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Résumé

Cette thèse s’intéresse à la théorie de Floer pour les immersions lagrangiennes. On com-
mence par montrer un théorème de décomposition des disques pseudo-holomorphes à
bord dans une immersion générique. On donne ensuite une application au calcul du
complexe de Floer. On conclut par une esquisse d’un travail en cours sur le calcul de
l’obstruction de la chirurgie de deux lagrangiennes plongées et transverses.

Dans un deuxième temps, on se restreint au cas des surfaces. On montre qu’un groupe
de cobordisme dont les relations sont données par certains cobordismes lagrangien im-
mergés est isomorphe au groupe de Grothendieck de la catégorie de Fukaya. Au passage,
on calcule le groupe de cobordisme lagrangien immergé.

Mots-clés : Sous-variétés lagrangiennes, Immersions lagrangiennes, Polygones holo-
morphes, Cobordismes Lagrangiens, Groupes de cobordisme, Homologie de Floer, Caté-
gories de Fukaya.
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Summary

In this thesis, we shall study Floer theory for Lagrangian immersions. In the first chap-
ter, we prove a decomposition theorem for pseudo-holomorphic disks with boundary on
a given generic Lagrangian immersion. We apply this result to the computation of cer-
tain Floer complexes. We conclude with work in progress on the computation of the
obstruction of the surgery of two transverse Lagrangian submanifolds.

In the second chapter, we consider surfaces. We show that a cobordism group, whose
relations are given by unobstructed immersed lagrangian cobordisms, is isomorphic to
the Grothendieck group of the derived Fukaya category. We also compute the immersed
Lagrangian cobordism group.

Key words: Lagrangian submanifolds, Lagrangian immersions, Holomorphic poly-
gons, Lagrangian cobordisms, Cobordism groups, Floer homology, Fukaya categories.

vii





Table des matières

Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Table des figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

Remerciements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Quelques bases de topologie symplectique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Variétés symplectiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Systèmes hamiltoniens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Sous-variétés lagrangiennes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Quelques outils techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Théorie de Floer et rigidité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Théorie de Floer et immersions lagrangiennes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Cobordismes lagrangiens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Contenu de la thèse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Contenu du chapitre 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Contenu du chapitre 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapitre 1. Structure des courbes pseudo-holomorphes à bord sur une
immersion Lagrangienne . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.1.1. Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.1.2. Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.1.3. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.1.4. Outline of the proof of the Main Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.1.5. Outline of the paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

ix



1.1.6. Acknowledgements:. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.2. The Frame of a J-holomorphic curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.2.1. Local coordinates around double points of the immersion . . . . . . . . . . . . . . 30
1.2.2. The relative frame of the curve is a graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
1.2.3. Frame and simple curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
1.2.4. Factorizations of J-holomorphic disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

1.3. Consequences of the main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
1.3.1. Simplicity of curves for generic almost complex structures . . . . . . . . . . . . . 61
1.3.2. Time-independent Floer homology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
1.3.3. Work in progress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Chapitre 2. Groupes de cobordisme lagrangien . . . . . . . . . . . . . . . . . . . . . . . . 85

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.1.1. Immersed Lagrangians and cobordisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
2.1.2. Floer theory and cobordism groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
2.1.3. Relation with [Hau15] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.1.4. Outline of the paper. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.1.5. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.2. Computation of the immersed cobordism group. . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.2.1. Properties of the immersed cobordism group. . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.2.2. Computation of the cobordism group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

2.3. Fukaya categories of surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
2.3.1. Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
2.3.2. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
2.3.3. Properties of the Fukaya category . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

2.4. Immersed Lagrangian cobordisms and iterated cones . . . . . . . . . . . . . . . . . . . . . 122

2.5. Computation of the unobstructed Lagrangian Cobordism Group . . . . . . . . . . 123
2.5.1. Holonomy and the map i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
2.5.2. Surgery of immersed curves and obstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
2.5.3. Obstruction of the surgery cobordisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
2.5.4. Action of the Mapping Class Group and proof of Theorem 2.5.1 . . . . . . . 149

x



Bibliographie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

xi





Table des figures

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 À gauche, un polygone qui contribue à m2. À droite, un polygone qui contribue
à m6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 À gauche, une larme, Au centre, une trajectoire de Floer avec un coin, À
droite, les configurations comptées par d2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Chapitre 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1 The immersion i (blue, on the right), the disk u (shaded, on the right) and its
frame W(u) on the left . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 The surface SΩ, the paths γ and γ±. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3 A labeled domain and its underlying tree Red corresponds to a label L1 and
blue to L2 The dots are mapped to x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Chapitre 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

1 An obstructed immersed curve and a teardrop (shaded) . . . . . . . . . . . . . . . . . . . . . 89

2 The doubled pair of pants S and the projection of the immersions i+ (blue),
i− (red) and j (yellow) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

3 The projections of the surgery cobordism near the double points. . . . . . . . . . . . . 100

4 The Lickorish generators of the Mapping Class Group . . . . . . . . . . . . . . . . . . . . . . . 104

5 The surgery procedure to obtain a curve isotopic to a Dehn Twist, The
successive ck are represented in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Two pair of pants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7 The successive surgeries to compute the class of a pair of pants . . . . . . . . . . . . . . 109

8 The successive surgeries to compute the class of a pair of pants in the non-
separating case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9 The path λγ1,γ2,x when x is of degree 1 (left) and of degree 0 (right) . . . . . . . . . 116

xiii



10 Left, an immersed polygon with convex corners, Right, an immersed polygon
with two corners indicated by •, one of which is non-convex.. . . . . . . . . . . . . . . . . 121

11 The successive surgeries which link two non separating curves . . . . . . . . . . . . . . . 128

12 Rounding off a corner yields a teardrop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

13 The curves α and γ bound a square with four corners. . . . . . . . . . . . . . . . . . . . . . . . 132

14 The curves γ+ and γ− near the intersection point x. . . . . . . . . . . . . . . . . . . . . . . . . . 134

15 The arcs Ai map to the connected components of Ux ∩ γ#xα . . . . . . . . . . . . . . . . 135

16 The four possibilities for the image of u around the surgered point. The arrows
correspond to the orientation of the boundary of u. . . . . . . . . . . . . . . . . . . . . . . . . . . 135

17 The connected component Ci, the set Ω (shaded) and u−1(γ±) (in red). Note
that this is hypothetical : the proof of Lemma 2.5.10 shows that this situation
cannot happen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

18 The procedure to obtain the polygon v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

19 The arc A and the bigons delimited by A (shaded) . . . . . . . . . . . . . . . . . . . . . . . . . . 141

20 The arc A and the bigons delimited by A (shaded) . . . . . . . . . . . . . . . . . . . . . . . . . . 142

21 The curves α1, α2, α3, α4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

22 The different types of switch points, The curve αk+1 is in red . . . . . . . . . . . . . . . . 153

23 The different possibilities at a corner yj, The image of the disk v is one of the
four shaded areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

24 The procedure to obtain a bigon between α and β . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

xiv



Remerciements

En premier lieu, j’aimerais bien sur remercier mon directeur Octav pour tout le temps
qu’il m’a consacré ces dernières années. Sa porte a toujours été ouverte pour prodiguer
conseils, encouragements et explications, et parfois pour me forcer à avancer !

Un grand merci à Alexandru Oancea pour avoir accepté de faire partie du jury et
pour ses commentaires nombreux et utiles !

Merci à tous les amis du département pour leur aide durant toutes ces années ! J’ai
appris beaucoup de belles choses (en groupe de travail et ailleurs !) avec Egor, Lara,
François, Alexandre, Noémie, Dustin, Vincent et Noé. Un merci tout particulier revient
à Clément, Jordan, Jean-Philippe, Emily et Dominique pour leur relecture de ce texte !
Merci aussi à Baptiste pour son coaching des derniers mois !

Puisqu’on parle du département, je tiens aussi à remercier Anne-Marie, Lise et Marie-
Claude pour leur aides avec les formalités administratives. Merci aussi à Marlène Frigon
pour ses conseils et son aide pendant que j’enseignais le cours d’Analyse.

Pour tous les amis de Montréal et d’ailleurs, vous êtes malheureusement bien trop
nombreux pour pouvoir tous vous remercier individuellement (et je m’en voudrais d’ou-
blier quelqu’un) ! Ils se reconnaitront d’eux mêmes !

Enfin un grand merci pour ma famille, de France et du Sénégal pour leur affection et
leur aide. Maman, Papa et Lena, merci encore pour m’avoir appelé, accueilli et soutenu
chaque semaine depuis l’hiver 2015 (déjà !).

1





Introduction

Quelques bases de topologie symplectique

Variétés symplectiques

Dans cette thèse, on étudiera les variétés symplectiques. Il s’agit des couples (M,ω)

avec M une variété et ω ∈ Ω2(M) une forme différentielle fermée et non dégénérée.
Ces objets apparaissent naturellement dans de nombreux champs de la géométrie. Voici
quelques exemples.

– L’espace complexe Cn de coordonnées zk = xk + iyk peut être muni de la forme
symplectique

ω =
n∑
k=1

dxk ∧ dyk.

– Soit V une variété, son cotangent T ∗V est naturellement muni d’une forme diffé-
rentielle λ ∈ Ω1(T ∗V ), sa forme de Liouville. Sa différentielle

ω = dλ,

est une forme symplectique. Ces variétés permettent de donner une formulation
géométrique de la mécanique hamiltonienne1.

– En géométrie complexe, toute variété kählérienne (M,J, ω) est symplectique. Cela
inclut, entre autres, les variétés projectives et affines lisses.

Notons dès maintenant que la dimension d’une variété symplectique est nécessairement
paire, disons 2n avec n ∈ N.

Pour classifier ces objets, on a besoin d’une notion de morphisme. On appelle sym-
plectomorphisme un difféomorphisme

ψ : (M1, ω1)→ (M2, ω2)

1Voir [Arn89] pour une très belle introduction.



entre deux variétés symplectiques (M1, ω1) et (M2, ω2) tel que

ψ∗ω2 = ω1.

Une des spécificités du sujet est qu’à la différence du cas riemannien il n’y a pas
d’invariants locaux. En effet, soit x ∈ M . Le théorème de Darboux affirme qu’il existe
des coordonnées locales x1, . . . , xn, y1, . . . , yn autour de x dans lesquelles

ω =
n∑
i=1

dxi ∧ dyi.

On conclut que toutes les variétés symplectiques sont localement équivalentes !
Heureusement il existe des invariants, nécessairement globaux, permettant de dis-

tinguer ces objets. Avant d’expliquer cela, rappelons qu’une structure presque complexe
J ∈ Γ(End(TM)) est une section du fibré des endomorphismes de l’espace tangent sa-
tisfaisant J2 = − Id. La section J est dite compatible avec ω si l’application bilinéaire
gJ = ω(·, J ·) est symétrique, définie et positive. On note J (M,ω) l’ensemble des struc-
tures presque complexes compatibles avec ω. Muni de la topologie C∞, c’est un espace
non vide et contractile (voir par exemple [ALP94]).

En 1985, Gromov introduit les courbes pseudo-holomorphes dans l’article [Gro85].
Soient J ∈ J (M,ω) une structure presque complexe compatible avec ω et (Σ, j) une
surface de Riemann fermée. Une courbe pseudo-holomorphe est une application lisse

u : (Σ, j)→ (M,J)

qui satisfait l’équation de Cauchy-Riemann

du ◦ j = J ◦ du.

En étudiant ces applications, Gromov montre de nombreux résultats fondateurs et éton-
nants. Par exemple, fixons J ∈ J (CP 2, ωFS) une structure presque complexe générique
sur le plan projectif complexe et deux points z1 6= z2 ∈ CP 2. À paramétrisation près, il
existe une unique sphère pseudo-holomorphe u : CP 1 → CP n homologue à CP 1 ⊂ CP 2

passant par z1 et z2. Dans ce cas, le comptage de courbes pseudo-holomorphes ne dépend
donc pas de la structure complexe et fournit un invariant symplectique !

Ces techniques ont donné naissance au sujet et les résultats sont donc trop nombreux
pour pouvoir tous les citer. Cependant, le livre de McDuff et Salamon [MS12] contient
une très belle introduction ainsi que des références plus complètes.
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Systèmes hamiltoniens

La variété (M,ω) possède une famille importante d’automorphismes. On appelle ha-
miltonien (dépendant du temps) toute fonction

H ∈ C∞([0, 1]×M,R).

On associe à H le champ de vecteurs XH défini par la formule

ιXHω = −dH.

Si XH est complet, par intégration, on obtient un flot de transformations symplectiques
φtH : M →M . Il s’agit du flot hamiltonien associé à H.

Cette terminologie provient de la physique. En effet, considérons un système physique
dont l’espace de configuration est une variété V . L’espace dans lequel vit sa position et
son impulsion généralisée s’identifie alors naturellement au cotangent T ∗V tandis que
son comportement est décrit par une fonction H : V → R qu’on appelle son hamiltonien.
L’évolution du système suit alors une trajectoire de T ∗V tangente au champ de vecteur
XH .

L’étude de ces systèmes dynamiques est le sujet d’une littérature très riche qui re-
monte à Poincaré. Souvent, on s’attache à montrer l’existence d’orbites périodiques.
Comme ce n’est pas le sujet de cette thèse, je renvoie les personnes intéressées au cha-
pitre 11 de [MS17] pour un historique très complet.

Sous-variétés lagrangiennes

Une immersion i : Ln # M2n est dite lagrangienne si son domaine est de dimension
n et la forme i∗ω est identiquement nulle. Quand i est un plongement, on parle de sous-
variétés lagrangiennes. Donnons quelques exemples.

– Le sous-espace vectoriel Rn ⊂ Cn.
– Le tore de Clifford est le produit TCliff = S1 × . . .× S1 ⊂ Cn de n copies de S1.
– Pour x ∈ V , la fibre T ∗xV au dessus de x.
– La section nulle V ⊂ T ∗V .
– Soit H = {P−1(0)} ⊂ CP n l’ensemble des zéros d’un polynôme homogène à
coefficients réels P ∈ R[X1, . . . Xn+1]. On suppose l’hypersurface H lisse. Alors,
sa partie réelle HR := H ∩ Rn est lagrangienne.

Il y a de nombreuses raisons de s’intéresser à cette classe de sous-variétés et immer-
sions.

– Si ψ : (M1, ω1) → (M2, ω2) est un symplectomorphisme, son graphe gr(ψ) est
lagrangien dans la variété produit M1 ×M2 munie de la forme −ω1 ⊕ ω2. Ainsi,
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toute information sur les lagrangiennes de M1 ×M2 permet de caractériser les
symplectomorphismes ψ : M1 →M2.

– Les sous-variétés (et immersions) lagrangiennes donnent des invariants en étu-
diant leur topologie et leur comportement sous les automorphismes de (M,ω).

Soient i0 : L # M et i1 : L # M deux immersions lagrangiennes, on appelle isotopie
lagrangienne entre i0 et i1, une famille lisse d’immersions lagrangiennes

it : L#M, t ∈ [0, 1].

Une immersion lagrangienne i : Ln # M se relève naturellement en une application de
fibrés :

F : TL → TM

(x, v) 7→ dix(v)
.

qui est (i) linéaire, (ii) injective sur les fibres et (iii) telle que l’image de chaque espace
tangent

dix(Tx(L))

est lagrangienne. Gromov [Gro85] et Lees [Lee76] ont montré que deux immersions
lagrangiennes i0 : L→M et i1 : L→M sont isotopes si et seulement si

– Il existe une famille continue (it)t∈[0,1] : L→M ,
– Il existe une famille continue d’applications de fibrés Ft : TL→ TM relevant les

(it) telle que Ft satisfait (i), (ii), (iii) pour tout t ∈ [0, 1].
On voit donc que décider si deux immersions lagrangiennes sont isotopes revient à un
calcul d’homotopie ! On dit que les immersions lagrangiennes satisfont le h-principe (pour
principe d’homotopie). Suivant Gromov ([Gro87]), on dit que les problèmes de topologie
symplectique qui se ramènent à des calculs d’homotopie sont flexibles.

En revanche, les plongements lagrangiens n’obéissent pas à ces phénomènes de flexi-
bilité. Par exemple, Chekanov ([Che96]) introduit un tore TChek ⊂ Cn lagrangien qui
est lagrangien isotope au tore de Clifford. En revanche, il n’existe pas de symplectomor-
phisme ψ : Cn → Cn tel que

ψ(TChek) = TCliff.

Cela peut se démontrer en comptant des disques pseudo-holomorphes dont le bord est
inclus dans TChek et TCliff ([Che97],[CS10]). Les phénomènes qui ne se ramènent pas à
des problèmes d’homotopie sont dits rigides.

Cette dichotomie entre phénomènes rigides et flexibles est un des thèmes majeurs de
la topologie symplectique. En particulier, c’est un des thèmes majeurs de mon travail
de thèse. Au passage, on notera que dans le cas du tore de Chekanov, la rigidité a été
détectée au moyen de courbes pseudo-holomorphes : cela semble être un principe général
([Eli15, 6.1]).
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Quelques outils techniques

Théorie de Floer et rigidité

Homologie de Floer. Un exemple de technique permettant d’étudier les phénomènes
de rigidité est donné par l’homologie de Floer.

Le problème initial est le suivant. Étant données L0 et L1 deux sous-variétés lagran-
giennes de (M,ω). Peut-on modifier le nombre de points d’intersection entre L0 et L1 en
déplaçant une des lagrangiennes par un flot hamiltonien ? Quel est le nombre minimal
de points d’intersection ?

Cette question est en fait liée au comptage des orbites périodiques d’un hamiltonien
Ht : M × [0, 1]→ R. En effet, on a vu que la diagonale

∆ = {(z, z)|z ∈M}

est lagrangienne dans le produit M ×M . Les points d’intersections de ∆ et du graphe de
flot au temps 1 de Ht sont en bijection avec les orbites périodiques de Ht. Compter les
intersections entre ces deux lagrangiennes donne donc des informations sur la dynamique
du flot de Ht !

Pour caractériser ces intersections Floer propose, durant les années 80, une construc-
tion assez remarquable que je vais maintenant expliquer (les articles fondateurs sont
[Flo88a],[Flo88b],[Flo88c]).

Pour la suite de cette section, supposons que M soit fermée et asphérique (i.e.
π2(M) = 0). Soient L0 et L1 deux sous-variétés lagrangiennes fermées de M telles que
π2(M,Li) = 0 pour i = 0, 1. Soit Ht : [0, 1] × M → R un hamiltonien. Notons PH
l’ensemble des trajectoires hamiltoniennes allant de L0 à L1, c’est à dire

PH =

{
γ : [0, 1]→M

∣∣∣∣γ(0) ∈ L0, γ(1) ∈ L1,
dγ

dt
= φtH(γ(t))

}
.

Ses éléments sont aussi appelés des cordes hamiltoniennes. L’ensemble PH est naturelle-
ment en bijection avec L0 ∩φ−1

H (L1). On suppose que cette intersection est transverse de
sorte que PH est fini.

On fixe aussi une structure presque complexe

J ∈ C∞([0, 1],J (M,ω))

qui dépend du temps t ∈ [0, 1].
Soient γ− et γ+ deux éléments de PH , Floer considère l’ensemble

M̃(γ−, γ+, J,H)
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des solutions u : R× [0, 1]→M de l’équation de Floer

∂su+ Jt(u)(∂tu−XHt(u(s, t))) = 0. (0.1)

satisfaisant les conditions aux limites

lim
s→±∞

u(s, t) = γ±(t), u(R× {0}) ⊂ L0, u(R× {1}) ⊂ L1 (0.2)

et d’énergie finie ∫
R×[0,1]

|∂tu−XHt(u(s, t))|2 < +∞. (0.3)

Le groupe additif R agit sur l’ensemble M̃(γ−, γ+, J,H) par la formule

(s0 · u)(s, t) = u(s+ s0, t).

On noteM(γ−, γ+, J,H) l’ensemble des orbites de cette action. Ses éléments sont appelés
trajectoires de Floer. Quand H = 0, un élément de M(γ−, γ+, J,H) sera aussi appelé
un bande pseudo-holomorphe puisqu’il satisfait l’équation de Cauchy-Riemann. Floer
commence par remarquer, suivant les idées de Gromov, que l’espace

M(x, y, J,H)
∐( ⋃

z∈PH

M(x, z, J,H)×M(z, y, J,H)

)
admet une topologie naturelle qui en fait un espace métrisable compact. Rappelons qu’un
sous-ensemble d’un espace de Baire est dit générique s’il contient une intersection dé-
nombrable d’ouverts denses. Il existe un ensemble générique

Jreg(L0, L1) ⊂ C∞([0, 1],J (M,ω)),

tel que pour tout J ∈ Jreg(L0, L1), l’ensembleM(γ−, γ+, J,H) est une variété de dimen-
sion finie. AppelonsMk(γ−, γ+, J,H) l’union des composantes connexes de dimension k
deM(γ−, γ+, J,H).

Si J ∈ Jreg(L0, L1), on montre que l’espace topologique

M0(γ−, γ+, J,H)

est compact. Des résultats difficiles d’analyse montrent que l’espace topologique

M1(γ−, γ+, J,H)
∐( ⋃

z∈PH

M0(γ−, z, J,H)×M0(z, γ+, J,H)

)
, (0.4)

est une variété compacte de dimension un dont le bord est donné par⋃
z∈PH

M0(γ−, z, J,H)×M0(z, γ+, J,H).
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Le complexe de Floer est l’espace vectoriel sur Z/2Z engendré par les éléments de PH

CF (L1, L2, J,H) =
⊕
γ∈PH

Z/2Z · γ.

On le munit d’une différentielle d : CF (L1, L2, J,H) → CF (L1, L2, J,H) qui compte le
nombre de trajectoires entre deux cordes hamiltoniennes modulo 2,

d(γ+) =
∑
γ−

#M0(γ−, γ+, J,H) · γ−.

L’union ⋃
z∈PH

M0(γ−, z, J,H)×M0(z, γ+, J,H)

est de cardinal pair puisque c’est le bord d’une variété de dimension 1. On déduit facile-
ment que l’application d satisfait d2 = 0.

L’homologie de Floer entre L1 et L2 est l’homologie du complexe (CF (L1, L2, J,H), d)

HF (L1, L2, J,H) = H(CF (L1, L2, J,H), d).

On peut montrer que cet espace vectoriel ne dépend ni du choix de J ∈ Jreg(L1, L2), ni
du choix du hamiltonien H. Ainsi, on peut oublier J et H dans la notation.

Floer ([Flo88a]) montre, en choisissant bien le hamiltonienH et la structure complexe
J , qu’il existe un isomorphisme

HF (L,L) ' H∗(L,Z/2Z).

En particulier, le nombre d’intersections d’une déformation hamiltonienne φ1
H(L) avec L

est minoré par la somme des nombres de Betti de L

#
(
L ∩ φ1

H(L)
)
>
∑
k

βk(L,Z/2Z).

On peut appliquer cela à la diagonale ∆ pour obtenir un minorant du nombre de points
fixes d’un difféomorphisme hamiltonien ; cela prouve une forme faible d’une conjecture
d’Arnold.
Structure produit. Il est possible de définir des structures algébriques sur les groupes
d’homologie de Floer. Expliquons premièrement comment définir un produit.

Soient L0, L1, L2 trois sous-variétés lagrangiennes. On peut définir une application

m2 : HF (L1, L2)⊗HF (L0, L1)→ HF (L0, L2), (0.5)

qui compte des triangles pseudo-holomorphes dont les conditions de bord sont données
par L1, L2 et L3 (voir la figure 1). Comme la construction est compliquée, je n’en dirai
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L0

Figure 1 – À gauche, un polygone qui contribue à m2.
À droite, un polygone qui contribue à m6.

pas plus sur le sujet, mais on pourra consulter la section 2.3 du chapitre 2 pour un résumé
plus complet.

Il se trouve que le produit ainsi construit est associatif :

m2 ◦ (m2 ⊗ Id) = m2 ◦ (Id⊗m2). (0.6)

Suivant une idée de Donaldson on peut définir une catégorie Don(M,ω), dite deDonaldson-
Fukaya, dont

– Les objets sont les lagrangiennes compactes de (M,ω),
– Les morphismes entre deux objets L1 et L2 sont donnés par le groupe d’homologie
de Floer HF (L1, L2),

– La composition entre deux morphismes est donnée par l’application m2 (0.5).
Malheureusement la catégorie de Donaldson-Fukaya est un invariant peu pratique

pour plusieurs raisons.
(A) Il n’est pas clair que la catégorie Don(M,ω) possède assez d’objets pour être cal-

culée et manipulée algébriquement. En effet, elle n’est a priori même pas additive
(elle n’admet pas, a priori, de produits finis) ! On aimerait donc travailler avec
un invariant qui admet plus de structure.

(B) Les groupes de morphismes de Don(M,ω) sont des groupes d’homologie. Il existe
en réalité beaucoup d’information au niveau des chaînes qui est perdue par ce
passage au quotient2.

Pour régler le problème (B), Fukaya propose de construire une « catégorie » Fuk(M,ω)

dont les objets sont toujours des lagrangiennes mais dont les morphismes sont donnés

2Une bonne analogie dans le cas d’une algèbre différentielle graduée (A, d) est l’existence de produits de
Massey. Ceux-ci sont un invariant du complexe A et ne peuvent pas être retrouvés par la donnée de
l’algèbre H(A, d).
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par les complexes de Floer

HomFuk(M,ω)(L1, L2) = CF (L1, L2).

La composition est donnée par l’application m2 dont j’ai esquissé la définition plus haut.
Malheureusement cette application n’est pas associative. Fukaya remarque qu’il existe
des applications

m3 : CF (L3, L4)⊗ CF (L2, L3)⊗ CF (L1, L2)→ CF (L1, L4)

qui satisfont la relation

m2◦(m2⊗Id)−m2◦(Id⊗m2) = d◦m3+m3◦(d⊗Id⊗2)+m3◦(Id⊗d⊗Id)+m3◦(Id⊗2⊗d).

Le produit m2 est donc associatif à une homotopie m3 près ! L’application m3 est définie
par un comptage de polygones pseudo-holomorphes à condition de bord dans quatre
lagrangiennes (voir la figure 1).

Plus généralement, pour tout d > 1, il existe des applications

md : CF (Ld−1, Ld)⊗ . . .⊗ CF (L0, L2)→ CF (L0, Ld)

données par des comptages de polygones pseudo-holomorphes comme en figure 1 qui
satisfont les relations A∞∑

j=1...d
i=0...d−j

md−j+1 ◦
(

Id⊗i⊗mj ⊗ Id⊗d−(i+j)
)

= 0.

Cela munit Fuk(M,ω) d’une structure de A∞-catégorie .
Pour ce qui est du problème (A), la bonne notion pour faire de l’algèbre homologique

est celle de catégorie triangulée, due à Grothendieck et Verdier. Il s’agit d’une catégorie
additive munie d’une famille de triangles de la forme

A
f−→ B

g−→ C → A[1],

dits distingués qui satisfait un certain nombre d’axiomes. Dans un tel triangle, l’objet C
est l’analogue du cone du morphisme f en algèbre homologique.

En 1994 Kontsevich ([Kon95]) propose de généraliser une construction de Bondal
et Kapranov ([BK90]) pour construire une catégorie triangulée à partir de Fuk(M,ω).
Concrètement, la structure A∞ de Fuk(M,ω) permet de définir une famille de triangles
distingués. Cette catégorie n’est cependant pas triangulée. On ajoute alors formelle-
ment les triangles distingués manquants pour obtenir la catégorie dérivée de Fukaya
DFuk(M,ω).
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La construction de Fuk(M,ω) est difficile et demande beaucoup d’analyse. Le pro-
blème principal est que les espaces de courbes qui interviennent dans la définition ne
sont génériquement des variétés que pour les courbes simples, c’est-à-dire les courbes qui
n’ont pas de multiplicité3. Pour résoudre cela, on compte des polygones qui satisfont une
équation de Cauchy-Riemann perturbée. Tout cela est expliqué dans le livre de Seidel
[Sei08] dans le cas des variétés symplectiques exactes4 dont le bord est convexe. Je donne
aussi un (court) résumé des points essentiels de la construction dans la section 2.3 du
Chapitre 2.

Bien que les catégories de Fukaya soient des objets algébriquement compliqués, elles
ont l’avantage de contenir beaucoup d’information géométrique. Par exemple, soit V une
variété compacte. Désignons par p : T ∗V → V la projection sur la section nulle. En étu-
diant Fuk(T ∗V ), Fukaya-Seidel-Smith ([FSS08]) puis Abouzaid ([Abo12]) et Abouzaid-
Kragh ([AK18]) ont montré que que si L ⊂ T ∗V est une sous-variété lagrangienne exacte
et compacte, la projection de L sur la section nulle V est une équivalence d’homotopie
simple ! C’est un pas vers la preuve d’une conjecture d’Arnold qui affirme que L est
hamiltonienne isotope à la section nulle.

Théorie de Floer et immersions lagrangiennes

Homologie de Floer et lagrangiennes immergées. Des travaux récents montre
qu’une certaine classe d’immersions lagrangiennes, strictement plus grande que les plon-
gements, satisfait des propriétés de rigidité, malgré les h-principes. J’explique maintenant
d’où provient cette classe : l’idée est de rechercher les immersions auxquelles on peut ap-
pliquer la théorie de Floer.

Plus précisément, soient i0 : L0 #M et i1 : L1 #M deux immersions lagrangiennes.
On suppose que leurs points doubles sont transverses et qu’elles n’admettent pas de
points triples. On construit comme précédemment un complexe différentiel

CF (L0, L1, J,H)

dont les générateurs sont les cordes hamiltoniennes de L1 à L2. La différentielle d compte
des applications u : R × [0, 1] → M solutions de l’équation de Floer 0.1, d’énergie finie
0.3 et de bord satisfaisant 0.2. On exige de plus qu’il existe des applications

γ0 : R→ L0, γ1 : R→ L1

qui relèvent la condition de bord

i0 ◦ γ0 = u(·, 0), i1 ◦ γ1 = u(·, 1).

3La définition exacte est dans l’introduction du chapitre 1.
4Ce sont les variétés dont la forme symplectique satisfait ω = dλ pour une forme λ ∈ Ω1(M).
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Figure 2 – À gauche, une larme,
Au centre, une trajectoire de Floer avec un coin,
À droite, les configurations comptées par d2.

Cette hypothèse élimine l’existence de « coins » (comme dessinés sur la figure 2).
Malheureusement, l’application d ne satisfait pas d2 = 0. Un théorème de compacité

dû à Ivashkovich et Shevchishin ([IS02]) montre que la compactification des espaces
de solutions n’est pas aussi simple que 0.4. Expliquons rapidement quel est le terme
d’obstruction.

On appelle larme un polygone pseudo-holomorphe dont le bord est contenu dans L
et qui a un unique sommet (voir la figure 2). Si x est un point double de l’immersion ik
(avec k ∈ {0, 1}), on appelle

M(x, Lk, J)

l’ensemble des larmes pseudo-holomorphes dont le coin est x. Appelons de plus

M(γ−, γ+, x, Li, J)

l’ensemble des triangles pseudo-holomorphes dont les conditions de bord sont données
dans la figure 2. Si tous les espaces de courbes sont des variétés, le carré de la différentielle
est une somme formelle d’orbites

d2(γ+) =
∑

γ−∈PH

(∑
x

Aγ−,γ+,x

)
γ−. (0.7)

Le coefficient Aγ−,γ+,x est donné par un comptage de configurations représentées en figure
2

Aγ−,γ+,x = #M0(γ−, γ+, x, L0, J)·#M0(x, L1, J)+#M0(γ−, γ+, x, L1, J)·#M0(x, L0, J).
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Le complexe (CF (L0, L1), d) est donc différentiel quand les immersions L0 et L1 sont
telles que ce comptage algébrique s’annule. On dit alors que L0 et L1 sont non obstruées.
Cela arrive par exemple quand les immersions n’admettent pas de larmes.

J’insiste : tout cela est valable lorsque tout les espaces considérés sont des variétés. Il
faut pour cela régler des problèmes d’analyse importants ou analyser finement la structure
des courbes pseudo-holomorphes à bord dans une immersion. J’énoncerai, au chapitre 1,
un théorème permettant de montrer que cette description est vraie pour une structure
complexe générique quand la dimension de la variété (M,ω) est plus grande que six.

Comme je l’ai dit plus haut, l’homologie de Floer pour les immersions a été étudiée
par de nombreux auteurs sous des hypothèses permettant d’éliminer ces larmes pseudo-
holomorphes. Donnons-en une liste, forcément non exhaustive. . .

– En 2005, Akaho [Aka05] est le premier à remarquer qu’on peut définir une va-
riante de l’homologie de Floer pour une sous-variété lagrangienne immergée L.
Il suppose alors que (M,ω) est compacte et que le groupe d’homotopie rela-
tif π2(M,L) est nul, ce qui implique en particulier qu’il n’existe pas de larmes
pseudo-holomorphes. Il en déduit une minoration du nombre de points d’inter-
section entre L et une déformation hamiltonienne φ1

H(L)

#
(
L ∩ φ1

H(L)
)
>
∑
k

βk(L,Z/2Z) + 2N,

où N est le nombre de points doubles de l’immersion L.
– Plus tard, Akaho et Joyce [AJ10] associent une algèbre A∞ avec courbure à toute
immersion lagrangienne générique i : L # M d’une variété compacte. Il s’agit
d’une généralisation de la notion d’algèbre A∞ qui tient compte de l’obstruc-
tion 0.7. La construction utilise les structures de Kuranishi et des techniques de
perturbations virtuelles.

– Abouzaid ([Abo08]) construit une A∞-(pré-)catégorie A∞ dont les objets sont
des courbes immergées d’une surface Sg de genre g > 2. Celles-ci n’admettent pas
de larmes pour des raisons topologiques. Je renvoie au chapitre 2 (2.3) pour une
construction plus précise.

– Dans [She11], Sheridan calcule l’algèbre A∞ associée à une immersion de la
sphère Sn dans une paire de pantalons généralisée P2n. Ici, l’immersion est aussi
non obstruée pour des raisons topologiques. Dans [She15] et [She16], ce calcul
permet d’obtenir les catégories de Fukaya d’une hypersurface projective de degré
d compris entre 1 et n+ 1.

– En adaptant la définition de Seidel [Sei08], Alston et Bao définissent une catégorie
de Fukaya dont les objets sont une certaine classe d’immersions. Celles-ci sont non
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obstruées pour des raisons analytiques. Pour faire simple, les configurations de la
figure 1 apparaissent en familles de dimension trop grande pour contribuer à la
différentielle.

Lagrangiennes immergées et catégorie dérivée de Fukaya. Un des problèmes de la
catégorie DFuk(M,ω) est que ses objets sont construits par un procédé algébrique formel
et n’ont donc pas d’interprétation géométrique évidente. Cornea et indépendamment
Kontsevich ont proposé la conjecture suivante.
Conjecture 0.1 (Cornea, Kontsevich). Tout les objets de DFuk(M,ω) sont représentés
par des immersions non obstruées.

Biran et Cornea ont de plus proposé un programme pour montrer cette conjecture
que j’esquisse rapidement.

La catégorie DFuk(M,ω) est construite à partir de Fuk(M,ω) en ajoutant formelle-
ment pour chaque morphisme

L0
c−→ L1

le cône du morphisme c
C = Cone(L0

c−→ L1).

qui fait partie d’un triangle distingué

L0
c−→ L1 −→ C −→ L0[1].

On itère alors cette construction pour obtenir une catégorie triangulée. Le morphisme c
est un élément de CF (L0, L1) et est donc représenté par une somme formelle de points
d’intersection entre L0 et L1 à coefficients dans {0, 1}

c =
∑

x∈A⊂L0∩L1

x,

où A est un sous-ensemble fini de L0∩L1. Il existe une procédure qui permet de résoudre
les points d’intersection de l’ensemble A pour obtenir une immersion lagrangienne. Biran
et Cornea conjecturent alors
Conjecture 0.2 (Cornea). Cette immersion est non obstruée et représente Cone(L0

c−→
L1).

La conjecture de Cornea est en réalité plus forte, elle affirme que DFuk(M,ω) est équi-
valente à une catégorie dont les morphismes sont donnés par des cobordismes lagrangiens.
Ce qui nous amène à la prochaine sous-section.
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Cobordismes lagrangiens. . .

. . . et flexibilité. Soient L1, . . . , Lm et N1, . . . , Nk des sous-variétés lagrangiennes im-
mergées de (M,ω). Une sous-variété lagrangienne

V ⊂ C×M,

est un cobordisme lagrangien de L1, . . . , Lm vers N1, . . . , Nk si en dehors d’un compact
K ⊂ C×M , V coincide avec une union de rayons horizontaux

m∐
i=1

(]−∞,−1]× {i} × Li)
⋃ k∐

j=1

([1,+∞[×{j} ×Nj).

Dans ce cas, on note
V : (L1, . . . , Lm) (N1, . . . , Nk).

En particulier, V est un cobordisme lagrangien dont les bouts sont les variétés L1, . . . Lm

et N1, . . . , Nk.
Remarque 0.1. On peut, bien sûr, parler de cobordismes immergés quand la sous-
variété V est immergée ; ou encore de cobordismes orientés quand la sous-variété V est
orientée et respecte l’orientation de ses bouts.

Les cobordismes lagrangiens ont été introduits par Arnold dans [Arn80] qui avait
en vue l’étude de la propagation de certains fronts d’ondes. Dans cet article, Arnold
introduit le groupe de cobordisme lagrangien immergé Ωimm,or

cob (M,ω). C’est un groupe
abélien dont les générateurs sont les immersions lagrangiennes orientées de (M,ω) et
dont les relations sont données par

L1 + . . .+ Lm = 0

dès qu’il existe un cobordisme lagrangien immergé et orienté

V : (L1, . . . , Lm) ∅.

Les groupes Ωimm,or
cob (M,ω) ont été étrangement peu calculés. Ils sont souvent détermi-

nés par des invariants d’isotopie, à cause du h-principe de Gromov (et sont donc dits
flexibles). Par exemple, dans [Arn80], Arnold calcule

Ωimm,or
cob

(
T ∗S1, ω

)
' Z

où l’isomorphisme est donné par le nombre de rotation du vecteur tangent. D’autres
calculs ont été faits par Eliashberg ([Eli84]) et Audin ([Aud85]). Je présenterai, au
chapitre 2, un calcul du groupe de cobordisme immergé

Ωimm,or
cob (Sg, ω)
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d’une surface Sg de genre g > 1.
. . . et rigidité. Supposons (M,ω) fermée. Du côté de la rigidité, Biran et Cornea re-
marquent dans [BC13] que certains cobordismes lagrangiens plongés permettent d’ob-
tenir des relations algébriques dans les catégories de Fukaya.

Avant d’énoncer leur résultat, fixons une lagrangienne plongée L. En intégrant la
forme symplectique, on obtient un morphisme

[ω] : π2(M,L)→ R.

On dispose aussi d’un autre morphisme, l’indice de Maslov

µL : π2(M,L)→ R

obtenu en calculant un analogue du nombre de rotation de l’espace tangent à L le long
du bord d’un disque. La variété L est dite monotone s’il existe λ > 0 tel que

[ω] = λ · µL.

Cette condition permet de définir une catégorie de Fukaya dont les objets sont des
lagrangiennes monotones L telles que l’image de π1(L) dans π1(M) est triviale (voir
[BC14],[She16]).

Biran et Cornea montrent donc le
Théorème 0.1 ([BC14]). Soient L1, . . . , Lm et L des sous-variétés lagrangiennes, plon-
gées et monotones. On suppose qu’il existe un cobordisme lagrangien V plongé, monotone
et tel que l’image de π1(V )→ π1(C×M) est nulle

V : (L1, . . . , Ln) L.

Alors, dans DFuk(M,ω), L est isomorphe à un cône itéré de la forme

L ' Cone(Lm → . . .Cone(L2 → L1) . . .).

L’énoncé algébrique de ce théorème est un peu difficile. Expliquons donc ce qu’il
signifie pour m = 2. On suppose qu’il existe un cobordisme lagrangien V : (L1, L2) L

satisfaisant les hypothèses précédentes. Les axiomes des catégories triangulées impliquent
que pour toute lagrangienne monotone N , il existe un suite exacte longue périodique5

HF (N,L1)→ HF (N,L2)→ HF (N,L)→ HF (N,L1).

Les morphismes sont donnés par un compte de courbes pseudo-holomorphes dans (M,ω)

et ce, même s’ils dépendent de V . Cela permet donc de calculer l’homologie de Floer de
L à l’aide de celles de L1 et L2 quand les deux dernières sont plus simples.

5Rappelons que nos complexes ne sont pas gradués !
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Plus généralement, la conclusion du théorème 0.1 permet de calculer l’homologie
HF (L,N) à l’aide d’une suite spectrale (voir [Sei08, (5l)]) dont les différentielles sont
données par un comptage de courbes pseudo-holomorphes dans (M,ω).
Groupes de cobordisme plongé. Pour étudier la relation de cobordisme monotone,
Biran et Cornea proposent de construire une variante du groupe introduit par Arnold.
Le groupe de cobordisme lagrangien plongé et monotone est le groupe abélien engendré
par les lagrangiennes monotones satisfaisant Im(π1(L)→ π1(M)) = 0 et avec relations

L1 + . . .+ Lm = 0

pour chaque cobordisme lagrangien monotone

V : (L1, . . . , Lm) ∅,

satisfaisant Im(π1(V )→ π1(C×M)) = 0. On le note Ωmon
cob (M,ω).

Il existe un groupe semblable du côté algébrique. Le groupe de Grothendieck de
DFuk(M,ω) est le groupe abélien engendré par les objets de DFuk(M,ω) et dont les
relations sont

L3 = L2 − L1,

pour chaque quasi-isomorphisme

L3 ' Cone(L1 → L2).

On le note K0(DFuk(M,ω)).
On vérifie sans peine que le théorème de Biran et Cornea 0.1 implique qu’il existe un

morphisme de groupes naturel

ΘBC :
Ωmon
cob (M,ω) → K0(DFuk(M,ω))

[L] 7→ [L]
.

On voit facilement que ΘBC est surjectif.
Question 0.1. L’application ΘBC est-elle un isomorphisme ? Si non, quel est son noyau ?

Dans [Hau15], Haug montre que cette application est un isomorphisme dans le cas
du tore T 2 lorsque les relations sont données par des cobordismes lagrangiens orientés.

Contenu de la thèse

Contenu du chapitre 1

On a vu que l’étude des phénomènes de rigidité pour les immersions lagrangiennes
fait intervenir un comptage de polygones holomorphes à bord dans celles-ci. Donnons
une définition plus précise. Soit i : L # M un immersion générique, c’est-à-dire sans
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points triples et dont tout les points doubles sont transverses. Fixons aussi une structure
presque complexe J ∈ J (M,ω).

Au chapitre 1, je définis un polygone J-holomorphe avec bord dans L et des coins (cf
1.1.1). Il s’agit d’une application pseudo-holomorphe

u : (D, ∂D)→ (M, i(L))

qui admet un certain nombre de coins x1, . . . , xN .
Un point injectif de u est un point z ∈ D tel que

duz 6= 0, u−1(u(z)) = {z}.

On dit que u est simple si l’ensemble de ses points injectifs est dense.
Le résultat principal du chapitre 1 est un résultat de décomposition en pièces simples

pour ces polygones.
Théorème (1.1.3). On suppose que le disque u est d’énergie finie (i.e.

∫
u∗ω < +∞).

Il existe des polygones pseudo-holomorphes simples v1, . . . , vN d’énergies finies et des
entiers naturels m1, . . . ,mN ∈ N tels que

(i) Im(u) =
⋃
k=1...N Im(vk),

(ii) On a dans H2(M, i(L))

[u] =
N∑
k=1

mk[vk].

Il s’agit d’une généralisation d’un résultat de Lazzarini ([Laz00], [Laz11]) dans le
cas des disques à bord dans une lagrangienne plongée.

La démonstration du théorème repose sur l’introduction d’un patron W(u) qui est
un graphe plongé dans le domaine D du polygone u (définition 1.2.2 et proposition
1.2.23). La restriction de u à chacune des composantes connexes du complémentaire est
un revêtement multiple d’un polygone simple. Autrement dit, on retrouve les morceaux
simples de la décomposition en « découpant le polygone le long du patron ».

L’intérêt du théorème 1.1.3 est qu’il permet de montrer que certains espaces de
courbes pseudo-holomorphes sont des variétés pour un choix générique de J ∈ J (M,ω).
Comme on l’a vu plus tôt, cela permet de définir des objets algébriques en comptant des
polygones.

Je donne ensuite des applications du Théorème 1.1.3. La première est une géné-
ralisation d’un résultat de Lazzarini. Soient L1 et L2 deux sous-variétés lagrangiennes
transverses. On suppose que la dimension de M est plus grande que six.
Proposition (1.3.4 et1.3.7). Il existe des ensembles génériques

Jreg(M,L, ω) ⊂ J (M,ω) et Jreg(M,L1, L2, ω) ⊂ J (M,ω)
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tels que
(i) Pour tout J ∈ Jreg(M,L, ω), toute larme à bord sur L est simple,
(ii) Pour tout J ∈ Jreg(M,L1, L2, ω), toute bande pseudo-holomorphe est simple.
Je donne ensuite un exemple d’application de cette proposition à la définition d’un

objet algébrique, en l’occurence le complexe de Floer entre L1 et L2.
Théorème (1.3.12). Supposons (M,ω) fermée et monotone. Il existe un ensemble géné-
rique

Jreg(M,ω,L1, L2) ⊂ J (M,ω)

tel que le complexe
(CF (L1, L2, J), d)

est bien défini.
En d’autres mots, l’homologie de Floer peut se calculer en utilisant des structures

complexes indépendantes du temps !
J’ai montré le théorème 1.1.3 avec en vue une preuve de la conjecture 0.2 quand le

morphisme c coïncide avec un point d’intersection x ∈ L1 ∩ L2. Malheureusement, je
n’ai pour l’instant pu qu’obtenir des résultats partiels que je détaille dans la sous-section
1.3.3.

Contenu du chapitre 2

Dans le chapitre 2, on se restreint au cas d’une surface de genre g, Sg munie d’une
forme d’aire ω. On note χ(Sg) sa caractéristique d’Euler.

Mon premier résultat est le calcul du groupe de cobordisme immergé Ωimm
cob (Sg) quand

le genre g est plus grand que un.
Théorème (2.1.5). Supposons le genre g plus grand que un. Il existe un isomorphisme

Ωimm
cob (Sg) ' H1(Sg,Z)⊕ Z/χ(Sg)Z.

Ce théorème est encore un exemple de flexibilité. En effet, l’application

Ωimm
cob (Sg)→ H1(Sg,Z)

est donnée par la classe d’homologie. L’application

Ωimm
cob (Sg)→ Z/χ(Sg)Z

est une variante du nombre de rotation originellement due à Chilllingworth ([Chi72b]).
Ces deux quantités sont invariantes par isotopies lagrangiennes !

Je passe ensuite à l’étude des phénomènes de rigidité. On doit alors supposer le genre
g plus grand que deux. Je commence par introduire une variante du groupe de cobordisme
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lagrangien
Ωimm,unob
cob (Sg).

Celui-ci est engendré par les plongements S1 ↪→ Sg et ses relations sont données par
des cobordismes lagrangiens immergés, non obstrués et orientés (voir la définition 2.4.1).
Ici les cobordismes sont non obstrués si et seulement s’ils n’admettent pas de larmes
continues.

Il se trouve que les cobordismes non obstrués donnent aussi des relations dans les
catégories de Fukaya de la surface Sg (Théorème 2.4.2). On en déduit l’existence d’un
morphisme de groupe

ΘBC : Ωimm,unob
cob (Sg)→ K0(DFuk(Sg)).

Je montre alors le
Théorème (2.5.1). L’application ΘBC est un isomorphisme.

Abouzaid ([Abo08]) a calculé le groupe K0(DFuk(Sg)). Avec son résultat, on obtient
donc le
Corollaire (2.1.7). Il existe un isomorphisme

Ωimm,unob
cob (Sg) ' R⊕H1(Sg,Z)⊕ Z/χ(Sg)Z.

Le Théorème 2.5.1 montre que les relations données par les cobordismes non obstrués
suffisent à définir K0(DFuk(Sg)). Il s’agit donc d’un indice très fort de la validité de la
conjecture 0.1 !

Les preuves des Théorèmes 2.1.5 et 2.5.1 sont toutes les deux très géométriques. Elles
reposent sur une caractérisation de l’action du groupe modulaire (ou Mapping Class
Group) :

Mod(Sg) = Diff+(Sg)/Diff0(Sg),

sur les groupes Ωimm
cob (Sg) et Ωimm,unob

cob (Sg). L’idée est initialement due à Abouzaid (voir
[Abo08]).

Il est connu que ce groupe est engendré par les twists de Dehn Tα autour d’une courbe
plongée α. La contribution principale de mon travail est donc de montrer une formule
qui caractérise l’action d’une telle transformation.

Pour les groupes Ωimm
cob (Sg), cela repose sur la description de l’image Tαβ d’une courbe

β au moyen d’une suite de résolutions successives de points doubles (qui est représentée
dans la figure 5).

Pour adapter cet argument au cas de Ωimm,unob
cob (Sg), il faut montrer que toutes les

courbes et cobordismes qui interviennent dans cette procédure sont non obstrués. Pour
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cela, on découpe des disques holomorphes en utilisant (sans le dire) le patron défini ci-
dessus. On utilise de plus les propriétés des groupes d’homotopie des surfaces de genre
plus grand que deux. C’est le contenu des preuves des propositions 2.5.7 et 2.5.13.

On montre donc, en particulier, une forme très faible de la conjecture 0.2 dans le cas
des surfaces de genre plus grand que deux.
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Chapitre 1

Structure des courbes pseudo-holomorphes à bord sur
une immersion Lagrangienne

Ce chapitre reproduit la prépublication Structure of J-holomorphic disks with immersed
Lagrangian boundary conditions, [Per18].

Résumé. Nous généralisons un théorème de structure dû à Lazzarini ([Laz11]) au cas
des courbes à bord sur une immersion lagrangienne. En appliquant ce résultat, on montre
que l’homologie de Floer entre deux lagrangiennes peut être calculée à l’aide de structures
complexes indépendantes du temps. Nous donnons aussi quelques autres applications et
expliquons des projets futurs.

Abstract. We explain how to generalize Lazzarini’s structural Theorem from [Laz11]
to the case of curves with boundary on a given Lagrangian immersion. As a consequence
of this result, we show that we can compute Floer homology with time-independent
almost complex structures. We also give some applications as well as topics for future
work.

1.1. Introduction

1.1.1. Setting

Let (M,ω) be a symplectic manifold and J ∈ J (M,ω) be a compatible almost
complex structure. It is well known that any J-holomorphic curve u : Σ→ M with Σ a
closed Riemann surface factors through a simple curve (see [MS12, Proposition 2.5.1]).

Let L ⊂M be an embedded Lagrangian submanifold and

u : (D, ∂D)→ (M,L)



be a J-holomorphic disk satisfying u(∂D) ⊂ L. In general, it is not true that such a
map factors through a branched cover to a simple curve. However there are results of
Kwon-Oh ([Oh97],[KO00]) and Lazzarini ([Laz00], [Laz11]) about the structure of
such disks.

Moduli spaces of disks with Lagrangian boundaries appear in the definitions of several
differential complexes associated to Lagrangian embeddings such as the pearl complex
(due to Biran-Cornea [BC07], [BC09]) or Lagrangian intersection Floer homology in the
monotone case (due to Oh, [Oh93a], [Oh93b]). The results of Lazzarini and Kwon-Oh
are essential to study the generic regularity of such moduli spaces.

1.1.2. Main theorem

In this paper, we shall explain how to adapt Lazzarini’s result ([Laz11]) to disks with
corners whose boundaries lie in the image of a Lagrangian immersion. In this section,
we provide the basic definitions of the objects we will consider.

From now on, we fix a connected symplectic manifold (M2n, ω) and a Lagrangian
immersion i : Ln #M , with L a closed (not necessarily connected) manifold such that

(1) i does not have triple points,
(2) the double points of i are transverse.

If this is satisfied, we say that i is generic.
Let

R = {(p, q) ∈ L× L|i(p) = i(q)}

be the set of ordered double points of i and i(R) be the set of their images. The hypotheses
on i imply that this is a finite subset.

Moreover, we fix a (smooth) compatible almost complex structure J ∈ J (M,ω). We
now explain what we mean by an almost complex curve with corners and boundary on
L.
Definition 1.1.1. Let S be a compact Riemann surface with boundary ∂S.

A J-holomorphic curve with corners and boundary on L is a continuous map

u : (S, ∂S)→ (M, i(L))

which satisfies the following assumptions.
(i) There are x1, . . . , xN ∈ ∂S with

∀1 6 k 6 N, u(xk) ∈ i(R).

(ii) There is a continuous map γ : ∂S\{x1, . . . , xN} → L such that

u|∂S\{x1,...,xN} = i ◦ γ.
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(iii) The map γ does not extend to a continuous map ∂S → L at any of the punctures.
(iv) The map u is a smooth J-holomorphic curve on S\{x1, . . . , xN}.

Remark 1.1.2. (1) Keeping the notations of Definition 1.1.1, we call x1, . . . , xN the
corner points of the curve.

(2) We also consider maps u : S → M which satisfy the hypotheses (i), (ii), (iii)

without (iv). We call such a map a topological curve with corners.
For a J-holomorphic curve u : (S, ∂S)→ (M, i(L)) with corners and boundary on L,

a point z ∈ Int(S) is an injective point if it satisfies

duz 6= 0, u−1(u(z)) = {z}.

We say that such a curve is simple if the set of its injective points is dense.
We can now state the main theorem of this paper.

Theorem 1.1.3. Let u : (D, ∂D) → (M, i(L)) be a non-constant J-holomorphic disk
with corners, boundary on L and finite energy (meaning

∫
u∗ω < +∞ ).

There are simple finite-energy J-holomorphic disks v1, . . . , vN with corners, boundary
on L and natural integers m1, . . . ,mN ∈ N such that

(i) Im(u) = ∪k=1...N Im(vk)

(ii) In H2(M, i(L)) we have

[u] =
N∑
k=1

mk[vk].

The proof of this is an adaptation of Lazzarini’s proof to the case of immersed La-
grangians.

1.1.3. Applications

Assume that the complex dimension n is greater than 3. For a generic almost complex
structure J , any finite-energy J-holomorphic disk with corners and boundary on L is
either simple or multiply covered. The proof is an adaptation of [Laz11, Proposition
5.15].
Corollary 1.1.4. Assume that the complex dimension of M satisfies n > 3. There is a
second category subset

Jreg(M,ω,L) ⊂ J (M,ω)

satisfying the following property.
Let J ∈ Jreg(M,ω) and u : (D, ∂D) → (M, i(L)) be a non-constant finite-energy

J-holomorphic disk with corners and boundary on L. Then there exist
(i) a holomorphic map p : (D, ∂D) → (D, ∂D) with branch points in Int(D) (in par-

ticular the map p restricts to a cover ∂D→ ∂D).
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(ii) a simple J-holomorphic disk with corners and boundary on L,

u′ : (D, ∂D)→ (M, i(L))

such that
u = u′ ◦ p.

Recall that there are two morphisms ω : π2(M,L)→ R and µ : π2(M,L)→ Z induced
respectively by the symplectic area and the Maslov class. A Lagrangian submanifold
L ⊂M is monotone if there is a λ > 0 such that

ω = λµ.

Denote by NL the minimal Maslov number of a Lagrangian submanifold L. Consider two
transverse Lagrangian submanifolds L1 and L2 satisfying NL1 > 3 and NL2 > 3. As a
direct application of Corollary 1.1.4, we will see that for a generic time-independent J ∈
J (M,ω), there is a well-defined Floer complex between these two objects. This differs
from the usual situation where one usually considers time-dependent almost complex
structures to achieve transversality (as considered in [Oh93a] or [FHS95]).

1.1.4. Outline of the proof of the Main Theorem

We prove the Main Theorem 1.1.3 in several steps which follow Lazzarini’s approach.
We will emphasize along the argument the differences with [Laz11].

First, we define a setW(u) ⊂ D called the frame of the disk which contains ∂D. This
is roughly the set of points where u "overlaps" with its boundary. We then prove that
this is a C1-embedded graph. We do this by providing an asymptotic expansion of the
J-holomorphic curve around its corners.

The simple or multiply covered pieces are found by cutting the curve along the graph
W(u). More precisely, we pick for each connected component Ω of D\W(u) a holomorphic
embedding hΩ : (D, ∂D) → (Ω,W(u)). The curve u ◦ hΩ satisfies W(u ◦ hΩ) = ∂D and
is therefore either simple or multiply covered. The pieces of the decomposition are the
simple curves underlying u ◦ hΩ for Ω a connected component.

Notice that a connected component Ω of D\W(u) is not necessarily simply connected,
so we cannot immediately conclude that u ◦ hΩ factors through a simple disk. It turns
out that if such a component exists, there is a simple holomorphic sphere v : CP 1 →M

such that u(D) = v(CP 1). From this, we conclude that each piece is a disk. Here the
details do not differ much from Lazzarini’s paper ([Laz11]).
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1.1.5. Outline of the paper

The first section of the paper explains how to adapt Lazzarini’s proof ([Laz00],
[Laz11]) to finite-energy curves with boundary on a given Lagrangian immersion i :

L # M . We cut the curve into multiply covered pieces along a frame. This frame is a
C1-embedded graph. The proof of this fact is the main technical part of the argument.
Second, we explain how to get the decomposition from this.

The second section of the paper gives the proof of Corollary 1.1.4. In a second
subsection, we will explain why this implies that the Floer complex is well-defined for a
generic time-independent almost complex structure.

Lastly, we give some expected applications of the main theorem to a count of holomor-
phic curves with boundary on the surgery of two Lagrangian embeddings. These results
fit in a more general program of Biran-Cornea and is the subject of work in progress.

1.1.6. Acknowledgements:

This work is part of the author’s doctoral thesis at the University of Montreal under
the direction of Octav Cornea. I thank him for his thoughtful advice. I also thank Egor
Shelukhin for helpful discussions, as well as Emily Campling and Dominique Rathel-
Fournier for help with the exposition.

1.2. The Frame of a J-holomorphic curve

Fix u1 : (S1, ∂S1) → (M, i(L)) and u2 : (S2, ∂S2) → (M, i(L)) two finite-energy
J-holomorphic curves with corners and boundaries on L.

We define the set of "bad points" of u1 with respect to u2 :

C(u1, u2) := u−1
1 (u1({z ∈ Int(S1)|du1(z) = 0}))

∪ u−1
1 (u2({z ∈ Int(S2)|du2(z) = 0})) ∪ u−1

1 (i(R))

The following definition is due to Lazzarini ([Laz11]).
Definition 1.2.1. We keep the above notations. Let z1 ∈ Int(S1)\C(u1, u2) and z2 ∈
Int(S2)\C(u2, u1).

We let z1Ru2
u1
z2 if and only if for any open neighborhoods V1 3 z1 (resp. V2 3 z2),

there are open neighborhoods Ω1 3 z1 (resp. Ω2 3 z2) in V1 (resp. V2) such that

u1(Ω1) = u2(Ω2).

Now if z1 ∈ S1 and z2 ∈ S2, we let z1Ru2
u1
z2 if and only if there are sequences (zν1 )ν>0

(resp. (zν2 )ν>0) such that zν1 ∈ Int(S1)\C(u1, u2) (resp. zν2 ∈ Int(S2)\C(u2, u1)), zν1 → z1
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(resp. zν2 → z2) and
∀ν > 0, zν1Ru2

u1
zν2 .

We now define the graph along which we will cut to get the simple pieces of the curve.
Definition 1.2.2. We let u1 and u2 be two finite-energy J-holomorphic curves with
corners and boundaries on L.

The frame of u1 with respect to u2 is the set of points related to the boundary of S2:

W(u1, u2) := Ru2
u1

(∂S2).

The completed frame of u1 with respect to u2 is the union of this with ∂S1:

W(u1, u2) := Ru2
u1

(∂S2) ∪ ∂S1.

Remark 1.2.3. Let u be a finite-energy J-holomorphic curve with corners and boundary
on L. We readily check

∂S ⊂ W(u, u),

so
W(u, u) =W(u, u).

From now on, we will abbreviate

W(u) :=W(u, u).

In this section, we shall prove that the completed frame W(u1, u2) is a C1 embedded
graph in S1. This is however not the case for W(u1, u2). Along the way, we will prove
important properties of the relation Ru2

u1
, always following Lazzarini’s proof.

Examples of frames and the decomposition

As explained in the introduction, the simple pieces of the curve are found among the
connected components of D\W(u).

The decomposition may introduce corner points which do not appear in the original
curve.
Example 1.2.4. Consider the 2-dimensional torus T2 := R2/Z2 equipped with the
standard area form dx ∧ dy and the standard complex structure.

We let i be the immersion of two copies of S1 drawn in Figure 1. Moreover, we let u
be a J-holomorphic polygon with corners and boundary on L, whose image is represented
in Figure 1. The parameterization of u is chosen so that u(−1) = x1 and u(1) = x4.
These are the only corner points of u.

It is an easy exercise to check that the frame of u is a graph with four vertices which
map to the double points of i. The restriction of u to each connected component of
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x1

x3

x2

x4
• •

•
•

•
•

u

Figure 1 – The immersion i (blue, on the right), the disk u (shaded, on
the right) and its frame W(u) on the left

D\W(u) is a simple J-holomorphic curve with corners. Notice that each piece now has
corners which map to x2 and x3. These corners did not appear in u.

Moreover, the frame need not be connected, as shown by the following example.
Example 1.2.5. Consider CP 1 = C∪{∞} equipped with its standard complex structure
and let L ⊂ C be the ellipse with semi-major axis 5

2
and semi-minor axis 3

2
. We consider

a map with domain the disk of radius 2

u : D(0, 2) → C ∪ {∞}
z 7→ z + 1

z

.

We claim that the frame of u is given by ∂D(0, 2) ∪ ∂D
(
0, 1

2

)
. Notice first that

W(u) ⊂ u−1(L) = ∂D(0, 2) ∪ ∂D
(

0,
1

2

)
.

To prove the other inclusion, let z ∈ ∂D
(
0, 1

2

)
. Let (εν)ν∈N be a sequence of positive real

numbers converging to 0. Put zν = (1 + εν)z. Then the sequences (zν)ν∈N and
(

1
zν

)
ν∈N

satisfy

∀ν ∈ N, zνRu
u

1

zν
since

∀ν ∈ N, u(zν) = u

(
1

zν

)
and the derivatives

u′(zν), u
′
(

1

zν

)
are non-zero. Hence zRu

u
1
z
∈ ∂D, so z ∈ W(u).
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1.2.1. Local coordinates around double points of the immersion

In this subsection, we construct several local charts φ : U ⊂ Cn → M around a
double point x = i(p) = i(q) of a generic Lagrangian immersion i : L→M . These charts
map the image of the immersion i to the union of two transverse linear subspaces of Cn.

In order to characterize the analytic behavior of a pseudo-holomorphic polygon around
a double point, we need these charts to preserve complex and symplectic structures at
the origin. Therefore, we start by classifying the pairs of linear Lagrangian subspaces of
a symplectic vector space under the action of the unitary group. This is done in 1.2.1.
Then, we will exponentiate this local model in order to find local coordinates around a
given double point. This is done in 1.2.1.

Some linear symplectic geometry

We start by the linear case, i.e. the classification of pairs of transverse Lagrangian
subspaces under the action of the unitary group. It turns out that the orbits of this
action are classified by a n-uple of real numbers called the Kähler angles ([FOOO06,
Definition 54.11]).

In what follows, we equip the standard symplectic space

Cn = Rn × Rn

with the standard symplectic form, scalar product and complex structures:

∀(x1, y1), (x2, y2) ∈ Rn × Rn, ωstd((x1, y1), (x2, y2)) = x1 · y2 − y1 · x2,

gstd((x1, y1), (x2, y2)) = x1 · x2 + y1 · y2,

Jstd(x1, y1) = (−y1, x1).

Fix a symplectic vector space (V 2n, ω) of complex dimension n. Let L1, L2 ⊂ V be
two transverse Lagrangian subspaces. Choose a compatible almost complex structure
J ∈ J (V, ω).

There is a complex linear symplectomorphism

f : (Cn, gstd, Jstd)→ (V, gJ , ω) with f(L1) = Rn. (1.1)

To see this, we let f1, . . . , fn be a basis of L1, orthonormal with respect to the scalar
product gJ := ω(·, J ·). Moreover, denote by e1, . . . , en the canonical complex linear basis
of Cn. Then, f : Cn → V is the unique complex linear map such that f(ei) = fi for
i ∈ {1, . . . , n}.
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The linear subspace f−1(L2) is transverse to L1. Hence, there is a unique linear map
A : Rn → Rn such that

f−1(L2) = {(Ax, x)|x ∈ Rn}. (1.2)

Since f−1(L2) is Lagrangian, the linear map A is autoadjoint. Therefore, by the spec-
tral theorem, there are eigenvalues λn 6 . . . 6 λ1 ∈ R and an orthonormal basis of
eigenvectors v1, . . . , vn ∈ Rn such that

∀k ∈ {1, . . . , n}, Avk = λkvk.

We let
0 < α1 6 . . . 6 αn < π

be real numbers such that

∀k ∈ {1, . . . , n}, eiαk =
λk + i

|λk + i|
. (1.3)

Notice, that with respect to the complex basis v1, . . . , vn, we have

f−1(L2) = eiα1 · R× . . .× eiαn · R.

Definition 1.2.6. Following the above discussion, we let L1, L2 be transverse Lagrangian
subspaces of the symplectic vector space (V, ω) and f : Cn → V as in equation 1.1.

We call the real numbers α1 6 . . . 6 αn defined in equation 1.3, the Kähler angles of
the pair (L1, L2).

These real numbers do not depend on the choice of f as in equation 1.1.

Proof. We let g : Cn → V be another complex linear symplectomorphism as in equation
1.1. We call 0 < β1 . . . 6 βn < π the angles associated to the map g by the procedure
described above. Notice that

g−1(L2) = (g−1 ◦ f)
(
f−1(L2)

)
.

Since the map g−1 ◦ f is unitary and satisfies g−1 ◦ f(Rn) = Rn, there is B ∈ O(n) such
that

∀(x, y) ∈ Rn × Rn, (g−1 ◦ f)(x, y) = (Bx,By).

Keeping the notation of equation 1.2, we obtain

g−1(L2) = {(BAx,Bx)|x ∈ Rn}

=
{

(BAB−1x, x)
∣∣x ∈ Rn

}
Since BAB−1 is conjugate to A, their eigenvalues are the same. Therefore, we conclude

∀k ∈ {1, . . . , n}, αk = βk.
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Further, we also need to introduce some additional notation. We fix real numbers
0 < α1 6 . . . 6 αn < π. We define the following vector space

Vα :=
{
v ∈ Rn

∣∣eiαv ∈ eiα1 · R× . . .× eiαn · R
}
. (1.4)

It is straightforward to check that there is a direct sum decomposition

Rn =
⊕

α∈{α1,...,αn}

Vα. (1.5)

Moreover, we let
πα : Rn → Vα (1.6)

be the linear projection onto Vα with respect to the decomposition 1.5. We abuse notation
slightly and denote its complexification πα : Cn → Cn as well.

A bit of vocabulary

Recall that we fixed a generic Lagrangian immersion i : L→ (M,ω). Let (p, q) ∈ R,
since dip (resp. diq) is an immersion, there is an open neighborhood Up 3 p (resp. Uq 3 q)
such that i|Up (resp. i|Uq) is an embedding. We call the submanifold i(Up) (resp. i(Uq))
the branch of i at p (resp. at q) and denote it by Lp (resp. Lq).

In what follows, we will sometimes forget about Up and denote by Lp the image of
any neighborhood of p on which i is an embedding.

Some local charts

We can now state
Proposition 1.2.7. Let i : L → (M,ω) be a generic Lagrangian immersion. Fix a
double point (p, q) ∈ R and denote x = i(p) = i(q).

Then there are open neighborhoods U of 0 in Cn, V of x in M , Up (resp. Uq) of p
(resp. q) in L together with a smooth chart φ : U → V satisfying the following properties.

(i) Let gJ := ω(·, J ·) be the metric induced by the almost complex structure J , and
gstd be the standard scalar product on Cn. We have

φ∗gJ(0) = gstd, φ
∗J(0) = i.

(ii) The chart maps the branches of i at x to linear subspaces :

φ(U ∩ Rn) = i(Up), φ(U ∩ eiα1 · R× . . .× eiαn · R) = i(Uq).

Here α1 6 . . . 6 αn ∈ (0, π) are the Kähler angles of the pair (TxLp, TxLq) with
respect to the complex structure J .
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Proof. There is a smooth chart φ̃ : U ⊂ Cn → V ⊂ M such that φ̃(Rn ∩ U) = Lp ∩ V
and φ̃(i · Rn ∩ U) = Lq ∩ V .

We now modify φ̃ so that it satisfies the assertions of the proposition. For this pick an
orthonormal basis (with respect to the metric gJ) B = (e1, . . . , en) of TxLp. We assume
that, with respect to the complex coordinates given by B, we have

TxLq = eiα1 · R× . . .× eiαn · R.

We put (f1, . . . , fn) := (dφ̃−1(e1), . . . , dφ̃−1(en)). Pick a real linear isomorphism A :

Cn → Cn such that the image of the canonical basis of R2n is the basis (f1, . . . , fn). The
sought-after local chart is φ̃ ◦ A (it is defined on a small enough ball). �

We will modify this chart to get a more precise behavior along Rn.
Proposition 1.2.8. Recall that we fixed a generic Lagrangian immersion i : L#M .

There is a smooth local chart φ : U ⊂ Cn → V ⊂M such that
(i) we have φ∗J|Rn = i and (φ∗gJ)0 = gstd,
(ii) the preimages of the branches at x are linear subspaces

φ−1(Lp ∩ V ) = Rn ∩ U, φ−1(Lq ∩ V ) =
(
eiα1 · R× . . .× eiαn · R

)
∩ U.

Proof. By the preceding Proposition 1.2.7, one can assume that the two branches of the
immersion are the given linear Lagrangian subspaces, that the almost complex structure
J satisfies J(0) = i and that the metric gJ satisfies gJ(0) = gstd.

Now choose ψ : W → U ⊂ Cn a local chart such that ψ∗J|Rn = i and dψ(0) = Id

(such a chart always exists, see the construction in [Laz11, lemma 3.7]).
Notice that ψ−1(Lq) is an embedded submanifold whose tangent space at 0 is trans-

verse to Rn (it is given by eiα1 · R × . . . × eiαn · R ). Therefore the implicit function
theorem implies that there is a smooth map f : W ∩ Rn → Rn such that

ψ−1(Lq) = {f(y) + iy|y ∈ Rn}.

Consider the map φ(x+ iy) = f(y)− df(0) · y+x+ iy. Its differential is given by the
matrix (

Id dfy − df0

0 Id

)
,

so dφ0 = Id and φ is a local diffeomorphism.
A small computation shows that df0 is given by a diagonal matrixcotα1

. . .
cotαn

.
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Hence for x = (x1, . . . , xn) ∈ Rn, we have φ(x) = (f(0) + 0 + x, 0) ∈ Rn. Moreover,
notice that

df0(x1 sinα1, . . . , xn sinαn) = (x1 cosα1, . . . , xn cosαn),

hence

φ
(
x1e

iα1 , . . . , xne
iαn
)

= f(x1 sinα1, . . . , xn sinαn) + i(x1 sinα1, . . . , xn sinαn),

so φ(Rn) = eiα1 · R × . . . × eiαn · R. Moreover, for x ∈ Rn, we have dφx = Id so
φ∗Jx = i and φ∗gJ(0) = gstd. �

Behavior of a J-holomorphic curve around an interior point

We describe precisely the asymptotic behavior of a J-holomorphic curve around an
interior point. For instance, the following is proved in Lazzarini’s paper [Laz11, Propo-
sition 3.3].
Proposition 1.2.9. Assume that J : D → GL(2n,R) is a C1 map such that J2 = − Id

and J(0) = Jstd is the standard complex structure. Let u : S → Cn be a J-holomorphic
curve with u(0) = 0. Then there are

(1) an integer k > 1,
(2) a C1-local chart φ : Ω→ D with Ω and open neighborhood of 0 in D and φ(0) = 0,
(3) a positive real number λu > 0 and a matrix A ∈ U(n),

such that
u ◦ φ(z) = λuA

(
zk, U(z)

)
,

with U(z) = O
(
zk+1

)
.

Behavior of a J-holomorphic curve around a double point

In this subsection, we describe, following [Laz11, section 3.2], the local form of a
curve around the corner points.

For this, let us fix (p, q) ∈ R and put x = i(p) = i(q). As usual, we call

0 < α1 6 . . . 6 αn < π

the Kähler angles of the pair (TxLp, TxLq) with respect to J . We also choose a chart
φ : U → V such as the one given in Proposition 1.2.7.
Proposition 1.2.10. Let D+ = {x+ iy||x+ iy| < 1, y > 0} be the unit upper half-disk
and D+

R = D+ ∩ R be its real part.
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Let u : (D+,D+
R)→ (M, i(L)) be a non-constant J-holomorphic half-disk with bound-

ary on L and finite energy (i.e.
∫
u∗ω < +∞). Assume that the lift γ[0,1) (resp. γ(−1,0])

of u|[0,1) (resp. u|(−1,0]) to L satisfies γ[0,1)(0) = p (resp. γ[0,1)(0) = q )1.
Then there are integers k ∈ {1, . . . , n} and m > 0, together with a positive real

number δ > 0 and a vector ak ∈ Vαk2 such that

φ−1 ◦ u(z) = akz
αk
π

+m + o
(
z
αk
π

+m+δ
)
.

Moreover, we have

d(φ−1 ◦ u)(z) =
(αk
π

+m
)
akz

αk
π

+m−1 + o
(
z
αk
π

+m+δ−1
)
.

Note that this implies that there are no critical points in a sufficiently small punctured
neighborhood of a corner point.
Remark 1.2.11. We call the integer m+ 1 the multiplicity of the curve u at 0.

Proof. The proof is an application of a theorem of Robbin and Salamon ([RS01, The-
orem B]) on the asymptotics of a finite-energy J-holomorphic strip.

To see this, fix r > 0, and define the strip-like end

εr : S := [0,+∞)× [0, 1] → (D+,D+
R)

(s, t) 7→ −re−π(s+it)
.

For r � 1 consider the map

ũ := φ−1 ◦ u ◦ εr : S → Cn.

Then ũ is pseudo-holomorphic with respect to the almost complex structure φ∗J , has
finite energy with respect to the metric gφ∗J and satisfies the boundary condition

ũ([0,+∞)× {0}) ⊂ eiα1 · R× . . .× eiαn · R, ũ([0,+∞)× {1}) ⊂ Rn.

Moreover, since u is continuous, for r small enough the map φ−1 ◦ u ◦ εr has relatively
compact image in Cn. Hence by [RS01, Theorem A], ũ(s, ·) converges uniformly to x
as s → +∞ and its derivative ∂su decays exponentially with respect to the usual C∞

pseudo-distance.
We can now apply [RS01, Theorem B]. There exist a λ > 0 and a map v : [0, 1]→ Cn

such that
i∂tv = λv, v(0) ∈ eiα1 · R× . . .× eiαn · R, v(1) ∈ Rn,

1Geometrically this means that the curve has right boundary condition along the branch Lp and left
boundary condition along the branch Lq.
2see 1.2.1 for the the definition of Vα
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and a δ > 0 such that

u(s, t) = exp0

(
−1

λ
e−λsv(t) + w(s, t)

)
, |w|Ck 6 cke

−(λ+δ)s.

A small computation shows that there exist an integerm > 0, an αk and a vector vk ∈ Vαk
such that

λ = αk +mπ, v(t) = eiαke−i(αk+mπ)t.

Now notice that if z = −e−π(s+it) , then z
αk
π

+m = e−s(αk+mπ)ei(αk+mπ)(1−t). Hence,

u(z) = exp0

(
−(−1)m

λ
e−(αk+mπ)sei(αk+mπ)(1−t)

)
,

and so
u(z) = exp0

(
−(−1)m

λ
zαk+mπ + w(z)

)
.

This gives the relevant estimate.
The estimate on the derivative follows from the chain rule applied to φ ◦ u ◦ ε. �

From now on, we will work locally inM with the help of the chart given by Proposition
1.2.8. Therefore, we shall consider J-holomorphic curves with values in Cn equipped
with an almost complex structure J such that J|Rn = Jstd. We assume these curves have
boundaries on the union of the branches

Lp = Rn and Lq = eiα1 · R× . . .× eiαn · R. (1.7)

We shall describe their behavior around the double point 0.
Proposition 1.2.12. Recall that the branches Lp and L1 are given in equation 1.7.
Assume that u : (D+,D+

R)→ (Cn, Lp∪Lq) is a pseudo-holomorphic curves which satisfies
the hypothesis of Proposition 1.2.10.

Then there exist
(1) an open neighborhood Ω of 0 in D+,
(2) a C1 chart

ψ : (Ω,Ω ∩ R)→ (D+,D+
R),

(3) a linear isometry Au ∈ L(RdimVαk , Vαk) and a λu ∈ R+ such that

παk(u ◦ ψ(z)) = λuAu

(
z
αk
π

+m, Ũ(z)
)

with Ũ(z) = o
(
z
αk
π

+m+δ
)
.

Moreover, if
U(z) =

∑
α∈{α1,...,αn}\{αk}

πα(u ◦ ψ(z)),
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we have
U(z) = o

(
z
αk
π

+m+δ
)
, dU(z) = o

(
z
αk
π

+m+δ−1
)
.

Proof. Replacing u by φ ◦u we can assume that u has values in Cn. Using Proposition
1.2.10, there are k and ak ∈ Vαk such that

u(z) = akz
αk
π

+m + o
(
z
αk
π

+m+δ
)
.

Choose an isometry A ∈ L(Rn, Vαk) and a λu > 0 such that A(1, 0) = λuak, then we have

παk(u(z)) = λuz
αk
π

+mA(1 + a(z), U1(z))

with a(z) ∈ C, a(z) = o(zδ) and U1(z) = o(zδ).
Now if r > 0 is small enough, define φ on D(0, r) by

φ(z) = z(1 + a(z))
1

αk
π +m .

The map φ is C1 on D+(0, r)\{0}, and if z 6= 0 we have

φ′(z) = (1 + a(z))
1

αk
π +mdz +

za′(z)
αk
π

+m
(1 + a(z))

1
αk
π +m

−1
.

Therefore φ′(z)→ 1 as z → 0. Hence, φ extends to a C1 map on D+(0, r).
Now if z ∈ R+, we have παk(u(z)) ∈ RdimVαk , so λuz

αk
π

+m(1+a(z)) ∈ R and 1+a(z) ∈
R. If z ∈ R−, since παk(u(z)) ∈ eiαk · RdimVαk we similarly obtain 1 + a(z) ∈ R.

Since a(z)→ 0 as z → 0, we can assume that for z ∈ D(0, r)∩R we have 1+a(z) ∈ R+.

Hence (1 + a(z))
1

αk
π +m ∈ R and φ(z) ∈ R.

We can now use the Schwarz reflection principle to see that φ extends to a map
defined on D(0, r) with invertible differential at the origin. Therefore it admits a local
inverse. We will now assume that r > 0 is small enough so that φ is invertible.

The image of D(0, r) by φ is an open subset of C with boundary a C1 simple closed
curve. By the Jordan curve theorem, this image is cut by the real line R into two
connected components. These are necessarily the images of the connected components
of D(0, r)\R by φ. We conclude that φ(D+(0, r)) is a subset of H.

Now
παk(u(z)) = λuA

(
φ(z)

αk
π

+m, U1(z)
)
,

and so
παk(u(φ−1(z))) = λuA

(
z
αk
π

+m, U1 ◦ φ−1(z)
)
.

�
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Let us recall the analog of this (Proposition 1.2.12) in the case of a curve with
boundary along a single branch of the immersion. This is [Laz11, Lemma 3.5]. It is
proved in the same manner as above (with a bit less trouble).
Proposition 1.2.13. Recall that the branch Lp is given in equation 1.7.

Assume that
u : (D+,D+

R)→ (Cn, Lp)

is a finite-energy, J-holomorphic curve with u(0) = 0.
There are a matrix Au ∈ On(R), a λu > 0, a natural m ∈ N and ψ a C1 local chart

around 0 such that
u ◦ φ(z) = λuAu(z

m, U(z)),

with U(z) = o(zm) and dU(z) = o(zm−1).
These two propositions allow us to give the local behavior of these curves when they

have boundary conditions along Lq rather than Lp.
For this let us introduce Dα1,...,αn the n × n diagonal matrix with successive entries

eiα1 , . . . , eiαn .
Proposition 1.2.14. Recall that the branch Lq is defined in equation 1.7.

Assume that
u :
(
D+,D+

R
)
→ (Cn, Lq)

is a finite-energy, J-holomorphic curve with u(0) = 0.
There are a matrix Bu ∈ On(R), a positive real number λu > 0 such that

u(z) = λuDα1,...,αnBu(z
m, U(z)),

with U(z) = o(zm) and dU(z) = o(zm−1).

Proof. This follows directly from Proposition 1.2.13. To see this, consider the curve

v = D−α1,...,−αnu.

Then v satisfies the hypotheses of 1.2.13 with the complex structure

D−α1,...,−αnJDα1,...,αn .

This immediately gives the conclusion. �

The same trick allows us to give a local form around a corner point.
Proposition 1.2.15. Recall that the branches Lp and Lq are given in equation 1.7.

Assume that
u :
(
D+,D+

R
)
→ (Rn, Lp ∪ Lq)

38



is a finite-energy J-holomorphic curve such that u(0) = 0 and u([0, 1)) ⊂ Lq and
u((−1, 0]) ⊂ Lp (this implies in particular that there is a corner point at 0).

Then there exist
(1) an open neighborhood Ω of 0 in D+,
(2) a C1 chart

ψ : (Ω,Ω ∩ R)→ (D+,D+
R),

(3) an linear isometry Bu ∈ L(RdimVαk , Vαk) and a λu ∈ R+ such that

παk(u ◦ ψ(z)) = λue
iαkBu

(
z
π−αk
π

+m, Ũ(z)
)

with Ũ(z) = o
(
z
π−αk
π

+m+δ
)
.

Moreover, if
U(z) =

∑
α∈{α1,...,αn}\{αk}

πα(u ◦ ψ(z))

we have
U(z) = o

(
z
π−αk
π

+m+δ
)
, dU(z) = o

(
z
π−αk
π

+m+δ−1
)
.

Proof. As before, consider the curve v = D−α1,...,−αnu. It satisfies the boundary condi-
tion v([0, 1)) ⊂ Rn and v((−1, 0]) ⊂ e−iα1 · R × . . . × e−iαn · R. Notice that the Kähler
angles of the second boundary condition are π − α1, . . . , π − αn.

We now apply Proposition 1.2.12 to obtain an αk ∈ (0, π), a λu > 0, a linear map Bu

and a local C∞ diffeomorphism ψ such that

παk(v(ψ(z))) = λuBu

(
z
π−αk
π

+m, U(z)
)

with U(z) = o(
π−αk
π

+m) and δ > 0. Notice that παk(D−α1,...,−αnu) = e−iαkπαk(u), so

παk(u ◦ ψ(z)) = λue
iαkBu

(
z
π−αk
π

+m, Ũ(z)
)
.

�

1.2.2. The relative frame of the curve is a graph

In this subsection, we will explain how to adapt the argument of [Laz11] to show
that given two finite-energy J-holomorphic curves with boundary on L, their relative
frame is a C1-embedded graph.

First let us state [Laz11, Lemma 3.10]. The proof adapts without difficulty.
Proposition 1.2.16. Recall that u1 and u2 are two finite-energy J-holomorphic curves
with corners and boundary on L.

Let
p1 : S1 × S2 → S1
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be the projection onto the first factor. Then if V1 ⊂ S1 and V2 ⊂ S2, the map p1 :

(V1 × V2) ∩Ru2
u1
→ V1 is open if

(1) either V2 ⊂ Int(S2) is open,
(2) or V1 is an open set such that V1 ∩W(u1, u2) ⊂ ∂S1.

Proof. Let q1Ru2
u1
q2 and let Vi 3 qi be two open neighborhoods satisfying V2 ⊂ Int(S2)

and V1 ∩ W(u1, u2) ⊂ ∂S1. Assume that the Vi are open half-disks or open disks and
that V1\{0} ∩ C(u1, u2) = ∅.

Up to reparameterization by z → u1(λz) with λ > 0 small enough, we can assume
that if (z1, z2) ∈ V1 × V2 is such that u1(z1) = u2(z2), then |z2| 6 1

2
.

First, assume that z1 is a corner point and z2 is not. There are constants such that

|u1(λz)| 6 C1λ
αi
π

+m|z|
α
π

+m, |u2(z)| > C2|z|k.

So if u2(z2) = u1(λz1), we have

C2|z|k2 6 C1|λ|
αi
π

+m|z1|
αi
π

+m.

Hence
|z2| 6

(
C1

C2

λ
αi
π

+m

)
1
k2 .

The right term goes to zero as λ→ 0+. Therefore, the result is true for λ small enough.
Second, assume that z2 is a corner point and z1 isn’t. Then there are constants such

that
|u1(λz)| 6 C1λ

k|z|k, |u2(z)| > C2|z|
α
π

+m.

So if u2(z2) = u1(λz1), we have

C2|z2|
α
π

+m 6 |λ|k|z1|k,

hence
|z2| 6

(
C1

C2

λk
)

1
α
π+m .

The right term goes to zero as λ → 0+. Therefore the result is true for λ > 0 small
enough.

Last assume that both z1 and z2 are corner points. Then there are constants such
that

|u1(λz)| 6 C1λ
α1
π

+m1|z|
α1
π

+m1 , |u2(z)| > C2|z|
α2
π

+m2 .

So if u2(z2) = u1(λz1), we have

C2|z2|
α2
π

+m2 6 |λ|
α1
π

+m1|z1|
α1
π

+m1 .
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Hence
|z2| 6

(
C1

C2

λ
α1
π

+m1

)
1

α2
π +m2 .

The right term goes to zero as λ → 0+. Therefore the result is true for λ > 0 small
enough.

Now, let Ω = Ru2
u1

(V2) ∩ (Int(V1)\{0}) ⊂ Int(V1\{0}) ∪ ∂S1.
• We have that Ω 6= ∅. Indeed, there are sequences (q1,ν) and (q2,ν) with values
in Int(S1)\C(u1, u2) and Int(S2)\C(u2, u1) such that q1,ν → q1, q2,ν → q2 and
q1,ν 6= q1. Now for ν large enough, q1,ν ∈ V1\{q1} and q2,ν ∈ V2.
• The set Ω is open in Int(V1) : if z1 ∈ Ω, then z1 /∈ C(u1, u2). Let z2 ∈ V2 be such
that z1Ru2

u1
z2. Then z2 ∈ Int(V2) since if z2 ∈ ∂S2 we have z1 ∈ ∂S2 which is a con-

tradiction. Moreover, du1(z1) 6= 0 and du2(z2) 6= 0. So the restrictions of the two
curves to small enough open neighborhoods of z1 and z2 are reparameterizations
of each other.
• The set Ω is closed in Int(V1)\{0} since if z1,ν → z ∈ Int(V1)\{0}, there is z2,ν ∈ V2

such that z1,νRu2
u1
z2,ν . One can assume that the sequence (z2,ν) converges to z2.

Since |z2| 6 1
2
, we get z2 ∈ V2.

Hence Ω = Int(V1)\{0} and the result follows by taking the closure of this in V1 and V2

since Ru2
u1

is closed. �

Let us also recall a characterization of simple curves with corners and boundary on
L.
Proposition 1.2.17. Let u : (S, ∂S) → (M,L) be a finite-energy J-holomorphic curve
with corners and boundary in L.

The curve u is simple if and only if Ru
u is the trivial relation.

Proof. IfRu
u is non-trivial, it is easy to show that u is not simple : see [Laz11, Corollary

3.16].
Assume that Ru

u = ∆ and let N = {z ∈ Int(S)\C(u, u)|#u−1(u(z)) > 2}. Suppose
that z1,ν → z1 ∈ N and u(z1,ν) = u(z2,ν) with z2,ν → z2 ∈ S and z1,ν 6= z2,ν . Then since
z1 /∈ Cu,u, we have that u1(z1) /∈ i(R), hence by [Laz11], z1Ru

uz2 and so z1 = z2. This is
a contradiction since du(z1) 6= 0 and u is locally injective around z1. �

For the remaining part of this subsection, we fix u1 and u2 two finite-energy J-
holomorphic curves with corners and boundary on L. We now explain how to prove that
the set W(u1, u2) is a C1 embedded graph. The proof is still an adaptation of [Laz00]
and [Laz11] with special care given to corner points.

Let us fix z1 ∈ S1 and z2 ∈ ∂S2 such that z1Ru2
u1
z2. We will show that the desired

result holds locally around z1.
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There are several cases to consider depending on the type of the points z1 and z2.
The proofs of all of these follow a variation of the same scheme (and are therefore inter-
changeable). Namely

(1) For i = 1, 2 we find an expression of ui around zi of the type

ui(z) = λiAi(1, 0)zci + Ai(0, Ui(z))

with ci a positive real number and Ui(z) = o(zci) (for this we apply one of the
Propositions 1.2.14, 1.2.13, 1.2.15, 1.2.12 according to the type of zi ).

(2) Since there are sequences z1,ν → z2 and z2,ν → z2 which satisfy u1(z1,ν) = u2(z2,ν),
we deduce that A1(1, 0) and A2(1, 0) are dependent over C and lie in the com-
plexification of Vαp for some p.

(3) We then use the complexification of the standard scalar product to conclude that
W(u1, u2) is included in a union of rays.

Lemma 1.2.18. In the above setting, assume that z1 ∈ ∂S1 and that z1 and z2 are not
corner points.

Moreover, we suppose that u1(z1) = u2(z2) = i(p) = i(q) is a double point, that u1

has boundary condition along the branch Lp around z1 and u2 has boundary condition
along the branch Lq around z2.

Then there is an open neighborhood Ω of z1 such that W(u1, u2)∩Ω is a C1-embedded
graph in Ω.

Proof. Using Propositions 1.2.8, 1.2.13, and 1.2.14, we can assume that
(1) u1 and u2 have values in Cn,
(2) Lp is given by Rn and Lq is given by eiα1 · R× . . .× eiαn · R,
(3) there are local C1 diffeomorphisms ψ1 and ψ2 around z1 and z2 respectively with

images Ω1 and Ω2 such that

u1(ψ1(z)) = λ1A
(
zk, U(z)

)
u2(ψ2(z)) = λ2Dα1,...,αnB

(
zm, Ũ(z)

)
.

Replacing Ω1 and Ω2 by smaller neighborhoods if necessary, we can assume that

C(u1, u2) ∩ Ω1 ⊂ {0}.

We claim that there is a complex µ ∈ C \ {0} such that µA(1, 0) = Dα1,...,αnB(1, 0)

and that there is an αk such that A(1, 0) ∈ Vαk .
Since z1Ru2

u1
z2, there are sequences (z1,ν) and (z2,ν) of points distinct from z1 and z2

such that z1,ν → z1 and z2,ν → z2 and u1(z1,ν) = u2(z2,ν). There are µ ∈ C and v ∈ Rn−1

such that Dα1,...,αnB(1, 0) = µA(1, 0) + A(0, v).
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If by contradiction µ = 0, from the equality

λ1z
k
1,νA(1, 0) + λ1A(0, U(z1,ν)) = λ2z

m
2,νA(0, v) + λ2Dα1,...,αnB(0, Ũ),

we get zk1,ν = o(zm2,ν). Therefore, we would have u1(z1,ν) = o(zm2,ν) = o(u2(z2,νm)). This is
of course a contradiction.

From this, we deduce λ1z
k
1,ν ∼ µλ2z

m
2,ν . Denote by π : Rn → Rn the real orthogonal

projection onto A(1, 0)⊥. Since A is orthogonal, we get

o(zk1,ν) = π(u1(z1,ν)) = π(u2(z2,ν)) = zm2,νπ(Dα1,...,αnB(1, 0) + o(z2,ν)).

Hence, π(Dα1,...,αnB(1, 0)) = 0.
Moreover, we have µA(1, 0) = Dα1,...,αnB(1, 0) ∈ eiα1 ·R×. . .×eiαn ·R and A(1, 0) ∈ Rn,

so A(1, 0) ∈ Vαp for some p. We conclude that µ has argument αk mod π.
Assume that z ∈ Ω1 ∩W(u1, u2). Then u(z) ∈ Lq. Denoting by 〈·, ·〉 the complexifi-

cation of the usual scalar product on Rn, we have

λ1z
k = 〈u1(z), A(1, 0)〉.

Since u1(z) ∈ Lq and A(1, 0) ∈ Vαk , we have 〈u1(z), A(1, 0)〉 ∈ eiαp · R, so zk ∈ eiαp · R.
We conclude that W(u1, u2) ⊂ A where A is the union of rays given by

A :=

(⋃
q

ei
αp
k

+i 2πq
p · R+

)
∪

(⋃
q

ei
αp
k

+i
(2q+1)π

p · R+

)
.

We claim that the frame W(u1, u2)\{0} is a (possibly empty) union of connected
components of A\{0}. We prove this by showing that it is an open and closed subset of
A\{0}.

Notice that W(u1, u2) = R(∂S2) is closed, since Ru2
u1

and ∂S2 are both closed. We
conclude that W(u1, u2)\{0} is closed in A\{0}.

Since Ω2 ∩ C(u1, u2) ⊂ {0} any point of W(u1, u2)\{0} is not in C(u1, u2). Therefore,
we can apply the proof of [Laz11, Theorem 3.18] to conclude thatW(u1, u2)\{0} is open
in A\{0}. �

Lemma 1.2.19. In the above setting, assume that z1 ∈ ∂S1 and that z1 is not a corner
point but z2 is.

Moreover we suppose that u1(z1) = u2(z2) = i(p) = i(q) and that u1 has boundary
condition along the branch Lp around z1.

Then there is an open neighborhood Ω of z1 such that W(u1, u2)∩Ω is a C1-embedded
graph in Ω.

Proof. The curve u2 can have two different types of boundary conditions. Accordingly,
we will consider two different cases.
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First Case: By the Propositions 1.2.8, 1.2.12, and 1.2.13 we can assume that
(1) the maps u1 and u2 have values in Cn,
(2) the branch Lp is given by Rn and Lq is given by eiα1 · R× . . .× eiαn · R,
(3) there are local C1 diffeomorphisms ψ1 and ψ2 around z1 and z2 respectively with

images Ω1 and Ω2 such that

u1(ψ1(z)) = λ1A1(zp, U1(z))

with U1(z) = o(zp),

παk(u2 ◦ ψ2(z)) = λ2A2

(
z
αk
π

+m, Ũ2(z)
)

with Ũ2(z) = o
(
z
αk
π

+m+δ
)
and∑

α∈{α1,...,αn}\{αk}

πα(u2 ◦ ψ2(z)) = o
(
z
αk
π

+m+δ
)
.

Moreover, we can assume that C(u1, u2) ∩ Ω1 ⊂ {0}.
We claim that A1(1, 0) ∈ Vαk and that there is a µ 6= 0 such that A1(1, 0) = µA2(1, 0).
Since z1Ru2

u1
z2, there are two sequences z1,ν 6= z1 and z2,ν 6= z2 such that z1,ν → z1,

z2,ν → z2 and u1(z1,ν) = u2(z2,ν). Moreover, we let µ ∈ R and v be a real vector such
that παk(A1(1, 0)) = µA2(1, 0) + A2(0, v). If, by contradiction, µ = 0, from the equality

λ1z
p
1,νπαkA1(1, 0) + λ1παkA1(0, U1(z1,ν)) = λ2A2(z

αk
π

+m

2,ν , Ũ2(z2,ν)),

we get
λ1z

p
1,νA2(0, v) + λ1παkA1(0, U1(z1,ν)) = λ2A2(z

αk
π

+m

2,ν , Ũ2(z2,ν)),

so zp1,ν = o
(
z
αk
π

+m

2,ν

)
. Hence, u1(z1,ν) = o

(
z
αk
π

+m

2,ν

)
= o(u2(z2,ν)), which is a contradiction.

In particular, we can deduce that µλ1z
p
1,ν ∼ λ2z

αk
π

+m

2,ν . Denote by π : Vαk → Vαk the
(real) orthogonal projection onto A2(1, 0)⊥. Since A2 is orthogonal, we get

λ1z
p
1,νA2(0, v) + λ1π ◦ παkA1(0, U1(z1,ν)) = λ2

(
0, Ũ2(z2,ν)

)
.

Hence, if v 6= 0, we have zp1,ν = o
(
z
αk
π

+m+δ

2,ν

)
, which is a contradiction.

Assume that z ∈ Ω1 ∩W(u1, u2), then we have u1(z) ∈ Rn ∪ eiα1 · R× . . .× eiαn · R.
Hence, from

〈A1(1, 0), u1(z)〉 = zp,

and the fact that A1(1, 0) ∈ Vαk , we deduce that zp ∈ R ∪ eiαk · R.
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So z ∈ A where A is the union of arcs given by

A =

p⋃
q=0

ei
qπ
p · R+ ∪

E(p−αkπ )⋃
q=0

ei
αk+qπ

p · R+.

Now we show that the frame (W(u1, u2) ∩ Ω1)\{0} is a (possibly empty) union of
connected components of A\{0}.

Indeed it is closed in A\{0} and W(u1, u2) = R(∂S2) is closed.
Since Ω2 ∩ C(u1, u2) ⊂ {0} any point of W(u1, u2)\{0} is not in C(u1, u2). Therefore,

we can apply the proof of [Laz11, Theorem 3.18] to conclude thatW(u1, u2)\{0} is open
in A\{0}.
Second Case: This is practically the same as the first case. We explain the differences.
This time Proposition 1.2.15 implies that we can assume

παk(u2 ◦ ψ2(z)) = λ2e
iαkA2

(
z
π−αk
π

+m, U2(z)
)

with U2(z) = o
(
z
π−αk
π

+mδ
)
and∑

α∈{α1,...,αn}\{αk}

πα(u2 ◦ ψ2(z)) = o
(
z
π−αk
π

+m+δ
)
.

The same argument as in case 1 shows that A1(1, 0) ∈ Vαk and that there is a real
µ 6= 0 such that A1(1, 0) = µA2(1, 0).

Assume that z ∈ Ω1 ∩W(u1, u2). Then from u1(z) ∈ Rn ∪ eiα1 ·R× . . .× eiαn ·R and
〈A1(1, 0), u1(z)〉 = zp we deduce zp ∈ R ∪ eiαkR. Hence z ∈ A.

Now the proof is the same as in the first case. �

Lemma 1.2.20. In the above setting, assume that z1 ∈ ∂S1 and that z1 is a corner point
but z2 is not.

Moreover, we suppose that u2 has boundary condition along the branch Lp around z2.
Then there is an open neighborhood Ω of z1 such that W(u1, u2)∩Ω is a C1-embedded

graph in Ω.

Proof. Exchanging the roles of u1 and u2, the proof is the same as in Lemma 1.2.19. �

Lemma 1.2.21. In the above setting, assume that z1 ∈ ∂S1 and that both z1 and z2 are
corner points.

Moreover, we suppose that u1 and u2 have boundary condition along Lp followed by
Lq around z1 and z2 respectively.

Then there is an open neighborhood Ω of z1 such that W(u1, u2)∩Ω is a C1-embedded
graph in Ω.
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Proof. We can assume by Propositions 1.2.8 and 1.2.12, that
(1) the maps u1 and u2 have values in Cn,
(2) the branch Lp is given by Rn and Lq is given by eiα1 · R× . . .× eiαn · R,
(3) there are local C1 diffeomorphisms ψ1 and ψ2 around z1 and z2 respectively with

images Ω1 and Ω2 such that

παk(u1(z)) = λ1A1

(
z
αk
π

+m, U1(z)
)

with U1(z) = o
(
z
αk
π

+m+δ
)
and∑

α∈{α1,...,αn}\{αk}

πα(u1(z)) = o
(
z
αk
π

+m+δ
)
.

Moreover,
παl(u2(z)) = λ2A2

(
z
αl
π

+p, U2(z)
)

with U2(z) = o
(
z
αl
π

+p+δ
)
and∑

α∈{α1,...,αn}\{αl}

πα(u2(z)) = o
(
z
αl
π

+p+δ
)
.

Furthermore, there are two non-zero sequences (z1,ν) and (z2,ν) which converge to 0

such that u1(z1,ν) = u2(z2,ν).
First we can easily see that αk = αp. Assume the opposite. Then

o
(
z
αl
π

+p+δ

2,ν

)
= παk(u2(z2,ν)) = παk(u1(z1,ν)) = λ1A1

(
z
αk
π

+m

1,ν , U1(z1,ν)
)
.

So z
αk
π

+m

1,ν = o
(
z
αl
π

+p+δ

2,ν

)
. Exchanging the roles of αk and αl, we get that z

αl
π

+p

2,ν =

o
(
z
αk
π

+m+δ

1,ν

)
, a contradiction.

As usual, we claim that there is µ ∈ R\{0} such that A1(1, 0) = µA2(1, 0).
Let µ ∈ R and v be a vector such that A1(1, 0) = µA2(1, 0) + A2(0, v). Assume by

contradiction that µ = 0. Then since

λ1z
αk
π

+m

1,ν A2(0, v) + λ1A1(0, U1(z1,ν)) = λ2A2

(
z
αl
π

+p

2,ν , U2(z2,ν)
)
,

and since A2 is an isometry, we get z
αk
π

+m

1,ν = o
(
z
αl
π

+p

2,ν

)
. Hence, u1(z1,ν) = o(u2(z2,ν)), a

contradiction.
In particular µλ1z

αk
π

+m

1,ν ∼ λ2z
αl
π

+p

2,ν . Moreover, applying the (complexified) orthogonal
projection onto A2(1, 0)⊥, we get

λ1z
αk
π

+m

1,ν A2(0, v) + λ1A1(0, U1(z1,ν)) = o
(
z
αl
π

+p+δ

2,ν

)
.

This implies A2(0, v) = 0.
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Now assume that z ∈ W(u1, u2). Then u1(z) ∈ Rn∪ eiα1 ·R× . . .× eiαn ·R. As usual,
we take the scalar product of παku1(z) with A1(1, 0) to obtain that z

αk
π

+m ∈ R∪ eiαk ·R.
Therefore z ∈ A, where A is the set

A :=

(
m⋃
q=0

e
i
αk+qπ
αk
π +m · R+

)
∪

E(
αk
π

+m)⋃
q=0

e
i qπ
αk
π +m · R+

.
We now show that the frame (W(u1, u2) ∩ Ω1)\{0} is a (possibly empty) union of

connected components of A\{0}.
It is closed in A\{0} since W(u1, u2) is closed.
Since Ω2 ∩ C(u1, u2) ⊂ {0} any point of W(u1, u2)\{0} is not in C(u1, u2). Therefore,

we can apply the proof of [Laz11, Theorem 3.18] to conclude thatW(u1, u2)\{0} is open
in A\{0}. �

Lemma 1.2.22. In the above setting, assume that z1 ∈ Int(S1) and that z2 is a corner
point.

Then there is an open neighborhood Ω of z1 such that W(u1, u2)∩Ω is a C1-embedded
graph in Ω.

Proof. Using Propositions 1.2.8, 1.2.12 and 1.2.9, we can assume that
(1) the maps u1 and u2 have values in Cn,
(2) the branch Lp is given by Rn and the branch Lq is given by eiα1 ·R× . . .×eiαn ·R,
(3) there are local C1-diffeomorphisms ψ1 and ψ2 around z1 and z2 respectively with

images Ω1 and Ω2 such that

u1(ψ1(z)) = λ1A1

(
zk, U1(z)

)
,

with U1(z) = O
(
zk+1

)
and

παl ◦ u2(ψ2(z)) = λ2A2

(
z
αl
π

+m, U2(z)
)
,

with U2(z) = o
(
z
αl
π

+m+δ
)
and∑

α∈{α1,...,αn}\{αl}

πα ◦ u2(ψ2(z)) = o
(
z
αl
π

+m+δ
)
.

Replacing Ω1 and Ω2 by smaller neighborhoods if necessary, we can assume that

C(u1, u2) ∩ Ω1 ⊂ {0}.

Moreover, since z1Ru2
u1
z2, there are non-zero sequences (z1,ν) and (z2,ν) converging to

0 such that u1(ψ1(z1,ν)) = u2(ψ2(z2,ν)).
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First, we easily see that for p 6= l, παpA1(1, 0) = 0. Indeed, assume by contradiction
that there is p such that παpA1(1, 0) 6= 0. Apply the projection παp to the equality above
to get

o
(
z
αl
π

+m

2,ν

)
= λ1z

k
1,νπαpA1(1, 0) + o

(
zk1,ν
)
.

So necessarily zk1,ν = o
(
z
αl
π

+m

2,ν

)
and u2(z2,ν) = u1(z1,ν) = o

(
z
αl
π

+m

2,ν

)
, a contradiction.

Now, we claim that there is a λ ∈ C\{0} such that A1(1, 0) = λA2(1, 0). To see this,
let λ ∈ C and v be a complex vector such that

παl(A1(1, 0)) = λA2(1, 0) + A2(0, v).

If λ = 0, we apply the complexification of the real scalar product with A2(1, 0) to get

o
(
zk1,ν
)

= λ2z
αl
π

+m

2,ν + o
(
z
αl
π

+m

2,ν

)
.

so z
αl
π

+m

2,ν = o
(
zk1,ν
)
and u2(z2,ν) = o(u1(z1,ν)), a contradiction.

In particular, we have λλ1z
k
1,ν ∼ λ2z

αl
π

+m

2,ν .
Assume that π is the real orthogonal projection onto A2(1, 0)⊥. We apply its com-

plexification to get
zk1λλ1A2(0, v) = o

(
z
αk
π

+m

2,ν

)
.

This shows that A2(0, v) = 0.
Now assume that z ∈ W(u1, u2) ∩ Ω1, so u1(z) ∈ (eiα1 · R× . . . eiαn · R) ∪ Rn. De-

note by hstd the standard hermitian scalar product (which is complex linear in the first
variable). Then, since A1 ∈ U(n),

hstd(u1(z), A1(1, 0)) = hstd
(
λ1z

kA1(1, 0) + A1(0, U1(z)), A1(1, 0)
)

= λ1z
k.

Recall that λ−1A1(1, 0) ∈ Vαl . For v ∈ eiα1 · R × . . . eiαn · R, we have hstd
(
v, A1(1,0)

λ

)
∈

eiαl · R. For v ∈ Rn, hstd
(
v, A1(1,0)

λ

)
∈ R.

In the end, we conclude that zk ∈ λ · R ∪ λeiαl · R. Call θλ ∈ [0, π] an argument of λ
(resp. −λ) if Im(λ) > 0 (resp. Im(λ) < 0). Then z ∈ A where A is a union of half-rays
with extremities at 0,

A :=
2k⋃
p=0

ei
pπ
k · R+ ∪

E
(

2k− θλ+αl
π

)⋃
p=E

(
− θλ+αl

π

) ei
pπ+θλ+αl

k · R+.

Now we show that the frame (W(u1, u2) ∩ Ω1)\{0} is a (possibly empty) union of con-
nected components of A\{0}.
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Indeed it is closed in A\{0} since W(u1, u2) = Ru2
u1

(∂S2) is closed.
Since Ω2 ∩ C(u1, u2) ⊂ {0} any point of W(u1, u2)\{0} is not in C(u1, u2). Therefore,

we can apply the proof of [Laz11, Theorem 3.18] to conclude thatW(u1, u2)\{0} is open
in A\{0}. �

With the cases already proved in [Laz11], we readily conclude that the following
proposition holds.
Proposition 1.2.23. Recall that u1 : (S1, ∂S1) → (M, i(L)) and u2 : (S2, ∂S2) →
(M, i(L)) are two finite energy J-holomorphic curves with corners and boundary in L.

Let D(u1, u2) be the set of isolated points of W(u1, u2). The following is true
(i) D(u1, u2) ⊂ C(u1, u2) ∩ ∂S1,
(ii) W(u1, u2)\D(u1, u2) is a C1-embedded graph in S1, its vertices are in C(u1, u2).
(iii) W(u1, u2) is a C1-embedded graph.

Proof. First, note that (iii) follows immediately from (i) and (ii). We shall see that
(ii) follows from the lemmas proved above.

Let z ∈ W(u1, u2) ∩ Int(S1) so there is z2 ∈ ∂S2 such that zRu2
u1
z2. Assume first

that z2 is not a corner point. It follows from the proof of [Laz11, Theorem 3.18] that
W(u1, u2) is a C1-graph around z. The same results holds if z2 is a corner point, this is
the content of Lemma 1.2.22.

We prove, using that the frame relation is open in some cases (Proposition 1.2.16),
that z is not isolated in W(u1, u2). To see this, pick an open neighborhood V2 of z2 such
that V2∩u−1

2 (z2) = {z2} and a decreasing sequence of neighborhoods V1,ν ⊂ Int(S1) such
that {z} = ∩νV1,ν . For ν ∈ N, the projection (V1,ν × V2) ∩ Ru2

u1
→ V2 is open (since

V1,ν ⊂ Int(S1)). Hence, there are z2,ν 6= z2 ∈ ∂S2 and z1,ν ∈ V1,ν with z1,νRu1u2z2,ν .
Necessarily z1,ν 6= z1 (otherwise u1(z1) = u2(z2,ν) which would yield z2 ∈ u−1

2 (u2(z2))).
We conclude that z is an accumulation point of W(u1, u2).

Now assume that z ∈ W(u1, u2) ∩ ∂S1 and and that z /∈ C(u1, u2). Pick z2 such
that zRu2

u1
z2. In particular z2 is not a corner point, du1(z) 6= 0 and du2(z2) 6= 0. We

can apply [Laz11, Proposition 3.13] : there are open neighborhoods ω1 and ω2 of z and
z2 respectively such that φ(ω2 ∩ ∂S2) = ω1 ∩ ∂S1 and zRu2

u1
z′ if and only if z = φ(z′).

Therefore ω1 ∩W(u1, u2) = ∂S1 ∩ ω1 : the frame is a local C1-graph around z and z is
not isolated in W(u1, u2).

Assume that z is not a corner point, then Lemma 1.2.19 if z2 is a corner point, and
Lemma 1.2.18 if z2 is not, show that W(u1, u2) is a graph around z.

If z is a corner point, Lemma 1.2.20 if z2 is not a corner point, and Lemma 1.2.21 if
z2 is, show again that W(u1, u2) is a graph around z. �
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1.2.3. Frame and simple curves

Lifts of curves

Two simple curves which have the same images are reparameterizations of each other
through a biholomorphism ([Laz11, Section 4]). In this section, we shall recall the
statement of these results as well as provide proofs when needed.

The relation that we just defined is not quite transitive. However, there still are
a few cases where transitivity holds. Let us consider three J-holomorphic curves with
boundary in L, ui : (Si, ∂Si)→ (M, i(L)) with i = 1 . . . 3.
Proposition 1.2.24 (Proposition 4.1, [Laz11]). If (z1, z2, z3) ∈ S1 × S2 × S3 satisfy
z1Ru2

u1
z2 and z2Ru3

u2
z3, and one of the following holds

(1) z1 ∈ Int(S1) or z3 ∈ Int(S3),
(2) z2 ∈ ∂S2 and there is a neighborhood ω2 ⊂ S2 of z2 such thatW(u1, u2)∩ω2 ⊂ ∂S2

or W(u2, u3) ∩ ω2 ⊂ ∂S2,
then z1Ru3

u1
z3.

Moreover, it turns out that the relation R has the lifting property with respect to
the projection on the second factor.
Proposition 1.2.25 (Lemma 4.3, [Laz11]). Let z1 ∈ S1\(W(u1, u2) ∪ C(u1, u2)) and
z2 ∈ S2 such that z1Ru2

u1
z2.

Assume that γ1 : [0, 1] → S1 is a continuous map such that γ1(0) = z1 and for
t ∈ [0, 1[, γ1(t) /∈ W(u1, u2) ∪ C(u1, u2).

There exists a unique continuous map γ2 : [0, 1] → S2 such that γ2(0) = z2 and for
t ∈ [0, 1], γ1(t)Ru2

u1
γ2(t).

Proposition 1.2.26 (Lemma 4.4, [Laz11]). Let γ1 : [0.1]→W(u1, u2) be a continuous
path such that γ1(t) /∈ C(u1, u2) for 0 < t < 1. If z1 = γ1(0) and z1Ru2

u1
z2 with z2 ∈

Int(S2).
There is γ2 : [0, 1] → W(u2;u1, u2) such that γ2(0) = z2 and γ1(t)Ru2

u1
γ2(t) for 0 6

t 6 1.
Moreover, if γ1([0, 1]) ⊂ W(u1, u2), then γ2([0, 1]) ⊂ W(u2, u2). Otherwise, γ2([0, 1]) ⊂

W(u2, u1).
Proposition 1.2.27 (Lemma 4.5, [Laz11]). Assume ∂S2 is connected. If C is a con-
nected component of W(u1, u2) with C ⊂ Int(S1), then for z ∈ ∂S2 there is w ∈ C such
that wRu2

u1
z.

We also introduce the following notion.
Definition 1.2.28. The J-holomorphic curve u : (S, ∂S) → (M, i(L)) is properly bor-
dered if ∂S is open in W(u, u).
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Simple curves are determined by their frames

Definition 1.2.29. Two J-holomorphic curves with boundaries on L defined on con-
nected surfaces u1 and u2 have relatively simple frames if Ru2

u1
6= ∅, W(u1, u2) ⊂ ∂S1 and

W(u2, u1) ⊂ S2.
The argument of [Laz11, section 4] holds without modifications to yield

Theorem 1.2.30 (Theorem 4.13, [Laz11]). If u1 and u2 are two simple curves with
boundary in L, the following assertions are equivalent

(1) u1(S1) = u2(S2) and u1(∂S1) = u2(∂S2),
(2) W(u1, u2) = ∂S1 and W(u2, u1) = ∂S2,
(3) u1 and u2 have relatively simple frames,
(4) Ru2

u1
6= ∅ and u1(∂S1) = u2(∂S2),

(5) There exist biholomorphism φ12 : (S2, ∂S2)→ (S1, ∂S1) such that

u2 = u1 ◦ φ12.

1.2.4. Factorizations of J-holomorphic disks

Factorization of curves

Proposition 1.2.31. Let u : (S, ∂S) → (M, i(L)) be a non-constant, finite-energy, J-
holomorphic curve with corners and boundary on L. We assume

W(u) = ∂S.

Let {z1, . . . , zN} ⊂ ∂S be the set of point related to z1:

Ru
u{z1} = {z1, . . . , zN}.

There are simply connected open neighborhoods of zi, Ωi 3 zi for i = 1, . . . , N such
that

Ωi ∩ C(u, u) ⊂ {zi}

and applications
ψij : Ωi → Ωj

nonsuch that
(1) ψij is the unique biholomorphism such that u ◦ ψij = u,
(2) If (z, w) ∈ Ωi × Ωj, we have zRu

uw if and only if w = ψij(z).

Proof. For i = 1 . . . N , choose Vi a neighborhood of zi and C1 charts such that, in these
charts,

u(z) = ai(z − zi)ki + o(|z − zi|ki)
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if zi is not a corner point, or

u(z) = ai(z − zi)
αi
π

+mi + o(|z − zi|
αi
π

+mi)

if zi is.
Moreover, we can assume that d|u|z is non-zero on Vi. We choose an α ∈ such that

0 < α < inf∂(∪Vi)\∂D. Then α is a regular value of |u|. Denote by Ωi the connected
component of D+\|u|−1{α} such that Ωi 3 zi. Since

d|u|(z − zi) = |ai|2
(αi
π

+mi

)
+ o(1)

is positive for z close enough to zi, we can assume (choosing α smaller if necessary) that
Ωi is simply connected. It implies that it is biholomorphic to a disk. Furthermore, its
boundary is the union of an embedded arc in ∂S and an embedded arc in the interior.

Let us show that the ψij exist. Choose z̃1 ∈ Ω1 ∩ Int(S) and z̃2 ∈ Ω2 ∩ Int(S). We
build ψ12 : Ω1\∂D→ Ω2\∂D.

For this, choose z ∈ Ω1\∂D. There is a continuous path γ : [0, 1] → Ω1\∂D from
z̃1 to z. This path lifts to a unique continuous γ2 : [0, 1] → S such that γ2(0) = z̃2

and γ(t)Ru2
u1
γ2(t). Notice that since W(u) = ∂S, we have γ2(t) /∈ ∂S. Moreover, since

|u(γ(t))| < α for all t ∈ [0, 1] and u(γ2(t)) = u(γ(t)), we get γ2(t) ∈ Ω2\S. We put
ψ12(z) = γ2(1).

It remains to see that ψ12(z) does not depend on the choice of γ. For this, suppose
that there is a homotopy H : [0, 1] × [0, 1] → Ω1\∂D such that H(0, ·) = γ. By the
same argument as before, there is a unique lift H̃ : [0, 1] × [0, 1] → Ω2\∂D such that
H(s, t)Ru

uH̃(s, t). It is easy to see, using that there is no critical points of u in Ω2\∂S,
that H is actually smooth. Thus the existence of ψ12 is proved.

Recall that there are no critical points of u in Ω2\ {z2}. It is easy to see, using the
same argument, that ψ12 extends to a holomorphic map Ω1\{z1} → Ω2\{z2}. In a local
chart for S, this is a bounded holomorphic map from D+

R\{0} to D+
R\{0} sending the real

line to the real line. Hence, it extends to a holomorphic map Ω1 → Ω2.
To see that this is a biholomorphism, notice that the same argument allows us to build

a holomorphic map ψ21 : Ω2 → Ω1 such that ψ21(z̃2) = z̃1. Now Φ = ψ12 ◦ π21 : Ω1 → Ω1

satisfies u◦Φ = u and Φ(z̃1) = z̃1. Hence by the unicity of lifts of paths, it is the identity.
Exchanging the order of the composition, we get ψ12 ◦ ψ21 = Id.

The unicity follows from a beautiful argument given in [Laz00, Proposition 5.9].
Assume that ψ is a biholomorphism Ω1 → Ω1 such that u ◦ ψ = u. Since Ω1 is simply
connected, we can assume that it is actually equal to D by the Riemann mapping theorem.
Then ψ has a fixed point, say z0. If z0 ∈ ∂D, then ψn(z)→ z0 for all z, so u is constant.
Hence z0 ∈ D̊ and we can assume z0 = 0 so ψ(z) = ζz for some ζ ∈ ∂D. Either ζ has
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infinite order, in which case u is constant, or it has finite order so u factors through
z 7→ zk. But u is an immersion on D, so k = 1. �

From this, we immediately get the following corollary.
Corollary 1.2.32. Recall that u : (S, ∂S)→ (M, i(L)) is a finite energy J-holomorphic
curve with corners and boundary on L.

If W(u) = ∂S and z1, . . . , zN ∈ ∂S are such that

Ru
u{z1} = {z1, . . . , zn}.

There are holomorphic charts hi : (D+,D+
R)→ (S, ∂S) with hi(0) = zi such that hi(z) =

hj(z
′) if and only if zRu

uz
′.

We also have the following.
Corollary 1.2.33. Recall that u : (S, ∂S)→ (M, i(L)) is a finite energy J-holomorphic
curve with corners and boundary on L.

Assume that its frame satisfies W(u) = ∂S. Then, there is a simple, finite-energy
J-holomorphic curve v : (S ′, ∂S ′)→ (M, i(L)) and a finite branched cover p : (S, ∂S)→
(S ′, ∂S ′) which restricts to an actual cover p : ∂S → ∂S ′ such that

u = v ◦ p.

Proof. The relation Ru
u is transitive by Proposition 1.2.24. Therefore, the quotient

S ′ = S/Ru
u is well-defined.

It remains to define holomorphic charts on S ′ such that the quotient map p : S → S ′

is holomorphic.
Let z′ ∈ S ′, let

p−1(z) = {z1, . . . , zN} ⊂ ∂S

be the preimages of z′. We consider the biholomorphisms h1, . . . , hN given by Corollary
1.2.32. Then the restriction of p to each Ωi is a bijection. Remark that, up to taking
smaller neighborhoods, we can assume tahtthe Ωi are relatively compact. Therefore, we
can assume that p restricted to each Ωi is a homeomorphism onto its image. The chart
around z′ is given by hi ◦ p−1

|Ωi .
If the preimages of z′ are contained in Int(S), the charts are constructed in [MS12,

Proposition 2.5.1].
Notice that this immediately implies that p|∂S : ∂S → ∂S ′ is a finite cover.
The map u goes through the quotient to induce a holomorphic map v : (S ′, ∂S ′) →

(M, i(L)) which is simple. Call E = {y1, . . . , ym} the corner points of u and let γ :

∂S\E → L be the boundary condition of u. Corollary 1.2.32 immediately implies that
if z ∈ ∂S is not a corner point and z′ is such that zRu

uz
′, then z′ is not a corner point.
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We deduce that in a neighborhood of z, we have γ ◦hz = γ ◦hz′ . Hence, we can quotient
out γ to obtain a continuous map γ′ : ∂S ′\p(E) which satisfies i ◦ γ′ = v|S′\p(E).

It is now immediate from the definition of γ′ that each point of p(E) is a corner point.
Since p is a branched cover of finite degree, say d > 1, we have∫

u∗ω = d

∫
v∗ω,

so
∫
v∗ω < +∞.

The fact that v is simple is an easy consequence of the definition of S ′. If zRv
vz
′,

there are two sequences zν → z and z′ν → z′ such that zν /∈ C(v), z′ν /∈ C(v) and zνRv
vz
′
ν .

Now pick two sequences of lifts of these z̃ν , z̃′ν which converge (up to a subsequence) to
two points say z̃ and z̃′. Notice that p is a branched cover, hence a local embedding
outside the critical points. With this in mind, zνRv

vz
′
ν implies z̃νRu

uz̃
′
ν . This implies in

turn z̃Ru
uz̃
′. So by definition z = p(z̃) = p(z̃′). Hence, the relation Rv

v is trivial. Now
apply Proposition 1.2.17. �

We conclude with the following Theorem.
Theorem 1.2.34. Let u : (S, ∂S) → (M, i(L)) be a finite-energy J-holomorphic curve
with corners and boundary in L.

There are finite-energy simple J-holomorphic curves with corners

vi : (Si, ∂Si)→ (M, i(L))

for i = 1 . . . N such that

Im(u) =
N⋃
i=1

Im(vi).

Further, there are natural integers m1, . . . ,mN > 1 such that

[u] =
N∑
i=1

mi[vi] in H2(M, i(L)).

Proof. The proof of the first point proceeds as in Lazzarini’s paper. For each con-
nected component Ω of S\W(u), choose a complex embedding hΩ : (SΩ, ∂SΩ)→ (Ω, ∂Ω)

([Laz11, Lemma 2.6]) and consider the map u ◦ hΩ.
We have

E(u ◦ hΩ) 6 E(u|Ω) 6 E(u) < +∞.

The set of the preimages of double points u−1(i(R)) is finite, hence by [Laz11, Lemma
2.4], the set (u ◦ hΩ)−1(i(R)) is also finite. Therefore u◦hΩ has a finite number of corner
points.
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Now we claim that W(u ◦ hΩ) = ∂SΩ. To see this, let z ∈ W(u ◦ hΩ). There is
z′ ∈ ∂SΩ such that z′Ru◦hΩ

u◦hΩ
z. From this, it follows that hΩ(z)Ru

uhΩ(z′). If hω(z′) ∈ Int(S),
from hΩ(z′) ∈ W(u) it follows that hΩ(z) ∈ W(u) by transitivity. Hence, z ∈ ∂SΩ.
Therefore, W(u ◦ hΩ) ⊂ ∂SΩ and there is equality since the other inclusion holds by
definition.

By Corollary 1.2.33, there is a Riemann surface with boundary S ′Ω, a map pΩ : SΩ →
S ′Ω and a simple curve vΩ : S ′Ω → (M, i(L)) such that

u ◦ hΩ = vΩ ◦ pΩ.

Moreover, we see immediately that

Im(u) =
⋃
Ω

Im(vΩ),

where the union is taken over the set of connected components of D\W(u). �

Now the conclusion of the main Theorem 1.1.3 follows immediately from the following
proposition.
Proposition 1.2.35. Assume that u : (D, ∂D)→ (M,L) is a finite-energy J-holomorphic
disk with corners and boundary on L. Keeping the notations of the proof of Theorem
1.2.34, each of the surfaces S ′Ω is biholomorphic to a disk.

Given what we have already shown, the proof of Proposition 1.2.35 does not differ
much from the proof of the corresponding proposition in [Laz11, Proposition 5.5]. For
the convenience of the reader, we shall recall the proof in the next subsection.

Connectedness of the frame and holomorphic spheres

The main result is the following proposition.
Proposition 1.2.36. Assume that u : (D, ∂D)→ (M,L) is a finite-energy J-holomorphic
disk with corners with W(u) not connected. There is a simple J-holomorphic sphere
v : CP 1 →M such that Im(u) = Im(v) and Ru

v 6= ∅.

Proof of Proposition 1.2.35 assuming 1.2.36 . First, assume that W(u) is con-
nected. Let Ω be a connected component of D\W(u). It is simply connected, hence
SΩ is a disk. Keeping the notation of 1.2.34 in mind, let g′Ω be the genus of S ′Ω. The
Riemann-Hurwitz formula applied to the cover pΩ yields :

1 = deg(pΩ)(1− g′Ω)−m

with m > 0 an integer. From m+ 1 > 0 and 1− g′Ω 6 1, we deduce g′Ω = 0.
Now assume thatW(u) is not connected. Therefore, there is a simple J-holomorphic

curve v : CP 1 → M such that Im(u) = Im(v) and Ru
v(CP 1) = D. Notice that if z ∈ D,
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z1 ∈ CP 1 and z2 ∈ CP 1 are such that zRu
vz1 and zRu

vz2, then z1 = z2 (in other words
every element of D lifts to a unique point in CP 1). Indeed by transitivity (Proposition
1.2.24), we get z1Rv

vz2 and since v is simple z1 = z2 (see Proposition 1.2.17).
The points of C(u, v) are isolated. Therefore, Proposition 1.2.26 implies that the

boundary of u lifts to a continuous curve γ : ∂D→ CP 1 such that u(z)Rγ(z) for z ∈ ∂D
and whose image is W(v, u). Hence W(v, u) is connected, so each connected component
Ω of CP 1\W(v, u) is simply connected and gives rise to a simple J-holomorphic disk
v|Ω : Ω→M .

Consider Ω a connected component of D\W(u), and SΩ, S ′Ω as in the proof of 1.2.34.
If z is in the interior of S ′Ω, there is a point z̃ ∈ CP 1 such that zRv

v′Ω
z̃. Let Ω̃ be the

connected component of CP 1\W(v, u) containing z̃.
Then one checks that R(∂Ω̃) = ∂Ω and R(∂Ω) = ∂Ω̃, so v′Ω is a J-holomorphic disk

by Theorem 1.2.30. �

We will give the proof of Propositon 1.2.36 at the end of the next subsection after
some preliminary results.

Cutpoints and holomorphic spheres

In this subsection, we state some results whose proofs are in [Laz11]. An exception
is point (2) of Proposition 1.2.38 which is specific to our own situation. Nevertheless, for
the convenience of the reader, we shall sum up the main arguments.

First, we need to define the notion of cutpoint. Those are the points at the boundary
where the disk closes on itself.
Definition 1.2.37. Let u : (S, ∂S) → (M, i(L)) be a finite-energy J-holomorphic curve
with corners and z ∈ ∂S.

The point z is a cutpoint if there is a complex embedding

h : (D+, ∂D+)→ (S, ∂S) with h(0) = z

and a J-holomorphic disk
v : D→M

such that 0 is a dead-end of W(v, u ◦ h).
We denote by Cut(u) ⊂ ∂S the set of cutpoints of u.
Here are some properties of the set of cutpoints.

Proposition 1.2.38. Let u : (S, ∂S)→ (M, i(L)) be a finite-energy J-holomorphic curve
with corners and boundary in L.

(1) If Cut(u) = ∅, then W(u) has no dead-ends.
(2) If z ∈ Cut(u), then z is not a corner point.
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(3) If z ∈ Cut(u), there is a neighborhood ω of z in ∂S and a continuous involution
σ : ω → ω such that σ(z) = z and zRu

uσ(z) for z ∈ ω.

Proof. The proof of (1) is clear. Assume z0 is a dead-end, then there is a point z ∈ ∂S
such that z0Ru

uz0. Choose an embedding φ : D→ S such that φ(0) = z0 and φ−1(W(u))

is an embedded Jordan arc. By definition W(u ◦ φ, u) = φ−1(W(u)), so 0 is a dead end
of W(u ◦φ, u). Now choose an embedding h : (D+, ∂D+)→ (S, ∂S) with h(0) = z. Then
W(u ◦ φ, u ◦ h) ⊂ W(u ◦ φ, u) and the former is open in the latter by Proposition 1.2.16.
Hence 0 is a dead-end of W(u ◦ φ, u ◦ h) and z ∈ Cut(u).

Let z be a cutpoint. Assume by contradiction that z is a corner point mapping to
x = i(p) = i(1). There are a disk v : D→M and an embedding h : (D+, ∂D+)→ (S, ∂S)

with h(0) = z such that 0Ru◦h
v z and 0 is a dead end of W (v, u ◦ h). Without loss

of generality, we can assume that u ◦ h(R+) ⊂ Lp and u ◦ h(R−) ⊂ Lq. The paths
γ+ : [0, 1) → D+ and γ− : (−1, 0] → D+ defined by γ±(t) = t lift to continuous paths
γ̃± with values in W(v, u ◦ h) such that γ̃±(t)Ru◦h

v γ±(t). Since the image of γ± is not
contained in C(u ◦ h, v), the paths γ̃± are not constant. Hence, since the frame is locally
path-connected, there is a small neighborhood ω of 0 in W(v, u ◦ h) such that v(ω) ⊂ Lp

and v(ω) ⊂ Lq, so v(ω) ⊂ {0}. This implies that v is constant. This contradiction proves
(2).

As before, assume that z ∈ Cut(u) and keep the notations of the proof of (2). By
Proposition 1.2.13 and (2), one can assume that h is such that in a suitable local chart
u◦h(z) = A(zk, U(z)) with U(z) = o(zk). We conclude that the paths γ̃± are embeddings
with values in W(v, u ◦ h) which is one-dimensional. Hence v ◦ γ+(t) = v ◦ γ−(t) (and k
is even). The involution σ maps h(γ+(t)) to h(γ−(t)). �

The next proposition gives a sufficient condition for a holomorphic disk to be a sphere.
Proposition 1.2.39. Let u be a J-holomorphic disk. Assume W(u) is open in ∂S. If
there is a J-holomorphic disk v : D→M such thatW(v, u) is an embedded Jordan curve,
then there is a simple J-holomorphic sphere w : CP 1 →M such that

Im(u) = Im(w),

and Rw
u (CP 1) 6= ∅.

Proof. The idea of the proof is that the boundary of the disk u closes itself on the
image of W(v, u) by v.

First, one can assume without loss of generality that v is a simple disk.
Let z0 be an extremity of W(v, u) and choose a point z ∈ ∂D such that z0Ru

vz (in
particular z0 is a cutpoint of u). One can prove as in the preceding proposition that
there are two distinct paths γ± : R+ → ∂D, and a path γ̃ : R+ →W(v, u) satisfying
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(1) γ±(0) = z,
(2) γ̃(0) = z0,
(3) γ±(t)Rv

uγ̃(t).
Let N > 0 be the first number such that γ+(t) = γ−(t). The surface S := D/ ∼

with γ+(t) ∼ γ=(t) for t ∈ [0, N ] is a topological sphere. The map u factors through
the quotient projection π : D → S to give a map w : S → M . It remains to see that S
admits a structure of Riemann surface such that π is holomorphic.

To construct charts, consider a point γ+(t0)Ru
uγ−(t0) with t0 ∈ (0, N) which is not

a cutpoint. The proof of Proposition 1.2.31 shows that there are local charts h± :

(D+, ∂D+)→ (D, ∂D) and h̃±(D+, ∂D+)→ (D,W(v, u)) such that h±(z1)Rv
uh̃±(z2) if and

only if z1 = z2. Since v is simple, there is a unique map φ− such that h̃+(t) = h̃−(φ−(t)).
The surface D+ tD+/ ∼ where t ∼ φ−(t) has a structure of a Riemann surface with the
charts given by the union of the maps h̃+ and h̃−. The chart for the surface S is then
given by h+ t h−. The map w restricted to this chart is holomorphic since equal to the
restriction of v to the images of h̃+ and h̃−.

If we consider a point γ+(t0) which is a cutpoint, one can check that γ̃(t0) is an
endpoint of W(v, u). �

Proposition 1.2.40. Let u : (D, ∂D)→ (M, i(L)) be a finite energy J-holomorphic disk
such that ∂D is open in W(u). Moreover, assume that the frame W(u) is not connected
and that u is not a J-holomorphic sphere.

Pick z0, z1 ∈ Cut(u) such that z0Ru
uz1 and let γ : [0, 1] → ∂D be an embedded path

with γ(0) = z0 and γ(1) = z1.
There are 0 < t0 < t1 < 1 such that γ(ti) ∈ C(u, u)\Cut(u) with i ∈ {0, 1}.

Proof. The point t1 is the smallest t ∈ (0, 1] such that γ(t) ∈ C(u, u). It is enough to
show that γ(t1) /∈ Cut(u) since this implies t1 6= 1.

The idea is as follows. Assume that γ(t1) is a cutpoint. Pick a connected component
C ⊂ W(u) ∩ Int(D) and a lift γ̃ : [0, 1] → C such that γ̃(t)Ru

uγ(t). Since γ(0) ∈ Cut(u)

(resp. γ(1) ∈ Cut(1)), there is a J-holomorphic disk w0 : Int(D) → M (resp. w1 :

Int(D) → M) and an embedding h0 : (D+, ∂D+) → (M, i(L)) (resp. h1 : (D+, ∂D+) →
(M, i(L))) such that 0 is a dead-end ofW(w0, u ◦h0) (resp. W(w1, u ◦h1)). We also pick
an embedding h2 : Int(D)→ Int(D) such that h2(−1, 1) = γ̃(ε, t0−ε) and 0 /∈ Rw2

wi
w2(D).

Now we attach the three disks w0, w1 and w2 using the relation R to obtain a disk w such
that W(w, u) is a Jordan arc. Therefore, u is a J-holomorphic sphere, a contradiction.

Let t0 be the largest t ∈ (0, t1] such that γ(t) ∈ C(u, u). We are done if we show that
t0 6= t1.
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Assume t0 = t1. Since γ(0)Ru
uγ(1), one can choose γ such that γ(t)Ru

uγ(1− t). One
can then check that this implies t0 ∈ Cut(u), a contradiction. �

All of this allows us to show that some disks are equivalent to disks whose frame does
not possess dead-ends.
Proposition 1.2.41. Let u : (D, ∂D)→ (M, i(L)) be a finite-energy J-holomorphic disk
with corners and boundary in L such that ∂S is open in W(u) and the frame W(u) is
not connected. We assume that u is not a J-holomorphic sphere.

There is a finite-energy J-holomorphic disk with corners and boundary in L, ũ :

(D, ∂D)→ (M, i(L)) such that
(1) Im(u) = Im(ũ),
(2) we have Cut(ũ) = ∅,
(3) there is a surjection π0(W(u))→ π0(W(ũ)).

Proof. The idea is to fold the boundary along the cutpoints.
More precisely, choose a a point z1 ∈ Cut(u) and let {z1, . . . , zN} be the set Ru

u{z1}∩
∂D. Let z̃ ∈ Int(D) be a point such that z1Ru

uz̃. There are injective paths γ2 : [0, 1] →
W(u) and γi,± : [0, 1]→ ∂D such that

(1) γ̃(t)Ru
uγi,±(t) for i ∈ {1, . . . , N},

(2) γ̃(0) = z̃, γ̃(1) ∈ C(u, u),
Notice that the preceding proposition shows that the points γ±,i(1) are distinct for i =

1 . . . N .
We let S := D/ ∼ be the quotient of D identifying γ±,i(t) with γ±,j(t) for i, j ∈

{1, . . . , N}. Topologically, the surface S is a disk. Then u factors through a map v :

S →M . It remains to show that there is a complex structure on S such that the quotient
map π : D→ S is holomorphic.

As in Proposition 1.2.39, the idea is to build a chart around γi,+(t) using as a chart a
quotient of a small disk around the corresponding point γ̃(t). For γi,+(t) with t ∈ [0, 1)

it is the same process as in Proposition 1.2.39.
Consider the points γi,+(1) and γi,−(1) and assume that γ̃(1) is not a vertex of the

graph W(u). Choose a small enough holomorphic embedding φ : IntD → D such that
φ(0) = γ̃(1) and Imφ∩C(u, u) = ˜γ(1). The set φ−1(W(u, u)) is divided in two arcs, one is
simply φ−1(γ̃) and we call the other γ′. Choose an embedding h′ : (D+, ∂D+)→ (D, γ′).
The graph W(u ◦ φ ◦ h, u) consists of the boundary(−1, 1) and an arc going from 0 to
the outer boundary of the half-disk. We call this arc γ′′.

Using the proof of Proposition 1.2.31, we show that there are 4 embeddings

h̃± : (D+, ∂D+)→ (D+, ∂D+ ∪ γ′′), h± : (D+, ∂D+)→ (D, ∂D)
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with h̃±(0) = 0 and h±(0) = γ±(1). These satisfy h̃±(z1)Rh±(z2) if and only if z1 = z2.
As before one can attach the two half-disks along their boundaries and identify the
resulting surface with D+ through the disjoint union of the maps h̃±.

Suppose that γ̃(1) is a vertex of the graph W(u). Let φ : IntD → D be a small
enough holomorphic embedding so that φ(0) = γ̃(1) and Imφ ∩ C(u, u) = ˜γ(1). The
paths γ±(1 − t) lift to two (not necessarily distinct) arcs γ1 and γ2 in W(u, u). Let
h̃ : (D+, ∂D+)→ (IntD, φ−1(γ1 ∪ γ2)) be a holomorphic embedding with φ−1(γ̃) ⊂ Im(h̃).
We then proceed just as before!

The end product is a finite-energy J-holomorphic disk with corners v such that

# Cut(v) 6 # Cut(u)− 1.

We then repeat the process by induction to get the desired disk ũ. �

After these results, we now return to the proof of Proposition 1.2.36.

Proof of Proposition 1.2.36. Assume by contradiction that the map u is not a J-
holomorphic sphere. Then by Propositions (1.2.41), there is a finite-energy J-holomorphic
disk ũ with corners and boundary on L which satisfies the following.

(1) The set ∂D is open in W(u).
(2) The connected component Ω of DW(ũ) which contains ∂D is not simply con-

nected. It is the unique connected connected component with this property.
(3) The set of cutpoints is empty.
(4) The map ũ is not a J-holomorphic sphere.

Call Ω1 the connected component of D\W(u) which contains ∂D and choose a map
h : (S, ∂S) → (Ω1, ∂Ω1) which is a biholomorphism from Int(S) to Int(Ω1). The map
uΩ1 := u ◦ h factors through a simple J-holomorphic map vΩ1 : S ′Ω1

→M . We show that
this is a disk.

For C a connected component of W(u), denote by ΩC the connected component of
D\W(u) with boundary C. It is simply connected, hence biholomorphic to a disk. Hence,
the map uΩC := u|ΩC factors through a simple disk vΩC .

Let z ∈ ∂S ′Ω1
and pick a point z̃ ∈ p−1

Ω1
(z). There is s ∈ C such that h(z̃)Ru

us. Then,
either h(z̃)RuΩC

uΩ1
s or h(z̃)RuΩ1

uΩ1
s. In the first case, the J-holomorphic maps vΩ1 and vΩC

satisfy W(vΩ1 , vΩC ) = ∂Ω1 and W(vΩC , vΩ1) = ∂ΩC . Hence, vΩ1 and vΩC are conjugate.
If there is no connected component such that h(z̃)RuΩC

uΩ1
s, the surface SΩ1/R

uΩ1
uΩ1

has
a unique connected component. Therefore, it is a disk

Now choose a connected component C. We glue the disks vΩC and vΩ along their
boundaries to get a J-holomorphic sphere v : CP 1 →M such Rv

ũ(CP 1) 6= ∅. We readily
conclude that ũ is a sphere. This is a contradiction. �
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1.3. Consequences of the main theorem

1.3.1. Simplicity of curves for generic almost complex structures

In this subsection, we give the proof of Corollary 1.1.4. The proof is basically con-
tained in [Laz11, Theorem B] and [BC07]. Here, we sum up the main arguments
involved in the proof. Recall that we fixed a generic Lagrangian immersion i : L → M

whose set of double points is R = {(p, q) ∈ L× L|p 6= q, i(p) = i(q)}.

Intersection points and indices of curves.

For each (ordered) double point (p, q) ∈ R (with as usual x = i(p) = i(q)), denote by
G(TxM) the Lagrangian Grassmannian of TxM . We choose once and for all a smooth
path

λ(p,q) : [0, 1]→ G(TxM)

such that
λ(p,q)(0) = dip(TxL) and λ(p,q)(1) = diq(TxL).

Moreover, we may assume that λ(q,p) is λ(p,q) parameterized in the reverse direction.
Now define a Maslov pair (E,F ) (we use the terminology of [MS12, Appendix C.3])

as follows. We let
E = H× TxM

be the trivial symplectic vector bundle over the closed Poincaré half-plane H with fiber
TxM equipped with the symplectic form ωx.

Consider a strictly increasing smooth function f : R → [0, 1] such that f(t) = 0 for
t << 0 and f(t) = 1 for t >> 0. Then the Lagrangian boundary condition is given by

∀t ∈ R, Ft = λ(p,q)(f(t)).

We endow H with the following strip-like end

ε ]−∞, 0]× [0, 1] → H
(s, t) 7→ e−π(s+it)

and endow the bundle H× TxM with the trivial symplectic connection ∇. This satisfies
the hypotheses of [Sei08, section 8h], hence admits an associated Fredholm Cauchy-
Riemann operator ∂∆ between suitable Sobolev completions of the spaces of sections.
We denote by Ind(p, q) the index of this operator :

Ind(p, q) = Ind
(
∂∆

)
.
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Now, choose a compatible almost complex structure J ∈ J (M,ω) and let

(p0, q0), . . . , (pd, qd) ∈ R

be d ∈ N∗ ordered self-intersection points of i.
Let u0 : (D, ∂D) → (M, i(L)) and u1 : (D, ∂D) → (M, i(L)) be two topological disks

with corners3 at (p0, q0), . . . , (pd, qd) in cyclic order. Let ũ0 : D\{z1, . . . , zd} → L and
ũ1 : D\{z1, . . . , zd} be their boundary lifts to L.

We say that u0 and u1 are homotopic (as topological disks with corners) if there are
• a continuous family (vt)t∈[0,1] of maps (D, ∂D)→ (M, i(L)),
• a continuous family (ṽt)t∈[0,1] of maps D\{z1, . . . , zd} → L,

such that
• for each t ∈ [0, 1], the map vt is a topological disk with corners and with lift ṽt,
• we have (v0, ṽ0) = (u0, ũ0) and (v1, ṽ1) = (u1, ũ1).

Let A be a homotopy class of topological disks with corners and corner points given
in cyclic order by (p0, q0), . . . , (pd, qd).

Assume first d > 2. Recall that there is a universal family Sd+1 π−→ Rd+1 of disks with
d+ 1 marked points. Fix a universal choice of positive strip-like ends 4.

We letM(A, (p0, q0), . . . , (pd, qd), J) be the space of maps u : π−1(r) → M for some
r ∈ Rd+1 satisfying the following conditions,

(1) u is a finite-energy J-holomorphic disk with corners and boundary on L,
(2) the corner points of u coincide with the limits of the strip-like ends and the switch

condition at the i-th marked point is given by (pi, qi),
(3) the homotopy class of u is A.
Each u ∈ M(A, (p0, q0), . . . , (pd, qd), J) gives rise to the bundle pair (u∗TM, u∗TL).

The linearization of the Cauchy-Riemann equation at u yields a Cauchy-Riemann oper-
ator between suitable Sobolev completions of the space of sections of this bundle pair

Du : W k,p(u∗TM, u∗TL)→ W k−1,p(Λ0,1u∗TM).

Fix such a u : π−1(r)→M and denote by x0, . . . , xd the marked points in the domain
ordered counterclockwise. There is a natural compactification of π−1(r) given by the
union of π−1(r) and d+1 copies of the interval [0, 1] topologized so that the positive (resp.
negative) strip-like ends εi : (0,+∞[×[0, 1]→ π−1(r) (resp. εi :]−∞, 0)×[0, 1]→ π−1(r))
extend to homeomorphisms εi : (0,+∞] × [0, 1] → π−1(r) (resp. εi : [−∞, 0) × [0, 1] →
π−1(r)). We denote it π−1(r).

3See Remark 1.1.2 for the definition
4See [Sei08, Section (9)] for the relevant definitions
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The map u admits a unique extension to a continuous map u : π−1(r) → M . This
gives rise to a Maslov pair (E,F )→ (π−1(r), ∂π−1(r)) as follows :

• for z ∈ ∂π−1(r), we put
Fz = Tu(z)L,

• over each interval εi(±∞× [0, 1]),

∀t ∈ [0, 1], Tu(εi(±∞,t)) = λpi,qi(t).

The index of this Maslov pair only depends on the homotopy class A of the map u.
Therefore, we define the Maslov index of the class A by

µA = µ(E,F ).

The index of the operator Du is

Ind(Du) = n+ µA −
d∑
i=0

Ind(pi, qi). (1.8)

See the paper of Akaho-Joyce [AJ10, Section 4.3, Proposition 4.6], or the exposition in
Seidel’s book [Sei08, Section (11)].

For the case d = 1, we consider the space of J-holomorphic strips with corners at
(p0, q0) and (p1, q1). More precisely, define Z = R× [0, 1]. We denote by

M̃(A, (p0, q0), (p1, q1), J)

the space of finite-energy J-holomorphic maps u : Z →M such that u(0, ·) (resp. u(1, ·))
lifts to a map γ− : R→ L (resp. γ+ : R→ L) with

lim
s→+∞

(γ−(s), γ+(s)) = (p1, q1), lim
s→−∞

(γ−(s), γ+(s)) = (p0, q0).

The index of such a curve is given by

Ind(Du) = µA + Ind(p0, q0)− Ind(p1, q1). (1.9)

For the case d = 0, we consider the space of J-holomorphic teardrops with corner at
(p0, q0). More precisely, we denote by

M̃(A, (p0, q0), J)

the space of finite-energy J-holomorphic maps u : H → M such that u|R lifts to a map
γ : R→ L with

lim
s→−∞

γ(s) = p0 and lim
s→+∞

γ(s) = q0.
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The index of an element u ∈ M̃(A, (p0, q0), J) of this moduli space is given by

Ind(Du) = µA + Ind(p0, q0). (1.10)

Generic transversality of moduli spaces

Assume that d > 2 and denote by

M∗(A, (p0, q0), . . . , (pd, qd), J) ⊂M(A, (p0, q0), . . . , (pd, qd), J)

the moduli space of simple J-holomorphic curves with corners at the (pi, qi). Standard
regularity arguments (such as in [MS12] or [FHS95]) imply that there is a second
category subset

Jreg(M,ω) ⊂ J (M,ω)

such that for J ∈ Jreg(M,ω) the space

M∗(A, (p0, q0), . . . , (pd, qd), J)

is either empty or a manifold of dimension Ind(Du) + d− 2.
If d ∈ {0, 1}, we quotient M̃∗(A, (p0, q0), . . . , (pd, qd), J) by the space of conformal

reparameterizations leaving the marked points fixed and denote the resulting space by

M∗(A, (p0, q0), . . . , (pd, qd), J).

There is a second category subset

Jreg(M,ω) ⊂ J (M,ω)

such that the space M∗(A, (p0, q0), . . . , (pd, qd), J) is either empty or a manifold of di-
mension Ind(Du) + d− 2.

We let A1 and A2 be two homotopy classes of topological disks with corners at
(p0, q0), . . . , (pd, qd) and (p̃0, q̃0), . . . , (p̃m, q̃m) respectively. We define

M∗(A1, A2, (p0, q0), . . . , (pd, qd), (p̃0, q̃0), . . . , (p̃m, q̃m), J)

to be the set of pairs of simple disks (u1, u2) such that u1(D) 6⊂ u2(D) and u2(D) 6⊂ u1(D).
There is a second category subset Jreg(M,ω) such that for each J ∈ Jreg(M,ω) the space

M∗(A1, A2, (p0, q0), . . . (p̃m, q̃m), J)

is either empty or a smooth manifold of dimension 2n + µA1 + µA2 −
∑

i Ind(pi, qi) −∑
i Ind(p̃i, q̃i).
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Now for k > 0 consider the moduli space of (parameterized) pairs of disks with
marked points at the boundary

M∗
k(A1, A2, (p0, q0), . . . (p̃m, q̃m), J) :=M∗(A1, A2, (p0, q0), . . . (p̃m, q̃m), J)× (∂D)2k.

There is a smooth evaluation map

evk : M∗
k(A1, A2, (p0, q0), . . . (p̃m, q̃m), J) → L2k

(u1, u2, z1, . . . zk, x1, . . . , xk) 7→ (u1(z1), u2(x1), . . . , u1(zk), u2(zk))
.

Denote by ∆ = {(x, x)|x ∈ L} ⊂ L × L the diagonal. There is a second category
subset Jreg(M,ω) such that for every J ∈ Jreg(M,ω) and k > 1, the evaluation map evk

is transversal to the product ∆k. Hence, if not empty, the set ev−1
k (∆k) has the structure

of a smooth manifold of dimension 2n+µA1 +µA2−
∑

Ind(pi, qi)−
∑

Ind(p̃i, q̃i)+(2−n)k.
Assume that n > 3, then for k large enough, we have 2n+µA1 +µA2−

∑
Ind(pi, qi)−∑

Ind(p̃i, q̃i) + (2 − n)k 6 0, so ev−1
k (∆k) is empty. We conclude that the following

proposition holds.
Proposition 1.3.1. There is a second category subset

Jreg(M,L, ω) ⊂ J (M,ω)

such that if
• J ∈ Jreg(M,L, ω),
• u1 ∈M∗(A1, (p0, q0), . . . , (pd, qd), J),
• u2 ∈M∗(A2, (p̃0, q̃0), . . . , (p̃m, q̃m), J),

satisfy
u1(D) 6⊂ u2(D) and u2(D) 6⊂ u1(D),

then the set
{z1, z2 ∈ ∂D|u1(z1) = u2(z2)}

is finite.
The same argument for self intersections yields

Proposition 1.3.2. There is a second category subset

Jreg(M,L, ω) ⊂ J (M,ω)

such that if u ∈M∗(A, (p0, q0), . . . , (pd, qd), J), then the set

{(z1, z2) ∈ ∂D× ∂D|u(z1) = u(z2)}

is finite.

Proof of Corollary 1.1.4. The rest of the proof follows closely the proof of [Laz11,
Theorem B].
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γ+

γ−SΩ

z
γ

hΩ−→

Ω

Figure 2 – The surface SΩ, the paths γ and γ±.

Since the space of continuous maps (D, ∂D) → (M, i(L)) is separable and locally
connected, the set of homotopy classes of polygons with corners and boundary on i(L)

is either finite or countable.
Therefore, by Propositions 1.3.1 and 1.3.2, there is a second category subset

Jreg(M,L, ω) ⊂ Jreg(M,ω)

such that for every almost complex structure J ∈ Jreg(M,L, ω) the following holds.
(1) If u1, u2 : (D, ∂D)→ (M, i(L)) are two finite energy, simple J-holomorphic poly-

gons then
• either Im(u1) ⊂ Im(u2) or Im(u2) ⊂ Im(u1),
• or the set {z1, z2 ∈ ∂D|u1(z1) = u2(z2)} is finite.

(2) If u : (D, ∂D)→ (M, i(L)) is a finite energy, simple, J-holomorphic polygon with
corners, then the set {(z1, z2) ∈ ∂D× ∂D|u(z1) = u(z2)} is finite.

We fix J ∈ Jreg(M,L, ω). Let u be a finite energy, J-holomorphic polygon with corners.
We will show that u is multiply covered by showing that its frame satisfies W(u) = ∂D.

First, we claim that W(u) has no dead-ends. Assume the opposite, i.e. that there is
z ∈ Int(D) which is a dead-end for W(u). Call Ω the connected component adjacent to
this dead-end (see Figure 2). Recall that there are

• a Riemann surface SΩ as well as a biholomorphism hΩ : (SΩ, ∂SΩ)→ (Ω, ∂Ω),
• a holomorphic map pΩ : (SΩ, ∂SΩ) → (D, ∂D), which restricts to a cover on the
boundary,
• and a simple, finite energy, J-holomorphic polygon with vΩ,

such that u ◦ hΩ = vΩ ◦ pΩ. Let γ : [0, ε) → W(u) be a C1-embedded path such that
γ(0) = z. By definition of SΩ, this lifts to two C1 paths γ± : [0, ε)→ ∂SΩ with

• γ+(0) = γ−(0),
• γ+ orientation preserving and γ− orientation reversing,
• hΩ ◦ γ± = γ.
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Again, we refer to Figure 2. Therefore, we have for all t ∈ [0, ε), vΩ ◦pΩ(γ±(t)) = u◦γ(t).
So vΩ is a simple pseudo-holomorphic polygon with infinitely many intersection points
at its boundary. This is contradiction, by property (1) of the definition of Jreg(M,L, ω).
Therefore, W(u) has no dead-ends.

Assume that D\∂W(u) has several distinct connected components. Pick two dis-
tinct, adjacent, connected components Ω1 and Ω2 of ∂D\W(u). Then, there are two
simple, finite energy, J-holomorphic polygons v1 and v2 and two holomorphic maps
p1 : (Ω1, ∂Ω1)→ (D, ∂D) and p2 : (Ω2, ∂Ω2)→ (D, ∂D) such that

vi = u|Ωi ◦ pi, i = 1, 2.

Let γ : (−ε, ε) → W(u) be an embedded C1 path whose image is contained in the
intersection ∂Ω1 ∩ ∂Ω2. Since u|Ω1(γ(t)) = u|Ω2(γ(t)), we get

∀t ∈ (−ε, ε)v1 ◦ p1 ◦ γ(t) = v2 ◦ p2(γ(t)).

So, by property (1) of Jreg(M,L, ω), we can assume Im(v1) ⊂ Im(v2).
Then, Rv2

v1
6= ∅. To see this, let t ∈ (−ε, ε) be such that p1 ◦ γ(t) /∈ C(v1, v2)

and p2γ(t) /∈ C(v2, v1). Since du1(p1 ◦ γ(t)) 6= 0, the map v1 is a local embedding
around p1 ◦ γ(t) with image contained in v2. Moreover, v2 is a local embedding around
p2 ◦γ(t). So, we conclude that v1 is a local reparameterization of v2 near p1 ◦γ(t). Hence
p1 ◦ γ(t) Rv2

v1
p2 ◦ γ(t).

Moreover, we have W(v1, v2) ⊂ W(v1, u) ⊂ ∂D and W(v2, v1) ⊂ W(v2, u) ⊂ ∂D. So
v1 and v2 have relatively simple frame. Therefore v1 is a reparameterization of v2 (and
vice-versa) by Theorem 1.2.30.

However, we also have v1 ◦ p1 ◦ γ = v2 ◦ p2 ◦ γ. Moreover, (up to a switch between v1

and v2) the map p1 ◦ γ has the same orientation as ∂D while p2 ◦ γ does not. Therefore,
the polygon v1 has infinitely many self-intersection point, a contradiction with property
(2) of the definition of Jreg(M,L, ω).

Hence, it must be that D\W(u) is connected. SinceW(u) has no dead ends, we have
W(u) = ∂D. This finishes the proof. �

Generically teardrops and strips are simple

Definition 1.3.3. A finite-energy J-holomorphic disk u : (D, ∂D) → (M, i(L)) with
corners and boundary on L is a teardrop if it has a unique corner point

An elementary argument gives the following consequence of Corollary 1.1.4.
Corollary 1.3.4. Assume that the complex dimension of (M,ω) satisfies n > 3. There
is a second category subset

Jreg(M,L, ω) ⊂ J (M,ω)
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such that the following holds.
If J ∈ Jreg(M,L, ω), every finite-energy J-holomorphic teardrop u with boundary in

L is simple.

Proof. We assume that Jreg(M,L, ω) is the second category subset given in Corollary
1.1.4 (such that all the J-holomorphic curves are either simple or multiply covered for
J ∈ Jreg(M,L, ω)).

Assume that u : (D, ∂D)→ (M, i(L)) is a teardrop with finite energy. Denote by z1 its
corner point. There is a simple disk v as well as a branched cover p : (D, ∂D)→ (D, ∂D)

which restricts to a cover on the boundary such that u = v◦p. Notice that v has a corner
point at p(z1). Now if the the degree of p is more than 2, we see that u has corner points
at p−1{z1}. This set is of cardinality greater or equal to 2, a contradiction. �

Now, let i1 : L1 → M and i2 : L2 → M be two Lagrangian immersions. The disjoint
union give rise to a Lagrangian immersion

i : L1 t L2 →M. (1.11)

We assume that i is generic (transverse double points and no triple points).
Definition 1.3.5. We assume L1 and L2 are two generic Lagrangian immersions, and
that the immersion i is the one defined in 1.11.

Let J ∈ J (M,ω) be a compatible almost complex structure, x− and x+ be two inter-
section points between L1 and L2. A J-holomorphic strip between L1 and L2 from x− to
x+ is a J holomorphic map u : R× [0, 1]→M such that

(1) lims→+∞ u(s, t) = x−, lims→+∞ = x+,
(2) u(·, 0) (resp. u(·, 1)) admits a continuous lift γ1 to L1 (resp. a continuous lift γ2

to L2).
Remark 1.3.6. Precompose a J-holomorphic strip u with a biholomorphism

ψ : D\{−1, 1} → R× [0, 1].

The resulting map u ◦ ψ is a J-holomorphic disk with two corner points. The boundary
lifts are

γ̃1 = γ1 ◦ ψ and γ̃2 = γ2 ◦ ψ.

We now have the following proposition about the structure of such strips.
Proposition 1.3.7. We assume that we are in the setting of Definition 1.3.5.

There is a second category subset

J (M,L1, L2, ω) ⊂ J (M,ω)

such that the following holds.
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If J ∈ J (M,L1, L2, ω), every finite-energy J-holomorphic strip5 between i1 and i2 is
simple.

Proof. Recall, from Corollary 1.1.4, that there is a second category subset

J (M,L1, L2, ω) ⊂ J (M,ω)

such that for every almost complex structure J ∈ J (M,L1, L2, ω), every finite-energy
J-holomorphic polygon with boundary on i : L1tL2 →M is simple or multiply covered.
Let us fix one such J .

Let u : R × [0, 1] → M be a finite-energy J-holomorphic strip from x− to x+. Let
ψ : D\{−1, 1} → R× [0, 1] be a biholomorphism. Then, the map, u◦ψ is a finite-energy,
J-holomorphic polygon with two corner points at −1 and 1. It is therefore multiply
covered. There is a simple pseudo-holomorphic polygon v : D → M and a covering
p : D → D such that u = v ◦ p. Assume by contradiction that the degree of p is greater
or equal than 2.

Then, the set p−1(p(1)) has a cardinal greater or equal than 2. Moreover, it is easy
to see that each z ∈ p−1(p(1)) is a corner point. So p−1(p(1)) is the pair {−1, 1}.

However, we claim that−1 /∈ p−1(p(1)). Indeed, for each z ∈ p−1(p(1)), any conformal
embedding h : (D+,D+

R) → (D, ∂D) such that h(0) = z satisfies u ◦ h(R+) ⊂ L2 and
u ◦ h(R−) ⊂ L1. This can be seen, for instance, by using local charts. However, a
conformal local chart h : (D+,D+

R)→ (D, ∂D) such that h(0) = −1 satisfies u ◦ h(R−) ⊂
L2 and u ◦ h(R+) ⊂ L1. �

We need one last statement. For this, let d > 2 be a natural integer and

L0, . . . , Ld ⊂M

be d + 1 embedded Lagrangian submanifolds in general position. This means that the
induced immersion

d∐
i=0

Li →M

is generic.
Definition 1.3.8. Assume that we are in the above setting.

For i ∈ {0, . . . , d}, fix xi ∈ Li ∩ Li+1. A J-holomorphic polygon with boundary
condition L1, . . . , Ld is a J-holomorphic map

u : π−1(r)→M

5see Definition 1.3.5.
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for some r ∈ Rd+1 such that
lim

s→+∞
u ◦ εi(s, t) = xi,

and the image by u of the arc between the i and i+ 1 end is included in Li.
We now have the following proposition.

Proposition 1.3.9. Assume that L0, . . . , Ld are Lagrangian submanifolds as above (in
general position).

There is a second category subset

J (M,L0, . . . , Ld, ω) ⊂ J (M,ω)

satisfying the following property.
If J ∈ J (M,L0, . . . , Ld, ω), every J-holomorphic polygon u of finite energy with

boundary condition6 L0, . . . , Ld is simple.

Proof. As before, call i :
⊔
Li → M the natural Lagrangian immersion. Recall from

Corollary 1.1.4, that there is a second category subset

J (M,L0, . . . , Ld, ω) ⊂ J (M,ω)

such that any finite-energy J-holomorphic disk with boundary on i is simple or multiply
covered. Fix an almost complex structure J in the set J (M,L0, . . . , Ld, ω).

Now let u be a J-holomorphic polygon of finite energy and fix a biholomorphism
ψ : D → π−1(r). Call y0, . . . , yd the preimages of the marked points of π−1(r) by ψ.
Then u ◦ ψ is a finite-energy disk with boundary on i. It is therefore multiply covered.
So there is a simple pseudo-holomorphic polygon v : (D, ∂D)→ (M, i(L)) and a covering
p : (D, ∂D)→ (D, ∂D) such that u ◦ ψ = p ◦ v.

As before, we see that for i 6= j, yi /∈ p−1(p(yj)) since the image of any neighborhood
of z ∈ p−1(p(yj)) in ∂D by u intersects both Lj and Lj+1.

Assume, by contradiction that the degree of p is greater or equal than 2. Then the
set p−1(p(yj)) has more than two elements. It therefore contains a corner point yi with
i 6= j. This is in clear contradiction with the above claim. Hence, the covering p is of
degree 1. �

Remark 1.3.10. One should be aware that the set J (M,L1, . . . , Ld, ω) depends on the
Lagrangian submanifolds L0, . . . , Ld. In particular, the author does not know if for a
generic J , any J-holomorphic polygon (without restriction on the boundaries) is simple.

6See Definition 1.3.8
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1.3.2. Time-independent Floer homology

As an application of the Main Theorem 1.1.3, we show that we can compute La-
grangian intersection Floer homology with time-independent complex structures. This
is (as far as the author knows) new.

To do this, let us now assume that (M,ω) is closed and monotone. Let

[ω] : H2(M)→ R

be the morphism induced by symplectic area. There is λ > 0 such that

[ω] = λc1(TM).

Let L1 ⊂ M and L2 ⊂ M be two embedded compact Lagrangian submanifolds and
denote by N1 > 1 and N2 > 1 their minimal Maslov number. We assume that Np > 3

for p ∈ {1, 2}. Moreover, symplectic area and Maslov class induce two morphisms

[ω] : H2(M,L)→ R, µL : H2(M,L)→ Z.

We assume that L1 and L2 are monotone :

[ω] =
λ

2
µL.

Further, we assume that L1 and L2 are transverse.
For x and y two distinct intersection points in L1 ∩ L2, and A a homotopy class of

finite-energy strips from x to y, we denote
• by M̃(x, y, L1, L2, A, J) the set of J-holomorphic strips from x to y in the homo-
topy class A,
• byM(x, y, L1, L2, A, J) its quotient by the natural R-action,
• by M̃∗(x, y, A, L1, L2, J) ⊂ M̃(x, y, A, L1, L2, J) the set of simple J-holomorphic
strips,
• byM∗(x, y, A, L1, L2, J) its quotient by the R-action.

From Proposition 1.3.7 and the standard transversality arguments (cf [FHS95]), we
immediately deduce the following.
Proposition 1.3.11. In the above setting, there is a second category subset

Jreg(M,L1, L2, ω) ⊂ J (M,ω)

such that
(1) If J ∈ Jreg(M,L1, L2, ω), for each homotopy class of strips A, all J-holomorphic

strips are simple :

∀x, y ∈ L1 ∩ L2, M∗(x, y, L1, L2, A, J) =M(x, y, L1, L2, A, J).
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(2) If J ∈ Jreg(M,L1, L2, ω), then for all the intersection points x, y ∈ L1 ∩ L2, the
moduli space M(x, y, L1, L2, A, J) is either empty or a finite-dimensional mani-
fold.

Now for such a generic J ∈ J ∈ Jreg(M,L1, L2, ω) and a natural integer k ∈ N,
denote by

M(x, y, L1, L2, A, J)k

the k dimensional component ofM(x, y, L1, L2, A, J).
By a standard Gromov compactness argument, the set M0(x, y, A, J) is compact.

Furthermore, the setM1(x, y, A, J) admits a compactification

M1
(x, y, A, J)

which is a compact 1-dimensional manifold with boundary

∂M1
(x, y, A, J) =

⊔
z∈L1∩L2

M0(x, z, A, J)×M0(z, y, A, J).

The coefficients are over the Novikov ring of formal power series with coefficients in Z2 :

ΛZ2 =


∑

λi→+∞,
λi>0

aiT
λi

∣∣∣∣∣∣∣∣ai ∈ Z2

.
As usual we define the Floer complex between L1 and L2 to be the ΛZ2-module generated
by the intersection points

CF (L1, L2, J) =
⊕

x∈L1∩L2

Z2 · x.

The differential on this complex is given by a count of rigid J-holomorphic strips in Z2

d : CF (L1, L2, J) → CF (L1, L2, J)

y 7→
∑

y∈L1∩L2
#Z2M0(x, y, A, J) T ω(A)y.

It is immediate to see from the usual Gromov compactness argument that d2 = 0, so
(CF (L1, L2), d) is a well-defined differential complex.

Since any generic almost complex structure is, in particular, a generic time-dependent
almost complex structure, the homology of this complex computes the usual Lagrangian
intersection Floer homology. Hence we can conclude that the following theorem is true.
Theorem 1.3.12. In the above setting, there is a second category subset

Jreg(M,ω,L1, L2) ⊂ J (M,ω)

72



such that the Floer complex
(CF (L1, L2, J), d)

is well-defined (as a differential complex). Moreover, its homology computes the usual
Lagrangian intersection Floer homology.

1.3.3. Work in progress

Since Akaho’s ([Aka05]) and Akaho-Joyce’s ([AJ10]) work, it is well-known that
pseudo-holomorphic teardrops yield obstructions to the definition of Floer homology
for (generic) Lagrangian immersions. More precisely, let L1 and L2 be two transverse
generic Lagrangian immersions. Assume that J is a compatible almost complex structure.
Using virtual perturbation techniques, Akaho and Joyce ([AJ10]) expressed the square
of the differential of the Floer complex between L1 and L2 with an algebraic count of
J-holomorphic teardrops with boundaries on on of the immersions L1 or L2.

On the other hand, an ongoing research program of Biran and Cornea aims to show
that some Lagrangian immersions are geometric representatives of distinguished cones
in the Fukaya category. I will informally describe the main idea of their research plan.
Assume that L1 and L2 are two transverse, embedded, Lagrangians. Further, assume that
we are in a setting where Floer homology is well-defined (without virtual fundamental
cycle techniques). For instance, one can assume

• (M,ω) is exact with convex boundary and L1, L2 are exact, graded, closed La-
grangians,
• or M,L1, L2 are closed, weakly monotone with Maslov number greater or equal
than two.

Fix a cycle c ∈ CF (L1, L2) which is a formal sum of intersection points. Then, the
surgery of L1 and L2 along these intersection points is expected to be an immersed
Lagrangian which represents, in a sense, the surgery between L1 and L2. Note that a
similar idea was used in [CDRGG17] to find generators of the wrapped Fukaya category
of a Weinstein sector.

Let us restrict to an exact symplectic manifold with convex boundary. We assume
that L1 and L2 are closed, exact, graded Lagrangian submanifolds. We expect that we
can use our work to prove Theorem 1.3.16. It asserts that, for a generic almost com-
plex structure, the algebraic count of pseudo-holomorphic teardrops with boundary on a
surgery equals an algebraic count of pseudo-holomorphic strips between the embeddings
L1 and L2. This is the first step of Biran and Cornea’s program. Furthermore, we outline
the proof of this Theorem. We will highlight, along the way, the points that are not yet
proven.
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Framework

In this subsection, we describe some expected applications of the main theorems to
Floer theoretic properties of the surgery of two immersed Lagrangian submanifolds.

We assume that (M,ω) is an exact symplectic manifold with Liouville form λ, convex
boundary and complex dimension n > 3. We denote by M̂ its completion.
Gradings: We assume that the first Chern class of (M,ω) satisfies

2c1(TM) = 0

in H2(M,Z). This implies that the complex line bundle ΛnT ∗M ⊗ ΛnT ∗M is trivial.
Hence, it admits a non-vanishing section Ω.

For each Lagrangian subspace Λ ∈ G(TxM), choose a real basis v1, . . . , vn of Λ and
define

det2
Ω(Λ) =

Ω(v1 ∧ . . . ∧ vn, v1 ∧ . . . ∧ vn)

|Ω(v1 ∧ . . . ∧ vn, v1 ∧ . . . ∧ vn)|
.

If w1, . . . , wn is another basis of Λ, denote by A the transition matrix from the basis
(v1, . . . , vn) to the basis (w1, . . . , wn) . Then,

Ω(v1 ∧ . . . ∧ vn, v1 ∧ . . . ∧ vn)

|Ω(v1 ∧ . . . ∧ vn, v1 ∧ . . . ∧ vn)|
=

det(A)2Ω(w1 ∧ . . . ∧ wn, w1 ∧ . . . ∧ wn)

det(A)2|Ω(w1 ∧ . . . ∧ wn, w1 ∧ . . . ∧ wn)|

=
Ω(w1 ∧ . . . ∧ wn, w1 ∧ . . . ∧ wn)

|Ω(w1 ∧ . . . ∧ wn, w1 ∧ . . . ∧ wn)|

Hence, the real number det2
Ω(Λ) does not depend on the choice of basis of the real vector

space Λ. Therefore, this defines a smooth function

det2
Ω : G(TM)→ R.

Definition 1.3.13. In the above setting, an exact graded Lagrangian immersion is a
tuple (L, i, fL, θL) with

• L a compact manifold,
• i : L#M a generic Lagrangian immersion,
• fL : L→ R a smooth function such that i∗θ = dfL,
• θL : L→ R a smooth function such that

e2iπθL = det2
Ω ◦ι

where ι : L→ G(TM) is the map x 7→ Im(dix).
Now, let L1 and L2 be two transverse exact, graded, immersions which intersect

transversally. Let x ∈ L1 ∩ L2 be an intersection point. Fix an adapted almost complex
structure J and denote by α1, . . . , αn the Kähler angles of the pair (TxL1, TxL2). The
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index of x as an element of CF (L1, L2) is the number

|x| = n+ θL2(x)− θL1(x)− α1 + . . .+ αn
π

.

Similarly, we can define the index of a self intersection point (p, q) ∈ R of Li for
i = 1, 2 :

|(p, q)| = n+ θL2(q)− θL1(p)− α1 + . . .+ αn
π

,

where α1, . . . , αn are the Kähler angles of the pair (dip(TpL), diq(TqL)) with respect to
J .
Remark 1.3.14. There is a choice of path λp,q such that the index Ind(p, q) (defined
in subsubsection 1.3.1) agrees with the index |(p, q)|. We refer to [Sei08, (11g)] for a
complete proof.
Lagrangian surgery: We describe the surgery of L1 and L2 at an intersection point
following the presentation of Biran and Cornea ([BC13, 6.1]).

For each intersection point y between L1 and L2, fix a Darboux chart

φy : B(0, ry) ⊂ Cn → (M,ω) (1.12)

such that
φy(0) = y, φy(Rn) ⊂ L1, φy(iRn) ⊂ L2

and whose image does not contain any other intersection point.
Now consider a smooth path

γ(t) := (a(t), b(t)) ∈ C, t ∈ R,

such that
• γ(t) = (t, 0) for t < −1,
• γ(t) = (0, t) for t > 1,
• a′(t) > 0 and b′(t) > 0 for t ∈ (−1, 1).

For ε > 0, the set

Hε :=
{

(x1γ(t), . . . , xnγ(t))
∣∣t ∈ R, (x1, . . . , xn) ∈ Sn−1

}
is a smooth Lagrangian submanifold of Cn diffeomorphic to R× Sn−1.

Let x ∈ L1 ∩ L2 be an intersection point. For ε > 0 small enough, there is a generic
immersion L1#x,εL2 obtained by removing the set φx(Rn ∪ iRn) and replacing it by
φx(Hε). This has domain the connected sum L1#L2 of L1 and L2 and turns out to be
exact. Moreover, if the index of x satisfies |x| = 1, the gradings of L1 and L2 canonically
induce a grading

θ : L1#L2 → R
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on L1#x,εL2 which satisfies

θ|L1\φx(B(0,rx)) = θL1

θ|L2\φx(B(0,rx)) = θL2

This is a result of Seidel, see [Sei00, Lemma 2.13]).
For the remainder of this section, we assume that the submaniolds L1 and L2 are

embedded and compact. Let x ∈ L1 ∪ L2 be an intersection point of degree 1.
We somewhat restrict the space of almost complex structures we consider. Recall

that Jstd is the standard complex structure on Cn and that we fixed Darboux charts φy
near each intersection point y ∈ L1 ∩ L2 (see 1.12).

We let Jφ(M,ω) be the set of adapted almost complex structures such that

∀y ∈ L1 ∩ L2, (φy)∗Jstd = J on φy(B(0, ry)).

In the proof of Corollary 1.1.4, we proved the following Lemma.
Lemma 1.3.15. We let L1 and L2 be two exact, graded and compact Lagrangian sub-
manifolds as in the above setting.

There is a second category subset

Jφ,reg(M,ω) ⊂ Jφ(M,ω) (1.13)

such that
(1) any non-constant J-holomorphic disk with corners and boundary on the immer-

sion L1 t L2 #M is either simple or multiply covered,
(2) any simple J-holomorphic disk with corners and boundary on the immersion

L1 t L2 # M is regular (meaning that the linearization of the Cauchy-Riemann
operator is surjective).

Surgery and count of holomorphic disks

We expect that we can apply our work to prove the following.
Theorem 1.3.16 (?). 7 We assume that L1 and L2 are two transverse graded Lagrangian
submanifolds as in the above setting. Let (εν)ν∈N be a sequence of positive real numbers
which converges to 0 : εν → 0. There is a second category subset of 1.13

Jφ,reg,2(M,ω) ⊂ Jφ,reg(M,ω) (1.14)

and a natural integer ν0 ∈ N such that the following holds.

7We use the symbol ? to indicate the results that are work in progress.
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Let ν > ν0, J ∈ Jφ,reg,2(M,ω) and y ∈ L1 ∩ L2 with |y| = 2. There is a bijection

M(y, J, L1#x,ενL2)→M(y, x, J, L1, L2)

between the set of J-holomorphic teardrops with boundary on L1#x,ενL2 and the set of
J-holomorphic strips between L1 and L2 from y to x.

Below, we list the main steps expected to lead to this result.

Surgery and holomorphic disks

The proof of theorem 1.3.16 relies on three results. The first is a result about the
multiplicity 8 of an isolated generic J-holomorphic strip at its corners.
Proposition 1.3.17. The Lagrangian submanifolds L1 and L2 are as in the above setting.
There is a second category subset of 1.13

Jφ,reg,3(M,L1, L2, ω) ⊂ Jφ,reg(M,ω)

such that if J ∈ Jφ,reg,3(M,L1, L2, ω), then every J-holomorphic strip of Fredholm index
1 has multiplicity 1 at its corners.

Sketch of the proof. Fix x and y such that |x| − |y| = 1. Consider the universal
moduli spaceM∗(L1, L2, x, y,J l

)
of pairs (u, J) with

• J a Cl almost complex structure in Jφ(M,ω),
• u a J-holomorphic strip between L1 and L2 from x to y.

The usual arguments (as in [MS12, Chapter 3]) show thatM∗(L1, L2, x, y,J l
)
ad-

mits the structure of a smooth separable Banach manifold.
Assume that (u, J) ∈M∗(L1, L2, x, y,J l

)
, then (see Proposition 1.2.10)9 the limits

evx,jet(u, J) := lim
s→−∞

e−
π
2
su(s, t),

and
evy,jet(u, J) := lim

s→+∞
e+π

2
su(s, t)

exist. This defines two smooth maps

evx,jet :M∗(x, y, L1, L2,J )→ Rn

and
evy,jet :M∗(x, y, L1, L2,J )→ Rn.

Notice that ev−1
x,jet(0) (resp. ev−1

y,jet(0) ) is the set of J-holomorphic strip with multiplicity
greater than 1 at x (resp. y).
8See Remark 1.2.11 for the definition of multiplicity.
9However, in this setting there is no real necessity to use [RS01]. Since the curves are holomorphic near
the double points, we can use the Schwarz reflection principle twice.
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A variation of the arguments of [MS12, 3.4] show that these are submersions. Hence,
the sets ev−1

x,jet(0) and ev−1
y,jet(0) are smooth submanifolds of codimension n.

Now, one can see from the Sard-Smale theorem and an argument due to Taubes
(see [MS12, 3.2] or [FHS95, Section 5]) that there is a generic subset J̃ ⊂ J , φ(M,ω)

satisfying the following. For each J ∈ J̃ , ev−1
x,jet(0)∩M∗(x, y, L1, L2, J) is a submanifold

of codimension n in M∗(x, y, L1, L2, J) which has dimension 1. It is therefore empty
(since the complex dimension satisfies n > 3).

The conclusion follows since any J-holomorphic strip is simple (cf Proposition 1.3.7).
�

In complex dimension greater than 3, the same conclusion holds for teardrops.
Proposition 1.3.18. Here, L1 and L2 are graded, exact and compact Lagrangian sub-
manifolds as in the above setting.

There is a second category subset of 1.13

Jφ,reg,4(M,L1, L2, ω) ⊂ Jφ,reg(M,L1, L2, ω)

such that the following holds.
Let J ∈ Jφ,reg,4(M,L1, L2, ω) and ν > 0 be a natural integer. Every J-holomorphic

teardrop of Fredholm index 2 and boundary on the immersion L1#x,ενL2 has multiplicity
1 at its corner.

Proof. Fix ν ∈ N, as in the proof of Proposition 1.3.17, there is a second category subset
J ν
φ,reg(M,ω) such that every J-holomorphic teardrop with boundary on L1#x,ενL2 has

multiplicity 1 at its corner.
Now the countable intersection

Jφ,reg,3(M,L1, L2, ω) :=
⋂
ν>0

J ν
φ,reg(M,ω)

is of second category and satisfies the conclusion of the theorem. �

Consider an α > 0, a complex structure

J ∈ Jφ,reg,3(M,L1, L2, ω) ∩ Jφ,reg,4(M,L1, L2, ω)

and an intersection point y ∈ L1 ∩ L2 with |y| = 2. We let

M(y, L1#εν ,xL2, J, α) ⊂M(y, L1#εν ,xL2, J)

be the set of elements of M(y, L1#εν ,xL2, J) represented by a u ∈ M̃(y, L1#εν ,xL2, J)

such that there is a strip w ∈ M̃(y, x, L1, L2, J) with

sup
z
dJ(u(z), w(z)) < α.
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Here, dJ is the distance induced by the metric gJ .
By the propositions above, there is a second category subset Jreg,5(M,ω,L1, L2) such

that for J ∈ Jreg,5(M,ω,L1, L2)

• Every J-holomorphic strip in M(y, x, L1, L2, J) for y ∈ L1 ∩ L2 with |y| = 2 is
regular, simple and has corners of multiplicity 1,
• every J-holomorphic teardrop in M(y, L1#ε,νL2, J) for ν > 0 is regular, simple
and has a corner of multiplicity 1.

Since the Lagrangians L1 and L2 are exact, Gromov compactness for J-holomorphic
strips and regularity imply that the spaceM(y, x, L1, L2, J) is compact.

Therefore, we can apply a result stated in [FOOO06, Theorem 5.11] to obtain the
following corollary.
Corollary 1.3.19 (?). Here, L1 and L2 are compact, exact, graded submanifolds as in
the above setting.

There is a second category subset Jφ,reg,5(M,L1, L2, ω) such that the following holds.
Let J ∈ Jφ,reg,5(M,ω,L1, L2). There exist α > 0 and a natural integer ν0 > 0 such

that for any ν > ν0 there is a bijection

M(y, L1#εν ,xL2, J, α)→M(y, x, L1, L2, J).

Gromov compactness

Last we need a version of Gromov compactness for J-holomorphic curves as the
surgery parameter εν goes to 0. We emphasize that it is not (to our knowledge) proved
in the literature and that it is the subject of future work.

A d-leafed tree is a planar tree T ⊂ R2 with a choice of vertex α called the root,
oriented so that the root has no incoming edge and with d leaves (beware that it is not
the definition of [Sei08, (9d)] ). For each vertex v of T , we denote by |v| its valency.
Definition 1.3.20. Let T be a d-leafed tree. A labeled domain consists of

(i) a d-leafed tree T ,
(ii) for each vertex v, an element rv ∈ R|v|,
(iii) for each vertex v, kv ∈ N cyclically ordered marked points at the boundary

z1, . . . , zkv ∈ ∂rv,
(iv) for each connected component C of ∂rv\{z1, . . . , zkv}, an element LC ∈ {L1, L2},

which satisfy the following conditions.
(1) If C1 and C2 are two adjacent connected components, then the labels LC1 and LC2

should be different,
(2) for every leaf v, kv > 1.

79



• • •

•

•

•

α

y

•

•

•

•
•

Figure 3 – A labeled domain and its underlying tree
Red corresponds to a label L1 and blue to L2

The dots are mapped to x

Remark 1.3.21. For each vertex v one can number the outgoing edges as counterclock-
wise (remember that T is embedded in R2). The number of an edge e going from v1 to
v2 will be denoted ne.

We now define the limit curves when the handle parameter goes to 0.
Definition 1.3.22. A broken strip from y to x modeled on the labeled domain T consists
of

(i) for each vertex v, |v| + 1 intersection points yv0 , . . . , yv|v| ∈ L1 ∩ L2 such that if e
is an edge from v1 to v2 then yv1

ne = yv2
0 ,

(ii) for each vertex v a J-holomorphic curve with corners uv : (rv, ∂rv)→ (M,L1tL2),
such that

(1) for each vertex v and connected component C of ∂rv\{z1, . . . , zkv}, we have

uv(C) ⊂ LC ,

(2) for each vertex v and i ∈ {1, . . . , kv}, we have v(zi) = x,
(3) for the root vertex α, uα converges to y on the 0-th strip-like end of rα,
(4) for each vertex v, the curve u converges to yvi on the i-th strip-like end of rv.
We expect that the following proposition is an adaptation of the neck-stretching

procedure (as it appears in [BEH+03] and [CM05]) for curves with boundary on a
Lagrangian manifold.
Proposition 1.3.23 (?). Recall that we fixed two transverse, compact, exact, graded
Lagrangian submanifolds L1 and L2 Fix an almost complex compatible structure J ∈
Jφ(M,ω).

Let (uν)ν∈N be a sequence of J-holomorphic teardrops such that

∀ν > 0, uν ∈M(y, L1#x,ενL2, J).

There is a subsequence (uνk)k>0 which Gromov converges to a broken strip v from y to x.
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Proof of Theorem 1.3.16 (?)

We now prove Theorem 1.3.16 assuming that Proposition 1.3.23 is true. For this fix
J ∈ Jφ,reg,5(M,ω).

Given the conclusion of Corollary 1.3.19, it only remains to check that there is ν0 such
that for all ν > ν0, any teardrop v ∈ M̃(y, J, L1#x,ενL2) is α close to a J-holomorphic
strip v ∈ M̃(y, x, J, L1, L2).

Assume by contradiction that there is a strictly increasing sequence (νk), and a se-
quence of teardrops uνk ∈ M̃(y, J, L1#x,ενk

L2) such that

∀v ∈ M̃(y, x, J, L1, L2), sup
z∈D

dJ(u(z), v(z)) > α.

By Proposition 1.3.23, there is a subsequence of (uνk) which converges in the sense
of Gromov to a broken strip w.

To conclude, it remains to see that v is an actual teardrop.
Lemma 1.3.24. In the above setting, let w = (uv)v∈T be a broken strip with underlying
tree T such that all uv are simple. Then the tree T consists of one vertex and w is a
strip from y to x.

Proof. The conclusion follows from a simple combinatorial argument which uses regu-
larity and simplicity of the underlying holomorphic curves.

First, notice that the index of x as an element of CF (L2, L1) is n−1 which is greater
than 1 since n > 3.

For v ∈ T different from the root, call yv the incoming limit point and x1, . . . xp the
outgoing limit points. Moreover, assume that there are k1,v marked points mapping to
x going from L1 to L2 and k2,v marked points mapping to x going from L2 to L1. Since
the curve uv is regular, we have

|yv| −
p∑
i=1

|xi| − k1,v − k2,v(n− 1) + k1,v + k2,v + |v| − 3 > 0,

so

|yv| −
p∑
i=1

|xi|+ |v| − 3 > 0.

Similarly, if v is the root, we get

|y| −
p∑
i=1

|xi| − k1,v − k2,v(n− 1) + k1,v + k2,v + |v|+ 1− 3 > 0,

so

|y| −
p∑
i=1

|xi|+ |v| − 2 > 0.
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Adding these equalities for v ∈ T , we obtain

|y|+
∑
v∈T

|v| − 3V (T ) + 1 > 0,

where V (T ) is the number of vertices of T . Now notice that
∑

v∈T |v| is twice the number
of edges of T and therefore equal to 2V (T )− 2. So

2 = |y| > 1 + V (T ).

Hence V (T ) = 1. Therefore we have a single curve w with one corner at y and the others
at x.

Now since y is an incoming point from L1 to L2, there are 2k − 1 other corners
mapping to x (with k an integer greater than 1). Among them, k are outgoing points
from L1 to L2 and k − 1 are outgoing points from L2 to L1. Since w is regular, we get

|y| − k − (n− 1)(k − 1) + 2k − 3 > 0,

so
|y| − (n− 2)k + n− 4 > 0,

hence (since |y| = 2)
n− 2 > (n− 2)k.

Since n− 2 > 1, we readily conclude that 1 > k hence k = 1. �

Lemma 1.3.25. In the above setting, let w = (uv)v∈T be a broken strip with underlying
tree T . There is a tree T1 and a broken strip w1 = (uv,1)v∈T with underlying tree T1 such
that the following assertions hold.

(1) For each v ∈ T1, the curve uv,1 is simple.
(2) There is an injective tree morphism f : T1 → T mapping the root of T1 to the

root of T satisfying the following. If v ∈ T1, the underlying simple curve of uf(v)

is uv,1.
(3) If V (T ) > 2, then V (T1) > 2.

Proof. We build the simple curve by induction.
Start with the root v0. The curve uv0 is multiply covered by the choice of almost

complex structure J . Let uv0,1 be the underlying simple curve : there is a branched cover
π such that uv0 = uv0,1 ◦ π. We associate the curve uv0,1 to the root of T1.

The domain of uv0,1 has one incoming strip-like end (the image of the incoming
strip-like end of rv0 by π) and mv ∈ N outgoing strip-like ends. Call ζ1, . . . , ζmv their
asymptotic points. For each ζi we put an outgoing edge eζi . Call vζi the outgoing end of
eζi .
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For each i ∈ {1, . . . ,mv}, choose a point ζ̃i ∈ rv0 such that π(ζ̃i) = ζi. Each ζ̃i is the
limit of an outgoing strip-like ends and corresponds to an edge in T with endpoint vζ̃i .
The curve uvζi is the simple curve underlying uvζ̃i .

If we repeat this process by induction, we see that the end-product is a broken strip
satisfying the hypotheses. �
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Chapitre 2

Groupes de cobordisme lagrangien

Ce chapitre reproduit la prépublication Lagrangian cobordism groups of higher genus
surfaces, [Per19].

Résumé. Nous étudions les groupes de cobordisme lagrangien de surfaces orientées
de genre plus grand ou égal à deux. Nous calculons le groupe de cobordisme lagrangien
immergé. On montre ensuite qu’une variante de ce groupe dont les relations sont données
par des cobordismes lagrangiens non-obstrués calcule le groupe de Grothendieck de la
catégorie dérivée de Fukaya. La démonstration repose sur un argument d’Abouzaid.

Abstract. We study Lagrangian cobordism groups of oriented surfaces of genus greater
than two. We compute the immersed oriented Lagrangian cobordism group of these
surfaces. We show that a variant of this group, with relations given by unobstructed im-
mersed Lagrangian cobordisms computes the Grothendieck group of the derived Fukaya
category. The proof relies on an argument of Abouzaid [Abo08].

2.1. Introduction

2.1.1. Immersed Lagrangians and cobordisms

In this paper, we consider a (Riemann) surface Sg of genus g > 1 equipped with an
area form ω.

We recall the definition of a Lagrangian cobordism following Biran-Cornea ([BC13]).
Definition 2.1.1. Let γ0, . . . , γN : S1 # Sg and γ̃0, . . . γ̃M : S1 # Sg be immersed
curves. Let F : V # C× Sg be a Lagrangian immersion.

We say that F is an immersed Lagrangian cobordism from γ1, . . . , γN to γ̃1, . . . γ̃M if



(i) there is ε > 0 such that outside [−ε, ε]× R, F is an embedding with image∐
i=1...N

(−∞,−ε]× γi ∪
∐

j=1...M

[ε,∞)× γ̃j,

(ii) the set F−1([−ε, ε]× R) is compact.
Such a cobordism will be denoted by V : (γ1, . . . , γN) (γ̃1, . . . , γ̃N).
Remark 2.1.2. (1) If V is oriented and its orientation agrees with the natural ori-

entations of (−∞,−ε]×γi and [ε,∞)× γ̃j, we say that V is an oriented immersed
Lagrangian cobordism.

(2) When the curves γi, γ̃i and the surface F are embedded, we will say that V is a
Lagrangian cobordism.

(3) The definition goes back to Arnold ([Arn80]). The reader should be aware that
the definition in [Arn80] is slightly different from ours although equivalent (see
Lemma 2.2.6).

Now, consider the set LImm of Lagrangian immersions from an arbitrary number of
copies of S1 to Sg. Define an equivalence relation ∼ on LImm by

γ1 ∼ γ2

if and only if there is an immersed Lagrangian cobordism from γ1 to γ2.
Here γ1 and γ2 are two elements of LImm.

Definition 2.1.3. The immersed Lagrangian cobordism group of Sg is the quotient

LImm/ ∼ .

We will denote it by Ωimm
cob (Sg)

The set Ωimm
cob (Sg) an abelian group whose sum is given by disjoint union. The neutral

element is the void set. The inverse of a generator γ : S1 → Sg is the curve γ−1 obtained
by reversing the orientation of γ.

The following Lemma shows that this group effectively detects the cobordism class
of a curve.
Lemma 2.1.4. Let γ1, . . . , γn : S1 # Sg be immersed curve in Sg. Their classes in
Ωimm

cob (Sg) satisfy
[γ1] + . . .+ [γn] = 0

if and only if there is an oriented immersed Lagrangian cobordism

V : (γ1, . . . , γn) ∅.

Due to Gromov’s h-principle for Lagrangian immersions, topological invariants de-
termine the Lagrangian cobordism group of the surface Sg.
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Theorem 2.1.5. We denote by χ(Sg) the Euler characteristic of Sg. There is an iso-
morphism

Ωimm
cob (Sg)→ H1(Sg,Z)⊕ Z/χ(Sg)Z.

Here, the map Ωimm
cob (Sg) → H1(Sg,Z) is the homology class. Meanwhile, the map

Ωimm
cob (Sg) → Z/χ(Sg) is a variant of a topological index defined by Chillingworth (see

[Chi72a], see also [Abo08, Appendix A]). Along the way, we give an alternate definition
of this index in line with the usual definition of the Maslov index in symplectic topology.
Remark 2.1.6. We can find many computations of Lagrangian cobordism groups in the
literature. In [Arn80], Arnold computed the Lagrangian cobordism groups of R2 and of
the cotangent bundle T ∗S1.

Eliashberg showed in [Eli84] that some of these groups are isomorphic to fundamental
groups of some Thom spaces. Audin used these results to compute the generators of some
other cobordism groups ([Aud85] and [Aud87]).

2.1.2. Floer theory and cobordism groups

Let L be a Lagrangian submanifold of a symplectic manifold (M,ω). The Maslov
index induces a morphism

µL : π2(M,L)→ Z.

On the other hand, symplectic area induces a morphism

ω : π2(M,L)→ R.

The lagrangian submanifold L is monotone if there is λ > 0 such that

ωL = λµL.

In this case, there is a well-defined Fukaya category Fuk(M,ω) whose objects are
monotone Lagrangian submanifolds satisfying a topological condition (see [BC14] or
[She16]). The A∞-category Fuk(M,ω) has a derived category DFuk(M,ω) (defined
in [Sei08]). Note that this category is not the split-completion of DFuk(M,ω). The
category DFuk(M,ω) is triangulated, so one can speak of its Grothendieck group

K0(DFuk(M,ω)).

Recall that this is the abelian group generated by the objects of DFuk(M,ω) with rela-
tions given by

Y = Z +X

whenever there is an exact triangle

X → Y → Z → X[1].
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Now, Biran and Cornea proved that there is a natural surjective group morphism ([BC14,
Corollary 1.2.1])

ΘBC : Ωemb
cob (M,ω)� K0(DFuk(M,ω)). (2.1)

There are several results on this map. In [Hau15], Haug shows that the map 2.1 is
an isomorphism when (M,ω) is a torus of dimension 2 and the Lagrangians are equipped
with local systems.

In [Hen17], Hensel gives algebraic conditions under which the map 2.1 is an isomor-
phism. These are, in particular, verified for the torus.

More recently, in [SS18b], Sheridan and Smith use Mirror symmetry to prove the
existence of certain Maslov 0 Lagrangian tori in K3 surfaces. In [SS18a], they study
Lagrangian cobordism group in Lagrangian torus fibrations over tropical affine manifolds.

The main Theorem of our paper is a generalization of Haug’s result to surfaces of
genus g > 2. For this, we use a version of the cobordism group which takes a broader
class of cobordisms into account.
Theorem 2.1.7. There is an isomorphism

Ωimm,unob
cob (Sg)→ R⊕H1(Sg,Z)⊕ Z/χ(Sg)Z.

In [Abo08], Abouzaid showed that the abelian group K0(DFuk(Sg)) is isomorphic
to R⊕H1(Sg,Z)⊕ Z/χ(Sg)Z as well.

Therefore, the two groups are isomorphic. We show a slight improvement of this: a
version of the map 2.1 (see Corollary 2.4.4) is an isomorphism as well.
Theorem 2.1.8. Assume that the genus g of Sg is greater or equal than 2. There is a
natural isomorphism

ΘBC : Ωimm,unob
cob (Sg)

∼−→ K0(DFuk(Sg)).

Unobstructed Lagrangian cobordisms give the relations of Ωimm,unob
cob (Sg). These are

immersed Lagrangian cobordism which satisfy a technical condition. We postpone the
actual definition to section 2.4.

We shall consider a variant of the Fukaya category whose objects are defined below.
Definition 2.1.9. An immersion γ : S1 # Sg is unobstructed if it satisfies the following
assumptions.

(i) It has no triple points and all its double points are transverse.
(ii) Let S̃g be the universal cover of Sg, the curve γ lifts to a curve γ̃ : R → S̃g. We

assume that γ̃ is properly embedded.
Remark 2.1.10. When (i) holds, we say that γ is generic.

At this point, there is only one thing the reader needs to keep in mind. Unobstructed
objects do not bound teardrops which are polygons with a unique corner (see figure 1).
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Figure 1 – An obstructed immersed curve and a teardrop (shaded)

It is indeed well-known that these give an obstruction to the definition of Floer theory
of immersed objects. See the work of Akaho and Joyce ([AJ10]), Abouzaid ([Abo08]),
Alston and Bao ([AB18]).

2.1.3. Relation with [Hau15]

In [Hau15], Haug actually showed that there is a (split) exact sequence

0→ R/Z i−→ Ωemb
cob (M,ω)→ H1(T 2,Z)→ 0. (2.2)

The proof requires Mirror symmetry. More precisely, using geometric arguments, Haug
proves that the kernel of Ωemb

cob (M,ω) → H1(T 2,Z) is the image of i. On the other
hand, Mirror Symmetry for the torus yields an equivalence DFuk(T 2) ' Db(X) between
the derived Fukaya category of the torus, whose objects are curves equipped with local
systems, and the bounded derived category of Coherent sheaves of an elliptic curve X
over the Novikov field Λ. Haug uses this to show that the application i is injective.

In our paper, we show that there is an analog of the exact sequence 2.2 for the group
Ωimm,unob
cob (Sg) (see Theorem 2.5.1 for the precise statement). However, the main difference

is as follows. We do not use Mirror symmetry for the proof. Moreover, we do not take
local systems into account. Therefore, our main result is purely geometric.

This is in contrast with all the results above which use ideas coming from mirror
symmetry to study Lagrangian cobordism groups.

2.1.4. Outline of the paper

The proofs of both Theorems 2.1.5 and 2.5.1 use the action of the Mapping Class
Group of Sg to find generators of Ωimm

cob (Sg) and Ωimm,unob
cob (Sg). This idea is due to

Abouzaid [Abo08].
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In the first section, we study the immersed Lagrangian cobordism group Ωimm
cob (Sg)

and give the proof of Theorem 2.1.5. Most of the results and definitions are not new
(some even date back to Arnold). However, we tried to give details which we did not
find in the literature.

In the second section, we define the Fukaya category of unobstructed curves following
Seidel’s book [Sei08] and Alston and Bao’s paper [AB18]. We also give a combinatorial
description of this category.

In the third section, we give the definition of an unobstructed Lagrangian cobordism.
We explain why Biran-Cornea’s map 2.1 extends to this setting.

In the fourth section, we prove Theorem 2.1.8 and 2.1.7. To do this, we describe
the action of the Mapping Class Group on Ωimm,unob

cob (Sg) using unobstructed Lagrangian
cobordisms.

2.1.5. Acknowledgements

This work is part of my doctoral thesis at Université de Montréal under the direc-
tion of Octav Cornea. I wish to thank him for proposing me this project and his very
thoughtful guidance over these years!

I also wish to thank Jordan Payette for explaining the proof of Lemma 2.5.3 to me
as well as Jean-Philippe Chassé for reading the text and pointing out some mistakes.

At last, many thanks to Alexandru Oancea for his careful relecture of the text and
his remarks about the exposition.

2.2. Computation of the immersed cobordism group

In this section, we give the proof of Theorem 2.1.5. In the first subsection, we show
that embedded curves generate Ωimm

cob (Sg). In the second subsection, we define a map

Ωimm
cob (Sg)→ H1(Sg,Z)⊕ Z/χ(Sg)Z.

We check that it is well-defined and surjective. At last, we modify a geometric argument
of Abouzaid ([Abo08]) to show that this map is injective.

2.2.1. Properties of the immersed cobordism group

Lagrangian cobordism and isotopy

We will use the following Lemma.
Lemma 2.2.1. Assume that γ− : S1 # Sg and γ+ : S1 # Sg are two isotopic immersed
curves, then there is an immersed Lagrangian cobordism from γ− to γ+.
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Proof. Choose an isotopy (γs(t))s∈R such that{
γs(t) = γ−(t) for s < 0
γs(t) = γ+(t) for s > 1

Now, consider the following immersion

f : R× S1 7→ C× Sg
(s, t) 7→ (s, γs(t)).

This map is covered by an isotropic bundle map

F : TR× TS1 → TC× TSg

defined by

F (∂s) = (1, 0), F (∂t) =

(
0,
dγs(t)

dt

)
.

Moreover, since H2(R× S1,R) = 0, we have f ∗(dx ∧ dy + ω) = 0 in H2(R× S1,R).
We can now apply [EM02, 16.3.2] to find an immersion f̃ : S1 ×R→ C× Sg whose

ends coincide with f . The map f̃ is the relevant Lagrangian cobordism. �

Resolution of double points

We will use a variant of the Weinstein neighborhood Theorem for Lagrangian immer-
sions constantly throughout this section.

Recall that there is a canonical identification between the fiber bundle π : T ∗S1 → S1

and the product bundle S1×R→ S1. We denote by T ∗ε S1 the set {(q, p) ∈ T ∗S1||p| < ε}.
Lemma 2.2.2. Let γ : S1 → Sg be an immersed curve. There are ε > 0 and a local
embedding

ψ : T ∗ε S
1 → Sg

such that
• ψ restricted to the zero section is equal to γ,
• ψ∗ω is the standard symplectic form ωstd on T ∗S1.

The proof is a simple exercise.
Lemma 2.2.3. Let γ : S1 # Sg be an immersed curve. Then γ is Lagrangian cobordant
to a generic1 immersed curve γ̃ : S1 # Sg.
Remark 2.2.4. The proof uses a variant of the Lagrangian suspension ([ALP94, 2.1.2]).
If (φtH)t∈[0,1] is a Hamiltonian isotopy of Sg and γ an immersed curve, then the immersion

(t, x) ∈ [0, 1]× S1 7→
(
t,Ht ◦ φtH ◦ γ(x), φtH ◦ γ(x)

)
1See 2.1.10 for the definition
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is a Lagrangian cobordism between γ et φ1
H(γ). Notice that this cobordism is embedded

if γ is.

Proof. We call ψ the local embedding given by Lemma 2.2.2. We let x ∈ S1. Choose
a disk neighborhood Ux ⊂ S1 containing x such that ψ|π−1(Ux) is an embedding which we
denote by Φ. Moreover we let U = γ−1(ψ(Ux))\Ux

Let η > 0. We claim that there is a function fx : S1 → R such that the following
holds.

• The derivatives of fx satisfy |f ′x| < η and |f ′′x | < η.
• Denote by γx the immersion t 7→ ψ(t,−f ′x(t)). If γx(t1) = γx(t2) with t1 ∈ Ux,
then γ′x(t1) and γ′x(t2) are transverse.

The proof is an application of Sard’s Theorem. Consider the map F = πR ◦Φ−1 ◦γ|U .
For every α > 0, there is a regular value z of F satisfying |z| < α. Now we let fx
be a smooth function such that −f ′ is constant equal to a regular value over Ux and
|f ′x|, |f ′′x | < η. The reader may easily check that this is the desired function.

The curves γ and γx are cobordant. Indeed, choose a smooth cutoff function β : R→
R such that β(t) = 0 for t 6 0 and β(t) = 1 for t > 1. The relevant cobordism is the
image of the map

R× S1 → C× Sg
(t, x) 7→ (t, β(t)f(x), ψ(x,−β(t)f ′(x)))

.

Now choose x1, . . . , xN such that Ux1 , . . . , UxN is a covering of S1. We use the con-
struction above iteratively to get an immersed curve which is cobordant to γ and with
transverse double points. �

We can solve any double point of a generic immersion through a cobordism ([Arn80,
page 9], see also [ALP94, 1.4]). For the convenience of the reader, we will summarize
the proof of this fact and fill in some details.

First, we recall the (standard) procedure for solving the double point of a generic
immersion. This is a particular instance of the Lagrangian surgery (see [LS91] and
[Pol91]). Let γ : S1 # Sg be a generic immersed curve and x = γ(p) = γ(q) a double
point with p 6= q ∈ S1. There are

• an open neighborhood U of x,
• a real number r > 0,
• a symplectomorphism φ : U → B(0, r) ⊂ C

such that φ ◦ γ parameterizes the real axis near p and parameterizes the imaginary axis
near q.

Pick a smooth path c : R→ C such that
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(1) for t 6 −1, c(t) = t,
(2) for t > 1, c(t) = it,
(3) the derivatives x′ and y′ satisfy x′ > 0 and y′ > 0,
(4) for all t ∈ R, (x(−t), y(−t)) = (−y(t),−x(t)).
The surgery of γ at the point (p, q) with parameter ε > 0 is the curve obtained by

replacing the image of γ by the images of the curves εc and −εc in the chart φ. We
denote it by γ(p,q),φ,ε. Note that this curve depends on the ordered pair (p, q).

Notice in particular that all surgeries at a given double point are isotopic to one
another, hence Lagrangian cobordant by Lemma 2.2.3.

We shall prove the following Proposition.
Proposition 2.2.5. Let γ : S1 # Sg be a generic immersed curve and x = γ(p) = γ(q)

a double point with p 6= q ∈ S1.
There are a chart φ and a real number ε > 0 such that γ is cobordant to γ(p,q),φ,ε.

Proof. First, we need the following.
Lemma 2.2.6. Let Σ a compact surface with boundary and let

F : (Σ, ∂Σ)# ([−1, 1]× R× Sg, ∂[−1, 1]× R× Sg)

be a Lagrangian immersion transverse to ∂[−1, 1]× R× C along ∂Σ.
Then, the projection of F|∂Σ to Sg is the union of two immersions γ− and γ+ lying

over {−1} × R× Sg and {1} × R× Sg respectively.
There is an immersed Lagrangian cobordism from γ− to γ+.

Remark 2.2.7. Such immersions are what Arnold called Lagrangian cobordisms in his
original paper([Arn80]). Therefore, we will call these objects Lagrangian cobordisms in
Arnold’s sense.

Proof of Lemma 2.2.6. Denote by ∂+Σ the union of connected components of ∂Σ

which projects to {1} × R in the C factor. We identify ∂+Σ with a disjoint union of
copies of S1 : ∂+Σ = ti=1...NS

1. On ∂+Σ, F is of the form t 7→ (1, f(t), γ+(t)) with
f : ∂+Σ→ R a smooth function.

By Lemma 2.2.2, we can extend γ+ to a local symplectomorphism

ψ :
∐

i=1...N

S1 × (−ε, ε)→ Sg.

We choose a smooth function f̃ with

f̃ :
∐

i=1...N S
1 × (−ε, ε) → Sg

(s, t) 7→

{
0 if |t| > 2ε

3
,

f(s, t)if |t| < ε
3

.
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Notice that its hamiltonian flow
(
φt
f̃

)
t∈[0,1] satisfies φtf̃ (S

1 × (−ε, ε)) = S1 × (−ε, ε).
We define a Lagrangian cobordism in Arnold sense as follows

G : [0, 1]× S1 → C× Sg
(t, z) →

(
t, ψ ◦ φt

t̃f
(γ+(z))

) .

Now, we consider the union of the maps F and G + (1, 0). A Lagrangian smoothing of
the resulting cobordism is the desired Lagrangian cobordism. �

We build a local model for the resolution of the double point. The quartic

Σ =
{

(t, x, y) ∈ [−1, 1]× R2
∣∣y2 − x2 + t = 0

}
.

is the set of critical points of the generating families

ft,x : R → R
y 7→ y3

3
− yx2 + ty

.

We rotate the Lagrangian immersion associated to this by an angle of π
4
to obtain

F : Σ → C× C
(t, x, y) 7→

(
t, y, x+2xy√

2
, x−2xy√

2

) .

Notice also that the map F a Lagrangian cobordism in Arnold sense between a double
point and its resolution.

We now modify F so that it is equal to R × R t R × iR outside a neighborhood of
R× {0}.

The set Im(F )\([−1, 1]×B(0, 1)) is an embedded manifold with four connected com-
ponents. Two of them are contained in the quadrant

[−1, 1]×
{
eiθ
∣∣∣θ ∈ [−π

4
,
π

4
] mod π

}
.

We denote them by L1. Two of them are contained in the quadrant

[−1, 1]×
{
eiθ
∣∣∣θ ∈ [−π

4
,
π

4
] mod π

}
.

We denote them by L2.
Notice that the linear projection πR : [−1, 1]× C→ R× R which maps (t, s, u, v) to

(t, u) restricts to a diffeomorphism from L1 to the band [−1, 1]× (R\[−1, 1]). From this,
we deduce that L1 is of the form

{(t, f(x, t), x, g(x, t))|(t, x) ∈ [−1, 1]× (R\[−1, 1])}.
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Since L1 is Lagrangian, the form fdt + gdx is closed. Furthermore, the set [−1, 1] ×
(R\[−1, 1]) is homotopy equivalent to two points. Hence, there is a smooth function h
such that f = ∂th and g = ∂th.

Now, choose a bump function β : [−1, 1]× (R\[−1, 1])→ R such that β(t, x) = 1 on
[−1, 1] × [−5

4
, 5

4
] and β(t, x) = 0 outside [−1, 1] × [−2, 2]. Define L̃1 to be the following

embedded Lagrangian

L̃1 := {(t, ∂t(βh), x, ∂x(βh))|(t, x) ∈ [−1, 1]× (R\[−1, 1])}.

We define L̃2 in the same manner. The projection πiR : [−1, 1] × C → R × R which
maps (t, s, u, v) to (t, v) restricts to a diffeomorphism L2 → [−1, 1] × (R\[−1, 1]). We
deduce that L2 is of the form

{(t, ∂th, ∂yh, y )|(t, y) ∈ [−1, 1]× (R\[−1, 1])}.

and we put

L̃2 := {(t, ∂t(βh), ∂y(βh), y)|(t, y) ∈ [−1, 1]× (R\[−1, 1])}.

Now, the map F restricted to the set Σ∩ [−1, 1]3 and the two embedded submanifolds
L̃1, L̃2 yield an immersion

H : Σ→ C× C

equal to [−1, 1]× R ∪ [−1, 1]× iR outside Σ ∩ [−1, 1]3.
Consider the immersion i := [−1, 1]×γ. Recall that we chose a chart φ : U → B(0, r)

around x. In the chart Id×φ, the immersion i is equal to [−1, 1]×R ∪ [−1, 1]× iR. We
replace this by εH for ε small enough and smooth the resulting immersion. The result is
a Lagrangian cobordism in Arnold sense (see Remark 2.2.7) between γ and its surgery
at x. By Lemma 2.2.6, we obtain that γ and its surgery are cobordant. �

All of this allows us to deduce the following result due to Arnold ([Arn80]).
Proposition 2.2.8. The classes of Lagrangian embeddings generate the immersed La-
grangian cobordism group Ωimm

cob (Sg).

Proof. Let γ be a Lagrangian immersion. By Lemma 2.2.3, γ is Lagrangian cobordant
to a generic curve γ̃. Repeated applications of Lemma 2.2.5 show that γ̃ is Lagrangian
cobordant to an embedding. �

Resolution of intersection points

Let γ1 : S1 → Sg and γ2 : S1 → Sg be two transverse generic immersed curves. Let
x = γ1(p) = γ2(q) be an intersection point of γ1 and γ2. We can perform the Lagrangian
surgery of γ1 and γ2 at x (as defined in [Pol91] and [LS91]) to obtain a curve γ1#xγ2.
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C2

C1

C̃1

C̃2

C3

i

Figure 2 – The doubled pair of pants S and the projection of the
immersions i+ (blue), i− (red) and j (yellow)

It is an observation of Biran and Cornea that in the embedded case, the curves γ1

and γ2 are cobordant to their surgery γ1#x,εγ2 ([BC13, Lemma 6.1.1] ). We explain how
to adapt their argument to the case of oriented immersed curves.

We say that x is of degree 1 ∈ Z/2Z if the oriented basis (γ′1(p), γ′2(q)) is positive
with respect to the orientation of TxSg and that the degree is 0 otherwise.
Proposition 2.2.9. In the above setting, assume that the intersection point x is of degree
1. Then, there is an immersed oriented Lagrangian cobordism

V : (γ1, γ2) γ1#x,εγ2.

Proof. First, we introduce some notations. We choose a Darboux chart φ : U 3
x → B(0, r) (with 0 < r < 1

2
) such that φ ◦ γ1 parameterizes R ∩ B(0, r) from left

to right and such that φ ◦ γ2 parameterizes iR ∩ B(0, r) from bottom to top. We let
ψ : B(0, r)× Sg → B(0, r)×B(0, r) be the Darboux chart given by Id×φ.

Moreover, let α : R→ C be the path given by α(t) = t and β = (x, y) : R→ C be a
smooth path satisfying the following conditions

• β(t) = t+ i for t < −1,
• β(t) = t− i for t > 1,
• β(t) = −it for t ∈ (−r, r),
• x′(t) > 0 and y′(t) 6 0 for all t.

We also define P to be a smooth oriented pair of pants with boundary components
labeled by C1, C2 and C3 (see Figure 2).

We give the handle that is used to resolve the intersection point x. Let c : R→ C be
a path such as in subsection 2.2.1. For ε > 0, put

H+
ε =

{
εc(t)z

∣∣t ∈ R, z = (x, y) ∈ S1,<(c(t)x) 6 0
}
.
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Define an new immersion as follows. Consider the immersion given by (α|R−×γ1)
∐

(β|R−×
γ2). Remove its intersection with B(0, r)× U and replace it with ψ−1(H+

ε ). This yields
an oriented Lagrangian immersion i− : P → C × Sg such that i− coincides with α × γ1

on a neighborhood of C1, i−1 coincides with β × γ2 on a neighborhood of C2 and i− is
the immersion {0} × γ1#x,εγ2 over C3. (The immersion i− is oriented because of the
assumption on the degree of x). Moreover, the outward pointing direction to C3 maps
through di− to a vector pointing into fourth quadrant.

Notice that the double points of the immersion i are of three types,
• those given by the cartesian product of α|R− and the double points of γ1,
• those given by the cartesian product of β|R− and the double points of γ2,
• the intersection points between γ1 and γ2 different from x at the point 0.

We now extend this immersion so that it becomes an actual Lagrangian cobordism.
We explain this following the procedure of [BC13].

We consider the genus 0 surface with four boundary components S obtained by
the gluing of two copies of P along the boundary C3 and call its two new boundary
components C̃1, C̃2 (see Figure 2). Moreover, we let i+ be the immersion P → C × Sg
given by the composition of i− with the reflexion (z, x) ∈ C × Sg 7→ (−z, x). Their
union yields a Lagrangian immersion i : S → C × Sg which is a Lagrangian cobordism
(γ1, γ2) (γ2, γ1). We extend this to a local embedding ι : T ∗ε S → C× Sg such that its
restriction to the zero section coincides with i and the pullback of the symplectic form
coincides with standard one.

For α > 0 small enough, the immersion j : (−α, α)× S1 → C× Sg given by j(s, t) =

(s(1− i), γ1#x,εγ2(t)) lifts to a Lagrangian embedding j̃ : (−α, α)× S1 → T ∗ε S through
ι. This is a consequence of the homotopy lift Theorem for covers. Indeed, j coincides
with {0} × γ1#γ2 on {0} × S1.

Reducing α if necessary, we can assume that j̃ is the graph of a closed one-form
λ (because the tangent space of j̃ at a point (0, x) is transversal to the fiber). Since
(−α, α)× S1 is homotopy equivalent to {0} × S1 and λ|{0}×S1 is zero, there is a smooth
function F : (−α, α) × S1 → R such that λ = dF and F|{0}×S1 = 0. Let β : (−α, α) be
a smooth function such that β(t) = 0 for t < 0, β(t) = 1 for t > α

2
and β′(t) > 0. We

replace the graph of λ by the graph of d(βF ). Composing with ι, we get an immersion
of the pair of pants with coincides with i and with j at its ends. �

We give a precise description of the double points of the cobordism (γ1, γ2) γ1#xγ2.
In order to do this, we first describe some relevant charts near the double points of i+ti−.
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In what follows, we identify the restriction of i+ t i− to C (see Figure 2) with the
immersion {0}×(γ1#xγ2). We let ε be a positive real smaller than 2

3
that we may reduce

if necessary.
Chart near a self-intersection point of γ1. Let y be a self-intersection point of γ1.
Call s 6= t ∈ C its pre-images by {0} × (γ1#xγ2).

We choose a Darboux chart φ1,y : U1,y → B(0, r1,y) ⊂ C near y such that φ1,y(γ1)

parameterizes the real line R (resp. iR) near s (resp. near t).
We can consider the following maps,

ψs : (x, y, a, b) ∈ (−ε, ε)4 7→ (x, y, a, b) ∈ C× Ui,y, (2.3)

ψt : (x, y, a, b) ∈ (−ε, ε)4 7→ (x, y,−b, a) ∈ C× Ui,y, (2.4)

which is expressed in the chart Id×φ1,y. These are Darboux embedding (the domain is
equipped with the symplectic form dx ∧ dy + da ∧ db).

Since i+t i− coincides with R×R near s, ψs restricted to (−ε, ε)×{0}×(−ε, ε)×{0}
yields coordinates of S near s. So the map ψs is actually an embedding of a neighborhood
of s in T ∗ε S.

Similarly, the map ψt is an embedding of a neighborhood of t in T ∗ε S.
Chart near a self-intersection point of γ2. We let y be a self-intersection point
of γ2 and call s 6= t its pre-images by {0} × γ1#xγ2. We choose a Darboux chart
φ2,y : U2,y → B(0, r2,y) ⊂ C such that φ2,y(γ2) parameterizes the line R (resp. iR) near s
(resp. near t). We consider the following maps,

ψs : (x, y, a, b) ∈ (−ε, ε)4 7→ (−y, x, a, b) ∈ C× Ui,y, (2.5)

ψt : (x, y, a, b) ∈ (−ε, ε)4 7→ (−y, x,−b, a) ∈ C× Ui,y, (2.6)

which is read in the chart Id×φ1,y. These are Darboux embedding (the domain is
equipped with the symplectic form dx ∧ dy + da ∧ db).

Since i+t i− coincides with R×R near s, ψs restricted to (−ε, ε)×{0}×(−ε, ε)×{0}
yields coordinates of S near s. So the map ψs is actually an embedding of a neighborhood
of s in T ∗ε S.

Similarly, the map ψt is an embedding of a neighborhood of t in T ∗ε S.
Chart near an intersection point of γ1 and γ2. We let y 6= x be an intersection
point of γ1 and γ2 different from the surgered point above. We choose a Darboux chart
φy : Uy → B(0, ry) ⊂ C such that φy(γ1) ⊂ R and φy(γ2) ⊂ iR.
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We consider the following maps

ψs : (x, y, a, b) ∈ (−ε, ε)4 7→ (x, y, a, b) ∈ C× Uy (2.7)

ψt : (x, y, a, b) ∈ (−ε, ε)4 7→ (−y, x,−b, a) ∈ C× Uy, (2.8)

which is read in the chart φy. These are Darboux embedding when the domain is equipped
with the symplectic form dx ∧ dy + da ∧ db.

Call s ∈ C (resp. t ∈ C) the preimage of (0, y) by i+ t i− such that a small
neighborhood of s (resp. t) is mapped to R × R (resp. iR × iR). The map ψs (resp.
ψt) yields local coordinates of S near (resp. t). Hence, the map ψs (resp. ψt) is a local
embedding of a neighborhood of s (resp. t) in T ∗ε S.

An easy Moser argument shows that the maps above extends to a local Weinstein
embedding Ψ : V ⊂ T ∗ε → C× Sg. Here V is a neighborhood of C in T ∗ε .

Recall that near {0} × γ1#xγ2 the immersion {y = −x} × γ1#xγ2 is the image of
Gr(dF ) by Ψ.

• Choose a self-intersection point y = γ1(s) = γ1(t) of γ1. We see that, in the coor-
dinates (x, a) near s, the function F is given by (x, a) 7→ −x2

2
. In the coordinates

(x, a) near t, F is given by (x, a) 7→ −x2

2

• Similarly, consider a self-intersection point y = γ2(s) = γ2(t) of γ2. In the
coordinates (x, a) near s, the function F is given by (x, a) 7→ x2

2
. Near t, F

coincides with (x, a) 7→ x2

2
.

• Lastly, choose an intersection point y = γ1(s) = γ2(s) between γ1 and γ2. In
the coordinates (x, a) near s, the function F is given by (x, a) 7→ −x2

2
. In the

coordinates (x, a) near t, the function F is given by (x, a) 7→ x2

2
.

We choose the function cutoff function β so that it depends only on x in each of the
coordinate patches above. Moreover β satisfies the following hypotheses with 1

2
> α > 0

and 0 < η < α.
• β = 0 for t 6 α

2
,

• β = 1 for t > α
2
,

• β′ > 0 and β′ 6 1
ε−α+η

.
In particular this implies, for x ∈ (−ε, ε), xβ + x2

2
β′ 6 3ε

2
< 1.

We deduce the following.
• Near y = γ1(s) = γ1(t), the immersion is given by the two embeddings

(x, a) 7→
(
x,−xβ(x)− x2

2
β′(x), a, 0

)
(x, a) 7→

(
x,−xβ(x)− x2

2
β′(x), 0, a

)
.
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Figure 3 – The projections of the surgery cobordism near the double points.

There is a segment of double point which projects to the line x 7→ (x,−xβ −
x2

2
β′)(see Figure 3).

• Similarly, near y = γ2(s) = γ2(t), the immersion is given by the two embeddings

(x, a) 7→
(
−xβ(x)− x2

2
β′(x), x, a, 0

)
(x, a) 7→

(
−xβ(x)− x2

2
β′(x), x, 0, a

)
.

There is a segment of double points which projects to the line x 7→ (−xβ(x) −
x2

2
β′(x), x) (see Figure 3).

• Near y = γ1(s) = γ2(t), the immersion is given by the two embeddings

(x, a) 7→
(
x,−xβ(x)− x2

2
β′(x), a, 0

)
(x, a) 7→

(
−xβ(x)− x2

2
β′(x), x, a, 0

)
.

There is a double point at (0, 0) and a segment of double points which projects
to the line y = −x (see Figure 3).

In what follows, we will call DP1 (resp. DP2) the set of double points coming from
the double points of γ1 (resp.γ2). We will call DP the set of double points along the line
y = −x and DP0 the set of double points which project to (0, 0) ∈ C.
Lemma 2.2.10. There is a family (iλ)λ∈[0,1] of immersions S # C× Sg such that

(i) we have i1 = i, i0 is the piecewise smooth immersion S → Sg given by i+ t j,
(ii) for any compact set K ⊂ S\C3, the map iλ is constant for λ small enough,
(iii) iλ converges uniformly to i0 as λ goes to 0.
(iv) The maps iλ are constant in a neighborhood of DP1, DP2 and DP .

Proof. We consider the family of cutoff functions βλ(x) = β(x
λ
). The family (iλ)λ∈[0,1]

is obtained by replacing Φ(Gr(d(βF ))) by Φ(Gr(d(βλF ))) for λ ∈ [0, 1]. �
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2.2.2. Computation of the cobordism group

The applications π and µ

Let γ1, . . . , γN be immersed curves. We assume that there is an oriented immersed
Lagrangian cobordism V : (γ1, . . . , γn)  ∅. In this case, we say that γ1, . . . , γN are
immersed Lagrangian cobordant.

It is easy to see that the classes of theses curves in H1(Sg,Z) must satisfy
N∑
i=1

[γi] = 0.

Therefore, the map which associates to an immersed curve γ its homology class [γ]

induces a well-defined group morphism

π : Ωimm
cob (Sg)→ H1(Sg,Z).

Note that a variant of this map was used by Abouzaid in the case of the Grothendieck
group of the derived category (see [Abo08]).

As stated in the introduction, there is a morphism

µ : Ωimm
cob (Sg)→ Z/χ(Sg)Z,

which is a variant of the Maslov index. We define it following Seidel’s paper ([Sei00,
2.b.]). An alternate definition as a winding number appears in a paper of Chilling-
worth ([Chi72a]). Moreover, a variant of this morphism for the Grothendieck group
K0(DFuk(Sg) was considered by Abouzaid in [Abo08].

We fix a complex structure j on Sg, so that TSg is a complex line bundle. Choose
another line bundle Z → Sg of degree 1 over Sg and a complex isomorphism

Φ : TSg−̃→Z⊗χ(Sg). (2.9)

Denote by TSg\{0} the tangent bundle of Sg minus the zero section. We let (γ, γ̃) : S1 →
TSg\{0} be a nowhere vanishing curve in TSg. We also let v : S1 → Z be a nowhere
vanishing section of the fiber bundle γ∗Z. There is a function λv : S1 → C∗ such that
for all t ∈ S1

γ̃(t) = λv(t)Φ(v(t))⊗χ(Sg).

If w is another nowhere vanishing section of γ∗Z, denote by λw : S1 → C∗ the function
such that

∀t ∈ S1, γ̃(t) = λw(t)Φ(w(t))⊗χ(Sg).
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There is a function µ : S1 → C∗ such that

∀t ∈ S1, v(t) = µ(t)w(t).

So
∀t ∈ S1, γ̃(t) = λv(t)µ(t)χ(Sg)φ(w(t))⊗χ(Sg).

Therefore, we have deg(λv) = deg(λw) modulo χ(Sg). So it makes sense to define the
Maslov index µΦ(γ̃) ∈ Z/χ(Sg) by

µΦ(γ̃) = deg(λv) mod χ(Sg).

Let (γ1, γ̃1) : S1 → TSg\{0} be another nowhere vanishing curve. We assume that γ̃ and
γ̃1 are homotopic. Then, it is easy to check that

µΦ(γ̃) = µΦ(γ̃1).

We conclude that there is a well defined morphism

µΦ ∈ Hom(π1(TSg\{0}),Z/χ(Sg)Z) = H1(TSg\{0},Z/χ(Sg)Z).

An immersed curve γ : S1 → Sg has a canonical lift γ̃ to TSg\{0} given by

γ̃ : S1 → TSg\{0}
t 7→ (γ(t), γ′(t))

.

We put,
µΦ(γ) := µΦ([γ̃]) ∈ Z/χ(Sg)Z,

where [γ̃] is the class of γ̃ in the homology group H1(TSg\{0},Z/χ(Sg)Z).
Proposition 2.2.11. Let

γ1, . . . , γN : S1 # Sg

be immersed Lagrangian cobordant curves. In Z/χ(Sg)Z, we have the relation
N∑
i=1

µΦ(γi) = 0.

Proof. First, we generalize the above construction of µ. Denote by πC : C × Sg → C
and πSg : C× Sg → Sg the projection on the first and second factor respectively. There
is a canonical isomorphism

π∗SgΛ
1TSg→̃Λ2T (C× Sg).

We compose this with the map 2.9 to obtain an isomorphism

Ψ : (π∗SgZ)⊗χ(Sg)−̃→Λ2T (C× Sg).
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Let γ : S1 → C× Sg be a smooth loop. We let

Λ(t) ⊂ Tγ(t)(C× Sg), t ∈ S1

be a smooth loop of oriented lagrangian subspaces over γ. For each t ∈ S1, we let
(e1(t), e2(t)) be a (real) basis of the vector space Λ(t). We assume that the family (e1, e2)

is smooth. We let v be a trivialization of the complex line bundle
(
πSg ◦ γ

)∗Z.
The function

S1 7→ Λ2T (C× Sg)
t 7→ e1(t) ∧ e2(t)

,

is nowhere vanishing. So there is a smooth function λ : S1 → C∗ such that

e1 ∧ e2 = λ(t)Ψ(v(t)).

Now, we put
µΦ(Λ) = deg(λ).

As before, one can easily check that this does not depend on the homotopy class of Λ

and does not depend on the choice of the section v. Thus, this induces a well-defined
class

µΦ ∈ H1(GLor(T (C× Sg)),Z/χ(Sg)Z),

in the first cohomology group of the oriented Lagrangian Grassmannian.
Let γ : S1 → Sg be an immersed curve and x ∈ R. For t ∈ S1, we let

Λ(t) = Span((1, 0), (0, γ′(t))) ⊂ T(x,γ(t))(C× Sg).

Then, for any t ∈ S1, the space Λ(t) is Lagrangian. It is an easy exercise to check

µΦ(Λ) = µ(γ).

Let i : W # C × Sg be an oriented immersed Lagrangian cobordism between the
immersed curves γ1, . . . , γN . Then by the discussion above

µΦ(γ1) + . . .+ µΦ(γN) = 〈i∗V µ, [∂W ]〉.

The class ∂W is a boundary in H1(W,Z/χ(Sg)Z), so the left term is 0. �

We conclude that there is a well-defined morphism

µΦ : Ωimm
cob (Sg)→ Z/χ(Sg)Z.

Remark 2.2.12. The map µΦ depends on the choice of the isomorphism Φ. In fact,
two such maps differ by the morphism induced by a cohomology class p∗α with α ∈
H1(Sg,Z/χ(Sg)Z) and p the projection TSg\{0} → Sg.

From now on, we fix once and for all one such Φ. We will, therefore, denote µΦ by µ.
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Figure 4 – The Lickorish generators of the Mapping Class Group

Action of the mapping class group on Ωimm
cob (Sg)

As usual, the Mapping Class Group of the surface Sg is the quotient of the group of
orientation preserving diffeomorphisms by its identity component,

Mod(Sg) = Diff+(Sg)/Diff0(Sg).

The Mapping Class Group has a natural left action on Ωimm
cob (Sg). Given two classes

[φ] ∈ Mod(Sg) and [γ] ∈ Ωimm
cob (Sg), the action is given by [φ] · [γ] = [φ ◦ γ].

We recollect a few well-known facts on the Mapping Class Group. The reader may
find proofs and statements in the book by Farb and Margalit [FM12].

A particular class of elements of the Mapping Class groups are given by Dehn twists,
which we now define. Let α : S1 = R/Z → Sg be an embedded curve. Choose a
Weinstein embedding ψ : [0, 1]× S1 → Sg such that ψ|{ 1

2
}×S1 = α. We let f : [0, 1]→ R

be an increasing smooth function equal to 1 in a neighborhood of 1 and equal to 0 in a
neighborhood of 0. The map

[0, 1]× S1 → [0, 1]× S1

(t, θ) 7→ (t, θ + f(t))

extends by the identity to a symplectomorphism

Tα : Sg → Sg

which is called the Dehn twist about α. Notice that its class in Mod(Sg) does not depend
on the choice of φ and f .

It is a well-known fact that these transformations generate the Mapping Class Group.
More precisely, we let α1, . . . , αg, β1, . . . , βg and γ1, . . . , γg−1 be the embedded curves
represented in Figure 4.
Theorem 2.2.13 (Lickorish,1964, [Lic64]). The Dehn twists about the curves α1, . . . , αg,
β1, . . . , βg and γ1, . . . , γg−1 generate the Mapping Class Group.

In particular, any orientation-preserving diffeomorphism φ is the product of a sym-
plectomorphism ψ and a diffeomorphism χ isotopic to the identity.
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In particular, any positive homeomorphism is isotopic to a symplectomorphism As a
corollary of this and Lemma 2.2.1, we obtain the following.
Lemma 2.2.14. The map

Mod(Sg)× Ωimm
cob (Sg) → Ωimm

cob (Sg)

([φ], [γ1] + . . .+ [γN ]) 7→ [φ ◦ γ1] + . . .+ [φ ◦ γN ]

is well-defined and is a group action on Ωimm
cob (Sg).

Proof. First we check that if [γ1]+. . .+[γN ] = 0 in Ωimm
cob (Sg), then [φ◦γ1]+. . .+[φ◦γN ] =

0. For this, write φ = ψ ◦ χ with ψ symplectic and χ isotopic to the identity. There
is an immersed oriented Lagrangian cobordism V : (γ1, . . . , γN)  ∅. Then ψ(V ) is a
Lagrangian cobordism between the curves ψ(γ1), . . . , ψ(γN) which are isotopic (hence
Lagrangian cobordant by 2.2.1) to φ(γ1), . . . , φ(γN).

Similarly, Lemma 2.2.1 implies that if φ is isotopic to ψ, then [φ◦γ1]+ . . .+[φ◦γN ] =

[ψ ◦ γ1] + . . .+ [ψ ◦ γN ] in Ωimm
cob (Sg). �

We also have the following proposition:
Proposition 2.2.15. Let β be an embedded curve in Sg. Then in Ωimm

cob (Sg)

[Tα(β)] = (β · α)[α] + [β].

Here, β · α is the homological intersection number of β and α.

Proof. Up to isotopy, we assume that α and β are in minimal position (i.e. the number
of intersection points is minimal in their respective isotopy class).

There is a geometric procedure which produces a curve isotopic to Tαβ after a se-
quence of surgeries such as in 2.2.1. The whole process is represented in Figure 5.

Call x1, . . . , xN the intersection points of α and β ordered according to the orientation
of α (here N is the number of intersection points between α and β). For k ∈ {1, . . . , N},
we fix a Darboux chart φk : B(0, r)→ Sg around xk such that

• in this chart, β is the oriented line R,
• in this chart, α has image iR.

The first step consists of the surgery between α and β if x1 is of degree 1 and of the
surgery between α−1 and β if x1 is of degree 0. This yields a curve c1

In the second step, we perturb α to a curve α̃2 as in the second row of Figure 5. The
main features of α̃ are as follows

• there are x2
2, . . . x

2
N intersection points lying close to x2, . . . , xN .

• there is one other intersection point y1 above β in the Darboux chart φ2.
Now, we perform the surgery between c1 and α̃2 at x2

2 if it is of degree 1 and between c1

and α̃2
−1 otherwise.
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α

β

Figure 5 – The surgery procedure to obtain a curve isotopic to a Dehn
Twist,

The successive ck are represented in red.

Assume that we performed the surgery of β with k curves α, α̃2, . . . , α̃k isotopic to α
to obtain a curve ck. We perturb α to a curve α̃k+1 such as in Figure 5. It satisfies the
following assumptions.

• There are xkk, . . . , xNk intersection points between ck and α̃k+1 close to xk, . . . , xN .
• There are intersections points y1, . . . , yk which lie above β in the chart φk.

Now, we perform the surgery between ck and α̃k+1 at xk according to the orientation of
α̃k+1. The handle is big enough to delete the intersection points y1, . . . , yk.

Notice that each surgery produces an oriented immersed Lagrangian cobordism by
Propositions 2.2.9. Composing these cobordisms and using Lemma 2.2.1 about isotopic
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curves, we obtain an immersed Lagrangian cobordism(
α, β, . . . , β, β−1, . . . , β−1

)
 γ,

with as many copies of α as there are intersection points of degree 0 and as many copies
of α−1 as there are intersection points of degree 1. Hence in the Lagrangian cobordism
group Ωimm

cob (Sg)

[γ] = [β] + (α · β)[α].

This concludes the proof since γ is Lagrangian cobordant to Tα(β) (Lemma 2.2.1). �

Tori and pairs of pants

We describe a set of generators for Ωimm
cob (Sg) using the action of the mapping class

group described above.
First, let γ1 and γ2 be two embedded curves in Sg. We suppose that each of these

is the oriented boundary of an embedded torus. By the change of coordinates principle
([FM12, 1.3]), there is a product of Dehn twists φ which maps γ1 to a curve isotopic
(hence immersed Lagrangian cobordant) to γ2. By Proposition 2.2.15, we have [γ1] = [γ2]

in Ωimm
cob (Sg). We conclude that there is a well-defined element

T ∈ Ωimm
cob (Sg) (2.10)

which represent any oriented boundary of a torus in Sg.
First, we compute the Maslov index of the class T .

Lemma 2.2.16. For any choice of isomorphism

Φ : Z⊗χ(Sg)→̃TSg,

we have
µΦ(T ) = −1 ∈ Z/χ(Sg)Z,

(T is the class defined in 2.10).

Proof. First, the index of T does not depend on Φ. To see this, let γ be a representative
of T and v a trivialization of Z along γ. Let Ψ : TSg−̃→Z⊗χ(Sg) be an another complex
isomorphism. Then Ψ ◦ Φ−1 has the form (z, v) 7→ (z, µ(z)v) where µ : Sg → C∗ is a
nowhere vanishing function. If

γ′(t) = λ(t)Φ−1(v ⊗ . . .⊗ v),

then

γ′(t) = Ψ−1 ◦Ψ ◦ Φ−1(v ⊗ . . .⊗ v)

= λ(t)µ(γ(t))Ψ−1(v ⊗ . . .⊗ v).
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But since µ extends to Sg and γ is homologically trivial, we have deg(µ ◦ γ) = 0.
Let us turn to the computation of µ(T ). It is a quick application of the Poincaré-Hopf

theorem. Let T̃ be the torus bounded by γ and D be a disk embedded in T̃ .
We choose trivializations of TSg over Sg\D and over D so that TSg is identified with

the fiber bundle obtained by gluing (Sg\D)× C on D × C along the map

f : (Sg\D)× C → D × C(
φ(eiθ), z

)
7→

(
eiθ, eiχ(Sg)θz

)
.

Here φ : ∂D → ∂(Sg\D) is an orientation reversing diffeomorphism.
Similarly, we define the line bundle Z as the gluing of (Sg\D × C) on (D × C) along

the map
g : (Sg\D)× C → D × C(

φ(eiθ), z
)
7→

(
eiθ, eiθz

)
.

The isomorphism Φ : Z⊗χ(Sg) → TSg is given by (a, λ1 ⊗ . . . ⊗ λn) 7→ (a, λ1 . . . λn).
Moreover, a non-zero section of Z over γ is given by z ∈ Im(γ) 7→ (z, 1). So the Maslov
index of γ is just the index of γ′ read in the trivialization above.

Choose a vector field X on T̃ which coincides with γ′ over γ and has a unique zero in
D. This zero has degree −1 since the Euler characteristic of T̃ is −1. The degree of γ′ in
the trivialization above is equal to the degree of X over the boundary of Sg D since this
is a homological invariant. Given the expression of −1, this degree is also the degree of
X in the trivialization over D plus χ(Sg). Hence it is −1 + χ(Sg) since X has a zero of
degree −1 on D. �

Remark 2.2.17. The same proof also shows that if γ is the oriented boundary of an
embedded surface S1 of genus g̃, then its index satisfies

µΦ(γ) = χ(S1) mod χ(Sg),

for any trivialization Φ.
We now express the class of any separating curve with T . The proof uses the surgeries

of [Abo08, Lemma 7.6].
Lemma 2.2.18. Let γ be the oriented boundary of an embedded surface S1. Then in
Ωimm

cob (Sg)

[γ] = χ(S1) · T.

Proof. The proof follows from induction over the genus of the surface bounded by γ.
If γ bounds a torus, there is nothing to prove.

We assume that the formula is true for any curve which bounds a surface of genus
less than g1−1. We assume that γ is the oriented boundary a surface S1 of genus g1 > 2.
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γ3

γ1

γ2

γ

Figure 6 – Two pair of pants

α

β

Figure 7 – The successive surgeries to compute the class of a pair of pants

Choose three curves γ1, γ2 and γ3 such that the following hold (see Figure 6).
• The curves γ1 and γ2 are non-separating and γ, γ1 and γ2 form the oriented
boundary of a pair of pants.
• The curve γ3 is separating and bounds a surface S3 of genus g1 − 1.
• The curves γ1, γ2 and γ3 bound another pair of pants.

Now, choose two embedded curves α and β as in Figure 7. We first perform surgeries
of α with γ2 and β as indicated in the left-hand side of Figure 7. This yields an immersed
curve c. If we perform surgeries of α with γ1 and γ as in the right-hand side of Figure 7,
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we obtain an immersed curve isotopic to c. Therefore,

−γ2 + α + T = γ1 + α + γ,

so
γ + γ1 + γ2 = T.

The same argument yields
T = −γ3 − γ1 − γ2.

Hence,
γ = γ3 + 2T.

But γ3 is the oriented boundary of a surface of genus g1 − 1, so

[γ3] = χ(S3) · T.

Hence,
γ = (χ(S3) + 2) · T = χ(S1)T.

�

We now have the following Lemma.
Lemma 2.2.19. The restriction of µ to the subgroup H of Ωimm

cob (Sg) generated by sepa-
rating curves is an isomorphism.

Proof. Lemma 2.2.18 implies that T generates the group H. Moreover, µ(T ) = −1

implies that the order of T is either infinite or a multiple of χ(Sg).
On the other hand, let γ be the oriented boundary of a torus. Then, γ−1 is the

oriented boundary of a surface of genus g − 1. Hence by Lemma 2.2.18, we have

T = −(1− 2(g − 1))T

= (−3 + 2g)T.

So χ(Sg)T = 0. This concludes the proof. �

Finally, we compute the class of the Lickorish generator γi (see 2.2.13) in Ωimm
cob (Sg).

Lemma 2.2.20. Recall that we denoted by α1, . . . , αg, β1, . . . , βg and γ1, . . . , γg−1.
Let i ∈ {1, . . . , g − 1}. Then we have

[γi] = [αi+1]− [αi]− T.

Proof. By the change of coordinates principle, we can assume that αi, γi and α−1
i+1 are

as in Figure 8. We also fix two curves α and β as in Figure 8.
The proof proceeds as in the proof of Lemma 2.2.18. We perform the surgeries

indicated on the left to obtain a curve c and the surgeries on the right to obtain a curve
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α

α−1
i+1 α−1

i

γi

β

Figure 8 – The successive surgeries to compute the class of a
pair of pants in the non-separating case.

isotopic to c. So
α + γi − αi+1 = α + β − αi.

Moreover, we have β = −T , so

αi+1 − αi − γi = T.

�

With this preparation, we can pass to the

Proof of Theorem 2.1.5

Proof. We use the action of the Mapping Class group of Sg to conclude. Let γ be a
non-separating curve. By the change of coordinates principle ([FM12, 1.3]), there is a
product of Dehn twists about the αi, γi and βi which maps γ to α1. Hence, γ lies in the
group generated by the αi, βi and γi by Proposition 2.2.15. By Lemma 2.2.20, γ lies in
the subgroup generated by the αi, βi and T .
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Since any separating embedded curve is a multiple of T , we conclude that the group
Ωimm
cob (Sg) is generated by the αi, βi and T .
The map π : Ωimm

cob (Sg) → H1(Sg,Z) is surjective. Furthermore, we have π ⊕ µ(T ) =

(0,−1). So the map π ⊕ µ is surjective.
On the other hand, π ⊕ µ is injective. To see this, let

x =

g∑
i=1

niαi +

g∑
i=1

miβi + kT.

such that π(x) = 0 and µ(x) = 0. Take the image under π to obtain
g∑
i=1

niαi +

g∑
i=1

miβi

in H1(Sg,Z). So the ni and the mi are zero. Furthermore, 0 = µ(x) = −k, so χ(Sg)|k.
Hence, x = kT = 0. �

2.3. Fukaya categories of surfaces

There is a well-defined Fukaya category whose objects are the unobstructed immersed
curves. Its construction follows Seidel’s perturbation scheme [Sei08]. Such a category
has already been studied for exact manifolds with convex boundary by Alston and Bao
[AB18]. Abouzaid ([Abo08]) also constructed a pre-category with immersed objects
using combinatorial methods.

In this section, we recall the main steps of the construction of Fuk(Sg), highlighting
the parts that need special care due to the immersed setting. We do this in Subsections
2.3.2 and 2.3.1.

In Subsection 2.3.3, we shall briefly explain why Fuk(Sg) recovers the pre-A∞ category
defined in Abouzaid’s paper.

2.3.1. Preliminaries

Floer datum

Recall from definition 2.1.9 that an unobstructed curve is an immersed curve with no
triple points, transverse double points and which lifts to an embedding in the universal
cover. For each ordered pair of unobstructed immersions (γ1, γ2), we fix a Floer datum
Hγ1,γ2 . This is a smooth, time-independent, hamiltonian Hγ1,γ2 : Sg → R such that γ1

and φ−1
Hγ1,γ2

(γ2) are in general position. If γ1 and γ2 already are in general position, we
make the choice Hγ1,γ2 = 0.

We also fix a smooth complex structure j on Sg which is compatible with ω.
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Coherent perturbations

Recall from [Sei08, (9f)] that for d > 2, there is a compactified universal family of
pointed disks

Sd+1 → Rd+1.

We fix a coherent universal choice of strip-like ends (see [Sei08, 9g]) for these families.
We denote these ends by (εir)06i6d,r∈Sd+1 .

Let (γ0, . . . , γd) be a d+ 1 tuple of unobstructed curves. We fix a perturbation datum
for the family Sd+1 → Rd+1 labeled by the tuple (γ0, . . . , γd). This is a family of one
form

Kγ0,...,γd ∈ Ω1(S,H)

with values in the space H of hamiltonians on Sg. Additionally, we assume that for any
r ∈ Rd+1,

K|T∂π−1(r) = 0.

We require that this family satisfies the following hypothesis.
(H) : If the curves γ0, . . . , γd are in general position, then

Kγ0,...,γd = 0.

We have the following proposition.
Proposition 2.3.1. There is a coherent choice of perturbation datum2 which satisfies
the hypothesis (H).

Proof. We start withKγ0,γ1,γ2 = 0 for every 3-uple of two by two transverse lagrangians.
Then we use the induction process described in [Sei08, (9i)] to obtain a coherent pertu-
bation perturbation datum.

For every d+ 1-tuple (γ0, . . . , γd) of two by two transverse unobstructed curves, any
m-tuple of the form (γi1 , . . . , γim) (with m < d) consists of two by two transverse un-
obstructed curves. Therefore the gluing induction process provides a perturbation with
Kγ0,...,γd = 0. �

Definition and regularity of the relevant moduli spaces

We introduce the moduli spaces of (perturbed) holomorphic curves that we consider
throughout this section.

First, let Z = R× [0, 1] be the standard strip with coordinates s and t and equipped
with the standard complex structure.

2See [Sei08, section (9i)] for the definition
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Let γ0 and γ1 be two unobstructed curves. Then the set PHγ0,γ1
of hamiltonian chords

from γ0 to γ1 is finite. We choose two such chords c− and c+.
We consider continuous strips u : Z → Sg from c− to c+ satisfying the following

conditions.
(i) There is a continuous lift u− : R× {0} → S1 such that u(s, 0) = γ0 ◦ u0 .
(ii) There is a continuous lift u+ : R× {0} → S1 such that u(s, 1) = γ1 ◦ u1 .
(iii) The map u converges uniformly to c− and c+ when s goes to infinity:

lim
s→−∞

u(s, ·) = c−, lim
s→+∞

u(s, ·) = c+.

Let u0 and u1 be two continuous strips with lifts given by u+
0 , u

−
0 and u+

1 , u
−
1 respec-

tively. We say that u0 and u1 are homotopic if there are
• a continuous family (vt)t∈[0,1] of maps Z → Sg,
• continuous families

(
v±t
)
t∈[0,1] of maps R→ S1,

such that
• for each t ∈ [0, 1], vt is a continuous strip from c− to c+ with continuous lifts
given by v±t ,
• we have

(
u0, u

−
0 , u

+
0

)
=
(
v0, v

−
0 , v

+
0

)
and

(
u1, u

−
1 , u

+
1

)
=
(
v1, v

−
1 , v

+
1

)
.

We fix such a homotopy class A.
Definition 2.3.2. We let M̃(c−, c+, A) be the set of Floer strips from c− to c+ in the
homotopy class A.

A map u : Z → Sg is an element of M̃(c−, c+, A) if it satisfies the conditions (i),
(ii), (iii) above and the Floer equation

∂u

∂s
+ j

(
∂u

∂t
−XHγ0,γ1

(u)

)
= 0.

This set admits a natural R-action and we let

M(c−, c+, A) = M̃(c−, c+, A)/R.

Let γ0, . . . , γd be a d+1-uple of unobstructed curves, c0 ∈ PHγ0,γd
and ci ∈ PHγi−1,γi

for
1 6 i 6 d. We also consider continuous polygons with boundary conditions at γ0, . . . , γd.

To define these, fix a disk with d + 1-marked points s = π−1(r) with r ∈ Rd+1. A
continuous polygon is a continuous map u : s→ Sg such that

(i) For each arc Ci ⊂ ∂s between the i-th and i+1-th punctures, there is a continuous
map ui : Ci → S1 such that u|Ci = γi ◦ ui.

(ii) The map u converges uniformly to ci on the i-th strip-like end,

lim
s→−∞

u ◦ ε0
r(s, ·) = c0, lim

s→+∞
u ◦ εir(s, ·) = ci.
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Let u0 and u1 be two continuous polygons with lifts given by u0
i and u1

i for i = 0 . . . d

respectively. We say that u0 and u1 are homotopic if there are
• continuous families (vt)t∈[0,1] of maps s→ Sg for a fixed s ∈ π−1(r) with r ∈ Rd+1,
• continuous families (vti)t∈[0,1] of maps Ci → S1 for i ∈ {0, . . . , d},

such that
• for each t ∈ [0, 1], vt is continuous polygon with boundary lifts given by the vit
for i = 0 . . . d,
• we have v0 = u0 (resp. v1 = u1) and vi0 = ui0 (resp. v1

0 = u1
0) for i = 0 . . . d.

We fix such a homotopy class B.
Definition 2.3.3. We let M(c0, . . . , cd, B) be the set of holomorphic polygons in the
homotopy class A.

A map u : s → Sg, with s ∈ π−1(r) for some r ∈ Rd+1, is an element of the moduli
space

M(c0, . . . , cd, B)

if and only if it satisfies the conditions (i),(ii),(iii) above and the following equation(
du−XKγ0,...,γd

)
(0,1) = 0.

Standard regularity arguments imply that for a generic choice of Floer and pertur-
bation datum, these moduli spaces are regular. See for instance [AB18, Section 5] for a
write up in the case of immersions.

However, we would like to keep perturbation data which verify the hypothesis (H).
The following lemma, due to Seidel, makes this possible. The proof contained in [Sei08]
goes through as stated in the book.

Let u : (s, ∂s) → (M, i(L)) be a Floer strip or a holomorphic polygon. One can
linearize the Cauchy-Riemann equation at u to obtain an extended Cauchy-Riemann
operator

Ds,u : TsR×W 1,p(u∗TM, u∗TL)→ Lp
(
Λ0,1T ∗s⊗ u∗TM

)
,

from suitable Sobolev completions of the space of sections of u∗TM . (cf [Sei08, (8i)]).
We say that u is regular if this operator is surjective. In particular, this implies that the
set of solutions is a manifold near u.

In particular notice that Ds,u takes into account the variations of the domain.
Lemma 2.3.4 (Automatic regularity, [Sei08], Lemma 13.2). In the above setting, as-
sume that u is either a non-constant Floer strip or a non-constant holomorphic polygon.
Then it is automatically regular, meaning that the extended Cauchy-Riemann operator

Ds,u : TsR×W 1,p(u∗TM, u∗TL)→ Lp
(
Λ0,1T ∗s⊗ u∗TM

)
,
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x xγ1 γ1

γ2γ2

Figure 9 – The path λγ1,γ2,x when x is of degree 1 (left) and of degree 0 (right)

is surjective.
From now on, we will fix a choice of Floer and perturbation datum which satisfy

hypothesis (H).

Indices

Let u be an element of one of the moduli spaces M(c−, c+, A) or M(c0, . . . , cd, A).
We call Ind(u) the virtual-dimension of its moduli space. Using (for instance) the in-
dex formula of [AJ10], it is easily seen to depend only on the homotopy class A of u.
Therefore, in what follows, we will denote this index by Ind(A).

Spin structures and signs

To take care of signs issues, we need some additional datum which we explain now.
We need to equip each unobstructed curve γ : S1 → Sg with a Spin structure.

Since the space of oriented orthonormal frames of a tangent space TxS1 has a unique
point, a choice of Spin structure is a choice of a double covering of S1. We choose the
Spin structure given by the nontrivial double covering. This is called the bounding Spin
structure (see [LM89, II.1]).

Let γ1 and γ2 be two transverse unobstructed curves and x an intersection point. We
let

λγ1,γ2,x : [0, 1]→ G(TSg),

be the path represented in Figure 9.
If γ1 and γ2 are not transverse, we choose a hamiltonian chord c ∈ PHγ1,γ2

. This
corresponds to a unique intersection point x ∈ γ1 ∩ φ−1

Hγ1,γ2
(γ2). We define, for t ∈ [0, 1],

the vector space λγ1,γ2,c(t) ∈ G(Tc(t)Sg) by

λγ1,γ2,c(t) = dφtHγ1,γ2
(λx,γ1,φ

−1
Hγ1,γ2

(γ2)(t)).

For each Hamiltonian chord c ∈ PHγ1,γ2
, define a one dimensional real vector space o(c)

as follows. Consider the Poincaré half plane H = {z = x+ iy ∈ C|y 6 0}. Equip this
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with the incoming strip-like end

ε : R× [0, 1] → H
(s, t) 7→ −e−π(s+it)

.

As explained, for instance, in [Sei08], there is a complex bundle pair (E,F ) associated
to λγ1,γ2,c. In particular, there is a Cauchy-Riemann operator D associated to it.

The orientation line of c is the real one-dimensional vector space

o(c) := det(D).

We choose once and for all an orientation of each vector space o(c).
Further, assume that γ1 and γ2 are unobstructed curves. Let u ∈ M(c−, c+, A) be a

holomorphic strip which satisfies Ind(A) = 0. Since γ1 and γ2 are equipped with Spin
structures, gluing induces an isomorphism

ΛTuM̃(c−, c+, A)→̃o(c−)∨ ⊗ o(c+).

We orient the left side by the vector field generated by the R action. On the other hand,
the right hand sign inherits an orientation from o(c−) and o(c+). The difference between
these two orientations yields a sign

Sign(u) ∈ {−1, 1}.

Similarly let v ∈M(c0, . . . , cd, A) be a holomorphic polygon which satisfies Ind(A) =

0. Now there is an isomorphism

ΛTuM(c0, . . . , cd, A)→̃o(c0)∨ ⊗ o(c1)⊗ . . .⊗ o(cd).

But the left-hand side is naturally oriented as the determinant of a 0-dimensional vector
space. Comparing orientations yields a sign

Sign(v) ∈ {−1, 1}.

Gromov compactness

In order to define the A∞ operations for our category, we need to describe a Gromov-
type compactification of the moduli spaces introduced above. Gromov compactness for
holomorphic curves with immersed boundaries has already been considered in Ivashkovich
and Shevchishin’s paper [IS02].

Here, our situation is slightly different since we considered the solutions of a perturbed
Cauchy-Riemann equation. However, the relevant analysis is worked-out in Alston and
Bao’s article [AB18, Proposition 4.4]. We can summarize their results in our setting as
follows.
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As is usual by now, we let γ0, γ1 be unobstructed curves in Sg and c−, c+ be Hamil-
tonian chords from γ0 to γ1.
Proposition 2.3.5 (Gromov compactness for strips). (1) Let A be a homotopy class

of strips satisfying Ind(A) = 1. Then the topological space

M(c−, c+, A)

is a compact, 0-dimensional manifold.
(2) Assume that A is a homotopy class of strips satisfying Ind(A) = 2. Then the

topological space
M(c−, c+, A)

admits a natural compactificationM(c−, c+, A) given by

M(c−, c+, A) :=
∐

c∈PHγ−,γ+

M(c−, c, A)×M(c, c+, A)
⋃
M(c−, c+, A).

The space M(c−, c+, A) has a natural structure of 1-dimensional manifold with
boundary

∂M(c−, c+, A) =
∐

c∈PHγ−,γ+

M(c−, c, A)×M(c, c+, A).

Proof. Let (un) be a sequence of holomorphic strips in the homotopy class A. It is
easy to check that their energy is finite so that we can apply [AB18, Proposition 4.4].
Hence, there is a subsequence (unk) which converges in Gromov’s sense to a set of broken
holomorphic strips, polygons, spheres, and disks. Moreover, if there is one polygon in
this decomposition, there must be a polygon with one corner.

Notice that there cannot be holomorphic disks or holomorphic polygon with one cor-
ner with boundary condition on γ+ or γ− since both of these are unobstructed. Moreover,
there are no holomorphic spheres. Hence the above set can only consist of strips which
are all regular. A dimension counting argument finishes the proof. �

Similarly, let γ0, . . . , γd (with d > 2) be unobstructed curves, c0 be in PHγ0,γd
and ci

be in PHγi,γi+1
for 1 6 i 6 d. We fix a homotopy class B of holomorphic polygons with

corners at the γi.
Proposition 2.3.6. (1) Assume that Ind(B) = 0, then the spaceM(c0, . . . , cd, B) is

compact.
(2) Assume that Ind(B) = 1, then the topological space

M(c0, . . . , cd, B)
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admits a natural compactificationM(c0, . . . , cd, B)

M(c0, . . . , cd, B) :=

M(c0, . . . , cd, B)
∐

∐
16i6d,c̃i+1∈PHγi+1,γi+2

,

Ind(Bk)=0

M(c0, . . . , c̃i+1, . . . cd, B1)×M(c̃i+1, ci+1, . . . , cd, B2).
(2.11)

The spaceM(c0, . . . , cd, B) has a natural structure of 1-dimensional manifold with
boundary

∂M(c0, . . . , cd, B) :=∐
16i6d,c̃i+1∈PHγi+1,γi+2

,

Ind(Bk)=0

M(c0, . . . , c̃i+1, . . . cd, B1)×M(c̃i+1, ci+1, . . . , cd, B2).

2.3.2. Definition

We now have all the ingredients to define a A∞ category Fuk(Sg). The coefficients
are taken over the Novikov field

Λ :=

{
+∞∑
i=0

aiT
λi

∣∣∣∣∣ai ∈ R, λi ∈ R, λi → +∞

}
.

The objects of Fuk(Sg) are unobstructed curves. Given two unobstructed curves
γ1, γ2, their morphism space is the Z/2-graded Λ-vector space generated by Hamiltonian
chords between these

Homi
Fuk(Sg)(γ1, γ2) =

⊕
c∈PH
|c|=i

Λ · c.

The A∞ operations are defined as follows

µd(c1, . . . , cd) = (−1)•
∑
c0,A

∑
u∈M(c0,...,cd,A)

Sign(u) · T ω(A) · c0.

Here the sum is over the Hamiltonian chords c0 ∈ PHγ1,γ2
and over the homotopy classes

A of polygons such that Ind(A) = 0. The sign • is given by

• =
d∑

k=1

k|ck|.

Proposition 2.3.6 implies that the operations (µd)d>2 satisfy the A∞ relation modulo 2.
To see that these are satisfied over R, one has to use that gluing is compatible with the
isomorphisms. This is done in [Sei08, Sections (12b) and (12g)].
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The A∞-category Fuk(Sg) admits a triangulated envelope : this is the smallest tri-
angulated A∞-category generated by Fuk(Sg). We call its 0-th degree cohomology the
derived category of Fuk(Sg) and denote it by DFuk(Sg). We refer to Seidel’s book [Sei08,
(3j)] for more details.

2.3.3. Properties of the Fukaya category

The following theorem also immediately follows from the recipe presented in Seidel’s
book.
Proposition 2.3.7. The A∞-category Fuk(Sg) is homologically unital and independent
of the choice of perturbation datum and almost compatible complex structure.

Moreover, two Hamiltonian isotopic curves are quasi-isomorphic.
Since we chose our perturbation datum (H), there is a combinatorial description of

the operations of the category Fuk(Sg) with boundaries in a tuple (γ0, . . . , γd) in general
position.

We let c0 ∈ PHγ0,γd
, ci ∈ PHγi,γi+1

for 1 6 i 6 d. We choose s ∈ Sd+1 and label it by
(γ0, . . . , γd) and call r its pre-image by π : Sd+1 → Rd+1. We fix a homotopy class A of
polygons with corners at c0, . . . , cd such that Ind(A) = 0.

We recall the following definition.
Definition 2.3.8. We keep the above notations. Let s ∈ π−1(r) be a d + 1 pointed
disk with ordered marked points x0, . . . , xd. Let f : s → Sg be an orientation preserving
immersion which is also a polygon with corners at c0, . . . , cd.

For i ∈ {0, . . . , d}, fix two smooth embedded arcs γ± : [0, ε)→ ∂s such that
• γ+(0) = γ−(0) = xi,
• γ+ is orientation preserving,
• γ− is orientation reversing.

We say that xi is a convex corner if
(1) for any open neighborhood U of xi in s, the set f(U) is not an open neighborhood

of f(xi),
(2) the oriented angle from γ′−(0) to γ′+(0) satisfies

0 <
(
γ′−(0), γ′+(0)

)
< π.

Remark 2.3.9. (1) Geometrically, this implies that the image of a small neighbor-
hood of xi by u is convex. See Figure 10 for a picture and an unauthorized con-
figuration where the corner is not convex. The terminology comes from [Abo08].

(2) Consider the symplectic manifold CP 1 = C ∪ {∞} with its standard area form.
We let L be the generic immersion whose image is the union of R and iR. The
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• •

Figure 10 – Left, an immersed polygon with convex corners,
Right, an immersed polygon with two corners indicated by •, one

of which is non-convex.

following map, whose domain is the Poincaré half plane,

H ∪ {∞} → CP 1

z 7→ z
5
2

.

is an immersed polygon with two corners at 0 ∈ CP 1 and ∞ ∈ CP 1. These
corners satisfy condition (2) of Definition 2.3.8 but not condtion (1).

We let ∆̃(c0, . . . , cd, A) be the set of orientation preserving immersions (up to the
boundary) f : s→ Sg with s ∈ π−1(r) such that

• the map f is a polygon with corners at c0, . . . , cd,
• each corner of f is convex (see Figure 10).

We let ∆(c0, . . . , cd, A) be the quotient of ∆̃(c0, . . . , cd, A) by the group of diffeomor-
phisms of r which preserve the marked points.
Proposition 2.3.10. Each holomorphic polygon u ∈ M(c0, . . . , cd, A) is (up to repa-
rameterization) an element of ∆̃(c0, . . . , cd).

Moreover, the inclusion

M(c0, . . . , cd, A) ↪→ ∆(c0, . . . , cd, A)

is bijective.

Proof. This result is well-known (see [Sei08, (13b)], [ENS02], [dSRS14]). Let us
quickly recall the idea of the proof.

Let u ∈M(c0, . . . , cd, A). If u has an interior branch point, there is a two-dimensional
continuous family inM(c0, . . . , cd, A) (see the proof of [ENS02, Proposition 7.8]). But
dim(M(c0, . . . , cd, A)) 6 1, a contradiction. Similarly, if there is a branch point on the
boundary, there is a contribution of 1 to the dimension. So u is an immersion up to
the boundary. Moreover, it is easy to see that u cannot have non convex corners at the
boundary.
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Now if u ∈ ∆̃(c0, . . . , cd, A), an easy application of the uniformization theorem
shows that u can be reparameterized to a holomorphic curve. Hence, the inclusion
M(c0, . . . , cd, A) ↪→ ∆(c0, . . . , cd, A) is surjective.

If u1 and u2 are such that u1◦φ = u2 with φ a diffeomorphism r → r, φ is holomorphic
since u1 and u2 are immersions. Hence, the inclusionM(c0, . . . , cd, A) ↪→ ∆(c0, . . . , cd, A)

is injective. �

In particular, one can define a A∞ pre-category Fukcomb(Sg) whose objects are un-
obstructed immersed curves, whose morphisms spaces are given by the Floer complexes
and whose higher operations are given by a count of elements of ∆(c0, . . . , cd, A). This
is done, using combinatorial arguments, in Abouzaid’s paper ([Abo08]). We conclude
that there is a pre-A∞ quasi-isomorphism

Fukcomb(Sg) ↪→ Fuk(Sg).

2.4. Immersed Lagrangian cobordisms and iterated cones

In this section, we study immersed Lagrangian cobordisms which are well-behaved for
Floer theory. We have already seen that the main obstruction to this is the existence of
teardrops, that is polygons with one corner points. Our objects of interest are Lagrangian
cobordisms which do not bound topological teardrops.

In what follows, we will consider only compatible almost complex structures on C×Sg
such that the projection on the first factor πC : C× Sg is holomorphic. If this holds, we
say that the almost complex structure is adapted.
Definition 2.4.1. Let (γ1, . . . , γn) and (γ̃1, . . . , γ̃m) be embedded curves in Sg. An unob-
structed Lagrangian cobordism from (γ1, . . . , γN) to (γ̃1, . . . , γ̃m) is an oriented immersed
Lagrangian cobordism

V : (γ1, . . . , γN) (γ̃1, . . . , γ̃m)

which satisfies the following conditions.
(i) The immersion V has no triple points, and all its double points are transverse.
(ii) There are no topological teardrops with boundary on V .
Biran and Cornea proved that, in the monotone setting, an embedded, monotone

Lagrangian cobordism induces a cone relation between its end in the Fukaya category
([BC14]). This result still holds for unobstructed Lagrangian cobordisms.
Theorem 2.4.2. Let

V : (γ1, . . . , γn) γ

be an unobstructed Lagrangian cobordism. Then, there is an isomorphism in DFuk(Sg)

γ ' Cone(γ1[1]→ Cone(γ2[1] . . .→ Cone(γn−1[1]→ γn))).
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In our setting, the proof is the same as [Hau15, Theorem 4.1].
There are two natural corollaries to this result, which we now give.

Corollary 2.4.3. Let γ be an unobstructed curve. In DFuk(Sg) we have the isomorphism

γ[1] ' γ−1.

Proof. Consider a properly embedded path
α : R → C

t 7→ (x(t), y(t))
such that

• for s < 0, we have α(s) = (s, 0),
• for s > 1, we have α(s) = (1− s, 1),
• for s ∈ [0, 1], the derivative y′ satisfies y′(s) > 0.

The immersed manifold
R× S1 → C× Sg
(s, t) 7→ (α(s), γ(t))

.

is a Lagrangian cobordism (γ, γ−1)  ∅. Therefore, Theorem 2.4.2 gives the desired
isomorphism. �

Corollary 2.4.4. There is a natural group morphism

ΘBC : Ωimm,unob
cob (Sg)→ K0(DFuk(Sg)),

which maps the class of an embedded curve γ to its representative in K0(DFuk(Sg)).
Further, this morphism is surjective.

Proof. The existence of the morphism ΘBC : Ωimm,unob
cob (Sg)→ K0(DFuk(Sg)) is imme-

diate from Theorem 2.4.2.
Moreover, recall from [Abo08] that the group K0(DFuk(Sg)) is generated by embed-

ded curves. Hence, the image of ΘBC is the whole group K0(DFuk(Sg)). �

2.5. Computation of the unobstructed Lagrangian Cobordism Group

In this section, we compute the unobstructed Lagrangian cobordism group Ωimm,unob
cob (Sg).

First, notice that by the results of subsection 2.2.2, the homology class and the Maslov
class yield maps

π : Ωimm,unob
cob (Sg)→ H1(Sg,Z), µ : Ωimm,unob

cob (Sg)→ Z/χ(Sg)Z.

Our main tool is the following
Theorem 2.5.1. There is a long exact sequence

0→ R i−→ Ωimm,unob
cob (Sg)

π⊕µ−−→ H1(Sg,Z)⊕ Z/χ(Sg)Z→ 0.

Furthermore, this exact sequence is split.
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2.5.1. Holonomy and the map i

In this subsection, we define an injection

i : R→ Ωimm,unob
cob (Sg).

This map has a simple geometric interpretation: to a real number x, it associates the
oriented boundary of a cylinder of area x. We have to check that the map is indeed
well-defined.

Let p : S(TSg) → Sg be the unit tangent bundle with respect to the metric gj =

ω(·, j·). We choose a one-form A ∈ Ω1(S(TSg)) such that

p∗ω = dA.

An immersed curve γ : S1 → Sg admits a canonical lift to S(TSg):

γ̃ : S1 → S(TSg)

t 7→
(
γ(t), γ

′(t)
|γ′(t)|

)
We define the holonomy of γ with respect to A by

HolA(γ) :=

∫
S1

γ̃∗A.

We shall use the following properties of this number.
Proposition 2.5.2. The following assertions are true.

(i) Let F : [0, 1] × S1 → Sg be an isotopy between the two immersed curves γ0 and
γ1. Then

HolA(γ1)− HolA(γ0) =

∫
[0,1]×S1

F ∗ω.

(ii) There is a well-defined group morphism

HolA : Ωimm,unob
cob (Sg)→ R

whose value on the class of an embedded curve γ is HolA(γ).

Proof. There is a natural lift of F to S(TSg):

F̃ : [0, 1]× S1 → S(TSg)

(t, s) 7→
(
F (t, s), ∂tF (t,s)

|∂tF (t,s)|

) .
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We now apply Stokes Theorem:

HolA(γ1)− HolA(γ0) =

∫
S1×{1}

F̃ ∗A−
∫
S1×{0}

F̃ ∗A

=

∫
S1×[0,1]

F̃ ∗dA

=

∫
S1×[0,1]

F̃ ∗p∗ω

=

∫
S1×[0,1]

F ∗ω.

Recall from Corollary 2.4.4 that there is a natural group morphism

ΘBC : Ωimm,unob
cob (Sg)→ K0(DFuk(Sg)).

On the other hand, it is a result of Abouzaid ([Abo08, Proposition 6.1]) that the holo-
nomy induces a group morphism

K0(DFuk(Sg))→ R.

Therefore, the composition of these two is a group morphism. This proves (ii). �

The following lemma seems to be a well-known fact ([Sei11, Section 6]). I learned
its proof from Jordan Payette.
Lemma 2.5.3. Let γ0 and γ1 be two isotopic embedded curves with

HolA(γ1) = HolA(γ0).

Then the curves γ0 and γ1 are Hamiltonian isotopic to each other.

Proof. We fix an isotopy (γt)t∈[0,1] from γ0 to γ1.
Let φt : Sg → Sg be a global isotopy of diffeomorphisms such that φt ◦ γ0 = γt.

Choose a symplectic embedding ψ : S1 × (−ε, ε)→ Sg such that ψ(s, 0) = γ0(s). In the
coordinates (s, u) ∈ S1 × (−ε, ε) there is a smooth function f > 0 such that (φt)∗ω =

f(s, u, t)ds ∧ du. We let β : S1 × (−ε, ε)× [0, 1]→ R be a smooth function such that
• we have β(s, u, t) = 1

f(s,u,t)
for |u| < ε

3
,

• we have β(s, u, t) = 1 for |u| > 2ε
3
.

Define, for t ∈ [0, 1]

ψt : S1 × (−ε, ε) → S1 × (−ε, ε)
(s, u) 7→ (s, uβ(u, s, t))

Since this map coincides with the identity on the open set
{

(s, u)
∣∣|u| > 2ε

3

}
, it extends

to a diffeomorphism ψt : Sg → Sg.
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Consider χt = φt◦ψt and let ωt = (χt)∗ω. This isotopy satisfies χt◦γ0 = γt. Moreover,
the family (ωt)t∈[0,1] is constant along γ0. One can easily apply Moser’s trick to find a
family of transformation Φt such that (Φt)∗ωt = ω and Φt(γ0) = γ0.

The composition χt ◦ Φt is a symplectic isotopy Ψt : Sg → Sg such that

Ψt ◦ γ0 = γt.

Moreover, this has zero flux along the path γ0. We call Xt the symplectic vector field
generated by Ψt.

We adapt the construction of [MS17, Theorem 10.2.5] to obtain a Hamiltonian iso-
topy between γ0 and γ1.

The difference of holonomy between γ1 and γ0 is

HolA(γ1)− HolA(γ0) =

∫ 1

0

∫ 1

0

ω

(
d

dt
(Ψt ◦ γ0)(s),

d

ds
(Ψt ◦ γ0)(s)

)
dtds

=

∫ 1

0

∫ 1

0

ω
(
Xt ◦Ψt ◦ γ0(s), dΨt(γ′0(s))

)
dtds

=

∫ 1

0

∫ 1

0

ω
((

Ψt
)∗Xt(γ0(s)), γ′0(s)

)
dtds

=

∫
S1

γ∗0

[∫ 1

0

ω
((

Ψt
)∗Xt, ·

)
dt

]
So the one-form

γ∗0

[∫ 1

0

ω
((

Ψt
)∗Xt, ·

)
dt

]
is exact on S1. Hence, there is a smooth function

F : Im(γ1)→ R

such that

∀v ∈ T (Im(γ0)),

∫ 1

0

ω
((

Ψt
)∗Xt, v

)
dt = −dF · dΨ1(v).

We extend F to a smooth function

F : Sg → R.

We define a new isotopy (Φt)t∈[0,1] by

Φt =

{
ψ2t for t ∈

[
0, 1

2

]
φ1−2t
F ◦ ψ1 for t ∈

[
1
2
, 1
] .
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Call Yt its associated vector field. We compute for v ∈ Im(γ0),∫ 1

0

ω
((

Φt
)∗Yt, v) =

∫ 1
2

0

ω
((

Ψ2t
)∗X2t, v

)
2dt−

∫ 1

1
2

ω
((
φ1−2t
F ◦Ψ1

)∗XF , v
)
2dt

=

∫ 1

0

ω
(
(Ψt)∗Xt, v

)
dt−

∫ 1

1
2

ω(XF◦Ψ1 , v)2dt

= −d
(
F ◦Ψ1

)
(v) + d

(
F ◦Ψ1

)
(v).

So ∫ 1

0

ω
((

Φt
)∗Yt, vdt) = 0 (2.12)

We let

Zt = −
∫ t

0

(
Φλ
)∗Yλdλ

and θst be the flow associated to Zt. Then the isotopy µt = Φt ◦ θ1
t is Hamiltonian (see

the proof of [MS17, Theorem 10.2.5]).
Moreover, from 2.12, we have for all v ∈ T (Im(γ0))

ω(Z1, v) = 0.

Hence, Z1 is tangent to Im(γ0). Therefore, θ1
1(γ0) ⊂ Im(γ0). We deduce

µ1(Im(γ0)) = Φ1(θ1
1(Im(γ0)))

= φ−1
F (Im(γ1)).

So the Hamiltonian isotopy (φtF ◦ µt)t∈[0,1] maps the image of the curve γ0 to the image
of γ1. �

Here is the main result of this section.
Proposition 2.5.4. Let γ1, γ2 (resp. γ̃1, γ̃2) be two isotopic non-separating embedded
curves such that

HolA(γ2)− HolA(γ1) = HolA(γ̃2)− HolA(γ̃1).

Then, in Ωimm,unob
cob (Sg), we have

[γ2]− [γ1] = [γ̃1]− [γ̃2].

Proof. First case. We assume that the curves γ1, γ2, γ̃1, γ̃2 are pairwise disjoint.
Furthermore, we assume that the pair (γ1, γ2) does not bound any oriented surface.
Then, by the change of coordinates principle ([FM12, 1.3]), we are in the situation of
Figure 11.

We do the successive surgeries indicated in Figure 11. This process produces a curve
γ7 isotopic to γ2. Here are the steps in detail.
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γ̃1 γ2

γ3 γ4

γ5 γ6

γ7

Figure 11 – The successive surgeries which link two non separating curves

(1) The first step is the surgery of γ̃1 with the curve γ3 represented at the left of the
first row of Figure 11. This yields a curve γ4 whose holonomy is

HolA(γ4) = HolA(γ̃1) + HolA(γ3).

(2) The second step is the surgery of γ2 with the curve γ4 at their unique intersection
point. This yields a curve γ5 represented in the left of the second row of Figure
11. Its holonomy is

HolA(γ5) = HolA(γ4) + HolA(γ2).

(3) We pick a curve Hamiltonian isotopic to γ1 which intersects γ5 in a unique point.
It is represented in red in the left of the second row of Figure 11 We perform the
surgery of this curve with γ5. This yields a curve γ6 represented in the right of
the second row. Its holonomy is

HolA(γ6) = HolA(γ5)− HolA(γ1).
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(4) We pick a curve Hamiltonian isotopic to γ−1
3 which intersects γ6 in a unique point.

It is represented in red in the right of the second row of Figure 11 We perform the
surgery of this curve with γ6. This yields the curve γ7 represented in the third
row. Its holonomy is

HolA(γ7) = HolA(γ6)− HolA(γ3).

Therefore, the holonomy of γ7 is given by

HolA(γ7) = HolA(γ6)− HolA(γ3)

= HolA(γ5)− HolA(γ1)− HolA(γ3)

= HolA(γ4) + HolA(γ2)− HolA(γ1)− HolA(γ3)

= HolA(γ̃1) + HolA(γ3) + HolA(γ2)− HolA(γ1)− HolA(γ3)

= HolA(γ̃1)− HolA(γ1) + HolA(γ2)

= HolA(γ̃2)

since HolA(γ2) − HolA(γ1) = HolA(γ̃2) − HolA(γ̃1). Hence, the curve γ7 is Hamiltonian
isotopic to γ̃2 by Proposition 2.5.2. Since two Hamiltonian isotopic curves are embbedded
Lagrangian cobordant (see Remark 2.2.4), we have

γ̃2 = γ7.

in Ωimm,unob
cob (Sg).
The steps described above produce several Lagrangian cobordisms that are all embed-

ded and oriented. We can glue these together to obtain an embedded oriented Lagrangian
cobordism (γ−1

3 , γ̃1, γ3, γ2, γ
−1
1 )→ γ7. Hence, in Ωimm,unob

cob (Sg)

γ̃2 = γ7

= −γ3 + γ̃1 + γ3 + γ2 − γ1

= γ̃1.

This finishes the proof of the first case.
General case. [FM12, Theorem 4.3] there exists a sequence of non-separating

embedded curves γ1 = α1, . . . , αk = γ2 such that for each i ∈ {1, . . . , k}, αi and αi+1

have no intersection points. Now, apply the first case iteratively to conclude. �

There is a direct definition for the application i. Let γ be a non-separating embedded
curve. There is ε > 0 such that if |x| < ε, there exists an embedded curve γ̃ isotopic to
γ such that

HolA(γ̃)− HolA(γ) = x.
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Now, let x ∈ R and x1, . . . , xm ∈ R with

{
x1 + . . . xm = x

∀i ∈ {1 . . .m}, |xi| < ε
.

For i = 1 . . .m, we choose an embedded curve γi isotopic to γ such that

HolA(γi)− HolA(γ) = xi.

We put

i(x) =
m∑
i=1

([γi]− [γ]).

Corollary 2.5.5. In the setting above, this defines an injective group morphism

i : R→ Ωimm,unob
cob (Sg).

Proof. It is easy to see, using Proposition 2.5.4, that i(x) does not depend on the
choice of x1, . . . , xm, nor on the choice of γ. Therefore, it defines a group morphism
i : R→ Ωimm,unob

cob (Sg).
Moreover, notice that by definition

HolA(i(x)) = x,

so i is injective. �

2.5.2. Surgery of immersed curves and obstruction

Throughout this subsection we let α : S1 → Sg and γ : S1 → Sg be immersed curves
such that

(i) α is embedded,
(ii) γ is unobstructed,
(iii) α and γ are transverse.
A bigon is an immersed polygon with one boundary arc on α and one boundary arc

on γ. Notice that a bigon is not necessarily injective. We say that α and γ are in minimal
position if there are no bigons between α and γ. There is a useful criterion to detect
minimal position for transverse curves.
Lemma 2.5.6. In the above setting, if there are s0 6= s0 and t0 6= t0 such that the loop
γ|[t0,t0] · α−1

|[s0,s0] is homotopic to a constant, then γ and α are not in minimal position.

Proof. The hypothesis implies that the loop γ|[t0,t0] · α−1
|[s0,s0] lifts to the universal cover

S̃g of Sg. Denote this loop by f : S1 → S̃g.
So there are two lifts α̃ : R→ S̃g and γ̃ : R→ S̃g of α and γ respectively such that

γ̃|[t0,t0] · α̃−1
|[s0,s0] = f.
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Figure 12 – Rounding off a corner yields a teardrop.

Assume there are
• two increasing sequences (sn)n∈N, (tn)n∈N,
• two decreasing sequences (sn)n∈N, (tn)n∈N,

such that

∀n ∈ N, s0 < sn < sn < s0,

∀n ∈ N, t0 < tn < tn < t0,

and such that the path γ̃|[tn,tn] · α̃−1
|[sn,sn] is a loop.

If sn−sn → 0, then the adjacent sequences (sn) and (sn) converge to a common limit,
say l. So there is a sequence of intersection points between α̃ and γ̃ which accumulates
at α̃(l). This is absurd since α and γ are transverse. We conclude that the sequence
(sn − sn) has a positive limit. The same argument shows that (tn − tn) has a positive
limit.

From this we infer that there are s < s and t < t such that the path

γ̃|[t,t] · α̃−1
|[s,s]

is an embedded loop. Hence, this bounds an embedded bigon, say u. Now since the
projection p : S̃g → Sg is an immersion, the map p ◦ u is an immersed bigon with
boundary arcs on γ and α. �

Let x be an intersection point between α and γ. In what follows, we will need to find
situations where the surgery γ#xα is unobstructed. Unfortunately, if the curves α and γ
are not in minimal position, the surgery can be obstructed. I will now sketch what can
go wrong in this case.

Assume that there is a bigon between the curves α and γ with
• convex corners3,
• and one corner at x.

If the surgery at the point x is done the wrong way, the corner at x can be rounded off
to produce a teardrop with boundary on γ#xα. See Figure12.

3See Definition 2.3.8
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α

γ

Figure 13 – The curves α and γ bound a square with four corners.

At first, it seems that the reverse procedure shows that if α and γ are in minimal
position, then the surgery is unobstructed. If there is a teardrop u with boundary on
γ#xα, we should be able to modify it to produce a bigon between α and γ. Unfortunately,
this is not true. Indeed, assume that there is a teardrop u with boundary on the surgery
γ#xα. Following the boundary of u, we see that it must switch several times between α
and γ. Since this number may be greater or equal than two, the procedure will in general
produce a polygon with boundary on α and γ and more than two corners. These can
certainly exist even when α and γ are in minimal position, see Figure 13.

However, we can bypass this difficulty. It turns out that, by a topological argument,
the number of boundary switches of u is at most two. So the resulting polygon has at
most three corners. With this bound in hand, it is possible to cut the polygon to obtain
an actual bigon on α and γ. This is the content of the following proposition.
Proposition 2.5.7. We let α and γ be as in the beginning of Subsection 2.5.2. Let x be
an intersection point of degree 1 between γ and α.

Further, we assume
(i) the curves γ and α are in minimal position,
(ii) the curve γ#xα is not homotopic to a constant.

Then, the surgery γ#xα is unobstructed.
Remark 2.5.8. As mentioned earlier, throughout the proof of Proposition 2.5.7, we cut
a polygon u with boundary on the immersion α ∪ γ along the set u−1(α).

This is a very natural technique to find bigons with certain properties (in particular
it is used in [FM12, Proposition 1.7]). In symplectic topology, a variant of this was
introduced by Lazzarini ([Laz00],[Laz11]). If u : D→ M is a J-holomorphic disk with
boundary on an embedded Lagrangian L ⊂ M , he introduced a graph W(u) ⊂ u−1(L)

called the frame of u. Cutting along W(u) produces several multiply covered or simple
pieces of the original disk u. See also [KO00] for a detailed analysis of the set u−1(L)

and [Per18] for the case of pseudo-holomorphic polygons with boundary on a Lagrangian
immersion.

132



Here, our goal is slightly different (even though the set u−1(α) is a subgraph of
Lazzarini’s frame). We will cut the polygon u in order to find pseudo-holomorphic curves
with the least number of corners.

Proof of Proposition 2.5.7. The proof will proceed by contradiction. We assume
that the surgery is obstructed.

Let us start with a quick outline of the proof of the Proposition.
(1) In Lemma 2.5.9, we show that there is an immersed teardrop u on γ#xα.
(2) In Lemma 2.5.10 and Figure 16, we describe precisely the behavior of the teardrop

around the surgered point. From this we construct an immersed polygon v with
boundary on α and γ in Lemma 2.5.12.

(3) Using algebraic properties of the fundamental group of Sg, we bound the number
of corners of the polygon v. Then by considering the connected components
of D\v−1(α), we conclude that there is a bigon between γ and α. This is a
contradiction since γ and α are in minimal position.

We start with the following lemma.
Lemma 2.5.9. Let γ : S1 → Sg be a generic curve which is obstructed and non-
homotopic to zero. Then there exists an immersed holomorphic teardrop with boundary
on γ and corner at a double point of γ.

Moreover, the corner of this teardrop covers one or three quadrants.

Proof. Let γ̃ : R → S̃g be a lift of γ to the universal cover p : S̃g → Sg of Sg. Since γ
is obstructed, there are two reals s0 < t0 such that γ̃(s0) = γ̃(t0).

We claim that there are s < t such that γ̃(s) = γ̃(t) and such that γ̃|(s,t) is injective.
Assume by contradiction that there are sequences (sn)n∈N and (tn)n∈N with

• ∀n ∈ N, s0 < sn < tn < t0,
• the sequence (sn)n∈N is increasing, the sequence (tn)n∈N is decreasing and the
sequence (tn − sn)n∈N converges to 0,
• ∀n ∈ N, γ̃(sn) = γ̃(tn).

Call s∞ the limit of the adjacent sequences (sn)n∈N and (tn)n∈N. Since γ̃ is an immersion,
it is in particular a local embedding around s∞. But there is a sequence of distinct double
points converging to S∞.

Now, since S1 is compact and γ̃|(s,t) is injective, γ̃|(s,t) is an embedded curve. Call Ω

the bounded connected component of S̃g\ Im
(
γ̃|(s,t)

)
. By the Riemann mapping Theorem,

there is a biholomorphism u : D → Ω which extends to a homeomorphism ũ : D → Ω.
Moreover, we assume that ũ(−1) = γ̃(s) = γ̃(t). Since its image is of finite area, ũ is of
finite energy.
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γ+

γ−

Figure 14 – The curves γ+ and γ− near the intersection point x.

The map ũ is a holomorphic teardrop. Let us call ỹ = γ̃(s) = γ̃(t) its corner. Choose
ε � 1 and denote by α ∈ (0, π) the angle between γ̃|(s−ε,s+ε) and γ̃|(t−ε,t+ε). Choose a
local chart φ around y such that φ(γ̃|(s−ε,s+ε)) = R and φ(γ̃|(t−ε,t+ε)) = eiαR. Then, by
[Per18, Proposition 5] , there is a local chart ψ : Ω → D around −1 with domain a
neighborhood of 0 in the Poincaré half-plane such that

φ ◦ ũ ◦ ψ(z) = zα+m−1.

Here, m is the number of quadrants covered by ũ at its corner. Hence, if m > 4, ũ is not
injective.

Now, since the projection p is an immersion, the map p ◦ ũ satisfies the conclusion of
the lemma. �

We now return to the setting of Proposition 2.5.7. By Lemma 2.5.9 above, there is
an immersed holomorphic teardrop u with boundary on γ#xα. We denote its corner by
y.

Recall from 2.2.1 that we denoted by Ux the Darboux neighborhood in which we
perform the surgery. We call γ+ (resp. γ−) the upper (resp. lower) connected component
of Im(γ#xα) ∩ Ux. See Figure 14.

The set u−1
|∂D(Ux) is a finite union of arcs. We label them clockwise by A1, . . . , AN .

Moreover, for i = 1 . . . N , we call Ci the connected component of u−1(Ux) which contains
Ai. See Figure 15.
Lemma 2.5.10. Let i ∈ {1, . . . , N}. With the notations above, the open set Ci is an
embedded half-disk. Moreover, the map u restricts to a biholomorphism from Ci to one
of the quadrants represented in Figure 16.

Proof. There are four possibilities for the image of u|Ci .
(1) The image of the map u|Ai is a subset of Im(γ+) and the orientations of the

arcs u|Ai and Im(γ+) coincide. This is represented as Type A+ in the upper left
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A1

A2

A3

C1

C2

u−→

Figure 15 – The arcs Ai map to the connected components of Ux ∩ γ#xα

Type A+ Type B+

Type A− Type B−

Q

Q

Q
Q

Figure 16 – The four possibilities for the image of u around the
surgered point.

The arrows correspond to the orientation of the boundary of u.

of Figure 16. In this case, we call Q the closure (in Sg) of the shaded region
represented in the upper left of Figure 16. Moreover, we put ε = +.

(2) The image of the map u|Ai is a subset of Im(γ+) and the arcs u|Ai and Im(γ+)

have opposite orientation. This is represented as Type B+ in the upper right
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of Figure 16. In this case, we call Q the closure (in Sg) of the shaded region
represented in the upper right of Figure 16. Moreover, we put ε = +.

(3) The image of the map u|Ai is a subset of Im(γ−) and the orientations of the arcs
u|Ai and Im(γ−) coincide. This is represented as Type A− in the bottom left
of Figure 16. In this case, we call Q the closure (in Sg) of the shaded region
represented in the bottom left of Figure 16. Moreover, we put ε = −.

(4) The image of the map u|Ai is a subset of Im(γ−) and the orientations of the arcs
u|Ai and Im(γ+) differ. This is represented as Type B− in the bottom right
of Figure 16. In this case, we call Q the closure (in Sg) of the shaded region
represented in the bottom right of Figure 16. Moreover, we put ε = −.

We will also denote the closure of Ci in D by Ci. We also put Int(Ci) = Ci\∂D.
Notice that, since u|Ci is immersed and holomorphic, there is a z ∈ Int(Ci) such that

u(z) ∈ Int(Q). We will also denote the closure of Ci in D by Ci.
First step: We claim that Im(u|Ci) ⊂ Q. Assume, by contradiction, that there is a

z1 ∈ Ci such that u(z1) /∈ Q.
We claim that u(Int(Ci))∩ Im(γε) 6= ∅. Indeed, pick a continuous path µ : [0, 1]→ Ci

such that µ(0) = z and µ(1) = z1. One can assume that for all t ∈ [0, 1), µ(t) ∈ Int(Ci).
If for all t ∈ [0, 1], u(µ(t)) /∈ Im(γε), then u ◦µ is path in Ux\ Im(γε) whose endpoints are
in two distinct connected components, a contradiction.

Now, since u is immersed and γε is embedded, the set Ci ∩ u−1(γε) is a union of
disjoint embedded arcs. We let Ω be the connected component of Ci\u−1(γε) which is
adjacent to Ai. Its closure Ω is a polygon with corners.

Notice that u(Ω) ⊂ Q. Otherwise, by a connexity argument, there would exist z2 ∈ Ω

such that u(z2) ∈ Im(γε). This is in clear contradiction with the definition of Ω. See
Figure 17 for a picture.

The map u|Ω is
• proper, since the sets Ci and Q are compact,
• a local homeomorphism since u is immersed.

So u|Ω is a connected cover of disk. Hence, it is a homeomorphism. By definition of Ω,
two arcs of ∂Ω have image contained in γ+. So u|Ω can not be injective, a contradiction.

Therefore, Im(u|Ci) ⊂ Q.
Second step: The map u|Ci → Q is
• proper, since the sets Ci and Q are compact,
• a local homeomorphism since u is immersed.

Therefore, it is a connected cover of a disk. We conclude that it is a homeomorphism.
In particular Ci is an embedded half-disk and u a biholomorphism. �
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Ω

Ai

Figure 17 – The connected component Ci, the set Ω (shaded) and
u−1(γ±) (in red).

Note that this is hypothetical : the proof of Lemma 2.5.10 shows that this
situation cannot happen.

Remark 2.5.11. As explained in Remark 2.5.8, in the proof of Lemma 2.5.10, the set
u−1(γε) is a subset of the frame W(u) of the curve u in the sense of Lazzarini ([Laz00],
[Laz11]), see also [Per18]. This is a C1-embedded graph along which we can cut the
map u to obtain simple or multiply covered polygons or disks.

The next step of the proof is the construction of an immersed holomorphic polygon
v with boundary on γ and α by "filling the corners".
Lemma 2.5.12. We use the notations above. There is an immersed holomorphic polygon

v : (D, ∂D)→ (Sg, Im(α) ∪ Im(γ))

such that
• the map v|v−1(Ux) is a reparameterization of u|u−1(Ux),
• each connected component of v−1(Ux) is a disk,
• v has a unique corner which maps to x within each connected component of
v−1(Ux),
• v has one corner at y and an odd number of corners at x.

Proof. The construction of v is represented in Figure 18. Let i ∈ {1 . . . N}.
First case: The map u is of Type A+ or of Type B− near Ai (see Figure 16 for the
definition of Type). Consider the closed region Ri at x indicated in Figure 18. Choose a
biholomorphism

vi : D→ Ri.

This extends, by Caratheodory Theorem, to a homeomorphism

vi : D→ Ri.
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Ri

Ri

Figure 18 – The procedure to obtain the polygon v
.

We call Bi the arc v−1
i (γ±). There is a unique map φi : Bi → Ai such that

∀x ∈ Bi, u(φi(x)) = vi(x).
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We let S = D ∪φi D be the surface obtained by gluing two copies of the disk along φi.
Then, S can be endowed with a Riemann surface structure. For x in the interior of one
of the copies of D, the chart is the natural one. If z = φi(w) belongs to Ai, choose a disk
Dx contained in Ux and such that u(z) ∈ Dx. We put U = u−1(Ux)∪φi v−1

i (Ux). A chart
around x is given by the map

y ∈ U 7→

{
u(y) if y ∈ u−1(Ux)

v(y) if y ∈ v−1
i (Ux)

.

Then, the applications u and vi induce a map v : S → Sg. By definition, it is indeed
holomorphic. Since v is holomorphic, its energy is the area of the image. Hence, it is
finite. The surface S is simply connected, hence biholomorphic to a disk. We conclude
that v is a holomorphic polygon with one more corner at x.
Second case: The corner is of type A− or B+. Denote by A the red piecewise dif-
ferentiable arc represented in Figure 18. Recall that Ci is the connected component of
u−1(Ux) which contains Ai. Then Ar := u−1(A) ∩ Ci is an embedded piecewise differen-
tiable arc. Therefore, D\Ar has two distinct simply-connected components Ω1 and Ω2.
We can assume that Ω1 is the only one which contains x. The map v is the restriction
of u to Ω1.

We repeat this process for i = 1 . . . N to obtain an immersed holomorphic polygon
with boundary on α and γ. It has one corner at y and N corners at x. Since the boundary
of the polygon necessarily switches from α to γ or γ to α at each corner, the number N
is odd. �

Notice that the concatenation β = γ · α is a continuous loop and as such can be
regarded as an continuous map β : S1 → Sg. We assume that it is parameterized so that

• β(i) = β(−i) = x,
• β(−1) = β(1) = y,
• β restricted to the counterclockwise arc from i to −i is a reparameterization of
γ,
• β restricted to the counterclockwise arc from −i to i is a reparamaterization of
α.

Moreover, we introduce the following notations.
• We let x− : [0, 1] → S1 be the counterclockwise arc of S1 from −1 to 1 and β−
be the map β ◦ x−.
• We let x+ : [0, 1] → S1 be the counterclockwise arc of S1 from 1 to −1 and β+

be the map β ◦ x+.
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From the construction of the polygon v, we see that we can lift its boundary to a con-
tinuous path f : [0, 1] → S1 such that β ◦ f = v|∂D. Since v has a corner at x, we
have

• either f(0) = −1, f(1) = 1,
• or f(0) = 1, f(1) = −1.

Case f(0) = −1, f(1) = 1. Since the concatenation f · x−1
− is a loop based at −1, there

is k ∈ Z such that f · x−1
− is homotopic to (x− · x+)k relative to −1.

By a Theorem of Jaco ([Jac70, Corollary 2]), the subgroup of π1(Sg, y) generated by
the classes of β− and β+ is free. So there are three alternatives to consider.

(1) There are no relations between β− and β+ in π1(Sg, y) (so they generate a free
group of rank 2).

(2) There is m ∈ Z such that β+ = βm− in π1(Sg, y).
(3) There is m ∈ Z such that β− = βm+ in π1(Sg, y).

Since β ◦ f is the boundary of v, we have in π1(Sg, y)

e = (β ◦ f)

= (β− · β+)kβ−.

So the case (1) can not hold. Therefore, we are in one of the cases (2) or (3).
Case β− = βm+ . Then, we have in π1(Sg, y)

e =(β− · β+)kβ− (2.13)

=β
k(m+1)+m
+ . (2.14)

If β+ = e in π1(Sg, y), then β− = e so that β bounds a disk. Therefore, the surgery γ#xα

bounds a disk and is contractible. This contradicts the hypothesis on γ#xα. Therefore,

k(m+ 1) +m = 0.

There are two solutions to this equation, (m, k) = (0, 0) or (m, k) = (−2,−2).
If m = k = 0, then equation 2.14 implies β− = e. We conclude that γ and α are not

in minimal position by Lemma 2.5.6.
If m = k = −2, the conclusion follows from a combinatorial argument. Indeed, the

boundary f is homotopic to x−1
+ · x−1

− · x−1
+ . We deduce that the polygon v has three

corners at x of successive types B−, B+ and B− (see Figure 16). We assume that these
corners are counterclockwise the image of x1, x2 and x3.

Since v is immersed and α is embedded and not contractible, the set v−1(α) is a union
of embedded arcs with endpoints on the boundary of D. The corner at x2 is of type B+,
so there is one arc A with an endpoint at x2. Since α is embedded and x1 and x2 are of
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•x1

•
x3

•x2

•x1

•
x3

•x2

Figure 19 – The arc A and the bigons delimited by A (shaded)

type B−, the other endpoint of A belongs to one of the open boundary arcs (x2, x3) or
[−1, x1) (see Figure 19). In the left case, the map v restricted to the bigon delimited by
A and the boundary (represented in Figure 19) yields a strip with boundary on α and γ.
In the right case, since x2 is of type B−, v restricted to the shaded area is also a bigon.
So α and γ are not in minimal position.
Case β+ = βm− . Then, in π1(Sg, y),

e =(β− · β+)kβ− (2.15)

=(βm+1
− )kβ− (2.16)

=β
k(m+1)+1
− . (2.17)

If β− = e, then β+ also represents the neutral element. We deduce that the surgery γ#xα

bounds a disk, which contradicts the hypothesis of the proposition. Hence, k(m+1)+1 =

0 so (k,m) = (1,−2) or (k,m) = (−1, 0). But if m = 0, then β+ = e so that α and γ are
not in minimal position by Lemma 2.5.6. Therefore, (k,m) = (1,−2). The boundary f
of the polygon v is homotopic to x− · x+ · x−. So the polygon v has three corners at x of
successive types A+, A− and A+. We call their respective pre-images x1, x2 and x3

As before, v is an immersion and α is embedded and not contractible, so v−1(α)

is a union of embedded arcs with endpoints on the boundary ∂D. Since x2 has type
A−, there is one arc with an endpoint at x2 which we call A. Its other end lies either
in the boundary arc [−1, x1) or in the boundary arc (x2, x3) (see Figure 19). In each
case v restricts to an immersed bigon, so that γ and α are not in minimal position, a
contradiction.
Case f(0) = 1, f(1) = −1. Here, the concatenation f · x− is a loop based at 1. So there
is k ∈ Z such that f is homotopic relative endpoints to (x+ · x−)k · x−1

− .
Since we have, in π1(Sg, y)

(β+ · β−)kβ−1
− = e
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x1
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x3

Figure 20 – The arc A and the bigons delimited by A (shaded)

We have either β− = βm+ for some m ∈ Z or β+ = βm− for some m ∈ Z.
Assume there is m ∈ Z such that β− = βm+ . The integer m cannot be zero, otherwise

γ and α are not in minimal position. Then from β ◦ f = e, we get (β+)k(m+1)−m = e.
So m = −2 and k = 2. Therefore, f is homotopic to x+ · x− · x+. So the polygon v has
three successive corners at x of successive types A−, A+ and A−. We call their respective
pre-images x1, x2 and x3.

The polygon v is immersed and α is embedded an not contractible, so the set v−1(α)

is a union of embedded arcs with endpoints on ∂D. Since x1 is of type A−, there is an arc
A with an endpoint at x1. Since α is embedded, the other endpoint of A is either on the
boundary arc [x3, x1] or on the arc (x1, x2) (see Figure 20). In both cases, v restricted
to the shaded area in Figure 20 is a bigon. So α and γ are not in minimal position, a
contradiction.

Assume that there is m ∈ Z such that β+ = βm− . This time, we have (m, k) =

(−2,−1). So the polygon v has three successive corners at x of types B−, B+, B−. We
call x1, x2 and x3 their pre-images.

The arc A ⊂ v−1(α) with an endpoint on x1 has other endpoint either on [x3, x1]

or on the arc (x1, x2) (see Figure 20). In either case, v restricted to the shaded area in
Figure 20 is a bigon. So α and γ are not in minimal position, a contradiction. �

2.5.3. Obstruction of the surgery cobordisms

We suppose that we are in the setting of Subsection 2.5.2. There are
• an embedded curve α,
• a generic curve γ in minimal position with α,
• an intersection point x of degree 1 between α and γ.
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Proposition 2.5.13. Under the hypotheses of Subsection 2.5.2, the immersed surgery
cobordism

V : (γ, α) γ#xα,

constructed in 2.2.1 does not bound a continuous polygon with a unique corner.

Proof. Recall from Subsection 2.5.2 that the cobordism V : (γ, α)  γ#xα is an
immersion i : P # C × Sg of a pair of pants P . The immersion i is the smoothing of a
piecewise smooth immersion i+ t j : P # C × Sg. Moreover, by Lemma 2.2.10 there is
a homotopy (iλ)λ∈[0,1] which interpolates between i+ t j and i and is constant near the
double points of i. See Figure 2 for the projections of these objects to the complex plane.

Assume there is a topological teardrop with boundary on i. So there are
• a continuous map u : (D, ∂D)→ (C× Sg, i(V )),
• a continuous map ũ : (−π, π)→ S such that

∀θ ∈ (−π, π), i ◦ ũ(θ) = u
(
eiθ
)
,

and
lim

t→−π+
γ(t) 6= lim

t→π−
γ(t).

In particular u(−1) is a double point of the immersion i :

u(−1) ∈ DP ∪DP1 ∪DP2 ∪DP0,

(see the end of 2.2.1 for the notations).
First step. From Lemma 2.2.10, we know that there is a continuous homotopy (iλ)λ∈[0,1]

from i0 = i+ t j to i1 which is constant near the double points of i. For λ ∈ [0, 1], the
path

iλ ◦ ũ : (−π, π)→ S,

satisfies
iλ ◦ ũ(−π) = iλ ◦ ũ(π).

We let uλ : ∂D→ C× Sg be the path defined by

∀θ ∈ (−π, π), uλ
(
eiθ
)

= iλ ◦ ũ(θ).

Let A(1, 2) ⊂ C be the closed annulus {z ∈ C|1 6 |z| 6 2}. We now glue the map

A(1, 2) → C× Sg
reiθ 7→ u2−r

(
eiθ
) ,

along the boundary of u to obtain a teardrop v with boundary on i0. Its lift to the
domain of i0 is the map ũ.
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Second step. We let C be the union of R− × {0} and {0} × R+. We let

p : R2 → C

(x, y) 7→

{
(0, x+ y) if y 6 −x
(x+ y, 0) if x 6 −y

.

The map p is the continuous projection along the ray {x = −y} onto C.
We let

p− : R2 → R2

(x, y) 7→

{
(x, y) if x 6 0, y > 0

p(x, y) else

The map w = p− ◦ v is a continuous teardrop with boundary on i+ t i−.
Third step. Recall from 2.2.1 that, in the chart C×Ux, the immersion i+t i− coincides
with the handle

Hε =
{
εc(t)z

∣∣t ∈ R, z = (x, y) ∈ S1
}
,

where c is a smooth path interpolating between R and iR.
We let

A =
{
εc(0)z

∣∣ z = (x, y) ∈ S1
}

be the core of the handle Hε.
Denote by w̃ : (−π, π)→ S the lift of w to the domain of i+ t i− defined by

∀θ ∈ (0, π), w
(
eiθ
)

= i+ t i−(w̃(θ)).

Both of the endpoints of w̃ do not belong to A. Therefore, we can homotope w̃ relative
to its endpoints to a smooth path

ã : (−π, π)→ S

which is transverse to the set A. Since it is homotopic to w̃, the map i+ t i− ◦ ã bounds
a smooth topological teardrop a.
Fourth step. For t ∈ [0, 1], we let

pt : {(x, y)|x 6 0, y > 0} → R2

(x, y) 7→

{
(x+ ty, (1− t)y) if x+ y 6 0

((1− t)x, y + tx) if x+ y > 0

This is a continuous family which interpolates between p and the identity on the set

{(x, y)|x 6 0, y > 0}.

Notice that for t ∈ [0, 1) the paths

ct := pt ◦ c
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are smooth.
Let U be the set ∂D ∩ a−1(C× Ux). There are smooth functions

s : Ux → R, (x, y) : U → S1

such that
∀θ such that eiθ ∈ Ux, a(eiθ) = c ◦ s(θ)(x(θ), y(θ)).

Now, we attach the map

A(1, 2) → C× Sg
reiθ 7→ pr−1 ◦ c ◦ s(θ)(x(θ), y(θ))

along the boundary of a to obtain a continuous polygon b.
We let b be the projection of b on the surface Sg

b := pSg ◦ b.

Fifth step. We build a non-constant teardrop on γ1#xγ2 from b. Notice that for t ∈ ∂D,
we have a(t) ∈ A if and only if b(t) = x. Let t0 be such that a(t0) ∈ A.

There is a connected open neighborhood V of t0 in ∂D such that ∀t ∈ V,w(t) ∈
C × Ux and b(t) ∈ Ux. We write (in the Darboux chart for Ux that we fixed earlier)
a(t) = (w1(t), w2(t)) for t ∈ V . Then, there are smooth functions s : V → R, x : V → R
and y : V → R with s(t0) = 0 such that

∀t ∈ V, a(t) = c ◦ s(t)(x(t), y(t)).

Up to homotopy, we can always assume that y′(t0) 6= 0. So

∀t ∈ V, a′(t) = s′(t)c′ ◦ s(t)(x(t), y(t)) + c ◦ s(t)(x′(t), y′(t)).

At a(to) = c(0)(x(0), y(0)), the tangent space of A is generated by c(0)(−y(0), x(0)).
Hence, since a′(t0) is transverse to A, we have s′(0) 6= 0.

Assume s′(t0) > 0. Then, p ◦ c(t) = (c1(t) + c2(t), 0) for t0 − α < t < t0 and
p ◦ c(t) = (0, c1(t) + c2(t)) for t0 + α > t > t0 close enough to t0. So we have

b(t) =

{
y(c1 ◦ s+ c2 ◦ s) if t0 − α < t < t0

iy(c1 ◦ s+ c2 ◦ s) if t0 < t < t0 + α
.

In particular, the left and right derivative at t0 are given by

b′(t−0 ) = y(t0)(c′1 + c′2)(0)s′(t0)

b′(t+0 ) = iy(t0)(c′1 + c′2)(0)s′(t0)
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So if y(t0) < 0, the path b parameterizes the real line R+ in the opposite orientation
followed by iR− in the opposite orientation. If y(t0) > 0, b parameterizes R− according
to its orientation followed by iR+.

If y(t0) = 0, we compute the second derivatives to get

b(2)(t−0 ) = 2y′(t0)(c′1 + c′2)(0)s′(t0)

b(2)(t+0 ) = 2iy′(t0)(c′1 + c′2)(0)s′(t0)

So we easily see that the same conclusion holds.
Therefore, we can lift b to a continuous path d : ∂D → γ#xα such that p ◦ d = b.

This path is homotopic (through the applications pt) to b. Hence, it extends to a map
d : D→ Sg with boundary on γ#xα. The map d is easily seen to be a teardrop. Hence,
γ#xα is obstructed, a contradiction with the hypothesis. �

Proposition 2.5.13 generalizes to the following.
Proposition 2.5.14. Assume that γ, α1, . . . , αN are unobstructed curves. We, moreover,
assume the following by induction.

We assume that γ and α1 are transverse. We let x1 be an intersection point between
γ and α1 of degree 1.

For k ∈ {1 . . . n − 1}, we assume that (γ#x1α1) . . .#xkαk is transverse to αk+1. We
assume that these two curves are in minimal position. We let xk be an intersection point
of degree 1 between these curves.

Moreover, we assume that each of the curves (γ#x1α1) . . .#xkαk is unobstructed for
k ∈ {1 . . . n}.

Then, the composition of the successive cobordisms

((γ#x1α1) . . .#xkαk, αk+1) (γ#x1α1) . . .#xk+1
αk+1

does not admit any topological teardrop.

Proof. The proof is a repeated application of the proof of the preceding proposition. �

We can deduce the following proposition.
Proposition 2.5.15. Assume that γ, α1, . . . , αN are as in Proposition 2.5.14. Then
there is an unobstructed Lagrangian cobordism

(γ, α1, . . . , αN) (γ#x1α1) . . .#xNαN .

Proof. First, we prove the following lemma which is a refinement of the construction
in the proof of Lemma 2.2.3.
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Lemma 2.5.16. Assume that i : V # C × Sg is an immersed oriented Lagrangian
cobordism with embedded ends such that

(1) the set of double points

{(x, y) ∈ V × V |i(x) = i(y), x 6= y}

is a finite disjoint union of embedded intervals Ik (with k = 1 . . . N) and of points
(xp, yp) (with p = 1 . . .M),

(2) the immersion i restricts to an embedding of the intervals Ik for k = 1, . . . , N ,
(3) if (x, y) ∈ Ik for some k, we have

dim(dix(TxV ) ∩ diy(TyV )) = 1,

(4) the space
dixp(TxpV ) ∩ diyp(TypV )

is null for p ∈ {1, . . .M}.
Then there is a smooth family of immersions it : V # C× Sg for t ∈ [0, 1] such that the
following properties hold.

(i) We have i0 = i.
(ii) For all t ∈ [0, 1], the immersion it coincides with V outside of a compact subset.
(iii) For almost all t ∈ [0, 1], the double points of it are transverse.
(iv) If (x, y) ∈ V are such that i1(x) = i1(y), then there are

• a smooth path γ = (x, y) : [0, 1]→ V × V with γ(1) = (x, y),
• a function f : [0, 1]→ [0, 1] with f(0) = 0 and f(1) = 1,

such that if(t)(x) = if(t)(y) for all t ∈ [0, 1].

Proof of Lemma 2.5.16. We extend the immersion i : V → C × Sg to a Weinstein
embedding Φ : T ∗ε V → C×Sg . We let K ⊂ V be a compact subset such that the image
of i|V \K is the disjoint union⋃

i=1...n

(R− × γi) ∪
⋃

j=1...m

(R+ × γj).

There is a smooth function f : V → R such that the following holds.
(A) The function f is null outside of K.
(B) Let π : T ∗ε V → V be the standard projection. We let Xf◦π be the hamiltonian

vector field of f ◦ π. For (x, y) ∈ Ik for some k ∈ {1, . . . N}, the vector

dΦx(Xf◦π(x))− dΦy(Xf◦π(y))

is transverse to the vector space di(TxV ) + di(TyV ).
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To see this, choose a vector field X on each tki(Ik) such that

di(TxV ) + di(TyV ) +X(i(x)) = Ti(x)(C× Sg)

for each (x, y) ∈ Ik. Choose disjoint neighborhoods Dk of Ik diffeomorphic to disks. We
extend X to a vector field on tDk. There is a smooth function f such that Xf◦π = X

on tDk. Now extend it to V using a smooth cut-off function.
We choose an increasing, smooth, cut-off function β : [0, ε]→ [0, 1] such that β(t) = 1

for t ∈
[
0, ε

3

]
and β(t) = 0 for t ∈

[
2ε
3
, 1
]
. We let g be the smooth function given by

g : T ∗ε V → R
(x, v) 7→ β(|v|)f ◦ π(x, v)

.

We denote by φtg : T ∗ε V → T ∗ε V the flow of Xg at the time t ∈ [0, 1].
We claim that for η > 0 small enough, the map

Ψ : L× L× [−η, η] → (C× Sg)× (C× Sg)
(x, y, t) 7→

(
Φ
(
φtg(x)

)
,Φ
(
φtg(y)

)) .
is transverse to the diagonal ∆ = {(z, z)|z ∈ C× Sg}.

Indeed, there is η > 0 such that
(C) if Ψ(x) = Ψ(y) with x 6= y, then dim[dΦ(TxV ) ∩ dΦ(TyV )] 6 1,
(D) if Ψ(x) = Ψ(y) with x 6= y, then dΦ(Xg(φ

t(x))) − dΦ(Xg(φ
t(y))) /∈ dΦ(TxV ) +

dΦ(TyV ).
This is seen by using assertions (A) and (B), the compactness of K and lower semi-
continuity of the rank.

Let (x, y, t) ∈ Ψ−1(δ) and v ∈ TΨ(x,y,t)(C × Sg). Due to the preceding assumption,
there are v1 ∈ TxV, v2 ∈ TyV and λ ∈ R such that

dΦ(dφtg(v1))− dΦ(dφtg(v2)) + λ
[
dΦ
(
Xg ◦ φtg(x)

)
− dΦ

(
Xg ◦ φtg(y)

)]
is equal to v.

Now we conclude by the following claim (which we learned from [MS12]) whose proof
is an easy exercise.
Claim. Let h = (h1, h2) : M → N×N be smooth map. Let x be such that h1(x) = h2(x).
h is transverse to the diagonal if and only if for all v ∈ Th1(x)N , there is w ∈ txM such
that d(h1)x(w)− d(h2)(x)(w) = v.

So the the set Ψ−1(∆) has a natural structure of compact 1-dimensional manifold. In
particular, it has a finite number of connected components which are compact as well.
Hence, for α > 0 small enough, all the connected components of V ×V ×[−α, α]∩Ψ−1(∆)

have non empty intersection with V × V × 0.
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The projection
Ψ−1(∆) → R
(x, y, t) 7→ t

is smooth. Hence, there is a regular value 0 < t0 < α. The family Φ ◦ φtg for 0 6 t 6 t0

satisfies the conclusion of the lemma. �

We let i : V # C× Sg be the immersed Lagrangian cobordism

(γ, α1, . . . , αN) (γ#x1α1) . . .#xNαN ,

given by Proposition 2.5.14. From Subsection 2.5.2, the immersion V satisfies the hy-
potheses of Lemma 2.5.16. Hence, there is a family (it)t∈[0,1] which satisfies the above
properties (i), (ii), (iii) and (iv).

Assume there is a continuous teardrop

u : (D, ∂D)→ (M, i1(V ))

with boundary on the immersion i1. In particular, there is a path

ũ : (−π, π)→ V

such that

∀θ ∈ (−π, π), u
(
eiθ
)

= i1 ◦ ũ(θ),

x = lim
θ→π−

ũ(θ) 6= lim
θ→−π+

ũ(θ) = y.

We call f , γ = (x, y) the smooth functions provided by the point (iv) of Lemma 2.5.16.
There is a continuous family of paths (γt)t∈[0,1] : [−π, π]→ V such that

∀t ∈ [0, 1], γt(−π) = x(t), γt(π) = y(t),

and
γ1 = ũ.

We glue the map
A(1, 2) → C× Sg
reiθ 7→ if(2−r)(γ2−r(θ))

,

along the teardrop u to obtain a topological teardrop with boundary on the immersion
i. This does not exist by hypothesis. Therefore, there are no topological teardrops on
i1. �

2.5.4. Action of the Mapping Class Group and proof of Theorem 2.5.1

First, we need the following lemma.
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α1

α3

α2

α4

Figure 21 – The curves α1, α2, α3, α4

Lemma 2.5.17. Let γ1 and γ2 be two isotopic separating curves. There is x ∈ R such
that

[γ2]− [γ1] = i(x),

in Ωimm,unob
cob (Sg).

Proof. We are in the situation of Figure 21. We perform four successive surgeries along
four isotopic curves α1, α2, α3 and α4 represented in Figure 21. The surgeries with α1

and α3 resolve the intersection point in the front of the surface. Meanwhile, the surgeries
with α2 and α4 resolve the intersection point in the back of the surface.

The end-product is a curve β isotopic to γ1 whose holonomy is

HolA(γ1) + HolA(α1) + HolA(α2) + HolA(α3) + HolA(α4).

Furthermore, by Proposition 2.5.15, there is an unobstructed Lagrangian cobordism

V : (α3, α4, γ1, α1, α2) β.

Since αk for k ∈ {1, . . . , 4} are non-seperating, we have by Lemma 2.2.18,

α1 + α2 = i[HolA(α1) + HolA(α2)],

α3 + α4 = i[HolA(α3) + HolA(α4)].

So
β = γ1 + i[HolA(α3 + α4) + HolA(α2 + α1)].

From this and Lemma 2.5.3, we deduce that there is ε > 0 such that all curve γ isotopic
to γ1 with

|HolA(γ)− HolA(γ1)| < ε

satisifies in Ωimm,unob
cob (Sg)

γ − γ1 = i(HolA(γ)− HolA(γ1)).
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Let S be the set of ε > 0 with this property. We let εγ1 be the supremum of S.
Choose a smooth isotopy t 7→ γt between γ0 and γ1. Since [0, 1] is compact, one can

build a finite sequence
0 = t0 < t1 < . . . < tN = 1

such that
∀i ∈ {1, . . . , N − 1},

∣∣HolA(γti)− HolA(γti+1
)
∣∣ < εγti .

So the conclusion follows. �

The following Proposition is the analog of Proposition 2.2.15 for Ωimm,unob
cob (Sg).

Proposition 2.5.18. Let α : S1 → Sg and β : S1 → Sg be two embedded curves. Then,
there is x ∈ R such that

[Tα(β)] = [β] + (β · α)[α] + i(x)

in Ωimm,unob
cob (Sg).

Proof. Assume that α and β are in minimal position. We construct a representative
γ, up to isotopy, of Tα(β) using the procedure of Proposition 2.2.15.

We show that the successive surgeries of the proof of Proposition 2.2.15 are unob-
structed.

Recall that for k ∈ {1, . . . , N}, the curve ck is obtained from k surgeries along the
curves α̃1, . . . , α̃k. The curve α̃k+1 is a perturbation of α. We also fixed Darboux charts
φm near each intersection point xm.
Lemma 2.5.19. In the above setting, the curves α̃k+1 and ck are in minimal position.

Proof. The proof proceeds by contradiction. Let us start with an outline of the proof.
(1) We first show that there is a bigon v between α̃k+1 and β whose boundary arc on

α̃k+1 is embedded.
(2) This bigon has a precise behavior near the surgered points described in Figure

22.
(3) Then, we build from v a bigon between α and β following the procedure repre-

sented in 24.
So α and β are not in minimal position, this contradicts the hypothesis.

Assume there is a bigon u between α̃k+1 and cl. Since α̃k+1 is embedded, the set
u−1(α̃k+1) is a union of embedded arcs. We take an innermost such arc A. We let
v : D→ Sg be the immersed bigon delimited by this arc. We parameterize v so that the
preimages of its corners are −1 and 1.
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Notice that the bigon v is immersed. If one of its corners is non convex, the set
v−1(α̃k+1) has non-empty intersection with Int(D), so A is not innermost. Hence, v has
convex corners.

We fix a (regular) parameterization γ : S1 → Sg of the curve ck. There are two by
two disjoint arcs of A1, . . . , Ak, B1, . . . , Bk ⊂ S1 satisfying the following properties

• for m ∈ {1, . . . , k}, γ|Am parameterizes an arc of α̃m ,
• for m ∈ {1, . . . , l}, γ|Bm parameterizes an arc of β

Notice that the arcs A1, . . . , Ak and B1, . . . , Bk are intertwined. Moreover, the comple-
ments of these in S1 is a union of arcs which parameterize the handles of the successive
surgeries. We call these arcs C1, . . . , C2k.

Let A be the arc of ∂D which maps into ck through v. Choose an immersed lift
λ : A → S1 such that γ ◦ λ = v|A. Whenever the map λ parameterizes one of the arcs
Ci, we say that v has a switch.

There is at least one switch. Assume otherwise. Then the image of λ is contained in
one of the Ai or one of the Bi. If it is a subset of one of the Ai, then v yields an immersed
strip with convex corners between α̃i and α̃k+1. There are only two such strips, and both
of these are not strips on the surgeries. If the image of λ is a subset of one of the Bi,
then v is an immersed bigon between α̃k+1 and β. Hence these curves are not in minimal
position, a contradiction.

There are at most two branch switches. If not, there is m such that Am ⊂ Im(λ).
So Im(cl ◦ λ) contains one of the vertical lines in the charts φk. Hence, it must intersect
α̃k+1 in this chart, a contradiction.

The possible behaviors of the curve v at a switch are described in Figure 22. Using
the techniques of the proof of Proposition 2.5.7, it is an easy exercise to show that these
are indeed the only possible cases.
First case. One of the corners maps to a point xkm for some m. Moreover, if we param-
eterize v so that v(−1) = xmk , the lower arc is mapped to ck and the upper boundary arc
to α̃k+1.

Then there is a unique switch of type A± (Figure 22). The other corner is one of the
points yi and must be of type 1± (Figure 23). It is then easy, following the procedure
of the proof of Proposition 2.5.7, to produce a non-constant bigon with arcs on α and β
(see Figure 24).
Second case. One of the corners maps to a point xkm for some m. Moreover, if we
parameterize v so that v(−1) = xmk , the upper arc is mapped to ck and the lower boundary
arc to α̃k+1.
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Type A+ Type A−

Type B+ Type B−

Type C+ Type C−

Figure 22 – The different types of switch points,
The curve αk+1 is in red

Following the upper boundary arc from −1 to 1, there is a first switch of type B± or
C±. There cannot be another switch. Otherwise, the boundary condition λ parameter-
izes one of the vertical arcs in the chart φk. Hence, the other corner maps to one of the
yi and must be of type 2 (Figure 23). From this, we deduce that the switch was of type
B±.

In the chart near the switch, β yields an arc in the image of v from the handle to
α̃k+1. Cutting the disk along this arc, we obtain a bigon between α̃k+1 and β.

153



Type 1 Type 2

Figure 23 – The different possibilities at a corner yj,
The image of the disk v is one of the four shaded areas

Figure 24 – The procedure to obtain a bigon between α and β

Third case. Both of the corners map to points yi and yj for some i and some j. We
assume that the lower boundary arc of the bigon maps to α̃k+1 and the upper boundary
arc maps to ck.

Following the upper boundary arc from −1 to 1, there is a first switch point of type
A and one second of type B or C. However, the corner at −1 is of type 2, and the corner
at 1 is of type 1. So the second switch is of type B.
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In the chart near the first switch point, there is an arc along β from ck to α̃k+1 which
cuts the image of v in half. We cut v along this arc and solve the corners as in Figure
24 to obtain a bigon with boundary on α and β.

In all three cases, we obtain that α and β are not in minimal position. Therefore,
the lemma must hold. �

Now, an induction and Proposition 2.5.7 show that each of the curve ck is unob-
structed. Recall that we denoted by γ the curve obtained by the successive surgeries of
the proof of Proposition 2.2.15 and that it is isotopic to Tα(β).

Hence, by Proposition 2.5.15, there is an unobstructed Lagrangian cobordism(
α, β, . . . , β, β−1, . . . , β−1

)
 γ,

with as many copies of α as there are intersection points of degree 0 and as many copies
of α−1 as there are intersection points of degree 1. On the other hand, γ and Tα(β) are
isotopic curves. By Corollary 2.5.5 when β is non-separating and Lemma 2.5.17 when β
is, there is x ∈ R such that

γ = i(x) + Tα(β).

Hence, in Ωimm,unob
cob (Sg),

Tα(β) = γ + i(x)

= β + (α · β)α + i(x).

This concludes the proof.
In general, isotope α to a curve α̃ in minimal position with α. So there is x ∈ R such

that
Tα̃(β) = β + (α · β)α̃ + i(x).

The conclusion follows by Lemma 2.5.17 since Tα̃(β) and α̃ are isotopic to α and Tα(β)

respectively. �

As a first consequence, let γ be the oriented boundary of an embedded torus. We let

T = [γ]− i(HolA(γ)). (2.18)

Lemma 2.5.20. The class T defined in equation 2.18 does not depend on the choice of
γ.

Proof. Let γ1 and γ2 be two embedded curves which bound a torus. There is a sequence
of Dehn Twists Tδ1 , . . . , Tδn about the curves δ1, . . . , δn such that

Tδ1 . . . Tδn(γ1)
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is isotopic to γ2. Since γ1 is null-homologous, by Proposition 2.5.18, there is x ∈ R such
that

Tδ1 . . . Tδn(γ1) = γ1 + i(x).

Since γ2 is isotopic to Tδ1 . . . Tδn(γ1), by Lemma 2.5.17, there is y ∈ R such that

γ2 = Tδ1 . . . Tδn(γ1) + i(y).

Hence,
γ2 = γ1 + i(y + x).

We apply the holonomy morphism to obtain

HolA(γ2)− HolA(γ1) = y + x.

So
γ2 − HolA(γ2) = γ1 − HolA(γ1).

�

The following is the analog of Lemma 2.2.18.
Lemma 2.5.21. Let γ be the oriented boundary of an embedded surface S1. Then there
is x ∈ R in Ωimm

cob (Sg) such that

[γ] = χ(S1) · T + i(x).

Proof. As in the proof of 2.2.18, we choose γ1 and γ2 such as in Figure 7. Now, let
us call c (resp. c) the curve given by the successive surgeries on the left (resp. right) of
Figure 7. There is a homeomorphism h : Sg → Sg, isotopic to the identity, such that
h(c) = c.

In particular, there are curves γ̃−1
1 and γ̃−1 respectively isotopic to γ−1

1 and γ−1 such
that the successive surgeries on the left of Figure 7 produce the curve c.

Composing these cobordisms, we obtain an immersed cobordism

V :
(
γ−1

2 , α, β, γ−1
1 , α−1, γ−1

)
 ∅.

By Proposition 2.5.15, there is a immersed unobstructed cobordism between these curves.
Hence,

−γ2 + α + β − γ̃1 − α̃ + γ̃ = 0.

The curves γ̃1
−1, γ̃−1 and α̃ are embedded and isotopic to γ−1

1 , γ−1 and α respectively.
So there is x ∈ R such that

−γ̃1 − α̃ + γ̃ = i(x) +−α + γ.
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So there is y ∈ R such that

γ1 + γ2 + γ = T + i(y).

Now the proof follows by induction on the genus of the surface bounded by γ. �

Lemma 2.5.22. The class T ∈ Ωimm,unob
cob (Sg) defined in equation 2.18 is of order χ(Sg).

Proof. As in the proof of Lemma 2.2.19, consider a curve γ which is the oriented
boundary of a torus. By the definition of T , there is x ∈ R such that γ = T + i(x). On
the other hand, by lemma 2.5.21, there is y ∈ R such that γ−1 = (−3 + 2g) · T + i(y).

We conclude that χ(Sg)γ = i(y − x). Now, apply the holonomy morphism to both
sides of this equation to obtain y − x = 0. �

Lemma 2.5.23. Recall that in our notations, α1, . . . , αg, β1, . . . , βg and γ1, . . . , γg−1 are
the Lickorish generators represented in Figure 4.

Let i ∈ {1, . . . , g − 1}. Then, there is x ∈ R such that

[γi] = [αi+1]− [αi]− T + i(x).

Proof. This follows from the sequence of surgeries in Figure 8 and from Proposition
2.5.15. �

Proof of Theorem 2.5.1. It only remains to see that

Ker(π ⊕ µ) ⊂ Im(i).

To see this, let γ be a non-separating curve, there is a product of Dehn Twists about
α1, . . . , αg, β1, . . . , βg, γ1, . . . , γg−1 which maps γ to a curve isotopic to α1. Therefore, γ
belongs to the subgroup generated by the image of i and the Lickorish generators. By
Lemma 2.5.23, this is the subgroup generated by α1, . . . , βg and the image of i.

Hence, by Lemma 2.5.21, the group Ωimm,unob
cob (Sg) is generated by T , α1, . . . , βg and

the image of i.
Let g =

∑
i niαi +

∑
jmjβj + i(x) + kT be a element of Ker(π⊕ µ). Composing this

by µ, we get k = 0 mod χ(Sg). Moreover, taking homology classes, the ni and mj are
zero. Hence, g is in the image of i.

Moreover, the holonomy map

HolA : Ωimm,unob
cob (Sg)→ R,

is a section of the map i : R→ Ωimm,unob
cob (Sg). So the exact sequence is split. �
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Proof of Theorem 2.1.8. Recall from Corollary 2.4.4 that there is a natural group
morphism

ΘBC : Ωimm,unob
cob (Sg)→ K0(DFuk(Sg))

which maps an embedded curve γ : S1 ↪→ Sg to its image in K0(DFuk(Sg)).
Moreover, in [Abo08], Abouzaid shows that the Maslov index and homology class

induce well-defined map

π : K0(DFuk(Sg))→ H1(Sg,Z), µ : K0(DFuk(Sg))→ Z/χ(Sg)Z.

Therefore, there is a commutative diagram

0 −−−→ R i−−−→ Ωimm,unob
cob (Sg)

π⊕µ−−−→ H1(Sg,Z)⊕ Z/χ(Sg)Z −−−→ 0yΘBC

yId

K0(DFuk(Sg))
π⊕µ−−−→ H1(Sg,Z)⊕ Z/χ(Sg)Z

.

Let us check that the map ΘBC is injective. Let x ∈ Ωimm,unob
cob (Sg) such that ΘBC(x) = 0.

Since the right square in the above diagram is commutative, we have π ⊕ µ(x) = 0.
Since, by Theorem 2.5.1, the first row is exact, we have x ∈ Im(i). Moreover, since
ΘBC(x) = 0 and since the holonomy map factors through K0(DFuk(Sg)) (cf Proposition
2.5.2), HolA(x) = 0. Since the morphism i is injective (cf Corollary 2.5.5), x = 0.

Moreover, by [Abo08], the group K0(DFuk(Sg)) is generated by embedded curves.
Therefore, the map ΘBC is surjective. �
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