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SOMMAIRE

Les relations fortement rigides jouent un rôle important dans l’étude de la complexité

des problèmes de satisfaction de contraintes (CSPs) (Feder et Vardi [22], Schaefer [9],

Jeavons [23], Bulatov, Jeavons et Krokhin [24], Larose et Tesson [34], Larose [31],

Barto et Kozik [36], et Bulatov, Jeavons et Krokhin [27]) qui font l’objet de recherches

intenses à la fois en intelligence artificielle et en recherche opérationnelle (Russell et

Norvig [19]). Une relation n-aire ρ sur un ensemble U est rigide si elle n’admet aucun

automorphisme non-trivial ; elle est fortement rigide si elle n’est préservée que par les

projections. De plus ρ est dite projective si les seules opérations idempotentes qui la

préservent sont les projections.

Rosenberg (1973) a caracterisé toutes les relations fortement rigides sur un ensemble

à deux éléments, et a construit une relation binaire fortement rigide sur tout ensemble de

plus de deux éléments. Larose et Tardif (2001) ont étudié les graphes projectifs et forte-

ment rigides, et ont construit de grandes familles de graphes fortement rigides. Łuczak

et Nešetřil (2004) ont démontré une conjecture de Larose and Tardif qui prévoyait que

la plupart des graphes avec suffisamment de sommets sont projectifs, et ont caractérisé

tous les graphes homogènes qui sont projectifs. Łuczak et Nešetřil (2006) ont ensuite

confirmé une conjecture de Rosenberg qui prédisait que la plupart des relations sur un

ensemble suffisamment grand sont fortement rigides.

Le premier résultat principal de cette thése est une caractérisation des relations forte-

ment rigides sur un ensemble d’au moins 3 éléments, résolvant ainsi un problème ouvert

de Rosenberg (Rosenberg [7], Problème 6 de [13]). Ensuite nous montrons qu’à isomor-

phisme près, il n’existe que 4 relations binaires rigides sur un ensemble à trois éléments,

parmi lesquelles deux seulement sont fortement rigides. De plus, nous déterminons, à

isomorphisme près, les 40 relations binaires rigides sur un univers à quatre éléments, et

montrons que 25 d’entre elles sont fortement rigides (Exemple 5.4 et Exemple 6.1 dans

Sun [41]). Nous généralisons une de ces relations pour construire une nouvelle relation

binaire fortement rigide sur tout ensemble d’au moins 4 éléments (Sun [43]), et décri-

vons de plus une relation ternaire fortement rigide sur tout ensemble fini avec au moins 2
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éléments et conjecturons une relation k-aire fortement rigide sur tout domaine fini (Sun

[42]).

Mots clés : Algèbre universelle, théorie des clones, polymorphismes, relations

rigides et fortement rigides.



ABSTRACT

Strongly rigid relations play an important role in the study of the complexity of

Constraint Satisfaction Problems (CSPs) (Feder and Vardi [22], Schaefer [9], Jeavons

[23], Bulatov, Jeavons and Krokhin [24], Larose and Tesson [34], Larose [31], Barto

and Kozik [36], and Bulatov, Jeavons and Krokhin [27]) which are the subject of intense

research in both artificial intelligence and operations research (Russell and Norvig [19]).

An n-ary relation ρ on a set U is strongly rigid if it is preserved only by trivial operations.

It is projective if the only idempotent operations in Polρ are projections.

Rosenberg (1973) characterized all strongly rigid relations on a set with two ele-

ments and found a strongly rigid binary relation on every domain U of at least 3 ele-

ments. Larose and Tardif (2001) studied the projective and strongly rigid graphs, and

constructed large families of strongly rigid graphs. Łuczak and Nešetřil (2004) settled

in the affirmative a conjecture of Larose and Tardif that most graphs on a large set are

projective, and characterized all homogenous graphs that are projective. Łuczak and

Nešetřil (2006) confirmed a conjecture of Rosenberg that most relations on a big set are

strongly rigid.

In this thesis we characterize all strongly rigid relations on a set with at least three

elements to answer an open question by Rosenberg (1973) (Rosenberg [7], Problem 6 in

Rosenberg [13]). We classify the binary relations on the 3-element domain and demon-

strate that there are merely 4 pairwise nonisomorphic rigid binary relations on the same

domain (among them 2 are pairwise nonisomorphic strongly rigid), and we classify the

binary relations on the 4-element domain and show that there are merely 40 pairwise

nonisomorphic rigid binary relations on the same domain (among them 25 are pairwise

nonisomorphic strongly rigid) (Example 5.4 and Example 6.1 in Sun [41]). We extend

a strongly rigid relation on a 4-element domain to any finite domain (Sun [43]). Finally,

we give a strongly rigid ternary relation on any finite domain and conjecture a strongly

rigid k-ary relation on any finite domain (Sun [42]).

Keywords: Universal algebra, clone theory, polymorphisms, rigid relations and
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strongly rigid relations.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

In 1941, Post [1] first gave a full description of the lattice of clones on {0,1}. Since

then, researchers have been trying to develop their understanding on clones in more

generic terms. In 1965, Vopĕnka [4] et al. showed the existence of a rigid binary relation

on any set. In 1973, Rosenberg [7] initiated the study of strongly rigid relations (and

relational structures) which was later developed by Poizat [8], Grabowski and Pöschel

[16, 21], Fearnley [18], Larose and Tardif [25], and Lenz [28]. In 1983, Rosenberg

characterized the minimal clones in his celebrated work [13]. Minimal clones and trivial

clones are interesting in the study of the complexity of Constraint Satisfaction Problems

(CSPs) (Feder and Vardi [22], Schaefer [9], Jeavons [23], Bulatov, Jeavons and Krokhin

[24], Larose and Tesson [34], Larose [31], Barto and Kozik [36], and Bulatov, Jeavons

and Krokhin [27]) which are the subject of intense research in both artificial intelligence

and operations research (Russell and Norvig [19]). In our work, we concentrate mainly

on rigid relations and strongly rigid relations (trivial clones).

In 1973, Rosenberg [7] characterized all strongly rigid relations on a set with two

elements, and constructed a strongly rigid binary relation on any domain (see Fig. 1.1 ).

He also proposed two open questions about strongly rigid relations:

1. How to characterize all strongly rigid relations on a set with more than two ele-

ments (see also Problem 6 in Rosenberg [13])?

2. He conjectured that for a finite set with k elements the number of s(n) of n-ary

strongly rigid relations satisfies

lim
n→∞

2−kn
s(n) = 1,

i.e., for a big n almost all n-ary relations are strongly rigid.
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Figure 1.1 – A strongly rigid binary relation on a finite domain by I. Rosenberg

The second question was confirmed only recently by Łuczak and Nešetřil [32] using a

probabilistic approach (see also Kazda [39]). Note also that Łuczak and Nešetřil [29]

used a similar probabilistic approach to settle in the affirmative a conjecture of Larose

and Tardif [25] that most graphs on a large set are projective. In Chapter 2, we will give

a characterization of all strongly rigid relations on a set with at least three elements. This

answers the first open question.

1 2 3 n−2 n−1 n

0

Figure 1.2 – A strongly rigid binary relation on a finite domain by A. Fearnley
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The computation of small examples could prove useful for researchers (Csákány

[11], Szczepara [17], Berman and Burris [20], Barto and Stanovský [37], Machida and

Rosenberg [38], and Jovanović [40]). Fearnley [18] showed that for a 3-element domain,

up to relational isomorphism, there are only two strongly rigid binary relations. In Chap-

ter 3, an algorithmic approach will be applied to classify the binary relations on a domain

with 3 elements, and it turns out that there are only 4 pairwise nonisomorphic rigid binary

relations (see Table 1.1 which accounts for all binary relations on a 3-element domain), 2

of them are pairwise nonisomorphic strongly rigid binary relations. In Chapter 4, a simi-

lar approach will be applied to classify the binary relations on a domain with 4 elements,

and it turns out that there are only 40 pairwise nonisomorphic rigid binary relations (see

Table 1.2 which accounts for all binary relations on a 4-element domain), 25 of them are

pairwise nonisomorphic strongly rigid binary relations (see Fig.1.4).

Fearnley [18] presented a family of strongly rigid binary relations (see Fig. 1.2 ),

Larose and Tardif [25] studied the projective and strongly rigid graphs and constructed

large families of strongly rigid graphs. In Chapter 5, as an extension of one result in

Chapter 4, we will present a new strongly rigid binary relation on a finite domain. In

Chapter 6, we propose a strongly rigid ternary relation on a finite domain and conjecture

a strongly rigid k-ary (k > 3) relation on a finite domain. In Chapter 7, we suggest some

further research ideas.

Proposition # of # of Relations Property
Relations up to isomorphism

Proposition 3.1.6 (23−1)26 Not rigid
Fact 3.2.1 40 Not rigid

Proposition 3.4.1 12 2 rigid but not strongly rigid
Proposition 3.5.1 12 2 Strongly rigid

Total: 232
4

Table 1.1 – Classification of binary relations on a 3-element domain
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Figure 1.3 – The two strongly rigid binary relations on a 3-element domain (up to iso-
morphism)

Proposition # of # of Relations Property
Relations up to

isomorphism
Proposition 4.1.1 (24−1)212 Not rigid

Fact 4.1.2 2644 Not rigid
Proposition 4.2.1 (The source-sink rule) 612 15 Rigid but not strongly rigid

Proposition 4.3.1 (Fig.1.4) 840 25 Strongly rigid
Total: 242

40

Table 1.2 – Classification of binary relations on a 4-element domain

Figure 1.4 – The twenty-five strongly rigid binary relations on a 4-element domain (up
to isomorphism)



CHAPTER 2

CHARACTERIZATION OF STRONGLY RIGID RELATIONS

2.1 Preliminaries

As a general reference for the basic definitions and terminology in this field, the

reader is referred to Á. Szendrei’s Clones in Universal Algebra [14] or D. Lau’s Function

Algebras on Finite Sets [33].

Let U be a non-empty universe, and let n be a positive integer. A map f : Un→U

is called an n-ary operation (or function) on U , the set of all n-ary operations on U is

denoted by O
(n)
U , and OU =

⋃
∞
n=1O

(n)
U . For a positive integer h, a subset ρ of Uh is an

h-ary relation on U . In the following, :≈ defines an operation while ≈ means that both

sides are equal with all variables universally quantified.

Definition 2.1.1. For 1 ≤ i ≤ n, the i-th n-ary projection en
i is defined by setting

en
i (x1, ..., xn) :≈ xi for all x1, ..., xn ∈U

Definition 2.1.2. Let f ∈ O
(n)
U , and let ρ be an h-ary relation on U. The operation f

preserves ρ if for all (a1,i,a2,i, . . . ,ah,i) ∈ ρ (i = 1, . . . ,n),

( f (a1,1,a1,2, . . . ,a1,n), f (a2,1,a2,2, . . . ,a2,n), . . . , f (ah,1,ah,2, . . . ,ah,n)) ∈ ρ.

Definition 2.1.3. An operation f ∈ O
(n)
U is idempotent if f (x, ..., x) ≈ x.

Definition 2.1.4. Let f be an n-ary operation and g1, ..., gn be k-ary operations on U. A

k-ary operation f [g1, ..., gn] on U, called the composition (or superposition or substitu-

tion), is defined as follows:

f [g1, ..., gn](x1, ..., xk) :≈ f (g1(x1, ..., xk), ..., gn(x1, ..., xk)).

Definition 2.1.5. A subset of OU is said to be a clone on U if it contains the projections

and is closed under composition.
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Evidently every projection preserves every relation in Γ on U where Γ is a set of

relations. We denote by PolΓ the set of all operations on U preserving every relation in

Γ. If Γ = {ρ} we write Polρ instead of Pol{ρ} the set of all operations on U preserving

ρ , and Pol(n)ρ instead of Pol(n){ρ} the set of all n-ary operations on U preserving ρ . It

is well known and easy to verify that Polρ is a clone on U .

Definition 2.1.6. A relation ρ on U is rigid if every unary operation on U preserving ρ

is a projection. i.e., Pol(1)ρ = {e1
1}.

Definition 2.1.7. A relation ρ on U is projective (idempotent trivial) if every idempotent

operation on U preserving ρ is a projection.

Definition 2.1.8. A relation ρ on U is strongly rigid if every operation on U preserving

ρ is a projection, i.e., Polρ = {en
i : 1≤ i≤ n < ω}. In other words, Polρ is the smallest

clone, the clone of all projections, also known as the trivial clone.

Definition 2.1.9. A clone is said to be a minimal clone if it has the trivial clone as its

only proper subclone. Nontrivial operations of minimal arity in a minimal clone are

called minimal operations.

Definition 2.1.10. A clone is said to be a maximal clone if it is a coatom in the lattice

formed by the set of all clones with respect to inclusion.

For a general introduction to minimal clones, please see Csákány [30].

Lemma 2.1.11. A relation ρ is (strongly) rigid if and only if ρ−1 is (strongly) rigid,

where ρ−1 = {(x, y) : (y, x) ∈ ρ}.

Proof. This follows from Pol ρ = Pol ρ−1 (which is well known and can be verified

directly).

2.2 Characterization of strongly rigid relations

We begin by defining the following operations on {0,1}:

1) The unary 0 and 1 constant operations given by 0(x) :≈ 0,1(x) :≈ 1.



7

2) The unary negation operation ¬ defined by ¬0 = 1 and ¬1 = 0.

3) The binary conjunction operation ∧ (conjunction) defined by x∧y= 1 if and only

if x = y = 1.

4) The binary disjunction operation ∨ (disjunction) defined as x∨ y = 1 if and only

if x = 1 or y = 1.

5) The ternary Boolean majority operation m(x,y,z) = 1 if and only if at least two

of x,y,z are 1.

6) The ternary Boolean minority operation p(x,y,z) = x+ y+ z (mod 2).

Theorem 2.2.1. (Post [1]) Every minimal operation on a two element set is among one

of the following:

1) The unary negation operation,

2) The binary conjunction,

3) The binary disjunction operation,

4) The ternary Boolean majority operation,

5) The ternary Boolean minority operation.

Using Post’s results, Rosenberg characterized all strongly rigid relations on a set with

two elements.

Theorem 2.2.2. (Rosenberg [7]) A relation ρ on {0,1} is strongly rigid if and only if ρ

satisfies the following:

1) Polρ contains neither unary constant operation 0 or 1,

2) Polρ does not contain the negation operation,

3) Polρ does not contain the binary conjunction operation,

4) Polρ does not contain the binary disjunction operation,

5) Polρ contains no ternary Boolean majority operation,

6) Polρ contains no ternary Boolean minority operation.
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Definition 2.2.3. A ternary operation f on U is a Mal’tsev operation if

f (x, x, y) ≈ y ≈ f (y, x, x).

Definition 2.2.4. A ternary operation f on U is a majority operation if

f (x, x, y) ≈ f (x, y, x) ≈ f (y, x, x) ≈ x.

Definition 2.2.5. A ternary operation f on U is a minority operation if

f (x, x, y) ≈ f (x, y, x) ≈ f (y, x, x) ≈ y.

Definition 2.2.6. For n ≥ 3 and 1 ≤ i ≤ n , an n-ary operation f on U is a semiprojec-

tion on its i-th variable if

f (x1, ..., xn) ≈ xi

whenever x1, ..., xn ∈ U are not pairwise distinct.

The following construction will be useful.

Definition 2.2.7. Let f ∈ O
(n)
U , n ≥ 3. For all 1 ≤ i < j ≤ n the operation fi j is defined

by

fi j(x1, ..., xn−1) :≈ f (x1, ..., x j−1, xi, x j, ..., xn−1)

(e.g., for n = 5, f13(x1, x2, x3, x4) = f (x1, x2, x1, x3, x4))

Lemma 2.2.8. (Swierczkowski [3]) If n > 3and f ∈ O
(n)
U is such that for all 1 ≤ i <

j ≤ n the operation fi j is a projection, then f is a semiprojection.

Definition 2.2.9. We say that a set of relations Σ on U is pp-definable (positively prim-

itively definable) from a set of relations P if each relation in Σ can be defined by a first

order formula of the form

∃· · · [
∧

i

atomici]
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where each atomici is of the form (x1, ...,xk) ∈ Θ where Θ ∈ P or equality (x = y). That

is, P pp-defines Σ if each relation in Σ can be defined by a first order formula which only

uses relations in P, the equality relation, conjunction and existential quantification.

The following lemma can be easily verified.

Lemma 2.2.10. Let P, Σ and Γ be sets of relations on U.

(1) If Σ is pp-definable from P, then PolP⊆ PolΣ.

(2) If Σ is pp-definable from P, and Γ is pp-definable from Σ, then Γ is pp-definable

from P.

The clone of polymorphisms controls pp-definability in the sense of the following

classical result.

Theorem 2.2.11. (Bodnarčuk, Kalužhnin, Kotov, Romov [6]; Geiger [5]). Let Γ and Σ

be sets of relations on U. Then Σ is pp-definable from Γ if and only if PolΓ⊆ PolΣ.

Let ρ be a binary relation on U = {0, ..., k}. A subset V of U is derived from ρ if

f (v1, ..., vn) ∈ V for all f ∈ Pol ρ and all v1, ..., vn ∈ V . It is known that V is derived

from ρ if and only if there exist l ≥ 1 and a binary relation Γ on {1, ..., l} such that

V = {φ(1) : φ ∈ Hom(Γ, ρ)}

(where Hom(Γ, ρ) is the set of relational homomorphisms from Γ into ρ; In other words,

the mappings f : {1, ..., l} →U such that (x,y) ∈ Γ implies ( f (x), f (y)) ∈ ρ). Denote

by Di(ρ) the set of all i-element subsets of V derived from ρ .

We are now ready to present a well-known universal algebraic result about minimal

operations, namely Rosenberg’s Classification Theorem [13], in the form it appears in

Proposition 1.12, [14].

Theorem 2.2.12. (Rosenberg’s Classification Theorem (RCT)). Every minimal opera-

tion is of one of the following types:

1) a unary operation that is not the identity,
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2) a binary idempotent operation that is not a projection,

3) a ternary majority operation,

4) a ternary minority operation,

5) a k-ary semiprojection (k > 2) which is not a projection.

Motivated by the relationship between Theorem 2.2.1 and Theorem 2.2.2, and in

spirit of Theorem 2.2.12 (RCT), we present a characterization of strongly rigid relations

on a set with at least three elements.

Theorem 2.2.13. (Theorem 3,16 [41]) (Master Theorem) Let U be finite, |U | = n+ 1,

n≥ 2. A relation ρ on U is strongly rigid if and only if ρ satisfies:

1) {u} ∈ D1(ρ) for every u ∈ U, (in other words, ρ is rigid)

2) there exists {a, b} ∈ D2(ρ) such that

(i) e2
1 is the only idempotent f ∈ Pol(2)ρ satisfying f (a, b) = a, and

(ii) no idempotent f ∈ Pol(2)ρ satisfies f (a, b) = f (b, a),

3) Pol ρ contains no Mal’tsev operation,

4) there exists a ternary relation σ3 on U such that

(i) ∀a, b, c ∈ U with b, c 6= a, either (a, b, c) ∈ σ3 or (a, c, b) ∈ σ3, and

(ii) ∀f∈ Pol(3)ρ with f (x, x, y) ≈ x ≈ f (x, y, x)

we have (a, b, c) ∈ σ3 =⇒ f (a, b, c) = a,

5) ∀i = 4, ..., n+1, there exists an i-ary relation σi on U such that

(a) for each a1 ∈ U, every (i− 1)-element subset A of U \ {a1} can be written as

{a2, ..., ai} so that (a1, ..., ai) ∈ σi, and

(b) if f ∈ Pol(i)ρ is a semiprojection on its first variable, then (c1, ..., ci) ∈ σi =⇒
f (c1, ..., ci) = c1.

Proof. (⇒)

1) is immediate.
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2) Take any {a,b} ⊂U with a 6= b. Since Polρ is the trivial clone, {a,b} ∈ D2(ρ).

Let f ∈ Pol(2) be idempotent. Then f ∈ {e2
1,e

2
2}. If f (a,b) = a, then f = e2

1; and

in both cases, f (a,b) 6= f (b,a).

3) Obvious since no projection is a Mal’tsev operation.

4) Take σ3 =U3; Then (i) and (ii) are immediate.

5) Similarly, take σi =U i. Then (a) and (b) are immediate.

(⇐)

Suppose that Polρ is not trivial.

By RCT, Polρ contains either a unary operation that is not the identity, a binary idem-

potent operation that is not a projection, a ternary majority operation, a ternary minority

operation, or a k-ary semiprojection (k > 2) which is not a projection.

Let f be such an operation. By 1), f is at least binary. If f is a binary idem-

potent operation and {a,b} is the set from 2); If f (a,b) = b, then f (b,a) = a. Let

g(x,y) = f (y,x). Then g ∈ Pol(2)ρ is idempotent and g(a,b) = a. So g = e2
1 and hence

f = e2
2. Otherwise f (a,b) = a so f = e2

1. Thus f is at least 3-ary. f cannot be a

Mal’tsev operation, hence it is not a minority operation; If it is a majority operation, then

it satisfies f (x,x,y) ≈ x ≈ f (x,y,x). Let a,b ∈U,a 6= b. Then by 4), (a,b,b) ∈ ρ3 so

f (a,b,b) = a, a contradiction. Thus f must be a semiprojection. Without loss of gener-

ality, we can assume that it is on the first variable. In particular, f (x,x,y)≈ x≈ f (x,y.x).

Let (a,b,c) ∈ U3, a,b,c all distinct. If (a,b.c) ∈ ρ3, then f (a,b,c) = a. Otherwise,

(a,c,b) ∈ ρ3. Let g(x,y,z) :≈ f (x,y,z). Clearly g is also a semiprojection on the first

variable, so by 4) again, f (a,b,c) = g(a,c,b) = a. In any case, f = e3
1.

So now we assume that f is a semiprojection, without loss of generality, on the first

variable, say f has arity i. If i > |U |, then by the pigeonhole principle f = ei
1. Thus as-

sume that i≤ |U |. Let (a1, ...,ai)∈U i with |{a1, ...,ai}|= i. There exists (b1, ...,bi)∈ ρi

such that a1 = b1 and {a2, ...,ai}= {b2, ...,bi}. There exists a suitable permutation τ of

{2, ..., i} such that g(x1,x2, ...,xi) :≈ f (x1,xτ2, ...,xτi) satisfies g(b1, ...,bi) = f (a1, ...,ai).

It is clear that g is also a semiprojection on the first variable, g ∈ Polρ . Thus by 5), we

have f (a1, ...,ai) = g(b1, ...,bi) = a1, so f = ei
j. Thus by RCT, Polρ must be trivial.



CHAPTER 3

RIGID BINARY RELATIONS ON A 3-ELEMENT DOMAIN

In this chapter, we present some sufficient conditions to determine if a relation is

not rigid or not strongly rigid, then we will describe all rigid and strongly rigid binary

relations on a 3-element domain.

3.1 Loop, overlap and interchange rules for non-rigidity

Let ρ be a binary relation on a fixed universe U where |U | ≥ 3. In the following

definitions, we will treat ρ as a directed graph. Elements of U are called vertices. For

u, v ∈U , we write uv for the ordered pair (u, v).

Definition 3.1.1. We say that two vertices u and v are nonadjacent if neither uv ∈ ρ nor

vu ∈ ρ .

Definition 3.1.2. We say that two vertices u and v are connected by an edge if both

uv ∈ ρ and vu ∈ ρ .

Definition 3.1.3. Let u, v be distinct nonadjacent vertices in ρ . We say that u dominates

v, in symbols v � u, if for every vertex w distinct from u and v, we have that vw ∈ ρ ⇒
uw ∈ ρ and wv ∈ ρ ⇒ wu ∈ ρ .

Definition 3.1.4. Let u, v be two vertices connected by an edge in ρ . We say that u and

v are equivalent if for every vertex w distinct from u and v, we have that vw ∈ ρ if and

only if uw ∈ ρ and wv ∈ ρ if and only if wu ∈ ρ .

Definition 3.1.5. A relation ρ is irreflexive if uu /∈ ρ for all u ∈ U.

Lemma 3.1.6. (1) (Loop rule) A rigid relation is irreflexive. In other words, if there

exists a vertex u such that uu ∈ ρ , then ρ is not rigid.

(2) (Overlap rule) If there exist vertices u and v such that u dominates v, then ρ is

not rigid.
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(3) (Interchange rule) If there exist two equivalent vertices u and v, then ρ is not

rigid.

Proof. (1) Define a unary operation f on U by setting f (x) = u for every x ∈ U .

Then f ∈ Pol ρ but f is not trivial.

(2) Define a unary operation f on U by setting f (v) = u and f (x) = x otherwise.

Then f ∈ Pol ρ but f is not trivial.

(3) Define a unary operation f on U by setting f (v) = u, f (u) = v and f (x) = x

otherwise. Then f ∈ Pol ρ but f is not trivial.

Denote by SU the set of all permutations of U . For p ∈ SU set p(ρ) := {p(a)p(b) :

ab ∈ ρ}. We say that binary relations ρ and σ on U are isomorphic, in symbols ρ ≈ σ ,

if σ = p(ρ) for some p ∈ SU . Two binary relations ρ and σ on U are equivalent, in

symbols ρ ∼ σ , if σ ≈ ρ or σ ≈ ρ−1. Set eqv(ρ) := |{σ : σ ∼ ρ }|.

3.2 Nonrigid binary relations on a 3-element domain

Fact 3.2.1. There are exactly 40 non-rigid irreflexive binary relations on {0,1,2}.

This is done by the overlap rule, the interchange rule and direct verification.

3.3 Source-Sink rule

Definition 3.3.1. Let v be a vertex in ρ . The outdegree of v, denoted by deg+(v), is

defined to be the cardinality of the set {u ∈ U : vu ∈ ρ}. The indegree of v, denoted

by deg−(v), is defined to be the cardinality of the set {u ∈ U : uv ∈ ρ}. A source

(respectively a sink) is a vertex of indegree (respectively outdegree) zero.

We show that a digraph with a source and a sink is not strongly rigid.

Lemma 3.3.2. If there are distinct vertices u and v such that v is a sink, and for all

w ∈ U,
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wu ∈ ρ =⇒ wv ∈ ρ , (*)

then ρ is not strongly rigid.

Proof. Define a binary operation f on U by setting f (u, v) = v and f (x, y) = x other-

wise. We verify that f preserves ρ . Suppose ac,bd ∈ ρ . If neither ab nor cd is uv, then

f (ab) f (cd) = ac ∈ ρ . Otherwise, since v is a sink, we have ab 6= uv and cd = uv, so

f (ab) f (cd) = av; now au = ac ∈ ρ implies av ∈ ρ and we are done.

We have the following as a corollary of the above theorem because the premise of

(*) is void.

Lemma 3.3.3. (Source-Sink Rule) If ρ contains both a source and a sink, then ρ is not

strongly rigid.

3.4 Rigid but not strongly rigid binary relations on a 3-element domain

Proposition 3.4.1. Let U = {0, 1, 2}, then the following binary relations on U are rigid

but not strongly rigid.

(1) ρ = {12,20} ( , eqv(ρ) = 6 and ρ ∼ ρ−1),

(2) ρ = {10,20,21} ( , eqv(ρ) = 6 and ρ ∼ ρ−1).

Proof. We will prove the first case. The other is similar. We verify that ρ is rigid by

using the following pp-definitions:

(1) α = {x : ux, xv ∈ ρ f or someu, v ∈ U} = {2}
(2) β = {x : xu ∈ ρ f or someu ∈ α} = {x : x2 ∈ ρ} = {1}
(3) γ = {x : ux ∈ ρ f or someu ∈ α} = {0}
But ρ is not strongly rigid by Lemma 3.3.3 (u = 1, v = 0).

3.5 Strongly rigid binary relations on a 3-element domain

Proposition 3.5.1. Let U = {0,1,2}. Then the following binary relations on U are

strongly rigid:
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(1) ρ = {02,10,20,21} ( , eqv(ρ) = 6 and ρ ∼ ρ−1),

(2) ρ = {02,10,12,20,21} ( , eqv(ρ) = 6 and ρ ∼ ρ−1).

Proof. We shall use the following notation: for a subset S⊆U , let

S→ := {x ∈U : ∃y ∈ S, y→ x}

and symmetrically
→S := {x ∈U : ∃y ∈ S, x→ y}.

Notice that if S is pp-definable, so are these two sets.

(1) This was first proved in Theorem 2 [7] for the case n = 3; We give a direct proof

to illustrate the use of the Master Theorem.

We use the Master Theorem.

1) Observe that the complement of every singleton is pp-definable:

• α = {x : ∃y ∈U such that x ↔ y}= {0,2};

• β = {2}→ = {0,1};

• γ =→ {0}= {1,2}.

We have

• δ = α ∩ β = {0},

• ε = α ∩ γ = {2},

• ζ = β ∩ γ = {1}.

Therefore, ρ is rigid.

2) We’ve shown in 1) that {0,2} ∈ D2(ρ). Since 02→ 20, it follows that ∀ f ∈ Pol(2)ρ ,

f (0,2) 6= f (2,0). Fix f ∈ Pol(2)ρ , let [xy] = f (x,y). Suppose [02] = 0. Then as above

[20] = 2. Thus

• 0 = [02]→ [21]⇒ [21] = 2;

• [01]→ [20] = 2⇒ [01] = 0;
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• 2 = [20]→ [12]→ [01] = 0⇒ [12] = 1;

• 2 = [21]→ [10]→ [02] = 0⇒ [10] = 1.

Therefore we have proved in this case that f is a projection.

3) Suppose to the contrary that there exists an operation f ∈Pol(3)ρ such that f (x,x,y)≈
y≈ f (y,x,x). As 122→ 001, we obtain the contradiction 1 = f (1,2,2)→ f (0,0,1) = 1.

4) Suppose f ∈ Pol(3)ρ such that f (x,x,y) ≈ x ≈ f (x,y,x). Then g(x,y) :≈ f (y,x,x) ∈
Pol(2)ρ is a projection, hence f is either a majority operation or a semiprojection.

(a) If it is a majority operation, write [xyz] for f (x,y,z), we have

• 2 = [220]→ [012]→ [200] = 0⇒ [012] = 1;

• 2 = [202]→ [120]→ [002] = 0⇒ [120] = 1.

But 1 = [120]→ [012] = 1, a contradiction.

(b) If it is a semiprojection, say on the first variable, we have

• 2 = [220]→ [102]→ [020] = 0⇒ [102] = 1;

• 2 = [220]→ [012]→ [201]→ [020] = 0⇒ [012] = 0 and [201] = 2;

• 1 = [102]→ [021]⇒ [021] = 0;

• 0 = [021]→ [210]⇒ [210] = 2;

• 2 = [202]→ [120]→ [012] = 0⇒ [120] = 1.

Thus in any case, [xxy] = x = [xyx] implying f is a projection. Hence we may take

σ3 =U3.

(2) By Theorem 1 [18] for the case n = 3.

Alternative Proof. I. Let ρ1 := {(0,1),(1,2),(2,0),(2,1)} (We switched the symbols 0

and 1 in the relation given in (1)). Let α := {(0,1),(1,2),(2,0)} and let ≤ denote the

natural order relation

{(0,0),(0,1),(0,2),(1,1),(1,2),(2,2)}

on U . It is well known that both Polα and Pol ≤ are maximal clones on U([2], [10]); It

is shown in Proposition 3.1 of Czédi et al. [26] that the intersection Polα ∩Pol ≤ is the
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clone of all projections on U . Now by direct verification we have

α = {(x,y) : ∃v3 ∈U with(x,y)∧ (y,v3)∧ (v3,y) ∈ ρ1}.

On the other hand the linear order ≤ is exactly

{(x,y) :∃u2,u3,u4,u5 ∈U with(x,u2)∧(u2,u3)∧(u3,u4)∧(u4,u5)∧(x,u5)∧(u3,y)∈ ρ1}.

Thus by Theorem 2.2.11 we have Polρ1 ⊆ Polα and Polρ1 ⊆ Pol ≤, i.e., Polρ1 ⊆
(Polα ∩Pol ≤), proving that Polρ1 consists of projections only.

II. Let ρ2 := {(0,1),(0,2),(1,2),(2,0),(2,1)}. Let

β := {(x,y) :∃u3,u4,u5 ∈U with(x,y)∧(x,u3)∧(u3,u4)∧(u4,y)∧(y,u5)∧(u4,u5)∈ ρ2}.

One can verify that β = ρ1. Again, by Theorem 2.2.11, we have Polρ2 ⊆ Polβ = Polρ1,

and since Polρ1 is trivial, the relation ρ2 is strongly rigid.

There are 29−3 = 64 different irreflexive binary relations on {0,1,2} and they are all

accounted for in the above results. Thus, by combining Propositions 3.1.6, 3.2.1, 3.4.1

3.5.1, we have the classification of binary relations on a 3-element domain listed in Table

1.1.



CHAPTER 4

RIGID BINARY RELATIONS ON A 4-ELEMENT DOMAIN

In this chapter, we will classify all binary relations on a 4-element domain by means

of the loop, overlap, interchange and in-out rules introduced in the previous chapter.

4.1 Nonrigid binary relations on a 4-element domain

Proposition 4.1.1. There are 61440 non-irreflexive relations on a 4-element domain.

Proof. We know that there are 242−224−4 = 216−212 = 61440 non-irreflexive relations

on a 4-element domain.

Since a relation with a loop is not rigid, now we can only consider irreflexive rela-

tions. There are 216−4 = 212 = 4096 of these.

Fact 4.1.2. There are exactly 2644 non-rigid irreflexive binary relations on {0,1,2,3}.

This is done by the overlap rule, the interchange rule and direct verification.

4.2 Rigid but not strongly rigid binary relations on a 4-element domain

Proposition 4.2.1. (Example 5.4 [41]) Let U = {0, 1, 2, 3}, then the following binary

relations on U are rigid but not strongly rigid.

(1) ρ = {13,20,30,31,32} ( , eqv(ρ) = 48 and ρ 6∼ ρ−1),

(2) ρ = {13,20,21,23,30,32} ( , eqv(ρ) = 48 and ρ 6∼ ρ−1),

(3) ρ = {12,13,20,30,31,32} ( , eqv(ρ) = 48 and ρ 6∼ ρ−1),

(4) ρ = {12,13,20,23,30,31} ( , eqv(ρ) = 48 and ρ 6∼ ρ−1),

(5) ρ = {12,13,20,23,30,31,32} ( , eqv(ρ) = 48 and ρ 6∼ ρ−1),
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(6) ρ = {10,13,20,21,30,31,32} ( , eqv(ρ) = 48 and ρ 6∼ ρ−1),

(7) ρ = {10,13,20,21,23,30,31,32} ( , eqv(ρ) = 48 and ρ 6∼ ρ−1),

(8) ρ = {13,20,21,30,32} ( , eqv(ρ) = 48 and ρ 6∼ ρ−1),

(9) ρ = {13,21,30} ( , eqv(ρ) = 24 and ρ ∼ ρ−1),

(10) ρ = {13,21,23,30} ( , eqv(ρ) = 48 and ρ 6∼ ρ−1),

(11) ρ = {13,20,23,30,31} ( , eqv(ρ) = 24 and ρ ∼ ρ−1),

(12) ρ = {13,20,21,30} ( , eqv(ρ) = 24 and ρ ∼ ρ−1),

(13) ρ = {13,20,21,23,30} ( , eqv(ρ) = 48 and ρ 6∼ ρ−1),

(14) ρ = {12,13,20,30,32} ( , eqv(ρ) = 24 and ρ ∼ ρ−1),

(15) ρ = {10,20,21,30,31,32} ( , eqv(ρ) = 24 and ρ ∼ ρ−1).

Proof. (1) We verify that ρ is rigid. Let f ∈ Pol(1)ρ .

(i) Let α = {x : xu, ux, uv, uw, vw ∈ ρ for some u, v, w ∈ U}. We first prove

that α = {1}. In fact, for every x ∈ α , from xu, ux ∈ ρ , we know that x,u ∈
{1,3}, but x can not be 3. Otherwise u = 1, then 1v, 1w, vw ∈ ρ implying that

v = 3,w = 3 and vw ∈ ρ , a contradiction. Therefore x = 1 and α = {1}. It

follows that f (1) = 1. In fact, 1 ∈ α implies that there are some u, v, w ∈ U such

that 1u, u1, uv, uw, vw ∈ ρ . As f ∈ Pol(1)ρ , we have

f (1) f (u), f (u) f (1), f (u) f (v), f (u) f (w), f (v) f (w) ∈ ρ,

and thus f (1) ∈ α . i.e. f (1) = 1.

(ii) Let β = {x : ux ∈ ρ for some u ∈ α}. Then β = {x : 1x ∈ ρ} = {3}. Thus

f (3) = 3.
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(iii) Let γ = {x : ux, uw, xw ∈ ρ for some u ∈ β and some w ∈ U}, then γ =

{2}. Thus f (2) = 2.

(iv) Let δ = {x : ux ∈ ρ for some u ∈ γ}, then δ = {0}. Thus f (0) = 0.

By (i)-(iv), ρ is rigid. But ρ is not strongly rigid by Lemma 3.3.2 (u = 2, v = 0).

Similarly we can prove other cases.

(2) We verify that ρ is rigid:

(i) α = {x : ux, vx, uv ∈ ρ for some u, v ∈ U} = {0},

(ii) β = {x : xu, vu, xv ∈ ρ for some u ∈ α and some v ∈ U} = {3},

(iii) γ = {x : xu, vx, vu ∈ ρ for some u ∈ α and some v ∈ β} = {2},

(iv) δ = {x : ux, xv, vu ∈ ρ for some u ∈ γ and some v ∈ β} = {0}.

But ρ is not strongly rigid by Lemma 3.3.2 (u = 2, v = 0).

(3) We verify that ρ is rigid:

(i) α = {x : vx, ux, uv, vu ∈ ρ for some u, v ∈ U} = {0},

(ii) β = {x : vx, xu, uv, vu ∈ ρ for some u, v ∈ U} = {1},

(iii) γ = {x : xu, vx ∈ ρ for some u ∈ α and some v ∈ β} = {3},

(iv) δ = {x : xu, ux ∈ ρ for some u ∈ γ} = {2}.

But ρ is not strongly rigid by Lemma 3.3.2 (u = 1, v = 0).

(4) We verify that ρ is rigid:

(i) α = {x : vx, ux, uv, vu ∈ ρ for some u, v ∈ U} = {2},

(ii) β = {x : ux ∈ ρ for some u ∈ α} = {x : 2x ∈ ρ} = {0},

(iii) γ = {x : xu, xv, uv ∈ ρ for some u ∈ α and some v ∈ β} = {3},

(iv) δ = {x : xu, ux ∈ ρ for some u ∈ γ} = {1}.

But ρ is not strongly rigid by Lemma 3.3.2 (u = 1, v = 0).

(5) We verify that ρ is rigid:

(i) α = {x : vx, xu, uv, vu ∈ ρ for some u, v ∈ U} = {2},

(ii) β = {x : xu ∈ ρ for some u ∈ α} = {x : x2 ∈ ρ} = {1},

(iii) γ = {x : xu, ux ∈ ρ for some u ∈ β} = {3},
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(iv) δ = {x : ux, vx, uv ∈ ρ for some u ∈ α and some v ∈ γ} = {0}.

But ρ is not strongly rigid by Lemma 3.3.2 (u = 2, v = 0).

(6) We verify that ρ is rigid:

(i) α = {x : xu, ux, xv, vx, uv ∈ ρ for some u, v ∈ U} = {3},

(ii) β = {x : ux, xu, uv, vu, xv ∈ ρ for some u ∈ α and some v ∈ U} = {1},

(iii) γ = {x : xu, ux, uv, vu, vx ∈ ρ for some u ∈ α and some v ∈ β} = {2},

(iv) δ = {x : ux, vx, uv, vu ∈ ρ for some u ∈ α and some v ∈ γ} = {0}.

But ρ is not strongly rigid by Lemma 3.3.2 (u = 1, v = 0).

(7) We verify that ρ is rigid:

(i) α = {x : ux, vx, uv, vu ∈ ρ for some u, v ∈ U} = {0},

(ii) β = {x : ux, xv, uv, vu ∈ ρ for some u, v ∈ U} = {x : 1x ∈ ρ} = {2},

(iii) γ = {x : xu, vx, vu ∈ ρ for some u ∈ α and some v ∈ β} = {1},

(iv) δ = {x : xu, ux ∈ ρ for some u ∈ γ} = {3}.

But ρ is not strongly rigid by Lemma 3.3.2 (u = 2, v = 0).

(8) We verify that ρ is rigid:

(i) α = {x : xu, ux, xv, vx, uv ∈ ρ for some u, v ∈ ρ} = {3},

(ii) β = {x : ux, xu, vx, uv, vu ∈ ρ for some u ∈ α and some v ∈ U} = {1}

(iii) γ = {x : ux, xu, xv ∈ ρ for some u ∈ α and some v ∈ β} = {2},

(iv) δ = {x : ux, vx, wx for some u ∈ α, v ∈ β and w ∈ γ} = {0}.

But ρ is not strongly rigid by Lemma 3.3.2 (u = 1, v = 0).

(9) We verify that ρ is rigid:

(i) α = {x : xu, uv, vw ∈ ρ for some u, v, w ∈ U} = {2}

(ii) β = {x : ux ∈ ρ for some u ∈ α} = {x : 2x ∈ ρ} = {1},

(iii) γ = {x : ux ∈ ρ for some u ∈ β} = {x : 1x ∈ ρ} = {3},

(iv) δ = {x : ux ∈ ρ for some u ∈ γ} = {x : 3x ∈ ρ} = {0}.

But ρ is not strongly rigid by Lemma 3.3.3 (u = 2, v = 0).
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(10) We verify that ρ is rigid:

(i) α = {x : xu, xv, uv ∈ ρ for some u, v ∈ U} = {2},

(ii) β = {x : ux, uv, vx ∈ ρ for some u ∈ α} = {3},

(iii) γ = {x : ux, xv ∈ ρ for some u ∈ α and some v ∈ β} = {1},

(iv) δ = {x : ux ∈ ρ for some u ∈ β} = {0}.

But ρ is not strongly rigid by Lemma 3.3.3 (u = 2, v = 0).

(11) We verify that ρ is rigid:

(i) α = {x : ux, vx, uv ∈ ρ for some u, v ∈ U} = {0},

(ii) β = {x : xu, xv, vx ∈ ρ for some u ∈ α and some v ∈ U} = {3},

(iii) γ = {x : ux, xu ∈ ρ for some u ∈ β} = {1},

(iv) δ = {x : xu, xv ∈ ρ for some u ∈ α and some v ∈ β} = {2}.

But ρ is not strongly rigid by Lemma 3.3.3 (u = 2, v = 0).

(12) We verify that ρ is rigid:

(i) α = {x : xu, uv, uw ∈ ρ for some u, v, w ∈ U} = {2},

(ii) β = {x : ux, xv ∈ ρ for some u ∈ α and some v ∈ U} = {1},

(iii) γ = {x : ux ∈ ρ for some u ∈ β} = {3},

(iv) δ = {x : ux ∈ ρ for some u ∈ γ} = {0}.

But ρ is not strongly rigid by Lemma 3.3.3 (u = 2, v = 0).

(13) We verify that ρ is rigid:

(i) α = {x : ux, vx, uv ∈ ρ for some u, v ∈ U} = {0},

(ii) β = {x : xu, xv, uv ∈ ρ for some u ∈ α and some v ∈ U} = {2},

(iii) γ = {x : ux, vx ∈ ρ for some u ∈ α and some v ∈ β} = {3},

(iv) δ = {x : ux, xv ∈ ρ for some u ∈ β and some v ∈ γ} = {1}.

But ρ is not strongly rigid by Lemma 3.3.3 (u = 2, v = 0).

(14) We verify that ρ is rigid:

(i) α = {x : ux, vx, uv ∈ ρ for some u, v ∈ U} = {0},

(ii) β = {x : xu, xv, uv ∈ ρ for some u, v ∈ U} = {1},
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(iii) γ = {x : ux, xv, uv ∈ ρ for some u ∈ β} = {3},

(iv) δ = {x : ux, xv ∈ ρ for some u ∈ γ and some v ∈ α} = {2}.

But ρ is not strongly rigid by Lemma 3.3.3 (u = 1, v = 0).

(15) We verify that ρ is rigid:

(i) α = {x : ux, wx, uw ∈ ρ for some u, v, w ∈ U} = {0}

(ii) β = {x : xu, xv, vu ∈ ρ for some u ∈ α and some v ∈ U} = {3},

(iii) γ = {x : xv, uw, wx ∈ ρ for some u, w ∈ β , v ∈ α} = {1},

(iv) δ = {x : ux, xv ∈ ρ for some u ∈ β and some v ∈ γ} = {2}.

But ρ is not strongly rigid by Lemma 3.3.3 (u = 3, v = 0).

4.3 Strongly rigid binary relations on a 4-element domain

As an application of the Master Theorem, we present the following 25 strongly rigid

binary relations on a 4-element domain.

Proposition 4.3.1. (Example 6.1 [41]) Let U = {0,1,2,3}, then the following are strongly

rigid.

(1) ρ = {01,02,10,21,23,32} ( , eqv(ρ) = 24 and ρ ∼ ρ−1),

(2) ρ = {03,13,21,30,32} ( , eqv(ρ) = 24 and ρ ∼ ρ−1),

(3) ρ = {03,12,20,31,32} ( , eqv(ρ) = 24 and ρ ∼ ρ−1),

(4) ρ = {03,12,20,30,31,32} ( , eqv(ρ) = 48 and ρ 6∼ ρ−1),

(5) ρ = {03,12,20,23,30,31} ( , eqv(ρ) = 48 and ρ 6∼ ρ−1),

(6) ρ = {03,12,20,23,30,31,32} ( , eqv(ρ) = 48 and ρ 6∼ ρ−1),

(7) ρ = {03,12,20,21,30,31,32} ( , eqv(ρ) = 48 and ρ 6∼ ρ−1),
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(8) ρ = {03,12,13,20,30,31,32} ( , eqv(ρ) = 48 and ρ 6∼ ρ−1),

(9) ρ = {03,12,13,20,23,30,31,32} ( , eqv(ρ) = 24 and ρ ∼ ρ−1),

(10) ρ = {03,12,13,20,21,30,32} ( , eqv(ρ) = 24 and ρ ∼ ρ−1),

(11) ρ = {03,12,13,20,21,23,30} ( , eqv(ρ) = 24 and ρ ∼ ρ−1),

(12) ρ = {03,12,13,20,21,23,30,32} ( , eqv(ρ) = 24 and ρ ∼ ρ−1),

(13) ρ = {03,10,20,21,31,32} ( , eqv(ρ) = 24 and ρ ∼ ρ−1),

(14) ρ = {03,10,20,21,30,31,32} ( , eqv(ρ) = 24 and ρ ∼ ρ−1),

(15) ρ = {03,10,20,21,23,31,32} ( , eqv(ρ) = 48 and ρ 6∼ ρ−1),

(16) ρ = {03,10,20,21,23,30,31,32} ( , eqv(ρ) = 48 and ρ 6∼ ρ−1),

(17) ρ = {03,10,13,20,21,31,32} ( , eqv(ρ) = 24 and ρ ∼ ρ−1),

(18) ρ = {03,10,13,20,21,30,31,32} ( , eqv(ρ) = 48 and ρ 6∼ ρ−1),

(19) ρ = {03,10,13,20,21,23,30,31,32} ( , eqv(ρ) = 24 and ρ ∼ ρ−1),

(20) ρ = {03,10,12,20,21,23,31,32} ( , eqv(ρ) = 48 and ρ 6∼ ρ−1),

(21) ρ = {03,10,12,20,21,23,30,31} ( , eqv(ρ) = 24 and ρ ∼ ρ−1),

(22) ρ = {03,10,12,20,21,23,30,31,32} ( , eqv(ρ) = 48 and ρ 6∼ ρ−1),

(23) ρ = {03,10,12,13,20,21,23,30,32} ( , eqv(ρ) = 24 and ρ ∼ ρ−1),

(24) ρ = {02,03,10,13,20,21,30,31,32} ( , eqv(ρ) = 24 and ρ ∼ ρ−1),
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(25) ρ = {02,03,10,13,20,21,23,30,31,32} ( , eqv(ρ) = 24 and ρ ∼ ρ−1).

(see Fig.1.4)

Proof. (9) and (14) are special cases of known results:

(9) By Theorem 1 [18] for n = 4,

(14) By Theorem 2 [7] for n = 4.

We will prove case (1); the rest are similar.

First we verify 1) in the Master Theorem. Let S = {0,1,2}. Notice that the restriction

of ρ to S is strongly rigid by Proposition 3.5.1(1), and hence any f ∈ Polρ restricted to

S is a projection and every subset of S is pp-definable; we also have

• {2}→ = {1,3},

• →{2}= {0,3},

• →{2}∩{2}→ = {3},

• {1,2}→ = {0,1,3},

• α =→ {1,2}= {0,2,3},

• β = {0,2}→ = {1,2,3},

• α ∩β = {2, 3}.

From the above, we know f (A) ⊆ A for A ∈ 2U and for all f ∈ Pol(1)ρ .

Next we verify 2) in the Master Theorem. Let f ∈ Pol(2)ρ be idempotent. Write

[xy] for f (x,y). Set E = {xy ∈U2 : [xy] = x}. We know that f restricted to S is a pro-

jection. Without loss of generality, we can assume that f |S is the first projection. Thus,

01,10,02,20,12,21 ∈ E. As [13] ∈ {1,3} and [13]→ [02] = 0 we have 13 ∈ E, and

0 = [02]→ [23] ∈ {2,3} implies 23 ∈ E, and then 2 = [23]↔ [32] yields 32 ∈ E. Now

2 = [22]→ [31]→ [20] = 2 leads to 31 ∈ E. Next 1 = [12]→ [03] ∈ {0,3} leads to

03 ∈ E. 2 = [21]↔ [30] ∈ {0,3} implies 30 ∈ E. Therefore we have proved in this case

f is the first projection.

Now we verify 3) in the Master Theorem. Suppose to the contrary that there exists
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an operation f ∈ Pol(3)ρ such that f (x,x,y)≈ y≈ f (x,y,x). As [202]→ [113], we obtain

the contradiction 0 = [202]→ [113] = 3.

Further we verify 4) in the Master Theorem. Set σ3 = {013,021,023,102,103,123,201,203,

213,301,302,312}. Let f satisfy the hypotheses of 4)(ii). Set E := {xyz∈U3 : f (x,y,z)=

x for every f ∈ Pol(3)ρ satisfying 4)(ii)}. Set E := {xyz ∈U3 : f (x,y,z) = x}. We have

xxy,xyx ∈ E for all x,y ∈U . We know that f restricted to S is a projection. Without loss

of generality, we can assume that f |S is the first projection. Thus, 021,102,201 ∈ E.

Notice that 2 = [212]→ [301]→ [210] = 2 leads to 301 ∈ E. From 2 = [210]→
[302] → [221] = 2, we obtain 302 ∈ E. Now 2 = [220] → [312] → [201] = 2 im-

plies 312 ∈ E, and 3 = [302]↔ [213] gives 213 ∈ E. Since 3 = [312]↔ [203], we

have 203 ∈ E. 1 = [102]→ [013]→ [202] = 2 leads to 013 ∈ E. Now 2 = [212]→
[103]→ [012] = 0 implies 103 ∈ E. As 1 = [102]→ [023], we get 023 ∈ E. Now,

2 = [202]→ [123]→ [032] = 0 shows 123 ∈ E. As 0 = [022]↔ [133], we have 133 ∈ E.

Notice that 2 = [211]↔ [300] yields 300 ∈ E. Now 0 = [022]→ [233] ∈ {2,3} implies

233 ∈ E . Next 2 = [233]↔ [322] shows 322 ∈ E. As 1 = [122]↔ [033], we know

033 ∈ E, and 2 = [200]↔ [311] gives 311 ∈ E. Consequently we have proved xyy ∈ E

and thus xyz ∈ E whenever x,y,z ∈U . i.e., every ternary operation f ∈ Polρ is a projec-

tion.

Finally we verify 5) in the Master Theorem. Set σ4 = {0123,1023,2013,3102}. Let

f satisfy the hypotheses of 5)(ii). Set E := {xyzw ∈U4 : f (x,y,z,w) = x for every f ∈
Pol(4)ρ satisfying 5)(ii)}. We abbreviate f (x,y,z,w) by [xyzw].

Notice that [0123]↔ [1032]→ [0223] = 0 implies 1023,0123∈ E. Finally [3102]↔
[2013]→ [3202] = 3 gives 2013,3102 ∈ E.

Therefore, ρ is a strongly rigid binary relation.

By combining Propositions 4.1.1, 4.1.2, 4.2.1 and 4.3.1, we have a classification of

binary relations on a 4-element domain listed in Table 1.2.



CHAPTER 5

A STRONGLY RIGID BINARY RELATION

In this chapter, we construct a new strongly rigid binary relation on a finite domain.

5.1 A new strongly rigid binary relation on a finite domain

0

1

23

Figure 5.1 – A strongly rigid binary relation on a 4-element domain

Consider the binary relation ρ := {01,10,12,23,31} (see Fig. 5.1). Notice that ρ is

a directed 3-cycle on the set {1,2,3} together with the undirected edge {01,10}. This

relation is equivalent to the relation in (2) of Proposition 4.3.1 and therefore is strongly

rigid. We use the pattern in ρ to construct a strongly rigid binary relation on any finite

domain with 2n elements where n≥ 2.

Theorem 5.1.1. Let k be a natural number with k ≥ 3. Consider the (k+2)-element set

U = {0,1, ...,k,k+1} with the following binary relation ρ (see Fig. 5.2):

ρ = {(0,1),(1,2), ...,(k−1,k),(k,0)}∪{(k+1,0),(0,k+1)},

then
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(a) ρ is not rigid if k is odd;

(b) ρ is strongly rigid if k is even.

k+1

0

1

2

3

k-1

k

Figure 5.2 – A strongly rigid binary relation on a finite domain

The series of claims in the proof of the theorem follows the description of types of

minimal clones in Theorem 2.2.12. For brevity, a ρ-walk is a series α = u1 → u2 →
·· · → us (abbreviated as α = u1u2 . . .us) of elements in U such that (ui,ui+1) ∈ ρ for all

i (1≤ i≤ s−1); α is a ρ-walk of length (s−1). If α1, . . . ,αn are ρ-walks with the same

length ` and f is an n-ary operation that preserves ρ then we can define f (α1, . . . ,αn)

in a natural way to get another ρ-walk with length `. If α and β are ρ-walks, then the

product of α and β is the concatenation of α and β , denoted by αβ ; For a ρ-walk α and

a natural number n, αn will denote the n-fold product α . . .α .

Throughout the rest of this chapter, we set γ = 01 . . .k, η = 0(k+1) and δ = (k+1)0.

The following properties of ρ-walks, for even k, are immediate consequences of the

structure of ρ .

Lemma 5.1.2. Let k = 2n be even, n > 1. Then

(1) the only ρ-walks of even length from 0 to 0 are of the form η i0 or 0δ i where

i≥ 1;

(2) for any ρ-walk u1u2 . . .us of length less than or equal to k, if us = s, then

u1u2 . . .us = 12 . . .s;
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(3) there is no ρ-walk from s to s of odd length less than k+1 where s ∈U;

(4) the only ρ-walks of odd length l ≥ k+ 1 from 0 to 0 are of the form η i(γ0)δ j

where i, j ≥ 0; in particular, the only ρ-walk of length (k+1) from 0 to 0 is γ0.

Proof of Theorem 5.1.1. (a) If k is odd then consider the unary operation f on U defined

by the rule

f : U →U,s 7→

k+1 if s = k+1 or s is odd,

0 otherwise.

Then f preserves ρ and f is not the identity operation, which proves that ρ is not rigid.

(b) Let k be even, say k = 2n (n ≥ 2 integer). To prove that ρ is strongly rigid, it

clearly suffices by Theorem 2.2.12 to show that the digraph is rigid, has no non-binary

polymorphisms, no minority nor majority polymorphisms, nor any semiprojections of

arity > 2 other than projections.

Claim 1. If f is an operation in Pol(1)ρ then f is the identity operation on U .

Proof. Since ρ ∩ρ−1 = {(k+ 1,0),(0,k+ 1)} and f preserves ρ then f ({0,k+ 1}) =
{0,k + 1} holds. We first prove that f (0) = 0 and f (k + 1) = k + 1. Suppose, for a

contradiction, that f (0) = k+1, f (k+1) = 0. Since α = γ0 is a ρ-walk of length (k+2),

f (α) = δ . . .η is a ρ-walk, as well, that contains a ρ-walk of odd length (k−1) from 0

to 0, which contradicts Lemma 5.1.2(3).

Now we prove that for i ∈ {1,2, . . . ,k} we have f (i) = i. It is enough to prove that

f (1) = 1 holds. Since f (0) = 0 by the preceding argument, we get that either f (1) = 1

or f (1) = k+ 1. If f (1) = k+ 1, then k+ 1 = f (1)→ f (2) and thus f (2) = 0. Hence,

0 = f (2)→ ...→ f (k)→ f (0) = 0 is a ρ-walk of odd length (k−1) from 0 to 0, which

contradicts Lemma 5.1.2(3). Therefore, f (1) = 1. It follows from 1 = f (1)→ f (2)→
·· · → f (k) that f (i) = i holds for every i ∈ {2, . . . ,k}, which concludes the proof.

Claim 2. Let f ∈ Pol(2)ρ . Then f is a projection.
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Proof. The unary operation f (x,x) belongs to Pol ρ , and so, f (x,x) is the identity oper-

ation by Claim 1. Consider the table below

Table 5.1: k+3 steps from 0 to 0 in the row f (x,y)

x 0 1 2 3 · · · k 0 k+1 0

y 0 k+1 0 1 · · · k−2 k−1 k 0

f (x,y) 0 ∗ ∗ ∗ · · · ∗ ∗ ∗ 0

By Lemma 5.1.2(4), there are only two ρ-walks from 0 to 0 consisting of k+ 3 steps,

either f |H = e2
1|H or f = e2

2|H , where H = {(1,k+1),(2,0),(3,1), . . . ,(k,k−2),(0,k−
1),(k+ 1,k)}. Changing the order of variables, we may assume that f |H = e2

1|H . We

will prove that f = e2
1 everywhere.

Claim 2.1. f (x,y) = x holds for every pair (x,y) in which 0 or k+1 appears.

Claim 2.1.1. f |J = e2
1|J where J = {(k+1,0),(0,k+1)}.

Consider the ρ-walks α = γηn+10 and β = ηn+1γ0 of length (2k + 3). Set ε =

f (α,β ). Then ε1ε2ε3 = 012 and ε2k+2ε2k+3ε2k+4 = 0(k + 1)0 by Table 5.1, and so,

ε1ε2 . . .εk+2 = γ0, which proves that f (0,k+ 1) = εk+2 = 0. Since, ζ = εk+2 . . .ε2k+2

is a ρ-walk of length k from 0 to 0 we have that ζ = ηk0 by Lemma 5.1.2(1), hence,

f (k+1,0) = εk+3 = k+1, and f (0,k+1) = 0 as f (0,k+1)↔ f (k+1,0) = k+1.

Claim 2.1.2. f |J = e2
1|J where J = {(k+ 1, i),(i,k+ 1),(0, i+ 1),(i+ 1,0) : i is an

odd integer with 1≤ i≤ k}.

Consider the ρ-walks α = ηn+1 and β = γ0 of length (k+1). First set τ = f (β ,α).

By Claim 2.1.1 we have f (0,k + 1) = 0 so τ is a ρ-walk of length (k + 1) from 0 to

0. By Lemma 5.1.2(4), τ = γ0. It follows that f (i,k + 1) = i and f (i+ 1,0) = i+ 1
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for all odd i between 0 and k. Now set ε = f (α,β ). Then ε1 = 0 and εk+1 = 0 as

εk+1→ εk+2 = f (k+1,0) = k+1. Since, ζ = ε1ε2 . . .εk+1 is a ρ-walk of length k from

0 to 0 we have that ζ = ηk0 by Lemma 5.1.2(1), hence, f (k+1, i) = εi+1 = k+1 where

i is an odd integer with 1 ≤ i ≤ k. Therefore, f (0, i+ 1) = 0 for i odd in {0, . . . ,k}.
Similarly, we can show that f (i,k+1) = i where i is an odd integer with 1≤ i≤ k.

Claim 2.1.3. f |J = e2
1|J where J = {(k+ 1, i),(i,k+ 1),(0, i+ 1),(i+ 1,0) : i is an

even integer with 1≤ i≤ k}.

Consider the ρ-walks α = δ n+1 and β = γ0 of length ((k+1)). First set τ = f (β ,α).

By Claim 2.1.1 we have f (0,k+ 1) = 0 so τ is a ρ-walk of length (k+ 1) from 0 to 0.

By Lemma 5.1.2(4), τ = γ0. It follows that f (i,k+1) = i and f (i+1,0) = i+1 for all

odd i between 0 and k. Now set ε = f (α,β ). As k+1 = f (k+1,0) = ε1→ ε2, we have

ε2 = 0, and εk+2 = f (0,0) = 0. Since, ζ = ε2ε3 . . .εk+2 is a ρ-walk of length k from 0

to 0 we have that ζ = 0δ k by Lemma 5.1.2(1), hence, f (k+ 1, i) = k+ 1 where i is an

even integer with 1≤ i≤ k. Similarly, we can show that f (i,k+1) = i where i is an even

integer with 1≤ i≤ k.

Claim 2.2. f (i, j) = i holds for i, j ∈ {1,2, . . . ,k}.
By changing the order of ρ-walks in the following arguments, without loss of gener-

ality, we may assume that i < j.

Claim 2.2.1. f |J = e2
1|J where J = {(i, i+1) : 0≤ i < k}.

Consider the ρ-walks α = (k+1)γ0 and β = γη of length (k+2). Set ε = f (α,β ).

As k+ 1 = f (k+ 1,0) = ε1→ ε2, we have ε2 = 0, and εk+2 = f (0,k+ 1) = 0. Since,

ζ = ε2ε3 . . .εk+2 is a ρ-walk of length (k+1) from 0 to 0 we have that ζ = γ by Lemma

5.1.2(4), hence, f (i, i+1) = i.

Claim 2.2.2. f |J = e2
1|J where J = {(i, j) : 0≤ i < k and i+1 < j}.
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Consider the ρ-walks of length (k− j+ i+2):

α = k+1→ 0→ 1→ ··· → k− j+ i+1,

β = j− i−1→ j− i→ ··· → k→ 0,

and set ε = f (α,β ). We have εk− j+i+2 = f (k− j + i+ 1,0) = k− j + i+ 1. Notice

that εi+1 → ··· → εk− j+i+1 → εk− j+i+2 = k− j + i + 1, by Lemma 5.1.2(2), we get

f (i, j) = εi+1 = i. Therefore, f = e2
1 everywhere.

Claims 3 and 4 follow immediately from Theorem 3.1 in Barto et al. [35] but we still

give a self-contained proof.

Claim 3. Let f ∈ Pol(3)ρ . Then f is not a minority operation.

Proof. Suppose by contradiction that, without loss of generality, f (x,x,y) = y. Consider

the ρ-walks α = 0δ n1, β = γ0 and θ = δ n+1 of length (k+1). Set ε = f (α,β ,θ). Then

ε1 = f (0,0,k+1) = k+1 which implies ε2 = 0, and εk+2 = f (1,0,0) = 1 which implies

εk+1 = 0, and so, ε2 . . .εk+1 is a ρ-walk of odd length from 0 to 0 and less than k+ 1

steps, a contradiction by Lemma 5.1.2(3).

Claim 4. Let f ∈ Pol(3)ρ . Then f can not be a majority operation.

Proof. Suppose, by contradiction, that f is a majority operation. Consider the ρ-walks

α = 0δ n(k + 1), β = δ n+1 and θ = γ0 of length (k + 1). Set ε = f (α,β ,θ). Then

ε1 = f (0,k+1,0) = 0 and εk+2 = f (k+1,0,0) = 0, and so, ε1 . . .εk+2 is a ρ-walk from

0 to 0 of length (k+ 1) and therefore f (k+ 1,0,1) = 1 by Lemma 5.1.2(4). Consider

the ρ-walks α ′ = 0δ ′n+1, β ′ = (k+1)γ ′0 and θ ′ = γ ′η of length (k+2), where γ ′ = γ ,

δ ′ = δ . Set ε ′ = f (α ′,β ′,θ ′). Then ε ′ is a ρ-walk of even length from 0 to 0 but

ε ′2 = f (k+1,0,1) = 1 contradicting Lemma 5.1.2(1).

Claim 5. Let f ∈ Pol(3)ρ be a semiprojection. Then f is a projection.
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Proof. By Claim 2, the binary operations f (x,y,y), f (y,x,y) and f (y,y,x) are projec-

tions. So, there are the following three possibilities for f because it can be neither a

minority operation for more than one position nor a majority operation:

1) for all x,y ∈U , f (x,y,y) = x, f (y,x,y) = y, f (y,y,x) = y, hence, f |H = e3
1|H ,

2) for all x,y ∈U , f (x,y,y) = y, f (y,x,y) = x, f (y,y,x) = y, hence, f |H = e3
2|H ,

3) for all x,y ∈U , f (x,y,y) = y, f (y,x,y) = y, f (y,y,x) = x, hence, f |H = e3
3|H ,

where H = {(x,y,y),(y,x,y),(y,y,x) : x,y∈U}. By reordering the variables of f we may

assume that f |H = e3
1|H . Now we show that the equality f = e3

1 holds on all other triples.

Claim 5.1. The values of f and e1 coincide on the set of all triples in which both

0 and k+1 appear.

Claim 5.1.1. f |J = e3
1|J where J = {(i,k + 1,0),(i + 1,0,k + 1) : i is even with

1≤ i≤ k}.

Consider the ρ-walks α = γ0, β = δ n+1 and θ = 0δ n(k + 1) of length (k + 1).

Set ε = f (α,β ,θ). Then ε1 = f (0,k+ 1,0) = 0 and εk+2 = f (0,0,k+ 1) = 0. Since,

ζ = ε1ε2 . . .εk+2 is a ρ-walk of length (k+ 1) from 0 to 0 we have ζ = γ0 by Lemma

5.1.2(4), hence, f (i,k+1,0) = i and f (i+1,0,k+1) = i+1.

Claim 5.1.2. f |J = e3
1|J where J = {(i,k+1,0),(i+1,0,k+1) : i is odd with 1≤ i≤

k}.

Consider the ρ-walks α = γ0, θ = 0δ n(k+ 1) and β = δ n+1 of length (k+ 1). Set

ε = f (α,θ ,β ). Then ε1 = f (0,0,k+ 1) = 0 and εk+2 = f (0,k+ 1,0) = 0. Since the

ρ-walk ζ coincides with ε we have ζ = γ0 by Lemma 5.1.2(4), hence, f (i,k+1,0) = i,

and f (i+1,0,k+1) = i+1.

Claim 5.1.3. f |J = e3
1|J where J = {(k + 1, i,0),(0, i + 1,k + 1) : i is even with

1≤ i≤ k}.
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Consider the ρ-walks α = δ n+1, β = γ0 and θ = 0δ n(k+ 1) of length (k+ 1). Set

ε = f (α,β ,θ). Then ε1 = f (k+ 1,0,0) = k+ 1 and εk+2 = f (0,0,k+ 1) = 0. Since,

ζ = ε2 . . .εk+2 is a ρ-walk of length k from 0 to 0 we have ζ = 0δ n by Lemma 5.1.2(1),

hence, f (k+1, i,0) = k+1 and f (0, i+1,k+1) = 0.

Claim 5.1.4. f |J = e3
1|J where J = {(k+1, i,0),(0, i+1,k+1) : i is odd with 1≤ i≤

k}.

Consider the ρ-walks θ = 0δ n(k+1), β = γ0 and α = δ n+1 of length (k+ 1). Set

ε = f (θ ,β ,α). Then ε1 = f (0,0,k + 1) = 0 and εk+2 = f (k + 1,0,0) = k + 1 which

implies εk+1 = 0. Since, ζ = ε1ε2 . . .εk+1 is a ρ-walk of length k from 0 to 0 we have

ζ = 0δ n by Lemma 5.1.2(1), hence, f (k+1, i,0) = k+1 and f (0, i+1,k+1) = 0.

Claim 5.1.5. f |J = e3
1|J where J = {(k + 1,0, i),(0,k + 1, i + 1) : i is even with

1≤ i≤ k}.

Consider the ρ-walks α = δ n+1, β = 0δ n(k+ 1) and θ = γ0 of length (k+ 1). Set

ε = f (α,β ,θ). Then ε1 = f (k+ 1,0,0) = k+ 1 and εk+2 = f (0,k+ 1,0) = 0. Since,

ζ = ε2 . . .εk+2 is a ρ-walk of length k from 0 to 0 we have ζ = 0δ n by Lemma 5.1.2(1),

hence, f (k+1,0, i) = k+1 and f (0,k+1, i+1) = 0.

Claim 5.1.6. f |J = e3
1|J where J = {(k+1,0, i),(0,k+1, i+1) : i is odd with 1≤ i≤

k}.

Consider the ρ-walks α = 0δ n(k+1), β = δ n+1 and θ = γ0 of length (k+ 1). Set

ε = f (α,β ,θ). Then ε1 = f (0,k + 1,0) = 0 and εk+2 = f (k + 1,0,0) = k + 1 which

implies εk+1 = 0. Since, ζ = ε1ε2 . . .εk+1 is a ρ-walk of length k from 0 to 0 we have

ζ = 0δ n by Lemma 5.1.2(1), hence, f (k+1,0, i) = k+1, and f (0,k+1, i+1) = 0.
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The values of f and e3
1 coincide on the set of all triples (a,b,c)∈U

′×{0,k+1}×U
′
,

where U
′
=U \{0,k+1}. Let i and j be distinct elements of U

′
. We may assume that

i < j because the proof can be easily modified by exchanging ρ-walks.

Claim 5.2. The values of f and e3
1 coincide on the set of all triples in which 0 or

k+1 appears.

Claim 5.2.1. f |J = e3
1|J where J = {(i,0, j),(i,k+1, j) : i, j ∈U ′, i < j}.

Consider the ρ-walks α = γ0, β = δ n+1 and

θ = j− i→ ··· → k→ 0→ 1→ ··· → j− i

of length (k + 1). Set ε = f (α,β ,θ). Then ε1 = f (0,k + 1, j− i) = 0 and εk+2 =

f (0,0,∗) = 0. Since ζ = ε is a ρ-walk of length (k + 1) from 0 to 0, we obtain that

f (i,s, j) = i, where s is 0 or k + 1 depending on the parity of i. By using β = ηn+1

instead, we obtain by the same argument that f (i,s′, j) = i where {s,s′}= {0,k+1}.

Claim 5.2.2. f |J = e3
1|J where J = {(i, j,0),(i, j,k+1) : i, j ∈U ′, i < j}.

Consider the ρ-walks α = γ0,

θ = j− i→ ··· → k→ 0→ 1→ ·· · → j− i

and β = δ n+1 of length (k + 1). Set ε = f (α,θ ,β ). Then ε1 = f (0, j− i,k + 1) = 0

and εk+2 = f (0,∗,0) = 0. Since ζ = ε1ε2 . . .εk+2 is a ρ-walk of length (k + 1) from

0 to 0, we obtain that f (i, j,s) = i, where s is 0 or k+ 1 depending on the parity of i.

By using θ = ηn+1 instead, we obtain by the same argument that f (i, j,s′) = i where

{s,s′}= {0,k+1}.
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Claim 5.2.3. f |J = e3
1|J where J = {(0, i, j),(k+1, i, j) : i, j ∈U ′, i < j}.

Consider the ρ-walks β = δ n+1 , α = γ0 and

θ = j− i→ ··· → k→ 0→ 1→ ·· · → j− i

of length (k+ 1). Set ε = f (β ,α,θ). Then ε1 = f (k+ 1,0, j− i) = k+ 1 and εk+2 =

f (0,0,∗) = 0. Since ζ = ε2ε2 . . .εk+2 is a ρ-walk of length k from 0 to 0, we obtain

that f (s, i, j) = s, where s is 0 or k+1 depending on the parity of i. By using α = ηn+1

instead, we obtain by the same argument that f (s′, i, j) = s′ where {s,s′}= {0,k+1}.

Finally, if a triple consists of distinct elements i, j, l ∈ U ′ then, by reordering the

ρ-walks in the argument, we may assume that i < j < l. Consider the ρ-walks of length

(k− l + i+1)

α = 0→ 1→ ··· → i→ ·· · → k− l + i+1,

β = j− i→ ··· → j→ ··· → k− l + j+1,

θ = l− i→ ·· · → l→ ·· · → 0,

and set ε = f (α,β ,θ). Then ε1 = f (0, j− i, l− i) = 0 and εk−l+i+2 = f (k− l + i+

1,∗,0) = k− l + i+1. By Lemma 5.1.2(2), we have ε1ε2 . . .εk−l+i+1 = 1,2, · · · ,k− l +

i+1. Hence f (i, j, l) = i.

Claim 6. Let f ∈ Pol(h)ρ be a semiprojection, h > 3. Then f is a projection.

Proof. Without loss of generality, we can assume that f is a semiprojection onto the first

variable. We will show that f is the first projection.

Claim 6.1. We first prove that f (0,x2, . . . ,xh) = 0 and f (k+1,x2, . . . ,xh) = k+1 for

all xi ∈U , 2≤ i≤ h.
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As |{x2,x3, . . . ,xh}| ≥ 3, there exist two entries xi and x j with the same parity. With-

out loss of generality we may reorder variables and assume that x3 > x2 and x3− x2 is

even.

Claim 6.1.1. f (0,x2, . . . ,xh) = 0 for all xi ≤ k, 2≤ i≤ h.

Since f is a semiprojection we can assume that x2≥ 1, hence, k−x2+1≤ k. We have

that f (k− x2 + 1,0,0, . . . ,∗) = k− x2 + 1 as f is semiprojection onto the first variable.

Consider the ρ-walks of length (k− x2 +1):

α1 = 0→ 1→ ·· · → k− x2 +1,

α2 = x2→ x2 +1→ ·· · → k→ 0,

α3 = x3→ x3 +1→ ·· · → k→ 0→ δ
(x3−x2)/2,

and let α4 = · · ·=αh =α1. Set ε = f (α1,α2, · · · ,αh). We have ε2 . . .εk−x2+1 is a ρ-walk

of length (k− x2 +1)≤ k and

εk−x2+2 = f (k− x2 +1,0,0, . . .) = k− x2 +1.

Applying Lemma 5.1.2(2), the statement follows.

Claim 6.1.2. f (k+1,x2, . . . ,xh) = k+1 for all xi ∈U , 2≤ i≤ h.

Since f is a semiprojection we can safely assume that all xi ≤ k, 2 ≤ i ≤ h. For

each i, 2 ≤ i ≤ h, there exist yi ≤ k and zi ≤ k such that yi → xi → zi. Then by Claim

6.1.1, we have

0 = f (0,y2, · · · ,yh)→ f (k+1,x2, · · · ,xh)→ f (0,z2, · · · ,zh) = 0

which implies f (k+1,x2, . . . ,xh) = k+1.
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Claim 6.1.3. f (0,x2, . . . ,xh) = 0 for all xi ∈U , 2≤ i≤ h.

Since f (0,x2, . . . ,xh)→ f (k+ 1,x2+̇1, . . . ,xh+̇1) = k+ 1, where +̇ is the addition

modulo (k+2), we have f (0,x2, . . . ,xh) = 0.

If there were an element j ∈U
′

for which f ( j,x2, . . . ,xh) = k+ 1 would hold, then

the ρ-walks

α1 = j( j+1) . . .k01 . . .( j−1) j;

αl = γ0(2≤ l ≤ h)

of length (k+ 1) would yield the ρ-walk β = f (α1, . . . ,αh). Since β1 = βk+2 = k+ 1,

we have β2 = βk+1 = 0. Therefore, β2 . . .βk+1 would be a ρ-walk of length (k− 1)

from 0 to 0, which contradicts Lemma 5.1.2(3). Therefore, for j ∈ {1,2, . . . ,k}, we have

f ( j,x2, . . . ,xi+1) 6= k+1.

Consider the ρ-walks

α1 = γ0;

αl = α1(2≤ l ≤ i+1).

Set β = f (α1, . . . ,αi+1). Then β1 = f (0, . . . ,0) = 0, and so, β j = f ( j−1, . . . , j−1) =

j−1 holds by (1) for every j(2≤ j ≤ k+1).

0 = f (0,∗,∗, . . . ,∗) = β1→ β2→ ·· · → βk+1,

and we have β j = j− 1 (2 ≤ j ≤ k+ 1). In other words, f ( j,∗,∗, . . . ,∗) = j ( j ∈U
′
).

Thus, f (x,x2, . . . ,xh+1) = x holds for every element x ∈U . Hence, f is the first projec-

tion. Hence, f is the first projection, which concludes the proof of Theorem 5.1.1.



CHAPTER 6

A STRONGLY RIGID TERNARY RELATION

In this chapter, we present a strongly rigid ternary relation on a finite domain.

6.1 A strongly rigid ternary relation on a finite domain

A relation ρ is strongly C-rigid if every operation on U preserving ρ is a projection

or a constant function. It is shown in H. Länger and R. Pöschel [12] that for n ≥ 3 the

following ternary relation

{(a,a,a) : 1≤ a≤ n}∪{(a,a+1,a+2) : 1≤ a≤ n−2}

on U = {1, ...,n} is strongly C-rigid.

As an extension of Theorem 1 [18], we give a strongly rigid ternary relation on a

finite domain.

Theorem 6.1.1. (Theorem 2.1 [42]) Let 3 < n < ω , let U = {i : 0 ≤ i < n} and let

U∗ :=U \{0} and Uo := {u ∈U : u+2 ∈U}. The ternary relation

ρ := {(0,a,a) : a ∈U∗}∪{(a,a,0) : a ∈U∗}

∪{(0,0,a) : a ∈U∗}∪{(a,0,0) : a ∈U∗}∪{(a,a+1,a+2) : a ∈Uo}

on U is strongly rigid.

Proof. Let h ∈ Polρ be unary.

Claim 1 : h = e1
1; i.e. h(x) = x for all x ∈U .

Proof. Set ai := h(i) for all i ∈U . First we prove
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Fact 1. ai := i for i = 0, ...,3.

Proof. Since (0,1,1),(0,2,2),(0,3,3),(0,1,2),(1,2,3) ∈ ρ , clearly

b0 := (a0,a1,a1),

b1 := (a0,a2,a2),

b2 := (a0,a3,a3),

b3 := (a0,a1,a2),

b4 := (a1,a2,a3)

all belong to ρ . First a0 = 0 since otherwise from b0,b1 and b2 we obtain a1 = a2 = a3 =

0 which contradicts b4 ∈ ρ . From b0,b1,b2 ∈ ρ we see that a1,a2,a3 ∈U∗. Now a1 6= a2

since otherwise b4 ∈ ρ would yield a3 = 0 6∈U∗. Next a1 = 1 due to (0,a1,a2) = b3 ∈ ρ

and a1 6= a2. Finally (0,1,a2) = b3 ∈ ρ and a2 6= 1 shows a2 = 2 and (1,2,a3) = b4 ∈ ρ

proves a3 = 3.

Let 3≤ i< n be such that i+1< n and a j = j for all j = 0, ..., i. From (i−1, i,ai+1)=

(ai−1,ai,ai+1) ∈ ρ we obtain ai+1 = i+1. This concludes the induction step and proves

the claim.

By Claim 1 we have that f (i, ..., i) = i for each f ∈ Polρ and i ∈U .

Claim 2 : Let a ∈ U∗. Then (i) Polρ ⊆ Pol {0,a}, (ii) Polρ ⊆ Pol {0,1,2}, (iii)

Polρ ⊆ Pol U∗ and (iv) Polρ ⊆ Pol {(0,a),(a,0)}.

Proof. For a ∈U∗ set σa := {x : (0,x,a) ∈ ρ}. It is easy to see that σ2 = {0,1,2} and

σa = {0,a} for a 6= 2. Together with the fact that Polρ ⊆ Pol {0} ∩Pol {a} (Claim

1) we obtain (i) for a 6= 2 and (ii). To prove (i) for a = 2 set τ := {x ∈ {0,1,2} :

(x,2,u),(2,u,0) ∈ ρ for some u ∈U}. Here {0,2} ⊆ τ because for x ∈ {0,2} we can

choose u = 2− x. Next 1 6∈ τ because were 1 ∈ τ then (1,2,u) ∈ ρ would imply u = 3

and (2,3,0) ∈ ρ , a contradiction. Thus τ = {0,2}.



41

(iii) Clearly U∗ = {x : (0,x,x) ∈ ρ}.
(iv) Set λ := {(x,y)∈ {0,a}2 : (x,y,y)∈ ρ}. It is easy to see that λ = {(0,a),(a,0)}.

We denote by g the restriction of f to {0,1}. By Claim 2 (i) (for a = 1), we have

g : {0,1}m→{0,1}, so g is a Boolean function. Moreover, by Claim 2 (iv) the function

f preserves {(0,1),(1,0)} and so g is a selfdual Boolean function.

We say that g is monotone (or order-preserving) if x1 ≤ y1,x2 ≤ y2, ...,xm ≤ ym imply

g(x1,x2, ...,xm)≤ g(y1,y2, ...,ym),

where ≤ is the usual order on {0,1}.

Claim 3: Polρ ⊆ Pol {(0,0),(0,1),(1,1)}. i.e., the restriction of every f ∈ Polρ to

{0,1} is a monotone Boolean function.

Proof. Set

λ = {(x,y) ∈ {0,1}2 : (x,y,u),(y,x,v),(w,y,x),(t,x,y),(v, t,z),(w,u,z) ∈ ρ

f or some u,v,w, t,z ∈U}.

It suffices to show that λ = {(0,0),(0,1),(1,1)}. To show ⊇ it suffices to choose

the values u,v,w, t,z as shown in Table 1.

x y u v w t z

0 0 2 1 1 2 3

0 1 2 0 1 0 3

1 1 0 0 0 0 1

Table 1

To prove ⊆ suppose to the contrary that (1,0) ∈ λ and let u,v,w, t,z be the corre-

sponding values. Then u = 0, v ∈ {1,2}, w = 0, t = 1. Next (0,0,z) = (w,u,z) ∈ ρ
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shows z ∈U∗. Finally (v, t,z) ∈ ({1,2}×{1}×U∗)∩ρ = /0, a contradiction.

Claim 4: The restriction of every f ∈ Polρ to {0,1} is a projection.

Proof. Let f ∈ Polρ and suppose that g, the restriction of f to {0,1}, is not a projection.

From the Claims 2 and 3, we know that the Boolean function g is monotone and

self-dual. By applying the arguments of Claim 5 in [18] to the functions g and f , we can

find a ternary function k ∈ Polρ such that k|{0,1} = m, where m is the majority function

defined by

m(x,y,z) =

 0 if x+y+z ≤ 1

1 otherwise
.

Fact 1. Let b ∈U∗. Then k(b,0,0) = k(0,b,0) = k(0,0,b) = 0 and

k(b,b,0) = k(b,0,b) = k(0,b,b) = b.

Proof. Since (0,1,1),(b,0,0) ∈ ρ , we have

(k(b,0,0),1,1) = (k(b,0,0),m(0,1,1),m(0,1,1))

= (k(b,0,0),k(0,1,1),k(0,1,1)) ∈ ρ.

Notice that from k(b,0,0) ∈ {0,b}, we get k(b,0,0) = 0. By symmetry, we have

k(0,b,0) = 0, k(0,0,b) = 0 and the other equality follows the first one by Claim 2 (iv).

Since (b,0,0),(0,1,1),(0,0,b) ∈ ρ , it follows that

(0,0,k(0,1,b)) = (k(b,0,0),k(0,1,0),k(0,1,b)) ∈ ρ,

hence k(0,1,b) ∈ U∗. By symmetry, k(1,0,b) ∈ U∗. Notice that (0,0,1),(1,1,0),

(1,2,3) ∈ ρ , and so (1,k(0,1,2),k(1,0,3)) = (k(0,1,1),k(0,1,2),k(1,0,3)) ∈ ρ. As

k(0,1,2), k(0,1,3) ∈ U∗, this yields k(0,1,2) = 2. Finally, since (0,0,3), (1,2,3),

(2,0,0) ∈ ρ , we obtain (2,0,3) = (k(0,1,2),k(0,2,0),k(3,3,0)) ∈ ρ.

This is a contradiction. Therefore, g is a projection.
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Claim 5: Every f ∈ Polρ is a projection.

Proof. By Claim 4, we already know that f |{0,1} is a projection, i.e.,without loss of

generality we may assume that it is the 1st projection, i.e., that

f (a1, ...,am) = a1

for all a1, ...,am ∈ {0,1}. By induction on k = 2, ...,n, we now show that

f (b1, ...,bm) = b1

for all b1, ...,bm ∈ k := {0, ...,k−1}.
The statement is true for the case k = 2. Suppose that the statement is true for some

2≤ k < n. Let x1,x2, ...,xm ∈ k+1.

For i ∈ {1, ...,m}, define ai, bi and di as follows

ai :=

 1 if xi = 0

0 otherwise
, bi =

 1− xi if xi ∈ {0,1}
xi−2 otherwise

, di =

 1 if xi ∈ {0,1}
xi−1 otherwise

.

Notice that a1, ...,am,b1, ...,bm,d1, ...,dm ∈ k and so by the induction hypothesis

f (a1, ...,am) = a1, f (b1, ...,bm) = b1 and f (d1, ...,dm) = d1.

Next for every i = 1,2, ...,m, clearly (ai,xi,xi) ∈ ρ and so

(a1, f (x1, ...,xm), f (x1, ...,xm)) = ( f (a1, ...,am), f (x1, ...,xm), f (x1, ...,xm)) ∈ ρ. (1)

Note that a1 ∈ {0,1}. We consider the two cases separately.

Case 1: a1 = 1.

By the definition of a1, clearly x1 = 0, and so by (1) and the definition of ρ we have

f (x1, ...,xm) = 0 = x1.

Case 2: a1 = 0.

By the definition of a1, clearly x1 6= 0 and from (1) also f (x1, ...,xm) 6= 0.
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Let x1 > 2. Then b1 = x1−2. Moreover (bi,di,xi)∈ ρ , and thus we have (x1−2,x1−
1, f (x1, ...,xm)) = (b1,d1, f (x1, ...,xm)) = ( f (b1, ...,bm), f (d1, ...,dm), f (x1, ...,xm)) ∈ ρ.

Hence f (x1, ...,xm) = x1.

Now, it remains to consider the two cases (A) x1 = 1, (B) x1 = 2.

(A) Let x1 = 1. We need to show that f (x1, ...,xm) = 1.

For i ∈ {1, ...,m}, we define ci as follows

ci =

 2 if xi = 1

0 otherwise
.

Notice that c1 = 2 as x1 = 1. Since c1, ...,cm ∈ {0,2}, we know by Claim 2 (i) ,

f (c1, ...,cm) ∈ {0,2}.

Note that 1
2c1 = 1 and 1

2c1, ...,
1
2cm ∈ {0,1}. As f |{0,1} is the 1st projection, it implies

f (
1
2

c1, ...,
1
2

cm) =
1
2

c1 = 1.

Observe that for i = 1, ...,m, clearly (2− ci,
1
2ci,

1
2ci) ∈ {(2,0,0),(0,1,1)} ⊆ ρ , and

in view of Claim 2 (iv) (for a = 2) we have

(2− f (c1, ...,cm),1,1) = ( f (2− c1, ...,2− cm), f (
1
2

c1, ...,
1
2

cm), f (
1
2

c1, ...,
1
2

cm)) ∈ ρ.

It follows that 2− f (c1, ...,cm) = 0 and thus f (c1, ...,cm) = 2.

For i ∈ {1, ...,m}, define ei by

ei =

 3 if xi ∈ {0,1}
0 otherwise

.
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Notice that e1 = 3 as x1 = 1. Since e1, ...,em ∈ {0,3}, we know by Claim 2 (i) ,

f (e1, ...,em) ∈ {0,3}.

Note that 1
3e1 = 1 and 1

3e1, ...,
1
3em ∈ {0,1}. As f |{0,1} is the 1st projection, it implies

f (
1
3

e1, ...,
1
3

em) =
1
3

e1 = 1.

Observe that for i = 1, ...,m, clearly (3− ei,
1
3ei,

1
3ei) ∈ {(3,0,0),(0,1,1)} ⊆ ρ , and

in view of Claim 2 (iv) (for a = 3) we have

(3− f (e1, ...,em),1,1) = ( f (3− e1, ...,3− em), f (
1
3

e1, ...,
1
3

em), f (
1
3

e1, ...,
1
3

em)) ∈ ρ.

It follows that 3− f (e1, ...,em) = 0 and thus f (e1, ...,em) = 3.

By the definition of ci and ei, we know (xi,ci,ei) ∈ ρ , thus

( f (x1, ...,xm),2,3) = ( f (x1, ...,xm), f (c1, ...,cm), f (e1, ...,em)) ∈ ρ

and we obtain f (x1, ...,xm) = 1 = x1.

(B) Let x1 = 2. We need to show that f (x1, ...,xm) = 2.

For i ∈ {1, ...,m}, define gi by

gi =

 3 if xi = 2

0 otherwise
.

Notice that g1 = 3 as x1 = 2. Since g1, ...,gm ∈ {0,3}, we know by Claim 2 (i) ,

f (g1, ...,gm) ∈ {0,3}.
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Note that 1
3g1 = 1 and 1

3g1, ...,
1
3gm ∈ {0,1}. As f |{0,1} is the 1st projection, it implies

f (
1
3

g1, ...,
1
3

gm) =
1
3

g1 = 1.

Observe that for i = 1, ...,m, clearly (3−gi,
1
3gi,

1
3gi) ∈ {(3,0,0),(0,1,1)} ⊆ ρ , and

in view of Claim 2 (iv) (for a = 3) we have

(3− f (g1, ...,gm),1,1) = ( f (3−g1, ...,3−gm), f (
1
3

g1, ...,
1
3

gm), f (
1
3

g1, ...,
1
3

gm)) ∈ ρ.

It follows that 3− f (g1, ...,gm) = 0 and thus f (g1, ...,gm) = 3.

For i ∈ {1, ...,m}, define hi by

hi =

 4 if xi ∈ {0,2}
0 otherwise

.

Notice that h1 = 4 as x1 = 2. Since h1, ...,hm ∈ {0,4}, we know by Claim 2 (i) ,

f (h1, ...,hm) ∈ {0,4}.

Note that 1
4h1 = 1 and 1

4h1, ...,
1
4hm ∈ {0,1}. As f |{0,1} is the 1st projection, it implies

f (
1
4

h1, ...,
1
4

hm) =
1
4

h1 = 1.

Observe that for i = 1, ...,m, clearly (4−hi,
1
4hi,

1
4hi) ∈ {(4,0,0),(0,1,1)} ⊆ ρ , and

in view of Claim 2 (iv) (for a = 4) we have

(4− f (h1, ...,hm),1,1) = ( f (4−h1, ...,4−hm), f (
1
4

h1, ...,
1
4

hm), f (
1
4

h1, ...,
1
4

hm)) ∈ ρ.

It follows that 4− f (h1, ...,hm) = 0 and thus f (h1, ...,hm) = 4.
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By the definition of gi and hi, we know (xi,gi,hi) ∈ ρ , thus

( f (x1, ...,xm),3,4) = ( f (x1, ...,xm), f (g1, ...,gm), f (h1, ...,hm)) ∈ ρ

and we obtain f (x1, ...,xm) = 2 = x1. In all the cases, f (x1, ...,xm) = x1. This concludes

the induction. Thus f is a projection.

Therefore, Polρ only contains the projections.

Conjecture 6.1.2. (Conjecture 2.3 [42]) Let 3≤ k < n < ω , let U = {i : 0≤ i < n} and

let U∗ :=U \{0} and Uo := {u ∈U : u+ k−1 ∈U}. The k-ary relation

ρ := {(0,a, ...,a) : a ∈U∗}∪{(a, ...,a,0) : a ∈U∗}

∪{(0, ...,0,a) : a ∈U∗}∪{(a,0, ...,0) : a ∈U∗}∪{(a,a+1, ...,a+ k−1) : a ∈Uo}

on U is strongly rigid.



CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion and future work

We characterized all strongly rigid relations on a set with more than two elements.

The problem to characterize all strongly rigid relations on an infinite domain remains

open.

We proposed several simple lemmas to exclude non-rigid binary relations which can

be turned into computer programs. These lemmas are quite effective not only in a 4-

element domain but also in a k-element domain when k ≥ 5. Some techniques used in

recent developments in Barto and Stanovský [37] and Jovanović [40] can also help in

this aspect. Applying these rules to a 5-element domain, we could obtain a result as in

Table 7.1. It would be interesting to find out all strongly rigid binary relations out of the

potential list on a 5-element domain.

Proposition # of Relations # of Relations Property
up to

isomorphism
Lemma 3.1.6 (The loop rule) (25−1)220 Not rigid

Lemma 3.1.6 (The overlap rule) 544756 Not rigid
Lemma 3.1.6 (The interchange rule) 21336 Not rigid

Nontrivial automorphism 51444 Not rigid
Lemma 3.3.3 (The source-sink rule) 119520 520 Rigid but not strongly rigid

311520 1425 Possible strongly rigid
Total: 252

Table 7.1 – Classification of binary relations on a 5-element domain

The classification of binary relations on 4 elements with a trivial clone is a useful

framework and rich source of examples for understanding trivial clones in general, such

as trivial clones on binary relations, and for constructing other families of strongly rigid
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relations. It would be interesting to investigate the classification problem for similar

types of relations, e.g., rigid ternary relations, idempotent trivial relations, and strongly

C-rigid binary and ternary relations on small domains.

Nous avons caractérisé les relations fortement rigides sur un ensemble fini de plus de

deux éléments. L’analogue sur un univers infini demeure ouvert.

Nous avons établi plusieurs lemmes simples qui permettent d’exclure les relations

binaires non-rigides de façon algorithmique. Ces lemmes sont efficaces non seulement

sur un domaine à 4 éléments mais pour tout univers fini. Certaines techniques récentes de

Barto et Stanovský [37] et Jovanović [40] peuvent aussi s’avérer utiles dans ce contexte.

Si on applique ces lemmes à un domaine avec 5 éléments, on obtiendra un résultat de

la forme présentée dans la Table 7.1. Il serait intéressant de déterminer quelles sont les

relations binaires fortement rigides parmi cette liste de cas potentiels.

La caractérisation des relations binaires sur 4 éléments dont le clone est trivial offre

une riche source d’exemples pour comprendre les relations fortement rigides dans le cas

général, et pourra s’avérer utile pour construire d’autres familles de telles relations. Il

est à espérer que ce travail permettra d’avancer la classification de relations avec des

propriétés semblables, telles les relations ternaires rigides, les relations idempotentes-

triviales, et les relations C-rigides sur de petits univers.
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