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Abstract 

Although visual inspection remains common in the analysis of single-case designs, the lack of 

agreement between raters is an issue that may seriously compromise its validity. Thus, the 

purpose of our study was to develop and examine the properties of a simple structured criterion 

to supplement the visual analysis of alternating-treatment designs. To this end, we generated 

simulated datasets with varying number of points, number of conditions, effect sizes and 

autocorrelations, and then measured Type I error rates and power produced by the visual 

structured criterion (VSC) and permutation analyses. We also validated the results for Type I 

error rates using nonsimulated data. Overall, our results indicate that using the VSC as a 

supplement for the analysis of systematically alternating-treatment designs with at least five 

points per condition generally provides adequate control over Type I error rates and sufficient 

power to detect most behavior changes. 

Keywords: alternating-treatment design, Monte Carlo simulation, multielement design, power, 

Type I error, visual analysis  



VISUAL STRUCTURED CRITERION 3 

 

Using a Visual Structured Criterion for the Analysis of Alternating-Treatment Designs 

Alternating-treatment designs (ATDs) have been widely adopted to assess and to 

compare the effects of interventions in applied settings (Manolov & Onghena, 2017). 

Oftentimes, both practitioners and researchers rely on the visual inspection of ATDs to determine 

whether the implementation of an intervention is responsible for changes observed in a target 

behavior (Kratochwill et al., 2010; Lane & Gast, 2014; Ninci, Vannest, Willson, & Zhang, 

2015). However, researchers have shown that the lack of agreement between raters remains an 

issue that may seriously compromise the validity of the visual analysis of these designs (Diller, 

Barry, & Gelino, 2016; Hagopian et al., 1997). This lack of agreement increases the probability 

of reaching incorrect conclusions regarding functional relations.  

Practitioners and researchers can make two type of errors when analyzing the results of 

single-case experiments. Type I errors, also referred to as false positives, occur when a 

practitioner or researcher concludes that a functional relation exists when one does not. In 

contrast, Type II errors, also referred to as false negatives, occur when a practitioner or 

researcher concludes that a functional relation does not exist when one does. Type II error rates 

are typically expressed in terms of power, which represents the probability of detecting a 

functional relation when one actually exists. Generally, researchers aim to design experiments 

that produce Type I error rates of less than .05 and power of more than .80 (Cohen, 1992). 

One potential solution to minimize issues related to interrater agreement is to use 

structured aids that support researchers and practitioners in their visual analyses. For example, 

Hagopian et al. (1997) developed structured criteria to support decision-making for functional 

analyses conducted using ATDs with multiple conditions. These criteria were subsequently 

adapted and applied for the analysis of pairwise designs (i.e., ATDs with only two conditions; 
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Hagopian, Rooker, Jessel, & DeLeon, 2013; Roane, Fisher, Kelley, Mevers, & Bouxsein, 2013). 

The structured analyses involved tracing two confidence lines (one standard deviation above and 

below the mean of the control condition), counting the number of data points above and below 

the confidence lines, and then applying a series of rules to identify the function of the behavior. 

Albeit promising for the interpretation of functional analyses, these methods have numerous 

steps, which can make them complex, and have not been the topic of studies examining their 

Type I error rates and power.  

In another example, Bartlett, Rapp, and Henrickson (2011) developed visual criteria to 

analyze Type I error rates obtained in brief ATDs using operational definitions of stability and 

trend. In their study, the raters considered data paths differentiated when there was no or minimal 

overlap between paths, and “(a) two or more data paths were stable with at least 5% separation, 

(b) two or more data paths were trending in opposite directions, or (c) one data path was stable 

and the other data path was trending away from it” (p. 537). The criteria adequately controlled 

for Type I error rates for pairwise comparisons with three to five points per condition, but the 

study did not examine power, nor the impact of autocorrelation on the results of their analyses.  

Autocorrelation is a common phenomenon observed in single-case designs wherein data 

points are partly correlated with the data points preceding them (Shadish & Sullivan, 2011). In 

other words, it represents the correlation between measures of the same behavior across sessions. 

From a behavioral standpoint, autocorrelation may be the result of both controlled and 

uncontrolled variables such as physiological states and motivating operations. According to 

Shadish and Sullivan (2011), the mean autocorrelation in published single-case research in 2008 

was .20 and the values from individual studies had an extensive range (from -.93 to .79). For 

ATDs only, mean corrected autocorrelation did not differ significantly from zero, but we can 
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assume that variability across studies remained high as reported in the overall range. 

Consequently, analyses must consider different values of autocorrelation as they have a 

significant impact on Type I error rates and power in ATDs (Levin, Ferron, & Kratochwill, 

2012). 

In a study examining the impact of autocorrelation on visual structured criteria in single-

case designs, Fisher, Kelley, and Lomas (2003) developed the dual-criteria and conservative 

dual-criteria methods, which involve tracing a continuation of the mean and trend lines from 

baseline to analyze AB, reversal, and multiple baseline designs. Their study showed that the 

conservative method produced acceptable Type I error rates and power, and that increasing 

autocorrelation led to small increases in Type I error rate. That said, their method is not 

applicable to ATDs because the baseline sessions are not conducted consecutively. Thus, the 

purpose of our study was to develop a simple structured criterion for the visual analysis of 

ATDs, and then to examine its Type I error rate and power using simulated and nonsimulated 

data with various number of points, number of conditions, effect sizes, and autocorrelations. 

Development of the Structured Visual Criterion 

 Probably the simplest and most straightforward procedure to compare two conditions 

within an ATD is to examine whether the paths overlap, which can be done by counting the 

number of sessions the path and points for one condition are above or below the other. This 

approach would be similar to the nonoverlap methods used to calculate effect sizes in ATDs such 

as the percentage of nonoverlapping data and the nonoverlap of all pairs (Parker & Vannest, 

2009; Wolery, Gast, & Hammond, 2010). In these cases, the overlap is compared on a point-by-

point basis (e.g., first point with first point, second point with second point) in contrast with the 

methodology that we propose, which compares the relative position of paths and points (see 
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below). The nonoverlap methods do not consider trend and may produce values of 100% 

nonoverlap even when the data paths cross (Manolov & Onghena, 2017). Therefore, we adopted 

an approach that considered both paths and points. One concern with considering overlap is that 

the probability of paths crossing due to extraneous variables increases with the number of points. 

In other words, researchers and practitioners may observe data paths crossing even when an 

independent variable has a true effect on behavior, which can lead to false negatives. To address 

this issue while taking advantage of the simplicity of comparing the position of both paths, we 

developed the visual structured criterion (VSC), a visual analysis method relying on the relative 

position of both paths across sessions.  

 Specifically, the VSC involves two simple steps. First, the practitioner or researcher 

counts the number of times that the data path and points for one condition fall above (or below 

for interventions designed to reduce behavior) the data path and points of a second condition at 

each session of either condition. In other words, a comparison is conducted whenever the 

following conditions are met: (a) a session contains a data point for one of the two conditions 

being compared and (b) a path is present for the other condition being compared at this same 

session’s location on the graph. For a systematically alternating design, the initial data point of 

the first condition and the last data point of the second condition are ignored as there is no path 

to compare each point with at these locations. As such, the number of comparisons is the total 

number of points of both conditions minus two (i.e., the first and last points where there are no 

paths to compare). When the ATD includes more than two conditions, the data points and paths 

for the additional conditions (i.e., not being compared) are also ignored. This logic is consistent 

with the actual and linearly interpolated values (ALIV) method recently developed and proposed 
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by Manolov and Onghena (2017), which excludes points when path overlap is impossible (e.g., 

first and last sessions) and relies on linearly interpolated values during their analyses.   

Second, the number of times that the data path and points for one condition fall above (or 

below) those of the second condition is compared to the cut-off values provided in Table 1. We 

provide the cut-off values for both the number of points per condition (only if equal) and for the 

number of comparisons. We also included a percentage measure for the cut-off, which should 

facilitate comparisons with other nonoverlap methods. Note that the cut-off percentage initially 

decreases in a staggered fashion (with occasional increases), which is caused by the discrete 

nature of the distribution.  If the actual value is equal to or larger than the cut-off value, we can 

consider that the analysis has detected an effect of the independent variable. 

We empirically derived the cut-off values reported in Table 1 to maximize power while 

maintaining Type I error rates near or below .05 given no autocorrelation. That is, we first 

generated 100,000 datasets with no autocorrelation containing 5 to 12 points per condition (see 

Monte Carlo Validation for detailed procedures). The number of potential comparisons varied 

according to the number of points (see Table 1). Then, we instructed the spreadsheet to compute 

Type I error rates and power when the cut-off value was set at its maximum possible value (i.e., 

the number of comparisons). Finally, we gradually decreased the cut-off value until we found the 

lowest cut-off value that would still maintain Type I error rates near or below .05. This procedure 

allowed us to maximize power while still providing adequate control over Type I error rates.  

 To illustrate the use of the VSC, assume that Figure 1 represents the frequency of a 

behavior occurring during condition A (baseline), condition B (intervention 1), and condition C 

(intervention 2) across 18 sessions in total (six per condition). Further assume that the purpose of 

both interventions is to increase the frequency of the behavior and that we aim to compare A with 
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C. The first step would be to count the number of times that the data path and points for 

condition C fall above the data path and points for condition A at each session of either condition 

(i.e., sessions 3, 4, 6, 7, 9, 10, 12, 13, 15, and 16); in this example, we have ten comparisons for 

A and C (see rectangles in Figure 1). We ignore the first data point of A (i.e., 1) and the last data 

point of C (i.e., 18) as only there is no path from the other condition to compare each point with, 

and we exclude all data points during which we implemented condition B (i.e., sessions 2, 5, 8, 

11, 14, and 17). In our example, the data path and points for condition C fall above the data path 

and points for condition A 7 times (see circles within rectangles in Figure 1). The second step is 

to compare this value (i.e., 7) to the value for ten comparisons in Table 1 (i.e., 9). Given that 7 is 

not equal to or higher than 9, we can conclude that the difference observed could have occurred 

by random fluctuation. Note that the exact same procedure could be repeated to compare A with 

B and B with C. For the purpose of the current study, the second author wrote a Python script 

(Cardinal & Lanovaz, 2017), which conducted the analyses automatically.  

Experiment 1 – Monte Carlo Validation   

 One important step when validating a novel approach to analysis is to examine Type I 

error rates and power from a very large number of datasets with specific parameters and to 

compare these results to those of a well-established method. To this end, we conducted a Monte 

Carlo validation to set our cut-off values and to examine the effects of number of points, number 

of conditions, effect sizes and autocorrelations. Then, we compared our results with those 

produced by permutation analyses using the same datasets.  

Data Generation   

We used R (R Core Team, 2017) to generate datasets containing 6 to 20 points. 

Specifically, we instructed the arima.sim function of R to randomly generate data points from a 



VISUAL STRUCTURED CRITERION 9 

 

normal distribution with a mean of 0 and a standard deviation of 1 for different values of first-

order autocorrelation. To prevent negative values during analyses, the program then added a 

constant of 10 to all data points. For each set of parameters described in our analyses, we 

instructed R to generate 100,000 datasets. 

For our power analyses, we also added an effect size parameter to every second point in 

each dataset, which simulated the introduction of an independent variable within a pairwise 

design in which the A and B conditions were alternated systematically (i.e., ABABAB…AB). 

The effect size parameter was a measure of mean behavior change in standard deviations 

(equivalent to Cohen’s d). It should be noted that the traditional rules of thumb developed for 

Cohen’s d (see Cohen, 1992) do not apply to single-case designs. Whereas a d value of 1 may be 

considered a large effect size in a randomized controlled trial, the same value in single-case 

research may be considered very small (Levin, Lall, & Kratochwill, 2011). For example, 

Marquis et al. (2000) found that the lowest reliable effect size measure for positive behavior 

support interventions was 1.5. More recently, Rogers and Graham (2008) reported that effect 

sizes were typically 3 or higher when applying this measure to single-case research examining 

writing treatments. For the current study, we thus set the values of effect sizes at 1, 2, and 3.  

Analyses 

 Effects of number of points per condition. For our initial analyses, we examined Type I 

error rates and power produced by the VSC for systematically alternating pairwise designs (i.e., 

i.e., ABABAB…AB) for different number of points per condition, which allowed us to set our 

cut-offs for Table 1. For these initial analyses, the number of points per condition varied from 3 

to 12 points and the autocorrelation was held constant at 0. To calculate Type I error rates, we 

divided the number of datasets for which the VSC detected an effect by the total number of data 
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sets (i.e., 100,000). Next, we examined the power of the VSC for effect sizes of 1, 2 and 3 with 

no autocorrelation for the same number of points per condition. We calculated power using the 

same formula as for the Type I error rates; the only difference was that d was no longer 0. 

Effects of number of conditions. Next, we replicated the previous analyses for ATDs 

with more than two conditions alternated systematically (i.e., ABCABC…ABC, 

ABCDABCD…ABCD, and ABCDEABCDE…ABCDE). The number of points per condition 

was held constant at six and the autocorrelation remained 0. Given that the order of the 

conditions may impact Type I error rates and power, we averaged the values obtained by 

comparing each treatment condition (i.e., B, C, D, and E) with the baseline condition A.  

  Comparison of the VSC with permutation analyses. In our final analyses for the first 

experiment, we compared Type I error rates and power (for an effect size of 2) for pairwise 

designs produced by the VSC with those yielded by permutation analyses for different values of 

autocorrelation. We selected permutation analysis as a comparison because (a) it is 

nonparametric (i.e., no assumption regarding normality of distribution), (b) it provides adequate 

control over Type I errors and sufficient power, and (c) it has been recommended for use with 

ATDs (see Levin et al., 2012). For our permutation analysis, we calculated the Type I error rates 

and power by dividing the number of datasets where p < .05 by the total number of datasets (i.e., 

100,000). Although our design involved a systematic alternation of AB conditions, we used a 

complete randomization scheme in order to replicate the permutation procedures proposed by 

Levin et al. (2012).  

To compute the p values for permutation analyses, the second author wrote a second 

Python script (Cardinal & Lanovaz, 2017), which completed the following steps for each dataset.  

First, the script instructed the program to compute the difference between the mean of all points 
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in condition B and the mean of all points in condition A for the original dataset. Second, the 

program divided the original data points into two equal-sized groups, regardless of their initial 

condition assignment. We designed the script so that it would generate all the possible sets of two 

equal-sized groups, which resulted in 924 combinations for six points per condition and 184,756 

combinations for ten points per condition. Then, the script repeated the first step with all these 

combinations. Fourth, the script ranked the original dataset with all the combinations by 

decreasing order of the difference between the means of both conditions. Finally, the analysis 

produced a p value by dividing the rank of the original dataset by the total number of 

combinations.  

Results and Discussion 

Figure 2 presents Type I error rates (left panels) and power (right panels) for different 

sets of parameters. We did not include error bars for the 95% confidence interval on the first two 

figures as they would have been too narrow to draw; the plus or minus values of the 95% 

confidence interval ranged from .001 to .003, which is very small. The upper panels of Figure 2 

show the results of our initial analyses examining the effects of varying the number of points in a 

pairwise design. Type I error rates for the VSC method remained acceptable as soon as the ATD 

contained at least five points per condition. Power was also generally adequate for effect sizes of 

2 and 3, which are typically observed in single-case designs. The upper middle panels present the 

effects of increasing the number of conditions when each condition had six points. Both Type I 

error rates and power decreased marginally when the number of conditions increased, but 

remained within acceptable boundaries (i.e., Type I error rates near .05 and power higher than 

.80). 
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Figure 3 compares the error rates and power of the VSC with the results of permutation 

analyses. The VSC provided better control over Type I errors for negative autocorrelation (for 

both six and ten points per condition) and for low values of positive autocorrelation (for ten 

points per condition) whereas permutation analyses were more stringent for high positive values 

of autocorrelation. In contrast, power was typically higher for permutation analyses, except for 

large positive autocorrelations for which we observed marginally higher power for the VSC at 

six points per condition. Altogether, the results of the first experiment suggest that the VSC 

adequately controls for Type I error rate and has sufficient power for detecting typical effect 

sizes (i.e., 2 or more) observed in single-case designs.  

Experiment 2 – Validation Using Nonsimulated Data 

  One of the drawbacks of using Monte Carlo simulations is that the datasets may not 

perfectly mimic patterns of behavior observed in the natural environment. As such, it is 

important to examine whether the properties of the methodology would remain the same for 

nonsimulated data. To this end, we examined to what extent the VSC would detect changes in 

extended baselines. Given that no independent is introduced during baseline, any detection of an 

effect would be considered as a Type I error rate.  

Procedures 

 To examine Type I error rates, we used the same extended baseline datasets that we had 

previously extracted for a study examining false positives in AB, reversal, and multiple baseline 

designs (see Lanovaz, Huxley, & Dufour, 2017 for detailed procedures). We extracted these 

baseline data from 295 graphs included in 73 articles published in the 2013 and 2014 volumes of 

the Journal of Applied Behavior Analysis, Behavior Modification, Behavioral Interventions and 

Journal of Positive Behavior Interventions. Each graph included an initial baseline phase 
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containing 6 to 20 data points, which we used for our analyses. We used extended baselines 

rather than ATDs for this analysis because our purpose was to measure Type I error rates. To 

identify false positives, we must use datasets in which no independent variable is introduced (i.e., 

we must observe a change in the absence of an independent variable). It was thus not possible to 

use ATDs for this purpose as any observed change could have been attributed to the independent 

variable and would have prevented the calculation of Type I error rates.  

 For analysis, we divided each extended baseline into datasets containing all possible 

ordered combinations of 6, 8, 10, 12, and 14 data points. For example, assume that a baseline 

phase contained 12 data points, which we numbered in order from 1 to 12. Such a baseline phase 

would produce seven 6-point datasets (points 1 to 6, 2 to 7, 3 to 8, 4 to 9, 5 to 10, 6 to 11, 7 to 

12), five 8-point datasets (points 1 to 8, 2 to 9, 3 to 10, 4 to 11, 5 to 12), three 10-point datasets 

(1 to 10, 2 to 11, 3 to 12), one 12-point dataset (points 1 to 12) and no 14-point datasets. In total, 

our data preparation yielded 4,854 datasets for analysis. Then, we took each dataset and assigned 

the odd-numbered points to condition A and the even-numbered points to condition B. Finally, 

we applied the VSC to each dataset using our Python script and calculated the Type I error rate 

for 3, 4, 5, 6 and 7 points per condition by dividing the number of changes detected by the VSC 

by the total number of datasets for a given number of points per condition. Given that our data 

preparation yielded more datasets containing 3 points per condition than 7 points per condition, 

we also calculated the 95% confidence interval for each proportion.  

Initially, we had also extracted datasets containing 8, 9 and 10 points per condition (i.e., 

16, 18, and 20 points in total). Although the Type I error rates were consistent with the results of 

the first experiment, the ranges of the 95% confidence intervals were too large to draw any 
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useful conclusions (as we had too few datasets with 16 to 20 points). Therefore, we do not report 

these analyses in our results. 

Results and Discussion  

 Figure 4 shows the Type I error rate for different number of points per condition 

produced by the VSC on nonsimulated datasets. As soon as the design contained at least five 

points per condition, Type I error rates remained below the threshold value of .05. When 

compared to Type I error rates obtained with nonsimulated data (see upper left panel of Figure 

2), the error rates for the simulated data were lower. One potential explanation for this result is 

that our nonsimulated datasets may have been autocorrelated, which was not the case for the 

simulated data that we used to set the cut-offs. Positive autocorrelations tend to reduce Type I 

error rates in ATDs.  

General Discussion 

Overall, our results indicate that using the VSC as a supplement for the analysis of ATDs 

with at least five points per condition generally provides adequate control over Type I error rates 

and sufficient power for behavior changes typically observed in single-case designs. 

Interestingly, the VSC produced lower Type I error rates than permutations analyses for negative 

(for both six and ten points per condition) and lower positive (for ten points per condition) 

autocorrelations. Contrarily, permutation analyses had higher power than the VSC under similar 

parameters. Moreover, increasing levels of autocorrelation decreased Type I error rates when 

using the VSC, which is opposite to the pattern observed by Fisher et al. (2003). This result is 

most likely due to the distribution of the error across designs produced by the autocorrelation. In 

reversal and multiple baseline designs, the autocorrelated error is mostly distributed within 

conditions whereas it is mostly distributed across conditions within ATDs. As such, the 
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variability (error term) is more evenly distributed across conditions in ATDs, which makes the 

detection of effects more likely. These patterns are consistent with those obtained by Levin et al. 

(2012) using nonparametric permutation analyses. Our results are also consistent with the What 

Works Clearing House criteria for well-designed experiments, which recommends conducting at 

least five replications of systematically alternating sequence when using ATDs (Kratochwill et 

al., 2010). However, ATDs using randomized block designs may require more than five points 

per condition to achieve five replications, unless the comparisons are performed in blocks of two 

(e.g., AB-BA-BA-AB) or a maximum of two consecutive measurement times for each condition 

is allowed.  

 Compared to other methods for the analysis of ATDs (e.g., Hagopian et al., 1997; Roane 

et al., 2013), the VSC involves fewer steps, which reduces complexity and the probability of 

making errors during analysis. Furthermore, the VSC is the only method for ATDs for which 

both Type I error rates and power have been documented. Our results indicate that researchers 

and practitioners may adopt the VSC to supplement their analyses whenever they compare two 

or more conditions within an ATD. For example, the VSC may be used to evaluate the effects of 

an intervention in relation to baseline, to contrast the effects of two interventions, or to compare 

the control condition with the test conditions in a functional analysis. Applying the VSC to any 

of the previous situations will increase the confidence that the observed differences are the result 

of the intervention, or variable introduced, and not the product of naturally occurring patterns of 

behavior. To further increase the confidence in the results, the practitioner or researcher could 

use a randomized block design or a randomization scheme with the restriction of a maximum of 

two consecutive measurements per condition (see Onghena & Edgington, 1994) instead of using 

systematic alternations as we have done in the current study. That being said, it should be noted 
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that regardless of the type of randomization scheme adopted, the VSC alone cannot determine 

whether an observed change is socially significant. If the VSC detects a behavior change, 

practitioners and researchers should continue relying on visual analysis or use other effect size 

measures (see Parker, Vannest, & Davis, 2011 for review) to determine whether this observed 

change is socially significant for the person.  

 Our results are limited insofar as we only examined the effects of the VSC for ATDs with 

systematic alternations. We also included an equal number of data points in each condition. 

According to Manolov and Onghena (2017), 36% of published ATDs have an equal number of 

measurements for each condition.  Given that the distribution of error across conditions would 

differ, researchers should consider replicating our study with random assignment of conditions 

(rather than alternating) and with conditions that contain unequal numbers of sessions.  A second 

limitation is that we did not examine whether researchers and practitioners could readily learn 

how to apply the VSC. Although the VSC is simpler than other methods as it involves only two 

steps and does not involve the determination of trend or confidence lines, researchers should still 

conduct studies examining its applicability in the future. Third, we did not conduct a power 

analysis with nonsimulated data. Unfortunately, it is not possible to conduct power analyses 

without being tautological as the only way to determine whether the introduction of an 

independent variable influenced a behavior using nonsimulated data is to apply rules of analyses. 

Nonetheless, we did compare power with another established method (i.e., permutation analyses) 

to address this issue in the first experiment.  

Fourth, we limited our comparison of the VSC to permutation analyses. In the future, 

researchers should consider comparing the VSC with established effect sizes measures (e.g., 

percentage of points exceeding the median, percentage of nonoverlapping points). Similarly, our 
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study is limited insofar as we did not examine the correspondence of our results with those of 

expert visual analysts. Our rationale for excluding visual analysis was that it can be subjective 

and unreliable (Diller et al., 2016; Ninci et al., 2015), and we aimed to compare our methodology 

to an objective benchmark. Hence, we compared our results with those of permutation analyses. 

A final limitation is that the VSC is not as powerful at lower autocorrelations and produces more 

Type I error rates at higher autocorrelations than permutation analyses. Inversely, the 

permutation analyses did not perform as well as the VSC under certain circumstances. That said, 

both methodologies should be viewed as complementary. We did not design the VSC to replace 

statistical analyses, but rather to be used as a supplement by those who rely mostly on visual 

analysis. Visual inspection remains common in the analysis of single-case designs (Kratochwill 

et al., 2010; Lane & Gast, 2014). Thus, future research should also examine to what extent the 

results of the VSC are consistent with those of expert visual analysts. The VSC may prove most 

useful to the many practitioners and researchers who still rely exclusively on visual inspection 

for the analysis of ATDs. 
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Table 1 

Cut-off values according to numbers of points per condition and number of comparisons 

Number of points 

per condition 

(only if equal) 

Number of 

comparisons Cut-off value Cut-off percentage 

5 8 8 100% 

6 10 9 90% 

7 12 11 92% 

8 14 12 86% 

9 16 14 88% 

10 18 15 83% 

11 20 16 80% 

12 22 17 77% 

Note. The cut-off percentage is calculated by dividing the cut-off value by the number of 

comparisons and multiplying the result by 100%.  
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Figure 1. Example of the application of the visual structured criterion for comparing condition A 

with condition C. The Xs identify the excluded data points (i.e., first point of A, last point of C, 

and all points for condition B). The rectangles identify each comparison between conditions A 

and C. The circles indicate the location of the data path or point for condition C when it was 

above the data path or point for condition A within a comparison. The absence of a circle in a 

rectangle indicates that the data path or point of condition C was below the data path or point for 

condition A within the comparison 

  



VISUAL STRUCTURED CRITERION 23 

 

 

Figure 2. Type I error rates and power for various effect sizes obtained using the visual 

structured criterion with different number of points per condition (upper panels) and different 

number of conditions (lower panels). d represents the effect size in standard deviations. 

  



VISUAL STRUCTURED CRITERION 24 

 

 

Figure 3. Type I error rates and power (for effect sizes of 2) obtained using the visual structured 

criterion (VSC) and permutation analyses for six points per condition (upper panels) and ten 

points per condition (lower panels).  
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Figure 4. Type I error rates for different number of points per condition when applying the visual 

structured criterion to nonsimulated data. The error bars represent the 95% confidence interval.  


