
Université de Montréal

Estimation of Noisy Cost Functions by Conventional and Adjusted Simulated
Annealing Techniques

par
Laila Abodinar

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté à la Faculté des études supérieures
en vue de l’obtention du grade de Maı̂tre ès sciences (M.Sc.)

en informatique

Décembre, 2017

c© Laila Abodinar, 2017.

ABSTRACT

The Simulated Annealing (SA) algorithm is extensively used in the optimization

community for solving various kinds of problems, discrete and continuous. This the-

sis aims to analyze SA in both deterministic and stochastic environments for discrete

problems. Precise objectives are to classify key problems, offer suggestions and rec-

ommendations to be undertaken by using SA and Simulated Annealing Under Noise

(SAUN).

More specifically, problems appear in optimization due to the existence of noise

when evaluating the objective function, and how to control this noise. We propose a

method, called Noisy Simulated Annealing (NSA), based on the Metropolis-Hasting al-

gorithm modification presented by Ceperlay and Dewing, that outperforms analogous

SA techniques, delivering similar numerical solutions, at a reduced cost. We consider

the main approaches in the SA setting that handle noise in order to extract their distinc-

tive attributes and make the comparison more relevant. We next assess the numerical

performance of the approach on traveling salesman problem instances. The outcomes

of our tests show a clear advantage for NSA when solving different problems to get

high-quality solutions in presence of noise.

Keywords: optimization, simulated annealing, noisy simulated annealing, ran-

dom noise, convergence speed, acceptance functions, discrete optimization.

RÉSUMÉ

L’algorithme de recuit simulé est largement utilisé dans la communauté d’optimisation

pour résoudre divers types de problèmes, discrets et continus. L’objectif de cette thèse

est d’analyser le recuit simulé dans des environnements déterministes et stochastiques

pour des problèmes discrets. Les objectifs précis sont de classer des problèmes clés,

d’offrir des suggestions et des recommandations à suivre en utilisant l’algorithme de

recuit simulé et de recuit simulé sous bruit.

Plus spécifiquement, des problèmes apparaissent en optimisation en présence de

bruit, et sur la manière de le contrôler. Nous proposons la méthode de recuit simulé

bruité (NSA: Noisy Simulated Annealing), basée sur la modification de l’algorithme de

Metropolis-Hastings présentée par Ceperlay and Dewing, qui surpasse les techniques

de recuit simulé analogues, délivrant des solutions numériques similaires, à coût réduit.

Nous considérons les principales approches qui traitent le bruit dans le cadre du recuit

simulé afin d’en extraire leurs attributs distinctifs et de produire une comparaison plus

pertinente. Nous évaluons ensuite les performances numériques de l’approche sur des

instances du problème du voyageur de commerce. Les résultats obtenus montrent un

clair avantage pour le recuit simulé bruité, en présence de bruit.

Mots-clés: optimisation, recuit simulé, recuit simulé bruité, bruit aléatoire,

fonctions d’acceptation, vitesse de convergence, optimisation discrète.

CONTENTS

ABSTRACT . ii

RÉSUMÉ . iii

CONTENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

LIST OF ABBREVIATIONS . x

NOTATION . xi

DEDICATION . xii

ACKNOWLEDGMENTS . xiii

CHAPTER 1: INTRODUCTION . 1

1.1 Background . 1

1.1.1 Applications of SA . 2

1.1.2 TSP . 2

1.2 Thesis Motivation . 3

1.3 Thesis Statement and Objectives . 4

1.4 Thesis Organization . 4

CHAPTER 2: SIMULATED ANNEALING 5

2.1 Background . 5

2.2 Simulated Annealing Implementation 9

2.2.1 Acceptance Function . 9

2.2.2 Cooling Schedule . 11

2.2.3 Temperature Update . 12

2.2.4 Stopping Criterion . 13

2.2.5 SA Repetitions . 14

2.3 SA Assessment . 14

CHAPTER 3: SIMULATED ANNEALING IN PRESENCE OF NOISE . 16

3.1 Problem Formulation . 16

3.2 Noise Management in SA . 18

3.2.1 Noise Reduction . 19

3.2.2 Acceptance Function Modification 20

3.3 Noisy Simulated Annealing . 22

CHAPTER 4: TRAVELING SALESMAN PROBLEM 24

4.1 TSP Description . 24

4.2 Tour Construction Heuristics . 25

4.3 Moves . 25

4.3.1 Ruin and Recreate . 29

4.4 Permutations . 29

CHAPTER 5: INITIAL EXPERIMENTATIONS 30

5.1 TSP Instances . 30

5.1.1 Rnd8 Problem . 31

5.2 Temperature management . 33

5.2.1 Temperature Schemes Comparisons 34

5.2.2 Initial and Final Temperatures Selection 35

5.3 Comparison of acceptance functions 37

5.4 Experimental Results of SA Under Noise 39

CHAPTER 6: COMPARISONS OF NOISE MANAGEMENT STRATEGIES 43

6.1 Experimental Settings . 44

6.2 Results of Experiments . 46

v

6.2.1 Rnd8 . 47

6.2.2 Gr17 . 49

6.2.3 Bays29 . 51

6.3 Discussion . 52

CHAPTER 7: CONCLUSION . 54

BIBLIOGRAPHY . 56

vi

LIST OF TABLES

2.I SA implementation choices . 9

5.I TSP instances . 30

5.II Comparison of moves on problem rnd8 31

5.III Parameters for toy problem rnd8 32

5.IV rnd8 tour costs . 32

5.V Comparison of temperature update schemes for rnd8, using move

Select-Pos-3-2-opt and n = 21 34

5.VI Selection of initial and final temperatures on different TSPLIB in-

stances (ν = 100000) . 36

5.VII Solutions found by SA using Glauber and MH acceptance for TSPLIB

instances . 38

5.VIII Parameters for noisy problem examples 39

6.I Acceptance of uphill moves for problems rnd8, gr17, and bays29 44

6.II Estimating ν for CD with η = 1.1 and known σ2
i 46

6.III Empirical CD acceptance probability 46

6.IV Experimental results over 200 SA replications 48

LIST OF FIGURES

2.1 SA algorithm . 8

2.2 Temperature setting . 11

3.1 Example of function L(x) with minimum x∗ along with a pertur-

bated function y(x), producing a false minimum 17

3.2 MH acceptance probability in presence of noise 19

4.1 Tour produced by the nearest neighbor algorithm for problem bays29

from TSPLIB . 26

4.2 Several types of moves . 27

5.1 Results based on final distances for different move types 31

5.2 Final and best solutions for rnd8 problem 32

5.3 rnd8 tours . 33

5.4 Minimum required moves needed to pass from final to best solution 33

5.5 Final tour distances for n = 21 SA executions, based on tempera-

ture choices . 34

5.6 Comparison of Glauber and MH at low temperature for rnd8 . . . 37

5.7 Tours generated by SA with MH and Glauber acceptance functions 38

5.8 Noisy Rnd8 . 40

5.9 Noisy Rnd8 . 40

5.10 Noisy gr17 for MH and Glauber 41

5.11 Best noisy costs for gr24 MH and Glauber 41

5.12 Best noisy costs for gr21 MH and Glauber 42

6.1 New initial tour for problem rnd8 49

6.2 Comparison of SAUN methods for problem rnd8 49

6.3 NSA–CD performance for problem rnd8 50

6.4 Comparison of SAUN methods for problem gr17 50

6.5 NSA–CD performance for problem gr17 51

6.6 Comparison of SAUN methods for problem bays29 52

6.7 NSA–CD performance for problem bays29 53

ix

LIST OF ABBREVIATIONS

CD Ceperly and Dewing

GP Gutjahr and Pflug

i.i.d. Independent and identically distributed

MH Metropolis-Hastings

NSA Noisy simulated annealing

SA Simulated Annealing

SAA Sample Average Approximation

SANE Simulated Annealing in Noisy Environment

SAUN Simulated Annealing Under Noise

TSP Traveling salesman problem

TSPLIB Traveling salesman problem library

1%opt 1%–optimal

NOTATION

Ti Initial temperature

Tf Final temperature

Ei Cost (energy) of solution i

∆E Cost (energy) difference

E Expectation operator

σ Standard deviation

σ2 Variance

σ2
i Initial variance

N(0,σ2) Normal distribution with mean zero and variance σ2

E The Space of the problem

N Tour size, i.e. the number of cities to visit

rk The run-length

x∗ Optimal solution

d(i, j) Distance between city i and city j

Pi j Acceptance probability from state i to state j

(dedicace) Cras semper lorem nec pede.

This project is dedicated to the most important persons in my life. Parents, brothers

and sisters, all of them emphasize the significance of education in my life. Thank you

for everything. No word is enough to express my thanks.

ACKNOWLEDGMENTS

I would like to express my deepest gratitude, and very special thanks to my great and

smart supervisor Professor, Fabian Bastin for his support, guidance, efforts, motivation,

and great patience. With his wisdom, experience, invaluable remarks and ideas, and

timely suggestions at every stage of my research, everything becomes solvable. Thanks

also to you for many interesting discussions. Certainly, the words are not enough to

describe your help, respect, and kindness.

I am thankful to Libyan Ministry of Higher Education for providing the funding for

my study, and many thanks to Canadian Bureau for International Education (CBIE) for

their collaboration. Special thanks to Céline Bégin for her advice. Finally, I am also

grateful to my professors, teachers, colleagues, and friends on this support.

CHAPTER 1

INTRODUCTION

1.1 Background

Optimization problems are notoriously present in a myriad of disciplines and con-

sidered in industry, government, and academia (see for instance [63], p. 13); yet many

of these problems cannot be solved in polynomial running time. Heuristic methods

will provide improved practical solutions for these kinds of problems. Based on many

research studies, heuristic and meta-heuristic methods are broadly used for solving nu-

merous problems [2]. A stochastic optimization algorithm is a simulation optimization

method that operates stochastic steps in order to discover global or local minimizer for

the problem. Due to the inherent uncertainty, the outcomes can differ between several

executions, relying on the injected randomness that can be produced from a particular

simulation. On the opposite, a deterministic algorithm always produces the same out-

comes, provided we start the process with the same initial conditions or sequence of

steps (Aguiar e Oliveira Jr et al. [4], chapter 1, p. 6).

One of the most salient concepts that this thesis deals with is annealing, which is

ubiquitous in varied areas and it is used for combinatorial and continuous global opti-

mization techniques (see for instance [47] and [63], chapter 8, p. 1). Annealing can be

defined according to Merriam-Webster Dictionary as the process used to “make metal or

glass soft by heating and then cooling it slowly”. Combinatorial optimization, statistical

physics, and applied physics are different fields, but it is notable that the Simulated An-

nealing (SA) algorithm originally relies on an analogy between them [2]. SA procedure,

described as “the most exciting algorithmic development of the decade” by Fabian [24]

in 1997, uses the annealing technique, and it is crucial to put our focus on it.

In the simulation optimization area, many developments towards other metaheuris-

tics have been considered since the introduction of SA, such as Genetic Algorithm (GA),

Tabu Search, and Scatter Search, leading to an impressive number of publications [7].

Nevertheless, many applications take place in noisy environments, while these tech-

niques usually ignore this aspect. The second important concept in this thesis is therefore

noise. According to the Cambridge Dictionary, noise means “irrelevant or meaningless

data or output occurring along with desired information”. Even for optimization prob-

lems where SA delivers good results, a few drawbacks appear for noisy environment

as it produces biased results when applied [15]. It is important to know how to adapt

SA to deal with noisy problems in order to estimate a solution, which is sensitive to the

noise for different reasons, therefore, there is a need to find a heuristic technique that is

able to cope with this noise. We consider Simulated Annealing Under Noise (SAUN)

algorithms that may overcome this drawback as they aim to optimize objective func-

tions where each feasible solution, the corresponding cost follows a random distribution

based on the uncertainty of the inputs. We then propose a novel approach, called Noisy

Simulated Algorithm (NSA) to improve the efficiency of SAUN.

1.1.1 Applications of SA

Vidal [66] highlights various applications of SA algorithm, in mathematics, e.g.

graph problems, in physics, e.g. finding the ground state of spin glasses, in engineering

such as very-large-scale integration (VLSI) design, and more generally operations re-

search, e.g. combinatorial optimization and neural computing optimization. Ingber [35]

mentions some other applications, for instance, the traveling salesman problem (TSP),

circuit design, data analysis, imaging, neural networks, biology, physics, geophysics, fi-

nance, and military, while Duque-Antón [22] mentions the channel assignment problem

occuring in the design of cellular radio systems. Other lists of applications can also be

found in [1, 2, 41].

1.1.2 TSP

TSP is often used as a benchmark for SA [35], so we will focus on this applica-

tion. According to Rego and Glover [54], from 1993 to mid 2001, more than 150 papers

dedicated to the TSP are listed by the web databases of INFORMS and Decision Sci-

2

ences. Moreover, Kirkpatrick et al. [40] expose the possibility to tackle a number of

problems of scheduling and design, for instance, to anticipate the expected cost of the

salesman’s optimal route. Johnson and McGeoch [36] add that TSP approach can be

applied to other applications as VLSI chip design, X-ray crystallography, etc. Punnen

[53] presents applications such as machine scheduling problem, cellular manufacturing,

arc routing, frequency assignment, matrices structuring, printed circuit boards drilling,

gas turbine engines overhauling, order-picking problem in warehouses, computer wiring,

data clustering, archeology serration, vehicle routing, mask plotting in PCB production,

robot control, etc.

There exist several software tools that use SA as a heuristic method for solving TSP

as listed by Lodi and Punnen [45], for instance “parSA-Lib”, a general-purpose C++

library for applying simulated annealing algorithms in parallel, “RA-TSP”, solving “a

variant of the ATSP called Arc Replenishment Traveling Salesman Problem”, and the

Mathematica package “Operations-Research- 2.0”.

1.2 Thesis Motivation

The main motivation behind our research is that simulated annealing remains a pop-

ular optimization method in many industries when the objective function is evaluated

by simulation. SA is often considered in order to interpret, understand, and optimize

complex systems, but there exist limited investigations that consider noisy information

in applications [63], chapter 8, p. 7. For this reason, we suggest using SAUN to deal

with such problems in order to mimic the reality and to get a better understanding for

some combinatorial problems such as the TSP [15]. SA and SAUN are the most sig-

nificant heuristic algorithms that will be used in our research work. Our main goal is

to understand them more precisely, their behavior and their properties, and evaluate the

solutions quality when the noise is an undeniable part of the objective function, in the

context of the TSP.

3

1.3 Thesis Statement and Objectives

To date, very limited attention has been given to the accuracy of the function eval-

uation. The standard simulated annealing rule is to accept a point as soon as a better

objective value function is obtained, otherwise, the point is accepted with a probability

that decreases with the iteration index. As a result, the optimal solution and the optimal

value can be biased, especially as the accuracy is often limited in order to perform more

iterations within a time budget.

The project first aims to build an experimental framework allowing to numerically

explore new strategies to handle noise inside the simulated annealing framework and to

compare the quality of obtained solutions. We consider standard TSPs to empirically

compare the various approaches that are currently developed and analyzed in parallel

projects. This study aimed to determine whether SAUN is able to get optimal conver-

gence in practice and to elucidate its behaviour and its efficiency on noisy TSPs.

Our main contribution is the development of a new SA variant that can work more

proficiently on noisy problems, and significantly outperforms other SAUN methods in

terms of the computation cost and quality of solution. The technique, called noisy simu-

lated annealing (NSA), controls the noise by using the modification initially proposed by

Ceperley and Dewing [16] for the Metropolis-Hastings acceptance criterion, in a fixed

temperature and random error setting. We adapt their approach by controlling the noise

level at the initial temperature and slowly reduce it along with the temperature decrease.

1.4 Thesis Organization

Chapter 2 lays facts on simulated annealing algorithm and its ingredients. Chapter 3

gives background and more information about simulated annealing in presence of noise.

Chapter 4 contains detailed information on TSP. Chapters 5 and 6 investigate the ex-

perimental results including numerical outcomes and figures based on different aspects.

Chapter 7 concludes the research work. It recaps the thesis and presents a summary of

limitations that we have faced and avenues for future work.

4

CHAPTER 2

SIMULATED ANNEALING

2.1 Background

Simulated annealing has been studied and considered by many researchers (see for

instance [1–3, 12, 17, 19, 34, 35, 47, 49, 57, 58, 68, 69, 71], [63], chapter 8, p. 1,

[28], chapter 3, p. 10, Schneider and Kirkpatrick [61], chapter 11, p. 78). Simulated

Annealing was conceptualized by Kirkpatrick et al. [40] in 1983 and by Černỳ [17] in

1985. Many researchers called SA with various aliases, such as “Monte Carlo anneal-

ing”, “statistical cooling probabilistic hill climbing”, “stochastic relaxation” or “proba-

bilistic exchange algorithm”. According to van Laarhoven and Aarts [41], “simulated

annealing algorithm is based on the analogy between the simulation of the annealing of

solids and the problem of solving large combinatorial optimization problems. For this

reason, the algorithm is known as simulated annealing”. Many authors report that SA

algorithm is a well-adjusted version of iterative methods, and is a heuristic approach to

solve optimization problems [41], and [51], chapter 4, p. 187.

The basic philosophy of SA is to mimic the annealing process in the metalwork,

which briefly involves two steps. First, solid metal is put in a heat bath and the temper-

ature is raised till the solid melts [60], and “the atoms gain enough energy to break the

chemical bond and become free to move” [59]. Second, the metal is cooled lingeringly

and slowly until its particles are reordered in the “ground state of solid”. Consequently,

the metal is now differently characterized since the process helps to reattain appropriate

crystal structure with an idealistic grid, with minimal energy. SA algorithm acts in a sim-

ilar way to find out an optimization problem solution. Initially, it begins with arbitrary

configuration, and at each single point, it randomly chooses the next configuration from

neighbor space configurations with a small distortion. The neighbor is always accepted

if the objective function value is decreased, and with some random rate, decreasing with

the process iterations, if the objective function value is increased, till it reachs the global

optimal configuration when the temperature is frozen and obtaining optimum solution is

akin to getting the least energy state as the operation ends [1–3, 12, 26].

According Saıt and Youssef [60], the simplicity of the representation is significant in

order to obtain reasonable performance as the algorithm might need a large number of

iterations. Three main requirements are needed to use SA. Firstly, the state space must

be concisely and clearly interpreted and the cost function that will be determined to get

a solution should not be complicated to calculate. Second, it requires a mechanism to

transform a solution to another one during the search operation to find the next move.

This step has two main ingredients, a neighborhood search and an acceptance mechanism

based on the cost difference between the current and the candidate solutions. More

precisely, given a current solution, the neighborhood search can select any solution in its

vicinity as the next solution with some positive transition probability, defining a Markov

chain, and any solution in the system can be produced in a finite number of moves,

meaning that the Markov chain is irreducible. This chain is also aperiodic as given any

pair of solutions, the possible number of moves such that the probability to attain the

second solution given the first one is positive, define a set of naturals with no common

divisor other than 1. Finally, the efficiency of SA relies on a suitable choice of cooling

schedule.

As illustrated in Figure 2.1, reproduced from [51], the algorithm starts from some

initial solution, associated to a high temperature T0. The algorithm then iteratively gener-

ates candidate solutions, while the temperature is decreased. At each step, the candidate

solution will be accepted as the new solution if the objective cost is decreased, but will

be rejected with some probability if the cost is increased. Nevertheless, the opportunity

of admitting a solution with higher cost will decline as the temperature T reduces, and

ultimately, the probability to accept a solution with higher energy converges to 0 as T

goes to 0 [9]. By applying this strategy, the algorithm is allowed to gradually target a

space hopefully close to the optimal solution, and the sequence of solutions can be seen

as a stochastic process, with transition probabilities evolving over the iterations. The SA

method can be summarized in algorithm 1 (see for instance [15, 26]). We give the main

steps below, and will give implementation details in the following sections.

6

1. Select an initial solution xc and temperature T0. Set the iteration index k to 0.

2. Repeat rk times the following.

(a) Select a candidate solution from a neighborhood of xc, N (xc), and compute

the difference of energies ∆Enc = E(xn)−E(xc).

(b) Accept the candidate solution xn with a probability Pnc, increasing with−∆Enc:

xc← xn.

3. Set Tk+1 < Tk.

4. Stop if some termination criterion is met, otherwise set k← k+ 1 and return to

step 2.

When rk is greater than 1, the inner loop is usually executed until equilibrium is ap-

proached sufficient closely for the current temperature Tk. The SA algorithm is then said

to be homogeneous. In inhomogeneous SA, rk is equal to 1 for all k, and the temperature

is decreased in a lower rate, often very slowly [66].

Algorithm 1 Simulated Annealing algorithm
1: Generate initial solution x0, and select the initial temperature Ti.
2: Set xc = x0, T0 = Ti, k = 0.
3: repeat
4: repeat
5: Generate a candidate solution xn ∈N (xc)
6: Set ∆Enc = E(xn)−E(xc)
7: Draw u from U ∼U(0,1)
8: if u < Pnc then
9: accept new solution: set xc← xn

10: end if
11: until time to reduce temperature
12: Set Tk+1 = h(Tk).
13: Set k← k+1.
14: until termination condition is met

7

Figure 2.1: SA algorithm

8

Decisions
Generic(Cooling Scheme) Problem Specific

T0 (initial temperature) x0 (initial solution)
rk (number of iterations) neighbor generation
Tk (temperature function) evaluation of ∆Ei j

Stopping criterion

Table 2.I: SA implementation choices

2.2 Simulated Annealing Implementation

It is necessary to set some parameters of the algorithm prior its execution, as illus-

trated in Table 2.I, due to (Vidal [66], p. 8), and to properly represent the problem to

optimize. According to Eglese [23], Fouskakis and Draper [26], Ledesma et al. [43], for

instance, each possible state of the system has to correspond to a feasible solution of the

optimization problem. The energy level Ei of a state i expresses the cost of the objective

function. We detail the specific implementation choices in the following.

2.2.1 Acceptance Function

Several acceptance strategies exist [2, 41], based on the difference between E j and

Ei. According to Anily and Federgruen [9], there exist some conditions favoring the

discovery of good solutions. For a certain number of iterations, the algorithm should

confer any uphill or downhill to happen with positive probability. According to Hender-

son et al. [34], “the acceptance probability function must be bounded and asymptotically

monotone, with limit zero for hill-climbing solution transitions”. Ideally, we should have

that the probability to produce a non-globally optimal solution should be asymptotically

equal to zero. In practice, the algorithm can however be trapped in a local minimum,

so we want that the probability to escape from such a solution does not go to zero too

fast. In other words, the probability to accept an uphill move should slowly decrease to

0, and the algorithm should coin the solution to a local minimal, hopefully a global one.

Even if the probability for an uphill move is not equal to 0 but small during the final iter-

ations, the probability to accept two consecutive uphill moves is then close to 0, so that

9

in practice the algorithm can oscillate around the found solution, but not escape from it.

Various researchers however state that the convergence of the SA still depends on the

initial solution, and the algorithm does not always deliver a globally optimal solution.

2.2.1.1 Metropolis-Hastings Criterion

The most popular acceptance technique is the Metropolis-Hastings (MH) criterion,

defined by

Pi j =

1 if ∆Ei j ≤ 0

e
−∆Ei j
KBT otherwise,

where KB is a physical constant called Boltzmann constant. For a high temperature,

nearly every move is accepted, but for a low temperature, the probability to accept a

state of higher energy is close to 0. Without loss of generality, we can set KB = 1, by

scaling the temperature, leading to the acceptance probability

Pi j = min
{

1,e−∆Ei j/T
}
. (2.1)

2.2.1.2 Glauber’s Acceptance Criterion

Other criteria can also be used while ensuring convergence, but at slower rate [1]. It

is especially possible to use the acceptance criterion proposed by Glauber [29]

Pi j =
1

1+ e∆Ei j/T
(2.2)

Three situations can be considered. When the difference between the current and candi-

date solutions is equal to 0, then Pi j =
1
2 . If ∆Ei j < 0, i.e. we consider a downhill move,

Pi j >
1
2 , while for a uphill move (∆Ei j > 0), Pi j <

1
2 . In addition, the temperature has

an important role too. The temperature T plays the expected role as with T → ∞, every

move will be accepted with a probability equal to 1
2 , while when T → 0, the acceptance

probability tends to 1 for downhill moves, and 0 for uphill moves. We can however ob-

serve that the diversification effect is less present than with MH for high temperatures,

10

and that downhill moves can be rejected, while they are always accepted with MH.

2.2.2 Cooling Schedule

It is known that the cooling schedule has an impact on the solution quality. According

to Pham and Karaboga [51], chapter 4, the main parameters of cooling schedule are: first,

the initial temperature Ti; second, the number of function evaluations at each temperature

and the temperature update rule; third, the final temperature Tf and a stopping criterion

for the search.

2.2.2.1 Initial Temperature Ti

There is no typical criterion to choose the appropriate value factors. If the initial

temperature is high, a lot of time will be spent to attain the solution and the cooling

process will take a long time. On the contrary, if the initial temperature is very low

then the algorithm terminates very rapidly, and the returned solution is usually poor.

Figure 2.2 gives an idea of this behavior (see [64], p. 238–239).

(a) High initial temperature (b) Intermediate temperature

(c) Very low temperature (d) Fast cooling T k

Figure 2.2: Temperature setting

11

Ben-Ameur [11] states that several forms have been suggested to define the initial

temperature Ti. In [61], chapter 15, [41], chapter 3, p. 28–38, authors illustrate that some

methods are simple but not necessarily efficient, while other methods are efficient but not

necessarily simple. The main rule is to explore the entire search space until getting close

to good solutions, but this can happen only if the temperature is large enough. Various

interesting methods can be found in the litterature [26, 32, 37, 38, 60, 65, 67], and we

will present the approaches used in our experiments in chapter 5.

2.2.3 Temperature Update

According to Rosen and Harmonosky [57], the temperature updating method impacts

the performance of the SA, and various papers explore the parametrization of SA, for

instance [67]. Schneider and Kirkpatrick [61], chapter 15, p. 122, mention various

cooling methods:

Geometric Cooling The temperature is updated as

Tk+1 = αTk

where α ∈ [0.01,0.2], and k is the iteration index [26, 48, 60, 61]. Rosen and Har-

monosky [57] reveal that sometimes, the temperature has to decrease fast during

the first iterations, but then the algorithm has to generate “increasingly smaller Tk

drops” as SA tends to explore no further positions of the optimal solution area

when the temperature is small. Geometric cooling has the interesting property that

it allows a large initial temperature Ti.

Linear Cooling The temperature at the iteration k is

Tk = a−αk

Nourani and Andresen [48] mention that the linear temperature has been exten-

sively applied and was introduced by Kirkpatrick et al. [40]. A variant consists to

allow α to be random [40].

12

Logarithmic Cooling The temperature Tk is obtained as

Tk =
a

b+ log(1+ k)
.

As observed by Nourani and Andresen [48], the decrease speed is not constant but

slows down over the iterations. SA has been shown to almost surely converge to

a global minimizer under the logarithmic cooling schedule and some mild condi-

tions (see for instance [20, 47]). Hajek [32] establishes that if b = 1, a necessary

and sufficient condition on the cooling schedule for the algorithm state to converge

in probability to the set of globally minimum cost states is that a is greater than or

equal to the depth, suitably defined, as “the deepest local minimum which is not a

global minimum state”.

2.2.3.1 Final Temperature Tf

Tf describes the temperature used in the last iteration, where a steady state is ex-

pected to have been reached. Several approaches can be employed to estimate this value,

that will be described in the following chapters.

2.2.4 Stopping Criterion

The main function of stopping criterion is to indicate when the algorithm terminates.

(Spall [63], chapter 1, p. 15), emphasizes that, in the context of SA, there is no clear

rule to estimate when the algorithm should end. In other words, it is difficult to get a

good stopping criterion ensuring optimality. Branke et al. [15] suggest to predetermine

the number of iterations or fix the temperature limit if it is practical, but it may take

many experiments to find a reasonable value and it is problem dependent. Rutenbar [58]

suggests to terminate the algorithm execution when the cost improvement over three

successive temperatures, for example, is less than one percent of the optimal solution.

According to Eglese [23], this is the most efficient strategy for a general cooling sched-

ule. Saıt and Youssef [60] generalize the criteria by stopping if no improvement has

been achieved during the last iterations or is a given time budget has been exhausted or

13

if some of the SA parameters have reached given thresholds.

2.2.5 SA Repetitions

Several authors suggest to restart the algorithm several times, from different starting

points, generating for instance a random initial solution at each repetition [12, 57]. The

number of repetitions should however vary with respect to the problem under consider-

ation, as a difficult problem usually needs many restarts while a small problem does not,

and could be set by the user as in [57].

2.3 SA Assessment

Due to its simplicity of implementation, SA has been popular for solving various

optimization problems, and has benefited from various theoretical analyses [3, 34, 40].

Ingber [35] states one of the interesting features of SA is its ability to “process cost func-

tions possessing quite arbitrary degrees of nonlinearities, discontinuities, and stochastic-

ity”, and Ledesma et al. [43] add that there is no need of mathematical paradigm in

the solution design. SA uses an iterative method based on local random search, explo-

ration, exploitation, and greed properties, and is seen as effective and robust, as usually

a high-quality solution can be obtained, from any selected initial solution [60, 70].

Some authors however express some criticism, as SA is not considered as fast, being

“overkill for many of the problems on which it is used” [35]. Vidal [66] highlights that

SA is time consuming due to its stochastic approach. In addition, Ingber [35] claims

that SA is challenging to be specifically adjusted to the problem under consideration, in

addition to producing incorrect outcomes if misused, and Charnes and Wolfe [18] ex-

press that SA is mainly based on physical intuition, with not enough mathematical rigor.

Finally, according to Saıt and Youssef [60], SA is “blind” as it is no possible to know if

the optimal solution has been obtained or not, so the stopping criteria cannot be set as an

optimality test. In addition, there is no guarantee to reach optimality, even if almost-sure

convergence can be ensured if an infinite number of iterations was allowed [3]; there-

fore, it is an approximation technique. Aarts et al. [3] add that “Experience shows that

14

the performance of simulated annealing depends as much on the skill and effort that is

applied to the implementation on the algorithm itself; for instance, the choice of an ap-

propriate neighborhood function, of an efficient cooling schedule, and of sophisticated

data structures that allow fast manipulations can substantially reduce the error as well as

the running time. Thus, in view of this and considering the simple nature of annealing,

there lies a challenge in constructing efficient and effective implementations of simulated

annealing”.

Eglese [23] mention some possible modifications to improve SA efficiency, as the

storage of the best found solution during the iterative process, the possibility to sam-

ple the neighborhood without replacement, and alternative acceptance probabilities. It

is also possible to combine SA with another method, to parallelize, and to implement

problem specific modifications.

15

CHAPTER 3

SIMULATED ANNEALING IN PRESENCE OF NOISE

3.1 Problem Formulation

We consider the stochastic optimization problem

min
x∈X

Eω(L(x,ω)), (3.1)

where X is the feasible set and ω ∈Ω is some random vector capturing the uncertainty

in the objective function evaluation. Assuming that (3.1) has a unique solution x∗, we

will write

x∗ = arg min
x∈X

Eω(L(x,ω)).

The expectation can often not be evaluated exactly if it does not have an analytical ex-

pression or its evaluation cost is prohibitive if the number of possible realizations of the

random variable is finite but large. A popular approach consists to replace (3.1) by its

sample average approximation (SAA) obtained by sampling over the random variable

L̂N(x) :=
1
N

N

∑
i=1

L(x,ωi), (3.2)

where {ωi, i = 1, . . . ,N} is a i.i.d. Monte Carlo sample (see for instance [13]).

Various issues arise when incorporating noise, as summarized by Spall [63], and

illustrated in Figure 3.1. Typically, a noisy perturbation creates many local minima and

can offset the global minimum, and considering various realizations of the noise creates

a “lack of stationarity in the solution”. Finally, increasing the number of Monte Carlo

realizations in (3.2) significantly affects the evaluation costs [5], that linearly grow with

N. Facing these difficulties, one or our objectives will be to take advantage of the noise

in the SA framework instead of trying to remove it.

Adding noise can make the search process more powerful and flexible. It is useful

Figure 3.1: Example of function L(x) with minimum x∗ along with a perturbated function
y(x), producing a false minimum

to mimic the real-world problems, can help to seek a global optimum solution when

the search is stalled near a local solution, which is relevant for speed convergence, and

make the algorithm less sensitive for error modeling [61, 63]. In stochastic program-

ming, the SAA problem (3.2) is usually solved using common random numbers [62].

We nevertheless here consider independent random numbers for each objective func-

tion evaluation as SA is typically used to tackle problems where the random realizations

cannot be kept fixed from one iteration to another one, for instance when the objective

function is evaluated through a black-box routine. The use of common random numbers

when comparing a pair of solutions would result in a decrease of the variance of the dif-

ference of energy, possibly allowing a faster convergence of the SA algorithm. The main

conclusions would however remain valid as only the error variance scale is changed.

For simplicity, we will assume the the noise at each possible state is additive, so that

we can write

L(x,ω) =V (x)+ ε(x,ω). (3.3)

17

Moreover, if we assume a white noise, i.e. Eω(ε(x,ω)) = 0, we can rewrite (3.3) as

L(x,ω) = L(x)+ ε(x,ω),

where L(x) = Eω(L(x,ω)). We will moreover assume that the errors ε(x,ω) are i.i.d.

normally distributed, allowing to further simplify the expression of L(x,ω) as

L(x,ω) = L(x)+ ε(ω), (3.4)

where ε(ω)∼ N(0,σ2). This assumption is quite common in the SA under noise litter-

ature (see for instance [15]).

3.2 Noise Management in SA

According to Spall [63] (chapter 8, p. 7), there is limited research regarding opti-

mization in presence of noise, especially with respect to the impact of statistical errors

in the input of the algorithm on the resulting errors in the output. As noted by Saıt and

Youssef [60], in the deterministic case, the best solution discovered during the execution

of the SA algorithm should be returned, but in the stochastic case, the final solution is

more important as the cost stabilizes in the end. The noise at the current iterate can be

reduced by averaging over several independent evaluations, but the associated numerical

cost is rapidly prohibitive. Spall notes that the major issue lies in the comparisons of

energies. Under the assumption of i.i.d. normally distributed error term, as in (3.4), the

energy difference ∆Ei j between two states xi and x j is also normally distributed with

mean 0 and variance σ2
∆E = 2σ2.

Branke et al. [15] observe that convergence issues can arise, and a strong noise can

slow down the algorithm. The noise can also bias the objective function, and the algo-

rithm can be trapped in a local minimizer, or even produce final solutions of unacceptable

quality as they are themselves biased.

Two main approaches have been proposed: reducing the noise over the iterations

while keeping the algorithm untouched, or modifying the acceptance function. We will

18

present them and elaborate on a novel method to adjust the acceptance probabilities and

control the noise.

3.2.1 Noise Reduction

The noise can impact strongly on Metropolis criterion, biasing SA algorithm [15]. In

particular, noise can reduce the probability to accept a downhill move, while increasing

the probability to accept an uphill move, as illustrated in figure 3.2. There is a need to

choose many levels of noise that must be applied to the problem to see the effect and

to validate the algorithm because it can not be used as it is. Figure 3.2 visualizes these

cases.

Figure 3.2: MH acceptance probability in presence of noise

The first idea is to reduce the noise as when the temperature is lowering as we try to

stabilize the solution. Ultimately, the noise should converge to 0 as the temperature is

going to 0, and this strategy has been examined by many authors. We refer the reader

for instance to [6, 8, 13, 27, 31, 46, 48, 52].

A simple way to reduce the noise at a given point x is to evaluate several times the

objective function and take the average over them. Consider indeed ` evaluations. The

average noise then follows a normal distribution of mean 0 and variance σ2/`. This

19

approach was initially proposed by Gelfand and Mitter [27], who suggest to decrease

linearly the standard deviation of a state energy with the temperature:

σk = o(Tk))

In terms of sample size, the number of Monte Carlo draws has to increase quadratically

with the inverse of the temperature [15].

Gutjahr and Pflug [31] refined the analysis, discussing the convergence of SA under

noise. Under the assumption that the standard deviation of the noise is in O(k−γ), where

γ is an arbitrary constant > 1, and the temperature Tk is of order Ω(1/ logk), they estab-

lished convergence of SA, but if the variance is unchanged, SA is not capable to reach

optimality. They also extended the results to other distributions, that are “more peaked

around zero” than the normal distribution.

Bouttier and Gavra [13] argue that this “convergence statement did not give any

information about the convergence rate of the algorithm” and investigate the convergence

of the method under various temperature cooling schemes, extending Gutjahr and Pflug

[31]’s results, but establishing that their approach is optimal in terms on computational

efforts if the SA algorithm is kept unchanged.

3.2.2 Acceptance Function Modification

We therefore have to consider algorithmic modifications in order to speed up the

method. The most convenient approach is to change the acceptance criterion, that basi-

cally relies on the sign of the energy difference: ∆E < 0 or ∆E ≥ 0. The basic idea is

to replace it by some criteria ∆E < τ or ∆E ≥ τ , where τ is some threshold value that

may be positive or negative depending on the circumstances. According to Gutjahr [30],

various adaptations have been proposed. We will consider two main ideas, proposed by

Fink [25] and by Branke et al. [15], who have developed a method called SANE, for

Simulated Annealing for Noisy Environments.

20

3.2.2.1 Stochastic Annealing

In presence of noise, Fink [25] suggests to base the acceptance probability on the

observed energy difference, instead of using the MH criterion:

Pi j =

1 if ∆Ei j ≤ 0

0 otherwise,

He justifies this approach, called “stochastic annealing”, by a graphical analogy with the

Glauber acceptance criterion (see section 2.2.1.2), stating that the resulting acceptance

probability for the energy difference expectation is then similar. In other words, instead

of injecting randomness in the problem when deciding to accept or reject a candidate

solution, we exploit the noise already present. Based on this analogy, he also derived a

relationship between the number n of Monte Carlo draws and the temperature:

1
T

=

√
8n

πσ2
∆E

. (3.5)

The number of draws has therefore to grow to infinity as the temperature is going to 0, but

as stated by Bouttier and Gavra [13], “unfortunately he only provided a few numerical

examples to validate his statement and a theoretical proof is still missing”.

3.2.2.2 SANE

Branke et al. [15] noted some issues with (3.5). First, when the temperature is high,

the corresponding number of draws suggested by the formula can be less than one. Sec-

ond, since n has to be an integer, the equality can only be satisfied at some specific

temperatures. Branke et al. [15] proposed some remedies to these problems in order

to permit any temperature level to be used, and presented the Simulated Annealing in

Noisy Environments (SANE) algorithm. When the noise is small compared to the tem-

perature, they rely on the Ceperley and Dewing’s method, described below, and on the

Glauber analogy when the noise is important compared to the temperature. Therefore,

21

their approach also lacks a formal convergence theory.

3.2.2.3 Ceperley and Dewing’s Acceptance Criteria

For a fixed temperature, Ceperley and Dewing [16] (CD) propose to adjust the Metropolis-

Hastings criterion as follows:

Pi j =

1 if ∆Ei j ≤−1
2σ2

∆Ei j
/T,

e
−(∆Ei j/T+ 1

2 σ2
∆Ei j

/T 2)
if ∆Ei j >−1

2σ2
∆Ei j

/T.
(3.6)

(3.6) can be seen as an generalization of MH in presence of noise, but reduces to it in

the deterministic case. In average, less moves are accepted using (3.6) instead of MH,

but they prove that the method then converges to the correct equilibrium distribution

when the noise is normally distributed with mean 0. They also briefly discuss the sit-

uations where the variance is observation-dependent or where the noise follows other

distributions than a normal distribution.

Branke et al. [15] dismissed the CD approach as when keeping the noise level fixed,

without consideration of the temperature, the acceptance probability quickly goes down

to 0, irrespectively of the sign of the energy difference.

3.3 Noisy Simulated Annealing

As previously stated, the method developed by Ceperley and Dewing does not con-

sider a varying temperature, and as such, should not be applied to SA without modifi-

cations. Ceperley and Dewing [16] briefly discuss the impact of noise magnitude, and

exhibit that the approach does have a clear benefit when the noise is too small, and will

face issues when the noise is too large. Therefore, the noise should be adjusted when the

temperature is dropping in order to preserve CD method qualities.

A closer examination of (3.6) suggest to maintain the inequality

σ
2
∆E ≤ κT η (3.7)

22

valid for any temperature T , with η ∈ (1,2] and κ =
2σ2

0
T η

0
. In other terms, assuming that

the noise level, expressed as the variance, at the initial temperature has been well cho-

sen to favor a CD approach, we decrease the variance when the temperature is lowering

in order to prevent the acceptance probability associated to a downhill move (∆E < 0)

getting smaller. When η = 2, we obtain a variance decrease similar to the recommen-

dation given by Gutjahr and Pflug [31], but the approach still works with values of η

close 1, leading to a much slower variance reduction. As we will see in the numerical

experimentations, the effect on the computing cost is then significant.

23

CHAPTER 4

TRAVELING SALESMAN PROBLEM

The traveling salesman problem has often been used to evaluate the performance of

SA implementations, in particular using instances from the problem collection TSPLIB.

We briefly present the problem in this chapter.

4.1 TSP Description

Consider a set of N cities, and a salesman that must visit each of them once and only

once and then return to his home city. The traveling salesman problem (TSP) is to com-

pute the shortest (connected) tour. The distance between two cities i and j is denoted

by d(i, j). TSP is called symmetric if d(i, j) = d(j, i) for all i, j. This is in particular

the case if the city position is described by a 2-dimensional vector of coordinates, we

use the Euclidean distance to compute the distance between two cities. Without loss of

generality, we set the index of the home city to 1. A tour can be described by permu-

tation of the cities 2 to N: π = (π(2), . . . ,π(N)). The complete connected tour is then

(1,π(2), . . . ,π(N),1), and its length is

H(π) = d(π(N),π(1))+
N−1

∑
i=1

d(π(i),π(i+1)),

where by convention π(1) = 1. The solution space can therefore be described as the

set S = {all permutations π on N−1 cities}. The dimension of the solution space is

therefore |S| = (N− 1)! (see for instance [3]). We can also describe the problem using

graph theory [36]. The tour is a Hamiltonian cycle in a graph where every node or city

has to be visited once.

The TSP has received a lot of attention (see for instance [10, 14, 33, 36, 39, 56]). The

problem is well-known to be NP-complete (see for instance [50, 53]), and often, only a

good solution can be obtained, while it is difficult to ensure optimality. We will focus

here on instances where the optimal tour is known.

Various instance collections exist that can be used to benchmark solution algorithms.

In this thesis, we will consider the library TSPLIB [55] that collects instances from

various sources, some randomly generated, some collected from specific applications

(see for instance Johnson and McGeoch [36], and section 5.1). The optimal solution is

known for various instances, and is given in the library, allowing comparisons.

4.2 Tour Construction Heuristics

Heuristics can be used to generate promising tours that can be later used as start-

ing solutions for optimisation algorithms. The two most important factors in the tour

construction are the time needed to create the tour and its solution quality in terms of

tour length. Several heuristics have been proposed, with specific features, as described

for instance in [36] and ([56] chapter 6, p. 73). In this thesis, we will use the nearest

neighbor algorithm to produce the initial solution.

The simplest way to build a tour is consider the greedy algorithm 2. The tour is

constructed in an incremental way, adding to the last city in the tour the nearest neighbor

in the set of unvisited cities. The initial city can be set to 1, as in algorithm 2, or selected

at random. When all the cities have been visited, we close the tour by returning to the

initial city. The algorithm is in Θ(N2) [56, 61]. The figure 4.1 illustrates the method.

Algorithm 2 Nearest neighbor algorithm
1: tour← (1). Set T = {2, . . . ,N} and l = 1.
2: While T 6= /0 do the following.
3: Select j ∈ T such that d(l, j) = min{d(l, i) | i ∈ T}.
4: Connect l to j, tour← (tour, j). Set T ← T \{ j} and l = j.
5: Connect l to the 1 to form a tour and set tour← (tour, l).
6: return tour

4.3 Moves

In order to apply SA algorithm to solve the TSP, we consider a tour as a solution

and the associated energy as the tour length. The tour consists of the sequence of cities

25

Figure 4.1: Tour produced by the nearest neighbor algorithm for problem bays29 from
TSPLIB

indexes, each city being represented by a set of two coordinates. The SA algorithm

requires the generation of a candidate solution in the neighborhood of the current solu-

tion at each iteration. This can be achieved by applying a move or a set of moves to

the current solution that reorder the sequence of visits [56, 61]. We only consider here

moves applied within a tour, illustrated in figure 4.2, while there exists other moves

defined between several tours (see for instance [61]). By convention, we will denote the

predecessor of city i in a tour by i−, and its successor by i+.

The simplest moves consist to permute two cities in the sequence of visits. We can

choose such cities as follows.

Select-Pos-1-Random-OPt This move consist to randomly select two different loca-

tions, in the same tour, and swap them. For instance, given the initial tour is

123456781, we could select the cities 5 and 8. Swapping them produces the new

tour 123486751, as illustrated in figure 4.2a.

Select-Pos-1-Previous-OPt We can simplify the move by selecting only one city at

random and swapping it with its predecessor in the tour. For instance, if we select

the city 8 in the tour 123456781, we will swap it with the city 7, leading to the

tour 123456871, as in figure 4.2b.

Select-Pos-1-Next-OPt Similarly, we can swap a city with its successor in the tour. If

we select the city 8, we will swap it with the city 2, as in figure 4.2c.

26

(a) Select-Pos-1-Random-OPt (b) Select-Pos-1-Previous-OPt

(c) Select-Pos-1-Next-OPt (d) Select-Pos-2-1-OPt

(e) Select-Pos-2-2-OPt (f) Select-Pos-3-1-OPt

(g) Select-Pos-3-2-OPt

Figure 4.2: Several types of moves

27

Instead of permuting cities, we can switch edges, keeping their original directions and

reversing them, as explained below. We can characterize this kind of move by the general

denomination Lin-2-Opt.

Select-Pos-2-1-OPt Pick i, j at random such that i 6= j, j 6= i−, i 6= j+. Then, do

swap(i−, j) and swap(i, j+). For instance, as in figure 4.2d, if we select cities

6 and 7 in the tour 123456781, the move is equivalent to switch the edge (5,6) and

the edge (7,8), leading to the tour 123478561.

Select-Pos-2-2-OPt Pick i, j at random such that i 6= j, i− 6= j+, and do swap(i, j),

swap(i−, j+). For instance, as in figure 4.2e, if we select cities 6 and 7 in the tour

123456781, the move is equivalent to switch the edge (5,6) and the edge (7,8) and

reverse them, leading to the tour 123487651.

The previous moves can be generalized to the exchange of more nodes, by composing

edges exchanges or reversing edges. This leads to Lin-n-Opt moves, where n is the

number of edges involved. We will consider two Lin-3-Opt moves. More general moves

can be found in [61].

Select-Pos-3-1-OPt Pick i, j,k, such that i 6= k, i− 6= j+, j 6= k+. Do swap (i−, j+),

swap(i,k), swap(j,k+). For instance, if we select i = 3, j = 5, k = 7, the initial

tour 123456781, from the graph 4.2f, we can see the initial by reversing 2-6, 3-7,

5-8 to become 167482351.

Select-Pos-3-2-OPt Pick i, i−, j, j+,k,k+ such that 1 ≤ i, j,k ≤ N, i− = i−1, j+ = j+

1,k+ = k+1,swap(i−, j+),swap(i,k+),swap(j,k). For instance, if we select i =

3, j = 4, k = 6, from the graph 4.2g, we can see the initial tour 123456781 by

reversing 2-5 , 3-7, 4-6 to become 157624381.

Finally, we can mix the moves together and select the combination that deliver the

tour with the least cost. According to Černỳ [17], it is not possible to determine the

best type of moves for a given instance, and we have to proceed by trial and error.

As a heuristic, we can decide to accept a move only if it produces a tour of smaller

28

length, but as noted by Bertsimas and Tsitsiklis [12], it is often more efficient to generate

several consecutive moves, even if some individual moves lead to a longer tour, as the

combination can result in a better tour, as done in the heuristic proposed by Lin and

Kernighan [44]. In a context like the SA algorithm, in the diversification phase, we will

admit any move to produce a new tour, that will be accepted or rejected on the basis of

the metaheuristic logic.

4.3.1 Ruin and Recreate

According to Schneider and Kirkpatrick [61], considering small moves only may

not always be adequate as in some cases, it is not easy to escape from a poor local

minimizer; therefore, making larger moves in the tour, producing a big change in the

tour construction, may be beneficial. A popular strategy is the ruin and rebuild technique,

consisting first in the destruction of the tour or part of it (ruin), removing some parts of

the tour randomly, and next in the construction of a new tour (rebuild) reinserting the

removed parts using some construction heuristics and keeping the remaining of the tour

untouched. We will however not investigate further this approach in this thesis.

4.4 Permutations

When the number of cities is not too large, it is possible to compute all the solutions

and return the optimal one. For instance, if there are 6 cities to visit, the are 5! feasible

solutions, that can be obtained by generating all permutations of cities 2 to 6 (recall that

city 1 is fixed as the origin and end of the tour). This allows us to easily compare the

obtained solution by some optimization algorithm to the optimal tour.

29

CHAPTER 5

INITIAL EXPERIMENTATIONS

5.1 TSP Instances

In order to validate our SA algorithm implementation, we test it on various TSP

instances. We first create a toy problem with 8 cities randomly generated on a two-

dimensional space, and use the Euclidean distance to compute the tour length. We call

this problem rnd8. The others problems are taken from TSPLIB [55] and presented in

table 5.I. The distance between the cities can be explicitly stored in a matrix, possibly

in triangular form in case of symmetric distances, or given implicitly, by simply storing

the cities coordinates, the distances being computed using the Euclidean distance. More

information can be found in Reinelt [55].

No Name # Cities Metric Distance format
1 eil51 51 2D Euclidian Not Explicit
2 pr76 76 2D Euclidian Not Explicit
3 eil101 101 2D Euclidian Not Explicit
4 pr107 107 2D Euclidian Not Explicit
5 bier127 127 2D Euclidian Not Explicit
6 a280 280 2D Euclidian Not Explicit
7 bays29 29 Geograhical Full matrix
8 gr17 17 Explicit Lower diagonal matrix
9 gr24 24 Explicit Lower diagonal matrix

10 gr21 21 Explicit Lower diagonal matrix

Table 5.I: TSP instances

We pre-process the instances by computing distances matrices, so that we do not

have to recompute the distances during the optimization process, and we identify the

cities by their indexes 1, . . . ,N. The SA algorithm can be repeated n times, using as

starting solution the last solution found at the end of previous SA execution. We can

store the best and final solution for each execution as well as the best overall solution.

Finally, we use the random number generator “MRG32k3a” [42] in our project.

5.1.1 Rnd8 Problem

Our toy problem consists of 8 cities, with coordinates (5,10), (10,20), (15,5), (20,15),

(25,20), (30,30), (20,18), (30,5). We first compare the moves described in chapter 4

to determine neighbor solutions, using a linear decreasing temperature, with Ti = 50,

Tf = 0.00001 and a cooling rate α of 0.1. We perform 21 SA replications using MH

acceptance technique. The results are reported in table 5.II while we represent the

evolution of final solution over the replications in figure 5.1. In this experiment, the

move providing the best results is (Select-Pos-3-2-OPt) while the worst is (Select-Pos1-

Previous-Opt).

No Type of move Mean final cost Final tour Mean best cost Best tour
1 Select-Pos-1-Random-OPt 93.21 187435621 93.10 187653421
2 Select-Pos-1-Previous-OPt 97.83 126534781 93.15 187653421
3 Select-Pos-1-Next-OPt 94.43 123654781 93.10 187653421
4 Select-Pos-2-1-OPt 96.37 124365781 93.12 187653421
5 Select-Pos-2-2-OPt 95.19 124365781 93.12 187653421
6 Select-Pos-3-1-OPt 93.30 187435621 93.15 187653421
7 Select-Pos-3-2-OPt 93.18 124365781 93.10 187653421

Table 5.II: Comparison of moves on problem rnd8

Figure 5.1: Results based on final distances for different move types

We next run the SA algorithm with parameters described in table 5.III, using a linear

temperature scheme, n = 21, and rk = 8 for all k.

31

Acceptance Type Move Type Variance Ti Tf Cooling Rate (α)

Metropolis Select-Pos-2-2-opt 0 100 0.001 0.001

Table 5.III: Parameters for toy problem rnd8

Figure 5.2 reports the best and final solutions found over the SA executions. The av-

erage best tour distance over the 21 executions equals to 93.10 and the average final tour

distance over the 21 executions is 93.49. Figure 5.3 represents the original tour when

we visit the cities in the order of their indexes, the initial tour obtained using the greedy

heuristic, the best overall tour and the optimal tour determined by computing all possi-

ble permutations. The associated costs are given in 5.IV. Finally, figure 5.4 illustrates

the minimum required (Select-Pos-2-2-opt) moves to attain the optimal solution from a

given final solution at the previous SA execution.

Figure 5.2: Final and best solutions for rnd8 problem

Original Initial Overall best Final Optimal
Cost 113.94 93.81 93.10 93.10 93.10
Order 123456781 127456831 187653421 124356781 187653421

Table 5.IV: rnd8 tour costs

The experiment shows that as the initial temperature is high, many bad solutions

are accepted, moving away from optimality, and if the temperature is not sufficiently

32

Figure 5.3: rnd8 tours

Figure 5.4: Minimum required moves needed to pass from final to best solution

reduced during the SA execution, the final tour can have a too large value and its cor-

responding graph presents many crosses, as shown in figure 5.2. In addition, the best

solutions are dominated by the optimal solution. Restarting the algorithm n times, us-

ing the final tour at a given execution as the starting tour for the next one, allows to get

better performance. The final and best solutions tend to improve over the executions,

as sometimes, the algorithm gets stuck at a bad local minimum at low temperatures,

but restarting SA algorithm allows to escape from it. However, restarting the algorithm

presents some drawbacks too, as at the beginning of each execution, many uphill moves

can be accepted, degrading the solution quality, even when only a few moves would have

been sufficient to reach the optimal solution, as illustrated in figure 5.4.

5.2 Temperature management

Previous experiments suggest that the choice of initial and final temperatures, as

well as the cooling rate, significantly impacts the performance of SA. We explore the

sensitivity to the temperature cooling approach in more details in this section.

33

5.2.1 Temperature Schemes Comparisons

Table 5.V summarizes experiments performed of rnd8 for different choices of tem-

peratures and cooling rates (α) as defined in page 12, using the move (Select-Pos-3-2-

opt) as empirically, it delivers the best performance. In addition, the linear temperature

update scheme is used and rk = 8. The classification type suggests various possible

choices for the parameters, but highlights the challenge to fix them despite the simplicity

of the example rnd8. Consequently, there is a need to find a mechanism that automates

the choice of parameters in a sensible way.

No Classification Type Ti Tf α avg Final Cost avg Best Cost
1 high Ti 100 0.00001 0.1 93.26 93.10
2 low Ti 10 0.00001 0.1 93.16 93.10
3 medium Ti 50 0.00001 0.1 93.18 93.10
4 low Tf 50 0.01 0.1 93.22 93.10
5 very low Tf 50 0.000001 0.1 93.22 93.10
6 Tf close to Zero 50 0.00000001 0.1 93.24 93.10
7 high α 50 0.00001 0.8 96.76 93.10
8 low α 50 0.00001 0.00001 93.10 93.10
9 medium α 50 0.00001 0.01 93.19 93.10

Table 5.V: Comparison of temperature update schemes for rnd8, using move Select-Pos-
3-2-opt and n = 21

Figure 5.5: Final tour distances for n = 21 SA executions, based on temperature choices

From the table 5.V, we can see that the best solution for the toy problem rnd8 is

obtained with experiment 8 and the worst with experiment 7. They correspond to the

34

slowest and the fastest cooling rates, respectively, exhibiting that SA algorithm needs

time to stabilize on the correct solution. As observed in figure 5.5, in case of high

temperature, any move is accepted, while in low temperature only downhill moves are

accepted, and SA acts as a local search. Similarly, when the cooling rate is fast, the

diversification phase takes place for a limited time only and the SA reduces to a local

search.

5.2.2 Initial and Final Temperatures Selection

This section represents how to select the temperature parameters that will be used

in the simulation. As illustrated in table 5.V and mentioned by van Laarhoven and

Aarts [41], the choice of initial and final temperatures strongly impact(s) the algo-

rithm efficiency. We slightly adapt in algorithm 3 the method proposed by Ben-Ameur

[11], van Laarhoven and Aarts [41], assuming that the acceptance probability follow(s)

the Metropolis-Hastings criterion, as described in section 2.2.1. For any state xi and

some neighbor x j, we record the energy difference from the lowest energy state to the

highest energy state, and repeat the procedure for ν iterations. We then compute the

average energy difference over the ν observations, and deduce from it approximate val-

ues of initial temperature Ti and final temperature Tf , corresponding to target probability

levels P1 and P2, respectively, of uphill move acceptance. Table 5.VI illustrates the tem-

peratures selection on several TSPLIB instances, described in table 5.I, page 30 . We can

observe that the initial and final temperatures greatly vary over the problems, illustrating

the need to properly choose them on an instance basis. The configuration of cities has a

huge impact on the initial and final temperatures, but more importantly, the average cost

provides a better indication of the parameter values to use, that are important to ensure

the progress of the algorithm towards a good solution. At high temperature, we want

to favor the exploration of the solutions space, so P1 should be close to 1, following the

recommendation made by Saıt and Youssef [60] that the initial temperature should be

35

selected such that:

Number of moves accepted at T0

Total number of moves attempted at T0
' 1

At a low temperature, we tend to reject any uphill move, suggesting a value of P2 close

to 0. However, too high P1 could cause the algorithm to act as a random search algorithm

for many iterations, while a too small P2 value will often lead the algorithm to stagnate

as the probability to accept an uphill move is then very small, while typically the solution

cannot be improved locally.

Algorithm 3 Selection of initial and final temperatures
1: Set m = 0, ν > 0, and probability levels P1 and P2.
2: while m < ν do
3: Generate a random solution xi and a neighbor solution x j.
4: ∆Em← |E(xi)−E(x j)|
5: m← m+1
6: end while
7: ∆E = ∑

ν
m=1 ∆Em

8: Ti =−∆E/ logP1
9: Tf =−∆E/ logP2

P1 = 0.9 P2 = 0.00001 P1 = 0.8 P2 = 0.001
No Size Name Ti Tf Ti Tf ∆E
1 8 rnd8 104.31 0.96 49.25 1.59 10.99
2 51 eil51 389.32 3.6 183.83 5.94 41.02
3 76 pr76 93626.8 856.83 44207.3 1428.04 9864.57
4 101 eil101 430.90 3.94 203 6.57 45.40
5 107 pr107 95010 869.49 44860.4 1449.14 10010.3
6 127 bier127 53762.2 492.00 25384.6 820.00 5664.41
7 280 a280 1784.03 16.33 842.4 27.21 187.96
8 29 bays29 2430 22.23 1147.43 37.06 256.04
9 17 gr17 2971.47 27.19 1403.02 45.32 313.07
10 24 gr24 1739.18 15.91 821.17 26.52 183.24
11 21 gr21 4063.97 37.19 1918.86 61.98 428.18

Table 5.VI: Selection of initial and final temperatures on different TSPLIB instances
(ν = 100000)

36

5.3 Comparison of acceptance functions

We first compare MH and Glauber acceptance functions on our toy problem rnd8.

The initial temperature Ti is set to 50 and the final temperature Tf , to 0.001. We use the

move Select-Pos-3-2-OPt, a linear temperature decrease with a cooling rate α of 0.001 as

defined in section 2.2.3, and perform 21 SA executions. In terms of average final and best

solutions, both approaches perform similarly, delivering a tour with the optimal length

of 93.10. Figure 5.6 exhibits the cost evolution over the iterations of one SA execution,

for the temperature range 2–0.001. The initial temperature Ti is set to 50, but we do not

plot the iterations in the temperature range 50–2 due to the high volatility of the process

for large temperatures. We can observe that the Glauber acceptance function leads to

more volatility of the solution than the MH acceptance, but both methods stabilize and

converge to the optimal cost when the iteration index increases. Figure 5.7 illustrates

some of the generated tours.

Figure 5.6: Comparison of Glauber and MH at low temperature for rnd8

The experiments have been reproduced on various TSPLIB instances, with an initial

temperature Ti set to 50, 100 or 1000, based on pilot tests, and we use 3 SA replica-

tions. The final temperature Tf is set to 0.0001 and the cooling rate to 0.001. The results

are reported in table 5.VII. They exhibit that while enjoying a strong convergence the-

ory, SA often encounters practical difficulties to find the optimal solution with MH and

Glauber acceptance mechanisms. We have however identified four problems for which

the algorithm finds the optimal tour.

37

Figure 5.7: Tours generated by SA with MH and Glauber acceptance functions

No Name Initial Solution Best (MH) Best (Glauber) Optimum
1 eil51 513.61 444.81 441.45 426
2 St70 805.53 779.78 825.24 675
3 eil101 938.31 938.31 938.31 629
4 pr107 46678.2 44857.9 44857.9 44303
5 rat99 1564.72 1555.61 1542.06 1211
6 bier127 135752 125046 126081 118282
7 a280 3148.11 3148.11 3148.11 2586
8 berlin52 8980.92 8210.56 8323.07 7542
9 pr76 153462 114837 110332 108159

10 gr21 3333 2707 2707 2707
11 gr17 2187 2085 2085 2085
12 gr24 1553 1272 1272 1272
13 bays29 2258 2020 2020 2020

Table 5.VII: Solutions found by SA using Glauber and MH acceptance for TSPLIB
instances

38

5.4 Experimental Results of SA Under Noise

As in (3.4), we assume that the cost (energy) of a solution can be decomposed as the

sum of the mean cost and a white noise:

E(x) = E(x)+ ε(x,ω),

where ε(x,ω) is i.i.d. over the feasible solutions and ε(x,ω)∼ N(0,σ2). In our experi-

mentations, we simulate the noise using Monte Carlo draws, and add it to the (determin-

istic) tour cost.

We consider the problems rnd8, gr17, gr21, and gr24, for which SA can find the op-

timal solution in the deterministic case, with variance 0.3 and 2. Both MH and Glauber

acceptance procedures are tested, with a different number of simulations among the

problem, and a linear temperature decrease. The experimental configurations are sum-

marized in table 5.VIII. It can be noticed from the figure 5.10 that in the example case

gr17, Glauber and MH acceptance mechanisms behave in a similar way regarding the

final and best solutions, whereas in the other examples the methods behave differently.

More importantly, the figure reveals that the returned best cost underestimates the ex-

pected best cost and the final cost is not always stable. Without noise correction, SA

provides biased solutions and has more difficulty to stabilize. It is therefore important to

modify SA to take the noise into account, as in the following chapters.

Name n Acceptance Type Move Type Variance Ti Tf Cooling Rate
rnd8 21 MH/Glauber opt3-2-opt 0.3 50.0 0.00001 0.00001
gr17 15 MH/Glauber opt3-2-opt 0.3, 2 50.0 0.001 0.01
gr21 101 MH/Glauber opt3-2-opt 0.3 90.0 0.0001 0.01
gr24 101 MH/Glauber opt3-2-opt 0.3, 2 100.0 0.00001 0.001

Table 5.VIII: Parameters for noisy problem examples

39

Figure 5.8: Noisy Rnd8

Figure 5.9: Noisy Rnd8

40

Figure 5.10: Noisy gr17 for MH and Glauber

Figure 5.11: Best noisy costs for gr24 MH and Glauber

41

Figure 5.12: Best noisy costs for gr21 MH and Glauber

42

CHAPTER 6

COMPARISONS OF NOISE MANAGEMENT STRATEGIES

In the previous chapter, we have analysed SA algorithm behavior when solving deter-

ministic and stochastic TSPs. We will now compare various simulated annealing under

noise (SAUN) strategies in terms of computation cost and quality of the solutions. Due

to the stochastic nature of the methods and the problems, we will study their average

behavior on several instances, as follows. For each instance, we run each method 200

times and record the final solutions. We record the fraction of runs where the optimal

solution was reached and where a near-optimal solution was obtained, as well as the

average final tour length in deterministic and noisy cases. Near-optimality is defined as

a tour length no more than (1+ ε) times the optimal cost. In our experiments, we set ε

to 1%.

In order to keep the computational times reasonable, the noise was artificially gen-

erated as a Gaussian noise scaled to the required variance level, and added to the tour

length without noise. The computation cost was then scaled to reflect the number of

repetitions that would have been needed to obtain the same variance reduction.

The results are graphically compared to facilitate the discussion, using a procedure

inspired by the method proposed by Dolan and Moré [21] to benchmark optimization

software. For each approach, we create a curve capturing in y-axis the proportion of

simulations that reach optimality and a curve for near-optimality, with respect to the

computational effort, represented in logarithmic scale in x-axis, where one computa-

tional cost unit corresponds to one tour evaluation. In other terms, we monitor the evolu-

tion of the algorithms as the computational effort increases, and analyse their efficiency

in terms of effort required to reach good solutions as well as their robustness, measuring

their capacity to asymptotically reach (near-)optimality.

6.1 Experimental Settings

The choice of initial and final temperatures for SAUN is considered in this section.

We here rely on the procedure proposed in section 5.2.2 for the deterministic case to

make a first proposition of these temperatures, but refine them as this approach gives

rough estimates of the temperatures, so the real acceptance probabilities differ from the

targets, as reflected in table 6.I, where we report the proportion of accepted uphill moves

over 200 experiments, using MH acceptance criterion, on various problem instances and

various initial temperatures. In this table, Ndet
a and Pdet

a corresponds to the number and

the proportion of accepted moves, respectively, in the deterministic case, while Nstoch
a

and Pstoch
a , while the latest column indicates the corresponding target probability in al-

gorithm 3. We observe that the acceptance probabilities are then always underestimated.

On the basis of this finding, we have decided to divide the initial temperature by two

as long as the empirical probability is higher than the desired probability in order to

limit the exploration phase and facilitate the algorithm capability to attain a low final

temperature in a reasonable time. The same approach can be applied to deterministic

and stochastic cases, and for any acceptance scheme. While heuristic, this technique has

proved effective in our numerical experiments.

No Ti Ndet
a Nstoch

a Pdet
a Pstoch

a e
|∆E|
Ti

1-rnd8 10.5 95 81 0.47 0.40 0.35
2 15 121 110 0.60 0.55 0.48
3 20 140 135 0.7 0.65 0.57
4 25 161 151 0.80 0.75 0.64
5 30 165 159 0.82 0.79 0.69
6 35 169 166 0.84 0.83 0.73
7 49.25 185 172 0.92 0.86 0.80

8-gr17 1403 178 178 0.89 0.89 0.80
9 701.5 150 152 0.75 0.76 0.63

10 350.75 98 98 0.49 0.49 0.40
11-bays29 1147 184 182 0.92 0.91 0.79

12 573.5 153 157 0.76 0.78 0.63
13 286.75 104 103 0.52 0.51 0.40

Table 6.I: Acceptance of uphill moves for problems rnd8, gr17, and bays29

44

We use logarithmic temperature update scheme, setting the temperature at iteration

k as

Tk =
c

log(k+d)
,

where c = Ti log2 and d = 1, or

Tk =
c

log(kd)
,

where d is a constant greater than 1.

Even if the methods are designed to lower random noise as the temperature decreases,

they still can face difficulties to converge when the original noise is too large, as the noise

tends to dominate in the objective function evaluation at each iteration. A possible way

to control the noise is to require that a 95% confidence interval over the optimal tour

length has a half-width no more than 10% than this length. For instance, the optimal

length of our toy problem rnd8 is approximately 93, and rounding the 0.975 quantile of

a N(0,1) to 2, this implies that the initial standard deviation should be no more than 4.5.

The computational cost is simulated by normalizing it at 1 with the original variance,

and at iteration k, its value corresponds to the variance reduction factor with respect

to the original variance. The variance at the iteration k is noted σ2
k . CD acceptance

rate is sensitive to the noise level as a higher variance will result in a lower acceptance

probability, that can be arbitrarily small when the variance grows, as observed by Branke

et al. [15]. It is therefore important to control the initial variance level, setting

σ
2
0 =

σ2
i

ν
,

where ν > 0. Enforcing (3.7) as an equality, that is

σ
2
∆E =

2σ2
0 T η

T η

0
,

we can set the initial variance σ2
0 in various ways. For instance, if we fix the value σ2

f ,

we can set ν such that

2σ
2
f =

2σ2
i T η

f

νσ2
f T η

0
,

45

or

ν =
σ2

i T η

f

σ2
f T η

0
.

Table 6.II illustrates some values obtained using this approach. A more advanced strat-

egy is to choose ν in order to have the acceptance probability, computed as in (3.6), close

to some predefined threshold α , that is we search a value ν such that

Pa = E[Pi j] = E
[

P
[

∆Ei j ≤−
σ2

i
νT

]
+P[Accept]P

[
∆Ei j≥−

σ2
i

νT

]]
= α,

where the expectation can be estimated using a Monte Carlo approximation. In our

experiments, a value of α between 0.5 and 0.8 has proved to be a good compromise. We

report in table 6.III the effect of ν on several problems, using a sample of 10000 pairs

of tours, the first tour in a pair being obtained generating a random permutation of the

cities, and second tour obtained after the applications of one of the moves reviewed in

section 4.3, and denoting by x the empirical average of x. The table shows that in some

cases, as in gr17, we could even take a value ν less than 1.

No Problem σ2
i σ2

f Ti Tf Tf
η ν

1 rnd8 12.25 0.12 10.5 0.45 0.41 3
2 bays29 12.25 0.03 40 1.66 1.74 10
3 gr17 12.25 0.39 45 2 2.14 1

Table 6.II: Estimating ν for CD with η = 1.1 and known σ2
i

Lib Ti σ2
i |∆E| ν Pa

rnd8 10.5 12.25 10.99 3 0.72
bays29 40 12.25 256.04 10 0.56
gr17 45 12.25 313.07 1 0.55

Table 6.III: Empirical CD acceptance probability

6.2 Results of Experiments

We summarize the results of our experiments in table 6.IV, comparing some noise

reduction strategies reviewed in section 3.2.1 over 200 SA replications. In the table, GP

46

stands for Gutjahr and Pflug and in brackets, we give the value used for the parameter γ .

Similarly, we give the value of η in brackets for NSA. We report the best final tour length

over the 200 replications as BFinal, as well as the best length over all SA iterations,

identified as Best. The same quantities are reported when we introduce noise, denoting

by BNFinal and NBest the best final length under noise and the overall best length under

noise. We next give the average of the lengths over the 200 replications, and report the

equivalent computation cost, normalizing the cost for one tour evaluation at the initial

variance at one. The number of replications for which the last iteration corresponds to

the optimal solution is given in the next column, and finally, we report in the last column

the number of replications achieving 1%-optimality in the last iteration.

From the table, we can see that SA usually succeeds to stabilize on a 1%-optimal

solution, but not necessarily on the optimal solution. Recording the best solution when

noise is present produces a bias, the optimal tour length being underestimated, reflecting

that under noise, it is safer to consider the last solutions only. We did not investigate other

options to better select the solution to report. In all examples, NSA–CD outperforms the

other methods in terms of solution quality and computation costs, the value η = 1.2

being a good compromise. We give more detailed comparisons in the next sections.

6.2.1 Rnd8

Since the initial tour obtained by the greedy algorithm has a distance of 93.81, as

in figure 5.3 and table 5.IV, which is already optimal, we consider another initial tour,

depicted in figure 6.1. The tour correspond the the coordinates (5,10), (15,5), (30,5),

(20,15), (25,20), (30,30), (20,18), (10,20).

We compare in figure 6.2 NSA and GP techniques, with a temperature starting at 10.5

and decressing to 0.45. The curves correspond to the capability of the methods to find the

optimal or 1%-optimal solution when the computational budget increases. The compu-

tation time of NSA–CD starts at 3 since ν equals 3. At the beginning, NSA–MH works

better than the other methods but NSA–CD quickly dominates the other approaches.

Both NSA–CD and GP–MH ultimately obtained a 1%-optimal solutions, while NSA–

MH has a lower success rate, reflecting its theoretical weaknesses. The computational

47

N
o

[T
i,

T f
]

M
et

ho
d

[σ
2 i
,σ

2 f]
B

Fi
na

l(
B

es
t)

B
N

Fi
na

l(
N

B
es

t)
Fi

na
l(

B
es

t)
N

fin
al

(N
B

es
t)

C
om

p.
C

os
t

O
pt

.
1%

op
t.

rn
d8

1
[1

0.
5,

0.
45

]
N

SA
(1

.1
)–

M
H

[1
2.

25
,0

.3
8]

93
.1

0
(9

3.
10

)
93

.7
5

(8
9.

71
)

93
.4

9
(9

3.
42

)
93

.5
2

(8
3.

80
)

2.
85

e+
08

88
17

6
2

[1
0.

5,
0.

45
]

G
P(

1.
01

)–
M

H
[1

2.
25

,7
.9

3e
-1

4]
93

.1
0

(9
3.

10
)

93
.1

0
(8

4.
91

)
93

.3
7

(9
3.

10
)

93
.3

7
(8

3.
8)

5.
22

e+
20

11
2

18
8

3
[1

0.
5,

0.
45

]
N

SA
(1

.1
,ν

=3
)–

C
D

[1
2.

25
,0

.1
2]

93
.1

0
(9

3.
10

)
92

.4
8

(9
1.

52
)

93
.3

1
(9

3.
10

)
93

.0
0

(9
1.

13
)

9.
45

e+
08

12
8

18
9

4
[1

0.
5,

0.
45

]
N

SA
(1

.2
,ν

=3
)–

C
D

[1
2.

25
,0

.0
9]

93
.1

0
(9

3.
10

)
92

.6
8

(9
1.

74
)

93
.3

1
(9

3.
10

)
93

.1
1

(9
1.

25
)

1.
28

e+
09

12
3

18
9

5
[1

0.
5,

0.
45

]
N

SA
(2

,ν
=3

)–
C

D
[1

2.
25

,0
.0

07
]

93
.1

0
(9

3.
10

)
93

.1
4

(9
2.

66
)

93
.4

1
(9

3.
10

)
93

.3
9

(9
2.

24
)

1.
35

e+
10

10
9

18
1

gr
17

6
[4

5,
2]

N
SA

(1
.1

)–
M

H
[1

2.
25

,0
.3

9]
20

85
(2

08
5)

20
84

.8
1

(2
08

1.
61

)
20

85
.3

6
(2

08
5)

20
85

.2
6

(2
07

6.
22

)
1.

54
e+

08
19

3
20

0
7

[4
5,

2]
G

P(
1.

01
)–

M
H

[1
2.

25
,2

.5
4e

-1
3]

20
85

(2
08

5)
20

85
(2

08
4.

98
)

20
85

.3
6

(2
08

5)
20

85
.3

6
(2

07
6.

38
)

9.
44

e+
19

19
3

20
0

8
[4

5,
2]

N
SA

(1
.1

)–
C

D
[1

2.
25

,0
.3

9]
20

85
(2

08
5)

20
86

.3
4

(2
08

2.
66

)
20

85
.3

8
(2

08
5)

20
85

.1
4

(2
08

1.
75

)
1.

69
e+

08
19

3
20

0
9

[4
5,

2]
N

SA
(1

.2
)–

C
D

[1
2.

25
,0

.2
9]

20
85

(2
08

5)
20

86
.1

4
(2

08
2.

99
)

20
85

.3
(2

08
5)

20
85

.1
1

(2
08

2.
12

)
2.

29
e+

08
19

4
20

0
10

[4
5,

2]
N

SA
(2

)–
C

D
[1

2.
25

,0
.0

2]
20

85
(2

08
5)

20
85

.3
3

(2
08

4.
39

)
20

85
.3

(2
08

5)
20

85
.2

7
(2

08
3.

96
)

2.
37

e+
09

20
0

20
0

ba
ys

29
11

[4
0,

1.
66

]
N

SA
(1

.1
)–

M
H

[1
2.

25
,0

.3
6]

20
31

(2
03

1)
20

32
.0

6
(2

02
7.

80
)

20
32

.0
4

(2
03

1.
87

)
20

32
.1

(2
02

3.
37

)
1.

85
e+

08
—

19
9

12
[4

0,
1.

66
]

G
P(

1.
01

)–
M

H
[1

2.
25

,2
.5

0e
-1

3]
20

31
(2

03
1)

20
31

(2
03

1)
20

31
.5

5
(2

03
1)

20
31

.5
5

(2
02

3.
76

)
7.

68
e+

19
—

19
9

13
[4

0,
1.

66
]

N
SA

(1
.1

,ν
=1

0)
–C

D
[1

2.
25

,0
.0

3]
20

31
(2

03
1)

20
30

.9
8

(2
03

0.
46

)
20

31
.6

3
(2

03
1)

20
31

.6
4

(2
03

0.
19

)
1.

85
e+

09
—

20
0

14
[4

0,
1.

66
]

N
SA

(1
.2

,ν
=1

0)
–C

D
[1

2.
25

,0
.0

2]
20

31
(2

03
1)

20
30

.9
9

(2
03

0.
54

)
20

31
.6

5
(2

03
1)

20
31

.6
6

(2
03

0.
31

)
2.

26
e+

09
—

20
0

15
[4

0,
1.

66
]

N
SA

(2
,ν

=1
0)

–C
D

[1
.2

25
,0

.0
02

]
20

31
(2

03
1)

20
31

(2
03

0.
87

)
20

31
.9

(2
03

1)
20

31
.9

1
(2

03
0.

79
)

2.
73

e+
10

—
20

0

Ta
bl

e
6.

IV
:E

xp
er

im
en

ta
lr

es
ul

ts
ov

er
20

0
SA

re
pl

ic
at

io
ns

48

Figure 6.1: New initial tour for problem rnd8

effort required by GP–MH is nevertheless significantly higher than NSA–CD. We next

investigate the choice of parameter η in figure 6.3. The computation cost increases along

with η , as expected, while the solution quality seems to not depend on the parameter

value.

Figure 6.2: Comparison of SAUN methods for problem rnd8

6.2.2 Gr17

We report the same comparison between NSA and GP for problem gr17 in figure 6.4,

for a temperature decreasing from 45 to 2. NSA–CD and NSA–MH perform in a similar

way, ultimately reaching 1%-optimality on all the replications, and optimality on nearly

49

Figure 6.3: NSA–CD performance for problem rnd8

all the replications. Both approached clearly outperform GP–MH, that reached similar

ratio of optimal and near-optimal solutions, but at the expense of a computation that

increases exponentially faster. These observations are in line with the results reported in

table 6.IV, exhibiting that the three methods are able to reach the optimal length 2085

on most of the SA replications, and 1%-optimal solution on all the simulations, but at a

fraction of the cost for NSA compared to GP.

Figure 6.4: Comparison of SAUN methods for problem gr17

50

As in the previous example, figure 6.5 illustrates that NSA–CD achieves good per-

formance even for a small value of η , while the computational cost decreases. The

method is however slightly more robust with η = 2 as it reaches 1%-optimality on all

SA replications, while near optimality is achieved on 96.5% and 97% of the replications

for η = 1.1 and η = 1.2, respectively. We can observe in table 6.IV that GP achieves

near-optimality on all the replications, but the required computation cost is prohibitive.

Figure 6.5: NSA–CD performance for problem gr17

6.2.3 Bays29

We finally report results for problem bays29, for which SA had issues to stabilize

in the optimal solution, as no method managed to produce the optimal tour in the last

iteration, as reported in table 6.IV. We therefore only compare 1%-optimality in fig-

ure 6.6, decreasing the temperature from 40 to 1.66. While we had to reduce the initial

variance by 10 for NSA–CD, it exhibits a sharp increase in the ratio of 1%-optimal solu-

tions found with the the computational budget, and manages to attain a good solution in

nearly all the replications, as shown again in table 6.IV. We did not apply such an initial

variance reduction for NSA–MH, which achieves the same success rate than NSA–CD,

but with a lower cost. As in the previous problems, GP ultimately exhibits the same

51

success rate, but at the price of a much higher computation cost, making the approach

not competitive.

Figure 6.6: Comparison of SAUN methods for problem bays29

6.3 Discussion

The experiments show that SA usually needs many iterations before we can reach

convergence, and we have to carefully choose initial and final temperatures in order to

diversify the search during the first iterations, while allowing to converge to a good solu-

tion during the final iterations. In presence of noise, Gutjahr and Pflug’s method allows

to find optimal or nearly-optimal solutions, but a prohibitive cost, while NSA with the

acceptance technique proposed by Ceperley and Dewing succeeds to discover the solu-

tions with much less computational efforts. NSA with Metropolis-Hastings acceptance

often delivers good numerical results, but in one problem, it underperformed in terms

of solution quality. This is no surprising as there is no a theoretical guarantee for such

a combination. Therefore, the best results were obtained with NSA–CD, but in our ex-

perimations, we have discovered that the method can be quite sensitive to the choice

of initial and final temperatures, and the value of the initial variance, that has to be lim-

ited. It nevertheless appears from our results that SAUN methods are promising to tackle

52

Figure 6.7: NSA–CD performance for problem bays29

problems under noise when only metaheuristics can be used.

53

CHAPTER 7

CONCLUSION

In this thesis, we explore the use of simulated annealing for optimization problems

affected by noise. Previous studies exhibit that convergence can still be obtained, but the

computational cost exponentially increases as the temperature goes to zero [31]. Our ex-

periments on the traveling salesman problem (TSP) are in line with these observations,

but the efficiency of the simulated annealing can be greatly improved. The acceptance

criterion proposed by Ceperley and Dewing [16] (CD) indeed provides important com-

putational savings if we decrease the variance along with the temperature, a point previ-

ously ignored [15]. The variance reduction ratio can be kept close to proportional to the

temperature decrease, an approach considered in the proposed Noisy Simulated Anneal-

ing (NSA), while other strategies taking noise under consideration typically impose the

variance to be in the order of the square of the temperature [31]. As a result, NSA with

CD achieves a much faster convergence rate, but the numerical experiments suggest that

the method needs a low final temperature in order to outperform the other approaches.

NSA with the standard Metropolis-Hastings acceptance criterion gave sometimes bet-

ter results than expected, being competitive with the best techniques, but was the less

robust method on other TSP instances, reflecting the lack of convergence guarantees in

presence of noise.

Simulated annealing however suffers from several limitations. The cost function

used to model problems has to be simple and its evaluation, fast. The solution space

should no be restricted, but it is possible to limit the neighborhood used to determine the

candidate solution at a given iteration. In presence of noise, simulated annealing under

noise (SAUN) strategies outperform the classical simulated annealing method. The ef-

ficiency of SAUN crucially depends on the decrease of the randomness in the problem,

that can be performed in different ways. The decrease speed has to be controlled and if

possible, reduced. NSA achieves this objective.

While promising, the numerical experiments remain limited and should be extended.

We first could explore use of larger temperatures value and limit final iterations where

nearly no progress is observed in the solution and the variance does not decrease signif-

icantly as the temperature cooling is very slow. Second, more examples, if not all, from

TSPLIB should be analyzed. Ideally, we could create a noisy version of TSPLIB, along

with the best solutions, computation costs, and noise levels in order to compare with any

technique proposed to handle noisy problems. We could consider various noise distribu-

tions, such as rectangular distribution, triangular distribution, Maxwell distribution, etc.,

as suggested by Gutjahr and Pflug [31] in their conclusion. Providing many examples

however needs more time, especially for the largest instances and more expensive, espe-

cially for time consuming approaches as the Gutjahr-Pflug method. On the other hand,

the performance of NSA with CD was sensitive to the initial variance level, so more

attention should be devoted to this point. We could consider a general method for setting

the initial variance, similar to what we have done for NSA with CD, with the hope to

limit the computational cost during the final iterations due to some compromise between

the final temperature and variance. Moreover, in order to keep the problems numerically

manageable, we set the variance value when drawing the error in our experiments, rather

than keeping the variance fixed, and averaging the observations over n experiments, as

in real applications.

Finally, while Gutjahr and Pflug [31] formally prove that their approach asymptot-

ically converges towards the set of global minimizers of the objective function under

consideration, a theoretical proof of the convergence of NSA with CD has still to be

provided, as Ceperley and Dewing [16] only consider the case of a fixed temperature.

The proof could follow similar lines than convergence of the classical SA [1], and could

give more insight of the method parameters as well as the temperature decrease scheme.

55

BIBLIOGRAPHY

[1] E. H. L. Aarts and J. H. M. Korst. Simulated Annealing and Boltzmann Ma-

chines: A Stochastic Approach to Combinatorial Optimization and Neural Com-

puting. John Wiley & Sons, New York, NY, USA, 1989.

[2] E. H. L. Aarts and P. J. M. van Laarhoven. Simulated annealing: an introduction.

Statistica Neerlandica, 43(1):31–52, 1989.

[3] E. H. L. Aarts, J. H. M. Korst, and W. Michiels. Simulated annealing. In E. K.

Burke and G. Kendall, editors, Search methodologies, pages 265–285. Springer,

2014.

[4] H. Aguiar e Oliveira Jr, L. Ingber, A. Petraglia, M. R. Petraglia, and M. A. S.

Machado. Stochastic global optimization and its applications with fuzzy adaptive

simulated annealing. Springer-Verlag, Berlin Heidelberg, Germany, 2012.

[5] T. M. Alkhamis, M. A. Ahmed, and V. K. Tuan. Simulated annealing for discrete

optimization with estimation. European Journal of Operational Research, 116(3):

530–544, 1999.

[6] M. H. Alrefaei and S. Andradóttir. A simulated annealing algorithm with constant

temperature for discrete stochastic optimization. Management Science, 45(5):748–

764, 1999.

[7] S. Amaran, N. V. Sahinidis, B. Sharda, and S. J. Bury. Simulation optimization:

a review of algorithms and applications. Annals of Operations Research, 240(1):

351–380, 2016.

[8] S. Andradóttir. A review of random search methods. In M. C. Fu, editor, Handbook

of Simulation Optimization, pages 277–292. Springer, New York, NY, USA, 2015.

[9] S. Anily and A. Federgruen. Simulated annealing methods with general acceptance

probabilities. Journal of Applied Probability, 24(3):657–667, 1987.

[10] J. Basel and T. R. Willemain. Random tours in the traveling salesman problem:

analysis and application. Computational Optimization and Applications, 20(2):

211–217, 2001.

[11] W. Ben-Ameur. Computing the initial temperature of simulated annealing. Com-

putational Optimization and Applications, 29(3):369–385, 2004.

[12] D. Bertsimas and J. Tsitsiklis. Simulated annealing. Statistical Science, 8(1):10–

15, 1993.

[13] C. Bouttier and I. Gavra. Convergence rate of a simulated annealing algorithm with

noisy observations. arXiv preprint arXiv:1703.00329, 2017.

[14] N. E. Bowler, T. M. A. Fink, and R. C. Ball. Characterization of the probabilistic

traveling salesman problem. Physical Review E, 68(3):036703, 2003.

[15] J. Branke, S. Meisel, and C. Schmidt. Simulated annealing in the presence of noise.

Journal of Heuristics, 14(6):627–654, 2008.

[16] D. M. Ceperley and M. Dewing. The penalty method for random walks with un-

certain energies. The Journal of chemical physics, 110(20):9812–9820, 1999.

[17] V. Černỳ. Thermodynamical approach to the traveling salesman problem: An ef-

ficient simulation algorithm. Journal of optimization theory and applications, 45

(1):41–51, 1985.

[18] A. Charnes and M. Wolfe. Extended Pincus theorems and convergence of simulated

annealing. International Journal of Systems Science, 20(8):1521–1533, 1989.

[19] E. A. B. Cole. Mathematical and Numerical Modelling of Heterostructure Semi-

conductor Devices: From Theory to Programming, chapter Genetic algorithms and

simulated annealing, pages 339–376. Springer, 2009.

[20] J. R. Cruz and C. C. Y. Dorea. Simple conditions for the convergence of simulated

annealing type algorithms. Journal of applied probability, 35(4):885–892, 1998.

57

[21] E. D. Dolan and J. J. Moré. Benchmarking optimization software with performance

profiles. Mathematical Programming, 91(2):201–213, 2002.

[22] M. Duque-Antón. Constructing efficient simulated annealing algorithms. Discrete

Applied Mathematics, 77(2):139–159, 1997.

[23] R. W. Eglese. Simulated annealing: a tool for operational research. European

journal of operational research, 46(3):271–281, 1990.

[24] V. Fabian. Simulated annealing simulated. Computers & Mathematics with Appli-

cations, 33(1-2):81–94, 1997.

[25] T. M. Fink. Inverse protein folding, hierarchical optimisation and tie knots. PhD

thesis, University of Cambridge, 1998.

[26] D. Fouskakis and D. Draper. Stochastic optimization: a review. International

Statistical Review, 70(3):315–349, 2002.

[27] S. B. Gelfand and S. K. Mitter. Simulated annealing with noisy or imprecise energy

measurements. Journal of Optimization Theory and Applications, 62(1):49–62,

1989.

[28] G. H. Givens and J. A. Hoeting. Computational statistics. John Wiley & Sons,

Hoboken, NJ, USA, 2 edition, 2012.

[29] R. J. Glauber. Time dependent statistics of the Ising model. Journal of Mathemat-

ical Physics, 4(2):294–307, 1963.

[30] W. J. Gutjahr. Recent trends in metaheuristics for stochastic combinatorial opti-

mization. Central European Journal of Computer Science, 1(1):58–66, 2011.

[31] W. J. Gutjahr and G. C. Pflug. Simulated annealing for noisy cost functions. Jour-

nal of Global Optimization, 8(1):1–13, 1996.

[32] B. Hajek. Cooling schedules for optimal annealing. Mathematics of operations

research, 13(2):311–329, 1988.

58

[33] A. Henchiri, M. Bellalouna, and W. Khaznaji. A probabilistic traveling salesman

problem: a survey. In Position papers of the 2014 Federated Conference on Com-

puter Science and Information Systems, volume 3, pages 55–60. Annals of Com-

puter Science and Information Systems, 2014.

[34] D. Henderson, S. H. Jacobson, and A. W. Johnson. The theory and practice of

simulated annealing. In F. Glover and G. A. Kochenberger, editors, Handbook of

metaheuristics, pages 287–319. Springer, Boston, MA, USA, 2003.

[35] L. Ingber. Simulated annealing: Practice versus theory. Mathematical and com-

puter modelling, 18(11):29–57, 1993.

[36] D. S. Johnson and L. A. McGeoch. The traveling salesman problem: A case study

in local optimization. In E. H. L. Aarts and J. K. Lenstra, editors, Local Search

in Combinatorial Optimization, pages 215–310. John Wiley and Sons, Chichester,

United Kingdom, 1997.

[37] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization by

simulated annealing: an experimental evaluation; part I, graph partitioning. Oper-

ations research, 37(6):865–892, 1989.

[38] D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization

by simulated annealing: an experimental evaluation; part II, graph coloring and

number partitioning. Operations research, 39(3):378–406, 1991.

[39] M. Jünger, G. Reinelt, and G. Rinaldi. The traveling salesman problem. In M. Ball,

T. Magnanti, C. Monma, and G. Nemhauser, editors, Network Models, volume 7

of Handbooks in Operations Research and Management Science, pages 225–330.

Elsevier, 1995.

[40] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal-

ing. Science, 220(4598):671–680, 1983.

[41] P. J. M. van Laarhoven and E. H. L. Aarts. Simulated Annealing: Theory and

Applications. Kluwer, Dordrecht, The Netherlands, 1987.

59

[42] P. L’Ecuyer. Good parameters and implementations for combined multiple recur-

sive random number generators. Operations Research, 47(1):159–164, 1999.

[43] S. Ledesma, G. Aviña, and R. Sanchez. Practical considerations for simulated

annealing implementation. In C. M. Tan, editor, Simulated Annealing, volume 20,

pages 401–420. InTech, Vienna, Austria, 2008.

[44] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-

salesman problem. Operations Research, 21(2):498–516, 1973.

[45] A. Lodi and A. P. Punnen. TSP software. In G. Gutin and A. P. Punnen, editors,

The traveling salesman problem and its variations, volume 12 of Combinatorial

Optimization, pages 737–749. Springer, Boston, MA, USA, 2006.

[46] T. H. de Mello and G. Bayraksan. Stochastic constraints and variance reduction

techniques. In M. C. Fu, editor, Handbook of Simulation Optimization, pages 245–

276. Springer, 2010.

[47] A. G. Nikolaev and S. H. Jacobson. Simulated annealing. In M. Gendreau and J.-Y.

Potvin, editors, Handbook of Metaheuristics, pages 1–39. Springer, Boston, MA,

USA, 2010.

[48] Y. Nourani and B. Andresen. A comparison of simulated annealing cooling strate-

gies. Journal of Physics A: Mathematical and General, 31(41):8373–8385, 1998.

[49] R. H. J. M. Otten and L. P. P. P van Ginneken. The annealing algorithm. Kluwer,

Dordrecht, The Netherlands, 1989.

[50] C. H. Papadimitriou. The Euclidean travelling salesman problem is NP-complete.

Theoretical computer science, 4(3):237–244, 1977.

[51] D. T. Pham and D. Karaboga. Intelligent Optimisation Techniques: Genetic Algo-

rithms, Tabu Search, Simulated Annealing and Neural Networks. Springer-Verlag,

London, United Kingdom, 2000.

60

[52] E. Platen and N. Bruti-Liberati. Numerical Solution of Stochastic Differential

Equations with Jumps in Finance, chapter Variance Reduction Techniques, pages

637–695. Springer-Verlag, Berlin Heidelberg, Germany, 2010.

[53] A. P. Punnen. The traveling salesman problem: Applications, formulations and

variations. In G. Gutin and A. P. Punnen, editors, The traveling salesman problem

and its variations, pages 1–28. Springer, Boston, MA, USA, 2007.

[54] C. Rego and F. Glover. Local search and metaheuristics. In G. Gutin and A. P.

Punnen, editors, The traveling salesman problem and its variations, pages 309–

368. Springer, Boston, MA, USA, 2006.

[55] G. Reinelt. TSPLIB–a traveling salesman problem library. ORSA Journal on Com-

puting, 3(4):376–384, 1991.

[56] G. Reinelt. The traveling salesman: computational solutions for TSP applications.

Springer-Verlag, Berlin Heidelberg, Germany, 1994.

[57] S. L. Rosen and C. M. Harmonosky. An improved simulated annealing simula-

tion optimization method for discrete parameter stochastic systems. Computers &

Operations Research, 32(2):343–358, 2005.

[58] R. A. Rutenbar. Simulated annealing algorithms: an overview. IEEE Circuits and

Devices Magazine, 5(1):19–26, 1989.

[59] S. M. Sait and H. Youssef. VLSI physical design automation: theory and practice.

World Scientific, Singapore, 1999.

[60] S. M. Saıt and H. Youssef. Iterative computer algorithms with applications in

engineering. IEEE Computer Society Press, Washington, D.C., USA, 1999.

[61] J. Schneider and S. Kirkpatrick. Stochastic optimization. Springer-Verlag, Berlin

Heidelberg, Germany, 2006.

[62] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczyński. Lectures on

Stochastic Programming. SIAM, Philadelphia, PA, USA, 2009.

61

[63] J. C. Spall. Introduction to stochastic search and optimization: estimation, simula-

tion, and control. John Wiley & Sons, Hoboken. NJ, USA, 2003.

[64] C. M. Tan and N. Raghavan. Simulated annealing for mixture distribution analysis

and its applications to reliability testing. In C. M. Tan, editor, Simulated Annealing.

InTech, Vienna, Austria, 2008.

[65] J. M. Varanelli. On the acceleration of simulated annealing. PhD thesis, University

of Virginia, 1996.

[66] R. V. V. Vidal, editor. Applied simulated annealing, volume 396 of Lectures Notes

in Economics and Mathematical Systems. Springer-Verlag, Berlin Heidelberg, Ger-

many, 1993.

[67] D. Weyland. Simulated annealing, its parameter settings and the longest common

subsequence problem. In Proceedings of the 10th annual conference on genetic

and evolutionary computation, pages 803–810. ACM, 2008.

[68] X. Yao and G. Li. General simulated annealing. Journal of Computer Science and

Technology, 6(4):329–338, 1991.

[69] Z. B. Zabinsky. Stochastic methods for practical global optimization. Journal of

Global Optimization, 13(4):433–444, 1998.

[70] Z. B. Zabinsky. Random search algorithms. In J. J. Cochran, L. A. Cox, P. Ke-

skinocak, J. P. Kharoufeh, and J. C. Smith, editors, Wiley Encyclopedia of Opera-

tions Research and Management Science. John Wiley & Sons, Hoboken, NJ, USA,

2010.

[71] A. Zhigljavsky and A. Žilinskas. Stochastic Global Optimization. Springer, Boston,

MA, USA, 2008.

62

	Abstract
	Résumé
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Notation
	Dedication
	Acknowledgments
	Introduction
	Background
	Applications of SA
	TSP

	Thesis Motivation
	Thesis Statement and Objectives
	Thesis Organization

	Simulated Annealing
	Background
	Simulated Annealing Implementation
	Acceptance Function
	Cooling Schedule
	Temperature Update
	Stopping Criterion
	SA Repetitions

	SA Assessment

	Simulated Annealing in Presence of Noise
	Problem Formulation
	Noise Management in SA
	Noise Reduction
	Acceptance Function Modification

	Noisy Simulated Annealing

	Traveling Salesman Problem
	TSP Description
	Tour Construction Heuristics
	Moves
	Ruin and Recreate

	Permutations

	Initial experimentations
	TSP Instances
	Rnd8 Problem

	Temperature management
	Temperature Schemes Comparisons
	Initial and Final Temperatures black Selection

	Comparison of acceptance functions
	Experimental Results of SA Under Noise

	Comparisons of Noise Management Strategies
	Experimental Settings
	Results of Experiments
	Rnd8
	Gr17
	Bays29

	Discussion

	Conclusion
	Bibliography

