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RESUME

Premiérement, cette étude réexamine les conclusions de Perron (1888) en ce qui a trait
au fait que plusieurs des séries macroéconomiques sont mieux modélisées comme &ant des
fluctuations stationnaires autour d'une tendance déterministe si on admet la possibilité d'un
changement d'ordonnée & F'origine en 1929 (un crashj et un changement dans la pente en 1973
{un ralentissement de ia croissance). Contrairement 3 'étude précédente, la date d'un
changement possible n'ast pas fixée a priori, mais est supposée inconnue. On considére ainsi
difiérentes méthodes pour déterminer s point ds discontinuité of les distributions
échantillonnales asymptotiques et finies de Ia statistique correspondante. Une discussion
détailiée & propos du choix dy nombre de retards dans l'autorégression et son effet sur les
valeurs critiques est aussi incluse, La plupart das rejets que F'on fetrouvait dans Perron {1989)
sont confirmés par cette approche. . Deuxidmement, cet article examine des séries
internationales trimestrielies sur le PNB (ou PIB) réel d'aprés—guerre pour les pays du G-7.
Dautres séries sont analysées, dont la consommation réelle, desquelles, encore une fois, une
forte évidence découle contre hypothése de racine unitaire. Les résultats sont comparés 3
ceux de Banerjee, Lumsdaine et Stock (1992) et & ceux de Zivot et Andrews (1992). Par
opposition aux résultats théoriques contenus dans ces articles, la distribution asymptotique des
tests de type séquentiel est dérivée sans avoir recours & une exclusion des valeurs possibles
des dates de changement prés des bornes.
Mots—clés : test d'hypothdse, changement structurel, tendances stochastiques, tendances

déterministes, expérience de simulation, racine unitaire.

ABSTRACT

Firstly, this study reexamines the findings of Perron (1989) regarding the claim that most
macroeconomic time series are best construed as stationary fluctuations around a deterministic
trend function it allowance is made for the possibility of a shift in the intercept of the trend
function in 1929 (a crash) and a shift in slope in 1973 (a slowdown in growth). Uniike the
previous study, the date of 3 possible change is not fixed a prioribut is considered as unknown,
We consider various methods to select the break points and the asymptotic and finite sample
distributions of the corresponding statistics. A detailed discussion about the choice of the
truncation lag parameter in the autoregression and its effect on the critical values is also
included. Most of the rejections reported in Perron (1989) are confirmed using this approach.
Secondly, this paper investigates an international data set of post-war quanterly real GNP {or
GDP}) series for the G--7 countries. A number of other series, including real consumption, are
analyzed and strong evidence is again found against the unit root hypothesis. Our results are
compared and contrasted to those of Banerjee, Lumsdaine and Stock (1992) and Zivot and
Andrews {1992). In contrast to the theoretical results contained in these papers, we derive the
limiting distribution of the sequential test without timming.
Key words: hypothesis testing, structural change, stochastic trends, deterministic trends,

simulation experiment, unit root.






1. INTRODUCTION.

In a previous paper, Perron (1989), we argued that many macroeconomic time series
could be represented as stationary fluctuations around a deterministic trend function if
allowance is made for a possible change in its intercept in 1929 (a crash) and in its slope in
1873 (a slowdown in growth). The test statistics were constructed by adding dummy
variables for different intercepis and slopes, extending the standard Dickey~Fuller
procedure. The asymptotic distribution theory underlying the critical values obtained
under the different models assumed that the dating of the break points were known a
priori, or more precisely, that the dates chosen were uncorrelated with the data.

This postulate has been criticized, most notably by Christiano (1992) who argued that
the choice of these dates had to be viewed, to a large extent, as being correlated with the
data. This is an important problem because both the finite sample and asymptotic
distributions of the statistics depend upon the extent of the correlation between the choice
of the break points and the data. Thereis a sense, as argued before, in which the choice of
these dates can be regarded as independent of the data. First, the dates used in the
previous study were chosen ex-ante and not modified ex-post. Secondly, these dates are
related to exogenous events for which economic theory would suggest the effects that
actually happened; e.g. the siock market crash of 1929 with the ensuing dismantle of the
economic organization and the exogenous sudden change in oil prices with the resulting
alteration of international economic coordination and policies.

In the sense described above the choice of the dates can be viewed as uncorrelated with
the data. There is, however, a validity to the argument that it is only ex—post (after
looking at the data) that we can say that the changes that followed these €xogenous events
actually occurred as predicted by the theory. Furthermore, many other exogenous events
did not have the major impact that some theories would have predicted. In this sense, the
choice of the break points must be viewed as being correlated, at least to some extent, with
the data. To what extent s a difficult and practically impossible question to answer. At
the very least the choices were not perfectly correlated with the data as no attempts were
systematically made to maximize the chances that the unit root be rejected nor to find
where, according to some test criteria, were the most likely dates of change.

While we still believe that the assumption about the exogeneity of the choice of the
break points is a good first approximation to the true extent of the correlation with the
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data, it is useful to investigate how robust the resulis are to different postulates. The aim
of this paper is to take the extreme view where the choice of the break poinis is effectively
made to be perfectly correlated with the data. This case is instructive to study because if
one can still reject the unit root hypothesis under such a scenario it must be the case that
it would be rejected under a less stringent assumption.

We proceed as follows for the practical implementation. Again, as in the previous
analysis, only one possible break point is allowed for any single series. This break point is
first chosen such that the t-statistic for testing the null hypothesis of a unit root is smallest
among all possible break points. Hence, using such a procedure, the choice of the break
point is indeed perfectly correlated with the data. We also consider choosing the break
point that corresponds to 3 minimal t~statistic on the parameter of the change in the trend
function. This allows the mild a priori imposition of a one-sided change (i.e. a decrease in
the intercept or the slope of the trend function). As will be seen, such a minor change
allows substantial gains in power. We also investigate various issues regarding the choice of
the truncation lag parameter in the estimated autoregressions and the effect on the critical
values of using different criteria for choosing this lag length.

Our paper is closely related to and complements those of Banerjee, Lumsdaine and
Stock (1992) and Zivot and Andrews (1992) in that similar procedures and series are
analyzed. We extend their analysis in several directions. On a methodological level, we
consider the asymptotic distribution of the sequential test based on the minimal value of
the unit Toot tests over possible break points. We show the results of Zivot and Andrews
(1992) to be valid without any trimming at the end points. The proof, which is of interest
in itself, is based on projection arguments and introduces a method that can be applied to a
variety of frameworks. Concerning the empirical results, our analysis is more extensive and
shows that alternative procedures can lead to conclusions that are less favorable to the unit
root than suggested in these two studies. We pay particular attention to the importance of
the selection of the truncation lag on the outcome of the tests.

The paper is organized as follows. Section 2 reviews the statistical models and
statistics involved. Section 3 discusses the asymptotic distribution of the test statistics
under the null hypothesis of a unit root. Section 4 analyzes their finite sample distribution
using simulation methods. Section 5 contains simulation experiments providing information
about their and power under various data—generating processes. Section 6 presents the
empirical results for the Nelson-Plosser (1982) data set. Section 7 analyzes an international
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data set of post-war quarterly real GNP series for the United States, Canada, Japan, the
United Kingdom, West Germany, ltaly and France. Section 8 presents additional evidence
on other series such as consumption and on some series analyzed in Section 6 but obtained
from alternative sources. Section 9 offers concluding comments. A mathematical appendix
contains the derivation of the limiting distributions.

2. THE MODELS AND STATISTICS.

We briefly review, in this section, the models and statistical procedures that will be
used to test for a unit root allowing for the presence of a change in the trend function
occurring at most once. The reader is referred to Perron (1989) for more details.
Throughout this paper, the time at which the change in the trend function occurs is
denoted by Tp. The first model is concerned with the case where only a change in the
intercept of the trend function is allowed under both the null and alternative hypotheses.
Furthermore this change is assumed to occur gradually and in a way that depends on the
correlation structure of the noise function. This was termed the "innovational outlier
model" and can be succinctly represented, under the nyll hypothesis of a unit root, by:

yt = yt-l +b+ 'l(L)(et + JD(Tb)t): (l-a)

where D(Tb)t = 1(t = Tp + 1) with 1(-) the indicator function. The sequence {e } is i.i.d.
(0, 02) and ¥(L) is a possibly infinite lag polynomial in L (with #(0) = 1). Denoting by z,
the noise function of the series, we have A(L)zt = B(L)et and Y(L) = A(L)-1 B(L). 1t is
assumed that the finite order polynomials A(L) and B(L) have all their roots outside the

unit circle. The immediate impact of the change in the intercept is & while the long run
impact is ¢(1)6. Under the alternative hypothesis of stationary fluctuations, the model is:

Yp=atct+ d>(L)(et + 6DU,), {1.b)

where DU, = 1(t > Ty), #(L) = C(L)-ID(L) with C(L) and D(L) finite order polynomials
in L having all their roots outside the unit circle. The immediate impact of the change in
the intercept of the trend function is 4 while the long run impact is 6%(1). Model (1.a) can
be tested against model (1.b) using the t-statistic for testing @ = 1 in the following
regression (with A the difference operator such that Ay‘ =y, - yt—-l):
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y, = i+ 0DU, + Bt + 6D(To) + oy + By ey (1.0)

Regression (1.c), like the others that will follow, is in the spirit of the Dickey-Fuller
(1978) and Said-Dickey {1984) methodology whereby autoregressive—moving average
processes are approximated by autoregressive processes of order k.

Under the second model, both a change in the intercept and a change in the slope of
the trend function are allowed at time Ty. With a similar notation, the model under the
pull and alternative hypotheses can respectively be represented as:

V=Yg tbt HL)(e, + ID(Tv), + 7DU,), (2.8)
and

yy=atct+ P(L)(e, + wbU, + 1DT,), (2.b)

where DT, = 1(t > Ty)t. Model (2.3) can be tested against Model (2.b) using the
t-statistic for the null hypothesis that a = 1in the following regression estimated by OLS:

y, = i+ DU, + Bt + DT, + ED(To) + ay,_y + B 6AY, + e (2.¢)

Under the third model, a change in the slope of the trend function is allowed but both
segments of the trend function are joined at the time of break. Here the change is presumed
to occur rapidly and corresponds o the "additive outlier model” in the terminology of
Perron (1989). The model under the aull and alternative hypotheses can be represented as:

Yy=Yq t b+ DU, + ¢(L)et, (3.3)
and

yy=atctt DT} + 2(Le,, (3.b)
where DT} = 1{t > Tp)(t - Tp). The null hypothesis given by Model (3.2) can be tested

versus the alternative Model (3.b) using the following two-step procedure. First, the series
is detrended using the following regression estimated by OLS:

¥ =+ P+ DT} + 7§y (3.c)
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The test is then performed using the t-statistic for o = 1 in the regression:

B =af g + T GA, e (3.c.ii)

We denote by t&(i,Tb,k) (i = 1,2,3), the t-statistic for testing a = 1 under model ;
with a break date Ty, and truncation lag parameter k (i.e. the t-statistic for a = 1in
regressions (1.c), (2.c) and (3.cif) for i = 1, 2, and 3, respectively). In the regressions
described above, Ty, and k treated as unknown. We next describe various data-dependent
methods to select these valyes endogenously.

2.1 Methods to Choose the Break Date T,

We consider two methods to select Ty endogenously. As in Zivot and Andrews (1992)
and Banerjee, Lumsdaine and Stock (1992), we first consider the procedure whereby Ty, is
selected as the value which minimizes the t-statistic for testing o = 1 in the appropriate
autoregression over some range for the break points. This procedure is in the tradition of
tests for structural change when the date of the change is assumed unknown which often
consider the maximum of a sequence of random variables as the statistic of interest. Such is
the case, for instance, with the CUSUM test of Brown, Durbin and Evans (1975). The
asymptotic distribution of t2(1) and 15(2) was studied by Zivot and Andrews (1992) under
the condition that the range of possible values for the break point be restricted to some
subset that excludes values at each end of the sample. In the next section, we show that
the limiting distribution derived by Zivot and Andrews (1992) remains valid even without
trimming. We define the statistics as t;(i) = MinTge(k+1, T) ta(i,Tb,k) (i=123)

The following procedure is also analyzed. Instead of choosing the break point Ty, so
that t&(i,Tb,k) is minimized, it is chosen to minimize either s the t-statistic on the
parameter associated with the change in the intercept (Model 1) or t., the t-statistic on
the change in slope (Models 2 and 3). We denote the t-statistic on a (for a null hypothesis
that a = 1) obtained from such a procedure by tz'o(l) for Model 1 and by t;,,r(i) (i=2
3) for Models 2 and 3. More precisely, t;’o(l) = t&(l,Tb*,k) where Tp* is such that
t ?(wa)‘ = MinTbe X +],T)t z,(Tb,k), where again different specifications about the choice of
k will be analyzed. 'The statistics t;, (i) (i = 2, 3) are defined in an analogous fashion. This
procedure is more akin to that used Zy Christiano (1992). The use of the t-statistic on the
parameter associated with the change in the trend function allows the possibility of
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imposing the mild a priori restriction of 2 one-sided change. Hence by choosing Ty so that
tyin (1.c) or t; in (3.ci) is minimized, we allow the date of the change in the trend
function to be unknown but restrict the analysis to the cases of 3 “erash® or a slowdown in
growth. We also discuss the case where the break point is selected using the same
procedure without any a priori on the sign of the change. In this context the break date is
selected using the maximum of the absolute value of tpor iz The corresponding statistics
are denoted by t;)‘ 01(1) for Model 1 and t;" 'y{(i) (i = 2, 3) for Models 2 and 3.

9.9 Methods to Select the Truncation Lag Parameter k.

There is now substantial evidence that using data-dependent methods to select the
truncation lag parameter k leads to test statistics having better properties (stable size and
higher power) than if a fixed k is chosen a priori (unless, of course, one happens 1o select
that value of k which is best), see Ng and Perron {1994) and Perron and Vogelsang {1992).
We consider, in this paper, two such data-dependent methods. The first is the one
originally implemented by Perron (1989). It uses a general to specific recursive procedure
based on the value of the t—siatistic on the coefficient associated with the last lag ir the
estimated autoregression. More specifically, the procedure selects that value of k, say k*,
such that the coefficient on the last lag in an autoregression of order k* is significant and
that the coefficient in an autoregression of order greater than k* is insignificant, up to some
maximum order kmax selected a priori. In the simulations and empirical applications
reported below, we use a two-sided 10% test based on the asymptotic normal distribution
to assess the significance of the last lags. This procedure is denoted below a "y-gig".

Said and Dickey (1984) use yet 2 different method in their reported empirical
application. 1t is based on testing whether additional lags are jointly significant using an
WP-test” on the estimated coefficients. The exact procedure is as follows. First a maximum
value of k, kmax, is specified. For a given value of Ty, the autoregression is estimated with
kmax and (kmax — 1} lags. A 10% one-tailed P-test is used to assess whether the
coefficient on the kmaxth lag is significant and if so, the value of k chosen is this maximum
value. If not, the model is estimated with (kmax - 2) lags. The lag (kmax - 1) is deemed
significant if either the F-test for (kmax — 2) versus {(kmax — 1) lags or the P-test for
{kmax ~ 2) versus kmax lags are significant based on the 10% critical values of the chi-
square distribution. This is repeated by lowering k until a rejection that additional lags are
insignificant occurs or some lower bound is attained. In the empirical applications, the
Jower bound is set to k = 1. This procedure is denoted below as "F-sig".
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In the case where the noise function is assumed to be generated from a finite order
autoregressive process, we can use results in Hall (1990) to show that the data—dependent
methods described above lead to tests having the same asymptotic properties as would
prevail if the true autoregressive order was selected to estimate the autoregression provided
kmax is selected greater than the true value. In the more general case where
moving-average components are permitted, Ng and Perron (1994) show that tests with
such data dependent methods to select k have the same asymptotic distribution provided
kmax3/T converges to 0.

We choose these "general to specific" procedures rather than methods based on
information eriteria, such as AIC, because the latter tend to select very parsimonious
models leading to tests with sometimes serious size distortions and/or power losses. This
finite sample performance is conusistent with the finding of Ng and Perron (1994) who show
that using an information criterion leads to a selected value of k that increases to infinity,
as T increases, only at the very slow rate log(T). These theoretical results are in accord
with various empirical results showing that using the AIC leads to very small values of k
being selected (typically 0 or 1) and that oftentimes the estimated residuals exhibit seria]
correlation (see Perron (1994)).

3. THE ASYMPTOTIC DISTRIBUTION OF THE STATISTICS.

In this section, we consider the limiting distribution of the statistics. To simplify the
derivations we suppose the data—generating process to be a random walk,

y‘=Yt_1+eﬁ (t=0’ 1! bt ] T) (4)

where the errors €, are martingale differences, and consider the statistics constructed with
k = 0. Using arguments in Ng and Perron (1994), we can then state that the resulting
limiting distribution remains the same when additional correlation is present and the
statistics are constructed with one of the data-dependent method to select k. This holds
provided kmax3/T - 0 as T - 0. This is the same strategy as used 'by Zivot and Andrews
(1992) and Banerjee, Lumsdaine and Stock (1992). Al statistics are asymptotically
invariant to a change in intercept. Vogelsang and Perron (1994) show that they are not
asymptotically invariant to a change in slope but that the asymptotic distribution
corresponding to a zero change in slope is a better approximation to the finite sample
distribution for values typically encountered in practice. The following Theorem concerning
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the asymptotic distribution of ta(i) {i = 1,2, 3)is proved in the appendix.

THEOREM 1: Let {yt}g be generated by (4) and denote by " = * weak convergence in
distribution from the space D[0,1] to the space C[0,1] using the uniform metric on the space
of functions on [0,1]. Then:

e)fori=12: » \
infgy o1, )l Tok=0) = iy fo,1 S Twr )dW(r}/[ [ Ew )%] /2

b} Jor Model 3: i"fTbe(I,T}t&(i' T;,,k:o) =)
infyefo,1 ][ [ wfr))aw(r) - af (-2 Wo(r)ds [ Iwglrr )zdr] /[ [ bwgtra )2,1,] 172

where ¢ = (1\3(1 - A)‘?/.?)-I, Wo(r) and Wz-(r,)\) are residuals from a projection of a
standard Wiener process W(r) onto the subspace generated by the funclions {1, 7} (i=0)
{1, 7, de(rA)} (i = 1), {1, r, dufr,)), dt*(rA)} (i=2) and {1, 7, dt(r,))} (i = 3), with
du(r,A) = i(r > )) and dt*(r2) = 1(r > A)(r = A).

“Theorem 1 differs from the results in Zivot and Andrews (1992) in two respects. First
note that there is no need to introduce the hybrid metric considered in that paper. The
weak convergence results hold under the uniform metric. This relaxation is achieved using
arguments in Gregory and Hansen (1994) so that there is no need for a weak convergence
result for DUt or DT‘{ {appropriately normalized). The most important and novel aspect in
which our result differs is that we do not require that the possible range of values for the
break point be restricted to exclude the end points A = 0 or 1. To achieve this relaxation,
our proof is rather different and somewhat more involved than the one in Zivol and
Andrews (1992) and is based on projection arguments. The intuition is quite simple. With
a break at either end points, the regressions indeed exhibit perfect multicolinearity but the
coefficient on the lagged dependent variable, @, is a linear combination of the parameter
vector that is identifiable and estimable and its t-statistic is also well defined. In such
cases, the regressions become equivalent 1o ones where no dummy is included and the
standard limiting distribution of Dickey and Fuller (1979) applies.

This last result is important because it shows that it is unnecessary to use some
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arbitrary trimming near the end points, such as the 15% exclusion on both sides suggested
by Banerjee, Lumsdaine and Stock (1992). The arguments presented in the proof of
Theorem 1 can also be applied to other context such as the cointegration tests with regime
shifts considered by Gregory and Hansen (1994).

We used simulation methods to obtain the percentage points of the asymptotic
distributions described above, These were based on 10,000 replications using partial sums
of i.i.d. N(0,1) random variables to approximate the Wiener process and 1,000 steps to
compute the integrals. The critical values obtained are presented in the rows labelled "T =
00" in panel A of Tables 1, 2 and 3.

This relaxation of the need for trimming at the end points does not appear to be
possible for the tests whereby the break point is chosen with respect to the t-statistic on
the coefficient of the intercept or slope change. The asymptotic distributions of t;’ K1) and
t;" 0 (1) assuming the break point o be in some compact subset was derived in Banerjee,
Lumsdaine and Stock ( 1992). The critical values are reproduced in Panels B and C of Table
L. Similar asymptotic results were obtained by Vogelsang and Perron (1994) for t;’ ,y(i) and
t;»l')'l (i) (i = 1, 2) and the critical values are in Panels B and C of Tables 2 and 3.

4. FINITE SAMPLE CRITICAL VALUES.

In this section we report simulation experiments to evaluate the finite sample
distributions of the statistics under the null hypothesis of & unit root. Our aim is to assess
the quality of the asymptotic approximation and to provide alternative sets of critical
values when this approximation is inadequate. We consider the leading case of a random
walk where the data are generated by:

yt =yl—‘1+et; y0=0’ (5)

with €, ~ iid. N(0,1). This setup allows us to assess the effects of different methods to
select the truncation lag, especially those that are data~dependent. In the next section, we
evaluate the size and power of the tests under various specifications for the value of the
change in intercept and /or slope and the presence of additional correlation in the errors,

To assess the sensitivity of the distributions to the particular value of k used, we
provide, for each sample size considered, simulated critical values for different
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specifications on the truncation lags, namely k = 0, 2, and 5 as well as chosen using the
F-sig and t-sig methods. Given the nature of the data sets analyzed in later sections, we
present critical values for the following sample sizes. For Moddl 1, T = 60, 80 and 100; for
Model 2, T = 70 and 100; and for Model 3, T = 100, 150 and 200.

Each set of results was obtained using 2,000 replications of the t-statistic using the
appropriate autoregression estimated from data generated by (5). The program was coded
using the C language and N(0,1) random deviates were obtained from the routine RAN1 of
Press et al. (1986). For the procedures where the choice of k is data dependent, kmax is set
1o § for purely computational reasons. Tables 1, 2 and 3 present the simulated critical
values for Models 1, 2 and 3, respectively. Each table contains three panels: panel A for
tz(i) (i = 1, 2, 3), panel B for t’&’v(l) or t;,_y(i) {i = 2, 3), and panel C for t;:loi(l) or
tah‘(i) (i=23)

Table 1.A contains the critical values for t“x(l) where only a change in intercept is
allowed. Upon comparison with the results in Perron (1989), it is readily seen that the
critical values are much lower when Ty ;s allowed to be data dependent than when it is
considered fixed. For example, with T = 100 and k = 0, the 5% critical value is —4.93 when
minimizing over Ty, as opposed to -3.76 when the date of the break is considered fixed at
mid-sample. The critical values are fairly stable as k changes provided that k is held fixed
when minimizing over Tp. In those cases where k is fixed, the asymptotic distributionis a
good approximation to the finite sample distribution. The critical values for the test
constructed with k chosen according to recursive F-iests on the coefficients of the lagged
first differences are presented in the rows labelled k = k(F-sig). For example, the 5% point
with T = 100 is ~5.09. The critical values for the test constructed with k chosen according
10 a t—test on the last included lag in the autoregression are presented in the rows labelled
k = k(t-sig). The resulting values are close to the values obtained using F-sig ! In those
cases where 2 data dependent method is used to select k, the asymptotic approximation is
not as good, indicating that the use of the asymptotic critical values would lead to tests
that are liberal in finite samples.

1\ The simulated critical values involving a test of significance on the lagged first
differences of the data are for tests of size 10%. We chose this value on the principle
that it is safer to include extra lags to achieve the correct size in finite samples (at the
expense of a loss in power). However, critical values with 5% tests were also computed
and are not included since they are very similar to those with the 10% tests.
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The critical values for t7(2) (allowing both a change in slope and intercept) and 12(3)
{allowing only a change in slope) are presented in Tables 2.A and 3.A, respectively. The
presentation of the results is as in Table LA. The same general features hold when
comparing different procedures and different sample sizes. While comparing the critical
values for the three models, it is interesting to note that the highest critical values (in the
left 1ail of the distribution) occur for Model 3. This is contrary to the fixed Ty case where
the highest critical values correspond to Model 1.

Table 1.B presents the critical values of the statistic t;,g(l) for Model 1 obtained with
Ty chosen to minimize t*o, the t-statistic on the parameter for the change in intercept. As
can be seen from comparing the results in Table LA, the critical values obtained when
choosing Ty, this way are substantially smaller in absolute value. This is simply due to the
a priori imposition of a one-sided change in the intercept of the trend function.

Tables 2.B and 3.B present the corresponding critical values for t; 7(2) and t:x 7(3),
obtained with Ty chosen to minimize t,r in regressions (2.c) or (3.c.i). As stated earlier, this
procedure does not impose any a priori restriction on the date of the change but restricts
the change to be a decrease in slope (i.e. a one-sided structural change). Much of the same
comments made with respect to the statistic t;’ #1) apply to 13’7(2) and t;’ 7(3).

Panel C of Tables 1 to 3 consider the statistics based upon choosing the break date
maximizing the absolute value of the t-statistic on the coefficient of the intercept or slope
dummy. These statistics like t;(i) (i=1,2,3)donot impose any a priori condition on the
sign of the change. Comparing the results with those in panels A, we see that for Models 1
and 3, the critical values in the left tail of the distribution are essentially the same between
t7(1) and t;, 0,(1) and between t2(3) and t;{[! ,”(3). Hence for Models 1 and 3, these two
statistics are likely to have similar properties. Things are different for Model 2. The critical
values in the left tail of the distribution are smaller (in absolute value) for t;, (2)
compared to t;(?.). Hence, one could expect the former to provide a more powerful test.

5. FINITE SAMPLE SIZE AND POWER SIMULATIONS.

This section presents finite sample size and power simulation results. The purpose is to
determine the following, a) how size and power are affected by the choice of k in the
presence of more general error processes, b) how size and power are affected by different
values of the change in intercept and slope, and c) how power varies across procedures for
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choosing Tp. The focus of the simulations is placed on Models 1 and 3. The data generating
process (DGP) used for Model 1 is of the form:

y, = DU, + BD(To), + ayy g + i 00)ay, + (1+ YL)ey, (6)

where e, ~ iid. N(0,1)and yy=¢€5= 0. For Model 3, the DGP is of the form:

gy = DT+ 3y §y = aFyg + o 908Ty + (14 WLy "

‘For the size simulations, & = 1 and for power a is set to 0.8. The sample size for all
simulations is T = 100 and 1,000 replications are used. Regressions were run for fixed k =
0, 1, ..., 5 and for k(F-sig) and k(t-sig) with kmax = 5. For fixed k, the 5% asymptotic
critical values were used, and for k(F-sig) and k(t-sig), the appropriate 5% finite sample
critical values for T = 100 were used. When the change in intercept or slope is non zero,
the break date is Ty = 50 (at rid-sample). For Model 1, we used values of & {under the
null) and 0 (under the alternative) of 0, 2, 5 and 10. For Model 3, we used values of 721 0,
.1, 3, .5 and 1. Seven different error specifications were used: 1) pi)=0(=1,..,4)and
¥ =0;2) ¢1) = 6, ¢(i)) =0 (i =234) and ¥ =0; 3) ¢(1) = -6, ¢(i) = 0 (i = 2,34);
o(1) = 4 9(2) = 2 and (3) = $(4) = ¥ = 0;5) (1) = 3, 6(2) = 3, 9(3) = 24, #(4) =
14and $=0; 6) ¢(i) = 0 (i = 1,2,34) and ¥ = .5, 7) #(i) = 0 (i = 1,2,3,4) and $ = ~4.
Experiment {1) has i.i.d. errors. This specification is used to isolate the effects of choosing
k too large. Experiment (2) has positive correlation in the errors and is quite common in
empirical data. Experiment (3) has negative correlation in the errors. Experiments (4)~{(5)
have higher order correlation and are useful in isolating the effects of picking k too small.
Finally, experiments (6) and (7) have MA(1) errors.

Due o space constraints, we only include results pertaining to ta(:i) in Table 4 (the
full set of results is available on request). We begin by summarizing results pertaining to
the choice of k. When k is chosen less than the true order of the process, substantial size
distortions often occur. In most cases the exact size is much greater than the nominal size.
If k is chosen at least as big as the true order of the process, the exact size is rarely greater
than the nominal size. However, power is lost if the lag structure is over parameterized.
When the k{t-sig) or k(F-sig) procedure is used to pick k, the exact size is close to the
nominal size in all cases except when there is a negative MA component as in experiment
(7). In this case the exact size i§ substantially inflated above the nominal size. Power using
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k{t-sig) or k(F-sig) is generally quite good. It is greater than when k is larger than the true
order of the process and is nearly as high as when k is set to the true order in the case of
autoregressive errors. Overall, the k(t-sig) and k(F-sig) procedures have good size and
power properties and clearly dominate using a fixed k. The results indicate that tests based
on the k(t~sig) procedure are slightly more powerful than those based on k(F-sig).

Consider now how a change in intercept or slope affects the exact size. The tests t2(1)
and t* A1) become oversized as § increases. For example consider experiment (1) for t2(1)
with k(t——sig); when § = 0 the size of the test is 047, when § = 2 it is .053, when § = 5 it is
-096 and it rises to .486 when §is as big as 10. The results in Tables 4 for t;{:&) concerning
models with a change in slope 7 show that changes in 7y do not affect the size of the tests
for the range of values considered. For t;’ 7(3), there are slight distortions in some cases as
7 increases. Additional simulations revealed that larger values of 7 induces substantial size
distortions. The reader is referred to Vogelsang and Perron (1994) for a more detailed
analysis on this issue. It is important to note here, though, that the magnitude of § and v
where size distortions become a problem are of the order of 5 to 10 times the standard
deviation of the errors for & and at least 2 times the standard deviation of the errors for 7.
For most macroeconomic time series (including those analyzed in later sections) intercept
shifts are less than 5 standard deviations and slope changes are less than .7 standard
deviations. Therefore distortions caused by large changes are not a problem in practice but
care should be used if a series is suspected to have a very large intercept or slope change.

Consider now the effect on power of imposing the mild a priori condition on the sign of
the change, i.c. comparing t2(1) versus t7 A1) and 12(3) versus 7 7(1). It is seen that
?
power is generally higher when this condition is imposed.

As a final simulation experiment, we briefly analyze the test considered by Banerjee,
Lumsdaine and Stock (1992) (BLS) and Zivot and Andrews (1992) (ZA) for the case of a
joined segmented trend. They use the innovational outlier framework that does not allow
for a change in slope under the null hypothesis. Namely, they use the regression:

ZWw=at+pf+ DT} + oy, + X].‘=1ciAyt__i +e,. (8)

The statistic used is the minimal t-statistic on a for testing a = 1. For illustration, we
only consider the case where k is fixed at 4 as in BLS, We performed simulations using the
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same experiments as above with the DGP (7). The results are reported in Table 5. It is
seen that this test, unlike the test t;(3) based on the two step procedure, shows serious size
distortions even with small non-zero values of the change in slope 7. For example, with
i.i.d. errors, the size of this test is .320 {instead of the nominal 5%) when 7 = 1, whereas
the 17(3) has an exact size close 1o 5% in this case. These results are of importance for the
following reason. If one wants to treat 3 change in slope as a nuisance parameters (ie
allow it under both the null and alternative hypotheses), the method suggested by BL5 and
ZA for the case of a joined segmented trend is inappropriate since a rejection could be due
10 either stationary fluctuations or a change in the slope of the trend function with 2 unit
root process. The simulations reported here may also explain some simulation results in
BLS. They document the fact that for a given change in slope the power of their test does
not increase as a is further away from one. Given the resuits above, this may simply be due
to the fact that most of the power for their parameter configurations is due to non-zero
slope changes which have a first-order effect compared to gains in power caused by
movements of a away from unity.

6. EMPIRICAL RESULTS FOR THE NELSON-PLOSSER DATA SET.

Table § presents the empirical results for the Nelson-Plosser (1982) series for which, in
Perron (1989), Model 1 was the specification of interest. The series have an herizon which
starts at different dates but which ends in 1970 for all series. The data set includes: Real
GNP, Nominal GNP, Real per capita GNP, Industrial Production, Employment, GNP
Deflator, Consumer Price Index, Nominal Wage, Money Stock, Velocity and Interest Rate.
In Perron {1989) we claimed a rejection of the unit root for all these series except the
Consumer Price Index, Velocity and Interest Rate. We also noted, however, that the unit
root hypothesis could be rejected for the Consumer Price Index and Velocity series when
considering the post~1929 sample using the usual Dickey~Fuller (1979} test statistic.

Table 6 presents results obtained by choosing the break point Ty in such a way that
the t-statistic for testing that a = 1 in regression (1.¢) is minimized. For this set of results,
kmax is specified to be 10 3. Results are presented for both cases where the truncation lag

2 The choice of kmax is somewhat arbitrary. On the one hand, one would like a large
value to have as unrestricted a procedure as possible. On the other hand, a large value
of kmax yields problems of multicollinearity in the data and also a substamij loss of
power. The choice of kmax was also set such that the estimated autoregressions did
not show any sign of remaining correlation in the residuals as indicated by the
Box-Pierce statistic. Most of the results are robust to alternative choices for kmax.
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is selected using the F-sig or t-sig procedures. When both methods yield the same values
only one regression is reported, otherwise separate regressions are listed. The statistics of
most interest are the estimates of a and its t-statistic as well as three sets of p-values in
the last three columns (reported to the nearest 1%). The first set of p-values is obtained
using the asymptotic distribution. They are included because, as argued earlier, the
asymptotic distributions of the statistics obtained under a data dependent method to select
k are the same as in the fixed k case and may be more robust, for example to the presence
of additional correlation, than the finite sample critical values. The second set of p-values
corsesponds to the critical values of the t-gtatistic when k and Ty, are chosen according to
the F-sig method. The last set of p-values are those corresponding to the i-sig method.
The critical values used correspond to samples of size 60, 80 or 100 whichever is closest to
the actual sample size.

The empirical results show that the unit root hypothesis can be rejected at the 5%
significance level or better, under either scenario about the choice of k, for Real GNP,
Nominal GNP 3, Industrial Production and Nominal Wages. For the Employment series,
the finite sample p~value is .05 with the F-test and .09 with the t~test (the corresponding
asymptotic p-values are .02 and .04, respectively). Hence the unit root is also rejected for
the Employment series. The Real per capita GNP and Money Stock series present a more
ambiguous case. When k is chosen with the F-sig procedure, the p-value for the Real per
capita GNP series is .12 using the finite sample distribution and .08 using the asymptotic
distribution. The corresponding figures are .14 and .08 for the Money Stock series. These
values are marginal for a rejection at the 10% level. Nevertheless, to analyze whether these
results are due to low power or are specific to the data series used here, Section 8 presents
results that were obtained with similar series drawn from alternative sources.

The unit root hypothesis cannot be rejected for the Consumer Price Index, Velocity
and Interest Rate series under any procedure. The choices of T}, and k obtained using the

data dependent methods for choosing k are different but yield the same qualitative results.

The only series which offers a markedly different picture from the fixed Ty, case is the

did not increase kmax further given the relatively few number of observations.
Nevertheless, the conclusion is robust to basically any value of the truncation lag
parameter k chosen.
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GNP Deflator. With k chosen according t0 either significance criteria the p-value is .35
(.29 using the asymptotic distribution). Hence, for this series, it appears that the rejection
of the unit root hypothesis reported in Perron (1989) is not robust to correlation between
the choice of Ty, and the data. It must be kept in mind, however, that the type of
correlation assumed here is an extreme one and it may well be the case that the rejection
would not hold under alternative specifications. Also of interest is the fact that the GNP
Deflator series appears to behave in a manner similar to the Consumer Price Index:
non-rejection of the unit root using the full sample but rejection using a standard
Dickey-Fuller test on the post—1929 sample (see Table A.2 in Perron (1989)).

" A comment is warranted about the choice of Ty selected according to these
procedures. Except for the C.P.I, Velocity and Interest Rate series (for which the unit root
is not rejected), the value of Ty is either 1929 or 1928. It is 1929 for the Nominal Wage and
Money Stock series and 1928 for the others. While 1928 does not exactly correspond to the
date specified in Perron (1989), the ecomomic interpretation remains the same. The
selection of 1928 is due to the presence of the dummy variable D(Tp), in regression {1.c).
Hence, 1928 is often chosen because the dummy variable takes value 1 in 1929 and offers
some additional fit to the 1929 crash over what the change in the intercept can do alone.

Table 7 presents the results when Ty, is chosen to minimize tp the t-statistic on the
parameter of the change in intercept, i.e. when imposing the one-sided restriction of a
crash. We also considered the tests obtained without the imposition of the one-sided
change, i.e. maximizing |t;|. The results were qualitatively similar to those described
above and are not reported. When a rejection of the unit root hypothesis occurred in Table
6, it does so again here and more strongly given that the tests have higher power. As was
the case earlier, the unit root cannot be rejected for the GNP Deflator series. Hence, for
this particular series, the earlier conclusion in Perron (1989) is not robust to allowing the
- date of the change to be unknown. The results in Table 7 offer, however, a different picture.
for three series. First, for the Employment series, the unit root hypothesis can be rejected
at the 5% level (using any procedure) instead of 10% with the statistic t;‘(l). More
interestingly, the unit root hypothesis can now be rejected at the 10% level for the Real per
capita GNP and Money Stock series. For example, the p-values under the F-sig procedure
are .06 and .07, respectively. :

We now turn to the analysis of the Common Stock Price and Real Wage series where
Model 2 is specified, i.e allowing both a change in the intercept and the slope of the trend
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function. The procedures used and the presentation of the estimation results in Tables 8. A
and 8.B follow our previous analysis of Model 1 (in Tables 6 and 7) except that kmax is
now 5. Consider first the case where Ty is chosen to minimize the t-statistic on a. The
date of break selected for the Common Stock Price series is 1928 (consistent with the
imposition of 1929 as the break date in Perron (1989)). Both methods to choose the
truncation lag yields the same model and test statistic with an asymptotic p-value of .02
and finite sample p-value of .04 for F-sig and .06 for t~sig. Similar results hold for the Real
Wage series. The break date is 1939; the asymptotic p—value of the test is .03 and the finite
sample ones are .07 with F-sig and .08 with t-sig.

Table 8.B presents results obtained when Ty is chosen maximizing t;r or ft;’i, the
t-statistic on the coefficient of the slope change. The results are quite interesting in that
the unit root is strongly rejected using either method to select the truncation lag even
without the a priori imposition on the sign of the change in slope. The selected break date
is still 1939 for the Real Wage series but now 1936 for Common Stock Price.

To compare our results with those of Zivot and Andrews (1892), note first the
methedological differences involved. First, we retained the one time dummy D(Th)t in
regressions (1.c) and (2.c); we consider the F-sig procedure to select the truncation lag as
well as the t-sig procedure; we consider kmax = 5 instead of 10 for the Real Wages and
Common Stock Price series; and we also consider the case where the break date is selected
using a test of significance on the coefficient of the change in slope. For the series Real
GNP, Nominal GNP, Industrial Production, Nominal Wages and Common Stock Prices
our results concord with those of Zivot and Andrews (1992), namely a 1ejection of the unit
root. Our results also show these rejections to be robust to alternative specifications for
choosing the break date and the truncation lag (except for Nominal Wage using t2(1) and
F-sig). For the Employment series, our results allow a rejection at the 10% level using the
finite sample critical values for the t-sig method when the break is selected minimizing the
unit root statistic. This small decrease in p-value compared to Zivot and Andrews is
basically due to the inclusion of the one-time dummy D(Tb)t in regression (1.c). However,
our results show that a stronger rejection, at the 5% level, is possible using the F-sig
method and that this rejection becomes even stronger if the mild a priori restriction of a
one sided change is imposed (see Table 7). For the Real per capita GNP and Money Stock
series, the results with t;(1) and the t-sig procedure are similar to those in Zivot and
Andrews (1992), namely p-values of .21 and .28. Using the F-sig procedure, the p-values
are substantially reduced to .12 and -14, respectively. Imposing the sign of the change a
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priori allows a rejection at the 10% level for both series using F-sig and for Real per capita
GNP using t-sig. The difference in our conclusion for the Real Wage series is due to the
different choice of the upper bound kmax. Our results agree for non—rejections for the series
GNP Deflator, C.P.1,, Velocity and Interest Rate.

7. RESULTS WITH AN INTERNATIONAL DATA SET FOR POSTWAR REAL GNP.

This Section analyzes an international data set of postwar quarterly real GNP or GDP
series. The countries analyzed and the type and sampling period of the series are the
following: USA (GNP; 1947:1-1991:3); Canada (GDP; 1047:1-1989:1); Japan (GNP,
1957:1-1988:4); France (GDP; 1965:1-1988:3); Germany (GNP; 1960:1-1986:2); Ttaly
{GDP; 1960:1- 1985:1); and the United Kingdom (GDP; 1957:1-1986:3). The data for USA
are from the Citibase data bank and for Canada from the Cansim data bank. For Japan
and France they are from the IFS data tape. The remaining series (UK., Germany and
Italy) are from Data Resources Inc. and are those used in Campbell and Mankiw (1989).
All series are seasonally adjusted and at annual rates, except for the USA and the United
Kingdom which are at quarterly rates. The plots of the logarithm of each series are
presented in Figures 1 through 7. In these graphs the solid line is the estimated trend
function allowing a one~time change in slope. The date of the change varies for each series
and was selected using the t;(?») test.

The results pertaining to the statistic 12(3) are presented in Table 9. Using the
asymptotic critical values (Table 3.A), the unit root is rejected, at close to the 5% level, for
all series except ltaly (for Canada this rejection is mot robust when using the F-sig
procedure). Using the finite sample critical values, the results are not, in general, as sharp.
For Japan, the unit root is strongly rejected (p—values of .02 and .03}. Indeed, the case of
Japan is particularly striking in view of both the estimated t-statistic and the visual
inspection of the graph of the series (Figure 3). The slope of the trend function has changed
from 2.43% before 1971:3 to 1.01% after 1971:3 (a 58% decrease). More strikingly the
actual series follows very closely this breaking trend function.

The results are not as clear for most of the other series but some interesting cases still
emerge. For the United Kingdom, using the F-sig and t-sig procedures, the p—values are
.07 and .08 respectively, allowing rejection of the unit root at the 10% level, The graph of
the series is presented in Figure 7. The change in the slope of the trend function, with the
break point evaluated at 1973:3, is still quite large showing 2 54% reduction (with a
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quarterly growth rate at .74% before 1973:3 and .34% after).

The results for Canada, France, Germany and the United States are similar in terms
of the t-statistics obtained. They range from —4.22 to ~4.33 with finite sample p-values
between .12 and .14 {this excludes the case of Canada with F-sig). While the unit root
cannot be rejected at the 10% level, the results are not very much at odds with the
hypothesis that the series can be construed as stationary fluctuations around a breaking
trend function. Such is not the case, however, with the GDP series from Italy. Here the
p-values are large enough to cast little doubts on the unit root,

It is interesting to look at the estimated change in the slope of the trend function and
the dating of the break implied by the estimation procedure. The estimated percentage
decrease in the rates of growth are as follows: USA, 37%; Canada, 36%; Japan, 58%:;
France, 66%; Germany, 56 %; Italy, 57%; U.K., 54%. These figures are indeed quite large
and suggest, besides the unit roof issue, that an important structural change has occurred,
The dates of the break point are different for each country but are all close to the year
1973, associated with the first oil price shock. They vary between 1971:2 (USA) and 1976:3
(Canada). It is to be unoted, however, that the statistical method used here is not directly
geared at providing a consistent estimate of the date of change in the slope of the trend
function. Hence, the break dates should be viewed as approximate.

As discussed in Section 5, using t;},y(l!), which select T, based on the minimal value of
the parameter of the change in slope, is likely to allow tests with greater power. Resulis
pertaining to this test are presented in Table 10. Indeed, it appears more powerful. Using
the t-sig procedure, the p-values for the null hypothesis of a unit root are at most .11 for
all countries except Ttaly. Using the F-sig procedure, the p-values are smaller than .10 for
USA, Japan, France and the United Kingdom; they are .13 and .14 for Canada and
Germany, respectively. These results show that a simple imposition of a one-sided
downward change in slope (still with an unknown break point) is enough to warrant
rejection of the unit root hypothesis at close to the 10% level for all countries except Italy.

We view these Tesults, especially given the small span of the data, as substantial
evidence against the unit root. It is indeed somewhat Tevealing to consistently obtain
p-values in this range given the relatively low power of unit 00t tests when using a data
series over a short span (see Perron (1991)). Given that the statistical procedure used is
one where an extreme assumption is made about the correlation of the choice of the break
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point and the data (yielding a procedure with low power compared to the case where Ty is
assumed fixed), we view these results as consistent with the hypothesis that the series are
best characterized as stationary fluctuations around a breaking trend function with a
change in slope near 1873.

To compare our results with those of Banerjee, Lumsdaine and Stock (1992) (BLS), we
first note the main differences in the studies. First, the data used are slightly different in
terms of both the sources and the horizon. Second, they use the one-step innovational
outlier method which does not allow for a change in slope under the null hypothesis. Third,
they use a fixed value for the truncation lag set at 4 for all countries and they note that the
results are robust to setting this fixed value to 8 or 1o using an information criterion (AIC
or Schwartz) to select the order. Using these different specifications they found little
evidence against the unit root for all countries except Japan.

After several investigations using both types of methods applied to both data set 40t
turns out that the major factor responsible for the conflicting results is the method to
choose the truncation lag. For example, our data dependent methods select k = 4 only for
Japan for which we both reject the unit root. For the other countries the implied value of
the selected truncation lag is different (in no case do our methods select k = 8 either). We
believe our methods to select the truncation lag to be better for the purpose of the unit
root tests for the following reasons documented in Ng and Perron (1994). First, fixing k to
some arbitrary value can involve serious size distortions andfor power losses because the
actual correlation structure of the data is not only unknown but is likely to be different
across countries. As argued in Ng and Perron (1994), it is important to use 2 data
dependent method for choosing the truncation lag when performing unit root tesis.
However, even among data dependent methods that implies asymptotically valid unit root
tests, there are important differences between methods based on 2 general to specific
approach and methods based on information criteria. In the context of a model where the
noise component is an ARMA process, Ng and Perron (1994) show that the latter implies &
sequences of selected values for k that increases with the sample size at 2 logarithmic rate,
a very slow rate. The finite sample implication of this result is that methods based on
information criteria will tend to select very low autoregressive orders. These implied
parsimonious autoregressions will often not be enough to capture important serial
correlation in the data and can lead to tests with size distortions and/or power losses.

4 My thanks to Robin Lumsdaine for correspondance on this issue.
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These theoretical issues are consistent with the empirical results of BLS who report values
of k at 0 or 1 for all countries when using an information criterion. In no cases does our
methods select such low values (except for Italy where we both agree for a non-rejection).

8. EMPIRICAL RESULTS FOR SOME ADDITIONAL SERIES.

Some additional series from alternative sources are analyzed in this Section. First, for
the Real per capita GNP and Money Supply series, we use data sources other than the
Nelson~Plosser data set. As discussed in Section 6, rejections of the unit root are borderline
for these series when allowance is made for an unknown break point without imposing a
one-sided change. To provide alternative evidence, we first present in Table 11 results
related to the Friedman and Schwartz (1982) Real per capita GNP series for the same
period (1909-1970), which is graphed in Figure 8. The results imply a maximum p-value of
-03 under any method to select k and Ty 5, allowing an €asy rejection of the unit root
hypothesis for this series.

Consider now an alternative source for the money supply variable, the annual M2
series supplied in Balke and Gordon {1986) from 1869 to 1973, graphed in Figure 9. The
results in Table 11 again show a strong rejection of the unit root with a p-value of at most
.05 under any procedure.

Following the work of Hall (1978), much interest has been given to the time series
behavior of consumption. To this effect, we analyze a data set consisting of historical series
covering 1889 to 1973 for Nominal Consumption, Real Consumption, their per capita
Counterparts, the Consumption Price Index and also the Population serjes. These data are
a subset of those used in Grossman and Shiller (1981). The graph of these series are
presented in Figures 10 through 15. The results concerning the unit root tests are also
presented in Table 11. For the Nominal and Real Consumption series the unit root can be
rejected with a p-value less than -01 under any procedure. The series again exhibit a
significant decline in their level in 1929. For the Nominal per capita Consumption series, a
rejection is still possible with p-values at most .03 but the picture is different with the

——— e

5 The rejection of the unit root for the Friedman and Schwartz series is robust to using
the longer samples 1900-1973 and 1890~1973. It is not robust to using the whole
sample 1869-1973. In the latter case, however, the unit root can be rejected using a
standard Dickey-Fuller procedure without any allowance for a possible change in the
trend function.
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Real per capita Consumption series. Here the unit root cannot be rejected even though the
break point is again associated with the 1929 crash. The results for the Consumption Price
Index and Population series also imply a non-rejection of the unit root.

Table 12 presents the unit root tests obtained using the statistic t;, 0(1) which
considers a one-sided structural change. The qualitative results are the same except for the
Real per capita Consumption series where the p-values are now close to .10, casting some
doubts on the unit root characierization for this series as well. The result for the
Population series is interesting because it may explain why it is more difficult to reject the
unit root for Real per capita GNP than for Real GNP itself. The result for the
Consumption Price Index parallels the earlier results for the CPI and the GNP Deflator. 1t
therefore appears that a broad class of price indices are characterized by a unit root.

9. CONCLUDING COMMENTS.

This paper dotuments the robustness of the results presented in Perron {1989). Unlike
this previous study, we analyzed the case where the break date is explicitly correlated with
the data and provided critical values to carry inference under a variety of procedures. This
work is not intended as a substitute for the statistical procedures presented in that earlier
paper but rather as a complement. Indeed, a case can often be made for using critical
values that are based on the assumption of no correlation between the choice of the break
point and the data. On the one hand, it may represent 3 close approximation to the actual
extent of the correlation. On the other hand, each investigator may differ as to the amount
of a priori information he or she is willing to incorporate into the analysis.

Another issue concerns the power of the tests. There appears to be 2 clear tradeoff
between power and the amount of a priori information one is willing to incorporate with
respect to the choice of the break point. The presumption is clearly that a procedure
imposing no such a priori information, as the ones presented in this paper, has relatively
low power. In this respect, the rejection of the unit root hypothesis, even when assuming a
perfect correlation between the choice of the break point and the data, is quite strong.
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APPENDIX: Proof of Theorem 1.

To simplify cross-references, we adopt the notation of Zivot and Andrews (1992),

henceforth referred to as 2-A. Let 5, = Zi_1 ¢ (8 = 0) and Xp(r) = o711/ zsm}, (-

DITSr < /T (forj=1, ..., T), where o° = limep o, TE(S2) and [-] denotes the integer
part of the argument. Since {et} is i.i.d. with finite variance, we have Xplr) = W(1), where
=% denotes weak convergence in distribution (from the space D[0,1] to the space C[0,1] using
the uniform metric on the space of functions on [0,1]) with W(r) a standard Wieper process

on [0,1]. Also, a% = T"lﬁ?e? - 02 where +_ denotes convergence in probability, Onmitting

the one-time dummy variable D(’I‘b)t (since it is asymptotically negligeable), we consider
the following regressions:

¥ = ﬂi(z\) z:T(A) + ai(.l\) Yipte, (t=1,..,1), (A1)

for models i = 1, 2. The vector z:T(A) éncompasses the deterministic components of the
model and depends explicitly on A, the break fraction, and T, the sample size. For example,

z‘l’T(A)' = (1, t, DU,(4)). Let Z.;,(A,r) = 6.;, szr],T(’\) be a rescaled version with 6,;\ a
diagonal matrix of weights. For example, 6.} = diag(1, T—l, 1). We also define the limiting
functions Zl(/\,r) = (1, 1, du(A,r))’ where du(Ar) = 1{r > 1), and Z2(A,r) = (1, 1, du(A,1),
dt*(A,1)}’ where dt*(Ar) = 1(r > A)z - A). Note that, as argued in Z~A, we do not have

Z,}.(A,r) =} Zi(,\,r) (i=A,CasT- 00, using the uniform metric on the space of functions
on D[0, 1]. The proof nevertheless remains valid without the need 1o introduce another
metric 10 guarantee such convergence results. For simplicity, we ‘henceforth drop the
subscript denoting the model.

It is convenient to first transform (A.1) as follows, Let Pzq(}) = [le ) -,
Pzp ()] be the linear map projecting onto the space spanned by the columns of )zT()s)’ =
(ZI,T(’\)’ . zT,T(’\))' By definition Pzp(3) = zT(A)(z.i,()«)zT(A)) zp(2)’ where (-)
denotes a g-inverse. Premultiplying by MzT(A) =(I- PzT(A)), (A.1) can be written, in
matrix notation, as:

Mz (A)Y = H(AMzp(A)Y_) + Mag(Ae, (A2)
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.where Y' = (yl, - yT), Y, = (yo, ey yT-—l) and ¢ = (el, ey eT). The t-statistic of
interest can be written as

infyg(0,1] tal) = (122 Mag (Y T2 Mag el sy ().

where s2(3) = TN = B(A)Y_y) Ma(Y - &(A)Y_y) with &(3) the OLS estimate of a in
(A.2). We have:

Y Mag(NY_y =T R
O S P IR
=150 1{'1*‘1/23

-2, p(A)’ 515y bpag oW 10 T o 16Tst(A)ss—1} +05,(1)

i

f }){ oXoplr) - 2p(A)'] i (1) Zop(A8)Zp(M8) 8] f o2r(2) aXT(s)ds} dr +05(1)

i

o [ §{%p(r) - PzT(A)XT(r)}zdr + o1 (A.3)

(o o ,\(1) denotes a random variable that converges in probability to 0 uniformly in A) and:

Pag(MXop(r) = Zp(ha)'| f 12.0008) 24 (08) ds]” f 122008 Xpls)ds.

Also,using developments as in Z-A,

~1 n
1Y Mag(Ne

=178y 2 g [} =125, 1005, T(A)']T§=1‘3,T(A)Ys—1}et +05,(1)

=g fDXT(r)dXT(r) y: fOPTz()«)XT(x)dXT(r)+0pA(1) (A4)

We can therefore express the {-statistic as a composite functional:



nfyefo,1ja() =

BXp(n), f X p)eXg(e), Pag(A)X ), S TP (@)X y(e), s (2)) + OB

where
g = h*[b[H, [X(r), Pap(A)Xp(n), Byl [ (I,XT(r)dXT(r), S 3PzT(f\)XT(r)dXT(r)L sp(M]],

with h*(m) = ianE[G l]xn(A) for any real function m = m(-) on [0, 1}; and for any real

aneaons (), mgl-), mg(-) on [01), blmy(3), my(A), mg)] = m (21 2m(0)/
mg(A). The functional H, and H, are defined by {(A.3) and (A.4). The weak convergence
results for each of the elements is contained in the following lemma,

Lemma A.1: The Jollowing convergence results hold jointly:
a) Xoplr) = W(r);
1 1 .
) f X p(r)aX p(r) = [ Iwir)awer); .
c) PzT()\)XT(r) = Pz(A)W(r) = Z(A,r)’[f (I)Z(/\,s)Z(A,s)’ ds]—f éZ()\,s) W(s)ds;
@) [ 3P p2)X p(r)aX pfr) = S ipywirjawer);
¢)s200) = o% 4 0, (1)-

Parts (a) and (b) are standard results, and part (e) follows using (c) and (d) and the

fact that 'I‘”lli'fet “p a2 To prove part {c), we start with the following Lemma which
fotlows from Theorem 5.5 of Billingsley (1968).

Lemma A.2: Pep(A)X T(r) = Py(M)W(r) if X lr) = W(r) and Jor any sequence of
Junctions { vp(s)} (0¢s¢ 1) approaching v(s), we have:

PzT(vT(s)) - Pzfv(s)}, (A.5)

where PzT(vT(s)) = ZT(J\,r)’[fzzr(A,s)ZT(/\,a)’ ds]_fng(z\,s)vT(s)ds.

and - Pa(u(s)) = 200,r)' ([ L200,5)207, ) as] [ t200,5)u(5)as.



We prove {A.5) in two steps. First, let
Pa(vp(s)) = Z(a)'1f L20)20.8) a5 f A2(r s)veg(5)ds.

By the properties of projections in Hilbert spaces (e.g., Brockwell and Davis (1991, p. 52)):

Pz(vT(s)) - Pz(v(s)) if v(s).r - v(s). (A.8) .

Now let
arl saa 1
Pa(¥(s)) = Zy(An)'l [ 4208y (X8)"ds] [ (A 8)v(s)ds.
We need the following Lemma stated in Parthasarathy (1977, proposition 41.19).

Lemma A.3: Let 5, C 82 C ... be an increasing sequence of subspaces in o Hilbert space T and
let S, =V, S; Then imop, o P(ST)(z) = P(Soo)(z) Jor all z, where P(ST)(z) is the
projection of T on the subspace Sp .

Lemma A.3 applied to our problem implies that
Pz (A)(v(s)) -~ P2(A)(¥(s))s : (A7)
since we can take 7 = D{0, 1] in which case ZT(A,r) € D[0, 1] and Z(A,1) € C[0, 1} € Do, 1}.

Next we use the result that if for some sequence of random variables {Xp} and {Yq} we
have X =¢ X and | Xp =Yg | = 0 (under some P-measure), then Yq = X (under the
same P-measure) (e.g., Billingsley (1968, Theorem 4.1) and Parthasarathy (1977, Corollary
51.3)). Let X = Pa(v(s)), Xp = Pap(v(s)) and Yo = Pzp(vy(s)). Given (A.7), we only
need to show that || PzT(v(s)) - PzT(vT(s)) | » 0. This follows easily since:
|| Pag(+(8)) - Pag(vg(e)) I = | Pag(v(s) = ve(s) I

= 1 vls) = vgls) 12 = 1 ¥() = vy(s) — Pog(v(s) = vo) I

¢ |l ¥(s) ~veplo) 12 - 0.

This completes the proof of parts (c). To prove part {d), note that we have:



f },PTz(A)xT(r)de(x) =
S éZT(»\,r)’dXT(r){ S ;ZT(A,s)zT(,\,s)'dsr f 5ZT(,\,S)XT(5)ds<

For concreteness consider model C where Z.()5) = (Z1 {8), Zz,T(,\,s))’ with Z s = (1,
[Ts}/T), Zy p(A8) = (1([Ts)/T > A), Y[Ts)/T > /\)([Ts]/'r ~A)) and Z{As) = (Z4(s),
Zo(s,2)) with Zi(s) = (1, 8)", Zo(X8) = (du(d,s), dt*(A,5))". Also define [2) {8 = (1,
[Ts}/T ~ 1)’ and Z3(s) = (1, {s- 2))". Using arguments as in Gregory and Hansen (1994),

féZl’T(s)Zl,T(s)’ds féZI,T(s)Zz,T(A,s)'ds

1
Zep(A8)Z(A5)* ds =
S ot a1zy 0%,14,8)2, 1 (s) ds féZZ’T(,\,s)Zz,T(A,s)'ds

féZI,T(s)ZI’T(s)’ds jizl,T(s)z;,T(syds, S 02,612, (5)" as S 32,(5)23(s) ds

fiZE’T(s)ZI’T(s)’ds f/l\ZE’T(s)ZiT(s)’ds = f }\z;(s)zl(s)'ds S iz;,(s)zg(syds

fgzl(s)zi(syds fézl(s)zz()\,s)'ds 1
LS50z flasyzy0y | =S B0 s

Note that the result does require that Zr(As) = 2()s) under the uniform metric.
Similarly, we have [ (l)ZT(z\,s)XT(s)ds==> S 62(0.9)X(s)ds. Finally, S éZT(A,t)'dXT(r) =
~1/2,T = (17 V%T, 32T, . 1j2T -3/2,T

TR 2O T, = (15T, ¢ Tlte, T B, 410 T I, 41(-Tyle,)

= (WQ), [ordW(r), wa) - W), f1-A)dw() = S oPHIW()dW(r). This
completes the proof of part (d).

To complete the proof of the main result, we need to show continuity of the various
functionals. Continuity of h* and h is proved in Z-A.

Lemma A.2: The functions i 4, ond H2 defined by (A.3) and (A.4) are continuous ot (Wfr),
Pz(0)W(r)) and ( f ;W(r)d W(r), f éPz()« JW(r)dW(r)) with W-probability one.
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Proof: Since H, and H, are continuous functions of their respective elements, the proof
follows if each of the elements i8 bounded over 0,1} with W-probability one. W(-) is

bounded with W-probability one and s0 is f éW(r)dW(r) as discussed in Z-A. Using

arguments similar to those in Z—A,f(l)Pz(A)W(r)dW(r) will be continuous if Pz{A)W(r) is
continuous, i.e. if 8uPyerg 1 |P2{A}W(r}| < co. We note that Pz(-) is a linear operator that
maps an element on C[O,, IH (the Wiener process W(r) which is continuous) to a subspace
defined by the functions Z(2,1). Continuity of Pa{AJW(r) follows since a linear projection
map is bounded and continuous (see, €.g., Ash (1972), p. 130 and p. 148). o

1t is useful to illustrate this result by way of an example. Consider Model A where Z(3,
1) = (1, 1, du(), 1)). Note that
1 1/2 (1-3)

[laozns)ds = | 1/2 13 (1-3%)/2
(1-3) (1=39)/2 (1-3)

1 1 1/20
if A =0, [;2(05)2(0s) ds = 12 1/30|=A,
6 0 0
) 1 121
andif A = 1, [ (Z(15)Z(1,5)"ds = 12 1/3 1/2 | =B.
1 121
A and B are obviously nonsingular, but a common g-inverse is given by
1/3 -1/2 0
G=12-1/2 1 0}.
0 0 0
Since the choice of the g-inverse leaves a projection map unchanged, we have for A = 0,1:

PANW(r) = 2*0) [ ‘I)Z‘(S)Z*(s)'ds]"l [z &)W (s)ds

where Z+(r)* = (1, 1), in which case the limiting distribution of &()‘) (X = 0, 1) reduces to
that in the case where no dummy for structural change is included.

The proof for Model 3 follows similar arguments and is therefore omitted. It uses the
limiting distribution for fixed A derived in Perron and Vogelsang (1993a,b) (see also
Vogelsang (1993)).
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TABLE 1.A: Distribution of t2{1); Model 1; Choosing Ty, minimizing to.

1.0%  25% 50% 10.0% 50.0% 90.0% 95.0% 97.5% 93.0%

T=60 k=0 ~-5.61 -~5.25 -4.93 —4.59 -3.62 -2.85 -2.64 -243 299

k=2 -5.87 -5.18 -4.84 -4.54 -3.64 -2.82 -2.57 -2.31 -2.05

k=5 -5.49 -5.11 -4.88 ~4.55 -3.61 -2.67 ~2.41 -2.13 -1.77

k = k(F-si ) -5.83 -5.49 =521 491 -3.01 -3.00 -2.70 -2.41 ~1.96

‘ k=k t-sig% -5.92 -5.58 -5.23 ~4.92 -3.91 -3.00 ~2.74 -2.55 -2.25
T=80 k=0 -5.38 -5.11 -4.99 -4.62 -3.68 -2.85 -2.65 -243 -2.14
k=2 -5.47 -5.10 -4.85 -4.58 -3.64 -2.79 -2.57 -2.34 -205
k=5 -5.38 -5.08 -4.78 -4.53 -3.64 -2.78 -2.48 2927 amn
k = k(F-si ) -8.77 -5.35 -5.15 -4.84 -3.87 -2.98 -2.70 -2.41 -2.12
; k=% t-sig) ~5.77 -5.31 ~5.09 -—4.84 -3.88 -2.95 -2.73 .2.55 -2.22
} T=100 k=0 -5.49 -5.15 -4.93 ~4.60 -3.70 -2.95 -2.67 -2.46 -2.26
i k=2 ~5.43 -5.12 -4.84 ~4.56 -3.68 -2.87 -2.57 -2.33 -2.15
k=35 -5.40 -5.05 -4.85 —4.55 -3.68 -2.84 -2.56 -2.28 -1.05
k = k(F-si ) -5.70 -5.35 509 -4.82 -3.88 -3.00 ~2.74 -248 -299

3 k=k t—sié -5.70 -5.36 -5.10 -4.82 -3.87 -3.05 ~2.75 246 -292
: T=o0 -5.41 -5.02 —4.80 -4.58 -3.75 -2.99 =2.77 -2.56 -2.39

TABLE 1.B: Distribution oft; 0(1); Model 1; Choosing Ty, Minimizing ty

1.0% 25% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%

T=60 k=0 -5.37 -4.96 -4.55 -4.24 -3.19 -1.08 -1.54 -1.23 -0.64

k=2 -5.31 -4.88 -4357 —4.26 -3.13 -1.85 -1.26 -0.74 0.03

k=35 ~5.23 -4.87 -4.51 -4.20 -3.07 -1.43 -0.62 -0.05 0.74

k = k(F-si ) -5.58 -5.15 -4.88 ~4.47 -3.33 -1.60 -0.84 -0.05 0.56

k=k t-—sig% ~5.70 -5.21 -4.92 -4.53 -3.32 -1.79 -1.14 -0.35 0.42

T=8 k=0 -5.21 -4.91 -4.68 -4.34 -3.24 -211 -1.74 -1.28 -0.64

k=2 ~5.28 -4.85 -4.60 -4.27 -3.20 -1.08 -1.48 -0.81 -0.05

k=5 ~5.14 -4.84 455 ~-4.21 -3.15 -1.73 -0.88 -0.26 0.69

k = k{F-si ) -5.50  -5.11 -485 453 -3.33 -1.86 -1.06 -0.32 0.67

k=k t—sig% -5.59 -5.00 -4.83 ~4.54 -3.33 -1.92 -1.19  -0.48 0.34

T=100 k=0 -5.17 ~4.90 -4.60 -4.30 -3.27 -2.1¢ -1.72  -1.33 Q.77

k=2 ~5.21 -4.85 458 ~4.28 -321 -1.908 -1.49 -0.94 -0.33

k=5 ~-5.09 -4.85 457 -4.27 -3.17 -1.81 ~1.10  -0.58 0.15

k = k(F-si ) -5.42 -5.03 -4.80 ~4.47 -3.33 -1.92 -1.33 -0.77 0.02

k=k t—sig% -5.43 -5.05 -4.83 -4.50 —3.34 -2.02 -1.38 -0.84 -0.05

T=00 -5.15 —4.87 464 -437 -3.39 227 -185 -1.38 -0.70




TABLE 1.C: Distribution of t}, | 01(1); Model 1; Choosing Ty, maximizing hb] .

1.0% 2.5% 50% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%

T=60 k=0 -5.58 -5.17 -4.85 -4.506 -3.52 -2.46 -2.00 ~1.59 ~1.13
k=2 551 -5.09 -4.78 447 351 -2.30 -170 -1.03 -0.37

k=5 -5.47 -5.09 -4.80 448 -346 . -1.78 -1.06 -0.26 0.1

k = k(F-sig) -5.77 -5.42 -513 -4.80 -3.70 -1.87 -1.19 -0.39 024

k=k t—sig% -5.85 -5.51 ~-5.18 483 -3.70 -2.M4 -1.34 -0.55 005

T=80 k=0 -5.37 -5.08 -4.89 -4.57 -—3.59 949 -2.10 -1.76 -1.18
k=2 -5.46 -5.07 -4.83 455 -3.54 -2.28 174 -1.18  -0.45

k=5 -5.36 -5.05 -4.76 448 -353 -2.07 -1.32 -0.71 0.26

k = k(F-sig) -5.75 -5.26 -5.06 -4.77 371 214 -142 -0.79 011

k=k t-sig% -5.66 -5.29 -5.04 478 -3.72 -2.28 -1.67 -0.96 -0.06

T=100 k=0 -5.47 -5.13 -4.88 458 -3.62 -2.53 -2.18 -1.87 -1.21
k=2 -5.43 -507 -4.81 452 -3.57 -241 -1.94 -141 -0.61

k=5 -5.40 -5.03 -4.80 -452 -3.56 -221 -1.58 -0.89 0.1

k = k(F-sig) -5.69 -5.34 -5.03 -4.75 -3.74 -2.33 -1.80 -1.20 -0.18

k=k t-sig% -5.68 -5.36 -5.05 477 =371 -240 -1.88 -1.21 -0.34

T= -5.34 -5.08 -4.84 459 -3.74 -271 -235 -2.01 -1.54

TABLE 2.A: Distribution of t’:‘l(2); Model 2; Choosing Tv minimizing {5

1.0% 2.5% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%

T=70 k=0 -6.65 -5.80 -543 499 -398 -3.13 289 -2.73 -2.52
k=2 .27 -5.67 -b.24 487 -3.88 -3.06 982 -2.63 -246

k=5 621 -5.58 527 -490 -3.89 -3.00 -2.714 -2.54 -2.34

k = k(F-sig) -6.22 581 -552 -5.22 4921 -328 -3.00 276 -2.54

k=k t'sig% -6.32 -5.90 -5.59 529 -424 ~3.32 -3.08 -2.85 ~-2.67

T=100 k=0 -6.11 -518 -5.41 -5.02 -4.01 -3.22 301 -2.76 -2.59
k=2 -6.30 -5.57 -5.29 492 -395 -3.13 289 -2.68 -2.48

k=5 600 -5.53 -5.22 489 -3.93 -3.07. 283 -2.66 -2.38

k = k(F-sig) -6.07 -572 -548 -5.17 417 -3.29 -3.0% 2.83 -2.58

k=k t-sig% 691 -5.86 -5.55 -525 -4.22 -3.35 -3.13 -2.85 -2.63

T =00 -5.57 -5.30 -5.08 482 -3.98 -3.25 -3.06 -2.81 -2.72




TABLE 2.B: Distribution oft; 7(2); Model 2; Choosing Ty, minimizing 1,7.

1.0%  2.5% 50% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%

T=70 k=¢ -5.46 -4.89 457 4.9] -2.88  -1.57 -1.92 -0.60 938
k=2 -5.46 -5.00 -457 -4.93 ~2.80 -1.38 -0.g99 -0.67 -0.16
k=5 ~5.47 -4.95 458 .4.19 -2.72  -1.28 083 -0.43  0.04
k= k(F-sig) -5.77 -5.32 495 451 .29 -137 093 054 —gp2
k=k l—-sig% -5.77 538 498 -4.55 -3.04 -153 -1.10 073 -0.27

T=100 k=0 -5.46 4.6 455 499 -2.88 -1.62 -1.32 -0.95 -0.58
k=132 -5.27 4.0 4590 418 ~2.82  -1.52 -1.09 077 -0.42
k=5 -5.26 4.0 -455 -4.14 -2.73  -142 -gg97 -0.63  -g.07
k = k({F-si ) -5.50 -5.16 ~4.85 447 291 -1350 -L11 -0.73 930
k=k t—sig% ~8.56 -5.23 4.91 -4.47 ~2.99 -1.35 -119 -0.78  -0.38

T=o00 -5.28 -4.95 -4.62 -4.98 -2.94 -164 -1.33 -0.9s ~0.59

TABLE 2.C: Distribution oﬂ; Il (2); Model 2; Choosing Ty, maximizing | 1,7] .

1.0% 25% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%

T=70 k=0 ~5.60 -529 486 455 -340 223 -188 -1.60 -1.19
k=2 -5.69 -5.25 493 -4.54 =335 -2.09 175 -1.42 -0.91

k=35 -5.60 -5.24 491 4354 -3.31  -2.00 -1.61 -196 -0.61

k= k(F-sig) -6.01 -5.56 -5.25 488 .-364 -217 -1.82  -1.37 -0.78

k=k 1—835 ~6.07 -5.61 -5.33 494 -3.72 228 -189 150 -0.85

T=100 k=0 ~5.59 -5.21 493 433 ~3.42 221 188 -1.63 ~1.29
k=2 ~8.52 -521 4.8 454 -3.37  -2.07 <175 -1.48 -0.91

k=35 ~5.45 -5.15 -4.88 -4.52 -3.30 200 -1.66 -1.30 ~0.82

k= k{F—si ) -5.72 537 -5.14 484 354 911 -L76  -142 9.9

k=k t—sig% -5.86 -549 -5.19 -488 -3.60 -2.23 -1.87 149 -0.95

T =00 -5.57 -5.20 -4.91 450 -347 215 -1.86 -1.359 ~1.30

TABLE 3.A: Distribution on;(a); Model 3; Choosing Ty, minimizing to.

1.0%  2.5% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%

T=100 k=0 -5.15 481 449 -419 -3.20 -2.37 -2.15 -1.99 -1.84
k=2 -5.04 470 443 -400 -3]2 -2.35 -217 -2.02 -1.89

k=5 -4.88 -4.57 -4.33 405 -3.11 -2.39  -219 -2.09 -1.91
k=k(F-sig) ~5.41 -4.99 -4.74 444 -336 -2.53 -234 291 -2.08

k= kEt-sig% -5.45 -5.11 -4.83 -4.48 -3.44 -2.60 -239 -2.22 -206

T=150 k=0 499 462 440 412 -312 =232 -215 -1.97 -1.84
k=2 ~4.97 -4.66 -4.37 -4.06 -3.14 -2.35 -2.16 -2.01 -1.86

k=5 485 -4.57 438 -4.06 -3]1 -2.35 219 -2.04 -1.91
k=k(F-sig) ~5.19 —4.85 -4.50 -431 -3.32 247 -229 211 -1.96

k= kgt—sig% ~5.28 —4.96 -4.65 -4.38 -333 -2.50 -2.30 -2.13 -1.93

T=200 k=0 —4.98 462 435 412 -312 -232 ~2.14 -1.96 -1.83
k=2 —4.97 -4.66 -4.37 405 -3.3 -2.33  -2.14 -201 -1.83

k=5 ~4.84 457 438 -4.06 -310 -2.94 -217 -2.03 -1.91
k=k(F-sig) -5.19 -4.84 -459 -4.30 330 -246 -226 -2.08 -1.96

k= k&.—sig% ~5.28 -496 465 -4.38 -332 -2.48  -227 -2.10 -1.90

T=00 ~4.91 ‘—4‘62 436 407 -313 -232 -212 -1.66 -1.78




' ABLE 3.B: Distribution of t; 7(3); Model 3; Choosing Ty, Minimizing ;;’.

1.0% 25% 5.0% 10.0% 50.0% 90.0% 05.0% 97.5% 99.0%

T=100 k=0 496 -4.56 -4.20 -3.87 -2.73 -1.68 -1.37 -1.09 -0.67
k=2 475 -4.43 -4.08 377 -2.68 ~1.69 -1.35 -1.03 -0.69
k=5 457 -4.31 -4.00 365 -2.58 -1.70 ~-1.38 -1.14 -0.82
k = k(F-sig) 502 -4.69 -4.40 ..398 -2.16 -1.76 ~146 -1.12 -0.79
k=k t—sié -5.26 -4.82 444 -4.07 -2.83 -1.76 -145 -1.12 -0.83
T=150 k=0 471 -4.31 -4.10 375 -2.69 -1.66 -131 -1.03 -0.52
k=2 469 -4.35 -4.04 -3.16 -2.67 -1.66 -1.29 -0.94 -0.56
k=5 456 -4.35 -4.02 360 -2.62 -1.64 -1.32 -1.00 -0.64
k = k(F-sig) —4.89 454 -4271 -3.93 274 -1.70 -1.33 -1.01 -0.64
k=k t—sig% 500 -4.63 -4.36 399 -2.78 -1.72 -1.40 ~-1.07 -0.49
T =200 k=10 456 -4.32 -4.05 371 -2.66 -~1.51 ~-1.15 -0.79 -0.48
k=2 456 -4.18 -3.98 369 -2.63 ~-1.53 -1.14 -0.82 -0.52
k=5 449 -423 -3.95 362 -2.61 -1.53 -1.22 -0.86 -0.62
k = k(F-sig) -4.75 443 -4.13 379 260 -1.53 -1.23 -0.90 -0.59
k=k t-—sig% 477 450 422 383 -2.12 -1.57 -1.24 -0.96 -0.58
T =00 467 -4.36 -4.08 ~3.97 -2.65 157 -122 -0.90 ~0.49
TABLE 3.C: Distribution oit(‘) 1l (3); Model 3; Choosing Ty maximizing It ’yl .
1.0% 2.5% 5.0% 10.0% 50.0% 90.0% 95.0% 97.5% 99.0%
T=100 k=0 -5.08 -4.75 -4.44 415 -3.11 218 -193 -1.68 -1.39
k=2 502 -4.64 434 400 -3.01 -212 185 -1.65 -1.32
k=5 482 -4.48 -4.26 -390 -291 -2.08 -184 -161 -125
k = k(F-sig) -5.29 487 -4.571 427 -3.15 -2.19 -199 -1.69 -1.40
k=k t—sig% 538 -5.02 -4.67 436 -3.24 -2.28 -2.04 -1.75 -1.46
T=150 k=0 408 -4.57 437 -4.08 -3.06 213 -1.83 -1.58 -1.21
k=2 4901 -4.62 -4.33 -399 -3.04 211 -1856 -1 55 -1.17
k=5 480 —4.49 429 -398 -3.00 209 -1.83 ~1.54 -113
k = k(F-sig) -5.15 AT 449 421 -3.15 -2.16 -1.89 -1.59 -1.19
k =k t—sié 593 -4.91 -4.57 -4.28 -3.18 -2.19 -1.92 -1.63 -1.30
T=200 k=0 478 -4.53 430 -3.08 -3.03 -210 186 -1.62 -135
k=2 485 449 -4.18 -3.96 -2.99 211 -1.84 -1.63 -1.25
k=5 471 444 420 -3901 -2.97 =21 -1.80 -1.58 -1.34
¥ = k(F-sig) -5.02 -4.75 -4.41 -4.10 307 -2.11 -1.86 -1.63 -1.29
k=k t—sig% 502 -4.75 441 417 -3.11 =215 -1.01 -1.68 -1.26
T =00 -4.87 -4.58 434 -404 -3.08 -2.14 -1.87 ~1.61 -1.30




TABLE 4: Finite Sample Size and Power Simulations; Model 3,15(3).

DGP:y, = 9DT} +, ; §, = o,y + L‘?zlqﬁ(i)éit_i +(1 4+ YL)e,
€ ~idid. N(0,1); T = 100, Ty = 50 ; 2,000 replications; 5% nominal size; kmax = §5.

Size (a = 1.0) Power (a = 0.8)

7 7
k 0.0 0.1 0.3 0.5 10 0.0 0.1 0.3 0.5 1.0
(1) 6() = 0.0 (i=1,..,4), p= 0.0
0 049 .053 055 047 .036 358 .365 344 331 32!
1 .044 049 .048 042 037 287 .299 283 277 270
2 045 046 .048 041 .040 203 215 207 .199 .20
3 038 .039 042 .040 047 160 177 .189 163 1687
4 035 037 .039 .036 041 122 129 .134 130 134
5 .035 .035 .039 .038 .039 110 123 125 116 17
F-sig 050 054 .058 055 .050 235 .256 244 231 233
t-sig 049 .081 058 .050 .045 257 278 270 259 258
(2) 8(1) = 0.6, ¥ = ¢(i) = 0.0 (i=2,34)
0 .000 .000 000 000 .001 000 .000 000 .000 000
1 .058 .060 .056 .054 062 908 903 904 902 901
2 048 048 049 049 055 753 .758 761 753 756
3 .045 .046 .040 041 045 .586 592 .600 594 583
4 037 .040 .034 L0318 .044 405 426 424 417 417
5 033 .033 .034 037 045 .289 302 .306 .305 305
F-sig  .049 .081 047 047 054 676 679 679 .688 693
t-sig .049 047 038 046 .049 760 773 774 778 .785
(3) #(1) = ~0.6, ¥ = 4(i) = 0.0 (i=2,3,4) ’
0 .858 874 873 .858 .848 997 997 .998 .998 .998
1 051 .048 .043 .038 .034 131 132 17 114 113
2 046 .040 .040 .037 .034 090 100 .096 .094 .098
3 .044 045 041 037 038 084 .098 094 .099 088
4 034 .030 .033 .032 .033 .063 074 082 .U83 077
5 .033 035 .038 .037 .039 056 073 073 075 070
F—-sig 037 .040 .044 042 .044 .091 104 104 .104 160
t-sig 039 039 .042 034 037 090 105 .105 104 097
(4) 9(1) = 0.4, 6(2) = 0.2, ¥ = 9(3) = p{4) = 0.0
] .004 .004 .005 004 .004 001 .000 .000 .000 000
1 .009 .008 008 007 .006 432 439 428 421 424
2 .048 051 .050 .049 .048 .756 764 765 763 760
3 .040 042 047 044 .051 .598 611 611 .607 602
4 .038 .039 043 044 .046 413 432 438 436 421
5 .042 .043 040 040 050 .300 314 318 311 313
F-sig 040 D48 .049 047 050 .582 .593 .600 591 593

t-sig  .038 .040 .038 040 .044 .607 .625 626 .624 620




TABLE 4 {cont’d): Finite Sample Size and Power Simulations; Model 3, 3(3}.

DGP:y, = DT} + ¥y ¥ = of, 4+ 24 10087, + {1+ 9L,
g~ i.id. N(O, 1) T = 100, Ty = 50; 2,000 rephcatxons, 5% nominal size; kmax = 5.

Size (a = 1.0) Power (a = 0.8)
7 7
k 0.0 0.1 0.3 0.5 1.0 0.0 0.1 0.3 0.5 1.0
(5) ¢(1) = .3, 45(2) = .3, ¢(3) = .25, ¢(4) = .14, ¢= 0.0
0 .108 107 .106 105 100 000 . .000 000 000 .000
1. .001 .001 001 .001 000 .033 .036 .033 .033 034
2 .002 .002 001 .001 .000 .566 .568 .569 571 .578
3 .033 .033 031 031 034 877 .881 .878 876 873
4 071 073 078 077 .080 .904 .898 .900 .897 899
5 051 .051 .054 .051 051 762 174 771 70 769
F-sig 048 .046 .050 .048 051 857 .863 .858 .858 .856
t-sig 038 .037 .039 .037 .037 .855 .859 .864 .860 .859
(6) ¥= 0.5, 8(i) = 0.0 (i=1,..14) '
0 002 .003 .003 .003 .001 .008 .010 007 .007 .005
1 150 142 .160 .160 .156 .548 552 .566 .545 .542
2 021 021 028 .028 .020 .096 .100 110 103 .103
3 052 .050 .057 061 .059 190 .202 215 203 .202
4 .034 .035 .033 .033 034 101 105 17 a1l 113
5 038 037 .039 035 .041 102 111 .128 119 117
F-sig 053 .055 .062 .065 .061 .206 213 222 .210 .209
1-sig .067 - .066 .070 .069 .064 244 258 271 257 .262
(1) ¥ =04, ¢(i) = 0.0 (i=1,..,)
0 734 738 739 M7 .691 .996 .996 .996 995 995
1 .202 210 .206 .189 174 151 .763 727 720 715
2 079 .087 .075 074 074 .385 406 - 383 .385 376
3 .044 .048 .050 .046 046 .252 .263 254 .251 .245
4 .036 .037 .034 .033 .036 .158 a73 .163 164 .156
5 031 .031 .033 .032 035 .131 144 139 138 135
F-sig .145 .148 .156 .148 149 456 476 452 .451 442

t-sig 235 .247 .257 251 .248 631 .658 646 .643 647




A DS s <o rore s+ 1

TABLE 5: Finite Sample Size and Power Simulations; M.
DGP: v = 'yDT: +¥,i ¥

odel 3, BLS method.
=y + E?zyﬁ(i)éfft_i +(1+ yLe,
€~ iid. N(o, 1);T= 100, Ty, = 50 ; 2,000 replications; 5% nominal size; k = 4.

Size (a = 1.0) Power (a = 0.5)
7 7

0.0 0.1 0.3 0.5 1.0 0.0 0.1 0.3 0.5 1.0
(1) ¢(1) = 0.0 (i=1,..,4), ¥ = 0.0

073 .0n .089 131 320 .149 173 .205 292 .706
(2) (1) = 06, ¥ = (i) = 0.0 (i=2,3,4)

091 -090 .080 .091 126 452 .468 479 .494 650
(3) $(1) = 0.6, ¢ = ¢(i) = 0.0 (i=2,3,4)

087 .068 .093 190 .660 089 124 174 347 .899
(4) (1) = 04, §(2) = 0.2, Y= ¢(3) = ¢(4) = 0.0

.090 089 .082 .094 130 .445 470 .484 .801 .650
(5) 6(1) = .3, ¢(2) = .3, ¢(3) = .25, #(4) = .14, ¥ =00

168 173 .166 .169 172 910 817 919 .923 .922
(6) ¥= 0.5, 6(i) = 0.0 (i=1,..,4)

.068 .067 .074 .087 165 140 146 178 .188 421
(1) ¥=-04, 9() = 0.0 (i=1,..4)

072 075 111 ’ .208 690 .208 .239 .309 .551 874




TABLE 6: Empirical Results, Nelson - Plosser Data; t‘a(l), kmax = 10.

Regression: y, = # + DU, + pu+ D(Tw), + ey 3+ i=1°iAyt—i +e.

o

Series Sample T Tv Kk ty s p-value p-value p-value

(asy) (F-sig) (t-sig)

Real GNP 1909-1970 62 1928 9 -5.13 180 -593 <.01 <01

. 1928 8 -4.79 267 -5.50 <.01 .03
Nominal 1909-1970 62 1928 11 —£.34 404 -8.16 <.01 <.01
GNP s 1928 15 -5.94 497 -6.21 <.01 <.01
Real per 1909-1970 62 1928 9 -3.73 313 -4.81 .06 12
Capita GNP 1928 7 -3.31 .484 —4.51 13 21
Industrial 18601970 111 1928 8 -5.18 272 -6.01 <.01 <.01 <.01
Production
Employment 18901970 81 1928 8 -3.42 .586 -5.14 .02 05

1928 7 -3.11 .650 -4.91 .04 .09
GNP Deflator 1889-1970 82 1928 5 -3.28 .783 -4.14 .29 .35 .35
CP.L 1860-1970 111 1939 5 2.00 .948 -3.09 .88 .88 .88
‘Wages 1900-1970 71 1928 7 ~4.32 619 ~5.41 <.01 02

1929 9 —4.10 635 -4.62 .10 .16
Money Stock 18891970 82 1929 7 -2.80 783 -4.69 .08 .14

1927 6 -2.50 .831 -4.30 .21 .28
Velocity 1869-1970 102 1949 8 2.95 830 -2.81 .95 94

1946 0 3.24 858  -3.29 .81 .81
Interest Rate 1900-1970 71 1965 3 3.86 834 -135 >.99 >.99

1963 3 3.44 928 -1.35 >.99 >.99

a : For Nominal GNP, kmax = 15 (See footnote 3).




Table 7: Empirical Results; Nelson-Plogser Data Set; Model 1.

Regression: Z=n+ (?DU2 + 5 +6D(Tb)‘ tay, , + b

t:x,ﬁ(l); Choosing T, minimizing tz kmax = 10.

=lciAyt—i +e,.

Series Ty k ty & t. p-value  p-value p~value
(asy) (F-sig)  (t-sig)
Real GNP 1928 9 -5.13 190 -5.93 <.01 <.01
1928 8 ~4.79 267  -5.50 <.01 (02
Nominal GNPa 1929 11 _g73 231 -7.86 <.01 <.01
1928 15 ~5.94 497 -6.21 <.01 <.01
Real Per Capita 1928 9 ~3.73 313 481 .03 .06
GNP 1928 7 -3.31 484 451 07 .10
Industrial 1928 8 -5.18 272 -6.01 <.01 <.01 <.01
Production
Employment 1928 8 ~3.42 586 -5.14 .01 .02
1928 7 -3.11 650 -4.91 .02 .04
GNP Deflator 1919 5 ~3.51 886 -3.24 .58 .54
1919 9 -3.61 .829  -3.87 27 .28
C.P.IL 1919 5 -3.12 982  -1.16 .98 .98 .96
Wages 1929 7 —4.32 619 541 <.01 .01
192¢ 9 -4.10 635 -4.62 .05 .08
Money Stock 1929 T -2.80 783 .69 .04 .07
1928 ¢ ~2.63 824  -4.98 .12 15
Velocity 1880 5 ~2.74 928  -1.62 .96 .93
1880 0 ~2.46 897 -243 .87 .83
Interest Rate 1920 ¢ ~4.16 1.058 1.16 >.99 >.599
1918 ¢ -3.59 1.079 2.08 >.99 >.99

a: For Nominal GNP, kmax

= 15 (see footnote 3).
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TABLE 11: Empirical Results, Additional Series; t2(1), kmax

Regression: Yy=p+ DU +pt + dSD(’I‘;,)t

tay

i=1"1

= 12,

+ b c.AyH te.

Series Sample T T, ¥ tb & t. p-value p-value p-value
(asy)  (F-sig) (i-sig)

Real per 1909-1970 62 1928 11 474 202 -5.42 <.01 .03 .03
Capita GNP (FS)
M2 1869-1973 105 1926 12  -4.91 7200 -4.69 .08 13 .14
Nominal 1889-1973 85 1928 11 -6.00 B79 -6.78 <.01 <.01
Consumption

1928 12 -5.65 614 -5.70 <.01 .01
Real 1889-1973 85 1928 11 -5.96 202 -6.45 <.01 <.01
Consumption

1920 11 -5.78 109 -6.19 <.01 <.01
Nominal Per 1889-1973 85 1928 12 -5.12 613 -5.25 .02 .03 .03
Capita Cons.
Real Per 1889-1973 85 1928 12 414 74 449 13 .20
Capita
Consumption 1928 10 -3.69 871 4.54 12 .19
Consumption 1889-1973 85 1929 8 -3.77 709 471 .07 13
Price Index

1918 10 -3.86 810 4.34 19 .26
Population  1889-1973 85 1817 11 3.35 933 -4.82 .05 .10

1923 10 -1.94 948 -3.48 70 .71




Table 12: Empirical Results; Additional Series; Model 1.

‘(’1,0(1); Choosing Ty minimizing t3; kmax = 12.

Regression: ¥, = g+ oy, + ft+ D(Tp), + oy + )3‘-:=1¢:i13yt S te

Series Ty k 7 a iy p-value  p-value p-value
(asy) (F-sig)  (t-sig)

Real Per Capita 1928 11 —4.74 202 -542 <01 01 02

GNP (F-5)

M2 1920 12 -4.21 720 —4.69 .04 07 07

Nominal 1928 11 -6.00 579 -6.78 <.01 <.01

Consumption 1928 12 -5.65 614 -5.70 <.01 <.01

Real 1928 11 -5.96 202 -6.45 <.01 <.01

Consumption 1929 11 -5.78 109 -6.19 <.01 <.01

Nominal Per 1928 12 -5.12 613 525 <.01 02 02

Capita Consumption

Real Per Capita 1928 12 —4.14 174 449 .07 11

Consumption 1028 10 -3.69 371 -4.54 .06 .10

Consumption 1919 10 -3.86 810 -4.34 A1 14 .14

Price Index

Population 1925 8 -2.36 966 ~2.39 .88 .81 82
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