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ABSTRACT

The purpose of this paper is to show that direct and inverse power
Box-Cox transformations can be useful to characterize the functional
form of the heteroskedasticity of residuals both in linear models and
in models where the variables themselves are subjected to direct Box-
Cox transformations. The formulation of the resulting regression
models as maximum likelihood problems is briefly extended to take the

presence of multiple autocorrelation simultaneously into account.
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1. INTRODUCTION

The systematic introduction of flexible functional form considerations

in the generalized single equation regression model is relatively

recent. For expository purposes, three stages can be distinguished.

A. Classical practice

Consider the following model written in the usual notation for each

observation as

or in matrix notation as

y=XB +u, (18)

where X is a nonstochastic nxk matrix of rank k, B 1is a kx1 vector
of parameters and u is the nx1 vector of disturbances with E(u)=0

and E(uu')=s2=¢gv (V positive definite).

Classical practice consists in making specific assumptions about the form

of the fixed or the stochastic part of the model; little systematic attention
has been given however to the interdependence between these assumptions.
Typically, a linear or log-linear specification of the fixed part is assumed.
It is not always clear whether the latter form is used becauSe the model is
believed to be truly log-linear or because the logarithmic transformation is

expected to make the residuals approximately homoskedastic.

Assumptions about the form of Q .normally distinguish between the diagonal
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and off-diagonal elements of the matrix. The analysis of heteroskedasticity

generally consists of specifying Q as follows:

2 iy
IERRLE t=t' (2R)

t t

E(u = f(X

¢ Upr)

=0 , t#t' ' (2B)

and is centered on trying particular variants of (2A), usually with a
single variable. The most frequently used of these single variable

formulations is:

E(ud) = 42 ¥ (3)
and its presence can be identified with the Goldfeld-Quandt (1965) parametric
test. Many variants have been specified by Glejser (1969) and others and
studied independently from the form of the fixed part by Goldfeld and Quandt
(1972). The analysis of correlation between residuals leads generally to specify:

E(ugu,) = T t=t' , (4A)

= 0 t#t' (4B)

temporal autocorrelation is the most frequent and it is expressed as

Z PplUpp* ; t=l,....n , (5)

where the autoregressive process is assumed to satisfy standard stationarity
assumptions and the e, are presumed to be identically and independently
distributed with zero mean and covariance matrix o**ZI. The form of the
autoregressive structure is often modified independently from the form of

the fixed part in actual practice.
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B. Systematic analysis of the form of the fixed pért

A major departure from "trial and error" form specification in models
with positive variables was made possible by the use of monotonic trans-
formations studied successively by Anscombe and Tukey (1954), referred
to in Tukey (1957), Box and Tidwell (1962) and Box and Cox (1964). The

general specification of the problem becomes

() (A )
y V=1 x K wu (6)

k

where the Box-Cox transformation of any variable z, if z denotes the

h

dependent variable y or the kt non-Bolean independent variable Xk’

is defined for the parameter A as

E_i 0,

nz , =0

The inverse of this transformation is clearly

(2174
£ (A),

exp (z

] A¢O 1]

(78)
s ' X:O
The direct power transformation (7A) has typically been used without joint

examination of the impact of that transformation on the form of the

stochastic part of the model (e.g. Kau and Sirmans (1976), Welland (1976),
Heckman and Polachek (1974), Spitzer (1976, 1977)).Zarembka (1968,1974) briefly
considered first order autoregressive disturbances but without joint hypothesis

- testing on autocorrelation structure and the form of the fixed part of

the model.
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c. Joint specification of the fixed and stochastic parts

The first systematic Box-Cox analysis of the structure of the stochastic
part of a model simultaneously with that of the functional form of its
fixed part was apparently made by Savin and White (1978) for first order
autocorrelation and extended to multiple autocorrelation by Gaudry and
Wills (1977). Little attention has been paid to the problem of the joint
determination of heteroskedasticity and functional form of the fixed part
despite the knowledge that Box-Cox parameters appear to compensate for
heteroskedasticity and may be more sensitive to its presence than to the
presence of autocorrelation. Zarembka (1971) has devised an approximate
measure of the sensitivity of functional form estimates to the eventual

presence of a particular form of heteroskedasticity.

In this paper, we intend to formulate a faif]y general specificétion

of the form of heteroskedasticity and to show that it can be analyzed
jointly with the form of the fixed part of the model. We will also extend
the analysis to incorporate multiple autocorrelation structures of the

residuals.
2. THE FORM OF HETEROSKEDASTICITY IN A LINEAR MODEL

A. A general form for heteroskedastic disturbances

Assume that the covariance matrix of the u's of a linear model is given

by




o ‘. .
E(uu') = y° : ’f(Xt). 0 | =8 (8)
0 0 fX,)
where ) )
(hgy) /A,
f(Xy) = {, [a+25kxk ]+ 1) (9)

in which direct Box-Cox transformations are applied to the Xk explanatory
variables of the error variance and an inverse power transformation is
applied to the contents of the square parentheses. The constants 60 and
Y are necessary to preserve (Schlesselman, 1971) the invariance of the

transformation to units of measurement of the X's and y. Equation (9)

contains a great number of special cases of traditional interest.@
Setting Au =1 yields
N"':() > 2 = 2
E 6 k » where 60 = (604-1) v, dk = Gk v, (10)

which includes the linear form (Aek==1 for all k) and many nonlinear

forms (square root if the Aek==1/2 and square power if they equal 2) as

special cases.

Another family of special cases is obtained by setting Au==0. By (7B) one

obtains

(A (A o) §
= ‘412' exp(60+g 8 X, X ek )= ozfexp Z 8, )] > where 02=xp2e ° ()

5

@Note that a still more general specification of Equation (9) would use,

instead of (X .,Xk), a set of exogeneous variables (Z],...,Zk.) where
the Zk' may d1ffer from the Xk of the fixed part.
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which includes the multivariate multiplicative model (Aek=0 for all k)

(>}
I
Q
=
><

tt (12)

found in Dagum and Dagum (1974) and the classical multivariate multiplicative

form Nk=2fm*ﬂ1k):

- 2 2
we, = o I X . (13)
tt K kt

Park's (1966) specification is obtained by setting all dk but one equal to
zero in (11) and by setting the remaining Aek==0. Imposing the further

constraint that the retained 6k==2 yields the classical form (3).

The subclass defined by (11) is more useful than the subclass defined by
(10) because the latter can produce negative elements in . Form (11)
also leaves considerable room for interactioné among the variables most
1ikely to explain the error variance, typically a small subset of the k
explanatory variables. For these reasons, and in order to simplify the
presentation, we shall use form (11) in the derivation of the likelihood

function. A similar derivation with form (9) would be straightforward.

B. The 1ikelihood function for a linear model

If, in model (1), U is assumed to be distributed normally with mean
vector 0 and covariance matrix (8) specified as in (11), the 1ikelihood

function can be written as

= (] =1-1/2 1 51
L= )" T2 e {7 xe) 8 ke (1)



or as : _ -
L= H exp | - ( ) , (15)
VZF o\/exp 26 X ek 2 02 exp(ZG X ek )

from which one estimates parameters Bk’ o Gk and xek'

In terms of testing for heteroskedasticity, one approach is to obtain
asymptotic variances and covariances for these parameters from the matrix
of second partial derivatives of the likelihood function and to perform
asymptotic tests based on the normal distribution. Another approach is to
apply the likelihood ratio test: if for instance L] denotes the value of
(15) at the maximum and LO its value under the assumption that f(Xt) has
a particular form, say (]2).or (13), the test statistic -2 Ln(LO/L]), which
has a XZ distribution with a number of degrees of freedom given by the
additional constraints in (12) or (13), can be used to consider either of
these null hypotheses. It is therefore possible to deal analytically with
the form of heteroskedasticity in a linear regression model and to consider
a large number of structures by specifying matrix (8) as in (9) or in more

restricted ways.

3. THE FORMULATION IN A NONLINEAR MODEL

If the general Box-Cox form (6) replaces the linear form (1) but the error
covariance matrix (8) is still specified as in (11), the 1ikelihood function

is now

- () () () ()
1 & =1/2 ] 1~-1 | ,
L (—m)"lnl expl-mly Y -x X)W (y Yo ¥ s>g|a(x(,y;|, (16)
A

where [J(A ,Y)I is the Jacobian of the transformation from A Y to the



actually observed Yy s O

(A,)
009 | - Jees 2L o b )
J(A sy)] = |det =1 y (17
y oy t=1 "¢
Equation (16) can be rewritten as
. i (x,) (A,) 7
n Yy Kk )
L= 1 = exp.|- (18)
Ve (16 x(xek)) 26% exp(Js e
T o \exp a"exp
k Kkt - k Kk 7

which adds the parameters Ay, Ax]’ ..

the linear model and allows for joint tests of the form of heteroskedasticity

. Xxk to those already present in

with the form of the fixed part of the model. In practice one would
probably constrain the A parameters of the fixed part and those of the

stochastic part in order to decrease the number of parameters to be estimated.
4. EXTENSION TO CONSIDER MULTIPLE AUTOCORRELATION SIMULTANEOUSLY

A. The complete formulation in the presence of first order autocorrelation

It is straightforward to extend the previous result to take into account
autocorrelation simultaneously with heteroskedasticity in the nonlinear

model. Reformulate the previous problem as

(r,) (A,,)
AR xk
.yt - I}(: Bk th + ut s (20)
1/2
Uy f(Xt) Vi R (21)
Vg TPy Ve TSy ’ (22)
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where E(vi) = wz and St is normally and independently distributed

with mean zero and variance w*z = xpz (]-p%) .

It is well known that, if the series are stationary, the vector s can be

expressed in the form

s = Qu (23)

]-plz 0 0
-0 1 0
Q = 0 0 (24)
0 0 -=Pq 1
- i

and sy therefore corresponds to i 1-p] .

Hence one may write u=Hv=HQ“]s and E(u u')=HQ'](Q'])'H'w*2=Q* where
H=diag [f(Xt)]/Z] . In the particular case where,as in (9), Au=0 , the
combination of the autoregressive and heteroskedastic specifications

exposed in (21) and (22) transforms (16) 1into

no__ () () -, () ()
L=<V.?]o:> |H] %IQIeng-;—(y Yo Xy Yoy x e)f [OHITS  (25)

(A

N T 5 )
where O* = HQ ](Q ])'H'o*2,0*2=02(1-p]2)and H=djag [exp([dkxk ek /2)] .
k

t

Since |Q] = (]-plz) 1/2 » (25) can also be expressed as
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A -1 A) Ao)
vy (1-p )Z(y( Y18 x( xk*y2
2.1/2 1 7T Rk
L= (]'p] ) expi- (}\ )
\/ 21 o* \/exp 26 X EK 20%? exp(}6, X ek’
K"Ky £,
A -1 (x) (x.) (x) (x..)
n vy RS M B AR % e )]2
1 k<% k< Ko
H exptl - -p
() 20+ ) (r..)
Vr— exp 26 X tek ) b/exp ZGkX ek V/EXP(Edektf: )

which is analogous to (18) except that the terms which refer to the first

observation have been distinguished from the others.

B. A simplified formulation in the presence of multiple autocorrelation

One may wish to avoid the added complication presented by the first observation.
Disregarding the first observation makes no difference asymptotically but

may be inefficient in some problems as Beach and MacKinnon (1978) have

shown for a linear homoskedastic model. Neglecting the first observation

means that the first row of Q in (24) is ignored and (26) simplifies to

A -1
no(y) )~ (A,)z (A, )z
L= 1 exp |~ 12 (vp 77 -1 8 Xk"k ) (27)
t=2 \2n o* 20* k t
with

z . | z z,

z‘;E = t ====and z€= £ 0 t-1
\/ (Aek V[ ( ek) \/ (Aek)
exp(EGkat ) exp(EG X ) exp 25 X ] )

t

In the presence of the multiple stationary autoregressive scheme (5), this

simplification can, as in Gaudry and Wills (1977), be extended to higher
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orders of autocorrelation in order to avoid the considerable computational
burden which a }fu1] formulation of the 1ikelihood function would imply.
This extension of the simplified Tikelihood simply requires dropping as
many observations as the highest order of autocorrelation reqﬁires.

Expressions (27) and (28) become respectively

A, -1 5 5
no(ypy ) (2, )** (A, )F*
L= s ik M exp¢( - 1 2 (.yt Yoo ZBka Xk ’ (29)
t=1+r V2r o** 2o** k t

with 2y defined as before, o** >0 and

t .on Z,
zf% = " - 1o, t-4 : (30)
(38 X(Aek)) . Vexp(Js x(le"))
exp exp
kK Kke k Kkeop
Expression (29) includes autoregressive parameters Py +o Pp ot Ppip

addition to the parameters contained in (18). It permits the functional
form of the fixed part of a model to be determined simultaneously with

the structure or form of both autocorrelation and heteroskedasticity.

5. CONCLUSION

The growing practice in the application of Box-Cox transformations in
fields such as production theory, monetary economics and transportation
modeling should eventually incorporate a procédure such as that developed
in this paper which prevents from confounding problems of functional

form and of heteroskedasticity and which can easily be extented to models
with autoregressive residuals. Experiments are presently under way to
compute the maximum likelihood solution of equation (29) for problems

involving large numbers of parameters using Powell's (1964) algorithm
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for maximizing non linear functions without computing derivatives. The
routine takes account of the fact that, for given values of the X, p,
6 and o**, the B which maximize £n L are OLS estimates; similarly for
given values of the A, &, B and o**, the p which maximize £n L are also
OLS estimates. The program should also evaluate the asymptotic co-

variance matrix of the parameter estimates.
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