
Bandits in the Lab *

Johannes Hoelzemann† Nicolas Klein‡

This version: January 26, 2018

Abstract

We test Keller, Rady, Cripps’ (2005) game of strategic experimentation
with exponential bandits in the laboratory. We find strong support for the
prediction of free-riding because of strategic concerns. We also find strong
evidence for behavior that is characteristic of Markov perfect equilibrium:
non-cutoff behavior, lonely pioneers and frequent switches of action.
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1 Introduction

Innovation and social learning are often the work of pioneers, who, by bearing the
costs of experimenting with a new approach, create informational spill-overs for oth-
ers. Whether we consider R&D, resource exploration, or the testing of a new drug, the
information produced by a relatively small set of agents benefits a much larger group
of agents. Indeed, R&D is universally recognized as an important factor of economic
growth (Romer, 1990; Grossman & Helpman, 1991). An economy’s productivity level
depends on innovation, which is driven by knowledge emerging from cumulative R&D
experience as well as an economy’s overall knowledge stock (Griliches, 1988; Coe &
Helpman, 1995). It is thus important for economists to analyze pioneers’ incentives for
information production in the presence of informational spill-overs.

Multi-armed bandit models have become canonical in economics to study infor-
mation producers’ dynamic trade-offs. At each point in time, a decision maker either
optimally exploits the information he already has, or he decides to invest in exploration
in order to make better future decisions. Until fairly recently, the literature focussed
on the trade-off of an individual decision maker acting in isolation. Bolton & Harris
(1999) and Keller, Rady, Cripps (2005; subsequently: KRC) have extended the individ-
ual choice problem to a multi-player continuous-time framework. There now appears
a strategic component to the information-acquisition problem, in that other players
now also benefit from the information acquired at a cost by a given player. To make
the problem tractable, these papers are focussing on the choice between a safe arm,
yielding a known payoff, and a risky arm, which yields payoffs following a stochastic
process. The time-invariant quality of this risky arm can be good or bad. If it is good
(bad), it dominates (is dominated by) the safe arm. Whether the risky arm is good or
bad is initially unknown and can only be found out by trying it out over time. Trying
it out is costly, however, as it means forgoing the safe payoff. As the quality of the risky
arm is assumed to be the same across players, and players can observe each other’s ac-
tions and payoffs, there is a positive informational externality associated with a player’s
use of the risky arm. This gives rise to a dynamic public-good problem, where the pub-
lic good in question is the dynamically evolving information about agents’ common
state of the world.

While the game-theoretical analysis of these problems will lead to multiple equi-
libria, it has nonetheless yielded many sharp qualitative behavioral predictions. Yet,
empirical evidence for these predictions has thus far been scarce. Indeed, the dynamic
nature of the problem and the continuous-time setting underlying its theoretical anal-
ysis raise some challenges both for the collection of field data and the experimental
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implementation in the laboratory. To the best of our knowledge, we are the first to
implement an experimental test of continuous-time strategic-experimentation models
in the laboratory. Our goal in doing so is twofold. Firstly, we want to test whether the
bandit models correctly predict agents’ behavior “in the model”, by making our sub-
jects face a setting closely resembling KRC’s. This is of course a necessary, but by no
means sufficient, condition for us to have “the right model” to approach these ques-
tions with. Secondly, we aim to shed some light on which of the multiple equilibria
seem best-suited to capture actual behavior.

Our analysis relies on comparing the behavior of our experimental subjects in
groups where the quality of the risky arm was known to be the same for all partners
(which we call the strategic treatment) to that of groups where its quality was iid across
members, the control treatment. When the quality of the risky arm is known to be the
same across players, rational agents will take into account the result of their partners’
experimentation when updating their beliefs. As they can learn from what others are
doing, they have an incentive to induce others to behave in certain ways so they may
learn from it. There is thus some strategic interaction across players, even though a
player’s payoffs depends only on his own action and the common state of the world,
i.e., there are no payoff externalities.

Specifically, we use the simplest formalization of the continuous-time strategic-
experimentation framework, KRC’s exponential-bandit setup, as our theoretical bench-
mark. In this setting, a bad risky arm never yields any payoff, while a good risky arm
gives lump-sum payoffs at the jumping times of a Poisson process. Thus, whenever the
risky arm is usedwithout a success, players gradually grow pessimistic about its quality;
as soon as they observe a success, they know for sure that the risky arm is good.

KRC analyze Markov perfect equilibria (MPE) with the players’ common poste-
rior belief as a state variable.1 While there is a continuum of MPE, all equilibria make
two fundamental qualitative predictions regarding players’ behavior: As information
is a public good, players will produce too little of it. Furthermore, it is predicted that all
players will not use a simple cutoff strategy in equilibrium. A cutoff strategy is defined
by a unique threshold belief above which it prescribes risky play, while prescribing safe
play below it.

Hörner, Klein, andRady (2014; subsequently: HKR) analyze non-Markovian equi-
libria, i.e. perfect Bayesian equilibria (PBE) inwhich a player’s action choice can depend
on the history in more complex ways. They show that free-riding prevails in all PBE

1These are perfect Bayesian equilibria where a player’s action choice depends on the history only via
the common posterior belief.
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as well. Moreover, the average-payoff maximizing PBE is strongly symmetric and has
a particularly simple structure: Players play a cutoff strategy (on the path of play), ap-
plying the same cutoff as a single agent.

Our empirical tests are designed to contrast the qualitative predictions of MPE
with those of the best PBE, which is a natural candidate for a focal equilibrium both
because it maximizes players’ average equilibrium payoffs and because it has a particu-
larly simple structure. In a first step, we show that the informational externality indeed
impacts subjects’ behavior: the average experimentation intensity is lower, and sub-
jects’ payoffs are higher, in the strategic treatment. Secondly, we find strong evidence
of the kind of qualitative behavior predicted by MPE as opposed to the simpler be-
havior predicted by the best PBE, with players’ adopting more sophisticated behaviors
than cutoff strategies in the strategic treatment. Indeed, players switch much more be-
tween safe and risky, and use cutoff strategies much less frequently, than they do in the
control treatment. Moreover, there is a larger proportion of time during which exactly
one player is playing risky in the strategic treatment. All this is fully consistent with
the players’ switching between the roles of pioneer and free-rider, which characterizes
equilibrium play at intermediate beliefs in KRC and differentiates it e.g. from the best
PBE in HKR.

Our game is of course very complicated, so that we cannot reasonably expect sub-
jects to be able to compute equilibrium strategies. Nonetheless, we are documenting
behavior that is verymuch in line with the sophisticated coordination required byMPE
play, as opposed, e.g., to the simpler structure of the best PBE. Yet, we of course can-
not conclude that our experimental subjects fully adopt equilibrium behavior, rather
than simpler heuristics that make them behave in ways that are suggestive of MPE be-
havior.In fact, we proceed to subdivide the players’ beliefs into a region where risky is
the dominant action choice, a region where safe and risky are mutually best responses
and one where safe is a dominant action, and find no striking qualitative differences
in players’ behavior across these regions. Thus, while our subjects adopt some of the
qualitative aspects of equilibrium behavior, they do not seem strictly to separate these
different strategic regions. Furthermore, they will often extend experimentation even
below the single-agent cutoff in both the strategic and the control treatments, which
leads us to conjecture that subjects are not able to compute beliefs and cutoffs precisely.
Indeed, even in the region where safe is the dominant action, the average experimenta-
tion intensity is higher in the control treatment, which is inconsistent with the presence
of an encouragement effect.2

2The encouragement effect has been identified by Bolton &Harris (1999) and is not predicted to arise
in theKRC setting. By virtue of this effect, players experimentmore than if theywere by themselves. They
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The rest of the paper is organized as follows: Section 2 reviews some of the related
literature; Section 3 explains the KRC model in more detail; Section 4 sets out our ex-
perimental implementation; Section 5 discusses our findings, and Section 6 concludes.
TheAppendix exhibits and explains the interface our experimental subjects were using,
and reproduces the instructions the subjects received.

2 Literature Review

Thebandit problem as a stylized formalization of the trade-off between exploration and
exploitation goes back to Thompson (1933) and Robbins (1952). It was subsequently
analyzed, amongst others, by Bellman (1956) and Bradt, Johnson, Karlin (1956). Its
first application to economics was in Rothschild (1974), who analyzed the price-setting
problem of a firm facing an unknown demand function. Gittins & Jones (1974) showed
that, if arms are stochastically independent of each other and the state of only one arm
can evolve at any one time, an optimal policy in the multi-armed bandit problem is
given by the so-called “Gittins Index” policy. For this policy, one can consider the
problem of stopping on each arm in isolation from the other arms. The value of this
stopping problem is the so-called Gittins Index for this arm. Now, an optimal policy
consists of, at each point in time, using the arm with the highest Gittins Index. Pres-
man (1990) calculated the Gittins Index for the case in which the underlying stochastic
process is a Poisson process. Bergemann & Välimäki (2008) give a survey of this liter-
ature.

Bolton & Harris (1999, 2000) were the first to consider the multi-player version
of the two-armed bandit problem. While they assumed that the underlying stochas-
tic process was a Brownian motion, KRC analyzed the corresponding problem with
exponential processes. This model proved to be more tractable and is underlying our
theoretical hypotheses. While the previous papers focussed on MPE, HKR extended
the equilibrium concept beyond Markov perfect equilibrium.3

do so in the hope of producing public good news, which, in turn, makes their partners more optimistic.
As their partners become more optimistic, they will be more inclined to experiment, thus providing
some additional free-riding opportunities to the first player. This effect is absent in KRC, because here
good news is conclusive: It resolves all uncertainty, so that, as soon as there is good news, players are not
interested in free-riding any longer.

3Many variants of the multi-player bandit problem have been analyzed since. In Keller & Rady
(2010), a bad risky arm also sometimes yields a payoff. In Klein & Rady (2011), the quality of the risky
arm is negatively correlated across players. Klein (2013) introduces a second risky arm, with a quality
that is negatively correlated with that of the first. In Keller & Rady (2015), the lump-sum payoffs are
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The only papers we are aware of that conduct experimental tests of bandit prob-
lems areMeyer & Shi (1995), Banks, Olson, Porter (1997), Anderson (2001, 2012), and
Gans, Knox, Crosson (2007). All these papers consider various single-agent problems.
We are not aware of any previous experimental study of a strategic, multi-player, bandit
problem.

3 TheTheoretical Framework

We borrow our theoretical reference framework from KRC. There are n ≥ 1 players,
each of whom plays a bandit machine with two arms over an infinite horizon. One of
the arms is safe, and yields a known flow payoff of s > 0 whenever it is pulled. The
other arm is risky and can be either good or bad. If it is bad, it never yields any payoff.
If it is good, it yields a lump sum of h > 0 at the jumping times of a Poisson process
with parameter λ > 0. It is assumed that g := λh > s. Players decide in continuous
time which arm to pull. Payoffs are discounted at a rate r > 0. If they knew the quality
of the risky arm, players would have a strictly dominant strategy always to pull a good
risky arm and never to pull a bad one. They are initially uncertain whether their risky
arm is good or bad. Yet, the only way to acquire information about the quality of the
risky arm is to use it, which is costly as it implies forgoing the safe payoff flow s. The n
players’ risky arms are either all good or all bad. Players share a common prior belief
p0 ∈ (0, 1) that their risky arms are good. Every player’s actions as well as the outcomes
of their actions are publicly observable; therefore, the information one player produces
benefits the other players as well, creating incentives for players to free-ride on their
partners’ efforts. Players thus share a common posterior belief pt at all times t ∈ R+.
All the parameter values and the structure of the game are common knowledge.

The common posterior beliefs are derived from the public information via Bayes’
rule. As a bad risky arm never yields any payoff, the first arrival of a lump sum fully
reveals the quality of all players’ risky arms. Thus, if a success on one of the players’
risky arms is observed at instant τ ≥ 0, the common posterior belief satisfies pt = 1

for all t > τ . If no success has been observed up until instant t, the common posterior
belief satisfies

pt =
p0e

−λ
∫ t
0

∑N
i=1 ki,τ dτ

p0e
−λ

∫ t
0

∑N
i=1 ki,τ dτ + 1− p0

,

costs to be minimized. Rosenberg, Solan, Vieille (2007) and Murto & Välimäki (2011) analyze the case
of privately observed payoffs, while Bonatti & Hörner (2011) investigate the case of privately observed
actions. Bergemann&Välimäki (1996, 2000) consider strategic experimentation in buyer-seller settings.
Hörner & Skrzypacz (2016) give a survey of this literature.
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where ki,τ = 1 if player i uses the risky arm at instant τ and ki,τ = 0 otherwise.

KRC show in their Proposition 3.1 that, if players are maximizing the sum of their
payoffs, all players i ∈ {1, · · · , n} choose ki,t = 1 if pt > p∗n := rs

(r+nλ)(g−s)+rs
, and

ki,t = 0 otherwise. Note that p∗n is strictly decreasing in the number of players n. In
particular, in the single-agent case (n = 1), the decision maker optimally sets k1,t = 1

if pt > p∗1 :=
rs

(r+λ)(g−s)+rs
, and k1,t = 0 otherwise.

KRC go on to analyze the game of strategic information acquisition, where each
player maximizes his own payoff, not taking into account that the information he pro-
duces is valuable to the other players as well. They analyze perfect Bayesian equilibria
in Markov strategies (MPE), i.e., strategies where a player’s action after any history can
be written as a time-invariant function ki(p) of the common belief at that history. It is
shown that, for beliefs close to 1 (0), playing risky (safe) is a dominant action; for inter-
mediate beliefs, players’ effort levels are strategic substitutes. In any MPE with a finite
number of switches, all players will set ki(p) = 0 for all p ≤ p∗1 (see Proposition 6.1 in
KRC). Moreover, it is shown that there exists noMPE in which all players play a cut-off
strategy, i.e. a strategy that prescribes the use of the risky arm for beliefs above a single
cutoff and that of the safe arm below. The intuition for this result is best described in
the context of a two-player game. Indeed, suppose to the contrary that there existed an
equilibrium in cutoff strategies. As there is a region of beliefs in which safe and risky
are mutually best responses, both players cannot use the same cutoff in equilibrium;
i.e., one player plays the role of pioneer, while the other one free-rides, throughout the
belief region where safe and risky are mutually best responses. As he gets all his in-
formation for free in the relevant belief region, the free-rider’s payoff function will be
higher than the pioneer’s. As a player’s propensity to play risky is increasing in his own
payoff, however, this would imply that the free-rider entered the region in which risky
is dominant at a more pessimistic belief than the pioneer. Thus, the roles of pioneer
and free-rider must switch at least once in equilibrium.

HKR extend the analysis to non-Markovian PBE. They show that on the path of
play in the average-payoff maximizing PBE, all players set ki(p) = 1 for all p > p∗1, and
ki(p) = 0 otherwise. Thus, in stark contrast to the simple structure of the single-agent
optimum or HKR’s average-payoff maximizing PBE, every MPE has the property that,
for intermediate beliefs, players change roles between experimenter and free-rider at
least once. As a matter of fact, KRC show that, for any given number of role changes
greater than, or equal to, one, there exists anMPE with that number of role changes. A
behavioral prediction of MPE is thus that players change roles for intermediate beliefs
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at least once.4

4 Parametrization and Experimental Design

4.1 Experimental Implementation

In our experimental treatments, the number of players will be n = 2 or n = 3. We
choose the discount rate r = 1/120. To implement the infinite-horizon game in the
laboratory, we end the game at the first jump time of a Poisson process with parameter
r.5 We set the probability that the risky arm is good p0 = 1/2, the safe payoff s = 10,
the lump-sum amount paid out by a good risky arm h = 2500, and the arrival rate
of lump sums on the good risky arm λ = 1/100. Thus, 25 = g > s = 10. The
realizations of all random processes were simulated ahead of time.6 We generated six
different sets of realizations of the random parameters, corresponding to six different
games each of our subjects played. To make our findings more easily comparable, we
have kept the same realizations for both the strategic and the control treatments.7 One
unit of time corresponds to a second in our experimental implementation. In keeping
with the theoretical predictions, we have endeavored to implement our experimental
investigation in continuous time, subject to the restrictions imposed by the available
computing power.8

Subjects were randomly assigned to groups of n = 2 or n = 3 players. We used a
between-subject design: Each group was randomly assigned either to a control treat-
ment or to a strategic treatment, and played the six games in random order. To ensure

4KRC show that there is also a unique symmetric MPE, where players use the risky (safe) arm with
an interior intensity k(p) ∈ (0, 1) (1 − k(p)) throughout the belief region where risky and safe are
mutually best responses. As we wanted to keep the decision problem as simple as possible, our subjects
do not have the option of choosing interior experimentation levels. Please also see our discussion in the
Conclusion.

5Subjects knew that the end time of the game corresponded to the first jumping time of a Poisson
process with parameter r but did not know the realization of this process at any time before the game
ended. In particular, the time axis they saw on their computer screens gradually grew longer as time
progressed, so that they could not infer the end date. Please see the Appendix for details and for the
instructions the subects received.

6As all our stochastic processes are Lévy processes, simulating their realizations ahead of time is
equivalent to simulating them as the game progresses. In order to increase the computational efficiency
of the implementation, we chose to simulate them ahead of time.

7Details are available from the authors upon request.
8Thus, our implementation corresponds to the “Inertial Continuous-Time” setting in Calford &

Oprea (2017).
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a balanced data-collection process, we replicated any order of the six games that was
used for k (k ∈ {1, · · · , 10}) groups in the strategic treatment for k groups in the con-
trol treatment as well. Subjects could see their fellow group members’ action choices
and payoffs on their computer screens. They had to choose an action before the game
started and could switch their action at any point in time by clicking on the correspond-
ing button with their mouse. (Please see the Appendix for details and screen shots.)

All experimental sessions took place in July and August 2017 at the BizLab Exper-
imental Research Laboratory at UNSW Sydney. All subjects were recruited from the
university’s subject pool and administered by the online recruitment system ORSEE
(Greiner, 2015). All participants were native speakers of English. In total, 100 subjects,
46 of whomwere female, participated in 60 sessions. The participants’ age ranged from
18 to 35 years, with an average of 20.78 and a standard deviation of 2.43. Because the
implementation was computationally very intensive and because we wanted to collect
eye-tracking data, only between 2 and 3 subjects participated at a time in each session.
Upon arrival, participants were seated in front of a computer at desks which were sepa-
rated by dividers to minimize potential communication. Participants received written
instructions and had the opportunity to ask questions.9 After the subjects had success-
fully completed a simple comprehension test, the eye-tracking devices were calibrated,
after which the subjects started the experiment. The experiment was programmed in
zTree (Fischbacher, 2007). At the end of the experiment, we collected some informa-
tion on participants’ demographic attributes and risk attitudes. They were then pri-
vately paid their cumulated experimental earnings from one randomly selected game
in cash (with a conversion rate of E$ 100 = AU$ 1) plus a show-up fee of AU$ 5. The
average earnings were AU$ 23.86, with a standard deviation of AU$ 9.95.

4.2 Behavioral Hypotheses

One of the main theoretical predictions of both MPE and PBE is that players use the
risky arm less in a strategic setting than in a situation in which they are single players.
This is because players free-ride on the information their partners are producing. In-
deed, players are predicted to play safe at all beliefs p ≤ p∗1 in all these instances, while
efficiency would require that they play risky at all beliefs p > p∗n, where p∗n < p∗1. Single
players and players playing the best PBE should play risky at all beliefs p > p∗1, i.e., in
the average-payoff maximizing PBE, players on path adopt the same cutoff behavior as
a single agent. In anyMPE, by contrast, since at least one player is not playing a cut-off

9The instructions handed out to all participants can be found in the Appendix.
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strategy, at least one player will play safe at some beliefs above p∗1. Indeed, it is possible
to derive a lower bound p‡ ∈ (p∗1, p

m), where pm := s
g
is a myopic player’s cutoff belief,

such that, for all beliefs in (p∗1, p
‡), at least one player plays safe. Indeed, as KRC show

(their Equation (6), p.49), it is a best response for player i to play safe if and only if his
value function ui(p) satisfies ui(p) ≤ s+K−i(p)c(p), whereK−i(p) :=

∑
j ̸=i kj(p) is

the number of players other than i who play risky at belief p, and c(p) := s − pg is a
player’s myopic opportunity cost for playing risky, given the belief p. An upper bound
on a player’s equilibrium value function ui is given by Vn,p∗1

, the value function of all
players playing risky on (p∗1, 1], and safe on [0, p∗1]. Thus, a lower bound p‡ is given by
the unique root Vn,p∗1

(p‡) − s − (n − 1)c(p‡) = 0. By the same token, we can derive
an upper bound p̄ on the lowest belief at which risky is a dominant action. For this,
we use the fact that the single-agent value function V ∗

1 constitutes a lower bound on a
player’s equilibrium value function ui, and find our upper bound p̄ as the unique root
V ∗
1 (p̄)− s− (n− 1)c(p̄) = 0.

With our numerical parameters, pm = 0.4, p̄ ≈ 0.3578 (p̄ ≈ 0.3742) if n = 2

(n = 3), p‡ ≈ 0.3428 (p‡ ≈ 0.3609) if n = 2 (n = 3), p∗1 ≈ 0.2326, p∗2 ≈ 0.1031,
and p∗3 ≈ 0.0535. As p0 = 0.5 > 0.4 = pm, players start out with a belief that
makes playing risky the dominant action. If, in the strategic treatment, n players were
uninterruptedly playing risky and there was no breakthrough, the belief would drop to
pm after 40.6/n seconds, to our upper bound in the game with n = 2 players (n = 3

players) p̄ after 58.5/n (51.5/n) seconds, to our lower bound in the game with n = 2

players (n = 3 players) p‡ after 65.0/n (57.0/n) seconds, to p∗1 after 119.4/n seconds,
to p∗2 after 216.4/n seconds, and to p∗3 after 287.4/n seconds. For the control treatment,
the same times apply with n = 1.

4.2.1 Free-Riding

Let T̂ be the time of a first breakthrough or the end of the game, whichever arrives
first. In order to measure the prevalence of free-riding, we investigate the behavior of
the average experimentation intensity, where, following KRC, we define the experimen-
tation intensity at instant t as

∑n
i=1 ki,t. Note that, in the control treatment, a player

conforming to the theoretical prediction will always play risky until his belief hits p∗1.
In the strategic treatment, at least one of them will switch to safe at a belief strictly
above p∗1 if they play an MPE. In the best PBE, they both play risky until the belief p∗1 is
reached. Furthermore, conditionally on no success arriving, beliefs will decrease faster
in the strategic setting, as player i’s belief also decreases in response to player j’s hapless
experimentation. As both effects go in the same direction, the average experimenta-
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tion intensity should be lower in the strategic setting, whether players play MPE or the
best PBE. We thus formulate the following

Hypothesis 4.1 Theaverage experimentation intensity
∫ T̂
0

∑n
i=1 ki,t dt

nT̂
is significantly lower

in the strategic treatment than in the control treatment.

Our theoretical understanding of the game would suggest that players free-ride
for strategic reasons, i.e. they opportunistically take advantage of the information their
partners provide them with. In order to test whether our subjects did in fact avail
themselves of the additional information they received in the strategic treatment, we
formulate our next

Hypothesis 4.2 Players’ average final payoffs are higher in the strategic treatment.

4.2.2 MPE vs. Best PBE

As explained above, KRC predict that subjects will use cut-off strategies in the control
treatment, whereas at least one player will not use a cut-off strategy in the strategic
setting if MPE is played. By contrast, HKR show that cutoff behavior prevails on path
in the strategic setting also if the best PBE is played. Cut-off behavior consists in a
player’s playing risky at the outset, and continuing to play risky until his risky arm is
revealed to be good, the game ends, or he switches to the safe action, and continues
to play safe until the game ends or his risky arm is revealed to be good. To investigate
whether, qualitatively, the behavior predicted by MPE prevailed, we shall examine the
following

Hypothesis 4.3 The frequency of cut-off behavior is significantly higher in the control
treatment than in the strategic treatment.

In order further to discriminate between simple MPE and the best PBE, we mea-
sure the proportion of time (before a first breakthrough) during which exactly one of
the players plays risky. Theory would predict this proportion to be nil both in the
control treatment and in HKR’s best PBE, while it is positive in KRC’s MPE. We thus
formulate the following

Hypothesis 4.4 The proportion of time before a first breakthrough during which exactly
one player plays risky is higher in the strategic treatment than in the control treatment.
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The non-cutoff behavior predicted by MPE moreover implies that players should
switch arms more often in the strategic treatment. Yet, as noted above, learning also
tends to be faster in the strategic setting, so that beliefs may more quickly reach the
threshold atwhich the playerwill want to change his action. While this effectwould add
to making switching more prevalent in the strategic treatment, a substantially higher
number of switches in the strategic treatment would provide further evidence in favor
of subjects’ adopting MPE behavior. Indeed, recall that players are predicted to switch
action at most once in both the control treatment and the best PBE, while, for any
number of role changes, there exists anMPE with that number of role changes, as KRC
show. For a two-player game, this e.g. implies that one of the playersmust switch actions
at least twice, with the other one switching once, before p∗1 is reached.10

To control for the effect that, the longer the game goes on, the more time players
have to switch actions, we define the incidence of switches as the number of a player’s
switches in a given game per unit of effective time, where effective time is understood as
the time before the game ends or the player’s risky arm is revealed to be good, whichever
happens first. Thus, we shall check the following

Hypothesis 4.5 The incidence of switches is significantly higher in the strategic treatment
than in the control treatment.

5 Experimental Results

5.1 Overview

Figures 1 and 2 display the evolution of players’ action choices over all six games. Play-
ers’ actions are described by dots, the width of which corresponds to one second of
time. For each of the six games, we conducted four treatments à ten groups each, the
parameters of which (i.e. their duration, the quality of the risky arm and the timing
of successes on the risky arm in case it was good) we had simulated ahead of time, as
explained in Section 4.

As the figures show, the duration of the games ranged from 32 seconds for Game 5
10Note that if players were to play the best PBE and the game happened to stop at a time such that p∗1 is

only reached in the strategic treatment, we should observe exactly one switch per player in the strategic
treatment and none in the control treatment. Therefore, a higher number of switches in the strategic
treatment is not inconsistent with players’ playing the best PBE. However, the magnitude of the effect,
which we report in Section 5, cannot be accounted for by this explanation.
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Figure 1: ACTION CHOICES BY PLAYERS OVER TIME: Games 1-3

Games 1 and 3 are shown at the top left and top right, respectively, while Game 2 is illustrated at
the bottom. Players’ actions are described by dots, the width of which corresponds to one second of
time. Groups 1-10 correspond to the strategic treatment for two-player groups; groups 11-20 are the
corresponding control treatments. Groups 21-30 played the strategic treatment for three-player groups,
while groups 31-40 were the corresponding control treatments. In each group, we refer to the lowermost
player as ‘player 1’, while ‘player 2’ will denote the player right above, and ‘player 3’ is the uppermost
player. The x-axis represents calendar time. A red dot indicates that a player is playing risky in a given
second, while a blue dot indicates that the player is playing safe. A black square indicates a success.12



Figure 2: ACTION CHOICES BY PLAYERS OVER TIME: Games 4-6

Game 4 is shown at the top, andGames 5 and 6 at the bottom left and right, respectively. Players’ actions are
described by dots, the width of which corresponds to one second of time. Groups 1-10 correspond to the
strategic treatment for two-player groups; groups 11-20 are the corresponding control treatments. Groups
21-30 played the strategic treatment for three-player groups, while groups 31-40 were the corresponding
control treatments. In each group, we refer to the lowermost player as ‘player 1’, while ‘player 2’ will denote
the player right above, and ‘player 3’ is the uppermost player. The x-axis represents calendar time. A red
dot indicates that a player is playing risky in a given second, while a blue dot indicates that the player is
playing safe. A black square indicates a success. 13



to 230 seconds for Game 4. As is furthermore evident from the figures, players change
their behaviors over time. While often playing risky at the beginning, players seem
to grow less inclined to use the risky arm the longer it has unsuccessfully been used
before. This is consistent with Bayesian updating of a prior belief. As we shall discuss
in more detail below, this of course does not imply that players adjust their behaviors
precisely at the equilibrium cutoff beliefs. Nevertheless, as our subsequent analysis will
show, the main qualitative predictions of Markov Perfect Equilibrium are borne out by
the experimental evidence.

5.2 Average Experimentation Intensities

One of the main qualitative predictions of the theoretical analysis is that players will
tend to free-ride on the experimentation provided by their partners. To test for treat-
ment differences non-parametrically, we apply two-sidedWilcoxon rank-sum (Mann-
Whitney) tests. Table 1 lists the mean experimentation intensity observed in our four
treatments.

UnderHypothesis 4.1, players will use the risky arm less in the strategic treatment.
The data provides support for this hypothesis.

Result 5.1 The average experimentation intensity
∫ T̂
0

∑n
i=1 ki,t dt

nT̂
is significantly lower in

the strategic treatment, as compared to the control treatment. This result holds for both
n = 2 and n = 3.

As Table 1 reveals, the additional presence of one (two) perfectly positively correlated
arms leads to lower experimentation intensities in all games. This is statistically sig-
nificant for Games 1-5, but not for Game 6, in both settings with n = 2 and n = 3.
The corresponding p-values in the case of n = 2 are 0.0085, 0.0347, 0.0001, 0.0336,
0.0002, and 0.1218 for Games 1-6, respectively. In the setting with n = 3, the average
experimentation intensity is also lower in the strategic treatment (p-values of 0.0001
for Games 1-5, and 0.5352 for Game 6, respectively).11 As Figure 2 highlights, Game 6

11Strictly speaking, theWilcoxon ranksum test treats players’ action choices as independent observa-
tions. Yet, onemight of course argue that, in the strategic setting, players’ action choices are not indepen-
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features an early success by Player 2 after 9 seconds of exploration, as well as successes
by Player 1 after 39 and 44 seconds of exploration, respectively.

Table 1: AVERAGE EXPERIMENTATION INTENSITY

n = 2 n = 3

Strategic Treatment Control Treatment Strategic Treatment Control Treatment

Game Eff. Av. Exp. Eff. Av. Exp. Eff. Av. Exp. Eff. Av. Exp.
Time Intensity Time Intensity Time Intensity Time Intensity

1 155 [0] .508 [.124] 146.5 [15.1] .730 [.293] 147.7 [12.6] .455 [.223] 134.6 [25.7] .797 [.236]
2 185.9 [.2] .512 [.157] 186 [0] .696 [.283] 83.6 [21.9] .543 [.269] 139 [67.6] .833 [.218]
3 88 [0] .565 [.126] 88 [0] .878 [.235] 88 [0] .457 [.305] 88 [0] .866 [.248]
4 230 [0] .519 [.134] 230 [0] .678 [.239] 230 [0] .383 [.245] 230 [0] .728 [.243]
5 32 [0] .653 [.349] 32 [0] .984 [.072] 32 [0] .596 [.381] 32 [0] .953 [.196]
6 14.6 [7.6] .810 [.314] 30 [25.6] .941 [.167] 25 [30.1] .800 [.336] 56.4 [43.0] .857 [.250]

As we have mentioned above, information accumulation is potentially faster in
the strategic treatment. Indeed, on account of the conditionally independent Poisson
processes, the information acquired within a given unit of time is multiplied by the
number of players currently playing risky. Therefore, conditionally on no success ar-
riving, players’ beliefs will tend to decrease more quickly in the strategic setting, im-
plying that more time will be spent at more pessimistic beliefs. To ensure that Result
5.1 is not solely due to this effect, we conduct our parameter tests separately by belief
region. Specifically, we consider the belief regions [p̄, 1

2
], where risky is a dominant

action, and (p∗1, p
‡), where risky and safe are mutually best responses in MPE.12 In the

control treatment or if players were behaving according to the best PBE in the strategic
setting, by contrast, all players should play risky in both regions. The following tables

dent of each other. As a robustness check, we also report p-values separately for Players 1, 2, and 3, re-
spectively, and find that this does not impact our conclusions at all. Indeed, in the case of n = 2, the cor-
responding p-values for Player 1 (Player 2) are 0.0675 (0.0638), 0.0230 (0.5964), 0.0092 (0.0018), 0.0887
(0.1983), 0.0166 (0.0051), and 0.6574 (0.0682) for Games 1-6, respectively. Forn = 3, the corresponding
p-values for Player 1 (Player 2) [Player 3] are 0.0149 (0.0125) [0.0052], 0.0120 (0.4270) [0.0001], 0.0068
(0.0226) [0.0015], 0.0281 (0.0025) [0.0152], 0.0052 (0.0323) [0.0051], and 0.3514 (0.4868) [0.5347] for
Games 1-6, respectively.

12Besides the beliefs ( 12 , 1], which can never be reached in the absence of a success, the complementary
set of these beliefs thus consists of the region [0, p∗1], where safe is a dominant action, and the (small)
interval of beliefs [p‡, p̄), which we have not assigned to either region. Indeed, as we explain in Section
4, we rely on conservative bounds in defining the “R dominant”and “Mutually BR” regions.
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Table 2: AVERAGE EXPERIMENTATION INTENSITY BY REGIONS FOR n=2

Strategic Treatment Control Treatment

Game Obs. Exp. Min Max Obs. Exp. Min Max
Intensity Intensity

Panel A: R Dominant

1 20 .648 [.315] .094 1 20 .835 [.304] .156 1
2 20 .723 [.291] .211 1 20 .888 [.259] .130 1
3 20 .617 [.281] .125 1 20 .906 [.235] .241 1
4 20 .732 [.323] .117 1 20 .880 [.243] .197 1
5 20 .653 [.349] .065 1 20 .984 [.072] .677 1

Panel B:Mutually BR

1 20 .503 [.265] .095 1 16 .758 [.343] .114 1
2 20 .445 [.184] 0 .788 20 .783 [.362] .118 1
3 20 .589 [.341] 0 1 16 .935 [.182] .381 1
4 20 .484 [.254] 0 1 19 .765 [.343] .092 1

summarize our findings by belief region. As player 2 has a success after 9 seconds of
using the risky arm, we omit Game 6 from these tables. We furthermore omit Game
5 from the tables for the “mutually BR” region, as this game lasts only 32 seconds, im-
plying that the “mutually BR” region cannot be attained in the control treatment and
only lasts for a few seconds in the strategic treatment, if it is attained at all. For Games
1-4, the missing observations for the “mutually BR” region correspond to groups (in
the strategic treatment) or individual players (in the control treatment) that have not
reached the “mutually BR” region either on account of an early success or because they
did not use the risky arm enough.

The comparison of the strategic treatment with the control treatment shows that
the average experimentation intensity is substantially lower in the strategic treatment,
for both belief regions. We first turn to the two-player setup and focus on the “R dom-
inant” region, where the effect is statistically significant at least at the 10%-level in
Games 1-5, the p-values of the two-sidedWilcoxon ranksum test amounting to 0.0367,
0.0371, 0.0010, 0.0646, and 0.0002, respectively.13 Now, let us consider the “mutually

13If we eliminate a single outlier in Game 4, namely player 1 in Group 13, our test yields a p-value of

16



Table 3: AVERAGE EXPERIMENTATION INTENSITY BY REGIONS FOR n=3

Strategic Treatment Control Treatment

Game Obs. Exp. Min Max Obs. Exp. Min Max
Intensity Intensity

Panel A: R Dominant

1 30 .709 [.365] 0 1 30 .935 [.190] .260 1
2 30 .649 [.340] 0 1 30 .976 [.076] .689 1
3 30 .593 [.410] 0 1 30 .906 [.245] 0 1
4 30 .613 [.373] 0 1 30 .889 [.246] .092 1
5 30 .596 [.381] 0 1 30 .953 [.196] 0 1

Panel B:Mutually BR

1 30 .537 [.370] 0 1 29 .766 [.325] .113 1
2 30 .549 [.369] 0 1 20 .673 [.340] .023 1
3 30 .482 [.398] 0 1 25 .875 [.279] .113 1
4 30 .471 [.353] 0 1 29 .815 [.275] .299 1

BR” region. Here, the contrast between the strategic and the control treatment is even
more pronounced and statistically significant at least at the 5%-level for all four games.
The corresponding p-values are 0.0179, 0.0032, 0.0011, and 0.0071 for Games 1-4, re-
spectively.

We now turn to the three-player setup, where we expect the same predictions to
hold. When considering the “R dominant” region, we find the difference in average
experimentation intensities between the two treatments to be highly statistically sig-
nificant. The p-values are 0.0042, 0.0001, 0.0005, 0.0012, and 0.0001 for Games 1-5, re-
spectively. The same is true for the “Mutually BR” region, with the exception of Game
2. This is most likely due to an early success by player 3 after only 44 seconds of ex-
ploration, which accounts for the sharp decrease in the number of observations for the
control treatment, which we report in Table 3. The p-values are 0.0161, 0.2274, 0.0002,
and 0.0002 for Games 1 - 4, respectively.

Since we are conditioning on the belief region, these results provide strong evi-
dence that players are free-riding because of strategic considerations. Our analysis by

0.0258, which would give us a 5% significance level for all games.
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belief region also shows that, while players tend to use the risky arm less in the “mutu-
ally BR” region than in the “R dominant” region, there does not appear to be any major
qualitative difference between the two regions. This is true for both the strategic and
control treatments. By contrast, theory would predict that, in the control treatment,
players should play risky in both regions (i.e. we should observe average experimen-
tation intensities of 1). In the strategic treatment, we should likewise observe average
experimentation intensities of 1 in both regions if subjects behaved according to the
best PBE, whereas, if they behaved according to MPE, the average experimentation in-
tensity should be 1 only for the “R dominant” region. Our results would suggest that
our experimental subjects did not distinguish between the two regions, possibly be-
cause they were not able to update their subjective beliefs with enough precision to tell
them apart. Thus, while, at least for groups of size n = 2, the difference between the
control and strategic treatments might be slightly more pronounced in the “Mutually
BR” region, the analysis of average experimentation intensities is inconclusive when
it comes to the comparison between MPE and the best PBE. We furthermore observe
that, as far as free-riding is concerned, there do not seem to be any major differences
between groups of size two and groups of size three.

5.3 Payoffs

Strategic interaction is predicted to arise among players as a result of (positive) infor-
mational externalities, i.e. the information produced by their partners allows players
to make better decisions and hence to secure themselves higher payoffs. Thus, play-
ers’ payoffs should be higher on average in the strategic treatment. Table 4 displays the
average final payoffs per player across games for our four treatments. With the excep-
tion of Game 1, average final payoffs are much higher in the strategic treatment than
in the control treatment, for both group sizes. This is statistically significant for Games
2-5, but not for Games 1 and 6. For n = 2 (n = 3), the p-values are 0.0105 (0.0013),
0.0001 (0.0001), 0.0172 (0.0001), and 0.0002 (0.0001) for Games 2-5, respectively. The
average-payoff difference is not statistically significant with p-values of 0.6747 (0.8819),
and 0.2885 (0.1135) for Games 1 and 6, respectively. Thus, with the exception of Game
1, our subjects indeed take advantage of the positive informational externalities in the
strategic treatment.
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Table 4: AVERAGE FINAL PAYOFFS

Strategic Treatment Control Treatment

Game Obs. Final Payoff Min Max Obs. Final Payoff Min Max

Panel A: n = 2

1 20 817.5 [199.232] 320 1180 20 1176.5 [1007.207] 0 2860
2 20 1092 [546.401] 520 3090 20 577.5 [531.561] 0 1620
3 20 407 [120.573] 110 640 20 109.5 [209.422] 0 670
4 20 1181 [309.905] 760 2170 20 761 [564.763] 0 1930
5 20 115 [114.133] 0 310 20 5.5 [24.597] 0 110
6 20 3800.5 [1285.213] 2500 5190 20 3554.5 [1428.173] 760 5240

Panel B: n = 3

1 30 1177.667 [745.037] 310 3170 30 1488.667 [1067.507] 0 3130
2 30 2110.333 [1423.033] 0 5020 30 1161 [1037.302] 0 2720
3 30 496.333 [266.775] 0 880 30 123.333 [222.963] 0 880
4 30 1465.333 [558.006] 0 2300 30 641.667 [569.132] 0 2090
5 30 137 [123.460] 0 320 30 15.333 [62.958] 0 320
6 30 3135 [1607.675] 200 5660 30 2457.333 [1973.708] 0 5320

5.4 Eye-Tracking Data

To study the players’ information-acquisition processes further, we employ eye-tracking
data obtained by using two (three) Tobii-TX300 eye trackers with a sampling rate of
300 Hz. The relative frequency of fixations corresponds to the relative importance of
an information in the subject’s decision-making process (Jacob & Karn, 2003; Poole,
Ball, Phillips, 2005). In our setting, eye fixations can thus provide information about
the importance subjects assigned to the different payoff streams, which revealed both a
player’s actions and payoffs.14 We define a subject’s fixation intensity as the total num-
ber of his fixations on his own payoff stream, divided by the total number of all fixations
(i.e. both on his own and on his partner’s [partners’] payoff stream[s]) during a game
before a breakthrough arrives or the game ends.

Figure 3 displays (non-representative) heatmaps to illustrate the different infor-
14Video recordings illustrating the use of the eye-tracking devices are available at

www.johanneshoelzemann.com.
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Figure 3: HEATMAPS OF FOUR TREATMENTS

In the top-left corner, the strategic treatment with n = 2 is illustrated, with the corresponding control
treatment represented just below. In the top-right corner, the strategic treatment with n = 3 is displayed,
while the control treatment with n = 3 is shown at the bottom-right. All four heatmaps show the total
number of fixations. The accumulated number of fixations is calculated for an entire game (Game 4 in the
n = 2 setup and Game 2 in the n = 3 setup). Each fixation made has the same value and is indepentent
of its duration. A color gradient is used to indicate the areas with more fixations (low=green to high=red).
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mation acquisition behavior in our four treatments. Themeasure of interest is the total
number of fixations. For each heatmap, the accumulated number of fixations is calcu-
lated for an entire game and the image corresponds to the last point in calendar time
before the game ends. A color gradient is employed to display the areas that attained
more fixations (low=green to high=red). As Figure 3 illustrates, players not only switch
actionsmore frequently in the strategic treatment but also focusmuchmore intensively
on their partners’ actions and payoffs. This is in sharp contrast to the corresponding
control treatment, where players seem to focus almost exclusively on their own stream
of payoffs. Indeed, a rational player should completely ignore a partner’s actions and
payoffs in the control treatments, as they are informative for his own problem only in
the strategic setting. This observation is also consistent with the results presented be-
low in Tables 6 and 8. Indeed, in the control treatments, players’ behavior requires less
coordination, as significantly more cut-off behavior and less switching is observed.

Table 5: AVERAGE FIXATION INTENSITY

n = 2 n = 3

Strategic Treatment Control Treatment Strategic Treatment Control Treatment

Game Eff. Fixation Eff. Fixation Eff. Fixation Eff. Fixation
Time Intensity Time Intensity Time Intensity Time Intensity

1 155 [0] .619 [.078] 146.5 [15.1] .870 [.089] 147.7 [12.6] .384 [.118] 134.6 [25.7] .710 [.158]
2 185.9 [.2] .620 [.121] 186 [0] .882 [.131] 83.6 [21.9] .365 [.113] 139 [67.6] .709 [.176]
3 88 [0] .600 [.086] 88 [0] .874 [.111] 88 [0] .392 [.164] 88 [0] .762 [.112]
4 230 [0] .615 [.095] 230 [0] .875 [174] 230 [0] .389 [.124] 230 [0] .700 [.139]
5 32 [0] .633 [.139] 32 [0] .876 [.149] 32 [0] .383 [.151] 32 [0] .745 [.199]
6 14.6 [7.6] .594 [.169] 30 [25.6] .814 [.112] 25 [30.1] .382 [.157] 56.4 [43.0] .646 [.159]

As Table 5 shows, the average fixation intensity is significantly lower in the strate-
gic treatment. This is statistically significant for all six games independently of the
group size (all p-values are 0.0001 for n = 2 and n = 3). The sophisticated coordina-
tion required by the switching of roles between pioneer and free-rider, which is charac-
teristic ofMPE and which we shall analyze in detail below, seems to force players to pay
a lot of attention to their partner’s (partners’) behavior. This provides additional evi-

21



dence that players behave strategically and try to learn from their partners’ exploration
efforts in the strategic treatments only.

5.5 Cut-Off Behavior

As we have pointed out above, optimality in the individual decision-making problem
in our control treatment implies cut-off behavior. The best PBE also features cutoff
behavior on the path of play, while KRC have shown that there does not exist an MPE
in cut-off strategies. This prediction of MPE is confirmed by our experiment, where
subjects often play cut-off strategies in the control treatment, while they hardly ever do
so in the strategic treatment.

Result 5.2 The frequency of cut-off behavior is higher in the control treatment than in the
strategic treatment. We find evidence for both n = 2 and n = 3.

Indeed, Table 6 shows that the frequency of cut-off behavior is much higher in
the control treatment than in the strategic treatment for both groups of size n = 2 and
groups of sizen = 3. While it increases sharply inGames 5 and 6 as compared toGames
1-4 in the strategic treatments, it is still higher in the corresponding control treatments
(for either given group size). In Game 5, this sharp increase is most likely due to the
short duration of that game. In Game 6, it is most likely driven by the resolution of
uncertainty very early in the game, with Player 2 achieving a success after exploring for
9 seconds.

5.6 Pioneers

In the control treatment as well as in the best PBE, players are predicted to play risky
on (p∗1, 12 ]; i.e., conditionally on no success arriving, players should switch from risky to
safe only once, and do so at the same time, at which their beliefs reach p∗1. By contrast, as
KRC have shown, there is a range of beliefs containing (p∗1, p‡) such that safe and risky
are mutually best responses in any Markov Perfect Equilibrium. In particular, there
exists a range of beliefs in which just one pioneer should play risky while the other
player(s) free-ride(s). The following result thus provides further evidence that MPE
seems to predict the qualitative features of subjects’ behavior better, while confirming
the prevalence of free-riding in our strategic treatment.
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Table 6: FREQUENCY OF CUT-OFF BEHAVIOR

n = 2 n = 3

Strategic Treatment Control Treatment Strategic Treatment Control Treatment

Game Eff. Tot. (Rel.) Eff. Tot. (Rel.) Eff. Tot. (Rel.) Eff. Tot. (Rel.)
Time Freq. Time Freq. Time Freq. Time Freq.

1 155 [0] 0 (0) 146.5 [15.1] 15 (.75) 147.7 [12.6] 3 (.10) 134.6 [25.7] 21 (.70)
2 185.9 [.2] 0 (0) 186 [0] 15 (.75) 83.6 [21.9] 3 (.10) 139 [67.6] 22 (.73)
3 88 [0] 5 (.25) 88 [0] 17 (.85) 88 [0] 11 (.37) 88 [0] 26 (.87)
4 230 [0] 0 (0) 230 [0] 14 (.70) 230 [0] 6 (.20) 230 [0] 19 (.63)
5 32 [0] 17 (.85) 32 [0] 20 (1) 32 [0] 17 (.57) 32 [0] 29 (.97)
6 14.6 [7.6] 13 (.65) 30 [25.6] 17 (.85) 25 [30.1] 19 (.63) 56.4 [43.0] 25 (.83)

Result 5.3 The proportion of time before a first breakthrough during which exactly one
player plays risky is higher in the strategic treatment than in the control treatment.

Table 7 shows the average proportion of time during which exactly one player is explor-
ing before a first breakthrough by any player in his group. In each game, it is more than
twice as large in the strategic treatment.

Table 7: PROPORTION OF TIMEWITH A SINGLE PIONEER

n = 2 n = 3

Strategic Treatment Control Treatment Strategic Treatment Control Treatment

Game Eff. Single Eff. Single Eff. Single Eff. Single
Time Pioneer Time Pioneer Time Pioneer Time Pioneer

1 155 [0] .724 [.156] 146.5 [15.1] .284 [.258] 147.7 [12.6] .670 [.178] 134.6 [25.7] .097 [.156]
2 185.9 [.2] .708 [.176] 186 [0] .315 [.254] 83.6 [21.9] .425 [.352] 139 [67.6] 0 [0]
3 88 [0] .745 [.156] 88 [0] .187 [.253] 88 [0] .563 [.348] 88 [0] .136 [.256]
4 230 [0] .757 [.175] 230 [0] .294 [.214] 230 [0] .741 [.171] 230 [0] .249 [.198]
5 32 [0] .581 [.360] 32 [0] .029 [.092] 32 [0] .361 [.304] 32 [0] 0 [0]
6 14.6 [7.6] .288 [.399] 30 [25.6] .078 [.246] 25 [30.1] .219 [.369] 56.4 [43.0] 0 [0]
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5.7 Switches of Actions

Cut-off behavior implies at most a single switch of action from risky to safe per player
in a given game. However, players should switch roles at least once in any Markov
Perfect Equilibrium. Hence, if players’ behavior is predicted byMPE, we should expect
significantly more switches in the strategic treatment. Recall that we have defined the
incidence of switches as the number of a player’s changes in action choice in a given
game per unit of effective time.Recall that effective time is defined as the time elapsed
before the game ends or the player’s risky arm is revealed to be good, whichever happens
first.

Result 5.4 The incidence of switches is significantly higher in the strategic treatment than
in the control treatment. This holds for both n = 2 and n = 3.

Table 8 displays the average number of switches per player across games for our
four treatments.15 The incidence of switches in the strategic treatment is much higher
than in the control treatment in all games except for Game 6 (all p-values of 0.0001
for Games 1-5 for either group size, with the exception of Game 4 in the setting with
n = 3 with p-value of 0.0011). As noted above, the early success in Game 6 reveals
the risky arm to be good and thus resolves all uncertainty at the very beginning of the
game. While still marginally higher incidences of switches are observed in the strategic
treatment for both n = 2 and n = 3, this is not statistically significant (p-values of
0.1751 and 0.1929, respectively).

15As there is rather little variation in effective time between the strategic and the control treatments
for a given game, we have decided to report the average number, rather than the average incidence, of
switches in Table 8, as the former may be easier to interpret.
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Table 8: AVERAGE NUMBER OF SWITCHES PER PLAYER

n = 2 n = 3

Strategic Treatment Control Treatment Strategic Treatment Control Treatment

Game Eff. Switches Eff. Switches Eff. Switches Eff. Switches
Time Per Pl. Time Per Pl. Time Per Pl. Time Per Pl.

1 155 [0] 4.45 [1.85] 146.5 [15.1] .90 [.91] 147.7 [12.6] 3.40 [1.87] 134.6 [25.7] 1.13 [1.68]
2 185.9 [.2] 4.50 [1.91] 186 [0] 1.35 [1.46] 83.6 [21.9] 2.77 [1.85] 139 [67.6] .97 [1.50]
3 88 [0] 2.20 [1.11] 88 [0] .30 [.47] 88 [0] 1.73 [1.46] 88 [0] .47 [.82]
4 230 [0] 6.05 [2.04] 230 [0] 1.85 [1.90] 230 [0] 4.00 [3.02] 230 [0] 1.7 [1.97]
5 32 [0] .60 [.50] 32 [0] .05 [.22] 32 [0] .70 [.84] 32 [0] .03 [.18]
6 14.6 [7.6] .60 [.88] 30 [25.6] .30 [.80] 25 [30.1] .97 [1.47] 56.4 [43.0] .37 [.72]

6 Conclusion

We have tested a game of strategic experimentation with bandits in the laboratory. As
this involves a rather complex game, we of course cannot conclusively prove that sub-
jects play, or aim to play, an MPE, as it is impossible to rule out other, more heuristic,
forms of behavior. Yet, we believe that our results provide at least suggestive evidence
for themain qualitative behavioral predictions of KRC’s simpleMPEs. Indeed, in a first
step, we have exhibited strong evidence for strategic free-riding, as experimentation in-
tensities are lower, and payoffs higher, in the strategic setting. Our eye-tracking data
furthermore suggest that, in the strategic setting, subjects were paying keen attention
to what their partners were up to. Moreover, subjects seem to attempt to coordinate
in rather complex ways, as evidenced, inter alia, by the much lower incidence of cutoff
behavior and the higher incidence of switches in the strategic setting. This, together
with the greater prevalence of lonely pioneers, suggests that the qualitative aspects of
subjects’ behavior is more accurately predicted by KRC’s Markov perfect equilibrium
than by the average-payoff maximizing perfect Bayesian equilibrium of HKR.

KRC have also shown that there is a unique symmetric MPE in this game, which
is characterized by players’ using both arms at interior levels of intensity in the belief
region where safe and risky are mutually best responses. In our experimental imple-
mentation, we do not allow subjects to pick experimentation intensities ki ∈ (0, 1).
While one could in principle imagine an experimental setup that does this (e.g. by let-
ting subjects handle a gas pedal or a joystick), we have decided against doing so here in
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order to keep the already highly complex game as simple as possible for our subjects.
Yet we think that allowing for interior experimentation intensities would be an interest-
ing robustness check to perform in future research, in order to see whether our results
would continue to apply in this more complex setting, in particular as they pertain
to the role changes between free-rider and pioneer that characterize the asymmetric
MPEs of KRC.

Clearly, subjects do not precisely conform to equilibrium behavior. For instance,
they seem loath to give up on the risky arm, extending experimentation to beliefs below
the cutoff p∗1. One might wonder whether they learned to play the game better over
time, so that their behavior might converge to equilibrium with increasing experience.
We find no evidence in our data to support this hypothesis. Recall that our subjects
played the six games in random order. Subjects’ behavior in the games they played later
does not differ from their behavior in earlier games in any systematic way, be it in the
control or the strategic treatment. We conjecture that this might be due to the subjects’
inability to compute the relevant cutoffs, and to update their momentary beliefs, with
sufficient precision, something they would be unlikely to learn over the course of six
games. As a robustness check, one could in principle show subjects the current updated
belief on their screens, in order to distinguish between the role of belief updating and
that of determining the cutoffs. We have decided against doing so here, as we were
concerned about prodding subjects toward certain behaviors, which would have made
the interpretation of our results more difficult.

We have confined our analysis to the exponential-bandit setting of KRC. While
the tractability of the exponential-bandit setting will certainly have facilitated its ex-
perimental implementation, the model does have some special features. For instance,
as successes are fully revealing, there is no encouragement effect in KRC, which our
experimental investigation confirms. Indeed, we can compute the average experimen-
tation intensities in the region where safe is a dominant action, [0, p∗1], for Game 4 as
well as for the two-player groups in Game 2.16 Even in this region, the average ex-
perimentation intensity is lower in the strategic treatment: .511 [.138] in the strategic
treatment for Game 4 with n = 2 vs. .660 [.249] in the control treatment; .325 [.310]
vs. .736 [.302] in Game 4 for n = 3, and .510 [.270] vs. .743 [.262] in Game 2, where we
report the standard deviation in square brackets. By contrast, if there were an encour-
agement effect, we should expect higher experimentation intensities in the strategic
treatment for this belief region.

16These are the only settings in which this region is reached (and lasts for more than a few seconds)
for both the strategic and the control treatments.
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It might be interesting to test whether the encouragement effect can be shown in
the laboratory for settings in which the theory would predict it to arise. This would be
the case for instance in the Poisson setting with inconclusive breakthroughs à la Keller
& Rady (2010), or in the Brownian-motion setting of Bolton & Harris (1999). It would
also be intriguing to try and test the impact of privately observed actions or payoffs in
the laboratory. We commend these questions for future research.
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Appendix

A Screens Faced By Our Experimental Subjects
In this Appendix, we exhibit examples of the interfaces subjects saw during the game, showing
the evolution of the screen over intervals of 30 seconds. In the top half (third) of his screen,
a subject could see his own past actions and payoffs, while the bottom half (two thirds) of the
screen showed his fellow group members’ actions and payoffs. A blue (red) part of the payoff
curve indicated that the player used the safe (risky) arm over the corresponding period. The
x-axis represented calendar time, while the y-axis gave the player’s cumulated total earnings up
to each point in time. There was no prior indication of the point in time the game would end.

n = 2 Strategic Setup: Example for Game 1
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n = 2 Control Setup: Example for Game 1
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n = 3 Strategic Setup: Example for Game 2
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n = 3 Control Setup: Example for Game 2
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B Instructions
The order of the instructions is as follows:

1. n = 2: Strategic Treatment

2. n = 2: Control Treatment

3. n = 3: Strategic Treatment

4. n = 3: Control Treatment
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Experiment Instructions 

Ground Rules 

Welcome to the experiment. Please read the instructions carefully. The earnings you make in this 
experiment will be paid to you, in cash, at the end of the session. 

Your earnings will be determined by your choices and the choices of other participants. 

Communication between participants is not allowed. Please use only the computer to input your 
decisions. Please do not start or end any programs, and do not change any settings. 

How Groups are Organized 

This experiment consists of six games in total. In the beginning of the first game, participants are 
randomly matched to pairs and the pairs stay the same in all six games. Therefore, in each game 
you will interact with the same participant. 

How the Timing Works 

Games will last on average 120 seconds but may end at any time. The probability that the game 
ends is the same at each instant. Equivalently, the probability that the game ends during a given 
period of time depends only on the length of that period of time, and not on how long the game 
has already been going on.  (Such processes are known as exponential processes in statistics.) 

How the Game Works 

In every game, you have to decide whether you want to play the “safe” or the “risky” option. 
You can switch between the two options at any time and as often as you like by clicking on the 
safe (Blue) or risky (Red) button on the screen. 

Whenever you choose the safe option, your payoff will increase for sure at the rate E$ 10. That 
means the safe option will give you a reward of E$ 10 every second during which you use it. 

When you choose the risky option, however, what you will be getting depends on the quality of 
that risky option. The quality of the risky option is determined by the computer once and for all 
at the start of each game; it never changes during the course of the game. We have programmed 
the computer so that the risky option will be good or bad with equal probability in each of the 
six games. The quality of the risky option in later games is independent of its quality in previous 
games. That is, in each of your six games, with probability ½ your risky option will be good; 
with probability ½ it will be bad. The same is true for your partner. Note that your risky option 
and that of your partner’s might or might not be of the same quality. 
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If your risky option is good, it may give you a reward of E$ 2500, but it will only ever do so if 
you use it. A good risky option yields such a reward after using it on average for 100 seconds. 
The probability that you get this reward from a good risky option during a given period of time 
during which you use it depends only on the length of that period of time; it does not depend on 
anything else, e.g. on how long the game has already been going on. Note that a good risky 
option may give you more than one reward of E$ 2500 per game. 

If your risky option is bad, it will never give you any reward. 

You can switch back and forth between the risky option and the safe option at will and as many 
times as you like. All that matters for your chance of getting the reward is (1) the quality of the 
risky arm as determined by the computer before the game starts and (2) the overall amount of 
time you choose to spend on it. 

The following graphic illustrates what you are going to see on your screen during the game. The 
graphs will be updated every second.  

• The upper diagram always shows your actions and payoffs.
• In this example, you have started playing the risky option (highlighted in Red), then you

have switched to the safe option (highlighted in Blue), then you have switched back again
to the risky option, etc.

• The lower diagram always shows your partner’s actions and payoffs.
• In this example, your partner has started playing the risky option and continues to do so.
• Note that, in this example, your partner’s risky option was good and gave him once a

reward of E$ 2500.
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The parameters are chosen in such a way that, if you knew the risky option to be good, you would 
be best off by always choosing it. Yet, if you knew the risky option to be bad, you would be best 
off by always choosing the safe option. In short:  

Good risky option > Safe option > Bad risky option  

 

Your partner is solving the exact same problem as you and has read the exact same instructions.  

 

Payment 

In the experiment you will be making decisions that will earn you E$ (Experimental Dollars). At 
the end of the experiment, the E$ you earned will be converted into Australian Dollars at an 
exchange rate of E$ 100 = AU$ 1, and paid out in cash. This amount will be added to your show-
up fee of AU$ 5. 

After completing the experiment, the computer will randomly select one out of the six games 
(this will be the same game for all participants), and this game will then be used to determine 
your payoffs.  
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Experiment Instructions 

Ground Rules 

Welcome to the experiment. Please read the instructions carefully. The earnings you make in this 
experiment will be paid to you, in cash, at the end of the session. 

Your earnings will be determined by your choices and the choices of other participants. 

Communication between participants is not allowed. Please use only the computer to input your 
decisions. Please do not start or end any programs, and do not change any settings. 

How Groups are Organized 

This experiment consists of six games in total. In the beginning of the first game, participants are 
randomly matched to pairs and the pairs stay the same in all six games. Therefore, in each game 
you will interact with the same participant. 

How the Timing Works 

Games will last on average 120 seconds but may end at any time. The probability that the game 
ends is the same at each instant. Equivalently, the probability that the game ends during a given 
period of time depends only on the length of that period of time, and not on how long the game 
has already been going on.  (Such processes are known as exponential processes in statistics.) 

How the Game Works 

In every game, you have to decide whether you want to play the “safe” or the “risky” option. 
You can switch between the two options at any time and as often as you like by clicking on the 
safe (Blue) or risky (Red) button on the screen. 

Whenever you choose the safe option, your payoff will increase for sure at the rate E$ 10. That 
means the safe option will give you a reward of E$ 10 every second during which you use it. 

When you choose the risky option, however, what you will be getting depends on the quality of 
that risky option. The quality of the risky option is determined by the computer once and for all 
at the start of each game; it never changes during the course of the game. We have programmed 
the computer so that the risky option will be good or bad with equal probability in each of the 
six games. The quality of the risky option in later games is independent of its quality in previous 
games. That is, in each of your six games, with probability ½ your (and your partner’s!) risky 
option will be good; with probability ½ they will be bad. Note that your risky option and that of 
your partner’s will always be of the same quality. 
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If your risky option is good, it may give you a reward of E$ 2500, but it will only ever do so if 
you use it. A good risky option yields such a reward after using it on average for 100 seconds. 
The probability that you get this reward from a good risky option during a given period of time 
during which you use it depends only on the length of that period of time; it does not depend on 
anything else, e.g. on how long the game has already been going on. Note that a good risky 
option may give you more than one reward of E$ 2500 per game. 

If your risky option is bad, it will never give you any reward. 

You can switch back and forth between the risky option and the safe option at will and as many 
times as you like. All that matters for your chance of getting the reward is (1) the quality of the 
risky arm as determined by the computer before the game starts and (2) the overall amount of 
time you choose to spend on it. 

The following graphic illustrates what you are going to see on your screen during the game. The 
graphs will be updated every second.  

• The upper diagram always shows your actions and payoffs.
• In this example, you have started playing the risky option (highlighted in Red), then you

have switched to the safe option (highlighted in Blue), then you have switched back again
to the risky option, etc.

• The lower diagram always shows your partner’s actions and payoffs.
• In this example, your partner has started playing the risky option and continues to do so.
• Note that, in this example, your partner’s risky option was good and gave him once a

reward of E$ 2500. This means that your risky option was good too.
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The parameters are chosen in such a way that, if you knew the risky option to be good, you would 
be best off by always choosing it. Yet, if you knew the risky option to be bad, you would be best 
off by always choosing the safe option. In short:  

Good risky option > Safe option > Bad risky option  

 

Your partner is solving the exact same problem as you and has read the exact same instructions. 
Note that by observing the behaviour of his risky option (provided he uses it) you can learn 
something about your risky option as well. 

 

Payment 

In the experiment you will be making decisions that will earn you E$ (Experimental Dollars). At 
the end of the experiment, the E$ you earned will be converted into Australian Dollars at an 
exchange rate of E$ 100 = AU$ 1, and paid out in cash. This amount will be added to your show-
up fee of AU$ 5. 

After completing the experiment, the computer will randomly select one out of the six games 
(this will be the same game for all participants), and this game will then be used to determine 
your payoffs.  
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Experiment Instructions 

 

Ground Rules 

Welcome to the experiment. Please read the instructions carefully. The earnings you make in this 
experiment will be paid to you, in cash, at the end of the session. 

Your earnings will be determined by your choices and the choices of other participants.  

Communication between participants is not allowed. Please use only the computer to input your 
decisions. Please do not start or end any programs, and do not change any settings. 

 

How Groups are Organized 

This experiment consists of six games in total. In the beginning of the first game, participants are 
randomly matched to groups of three players and the groups stay the same in all six games. 
Therefore, in each game you will interact with the same participants. 

 

How the Timing Works 

Games will last on average 120 seconds but may end at any time. The probability that the game 
ends is the same at each instant. Equivalently, the probability that the game ends during a given 
period of time depends only on the length of that period of time, and not on how long the game 
has already been going on.  (Such processes are known as exponential processes in statistics.) 

 

How the Game Works 

In every game, you have to decide whether you want to play the “safe” or the “risky” option. 
You can switch between the two options at any time and as often as you like by clicking on the 
safe (Blue) or risky (Red) button on the screen. 

Whenever you choose the safe option, your payoff will increase for sure at the rate E$ 10. That 
means the safe option will give you a reward of E$ 10 every second during which you use it. 

When you choose the risky option, however, what you will be getting depends on the quality of 
that risky option. The quality of the risky option is determined by the computer once and for all 
at the start of each game; it never changes during the course of the game. We have programmed 
the computer so that the risky option will be good or bad with equal probability in each of the 
six games. The quality of the risky option in later games is independent of its quality in previous 
games. That is, in each of your six games, with probability ½ your risky option will be good; 
with probability ½ it will be bad. The same is true for your partners. Note that your risky option 
and that of your partners’ might or might not be of the same quality. 
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If your risky option is good, it may give you a reward of E$ 2500, but it will only ever do so if 
you use it. A good risky option yields such a reward after using it on average for 100 seconds. 
The probability that you get this reward from a good risky option during a given period of time 
during which you use it depends only on the length of that period of time. It does not depend on 
anything else, e.g. on how long the game has already been going on. Note that a good risky 
option may give you more than one reward of E$ 2500 per game. 

If your risky option is bad, it will never give you any reward. 

You can switch back and forth between the risky option and the safe option at will and as many 
times as you like. All that matters for your chance of getting the reward is (1) the quality of the 
risky arm as determined by the computer before the game starts and (2) the overall amount of 
time you choose to spend on it. 

The following graphic illustrates what you are going to see on your screen during the game. The 
graphs will be updated every second.  

 

• The upper diagram always shows your actions and payoffs. 
• In this example, you have started playing the risky option (highlighted in Red), then you 

have switched to the safe option (highlighted in Blue), then you have switched back again 
to the risky option, etc. 

• The lower diagram always shows your partner’s actions and payoffs. 
• In this example, one of your partners has started playing the risky option and continues to 

do so. The other partner has started and continues playing the safe option. 
• Note that, in this example, at least one of your partner’s risky option was good and gave 

him once a reward of E$ 2500. 
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The parameters are chosen in such a way that, if you knew the risky option to be good, you would 
be best off by always choosing it. Yet, if you knew the risky option to be bad, you would be best 
off by always choosing the safe option. In short:  

Good risky option > Safe option > Bad risky option 

Your partners are solving the exact same problem as you and have read the exact same 
instructions. 

Payment 

In the experiment you will be making decisions that will earn you E$ (Experimental Dollars). At 
the end of the experiment, the E$ you earned will be converted into Australian Dollars at an 
exchange rate of E$ 100 = AU$ 1, and paid out in cash. This amount will be added to your show-
up fee of AU$ 5. 

After completing the experiment, the computer will randomly select one out of the six games 
(this will be the same game for all participants), and this game will then be used to determine 
your payoffs.  



1 

Experiment Instructions 

Ground Rules 

Welcome to the experiment. Please read the instructions carefully. The earnings you make in this 
experiment will be paid to you, in cash, at the end of the session. 

Your earnings will be determined by your choices and the choices of other participants. 

Communication between participants is not allowed. Please use only the computer to input your 
decisions. Please do not start or end any programs, and do not change any settings. 

How Groups are Organized 

This experiment consists of six games in total. In the beginning of the first game, participants are 
randomly matched to groups of three players and the groups stay the same in all six games. 
Therefore, in each game you will interact with the same participants. 

How the Timing Works 

Games will last on average 120 seconds but may end at any time. The probability that the game 
ends is the same at each instant. Equivalently, the probability that the game ends during a given 
period of time depends only on the length of that period of time, and not on how long the game 
has already been going on.  (Such processes are known as exponential processes in statistics.) 

How the Game Works 

In every game, you have to decide whether you want to play the “safe” or the “risky” option. 
You can switch between the two options at any time and as often as you like by clicking on the 
safe (Blue) or risky (Red) button on the screen. 

Whenever you choose the safe option, your payoff will increase for sure at the rate E$ 10. That 
means the safe option will give you a reward of E$ 10 every second during which you use it. 

When you choose the risky option, however, what you will be getting depends on the quality of 
that risky option. The quality of the risky option is determined by the computer once and for all 
at the start of each game; it never changes during the course of the game. We have programmed 
the computer so that the risky option will be good or bad with equal probability in each of the 
six games. The quality of the risky option in later games is independent of its quality in previous 
games. That is, in each of your six games, with probability ½ your (and your partners’!) risky 
option will be good; with probability ½ they will be bad. Note that your and your partners’ risky 
option will always be of the same quality. 
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If your risky option is good, it may give you a reward of E$ 2500, but it will only ever do so if 
you use it. A good risky option yields such a reward after using it on average for 100 seconds. 
The probability that you get this reward from a good risky option during a given period of time 
during which you use it depends only on the length of that period of time. It does not depend on 
anything else, e.g. on how long the game has already been going on. Note that a good risky 
option may give you more than one reward of E$ 2500 per game. 

If your risky option is bad, it will never give you any reward. 

You can switch back and forth between the risky option and the safe option at will and as many 
times as you like. All that matters for your chance of getting the reward is (1) the quality of the 
risky arm as determined by the computer before the game starts and (2) the overall amount of 
time you choose to spend on it. 

The following graphic illustrates what you are going to see on your screen during the game. The 
graphs will be updated every second.  

 

• The upper diagram always shows your actions and payoffs. 
• In this example, you have started playing the risky option (highlighted in Red), then you 

have switched to the safe option (highlighted in Blue), then you have switched back again 
to the risky option, etc. 

• The lower diagram always shows your partners’ actions and payoffs. 
• In this example, one of your partners has started playing the risky option and continues to 

do so. The other partner has started and continues playing the safe option. 
• Note that, in this example, your partner’s risky option was good and gave him once a 

reward of E$ 2500. This means that your risky option was good too. 
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The parameters are chosen in such a way that, if you knew the risky option to be good, you would 
be best off by always choosing it. Yet, if you knew the risky option to be bad, you would be best 
off by always choosing the safe option. In short:  

Good risky option > Safe option > Bad risky option  

 

Your partners are solving the exact same problem as you and have read the exact same 
instructions. Note that by observing the behaviour of their risky option (provided they use it) you 
can learn something about your risky option as well. 

 

Payment 

In the experiment you will be making decisions that will earn you E$ (Experimental Dollars). At 
the end of the experiment, the E$ you earned will be converted into Australian Dollars at an 
exchange rate of E$ 100 = AU$ 1, and paid out in cash. This amount will be added to your show-
up fee of AU$ 5. 

After completing the experiment, the computer will randomly select one out of the six games 
(this will be the same game for all participants), and this game will then be used to determine 
your payoffs.  
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