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Sommaire

Cette thèse constitue une étape dans l’étude systématique des systèmes superintégrables,

tant classiques que quantiques. Nous présentons les résultats de deux articles. Dans le

premier, nous considérons tous les hamiltoniens de l’espace euclidien de dimension deux qui

admettent une intégrale de deuxième ordre et une de quatrième ordre. La présence d’une

intégrale de deuxième ordre rend les fonctions potentielles séparables. Nous classifions aussi

tous les potentiels quantiques qui sont des solutions d’EDO non linéaires et donnons les

intégrales correspondantes. Nous obtenons de nouveaux potentiels, exprimés en termes de

troisièmes et cinquièmes fonctions transcendantes de Painlevé.

Dans le second article, nous donnons de nouvelles constructions d’hamiltoniens superin-

tégrables en dimension deux, tant classiques que quantiques, et dont les potentiels sont

séparables en coordonnées cartésiennes. Nous construisons quatre types de systèmes hamil-

toniens algébriques en dimension un. Nous étudions deux copies d’algèbres d’opérateurs en

dimension un et les combinons pour former des systèmes superintégrables dans E2. Nous

prouvons que tous les systèmes superintégrables d’ordre au plus cinq qui sont séparables en

coordonnées cartésiennes, sont réductibles.

Mots-clés: superintégrabilité, séparation de variables, mécanique quantique, propriété de

Painlevé, fonctions transcendantes de Painlevé, opérateur d’échelle.
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Summary

The purpose of this thesis is to continue a systematic research on classical and quantum

superintegrable systems. We present the results from two articles. In the first article, we

consider a general Hamiltonian in two-dimensional Euclidean space admitting a second order

and a fourth order integral of motion. The second order integral imposes the separation of

variable in the potentials. We present a complete classification of all quantum potentials

that are solutions of nonlinear ODEs and the corresponding integrals. New potentials

expressed in terms of the third and fifth Painlevé transcendents are obtained.

In the second article, we develop new constructions of two-dimensional classical and

quantum superintegrable Hamiltonians with separation of variables in Cartesian coordi-

nates. Here we construct four types of algebraic Hamiltonian systems in one dimension.

We study two copies of operator algebras in one dimension and combine these two

to form superintegrable systems in E2. We demonstrate that all quantum and classical

superintegrable systems separable in Cartesian coordinates up to order 5 are in fact reducible.

keywords: superintegrability, separation of variables, quantum mechanics, Painlevé property,

Painlevé transcendent, ladder operator.
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Introduction

In order to study behaviour of a physical system we can look at its mathematical model.

Quantum and classical systems are among the ones which their models are of special

interests. Solving ordinary and partial differential equations analytically or numerically

plays a role in studying these models. In the case we are able to solve the system with

explicit analytic expressions, and as a result predict the future behaviour, we call it classical

or quantum integrable Hamiltonian system. Moreover, when a system admits the maximum

possible symmetry, it can be solved algebraically as well as analytically. It is called a

superintegrable system.

In this thesis, we present recent results obtained in classical and quantum integrability

and superintegrability of a Hamiltonian system that allows the separation of variables in

coordinates in a two-dimensional Euclidean space. The results presented are in the form of

two articles. The first article has been published in the Journal of Physics A: Mathematical

and Theoretical [77]. The second one will be submitted soon in the same journal.

In the first chapter, we detail the formalism and definition of the integrable and superinte-

grable systems in classical and quantum mechanics.

In chapter 2, we present partial results on the classification of the superintegrable systems

in two-dimensional Cartesian coordinates with integrals of motion of order two, three and

four [40, 63, 47, 48, 91].

In chapters 3, we discuss superintegrability of order four. We consider a separable

Hamiltonian system in quantum mechanics that admits a fourth order integrals of motion.

Here we present the quantum systems written in terms of functions that do not satisfy any

linear equations. These functions are expressed in terms of elliptic functions or Painlevé

transcendents.

Finally, in chapter 4, we present different structures and algebraic methods. These are



necessary, since the direct approach of classifying superintegrable Hamiltonians based on

solving PDEs becomes more difficult as the dimension of the underlying space or the order

of the integrals increase. Here we point out how different types of construction can be

used to build two-dimensional superintegrable systems with higher order integrals of motion.
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Chapitre 1

Preliminaries: Definitions and theorems

1.1. Classical Mechanics

1.1.1. Equations

A Hamiltonian system describes the dynamics of a physical system. A physical system

describing the position of a particle at the time t involves n position coordinates qj(t), and

n momentum coordinates pj(t). The phase space of the system is the 2n dimensional space

with coordinates p1, . . . ,pn; q1, . . . ,qn where pj,qj ∈ R. The simplest form of it is the total

energy of the system

H = T + V = E

where T is the kinetic energy and V the potential energy. The Hamiltonian we are going to

consider in this thesis is a function on the phase space of the form

H = 1
2

n∑
j,k=1

gjk(q)pjpk + V (q) (1.1.1)

where (q,p) ∈ R2n.

The dynamics of the system are given by Hamilton’s equations

dqj
dt

= ∂H

∂pj
,

dpj
dt

= −∂H
∂qj

, j = 1,2, . . . ,n (1.1.2)

A solution (q(t),p(t)) of Hamilton’s equations represents the trajectory of the particle sub-

mitted to the external force V .

Definition 1.1.1.

• A physical quantity X characterized by a differentiable function on the phase space,

X = X(q,p) , is called an integral or a constant of the motion if it remains



constant along the trajectory (q(t),p(t)), which means it satisfies

0 = dX

dt
=

n∑
j=1

(∂X
∂qj

dqj
dt

+ ∂X

∂pj

dpj
dt

). (1.1.3)

• An integral of motion is of order N if it is a polynomial of order N in the momenta.

Definition 1.1.2. The Poisson bracket of two functions X(q,p,t) and Y (q,p,t) on the

phase space is the function

{X,Y }(p,q) =
n∑
j=1

(∂X
∂pj

∂Y

∂qj
− ∂X

∂qj

∂Y

∂pj
). (1.1.4)

The Poisson bracket of the canonical coordinates (q,p) are

{qj,pk} = δj,k, {qj,qk} = {pj,pk} = 0. (1.1.5)

where δj,k is the Kronecker delta, i.e.

δj,k =


1 if j = k

0 if j 6= k

The Poisson bracket satisfies the following properties. Given X,Y,Z functions on the phase

space and a,b constants:

• {X,Y } = −{Y,X}, (anti-symmetry)

• {X,aY + bZ} = a{X,Y }+ b{X,Z}, (bilinearity)

• {X,{Y,Z}}+ {Y,{Z,X}}+ {Z,{X,Y }} = 0, (Jacobi identity)

• {X,Y Z} = {X,Y }Z + Y {X,Z}, (Leibniz rule)

• If {H,G}(q0,p0) = 0 for all G, then (q0,p0) is a critical point of H, (non-degeneracy)

Definition 1.1.3. A Poisson algebra over R is a triple (A,·, {}), where (A,·) is an asso-

ciative R-algebra and (A, {}) is a real Lie algebra, such that the identity

{X · Y, Z} = X · {Y, Z}+ {X,Z} · Y

is satisfied for each X, Y, Z ∈ A.

In terms of Poisson bracket, we can rewrite Hamilton’s equations as
dqj
dt

= {H,qj},
dpj
dt

= {H,pj}, j = 1,2, . . . ,n (1.1.6)

and the dynamics of any function X(q,p) along the motion is
dX

dt
= {H,X}. (1.1.7)

4



Thus if {H,X} = 0, X(q,p) is a constant of motion.

Definition 1.1.4. Two functions X1 and X2 are in involution if their Poisson bracket is

equal to zero.

Definition 1.1.5. Let F = {f1(q,p), . . . , fN(q,p)} be a set of N functions defined and locally

analytic in some region of a 2n-dimensional phase space. We say that F is functionally
independent if the N × 2n Jacobian matrix ( ∂fl

∂qj
, ∂fl
∂pk

) has rank N through the region.

1.1.2. Integrable and superintegrable Classical systems

Definition 1.1.6. In Classical mechanics an n-dimensional system with Hamiltonian H is

integrable if it admits n integrals of motion H,X1, . . . ,Xn−1 that are well defined functions

on phase space, in involution

{H,Xk} = 0, {Xj,Xk} = 0, j,k = 1, . . . , n− 1, (1.1.8)

and that are functionally independent, meaning that

rang
∂(H,X1, . . . ,Xn−1)

∂(q1, . . . ,qn,p1, . . . ,pn) = n (1.1.9)

By the non-degeneracy of the Poisson bracket, there can be at most n functionally inde-

pendent integrals of motion in involution [4].

The interest of integrable systems lies in Liouville’s theorem. It states that such systems are

integrable by quadratures and that motion is conditionally periodic, since the level sets of

the system are tori whenever they are compact [4, Section 49].

Theorem 1.1.7 (Liouville). Let X1, . . . ,Xn be functions satisfying (1.1.8) and (1.1.9) on a

2n dimension phase space. Considering a level set of the functions Xi defined as

Mc = {q : Xi(q) = ci,i = 1, . . . ,n}

Then

• Mc is a smooth manifold, invariant under the phase flow with the Hamiltonian H.

• If the manifold Mc is compact and connected, then it is diffeomorphic to the n di-

mensional torus

T n = {(φ1, . . . ,φn)mod2π}

5



• The phase flow with Hamiltonian H determines a conditionally periodic motion on

Mc, i.e. in angular coordinates φ = (φ1, . . . ,φn) we have

dφ

dt
= ω, ω = ω(c)

• The canonical equations with Hamiltonian H can be integrated by quadratures.

Remark 1.1.8.

• By conditionally periodic motion, we mean that there exists a dense subset of

initial conditions for which the trajectories are periodic.

• In action-angle coordinates, φ can be integrated to

φ(t) = φ(0) + ωt,

therefore motion is periodic whenever ω ∈ (Q/Z)n, which is a dense subset of T n.

In this thesis we focus on classical systems that are polynomial in the momenta.

Definition 1.1.9. An n-dimensional classical Hamiltonian system is superintegrable if it

admits more integrals of motion than degrees of freedom. more specifically, if it admits n+k

integrals of motion {H,X1, . . . ,Xn−1,Y1, . . . ,Yk} that are functionally independent and

{H,Xj} = {H,Yl} = 0, j = 1, . . . ,n, l = 1, . . . ,k. (1.1.10)

It is minimally superintegrable if k = 1, and maximally superintegrable if k = n− 1.

By non-degeneracy of the Poisson bracket, in a 2n-dimensional phase space, there can be at

most 2n− 1 functionally independent integrals of motions, including H.

The best known Superintegrable systems in 3-dimensional Euclidean space E3 the harmonic

oscillator V (r) = αr2, for r =
√
x2 + y2 + z2. and the Kepler-Coulomb potential V (r) = α

r
.

Here is a theorem concerning these two systems.

Theorem 1.1.10 (Bertrand’s theorem). In 3-dimensional Euclidean space E3, the only

spherically symmetric potentials for which all bounded trajectories are closed are Kepler-

Coulomb potential and harmonic oscillator.

Lemma 1.1.11. Let H be a Hamiltonian. Then the set of integrals of H is a Poisson

sub-algebra of the Poisson algebra of smooth functions on phase space.
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1.2. Quantum Mechanics

In this section, we give basic concepts and definitions in Quantum mechanics and adapt the

definitions of integrability and superintegrability from Classical mechanics.

1.2.1. Equations

In Quantum mechanics, physical states are represented as one dimensional subspaces in a

complex Hilbert space. The dynamics of any time dependent non-relativistic physical system

in Euclidean space is described by Schrödinger equation

HΨ(x,t) = i~
d

dt
Ψ(x,t) (1.2.1)

where i is the imaginary unit, ~ is the reduced Planck constant and Ψ is the time-dependent

wave function.

When one is interested in stationary states (quantum states with all observables independent

of time) of a quantum system, (1.2.1) is reduced to the eigenvalue equation

HΨ(x) = EΨ(x)

E is the eigenvalue of H and characterizes the energy spectrum of the Quantum system.

In analogy to classical Hamiltonian (1.1.1), we have the quantum Hamiltonian on n-

dimensional Euclidean space as

H : L2(Rn,C)→ L2(Rn,C)

In this model qj → xj, pj → −i~∂xj and

H = − ~2

2m

n∑
j=1

∂2

∂x2
j

+ V (x) = − ~2

2m∆n + V (x).

As in classical mechanics, we create most of our observables out of the quantities position

and momentum. However, in quantum mechanics these quantities correspond to self-adjoint

operators.

The Lie bracket of two operators X and Y is defined by [X,Y ] = XY − Y X. The position

and momentum operators satisfy the commutation relations,

[xj, xk] = [pj, pk] = 0, [xj, pk] = i~δjk, (1.2.2)

7



These relations define a Heisenberg algebra Hn in an n-dimensional space.

The expected value of an observable X in a state Ψ(t) obeys the relation

d

dt
〈Ψ, XΨ〉 = i

~
〈Ψ, [H,X]Ψ〉 (1.2.3)

where 〈·,·〉 is the inner product 〈Ψ,Φ〉 =
∫
Rn Ψ(x,t)Φ(x,t)dx.

This is in analogy with the classical relation (1.1.7). Here the Lie bracket plays the role of

the Poisson bracket.

Definition 1.2.1.

• An observable quantity X is called an integral of the motion if it does not depend

explicitly on time and commutes with H.

• An integral of motion is of order N if it is a hermitian operator of order N in the

momenta.

If [H,X] = 0, then we can choose a basis for the Hilbert space which is a set of simultaneous

eigenfunctions of X and H [83]. It is important to determine a complete set of com-

muting observables to specify the system. This idea leads naturally to quantum integrability.

1.2.2. Integrable and superintegrable Quantum systems

Definition 1.2.2. A quantum mechanical system in n dimensions is integrable if there

exist n integrals of motion (including H) that are Hermitian operators in the enveloping

algebra of the Heisenberg algebra with the basis {xj, pj, ~}, j = 1,2, . . . ,n, in involution w.r.t

the Lie bracket

[Xa,Xb] = XaXb −XbXa = 0 where a,b = 1, . . . ,n

and algebraically independent in the sense that no Jordan polynomial formed entirely out

of anti-commutators in Xa vanishes identically (i.e the operators are not zero set of any

polynomials).

Definition 1.2.3. A Quantum Hamiltonian system in n dimensions is superintegrable,
if it admits n + k with k = 1,2, . . . ,n − 1; algebraically independent integrals of motion

Y1 = H,Y2, . . . , Yn+k.

Unlike in the case of classical superintegrability, there is no proof that 2n− 1 is indeed the

maximal number of possible algebraically independent symmetry operators however there

8



are no known counter examples.

The set of integrals for a quantum Hamiltonian H forms a Poisson sub-algebra of the algebra

of operators. In other words:

Lemma 1.2.4. Let H be a Hamiltonian with integrals of motion L,K, and α, β be scalars.

Then αL+ βK, LK and [L,K] are also integrals of motion.

For the 2n− 1 generators of a superintegrable system the Lie brackets cannot all vanish and

the symmetry algebra has a non-Abelian structure [83].

Tempesta, Turbiner and Winternitz in 2011 conjectured that all maximally superintegrable

systems are exactly solvable [98]. If this holds the bound state spectra can be calculated

algebraically, without solving the Schrödinger equation, and wave functions can be expressed

as polynomials in some appropriate variables. Another aspect of studying superintegrable

quantum systems is that the non-Abelian polynomial algebra of integrals of motion can be

used to calculate energy levels and gives information on wave functions.
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Chapitre 2

Superintegrable systems in two dimensional Euclidean

space

Following the results obtained for the harmonic and Coulomb potentials, a systematic study

of integrable and superintegrable systems in a 2-dimensional and 3-dimensional Euclidean

space was initiated in [40, 63]. These works study the classifications of superintegrable

systems that have particular integrals of motion. Following these results there have been

more studies and examples of superintegrable systems.

Here, our focus is on Hamiltonian systems in two dimensional Euclidean space. The Hamil-

tonian considered is

H = 1
2(p2

1 + p2
2) + V (x,y) (2.0.1)

where V is a real function on E2.

If such a system admits an Nth order integral of motion X that is polynomial in momenta,

then X can be written as

X =
N∑

j+k=0
{fjk(x,y),pj1pk2} (2.0.2)

where p1 = −i~∂x, p2 = −i~∂y and {A,B} = AB+BA is the anti-commutator. In quantum

mechanics, the anti-commutator preserves the integral of motion as an Hermitian operator

and in classical mechanics it is reduced to 2fjkpjpk and therefore does not really have any

influence on the value of the integrals of motion.

In this section we present the known results on the quadratic and cubic superintegrable

systems in a 2D Euclidean space. In each cases, the integrals of motions are second and



third order polynomials in the momenta, respectively.

2.1. Second order integrability and superintegrability

In this section we present the results from [40, 63]. First we consider the case in which the

Hamiltonian (2.0.1) is integrable and it admits a second order integral of motion. Then we

consider the case when this system has two integrals of motion of order two.

Let us consider the most general form of integral of motion in (2.0.2) when N = 2. The condi-

tion [H,X] = 0 implies that even order terms and odd terms in X commute independently

with (2.0.1), so we will consider only the terms of even order in (2.0.2)

X =
∑

j+k=2
{fjk,pj1pk2}+ g(x,y) (2.1.1)

Further, the authors of [40, 63] found that the leading (second order) term in X lies in the

enveloping algebra of the group e(2). This group is generated by rotations and translations

of the plane.

All this leads to the following form for X,

X = aL2
3 + b{L3, p1}+ c{L3, p2}+ d(p2

1 − p2
2) + 2ep1p2 + g(x,y), (2.1.2)

where a,b,c,d,e are arbitrary constants, and L3 = yp1−xp2. The function g(x,y) satisfies the

following determining equations

gx = 2(ay2 + 2by + d)Vx − 2(axy + bx− cy − e)Vy,

gy = −2(axy + bx− cy − e)Vx + 2(ax2 − 2cx− d)Vy (2.1.3)

The compatibility condition gxy = gyx implies

(axy + bx− cy − e)(Vxx − Vyy) + (a(y2 − x2) + 2by + 2cx+ 2d)Vxy

+ 3(ay + b)Vx − 3(ax− c)Vy = 0 (2.1.4)

Since none of the equations (2.1.3) and (2.1.4) involve the Planck constant ~, we get the

same results by considering classical Hamiltonian and integral of motion in (2.0.1 & 2.1.1).

Thus, for quadratic integrability and superintegrability the potential and integrals of motion

coincide in classical and quantum mechanics.

The Hamiltonian (1.1.1) is form invariant under Euclidean transformations, so we can classify
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the integrals X into equivalence classes under rotations, translations and linear combinations

with H. In [40] it is shown that we have four forms for integral (2.1.2). The family of

potentials for those integrals are the following:

VC = f(x) + g(y), XC = p2
1 − p2

2 − 2f(x) + 2g(y)

VS = f(r) + g(θ)
r2 , XS = L2

3 + 2g(θ), (x,y) = (r cos θ,r sin θ)

VP = f(ξ) + g(η)
ξ2 + η2 , XP = {L3,p1}+ f(ξ)ξ2 − g(η)η2

ξ2 + η2 , (x,y) = (ξ
2 − η2

2 ,ξη)

VE = f(α) + g(β)
cos2(α)− cosh2(β)

, (x,y) = (l cosh β cosα,l sinh β sin β); l > 0

XE = L2
3 + l2

2 (p2
1 − p2

2)− l2 (cosh2(β) + sinh2(β))f(α) + (cos2(α)− sin2(α))g(β)
cos2(α)− cosh2(β)

.

(2.1.5)

Hence, as we see, second order integrability in E2 implies separation of variables in either

Cartesian, polar, parabolic, or elliptic coordinates. A complete classification of systems

whose second-order operators commute with the Hamiltonian has been done in [63, 40].

They show that two independent integrals of motion exist if we have potentials separating

in at least two coordinate systems [40]. Four families of superintegrable potentials are as

follows:

Separation in Cartesian, polar and elliptic coordinates,

V = α(x2 + y2) + β

x2 + γ

y2 . (2.1.6)

Separation in Cartesian and parabolic coordinates,

V = α(4x2 + y2) + βx+ γ

y2 . (2.1.7)

Separation in polar and parabolic coordinates,

V = α

r
+ 1
r2 ( β

cos2 θ
2

+ γ

sin2 θ
2

). (2.1.8)

Separation in two mutually orthogonal parabolic systems,

V = α

r
+ 1√

r
(β cos θ2 + γ sin θ2) =

2α +
√

2(βξ + γη)
ξ2 + η2 . (2.1.9)

A similar study was done in a 3-dimensional Euclidean space ([34, 36, 63]). In these works,

a maximally superintegrable Hamiltonian which has 5 functionally independent integrals
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of motion is multiseparable, that is, separable in more than one coordinate system. More

specifically, there exist 11 coordinate systems in which the system is separable, by considering

different possibilities of quadratic integrals of motion.

Some work has linked superintegrability and exact solvability of a quantum system [53,

96, 98]. Everything leads to believe, of all known cases of superintegrable systems with

scalar potential, that the superintegrability implies the solvability of the system. The same

situation seems to occur in the case of non-scalar potentials [16, 78, 105, 106, 95], despite

the fact that in these cases the existence of an integral of second order does not induce the

separation of variables in the Hamiltonian.

In what follows, we will consider systems with integrals of motion order three. In this case,

the differences between classical and quantum integrability are significant. As opposed to

the quadratic integrability, cubic integrability does not impose separation of variables in the

Hamiltonian.

2.2. Third order Integrability and superintegrability

In 1935, Jules Drach studied Hamiltonian systems admitting third order integrals of motion

[30]. For further details we refer to the introduction section in our first article [77].

In this section we recall some results for superintegrable systems with third order integrals

of motion [66, 48]. We consider the Hamiltonian as in (2.0.1) and the integral of motion of

the form (2.0.2) for N = 3.

First, we characterize in a precise way the general form that an integral of motion must take

according to the parity of its order.

From ([48]), in quantum mechanics if we have

{f, pj1pk2}+ + i{f, pj1pk2}− = {<[f ], pj1pk2}+ i{Im[f ], pj1pk2},

the operator X in (2.0.2) can be written as the form

X = X+ + iX−.

where X+ and X− are self-adjoint operators. Since the Hamiltonian is self-adjoint and

[H,X] = 0, then X† = X+ − iX−. Therefore both X+, and X− should commute with H.

Since H is a real differential operator, the real and imaginary parts of X must commute with

H separately [91]. This is summarized in the following proposition, from [48, proposition
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3.1]).

Proposition 2.2.1. For each self-adjoint integral of motion of order N , there exists one

integral of order N with definite parity, i.e.,

X =
[N2 ]∑
j=0

N−2j∑
k=0
{FN−2j,k(x,y), pk1p

N−2j−k
2 }, (2.2.1)

where F is a real function.

By this proposition, it is sufficient to look for integrals of motion as

X =
∑

j+k=3
{fjk(x,y), pj1pk2}+ {g1(x,y), p1}+ {g2(x,y), p2}, (2.2.2)

where fjk are real functions.

This expression follows from the fact that the Hamiltonian and momentum operator are

respectively real and imaginary, so the even and odd terms of an integral of motion commute

separately with Hamiltonian. Thus, for any integral of order N in E2, when N is even (resp.

odd), lower order terms are also even (resp. odd). In the case of a classical integral, the

result remains valid [48].

Imposing the condition [H,X] = 0, (2.2.2) is reduced to

X =
∑

j+k+l=3
Ajkl{Lj3, pk1pl2}+ {g1(x,y), p1}+ {g2(x,y), p2}, (2.2.3)

for arbitrary real constants Ajkl. Also for g1,g2 and V we get

g1Vx + g2Vy =~2

4
(
f1Vxxx + f2Vxxy + f3Vxyy + f4Vyyy

+ 8A300(xVy − yVx) + 2(A210Vx + A201Vy)
)
, (2.2.4)

(g1)x = 3f1(y)Vx + f2(x,y)Vy

(g2)y = f3(x,y)Vx + 3f4(x)Vy

(g1)y + (g2)x = 2
(
f2(x,y)Vx + f3(x,y)Vy

)
(2.2.5)
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where the real functions fi are defined as

f1(y) = A300y
3 − A210y

2 + A120y − A030

f2(x,y) = −3A300xy
2 + 2A210xy − A210y

2 − A120x+ A111y − A021

f3(x,y) = 3A300x
2y − A210x

2 + 2A201xy − A111x+ A102y − A012

f4(x) = −A300x
3 − A201x

2 − A102x− A003 (2.2.6)

From(2.2.5), we obtain the following third order linear equation for the potential

0 =− f3Vxxx + (−2f2 − 3f4)Vxxy + (−3f1 + 2f3)Vxyy − f2Vyyy + 2(f2y − f3x)Vxx

+ 2(−3f1y + f2x + f3y − 3f4x)Vxy + 2(−f2y + f3x)Vyy + (−3f1yy + 2f2xy − f3xx)Vx

+ (−f2yy + 2f3xy − 3f4xx)Vy (2.2.7)

The absence of the Planck constant ~ in equations (2.2.5) implies that in the classical case,

one compatibility condition for the potential is (2.2.7). On the other hand, equation (2.2.4)

involves ~ , which by considering the lim ~→ 0 will reduce to g1Vx + g2Vy = 0. Also, we get

three more compatibility conditions for the potentials from equations (2.2.4 & 2.2.5), which

are nonlinear and difficult to solve. In any case, we see that when the right hand side of

(2.2.4) does not vanish, classical and quantum superintegrable systems with third and higher

order integrals can be very different as has been presented in [48].

2.2.1. Superintegrable systems with one third order and one first order integral

It has been shown that a potential V (x,y) in the Hamiltonian (2.0.1) allows an integral of

first order in momenta if and only if it is invariant under the rotations and translations [63].

The potential and first order integrals are as follows:

V (x,y) = V (r); r =
√
x2 + y2, X = L3,

and

V (x,y) = V (x), X = p2.

In this section, we briefly recall the obtained results in both cases [48, 66].

For the system with a potential invariant under rotations in both classical and quantum me-

chanics, from (2.2.4 & 2.2.5), we haveV (r) = α
r
, and V (r) = αr2, the Coulomb potential and

the harmonic oscillator respectively. This has been explained as well by Bertrand theorem
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[6].

The third-order integrals of motion in the case with the Coulomb potential in E2 can be

obtained by commutation of the two following second-order integrals

X1 = {L3,p1} −
2αy
r
,

X2 = {L3,p2}+ 2αx
r
.

(2.2.8)

Also, the harmonic oscillator potential allows two second order integrals of motion of the

form

X1 = −1
2p

2
1 + 1

2p
2
2 + αx2 − αy2,

X2 = −p1p2 + 2αxy.

(2.2.9)

The Lie bracket (or Poisson bracket) of X1 and X2 gives the third-order integral.

In the case with the potential invariant under translations, setting Vy = 0 simplifies equations

(2.2.4 & 2.2.5). The solutions are

V (x) = ax, V (x) = a

x2 .

In classical mechanics, the Poisson bracket of the square of the first order and the second

order integrals of motion associated with these potentials will be the third-order integrals.

Thus, these systems are second order superintegrable.

In quantum mechanics, the third order integral of motion for the potential V (x) = a
x2 is

X1 = {L2
3,p2}+ a{2y

2

x2 ,p2},

and by commuting X2
1 with the first order integral X = p2 there will be two more as

X2 = {L3,p1p2} − a{2
y

x2 ,p2},

X3 = 2p2
1p2 + a{ 2

x2 ,p2}.
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Setting Aijk = 0 for all Aijk figuring in the following equations

(A210x
2 + A111x+ A012)Vxxx + 4(2A210x+ A111)Vxx + 12A210Vx = 0,

(3A300x
2 + 2A201x+ A102)Vxxx + 4(6A300x+ 2A201)Vxx + 36A300Vx = 0.

The other potential is obtained by solving the following equation

~2V ′(x)2 = 4V (x)3 + αV (x)2 + βV (x) + γ ≡ 4(V − a1)(V − a2)(V − a3), (2.2.10)

where α, β, γ, are real integration constants, and a1, a2, a3 are either all real or one of them

is real and the other two are complex conjugates. Depending on these constants, where

a1 6= a2 6= a3, and real, the finite and singular potentials are

V1 = (~ω)2k2sn2(ωx,k) , V2 = (~ω)2

sn2(ωx,k) .

If we have, e.g., a3 = a∗2 and =a2 6= 0, the obtained singular potential is

V3 = (~ω)2

2
(
cn2(ωx,k) + 1

) .
where sn(ωx,k) and cn(ωx,k) are Jacobi elliptic functions, and 0 ≤ k ≤ 1.

If some of the roots ai coincide, e.g., k = 1 in V1 we get the soliton potential

V = (~ω)2

cosh2(ωx)
.

Also, for k = 0 or k = 1 in V2 we get a singular nonperiodic or a periodic potential in the

form:

V = (~ω)2

sinh2(ωx)
, V = (~ω)2

sin2(ωx) .

The two algebraically independent integrals for all solutions of (2.2.10) are

Y = p2, X = {L3,p
2
1}+ {(σ − 3V )y,p1}+ {−σx+ 2xV +

∫
V (x)dx,p2}

with σ = a1 + a2 + a3.

2.2.2. Superintegrable systems with one third order and one second order inte-

gral

In this case, in the Hamiltonian H = 1
2(p2

1 + p2
2) + V (x,y), the potential V (x,y) allows the

separation of variables in Cartesian, polar, parabolic, or elliptic coordinates [63, 40].
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2.2.3. Third order superintegrable systems separable in Cartesian coordinates

The Hamiltonians that allow the separation of variables in Cartesian coordinates will be of

the form

H = 1
2(p2

1 + p2
2) + V1(x) + V2(y).

In (2.2.4) and (2.2.5), if we set V = V1(x) + V2(y), the determining equations will be the

following:

g1V1x + g2V2y = ~2

4
(
f1V1xxx + f4V2yyy + 8A300(xV2y − yV1x) + 2(A210V1x + A201V2y)

)
(g1)x = 3f1(y)V1x + f2(x,y)V2y

(g2)y = f3(x,y)V1x + 3f4(x)V2y

(g1)y + (g2)x = 2
(
f2(x,y)V1x + f3(x,y)V2y

)
We have

X = 1
2(p2

1 − p2
2) + V1(x)− V2(y)

as the second order integral of motion. The classical potentials which do not admit enough

first or second order integrals to make them superintegrable are

V = a(9x2 + y2), V = c1
√
x+ c2

√
y, V = ay + b

√
x,

V = ay2 + g(x), V = ay + f(x)

where g(x) and f(x) satisfy

(9g − ax2)(g − ax2)3 − 2d(3g + ax2)(g − ax2)− cx2 − d2 = 0

and

(f − bx)2f = d

with a, b, c, d, c1, c2 constants.

In the quantum case there are more such potentials. There are six potentials which are

expressed in terms of rational function, two by elliptic functions and five in terms of the

first, second and fourth Painlevé transcendents. The superintegrable potentials and their

third order integrals obtained by the above equations are presented in [47].
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2.3. Fourth order superintegrability

In 2011, S.Post and P.Winternitz published an article on superintegrable systems in E2 that

does not allow separation of variables neither in the quantum case nor in its classical limit

[91]. In this article, they consider a Hamiltonian with an integral of third order and an

integral of fourth order and construct a superintgerable nonseparable system.

Admitting a third order integral lead to the third order integral of the form (2.2.3) and the

determining equation in (2.2.4& 2.2.5 & 2.2.7). Since the potential does not allow separation

of variables the determining equations are difficult to solve. Here they make an Ansatz that

the potential is linear in y. In this case the potential and the third order integral in the

quantum case are

V (x,y) = α
y

x
2
3
− 5~2

72x2 ,

X = 3p2
1p2 + 2p3

2 + {9
2αx

1
3 ,p1}+ {3αy

x
2
3
− 5~2

24x2 ,p2}, (2.3.1)

with α ∈ R. The classical potential and integral are obtained in the limit ~→ 0.

Now we impose a fourth order integral to the system. Using the results of Proposition

(2.2.1) and considering that the leading term of the integral lies in the enveloping algebra of

Euclidean Lie algebra e(2) leads to the following form for integral [91, theorem3]

Y =
∑

j+k+l=4

Ajkl
2 {L

j
3,p

k
1p
l
2}+ 1

2({g1(x,y),p2
1}+ {g2(x,y),p1p2}+ {g3(x,y),p2

2}) + l(x,y),

(2.3.2)

where Ajkl are real constants and gi,i = 1,2,3, l are real functions of (x,y).

The relation [H,Y ] = 0 provides 7 determining equations that are given in Section 2 of our

first article [77].

The results for a nonseparable superintegrable system is presented in two Theorems [91,

Theorem1,Theorem2]. The system with the potential and the third order integral as in

(2.3.1) admits the fourth order integral of the form

Y = p4
1 + {2αy

x
2
3
− 5~2

36x2 ,p
2
1}+ {6αx 1

3 ,p1p2} − 2α2 (9x2 − 2y2)
x

4
3

− 5α~2y

9x 8
3

+ 25~4

1296x4 . (2.3.3)
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The classical analog of this system would be as follows

H = 1
2(p2

1 + p2
2) + α

y

x
2
3
,

X = 3p2
1p2 + 2p3

2 + 9αx 1
3p1 + 6αy

x
2
3
p2,

Y = p4
1 + 4αy

x
2
3
p2

1 + 12αx 1
3p1p2 − 2α2 (9x2 − 2y2)

x
4
3

.

(2.3.4)

The system in quantum case is the first known fourth order nonseparable superintegrable

system. However the classical case is already known.

It is a special case of

V = 1
x

2
3

(a+ by + c(4x2 + 3y2)). (2.3.5)

which belongs to the family of potentials obtained by Drach in 1935 [30] (the constant a

can be translated away for b 6= 0). For c 6= 0 (2.3.5) does not allow a fourth-order integral,

though it still might be superintegrable.
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Abstract. A study is presented of two-dimensional superintegrable systems separating in Cartesian

coordinates and allowing an integral of motion that is a fourth order polynomial in the momenta. All

quantum mechanical potentials that do not satisfy any linear differential equation are found. They do

however satisfy nonlinear ODEs. We show that these equations always have the Painlevé property and

integrate them in terms of known Painlevé transcendents or elliptic functions.

Keywords: Fourth order integral of motion, Painlevé transcendent, superintegrable system

3.1. Introduction

This article is part of a general program the aim of which is to derive, classify, and solve the

equations of motion of superintegrable systems with integrals of motion that are polynomials

of finite order N in the components of linear momentum. So far, we are concentrating on

superintegrable systems with Hamiltonians of the form

H = 1
2(p2

1 + p2
2) + V (x,y), (3.1.1)

in two dimensional Euclidean space E2. In classical mechanics, p1 and p2 are the canonical

momenta conjugate to the Cartesian coordinates x and y. In quantum mechanics, we have

p1 = −i~∂x, p2 = −i~∂y, L3 = xp2 − yp1. (3.1.2)

The angular momentum L3 is introduced because it will be needed below.

We recall that a superintegrable system has more integrals of motion than degrees of freedom

(see [79] for a recent review with an extensive list of references). More precisely, a classical

Hamiltonian system with n degrees of freedom is integrable if it allows n integrals of motion

{X1,X2,...Xn} (including the Hamiltonian) that are in involution, are well defined functions

on the phase space and are functionally independent. It is superintegrable if further func-

tionally independent integrals exist, {Y1, Y2, ...,Yk} with 1 ≤ k ≤ n − 1. The value k = 1

corresponds to "minimal superintegrability," k = n − 1 to "maximal superintegrability." In

quantum mechanics, the integrals are operators in the enveloping algebra of the Heisenberg

algebra (or in some generalization of the enveloping algebra). In this article we assume that
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all integrals are polynomials in the momenta of the order 1 ≤ j ≤ N, and at least one of

them is of order N. We require the integrals to be algebraically independent, i.e no Jordan

polynomial (completely symmetric) formed out of the n + k integrals of motion can vanish

identically.

In classical mechanics, all bounded trajectories in a maximally superintegrable system are

closed [82], and the motion is periodic. In quantum mechanics, it has been conjectured

by Tempesta, Turbiner and Winternitz [98] that all maximally superintegrable systems are

exactly solvable. This means that the bound states spectra can be calculated algebraically

and their wave functions expressed as polynomials in some appropriate variables (multiplied

by an overall gauge factor).

The best known superintegrable systems in En, n ≥ 2, correspond to the Kepler-Coulomb

potential V = α
r
(see [39, 5]) and the isotropic harmonic oscillator V = αr2 (see [55, 81]).

A sizable recent literature on superintegrable systems has been published. It includes the-

oretical studies of such systems in Riemannian and pseudo-Riemannian spaces of arbitrary

dimensions and with integrals of arbitrary order. The potentials are either scalar ones, or

may involve vector potentials, or particles with spin [14, 13, 28, 51, 52, 86, 85, 94, 64,

99]. For recent applications of superintegrable systems in such diverse fields as particle

physics, general relativity, statistical physics and the theory of orthogonal polynomials see

[27, 37, 38, 44, 57, 62, 80, 89].

According to Bertrand’s theorem, (see [6, 45]), the only spherically symmetric potentials

(in E3) for which all bounded trajectories are closed are precisely 1
r
and ω2r2. Hence when

searching for further superintegrable systems, we must go beyond spherically symmetrical

potentials.

A systematic search for second order superintegrable systems in E2 was started by Friš,

Mandrosov, Smorodinsky, Uhlíř and Winternitz [40] and in E3 by Makarov, Smorodinsky,

Valiev and Winternitz [63] , and Evans [34, 36]. A relation between second order super-

integrability and multiseparability of the Schrödinger or Hamilton-Jacobi equation was also

established in these articles.

Most of the subsequent work was devoted to second order superintegrability (X and Y polyno-

mials of order 2 in the momenta) and is reviewed in an article by Miller, Post and Winternitz

[79]. The study of third order superintegrability (X of order 1 or 2, Y of order 3) started in
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2002 by Gravel and Winternitz [48, 47], and new features were discovered. Third order in-

tegrals in classical mechanics in a complex plane were studied earlier by Drach and he found

10 such integrable systems [30]. The Drach systems were more recently studied by Rañada

[93] and Tsiganov [101] who showed that 7 of the 10 systems are actually reducible. These

7 systems are second order superintegrable and the third order integral is a commutator (or

Poisson commutator) of two second order ones.

The determining equations for the existence of an Nth order integral of motion in two-

dimensional Euclidean space were derived by Post and Winternitz in [92]. The Planck

constant ~ enters explicitly in the quantum case. The classical determining equations are

obtained in the limit ~ → 0. The classical and quantum cases differ for N ≥ 3 and in

the classical case the determining equations are much simpler. The determining equations

constitute a system of partial differential equations (PDE) for the potential V (x,y) and for

the functions fab(x,y) multiplying the monomials pa1pb2 in the integral of motion. If V (x,y)

is given, the PDEs for fab(x,y) are linear. If we are searching for potentials that allow an

integral of order N the set of PDEs is nonlinear. A linear compatibility condition for the

potential V (x,y) alone was derived in [92]. It is an Nth order PDE with polynomial coeffi-

cients also of order up to N.

An interesting phenomenon was observed when studying third order superintegrable quan-

tum systems in E2. Namely, when the potential allows a third order integral and in addition

a second order one (that leads to separation of variables in either Cartesian or polar coordi-

nates) "exotic potentials" arise, (see [48, 47, 100]). These are potentials that do not satisfy

any linear differential equation but instead satisfy nonlinear ordinary differential equations

(ODEs). It turned out that all the ODEs obtained in the quantum case have the Painlevé

property. That means that the general solution of these equations has no movable critical

singularities (see [58, 87, 43, 19, 20]). It can hence be expanded into a Laurent series with

a finite number of negative powers. The separable potentials were then expressed in terms

of elliptic functions, or known (second order) Painlevé transcendents (i.e. the solutions of

the Painlevé equations [58, page 345]).

We conjecture that this is a general feature of quantum superintegrable systems in two-

dimensional Euclidean spaces. Namely, that if they allow an integral of motion of order

N ≥ 3 and also allow the separation of variables in Cartesian or polar coordinates, they will
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involve potentials that are solutions of ordinary differential equations that have the Painlevé

property. All linear equations have this property by default, they have no movable singu-

larities at all. Exotic potentials, on the other hand, are solutions of a genuinely nonlinear

ODEs that have the Painlevé property.

The specific aim of this article is to test the above conjecture for superintegrable systems

allowing one fourth order integral of motion and one second order one that leads to the

separation of variables in Cartesian coordinates. We will determine all such exotic potentials

and obtain their explicit expressions.

In Section 2, we present the set of 6 determining equations for the fourth order integral YL as

well as a linear compatibility condition for 4 of these equations. This is a fourth order linear

PDE for the potential V (x,y). In Section 3, we impose the existence of an additional second

order "Cartesian" integral that restricts the form of the potential to V (x,y) = V1(x) + V2(y).

The linear compatibility condition then reduces to two linear ODEs for V1(x) and two for

V2(y). Section 4 is an auxiliary one. In it we review same basic facts about nonlinear equa-

tions with the Painlevé property that will be needed below (they come mainly from the

references [9, 10, 11, 12, 17, 15, 23, 25, 41]). The main original results of this paper

are contained in Section 5. We impose that the linear equation for at least one of the func-

tions V1(x) or V2(y) be satisfied trivially (otherwise the potential would not be exotic.) This

greatly simplifies the form of the integral Y (6 out of 10 free constants must vanish). The

remaining linear and nonlinear determining equations can be solved exactly and completely.

As expected, we find that the potentials satisfy nonlinear equations that pass the Painlevé

test introduced by Ablowitz, Ramani, and Segur [1] (see also Kowalevski [60] and Gambier

[43]). Using the results of [17, 12, 25, 23], we integrate these 4th order ODEs in terms of

the original 6 Painlevé transcendents, elliptic functions, or solutions of linear equations. In

Section 6, we study the classical analogs of exotic potentials. They satisfy first order ODEs

that are polynomials of second degree in the derivative. Section 7 is devoted to conclusions

and future outlook.
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3.2. Determining equations and linear compatibility condition for

a fourth order integral

The determining equations for fourth-order classical and quantum integrals of motion were

derived earlier by Post and Winternitz [91] and they are a special case of Nth order ones

given in [92]. In the quantum case, the integral is Y (4) = Y :

Y =
∑

j+k+l=4

Ajkl
2 {L

j
3,p

k
1p
l
2}+ 1

2({g1(x,y),p2
1}+ {g2(x,y),p1p2}+ {g3(x,y),p2

2}) + l(x,y),

(3.2.1)

where Ajkl are real constants, the brackets {.,.} denote anti-commutators and the Hermit-

ian operators p1,p2 and L3 are given in (3.1.2). The functions g1(x,y), g2(x,y), g3(x,y), and

l(x,y) are real and the operator Y is self adjoint. Equation (3.2.1) is also valid in classical

mechanics where p1, p2 are the canonical momenta conjugate to x and y, respectively (and

the symmetrization becomes irrelevant).

The commutation relation [H,Y ] = 0 with H in (3.1.1) provides the determining equations

g1,x = 4f1Vx + f2Vy (3.2.2a)

g2,x + g1,y = 3f2Vx + 2f3Vy (3.2.2b)

g3,x + g2,y = 2f3Vx + 3f4Vy (3.2.2c)

g3,y = f4Vx + 4f5Vy, (3.2.2d)
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and

`x =2g1Vx + g2Vy + ~2

4

(
(f2 + f4)Vxxy − 4(f1 − f5)Vxyy − (f2 + f4)Vyyy

+ (3f2,y − f5,x)Vxx − (13f1,y + f4,x)Vxy − 4(f2,y − f5,x)Vyy

− 2(6A400x
2 + 62A400y

2 + 3A301x− 29A310y + 9A220 + 3A202)Vx

+ 2(56A400xy − 13A310x+ 13A301y − 3A211)Vy
)
, (3.2.3a)

`y =g2Vx + 2g3Vy + ~2

4

(
− (f2 + f4)Vxxx + 4(f1 − f5)Vxxy + (f2 + f4)Vxyy

+ 4(f1,y − f4,x)Vxx − (f2,y + 13f5,x)Vxy − (f1,y − 3f4,x)Vyy

+ 2(56A400xy − 13A310x+ 13A301y − 3A211)Vx

− 2(62A400x
2 + 6A400y

2 + 29A301x− 3A310y + 9A202 + 3A220)Vy
)
. (3.2.3b)

The quantities fi, i = 1,2,..,5 are polynomials, obtained from the highest order term in the

condition [H,Y ] = 0, and explicitly we have

f1 = A400y
4 − A310y

3 + A220y
2 − A130y + A040

f2 = −4A400xy
3 − A301y

3 + 3A310xy
2 + A211y

2 − 2A220xy − A121y + A130x+ A031

f3 = 6A400x
2y2 + 3A301xy

2 − 3A310x
2y + A202y

2 − 2A211xy + A220x
2 − A112y + A121x+ A022

f4 = −4A400yx
3 + A310x

3 − 3A301x
2y + A211x

2 − 2A202xy + A112x− A103y + A013

f5 = A400x
4 + A301x

3 + A202x
2 + A103x+ A004.

(3.2.4)

For a known potential the determining equations (3.2.2) and (3.2.3) form a set of 6 linear

PDEs for the functions g1,g2,g3, and l. If V is not known, we have a system of 6 nonlinear

PDEs for gi,l and V . In any case the four equations (3.2.2) are a priori incompatible. The

compatibility equation is a fourth-order linear PDE for the potential V (x,y) alone, namely

∂yyy(4f1Vx+f2Vy)−∂xyy(3f2Vx+2f3Vy)+∂xxy(2f3Vx+3f4Vy)−∂xxx(f4Vx+4f5Vy) = 0. (3.2.5)

This is a special case of the Nth order linear compatibility equation obtained in [92]. We

see that the equation (3.2.5) does not contain the Planck constant and is hence the same

in quantum and classical mechanics (this is true for any N [92]). The difference between
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classical and quantum mechanics manifests itself in the two equations (3.2.3). They greatly

simplify in the classical limit ~ → 0. Further compatibility conditions on the potential

V (x,y) can be derived for the systems (3.2.2) and (3.2.3), they will however be nonlinear.

We will not go further into the problem of the fourth order integrability of the Hamiltonian

(3.1.1). Instead, we turn to the problem of superintegrability formulated in the Introduction.

3.3. Potentials separable in Cartesian coordinates

We shall now assume that the potential in the Hamiltonian (3.1.1) has the form

V (x,y) = V1(x) + V2(y). (3.3.1)

This is equivalent to saying that a second order integral exists which can be taken in the

form

X = 1
2(p2

1 − p2
2) + V1(x)− V2(y). (3.3.2)

Equivalently, we have two one dimensional Hamiltonians

H1 = p2
1

2 + V1(x), H2 = p2
2

2 + V2(y). (3.3.3)

We are looking for a third integral of the form (3.2.1) satisfying the determining equations

(3.2.2) and (3.2.3). This means that we wish to find all potentials of the form (3.3.1) that

satisfy the linear compatibility condition (3.2.5). Once (3.3.1) is substituted, (3.2.5) is no

longer a PDE and will split into a set of ODEs which we will solve for V1(x) and V2(y).

The task thus is to determine and classify all potentials of the considered form that allow the

existence of at least one fourth order integral of motion. As in every classification we must

avoid triviality and redundancy. Since H1 and H2 of (3.3.3) are integrals, we immediately

obtain 3 "trivial" fourth order integrals, namely H2
1 , H

2
2 , and H1H2. The fourth order integral

Y of equation (3.2.1) can be simplified by taking linear combination with polynomials in the

second order integrals H1 and H2 of (3.3.3):

Y → Y ′ = Y + a1H
2
1 + a2H

2
2 + a3H1H2 + b1H1 + b2H2 + b0, ai, bi ∈ R. (3.3.4)

Using the constants a1,a2 and a3 we set

A004 = A040 = A022 = 0, (3.3.5)
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in the integral Y we are searching for. At a later stage we will use the constants b0,b1 and

b2 to eliminate certain terms in g1, g3 and l.

Other trivial fourth order integrals are more difficult to identify. They arise whenever the

potential (3.3.1) is lower order superintegrable i.e. in addition to (3.3.2), allows another

second or third order integral. In such a case, the fourth order integral may be a commutator

(or Poisson commutator) of two lower order ones. Such cases must be weeded out a posteriori.

In our case this is actually quite simple. The exotic potentials separating in Cartesian

coordinates and allowing an additional third order integral are listed as Q16−Q20 in [47].

For 4 of them the leading terms in the third order integral Y (3) has the form ap3
1 + bp3

2 or

ap3
1 + bp2

1p2. Hence commuting Y (3) with a second order integral H1 can not give rise to a

fourth order integral.

The remaining case is Q18 with

V (x,y) = a(y2 + x2)− 2 4

√
a3

2 ~2xP4(− 4

√
2a
~2 x) +

√
a

2~(εP ′4(− 4

√
2a
~2 x) + P 2

4 (− 4

√
2a
~2 x)), ε = ±1,

(3.3.6)

and integral

Y (3) = {L3,p
2
1}+ {ax2y − 3yV1,p1} −

1
2a{

~2

4 V1xxx + (ax2 − 3V1)V1x,p2}.

Commuting Y (3) with H1 we obtain a fourth order integral

Y (4) = 2p3
1p2 + ... (3.3.7)

Hence the potential (3.3.6) must appear (and does appear) in our present study, but the

existence of (3.3.7) is a "trivial" consequence of third order superintegrability. However, an

integral of the type (3.3.7) may appear for more general potentials than (3.3.6).

Two potentials will be considered equivalent if and only if they differ at most by translations

of x and y.

Substituting (3.3.1) into the compatibility condition (3.2.5), we obtain a linear condition,

31



relating the functions V1(x) and V2(y)

(−60A310 + 240yA400)V ′1(x) + (−20A211 + 60yA301 − 60xA310 + 240xyA400)V ′′1 (x)+

(−5A112 + 10yA202 − 10xA211 + 30xyA301 − 15x2A310 + 60x2yA400)V (3)
1 (x)+

(−A013 + yA103 − xA112 + 2xyA202 − x2A211 + 3x2yA301 − x3A310 + 4x3yA400)V (4)
1 (x)+

(−60A301 − 2140xA400)V ′2(y) + (20A211 − 60yA301 + 60xA310 − 240xyA400)V ′′2 (y)+

(−5A121 + +10yA211 − 10xA220 − 15y2A301 + 30xyA310 − 60xy2A400)V (3)
2 (y)+

(A031 − yA121 + xA130 + y2A211 − 2xyA220 − y3A301 + 3xy2A310 − 4xy3A400)V (4)
2 (y) = 0.

(3.3.8)

It should be stressed that this is no longer a PDE, since the unknown functions V1(x) and

V2(y) both depend on one variable only.

We differentiate (3.3.8) twice with respect to x and thus eliminate V2(y) from the equation.

The resulting equation for V1(x) splits into two linear ODEs (since the coefficients contain

terms proportional to y0, and y1), namely

210A310V
(3)

1 (x) + 42(A211 + 3A310x)V (4)
1 (x) + 7(A112 + 2A211x+ 3A310x

2)V (5)
1 (x)

+ (A013 + A112x+ A211x
2 + A310x

3)V (6)
1 (x) = 0,

(3.3.9a)

840A400V
(3)

1 (x) + (126A301 + 504A400x)V (4)
1 (x) + 14(A202 + 3A301x+ 6A400x

2)V (5)
1 (x)

+ (A103 + 2A202x+ 3A301x
2 + 4A400x

3)V (6)
1 (x) = 0. (3.3.9b)

Similarly, differentiating (3.3.8) with respect to y we obtain two linear ODEs for V2(y),

210A301V
(3)

2 (y)− 42(A211 − 3A301y)V (4)
2 (y) + 7(A121 − 2A211y + 3A301y

2)V (5)
2 (y)

− (A031 − A121y + A211y
2 − A301y

3)V (6)
2 (y) = 0,

(3.3.10a)

840A400V
(3)

2 (y)− (126A310 − 504A400y)V (4)
2 (y) + 14(A220 − 3A310y + 6A400y

2)V (5)
2 (y)

− (A130 − 2A220y + 3A310y
2 − 4A400y

3)V (6)
2 (y) = 0. (3.3.10b)
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The compatibility condition `xy = `yx, for (3.2.3a) and (3.2.3b) implies

− g2V
′′

1 (x) + g2V
′′

2 (y) + (2g1y − g2x)V ′1(x) + (g2y − 2g3x)V ′2(y)+

~2

4

(
(f2 + f4)(V (4)

1 − V (4)
2 ) + (f2x − 4f ′1(y))V (3)

1 + (4f ′5(x)− 5f2y − f4y)V (3)
2

+ (3f2yy + 4f4xx + 6A211 − 26A301y + 26A310x− 112A400xy)V ′′1

− (4f2yy + 3f4xx + 6A211 − 26A301y + 26A310x− 112A400xy)V ′′2

+ (84A310 − 360A400y)V ′1 + (84A310 + 360A400y)V ′2
)

= 0. (3.3.11)

This equation, contrary to (3.3.9) and (3.3.10), is nonlinear since it still involves the

unknown functions g1, g2, and g3, (in addition to V1(x) and V2(y)).

Our next task is to solve equations (3.3.9) and (3.3.10) and ultimately also (3.3.11) and

the other determining equations. The starting point is given by the linear compatibility

conditions (3.3.9) and (3.3.10) for V1(x) and V2(y). These are third order linear ODEs for

the functions W1(x) = V
(3)

1 (x), and W2(y) = V
(3)

2 (y). They have polynomial coefficients

and are easy to solve. Once the potentials are known, the whole problem becomes linear.

However, the coefficients Ajkl (in the integral (3.2.1) and in (3.3.9) and (3.3.10)) may be

such that the equations (3.3.9) or (3.3.10) vanish identically. Then the equations provide

no information. This may lead to exotic potentials not satisfying any linear equation at all.

In a previous study [48, 47] involving third order integrals, it was shown that all exotic

potentials can be expressed in terms of elliptic functions or Painlevé transcendents. Here

we will show that the same is true for integrals of order 4.

3.4. ODEs with the Painlevé property

In order to study exotic potentials V (x,y) = V1(x) + V2(y), allowing fourth order integrals

of motion in quantum mechanics we must first recall some known results on Painlevé type

equations.
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3.4.1. The Painlevé property, Painlevé test, and the classification of Painlevé

type equations

An ODE has the Painlevé property if its general solution has no movable branch points, (i.e.

branch points whose location depends on one or more constants of integration). We shall

use the Painlevé test in the form introduced in [1]. For a review and further developments

see Conte, Fordy, and Pickering [18], Conte [19], Conte and Musette [20, 21], Grammaticos

and Ramani [46], Hone [56], Kruskal and Clarkson [61]. Passing the test is a necessary

condition for having the Painlevé property. We shall need it only for equations of the form

W (n) = F (y,W,W ′,W ′′,...,W (n−1)), (3.4.1)

where F is polynomial in W,W ′,W ′′,...,W (n−1) and rational in y. The general solution must

have the form of a Laurent series with a finite number of negative power terms

W = Σ∞k=0dk(y − y0)k+p, d0 6= 0, (3.4.2)

satisfying the requirements

(1) The constant p is a negative integer.

(2) The coefficients dk satisfy a recursion relation of the form

P (k)dk = φk(y0,d0,d1,...,dk−1),

where P (k) is a polynomial that has n − 1 distinct nonnegative integer zeros. The

values of kj for which we have P (kj) = 0 are called resonances and the values of dk
for k = kj are free parameters. Together with the position y0 at the singularity we

thus have n free parameters in the general solution (3.4.2).

(3) A compatibility condition, also called the resonance condition:

φk(y0,d0,d1,...,dk−1) = 0,

must be satisfied identically in y0 and in the values of dkj for all kj; j = 1,2,...,n− 1.

This test is a generalization of the Frobenius method used to study fixed singularities of linear

ODEs (for the Frobenius method see e.g. the book by Boyce and Diprima [7]). Passing the

Painlevé test is a necessary condition only. To make it sufficient one would have to prove that

the series (3.4.2) has a nonzero radius of convergence and that the n free parameters can be
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used to satisfy arbitrary initial conditions. A more practical procedure that we shall adopt

is the following. Once a nonlinear ODE passes the Painlevé test one can try to integrate it

explicitly. The Riccati equation is the only first order and first degree equation which has

the Painlevé property. A first order algebraic differential equation of degree n ≥ 1 has the

form

A0(W,y)W ′n + A1(W,y)W ′n−1 + ...+ An(W,y) = 0, (3.4.3)

where Ai are polynomials in W . When all solutions of such equation are free of movable

branch points, the degree of polynomials Ai must satisfy deg(Ai) ≤ 2i for i = 0,1,2,...,n. The

necessary and sufficient conditions for such equation to have the Painlevé property is given

by the Fuchs’ theorem (Theorem1.1,[15, page 80],proof in [58, page 304-311]). Painlevé type

differential equations of the first order and nth degree have been studied in [41], [58, chapter

13]. All such equations are either reducible to linear equations or solvable in terms of elliptic

functions. Painlevé type second order first degree equation are of the from

W ′′ = F (W ′,W,y),

where F is a polynomial of degree at most 2 in W ′, with coefficients that are rational in

W , and analytic in y. They were classified by Painlevé and Gambier, (see [58, 26]). They

can be solved in terms of solutions of linear equations, elliptic functions or in terms of the 6

irreducible Painlevé transcendents P1, P2,...,P6.

Bureau initiated a study of ODEs of the form

A(W ′,W,y)W ′′2 +B(W ′,W,y)W ′′ + C(W ′,W,y) = 0,

where A, B and C are polynomials in W, and W ′ with coefficients analytic in y, [12]. This

work was continued by Cosgrove and Scoufis [25] who constructed all Painlevé type ODEs

of the form

W ′′2 = F (W ′,W,y),

where F is rational in W ′, and W and analytic in y. They also succeeded in integrating all

of these equations in terms of known functions (including the six original Painlevé transcen-

dents).

We will need to integrate equations of the form (3.4.1) for n = 3. Chazy in [17] studied the
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Painlevé type third order differential equations in the polynomial class and proved that they

have the form

W ′′′ = aWW ′′+bW ′2+cW 2W ′+dW 4+A(y)W ′′+B(y)WW ′+C(y)W ′+D(y)W 3+E(y)W 2+F (y)W+G(y),

(3.4.4)

where a,b,c, and d are certain rational or algebraic numbers, and the remaining coefficients

are locally analytic functions of y.

Chazy and Bureau have determined all cases for the reduced equation, obtained by using

the α-test, (y,W )→ (y0 + αy,W
α

) when α→ 0, [17]. Chazy classified the reduced equations

into 13 classes, denoted by Chazy class I-XIII. The list of these equations is in [23, page

181]. Each Chazy class is a conjugacy class of differential equations under transformations

of the form

U(Y ) = λ(y)W + µ(y), Y = φ(y).

In Section 5, we will encounter some fourth order differential equations, but we always

succeed in integrating them to third order ones. We then transform to a Chazy-I equation.

Cosgrove in [23] introduces the canonical form for Chazy-I equation as

W ′′′ =− f ′(y)
f(y)W

′′ − 2
f 2(y)

(
3k1y(yW ′ −W )2 + k2(yW ′ −W )(3yW ′ −W ) + k3W

′(3yW ′ − 2W )

+ k4(W ′)2 + 2k5y(yW ′ −W ) + k6(2yW ′ −W ) + 2k7W
′ + k8y + k9

)
,

(3.4.5)

where f(y) = k1y
3 + k2y

2 + k3y + k4; Equation (3.4.5) admits the first integral,

(W ′′)2 =− 4
f 2(y)

(
k1(yW ′ −W )3 + k2W

′(yW ′ −W )2 + k3(W ′)2(yW ′ −W ) + k4(W ′)3 + k5(yW ′ −W )2

+ k6W
′(yW ′ −W ) + k7(W ′)2 + k8(yW ′ −W ) + k9W

′ + k10
)
,

(3.4.6)

where k10 is the constant of integration. In [25], Cosgrove and Scoufis give a complete

classification of Painlevé type equations of second order and second degree. There are six

classes of them, denoted by SD-I, SD-II,...,SD-VI. The equation (3.4.6), which is introduced

as SD-I equation, splits into six canonical subcases (SD-Ia, SD-Ib, SD-Ic, SD-Id, SD-Ie, and

SD-If). The solution of SD-Ia is expressed in terms of the sixth Painlevé transcendent. Here,
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we do not get any equation of this form. The solutions for the SD-Ib is expressed in terms

of either the third or fifth Painlevé transcendent. The solutions of SD-1c, SD-Id, SD-Ie, and

SD-If are, respectively, expressed in terms of P4, P2, P1 and elliptic function [25, page 66].

These equations and their solutions appear in Section 5.

3.5. Search for exotic potentials in the quantum case

3.5.1. General comments

Let us first investigate the cases that may lead to "exotic potentials", that is potentials which

do not satisfy any linear differential equations. That means that either (3.3.9) or (3.3.10)(or

both) must be satisfied trivially. The linear ODEs (3.3.9) are satisfied identically if we have

A400 = A310 = A301 = A211 = A202 = A112 = A103 = A013 = 0. (3.5.1)

The linear ODEs (3.3.10) are satisfied identically if we have

A400 = A310 = A301 = A211 = A220 = A121 = A130 = A031 = 0. (3.5.2)

If (3.5.1) and (3.5.2) both hold then the only fourth order integrals are the trivial ones

H2
1 , H

2
2 and H1H2. Their existence does not assure superintegrability, it is simply a

consequence of second order integrability. In other words, no fourth order superintegrable

systems, satisfying (3.5.1) and (3.5.2) simultaneously, exist. This means that at most one

of the functions V1(x) or V2(y) can be "exotic". The other one will be a solution of a linear

ODE. For third order integrals both V1(x) and V2(y) could be exotic [47].

3.5.2. Linear equations for V2(y) satisfied trivially

3.5.2.1. General setting and the three possible forms of V1(x)

In this case, (3.5.2) is valid and (3.5.1) not. The leading-order term for the nontrivial fourth

order integral has the form

YL = A202{L2
3, p

2
2}+ A112{L3, p1p

2
2}+ A103{L3, p

3
2}+ 2A013p1p

3
2. (3.5.3)
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Let us classify the integrals (3.5.3) under translations. The three classes are:

I.A202 6= 0, A112 = A103 = 0.

II.A202 = 0, A2
112 + A2

103 6= 0, A013 = 0,

IIa.A103 6= 0,

IIb.A103 = 0, A112 6= 0.

III.A202 = A112 = A103 = 0, A013 6= 0.

(3.5.4)

The functions fi in (3.2.4) reduce to

f1 = f2 = 0,

f3(y) = A202y
2 − A112y,

f4(x,y) = −2A202xy + A112x− A103y + A013,

f5(x) = A202x
2 + A103x. (3.5.5)

Let us now extract all possible consequences from the determining equations (3.2.2). Using

separability (3.3.1) we obtain

g1(x,y) =G1(y),

g2(x,y) =
(
−G′1(y) + 2(A202y

2 − A112y)V ′2(y)
)
x+G2(y),

g3(x,y) =2(A202y
2 − A112y)V1(x) + 1

2x(−10A202xy + 5A112x− 6A103y + 6A013)V ′2(y)

− x2(A202y
2 − A112y)V ′′2 (y) + 1

2x
2G′′1(y)− xG′2(y) +G3(y). (3.5.6)

The functions that remain to be determined are V1(x),V2(y),G1(y),G2(y),G3(y), and l(x,y).

So far we have no information on V2(y), since equations (3.3.10) are satisfied trivially. The

potential V1(x) must satisfy (3.3.9a) and (3.3.9b).

Let us substitute (3.5.5) and (3.5.6) into (3.2.2d). We obtain

(4A202y − 2A112)V1 + (2A202xy − A112x+ A103y − A013)V ′1 − (9A202x
2 + 7A103x)V ′2

− (7A202x
2y − 7

2A112x
2 + 3A103xy − 3A013x)V ′′2 − (A202x

2y2 − A112x
2y)V (3)

2

+G′3(y)− xG′′2(y) + 1
2x

2G
(3)
1 (y) = 0. (3.5.7)
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Differentiating (3.5.7) three times with respect to x and requiring that terms proportional

to y and independent of y vanish separately, we obtain two equations for V1(x) namely

5A112V
(3)

1 (x) + (A013 + A112x)V (4)
1 (x) = 0, (3.5.8a)

10A202V
(3)

1 (x) + (A103 + 2A202x)V (4)
1 (x) = 0. (3.5.8b)

(They replace equations (3.3.9)). These two equations imply V (3)
1 = V

(4)
1 = 0 unless we have

A112A103 − 2A202A013 = 0. (3.5.9)

If (3.5.9) is not satisfied, the only solution of (3.5.8) is V1(x) = c0 +c1x+c2x
2.We can always

put c0 = 0. If c2 6= 0 we can translate x to set c1 = 0. Thus, with no loss of generality we

can in this case put

V
(a)

1 (x) = c1x+ c2x
2; c1c2 = 0. (3.5.10)

This case will be investigated separately below in the section (3.5.2.3).

Now let us assume that (3.5.9) is satisfied and consider the 3 cases in (3.5.4) separately.

I. A202 6= 0, A112 = A103 = 0, YL = A202{L2
3,p

2
2}.

The condition (3.5.9) implies A013 = 0 and from (3.5.8) we obtain

V
(b)

1 (x) = c−2

x2 + c1x+ c2x
2; c−2 6= 0. (3.5.11)

For c−2 = 0, V (b)
1 reduces to the case V (a)

1 of (3.5.10) .

II. A202 = 0, A2
112 + A2

103 6= 0, A013 = 0.

The condition (3.5.9) implies A112A103 = 0, so we have 2 subcases

IIa. A103 6= 0, A112 = 0, YL = A103{L3,p
3
2}.

The solution for (3.5.8) is

V
(c)

1 (x) = c1x+ c2x
2 + c3x

3,

however (3.5.7) implies c3 = 0. So in this case V (c)
1 is reduced to V (a)

1 .

IIb. A103 = A013 = 0, A112 6= 0, YL = A112{L3,p1p
2
2}.

The potential V1(x) = V
(b)

1 (x) and satisfies (3.5.11).
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III. A202 = A112 = A103 = 0, A013 6= 0, YL = 2A013p1p
3
2.

The potential is V1(x) = V
(a)

1 (x) of (3.5.10).

Let us now return to the determining equations (3.2.3) and their compatibility condition

(3.3.11). We substitute (3.5.5) and (3.5.6) into (3.3.11) and obtain

3G′1(y)V ′1 + 3(G′2(y)− xG′′1(y))V ′2 + 6(A112y − A202y
2)V ′1V ′2

+ (xG′1(y)−G2(y))(V ′′1 − V ′′2 ) + 6(−A013 + A103y − 2A112x+ 4A202xy)(V ′2)2

+ 2x(A112y − A202y
2)V ′2V ′′1 + 8(A202xy

2 − A112xy)V ′2V ′′2

+ ~2

4

(
(5A112 − 10A202y)V (3)

1 + (5A103 + 10A202x)V (3)
2

+ (2A202xy − A112x+ A103y − A013)(V (4)
2 − V (4)

1 )
)

= 0. (3.5.12)

So far we have identified possible forms of the potential V1(x) in the case when the linear

equations (3.3.10) for V2(y) are satisfied trivially. Now we shall consider the two classes of

potentials V a
1 , and V b

1 separately and obtain nonlinear ODEs for V2(y). Our main tool for

solving these nonlinear ODEs will be singularity analysis. More precisely, we will show that

these equations always pass the Painlevé test. The same was true in the case of third order

integrals of motion. It was shown that the ODEs actually have the Painlevé property and

they were solved in terms of known Painlevé transcendents, or elliptic functions [47, 48].

We will now show that the same is true in this case.

We define the function

W (y) =
∫
V2dy, (3.5.13)

and derive ODEs for W (y). Since the potential V2(y) is defined up to a constant, two

integrals W1(y) and W2(y) will be considered equivalent if they satisfy

W2(y) = W1(y) + αy + β; α, β ∈ R (3.5.14)

The ODEs for W (y) will a priori be fourth order nonlinear ones but we will always be able

to integrate them once.
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3.5.2.2. The potential V (b)
1 (x) = c−2

x2 + c1x+ c2x
2, c−2 6= 0

The potential V (b)
1 provides interesting results. It occurs in cases I, and IIb of (3.5.4). Solving

(3.5.7) and (3.5.12) and using (3.3.4) we obtain

G1(y) =2y(yA202 − A112)W ′ + (2yA202 − A112)W − 2
3c2A202y

4 + 4
3c2A112y

3 + a2y
2 + a1y,

(3.5.15)

where W (y) is defined in (3.5.13) and moreover we obtain c1 = G2(y) = G3(y) = 0. The

function W (y) satisfies the ODE
1
4~

2(2A202y − A112)W (4) + 2~2A202W
(3) − 3(2A202y − A112)W ′W ′′

− 2A202WW ′′ + (8
3c2A202y

3 − 4c2A112y
2 − 2a2y − a1)W ′′ − 8A202W

′2

+ 4(4c2A202y
2 − 4c2A112y − a2)W ′ + 8c2(2A202y − A112)W

− 16
3 c

2
2A202y

4 + 32
3 c

2
2A112y

3 + 8a2c2y
2 + 8a1c2y + k = 0, (3.5.16)

where k is an integration constant.

Case I. A202 6= 0, A112 = 0;YL = A202{L2
3,p

2
2}.

Let A202 = 1. From (3.5.16) and (3.5.14) we obtain
1
2~

2yW (4) + 2~2W (3) − 6yW ′W ′′ − 2WW ′′ + 8
3c2y

3W ′′ − 8W ′2 + 16c2y
2W ′

+ 16c2yW −
16
3 c

2
2y

4 + k1 = 0, (3.5.17)

integrating once we get

~2y2W (3) + 2~2yW ′′ − 6y2W ′2 − 4yWW ′ + (16
3 c2y

4 − 2~2)W ′ + 2W 2 + 32
3 c2y

3W

− 16
9 c

2
2y

6 + k1y
2 + k2 = 0.

(3.5.18)

The equation (3.5.18) passes the Painlevé test. Substituting the Laurent series (3.4.2) into

(3.5.18), we find p = −1. The resonances are r = 1, and r = 6, and we obtain d0 = −~2. The

constants d1 and d6 are arbitrary, as they should be. We now proceed to integrate (3.5.18).

By the following transformation

Y = y2, U(Y ) = − y

2~2W (y) + c2

6~2y
4 + 1

16 ,
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we transform (3.5.18) to

Y 2U (3) = −2(U ′(3Y U ′ − 2U)− c2

~2Y (Y U ′ − U) + k3Y + k4)− Y U ′′, (3.5.19)

where k3 = −2k1−12c2~2

64~4 , k4 = −k2
32~4 . The equation (3.5.19) is a special case of the Chazy class

I equation. It admits the first integral

Y 2U ′′2 = −4(U ′2(Y U ′ − U)− c2

2~2 (Y U ′ − U)2 + k3(Y U ′ − U) + k4U
′ + k5), (3.5.20)

where k5 is the integration constant. The equation is the canonical form SD-I.b in [25, page

65-73]. When c2 and k3 are both nonzero the solution is

U =1
4( 1
P5

( Y P ′5
P5 − 1 − P5)2 − (1−

√
2α)2(P5 − 1)− 2βP5 − 1

P5
+ γY

P5 + 1
P5 − 1 + 2δ Y 2P5

(P5 − 1)2 ),

U ′ =− Y

4P5(P5 − 1)(P ′5 −
√

2αP5(P5 − 1)
Y

)2 − β

2Y
P5 − 1
P5

− 1
2δY

P5

P5 − 1 −
1
4γ,

(3.5.21)

where P5 = P5(Y );Y = y2, satisfies the fifth Painlevé equation

P ′′5 = ( 1
2P5

+ 1
P5 − 1)P ′25 −

1
Y
P ′5 + (P5 − 1)2

Y 2 (αP5 + β

P5
) + γ

P5

Y
+ δ

P5(P5 + 1)
P5 − 1 ,

with

c2 = −~2δ, k3 = −1
4(1

4γ
2 + 2βδ − δ(1−

√
2α)2), k4 = −1

4(βγ + 1
2γ(1−

√
2α)2),

k5 = − 1
32(γ2((1−

√
2α)2 − 2β)− δ((1−

√
2α)2 + 2β)2).

The solution for the potential up to a constant is

V (x,y) =c−2

x2 − δ~
2(x2 + y2) + ~2

( γ

P5 − 1 + 1
y2 (P5 − 1)(

√
2α + α(2P5 − 1) + β

P5
)

+ y2(P
′2
5

2P5
+ δP5)(2P5 − 1)

(P5 − 1)2 −
P ′5

P5 − 1 − 2
√

2αP ′5
)

+ 3~2

8y2 .

(3.5.22)
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And we have

g1(x,y) =2y2W ′ + 2yW + 2
3~

2δy4, g2(x,y) = −x(6yW ′ + 2W + 8
3~

2δy3),

g3(x,y) = 4x2W ′ + 2~2δx2y2 + 2c−2
y2

x2 ,

l(x,y) = ~2x2(1
4yW

(4) +W (3))− x2(3yW ′ +W )W ′′ − (4
3~

2δx2y3 + 3~2

2 y)W ′′

+ (4(c−2

x2 − ~2δx2)y2 − 3~2)W ′ + 4y(c−2

x2 − ~2δx2)W + 4c−2

3x2 ~2δy4

− 2~2δx2(2
3~

2δy4 − ~2)− 2~4δy2.

(3.5.23)

The solution of (3.5.20) when c2 = 0 is

U =1
4( 1
P 2 (Y P ′ − P )2 − 1

16αP
2 − 1

8(β + 2
√
α)P + 1

8P γY + 1
16P 2 δY

2),

U ′ =− 1
4
√
αP ′ − 1

8Y (αP 2 + βP ),

k3 = 1
64αδ, k4 = − 1

64γ(β + 2
√
α), k5 = − 1

1024(αγ2 − δ(β + 2
√
α)2),

(3.5.24)

where P (Y ) = yP3(y), and P3 satisfies the third Painlevé equation

P ′′3 = P ′23
P3
− P ′3

y
+ αP 3

3 + βP 2
3 + γ

y
+ δ

P3
.

The solution for the potential is

V (x,y) = c−2

x2 + ~2

2 (
√
αP ′3 + 3

4αP
2
3 + δ

4P 2
3

+ βP3

2y + γ

2P3y
− P ′3

2yP3
+ P ′23

4P 2
3

). (3.5.25)

And we have

g1(x,y) =2y2W ′ + 2yW, g2(x,y) = −6xyW ′ − 2xW,

g3(x,y) = 4x2W ′ + 2c−2
y2

x2 ,

l(x,y) = ~2x2(1
4yW

(4) +W (3))− x2(3yW ′ +W )W ′′ − 3
2~

2yW ′′ + (4c−2

x2 y
2 − 3~2)W ′ + 4c−2

x2 yW.

(3.5.26)
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Case IIb. A202 = 0, A112 6= 0;YL = A112{L3,p1p
2
2}.

Let A112 = 1. In this case,

g1(x,y) =− 2yW ′ −W + 4
3c2y

3 + a2y
2, g2(x,y) = 3xW ′ − 4c2xy

2 − 2a2xy,

g3(x,y) = 2c2x
2y + a2x

2 − 2c−2
y

x2 ,

l(x,y) = −1
8~

2x2W (4) + 3
2x

2W ′W ′′ − (2c2x
2y2 + a2x

2y − 3
4~

2)W ′′ − 2(2c−2
y

x2 + 2c2x
2y)W ′

− 2(c−2

x2 + c2x
2)W + 2x2(4

3c
2
2y

3 + a2c2y
2) + 2c−2

x2 (4
3c2y

3 + a2y
2)− 2c2~2y.

(3.5.27)

Integrating the equation (3.5.16) we get

~2W (3)−6W ′2+8(2c2y
2+a2y)W ′+8(4c2y+a2)W−32

3 c
2
2y

4−32
3 c2a2y

3+k1y+k2 = 0. (3.5.28)

The equation (3.5.28) passes the Painlevé test. Substituting the Laurent series (3.4.2) into

(3.5.28), we obtain p = −1. The resonances are r = 1, and r = 6, and d0 = −~2. The

constants d1 and d6 are arbitrary. By an appropriate linear transformation of the form

Y = λ1y + λ2, U(Y ) = λ3W (y) + µ(y),

we transform the equation (3.5.28) into a special case of the canonical form for the Chazy

class I. The general form of the equation is

U (3) = −2(3U ′2 + 2k3Y (Y U ′ − U) + k4(2Y U ′ − U) + 2k5U
′ + k6Y + k7), (3.5.29)

Depending on the choice of λ1,λ2, λ3 and µ, the parameters k3,k4,k5,k6, and k7 get different

values, and the first integral of the equation (3.5.29) with respect to Y corresponds to one

of the four canonical subcases, listed below.

For c2 6= 0, k3 = −1, k4 = k5 = k6 = 0, we get equation SD − I.c:

U ′′2 = −4(U ′3 − (Y U ′ − U)2 + k7U
′ + k8),

(3.5.30)
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where k8 is the integration constant. The solution for the equation SD − I.c is

U = 1
8P4

P ′24 −
1
8P

3
4 −

1
2Y P

2
4 −

1
2(Y 2 − α + ε)P4 + 1

3(α− ε)Y + β

4P4
,

U ′ =− 1
2εP

′
4 −

1
2P

2
4 − Y P4 + 1

3(α− ε), (3.5.31)

where

ε = ±1, k7 = −1
3(α− ε)2 − 2β, k8 = 1

3(α− ε)(β + 2
9(α− ε)2),

and P4 = P4(− 4
√

8c2
~2 y − a2

2 4
√

2c3
2~2

), satisfies the fourth Painlevé equation (for arbitrary α and

β)

P ′′4 = P ′24
2P4

+ 3
2P

3
4 + 4Y P 2

4 + 2(Y 2 − α)P4 + β

P4
.

Therefore, the solution for potential is

V (x,y) =2a2y + c2(x2 + 4y2) + c−2

x2 −
4
√

2a2
√
~P4

4
√
c2

− 4 4
√

2c3
2
√
~yP4 +

√
2c2~(εP ′4 + P 2

4 ).

(3.5.32)

For a2 6= 0, c2 = k3 = k5 = k6 = k7 = 0,k4 = 1
2 we obtain equation SD − I.d:

U ′′2 = −4U ′3 − 2U ′(Y U ′ − U) + k8.

(3.5.33)

The solution for the equation SD − I.d is

U =1
2(P ′2)2 − 1

2(P 2
2 + 1

2Y )2 − (α + 1
2ε)P2,

U ′ =− 1
2(εP ′2 + P 2

2 + 1
2Y ), (3.5.34)

where k8 = 1
4(α + 1

2ε)
2, and P2(Y ) = P2(−2 3

√
a2
~2 y − 3k1

16 3
√
a5

2~2
), satisfies the second Painlevé

equation

P ′′2 = 2P 3
2 + Y P2 + α.

Therefore, the solution for potential is

V (x,y) =c−2

x2 + 2 3
√
a2

2~2(εP ′2 + P 2
2 ). (3.5.35)
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For c2 = a2 = k3 = k4 = k5 = k7 = 0, k6 = 1
2 , we get equation SD − I.e:

U ′′2 = −4U ′3 − 2(Y U ′ − U).

(3.5.36)

The solution for the equation SD − I.e is

U = 1
2(P ′1)2 − 2P 3

1 − Y P1, U ′ = −P1.

The function P1(Y ) = P1(− 5
√

k1
~4 y − k2

5
√
k4

1~4
), satisfies the first Painlevé equation

P ′′1 = 6P 2
1 + Y,

and we have

V (x,y) =c−2

x2 + 5
√
k2

1~2P1. (3.5.37)

For c2 = a2 = k3 = k4 = k5 = k6 = 0, we obtain equation SD − I.f :

U ′′2 = −4(U ′3 + k7U
′ + k8).

(3.5.38)

The solution for the equation SD − I.f is

U = −
∫
udy + α1, u = ℘(y − α2,−4k7,4k8)

where α1, α2 are integration constants, and ℘ is the Weierstrass elliptic function. Thus

V (x,y) = c−2

x2 + ~2℘. (3.5.39)
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3.5.2.3. The potential V (a)
1 (x) = c1x+ c2x

2; c1c2 = 0

We again define W (y) as in (3.5.13). From (3.5.7) and (3.3.4) we obtain

G1(y) = 2(A202y
2 − A112y)W ′ + (2A202y − A112)W − 2

3c2A202y
4 + 4

3c2A112y
3 + a2y

2 + a1y,

G2(y) = −3(A103y − A013)W ′ − A103W − c1A202y
3 + 1

3c2A103y
3 − 3

2c1A112y
2 − c2A013y

2 + b1y + b0,

G3(y) = −c1y(1
2A103y − A013).

(3.5.40)

Substituting G1,G2,G3 in (3.5.12) and integrating it with respect to y, we get

K1x+K2 = 0,

where

K1 = ~2(A112 − 2A202y)W (4) − 8~2A202W
(3) + 12(2A202y − A112)W ′W ′′ + 8A202WW ′′

− 4(8
3c2A202y

3 − 4c2A112y
2 − 2a2y − a1)W ′′ + 32A202W

′2 − 16(4c2A202y
2 − 4c2A112y − a2)W ′

− 32c2(2A202y − A112)W + 64
3 c

2
2A202y

4 − 128
3 c2

2A112y
3 − 32a2c2y

2 − 32a1c2y + k1,

K2 = ~2(A013 − A103y)W (4) − 4~2A103W
(3) + 12(A103y − A013)W ′W ′′ + 4A103WW ′′

− (4c1A202y
3 + 4

3c2A103y
3 − 6c1A112y

2 − 4c2A013y
2 + 4b1y + 4b0)W ′′ + 16A103W

′2

− 8(3c1A202y
2 + c2A103y

2 − 2c2A013y − 3c1A112y + b1)W ′

− 4(6c1A202y + 2c2A103y − 3c1A112 − 2c2A013)W + 2
3c

2
2A103y

4 − 8
3c

2
2A013y

3 + 4c2b1y
2

− 12a2c1y
2 + 8c2b0y − 12a1c1y + k2,

(3.5.41)

and we must have K1 = 0, K2 = 0. In general the two ODEs in (3.5.41) are not compatible

and we will analyze their compatibility conditions. A crucial role is played by the matrix

A =

A202 A112

A103 A013

 .
For the integral (3.5.3) to exist the rank of A must be 1, or 2. Let us analyze different

possibilities.
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1. rank(A) = 1, A112 = A202 = 0. In this case K1 = 0 reduces to a linear second order ODE

for W (y);

(a1 + 2a2y)W ′′ + 4a2W
′ − 8a2c2y

2 − 8a1c2y + k1

4 = 0. (3.5.42)

For (a2,a1) 6= (0,0), equation (3.5.42) together withK2 = 0 leads to the elementary potentials

that allow second order integrals of motion. They were already discussed in [40]. Of more

interest is the case when we also have a1 = a2 = 0, so (3.5.42) is satisfied identically, and

K2 = 0 reduces to

~2(A013 − yA103)W (4) − 4~2A103W
(3) + 4(A103W −

1
3c2y

3A103 + c2y
2A013 − b1y − b0)W ′′+

12(yA103 − A013)W ′W ′′ + 16A103W
′2 − 8(c2y

2A103 − 2c2yA013 + b1)W ′ + 8c2(A013 − yA103)W+

4b1c2y
2 + 8b0c2y + 2

3c
2
2y

4A103 −
8
3c

2
2y

3A013 + k2 = 0.

(3.5.43)

Thus, we have one 4th order nonlinear ODE to solve and we must distinguish two cases,

according to (3.5.4).

Case IIa. A103 6= 0, A202 = A112 = A013 = 0;YL = A103{L3,p
3
2}.

Setting A103 = 1, we obtain

g1(x,y) = 0, g2(x,y) = −3yW ′ −W + 1
3c2y

3, g3(x,y) = 4xW ′ − c2xy
2 − 1

2c1y
2,

l(x,y) =1
4~

2x(yW (4) + 4W (3))− 3xyW ′2 − xWW ′ + 1
3c2xy

3W ′′ − c1y
2W ′ − c1yW −

1
2~

2c2x.

(3.5.44)

From (3.5.43) we have

~2yW (4) + 4~2W (3) − 12yW ′W ′′ − 4WW ′′ + 4
3c2y

3W ′′ − 16W ′2 + 8c2y
2W ′ + 8c2yW −

2
3c

2
2y

4 + k = 0.

(3.5.45)

This equation is the same type of equation as (3.5.17), (with slightly different parameters,

and c2 in (3.5.17) is replaced by c2
4 ), and has solutions expressed in terms of the fifth and
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third Painlevé transcendents. For c2 6= 0, we have

V (x,y) =− δ~2(4x2 + y2) + ~2
( γ

P5(y2)− 1 + 1
y2 (P5(y2)− 1)(

√
2α + α(2P5(y2)− 1) + β

P5(y2))

+ y2(P
′2
5 (y2)

2P5(y2) + δP5(y2))(2P5(y2)− 1)
(P5(y2)− 1)2 −

P ′5(y2)
P5(y2)− 1 − 2

√
2αP ′5(y2)

)
+ 3~2

8y2 ,

(3.5.46)

and for c2 = 0,

V (x,y) = c1x+ ~2

2 (
√
αP ′3(y) + 3

4α(P3(y))2 + δ

4P 2
3 (y) + βP3(y)

2y + γ

2yP3(y) −
P ′3(y)

2yP3(y) + P ′23 (y)
4P 2

3 (y)).

(3.5.47)

Case III. A202 = A112 = A103 = 0, A013 6= 0;YL = 2A013p1p
3
2.

We set A013 = 1.

g1(x,y) = 0, g2(x,y) = 3W ′ − c2y
2 + b1y, g3(x,y) = 2c2xy + c1y − b1x,

l(x,y) =− 1
4~

2xW (4) + 3xW ′W ′′ + (b1xy − c2xy
2)W ′′ + 2c1yW

′ + c1W + 1
2b1c1y

2.

(3.5.48)

Integrating (3.5.43), we get

~2W (3) − 6W ′2 + 4(c2y
2 − b1y)W ′ + (8c2y − 4b1)W − 2

3c
2
2y

4 + 4
3b1c2y

3 + k2y + k3 = 0,

(3.5.49)

which is the same type of equation as (3.5.28), (with slightly different parameters, and c2 in

(3.5.28) is replaced by c2
4 ) and can be solved in terms of the fourth, second and first Painlevé

transcendents and elliptic functions. Depending on the values of the parameters in (3.5.49)

and following the procedure after (3.5.29), we obtain the following potentials.

When c2 6= 0, c1 = 0, and the potential is

V (x,y) =− b1y + c2(x2 + y2)− b1
√
~P4

4
√

2c2
− 4
√

8c3
2~2yP4 +

√
c2

2 ~(εP ′4 + P 2
4 ),

(3.5.50)

where ε = ±1, and P4 = P4(− 4
√

2c2
~2 y + b1

4
√

23c3
2~2

), satisfies the fourth Painlevé equation.

When c2 = 0, b1 6= 0, the solutions are

V (x,y) =c1x+ 3
√

2b2
1~2(εP ′2 + P 2

2 ), (3.5.51)
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where P2 = P2( 3
√

4b1
~2 y + 3k2

2 3
√

4b5
1~2

), satisfies the second Painlevé equation.

For c2 = b1 = 0, k2 6= 0, the potential is

V (x,y) =c1x+ 5
√
k2

2~2P1, (3.5.52)

for P1 = P1(− 5
√

k2
~4 y − k3

5
√
k4

2~4
), satisfying the first Painlevé equation. and finally, for c2 =

b1 = k2 = 0, we are left with

V (x,y) =c1x+ ~2℘, (3.5.53)

where ℘ is the Weierstrass elliptic function.

2. rank(A) = 1, A013 = A103 = 0. In this case K2 = 0 reduces to a linear second

order ODE

(4c1A202y
3 − 6c1A112y

2 + 4b1y + 4b0)W ′′ + 8(3c1A202y
2 − 3c1A112y + b1)W ′ + 4(6c1A202y − 3c1A112)W

− 4c2b1y
2 + 12a2c1y

2 − 8c2b0y + 12a1c1y − k2 = 0.

(3.5.54)

Since at least one of A112 and A202 must be nonvanishing, (3.5.54) leads to elementary poten-

tials (unless it satisfied trivially). Equation (3.5.54) is satisfied trivially if c1 = b1 = b0 = 0.

We are left with one fourth order nonlinear ODE, K1 = 0. In view of (3.5.4) two cases must

be considered.

Case I. A202 6= 0, A112 = A103 = A013 = 0;YL = A202{L2
3,p

2
2}.

In this case, we have

g1(x,y) =2y2W ′ + 2yW − 2
3c2y

4, g2(x,y) = −6xyW ′ − 2xW + 8
3c2xy

3, g3(x,y) = x2W ′ − 2c2x
2y2,

l(x,y) = ~2x2(1
4yW

(4) +W (3))− x2(3yW ′ +W )W ′′ + (4
3c2x

2y3 − 3~2

2 y)W ′′ + (4c2x
2y2 − 3~2)W ′

+ 4c2x
2yW − c2

2(4
3x

2 + 1
4)y4 + 2c2~2(y2 − x2).

(3.5.55)
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and

~2yW (4) + 4~2W (3) − 12yW ′W ′′ − 4WW ′′ + 16
3 c2y

3W ′′ − 16W ′2 + 32c2y
2W ′ + 32c2yW −

32
3 c

2
2y

4 + k = 0,

(3.5.56)

which is exactly the same equation as (3.5.17) and hence has the same solutions expressed

in terms of the fifth and third Painlevé transcendents.

Case IIb. A112 6= 0, A202 = A103 = A013 = 0;YL = A112{L3,p1p
2
2}.

g1(x,y) = −2yW ′ −W + 4
3c2y

3 + a2y
2, g2(x,y) = 3xW ′ − 4c2xy

2 − 2a2xy, g3(x,y) = 2c2x
2y + a2x

2,

l(x,y) =− 1
8~

2x2W (4) + 3
2x

2W ′W ′′ + (−2c2x
2y2 + 3~2

4 )W ′′ − 4c2x
2yW ′ − 2c2x

2W + 8
3c

2
2x

2y3 − 2c2~2y.

(3.5.57)

Integrating K1 = 0 once we obtain

~2W (3)−6W ′2+8(2c2y
2+a2y)W ′+8(4c2y+a2)W−32

3 c
2
2y

4−32
3 c2a2y

3+k3y+k4 = 0, (3.5.58)

which is the same equation as (3.5.28) and is solved in terms of the fourth, second and first

Painlevé transcendents and elliptic function.

3. rank(A) = 2. Both K1 = 0, and K2 = 0, are satisfied nontrivially.

Case I. A202 6= 0, A013 6= 0;A112 = A103 = 0;Y = A202{L2
3,p

2
2}+ 2A013p1p

3
2.

Let us set A202 = 1, A013 = α, with α 6= 0. In this case, both equations in (3.5.41) can be

integrated once and we obtain two third order equations

~2y2W (3) + 2~2yW ′′ − 6y2W ′2 + (16c2

3 y4 − 4a2y
2 − 2a1y − 2~2 − 4yW )W ′ + 2W 2

+ (2a1 + 32c2

3 y3)W − (16
9 c

2
2y

4 − 4a2c2y
2 − 16

3 a1c2y + k1

4 )y2 + k3 = 0,

(3.5.59)

α~2W (3) − 6αW ′2 − 4(c1y
3 − αc2y

2 + b1y + b0)W ′ − 4(3c1y
2 − 2c2αy + b1)W

− 2
3c

2
2αy

4 + 4(1
3c2b1 − c1a2)y3 − 2(3c1a1 − 2c2b0)y2 + k2y + k4 = 0,

(3.5.60)
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where k3 and k4 are integration constants. Eliminating third order derivatives between

(3.5.59) and (3.5.60), we obtain a second order ODE. This equation admits a first integral,

α~2W ′ − αW 2 − (αa1 − 2(b0 − αa2)y − 2b1y
2 − 2

3αc2y
3 − 2c1y

4)W − 1
9αc

2
2y

6 + 1
6(3a2c1 − b1c2)y5

+ (2
3(αa2c2 − b0c2) + a1c1)y4 + (4

3αa1c2 −
k2

4 )y3 − 1
8(αk1 + 4k4)y2 + k5y − α

k3

2 = 0,

(3.5.61)

where k5 is an integration constant. Equation (3.5.61) is a Riccati equation and can be

linearized by a Cole-Hopf transformation. Setting W = −~2U ′

U
, we get the following linear

ODE

α~4U ′′(y) + ~2(2c1y
4 + 2

3αc2y
3 + 2b1y

2 − 2αa2y + 2b0y − αa1)U ′(y) + (1
9αc

2
2y

6 − (a2c1

2 − b1c2

6 )y5

− (2
3αa2c2 + a1c1 −

2b0c2

3 )y4 − (4
3αa1c2 −

k2

4 )y3 + 1
8(4k3 + αk1)y2 + k5

2~2y + αk3

2 )U(y) = 0.

(3.5.62)

Consequently, in this case we do not obtain any exotic potential.

Case II. A202 = 0, A112 6= 0, A103 6= 0;YL = A112{L3,p1p
2
2}+ A103{L3,p

3
2}.

Same as the previous case, we can again integrate the equations in (3.5.41), and if we apply

the same procedure we generate another Riccati equation

α~2W ′ − αW 2 + (2b0 + 2(b1 − αa1)y − (3c1 + 4αa2)y2 − 22
3 αc2y

3)W + 19
18αc

2
2y

6 + (4
3αa2c2 + 1

2c1c2)y5

+ (8
3αa1c2 −

1
6b1c2 + 1

2a2c1)y4 + (a1c1 −
2
3b0c2 −

1
4αk1)y3 − (1

4k2 + k3)y2 + k4 = 0,

(3.5.63)

where k3, and k4 are constants of integration. Again it can be linearized by a Cole-Hopf

transformation.

3.5.3. Linear equations for V1 satisfied trivially

In this case, (3.5.2) are valid, and (3.5.1) not. The leading-order term for the nontrivial

fourth order integral has the form

YL = A220{L2
3, p

2
1}+ A130{L3,p

3
1}+ A121{L3,p

2
1p2}+ 2A031p

3
1p2. (3.5.64)
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Let us classify the integrals (3.5.64) under translations. The three classes are

(i)A220 6= 0, A121 = A130 = 0.

(ii)A220 = 0, A2
121 + A2

130 6= 0, A031 = 0.

(iii)A220 = A121 = A130 = 0, A031 6= 0. (3.5.65)

Since we can just adapt the results from the section 4.2 to this case, we will not consider

it separately. The results are obtained by interchanging x ↔ y, (A202,A112,A103,A013) ↔

(A220,A121,A130,A031).

3.6. Classical analogs of the quantum exotic potentials

In the classical case, we are dealing with the classical limit (~ → 0) of the determining

equations (3.2.2) and (3.2.3) and therefore the compatibility condition (3.2.5) and (3.3.11).

The equations (3.2.2) and (3.2.5) are actually the same in the classical and quantum case.

We continue our investigation for the classical potentials followed by the classifications of

the integrals in (3.5.4). Here we present the results briefly for each cases.

Integrating the classical analog of the equations (3.5.17), (3.5.45) and (3.5.56), we get

3y2W ′2 + (2yW − 2
3λy

4)W ′ −W 2 − 4
3λy

3W + 1
18λ

2y6 + k1y
2 + k2 = 0,

(3.6.1)

where λ = c2,4c2 respectively for YL = L3p
3
2, and YL = L2

3p
2
2.

The classical analog of the equations (3.5.28), (3.5.49), and (3.5.58) is

W ′2 + 2
3y(k1 − λy)W ′ + 2

3(k1 − 2λy)W + 1
9λ

2y4 − 2
9λk1y

3 + k2y + k3 = 0,

(3.6.2)

where λ = c2,4c2 respectively for YL = p1p
3
2, and YL = L3p1p

2
2.

Equations (3.6.1) and (3.6.2) are special cases of equation (3.4.3). They do not satisfy the

conditions in the Fuchs’ theorem, (Theorem1.1, [15, page 80], proof in [58, page 304-311]),

hence do not have the Painlevé property. They will be further investigated in Part II of this

project.
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3.7. Summary of results and future outlook

3.7.1. Quantum potentials

The list of exotic superintegrable quantum potentials in quantum case that admit one

second order and one fourth order integral is given below. We also give their fourth order

integrals by listing the leading terms YL and the functions gi(x,y); i = 1,2,3; and l(x,y).

Each of the exotic potentials has a non-exotic part that comes from V1(x). By construction

V2(y) is exotic, however in 4 cases a non-exotic part proportional to y2 splits off from V2(y)

and can be combined with an x2 term in V1(x). We order the final list below in such a

manner that the first two potentials are isotropic harmonic oscillators (possibly with an

additional 1
x2 term) with an added exotic part. The next two are 2 : 1 anisotropic harmonic

oscillators, plus an exotic part (in y).

Based on previous experience (see Marquette [67, 68, 66]) we expect these harmonic terms

to determine the bound state spectrum. The remaining 8 cases have either a

x2 or c1x as

their non-exotic terms and we expect the energy spectrum to be continuous.

I. Isotropic harmonic oscillator:

Q1
1 :

V (x,y) =− δ~2(x2 + y2) + a

x2 + ~2
( γ

P5 − 1 + 1
y2 (P5 − 1)(

√
2α + α(2P5 − 1) + β

P5
)

+ y2(P
′2
5

2P5
+ δP5)(2P5 − 1)

(P5 − 1)2 −
P ′5

P5 − 1 − 2
√

2αP ′5
)

+ 3~2

8y2 .

YL = {L2
3,p

2
2},

g1(x,y) = 2y(yW ′ +W + 1
3~

2δy3), g2(x,y) = −2x(3yW ′ +W + 4
3~

2δy3),

g3(x,y) = x2(4W ′ + 2~2δy2) + 2a
x2 y

2,

l(x,y) =~2x2(1
4yW

(4) +W (3))− x2(3yW ′ +W )W ′′ − ~2y(4
3δx

2y2 + 3
2)W ′′ + (4( a

x2 − ~2δx2)y2 − 3~2)W ′

+ 4y( a
x2 − ~2δx2)W + 4a

3x2~
2δy4 − 2~2δx2(2

3~
2δy4 − ~2)− 2~4δy2.
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For

W (y) =− ~2

2y
( 1
P5

( Y P ′5
P5 − 1 − P5)2 − (1−

√
2α)2(P5 − 1)− 2βP5 − 1

P5
+ γY

P5 + 1
P5 − 1 + 2δ Y 2P5

(P5 − 1)2

)

+ ~2

8y −
δ~2

3 y3,

where P5 = P5(Y );Y = y2.

Q2
1 :

V (x,y) = c2(x2 + y2)− 4
√

8c3
2~2yP4(− 4

√
2c2

~2 y) +
√
c2

2 ~(εP ′4(− 4

√
2c2

~2 y) + P 2
4 (− 4

√
2c2

~2 y)); ε = ±1.

YL = 2p1p
3
2,

g1(x,y) = 0, g2(x,y) = 3V − c2(3x2 + y2), g3(x,y) = 2c2xy,

l(x,y) = −1
4~

2xVyyy + 3xV Vy − c2x(3x2 + y2)Vy.

II. Anisotropic harmonic oscillator:

Q1
2 :

V (x,y) = c2(x2 + 4y2) + a

x2 − 4 4
√

2c3
2~2yP4 +

√
2c2~(εP ′4 + P 2

4 ); ε = ±1.

YL = {L3,p1p
2
2},

g1(x,y) = −2yW ′ −W + 4
3c2y

3, g2(x,y) = 3xW ′ − 4c2xy
2, g3(x,y) = 2c2x

2y − 2a y
x2 ,

l(x,y) =− 1
8~

2x2W (4) + 3
2x

2W ′W ′′ − (2c2x
2y2 − 3

4~
2)W ′′ − 2(2a y

x2 + 2c2x
2y)W ′ − 2( a

x2 + c2x
2)W

+ 8
3c2y

3(c2x
2 + a

x2 )− 2c2~2y.
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For

W (y) = 4
√

8c2~6
( 1

8P4
P ′24 −

1
8P

3
4 −

1
2Y P

2
4 −

1
2(Y 2 − α + ε)P4 + 1

3(α− ε)Y + β

4P4

)
+ 4c2

3 y3,

where P4 = P4(Y );Y = − 4
√

8c2
~2 y.

Q2
2 :

V (x,y) =− δ~2(4x2 + y2) + ~2
( γ

P5 − 1 + 1
y2 (P5 − 1)(

√
2α + α(2P5 − 1) + β

P5
)

+ y2(P
′2
5

2P5
+ δP5)(2P5 − 1)

(P5 − 1)2 −
P ′5

P5 − 1 − 2
√

2αP ′5
)

+ 3~2

8y2 .

YL = {L3,p
3
2},

g1(x,y) = 0, g2(x,y) = −3yW ′ −W − 4
3~

2δy3, g3(x,y) = 4xW ′ + 4~2δxy2,

l(x,y) = 1
4~

2x(yW (4) + 4W (3))− 3xyW ′2 − xWW ′ − 4
3~

2δxy3W ′′ + 2~4δx.

For

W (y) =− ~2

2y
( 1
P5

( Y P ′5
P5 − 1 − P5)2 − (1−

√
2α)2(P5 − 1)− 2βP5 − 1

P5
+ γY

P5 + 1
P5 − 1 + 2δ Y 2P5

(P5 − 1)2

)

+ ~2

8y −
4δ~2

3 y3,

where P5 = P5(Y );Y = y2.

III. Potentials with no confining (harmonic oscillator) term:

Q1
3 :

V (x,y) = a

x2 + ~2

2 (
√
αP ′3 + 3

4α(P3)2 + δ

4P 2
3

+ βP3

2y + γ

2yP3
− P ′3

2yP3
+ P ′23

4P 2
3

).

YL = {L2
3,p

2
2},

g1(x,y) = 2y2W ′ + 2yW, g2(x,y) = −6xyW ′ − 2xW, g3(x,y) = 4x2W ′ + 2ay
2

x2 ,
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l(x,y) = ~2x2(1
4yW

(4) +W (3))− x2(3yW ′ +W )W ′′− 3
2~

2yW ′′ + (4 a
x2y

2− 3~2)W ′ + 4 a
x2yW.

For

W (y) =− ~2

2y
(1

4(yP
′
3
P3
− 1)2 − 1

16αy
2P 2

3 −
1
8(β + 2

√
α)yP3 + γ

8P3
y + δ

16P 2
3
y2
)

+ ~2

8y .

Q2
3 :

V (x,y) = a

x2 + b2~2

2 (εP ′2 + P 2
2 ); ε = ±1.

YL = {L3,p1p
2
2},

g1(x,y) = −2yW ′ −W − b3~2

8 y2, g2(x,y) = 3xW ′ + b3~2

4 xy, g3(x,y) = −b
3~2

8 x2 − 2a y
x2 ,

l(x,y) = −1
8~

2x2W (4) + 3
2x

2W ′W ′′ + (b
3~2

8 x2y + 3
4~

2)W ′′ − 4a y
x2W

′ − 2 a
x2W − ab

3~2 y
2

4x2 .

For

W (y) = −b~
2

2
(
(P ′2)2 − (P 2

2 + b

2y)2 − 2(α + ε

2)P2
)
− b3

8 ~2y2,

where P2 = P2(by).

Q3
3 :

V (x,y) = a

x2 + ~2b2P1.

YL = {L2
3,p

2
2},

g1(x,y) = −2yW ′ −W, g2(x,y) = 3xW ′, g3(x,y) = −2a y
x2 ,

l(x,y) = −1
8~

2x2W (4) + 3
2x

2W ′W ′′ + 3
4~

2W ′′ − 4a y
x2W

′ − 2 a
x2W
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For

W (y) = −b~2(1
2(P ′1)2 − 2P 3

1 − byP1),

where P1 = P1(by).

Q4
3 :

V (x,y) = a

x2 + ~2℘.

YL = {L2
3,p

2
2},

g1(x,y) = −2yW ′ −W, g2(x,y) = 3xW ′, g3(x,y) = −2a y
x2 ,

l(x,y) = −1
8~

2x2W (4) + 3
2x

2W ′W ′′ + 3
4~

2W ′′ − 4a y
x2W

′ − 2 a
x2W

For

W (y) = ~2
∫
udy, u = ℘(y).

Q5
3 :

V (x,y) =c1x+ ~2

2 (
√
αP ′3(y) + 3

4α(P3(y))2 + δ

4P 2
3 (y) + βP3(y)

2y + γ

2yP3(y) −
P ′3(y)

2yP3(y) + P ′23 (y)
4P 2

3 (y)).

YL = {L3,p
3
2},

g1(x,y) = 0, g2(x,y) = −3yW ′ −W, g3(x,y) = 4xW ′ − 1
2c1y

2,

l(x,y) = 1
4~

2x(yW (4) + 4W (3))− 3xyW ′2 − xWW ′ − c1y
2W ′ − c1yW.

For

W (y) =− ~2

2y
(1

4(yP
′
3
P3
− 1)2 − 1

16αy
2P 2

3 −
1
8(β + 2

√
α)yP3 + γ

8P3
y + δ

16P 2
3
y2
)

+ ~2

8y .
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Q6
3 :

V (x,y) = c1x+ b2~2

2 (εP ′2 + P 2
2 ); ε = ±1.

YL = 2p1p
3
2,

g1(x,y) = 0, g2(x,y) = 3W ′ + b3~2

4 y, g3(x,y) = c1y −
b3~2

4 x,

l(x,y) = −1
4~

2xW (4) + 3xW ′W ′′ + b3~2

4 xyW ′′ + 2c1yW
′ + c1W + b3~2

8 c1y
2.

For

W (y) = −b~
2

2
(
(P ′2)2 − (P 2

2 + b

2y)2 − 2(α + ε

2)P2
)
− b3

8 ~2y2,

where P2 = P2(by).

Q7
3 :

V (x,y) = c1x+ ~2b2P1.

YL = 2p1p
3
2,

g1(x,y) = 0, g2(x,y) = 3W ′, g3(x,y) = c1y, l(x,y) = −1
4~

2xW (4) + 3xW ′W ′′ + 2c1yW
′ + c1W.

For

W (y) = −b~2(1
2(P ′1)2 − 2P 3

1 − byP1),

where P1 = P1(by).

Q8
3 :

V (x,y) = c1x+ ~2℘.

YL = 2p1p
3
2,

g1(x,y) = 0, g2(x,y) = 3W ′, g3(x,y) = c1y, l(x,y) = −1
4~

2xW (4) + 3xW ′W ′′ + 2c1yW
′ + c1W.
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For

W (y) = ~2
∫
udy, u = ℘(y).

The potentials Q2
1, Q

6
3 and Q7

3 are in the list of quantum potentials obtained by Gravel [47,

(Q18,Q19, Q21)]. Among the integrals of motion we have {L2
3,p

2
2} and {L3,p

3
2}. These can

not be obtained by commuting a third and a second order integral.

As mentioned in the Introduction, it has been conjectured [98] that all maximally superin-

tegrable systems are exactly solvable. This has also been confirmed for the case of potentials

allowing third order integrals of motion, in particular exotic ones. In the papers [67, 68],

Marquette considered a superintegrable system with one second order and one third order

integral of motion. He presented the polynomial algebra generated by these integrals of

motion, and he showed how their representations yield the energy spectra. The ground

state wave functions were also obtained by using the tools of suspersymmetric quantum

mechanics. Marquette in [72] obtained a potential in terms of fifth Painlevé transcendent

for a system admitting fourth order ladder operators which allowed a characterisation of the

spectrum and wave functions in a recursive way from the zero modes and build integrals for

families of 2D models.

3.7.2. Future outlook

Part II of this article will follow shortly and will be devoted to a complete analysis of the

nonexotic potentials. They are obtained when the linear compatibility conditions (3.3.9)

and (3.3.10) are not satisfied identically. They must then be solved as ODEs. We also hope

to establish that all obtained superintegrable systems are exactly solvable, as in the case of

third order integrals.

We are also currently studying whether some or possibly all exotic potentials can be generated

from one-dimensional Hamiltonians using algebras of differential operators depending on one

variable only.
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Mes contribution et le rôle des coauteurs: Le sujet et les méthodes de la recherche a été

suggérée par Ian Marquette. J’ai effectué les calculs nécessaires liés aux résultats obtenus.

La rédaction se fait à parts égales entre les coauteurs.

Abstract. In this paper, we develop new constructions of 2D classical and quantum superintegrable

Hamiltonians allowing separation of variables in Cartesian coordinates. In classical mechanics we start from

two functions on a one-dimensional phase space, a natural Hamiltonian H and a polynomial of order N in

the momentum p. We assume that their Poisson bracket {H,K} vanishes, is a constant, a constant times

H, or a constant times K. In the quantum case H and K are operators and their Lie bracket has one of

the above properties. We use two copies of such (H,K) pairs to generate two-dimensional superintegrable

systems in the Euclidean space E2, allowing the separation of variables in Cartesian coordinates. All known

separable superintegrable systems in E2 can be obtained in this manner and we obtain new ones for N = 4.

Keywords: superintegrable systems, Painlevé transcendents, ladder operators

4.1. Introduction

This article is part of a general study of superintegrable systems in quantum and classical

mechanics. In a nutshell a superintgerable system with n degrees of freedom is a Hamiltonian

system with n integrals of motion X1,...,Xn (including the Hamiltonian H) in involution

and k further integrals Yk, 1 ≤ k ≤ 2n− 1. The additional integrals Yk commute (or Poisson

commute) with the Hamiltonian, but not necessarily with each other, nor with the integrals

Xi. All the integrals are assumed to be well defined functionally independent functions on

phase space in classical mechanics. In quantum mechanics they are Hermitian operators

in the enveloping algebra of the Heisenberg algebra Hn (or some generalization of the

enveloping algebra) and are polynomially independent. For reviews we refer to [59, 79].

The best known superintegrable systems (in n dimensions) are the Kepler-Coulomb system

[5, 39, 88] and the Harmonic oscillator [55, 81] with the potentials α
r
and ωr2, respectively.

A systematic search for superintegrable systems in Euclidean spaces En was started

in 1965 [40, 63]. The integrals of motion were postulated to be second order polyno-

mials in the momenta with coefficients that were smooth functions of the coordinates.

Second order integrals were shown to be related to multiseparation of variables in

the Schrödinger or Hamilton-Jacobi equation. Integrable and superintegrable systems

with integrals that are higher order polynomials in the momenta were considered in

[2, 31, 32, 33, 47, 48, 64, 65, 67, 68, 69, 77, 84, 90, 91, 92, 93, 97, 100].
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A subset of the articles quoted above was devoted to a search for superintegrable systems in

E2 with 2 integrals of order 2 and one of order N with 3 ≤ N ≤ 5. The order 2 ones were the

Hamiltonian H, the second order one X was chosen so as to ensure separation of variables

in Cartesian or polar coordinates, respectively. The third integral Y was of order N ≥ 3. It

turned out that the complexity of the calculations rapidly increased as N increased and that

the obvious systematic and straight forward method became impractical for N > 5. On the

other hand for N ≥ 3 it turned out that quantum integrable and superintegrable systems

could have different potentials than classical ones. In particular quantum superintegrable

systems allowed the existence of "exotic potentials" expressed in terms of elliptic functions ,

Painlevé transcendents and general functions having the Painlevé property.

The purpose of this paper is to further develop and apply a different method of constructing

superintegrable systems in two and more dimensions. Namely, we shall study two copies of

operator algebras in one dimension, expressed in terms of the coordinates x and y, respec-

tively and combine these two to form superintegrable systems in E2. The generalization to

n copies and to superintegrable systems in En is immediate.

The article is organized as follows. In Section 2 we formulate the problem and show how

algebras of operators or functions in one dimension can be used to construct superintegrable

systems in two dimensions. This is done both for quantum and classical mechanics. Sections

3 is devoted to the classification of operator algebras in one dimension for operator K of

order 1 ≤ M ≤ 5. The same problem in classical mechanics, where H and K are functions

on a two dimensional phase space is solved in Section 4. The superintegrable classical and

quantum systems in E2 are presented in Section 5. Section 6 is devoted to conclusion and a

summary of results.

4.2. The general method

Let us consider a Hamiltonian in a one dimensional Euclidean space E1

H1 = p2
x

2 + V (x) (4.2.1)

where x is a space coordinate. In classical mechanics px is the momentum canonically

conjugate to x and in quantum mechanics we have px = −i~∂x.
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Let us also consider the polynomial

K1 =
M∑
j=0

fj(x)pjx, (4.2.2)

where fM(x) 6= 0, and fj(x) are smooth functions.

Both in quantum and in classical mechanics we can consider the Lie algebra

[H1,K1] = αK1 + βH1 + γ1, [H1,1] = [K1,1] = 0, (4.2.3)

where [.,.] is the Lie bracket , or the Poisson bracket, respectively and α, β and γ are con-

stants. By change of basis we can reduce the algebra (4.2.3) into one of the 4 following forms

for α = β = γ = 0; α = β = 0,γ 6= 0; α = γ = 0,β 6= 0; and α 6= 0, respectively

[H1,K1] = 0, (4.2.4a)

[H1,K1] = α1, (4.2.4b)

[H1,K1] = α1H1, (4.2.4c)

[H1,K1] = −α1K1, α1 ∈ R\0 (4.2.4d)

where α1 6= 0 is a constant. We shall refer to these relations as Abelian type (a), Heisenberg

type (b), conformal type (c), and ladder type (d), respectively.

We shall call the systems {H1,K1} in one dimension "algebraic Hamiltonian systems". The

classical case (d) of ladder and the corresponding Hamiltonian and functions K1 that are

polynomials of order 3 and 4 in momentum have been studied in the references [71, 73].

The case of order 3 of these relations has been discussed in [42]. Some of these cases have

been investigated e.g. in the case (c) [29] and case (b) [51]. The quantum case (d) has

been studied for particular examples related with fourth and fifth Painlevé transcendents

[70, 68, 72, 104, 3, 13]. Superintegrable deformations of the harmonic oscillator and the

singular oscillator and many types of ladder operators have been studied [74, 75, 76]. The

Heisenberg type relations have been investigated in a recent paper [51]. The Abelian type (a)

has been studied by Hietarinta for third order operators and was refered to as pure quantum

integrability [53, 54]. Furthermore, for the case (a) some interesting algebraic relations have

been discussed [102, 103].

The existence of such operators K1 will impose constraints on the potential V (x) and on

the coefficients fj(x) in the polynomial K1. We shall construct such systems proceeding by
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order M in the following sections, both in quantum and classical physics.

We consider a second copy of E1 with the corresponding Hamiltonian H2 and operator K2

satisfying one of the relations (a),(b),(c),(d) with

K2 =
N∑
j=0

gj(y)pjy. (4.2.5)

Now let us consider the two-dimensional Euclidean space E2 with the Hamiltonian

H = H1 +H2 = 1
2(p2

x + p2
y) + V1(x) + V2(y). (4.2.6)

This Hamiltonian is obviously integrable because it allows the separation of variables in

Cartesian coordinates, i.e. it allows an independent second order integral

A = K1 −K2, (4.2.7)

where K1 and K2 are second order Abelian type operators.

We will use operators K1, K2 of (4.2.2) and (4.2.5) to generate integrals of motion K in

E2. We denote (.,.) where u,v = a,b,c,d and refer that in x axis 1D Hamiltonian allow

operator type u and in the y axis the 1D Hamiltonian allow operator of type v. The possible

combinations are

I.(a,a):

Obviously, any linear combination

K = c1K1 + c2K2 (4.2.8)

satisfies [H,K] = 0 and is hence an integral of motion. The interesting point is that in

the case (a) , H1 and K1 in E1 can not be polynomially independent, however in E2 the

operators H, and K can be. The case of (4.2.6) and (4.2.7) is a trivial example. For higher

order operators we shall produce nontrivial examples below.

II.(b,b):

The operator

K = α2K1 − α1K2 (4.2.9)

will commute with H.

III.(c,b):

An integral of motion is K = α2K1 − α1H1K2.

IV.(d,d):
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The case (d) is somewhat more complicated. We change notations slightly and introduce an

operator K†1 adjoint to K1.

K−1 ≡ K1, K
†
1 = (K−1 )†. (4.2.10)

We now have

[H1,K
−
1 ] = −α1K

−
1

[H1,K
†
1] = α1K

†
1

K†1K
−
1 =

kx∑
n=0

anH
n
1 (4.2.11)

The fact that K†1K−1 is a polynomial in H1 follows from the commutation relation

[H1,K
†
1K
−
1 ] = 0 [8].

The same relations are introduced for H2, K
−
2 and K†2. In E2 we have

[H1 +H2, (K†1)m(K−2 )n] = (mα1 − nα2)(K†1)m(K−2 )n (4.2.12)

To obtain an integral of motion we impose a rationality constraint on α1 and α2, namely
α1

α2
= n

m
. (4.2.13)

With this constraint

K = (K†1)m(K−2 )n − (K−1 )m(K†2)n. (4.2.14)

are all integrals of motion and K is the lowest order polynomial amongst them.

V.(c,c):

The integral of motion in this case is

K = α2H2K1 − α1H1K2 (4.2.15)

Other possible combinations are

VI.(a,d):

An integral of motion is K1 + K−2 K
†
2. However since K†2K−2 is a polynomial in H2, this

integral is trivial ( a polynomial in H1 and H2).
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Case Type Integral type K Order of K

1 (a,a) polynomial K1 +K2 max(k1,k2)

2 (b,b) polynomial α2K1 − α1K2 max(k1,k2)

3 (c,b) polynomial α2K1 − α1H1K2 max(k1,k2 + 2)

4 (d,d) polynomial (K†1)m(K−2 )n − (K−1 )m(K†2)n (mk1 + nk2 − 1)

5 (c,c) polynomial α2H2K1 − α1H1K2 max(k1 + 2,k2 + 2)

6 (a,d) polynomial K1 −K−2 K
†
2 max(k1,2k2)

7 (b,d) non polynomial e
i
α2
α1
K1K−2 -

8 (c,d) non polynomial e
i
α2
α1
K1KH1

2 -

Tab. 4.1. Integrals of motion in E2

In Table 1, k1 = order(K1) and k2 = order(K2). For the operator of type (d), setting

K1 = K−1 , we have [H1,K
±
1 ] = ±α1K

±
1 . Also in the case 4, mα1 = nα2 = λ.

Let us consider A as the second order integral of motion introduced in (4.2.7) and B as

the Mth order one. In the classical case, the polynomial Poisson algebra PM , generated by

functions A and B has Poisson bracket given by

{A,B}p = C, {A,C}p = R(A,B,H), {B,C}p = S(A,B,H). (4.2.16)

The polynomial Lie algebra, LM , which is the Mth order analogue of the classical Poisson

algebra PM , has bracket operation given by

[A,B] = C, [A,C] = R̃(A,B,H), [B,C] = S̃(A,B,H) (4.2.17)

with further constraints on parameters from the Jacobi identity. Further information on the

algebra is given in Table 2.

In this article we pursue the case where B is a polynomial. The cases 7 and 8 of table 1 will

be treated in a separate article.
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Case Type R(A,B,H) S(A,B,H) R̃(A,B,H) S̃(A,B,H)

1 (a,a) 0 0 0 0

2 (b,b) 0 0 0 0

3 (c,b) 0 κ(H + A) 0 κ(H + A)

4 (d,d) −4λ2B T (A,H) 4λ2B T̃ (A,H)

5 (c,c) 0 κ
2A(H2 − A2) 0 κ

2A(H2 − A2)

6 (a,d) 0 0 0 0

7 (b,d) −4α2
2B 0 - -

8 (c,d) −4α2B 0 - -

Tab. 4.2. Polynomial algebra

In Table 2, κ = α2
1α

2
2 and

T (A,H) = 4λP (H + A

2 )m−1P (H − A2 )n−1
(
n2Q(H + A

2 )P (H − A2 )−m2Q(H − A2 )P (H + A

2 )
)
,

T̃ (A,H) = −2
m∏
i=1

Q(H2 + A

2 − (m− i)α1)
n∏
j=1

S(H2 −
A

2 + jα2)

with K+
1 K

−
1 = P (H1), and {K−1 ,K+

1 } = Q(H1).

4.3. Classification of quantum algebraic systems in one dimension

We consider the one dimensional Hamiltonian (4.2.1) and theMth order operator K1 (4.2.2)

and their Lie bracket [H1,K1].

Once [H1,K1] is chosen to be equal to 0, α1, α1H1 or −α1K1 as in (4.2.4) this will provide us

with determining equations for the potential V (x) and the coefficients fj(x), 0 ≤ j ≤ M in

the operator K1.

Using px = −i~∂x = −i~D we obtain the following operator of order M + 1.

[H1,K1] = −~2

2

M∑
l=0

(−i~)l(f ′′l Dl + 2f ′lDl+1)−
M∑
l=1

(−i~)lfl
l−1∑
j=0

C l
jV

(l−j)Dj (4.3.1)
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where Ck
j are the Newton binomial coefficients.

In order to obtain the determining equations for arbitrary M we must reorder the double

summation in the second term in (4.3.1). We obtain

[H1,K1] =
M+1∑
l=0

ZlD
l (4.3.2)

with

ZM+1 = (−i~)M+2f ′M , (4.3.3a)

ZM = −~2

2 (−i~)M−1(2f ′M−1 − i~f ′′M), (4.3.3b)

Zl = −~2

2 (−i~)l−1(2f ′l−1 − i~f ′′l )−
M∑

j=l+1
(−i~)jfjCj

l V
(j−l), 1 ≤ l ≤M − 1, (4.3.3c)

Z0 = −~2

2 f
′′
0 −

M∑
j=1

(−i~)jfjV (j) (4.3.3d)

The determining equations for arbitrary M ≥ 1 are as follows.

Case(a):

We have

Zl = 0, 0 ≤ l ≤M + 1.

In particular equations (4.3.3a) and (4.3.3b) imply f ′M = 0, f ′M−1 = 0. Equations (4.3.3c)

provide expressions for f ′′l in terms of the potential V (x) and its derivatives for l = 0,...,M−1.

Substituting fl into (4.3.3d) we obtain a nonlinear ODE for the potential V (x),

Case(b):

The determining equations are

Z0 = α1, Zl = 0, 1 ≤ l ≤M + 1. (4.3.4)

Hence the functions fl, 0 ≤ l ≤ M are the same as in case (a) but the equation for the

potential V (x) is modified.

Case(c):

This case arises for M ≥ 2. The determining equations are

Zl = 0, l 6= 0,2 (4.3.5)

Z0 = α1V (x), Z2 = −α1
~
2 .
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Again, equation (4.3.3d) provides an ODE for V (x).

Case(d):

The determining equations are

ZM+1 = 0, Zl = α1fl, 0 ≤ l ≤M. (4.3.6)

In this article we concentrate on the cases 1 ≤ M ≤ 5 but it is clear that one can proceed

iteratively for any given M.

Let us now solve the determining equations for 1 ≤M ≤ 5.

The notation used below is VγM where γ = a,b,c,d refers to the four different cases in

equation (4.2.4) and M = 1,2,...,5 refers to the order of K1 as a differential operator.

We note that in all cases the determining equations (4.3.3a) imply fm = k a constant and

we can normalize fM = 1. We also note that in all cases we can add arbitrary powers of H

to the operator K. We shall omit case when V (x) is constant ( e.g. Va1).

I. Operator of type (a):

Va2 = V, (4.3.7)

Ka2 = p2
x + βpx + 2V.

Va3 = ~2℘, f2 = β, f1 = 3~2℘, (4.3.8)

Ka3 = p3
x + βp2

x + 3~2℘px + 2β~2℘− 3
2i~

3℘′.

where ℘(x) is the Weierstrass elliptic function. In the case f2 = 0 the solution for Va3 is

V (x) = ~2

x2 , Ka3 = 2p3
x + {3~2

x2 ,px}. (4.3.9)

Va4 = ~2℘, (4.3.10)

Ka4 = p4
x + βp3

x + 4V p2
x + (3βV − 4i~V ′)p2

x + (−3
2i~βV

′ − 8V 2)

Va5 = V, (4.3.11)

Ka5 = p5
x + βp4

x + 5V p3
x + (−15

2 i~V
′ + 4βV )p2

x + (−25
4 ~2V ′′ − 4iβ~V ′ + 15

2 V
2)px

+ 15
8 i~

3V (3) − 2β~2V ′′ − 15
2 i~V V

′ + 4βV 2.
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V satisfies in

~4V (4) − 20~2V V ′′ − 10~2V ′2 + 40V 3 = 0 (4.3.12)

Setting V = ~2U , we get

U (4) − 20UU ′′ − 10U ′2 + 40U3 = 0 (4.3.13)

This equation is a special autonomous case of the equation F-V, in [22, p42]. It has the

Painlevé property and it is solvable in terms of hyperelliptic functions. The solution can be

written as

U = 1
4(u1 + u2) (4.3.14)

where u1(x) and u2(x) are defined by inversion of the hyperelliptic integrals∫ u1(x)

∞

dt√
P (t)

+
∫ u2(x)

∞

dt√
P (t)

= k3, (4.3.15)

∫ u1(x)

∞

t dt√
P (t)

+
∫ u2(x)

∞

t dt√
P (t)

= x+ k4,

with P (t) = t5 + 32k1t+ k2, where k1 and k2 are constants of integration.

The functions u1 and u2 are not meromorphic separately, each having movable quadratic

branch points, however the solution U is globally meromorphic.

II. Operator of type (b):

Vb1 = α1

~
x, (4.3.16)

Kb1 = px + β.

Vb2 = −α1

β~
x, (4.3.17)

Kb2 = p2
x + βpx + 2V.

Vb3 = V, f2 = β, (4.3.18)

Kb3 = p3
x + β1p

2
x + 3V px + 2β1V −

3
2~V

′.

where V satisfies in the following first Painlevé equation

V ′′ = 6
~2V

2 + 4α1

~3 x, (4.3.19)
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and thus

V (x) = ~2ω2
1PI(ω1x), ω1 =

5
√

4α1

~
. (4.3.20)

Vb4 = V, (4.3.21)

Kb4 = p4
x + βp3

x + 4V p2
x + 3βV − 4~V ′ − 2~2V ′′ − 3

2~βV
′ + 4V 2.

where V satisfies the first Painlevé equation

V ′′ = 6
~2V

2 + 4α1

~3β
x,

with the solution

V (x) = ~2ω2
1PI(ω1x), ω1 = 5

√
4α1

~5β
. (4.3.22)

Vb5 = V, (4.3.23)

Kb5 = p5
x + βp4

x + 5V p3
x + (−15

2 i~V
′ + 4βV )p2

x + (−25
4 ~2V ′′ − 4β~V ′ + 15

2 V
2)px

+ 15
8 ~3V (3) − 2β~2V ′′ − 15

2 ~V V ′ + 4βV 2.

The potential V satisfies

~4V (4) − 20~2V V ′′ − 10~2V ′2 + 40V 3 + 16α1x

~
= 0. (4.3.24)

Setting V = ~2U, we get

U (4) − 20UU ′′ − 10U ′2 + 40U3 + 16α1x

h7 = 0 (4.3.25)

This equation is also a special case of the equation F-V in [22, p42]. The exact solution of

it is not known and it is possible that its solution cannot be expressed in terms of classical

transcendents nor one of the original Painlevé transcendents.

III. Operator of type (c):

Vc2 = β

x2 , (4.3.26)

Kc2 = p2
x + α1

2~xpx + 2β1

x2 .

Vc3 = V, (4.3.27)

Kc3 = p3
x + βp2

x + (3V + 1
2~x)px + 2βV − 3

2~V
′.
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Setting V = ~2U − α1
2~x, U(x) is the solution of the following equation

U (3) = 12UU ′ − 4α1

~3 xU
′ − 2α1

~3 ,

It admits the following first integral

2UU ′′ − U ′2 − 8U3 + 4α1

~3 xU
2 = k (4.3.28)

where k is the integration constant. For k = 0, by the change of variables

x = 1
λ
X, U = λ2W 2; λ = 1

h
3
√
α1,

we get a special case of the second Painlevé equation

W ′′ − 2W 3 −XW = 0 (4.3.29)

Therefore, the solution for V (x) is

V (x) = −α
2
3
1 P

2
2 −

α1

2~x.

with P2 = P2(1
~

3
√
α1x).

For k 6= 0, by the following transformation

x = λX, U =
√
−kλ2W ; λ = 3

√
~3

2α1

we transform (4.3.28) to

W ′′ = W ′2

2W + 4λ2√−kλ2W 2 −XW − 1
2W (4.3.30)

which is Ince-XXXIV(Ince, p.340) with the solution

2λ2√−kλ2W = P ′2 + P 2
2 + 1

2X

where P2 satisfies the second Painlevé equation

P ′′2 = 2P 3
2 +XP2 − 2λ2√−kλ2 − 1

2 .

The solution for V is

V (x) = (2α1) 2
3

2 (P ′2 + P 2
2 ),
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for P2 = P2( 3
√

2α1
~3 x).

Vc4 = V, (4.3.31)

Kc4 = p4
x + βp3

x + 4V p2
x + (−4~V ′ + 3βV + iα1

2~ x)px − 2~2V ′′ − 3
2β~V

′ + 4V 2.

For β = 0, V = k
x2 , and for β 6= 0, setting V = ~2U − α1

6β~x, U(x) is the solution of the

following equation

U (4) = 12UU ′′ + 12U ′2 + 2α1

β~3U
′ + 2α2

1
3β2~6

which is again a special case of equation F-I [24]. Its solution can be expressed in terms of

the second Painlevé transcendent.

Vc5 = V, (4.3.32)

Kc5 = p5
x + βp4

x + 5V p3
x + (−15

2 i~V
′ + 4βV )p2

x + (−25
4 ~2V ′′ − 4β~V ′ + 15

2 V
2 + α1

2~x)px

+ 15
8 ~3V (3) − 2β~2V ′′ − 15

2 ~V V ′ + 4βV 2.

The potential V satisfies

~5V (5) − 20~3V V (3) − 40~3V ′V ′′ + 120~V 2V ′ + 8α1xV
′ + 16α1V = 0 (4.3.33)

Setting V = ~6U(X), X = ~2x, we get

U (5) − 20U (3)U + 120U2U ′ − 40U ′U ′′ + 8α1X

~15 U ′ + 16α1

~15 U = 0 (4.3.34)

This equation is Fif-III in [22, p25,eq 2.71] and it has the Painlevé property. A first integral

of it is

2uu′′ − u′2 − 8Uu2 + k = 0

where u = U ′′ − 6U2 − 2α1
~15 X.

When k = 0, a particular solution of (4.3.34) can be obtained by setting u = 0. This solution

is U = PI , where PI(X) satisfies the Painlevé first equation

P ′′I = 6P 2
I + 4 α1

~13X. (4.3.35)

IV. Operator of type (d):
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Vd1 = α2
1

2~2x
2, (4.3.36)

Kd1 = px −
α1

~
x.

Vd2 = α1
2

8~2x
2 + β

x2 , (4.3.37)

Kd2 = p2
x −

α1

~
xpx −

α2
1

~2 x
2 + 2β

x2 .

Vd3 = V (x), (4.3.38)

Kd3 = p3
x −

α1

~
xp2

x + (3V − α2
1

2~2x
2)px + ( ~

3

4αV
(3) − 3~

α1
V V ′ − (5

2~−
α1

2~x
2)V ′ + α2

1
2~x).

Setting V = ~2U(x) + α12

6~2 x
2 − α1

3 , U is the solution of

U (4) = 12UU ′′ + 12U ′2 − 4α1
2

~4 xU ′ − 8α1
2

~4 U − 8α1
4

3~8 x
2

which is a special case of equation F-I [24]. The solution for V (x) is

V (x) = εα1P
′
4 + 2α2

1
~2 (P 2

4 + xP4) + α2
1

2~2x
2 + (ε− 1)α1

3 −
~2

6 k1, (4.3.39)

where ε = ±1 and P4 satisfies the fourth Painlevé equation

P ′′4 = (P ′4)2

2P4
+ 6α2

1
~4 P

3
4 + 8α2

1
~4 xP

2
4 + (2α2

1
~4 x

2 − k1)P4 + k2

P4
. (4.3.40)

k1 and k2 are integration constants.

Vd4 = V, (4.3.41)

Kd4 = p4
x −

α1x

~
p3
x + (4V − α2

1x
2

2~2 )p2
x + f1px + f0.

setting u(x) =
∫
V dx, we get

f1 = −xα
2
1

2~ + x3α3
1

6~3 −
α1u

~
− 3xα1u

′

~
− 4~u′′, (4.3.42)

f0 = − α3
1

2~2x
2 + α4

1
24~4x

4 − α2
1

~2 xu+ (αx −
α2

1
~2 x

2)u′ + 4u′2 − 3
2α1xu

′′ − 2~2u′′′.

thus u(x) is the solution of the following equation
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0 =k − α2
1x

2 + 3α3
1x

4

4~2 −
α4

1x
6

36~4 + 4α2
1x

3

3~2 u+ 2u2 − 2~2u′ − 6α1x
2u′ (4.3.43)

+ 2α2
1x

4

3~2 u′ − 4xuu′ − 6x2u′2 + 2~2xu′′ + ~2x2u′′′.

By the following transformation

X = x2, U = − x

2~2u+ 3~4 − 9α1h
2x2 + α2

1x
4

48~4

we transform (4.3.43) to

X2U (3) = −2(U ′(3XU ′ − 2U)− α2
1

8~4X(XU ′ − U) + k1X + k2)−XU ′′, (4.3.44)

where k1 = − 7α2
1

256~4 , k2 = −4k−3α1~2

128~4 . The equation (4.3.44) is a special case of the Chazy class

I equation. It admits the first integral

X2U ′′2 = −4(U ′2(XU ′ − U)− α2
1

16~4 (XU ′ − U)2 + k1(XU ′ − U) + k2U
′ + k3) (4.3.45)

where k3 is the integration constant. The equation is the canonical form SD-I.b. The solution

is

U =1
4( 1
P5

( XP ′5
P5 − 1 − P5)2 − (1−

√
2λ)2(P5 − 1)− 2βP5 − 1

P5
+ γX

P5 + 1
P5 − 1 + 2δ X2P5

(P5 − 1)2 ),

U ′ =− X

4P5(P5 − 1)(P ′5 −
√

2λP5(P5 − 1)
X

)2 − β

2X
P5 − 1
P5

− 1
2δX

P5

P5 − 1 −
1
4γ,

(4.3.46)

where P5 = P5(x2), satisfies the fifth Painlevé equation

P ′′5 = ( 1
2P5

+ 1
P5 − 1)P ′25 −

1
X
P ′5 + (P5 − 1)2

X2 (λP5 + β

P5
) + γ

P5

X
+ δ

P5(P5 + 1)
P5 − 1 , (4.3.47)

with

α2
1 = −8~4δ, k1 = −1

4(1
4γ

2 + 2βδ − δ(1−
√

2λ)2), k2 = −1
4(βγ + 1

2γ(1−
√

2λ)2),

k3 = − 1
32(γ2((1−

√
2λ)2 − 2β)− δ((1−

√
2λ)2 + 2β)2).
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The solution for the potential is

V (x) = α2
1

8~2x
2 + ~2

( γ

P5 − 1 + 1
x2 (P5 − 1)(

√
2λ+ λ(2P5 − 1) + β

P5
)

+ x2(P
′2
5

2P5
− α2

1
8~4P5)(2P5 − 1)

(P5 − 1)2 −
P ′5

P5 − 1 − 2
√

2λP ′5
)

+ 3~2

8x2 .

(4.3.48)

We could also choose the values of ki, i = 1,2,3 in a way to have (4.3.47) with the following

parameter values:

λ = −β = B2

8 , γ = 0, δ = 2A2 6= 0.

we can then reduce the fifth Painlevé equation with such parameters to a third Painlevé

equation [49, Thm 34.3(p.170),Thm 41.2(p.208), Thm 41.5(p.210)]. Hence in this case we

can obtain a solution in terms of third Painlevé transcendent.

Vd5 = V, (4.3.49)

Kd5 = p5
x −

α1

~
xp4

x + (− α2
1

2~2x
2 + 5V )p3

x + f2p
2
x + f1px + f0.

setting u(x) =
∫
V dx, we get

f2 = −α
2
1

2~x+ α3
1

6~3x
3 − α1

~
u− 4α1

~
xu′ − 15

2 ~u′′,

f1 = −α
3
1x

2

2~2 + α4
1

24~4x
4 − α2

1
~2 xu+ α1u

′ − 3α2
1

2~2 x
2u′ + 15

2 u
′2 − 4α1xu

′′ − 25
4 ~2u(3),

f0 = 1
48α1~3 (−3~8u(6) + 114α1~6u(4) + 60~6u(4)u′ + 120~6u(3)u′′ − 6α2

1~4x2u(4) + 48α2
1~4xu(3) − 96α2

1~4u′′

− 648α1~4u′u′′ − 360~4u′2u′′ + 84α3
1~2x2u′′ + 48α2

1~2xuu′′ + 96α3
1~2xu′ + 72α2

1~2x2u′u′′ + 24α3
1~2u

+ 36α4
1~2x− 2α4

1x
4u′′ − 4α5

1x
3).

(4.3.50)
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and

9~10(xu(6) − u(5)) + 18~6x
(
−10~2u′ + α2

1x
2 − 4α1~2

)
u(4)

+ ~6
(
−360~2xu′′ + 180~2u′ + 126α2

1x
2 + 72α1~2

)
u(3) + 90~8u′′2

+
(
1080~6xu′2 + 864α1~6xu′ − 216α2

1~4x3u′ − 144α2
1~4x2u+ 6α4

1~2x5 − 144α3
1~4x3 + 288α2

1~6x
)
u′′

− 360~6u′3 − 432α1~6u′2 − 468α2
1~4x2u′2 − 144α2

1~4xuu′ − 288α2
1~6u′ − 432α3

1~4x2u′

+ 42α4
1~2x4u′ + 72α2

1~4u2 + 48α4
1~2x3u− 90α4

1~4x2 + 36α5
1~2x4 − α6

1x
6 = 0

(4.3.51)

This equation passes the Painlevé test. Substituting the Laurent series

u =
∞∑
k=0

dk(x− x0)k+p, d0 6= 0,

in (4.3.51), we find p = −1. The resonances are r = 1,2,5,6,8 and we obtain d0 = −~2. The

constants d1, d2, d5, d6 and d8 are arbitrary, as they should be.

4.4. Classification of classical algebraic systems in one dimension

We consider the Hamiltonian (4.2.1) and polynomial K1 (4.2.2) in classical mechanics and

require that they satisfy one of the equations (4.2.4) where [H1,K1] ≡ {H1,K1}PB is now a

Poisson bracket.

Instead of (4.3.2) we now have

{H1,K1}PB =
M+1∑
l=0

Zl(x)plx (4.4.1)

with

Z0 = f1V
′, Zl = (l + 1)fl+1V

′ − f ′l−1, 1 ≤ l ≤M − 1, ZM = −f ′M−1, ZM+1 = −f ′M . (4.4.2)

For all the algebras in (4.2.4) we obtain fM = k a constant, so we can set fM = 1.

I. Polynomial of type (a):

We have Zl = 0, 0 ≤ l ≤ M and the result is trivial. In the case that K1 is of order 1,3

and 5 we get a constant potential. For K1 of order 2 and 4, the only function of x and px
that Poisson commutes with the Hamiltonian is a function of H1 itself. In particular the

polynomial K1 is any polynomial in H. For all M we find that either V is constant or K is

a polynomial in H.
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Notice that this is quite different from the quantum case (4.3.7,...,4.3.15) where we obtain

potentials expressed in terms of nonlinear special functions having the Painlevé property.

The types (b), (c) and (d) are more interesting and provide specific potentials that will

generate superintegrable systems in E2.

II. Polynomial of type (b):

The determining equations in this case are

f1V
′ = α1, f

′
M−1 = 0, (4.4.3)

(l + 1)fl+1V
′ − f ′l−1 = 0, 1 ≤ l ≤M − 1,

The determining equations in this case were already solved by Güngör et al [51]. For

completeness we reproduce some of their results in our notations.

Vb1 = α1x, (4.4.4)

Kb1 = px + β.

Vb2 = α1

β
x, (4.4.5)

Kb2 = 2H1 + βpx.

Vb3 = ε

√
2α1

3 x; ε = ±1; (4.4.6)

Kb3 = px(2H1 + V ) + 2βH1.

Vb4 = ε

√
2α1

3β x; ε = ±1, (4.4.7)

Kb4 = 4H2
1 + 2βpxH1 + βV px.

Vb5 = 3

√
2α1

5 x, (4.4.8)

Kb5 = 4pxH2
1 + 4βh2

1 + 2V pxH1 + 3
2V2px.

III. Polynomial of type (c):

The determining equations are

f1V
′ = α1V, 3f3V

′ − f ′1 = α1

2 , f
′
M−1 = 0,M 6= 2, (4.4.9)

(l + 1)fl+1V
′ − f ′l−1 = 0, 1 ≤ l ≤M − 1, l 6= 2.
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The case when K1 is a first order polynomial does not exist. The solutions for 2 ≤ M ≤ 5

are

Vc2 = c

x2 , (4.4.10)

Kc2 = 2H1 −
α1

2 xpx.

Vc3 = V, (α1x− 2V )2V = c, (4.4.11)

Kc3 = p3
x + βp2

x + (3V − α1

2 x)px + 2βV.

Vc4 = V ; (α1x− 2βV )2V = c, (4.4.12)

Kc4 = p4
x + βp3

x + 4V p2
x + (3βV − α1

2 x)px + 4V 2.

Vc5 = V ; (α1x− 3V 2)2V = c, (4.4.13)

Kc5 = p5
x + βp4

x + 5V p3
x + 4βV p2

x + (15
2 V

2 − α1

2 x)px + 4βV 2.

IV. Polynomial of type (d):

In this case we define polynomial ladder operators as

K±1 =
M∑
l=0

flp
l
x (4.4.14)

where fl = cgl, with

c =


∓i for l even

1 for l odd
(4.4.15)

and they satisfy the algebraic relations

{H1,K
±
1 } = ±iα1K

±
1

The determining equations are

g1V
′ = α1g0, g

′
M−1 = (−1)M−1α1gM , (4.4.16)

(l + 1)gl+1V
′ − g′l−1 = −α1gl, 1 ≤ l ≤M − 1.
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Their solutions are

Vd1 = α2
1x

2

2 , (4.4.17)

Kd1 = px + α1x.

Vd2 = α1x
2

8 + γ

x2 , (4.4.18)

Kd2 = p2
x − α1xpx + 2V − α2

1
2 x

2.

Vd3 = V, (4.4.19)

Kd3 = p3
x + α1xp

2
x + (3V − α2

1
2 x

2)px − ((α2
1x

2 − 6V )
2α1

V ′.

The potential V satisfies

24xV V ′ − 4α2
1x

3V ′ − 12V 2 − 12α2
1x

2V + α4
1x

4 + 4d = 0. (4.4.20)

It admits the following first integral

9V 4 − 14α2
1x

2V 3 + (15
2 α

4
1x

4 − 6d)V 2 − 2α2
1x

2(3
4α

4
1x

4 − d)V + (α
8
1

16x
8 + 1

2dα
4
1x

4 + d2) = 0.

(4.4.21)

Vd4 = V, (4.4.22)

Kd4 = p4
x − α1xp

3
x + (4u′ − α2

1
2 x

2)p2
x + (α

3
1

6 x
3 − α1u− 3α1xu

′)px + (α
2
1

6 x
3 − u− 3xu′)u′′,

where u(x) =
∫
V dx and u satisfies

3x2u′2 + 2xuu′ − 1
3α

2
1x

4u′ − u2 − 2
3α

2
1x

3u+ α4
1x

6

72 + k1x+ k2 = 0. (4.4.23)
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Also using (4.2.11) we find that V (x) satisfies the following 5th order algebraic equation

0 = −32α2
1x

2V 5 + (128d+ 17α4
1x

4)V 4 (4.4.24)

+ (−96c− 128d2

α2
1x

2 −
512e
α2

1x
2 − 32dα2

1x
2 − 7α6

1x
6

2 )V 3

+ (−40d2 + 352e+ 256c2

α4
1x

4 + 256cd
α2

1x
2 + 32cα2

1x
2 + 3dα4

1x
4 + 11α8

1x
8

32 )V 2

+ (−16cd− 128cd2

α4
1x

4 −
512ce
α4

1x
4 −

256c2

α2
1x

2 + 64d3

α2
1x

2 + 256de
α2

1x
2 −

α10
1 x

10

64 )V

+ 64c2 + 4d3 − 112de+ 16d4

α4
1x

4 + 128d2e

α4
1x

4 + 256e2

α4
1x

4 −
64cd2

α2
1x

2 + 256ce
α2

1x
2

− 8cdα2
1x

2 + 3
2d

2α4
1x

4 + 17
2 eα

4
1x

4 − 1
4cα

6
1x

6 + 1
64dα

8
1x

8 + α12
1 x

12

4096 .

f3 = −α1x, f2 = (−1
2α

2
1x

2 + 4V ), f1 = 1
8α1x

(16d+ α4
1x

4 + 8f0 − 16α2
1x

2V − 32V 2),

f0 = (
√
−16e+ 16cV − 16dV 2 + 16V 4).

Vd5 = V, (4.4.25)

Kd5 = p5
x + α1xp

4
x + (5u′ − α2

1
2 x

2)p3
x + (4α1xu

′ + α1u−
1
6α

3
1x

3)p2
x

+ 1
24(180u′2 − 36α2

1x
2u′ − 24α2

1xu+ α4
1x

4)px

+ 1
24α1

(α4
1x

4 − 24α2
1xu− 36α2

1x
2u′ + 180u′2)u′′

where u(x) =
∫
V dx and u satisfies

(α4
1x

4 − 24α2
1xu− 36α2

1x
2u′ + 180u′2)xu′′ − 60u′3 − 78α2

1x
2u′2 − 24α2

1xuu
′ + 7α4

1x
4u′

(4.4.26)

+ 12α2
1u

2 + 8α4
1x

3u− 1
6α

6
1x

6 = 0

We could also use (4.2.11) to get an algebraic equation for V , but it is not very illuminating.

The solutions for Hd3 and Hd4 are presented in [71, 73].

The list of Hamiltonians reduces to Hb1 ≡ Hb2 , Hd1 , Hc2 , Hd2 , Ha3 ≡ Ha4 , Hb3 ≡ Hb4 ,
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Hc3 ≡ Hc4 , Hd3 , Hd4 , Ha5 , Hb5 , Hc5 , Hd5 .

4.5. Classification of superintegrable systems up to fifth order in-

tegrals:quantum and classical systems

In Section 3 we classified all quantum algebraic systems in one dimension with M satisfying

1 ≤M ≤ 5. Here we shall use 2 copies of these algebras H1, K1 and H2,K2 to construct two

dimensional superintegrable systems as described in Section 2 and Table 1.

In table 2, column 1 gives the order of the operator K in the two dimensional systems. In

column 2 all entries have the form (zi,wj). The letters z and w run through the type a,b,c,d

as in (4.2.4) with z referring to the x variable and w to the y. The indices i and j correspond

to the orders of the corresponding operators K1 and K2 and run between 1 and 5.
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order of type (α1,α2)

integrals

1 (b1,b1) (α1,α2)

(d1,d1) (α,α)

2 (d1,d1) (α,2α)

(d1,d2) (α,α)

3 (a3,a3) (~2, ~2)

(b3,b3) (α1,α2)

(b1,b3) (α1,α2)

(c2,b1) (α1,α2)

(c3,b1) (α1,α2)

(d1,d3) (α,α)

(d1,d2) (α,2α)

(d2,d2) (α,α)

(d1,d1) (α,3α)

4 (d4,d1) (α,α)

(d3,d2) (α,α)

(d1,d3) (α,2α)

(d1,d2) (α,3α)&(2α,α)

(d1,d1) (α,4α)&(2α,3α)

order of type (α1,α2)

integrals

5 (a3,a5) ....

(a5,a5) ....

(b1,b5) (α1,α2)

(b3,b5) (α1,α2)

(b5,b5) (α1,α2)

(c3,c3) (α1,α2)

(c2,c3) (α1,α2)

(c2,b3) (α1,α2)

(c3,b3) (α1,α2)

(c5,b1) (α1,α2)

(c5,b3) (α1,α2)

(d5,d1) (α,α)

(d4,d2) (α,α)

(d3,d3) (α,α)

(d2,d2) (α,2α)

(d1,d4) (α,2α)

(d1,d3) (α,3α)

(d1,d2) (α,4α)&(α,α)

(d1,d1) (α,5α)&(α,2α)&(α,α)

Tab. 4.3. Classification of superintegrable systems

These systems can however admit lower order integrals of motion as this construction

does not necessarily provide integrals of the lowest order. As an example for one of the

Smorodinsky-Winternitz potential the ladder operators lead to an integral of order 3 that is

in fact the commutation of two integrals of order 2. The same phenomena occurs for some

of the Gravel potentials.

The potential (Q.10) in Gravel’s list can be obtained by (d2,d2) construction of 8th order
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integral with (α1,α2) = (α, 3α). The potentials Q1
1, Q

2
3, Q

3
3 and Q4

3 in [77] are the cases

(d4,d2),(c2,c3),(c2,b3) and (a3,a5) respectively.

Thus all Smorodinsky-Winternitz, Gravel, fourth and fifth order ones are reducible, i.e.

they can be constructed from one-dimensional algebraic Hamiltonian systems.

Let us present the list of obtained quantum superintegrable systems.

Quantum superintegrable system:

Jauch.Hill potentials:

These anisotropic harmonic oscillator potentials have the form V = ω2(nx2 +my2) where n

and m are two mutually prime positive integers [55].

(d1,d1) :

V = α2

2~2 (x2 + 4y2),

K = (K†1)2(K−2 )− (K−1 )2(K†2) = (ypx − xpy)px.

V = α2

2~2 (x2 + 9y2)

K = (K†1)3(K−2 )− (K−1 )3(K†2) = (xpy − ypx)p2
x.

V = 1
2~2 (α2

xx
2 + α2

yy
2),

(α1,α2) = (α,4α) : K = (K†1)4(K−2 )− (K−1 )4(K†2) = (xpy − ypx)p3
x.

(α1,α2) = (2α,3α) : K = (K†1)3(K−2 )2 − (K−1 )3(K†2)2 = (xpy − ypx)p2
xpy.

(α1,α2) = (α,α) : K = (K†1)3(K−2 )3 − (K−1 )3(K†2)3 = (xpy − ypx)p2
xp

2
y.

(α1,α2) = (α,2α) : K = (K†1)4(K−2 )2 − (K−1 )4(K†2)2 = (xpy − ypx)p3
xpy.

(α1,α2) = (α,5α) : K = (K†1)5(K−2 )− (K−1 )5(K†2) = (xpy − ypx)p4
x.

All values of n and m can be obtained in this manner. The ~ in the denominator of V has

no meaning since we can have α2
1 = n~2, α2

2 = m~2.

Smorodinsky-Winternitz potentials:
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The original multiseparable potentials in E2 were

V (x,y) = ω2(x2 + y2) + β

x2 + γ

y2 (4.5.1)

that is separable in Cartesian, polar and elliptic coordinates, and

V (x,y) = ω2(x2 + 4y2) + γ

y2 (4.5.2)

that is separable in Cartesian and parabolic coordinates.

Both allow second order integrals of motion [40, 63]. These, plus two further ones, not allow-

ing separation in Cartesian coordinates, were later called Smorodinsky-Winternitz potentials

[34, 35, 36, 50]. For ω = 0 "degenerate" form of the Smorodinsky-Winternitz potentials

exist, such as

V (x,y) = αy + β

x2 + γ

y2 . (4.5.3)

In the present approach the potentials (4.5.1) and (4.5.2) are built into infinite sets of po-

tentials generalizing the Smorodinsky-Winternitz potentials both in classical and quantum

mechanics. They occur when we consider the cases (d1,d2) and (d2,d2).

V = ω2(n2x2 +m2y2) + β

x2 + γ

y2 , (4.5.4)

K = (K†1)m(K−2 )n − (K−1 )m(K†2)n (4.5.5)

Taking m = n ≥ 1, ω 6= 0, β 6= 0 and γ 6= 0, we obtain the potential (4.5.1) separable in

polar coordinates. Taking m = 2n, β = 0 we obtain (4.5.2). The pair (d1,d2) provides (4.5.4)

with β = 0. The degenerate one (4.5.3) is obtained as (c2,b1).

Elliptic and hyperelliptic function potentials:

(a3,a3) :

V = ~2(℘(x) + ℘(y)),

K = K1 +K2.

(a3,a5):

V = ~2℘(x) + ~2g(y), K = K1 +K2
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(a5,a5):

V = ~2(f(x) + g(y)), K = K1 +K2

where f(x) and g(y) are hyperelliptic functions satisfying equation (4.3.13) and are defined

in (4.3.14).

Potentials in terms of the first Painlevé transcendent:

(b3,b3) :

V = ~2(ω2
1PI + ω2

2PI),

K = α2K1 − α1K2.

(b1,b3) :

V = α1

~
x+ ~2(ω2

2PI),

K = α2K1 − α1K2.

(c2,b3):

V = β

x2 + ~2ω2
2PI(ω2y), ω2 =

5
√

4iα2

~
, K = α2K1 − α1H1K2.

Potentials in terms of the second Painlevé transcendent:

(c3,b1) :

V = −α
2
3
1 P

2
2 −

α1

2~x+ α1

~
y, P2 = P2(1

~
3
√
α1x)

and

V = ~2

2 (εP ′2 + P 2
2 ) + α2

i~
y, P2 = P2( 3

√
2α1

~3 x),

K = α2K1 − α1H1K2 = α2p
3
x −

α1

2 p
2
xpy.

(c3,c3):

V = ~2(f(x) + g(y))− i

2~(α1x+ α2y), K = α2H2K1 − α1H1K2 = (α2px − α1py)p2
xp

2
y.
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(c2,c3):

V = β

x2 + ~2g(y)− α2

2~y, K = α2H2K1 − α1H1K2.

(c3,b3):

V = f(x) + ~2ω2
2PI(ω2y), ωy =

5
√

4iα2

~
, K = α2K1 − α1H1K2

where f(x) and g(y) satisfy equation (4.3.28).

Potentials in terms of the fourth Painlevé transcendent:

(d1,d3) :

V = α2

2~2 (x2 + y2) + εαP ′4 + 2α2

~2 (P 2
4 + yP4), K = (K†1)(K−2 )− (K−1 )(K†2).

(d3,d2) :

V = α2

8~2 (4x2 + y2) + β

y2 + εαP ′4 + 2α2

~2 (P 2
4 + xP4),

K = (K†1)(K−2 )− (K−1 )(K†2) = (xpy − ypx)p2
xpy.

(d1,d3) :

V = α2

2~2 (x2 + 4y2) + 2εαP ′4 + 8α2

~2 (P 2
4 + yP4), K = (K†1)2(K−2 )− (K−1 )2(K†2) = (xpy − ypx)pxp2

y.

V = α2

2~2 (x2 + 9y2) + 3εαP ′4 + 18α2

~2 (P 2
4 + yP4), K = (K†1)3(K−2 )− (K−1 )3(K†2) = (xpy − ypx)p2

xp
2
y

(d3,d3):

V = f(x) + g(y), K = (K†1)(K−2 )− (K−1 )(K†2) = (xpy − ypx)p2
xp

2
y

where f(x) and g(y) are given in (4.3.39) and α1 = α2 = α.

Potentials in terms of the fifth Painlevé transcendent:
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(d4,d1) :

V = α2

8~2 (x2 + 4y2) + 3~2

8x2 + ~2
( γ

P5 − 1 + 1
x2 (P5 − 1)(

√
2λ+ λ(2P5 − 1) + β

P5
)

+ x2(P
′2
5

2P5
− α2

8~4P5)(2P5 − 1)
(P5 − 1)2 −

P ′5
P5 − 1 − 2

√
2λP ′5

)
,

K = (K†1)(K−2 )− (K−1 )(K†2) = (xpy − ypx)p3
x.

(d4,d2):

V = α2

8~2 (x2 + y2) + 3~2

8x2 + β

y2 + ~2
( γ

P5 − 1 + 1
x2 (P5 − 1)(

√
2λ+ λ(2P5 − 1) + β

P5
)

+ x2(P
′2
5

2P5
− α2

8~4P5)(2P5 − 1)
(P5 − 1)2 −

P ′5
P5 − 1 − 2

√
2λP ′5

)
,

K =(K†1)(K−2 )− (K−1 )(K†2) = (xpy − ypx)p3
xpy.

(d1,d4):

V = α2

2~2 (x2 + y2) + 3~2

8y2 + ~2
( γ

P5 − 1 + 1
y2 (P5 − 1)(

√
2λ+ λ(2P5 − 1) + β

P5
)

+ y2(P
′2
5

2P5
− α2

2~4P5)(2P5 − 1)
(P5 − 1)2 −

P ′5
P5 − 1 − 2

√
2λP ′5

)
K =(K†1)2(K−2 )− (K−1 )2(K†2) = (xpy − ypx)pxp3

y.

Potentials satisfying higher order nonlinear equations passing the Painlevé test:

(b1,b5):

V = α1

i~
x+ g(y), K = α2K1 − α1K2,

(b3,b5):

V = ~2ω2
1PI(ω1x) + g(y), ω1 =

5
√

4iα1

~
.

K = α2K1 − α1K2.
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(b5,b5):

V = f(x) + g(y), K = α2K1 − α1K2.

where f(x) and g(y) satisfy equation (4.3.24).

(d5,d1):

V = f(x) + α2

2~2y
2, K = (K†1)(K−2 )− (K−1 )(K†2) = yp5

x

where F (x) =
∫
fdx satisfies equation (4.3.51).

(c5,b1):

V = ~6f(~2x) + α1

~
x, K = α2K1 − α1H1K2

(c5,b3):

V = ~6f(~2x) + ~2ω2
2PI(ω2y), ω2 =

5
√

4α2

~
, K = α2K1 − α1H1K2

where f(X) satisfies equation (4.3.34).

Classical superintegrable system:

The systems constructed by (d1,d1), (d1,d2) and (d2,d2) are the same as in the quantum case.

Those related to (ai,aj) have no classical analog. In the approach of this article we generate

the following potentials and integrals.

(b3,b3) :

V = ε(
√

2α1

3 x+
√

2α2

3 y); ε = ±1,

K = α2K1 − α1K2.

(b1,b3) :

V = α1x+ ε

√
2α2

3 y,

K = α2K1 − α1K2.
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(c2,b3):

V = β

x2 + ε

√
2α2

3 y, K = α2K1 − α1H1K2

(c5,b1):

V = f(x) + α2y, K = α2K1 − α1H1K2

(c5,b3):

V = f(x) + ε

√
2α2

3 y, K = α2K1 − α1H1K2

where f(x) satisfies equation

(α1x− 3f 2)2f = c

(c3,b1) :

V = g(x) + α2y, K = α2K1 − α1H1K2 = α2p
3
x −

α1

2 p
2
xpy.

(c3,c3):

V = g(x) + g(y), K = α2H2K1 − α1H1K2 = (α2px − α1py)p2
xp

2
y.

(c2,c3):

V = β

x2 + g(y), K = α2H2K1 − α1H1K2.

(c3,b3):

V = g(x) + ε

√
2α2

3 y, K = α2K1 − α1H1K2

where g(x) satisfies equation

(α1x− 2g)2g = c
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(d1,d3) :

V = α2

2 x
2 + h(y), α2 = α, K = (K†1)(K−2 )− (K−1 )(K†2)

(d3,d2) :

V = h(x) + α2

8 y
2 + β

y2 ,

K = (K†1)(K−2 )− (K−1 )(K†2) = (xpy − ypx)p2
xpy.

(d1,d3) :

V = α2

2 x
2 + h(y), α2 = 2α K = (K†1)2(K−2 )− (K−1 )2(K†2) = (xpy − ypx)pxp2

y.

V = α2

2 x
2 + h(y), α2 = 3α, K = (K†1)3(K−2 )− (K−1 )3(K†2) = (xpy − ypx)p2

xp
2
y

(d3,d3):

V = h(x) + h(y), K = (K†1)(K−2 )− (K−1 )(K†2) = (xpy − ypx)p2
xp

2
y

where h satisfies equations given in (4.4.20) and (4.4.21).

(d4,d1) :

V = k(x) + α2

2 y
2,

K = (K†1)(K−2 )− (K−1 )(K†2) = (xpy − ypx)p3
x.

(d4,d2):

V =k(x) + α2

8 y
2 + β

y2 ,

K =(K†1)(K−2 )− (K−1 )(K†2) = (xpy − ypx)p3
xpy.

(d1,d4):

V =α
2

2 x
2 + k(y), αy = 2α,

K =(K†1)2(K−2 )− (K−1 )2(K†2) = (xpy − ypx)pxp3
y.

94



where k satisfies equations (4.4.23) and (4.4.24).

(b1,b5):

V = α1x+ 3

√
2α2

5 y, K = α2K1 − α1K2,

(b3,b5):

V = ε

√
2α1

3 x+ 3

√
2α2

5 y.

K = α2K1 − α1K2.

(b5,b5):

V = 3

√
2α1

5 x+ 3

√
2α2

5 y, K = α2K1 − α1K2.

(d5,d1):

V = f(x) + α2

2 y
2, K = (K†1)(K−2 )− (K−1 )(K†2) = yp5

x

where F (x) =
∫
fdx satisfies equation (4.4.26).

4.6. Conclusion

Our main conclusion is that the systematic use of quantum or classical algebraic systems

in one dimension is an efficient method of generating superintegrable systems in a two-

dimensional Euclidean space. By construction, all systems thus obtained allow the separa-

tion of variables in the Schrödinger and the Hamilton-Jacobi equation, respectively. The

algebraic systems consist of a pair (H1,K1) where H1 is a natural Hamiltonian as in (4.2.1)

and K1 a polynomial as in (4.2.2). The four types of algebras considered are as in (4.2.4)

and all of them should be constructed in x and y spaces independently.

Let us again run through all combinations of the type (zi, wj) where z is in x-space and w

in y-space. The subscripts give the order of the corresponding polynomial Kl, l = 1,2.
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The pair (d1,d1) with (α1, α2) = ω2(n,m) yields the Jauch and Hill potentials.

The pair (d2, d2) gives an infinite set of generalizations of the Smorodinsky-Winternitz po-

tentials.

Pairs of the type (ai,aj) in quantum mechanics give potentials in terms of elliptic or hyper-

elliptic functions. In classical mechanics their limit is free motion (V = constant).

All other pairs lead to "exotic potentials" expressed in terms of Painlevé transcendents or

their generalizations that are solutions of higher order ODEs. This is true for all examples

so far considered and we conjecture that this is true for all values of i and j.
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