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Abstract

We consider bootstrap methods for factor-augmented regressions with cross sectional depen-
dence among idiosyncratic errors. This is important to capture the bias of the OLS estimator
derived recently by Gonçalves and Perron (2014). We first show that a common approach of resam-
pling cross sectional vectors over time is invalid in this context because it induces a zero bias. We
then propose the cross-sectional dependent (CSD) bootstrap where bootstrap samples are obtained
by taking a random vector and multiplying it by the square root of a consistent estimator of the
covariance matrix of the idiosyncratic errors. We show that if the covariance matrix estimator is
consistent in the spectral norm, then the CSD bootstrap is consistent, and we verify this condition
for the thresholding estimator of Bickel and Levina (2008). Finally, we apply our new bootstrap
procedure to forecasting inflation using convenience yields as recently explored by Gospodinov and
Ng (2013).
Keywords: factor model, bootstrap, asymptotic bias.

1 Introduction

Factor-augmented regressions, involving factors estimated from a large panel data set, have become

popular in empirical macroeconomics. Recent applications include forecasting with diffusion indices

(Stock and Watson, 2002), predicting excess stock returns (Ludvigson and Ng, 2007, Neely, Rapach, Tu

and Zhou, 2015), predicting bond yields (Ludvigson and Ng, 2009 and 2011), modeling the nominal

and real yield curves (Abrahams et al. 2016), modeling commodity convenience yields and prices

(Gospodinov and Ng, 2013 and Byrne et al., 2013), and analyzing spillovers across banks using credit

default swap spreads (Eichengreen et al. 2012).

Inference in these models is complicated by the need to account for the preliminary estimation of

the factors. Bai and Ng (2006) derived the asymptotic distribution of the ordinary least squares (OLS)

estimator in this context and showed that one can neglect the effect of factor estimation uncertainty

if
√
T/N → 0 where N is the cross sectional dimension of the panel from which factors are extracted

and T is the time series dimension. Recently, Gonçalves and Perron (2014) have relaxed this condition

and shown that a bias appears in the asymptotic distribution when
√
T/N → c and c 6= 0. They

proposed a wild bootstrap method that removes this bias and outperforms the asymptotic approach

of Bai and Ng (2006). Allowing for positive c seems important for many applications listed in the
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previous paragraph: Neely et al. (2015) have c = 1.933, Abrahams et al. (2016) have c = 1.256 for

nominal yields and c = 1.536 for real yields, while Gospodinov and Ng (2013) have c = .758.

The expression for the bias obtained by Gonçalves and Perron (2014) depends, among other things,

on the cross sectional dependence of the idiosyncratic errors in the factor model. Unfortunately, the

wild bootstrap method that they proposed destroys cross sectional dependence and is only valid when

no cross sectional dependence among idiosyncratic errors is present.

This paper analyzes the issue of bootstrapping with general cross sectional dependence among

the idiosyncratic errors. Proposing a bootstrap method that is robust to cross sectional dependence

without making parametric assumptions is a much harder task than for time series dependence. The

main reason is that, contrary to the time dimension, no natural ordering among the variables needs

to exist. This makes it harder to apply blocking methods, which are often used to capture time series

dependence of unknown form.

We make two important contributions. First, we show that a common approach of resampling

vectors containing all the cross sectional variables only in the time series dimension as a way to preserve

cross sectional dependence, while valid in other contexts (see for example Gonçalves (2011) for inference

in a linear panel data model with fixed effects), is invalid in this context. The reason is that it induces

a zero bias in the bootstrap asymptotic distribution by not reproducing the uncertainty associated

with the estimation of the factors. In particular, resampling only in the time series dimension implies

that the bootstrap variance of the cross sectional average of the estimated panel factor scores is equal

to the empirical time series variance of this cross sectional average, which is zero by the first order

conditions that define the principal components estimator of the factors and the factor loadings.

Our second contribution is to propose a solution, which we call the cross sectional dependent

(CSD) bootstrap, where bootstrap samples are obtained by taking a random vector of dimension

N×1 with mean 0 and identity covariance matrix and multiplying it by the square root of a consistent

estimator of the covariance matrix of the idiosyncratic errors. We show that if the covariance matrix

estimator is consistent in the spectral norm, then the CSD bootstrap is consistent, and we verify this

condition for the thresholding estimator of Bickel and Levina (2008) under a sparsity condition that

limits the number of non-zero elements in the matrix. Other covariance matrix estimators could be

used to implement the cross sectional dependent bootstrap, and one could check that our general

suffi cient conditions are satisfied to ensure validity of the bootstrap. Examples of such alternative

estimators include the general and soft thresholding of Rothman, Levina and Zhu (2009), the adaptive

thresholding of Cai and Liu (2011), and the banding estimator of Bickel and Levina (2008a).

We apply our new bootstrap procedure to forecasting inflation using convenience yields as recently

explored by Gospodinov and Ng (2013). We find that our intervals are shifted relative to those based

on asymptotic theory and those reported in Gospodinov and Ng to account for the presence of bias.

We also see a difference in the center of these intervals relative to the wild bootstrap of Gonçalves and

Perron (2014) because of the effect of cross sectional dependence on the bias.
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The remainder of the paper is organized as follows. Section 2 introduces our model and shows that

bootstrap methods that have been used in this context will not replicate factor estimation uncertainty.

Section 3 presents our solution and a set of high level conditions under which the bootstrap is valid,

and we check these conditions for the thresholding estimator. Section 4 presents our simulation ex-

periments, while Section 5 presents our empirical illustration to forecasting inflation with convenience

yields. Finally, Section 6 concludes. We also provide two appendices: our assumptions are in Appendix

A and mathematical proofs appear in Appendix B.

For any matrix A, we let ρ (A) = max‖x‖=1 ‖Ax‖ denote the operator (or spectral) norm of A,

where ‖Ax‖ = (x′A′Ax)1/2 is the Euclidean vector norm of the vector Ax. When A is symmetric,

ρ (A) is equal to the maximum eigenvalue of A, in absolute value. Similarly, we let ‖A‖ denote its
Frobenius norm defined as ‖A‖ = (trace (A′A))1/2 .

2 Why cross sectional dependence matters for inference

2.1 Setup and review of existing results

We consider the following regression model

yt+1 = α′Ft + β′Wt + εt+1, t = 1, . . . , T − 1. (1)

The q observed regressors, typically a constant and lags of yt, are contained in Wt. The r unobserved

regressors Ft are the common factors in the following panel factor model,

Xit = λ′iFt + eit, i = 1, . . . , N, t = 1, . . . , T, (2)

where the r× 1 vector λi contains the factor loadings and eit is an idiosyncratic error term. In matrix

form, we can write (2) as

X = FΛ′ + e,

where X is an observed data matrix of size T × N , F = (F1, . . . , FT )′ is a T × r matrix of random
factors, with r the number of common factors, Λ = (λ1, . . . , λN )′ is a fixed N×r matrix, and e is T×N.
Throughout, we consider the number of factors r as given. Forecasting horizons greater than 1 could

be considered, but this would generally entail serial correlation in the regression errors. Because our

focus is on bootstrap inference under cross sectional dependence, we focus on one-step ahead forecast

horizons only.

Estimation proceeds in two steps. Given X, we estimate F and Λ with the method of principal

components. In particular, F is estimated with the T × r matrix F̃ =
(
F̃1 . . . F̃T

)′
composed

of
√
T times the eigenvectors corresponding to the r largest eigenvalues of of XX ′/TN (arranged in

decreasing order), where the normalization F̃ ′F̃
T = Ir is used. The matrix containing the estimated

loadings is then Λ̃ =
(
λ̃1, . . . , λ̃N

)′
= X ′F̃

(
F̃ ′F̃

)−1
= X ′F̃ /T. As is well known in this literature, the

principal components F̃t can only consistently estimate a transformation of the true factors Ft, given
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by HFt, where H is a rotation matrix defined as

H = Ṽ −1 F̃
′F

T

Λ′Λ

N
, (3)

where Ṽ is the r × r diagonal matrix containing on the main diagonal the r largest eigenvalues of
XX ′/NT , in decreasing order, see Bai (2003). In the following we let H0 ≡ p limH and V ≡ p lim Ṽ .

In the second step, we run an OLS regression of yt+1 on ẑt =
(
F̃ ′t W ′t

)′
and obtain δ̂ =

(
α̂′, β̂

′)′
.

The asymptotic properties of δ̂ as well as those of the corresponding prediction intervals were

studied by Bai and Ng (2006) under standard assumptions in this literature that allow for weak cross

sectional and serial dependence in the idiosyncratic error term (cf. Assumptions 1-5 in Appendix A,

which are similar to the assumptions in Bai (2003) and Bai and Ng (2006)). In particular, Bai and

Ng (2006) showed that when
√
T/N → 0, δ̂ is asymptotically distributed as a normal random vector

with mean 0 and covariance matrix Σδ = (Φ′0)−1 Σ−1
zz ΩΣ−1

zz Φ−1
0 , where Φ0 ≡ diag (H0, Iq), Σzz =

p lim 1
T

∑T
t=1 ztz

′
t, with zt = (F ′t ,W

′
t)
′, and Ω = limT→∞ V ar

(
1√
T

∑T−1
t=1 ztεt+1

)
. This covariance

matrix is of the usual sandwich form and does not reflect the added factors estimation uncertainty

caused by replacing the true latent factors by their estimates, implying that cross sectional dependence

in eit is asymptotically irrelevant when
√
T/N → 0.

More recently, Gonçalves and Perron (2014) showed that if instead
√
T/N → c 6= 0, then

√
T
(
δ̂ − δ

)
→d N (−c∆δ,Σδ) ,

where δ ≡
(
α′H−1 β′

)′
and ∆δ is a bias term that depends on the cross sectional dependence of

eit. Specifically, ∆δ is given by

∆δ =

(
p lim

1

T

T∑
t=1

ẑtẑ
′
t

)−1(
ΣF̃ + V ΣF̃V

−1

ΣWF̃V ΣF̃V
−1

)
p lim (α̂) ,

where p lim (α̂) = H−1′
0 α, ΣWF̃ ≡ p lim

(
W ′F̃
T

)
, and

ΣF̃ = V −1QΓQ′V −1 = lim
N,T→∞

1

T

T∑
t=1

V −1QΓtQ
′V −1,

where Q = H ′−1
0 and Γ = limN,T→∞

1
T

∑T
t=1 Γt (see Theorem 2.1 of Gonçalves and Perron (2014)).

From Bai (2003), for a given t, V −1QΓtQ
′V −1 is the asymptotic variance-covariance matrix of

√
N
(
F̃t −HFt

)
and therefore we can interpret ΣF̃ as the time average of the asymptotic variance-covariance matrix

of the factors estimation error. Since

Γt ≡ V ar
(

1√
N

N∑
i=1

λieit

)
= V ar

(
Λ′et√
N

)
is a function of the cross sectional dependence of eit, inference on δ requires that we account for

idiosyncratic error cross sectional dependence when
√
T/N → c 6= 0. One approach is to rely on the

asymptotic normal approximation together with consistent estimators of the bias term ∆δ and the
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covariance matrix Σδ. Ludvigson and Ng (2011) proposed such an approach building on the cross

sectional HAC estimator of Γt proposed by Bai and Ng (2006).

Another approach is to use the bootstrap. In particular, Gonçalves and Perron (2014) proposed a

general residual-based bootstrap method that requires resampling the residuals of the regression model

ε̂t+1 and those of the panel factor model ẽit. Specifically, let
{
e∗t = (e∗1t, . . . , e

∗
Nt)
′} denote a bootstrap

sample from
{
ẽt = Xt − Λ̃F̃t

}
and

{
ε∗t+1

}
a bootstrap sample from

{
ε̂t+1 = yt+1 − α̂′F̃t − β̂

′
Wt

}
. The

bootstrap DGP for
(
y∗t+1, X

∗′
t

)
is given by

y∗t+1 = α̂′F̃t + β̂
′
Wt + ε∗t+1, t = 1, . . . , T − 1,

X∗t = Λ̃F̃t + e∗t , t = 1, . . . , T.

Estimation in the bootstrap proceeds in two stages as in the sample. First, we estimate the factors

by the method of principal components using the bootstrap panel data set {X∗t }. Second, we run a
regression of y∗t+1 on the bootstrap estimated factors and on the fixed observed regressors Wt. Let δ̂

∗

denote the bootstrap OLS estimator.

Gonçalves and Perron (2014) showed that under a set of high level conditions on
{
e∗t , ε

∗
t+1

}
(which

we collect in Appendix A for convenience), a rotated version of δ̂
∗
given by Φ∗′δ̂

∗
, where Φ̂∗ =

diag (H∗, Iq) and H∗ is the bootstrap analogue of H, is also asymptotically normally distributed. In

particular, under Conditions A* through D*,

√
T
(

Φ∗′δ̂
∗ − δ̂

)
→d∗ N (−c∆∗δ ,Σ∗δ) ,

where ∆∗δ and Σ∗δ are the bootstrap analogues of ∆δ and Σδ. Here and throughout, we write T ∗ →d∗ D,

in probability, if conditional on a sample with probability that converges to one, the bootstrap statistic

T ∗ weakly converges to the distribution D under P ∗, i.e. E∗ (f (T ∗NT ))→P E (f (D)) for all bounded

and uniformly continuous functions f , where P ∗ denotes the bootstrap probability measure induced

by the resampling, conditional on the original sample.

As explained by Gonçalves and Perron (2014), the need for rotation is due to the fact that the

bootstrap estimated factors estimate only a rotation of the “latent”factors driving the bootstrap DGP.

In particular, F̃ ∗t consistently estimates H
∗F̃t and not F̃t. However, and contrary to Φ, Φ∗ is observed

so that the rotation of δ̂
∗
is feasible.

The consistency of the bootstrap distribution requires that the bootstrap matches the bias term

and the covariance matrix, i.e. that ∆∗δ = ∆δ and Σ∗δ = Σδ. To ensure that Σ∗δ = Σδ, Gonçalves and

Perron (2014) imposed Condition E*, which requires that Ω∗ = V ar∗
(

1√
T

∑T
t=1 z̃tε

∗
t+1

)
converges in

probability to Φ0ΩΦ′0. This condition is satisfied if we choose ε
∗
t+1 as to replicate the serial dependence

and heterogeneity properties of εt+1. Under a standard m.d.s. assumption on εt+1, a natural way of

bootstrapping ε∗t+1 is to apply the wild bootstrap, i.e. let ε
∗
t+1 = ε̂t+1 · vt+1 with vt+1 ∼ i.i.d (0, 1),

as proposed by Gonçalves and Perron (2014). We will maintain the m.d.s. assumption on εt+1 (cf.

Assumption 5) and therefore we will also rely on the wild bootstrap to generate ε∗t+1 in this paper.
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To ensure that ∆∗δ = ∆δ, it is important that we choose e∗t such that

Γ∗ =
1

T

T∑
t=1

V ar∗
(

1√
N

Λ̃′e∗t

)
converges in probability to QΓQ′ (this is Condition F*). Since Γ is a function of the cross sectional

dependence of eit, this requires that we choose e∗it in a way that replicates the cross sectional properties

(dependence and heteroskedasticity across i) of eit. By assuming away cross sectional dependence (cf.

their Assumption 8), Gonçalves and Perron (2014) showed the validity of a wild bootstrap for inference

on δ, whereby e∗it = ẽitηit, with ηit ∼ i.i.d.(0, 1). Our goal in this paper is to relax this assumption

and propose a bootstrap method for e∗it for which p lim Γ∗ = QΓQ′ under general cross sectional

dependence.

Proposing a bootstrap method that is robust to cross sectional dependence is a much harder task

than proposing a method that handles serial dependence. The main reason is that contrary to the time

dimension, no natural ordering among the variables needs to exist in the cross sectional dimension.

This makes it harder for instance to apply block bootstrap methods, which are often used to capture

time series dependence of unknown form.

For panel data, where both the time series and the cross sectional dimensions exist, one common

way of preserving the dependence in one dimension is to resample only in the other dimension. The

intuition is that by not resampling in one particular dimension, we do not destroy the dependence

along this dimension. This idea was recently used by Gonçalves (2011) to propose a block bootstrap

method that is asymptotically valid for the fixed effects OLS estimator in a panel linear regression

model. By applying the moving blocks bootstrap in the time series dimension to the full vector of

variables available in each period, this method was shown to be robust to serial and cross sectional

dependence of unknown form. A similar idea was used (but without a theoretical justification) by

Ludvigson and Ng (2007, 2009, 2011) and Gospodinov and Ng (2013) when testing for predictability

using factor augmented regressions.

As we will show next, using a bootstrap that only resamples in the time dimension (and leaves

the cross sectional dimension untouched) is in general not valid in the context of factor-augmented

regression models.

2.2 Failure of bootstrap methods that only resample in the time dimension

Suppose that we resample the entire N × 1 vector of residuals ẽt = (ẽ1t, . . . , ẽNt)
′ only in the time

series dimension. In particular, for simplicity, suppose that we let

e∗t ∼ i.i.d.
{
ẽt − ẽ

}
, (4)

where ẽ = 1
T

∑T
t=1 ẽt is the time series average of ẽt; resampling the recentered vector of residuals

ensures that E∗ (e∗t ) = 0.
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The following result shows that generating e∗t as in (4) implies a zero Γ∗.

Proposition 2.1 Suppose e∗t ∼ i.i.d.
{
ẽt − ẽ

}
for t = 1, . . . , T. Then Γ∗ = 0 for any N,T.

The proof of Proposition 2.1 follows trivially from the first order conditions that define Λ̃. In

particular,

Γ∗ =
1

T

T∑
t=1

1

N
Λ̃′V ar∗ (e∗t ) Λ̃,

where

V ar∗ (e∗t ) = E∗
(
e∗t e
∗′
t

)
=

1

T

T∑
t=1

(
ẽt − ẽ

) (
ẽt − ẽ

)′
=
ẽ′ẽ

T
− ẽ′ιι′ẽ

T
,

and where ẽ is a T ×N matrix with rows given by ẽ′t and ι = (1, . . . , 1)′ is T × 1. It follows that

Γ∗ =
1

N
Λ̃′V ar∗ (e∗t ) Λ̃ =

1

NT

(
Λ̃′ẽ′ẽΛ̃− Λ̃′ẽ′ιι′ẽΛ̃

)
= 0

since Λ̃′ẽ′ = 0 by the first order conditions that define
(
F̃ , Λ̃

)
. Notice that this result holds for any

possible value of (N,T ) .

The main implication of Proposition 2.1 is that the i.i.d. bootstrap distribution is centered at

zero (i.e. ∆∗δ = 0 because ∆δ∗ is a linear function of Γ∗ and Γ∗ = 0). Since the OLS estimator is

asymptotically biased when the cross sectional dimension is relatively small compared to the time

series dimension (i.e. when
√
T/N → c 6= 0), the i.i.d. bootstrap does not replicate this important

feature of the OLS distribution. Note that this failure of the i.i.d. bootstrap holds regardless of

whether cross sectional dependence exists or not. The problem is not that the i.i.d. bootstrap does

not capture cross sectional dependence. Rather the problem is that it induces a zero bias term which

should be there even under cross sectional independence as long as −c∆δ 6= 0 (i.e. as long as c 6= 0

and p lim α̂ = H−1′
0 α 6= 0).

Although Proposition 2.1 considers the special case of a bootstrap method that resamples resid-

uals in an i.i.d. fashion in the time dimension, the result extends to any bootstrap method that

only resamples in the time dimension. To see this, let {τ t : t = 1, . . . , T} denote a sequence of ran-
dom indices taking values on {1, . . . , T}. We can think of any time series bootstrap that does not
resample in the cross sectional dimension as letting e∗t = ẽτ t , for t = 1, . . . , T. For instance, for the

i.i.d. bootstrap analyzed above, τ t is a sequence of i.i.d. random variables uniformly distributed

on {1, 2, . . . , T}. For the moving blocks bootstrap with block size equal to b, {τ t, t = 1, . . . , T} =

{I1 + 1, . . . , I1 + b, I2 + 1, . . . , I2 + b, . . .} , where Ij are i.i.d. uniform on {0, 1, . . . , T − b} . It follows
that

E∗ (e∗t ) =

T∑
t=1

wtẽt and E∗
(
e∗t e
∗′
t

)
=

T∑
t=1

wtẽtẽ
′
t

for some sequence of weights wt such that
∑T

t=1wt = 1. This sequence is specific to the particular

bootstrap method being used, for instance wt = 1/T for all t for the i.i.d. bootstrap. See Gonçalves
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and White (2002) for the formula that defines wt for the moving blocks bootstrap and the stationary

bootstrap. In any case, for a given sequence wt associated with a particular bootstrap, we have that

V ar∗ (e∗t ) =

T∑
t=1

wtẽtẽ
′
t −
(

T∑
t=1

wtẽt

)(
T∑
t=1

wtẽt

)′
,

implying that

Γ∗ =
1

N

T∑
t=1

wtΛ̃
′ẽtẽ
′
tΛ̃−

1

N

(
T∑
t=1

wtΛ̃
′ẽt

)(
T∑
t=1

wtΛ̃
′ẽt

)′
,

which is zero given that Λ̃′ẽt = 0 for each t = 1, . . . , T.

3 A new cross sectional dependence robust bootstrap method

In this section, we propose a new bootstrap method for factor models that is consistent under cross

sectional dependence. Following Bai and Ng (2006), we impose the following assumption, which is a

strengthening of Assumptions 1-5 in Appendix A.

Assumption CS Σ ≡ E (ete
′
t) = (σij)i,j=1,...,N for all t, i, j and is such that λmin (Σ) > c1 and

λmax (Σ) < c2 for some positive constants c1 and c2.

Under Assumption CS, the N ×N covariance matrix of the idiosyncratic errors et is time invariant

and has eigenvalues that are bounded and bounded away from zero, uniformly in N. The boundedness

assumption on the maximum eigenvalue of Σ is standard in the approximate factor model literature

(cf. Chamberlain and Rothschild (1983), Bai (2003) and Bai and Ng (2006), among many others),

allowing for weak cross sectional dependence of unknown form. The time series stationarity assumption

is less standard but has been used by Bai and Ng (2006) to propose a consistent estimator of Γ =

V ar
(
N−1/2Λ′et

)
when there is weak cross sectional dependence in eit. As they explain, the main

intuition is that if covariance stationarity holds we can use the time series observations on {ẽit} to
consistently estimate the cross section correlations σij and hence Σ. Here we rely on this same idea to

propose a consistent bootstrap method that is robust to cross sectional dependence and that at the

same time does not yield a zero Γ∗.

3.1 The cross sectional dependent bootstrap for factor models

Let Σ̃ = (σ̃ij)i,j=1,...,N denote an estimator of Σ. The cross sectional dependence robust bootstrap

algorithm is as follows.

CSD bootstrap algorithm

1. For t = 1, . . . , T , let

X∗t = Λ̃F̃t + e∗t ,
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where
{
e∗t = (e∗1t, . . . , e

∗
Nt)
′} is such that
e∗t = Σ̃1/2ηt, where ηt is i.i.d. (0, IN ) over t (5)

and the elements of ηt = (η1t, . . . , ηNt)
′ are mutually independent for given t. Σ̃1/2 is the square

root matrix of Σ̃.

2. Estimate the bootstrap factors F̃ ∗ and the bootstrap loadings Λ̃∗ using X∗.

3. For t = 1, . . . , T − 1, let

y∗t+1 = α̂′F̃t + β̂
′
Wt + ε∗t+1,

where the error term ε∗t+1 is a wild bootstrap resampled version of ε̂t+1, i.e.

ε∗t+1 = ε̂t+1vt+1,

where the external random variable vt+1 is i.i.d. (0, 1) and is independent of ηit.

4. Regress y∗t+1 generated in 3. on the estimated bootstrap factors and the fixed regressors ẑ
∗
t =(

F̃ ∗′t ,W
′
t

)′
. This yields the bootstrap OLS estimators δ̂

∗
.

In step 2, we generate ε∗t+1 using a wild bootstrap, which is appropriate under our martingale

difference sequence assumption (cf. Assumption 5(a)). When forecasting over longer horizons, Djog-

benou et al. (2015) show that applying a combination of the moving blocks and the wild bootstrap

corrects for serial dependence in εt+h when h > 1.

The following result proves the asymptotic validity of the CSD bootstrap under a convergence

condition on the spectral norm of Σ̃− Σ.

Theorem 3.1 Suppose Assumptions 1-5 strengthened by Assumption CS hold and we implement the

CSD bootstrap with Σ̃ such that

ρ
(

Σ̃− Σ
)
→P 0. (6)

Then, if
√
T/N → c, with 0 ≤ c <∞,

sup
x∈Rp

∣∣∣P ∗ (√T (Φ∗′δ̂
∗ − δ̂

)
≤ x

)
− P

(√
T
(
δ̂ − δ

)
≤ x

)∣∣∣→P 0,

where Φ∗ = diag (H∗, Iq) and H∗ is the bootstrap analogue of H.

Theorem 3.1 shows that a suffi cient condition for the CSD bootstrap to be asymptotically valid

when Assumptions 1-5 strengthened by Assumption CS hold and
√
T/N → c is that Σ̃ is consistent

towards Σ under the spectral norm ρ. This condition is used to show that

Γ∗ ≡ V ar∗
(

1√
N

Λ̃′e∗t

)
=

1

N
Λ̃′V ar∗ (e∗t ) Λ̃ =

1

N
Λ̃′Σ̃Λ̃

P−→ QΓQ′,
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thus verifying Condition F* in Gonçalves and Perron (2014). Together with Assumptions 1-5, (6)

suffi ces to show that the remaining high level conditions for bootstrap validity (cf. Conditions A*-E*

in Appendix A) hold. Note that consistency of Σ̃ towards Σ under the spectral norm ensures that

asymptotically, as N,T → ∞, all eigenvalues of Σ̃ converge to the corresponding eigenvalues of Σ.

Since the latter are bounded away from zero by Assumption CS, it follows that Σ̃ is asymptotically

nonsingular. This is suffi cient to guarantee that p lim Γ∗ 6= 0.

In order to implement the CSD bootstrap method, we need to choose Σ̃. One natural choice could

be the sample covariance matrix given by

Σ̃ = (σ̂ij) , with σ̂ij =
1

T

T∑
t=1

ẽitẽjt.

This choice is not a good choice, for two reasons. First, it is well known that the sample covariance

matrix can behave poorly, especially when the cross sectional dimension is larger than the time series

dimension (in particular, it is not consistent in the spectral norm). The second reason, specific to our

context, is that it also induces a zero bias term in the bootstrap distribution by implying Γ∗ = 0, just

as the i.i.d. bootstrap analyzed in the previous section. Indeed,

Γ∗ = V ar∗
(

1√
N

Λ̃′e∗t

)
=

1

N
Λ̃′V ar∗ (e∗t ) Λ̃ =

1

N
Λ̃′Σ̃Λ̃,

where

Σ̃ =
1

T

T∑
t=1

ẽtẽ
′
t.

Therefore,

Γ∗ =
1

T

T∑
t=1

(
1√
N

Λ̃′ẽt

)(
1√
N

Λ̃′ẽt

)′
= 0,

by the first order conditions defining Λ̃ and F̃ . Hence, the CSD bootstrap implemented with the

sample covariance matrix leads to a distribution centered at zero, which is only correct when either

α = 0 or
√
T/N → 0.

3.2 A CSD bootstrap based on thresholding

In order to avoid a zero Γ∗ matrix, some regularization of Σ̃ = ẽ′ẽ/T is needed. Our approach in this

paper is to use thresholding. The main idea is that rather than using the sample covariance to estimate

all the off-diagonal elements of Σ, we keep only those that exceed a given threshold. If the covariance

matrix Σ is sparse in the sense that most of its off-diagonal elements are zero, thresholding allows

for consistent estimation of Σ even when its dimension is very large (and potentially larger than T ).

Although there are other regularization methods we could use, thresholding has the advantage that

it is invariant to variable permutations. This is particularly useful when no natural ordering exists

among the variables. If a distance metric on the indices (i, j) is available and we can order variables
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according to this measure, then banding/tapering is another regularization method that could be used.

More specifically, we follow Bickel and Levina (2008) and consider the following estimator of Σ:

Σ̃ = [σ̃ij ] ,

with

σ̃ij =

{
σ̂ij i = j

σ̂ij1 (|σ̂ij | ≥ ω) i 6= j
, with σ̂ij =

1

T

T∑
t=1

ẽitẽjt,

and where ω ≡ ωNT is a threshold value that we need to specify. This form of thresholding is known in
the literature as a “universal hard thresholding rule”: “universal”because we apply a single threshold

level to all the entries of Σ̃ and “hard”because we use the indicator function as a thresholding function

(s (z) = z1 (|z| > ω)). Rothman, Levina and Zhu (2009) relax this assumption by allowing for more

general thresholding functions such as the soft thresholding where s (z) = sgn (z) (|z| − ω)+, where (·)+

denotes the positive part. Cai and Liu (2011) propose a generalization of the universal thresholding

rule that adapts to the amount of variability of the entries by using different threshold values (this is

the so-called adaptive thresholding method). Whereas these papers apply thresholding to a sample

covariance matrix that is obtained from a set of observed variables, here we apply thresholding to

the estimated residuals of a factor model. Hence, our paper is more closely related to Fan, Liao and

Mincheva (2011, 2013), who consider the adaptive thresholding approach with estimated residuals.

In particular, we draw heavily on Fan, Liao and Mincheva (2013), where the “Principal orthogonal

complement thresholding estimator”(POET) for factor models was proposed. Contrary to Fan, Liao

and Mincheva (2013), here we focus on the universal hard thresholding rule rather than the adaptive

thresholding function. The main reason for doing so is that this allows us to dispense with the

assumption that
√
T/N → 0, which is used by Fan, Liao and Mincheva (2013) to prove consistency

of the POET estimator (see their Theorem 1). This assumption is too restrictive for our purposes

because it implies that factors estimation uncertainty does not matter for inference. As we show

next, the estimator given above is consistent for Σ under the spectral norm with the assumption that
√
T/N → c 6= 0, where we expect the gains from bootstrapping to be larger.

The choice of the threshold ωNT that ensures the convergence of Σ̃ towards Σ under the spectral

norm depends on the convergence rate of maxi,j |σ̂ij − σij | (cf. Lemma B.1). The following additional
assumptions allow us to derive this rate.

Assumption TS As N,T →∞ such that logN/T → 0,

(a) maxi,j≤N

∣∣∣ 1
T

∑T
t=1 eitejt − σij

∣∣∣ = OP

(√
logN
T

)
.

(b) maxi≤N

∥∥∥ 1
T

∑T
t=1 Fteit

∥∥∥ = OP

(√
logN
T

)
.

Assumption TS (a) is a high level assumption which requires the time average of eitejt to converge

to σij at the indicated rate uniformly in i, j = 1, . . . , N . This rate is implied by more primitive
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assumptions that include stationary mixing conditions as well as exponential-type tail conditions

on the unobserved errors et ≡ (e1t, . . . , eNt)
′. Similarly, part (b) of Assumption TS is implied by

stationarity, strong mixing and exponential tail conditions on the latent factors. See Lemma 4 of Fan,

Liao and Mincheva (2013) for a specific set of regularity conditions that imply Assumption TS. These

conditions are quite strong, and it would be interesting to relax them, but this is beyond the scope of

this paper. We consider the robustness to this Assumption in our simulation experiment below.

Given Assumptions 1-5 strengthened by Assumptions CS and TS, and using results from Fan,

Liao and Mincheva (2011, 2013), we can easily show that maxi,j |σ̂ij − σij | = OP

(
1√
N

+
√

logN
T

)
(cf. Lemma B.2). The 1/

√
N term captures the effect of factors estimation uncertainty whereas the

second term is the optimal uniform rate of convergence of the sample covariances between eit and ejt.

Following Fan, Liao and Mincheva (2013), we set ωNT equal to the maximum estimation error in σ̂ij ,

i.e. we set

ωNT = C

(
1√
N

+

√
logN

T

)
,

where C > 0 is a suffi ciently large constant1. With this choice of ωNT , we can prove the consistency

of Σ̃ towards Σ provided Σ is suffi ciently sparse.

To characterize the sparsity of Σ, we follow Fan, Liao and Mincheva (2011) and impose an upper

bound restriction on the maximum number of non-zero elements of Σ across rows,

mN ≡ max
i≤N

N∑
j=1

1 (σij 6= 0) .

In particular, although we allow mN to grow to infinity2, we require

mN = o

(
min

(
√
N,

√
T

logN

))
.

Assuming a sparse covariance matrix for the idiosyncratic errors of a panel factor model is a very

natural assumption since it is consistent with the idea that the common factors capture most of the

dependence in the observable variables Xit and any residual cross sectional dependence that is left is

weak (as postulated by the approximate factor panel model of Chamberlain and Rothschild (1983)).

Two recent papers in econometrics that have relied on a similar sparsity assumption are Gagliardini,

Ossola and Scaillet (2016) and Fan, Liao and Yao (2015). Their testing problem is different from ours

and they do not rely on the bootstrap.

Our main result is as follows.

Theorem 3.2 Suppose Assumptions 1-5 strengthened by Assumptions CS and TS hold and
√
T/N →

1 In the simulations, we use cross-validation to choose C.
2Note that this is consistent with Assumption CS, which requires that λmax (Σ) by uniformly bounded above. Indeed,

we can show that ρ (Σ) = λmax (Σ) ≤ maxi
∑

j |σij | ≤ mNM under the assumption that |σij | ≤ M since for any
symmetric matrix A, ρ (A) ≤ maxi

∑
j |aij |.
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c, with 0 ≤ c < ∞, as N,T → ∞. If logN = o (T ) and mN = o
(

min
(√

N,
√

T
logN

))
, then the

conclusions of Theorem 3.1 hold for the thresholding CSD bootstrap method based on a threshold value

ωNT = C

(
1√
N

+
√

logN
T

)
.

The condition logN/T → 0 is needed to consistently estimate the high dimensional covariance

matrix Σ under the spectral norm. This condition is implied by the condition that
√
T/N → c when

c 6= 0 (since then N is proportional to
√
T and log T/T → 0). When c = 0, the two conditions are

consistent with each other and we can interpret the former as imposing an upper bound on N as a

function of T whereas
√
T/N → 0 imposes a lower bound.

4 Monte Carlo results

In this section, we report results from a simulation experiment documenting the properties of bootstrap

procedures in factor-augmented regressions. The data-generating process (DGP) is the same as DGP

6 in Gonçalves and Perron (2014). We consider the single factor model:

yt+1 = αFt + εt+1, (7)

with α = 1 and where Ft is drawn from a standard normal distribution independently over time.

The regression error εt+1 is normally distributed but heteroskedastic with variance
F 2t
3 . The rescaling

is done to make the asymptotic variance of
√
T
(
α̂− αH−1

0

)
equal to 1. Because our DGP satisfies

condition PC1 in Bai and Ng (2013), H0 is ±1, so that we identify the parameter up to sign.

The (T ×N) matrix of panel variables is generated as:

Xit = λiFt + θeit, (8)

where λi is drawn from a U [0, 1] distribution (independent across i). The variance of eit is drawn

from U [.5, 1.5], and cross sectional dependence is similar to the design in Bai and Ng (2006):

corr (eit, ejt) =

{
.5|i−j| if |i− j| ≤ 5

0 otherwise
.

This makes mN fixed at 11 and thus the rate restriction on mN is satisfied. The parameter θ =
√

.333

.817

is used to rescale eit to obtain Γ = 1/3 and make the results comparable to those in Gonçalves and

Perron (2014). We report results from experiments based on 5000 replications with B = 399 bootstrap

repetitions. We consider three values for N (50, 100, and 200) and T (50, 100, and 200).

In a second experiment, we consider the case where we change the order of the columns of the X

matrix, so that the covariance matrix of the idiosyncratic errors is no longer Toeplitz (we call this

DGP 2). This will allow us to look at the robustness of estimators of Γ to arbitrary changes in the

ordering of the data.

We concentrate on inference about α in (7). We report mean bias and coverage rates for asymptotic

and bootstrap equal-tailed percentile t confidence intervals at a nominal level of 95%. We report results

13



for three asymptotic methods and four bootstrap methods. The asymptotic methods are the standard

OLS estimator and two bias-corrected estimators that plug in estimates of Γ to estimate the bias. The

two estimators we consider are the thresholding estimator of Bickel and Levina (2008), denoted BL,

using their suggested cross-validation procedure to choose the threshold, and the CS-HAC estimator

of Bai and Ng (2006):

Γ̂CS−HAC =
1

n

n∑
i=1

n∑
j=1

λ̃iλ̃j
1

T

T∑
t=1

ẽitẽjt

with n = min
(√

N,
√
T
)
.

The four bootstrap methods are the CSD bootstrap based on the Bickel and Levina (2008) thresh-

olding estimator, the wild bootstrap (WB) estimator of Gonçalves and Perron (2014), the bootstrap

that resamples vectors independently over time, and the CSD bootstrap based on the empirical co-

variance matrix:

Σ̃ =
1

T

T∑
t=1

ẽtẽ
′
t.

One issue in implementing the bootstrap with the thresholding estimator is that the estimator

is not necessarily positive definite. This is a finite-sample issue as it converges asymptotically to a

positive definite matrix. We followed McMurry and Politis (2010) and replaced the small eigenvalues

of the estimated matrix by a small positive number (10−6).

The results are presented in Table 1. The top panel of the table includes results for DGP 1 (with

a Toeplitz covariance matrix of the idiosyncratic errors), while the bottom panel reports results for

DGP 2 (with the reshuffl ed columns of X). In each panel, the top portion refers to bias results, and

the bottom portion to coverage rates.

The bias of the OLS estimator is reported along the top row of the table. These numbers are

identical to those in Gonçalves and Perron (2014): the bias is negative, it is reduced for large values of

N, and it is little affected by changes in T . The two rows below report the mean estimated bias with

each of the estimators of the covariance matrix. Note that we do not report results for the empirical

covariance matrix as the estimate is exactly 0 by the first-order conditions as discussed above. While

neither approach reproduces the bias perfectly, the CS-HAC seems to have a slight advantage over the

BL estimator, but this advantage disappears for larger N and T.

The cross sectional dependent bootstrap using the threshold estimator reproduces the Bickel and

Levina bias results above. As expected, the wild bootstrap does not perform as well, but it does

capture a large fraction of the bias as it includes the diagonal elements of Σ̃ in the computation of Γ∗.

Finally, we see that the two methods that lead to a zero Γ∗, the empirical covariance matrix and i.i.d.

resampling over time, do not capture the bias, though the mean is not quite 0.

The results for coverage rates mirror those for the bias. The first row reports coverage rates for

the OLS estimator based on the asymptotic theory of Bai and Ng that assumes the absence of a bias.

We see that the presence of this bias leads to severe under coverage, for example a 95% confidence
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intervals for N = T = 50 only includes the true value of the parameter in 70.5% of the replications.

These distortions are reduced as N increases as the bias of the estimator is reduced.

The bias-correction methods are partially successful in providing accurate coverage. For example,

for N = T = 50, the coverage rates are 77.9% and 79.8% compared to 70.5% for the OLS estimator.

As N increases, the difference between the bias-correction methods and OLS disappears as the bias

converges towards 0. Again, the CS-HAC seems to dominate, though this advantage disappears as N

and T increase.

The cross sectional bootstrap with the thresholding covariance matrix improves on these coverage

rates. Still for N = T = 50, we obtain a coverage rate of 87.9%, the highest among all methods

considered. The wild bootstrap of Gonçalves and Perron (2014) corrects some of the distortions as it

captures part of the bias term. Finally, the two invalid methods behave in a way similar to the OLS

estimator since they do not capture the bias term at all.

The bottom panel of Table 1 presents the results for DGP 2. Most of the results are identical to

those of the upper panel, showing the robustness of these methods to random reshuffl ing of the data.

The only results that are markedly different are those for CS-HAC as it depends on the ordering of the

data. This method is much less effective in estimating the bias and in correcting the undercoverage

of the confidence intervals based on the OLS estimator. On the other hand, bias correction with the

Bickel and Levina estimator works just as well as before. Similarly, the cross sectional dependent

bootstrap with the thresholding covariance matrix works just as before.

In unreported results, we consider the robustness of our procedure to the failure of some of our

assumptions. In particular, we consider the impact of the presence of a weak factor and fat tails in

the idiosyncratic errors. We find that the results are robust if the errors are drawn from a Student t

distribution with degrees of freedom that is at least 4, and that omitting a factor does not affect the

bootstrap performance too much as long as this factor is suffi ciently weak.

5 Empirical illustration

In this section, we apply our cross sectional dependent bootstrap to the problem of forecasting inflation

using convenience yields on commodities as explored recently by Gospodinov and Ng (2013), GN

henceforth. We use an updated dataset 3 for the period from March 1983 to June 2015 that contains

convenience yields and HP-filtered log real prices for N = 21 commodities divided into 6 categories:

Foodstuffs, Grains and Oilseeds, Industrials, Livestock and Meats, Metals, and Energy. Unfortunately,

we had to discard two commodities from our analysis because their prices were discontinued in 2008

(pork bellies and feeder cattle). The only other difference with the original data is that prices are

end of month instead of monthly averages. This change induces some large values in the convenience

yields for some commodities.

3We thank Nikolay Gospodinov for providing us this data.

15



The variable to be forecast is monthly CPI inflation (all items, urban consumers, seasonally ad-

justed), and several observable variables are also included as predictors: detrended oil prices and a lag,

qoil,t and qoil,t−1, respectively, the 3-month T-bill rate it, the log change of trade-weighted USD ex-

change rate ∆xt, and the deviation of the unemployment rate from the HP trend. 4 Readers interested

in more details regarding the data should consult the online appendix to GN.

We consider forecasting inflation using GN’s augmented model which includes two factors (or prin-

cipal components) extracted from convenience yields, two factors extracted from detrended commodity

prices, two autoregressive components, and the observable predictors:

∆pt+1 = β0 + α1F̃1,t + α2F̃2,t + α3G̃1,t + α4G̃2,t + β′Wt + εt+1,

where ∆pt+1 = log
(
pt+1
pt

)
is monthly inflation and F̃j,t is a factor summarizing the dynamics of the

convenience yields for j = 1, 2, G̃i,t is a factor summarizing the dynamics of detrended commodity

prices for i = 1, 2, andWt is a vector containing the observable predictors (including the lags of ∆pt+1).

This specification corresponds to the second column in their Table 1.

Table 2 reports point estimates obtained by ordinary least squares along with four sets of 90%

confidence intervals for the original sample ending in July 2008, for the extended sample, and for

the period after the original GN sample.The point estimates for the first subsample are similar to

those reported in GN. The first confidence interval is based on asymptotic theory and is obtained

by adding and subtracting 1.645 times the heteroskedasticity-robust standard error to the estimate.

The other three intervals are computed using the bootstrap. The first bootstrap intervals are based

on the above cross sectional dependent bootstrap using the thresholding estimator of the covariance

matrix of the idiosyncratic errors with data-based threshold. The second confidence interval uses the

diagonal of the estimated covariance matrix of the stacked errors and corresponds to the wild bootstrap

of Gonçalves and Perron (2014). Differences between these two intervals measure the importance of

allowing for cross sectional dependence. Finally, the last row reports intervals based on the GN block

bootstrap. We have made three modifications to their algorithm, namely we use heteroskedasticity-

robust standard errors instead of standard errors robust to serial correlation, we use a block size of 1

instead of 4, and we rotate the coeffi cients in the bootstrap world using the rotation matrix H∗ as in

Gonçalves and Perron (2014). The first two modifications are justified by the fact that our forecast

horizon is 1 and that εt+1 should not have serial correlation under correct specification.

We now discuss the results for the first subsample. The first thing to note is that our bootstrap

intervals for the coeffi cients on the factors, α1, . . . , α4, are shifted relative to those based on asymptotic

theory, indicating the presence of a bias due to the estimation of the factors. For example, for the

4As remarked by a referee, the T-bill rate is essentially 0 after the 2008 financial crisis. We have considered an
alternative measure not subject to the zero lower bound by replacing the T-bill rate with the shadow Fed funds rate
available on Cynthia Wu’s web site. See Wu and Xia (2016) for details. The pre-2008 results are not affected at all but
the post-2008 results are different. The main difference is that the magnitude of the coeffi cient on the interest rate is
much smaller, and it is no longer significant at the 10% level. We have kept the results with the actual interest rate in
the paper for comparison purposes with previous work.
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second factor extracted from convenience yields, the asymptotic 90% confidence interval is [−.12,−.02]

which is centered at the point estimate of -.067. Instead, our bootstrap intervals are shifted left and

the wild bootstrap interval does not even include the point estimate. The CSD bootstrap interval

is [−.27,−.06] , reflecting the presence of a large bias towards 0 in the OLS estimator due to factor

estimation. We also note that the intervals for the real commodity price factors are quite different

from those reported in GN. However, these factors are not the focus of the GN study because they do

not incorporate forward-looking information. For the observable predictors, bias seems less important;

the bootstrap confidence intervals are similar to those obtained with asymptotic theory and centered

around the OLS estimator.

The results for the extended sample and the post-2008 subsample results show noticeable struc-

tural instabilities. Inflation is much less persistent in the post-2008 sample with both autoregressive

components no longer significant with all confidence intervals. The observable predictors on the other

hand are all significant with parameters quite different from the first subsample except for real oil

prices where the coeffi cients have similar magnitudes. The most interesting factor coeffi cient is the

second price factor which is not significant using either asymptotic theory or the Gospodinov and Ng

bootstrap. Our CSD and wild bootstraps suggest the presence of a large bias in this estimator with

an interval of [−.55,−.19] for the CSD interval despite a point estimate of -.074 in the post-2008 sub-

sample. The second convenience yield factor emphasized in GN is marginal with all three bootstrap

methods in the extended and post-2008 samples. It is significant with the GN and wild bootstrap but

insignificant with the CSD bootstrap in the post-2008 period.

6 Conclusion

In this paper, we consider the bootstrap for factor models where the idiosyncratic errors are correlated

in the cross-section. We show that some natural approaches fail in this context because they lead to a

singular bootstrap covariance matrix for the estimated factors, inducing a zero bias in the bootstrap

distribution of the estimated coeffi cients. Instead, we propose a solution based on a consistent esti-

mator of the covariance matrix of the idiosyncratic errors. We show that if we use a hard threshold

estimator, we can obtain bootstrap consistency for inference on the parameters in a factor-augmented

regression. It would be interesting to see whether this approach can be generalized to other estimators

of the covariance matrix of the idiosyncratic errors. We also think that it would be interesting to extend

this approach to more general models of cross-sectional dependence and with time heterogeneity.

The results in this paper can be used as a building block to construct forecast intervals. The

construction of bootstrap forecast intervals in the current context was considered by Gonçalves, Perron,

and Djogbenou (2017). Denote by ŷT+1 = ẑ′T δ̂ the forecast of yT+1 based on information up to time T.

Bai and Ng (2006) have shown that the forecast errors, defined as the difference between the forecast

17



and the observed value, can be decomposed as:

ŷT+1 − yT+1 = −εT+1 +
1√
T
ẑ′T
√
T
(
δ̂ − δ

)
+

1√
N
α′H−1

√
N
(
F̃T −HFT

)
, (9)

which involves three sources of uncertainty: true randomness (εT+1), parameter uncertainty, and

factor uncertainty. The current paper addresses the second of these sources. A complete construction

of forecast intervals with cross-sectional dependence would require showing the ability of the CSD to

reproduce the distribution of the third term
√
N
(
F̃T −HFT

)
. This diffi cult task is left for future

research.
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A Appendix A: Assumptions and bootstrap high level conditions

The following set of assumptions is standard in the literature on factor models, see Bai (2003), Bai

and Ng (2006) and Gonçalves and Perron (2014). We let zt =
(
F ′t W ′t

)′
, where zt is p × 1, with

p = r + q.

Assumption 1

(a) E ‖Ft‖4 ≤M and 1
T

∑T
t=1 FtF

′
t →P ΣF > 0, where ΣF is a non-random r × r matrix.

(b) The factor loadings λi are deterministic such that ‖λi‖ ≤M and Λ′Λ/N → ΣΛ > 0.

(c) The eigenvalues of the r × r matrix (ΣΛΣF ) are distinct.

Assumption 2

(a) E (eit) = 0, E |eit|8 ≤M.

(b) E (eitejs) = σij,ts, |σij,ts| ≤ σ̄ij for all (t, s) and |σij,ts| ≤ τ ts for all (i, j) such that 1
N

∑N
i,j=1 σ̄ij ≤

M, 1
T

∑T
t,s=1 τ ts ≤M , and 1

NT

∑
t,s,i,j |σij,ts| ≤M.

(c) For every (t, s), E
∣∣∣N−1/2

∑N
i=1 (eiteis − E (eiteis))

∣∣∣4 ≤M.

Assumption 3

(a) E
(

1
N

∑N
i=1

∥∥∥ 1√
T

∑T
t=1 Fteit

∥∥∥2
)
≤M , where E (Fteit) = 0 for all (i, t).

(b) For each t, E
∥∥∥ 1√

TN

∑T
s=1

∑N
i=1 zs (eiteis − E (eiteis))

∥∥∥2
≤M, where zs =

(
F ′s W ′s

)′
.

(c) E
∥∥∥ 1√

NT

∑T
t=1 zte

′
tΛ
∥∥∥2
≤M , where E

(
ztλ
′
ieit
)

= 0 for all (i, t).

(d) E
(

1
T

∑T
t=1

∥∥∥ 1√
N

∑N
i=1 λieit

∥∥∥2
)
≤M, where E (λieit) = 0 for all (i, t).

(e) As N,T → ∞, 1
TN

∑T
t=1

∑N
i=1

∑N
j=1 λiλ

′
jeitejt − Γ →P 0, where Γ ≡ limN,T→∞

1
T

∑T
t=1 Γt > 0,

and Γt ≡ V ar
(

1√
N

∑N
i=1 λieit

)
.

Assumption 4

(a) For each t, E
∣∣∣ 1√

TN

∑T−1
s=1

∑N
i=1 εs+1 (eiteis − E (eiteis))

∣∣∣2 ≤M.

(b) E
∥∥∥ 1√

NT

∑T−1
t=1

∑N
i=1 λieitεt+1

∥∥∥2
≤M , where E (λieitεt+1) = 0 for all (i, t) .

Assumption 5

(a) E (εt+1|yt, Ft, yt−1, Ft−1, . . .) = 0, E |εt+1|2 < M , and Ft and εt are independent of the idiosyn-

cratic errors eis for all (i, s, t).
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(b) E ‖zt‖4 ≤M and 1
T

∑T
t=1 ztz

′
t →P Σzz > 0.

(c) As T →∞, 1√
T

∑T−1
t=1 ztεt+1 →d N (0,Ω) , where E

∥∥∥ 1√
T

∑T−1
t=1 ztεt+1

∥∥∥2
< M , and

Ω ≡ limT→∞ V ar
(

1√
T

∑T−1
t=1 ztεt+1

)
> 0.

Next, we review the bootstrap high level conditions proposed by GP (2014). As usual in the

bootstrap literature, we use P ∗ to denote the bootstrap probability measure, conditional on the original

sample (defined on a given probability space (Ω,F , P )). Because the sample depends on N and

T , as well as on the given sample realization ω, P ∗ is a random measure that depends on N,T

and ω and we should write P ∗NT,ω. However, for simplicity, we omit the indices in P
∗. Similarly,

we omit the indices NT when referring to the bootstrap samples
{
e∗it, ε

∗
t+h

}
. For any bootstrap

statistic T ∗NT , we write T
∗
NT = oP ∗ (1), in probability, or T ∗NT →P ∗ 0, in probability, when for any

δ > 0, P ∗ (|T ∗NT | > δ) = oP (1). We write T ∗NT = OP ∗ (1), in probability, when for all δ > 0 there

exists Mδ < ∞ such that limN,T→∞ P [P ∗ (|T ∗NT | > Mδ) > δ] = 0. Finally, we write T ∗NT →d∗ D, in

probability, if conditional on a sample with probability that converges to one, T ∗NT weakly converges to

the distributionD under P ∗, i.e. E∗ (f (T ∗NT ))→P E (f (D)) for all bounded and uniformly continuous

functions f .

Condition A∗ (weak time series and cross section dependence in e∗it)

(a) E∗ (e∗it) = 0 for all (i, t) .

(b) 1
T

∑T
t=1

∑T
s=1 |γ∗st|

2 = OP (1), where γ∗st = E∗
(

1
N

∑N
i=1 e

∗
ite
∗
is

)
.

(c) 1
T 2
∑T

t=1

∑T
s=1E

∗
∣∣∣ 1√

N

∑N
i=1 (e∗ite

∗
is − E∗ (e∗ite

∗
is))
∣∣∣2 = OP (1) .

Condition B* (weak dependence among ẑt, λ̃i, and e∗it )

(a) 1
T

∑T
t=1

∑T
s=1 F̃sF̃

′
tγ
∗
st = OP (1) .

(b) 1
T

∑T
t=1E

∗
∥∥∥ 1√

TN

∑T
s=1

∑N
i=1 ẑs (e∗ite

∗
is − E∗ (e∗ite

∗
is))
∥∥∥2

= OP (1), where ẑs =
(
F̃ ′s W ′s

)′
.

(c) E∗
∥∥∥ 1√

TN

∑T
t=1

∑N
i=1 ẑtλ̃

′
ie
∗
it

∥∥∥2
= OP (1) .

(d) 1
T

∑T
t=1E

∗
∥∥∥ 1√

N

∑N
i=1 λ̃ie

∗
it

∥∥∥2
= OP (1) .

(e) 1
T

∑T
t=1

(
Λ̃′e∗t√
N

)(
e∗′t Λ̃√
N

)
− Γ∗ = oP ∗ (1) , in probability, where Γ∗ ≡ 1

T

∑T
t=1 V ar

∗
(

1√
N

Λ̃′e∗t

)
> 0.

Condition C* (weak dependence between e∗it and ε∗t+1)

(a) 1
T

∑T
t=1E

∗
∣∣∣ 1√

TN

∑T−1
s=1

∑N
i=1 ε

∗
s+1 (e∗ite

∗
is − E∗ (e∗ite

∗
is))
∣∣∣2 = OP (1).

(b) E∗
∥∥∥ 1√

TN

∑T−1
t=1

∑N
i=1 λ̃ie

∗
itε
∗
t+1

∥∥∥2
= OP (1), where E

(
e∗itε
∗
t+1

)
= 0 for all (i, t).
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(c) 1
T

∑T−1
t=1

∑T
s=1 F̃sε

∗
t+1γ

∗
st = OP ∗ (1), in probability.

Condition D* (bootstrap CLT)

(a) E∗
(
ε∗t+1

)
= 0 and 1

T

∑T−1
t=1 E∗

∣∣ε∗t+1

∣∣2 = OP (1) .

(b) Ω∗−1/2 1√
T

∑T−1
t=1 ẑtε

∗
t+1 →d∗ N (0, Ip), in probability, where E∗

∥∥∥ 1√
T

∑T−1
t=1 ẑtε

∗
t+1

∥∥∥2
= OP (1), and

Ω∗ ≡ V ar∗
(

1√
T

∑T−1
t=1 ẑtε

∗
t+1

)
> 0.

Condition E*. p lim Ω∗ = Φ0ΩΦ′0.

Condition F*. p lim Γ∗ = QΓQ′.

B Appendix B: Proofs

First, we provide two auxiliary lemmas, followed by their proofs. Finally, we prove Theorems 3.1 and

3.2.

Lemma B.1 Suppose that the two following conditions hold:

(a) maxi,j≤N |σ̂ij − σij | = OP (bNT ) for some sequence bNT → 0.

(b) ω ≡ ωNT = CbNT → 0 for some suffi ciently large constant C > 0. It follows that

ρ
(

Σ̃− Σ
)

= OP (mNωNT ) = oP (1) ,

if ωNT is such that mNωNT = o (1).

Lemma B.2 Under Assumptions 1-5 strengthened by Assumptions CS and TS, we have that maxi,j≤N |σ̂ij − σij | =

OP

(
1√
N

+
√

logN
T

)
.

Proof of Lemma B.1. Noting that for any symmetric matrix A, ρ (A) ≤ maxi≤N
∑

j |aij |, it
follows that

ρ
(

Σ̃− Σ
)
≤ max

i≤N

N∑
j=1

|σ̃ij − σij | ≤ max
i≤N

N∑
j=1

|σ̂ij − σij | 1 (|σ̂ij | > ω) + max
i≤N

N∑
j=1

|σij | 1 (|σ̂ij | ≤ ω) ,

where we let ω ≡ ωNT (and we also write b ≡ bNT ). Given (a), there exists a constant C1 > 0 such

that P
(
Ā
)
→ 0, where

A =

{
max
i,j≤N

|σ̂ij − σij | ≤ C1b

}
.

Moreover, conditional on A, ω < |σ̂ij | ≤ maxi,j≤N |σ̂ij − σij | + |σij | ≤ C1b + |σij |, implying that
|σij | > ω − C1b = (C − C1) b > C ′ω, for some positive constant C ′ (given condition (b), it suffi ces
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to choose C > C1). Similarly, given A, the event |σ̂ij | ≤ ω implies |σij | ≤ C ′′ω for some constant

C ′′ > 0). Thus, conditional on A, we have that

ρ
(

Σ̃− Σ
)
≤ max

i,j≤N
|σ̂ij − σij |

N∑
j=1

1
(
|σij | > C ′ω

)
+ max

i≤N

N∑
j=1

|σij | 1
(
|σij | ≤ C ′′ω

)
≤ C1bmN + C ′′ωmN ≤ C ′′′mNω,

for some suffi ciently large constant C ′′′ > 0, given that ω and b are of the same order of magnitude by

condition b). Since P
(
Ā
)
→ 0, it follows that P

(
ρ
(

Σ̃− Σ
)
> C ′′′mNω

)
→ 0, proving the result.

Proof of Lemma B.2. The proof of this result follows the proof of Lemma A.3 of Fan et al.

(2011). In particular, by the triangle inequality,

max
i,j≤N

|σ̂ij − σij | ≤ max
i,j≤N

∣∣∣∣∣T−1
T∑
t=1

eitejt − σij

∣∣∣∣∣+ max
i,j≤N

∣∣∣∣∣T−1
T∑
t=1

(ẽitẽjt − eitejt)
∣∣∣∣∣ .

The first term is OP
(√

logN/T
)
by Assumption TS(a) whereas the second term is of the same order

of magnitude as
√

maxi≤N T−1
∑T

t=1 (ẽit − eit)2. To derive this order, note that given the definitions

of ẽit and eit,

max
i≤N

T−1
T∑
t=1

(ẽit − eit)2 ≤ 2 max
i≤N

∥∥λ′iH−1
∥∥2 1

T

T∑
t=1

∥∥∥F̃t −HFt∥∥∥2
+ 2 max

i≤N

∥∥∥λ̃i −H−1′λi

∥∥∥2 1

T

T∑
t=1

∥∥∥F̃t∥∥∥2

= OP
(
1/δ2

NT

)
+OP (1/N + logN/T ) = OP

(
1

N
+

logN

T

)
,

where δ2
NT = min (N,T ). The indicated orders of magnitude follow from

1

T

T∑
t=1

∥∥∥F̃t −HFt∥∥∥2
= OP

(
1/δ2

NT

)
and

max
i≤N

∥∥∥λ̃i −H−1′λi

∥∥∥2
= OP

(
1

N
+

logN

T

)
.

To see the last result, note that we can write

λ̃i −H−1′λi =
1

T
HF ′ei −

1

T
F̃ ′
(
F̃ − FH ′

)
H−1′λi +

1

T

(
F̃ − FH ′

)
ei ≡ I1i + I2i + I3i,

where ei = (ei1, . . . , eiT )′. Thus, we can bound maxi≤N

∥∥∥λ̃i −H−1′λi

∥∥∥2
by maxi≤N ‖Iki‖2 for k =

1, 2, 3. Starting with the first term, note that

max
i≤N
‖I1i‖2 ≤ ‖H‖2 max

i≤N

∥∥∥∥∥ 1

T

T∑
t=1

Fteit

∥∥∥∥∥
2

= OP

(
logN

T

)
,
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given Assumption TS(b). For the second term,

max
i≤N
‖I2i‖2 ≤ max

i≤N

∥∥∥∥∥ 1

T

T∑
t=1

F̃t

(
F̃t −HFt

)′
H−1′λi

∥∥∥∥∥
2

≤ max
i≤N

∥∥H−1′λi
∥∥2 1

T

T∑
t=1

∥∥∥F̃t∥∥∥2 1

T

T∑
t=1

∥∥∥F̃t −HFt∥∥∥2
= OP

(
1

δ2
NT

)
,

whereas for the third term

max
i≤N
‖I3i‖2 ≤ max

i≤N

∥∥∥∥∥ 1

T

T∑
t=1

(
F̃t −HFt

)
eit

∥∥∥∥∥
2

≤ 1

T

T∑
t=1

∥∥∥F̃t −HFt∥∥∥2
max
i≤N

(
1

T

T∑
t=1

e2
it

)
= OP

(
1

δ2
NT

)
.

Proof of Theorem 3.1. We verify Conditions A* through F* for the CSD bootstrap scheme.

Condition A*(a) follows by the fact that E∗ (ηt) = 0, whereas (b) is implied by tr
(

Σ̃
)
/N = OP (1).

Indeed, using the properties of the trace operator and the definition of e∗t = Σ̃1/2ηt with Σ̃1/2Σ̃1/2′ = Σ̃,

where ηt ∼ i.i.d.(0, IN ) ,

γ∗s,t =
1

N
E∗
(
tr
(
e∗t e
∗′
s

))
= tr

(
E∗
(

1

N
e∗t e
∗′
s

))
=

1

N
tr
(

Σ̃1/2E∗
(
ηtη
′
s

)
Σ̃1/2′

)
=

1

N
tr
(

Σ̃
)

1 (t = s) ,

which implies that

1

T

T∑
t,s=1

∣∣γ∗s,t∣∣2 =
1

T

T∑
t=1

(
1

N
tr
(

Σ̃
))2

=

(
1

N
tr
(

Σ̃
))2

.

This is OP (1) provided 1
N tr

(
Σ̃
)

= OP (1). Since for any matrix A, tr (A) ≤ ρ (A) rank (A), it follows

that
1

N
tr
(

Σ̃
)
≤ 1

N
ρ
(

Σ̃
)
rank

(
Σ̃
)
≤ ρ

(
Σ̃
)
,

given that rank
(

Σ̃
)
≤ N. By the triangle inequality for matrix norms, ρ

(
Σ̃
)
≤ ρ

(
Σ̃− Σ

)
+ ρ (Σ) =

oP (1) +O (1) = OP (1) , since ρ
(

Σ̃− Σ
)
→P 0 and ρ (Σ) = λmax (Σ) = O (1) by Assumption CS. For

A*(c), from Gonçalves and Perron (2014), it suffi ces to show that

1

N

N∑
i,j=1

Cov∗
(
e∗ite
∗
is, e

∗
jte
∗
js

)
= OP (1) , (10)

uniformly in (t, s) . Letting e∗it = a′iηt =
∑N

l=1 ailηlt, where a
′
i denotes the i

th row of Σ̃1/2, we can write

Cov∗
(
e∗ite
∗
is, e

∗
jte
∗
js

)
= Cov∗

(
a′iηtη

′
sai, a

′
jηtη

′
saj
)

=
N∑

l1,l2,l3,l4=1

ail1ail2ajl3ajl4Cov
∗ (ηl1tηl2s, ηl3tηl4s) .

Using the assumption that the N elements of ηt are mutually independent with mean zero and variance

one for each t and the independence of ηt from ηs for t 6= s, we can evaluate Cov∗
(
ηl1tηl2s, ηl3tηl4s

)
for all possible combinations of l1, l2, l3, l4 and t, s. For instance, when l1 = l2 = l3 = l4 = l, we have
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that

Cov∗
(
ηl1tηl2s, ηl3tηl4s

)
= Cov∗ (ηltηls, ηltηls) = E∗

(
η2
ltη

2
ls

)
− E (ηltηls)

2 ,

which is equal to E∗
(
η4
lt

)
− 1 when t = s and is equal to 1 when t 6= s. Thus, the contribution of this

term to (10) is bounded by

C
1

N

N∑
i,j=1

N∑
l=1

a2
ila

2
jl = C

1

N

N∑
l=1

(
N∑
i=1

a2
il

)2

= C
1

N

N∑
l=1

(
A′lAl

)2
where C ≥ max

(
E∗
(
η4
lt

)
− 1, 1

)
and Al = (a1l, . . . , aNl)

′ is the lth column of Σ̃1/2. Proceeding this

way, we can show that Cov∗
(
ηl1tηl2s, ηl3tηl4s

)
6= 0 only if two l1 = l3 6= l2 = l4 or l1 = l4 6= l2 = l3,

implying that he only other contribution to the sum in (10) comes from a term that is bounded by

C
1

N

N∑
i,j=1

N∑
l 6=k

ailaikajlajk = C
1

N

N∑
l 6=k

(
N∑
i=1

ailaik

) N∑
j=1

ajlajk

 = C
1

N

N∑
l 6=k

(
A′lAk

)2
,

from some constants C. Thus, we can bound (10) by

C
1

N

N∑
l,k=1

(
A′lAk

)2
= C

1

N

∥∥∥Σ̃
∥∥∥2
,

given that Σ̃ = Σ̃1/2Σ̃1/2′ =
∑N

l=1AlA
′
l and∥∥∥Σ̃

∥∥∥2
= tr

(
Σ̃′Σ̃

)
= tr

 N∑
k,l=1

AlA
′
lAkA

′
k

 =
N∑

k,l=1

(
A′lAk

)
tr
(
AlA

′
k

)
=

N∑
k,l=1

(
A′lAk

)2
.

Since
∥∥∥Σ̃
∥∥∥ ≤ ρ(Σ̃

)√
rank

(
Σ̃
)
≤ ρ

(
Σ̃
)√

N , it follows that (10) is bounded by C
(
ρ
(

Σ̃
))2

= OP (1)

given that ρ
(

Σ̃− Σ
)
→P 0 and ρ (Σ) = λmax (Σ) = O (1) . For Condition B*(a), note that γ∗s,t = 0

for t 6= s, whereas γ∗t,t = 1
N tr

(
Σ̃
)
, which implies that

1

T

T∑
s,t=1

F̃sF̃
′
tγ
∗
s,t =

1

T

T∑
t=1

F̃tF̃
′
t

1

N
tr
(

Σ̃
)

=
F̃ ′F̃

T

1

N
tr
(

Σ̃
)

=
1

N
tr
(

Σ̃
)

= OP (1) ,

as shown above (note that F̃ ′F̃
T = Ir). To check Condition B*(b), for given t, we can write

E∗

∥∥∥∥∥ 1√
TN

T∑
s=1

N∑
i=1

ẑs (e∗ite
∗
is − E∗ (e∗ite

∗
is))

∥∥∥∥∥
2

=
1

T

T∑
s,l=1

z̃′sz̃l∆t,l,s,

where

∆t,l,s ≡
1

N

N∑
i,j=1

Cov∗
(
e∗ite
∗
is, e

∗
jte
∗
jl

)
.
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Using the same approach as when verifying A*(c), we can show that ∆t,l,s = 0 whenever l 6= s, whereas

for l = s, ∆t,l,l ≤
∥∥∥Σ̃
∥∥∥2
/N uniformly in t. Therefore,

1

T

T∑
s,l=1

z̃′sz̃l∆t,l,s =

(
1

T

T∑
l=1

z̃′lz̃l

) ∥∥∥Σ̃
∥∥∥2

N
≤ OP (1) ρ

(
Σ̃
)2
.

Thus, B*(b) is implied by the condition that ρ
(

Σ̃
)

= OP (1), which follows under Assumption CS

and the condition that ρ
(

Σ̃− Σ
)
→P 0. For B*(c), using the properties of the trace operator and the

definition of the Frobenius norm, we get that

E∗

∥∥∥∥∥ 1√
TN

T∑
t=1

N∑
i=1

z̃tλ̃
′
ie
∗
it

∥∥∥∥∥
2

= E∗

∥∥∥∥∥ 1√
T

T∑
t=1

z̃t

(
e∗′t Λ̃√
N

)∥∥∥∥∥
2

=
1

T

T∑
t=1

T∑
s=1

tr
(
z̃sz̃
′
t

)
E∗

(
e∗′s Λ̃√
N

Λ̃′e∗t√
N

)
,

where

E∗

(
e∗′s Λ̃√
N

Λ̃′e∗t√
N

)
= E∗

(
tr

(
Λ̃′e∗t√
N

e∗′s Λ̃√
N

))
=

1

N
tr
[
Λ̃′E∗

(
e∗t e
∗′
s

)
Λ̃
]

=

{
0 , t 6= s

1
N tr

(
Λ̃′Σ̂Λ̃

)
≡ tr

(
Γ̃
)

, t = s.

Hence,

E∗

∥∥∥∥∥ 1√
TN

T∑
t=1

N∑
i=1

z̃tλ̃
′
ie
∗
it

∥∥∥∥∥
2

=
1

T

T∑
t=1

tr
(
z̃tz̃
′
t

)
tr
(

Γ̃
)

=
1

T

T∑
t=1

‖z̃t‖2 tr
(

Γ̃
)

= OP (1) tr
(

Γ̃
)
,

which is OP (1) if tr
(

Γ̃
)

= OP (1). This condition is implied by Condition F* (which we will verify

later) and the fact that QΓQ′ = OP (1) under our assumptions. Similarly, we can easily show that

B*(d) is equivalent to the requirement that tr
(

Γ̃
)

= OP (1) . For B*(e), following Gonçalves and

Perron (2014), it suffi ces to show that

V ar∗ (A∗) ≡ 1

T 2

T∑
t,s=1

1

N2

N∑
i,j,k,l=1

λ̃iλ̃j λ̃lλ̃kCov
∗ (e∗ite∗jt, e∗lse∗ks) .

Using e∗it = a′iηt and the independence of ηt over time, we can show that Cov∗
(
e∗ite
∗
jt, e

∗
lse
∗
ks

)
= 0

when t 6= s, whereas when t = s,

Cov∗
(
e∗ite
∗
jt, e

∗
lte
∗
kt

)
= Cov∗

(
a′iηtη

′
taj , a

′
lηtη

′
tak
)

= Cov∗

 N∑
m1,m2=1

aim1ajm2ηm1tηm2t,

N∑
m3,m4=1

alm3akm4ηm3tηm4t


=

N∑
m1,m2,m3,m4=1

aim1ajm2alm3akm4Cov
∗ (ηm1tηm2t, ηm3tηm4t

)
≤ C

N∑
m,n=1

aimajnalmakn = C

(
N∑
m=1

aimalm

)(
N∑
n=1

ajnakn

)
= C

(
a′ial

) (
a′jak

)
,
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given that Cov∗
(
ηm1tηm2t, ηm3tηm4t

)
= 0 whenever more than two indices are equal to each other.

Given that a′i is the i
th row of Σ̃1/2 and that Σ̃ = Σ̃1/2Σ̃1/2′, we can see that a′ial = σ̃il, implying that

V ar∗ (A∗) ≤ C 1

T 2

T∑
t=1

1

N2

N∑
i,j,k,l=1

λ̃iλ̃j λ̃lλ̃kσ̃
2
ilσ̃

2
jk =

1

T

 1

N

N∑
i,l=1

λ̃iλ̃lσ̃il

2

= OP

(
1

T

)
= oP (1) ,

since the term in parenthesis is equal to Γ̃ = OP (1). Next, we verify Condition C*. Using the

independence between ε∗t+1 and e∗t , we can show that part a) is implied by the condition that∥∥∥Σ̃
∥∥∥2
/N ≤ ρ

(
Σ̃
)

= OP (1), part b) follows by the condition that tr
(

Γ̃
)

= OP (1) and part c) follows

by tr
(

Σ̃/N
)
≤ ρ

(
Σ̃
)

= OP (1) , which are implied by the convergence condition ρ
(

Σ̃− Σ
)
→ 0 and

Condition F*, which we show next. Note that Conditions D* and E* are satisfied under Assumptions

1-5, as shown by Gonçalves and Perron (2014) (since the CSD bootstrap algorithm utilizes the same

procedure as theirs to generate ε∗t+1 and Condition D* and E* only involve these bootstrap residuals).

To conclude the proof, we show Condition F*. Letting Γ̄ = Λ′Σ̃Λ
N , we have that

Γ̃−QΓQ′ = Γ̃−QΓ̄Q′ +Q
(
Γ̄− Γ

)
Q′ ≡ A1 +A2.

We can write

A2 = Q
(
Γ̄− Γ

)
Q′ = Q

1

N
Λ′
(

Σ̃− Σ
)

ΛQ′,

implying that

‖A2‖ ≤ ‖Q‖2
∥∥∥Λ/
√
N
∥∥∥2
ρ
(

Σ̃− Σ
)
→P 0

given that Q = H−1′ = OP (1) ,
∥∥∥Λ/
√
N
∥∥∥ = O (1) and ρ

(
Σ̃− Σ

)
→P 0. For A1, adding and subtract-

ing appropriately yields

A1 = a1 + a2 + a′2, where

a1 ≡
1

N

(
Λ̃− ΛH−1

)′
Σ̃
(

Λ̃− ΛH−1
)

and a2 ≡
1

N
H−1′Λ′Σ̃

(
Λ̃− ΛH−1

)
.

We have that

‖a1‖ ≤
∥∥∥∥ 1√

N

(
Λ̃− ΛH−1

)∥∥∥∥2

ρ
(

Σ̃
)

= oP (1)OP (1) ,

since the first factor is equal to 1
N

∑N
i=1

∥∥∥λ̃i −H−1′λi

∥∥∥2
= OP

(
1/δ2

NT

)
= oP (1) under Assumptions

1-5 whereas ρ
(

Σ̃
)

= OP (1) given that we choose Σ̃ such that ρ
(

Σ̃− Σ
)
→P 0. For a2,

‖a2‖ ≤
∥∥H−1

∥∥∥∥∥Λ/
√
N
∥∥∥ ρ(Σ̃

)(∥∥∥∥ 1√
N

(
Λ̃− ΛH−1

)∥∥∥∥2
)1/2

= oP (1) ,

using the same arguments as for a1.

Proof of Theorem 3.2. Given Theorem 3.1, it suffi ces to show that ρ
(

Σ̃− Σ
)
→P 0, which is

implied by Lemmas B.1 and B.2 given our assumptions.
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T = 50 T = 100 T = 200 T = 50 T = 100 T = 200 T = 50 T = 100 T = 200

bias -0.13 -0.12 -0.11 -0.08 -0.07 -0.07 -0.05 -0.04 -0.04
BL -0.04 -0.06 -0.07 -0.03 -0.03 -0.04 -0.01 -0.02 -0.02

CS-HAC -0.07 -0.07 -0.07 -0.04 -0.04 -0.04 -0.02 -0.02 -0.02

CSD -0.06 -0.06 -0.07 -0.04 -0.04 -0.04 -0.03 -0.03 -0.03
WB -0.05 -0.05 -0.04 -0.04 -0.03 -0.03 -0.03 -0.02 -0.02

iid over time -0.02 -0.01 -0.01 -0.02 -0.01 -0.01 -0.02 -0.01 -0.01
empirical -0.02 -0.01 -0.01 -0.02 -0.01 -0.01 -0.02 -0.01 -0.01

DGP 1
alpha = 1

CS OLS 70.5 64.9 52.8 81.5 83.0 79.8 87.6 89.4 89.0
BC - BL 77.9 79.4 81.4 83.7 88.3 89.0 88.6 90.7 91.5

BC- CS-HAC 79.8 80.8 80.6 83.9 88.5 88.4 88.9 90.6 91.5

CSD 87.9 87.6 88.5 90.2 92.7 92.1 92.1 93.7 93.6
WB 87.0 83.1 78.2 89.9 91.4 89.0 92.1 93.1 92.6

iid over time 79.1 70.6 56.7 87.5 87.7 82.4 91.4 92.2 90.9
empirical 79.8 70.9 57.0 87.2 87.7 82.4 91.4 92.3 91.0

CSD 1.21 1.16 1.14 1.16 1.11 1.09 1.14 1.08 1.06
WB 1.19 1.12 1.09 1.15 1.09 1.06 1.13 1.08 1.05

iid over time 1.10 1.06 1.03 1.11 1.06 1.04 1.11 1.06 1.04
empirical 1.11 1.06 1.03 1.11 1.06 1.03 1.11 1.06 1.04

bias -0.13 -0.12 -0.11 -0.08 -0.07 -0.07 -0.05 -0.04 -0.03
BL -0.04 -0.06 -0.07 -0.03 -0.03 -0.04 -0.01 -0.02 -0.02

CS-HAC -0.03 -0.03 -0.03 -0.02 -0.02 -0.02 -0.01 -0.01 -0.01

WB -0.05 -0.05 -0.04 -0.04 -0.03 -0.03 -0.03 -0.02 -0.02
iid over time -0.02 -0.01 -0.01 -0.02 -0.01 -0.01 -0.02 -0.01 -0.01

empirical -0.02 -0.01 -0.01 -0.02 -0.01 -0.01 -0.02 -0.01 -0.01
CSD -0.06 -0.06 -0.07 -0.04 -0.04 -0.04 -0.03 -0.03 -0.03

DGP 2
alpha = 1

CS OLS 70.7 65.1 52.8 81.1 83.2 79.5 87.2 89.5 89.9
BC - BL 78.1 80.1 81.2 83.9 88.3 88.8 87.9 90.7 92.5

BC- CS-HAC 76.6 74.9 68.9 83.2 86.7 85.4 87.9 90.3 91.5
reshuffled X

CSD 87.5 87.6 88.3 89.9 92.2 91.9 92.1 93.2 94.0
WB 86.9 83.6 77.9 89.9 91.4 89.0 92.2 92.9 93.3

iid over time 79.8 70.9 56.4 87.5 87.4 82.0 91.5 92.0 91.7
empirical 79.9 71.3 56.6 87.4 87.7 82.1 91.3 92.0 91.8

Each part of the table reports estimates of the bias in the estimation of α and the associated coverage rate of 95% confidence intervals for two asymptotic and 4 
bootstrap methods.  The asymptotic methods are the OLS estimator and two bias-corrected estimators obtained by plugging in the Bickel-Levina (2008) or CS-HAC of Bai 
and Ng (2006) estimators.  The four bootstrap methods are the cross-sectional bootstrap with Bickel-Levina (2008) estimator, he wild bootstrap of Gonçalves and Perron 
(2014), the bootstrap that resamples vectors indepedently over time, and the cross-sectional bootstrap using the empirical covariance matrix.  All results are based on 
5000 replications and B=399 bootstraps.

Bias

Coverage rate

Coverage rate

Table 1: Bias and coverage rate of 95% CIs for delta

N = 50 N = 100 N = 200

Bias

Length of intervals (relative to AT)



qoil_t
Asymptotic -0.03 0.08 -0.03 0.08 -0.11 0.09 Asymptotic 1.00 1.48 1.01 1.50 0.23 1.94

CSD -0.03 0.08 -0.01 0.10 -0.15 0.07 CSD 0.99 1.50 0.89 1.40 0.12 2.01
wild bootstrap -0.01 0.11 0.00 0.11 -0.15 0.07 wild bootstrap 1.00 1.49 0.86 1.40 0.11 2.00

GN -0.04 0.09 -0.03 0.09 -0.12 0.11 GN 0.99 1.50 0.99 1.51 0.11 2.38

qoil_t-1
Asymptotic -0.12 -0.02 -0.08 0.02 -0.25 0.04 Asymptotic -1.29 -0.82 -1.48 -0.99 -1.84 -0.91

CSD -0.27 -0.06 -0.13 -0.02 -0.42 0.00 CSD -1.29 -0.80 -1.41 -0.89 -1.77 -0.75
wild bootstrap -0.19 -0.08 -0.11 0.00 -0.35 -0.01 wild bootstrap -1.29 -0.79 -1.41 -0.89 -1.78 -0.76

GN -0.17 -0.02 -0.10 0.04 -0.35 -0.01 GN -1.30 -0.81 -1.50 -0.97 -1.96 -0.88

i_t
Asymptotic -0.09 -0.01 -0.19 -0.05 -0.19 0.04 Asymptotic 0.00 0.02 0.02 0.03 -1.25 -0.40

CSD -0.24 -0.14 -0.75 -0.44 -0.29 -0.04 CSD 0.00 0.02 0.02 0.03 -1.22 -0.15
wild bootstrap -0.24 -0.14 -0.75 -0.45 -0.30 -0.05 wild bootstrap 0.00 0.02 0.02 0.03 -1.21 -0.17

GN -0.10 0.01 -0.20 -0.04 -0.20 0.07 GN 0.00 0.02 0.02 0.03 -1.50 -0.36

Δx
Asymptotic -0.03 0.09 -0.07 0.07 -0.22 0.07 Asymptotic 0.00 0.02 -0.02 0.00 -0.07 -0.02

CSD 0.06 0.20 -0.08 0.09 -0.55 -0.19 CSD 0.00 0.02 -0.01 0.01 -0.06 0.00
wild bootstrap 0.06 0.21 -0.06 0.08 -0.57 -0.19 wild bootstrap 0.00 0.02 -0.01 0.07 -0.06 0.00

GN -0.05 0.10 -0.07 0.08 -0.25 0.06 GN 0.00 0.02 -0.02 0.00 -0.08 -0.02

Δp_t gap
Asymptotic 0.17 0.36 0.18 0.36 -0.06 0.28 Asymptotic -0.08 0.06 -0.01 0.14 0.04 0.27

CSD 0.16 0.37 0.13 0.32 -0.17 0.24 CSD -0.06 0.08 0.03 0.17 0.07 0.31
wild bootstrap 0.16 0.36 0.13 0.32 -0.16 0.25 wild bootstrap -0.06 0.08 0.04 0.18 0.07 0.32

GN 0.17 0.38 0.17 0.37 -0.12 0.31 GN -0.07 0.07 -0.01 0.14 0.04 0.31

Δp_t-1
Asymptotic -0.26 -0.01 -0.28 -0.06 -0.32 0.01 constant Asymptotic 0.12 0.22 0.08 0.15 0.15 0.25

CSD -0.28 -0.01 -0.30 -0.05 -0.35 0.02 CSD 0.12 0.22 0.08 0.15 0.14 0.25
wild bootstrap -0.28 -0.01 -0.30 -0.06 -0.35 0.02 wild bootstrap 0.11 0.21 0.08 0.15 0.14 0.25

GN -0.28 0.00 -0.29 -0.05 -0.36 0.07 GN 0.11 0.22 0.08 0.15 0.15 0.28

0.271

-0.170

1.252

-1.235

0.023

-0.007

0.064

0.113

1983:3-2015:7

0.028

-0.030

-0.120

0.002

Each panel contains the results for a parameter of the basic inflation equation.  The first line gives the OLS point estimates, and the following lines are 90% 
confidence intervals obtained using the Bai and Ng (2006) asymptotic theory, the cross-sectional bootstrap with hard threshold estimator, the wild bootstrap, 
and the Gospodinov and Ng (2013) boostrap with block size equal to 1.  All bootstrap intervals are equal-tailed and were obtained with 4,999 bootstrap 
replications.

1.082

-1.371

-0.825

-0.043

0.152-0.008

0.007

0.013

-1.060

-0.135

0.264

-0.012

-0.158

0.027

0.167

1983:3-2015:7

0.202

Table 2. Estimation results for augmented inflation equation 
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-0.067 -0.107
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