more readily reorganize and therefore recover 

function (Kennard, 1936). This is the assumption of Plasticity theory, which predicts that the 

earlier in life the insult occurs, the better the outcome in later life. This principle was 

established by early studies demonstrating normally developing intellectual and cognitive 

capacities in young children following focal brain injuries. In contrast, Vulnerability theory 

predicts that owing to the lack of functional specialization, the brain will attempt to recover 

endangered functions from a damaged structure by aberrantly creating faulty connections 

(Giza et al, 2002). Specifically, if damage occurs at a critical stage of development, cognitive 

skills already established will be spared, but those emerging and dependent on the damaged 

region may be irreversibly impaired. As such, a crowding effect will take place such that 

healthy neurons will take over damaged neurons in an attempt to recover the developing 

function. However, this phenomenon will limit these neurons' quantitative and qualitative 

resources, creating a "crowding" of cognitive functions for that particular tissue (Statz et al, 

1994). Evidence from brain lesion studies has demonstrated that cognitive functions subserved 

by the cerebral structures that are under development at the time of the insult are the most 

affected (Anderson & Moore 1995; Dennis, 1989). In the evaluation of both theories, the 
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Vulnerability theory has been the most supported to date (Anderson, et al., 1997; Bittigau et 

al, 2004; Dennis, 1989).  

 

With regards to seizure disorders in early life, it is argued that epileptogenic or abnormal 

electrical activity will compete with normal brain activity for neural resources (Pavlidou, 

2007). If abnormal activity occurs at critical stage of cerebral development, aberrant neuronal 

connections may be formed and normal brain functions may fail to develop. 

 

OUTCOME FOLLOWING FS 

 

 Physiological outcome  

  Animal Models 

Animal models of experimentally induced FS, typically using a hyperthermia paradigm in 

rodents, consistently demonstrate altered hippocampal structure and function following FS. In 

particular, cytoskeletal changes have been demonstrated in hippocampal neurons within 24 

hours following experimentally induced FS, for which altered functional properties of these 

neurons persisted into adulthood (Toth et al, 1998). Furthermore, MRI studies of 

experimentally induced FS show abnormally high T2 signal in the hippocampus, 

demonstrating marked anatomical abnormalities in the acute phase post-seizure, which were 

long-lasting (Dubé et al, 2004). Additionally, increased cytogenesis in the dentate gyrus and 

significant dark neuron formation following FS interpreted as marked neuronal injury has been 

observed, which further proved to be persistent effects of the FS (Nazem, 2012). In the 

predisposed rat brain, hippocampal damage characterized as atrophy associated with neuronal 
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loss has also been shown following a single episode of FS (Gibbs et al, 2011). Additionally, a 

decrease in dendritic spines in hippocampal neurons was found in these rats, which was 

associated with neuronal hyperexcitability. Indeed, long-lasting neuronal hyperexcitability has 

been consistently demonstrated in animal models following prolonged FS (Chen, et al., 1999; 

Brewster, 2002; Notenboom, 2010). This hyperexcitability following FS has been related to 

learning and memory impairments by a persistent decrease of the slow afterhyperpolarization 

(sAHP) in hippocampal neurons, characterized as a prolonged afterhyperpolarization that 

restrains repetitive firing underlying synaptic efficiency and therefore learning and memory 

(Kamal et al., 2006).  

 

  In Children  

Loss of hippocampal integrity has also been demonstrated in children having suffered FSE. In 

the acute phase post-FSE, transient increases in hippocampal volume as well as signals of 

hippocampal hypertension as revealed by increased T2- weighted MRI relaxation times have 

consistently been demonstrated (Huang & Chang, 2009; Shinnar, 2003). Although some 

studies demonstrate resolution of acute abnormalities within the first few months following 

seizure onset, most argue for persistent residual sequelae (Shinnar, 2003).  

 

Epidemiological studies of TLE have revealed that TLE patients with a prior history of FS 

demonstrate decreased bilateral hippocampal volume as compared to TLE patients without 

such prior history (Barr et al, 1997; Harvey et al, 1995). Furthermore, hippocampal sclerosis 

was found to be strongly associated with prior neurological insult in childhood, mostly 

characterized as prolonged FS (Harvey et al, 1995).  
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MRI volumetric analysis studies have similarly demonstrated loss of hippocampal integrity 

following FS. In particular, follow-up studies performed 4 to 16 months and further at 6 years 

post-FS have demonstrated that children having suffered from prolonged FS show 

hippocampal asymmetry, by evidence of a smaller right hippocampus (Scott et al, 2003; 

Merkenschlager et al, 2009). Furthermore, these asymmetries in hippocampal volume have 

been shown even when MRI scans done in the acute phase post-FS did not show 

abnormalities, indicating a progression toward hippocampal injury (Merkenschlager et al, 

2009; Lewis, 2014). MRI volumetric analysis studies have also revealed hippocampal atrophy 

characterized as a decrease in hippocampal volume. In particular, longitudinal studies have 

demonstrated that most children having suffered prolonged FS showing acute hippocampal 

injury show hippocampal atrophy two-years after onset (VanLandingham et al, 1999; 

Provenzale, 2008; Hesdorffer, et al., 2008). Additionally, hypertense hippocampi as evidenced 

by increased T2-weighted MRI images at time of FS onset were correlated with hippocampal 

volume loss and even medial temporal sclerosis in some cases (Provenzale, 2008). Results of 

these longitudinal studies point to evolving hippocampal damage following complex FS, even 

in children who's initial scans showed no abnormalities.  

 

It is important to note that most imaging research to date has been completed in children 

having suffered prolonged FS and FSE. The few studies that have investigated the impact of 

other complex features on cerebral development have revealed persistent MRI hippocampal 

abnormalities in both prolonged and focal FS (Hesdorffer, et al., 2008), whereas other studies 
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have demonstrated a greater impact of multiple seizures on hippocampal volume loss as 

compared to focality and duration of the seizure (Yoong, et al., 2013).  

 

Moreover, the vast majority of imaging studies have focused on the development of the 

hippocampus. Although it is argued to be the most affected structure in FS and FSE, next to no 

research has been performed in investigating hippocampal abnormalities in the larger context 

of brain development, specifically how alterations in the hippocampus might impact the 

development of other structures, or inversely, how alterations in other structures might impact 

hippocampal development. Indeed, the hippocampus is a structure that plays an active role in 

larger networks, the cortico-hippocampal network in particular. The function of this network is 

known to play an integral part in learning and memory (not just as a function of the 

hippocampus in isolation). Moreover, given the direct and monosynpatic connections between 

the hippocampus and frontal/prefrontal areas, including the medial prefrontal cortex known for 

its involvement in executive functioning, a set of cognitive processes involved in the cognitive 

control of behavior (e.g., inhibition, self-monitoring, goal-directed behavior), it is possible that 

damaged hippocampi following FS may result in cognitive challenges beyond learning and 

memory.  

 

 Cognitive outcome following FS 

  Animal models 

Animal models of experimental FS in rodents have shed light on cognitive difficulties 

following FS. Notably, it has been found that hyperthermia-induced FS in predisposed rat 

brains resulted in impairments on the Morris Water Maze task, a task of learning and memory 
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(Scantleburry, 2005; Rajab 2014). Furthermore, cognitive testing of adult rats that suffered 

hyperthermia-induced FS as pups without early cortical lesion demonstrated deficits in 

working and reference memory in the Morris Water Maze task (Dubé et al., 2009; Rajab 

2014). Additionally, these deficits were shown to be related to impaired hippocampal function 

and structure (i.e., as shown by an abnormally high T2 signal). Taken together these animal 

models of early life FS demonstrated learning and memory impairments in adult life following 

an experimental FS event. The FS induced in these animals are considered to be at the 

"severe" end of the spectrum of FS, and would correspond to FSE in humans (Roper, 2016). 

Moreover, animal models have focused on spatial learning, as it is challenging to test other 

types of learning in rodents, and have overall focused on abilities largely dependent on 

hippocampal functioning. Although these studies provide valuable insight into the deficits 

observed in the most severe form of FS, they lack evidence related to other possible deficits 

following different types of FS. 

 

  In children 

The impact of complex FS on cognitive development and behavior in children remains 

unclear. Although converging evidence suggests unaltered global intelligence following 

complex FS and FSE, the impact of these types of seizures on specific cognitive functions, 

beyond intelligence, is debated. While some studies indicate unaltered development, scholastic 

achievement and behavior following complex FS, others argue for hindered developmental 

trajectories and disrupted behavior following the event (Ellenberg & Nelson, 1978; Verity et 

al., 1998; Hirtz, 2002; Martinos, 2012; 2013; Weiss, 2016). Divergent evidence has typically 

been the result of inconsistent methodologies and populations studied. Early studies denying 
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any impact of FS on cognitive development used measures that lacked specificity and 

objectivity (i.e., surveys). Using more specific, objective and standardized measures, other 

studies have revealed contrasting evidence regarding the impact of complex FS on cognition 

and behavior in school-age children, although discrepancies in methodologies are further 

noted, including populations used (i.e., population versus hospital-based samples), complex 

seizure type studied (i.e., prolonged versus multiple versus focal), measures used (i.e., 

objective versus subjective) and time points assessed (i.e., varying time points since seizure 

onset or last seizure occurrence) (Kolfen et al., 1998; Chang et al., 2000; 2001; Norgaard et 

al., 2009; Visser et al., 2012).  

 

Understanding early developmental outcome, within the first year-post FS onset, could shed 

light on the understanding of long-term cognitive outcomes. Few studies to date have 

investigated development within the first year-post seizure onset. In particular, children having 

suffered FSE have been shown to develop normally within the first month post-seizure onset, 

although demonstrated slightly weaker motor development and receptive language one year-

post onset (Weiss, 2016). Children having suffered a prolonged complex FS consistently 

demonstrated worse developmental outcome as compared to controls 6 weeks and 1 year 

following seizure onset (Martinos, 2013), as well as accelerated forgetting within the first 

month and 1 year following onset (Martinos, 2012). Weaker development one year-post onset 

has further been linked to hippocampal anomalies in children having suffered prolonged 

seizures (Weiss, 2016; Martinos, 2012). These results suggest a possible worsening of the 

impact of the initial seizure on development over time, particularly in the context of 

neurodevelopment, as FS occur during a period of rapid cerebral development and functional 
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specialization (Andersen, 2003). However, studies to date have focused on FSE, forgoing the 

investigation of the possible impact of focal and recurrent seizures on development, even 

though they have also been shown to alter structure (Hesdorffer, et al., 2008; Yoong, et al., 

2013). Moreover, the impact of seizure duration on cognition can be considered somewhat 

biased in the FSE studies, as their mean seizure duration varied between 70 and 90 minutes 

(Weiss, 2016; Martinos, 2012). It is still unknown whether a less prolonged FS, that is, lasting 

between 15 and 20 minutes, may have a similar or commensurable impact on cognition. 

 

Beyond the impact of complex FS on development, studies investigating their impact on 

cognition have focused on hippocampus-dependent functions, mainly learning and memory. In 

particular, infants having suffered FSE have demonstrated reduced memory capacities, as well 

as accelerated forgetting within the first year post-onset, which were associated with reduced 

hippocampal volume (Weiss et al., 2016; Martinos et al., 2012). Other studies investigating 

school-age children having suffered non-prolonged complex FS found that although memory 

performances were similar between FS and control groups, mechanisms used to achieve 

similar behaviors were different, evidenced by altered event-related potentials and 

hemodynamic activity (Kipp et al., 2010; 2012).  

 

With regards to their impact on behavior, complex FS have been associated with increased 

external behavioral deficits and increased attentional difficulties as measured by parental 

questionnaires (Kolfen et al., 1998; Lippé et al., 2009; Tsai et al., 2015). More objectively, 

very few studies to date have examined the impact of complex FS on executive functioning 

later in life. Roy et al (2011) demonstrated that children of 2 years of age showed reduced self-
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monitoring and inhibition abilities following a single episode of SE. They compared these 

children to two control groups, namely children having suffered a FS and otherwise healthy 

controls. Their results indicated that although children having suffered from an episode of SE 

performed worse than healthy controls, children having suffered FS did not differ significantly 

from either SE or control group, suggesting that an episode of FS may hinder these functions, 

albeit to a lesser extent. In investigating FS per se, children having suffered complex FS have 

been shown to demonstrate weaker sustained attention abilities (Hara et al., 1986), although 

other studies have suggested better performances in children having suffered FS (Chang et al., 

2000; 2001). The results of the latter two studies however reveal that although children having 

suffered complex FS were better at sustaining their attention on complex tasks, they had more 

difficulty sustaining their attention on simple tasks as compared to controls, which could 

possibly indicate a need for arousal and challenges in self-monitoring abilities. To our 

knowledge, no study has yet objectively and specifically assessed executive functioning in 

children having suffered complex FS beyond working memory and sustained attention 

abilities. 

 

Overall, studies investigating the impact of complex FS on cognition have to date mainly 

focused on FSE and hippocampus-dependent functions. Exploring the effects of other complex 

features (i.e., recurrence and focality) on these functions, as well as on others that could be 

affected by faulty hippocampal function through cortico-hippocampal networks, including 

executive functions, could help increase our understanding of the impact of FS on cognition. 

Moreover, investigating their impact on cognition as a factor of time (i.e., age), could help 
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understand the evolution of possible challenges through early development, a time when 

significant maturational changes and functional specializations occur in the brain.  

 

RESEARCH OBJECTIVES AND HYPOTHESES 

 

1. The first objective was to review cognitive sequelae following Status Epilepticus, the 

most severe form of a seizure in childhood, through a more extensive review of the 

literature than previously available. 

 

2. The second objective was to investigate development and cognition from onset to 

school-age following complex FS, as compared to children having suffered simple FS, 

in the context of known risk factors for poor outcome, including all types of complex 

features. More specifically, we aimed to transversally evaluate development within the 

first year-post seizure onset, as well as cognition in a cohort of children old enough for 

cognitive functions to be sufficiently differentiated (i.e., school-age). 

 

It was hypothesized that infants having suffered complex FS would show hindered 

development as compared to simple FS controls, within the first year-post onset. It 

was further hypothesized that school-age children having suffered complex FS 

would show weaker performances on measures of learning/memory and executive 

functioning as compared to simple FS controls, given the role of the hippocampus 

in FS, and the possible impact of this early life insult on the development of 
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structures subserving executive functions, which are crucial for academic success. 

Lastly, it was hypothesized that developmental and cognitive measures would be 

associated with known risk factors for poor outcome, including younger ages at 

onset and longer seizure durations. 
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ABSTRACT 

 

Epileptic encephalopathy encompasses conditions in which cognitive, motor or sensory 

deficits result as a consequence of epileptic activity defining certain syndromes. It therefore 

represents a more severe subset of epilepsy, which can be generally characterized as frequent 

or severe seizures leading to cerebral dysfunction. This disturbance in cerebral functioning can 

in turn hinder, somewhat dramatically, cognitive development and further impact the future 

lives of patients. In this review, we describe the cognitive consequences of Status Epilepticus 

in children and in adults in the context of plasticity theories. Recent studies maintain that 

consequences of SE may be severe cognitive sequelae, especially in early life. Since the 

residual consequences of SE in adulthood seem less detrimental and long-lasting, we argue 

that early life insults, such as those created by SE, during a rapid period of development and 

functional specialization, result in specific cognitive deficits dependent on the sensitive period 

at which SE occurred.  

 

1. INTRODUCTION 

 

Epileptic encephalopathy encompasses conditions in which cognitive, motor or sensory 

deficits result as a consequence of epileptic activity defining certain syndromes (1). It 

therefore represents a more severe subset of epilepsy, which can be generally characterized as 

frequent or severe seizures leading to cerebral dysfunction. This disturbance in cerebral 

functioning can in turn hinder, somewhat dramatically, cognitive development and further 
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impact the future lives of patients. In this review, we consider Status Epilepticus as an 

epileptic encephalopathy owing to its impact on cognitive development in early life.  

 

2. STATUS EPILEPTICUS (SE)  

 

Status Epilepticus (SE) is a medical epileptic emergency characterized by either rapidly 

repeating seizures without recovery or regain of consciousness between episodes, or prolonged 

continuous epileptic activity, both creating a fixed or lasting condition (2, 3). It is an event 

rather than a syndrome. It is accepted that the duration of an episode of SE is 30 minutes or 

more, period after which cerebral functioning is highly probable of being affected and 

immediate medical attention is needed (4). Recently, the notions of impending SE and 

established SE have been introduced (5) in order to provide the best possible care for patients 

presenting with SE. In adults, patients presenting a seizure lasting more than five minutes can 

be designated as impending SE. In children, impending seizures are considered when seizures 

last between 5 and 10 minutes (5).  

 

The prevalence of SE varies. Three epidemiologic studies suggest 17 to 108/100000 as being 

the prevalence of SE (6, 7, 8). Although SE can occur at any age, it is most often encountered 

in infancy and childhood, 40% of all cases occurring prior to 2 years of age, a period in which 

the brain is in rapid development (9). Such prevalence is argued to be present in early life 

owing to the exceeding amount of neurons and excitatory connections prior to functional 

specialization while undergoing neuronal pruning, which increases the vulnerability of the 

developing brain to SE (10). In affected children, an imbalance between inhibitory and 
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excitatory neurotransmissions is argued to lead to anomalies in neuronal impulses leading to 

prolonged seizures (11). In fact, the pathophysiology of SE seems to involve a loss of 

inhibitory mechanisms, which result in a deficiency of the neuronal metabolism, which is 

unable to keep up with the demands of the continuous epileptic activity (12). The seizures are 

most frequently generalized, but may also be partial and either convulsive or non- convulsive 

(13). SE is further classified in accordance with its respective etiology (14). Idiopathic SE 

occurs in otherwise healthy individuals without metabolic dysfunction nor an acute insult to 

the Central Nervous System (CNS). Furthermore, remote symptomatic SE occurs in patients 

with a history of insult to the CNS without acute provocation such as in mental retardation. 

Febrile SE, the most common etiology in children (15), occurs when the only provocation of 

the CNS is a high fever, usually higher than 38,4 degrees Celsius. In this population, 86% of 

children demonstrate normal prior development (16). Acute symptomatic SE occurs during an 

acute illness with a known insult to the CNS such as in meningitis. Although there has been 

debate on the long-term effects of SE on cerebral functioning, recent research investigating 

more accurately the cognitive sequelae related to SE demonstrate that cognitive functions 

under development are exposed to being altered and damaged in children presenting with SE, 

owing to its high incidence in infancy, a period of marked and rapid cognitive development.  

 

3. PLASTICITY VS. VULNERABILITY IN THE DEVELOPING BRAIN  

 

In considering the impact of an early insult on cerebral and cognitive development, two 

opposing theories are contradictory in their predictions. The Plasticity theory posits that the 

young brain is flexible and therefore capable of recovery after insult. As such, since there is 
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less functional specialization in early life, functions that would depend on a damaged area 

would simply reorganize to functionally cope with the insult (17, 18). As such, this theory 

predicts that early brain damage is the most biologically manageable, resulting in less 

vulnerability to the impact of damage as opposed to an older brain. In contrast, the 

Vulnerability theory posits that the young brain is the most fragile and therefore vulnerable to 

early insult. It argues that owing to the lack of functional specialization, the brain will attempt 

to recover endangered functions, but will do so aberrantly creating faulty connections in early 

life (19). As such, a crowding effect will take place such that healthy tissue will take over the 

damaged tissue in attempting to recover the cognitive function at hand, but consequently 

limiting the tissue's quantitative and qualitative resources (20). This effect was first 

demonstrated in the context of hemispheric dominance following left hemisphere damage in 

early life such that an insult to the left hemisphere prior to one year of age resulted in the 

proper development of language but faulty development of non-verbal skills; owing to brain 

plasticity, the emerging language functions took over neurons dedicated to non-verbal skills. 

The reverse effect was observed when the insult occurred after one year of age (20, 21). As 

such, healthy tissue, although already specialized for a certain function will forgo that 

specialization for the proper development of the function underlying the insult, creating a 

“crowding” of cognitive functions for that particular tissue Therefore, the Vulnerability 

perspective of the developing brain predicts that early life insults are the most difficult to 

recover from.  

 

In further investigating the opposing predictions of both theories of the impact of early insult 

on the developing brain, the Vulnerability theory has been the most supported (22, 23, 24, 25). 
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It has been found that young neurons more readily grow to make new connections, which 

following an insult, may facilitate aberrant connections (26). As such, the developing brain is 

the most vulnerable to insult resulting in subsequent damage post-SE potentially persisting in 

later life. Furthermore, findings demonstrate that not only is the severity of the sequelae 

following SE predicted by the extent and location of the insult, but the nature of the sequelae 

itself is determined by the timing of the SE episode (27). As such, the developmental period at 

which the insult occurs is argued to predict which cognitive functions will be most affected 

and therefore predict the general outcome of the patient.  

 

4. A MODEL OF HUMAN DEVELOPMENT 

 

In concordance with the Vulnerability theory, early insults to the brain have the most 

detrimental impact on cerebral and cognitive development persisting in later life. As such, 

faulty neuronal connections following an early life insult during a critical period of 

development will hinder the normal development of brain functions, for which the sequelae 

will persist in later life (28). However, already developed functions at the time of the insult 

will be spared. The notion of critical periods during infancy through adolescence is 

widespread and generally accepted (29). Critical periods allow for a logical hierarchy in 

development such that windows of opportunity allow for the specialization of functions. 

Furthermore, certain structures and their underlying function must be well specialized prior to 

others. As such, sensing pathways such as those involved in vision and hearing must develop 

prior to language pathways, which in turn must develop prior to higher cognitive functioning, 

including executive functions (29). Critical periods, consequently, expose certain functions as 
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more vulnerable than others at particular and specific periods during development. The 

vulnerability of different cognitive functions therefore varies with the developmental process 

itself. In the presence of an early insult to the brain, the function under development will be 

hindered, affecting not only that particular function, but also the development of subsequent 

functions dependent on the hindered one. Healthy development of cognitive functions depends 

on the integrity of the structure the function underlies. As such, following an early life insult, 

the integrity of a particular structure is compromised, further compromising the cognitive 

function that structure is responsible for.  

 

5. PHYSIOLOGICAL ALTERATIONS RESULTING FROM SE 

 

Prolonged and frequent seizures, such as those involved in SE consistently show physiological 

brain damage. In fact, the physiological properties of cells have been shown to be altered 

following an SE event (30, 31). The most vulnerable structure to the seizures is the 

hippocampus, which is involved in learning and memory. Hippocampal edema, cell loss 

particularly in the Sommer sector, and abnormalities have consistently been detected within 

this structure following SE (32, 10). Also in human, other structures have been demonstrated 

to show necrosis following events of epileptic attacks such as the amygdala, dorsomedial 

thalamic nucleus, medial layers of the neocortex, cerebellum, the piriforme and entorhinal 

cortices (32, 33, 30, 31). Neuronal degeneration and loss in these areas have been shown to 

occur rapidly after a SE event (34, 30). Cerebral atrophy has also been demonstrated following 

SE (35). Animal studies have further supported these physiological alterations. The work of 

Meldrum involving induced SE in baboons has demonstrated similar neuronal necrosis 
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involving the neocortex, hippocampus, amygdala, thalamus and cerebellum (36). In a long- 

term follow-up, different SE animal models have found structural changes (37, 38, 39). For 

example, smaller volumes of the hippocampus, thalamus, putamen and perirhinal cortex have 

been found (39). Interestingly, severity of hippocampal volume loss correlated with severity in 

spatial learning impairments. Of note, animal data describing the consequences of an induced 

single episode of SE tend to show greater deleterious consequences in immature rat brains in 

comparison to adult rat brains (40). Although physiological alterations following SE have 

been shown specifically and consistently, the cognitive sequelae resulting from these 

abnormalities is not as clear and widespread.  

 

6. COGNITIVE SEQUELAE OF STATUS EPILEPTICUS IN ANIMAL MODELS  

 

Cognitive sequelae following SE were first studied using animal models in which animals 

showed a normal development until seizure onset. Following induced SE in rat pups, 

impairment in emotional behavior was observed, characterized by an increase in anxiety and 

fear (41, 42). Furthermore, increased hyperactivity and spontaneous exploratory behavior was 

shown with a similar experimental design (41, 43). Also, owing to the vulnerability of certain 

structures involved in the limbic system such as the hippocampus and amygdala, learning and 

memory impairments are consistently marked. Learning deficits, usually demonstrated by 

decreased habituation and reduced adaptations to novelty, are observed following SE, and 

these deficits persist into later life in rodents (41, 42, 44). Also owing to acquired anomalies in 

these limbic structures, spatial and emotional learning and memory are impaired shortly after 

SE (45, 42, 43). Memory impairments were thus marked in these models (45). Whether these 
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findings can generalize to the impact of early SE on the development of these cognitive 

functions to humans is a matter of debate. However, recent research has argued for cognitive 

sequelae resulting from SE in early life.  

 

7. COGNITIVE SEQUELAE OF STATUS EPILEPTICUS IN HUMANS  

 

7.1 Children  

Cognitive sequelae resulting from SE in early life have been demonstrated. In general, studies 

demonstrate progressive structural and functional alterations following SE, generally reporting 

broad cognitive consequences of SE. Even so, deficits in verbal and non-verbal intellectual 

ability have been identified following SE (47, 48, 49). Furthermore, global IQ deficits are 

demonstrated in early onset seizures (48, 26). Several landmark studies have well 

demonstrated the presence of cognitive deficits following SE in early life. Aicardi & Chevrie 

(50) retrospectively studied 239 children having undergone one episode of SE lasting one hour 

or more, under the age of 15. Fifty seven percent (57%) of the cohort presented with mental or 

neurological sequelae. More specifically, 20% of the cohort developed motor delays and 33% 

presented IQs lower than 80, all in children whose development was unremarkable prior to the 

SE event. Furthermore, 48% presented with mental retardation following the episode, the 

majority of affected children again demonstrating normal development prior to SE. 

Furthermore, Yager (51) followed 52 children over 18 months following an episode of SE. 

Twenty eight percent (28%) of otherwise healthy children developed neurological sequelae 

following SE, and 25% of children who were predisposed to pathologies including previous 

epileptic activity deteriorated further following SE. Lacroix (52) also longitudinally followed 
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147 children following an episode of SE. Thirty percent (30%) showed a neurological deficit 

following SE at discharge, and 68% of these children still demonstrated these deficits one year 

after. Taken together, these data demonstrate marked cognitive and neurological dysfunction 

following SE, supporting the Vulnerability theory of insult to the developing brain. However, 

even though dysfunctions are shown, the specific nature of the deficit remains unclear. The 

lack of appropriate and specific methods in evaluating the deficits makes conclusions general 

and non-specific. Neuropsychological testing is however a good tool in evaluating the specific 

cognitive functions potentially affected as opposed to the assessment of level of functioning as 

a whole. Neuropsychological testing is advantageous since it can easily be adaptable to the 

hospital setting, however it should be noted that in infants, the age at testing poses a certain 

constraint on the sophistication of the assessment.  

 

In taking these limitations into consideration, a recent study by Roy et al (53) further assessed 

the Vulnerability theory by studying the effect of a single episode of febrile SE on the 

developing brain in otherwise healthy children. They specifically examined psychomotor 

function as well as executive functions in these children. Executive functions, mainly involved 

in regulation of behavior, begin rapid development in early life, continuing through to 

adolescence (54, 55, 56) and are the underlying functions of the frontal lobes. Since executive 

skills are developed in different trajectories over a longer timeframe during development, 

comparing the impact of an insult at different times during this development can shed light 

onto its potential differing consequences. Following the hierarchy in the development of the 

brain, the frontal lobes depend on the structural and functional integrity of other structures as 

they encompass higher cognitive functions. An early insult to the brain would therefore hinder 
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executive functions. Roy et al (53) compared younger and older children in differing critical 

periods using neuropsychological testing to evaluate the prediction that the function under 

development would be the most vulnerable to an insult. This is precisely what they found. In 

younger children (prior to 11 months of age) presenting with a febrile SE, hand-eye 

coordination and motor ability were most affected but were spared in older children. In 

contrast, older children presenting a febrile SE demonstrated personal and social deficits. 

Similarly, Anderson et al (26) had previously demonstrated, with a larger age range of 

children and of insults, that consequence of early brain insult on executive functions was 

dependent on which critical period the episode occurred. As such, an insult prior to 2 years of 

age demonstrated deficits in goal-setting, a skill spared in children whose onset was in middle 

or late childhood. Furthermore, an insult prior to 3 years of age was associated with deficits in 

cognitive flexibility and working memory, these skills being spared in those for which SE 

episode occurred after the age of 10. It is important to note however that Anderson et al (26) 

did not investigate the impact of an episode of SE per se, but rather the impact of early brain 

insult in general and as such, did not take the underlying etiologies into consideration. Indeed, 

studies in school age children presenting with SE are lacking. Roy et al (53) however, 

investigated children affected precisely by Febrile SE and not only used healthy matched 

controls, but also included a control group composed of children affected by a simple Febrile 

Seizure (FS). Simple FS are brief (less than 15 minutes) and are argued to be unremarkable in 

their effects on the developing brain. As such, prolonged (SE) seizures were compared to brief 

(FS) seizures allowing to isolate the impact of fever and brief seizures themselves. Taken 

together, this particular study alone gives important insight into the presence and specific 
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cognitive impairments observed following a single febrile SE episode in otherwise healthy 

children.  

 

7.2 Adults  

Patterns of cognitive sequelae following SE in adulthood seem to differ than those seen in 

infancy and childhood. In a prospective study of SE occurring in adults (mean age was 40) 

with no underlying pathology, Adachi et al (57) did not demonstrate intellectual deficits 

following the episode as evaluated by neuropsychological testing (WAIS-R), but rather both 

the experimental and control group of matched healthy individuals could not be differentiated. 

This finding was also previously demonstrated (58). In fact, resolution of long-lasting SE 

cognitive sequelae in adults have been demonstrated 6 to 24 months post-SE episode, and 

resolution of acute sequelae have been shown to resolve within 1 to 4 weeks, suggesting a 

reversible effect of the residual consequences of SE. Also demonstrating this effect was a case 

report of a 25 year-old women with a history of epilepsy starting at age 14, hospitalized after a 

SE episode (59). Neuropsychological testing demonstrated severe memory and executive 

function deficits at the time of the insult. However, one year after the insult and following 

unremarkable antiepileptic treatment, the cognitive deficits were reversed and the women 

returned to her Master's studies. These data of the impact of SE in adulthood suggest that it's 

effects are less severe than in childhood, such that not only do studies show unremarkable 

intellectual deficits following SE, but also show reversible effects of the deficits. It should be 

noted however that the SE described above were idiopathic. Symptomatic epilepsies in 

contrast involve greater presence and severity of cognitive impairments. However, even 

though the case study presented was symptomatic and still demonstrated reversible effects, 
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etiology, and potentially other aspects underlying the SE episode, must be taken into account 

when considering its impact on cognition.  

 

8. OTHER ASPECTS POTENTIALLY UNDERLYING COGNITIVE DECLINE IN SE  

 

Whether an episode of SE results in cognitive deficits seems to not only rely on the onset of 

SE (infant vs. adult) but rather on a web of interweaving aspects related to epilepsy and SE. 

Certain risk factors have been shown to affect prognosis following such an episode.  

 

8.1. Etiology  

The origin of the SE is an important risk factor. As there are several possible etiologies, the 

cause of SE can interplay with the actual seizures with regards to outcome. Idiopathic SE 

tends to have a more favorable prognosis than symptomatic SE (48, 51, 60). Furthermore, a 

typical pattern of development prior to the episode is related to better outcome (52). In 

contrast, the risk of developing epilepsy increases to more than 50% in convulsive 

symptomatic SE. In addition, more than 20% of children with acute symptomatic SE show 

new cognitive impairments compared to less than 10% in other types of SE (61). The risk for 

SE is increased in neurologically deficient children (50) and children with a history of seizures 

are at higher risk for neurological sequelae (62). Additionally, younger children tend to have 

more severe etiologies, as a decrease of acute symptomatic cases is observed after the first 

year of life (9). However, 75% of children under 2 years of age demonstrated normal 

development until the insult (9). In general, the presence of an organic etiology is related to 

poorer prognosis (48). It should be noted however, that cognitive effects of the seizure itself 
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without an underlying pathology have been reported (63, 64). Taking etiology into account, if 

not cautious with the methodology used, the cause of the potential observed deficiency 

(etiology vs. SE) can be confounded (4).  

 

8.2. Duration and Frequency of Seizures  

Longer durations of a SE episode are related to increased risk for deficits (65, 60). In fact, it 

has been demonstrated that episodes lasting less than one hour result in neuronal injury, and 

episodes lasting more than one hour result in neuronal death (66), supporting the previous 

argument. Duration of SE is also related to etiology such that prolonged episodes typically 

accompany more severe etiologies (67).  

 

Recurrent seizures are more persistent in individuals with prior neurological abnormalities 

(68). Controversies exist as to the impact of recurrent seizures on cognition. It has been 

proposed that recurrent seizures lead to cognitive impairment, specifically, intellectual and 

memory deficits (68, 45). Also, it has been shown that a long history of seizures is associated 

with mental deficits (69). Furthermore, it has been demonstrated that early life seizures result 

in long-term deficits (70), further supported by an animal model demonstrating deficits in 

learning and memory following recurrent SE (70). In contrast, it has also been proposed that 

recurrence of seizures itself does not pose a risk for cognitive development (68,71). As 

demonstrated in SE, some epileptic models do not always demonstrate aggravated 

consequences of recurrence of seizures (72). Following this perspective, in epileptic patients, 

it is suggested that the predisposed brain develops somewhat of a tolerance to the impact of 
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seizures therefore producing less damage, whereas the naive brain is more vulnerable to one 

insult (74). This perspective is however very delicate and must be debated.  

 

8.3. Age at onset  

The risk involved in the age at onset of SE has been covered in this review such that, thus far 

it has been shown that SE onset in early life, a period at which individuals are more prone to 

SE, has a greater impact on cognitive functioning than in later life, in which even reversible 

effects are observed. As discussed under the related effects of etiology, SE presents greater 

severity in children as they more often show a symptomatic etiology than in adults (9, 50). 

Furthermore, adults presenting with SE tend to have a history of seizures (9). As such, 

consideration must be taken of the underlying etiology in the younger SE population on 

interference with development. In adults however, age at onset and duration of the SE episode 

has not been related to prognosis (55).  

 

8.4. SE as cause of injury  

In animal models, brain injuries following SE have been repetitively revealed. In children, SE 

can cause hippocampal lesions, at least in the acute phase (34). Further studies are needed to 

investigate if long-term hippocampal MRI volume loss are due to reduced edema or to a loss 

of neuronal tissue. Furthermore, more human studies are needed to establish the link between 

hippocampal lesions following SE and cognitive impairments. This could be facilitated with 

the recommended use of MRI in cases of SE (75). Investigating the link between these lesions 

in the limbic system and behavioral impairments could also be interesting and perhaps shed 

even more light on patient outcome following SE.  
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8.5. Other  

With respect to gender, males have a higher propensity of developing symptomatic SE in 

contrast to females, which demonstrate a higher propensity of developing idiopathic SE (50). 

However, gender itself does not have an impact on prognosis following a SE episode. It has 

also been suggested that an enriched environment can aid in memory decline such that 

enriched environments facilitate hippocampal plasticity, which in turn leads to bettered 

formation of Long-Term Potentiation (76). In contrast, race does not influence this prognosis 

(77, 49).  

 

Taken together, several marked risk factors must be taken into consideration in evaluating the 

impact of SE on cognition such that several confounding variables are possible. However, 

awareness and caution in the methodologies and analyses used can shield from the 

confounding effect of these risk factors.  

 

9. IMPACT OF ANTIEPILEPTIC TREATMENT (AED) ON COGNITION  

 

Antiepileptic drugs (AED) have various effects between patients as well as between seizures 

and epilepsy types. The success of AED is usually measured as a reduction in the number of 

seizures, not necessarily as its impact on cognition following epilepsy (78). As such, 

evaluation of cognitive ability following treatment poses more difficulty. In fact, some AED 

themselves have been shown to induce cognitive deficits such as mild memory, attention and 

psychomotor problems (79). Even though no comparative studies have been performed to 
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investigate the side effects of more recent AED, it has been argued that Topiramate is involved 

in attention, concentration and memory problems (80). Taken together however, it is 

suggested that use of AED is not the major factor causing cognitive comorbidity in epileptic 

encephalopathies (81). In SE, it has been demonstrated that cognitive outcome following SE 

depends on the time between the episode and the initiation of treatment (50, 60). AED 

administered during an SE episode, in contrast to those administered in most epileptic 

conditions, are usually termed “aggressive treatment” since they are meant to be administered 

very rapidly and withdrawn within the following 24 hours (82). Its purpose is to shorten the 

episode in hopes to protect against neuronal damage and therefore to potentially protect 

against the cognitive sequelae related to prolonged episodes (60, 82). As such, AED have been 

shown to reduce cognitive sequelae following an episode (50, 60). This was also observed in 

animal models (83). More specifically, the use of AED in children presenting with SE has 

demonstrated a control of the seizures that resulted in a prevention of further cognitive 

deterioration (82). Although AED stopped further cognitive sequelae, they did not allow 

recovering maladapted functions. Since AED did not allow recovering of anomalies in 

cognitive functions since SE onset, our argument that an insult to the developing brain at 

particular sensitive periods is detrimental to cognitive development is further supported.  

 

10. CONTROVERSIES  

 

Even though we are arguing that SE has an unforgiving impact on cognitive development, as 

in any body of literature, results can be controversial. Firstly, a poor prognosis in early life SE 

has not always been reported (67, 84). Also, it has been reported that the underlying causal 
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factor of SE is related to outcome as opposed to age at onset (61, 85). However, there are 

certain methodological considerations in these and other studies. Lack of standard 

categorization of underlying etiologies, as well as lack of consideration for type and frequency 

of seizures between testing could impact results. Furthermore, heterogeneous groups are often 

compared relative to age at onset, duration and frequency of seizures, etiology, treatment as 

well as genetic factors also creating potential confounds (73). Furthermore, it has been 

observed that retrospective studies tend to show greater intellectual deficit following SE than 

prospective studies (57). In addition, measures of cognitive ability are often lacking accuracy 

and specificity such that deficits in specific skills are overlooked when simply assessing global 

IQ. IQ itself is not an appropriate measure for cognitive dysfunction. As such, more specific 

tests should be used in attempt to measure the cognitive skills of interest, such as would allow 

neuropsychological assessments. Again, this type of assessment is advantageous such that 

tests can be selectively chosen for each patient or each group of patients, categorized by site of 

lesion for example, in order to better comprehend the precise pervading deficits as opposed to 

a simple level of intelligence.  

 

11. DISCUSSION  

 

In spite of these controversies and methodological issues, we maintain that consequences of 

SE may be severe cognitive sequelae, especially in early life. More recent studies more readily 

take these methodological issues into account creating a better experimental design. Also, they 

use more specific tests and aim and specific cognitive functions. As such, these recent results 

better demonstrate the presence and severity of the cognitive sequelae resulting from SE in 
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infancy. Since the residual consequences of SE in adulthood seem less detrimental and long-

lasting, we argue that early life insults, such as those created by SE, during a rapid period of 

development and functional specialization, result in specific cognitive deficits dependent of 

the sensitive period at which occurred SE. These deficits can potentially lead to deficits in 

later childhood expressed as such as learning disabilities, the residua of which may persist into 

later life. Further investigations involving the long-term effects and impacts of early life SE on 

later development and later life functioning are needed. Although adult-onset SE seems to 

spare the cognitive integrity of affected patients, it is still unknown whether early-onset SE has 

detrimental impacts in later life.  
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ABSTRACT 

Objective: The aim of the current study was to assess development and cognition following an 

initial complex FS, at onset and school-age, in the context of known risk factors for poor 

outcome. 

 

Methods: Two groups of participants were recruited transversally. Thirty-five infants 

presenting with an initial complex febrile seizure were assessed within the first year post 

seizure-onset and compared to thirty controls of similar demographics, on measures of 

cognitive, motor and language development, as well as on measures of behavior and emotion. 

Additionally, twenty-one school-age children having suffered complex FS were assessed and 

compared to nineteen children having suffered simple febrile seizures of similar 

demographics. Assessment was completed using an extensive and comprehensive 

neuropsychological battery of tests, including measures of intelligence, learning/memory and 

executive functioning, as well as measures of behavior and emotion. 

 

Results: Infants having suffered a complex FS did not significantly differ on developmental 

measures as compared to controls, within the first year-post onset. Seizure duration and age at 

seizure onset did not impact developmental outcome. School-age children having suffered 

complex FS showed unaltered global intelligence as compared to simple FS controls. These 

children, including those having suffered prolonged and multiple seizures, however showed 

significantly weaker executive functioning, learning and memory as compared to controls. 

Scores worsened as a function of seizure duration. Emotionally, children having suffered 

complex FS scored worse on measures of attention problems, anxious/depressed 
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symptomology and affective problems, across both cohorts. School-age children additionally 

scored higher on a scale of hyperactivity, as measured by parental questionnaires. Earlier ages 

of onset were associated with increased perfectionism traits. 

 

Conclusion: Infants having suffered an initial complex FS showed normal development within 

the first year-post seizure onset, whereas school-age children demonstrated challenges in 

specific cognitive domains, including executive functioning, learning and memory. As such, 

children may demonstrate cognitive challenges at school-age, even though early cognitive 

development is undifferentiated. These challenges may occur even without presenting with the 

most severe form of FS (i.e., FSE). Follow-up regarding the impact of complex FS on 

cognition is however necessary beyond the developmental years and into adolescence, in order 

to understand their long-term outcome.  

 

KEY WORDS: Febrile seizure; Complex febrile seizure; Development; Cognition; Behavior; 

Infant; Children 

 

INTRODUCTION 

 

Febrile seizures (FS) are defined as a seizure in association with a febrile illness, in the 

absence of a central nervous system infection or acute electrolyte imbalance in children older 

than 1 month of age, without prior afebrile seizures (ILAE, 1993). They are the most common 

form of childhood seizures, affecting 2% to 5% of children between the ages of 6 months and 

5 years (Verity et al., 1985; 1998; Leung & Robson, 1991; Berg & Shinnar, 1996; Shinnar & 
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Glauser, 2002; Stafstrom, 2002). Simple FS are characterized by a brief (less than 10 minutes), 

isolated and generalized seizure episode. Complex FS occur in approximately 20% of children 

presenting with FS, and are arguably more severe. They are characterized by either a 

prolonged (lasting between 15 and 30 minutes), recurrent within the same febrile illness, or 

focal seizure episode, or a combination of complex features. Febrile status epilepticus (FSE) is 

a subtype of complex febrile seizure, in which the seizure persists for at least 30 minutes 

(Maytal & Shinnar, 1990; Berg & Shinnar, 1996). Although converging evidence from 

multiple studies has revealed the benign nature of simple FS, demonstrating outcomes similar 

to otherwise healthy developing children (Steering Committee on Quality Improvement 

Management, 2008; Shinnar, 2012), outcomes subsequent to complex FS have been 

controversial, and remain a matter of on-going debate.   

 

Prolonged FS and FSE have been linked to structural anomalies in the developing brain. In 

particular, these types of FS have been linked to acute hippocampal injury leading to mesial 

temporal sclerosis (Provenzale, 2008; Shinnar, 2003; Shinnar et al., 2012; Lewis et al., 2014). 

They have also been linked to an increased risk of developing mesial temporal lobe epilepsy 

as compared to the general population (Davis et al., 1996; Cendes et al., 1993).  

 

Few studies to date have investigated the impact of FS on development within the first year-

post onset. Infants having suffered very prolonged FS, that is, Febrile Status Epilepticus (FSE) 

have been shown to develop normally within the first month post-seizure onset, although 

demonstrated slightly weaker motor development and receptive language one year-post onset 

(Weiss, 2016). Children having suffered a very prolonged complex FS similarly demonstrated 



	 58	

worse developmental outcome as compared to controls 6 weeks and 1 year following seizure 

onset (Martinos, 2013), as well as accelerated forgetting within the first month and 1 year 

following onset (Martinos, 2012). Weaker development one year-post onset has further been 

linked to hippocampal anomalies in children having suffered prolonged seizures (Weiss, 2016; 

Martinos, 2012). Taken together, these results suggest a possible worsening of the impact of 

an initial very prolonged seizure, that is, lasting between 70 and 90 minutes, on development 

over time. This proposed weakening outcome within the first year post-onset however requires 

to be further investigated, particularly considering other complex FS features, in order to 

better differentiate their impact on development. 

 

Beyond the early stages of development, large epidemiological studies have generally showed 

unaltered global intelligence, scholastic achievement and academic skills in school-age 

children following FS (Ellenberg & Nelson, 1978; Verity et al., 1998; Hirtz, 2002). Several 

methodological caveats of these studies have however been noted, including the lack of 

specificity and objectivity of the measures used. In accommodating these psychometric 

weaknesses, other studies have revealed contrasting evidence regarding the impact of complex 

FS on cognition and behavior in school-age children, although discrepancies in methodologies 

are further noted, including populations used (i.e., population versus hospital-based samples), 

complex seizure type studied (i.e., prolonged versus multiple versus focal), measures used 

(i.e., objective versus subjective) and time points assessed (i.e., varying time points since 

seizure onset or last seizure occurrence) (Kolfen et al., 1998; Chang et al., 2000; Chang et al., 

2001; Norgaard et al., 2009; Visser et al., 2012). Moreover, these studies lacked the 
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assessment of specific cognitive functions, even though these functions have sufficiently 

differentiated in school-age children to allow their evaluation in relative isolation.   

 

Few studies to date have investigated isolated cognitive functions in this population. These 

studies have focused on the assessment of hippocampus-dependent cognitive functions, such 

as learning and memory, given the association between prolonged FS/ FSE and hippocampal 

damage (Cendes et al., 1993; Davis et al., 1996; Lewis et al., 2014). In particular, school-age 

children having suffered non-prolonged complex FS demonstrated similar performances as 

compared to controls on computerized memory tasks, although the mechanisms used to 

achieve similar behaviors were different, as evidenced by altered event-related potentials and 

hemodynamic activity (Kipp et al., 2010; 2012). Although the hippocampus is argued to be the 

most affected structure in prolonged FS and FSE, very little research has been performed in 

investigating hippocampal abnormalities in the context of larger cerebral networks, including 

the cortico-hippocampal network. A more exhaustive investigation of the impact of FS on 

specific cognitive functions, beyond hippocampus-dependent capacities, has yet to be done.  

 

Given the connections between the hippocampus and frontal/prefrontal areas, including the 

medial prefrontal cortex known for its involvement in executive functioning, these capacities 

may be targeted following complex FS (Miller, et al., 1991; Jay, et al., 1992; Thierry, et al, 

2000; Petrides & Pandya, 2004; Brassen 2006). Indeed, executive functions are known to be 

vulnerable to neurodevelopmental conditions and disorders (Ozonoff et al., 1999; Shanmugan, 

2016), but are crucial for academic performance. To date, few studies have investigated the 

impact of FS on executive functioning in school-age children, and evidence thus far has been 
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controversial. While some studies suggest that complex FS are associated with increased 

external behavioral deficits and increased attentional difficulties as measured by parental 

questionnaires (Kolfen et al., 1998; Lippé et al., 2009; Tsai et al., 2015), other studies have 

demonstrated no impact of complex FS on executive function as measured by questionnaires 

(Visser et al., 2012). When using objective measures, evidence has been found for weaker 

sustained attention abilities in children having suffered complex FS (Hara et al., 1986), 

whereas findings from two large population-based studies demonstrated better performances 

on measures of working memory in children having suffered FS (Chang et al., 2000; 2001). Of 

note, the two latter studies arguing for better performances in children having suffered FS, 

concluded as such based on their findings that these children performed better than controls at 

sustaining their attention on challenging tasks, although their results demonstrate that they had 

more difficulty than controls sustaining their attention on simple tasks, which could possibly 

indicate a need for arousal and challenges in self-monitoring abilities. These contrasting 

findings related to executive function are also a result of methodological inconsistencies.  

 

To our knowledge, no study has yet assessed learning, memory and the spectrum of executive 

functions using specific and objective neuropsychological measures in children having 

suffered complex FS, particularly in the context of known risk factors for poor outcome.  

 

Several risk factors have been identified for febrile seizure recurrence, including early age at 

onset, history of at least one complex FS feature, and prolonged FS duration (Wilmhurst et al., 

2015; Hesdorffer et al., 2016; Patel & Perry, 2017). The impact of these identified risk factors 

for seizure recurrence on other aspects of outcome, including cognitive development, however 
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remains unclear. Studies to date have similarly revealed contrasting evidence regarding the 

relationship between these seizure characteristics and outcome, although study groups are 

often defined by strict criteria, forgoing the variability required to detect the potential impact 

(e.g., when experimental groups are defined by prolonged seizures, there is too little 

variability in seizure duration to detect its impact on outcome).  

 

The objective of the current study was to investigate development and cognition from onset to 

school-age following complex FS, as compared to children having suffered simple FS, in the 

context of known risk factors for poor outcome, including all types of complex features. More 

specifically, we aimed to transversally evaluate development within the first year-post seizure 

onset, as well as cognition in a cohort of children old enough for cognitive functions to be 

sufficiently differentiated (i.e., school-age).  

 

METHODS 

 

Participants 

Two cohorts of participants were transversally recruited retrospectively. Infants were recruited 

at the onset of their first seizure (i.e., Infant Cohort), and children were recruited at the 

beginning of their schooling, namely between five and six years of age (i.e., School-Age 

Cohort). In both cohorts of participants, infants/children having suffered complex febrile 

seizures (experimental group) were compared to infants/children having suffered a simple 

febrile seizure (control group) of similar demographics, given their known benign outcome. 

As such, recruitment for both groups in both cohorts was completed similarly, that is, through 



	 62	

the Child University Hospital Center Sainte-Justine's (CHU Sainte-Justine) Emergency 

Department. The study was approved by the hospital's research ethics board.   

 

A simple febrile seizure was defined as a generalized seizure lasting less than 10 minutes, 

without recurrence of seizure within the same episode of fever. This was the inclusion criteria 

for the control group. A complex febrile seizure was defined either as a seizure with focal 

onset (i.e., focal complex febrile seizure), occurring more than once in the same episode of 

fever (i.e., multiple complex febrile seizure), and/or lasting more than 15 minutes (i.e., 

prolonged complex febrile seizure), or a combination of either complex criteria. Exclusion 

criteria for both groups included CNS infection, occurrence of afebrile seizures, epilepsy and 

known developmental delays. None of the participants were taking medication at the time of 

testing. Information pertaining to childrens' seizure and medical history were gathered through 

extensive review of their medical files, and consultation with a pediatric neurologist as 

necessary. 

 

 Infant Cohort 

Infants aged 6 to 42 months having been discharged from the Emergency Department with a 

diagnosis of a first febrile seizure (either simple or complex) were flagged by ER physicians 

and nurses, and their parents were contacted by our research team for participation within one 

year-post seizure onset. 195 infants who were referred to our team through the Emergency 

Department were eligible to participate in the study, 33% of which parents accepted to 

participate. Thus, 35 infants (19 females; 16 males) were recruited as the experimental group 

(i.e., complex febrile seizures; 19 multiple, 10 prolonged, 6 focal), and 30 infants (16 females; 
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14 males) were recruited as the control group (i.e., simple febrile seizures). All participants' 

parents provided written informed consent to participate.  

 

 School-Age Cohort 

ER physicians provided our research team with a list of school-age children having been 

discharged from the Emergency Department with a diagnosis of febrile seizure (either simple 

or complex) roughly 5 years prior, that is, between the ages of 6 and 42 months. Each of their 

medical files was extensively reviewed for eligibility to participate. Two hundred and twenty-

three children were eligible to participate in the study, 17.9% of which parents accepted to 

participate. Thus, 21 children (9 females; 12 males) were recruited as the experimental group 

(i.e., complex febrile seizures; 11 multiple, 10 prolonged, 0 focal), and 19 children (11 

females; 8 males) were recruited as the control group (i.e., simple febrile seizures). All 

participants' parents provided written informed consent to participate. 

 

Procedures 

 Infant Cohort 

After agreeing to participate, parents accompanied their infant to a testing appointment at 

CHU Sainte-Justine. Demographic information was collected through an in-house 

developmental questionnaire, thoroughly reviewed by the examiner with the family. 

Neuropsychological testing was completed in one session with two examiners who were 

Masters or Doctoral students in Neuroscience or Clinical Neuropsychology, who had received 

extensive training in the administration of the measures. The accompanying parent remained 

in the testing room, which would typically ease the infant and add comfort to the testing 
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environment. Behavioral questionnaires were completed by the parent either simultaneously or 

after the neuropsychological testing. Scoring was completed by both examiners together.  

 

 School-Age Cohort 

After agreeing to participate, parents accompanied their child to a testing appointment at CHU 

Sainte-Justine. Demographic information was similarly collected through an in-house 

developmental questionnaire, thoroughly reviewed by the examiner with the family. 

Neuropsychological testing was completed and scored by a Doctoral student in Clinical 

Neuropsychology, who had received extensive training on the administration of the measures. 

Testing was done in one session, independently with the child. The order of the measures 

administered was the same for all participants and several breaks were scheduled in the testing 

session. Simultaneously, behavior questionnaires were completed by the accompanying 

parent.  

 

All administration and scoring was overseen by a registered Neuropsychologist. 

 

Measures 

 Infant Cohort 

Infants' development was assessed using the Bayley Scales of Infant and Toddler 

Development, 3rd Edition (Bayley-III; Bayley, 2005), and behavioral and emotional problems 

were assessed using the Child Behavior Checklist for ages 1.5 to 5 years (CBCL; Achenbach 

& Rescorla, 2000). 
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 Bayley Scales of Infant and Toddler Development, 3rd Edition 

The Bayley-III is a comprehensive individually-administered test battery designed to assess 

the developmental functioning of infants between the ages of 1 and 42 months (Bayley, 2005). 

Age appropriate test items allowed to assess cognition, receptive and expressive 

communication, as well as fine and gross motor skills. Scaled scores with a mean of 10 and a 

standard deviation of 3 were obtained for each of the abilities assessed using age-matched 

norms of a general population sample. Moreover, composite scores for cognition, language 

and motor skills, with a mean of 100 and standard deviation of 15 were derived.  

 

 Child Behavior Checklist 

The CBCL for ages 1.5 to 5 is a 99-item questionnaire filled out by primary caregivers 

designed to assess their infants' behavioral and emotional problems (Achenbach & Rescorla, 

2000). Given the minimum age of 18 months required to complete the questionnaire, and the 

age range of our groups being 6 to 42 months, only a subgroup of our sample was able to 

complete the questionnaire. Specifically, the CBCL was completed for 14 participants in the 

complex group and 11 participants in the simple group. Results are organized according to 

seven syndrome scales; emotionally reactive, anxious/depressed, somatic complaints, 

withdrawn, sleep problems, attention problems and aggressive behavior, as well as five DSM-

oriented scales; affective problems, anxiety problems, pervasive developmental problems, 

attention deficit/hyperactivity problems and oppositional defiant problems. Based on these 

results, three global indices are derived; Internal problem (derived from the emotionally 

reactive, anxious/depressed, somatic complaints, and withdrawn scales), External problems 

(derived from the attention problems and aggressive behavior scales), and Total problems 
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(derived from all scales combined). T-scores are provided for all scales and indices, based on 

age-matched norms of a general population sample; the higher the score, the more problematic 

are the behaviors. 

 

 School-Age Cohort 

A comprehensive neuropsychological battery of tests was used to assess intellect, 

learning/memory and executive functioning. In particular, children's intellectual and general 

cognitive capacities were assessed using the Wechsler Preschool and Primary Scale of 

Intelligence, 3rd Edition (WPPSI-III; Wechsler, 2002). Learning and memory abilities were 

assessed using the California Verbal Learning Test for Children (CVLT-C; Delis et al., 1994), 

as well as selected subtests of the Developmental Neuropsychological Assessment, 2nd 

Edition (NEPSY-II; Korkman et al., 2007). Selected subtests of the latter test battery also 

allowed for the assessment of attention and executive functioning. Emotion and behavior were 

assessed by means of questionnaires completed by the parent, including the Conners' Parent 

Rating Scale Revised Long Form (Conners; Conners, 1997) and the Child Behavior Checklist 

(CBCL; Achenbach & Rescorla, 2000; 2001). All tests yielded standardized scores normed 

according to age-matched peers of a general population sample. 

 

  WPPSI-III 

The WPPSI-III is a comprehensive individually-administered test battery designed to assess 

intelligence and general cognitive capacities in children between the ages of 2 years 6 months 

and 7 years 3 months. Selected subtests included Information and Vocabulary, which allowed 

the calculation of a prorated Verbal IQ Index, as well as Blocs and Matrices, which allowed 
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the calculation of a prorated Performance IQ Index. The administration of two additional 

subtests, namely Comprehension and Object Assembly, in combination with the four 

previously mentioned subtests allowed for the calculation of a prorated Global IQ Index. The 

Receptive Vocabulary subtest was also administered. Composite scores with a mean of 100 

and a standard deviation of 15 were provided for each of the indices. Higher scores on these 

scales are representative of better capacities. 

 

  CVLT-C 

The CVLT-C is an individually-administered test design to assess verbal learning over 

repeated trials, as well as memory of newly learned information in children and adolescents 

between the ages of 5 and 16 years. For the purposes of our study, we derived two scores from 

this test: a Learning score, derived from the child's ability to learn a list of words over five 

repeated trials, and a Recognition score, derived from the child's ability to recognize the newly 

learned information among distractors following a 20-minute delay. T-scores with a mean of 

50 and a standard deviation of 10 were provided for each of the scores. The higher the scores, 

the better the participant's ability to learn and remember.  

 

  NEPSY-II 

The NEPSY-II is a comprehensive individually-administered test battery consisting of 32 

subtests designed to assess a wide range of cognitive capacities, including attention and 

executive functioning, language, social perception, visuospatial processing, memory and 

learning as well as sensorimotor functioning in children and adolescents between the ages of 3 

and 16 years. For the purposes of the current study, selected subtests were chosen to assess 
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visual and verbal learning and memory, including Memory for Designs (visual memory), 

Narrative Memory (verbal memory) and Sentence Repetition (working memory). Specific 

subtests were also selected to assess attention and executive functioning, including Auditory 

Attention (selective and sustained attention), Inhibition (inhibitory capacities), Design Fluency 

(generation capacities) and Statue (hyperactivity). For each subtest, a scaled score with a mean 

of 10 and a standard deviation of 3 was provided. Higher scores on each scale represent better 

test performance.  

 

  Conners   

The Conners Parent Rating Scale is an 80-item questionnaire filled out by primary caregivers 

designed to evaluate children and adolescents between the ages of 3 and 17 for Attention 

Deficit Hyperactivity Disorder (ADHD). Results are organized according to seven scales; 

Oppositional, Cognitive Problems/Inattention, Hyperactivity, Shy/Anxious, Perfectionism, and 

Psychosomatic. Several Index scores and DSM-IV subscale composites can be derived, 

although only scores related to the scales themselves were used for the purposes of the current 

study. T-scores were provided for each scale; the higher the score, the more participants 

display problematic behaviors in their daily lives.  

 

  CBCL 

Two versions of the CBCL were utilized, dependent on the age of the child; CBCL for ages 

1.5 to 5 and the CBCL for ages 6 to 18. The CBCL for ages 1.5 to 5 was previously described 

in the Infant Cohort measures. The CBCL version for ages 6 to 18 is a 113-item questionnaire 

filled out by primary caregivers, similarly designed to assess behavior and emotional 
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problems. The results are organized according to eight syndrome scales. Similarly to the 1.5-5 

version of the questionnaire are the anxious/depressed, withdrawn, somatic complaints, 

attention problems, and aggressive behavior scales. Additionally, there are the social 

problems, thought problems, and rule-breaking behavior scales. Based on these results, three 

global indices are similarly derived; Internal problem (derived from the anxious/depressed, 

withdrawn and somatic complaints scales), External problems (derived from the rule-breaking 

behavior and aggressive behavior scales), and Total problems (derived from all scales 

combined). For all syndrome scales and indices, T-scores were provided; the higher the score, 

the more participants displayed problematic behaviors or emotions in their daily lives. This 

version of the questionnaire was completed by 12 participants in the complex group and 12 

participants in the simple group. 

 

Statistical Analyses 

In both cohorts, data processing and statistical analyses were carried out using IBM Statistical 

Package for Social Sciences (SPSS) for Windows, Version 22.0 (IBM, Armonk, NY). 

Descriptive analyses were performed on both cohorts. Normality was examined using 

skewness and kurtosis values (i.e., |0 – 3|), as well as visual inspection of histograms and 

quantile-quantile plots. When necessary, variable distributions were transformed to normality 

using log transformations.  

 

 Developmental/Neuropsychological Measures 

 Infant Cohort 
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Demographic variables and seizure characteristics were compared between groups using chi-

square tests for categorical variables (i.e., sex), and independent samples Student's T-tests for 

continuous variables (i.e., familial income, parent education, age at seizure onset, age at test, 

time between last seizure and test). Multivariate analysis of variance (MANOVA) was used to 

compare both groups on developmental measures (i.e., Bayley-III scaled scores for cognition, 

receptive and expressive communication, as well as fine and gross motor skills). Correlational 

analyses using Pearson's bivariate correlation were further completed to investigate the 

relationship between our study variables and seizure characteristics known to be risk factors 

for poorer outcome (i.e., age at seizure onset and seizure duration).  

 

 School-Age Cohort 

Demographic variables and seizure characteristics were compared between groups using chi-

square tests for categorical variables (i.e., sex), and one-way ANOVA for continuous variables 

(i.e., familial income, parent education, age at seizure onset, age at test). Given the similar 

sample size of multiple and prolonged seizures within our complex febrile seizure group, a 

one-way ANOVA was used to investigate group differences between multiple complex, 

prolonged complex as well as simple febrile seizures on a composite measure of global 

intelligence (i.e., composite Full Scale IQ score on the WPPSI-II). NEPSY-II and CVLT-C 

scores were transformed into two cognitive domains: Executive Functioning and Memory. The 

Executive Function domain included the pooled and weighted scores of the NEPSY-II 

Auditory Attention, Inhibition, Design Fluency and Statue subtests. The Memory domain 

included the pooled and weighted scores of the NEPSY-II Sentence Repetition subtest, as well 

as the CVLT-C learning and memory scores. Each domain was compared between groups 
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using repeated measures ANOVA, that is, GROUP (multiple, prolonged and simple FS) X 

COGNITIVE DOMAIN (executive functioning and memory). Significant interactions were 

explored using post-hoc ANOVAs. Correlational analyses using Pearson's bivariate correlation 

were further completed to investigate the relationship between our study variables and seizure 

characteristics known to be risk factors for poorer outcome (i.e., age at seizure onset and 

seizure duration). 

 

 Behavioral/Emotional Measures 

 Both cohorts combined 

Since the CBCL was administered in both cohorts, the sample was pooled for statistical 

analysis. As such, scores of 34 children having suffered complex FS (mean age: 4.54 years 

old, SD: 1.83) were compared to scores of 30 children having suffered simple FS (mean age: 

4.51 years old, SD: 2.0). Only scales available in both versions of the questionnaire were 

considered in the analysis. These CBCL scales were compared between cohorts and seizure 

type using MANOVA. Significant effects were followed up by post-hoc ANOVAs. 

Correlational analyses using Pearson's bivariate correlation were further completed to 

investigate the relationship between our study variables and seizure characteristics known to 

be risk factors for poorer outcome (i.e., age at seizure onset and seizure duration). 

 

 School-Age Cohort 

MANOVA was used to compare behavior/emotion measures (i.e., scores on the Conners) 

between study groups. Significant MANOVAs were followed up by one-way ANOVAs and 

Bonferroni-corrected t-tests. Correlational analyses using Pearson's bivariate correlation were 
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further completed to investigate the relationship between our study variables and seizure 

characteristics known to be risk factors for poor outcome (i.e., age at seizure onset and seizure 

duration). In order to obtain a more detailed picture of these relationships, NEPSY-II and 

CVLT-C subtest scores were used for the correlations. Assumptions necessary to perform our 

planned statistical analyses were verified and satisfied. 

 

RESULTS 

 

Developmental/Neuropsychological Measures 

 Infant Cohort 

  Descriptive Statistics  

Our complex FS group included thirty-five participants; 19 having suffered complex multiple 

FS, 10 having suffered complex prolonged FS, and 6 having suffered complex focal FS, which 

together were compared to our control group composed of 30 infants having suffered simple 

FS. In considering infants having suffered prolonged FS, the mean seizure duration was 27.3 

minutes. In comparing infants having suffered complex versus simple seizures, T-tests 

revealed no significant group differences in demographics, including age, sex, familial 

income, and parent education, or in seizure characteristics other than characteristics defining 

both groups, including age at seizure onset, age at test and time between last seizure and test 

(p > 0.09) (Table 1).   

 

[INSERT TABLE 1]  
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  Developmental Results 

Sixty-five infants completed the Bayley-III, 35 having suffered a complex seizure and 30 

having suffered a simple seizure. Following the assessment of normality of variable 

distributions, log transformations were applied to the following study variables: time between 

last seizure and test, seizure duration, and Bayley-III motor and language composites.  

 

Mean performances across all Bayley-III scales for both simple and complex FS groups fell 

within average ranges (Table 2). MANOVA comparing both groups showed no significant 

differences between complex and simple FS on developmental scores within the first year 

following seizure onset. 

 

[INSERT TABLE 2]  

 

Correlational analyses completed between study variables and seizure characteristics 

considered risk factors revealed no significant relationships between developmental scores and 

age at seizure onset and seizure duration. Similarly, no significant relationships were found 

between developmental scores and time between last seizure and test within the first year 

following seizure onset. 

 

 School-Age Cohort 

  Descriptive Statistics 

Our experimental samples included a group of 11 children having suffered complex multiple 

FS, and a group of 10 children having suffered complex prolonged FS, which were compared 
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to 19 simple FS controls. In considering our prolonged group, mean seizure duration was 19.5 

minutes. One-way ANOVA revealed no significant differences in demographics between 

children having suffered a complex prolonged, complex multiple or simple FS, including 

familial income, parent education and gender, or in seizure characteristics other than 

characteristics defining both groups, including age at seizure onset and age at test (p > 0.14) 

(Table 3). 

 

[INSERT TABLE 3]  

 

All forty children completed all measures, although two participants were removed from the 

analyses given that they had suffered both prolonged and multiple seizures. As such, included 

in our groups were 8 children having suffered a complex prolonged seizure, 11 children 

having suffered a complex multiple seizure, and 19 children having suffered a simple seizure. 

 

  Neuropsychological Results 

One-way ANOVA comparing children having suffered a complex prolonged, complex 

multiple and simple seizure revealed no significant differences between groups on measures of 

intelligence (Table 4). Repeated measures ANOVA revealed a significant interaction between 

cognitive domain (executive functions vs. memory) and seizure type (prolonged complex vs. 

multiple complex vs. simple FS) (F(2, 35) = 12.78, p = 0.000068). A main effect of cognitive 

domain (F(1, 35) = 56.04, p = 0.00000001) and a seizure type group effect (F(2, 35) = 44.48, 

p = 0.0000000002) were also found. Post-hoc ANOVAs revealed that there was a significant 

difference in performance between cognitive domains in both complex FS groups (multiple 
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complex FS: (F(1, 10) = 25, p = 0.001), prolonged complex FS: (F(1, 7) = 21.28, p = 0.002)), 

but not in the simple FS group ((F(1, 18) = 1.12, p = 0.303) (Table 4). Both complex FS 

groups showed significantly worse performance in executive functions (multiple complex FS: 

M = 6.93, SD = 1.72; prolonged complex FS: M = 6.5, SD = 1.72) compared to memory 

(multiple complex FS: M = 10.42, SD = 1.65; prolonged complex FS: M = 10.25, SD = 1.59) 

(Figure 1).  Finally, Bonferroni-corrected post-hoc t-tests between seizure groups revealed 

significantly lower scores for both cognitive domains in the complex FS seizure groups when 

compared to the simple FS group (p < 0.013). 

 

[INSERT TABLE 4]  

 

[INSERT FIGURE 1]  

 

Correlations between executive functions/ memory domains and seizure characteristics 

considered risk factors revealed significant negative correlations between seizure duration and 

both cognitive domains (executive functions: r = -0.560, p = 0.0002; memory: r = -0.391, p = 

0.013). These two correlations did not significantly differ from each other (z = -1.215, 

p = 0.22), meaning that the correlation between seizure duration and executive functions is not 

necessarily stronger than the one between seizure duration and memory. Follow-up 

correlations between seizure duration and specific subtests revealed significant correlations 

between seizure duration and measures of attention and executive functioning, including 

NEPSY-II Auditory Attention (r = -0.612, p = 0.0001), Inhibition (r = -0.407, p = 0.009), and 

Statue (r = -0.686, p = 0.0001) (Figure 2), as well as on measures of learning and memory, 
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including NEPSY-II Narrative Memory Learning (r = -0.495, p = 0.001) and Narrative 

Memory Recognition (r = -0.481, p = 0.002) (Figure 3). These results suggest that as seizure 

duration increased, performance on these measures decreased. There were no significant 

relationships between neuropsychological scores and age at seizure onset. 

 

[INSERT FIGURE 2] 

 

[INSERT FIGURE 3] 

 

Behavioral/Emotional Measures 

 Both cohorts combined   

Mean performances across all CBCL scales for both simple and complex FS groups across 

both cohorts fell below clinically significant cutoffs (Table 5). MANOVA nevertheless 

revealed a significant effect of seizure type on CBCL scales (F(9, 52) = 2.4, p = 0.023). No 

main effect for age group or interaction between seizure type and age group was found. Post-

hoc ANOVAs revealed CBCL scales of Attention deficit/ hyperactivity problems (F(1, 60) = 

4.81, p = 0.032), anxious/depressed (F(11, 60) = 8.08, p = 0.006) and attention problems (F(1, 

60) = 4.45, p = 0.039) to differ between seizure type, with the complex FS group presenting 

higher scores than the simple FS group (Figure 4). 

 

[INSERT TABLE 5] 

 

[INSERT FIGURE 4] 
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Correlational analysis revealed no significant relationships between CBCL scores and age at 

seizure onset or seizure duration for the entire sample.  

  

  School-Age Cohort 

MANOVA comparing Conners subscales between children having suffered a complex 

prolonged, complex multiple and simple seizure revealed a significant effect of seizure type on 

Conners measures (F(10, 62) = 2.05, p = 0.043). Bonferroni-corrected post-hoc ANOVAs 

showed a significant difference on a measure of executive functioning, namely the Conners 

Hyperactivity scale (F(2, 34) = 5.72, p = 0.007). Bonferroni corrected post-hoc t-tests showed 

that children having suffered complex multiple seizures (p = 0.008) scored worse than children 

having suffered complex prolonged or simple FS controls (Table 6). Of note, children in all 

groups across all behavior/emotion scales scored below clinical cutoffs. 

 

[INSERT TABLE 6]  

 

Correlations between study variables and seizure characteristics considered risk factors 

revealed significant negative correlations between age at seizure onset and Conners 

Perfectionism scale (r = -0.565, p = 0.0001), suggesting that a younger age at onset was 

associated with higher perfectionism traits (Figure 5). There were no significant relationships 

between behavior/emotion scores and seizure duration. 

 

[INSERT FIGURE 5]  
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DISCUSSION 

 

The aim of the current study was to examine cognition and behavior following an initial 

complex FS and at school-age. In particular, we aimed to investigate infants and toddlers 

within the first year-post onset. Furthermore, we aimed to investigate the impact of complex 

FS on the development of specific cognitive functions, including learning, memory and 

executive functioning, at an age when these capacities have begun differentiating (i.e., school-

age children). Moreover, we aimed to evaluate the impact of FS on development and cognition 

in the context of known risk factors (i.e., age at seizure onset, seizure duration and other 

complex FS features). 

 

Our results revealed no differences in developmental outcome within the first year post-

seizure onset, including cognitive, language and motor development, between infants having 

suffered complex versus simple FS. Infants having suffered a complex FS overall performed 

within average ranges across developmental measures, similarly to infants having suffered a 

simple FS. These results are consistent with previous findings showing developmental scores 

within average ranges at baseline and one year post-onset in infants having suffered prolonged 

FS/ FSE (Martinos, 2013; Weiss, 2016). These previous findings also revealed no impact of 

the initial seizure on development at one month post-onset, although demonstrated slightly 

weaker performances in motor development and receptive language in infants having suffered 

very prolonged seizures one year-post onset (Weiss, 2016).  
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At school-age, our results revealed no significant differences in global intellectual capacities 

between children having suffered complex FS and simple FS controls, consistent with the 

existing literature (Ellenberg & Nelson, 1978; Verity et al., 1998; Hirtz, 2002). School-age 

children having suffered complex FS, however, demonstrated significantly weaker executive 

functioning, and to a lesser extent, learning and memory as compared to simple FS controls. 

Our results objectively corroborate those of previous studies indicating increased external 

behavior deficits and increased attentional difficulties in school-age children following 

complex FS, as measured by parental questionnaires (Lippé et al., 2009; Tsai et al., 2015). 

This contrasts with another study that found no differences between children having suffered 

FS and healthy controls on questionnaires (Visser et al., 2012). Of note, the latter study 

defined their FS group by its general definition, and did not account for possible differences 

between simple and complex seizures. Moreover, in the context of previous studies that used 

objective measures, our results are consistent with those of Hara et al., (1986) that similarly 

revealed sustained attention difficulties in children having suffered FS.  

 

Furthermore, children having suffered a complex FS showed significantly weaker 

performances on learning and memory tasks as compared to simple FS controls. These results 

are consistent with previous findings demonstrating a negative impact of prolonged FS or 

febrile status epilepticus on memory functions, including recognition memory, which was 

further associated with hippocampal anomalies (Martinos et al., 2012; Weiss et al., 2016). Of 

note, our results showed that memory capacities were affected to a lesser degree than 

executive functions, which can be surprising given the importance of the hippocampus in FS, 

as highlighted by animal models and early human imaging studies. It is however important to 
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note that these studies restricted their clinical sample to very prolonged seizures and FSE, in 

contrast to the participants included in the current study. Moreover, these studies focused on 

hippocampal anatomy and the assessment of hippocampal-dependent cognitive functions (e.g., 

the Morris Water Maze in animal models and computerized memory tasks in humans). 

Imaging and other anatomy analysis techniques have yet to be done beyond the mesial 

temporal lobe. This could be interesting in future, given the numerous connections between 

the hippocampus and other brain structures. In particular, the cortico-hippocampal network 

plays a predominant role in learning and memory. Based on the current results, it can be 

speculated that early damage to the hippocampus may result in faulty connections in this 

network, decreasing its efficiency and hindering its function beyond functions that are strictly 

hippocampus-dependent.  

 

With regards to behavioral and emotional problems, our results indicated significant parental 

concern regarding attention problems, anxious/depressed symptomology and affective 

challenges in children having suffered complex FS from onset to school-age. Heightened 

hyperactivity was also noted by parents of children having suffered complex FS. These results 

are commensurate with previous findings demonstrating weaker attentional abilities as 

observed through parental questionnaires (Lippé et al., 2009; Tsai et al., 2015). Scores across 

all scales nevertheless remained within normal ranges for both groups across both cohorts, 

consistent with previous findings showing normal behavioral and emotional functioning in 

early life (Verity et al., 1998; Visser et al., 2012). In considering risk factors, our results 

showed no impact of seizure duration and age at seizure onset on behavior and emotion, 

commensurate with previous findings showing negligible associations between seizure 
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characteristics and outcome (Martinos et al., 2012; Weiss et al., 2016). Overall, parents of 

children having suffered complex FS seem to show significant concerns related to behavior 

and emotion as compared to parents of children having suffered simple FS, even though these 

concerns are within normal ranges. Given the subjective nature of these measures, our results 

reflect behavioral issues as observed by the parent. As such, we cannot rule out the possible 

impact and influence of parental stress on our results. In considering this potential confound, it 

is possible that parents who are stressed as a result of the FS event have a biased perception of 

their child's skills, although children with weaker skills can also lead to parental stress. Results 

on the questionnaire may also reflect a bidirectional relationship between parental stress and 

children with weaker skills. At school-age more specifically, high scores on the hyperactivity 

scale are consistent with our neuropsychological measures, although overall parental behavior 

ratings seem to underestimate the amplitude of the measured objective neuropsychological 

challenges, notably related to executive functioning. Overall, given the caution required in 

interpreting results from parental questionnaires, behavioral and emotional challenges 

following FS remain unclear and require further research. 

 

In considering known risk factors for poor outcome, our results revealed no impact of age at 

seizure onset or seizure duration on developmental outcome within the first year-post onset. In 

previous studies, only infants having suffered very prolonged seizures or FSE were included in 

clinical samples, whereas the current study aimed to include different types of complex 

features. In considering our participants that met criteria for prolonged complex FS, the mean 

seizure duration was 27.3 minutes, whereas mean seizure duration in previous studies was 

between 70 and 90 minutes (Weiss, 2016; Martinos, 2012). As such, it is possible that FS 
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meeting complex criteria, without meeting criteria for FSE, are not sufficiently severe to alter 

developmental trajectories within the first year-post onset. At school-age however, seizure 

duration was significantly associated with measures of executive functioning (i.e., attention, 

inhibition, generation and hyperactivity) and learning and memory. In considering the school-

age children that met criteria for prolonged complex FS, the mean seizure duration was 19.5 

minutes, suggesting that the observed cognitive challenges are of concern for children 

presenting with prolonged seizures, even before they meet criteria for FSE. Moreover, early 

age at seizure onset was associated with emotional anomalies (i.e., perfectionism) in school-

age children, although limitations related to parental questionnaires must continue to be 

considered.  

 

Overall, the impact of known risk factors appears minimal, or remains undetected by our 

measures, within the first year-post onset, although the impact of seizure duration on executive 

functioning and learning and memory are apparent at school-age. In the context of existing 

literature however, it seems as though children having suffered very prolonged seizures or 

FSE already demonstrate early gaps in developmental trajectories as compared to controls, 

which continue to persist and exacerbate through time. Indeed, it has been argued that 

outcome following FSE is related to more than just the seizure event itself, but rather to the 

impact of combined predispositions and environmental circumstances (Baulac et al., 2004; 

Lucas et al., 2011; Martinos et al., 2012). Nevertheless within our clinical sample that did not 

include FSE, our results indicate that seizure characteristics known to be risk factors seem to 

be associated, at least in part, with outcome (i.e., seizure duration related to behavioral 

outcome and age at onset related to internal emotional problems). These results persist, even 
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when controlling for confounding variables unrelated to the seizure event, but known to be 

associated with poor cognitive outcome following FS, including pre-existing developmental 

issues, pre-existing CNS lesions and socio-economic status (i.e., familial income and parental 

education). As such, our significant associations between seizure characteristics and outcome 

could indicate that problems and deficits observed in behavior and emotion could, at least in 

part, be an effect of the seizure per se. 

 

Taken together, our results suggest that infants having suffered complex FS demonstrate 

unaltered early development within the first year-post seizure onset. It is possible that infants 

having suffered complex FS do not present sequelae within this timeframe, or they are still too 

young for any possible sequelae to be detected by objective measures. These participants were 

studied at an age when cognitive capacities have yet to be differentiated, and can only be 

evaluated as such. At school-age, intellectual abilities are unaltered, as expected. However, 

these participants demonstrate weaknesses in particular cognitive domains, including 

executive functioning, and to a lesser extent, learning and memory abilities, relative to 

controls and the general population. These weaknesses worsen as a function of seizure 

duration. As such, our results indicate that children presenting with complex FS, including 

multiple and prolonged seizures without meeting criteria for FSE, show difficulties in specific 

cognitive capacities within the first six years of their life, at a time when cognitive functions 

begin to specialize in the developing brain. 

 

Limitations of the current study must nevertheless be considered. The small sample sizes of 

both groups in both cohorts limit our statistical power and possibly mask effects that are 
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present but undetected, which of course require additional research and replication. Moreover, 

behavior/emotional outcome was assessed using parental questionnaires, which inherently 

limits our interpretation of the results, as previously discussed. In future, administering a 

parental stress questionnaire could help disentangle the nature of these results. In the school-

age cohort, no children having suffered complex focal seizures could be recruited for the 

study, limiting our results to complex multiple and prolonged FS. Some studies (Wallace, 

1996; Berg & Shinnar, 1996) have argued for a negative impact of focal and localized seizures 

on cognitive outcome, necessitating future research to include this subgroup of complex 

seizures in their studies.   

 

In conclusion, our results suggest that development remains normal within the first year-post 

complex FS onset, although specific cognitive domains seem to be affected at school-age. The 

longer the seizure duration, the more significant are weaknesses related to executive 

functioning, learning and memory. Additional research is required to shed light on the 

heterogeneity of febrile seizures, as well as better understand the interplay between genetic 

and environmental factors and their impact on cognition. Follow-up regarding the impact of 

complex FS on cognition is necessary, beyond the developmental years and into adulthood, in 

understanding their long-term outcome. 
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Table 1. Infant cohort sample descriptives for simple and complex FS groups 

 
 
 
 
 
 
Table 2. Infant cohort developmental scores on the Bayley-III for simple and complex FS 
   groups  
 
 
 Simple FS group 

n = 30 
Mean (Std) 

Complex FS group 
n = 35 

Mean (Std) 

F p 

Cognition 10.66 (1.7) 10.42 (2.42) 0.20 0.65 
Receptive communication 9.63 (2.14) 10.11 (3.30) 0.46 0.49 
Expressive communication 10.03 (1.9) 9.48 (2.68) 0.86 0.35 
Fine motor 11.03 (2.60) 10.88 (2.70) 0.05 0.82 
Gross motor 9.8 (2.56) 9.9 (3.39) 0.01 0.89 

 
Note. Results are presented in scaled scores for the five scales, and in standard scores for the 
three composite scores. 
 
 
 
 

 Simple FS group 
n = 30 

Mean (Std) 

Complex FS group 
n = 35 

Mean (Std) 
Seizure type (% per group) 
     Simple (n =30) 
     Multiple (n = 19) 
     Prolonged (n = 10) 
     Focal (n = 6) 

 
100% 

 
 
54.2 % 
28.5%  
17.1% 

Sex (%) 
     Female (Simple n = 16; Complex n = 19) 
     Male (Simple n = 19; Complex n = 16) 

 
53.3% 
46.6% 

 
54.2% 
45.7% 

Age at test (months) 17.05 (6.30) 20.29 (9.03) 
Age at seizure onset (months) 15.23 (5.80) 16.39 (7.47) 
Familial income ($ CAN) 67 230.76 (23 428.71) 75 375.00 (24 880.03) 
Mother's education (years) 15.07 (3.6) 15.91 (2.1) 
Father's education (years) 15.23 (5.80) 16.39 (7.47) 
Time between last seizure and test (months) 1.7 (1.6) 3.03 (4.11) 
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Table 3. School-age cohort sample descriptives for simple, multiple and prolonged FS 
 groups 
 

 
	
 
 
 
 
Table 4. School-age cohort neuropsychological composite scores for simple, multiple and 
   prolonged FS groups 
 

 
Note. Results for the WPPSI-III are presented in standard scores. Results of the cognitive 
domains are presented in weighted scaled scores. 
** p < 0.01 
  * p < 0.03 
 
 
 
 
 
 
 

 Simple FS group 
n = 19 

Mean (Std) 

Complex Multiple 
FS group  

n = 11 
Mean (Std) 

Complex Prolonged 
FS group 

n = 10 
Mean (Std) 

Sex (%) 
     Female  
     Male 

 
57.8% 
42.1% 

 
18.1% 
81.8% 

 
70% 
30% 

Age at test (years) 6.00 (0.44) 6.00 (0.32) 6.04 (0.23) 
Age at seizure onset (years) 1.33 (0.33) 1.04 (0.46) 1.27 (0.62) 
Familial income ($ CAN) 79 368.4 (26 179.3) 90 454.5 (42 629.5) 77 500.0 (23 717.1) 
Mother's education (years) 16.5 (2.0) 15.0 (2.0) 15.0 (2.6) 
Father's education (years) 15.2 (2.6) 14.8 (2.9) 15.3 (2.4) 

 Simple FS group 
n = 19 

Mean (Std) 

Complex Multiple 
FS group  

n = 11 
Mean (Std) 

Complex Prolonged 
FS group 

n = 8 
Mean (Std) 

WPPSI-III 
     Global IQ 

 
106.05 (15.12) 

 
94.56 (11.36) 

 
106.25 (16.47) 

Cognitive Domain 
     Executive Function 
     Memory 

 
11.60 (1.37) 
11.98 (0.97) 

 
6.92 (1.72) ** 
10.42 (1.64) * 

 
6.5 (1.72) ** 
10.25 (1.59) * 
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Figure 1. School-Age group differences according to cognitive domain 
 
 
 

 
Note. Scores are presented in weighted scaled scores 
** p < 0.01 
  * p < 0.03 
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Figure 2. Correlations between executive functioning measures and seizure duration 

	
Note. Results of test scores are presented in scaled scores with a mean of 10 and a standard 
deviation of 3; the higher the score, the better the performance. 
** p < 0.0001 
  * p < 0.01 
 
 
Figure 3. Correlations between learning and memory measures and seizure duration 

	
Note. Results of test scores are presented in scaled scores with a mean of 10 and a standard 
deviation of 3; the higher the score, the better the performance. 
** p < 0.0001 
  * p < 0.01 
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Table 5. Behavior/ emotion scores on the CBCL for simple and complex FS groups         
   across both cohorts  
 

 
Note. Results are presented as t-scores; the higher the score the more problematic are the 
behaviors 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Simple FS group 
n = 30 

Mean (Std) 

Complex FS group 
n = 34 

Mean (Std) 

F p 

Affective problems 52.80 (5.06) 55.76 (7.31) 2.15 0.14 
Anxiety problems 53.13 (4.86) 57.20 (8.71) 3.45 0.06 
Attention deficit/ hyperactivity problems 53.23 (4.24) 57.20 (9.17) 4.81 0.03 
Oppositional defiant problems 53.50 (5.96) 56.82 (7.44) 3.50 0.06 
Anxious/ depressed 51.96 (2.95) 56.88 (8.07) 8.08 0.006 
Somatic Complaints 52.76 (5.46) 54.20 (6.94) 0.44 0.51 
Withdrawn 53.76 (4.95) 54.20 (5.86) 0.01 0.90 
Attention problems 53.33 (6.04) 57.00 (7.02) 4.44 0.03 
Aggressive behavior 53.33 (6.79) 56.50 (8.25) 1.80 0.18 
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Figure 4. Significant CBCL group differences across both cohorts  

 
Note. Scores are presented in T-scores; the higher the value, the worse the performance. 
** p < 0.01 
  * p < 0.05 
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Table 6. School-age cohort behavior/emotion scores on the Conners for simple, multiple     
   and prolonged FS groups  

 
 
Note. Results are presented in t-scores; the higher the score, the worse the performance. 
** p < 0.0001 
  * p < 0.01 
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

 Simple FS group 
n = 19 

Mean (Std) 

Complex Multiple 
FS group  

n = 11 
Mean (Std) 

Complex Prolonged 
FS group 

n = 8 
Mean (Std) 

Conners 
     Hyperactivity 
     Oppositional  
     Cognitive problems 
     Shy/Anxious      
     Perfectionism 
     Psychosomatic 

 
50.9 (6.7) 
50.1 (9.2) 
49.9 (6.5) 
48.6 (6.9) 
52.9 (8.6) 
50.2 (4.8) 

 
63.2 (12.9)* 
56.6 (13.0) 
59.5 (14.7) 
56.6 (9.3) 
55.1 (12.5) 
54.4 (13.5) 

 
59.3 (11.3) 
54.4 (9.1) 
48.4 (10.5) 
53.3 (12.9) 
60.2 (12.5) 
51.4 (5.4) 
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Figure 5. Correlation between Conners Perfectionism Scale and age at seizure onset 
 

 
Note. Results of test scores are presented in t-scores; the higher the score, the worse the 
performance.  
** p < 0.0001 
  * p < 0.01 
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GENERAL DISCUSSION 
 
Epileptic syndromes throughout the lifespan have consistently been associated with poor 

cognitive outcome, typically in relation to etiology, age at onset, seizure type and severity, 

seizure duration and treatment, significantly impacting function and quality of life (Motamedi, 

2003; Moorthy et al., 2018). In considering the pediatric population more specifically, 

epileptic encephalopathies have similarly been linked to progressive cognitive dysfunction in 

the developing brain (Dulac, 2001; Khan & Baradie, 2012). Evidence related to the impact of 

seizure events occurring in isolation, without defining or being part of any broader syndrome 

has however not been as convergent.  

 

Following early-life SE, evidence supports significant physiological alterations, which have 

further been linked to persisting cognitive residua related to altered development, global 

intelligence, learning capacities and executive function, particularly as they occur in the 

developing brain (Sheppard & Lippé, 2012). Febrile seizures, although less severe than SE, 

are the most common form of childhood seizure, for which cognitive outcome remains unclear 

(Shinnar & Glauser, 2002). Although physiological alterations, particularly of the 

hippocampus, have been consistently shown in the most severe forms of FS, and a lesser 

extent in other forms of complex FS, studies investigating cognitive and behavioral outcome 

to date have examined cognitive capacities in isolation using measures that lacked objectivity, 

specificity and standardization, and generally restricted to the most severe forms of FS. 

 

The objective of the current clinical investigation was to study development and cognition 

following an initial complex FS from onset to school-age, in the context of known risk factors 
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for poor outcome, including all types of complex features. More specifically, we aimed to 

study the impact of an initial complex FS on development and behavior within the first year-

post onset using comprehensive standardized measures, and recruiting a clinical sample that 

included an exceptionally wide range of complex FS features (i.e., prolonged between 15 and 

30 minutes, recurrent and focal). Furthermore, we aimed to examine cognitive development in 

a cohort of children old enough for cognitive functions to be sufficiently differentiated (i.e., 

school-age) to allow specific, objective and standardized assessment of the impact of different 

types of complex features on specific functions, particularly related to learning/memory and 

executive function.  

 

FINDINGS 

 

In investigating the impact of suffering a complex FS on development within the first year 

post-onset, our results revealed no differences in cognitive, motor and language development 

between infants having suffered complex FS and simple FS controls. Moreover, infants of 

both groups scored within average ranges as compared to the general population. Although 

these results are consistent with previous findings showing developmental scores within 

average ranges at baseline and one year-post onset following FSE, previous results had further 

demonstrated a slight gap in developmental trajectories between infants having suffered FSE 

and controls within this timeframe (Weiss et al., 2016; Martinos et al., 2012). In considering 

risk factors, seizure duration and age at seizure onset were not associated with outcome. 

Overall, our first hypothesis could not be confirmed. Children having suffered complex FS did 
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not show weaker development, and longer seizure durations and younger ages of onset did not 

impact outcome.  

 

At school-age however, several significant group differences were observed. Although our 

results revealed no impact of complex FS on global intelligence, consistent with previous 

findings (Ellenberg & Nelson, 1978; Verity et al., 1998; Hirtz, 2002), significant differences 

are noted in specific cognitive abilities. In particular, children having suffered complex 

prolonged and complex multiple FS demonstrated significantly weaker executive capacities, 

and to a lesser extent, weaker learning and memory abilities, as compared to simple FS 

controls. Moreover, these cognitive challenges were associated with longer seizure durations. 

As such, our second hypothesis was confirmed.   

 

Regarding behavior and emotions, parents of children having suffered complex FS showed 

significantly more concerns related to attention problems, anxious/depressive symptomology 

and affective problems, consistently from onset to school-age. At school-age more 

specifically, parents demonstrated significant concern on a hyperactivity scale. These 

challenges were however unaffected by seizure characteristics. In contrast, earlier ages at 

onset were associated with higher perfectionist traits. Given the subjective nature of the 

behavioral measures however, confounding parental stress and concern could not be ruled out.   

 

Taken together, results of this study can begin to shed light on understanding the long-term 

impacts of early-life FS on cognitive and emotional development throughout infancy and into 

childhood.  
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 Cognitive development 

In light of the current results, we can begin to understand cognitive development beyond the 

first year post-FS onset and into childhood. In considering complex FS features, namely focal, 

multiple or prolonged (i.e., between 15 and 30 minutes of duration), we propose that complex 

FS do not alter development or behavior within the first year post-onset. Given that previous 

studies have found mild early gaps in developmental trajectories in the first year following 

FSE onset, longer seizure durations (i.e., between 70 and 90 minutes) may play the key factor 

in severity and impact on early development (Weiss et al. 2016; Martinos et al., 2012; 2013).  

 

At school-age, a time when cognitive capacities have differentiated sufficiently to allow their 

specific and objective assessment, children having suffered complex FS (i.e., prolonged 

between 15 and 30 minutes and multiple FS) demonstrate significant executive difficulties as 

compared to controls and the general population. Specifically, challenges in selective and 

sustained attention, inhibition, idea generation and hyperactivity are observed, to the extent 

that performances are within clinical ranges. These results can be corroborated by evidence 

demonstrating increased occurrence of behavior disorders in children having suffered FS, 

including ADHD, characterized by age-inappropriate attention, hyperactivity and impulsive 

behavior (Hara et al., 1986; Chang et al., 2001; Hesdorffer et al., 2012; Ku et al., 2013). More 

specifically, children with a history of FS have been shown to have a 20% to 30% increased 

risk of ADHD compared with children without FS (Bertelsen, 2016), and this disorder has 

been shown to occur in about 30% of children with epilepsy (Besag, 2016). In broader terms, 

executive dysfunctions have been shown to be affected in a multitude of neurodevelopmental 
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disorders beyond ADHD, including conduct disorder, autism and Tourette's syndrome 

(Ozonoff et al., 1999; Shanmugan, 2016), suggesting either specific commonalities between 

conditions leading to their impact on executive functions (e.g., common genetic factors, 

common environmental risk factors), or that the mechanisms involved in executive 

functioning are particularly sensitive to features of these developmental disorders. 

 

Our results further revealed that children having suffered complex FS demonstrated weaker 

performances on learning and memory tasks, albeit to a lesser extent than executive functions, 

as compared to children having suffered simple FS. These results are consistent with previous 

findings demonstrating a negative impact of prolonged FS or febrile status epilepticus on 

memory functions, including recognition memory, which was further associated with 

hippocampal anomalies (Martinos et al., 2012; Weiss et al., 2016). Given that performances on 

learning and memory tasks were also worse as seizure duration increased, it is possible that 

prolonged FS (i.e., between 15 and 30 minutes duration) represent similar impacts on 

cognition as FSE, just to a lesser degree on the spectrum of severity of outcome.  

 

Taken together, although early development is unaffected within the first year-onset, and 

global intelligence is unaltered in school-age children, these children demonstrate challenges 

related to specific cognitive capacities, including executive functioning and memory. These 

difficulties are observed at an age when cognitive capacities have differentiated sufficiently to 

be assessed. Even though there seems to be an evolution of cognitive sequelae over time and 

development as the brain matures, age at onset was not associated with outcome. In fact, 

seizure duration seemed to be the main influence on cognitive outcome, consistent with 



	 105	

previous evidence related to FSE, even though children having suffered multiple complex FS 

demonstrated similar difficulties, albeit to a slightly lesser qualitative extent, overall 

suggesting that complex features that are not as severe as FSE may still demonstrate cognitive 

sequelae at school-age. Moreover, cognitive challenges were demonstrated beyond 

hippocampus-dependent cognitive functions, namely learning and memory, and seemed to 

significantly extend to the executive functions in both prolonged and multiple FS.  

 

 Emotional / behavioral development   

From onset to school-age, our results indicate behavioral/emotional challenges in children 

having suffered complex FS, including attention problems, anxious/depressed symptomology 

and affective problems, as observed by caregivers. At school-age, behavioral challenges are 

highlighted on a scale of hyperactivity for these children. Moreover, perfectionist traits were 

observed to increase with younger ages of onset. In contrast to cognitive measures, emotional 

challenges were unaffected by seizure duration. These results are consistent with previous 

evidence demonstrating that recurrent seizures significantly predicted internal problems 

relatively early in the course of a seizure condition (Austin, 2002).  

 

Although associations are observed between FS and emotional/behavioral challenges, the 

direction and interpretation of these associations can be debated. It can be argued for example, 

that both seizures and emotional challenges are subserved by similar underlying physiological 

anomalies, or the seizure per se may impact physiology which impacts emotion regulation, or 

further, perhaps disrupted emotions are a negative psychological response to the seizure. In 

exploring psychiatric conditions comorbid to FS and seizure disorders, evidence has shown 
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that children with a history of FS have a 44% increased risk of developing a psychiatric 

condition, particularly schizophrenia (Vestergaard, et al., 2005). Moreover, children suffering 

from epilepsy have demonstrated a 5.5-fold increased risk of developing psychosis, and 8.5-

fold increased risk of developing schizophrenia (Clarke, et al., 2012). Other psychiatric 

comorbidities following seizure disorders include anxiety, depression, bipolar disorder and 

sleep disorders (Clarke et al., 2012; Motamedi, 2003). Nakahara et al. (2018) suggested a 

common hippocampal pathophysiology in TLE and psychiatric disorders, although it remained 

unclear whether the pathophysiology linked to TLE was also linked to the psychiatric 

disorders, or if the disorders occurred subsequent to TLE. Taken together, there seems to be an 

underlying pathophysiology between seizures and emotional difficulties, which however does 

not rule out the possibility of negative psychological reaction to seizures, particularly in 

considering our results, such that increased internal difficulties could also, to a certain extent, 

reflect an emotional reaction to early-life seizure occurrences.   

 

NEURODEVELOPMENTAL CONTEXT 

 

Febrile seizures occur at an age when the brain is in rapid maturation, and implementation of 

functional specialization is at its peak rate of change. In considering the impact of an early life 

insult to the brain on cerebral and cognitive development, the Vulnerability theory posits that 

owing to the lack of functional specialization in the developing brain, it will attempt to recover 

endangered functions from a damaged structure by aberrantly creating faulty connections, 

therefore hindering the healthy development of future structures, and further, the cognitive 

abilities subserved by these structures. With regards to seizure disorders in early life, it is 
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argued that abnormal electrical activity will compete with normal brain activity for neural 

resources (Pavlidou, 2007). If abnormal activity occurs at critical stage of cerebral 

development, aberrant neuronal connections may be formed and normal brain functions may 

fail to develop.  

 

Our results demonstrate significantly impacted executive functions, and to a lesser extent, 

learning and memory in school-age children having suffered complex FS, although infants 

assessed within the first year-post onset demonstrated normal and unaltered development, 

suggesting that the impact of early-life seizures could only be detected later in life. Although 

executive functions are known to develop exponentially between the ages of 7 and 10 and 

continue developing into early adulthood, Anderson et al. (2010) demonstrated that brain 

insults occurring prior to the age of three recorded greater global and severe executive 

functioning deficits in later life as compared to children of older age. These results support our 

findings, which in turn bring support to the Vulnerability theory. Moreover, our absence of 

impact of age at seizure onset on cognition could therefore likely be explained by the fact that 

all our participants had seizure onsets prior to three years of age. Seizure duration was found 

to be the main influence on cognitive outcome, such that the longer the seizure, the more the 

developing structures are submitted to the potentially damaging effects of the seizure event, 

especially for structures that have been shown to be particularly vulnerable, including the 

hippocampus (Anderson, 2003). Indeed, transient and long-term hippocampal damage has 

consistently been shown following FSE, further associated with cognitive challenges related to 

learning and memory, detected even within the first year post-onset (Shinnar et al, 2012; 

Weiss et al 2016). Our results also show learning and memory challenges following complex 
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FS, specifically related to prolonged seizures (i.e., between 15 and 30 minutes), although to a 

lesser degree of impairment than observed in previous FSE studies, and only detected later in 

life (i.e., school-age), which could indicate similar structural involvement (i.e., hippocampus), 

but less severe degree of physiological alterations. 

 

CEREBRAL STRUCTURES INVOLVED IN FS 

 

The hippocampus has been the principle structure studied to date through animal models and 

different types of imaging techniques. As previously mentioned, converging evidence suggests 

its long-term alterations following events of FSE, further associated to challenges in the 

development of hippocampus-dependent functions. In the context of our results, which show 

significant cognitive challenges beyond hippocampus-dependent functions in school-age 

children, including impacted executive functions, it is argued that faulty hippocampal 

development following FS may subsequently alter the development of other structures.  

 

Specifically, it is possible that early damage to the hippocampus may cause faulty related 

neuronal networks, including the cortico-hippocampal network. From a structural perspective, 

this network encompasses direct and monosynaptic connections between the hippocampus and 

frontal/prefrontal areas, which have further been shown to be synchronized by theta-rhythm 

oscillations (Petrides & Pandya, 2004; Benchenane, 2010). Functionally, the cortico-

hippocampal network has been shown to be a key player in learning and memory capacities by 

binding information into a coherent memory trace, as well as attention and inhibitory response 

control (Wall & Messier, 2001; Eichenbaum, 2000; Brassen, 2006; Bast et al., 2017). In 
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considering the impact of seizures on this network, patients suffering from TLE have 

demonstrated widespread disturbances in white matter tracts in the temporal lobe and 

extratemporal regions, which have been linked to cognitive impairment (Riley et al, 2010). 

Moreover, the flexibility of the cortio-hippocampal network in particular has been shown to be 

altered in TLE patients, such that a reduced task-dependent reshaping of network interactions 

has been observed (Tailby et al., 2018), and impairments in brain theta oscillations in the 

frontal area in TLE patients have been argued to subserve poor executive control of behavior 

(Li et al., 2018). In considering FS, animal models have begun to demonstrate associations 

between cognitive impairments following experimentally-induced FS and network 

dysfunctions involving the hippocampus and prefrontal cortex (Dubé et al., 2009). Taken 

together, the importance of network dysfunction (i.e., beyond the structure-function 

relationships of cognition in epilepsy) in understanding the cognitive deficits observed in 

seizure disorders can be argued. Of further note, the cortico-hippocampal network has 

consistently been shown to be involved in psychiatric disorders, including anxiety and 

schizophrenia, which could in turn also indicate common pathophysiology between seizure 

and psychiatric disorders (Kupferschmidt & Gordon, 2018; Ploghause et al., 2001). Of course, 

the involvement of the cortico-hippocampal network in cognitive dysfunction following FS is 

speculative at this point in time, although it may be an important research consideration, which 

could eventually bring greater understanding to the impact of FS on cerebral and cognitive 

development.  

   

HETEROGENEITY OF FEBRILE SEIZURES 

 



	 110	

A key factor in the divergent evidence related to outcome following FS lies in the 

heterogeneity of their presentation. With regards to their impact on physiology, complex 

features outside of FSE have been largely understudied, although the few studies performed 

also suggest a negative impact of focal and recurrent features on physiology to arguably 

different degrees of severity, which overall resemble controversies in the evidence related to 

cognitive development following FS (Hesdorffer et al., 2008; Yoong et al, 2013). Our current 

studies were designed to include all complex FS types (i.e., prolonged between 15 and 30 

minutes, focal and recurrent seizures) in attempting to bring some understanding to their 

possible differential impacts on cognitive development. In school-age children, those having 

suffered both multiple and prolonged seizures demonstrated executive, and to a lesser extent, 

learning and memory challenges, although these challenges were associated with seizure 

duration. As such, is possible that either both types of complex features are on a common 

spectrum where prolonged FS seem to have greater impact on cognitive development, or it 

could be argued that seizures with different complex features could be considered separate 

entities altogether. Additional research on multiple and focal FS, from physiological and 

functional perspectives are required to better disentangle this debate. 

 

From a broader vantage point, the understanding of how some children will develop FS, while 

other will not, in the context of a similar systemic illness and fever presentation, and further, 

how some children presenting with FS go on to develop full-blown encephalopathies while 

others do not, is still unclear to researchers. The heterogeneity in FS presentation seems to be 

underlined by multifactorial etiologies and interactions between genetic predispositions and 

environmental factors.  
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CAUSE VERSUS CONSEQUENCE 

 

Research to date argues for multifactorial etiologies in FS, given their heterogeneous nature. 

Long-standing "chicken or the egg" debates have posited that either FS occur in immature 

brains that are predisposed for seizure activity, or FS occur in otherwise healthy brains that in 

turn cause transient and long-term damage, further complicated by a an interweaving web of 

possible interactions between genetic and environmental risk factors. Evidence to date has 

inconsistently shown direct links between seizure characteristics and outcome, suggesting that 

outcome is not entirely explained by the seizure event per se (Weiss et al, 2016; Martinos et al, 

2012; 2013). Nevertheless, studies have also demonstrated some associations between seizure 

features and cognitive outcome (Chang et al., 2000; 2001), consistent with our findings 

indicating a link between seizure duration and cognitive outcome, as well as between age at 

seizure onset and emotional outcome, suggesting that the seizure event per se, at least in part, 

influences, or possibly exacerbates outcome. Taken together, it is highly unlikely that a FS 

event itself causes cerebral damage leading to poor cognitive outcome. Rather, multifactorial 

etiologies and risk factors seem to contribute to an initial FS, and multifactorial modulators 

seem to impact the possibility of seizure recurrence and cognitive outcome, even though a 

clear portrait of influencing factors, the context in which these factors are expressed, and 

direction of their relationship to outcome has yet to be established. 

 

Moreover, in examining the phenotype of cognitive and behavioral outcome more specifically, 

other cause/consequences debates can be argued for the likely bidirectional relationship 
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between cognitive and emotional outcome following FS. Indeed, several studies have 

demonstrated the role of executive functioning in behavioral and emotional dysregulation, 

including their role in social behavior and disorders such as anxiety, depression, obsessive-

compulsive disorder, panic disorder and eating disorders (Rao et al., 2013; Shanmugan, 2016). 

Conversely, emotional dysregulation can also negatively impact the use of cognitive functions. 

Although cognitive challenges following FS seem to be, at least in part, organic in nature (i.e., 

related to physiological alterations), and although the nature of emotional challenges following 

FS has been largely understudied and remains unknown, it is possible that a bidirectional 

exacerbation of cognitive and emotional challenges exists.  

 

IMPLICATIONS 

 

 For research 

Our studies were part of few that have investigated and compared different types of complex 

FS features, which have revealed the seemingly differential impact of seizure duration on 

cognitive outcome, and impact of recurrence on social problems in school-age children. 

Moreover, to our knowledge, our study of cognitive outcome in school-age children was the 

first to objectively assess and demonstrate executive function difficulties in this population. 

These findings can shed light on cognitive processes that are impacted following FS, beyond 

hippocampus-dependent functions, and further, possible emotional difficulties following the 

seizure event, that can open new research avenues, particularly in neuroimaging. 

 

 For clinicians 
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The current study could begin to establish a neuropsychological phenotype for children having 

suffered complex FS. As such, it has been established that these children demonstrate 

unaltered development in infancy, and unaltered global intelligence at school-age. 

Nevertheless, specific cognitive functions seem to be affected, including executive 

functioning, that is, attention (selective and sustained), inhibition, idea generation and 

hyperactivity, which are generally characterized by performances in low average ranges for 

children having suffered multiple and prolonged FS. Learning and memory challenges are also 

noted as a function of seizure duration, although to lesser extent and characterized by 

performances nevertheless remaining within average ranges. Given our results, behavioral and 

emotional challenges, that is, external (e.g., attention problems, hyperactivity) and internal 

problems (e.g., anxiety, depression, affective problems, perfectionism) in particular could be 

expected from children having suffered complex FS.  

 

Of important note, although differences are seen at the group level, individual differences are 

many, particularly in the context of the heterogeneity of FS. As such, a child presenting with a 

complex FS will not necessarily demonstrate these observed challenges in later life. 

Conversely, if a child's developmental trajectories are normal following FS onset, the later 

development of their specific cognitive functions are not necessarily spared. Extensive review 

of medical, developmental and family history is necessary, and can orient clinicians to risk 

factors and modulators specific to the child, in trying to piece together their unique individual 

puzzle. Moreover, it is our hope that the current results can help orient intervention for these 

children. For example, if a child is observed to begin to present behavioral challenges within 

the first year post-onset, early executive interventions may help prevent exacerbations of 
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challenges in later life. Early intervention with parents of these children is also warranted, 

including education related to FS.  

   

  Parental concern 

Of importance, and often omitted, are parental reactions to their child's FS occurrence, and 

how their reactions may in turn affect their child's outcome. In a study by Balslev (1991) on 

parental reactions to their child's first FS occurrence, results indicated that 60% of parents 

slept restlessly, 13% watched their child at night, and 29% demonstrated dyspeptic symptoms, 

even one year after the occurrence. Moreover, perinatal maternal emotional symptoms have 

been linked to earlier ages of FS onset (Thebault-Dagher et al. 2017). Interestingly though, 

results of the large prospective multicenter FEBSTAT study on the impact of FS revealed 

minimal parental stress at baseline and one year-post FSE, and therefore was not found to 

impact questionnaire completion (Shinnar et al., 2017). Nevertheless, education pertaining to 

FS should be provided to parents. 

 

LIMITATIONS 

 

Several limitations of our studies need to be considered in the interpretation and implications 

of our findings. Most notably, sample sizes in both our studies were small, which limits our 

statistical power and possibly masks effects that are present but undetected. Nevertheless, the 

significant results obtained are strong, particularly those obtained in the school-age cohort of 

children, and likely indicate persistent cognitive challenges following FS. Moreover, although 

participants presenting different types of complex FS were admissible in both studies, our 
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cases presented only one complex feature, even though about one third of children presenting 

with complex FS have one or more complex characteristics (Patel et al., 2015). As such, our 

results do not account for children presenting more than one complex feature. Moreover, no 

children with complex focal FS could unfortunately be recruited in our school-age cohort, and 

as such, our results similarly do not account for children having suffered focal FS. In addition, 

given that only about 33% of parents of eligible children agreed to participate in our first study 

and about 17% in our second study, a possible selection bias cannot be ruled out, even though 

proportions of complex FS features were similar to that of the complex FS population (Patel et 

al., 2017). In considering these limitations, our results may not be generalizable to the FS 

population at large, but rather to a subgroup of this vast heterogeneous population. Lastly, 

given the transversal nature of our overall study design, children assessed at infancy were not 

the same as those assessed at school-age, forgoing intra-subject analyses and longitudinal 

investigation of development over time. Overall, our results necessitate replication in order to 

promote generalizability, and future research is required to better understand the outcomes 

following FS. 

 

FUTURE DIRECTIONS 

 

The current findings can nevertheless shed light on cognitive processes that are impacted 

following FS, beyond hippocampus-dependent functions, and further, possible emotional 

difficulties following the seizure event, which in turn can open new research avenues, 

particularly in neuroimaging. More specifically, neuroimaging studies could begin to step 

outside the specificity of hippocampal analyses, and investigate other structures likely 
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involved in the physiology underlying FS, perhaps using different types of whole-brain 

analyses to help direct and orient to other cerebral areas that may be involved in FS. 

Moreover, connectivity analyses could shed light on the possibility of network dysfunctions, 

beyond the structure-function relationships known for cognition. In particular, such analyses 

could be performed in investigating the cortico-hippocampal network, in bringing insight into 

it's possible impact on cognitive development, and development of executive function 

following FS in particular. Furthermore, imaging studies related to the physiology of 

emotional challenges following FS could shed light on debates related to etiology of emotional 

struggles, and how their presentation interacts with cognitive outcome. 

 

With regards to future directions in cognitive development following FS, complex features 

other than FSE are required to be studied, including focal and multiple seizures, and the 

combined presentation of more than one complex feature, in understanding their possible 

differential impact on outcome. Moreover, longitudinal studies would allow a more direct 

assessment of the evolution of cognitive development over time by allowing intra-subject 

analyses relating seizure characteristics, risk factors and outcomes in individual participants 

over time, and perhaps extended into adolescence, when brain maturity reaches a different 

level. Prospective studies, although much more complex, would allow for better understanding 

of the interplay between genetic and environmental factors, and the FS community is looking 

forward to gaining insights from the large prospective multicenter study (FEBSTAT) 

investigating the long-term outcomes following FSE.  

 

CONCLUSION 
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In conclusion, although FS are considered a less severe form of childhood seizure, they are the 

most common. The present findings help bring light to the cognitive and behavioral sequelae 

following early-life complex FS. Although children having suffered complex FS do not show 

altered development within the first year post-onset, significant cognitive challenges are noted 

later in life, namely at school-age. In particular, difficulties in specific cognitive capacities, 

namely executive functioning and learning/memory, are observed in relation to seizure 

duration. Moreover, emotional and behavioral challenges are apparent in children having 

suffered complex FS, and can be related to younger ages of onset. Overall, our results indicate 

that multiple and prolonged (i.e., between 15 and 30 minutes of duration) FS are severe 

enough to demonstrate these cognitive and emotional sequelae, which are overall less severe 

than those observed following SE, and further, those observed in the broader spectrum of 

epileptic encephalopathies and epilepsy. Replication is however required in promoting the 

generalizability of our findings, and future research in neuroimaging and assessments beyond 

the childhood years could further expand our understanding of the heterogeneous nature of FS 

and their outcome. 
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