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Abstract

We consider an agent whose information about the objects of choice is imperfect

in two respects: first, their values are perceived with error ; and, second, the re-

alised values cannot be discriminated with absolute precision. Reasons for imprecise

discrimination include limitations in sensory perception, memory function, or the

technology that experts use to communicate with decision-makers.

We study the effect of increasing precision on the quality of decision-making.

When values are perceived without error, more precision is unambiguously beneficial.

We show that this ceases to be true when values are perceived with error. As a

practical implication, our results establish conditions where it is counter-productive

for an expert to use a finer signalling scheme to communicate with a decision-maker.

JEL codes: D01.

Keywords: stochastic choice, imprecise perception.

1 Introduction

We use the term “precision” to capture the extent to which a decision-maker can discrim-

inate between the perceived values of the alternatives that are available to him. A more

precise agent can discriminate between values that a less precise agent lumps together. We

are interested in the impact of precision on decision-making. Specifically, does increased

precision improve the quality of decision-making?

∗We are grateful to Helios Herrera, Ian Jewitt, Mathieu Marcoux and Chris Tyson for useful discussions

and advice about this project. Horan’s participation was financially supported by FRQSC.
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The pioneering work of Fechner [14] and Thurstone [32, 33] in psychology introduced

the idea that individual decision-makers find it difficult to distinguish between the values

of different alternatives. This idea also has a long tradition in economics that dates back

to Georgescu-Roegen [15], Luce [21, 22] and Quandt [29]. More recently, accumulating

experimental evidence (e.g., Butler and Loomes [6, 7], Cubitt et al. [10], Permana [27]) has

documented the presence of “imprecision intervals” in lottery evaluation: an agent may be

confident that a lottery is worth somewhere between $3 and $5, but may balk at making

a more precise evaluation. As Bayrak and Hey [4] have argued, this phenomenon might

be the source of the empirical discrepancy between willingness to pay and willingness to

accept: an agent who perceives an interval of potential values might only be willing to

offer the low end of the interval when acting as the buyer and might only be willing to

accept the high end when acting as the seller.1

By no means is the problem of imprecise discrimination restricted to individual decision-

makers. Collective decision-makers also face a host of difficulties that lead to imprecision.

Policy makers must balance the conflicting values of individuals in society; and the indi-

viduals themselves might only perceive or communicate their values coarsely.2

When the values of the alternatives are certain, it is clear that increased precision

does improve decision-making. If the agent randomises when he cannot discriminate

between the values of the two alternatives, then his choices must weakly improve as he

becomes more precise. In the extremes where the values of the alternatives are either so

far apart that a low-precision agent can distinguish between them or so close that a high-

precision agent cannot distinguish between them, the agent chooses the better alternative

with the same probability regardless of his precision. Between these two extremes, there

are intermediate situations where increased precision causes the agent to switch from

randomising to choosing the better alternative with certainty.

In the more realistic setting that we consider, the agent perceives the values of the

alternatives with noise. Not only does the agent have imprecise powers to discriminate

between perceived values in that case, but the mechanism that generates the perceived

values is itself prone to error. Does precision remain beneficial in this setting?

To get some intuition about what might go wrong, consider the case of a referee who

is asked to rank two papers, each of whose true quality is given by a value in {1, ..., 5}.
First consider a noisy but perfectly discriminating referee who perceives these values with

error. Suppose that the true quality of paper “A” is 5 but, with probability 0.1, the referee

wrongly perceives it as 2. In turn, paper “B” has true quality 3, which the referee always

1Permana [27] refines the experimental methodology of Cubitt et al. [10]; and provides specific support

for an additive threshold representation of imprecision of the type we study in this paper.
2Danan et al. [11] discuss these issues in the context of social decisions. They focus on imprecise beliefs

and on the Pareto principle as a means of singling out decisions that are robust to imprecise beliefs.
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perceives correctly. Then paper “A” is correctly reported as being the better paper with

probability 0.9; and “B” is incorrectly reported as better with probability 0.1.

Now, consider a second referee who is identical to the first in all respects except that

he cannot discriminate between values that are one unit apart (i.e., 2 and 3). Just like the

first referee, he reports that “A” is better with probability 0.9. The difference is that the

second referee never reports that “B” is better. Instead, he reports that the papers are

indistinguishable with probability 0.1. Paradoxically, by heeding the advice of the more

precise referee, the editor faces a larger risk of ranking the low quality paper above the

high quality paper.

This example depends on the interaction of random values and imprecise judgment.

Decision-makers face these two different sources of error in a variety of choice environ-

ments. Consider, for instance, a decision-maker (like a policy maker, an investor, a journal

editor or a juror) who relies on advice from experts. Since the experts themselves rely

on scientific evidence or technical knowledge (e.g., about climate change) that is gen-

uinely uncertain, their evaluations are noisy. In addition, the experts can often make fine

distinctions that they cannot convey precisely to the decision-maker (through reports or

classifications of the options). As a result, the relative values of alternatives implied by

expert opinions are perceived coarsely by the decision-maker.

Similar considerations arise in the context of voting. A politician’s value is generally

signalled imperfectly (e.g., recent events cast a disproportionately positive light on a politi-

cian whose qualities are specifically suited to those events). In turn, an ill-informed voter

might find it difficult to distinguish between candidates (e.g., thinking that politicians are

“all the same”) where an informed voter might be able to spot crucial differences.

In the current paper, we propose a model to capture decision-making situations like

these. We model precision as a numerical discrimination threshold à la Luce [21]; and

derive comparative statics for marginal changes in precision. While this infinitesimal

approach does not change the basic logic of “harmful precision” captured in the (discrete)

example above, it simplifies the analysis considerably.

In broad strokes, our main results may be summarized as follows:

1. In general, precision may be harmful. In fact, it is only unambiguously beneficial

when one alternative is superior to the other in a strong distributional sense.

2. Under some natural restrictions, whether precision is beneficial only depends on

simple statistics (like the mean, median and mode) of the value distributions.

3. Finally, there are circumscribed but economically relevant circumstances (e.g., sym-

metric or identically distributed errors in values) where precision is broadly benefi-

cial.
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2 Overview

2.1 The model

An agent faces the choice between two alternatives i and j whose uncertain values are

represented by random variables ui and uj. Our interpretation is that the variability is due

to perception errors rather than taste shocks. (We consider the second interpretation in

Section 6.3, showing that it changes our analysis dramatically). What is more, the agent

can only discriminate between realisations of ui and uj that are sufficiently far apart: the

agent perceives a larger value as such only when it exceeds the lower value by a fixed

threshold σ ≥ 0. We interpret the level of σ as a measure of the agent’s imprecision.

When the agent can discriminate between the two values, he chooses the alternative

with the higher realized value. Otherwise, he randomises uniformly between the two

alternatives.3 When the level of imprecision is σ, the probability of choosing i is given by

p (i, σ) := Pr (ui > uj + σ) +
1

2
Pr (σ ≥ |ui − uj|)

=
1

2
+

1

2
[Pr (ui > uj + σ)− Pr (uj > ui + σ)] . (1)

In the sequel, we identify the quality of a decision for a given level of imprecision σ with

the probability of choosing the “better” alternative (i.e., p (i, σ) when i is better).

Formally, our approach grafts a random utility structure onto Luce’s [21] deterministic

semiorder model. As such, we maintain the assumption—central to the random utility

model—that the agent chooses the alternative with the highest (perceived) utility reali-

sation. This differs from the approach recently taken by Natenzon [25], where the agent

treats the utility realisations as signals used to update a prior. In this sense, our model

is more in line with the classical statistics literature on “tied comparisons” in judgement

(e.g., Glenn and David [17], Greenberg [18] and Rao and Kupper [30]).4

In the most general case that we consider, we allow for any (continuous) distributions

of values and any pattern of correlation between the value distributions. Let F denote

the joint cumulative distribution function (henceforth cdf) of the values ui, uj ∈ R so

that F (w, z) := Pr (ui ≤ w, uj ≤ z) for all w, z ∈ R. For simplicity, we assume that there

exists a corresponding joint density f unless otherwise specified.5

3As explained in footnote 27, our analysis easily extends to other tie-breaking rules. Our approach also

covers some other decision procedures. One example is where the agent allocates the residual probability

using an exogenous heuristic. Then, p (i, σ) − p (j, σ) refers to the difference in the choice probabilities

allocated via value comparisons (rather than to the total difference in choice probabilities).
4The difference is that these papers focus on estimation and hypothesis testing rather than comparative

statics (an issue which, to the best of our knowledge, has not been dealt with before our work).
5Since much of our analysis focuses on unimodal distributions, this assumption is not overly restrictive.

Such distributions (are absolutely continuous and) have a density at all points except possibly the mode.
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For the corresponding value difference of the random variables ui − uj, we let fui−uj

denote the density and Fui−uj denote the cdf, so that (1) can also be written as

p (i, σ) =
1

2
+

1

2

[
Fuj−ui (σ)− Fui−uj (σ)

]
. (2)

To obtain an explicit formula for the density fui−uj , note that the equality ui − uj = x

represents the event consisting of all instances where the value of j realises at ẑ (resp.

ẑ − x) and the value of i realises at ẑ + x (resp. ẑ). Integrating over these events gives

fui−uj (x) =

∫
R
f (z + x, z) dz =

∫
R
f (z, z − x) dz for all x ∈ R. (3)

Our goal is to remain largely agnostic about the nature of the agent’s errors (i.e.,

the relationship between the “true” value of an alternative and the realised values). To

that end, we focus on two plausible scenarios about which alternative is better. In one

scenario, the better alternative is the one that is more likely to be chosen when the agent

is “standard” (in the sense that he has perfect precision σ = 0).6 In the other, the better

alternative is the one that gives higher expected value when the agent is standard.

Definition 1. For alternatives i and j with random values ui and uj:

(i) i is median-better than j if p (i, 0) > 1
2

or, equivalently, mui−uj > 0 (where the

median value difference mui−uj solves
∫ mui−uj
−∞ fui−uj (z) dz = 1

2
=
∫∞
mui−uj

fui−uj (z) dz).

(ii) i is mean-better than j if E(ui − uj) > 0 or, equivalently,
∫
R zfui−uj (z) dz > 0.7

(iii) i is better than j if it is both median- and mean-better.

By substituting weak inequalities in (i)-(iii), one obtains weak analogs of these notions.

It is worth emphasizing that, in principle, median-betterness is directly observable.

Provided that one can identify the case where the agent has perfect precision, one can

then use the choice frequency of alternative i to approximate the choice probability p (i, 0).

In contrast, mean-betterness is based on global features of the value distributions that

are not directly (or at least not easily) observable from choice.

2.2 Some examples

To illustrate that the quality of decisions need not increase with precision in our model, we

first consider a simple example where the probability is concentrated at just two points:

Example 1. (Discrete distribution) Suppose that the value pair u = (ui, uj) realises

at (10, 1) with probability 3
4
, and at (1, 2) with probability 1

4
. In this case, i is the

6This is the classical view (see e.g., Quandt [29]) that “long run” frequencies reflect preference.
7When the mean is undefined (as it is in the case of Cauchy distributions, for instance), we say that

i is mean-better than j if the Cauchy principal value limx→∞
∫ x
−x zfui−uj (z) dz is strictly positive.
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better alternative.8 When σ = 1, the worse alternative j is chosen with probability
1
2

Pr (1 ≥ |ui − uj|) = 1
2
× 1

4
= 1

8
. When the level of imprecision decreases to σ = 1− ε for

arbitrarily small ε > 0, the probability of choosing j increases to Pr (u2 > u1 + 1− ε) = 1
4

(since j is now chosen outright when (1, 2) realises). Accordingly, increased precision

harms the agent when σ = 1.

In this example, a decrease in precision at σ = 1 − ε makes the value difference

imperceptible in the event where the worse alternative is chosen. Since this change is too

small to obscure the value difference in the event where the better alternative is chosen,

the overall effect is to increase the probability of choosing the better alternative.

For ease of exposition, this example assumed the value realisations to be correlated.

However, correlation actually plays no role in the effect. Indeed, it is easy to modify the

example so that the values are independent but higher precision remains harmful.9

By no means is Example 1 the end of the story. For some distributions commonly

used in applications, it turns out that precision has an unambiguously positive impact:

Example 2. (Logit errors) Suppose that ui = ûi+εi and uj = ûj +εj where ûi, ûj ∈ R
and the random errors εi, εj are i.i.d. Gumbel with location ν = 0 and scale c = 1.10

Then, the value difference ui − uj is logistic with location ν = ûi − ûj and scale c = 1.

(While this fact is well-known, we provide a derivation in Appendix A.) For a given level

of imprecision σ, it then follows that i “beats” j with probability

Pr (ui > uj + σ) =
eûi

eûj+σ + eûi
.

The formula for Pr (uj > ui + σ) is symmetric. From equation (2), it then follows that

p (i, σ) =
1

2
+

1

2

(
eûi

eûj+σ + eûi
− eûj

eûi+σ + eûj

)
.

Evaluating at σ = 0 shows that i is the median-better alternative if and only if ûi > ûj.

Since the mean of a logistic distribution corresponds to its location, the same condition

describes the circumstances where i is the mean-better alternative. From the formula for

p (i, σ), it follows that the marginal effect of imprecision is

∂p (i, σ)

∂σ
=

1

2

(
eûi+ûj+σ

(eûi+σ + eûj)
2 −

eûi+ûj+σ

(eûj+σ + eûi)
2

)
.

8Simple computation shows that p(i, 0) = 3/4 > 1/2 and E(ui − uj) = E(ui)− E(uj) = 26/4 > 0.
9To illustrate, suppose that ui = (10, 1) and uj = (1, 2) both realise independently with probabil-

ities (3/4, 1/4). As in the preceding example, alternative i is better (since p(i, 0) = 17/32 > 1/2 and

E(ui − uj) = 131/16 > 0) and precision harms at the level σ = 1 − ε (since p (i, 1) = Pr (ui = 10) +

[Pr (ui = 1 & uj = 1) + Pr (ui = 1 & uj = 2)] /2 > Pr (ui = 10) + Pr (ui = 1 & uj = 1) /2 = p (i, 1− ε)).
10For a Gumbel with location ν and scale c, F (z) = e−e

− z−ν
c and f (z) = 1

c e
−e−

z−ν
c e−

z−ν
c .
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This shows that a marginal decrease in precision has (one of) two possible effects. For an

imprecise agent (with σ̂ > 0), it reduces the quality of decision-making:

∂p (i, σ̂)

∂σ
< 0 ⇐⇒ ûi > ûj.

In contrast, for a precise agent (with σ̂ = 0), a decrease in precision has no effect:

∂p (i, 0)

∂σ
= 0.

Our third example shows how a minor change alters these conclusions dramatically:

Example 3. (Scaled logit errors) As in Example 2, suppose that ui = ûi + εi and

uj = ûj + εj and that the random errors εi, εj are i.i.d. Gumbel with location zero. The

only difference is that the random error εi is now scaled by a factor c > 1.11

The critical change from Example 2 is the fact that ui− uj is not logistic when c > 1.

While the distribution lacks a simple closed form expression, it is not difficult to show that

the effect of the scaling factor is to skew the logistic distribution in Example 2 towards

the right. (In Appendix A, we derive an integral representation for the cdf, from which

the choice probabilities can be computed using equation (2).)

This has two related implications for our analysis: first, it pushes the mean above the

median; and, second, it fattens the right tail of the distribution relative to the left. The

first change has the potential to drive a wedge between our two notions of betterness. In

turn, the second change creates the possibility that precision has the opposite effect for a

very imprecise agent (σ →∞) as it does for a very precise agent (σ → 0).

To illustrate these observations, let us suppose that 0 = ûi < ûj = 1/2 and c = 2. The

density for this parametrization is shown in Figure 1 below. By numerical calculation, it

is not difficult to establish the following facts:

(i) While j is the better alternative without scaling (since the median and mean value

differences ui−uj are both−1/2), this is no longer true after ui is scaled. While the median

and mean both increase, mui−uj ≈ −0.211 remains negative while E(ui − uj) ≈ 0.078

becomes positive. So, alternative i is both mean-better and median-worse than j.

(ii) At the same time, the impact of precision changes sharply at the cutoff σ̄ ≈ 4.244.

Below this level, more precision decreases the probability p(i, σ) of selecting alternative i;

and, above this level, increased precision has the opposite effect.

From these two observations, it follows that increased precision: (1) harms the mean-

better alternative i and helps the median-better alternative j for sufficiently small levels

of σ; and (2) has the opposite effect for sufficiently large levels of σ.

11Scaling a random variable ε by c ∈ R++ gives a random variable ε′ that is distributed like cε. When

ε is Gumbel with location zero and unit scale, it follows that the cdf of ε′ is F (z) = e−e
−z/c

.
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Figure 1: Plot of fui−uj for ui ∼ Gumbel(0, 2) and uj ∼ Gumbel(1/2, 1)

From the standpoint of a policy maker (charged with choosing a desired level of pre-

cision), these conclusions are striking. They show that the marginal benefit of precision

does not necessarily bear any systematic relationship to the agent’s (initially positive)

level of imprecision and may depend critically on the relevant notion of betterness.

Taken together, our three examples beg the question: what feature of the value distri-

butions ensure the “intuitive” effect that precision improves the quality of decisions? After

deriving the fundamental condition that governs the marginal impact of precision, we fo-

cus on value distributions that are independent and unimodal, two restrictions that hold

in many common applications of the random utility model. While a discrepancy between

precision and quality persists even under these restrictions, they allow us to characterise

the relationship in terms of primitive features of the value distributions. This, in turn,

makes it easy to do comparative statics.

3 General analysis

In this section, we start by considering the problem in full generality. In later sections,

we specialize by imposing progressively more restrictive assumptions.

By writing the cdf Fui−uj in equation (2) more explicitly, one obtains

p (i, σ) =
1

2
+

1

2

(∫
R

∫ ∞
z+σ

f (w, z) dwdz −
∫
R

∫ ∞
w+σ

f (w, z) dzdw

)
.
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Differentiating this expression and evaluating at the level of imprecision σ = σ̂ yields

∂p (i, σ̂)

∂σ
=

1

2

(∫
R
f (w,w + σ̂) dw −

∫
R
f (z + σ̂, z) dz

)
. (4)

It then follows that

∂p (i, σ̂)

∂σ
< 0⇔

∫
R
f (w,w + σ̂) dw <

∫
R
f (z + σ̂, z) dz.

With the help of (3), this last condition can be re-written more compactly as

∂p (i, σ̂)

∂σ
< 0⇔ fui−uj (−σ̂) < fui−uj (σ̂) . (?)

Condition (?) is the fundamental inequality that governs the effect of precision in our

model. It shows that the marginal impact at a given level of imprecision σ̂ depends on

local comparisons of the value difference ui − uj. The only events that matter are those

where ui − uj exactly matches σ̂. In these threshold events, the probability of choosing

alternative i in equation (4) changes by one half, either positively when the agent stops

perceiving j as better (at uj − ui = σ̂); or negatively when he stops perceiving i as better

(at ui − uj = σ̂). Overall, the marginal impact on the probability of choosing alternative

i is one-half times the probability difference between the threshold events.12

Condition (?) has several notable consequences. The first is that the impact of preci-

sion is unrelated to the statistical correlation between ui and uj. Instead, it relates to the

cross-correlation between ui and uj (in the sense of signal-processing where ui is displaced

either by a “lag” or “lead” of σ̂). This is at the root of a systematic disconnect between

condition (?) and the measures of quality described in Definition 1. While the effects of

increased precision are driven by local features of the value distributions, the quality of

the alternatives depend on global features of these distributions. The following calibration

result puts this point in the starkest possible terms:

Proposition 1. (Increased precision may harm unboundedly at some level of

imprecision) For all parameter values µ̂, m̂, σ̂, δ > 0, there exists a density fui−uj that

satisfies the requirements E(ui − uj) ≥ µ̂, mui−uj ≥ m̂ and ∂p(i,σ̂)
∂σ
≥ δ.

By condition (?), the sign of ∂p (i, σ̂) /∂σ is pinned down by the density of the value

difference ui − uj at exactly two points. This leaves fui−uj effectively unconstrained. It

follows that precision may harm unboundedly at a given level of imprecision σ̂: regardless

of how much better i is than j, there is some distribution of value differences for which the

marginal harm exceeds a given threshold δ. (As shown in Appendix B, it is straightforward

12For discrete increases in σ, the set of threshold events includes all those events where the value

difference is (strictly) greater than the initial level of σ but (weakly) less than the new level of σ.
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to construct such a distribution by taking an even mixture of i.i.d. distributions centred

at −σ̂ and 2 max{µ̂, m̂}+ σ̂, respectively.)

A second and complementary implication of the fundamental condition (?) is that, for

a given distribution of value differences, increased precision cannot always harm:

Proposition 2. (Increased precision cannot harm at all levels of imprecision)

When σ̂ = 0, precision has no impact (i.e., ∂p(i,0)
∂σ

= 0). What is more, if i is either mean-

or median-better than j, then ∂p(i,σ̂)
∂σ

< 0 for some level of imprecision σ̂ > 0.

The first statement is a direct consequence of condition (?). For the second statement,

suppose ∂p (i, σ̂) /∂σ ≥ 0 for all σ̂ > 0. By condition (?), it then follows that fui−uj (−z) ≥
fui−uj (z) for all z > 0. By integrating over this inequality, one observes the following:

(i)
∫ 0

−∞ fui−uj (z) dz ≥
∫∞
0
fui−uj (z) dz; and

(ii)
∫
R zfui−uj (z) dz =

∫∞
0
z
[
fui−uj (z)− fui−uj (−z)

]
dz ≤ 0.

Observation (i) states that j is weakly median-better while (ii) implies that j is weakly

mean-better. By contraposition, these observations give the desired result.

The basis for observations (i) and (ii) is yet another consequence of condition (?)

which, in our view, is important enough to highlight separately. In particular, since

fui−uj (z) = fuj−ui (−z), condition (?) directly implies the following:

Proposition 3. (For increased precision to cause no harm, strong assump-

tions are required) ∂p(i,σ̂)
∂σ
≤ 0 for almost all levels of imprecision σ̂ ≥ 0 if and only if

fui−uj (z) ≥ fuj−ui (z) for almost all value differences z ≥ 0.

To interpret this result, suppose that i is the better alternative. Then, for precision to

have an unambiguously beneficial impact, ui must display a strong form of distributional

dominance over uj. Not only must ui beat uj “on average” in the sense that∫
R
zfui−uj (z) dz ≥

∫
R
zfuj−ui (z) dz

but ui must also beat uj “point-wise” in the sense that, for almost every z ∈ R,

zfui−uj (z) ≥ zfuj−ui (z) .

Clearly, this type of point-wise dominance is stronger than first-order stochastic domi-

nance between the value difference distributions ui−uj and uj−ui. In fact, it implies that

the densities fui−uj and fuj−ui cross exactly once at z = 0. (Obviously, this entails that

ui − uj first-order stochastically dominates uj − ui.) From a different angle, point-wise

dominance may also be viewed as a strong form of skewness of fui−uj relative to zero.13,14

13We thank Ian Jewitt for making this observation (in private communication).
14Macgillivray [23] considers a similar notion of skewness relative to the mean µX of a unimodal random

variable X (see the next section for definitions). He shows that the skewness measure E(X − µX)3 is

strictly positive if the difference fX (µX + z)− fX (µX − z) changes signs exactly once for z ≥ 0.
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4 Unimodal value differences

In this section, we aim to clarify what drives the connection between quality and precision

in economic applications. To do so, we impose a significant but economically relevant

restriction on the distribution of value differences, namely that it is unimodal.

Recall that a real-valued random variable X with cdf F is (strictly) unimodal if, for

some value ν ∈ R, F is (strictly) convex on (−∞, ν) and (strictly) concave on (ν,∞). In

that case, ν is a mode of X; and X is unimodal around ν. Since we assume that F can

be associated with a density f , this is equivalent to the requirement that f is (increasing)

non-decreasing on (−∞, ν) and (decreasing) non-increasing on (ν,∞). In that case, we

say that the density f is unimodal around ν.

The preceding definition implies that a strictly unimodal distribution X has a single

mode νX . More generally, the modes of a unimodal distribution X define a closed interval

with minimal and maximal modes denoted by νminX and νmaxX . For convenience, we denote

the central mode of a unimodal distribution by ν̄X := (νmaxX + νminX )/2.

One very large class of unimodal distributions is the class of log-concave distributions.

Recall that a function f : Rn → Rn is log-concave if and only if its log-transformation is

concave.15 Many univariate distributions that are used in applications have log-concave

densities (see Table 1 in Bagnoli and Bergstrom [2]). These include the normal, Gumbel,

uniform, exponential, logistic, Chi-squared (with scale parameter c ≥ 2), Gamma (with

scale parameter c ≥ 1) and Laplace (or double-exponential) distributions. A number

of these distributions (including the normal, uniform, logistic and Laplace distributions)

share an additional feature. They are symmetric. Recall that a function f : Rn → Rn is

symmetric (around a point c ∈ Rn) if f (c+ y) = f (c− y) for all y ∈ Rn.

Our main result shows that the task of checking condition (?) becomes straightforward

when the distribution of ui−uj is unimodal. Instead of performing a separate calculation

for each level of imprecision σ̂, one may use a familiar summary statistic of ui − uj to

ascertain whether condition (?) holds for a range of different levels.

We start by defining a critical upper bound on the level of imprecision:

Definition 2. Suppose that the density fui−uj is unimodal around [νmin, νmax]. Then,

the level of imprecision σ̂ ≥ 0 is non-confounding if σ̂ < max (|νmin| , |νmax|).

If the level of imprecision is non-confounding, then the agent is capable of perceiving

which alternative is mean-better at every modal realisation of the value difference. (If

ui−uj realises at some mode ν > 0, for instance, then ûi = ûj +ν > ûj + σ̂ and the agent

perceives ûi > ûj. A similar argument applies when ν < 0.)

15In other words, f (λx+ (1− λ) y) ≥ [f (x)]λ[f (y)]1−λ for all λ ∈ [0, 1].
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When the distribution of the value difference is unimodal and symmetric, it turns out

that the marginal impact of precision only depends on the sign of the central mode ν̄.

In the more general case where the distribution of the value difference is unimodal but

asymmetric, this is true only for non-confounding levels of imprecision.

Proposition 4. (The impact of precision depends on the sign of the central

mode) Suppose that the density fui−uj is unimodal with central mode ν̄ ≥ 0. Then:

(i) ∂p(i,σ̂)
∂σ
≤ 0 for all non-confounding levels of imprecision σ̂; and

(ii) if fui−uj is also symmetric, then ∂p(i,σ̂)
∂σ
≤ 0 for all levels of imprecision σ̂.

What is more: if ν̄ > 0, then there is some non-confounding σ̂ > 0 such that ∂p(i,σ̂)
∂σ

< 0.

Proof: (i) Since ν̄ ≥ 0, |νmax| ≥ |νmin|. Fix a non-confounding σ̂. Since σ̂ ∈ [0, νmax)

and fui−uj is unimodal, fui−uj (−σ̂) ≤ fui−uj (σ̂). So, ∂p (i, σ̂) /∂σ ≤ 0 by condition (?).

(ii) If σ̂ ∈ [0, νmax), then the argument in (i) implies ∂p (i, σ̂) /∂σ ≤ 0. So, suppose σ̂ ≥
νmax. By symmetry around ν̄, fui−uj (−σ̂) = fui−uj (σ̂ + 2ν̄). Since ν̄ ≥ 0, fui−uj (−σ̂) =

fui−uj (σ̂ + 2ν̄) ≤ fui−uj (σ̂) by unimodality. So, ∂p (i, σ̂) /∂σ ≤ 0 by condition (?).

To establish the last part of the statement, note that ν̄ > 0 implies |νmax| > |νmin|.
Pick some level of imprecision σ∗ ∈ (|νmin| , |νmax|). Since fui−uj is unimodal, it follows

that fui−uj (σ∗) > fui−uj (−σ∗). By condition (?), this implies ∂p (i, σ∗) /∂σ < 0.

Proposition 4 does not require the sign of the central mode to completely determine the

sign of the marginal impact. (While it does require ∂p (i, σ̂) /∂σ = 0 when ν̄ = 0, it does

not rule out the possibility that ∂p (i, σ̂) /∂σ = 0 for some relevant levels of imprecision

when ν̄ > 0.) When the value difference is strictly unimodal however, the sign of the

central mode is completely determinative:

Corollary 1. Suppose that fui−uj is strictly unimodal around ν > 0. Then:

(i) ∂p(i,σ̂)
∂σ

< 0 for all non-confounding levels of imprecision σ̂ > 0; and

(ii) if fui−uj is symmetric, then the same holds for all levels of imprecision σ̂ > 0.

Much like the results in Section 3, the last two results in this section draw a sharp

distinction between the quality of an alternative and the marginal effect of precision.

Whereas the mean or median of the value difference determines the relative quality of the

two alternatives, they show that the mode determines the effect of precision.

It is worth emphasizing that unimodality imposes no restrictions on the relative or-

dering of the median, mean and mode (contrary to the misconception that the median

must be between the other two).16 This poses a challenge for applying Proposition 4 and

Corollary 1 in practice. A second challenge relates to the fact that these two results are

stated in terms of the value difference rather than the values themselves.
16See Abadir [1] for some examples that the mean, the median, and the mode can occur in any order.
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In the next section, we consider some restrictions on value distributions, frequently

imposed in economic applications, that address both challenges. Under these restrictions,

we can use the results from this section to identify circumstances where precision does

improve the quality of decision-making and circumstances where it does not.

5 Unimodal and independent values

The results from the last section required the value difference ui− uj to be unimodal. To

clarify how these results can be used in applications, we now consider some economically

relevant restrictions imposed directly on the primitive value distributions, namely that ui

and uj are independent and unimodal. This begs the question: what is the relationship

between the two sets of conditions?

Before Chung [8] gave a counter-example, statisticians wrongly believed that the dif-

ference of unimodal and independent random variables must be unimodal. Subsequently,

a literature developed to identify conditions sufficient for the difference of unimodal and

independent random variables to be unimodal. While the three main results from that

literature (due to Hodges and Lehmann [19], Wintner [36], and Ibragimov [20]) are well-

known in statistics, they are not so widely known in economics.

In this section, we use these three results (re-stated in Appendix C) to identify specific

circumstances where increased precision is harmful and others where it is not.

To state our results, it will prove convenient to “de-mean” the value distributions,

decomposing uk := ûk + εk (for k = i, j) into a constant value ûk ∈ R and a random

variable (or error distribution) εk whose mean (or Cauchy principal value) is zero. Using

these definitions, we can re-state our assumption on primitives in terms of the errors:

Assumption. The errors εi and εj are independent and unimodal.

Except where stated, we impose this assumption for the remainder of this section.

5.1 Beneficial precision

We first identify two types of conditions where increased precision cannot harm. The first

type of condition (in Propositions 5 and 6) restricts the shape of the errors but does not

limit their scale. In turn, the second type of condition (in Proposition 7) limits the scale

of the errors, but does not restrict their shape.

Our first result stipulates that, when the errors are identical, increased precision im-

proves the quality of decision-making. To establish this result, we rely on Hodges and

Lehmann’s sufficient conditions for the unimodality of the value difference ui − uj.

Proposition 5. (Identical errors) Suppose that the errors εi, εj are identical. Then,
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the distribution of the value difference ui − uj is strictly unimodal and symmetric around

ûi − ûj. As a result:

(i) alternative i is better than alternative j ⇐⇒ ûi > ûj and

(ii) ûi > ûj =⇒ ∂p(i,σ̂)
∂σ

< 0 for all levels of imprecision σ̂ > 0.

Proof: Since εi and εj are i.i.d. and unimodal, Hodges and Lehmann’s theorem implies

that the difference εi − εj is strictly unimodal and symmetric around zero. So, the value

difference ui−uj is strictly unimodal and symmetric around (its mean, median and modal

value of) ûi − ûj.17 This establishes (i). In turn, (ii) follows from Corollary 1.

This result covers all of the i.i.d. specifications used to model random utility, including

logit (Gumbel) and probit (normal) errors. With probit errors, it turns out that increased

precision must improve decision-making even when the error distributions are not identi-

cal. Our second result uses Wintner’s sufficient conditions for the unimodality of ui − uj
to show, more generally, that the same is true for all symmetric error distributions.

Proposition 6. (Symmetric errors) Suppose that the errors εi, εj are symmetric (and

one of the two is strictly unimodal). Then, the distribution of the value difference ui− uj
is (strictly) unimodal and symmetric around ûi − ûj. It follows that:

(i) alternative i is better than alternative j ⇐⇒ ûi > ûj and

(ii) ûi ≥ (>) ûj =⇒ ∂p(i,σ̂)
∂σ
≤ (<) 0 for all levels of imprecision σ̂ > 0.

Proof: Since εi and εj are unimodal and symmetric, Wintner’s theorem implies that their

difference εi−εj is unimodal and symmetric around zero. (By Theorem 2 of Appendix C,

εi − εj is strictly unimodal if one of the errors has the same feature.) As in Proposition

5, this establishes (i). In turn, (ii) follows from Proposition 4 (Corollary 1).

To place Proposition 6 in context, first consider the case of probit errors. In this

special case, the unambiguous benefit of precision follows from an “idiosyncratic” feature

of normal distributions: the difference of independent normals is normal even when their

scale parameters (or variances) differ.

In fact, the same feature holds for a much broader family of unimodal distributions,

called the stable distributions.18 This family is divided into classes, each indexed by a

stability parameter α ∈ (0, 2].19 Among the classes of symmetric distributions, the best

17When the mean of εi− εj is undefined, the argument holds verbatim for the Cauchy principal value.
18The unimodality of all stable distributions was first established by Yamazato [37]. See Mandelbrot

[24] for economic applications of these “heavy-tailed” distributions.
19A stable random variable X(α;β, c, ν) is defined by four parameters: stability α ∈ (0, 2]; skewness

β ∈ [−1, 1]; scale c ∈ (0,∞); and location ν ∈ (−∞,∞). When β = 0, it is symmetric around ν.
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known are the normal (α = 2) and Cauchy (α = 1). Apart from the normal distribu-

tions, every symmetric α-stable distribution has “heavy tails” (and infinite variance).20

Analogous to the case of normal distributions, the difference of two independent α-stable

distributions is α-stable.21 Since the symmetric α-stable distributions are actually strictly

unimodal, it follows that increased precision must be beneficial when the error distribu-

tions are independent, symmetric and α-stable.

Proposition 6 captures the symmetric α-stability cases, but is much more general since

it does not require that the errors belong to the same family (let alone the same stability

class) of distributions. It implies, for instance, that increased precision cannot harm when

one of the errors follows a normal distribution while the other follows a Student t.

Our third result uses some well-known bounds that situate every mode νX of a uni-

modal distribution X relative to its median mX and mean µX (see Corollary 4 of Basu

and DasGupta [3]). These bounds depend on the variance V ar(X) of X. In particular:

(mX − νX)2

3
,

(µX − νX)2

3
, and

25 (µX −mX)2

9
≤ V ar(X). (5)

In our framework, the standard deviation of the error distributions√
V ar(εi − εj) =

√
V ar(εi) + V ar(εj)

may be interpreted as a measure of the noise in the agent’s perception.

By combining the inequalities in (5) with Ibragimov’s sufficient conditions for the

unimodality of ui − uj, we can show that increased precision does not harm when the

imprecision is non-confounding and the noise in the agent’s perception is small relative

to the mean value difference |ûi − ûj|.

Proposition 7. (Bounded noise) Suppose that one of the errors εi, εj is log-concave

(while the other is strictly unimodal). Then, the distribution of the value difference ui−uj
is (strictly) unimodal. Provided that 3[V ar(εi) + V ar(εj)] ≤ (ûi − ûj)2, it follows that:

(i) alternative i is better than alternative j ⇐⇒ ûi > ûj and

(ii) ûi ≥ (>) ûj =⇒ ∂p(i,σ̂)
∂σ
≤ (<) 0 for all non-confounding levels σ̂ > 0.

Proof: Since one of the errors is unimodal while the other is log-concave, Ibragimov’s

theorem implies that their difference εi − εj is unimodal. (The corresponding statement

about strict unimodality follows from Theorem 1 of Appendix C.) This establishes the

(strict) unimodality of the value difference X := uj − ui.
For part (i), note that the second and third inequalities in (5) above, when combined

with the restriction that V ar(ui − uj) = V ar(εi) + V ar(εj) ≤ (ûi − ûj)2/3, give

|µX − νX | ≤ |µX | and |µX −mX | ≤
√

3 |µX | /5. (6)

20Like Cauchy distributions, the mean is also undefined for distributions with 0 < α < 1.
21More specifically, X(α;β1, c1, 0)−X(α;β2, c2, 0) = X(α;

β1c
α
1−β2c

α
2

cα1 +cα2
, (cα1 + cα2 )

1
α , 0).
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In turn, these inequalities imply that ν̄ := (νmaxX + νminX )/2 > 0⇔ µX > 0⇔ mX > 0.

For part (ii), suppose that µX ≥ (>) 0. Then, ν̄ ≥ (>) 0 by the equivalence in the

last paragraph; and the result follows by Proposition 4 (Corollary 1).

5.2 Scope for harmful precision

Propositions 5 to 7 identify restrictions where increased precision is beneficial. While such

restrictions are common in economic applications, they are not always appropriate.

To be more specific, any difference in the way the agent perceives the two alternatives

(due e.g., to differing levels of familiarity) will tend to undermine the restriction in Propo-

sition 5 (identical errors). In turn, the restriction in Proposition 6 (symmetric errors) is

not likely to hold when the agent’s tendency to over -value differs from his tendency to

under -value (due e.g., to optimism or pessimism). Finally, even moderate noise in the

agent’s perceptual errors (due e.g., to a lack of familiarity with the alternatives or to their

complexity) may undermine the restriction in Proposition 7 (bounded noise).22

Somewhat more concretely, consider Example 3. While the errors in this example are

unimodal and independent, they violate every other requirement from Propositions 5-7.

Clearly, they violate the shape restrictions from Propositions 5-6 (since they are Gumbel

with different scale parameters). A straightforward calculation shows that these errors

also violate the noise restriction from Proposition 7:23

5π2

2
= 3[V ar(εi) + V ar(εj)] > (ûi − ûj)2 =

1

4
.

Since the two notions of betterness lead to different policy prescriptions in Example 3,

these observations should not come as a surprise. In order to drive a wedge between the

two notions of betterness, the errors must violate the restrictions from Propositions 5-7.

The only question is the potential scope for errors to create such a wedge.

Our final result shows that Example 3 is not a knife-edge. It establishes that, when

the difference of the errors is skewed, there exists a range of mean value pairs (ûi, ûj)

where the same kind of wedge arises. A defining feature of this range is that the mean

value difference |ûi − ûj| remains small relative to the noise in the agent’s perception.

Intuitively, this shows that there is wide latitude for harmful precision when the errors

violate all of the restrictions identified in Propositions 5-7.

Proposition 8. (Asymmetric error differences with substantial noise) Suppose

that one of the errors εi, εj is log-concave (while the other is strictly unimodal). Then,

22Burton [5] argues that because some policy interventions are complex, their outcome distributions

typically exhibit heavy tails (Burton makes the case in the context of health and social care policies). In

the theory of complex systems, heavy tails are considered a primary testable feature of such systems.
23For a Gumbel distribution with scale parameter c, the variance is (cπ)2/6.

16



provided that the mean value difference ûi − ûj is between 0 and K for some constant

K ∈ R such that K2 ≤ 9
25

[V ar(εi) + V ar(εj)], it follows that:

(i) alternative i is mean-better and median-worse than alternative j ⇐⇒ ûi > ûj and

(ii) for all non-confounding levels σ̂1, σ̂2 > 0, ∂p(i,σ̂1)
∂σ

≤ (<) 0 =⇒ ∂p(i,σ̂2)
∂σ

≤ (<) 0.

Proof: As in the proof of Proposition 7, first note that Y := εi−εj is (strictly) unimodal;

and that the distribution of the value difference X := ui − uj inherits this feature.

Next, define K := −mY where mY denotes the median of Y . Since Y is unimodal and

µY = 0 by assumption, the third inequality in (5) then implies that

K2 = m2
Y ≤

9

25
V ar(Y ) =

9

25
[V ar(εi) + V ar(εj)].

So, the constant K ∈ R satisfies the specified requirements.

For (i), fix values ûi, ûj ∈ R such that

ûi − ûj ∈

(0, K) if K ≥ 0

(−K, 0) otherwise;

and note that ûi − ûj > 0 ⇐⇒ mX = mY + ûi − ûj < mY −mY = 0.

For (ii), suppose that σ̂1, σ̂2 > 0 is non-confounding. In this case, [νminX , νmaxX ] 6= {0}.
By Proposition 4 (Corollary 1), ν̄ > 0 implies ∂p (i, σ̂k) /∂σ ≤ (<) 0 (for k = 1, 2). If

ν̄ = 0, then X is not strictly unimodal. In that case, ∂p (i, σ̂k) /∂σ = 0 (for k = 1, 2).

6 Extensions

6.1 Beyond unimodal and independent values

The link between the mode of the value difference and the impact of increased precision

remains even when the value distributions are multi-modal or dependent. (Indeed, Propo-

sition 4 makes no assumptions about the individual value distributions.) The problem is

that violations of unimodality or independence only further complicate the two challenges

discussed at the end of Section 4. Nonetheless, we can still make some general statements

about the impact of precision on the quality of decision-making.

Our first result extends Proposition 6 by dispensing with independence. It establishes

that precision cannot harm for symmetric error distributions in a broad family introduced

by Ghosh [16] (see also Dharmadhikari and Jogdeo [12]). Formally, a real-valued random

vector X := (X1, X2) is linear unimodal around the origin if, for all a, b ∈ R, the linear

combination aX1 + bX2 of the marginals is unimodal around zero.24

24While Ghosh defines the class for n-dimensional random vectors, we only require two dimensions.
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Proposition 9. (Dependence) Suppose that the joint distribution of the errors (εi, εj)

is linear unimodal and symmetric around the origin. Then:

(i) alternative i is better than alternative j ⇐⇒ ûi > ûj and

(ii) ûi ≥ ûj =⇒ ∂p(i,σ̂)
∂σ
≤ 0 for all levels of imprecision σ̂ > 0.

Proof: Since (εi, εj) is linear unimodal around the origin, it follows that the difference

εi− εj is unimodal around zero. To see that εi− εj is symmetric, let g denote the density

of (εi, εj) and gεi−εj the density of εi − εj. Then, for all x ∈ R,

gεi−εj (x) =

∫
R
g (z + x, z) dz =

∫
R
g (−z − x,−z) dz =

∫
R
g (z − x, z) dz = gεj−εi (x)

where: the first and last equalities follow by equation (3); the second by the symmetry of

(εi, εj) around the origin; and the third by the change of variables z → −z. Since εi − εj
is unimodal and symmetric around zero, the result then follows from Proposition 4.

The error distributions covered by this result are generalizations of bi-variate normals.

As noted after Proposition 6, the difference of two independent normals is normal. In

fact, this is true even when the distributions are dependent, provided that they are jointly

normal. Linear unimodal and symmetric distributions have a similar closure property:

for such distributions, the difference of marginals is unimodal and symmetric around

zero. Not only does this imply that increased precision cannot harm for bi-variate normal

errors but it implies that the same is true for a much wider class of errors (including all

symmetric error distributions that are either stable or log-concave).

Generalising in a different direction, we can dispense with unimodality and still retain

a local version of Proposition 5. As in that result, the assumption of i.i.d. errors plays a

key role, ensuring that the better alternative is the one with the higher mean.

Proposition 10. (Multi-modality) Suppose that the errors εi, εj are i.i.d. with con-

tinuous densities. Then:

(i) alternative i is better than alternative j ⇐⇒ ûi > ûj and

(ii) ûi > ûj =⇒ ∂p(i,σ̂)
∂σ
≤ 0 for all levels of imprecision σ̂ ∈ B(|ûi − ûj|)

in some open interval B(|ûi − ûj|) around |ûi − ûj|.

Proof:25 Let fi and fi denote the densities of ui and uj; and let d := ûi− ûj. Since εi and

εj are i.i.d., fi (x) = fj (x− d) for all x ∈ R. By substituting this identity into equation

(4) and applying a change of variable z → z + d, one obtains

∂p (i, σ̂)

∂σ
=

1

2

[∫
R
fj (z) fj (z + σ̂ + d) dz −

∫
R
fj (z + σ̂ − d) fj (z) dz

]
. (7)

25The proof adapts standard techniques to show that cross-correlation is minimal at zero.
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Since
∫
R [fj (z)]2 dz =

∫
R [fj (z + c)]2 dz for all c ∈ R, the quadratic formula yields∫
R
fj (z) fj (z + c) dz =

∫
R

[fj (z)]2 dz − 1

2
A (c) (8)

where A (c) :=
∫
R [fj (z)− fj (z + c)]2 dz. By substituting (8) into (7), one obtains

∂p (i, σ̂)

∂σ
=

1

4
[A (σ̂ − d)− A (σ̂ + d)] .

As in the proof of Proposition 5, ui−uj is symmetric around (its mean, median value of)

d = ûi − ûj. Now, suppose that i is better than j (or, equivalently, that ûi > ûj). Then,

∂p (i, d)

∂σ
=

1

4
[A (0)− A (2d)] = −1

4

∫
R

[fj (z)− fj (z + 2d)]2 dz. (9)

Observe that fj is not a density if fj (z) = fj (z + 2d) for almost all z ∈ R. Otherwise,∫
R
fj (z) dz =

∑
k∈Z

∫ (k+1)2d

k2d

fj (z) dz =
[

lim
k→∞

2k
] [∫ 2d

0

fj (z) dz

]
6= 1.

So, fj (z) 6= fj (z + 2d) for some set A ⊆ R of positive Lebesgue measure. This, in turn,

implies ∂p (i, d) /∂σ < 0 by equation (9). By continuity of fj, the result obtains.

6.2 Beyond two alternatives

It is not entirely straightforward to extend our analysis to more than two alternatives. In

this section, we briefly mention two issues that complicate the task.

(1) Impact of precision: As the number of alternatives increases, the range of possi-

ble “ties” in the value realisations increases exponentially, which significantly complicates

the task of determining the choice probabilities and the marginal impact of precision.

To illustrate, consider the case of three alternatives and suppose (as in the case of two

alternatives) that the alternatives tied “at the top” are chosen with uniform probability.

Let Rσ
S denote the probability of the event that S is the top-set of alternatives:

(i) for every i ∈ S, |ui − uj| ≤ σ for all j ∈ S; and,

(ii) for every k /∈ S, uk + σ < uj for some j ∈ S.

With this notation, Rσ
12, R

σ
13 and Rσ

123 reflect the events where alternative 1 is tied at

the top and Rσ
1 the event where it wins outright. It follows that p (1, σ) can be written as

p (1, σ) = Rσ
1 +

1

2
[Rσ

12 +Rσ
13] +

1

3
Rσ

123

=
1

3
+

1

3
[2Rσ

1 −Rσ
2 −Rσ

3 ] +
1

6
[Rσ

12 +Rσ
13 − 2Rσ

23] . (10)

The second formulation (which follows from the first by re-writing Rσ
123 in terms of its

complementary probabilities) makes it more clear how p (1, σ) is affected by increases in
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σ. Letting Rσ
S→T denote the probability of the threshold event that the top-set switches

from S to T when σ increases, the marginal effect of precision can then be written as

∂p (1, σ)

∂σ
=

1

2
[Rσ

2→12 −Rσ
1→12] +

1

2
[Rσ

3→13 −Rσ
1→13]

+
1

6
[2Rσ

23→123 −Rσ
12→123 −Rσ

13→123] . (11)

This shows that three different trade-offs determine the marginal impact of precision when

there are three alternatives. The first two terms are direct analogs of the two-alternative

case where the perceived value of one alternative changes (either positively or negatively)

relative to one other alternative. In the last term, the perceived value of one alternative

changes relative to two other alternatives.26

More generally, with n alternatives, the marginal impact of precision on p(i, σ) involves

2n−1− 1 different trade-offs. (This is easy to see: for each k = 1, ..., n− 1, there are
(
n−1
k

)
trade-offs where the perceived value of one alternative changes relative to k others.)

(2) Median quality: With two alternatives, we believe that there are compelling rea-

sons to use the median value difference as a measure of quality. However, difficulties arise

in trying to generalize this measure to three or more alternatives. At a fundamental level,

the issue is that the “univariate” median used for two alternatives does not necessarily

identify a highest quality alternative. The following example serves to illustrate.

Example 4. For three alternatives, consider a random utility specification that induces

the following distribution Π> over the ranking of value realizations

Π> :=



Pr(u1 > u2 > u3)

Pr(u1 > u3 > u2)

Pr(u2 > u1 > u3)

Pr(u2 > u3 > u1)

Pr(u3 > u1 > u2)

Pr(u3 > u2 > u1)


=



18/64

7/64

3/64

15/64

11/64

10/64


.

In this case, the (pairwise) medians induce a cyclic quality ranking. Let pij(i, 0) denote

the probability that a perfectly precise (σ = 0) agent chooses i over j. Then:

p12(1, 0) = p23(2, 0) = p13(3, 0) =
36

64
>

28

64
= p12(2, 0) = p23(3, 0) = p13(1, 0).

We emphasize that an independent random utility specification is sufficient to produce the

ranking distribution Π>, specifically one where each of u1 = (1, 4, 7, 7), u2 = (2, 6, 6, 6)

and u3 = (3, 5, 5, 8) realizes with uniform probability. (In the literature, independent

distributions that induce such pairwise “cycles” are known as non-transitive dice.)

26For the interested reader, we derive explicit formulas for equations (10) and (11) in Appendix D.
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To resolve this issue, one possibility is to rely on a “multivariate” concept of median

to identify the highest quality alternative. Having said this, there are multiple ways to

extend the “univariate” concept and it is not clear which is the most appropriate.

A different approach would be to measure quality by the median of a “multivariate”

object. One possibility is the median ordering, which is determined by ranking alternatives

by the probability that they are chosen from the grand set of alternatives. When there

are two alternatives, the (top-ranked alternative according to the) median ordering is the

“univariate” median. For three or more alternatives, the median ordering is faithful to

the idea that a perfectly precise (σ = 0) agent tends to choose well. To illustrate, consider

the agent in Example 4. In that case, the median ordering is 1 > 3 > 2 since

Pr(u1 > u2, u3) =
25

64
> Pr(u3 > u1, u2) =

21

64
> Pr(u2 > u1, u3) =

18

64
.

The median ordering captures the intuition that alternative 1 is the best among the three

and, as a “second-order” concern, that alternative 3 is better than alternative 2.

6.3 Taste shocks

Throughout the paper, we have assumed that the random values reflect errors of per-

ception. If the errors instead reflects taste shocks, then the realised values are better

interpreted as welfare relevant utilities. In that case, it seems more appropriate to mea-

sure the quality of a decision by its expected utility.

To analyse this variation, we generalise the model by supposing that, when he cannot

distinguish the two values, the agent chooses alternative i with probability α ∈ (0, 1).

The parameter α expresses the bias of the agent towards alternative j when he cannot

distinguish it from alternative i.27 Then, the agent’s expected utility of choosing according

to his coarse perception may be expressed as follows:

E [u (σ, α)] := E [ui|ui > ui + σ] + E [uj|uj > ui + σ] + E [αui + (1− α)uj|σ ≥ |ui − uj|]

=

∫
R

∫ z−σ

−∞
zf (z, w) dwdz +

∫
R

∫ ∞
z+σ

wf (z, w) dwdz +

∫
R

∫ z+σ

z−σ
(αw + (1− α) z) f (z, w) dwdz.

Differentiating this expression and evaluating at the level of imprecision σ̂ gives:

∂E [u (σ̂, α)]

∂σ
=−

[
ασ̂

∫
R
f (z, z − σ̂) dz + (1− α) σ̂

∫
R
f (z, z + σ̂) dz

]
.

Since each of the terms inside the brackets is non-negative, we conclude the following:

Proposition 11. For all α ∈ (0, 1) and every level of imprecision σ̂ > 0: ∂E[u(σ̂,α)]
∂σ

≤ 0.

27A similar generalisation could be made to our main model in equation (1). It would change the

right-hand side of condition (?) from fui−uj (−σ̂) < fui−uj (σ̂) to αfui−uj (−σ̂) < (1− α)fui−uj (σ̂).
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This result shows that, when measured by its expected utility, the quality of the

agent’s decision cannot decrease with precision (although it may not change for certain

distributions). This is true under completely general conditions that do not depend on

either the joint distribution f of utilities or the size of the bias α.

7 Concluding remarks

In this paper, we have studied the interplay between two distinct sources of error in judg-

ment: the absolute error in perceiving the value of a given option; and the relative error

in comparing the values of two options. We captured the distinction between these two

sources of error by modelling the perceived value of each option as a random variable and

the perception of the value difference by a “just noticeable” threshold (or level of impreci-

sion) σ. While increased precision (i.e., a decrease in σ) is unambiguously beneficial when

the agent perceives the values perfectly, matters are less clear when the agent perceives

the values imperfectly. Indeed, our results characterise different classes of problems where

increased precision may lead to choosing the worse alternative.

While our analysis is primarily theoretical, our results have practical relevance. Con-

sider, for instance, the GRADE (Grading of Recommendations, Assessment, Development

and Evaluations) international standard used for evaluating scientific evidence in medical

practice. This system provides a way to categorise the strength of evidence from clinical

trials into different certainty ratings.28 If the result of a clinical trial is a random variable,

then the attribution of a certainty rating corresponds in our framework to the comparison

of the trial results to a fixed benchmark; and the judgment about whether to adopt the

treatment comes down to the clinician’s perception of the difference between the trial

results and the certainty rating.

Concretely, suppose that a physician must choose between recommending two treat-

ments (such as an exercise regimen and a specific diet) to an overweight patient.29 Each

treatment is a random variable whose realisation reflects the aggregate weight losses of

the participants in the associated medical trials. Which treatment will be judged more

effective will depend on the physician’s level of confidence (as measured by σ). According

to our results, a more confident physician (with a smaller σ) may recommend the wrong

treatment more often than a less confident physician (with a larger σ).

As a second illustration, consider the implications of our analysis for labor markets. To

28See Schünemann et al. [31] for full details on the GRADE framework.
29The example is based on Clark [9], a meta study on the efficacy of different training/dietary regimes

for weight loss. This meta study reports differences in effectiveness with reference to various metrics,

from body mass to fat free mass and blood levels of certain hormones. Its tables and figures summarise

the difference in distributions of the relevant variables across the individual studies considered.

22



fix ideas, suppose that an applicant’s performance at a job interview is a random variable;

and that the prospective employer bases the hiring decision on the interview performance

of the candidate relative to a benchmark (which reflects the criteria stated in the job

description). In particular, suppose that the employer definitely hires an applicant whose

interview performance exceeds the benchmark by a threshold difference σ and definitely

does not hire one whose performance falls short by σ.

Our results show that unintended consequences can result when the threshold σ varies

with observable characteristics of the applicant. To illustrate, suppose that the employer

applies a smaller threshold to applicants with a post-secondary degree (reasoning, perhaps,

that such applicants should exhibit less variance between perceived performance and true

ability). Then, contrary to compensating for higher variance, our results show that an even

higher proportion of errors (in either direction) could be made when hiring applicants who

lack post-secondary education. More generally, if the level of imprecision σ (interpreted

as a level of “tolerance”) varies with observable characteristics like age, sex or race, it can

result in unintended discrimination.

To close, it is worth noting that our analysis assumed a simple threshold structure

(with a one-parameter perception error σ). We took this approach because it allowed us

to study the comparative statics of imprecise judgment in a sharp way with as few “moving

parts” as possible. Having said this, it would be interesting to see how our analysis might

be extended to more structured situations, such as when: (a) there is a threshold σij for

alternatives i and j that depends on the pair being compared in the form σij = σi + σj

(i.e., each alternative is has its own “inborn” level of imprecision and the imprecision in

any comparison is the total imprecision of the alternatives being compared); (b) there are

two different thresholds, σij and σji, such that i is chosen over j when ui − uj > σij and

j is chosen over i when uj − uj > σji.
30 We leave this investigation to further research.
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A Examples 2 and 3

In this Appendix, we follow the excellent treatment of Nadarajah [26]. When ui and uj

are independent random variables, iterated expectations imply that

Fui−uj (x) =

∫
R

Pr (ui ≤ z + x|z) fj (z) dz =

∫
R
Fi (z + x) fj (z) dz. (12)

In Examples 2 and 3, εi and εj are i.i.d. Gumbel with location νi = 0 = νj and scale

ci = c ≥ cj = 1. So, ui is Gumbel with location ûi and scale c while uj is Gumbel with

location ûj and scale 1. In other words,

Fi (w) = e−e
−w−ûi

c and fj (w) = e−e
−(w−ûj)

e−(w−ûj).
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By replacing these formulas into (12) and defining A(x) := ex−(ûi−ûj), one obtains the cdf

Fui−uj (x) =

∫
R
e−e

− z+x−ûi
c e−e

−(z+x−ûj)
e−(z+x−ûj)dz = cA (x)

∫
R+

yc−1e−(A(x)y
c+y)dy (13)

where the last equality follows from the change of variables y = e−
z+x−ûi

c .

By differentiating (13) with respect to x, one obtains the density

fui−uj (x) = cA(x)

∫
R+

yc−1e−(A(x)y
c+y)dy − cA(x)2

∫
R+

y2c−1e−(A(x)y
c+y)dy. (14)

A.1 Example 2

In the special case where c = 1, the expressions in (13) and (14) simplify to

Fui−uj (x) = A(x)

∫
R+

e−y(A(x)+1)dy =
A(x)

A(x) + 1
(15)

fui−uj (x) = A(x)

∫
R+

e−y(A(x)+1)dy − A(x)2
∫
R+

ye−y(A(x)+1)dy =
A(x)

(A(x) + 1)2
(16)

(The last equality in (16) follows from integration by parts.) These formulas correspond

to the cdf and density of a logistic distribution with location ûi − ûj and scale 1.

Given (15), the probability that i “beats” j is then given by

Pr (ui > uj + σ) = 1− Fui−uj (σ) =
1

A(σ) + 1
=

eûi

eûj+σ + eûi
.

Using this formula, the analysis then proceeds as in the main text.

A.2 Example 3

When c > 1, simple closed form expressions are lacking and the analysis is much more

involved. Nonetheless, we can make the following simple observations:

(i) Since ui and ui are independent Gumbel, their mean value difference is

E(ui − uj) = E(ui)− E(uj) = [ûi + cγ]− [ûj + γ] = (ûi − ûj) + (c− 1)γ

where γ denotes the Euler-Mascheroni constant.

(ii) For c sufficiently close to 1, the median of the value difference mui−uj is approxi-

mated by the difference of the median values so that

mui−uj ≈ mui −muj = [ûi − c ln ln 2]− [ûj − ln ln 2] = (ûi − ûj) + (c− 1)| ln ln 2|.

From (i) and (ii), it follows that i is both mean-better and median-worse than j when

0.36651 ≈ | ln ln 2| < ûj − ûi
c− 1

< γ ≈ 0.57722.
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B Proof of Proposition 1

First, define M := 2 max{µ̂, m̂}. For ε > 0, let T (c, ε) denote the symmetric triangular

distribution centred at c with support on the interval [c− ε, c+ ε]; and let t(c,ε) denote its

density. Finally, let ui − uj denote the even mixture between T (−σ̂, ε) and T (M + σ̂, ε);

and let fui−uj :=
t(−σ̂,ε)+t(M+σ̂,ε)

2
denote the density of this mixture distribution.

By symmetry, µui−uj = mui−uj = M
2
≥ µ̂, m̂. What is more,

fui−uj(−σ̂) = t(−σ̂,ε)(−σ̂) =
1

ε
≥ 2δ and fui−uj(σ̂) = 0

by choosing 0 < ε ≤ min{2ĉ, 2σ̂, 1
2δ
}. Using equations (3) and (4), it then follows that

∂p (i, σ̂)

∂σ
=

1

2

[
fui−uj (−σ̂)− fui−uj (σ̂)

]
=

1

2ε
≥ δ.

With the specified choices of M and ε, fui−uj satisfies all of the desired requirements.

C Unimodality: some classical results

If ui and uj are independent with densities denoted by fi and fj, then (3) simplifies to

fui−uj (x) =

∫
R
fi (z + x) fj (z) dz =

∫
R
fi (z) fj (z − x) dz for all x ∈ R. (17)

This formula may be viewed as a convolution of two densities. To see this, recall that the

convolution h ∗ g of two functions g, h : R→ R is defined by

[h ∗ g](x) :=

∫
R
h (z) g (x− z) dz for all x ∈ R.

It is immediate from the definition that convolution has some nice algebraic properties—

including that it is (i) commutative, (ii) associative and (iii) commutes with translation.31

Since it will be quite useful in the sequel, we denote the reflection of a function f : R→ R
through zero by f̄ . In other words, f̄ (y) := f (−y) for all y ∈ R. (Notice that the function

f is symmetric around zero if and only if f = f̄ .32)

Using this notation, equation (17) simplifies to

fui−uj (x) = [fi ∗ f̄j] (x) . (18)

Having expressed fui−uj as a convolution of densities, we are in position to exploit some

classical results about the preservation of unimodality under convolution.

The first result, due to Ibragimov [20], states that unimodality is preserved under

convolution provided that one of the densities is log-concave. Since reflection preserves

unimodality and log-concavity, formula (18) allows us to re-state his result as follows:

31Formally: (i) h ∗ g = g ∗ h, (ii) h ∗ (g ∗ f) = (h ∗ g) ∗ f and (iii) (τνh) ∗ g = τν(h ∗ g). Recall that the

translation of a function f : R→ R by c ∈ R is given by [τcf ](x) := f(x+ c) for all x ∈ R.
32Symmetry of f around c ∈ R amounts to the symmetry of the translation τ−cf around zero.
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Theorem 1. (Ibragimov) Suppose that ui and uj are independently distributed random

variables. (I) If one is unimodal and the other is log-concave, then fui−uj is unimodal.

(II) If the unimodal (but not necessarily log-concave) random variable is also strictly

unimodal, then fui−uj is strictly unimodal.

Technically, Ibragimov’s result only implies (I). To show (II), we adapt the argument

that Dharmadhikari and Joag-Dev [13] use in the proof of Theorem 1.10(a):

Proof of (II): Without loss of generality, suppose that fi is strictly unimodal around

ν̄i = 0 and fj is log-concave around ν̄j = 0. (The argument is symmetric when fj is

strictly unimodal and fi is log-concave; and, when the central modes of ui and uj are

non-zero, it can be applied directly to the “de-moded” random variables.33)

For simplicity, we also suppose that fi is differentiable and fj(z) > 0 for all z ∈ R. (One

can remove these restrictions using Dharmadhikari and Joag-Dev’s arguments from the

proof of Theorem 1.10(a).) Under these restrictions, formula (17) implies

f ′ui−uj(x) =

∫
R
f ′i(z)fj(z − x)dz

for all x ∈ R. The crux of the proof is then to establish that

f̄j(y)f ′ui−uj(w) > f̄j(w)f ′ui−uj(y) (19)

holds for all y > w. To see that the desired result follows from (19), first note that fui−uj

is unimodal around ν̄ = 0 by Theorem 1(I). So, the stated restrictions on fi and fj imply

that f ′ui−uj(0) = 0. By substituting (y, w) = (0, x) and (y, w) = (x, 0) into (19), one

obtains

f ′ui−uj(x)


< 0 for x ∈ (0,+∞)

= 0 for x = 0, and

> 0 for x ∈ (−∞, 0).

In other words, fui−uj is strictly unimodal around zero, which is the desired result.

To establish inequality (19), fix some w, y ∈ R such that y > w. Then, since fj is

log-concave and fi is strictly unimodal, the following inequalities hold for any z > 0:

fj(y)fj(z − w) ≤ fj(w)fj(z − y) and f ′i(z) < 0. (20)

By combining the two inequalities in (20) and integrating over R+, one obtains

fj(y)

∫
R+

f ′i(z)fj(z − w)dz > fj(w)

∫
R+

f ′i(z)fj(z − y)dz. (21)

33In particular, (τ−ν̄ifi) ∗ (τ−ν̄jfj) = (τ−ν̄ifi) ∗ (τν̄j f̄j) = (τ−ν̄i · τν̄j )[fi ∗ f̄j ] = τν̄j−ν̄i [fi ∗ f̄j ].
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Since the inequalities in (20) are both reversed when z < 0, the same argument gives

fj(y)

∫
R−

f ′i(z)fj(z − w)dz > fj(w)

∫
R−

f ′i(z)fj(z − y)dz. (22)

By combining (21) and (22), one then obtains the desired inequality (19).

Before Ibragimov, Wintner [36] had already shown that unimodality is preserved under

convolution when both of the distributions are symmetric.34 Since reflection preserves

symmetry, formula (18) allows us to re-state his result as follows.

Theorem 2. (Wintner) Suppose that ui and uj are independently distributed random

variables that are symmetric around ν̄i and ν̄j, respectively. (I) If ui and uj are unimodal,

then fui−uj is unimodal. What is more, fui−uj is symmetric around ν̄i − ν̄j. (II) If one

of the two random variables is also strictly unimodal, then fui−uj is strictly unimodal.

Wintner’s result only implies the first sentence in (I). For the second sentence, suppose

ν̄i = 0 = ν̄j. (By the argument in Theorem 1(II), this is without loss.) Then,

fui−uj (x) = [fi ∗ f̄j] (x) = [f̄i ∗ fj] (x) = [fj ∗ f̄i] (x) = fuj−ui (x)

where the second equality holds by symmetry and the third by commutativity. Since

fuj−ui (x) = fui−uj (−x) for all x ∈ R, fui−uj is symmetric around zero.

For (II), we use Theorem 1.5(b) of Dharmadhikar and Joag-Dev [13], which shows

that: the set of random variables that are unimodal and symmetric around zero coincides

with the convex hull of uniform random variables that are symmetric around zero.

Proof of (II): Without loss of generality, suppose that ui is strictly unimodal and

ν̄i = 0 = ν̄j. By the cited result of Dharmadhikar and Joag-Dev, it then suffices to

establish that fui−uj is strictly unimodal when uj is uniform on [−a, a] for some a ∈ R+.

To show this, first note that fi(z) > 0 for all z ∈ R (by strict unimodality of ui); and

fj (z) = 1
2a

for all z ∈ [−a, a] (by uniformity of uj). From (17), it then follows that

fui−uj (x) =

∫
R
fi (z + x) fj (z) dz =

1

2a

∫ a

−a
fi (z + x) dz =

Fi(x+ a)− Fi(x− a)

2a
(23)

for all x ∈ R. By differentiating (23) and using the symmetry of fi around zero, one

obtains

f ′ui−uj (x) =
fi(x+ a)− fi(x− a)

2a
=
fi(|x+ a|)− fi(|x− a|)

2a
. (24)

Since fi is strictly unimodal, it is decreasing on (0,+∞). Using (24), it follows that

f ′ui−uj(x)


< 0 for x ∈ (0,+∞)

= 0 for x = 0, and

> 0 for x ∈ (−∞, 0).

34For a concise and recent treatment of this result, see Purkayastha [28] (Theorem 2.1).
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In other words, fui−uj is strictly unimodal around zero, which is the desired result.

A third important result about unimodality is Hodges and Lehmann’s [19] observation

that the convolution of a unimodal density f with its reflection f̄ is unimodal (see also

Purkayastha [28] (Theorem 2.2), Dharmadhikar and Joag-Dev [13] (Theorem 1.8) or Vogt

[35]). (In statistics, the convolution f ∗ f̄ is known as the symmetrization of f .) Using

formula (18), it is possible to translate their result into our framework as follows:

Theorem 3. (Hodges and Lehmann) Suppose that ui and uj are unimodal i.i.d.

random variables. Then, fui−uj is strictly unimodal and symmetric around zero.

Hodges and Lehmann’s result is equivalent to the unimodality of fui−uj around zero. In

turn, the symmetry of fui−uj follows from the same kind of argument used to establish the

second sentence of Theorem 2(I) above. Finally, the strict unimodality of fui−uj follows

from an application of the Cauchy-Schwarz inequality. In particular:

Proof: Since fui−uj is unimodal and symmetric at zero, it suffices to show that

fui−uj(0) > fui−uj(x) for all x > 0. Towards a contradiction, suppose that fui−uj(x) =

fui−uj(0) for some x > 0. Then, from equation (17), it follows that∫
R
f (z + x) f (z) dz = fui−uj (x) = fui−uj (0) =

∫
R
f 2 (z) dz

where f is the density of ui. By manipulating the right-hand side, one obtains

∫
R
f (z + x) f (z) dz =

(√∫
R
f 2 (z) dz

)2

=

√∫
R
f 2 (z + x) dz ·

√∫
R
f 2 (z) dz. (25)

By the Cauchy-Schwartz inequality, equation (25) implies that f (z) = f (z + x) for almost

all z ∈ R.35 By the argument given at the end of the proof of Proposition 10, it then

follows that
∫
R f(z)dz 6= 1. But, this contradicts the fact that f is a density.

D Three alternatives

To derive an explicit formula for (10), one must compute Rσ
i and Rσ

ij for i, j ∈ {1, 2, 3}.
Where f (x, y, z) denotes the joint density of (u1, u2, u3), it is straightforward to see that

Rσ
1 =

∫
R

∫ x−σ

−∞

∫ x−σ

−∞
f (x, y, z) dydzdx (26)

Rσ
12 =

∫
R

∫ x

x−σ

∫ x−σ

−∞
f (x, y, z) dzdydx+

∫
R

∫ y

y−σ

∫ y−σ

−∞
f (x, y, z) dzdxdy (27)

35On its own, the Cauchy-Schwartz inequality only implies that there exists some λ ∈ R such that

f (z) = λf (z + x) for almost all z ∈ R. Since
∫
R f(z)dz =

∫
R f(z + x)dz however, it follows that λ = 1.
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The expressions for Rσ
2 , Rσ

3 , Rσ
13 and Rσ

23 are symmetric. To elaborate, observe that {u1}
is the top-set if and only if the value realizations are such that u2, u3 < u1 − σ, which

gives (26). In turn, (27) follows from the observation that {u1, u2} is the top-set if and

only if: (i) u3 < u1 − σ ≤ u2 ≤ u1; or, similarly, (ii) u3 < u2 − σ ≤ u1 ≤ u2.

To derive an explicit formula for (11), one must compute the threshold probabilities

Rσ
i→ij and Rσ

ij→ijk for i, j, k ∈ {1, 2, 3}. By the same kind of reasoning as above,

Rσ
2→12 =

∫
R

∫ y−σ

−∞
f (y − σ, y, z) dzdy (28)

Rσ
23→123 =

∫
R

∫ y

y−σ
f (y − σ, y, z) dzdy +

∫
R

∫ z

z−σ
f (z − σ, y, z) dydz (29)

The other threshold probabilities are symmetric. For (28), note that the boundary be-

tween top-sets {u2} and {u1, u2} is defined by the requirement that u3 < u1 = u2 − σ.

Similarly, for (27), note that the boundary between top-sets {u2, u3} and {u1, u2, u3}
requires: (i) u1 = u2 − σ ≤ u3 ≤ u2; or (ii) u1 = u3 − σ ≤ u2 ≤ u3.

To obtain an explicit formula for p(i, σ), one can replace (26), (27) and their analogs

into equation (10). One can then check that the result obtained by differentiating p(i, σ)

with respect to σ coincides exactly with the formula given by replacing (28), (29) and

their analogs into equation (11). We leave these calculations to the reader.
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