Université do Montréal
‘,“_’ Facuité des arts et des sciences
Département de sciences i

CAHIER 9548

EXACT TESTS FOR STRUCTURAL CHANGE
iN FIRST-ORDER DYNAMIC MODELS

Jean-Marie DUFOUR! and Jan F. KIVIET?

Département de sciences économiques and Centre de recherche et développement
en économique {C.R.D.E.), Université de Montréal

Tinbergen Institute and Faculty of Economics & Econometrics, University of
Amsterdam

October 1995

This work was supported by grants from the Natural Sciences and Engineering Research
Council of Canada, the Social Sciences and Humanities Research Council of Canada, the
Government of Québec (Fonds FCAR) and the Canadian International Development
Agency (PARADI Program). The authors thank Donald Andrews, Peter Burridge, Eric
Ghysels, Peter Hackl and an anonymous referee for useful comments.

C.P. 6128, succursale Centre-vile . Télcopieur {FAX): {514) 343-5831
Montréal (Québec) H3C 347 Courrier électronique {E-Mail) : econo@tornade.£ RE.Umontreal.CA



Ce cahier a également été publié au Centre de recherche et développement en
économique (C.R.D.E.) (publication no 4395).

Dépbt légal - 1995
Bibliothéque nationale du Québec
Bibliothéque nationale du Canada ISSN 0709-9231




RESUME

Nous proposons des tests de stabilité des paramétres contrs la présence de changement
structurel pour un modéle de régression linéaire avec une variable dépendante retardée et des
éfreurs normales indépendantes. Les procédures proposées incluent des tests d'analyse de
covariance, des tests ds type CUSUM st CUSUM de carrés et des tests prédictifs. L'approche
utilisée pour obtenir ces tests requiert I'application de trois techniques :la dérivation d'une région
de confiance exacte pour le paramétre autorégressif du modale (laquelle est fondée sur une
régression étendue appropriée), une technigue d'union-intersection et (lorsque requis) une
méthode de randomisation. Nous Hllustrons les tests proposés sur des données artificielles et
appliquons ceux-¢i 3 un modale dynamique représentant linvestissement domestique privé aux
E-u.

Mots clés :  analyse de Covariance, test & bornes, test CUSUM, test CUSUM de carrés,
inférence exacte, modale autorégressit d'ordre un, test de Monte Carlo, test
prédictif, randomisation, changement structure!

ABSTRACT

Several finite-sampie tests of parameter constancy against the presence of structural
change are proposed for a linear regression model with one lagged dependent variable and
independent normal disturbances. The procedures derived include analysis-of-covariance,
Cusum, CUSUM-of-squares and predictive tests. The approach used to obtain the tests
involves the application of three techniques : derivation of an exact confidence set for the
autoregressive parameter (based on using an appropriately extended regression), a union-
intersection technique and (when required) randomization. The tests proposed are iliustrated
with some artificial data and applied to a dynamic trend model of gross private domestic
investment in the U.S.

Key words : analysis-of-covariance test, bounds test, CUSUM test, CUSUM-of-squares test,
exact inference, first-order autoregressive model, Monte Carlo test, predictive test,
randomization, structural change






I. INTRODUCTION

Test and confidence set procedures for dynamic regression models are typically
based on large-sample approximations whose reliability can be quite poor; see,
for instance, Nankervis and Savin (1987) and Kiviet and Phillips (1993). A major
problem in this context comes from the fact that usual test statistics have an
indeterminate null distribution, since the latler depends on the values of unknown
nuisance parameters. This is true, for example, even for tests of linear restrictions in a
lincar dynamic regression with one lagged dependent variable, a few exogenous
regressors and Gaussian errors. Consequently, it is not surprising thal to date
{inite~sample tests against the presence of structural change were not available for such

maodels.

In this paper, we exploit recent results from Dufour (1989, 1990), Kiviet and
Phillips (1990, 1992) and Dufour and Kiviet (1993) to derive exact finite -sample
structural change tests in a basic linear dynamic model. Specifically, the model we
shall consider is

ind
(L) y =2y +xp+u, u - NQO, A, t=1,..,T,

where Y, is the dependent variable (at time 1), X, isa k x 1 vector of fixed (or strongly

€X08enous) regressors, Up -, Uy are mutually independent random disturbances

following a N(O, 02) distribution, and Yo is either fixed or random but independent of

Upe o Uy the parameters A, B and o are unknown, and 1 ¢ D, where D)cRisa
nonempty set of admissible values for A Depending on the context, the set @ 2 may
be R itself, the open interval (-1, 1), the closed interval [-1, 1}, or any other

appropriate subset of R. 1t will be convenient to write model (1.1) in matrix form :

(1.2) y=Ay_ +XB+u,u-N©O L)

where y = (yl, Yoo v s yT}' WY = (yO, Ypr oo s yT_l)’, X = [xj. Xy e s xT}‘ and
u= ("1' Uy, ey UL

In order to derive exact structural change tests for model (1.2), we will consider in
turn two distinct cases, depending on whether the auloregressive parameler 1 is
assumed 10 be constant under the alternative or not. In the first case, we study two
calegories of tests 1 (1) generalizations of standard analysis-of -covariance (AOC) tests



in static lincar regressions {Kullback and Rosenblait (1957), Chow (1960) and
Dufour (1982a)], which are built against allernatives where 8 may change al m known
breakpoints (m 2 2); {2) generalizations of the CUSUM and CUSUM -of -squares tests
proposed by Brown, Durbin and Evans (1975), which are built against more general
alternatives. 1n the sccond case, we study again two types of tesis : (a) predictive tesis
which generalize those proposed by Chow (1960} and Dufour (1980, 1982¢) for static
linear regressions; (b) AOC-type lcsts against alternatives where A may change at &
known breakpoint.

The tests suggested are oblained by adapting 1o structural change probiems the
exacl inference procedures proposed in Dufour and Kiviet (1993) for model (1.2},
which are themselves gencralizations of the approach suggested in Dufour (1990) for
making exact inference in a linear regression with AR(1) errors. The basic building
block in our approach is the possibility of finding exact confidence sets for the
cocfficient A, from the full sample or from subsamples. In particular, this can be done
by applying least squares 10 an extended regression, as set out in Kiviet and Phillips
(1990, 1992) where two procedures are suggested. These confidence sets are similar
and have the desired size, i.e. for any confidence level 1 - o, with 0 s a < 1, the
probability that 4 be contained in the set is precisely 1 -~ o The confidence set for A is
Ihen combined with "conditional” tesis on the other coefficients (which assume At be
known) to obtain (unconditional) "generalized bounds tests”. These bounds tests arc
exact in the sense that the probability of rejecting the null hypothesis does not exceed
the chosen level. Concerning the dcfinition of the Ievel of a test or confidence sct
(as opposed 1o its size), the reader may consult Lehmann (1986, section 3.1, p. 69).
Finally, when the distribution of a test statistic (for given A = AO) is not well tabulated
or is not analytically tractable, we suggest using a "randomized” (or Monte Cario)
version of the test which remains exact irrespective of the number N of replications and
becomes equivalent to the original non-randomized test as N - «.

In section 2, we give two lemmas which will be useful in later developments : the
first one provides a simple way of deriving exact generalized bounds tests, while the
sccond one shows how a genuinely exact test can be obtained when the distribution of
a (similar) test statistic is simulated with an arbitrary number of replications.
In section 3, we show how an exact confidence set for A can be built. Sections 4 and 5
describe the analysis-of-covariance and CUSUM fIests, against alternatives where Ais
assumed lo be constant. Section 6 proposes predictive tests and analysis-of-covariance
tests against alicrnatives where A may change. In section 7, the various procedures arc



illustrated with both artificial data and a dynamic wrend model for U.S. real Bross
domestic private investment in non-residential structures. Section 8 concludes,

2. NUISANCE PARAMETERS, BOUNDS PROCEDURES AND RANDOMIZA-
TION

The most basic difficulty one meets in deriving finite-sample inference procedures
for a dynamic model of the form (1.2) comes from the fact that usual inference
procedures (such as Wald, likelihood ratio or Lagrange multiplier tests) involve
nuisance parameters : the null distribution of a lest statistic for A = /10 typically depends

on the unknown parameter B (and possibly 02), while the null distribution of a test
statistic for some restriction on B depends on the unknown value of A. Even though
this dependence may tend to disappear in large samples, it does not in finite samples,
In particular, the dependence on A appears 1o be especially difficult o alleviate,

Recently, however, Kiviet and Phillips (1990, 1992) showed that exact tests and
confidence sets for A can be derived by extending appropriately the matrix X of fixed
regressors in (1.2). The purpose of using an extended regressor matrix is precisely to
eliminate nuisance paramelers.  We will describe in the next section how an exact
confidence set for A can be obtained.

Given an exact confidence sct for A, it is possible 1o obtain finite-sample tests and
confidence sets for the vector B (or subvectors of it) by using the union-intersection
approach proposed in Dufour (1990} for linear segressions with AR(1) errors; sec
Dufour and Kiviet (1993). In the present paper, we apply this approach to obtain exact
structural change tests in the context of model (1.2). For that purpose, we will
repeatedly exploit the following lemma, which generalizes some of the basic ideas used
in Dufour (1990) and Dufour and Kiviet (1993).

LEMMA 1 : Let y be a random vector whose distribution depends on a parameter

Ye A, where A is a nonemplty subset of RF, let Q(y: 1 be a real-valued statistic and let
C(y) € A be a confidence set for v Definc also

@D QW =inf(Qy; %% Cy),

@2 Q) =suplQy: 1) 1 g€ Cy))



where we sel QL(y} = - and QU(y) = + « when C{v) is emply. Then, forany x ¢ B
and for any 7, € A , we have the two following inequalities :

@23)  PlQ () 2x1SPIQW: 1) 2 ) + Ply, € CON»
@4) PO, £ X1 S PIQ(: 7)< x] + Py ¢ CONT-
Proof : By definition

7, COo 2 QA NS Q.

where the "event” 7, & @ is interpreted as an "impossible event” having probability zero,
while 7, ¢ @ is a "sure event” having probability 1 (@ is the empty set). Then

PlQ ()2 x} =PlQ (Y)2x and y, € C(y) +PIQ () 2% and ¥, ¢ Ciy)l
< PlQL(y) > x and 1 Ciy)} + P{)'l ¢ Cn]
< PIQUy: 7)) 2 %) + PLy, € CY))
and
PIQ, (0 = x] = PlQ,(y) s X and v, € Cy + PIQ () =% and v, ¢ C(yl

< P{QU(y) < x and Y, € Cy)) + P['y1 ¢ CN]

< PQly: 7)) S x] + Ply; € CYI.-
QED.

This lemma will be applied as follows. Consider the case where

) 7n=7 where 7is the true value of the parameter vector,
ii) Qy; phasa unique known distribution,

iii) PlyeCy)iz1 - a, with 0 £ o, <1,
and let c(c) be a point such that

2.5 PIQUy; D2 c(@)] = a



where 0S @< 1. Then
(2.6) PIQ, () 2 clolsa, + a,

2.7 P[QU(y) SC(D(Z')] <1- az' o = 1- (az' - al).
Let us now interpret Qly; 70) 2 c(@) as a critical region for testing a hypothesis H()’
which usually concerns parameters other than y and has size o when Y=Yy Taking

< = - !=
(2.8) 0< ai<a<1,a2 o a],az a+ozl<l,

we then have
2.9) P[QL(y) 2 c(az)] fa,
(2.10) P!QU(y) < c(az')] <l-a,.

This suggests the following (unconditional) generalized bounds test with level o
for HO :

(2.11)  reject HO when Ql =z oay),
accept H() when QU(y) < c(ocz),

consider the test inconclusive otherwise .
For further discussion of such procedures, see Dufour (1989, 1990).

A second problem one meets in deriving exact tests in the context of model (1.2
comes from the fact that the test statistics used may have fairly complex forms, even
though their distribution under the null hypothesis does not depend on nuisance
parameters. In such cases, the analytical evaluation of the distribution of a test statistic
can be quite difficult, but the same distribution may be easy to simulate hy
Monte Carlo methods. In such cascs, it is possible to consider a "randomized” version
of the test that can have any desired level. Even though the basic property used (o
derive such tests is well known [see Dwass (1957), Barnard (1963), Birnbaum (1974),
Edgington (1980), Foulz (1980) and Jisckel (1986)], we state it here in a lemma for
future reference Ifor a proof, see Dufour and Kiviet (1993)].



LEMMA 2 : Let Zj, j=1,...N, be independent and identically disiributed (114 feal
random variables with 2 continuous distribution, and let Rj be the rank of Zj. when

Z;. s ZN are ranked in nondecreasing order =1, ..., N), ie.,

(2.12) Rj =

A

U(Zj - Zi) .

where U(x) =1 if x20,and Ux)=0ix<0. Then ,forj=1, .. LN,

2.13) PlRJJNZX}:l , ifx<0
JHA-0N] + 1 , f0<xsl
=40 . ifx>1,

where 1[x] is the largest intcger less than or equal 10 X.

This lemma will be used in the following way. Let Zy be the value of a iest
statistic computed from an observed sample, It Z, ..., Zy\ be i.i.d. random variabics
which are distributed like ZN under HO’ and let 0 < o < 1. Then, by selecting CN(a') 10

be a positive real number such that
.14 1A - cN(a))N] + 1< Na,

the critical region RN/N 2 cN(a) has size not larger than a. Thus, RNIN may be
viewed as a modified test statistic for HO‘ From (2.13), it is easy 10 sc& that the critical
point

1iNg] | ]
*N

(2.15) CN((I) =1 -2 q

yields a test of size IINal/N, so that a - (/M) < P[RNIN 2 cN(a)} < ¢, and thus
provides the desired result; in particular, when Na is an integer, we get
P{RN/N 2 CN(a)] = o by taking CN((x) = 1-g +(1/N). With cN(a) defined as in (2.13),
the critical region RN/N ZCN{O!) can be rewritten in the intuitively attractive form
NS I{Na}/N, where

Ry

(216) pN:'-'l —N—'+

Z)—-



can be interpreted as a "randomized” or "Monte Carlo" p-valve. Because the function
H-1 is discrete, several values of cﬁ{a} may yield the same critical region : all critical
points ¢ such that (Ij{1 - ONl+ 1IN = ¢ correspond 1o the same test with size o
The only levels for which the equality in (2.14) can hold exactly are /N, i=0 1, ..,
N-1, but it is easy to find a2 critical point c(@) such that we have both
?iRNiN 2ey@)lSaand i - of < YN : clearly, by taking N sufficiently large, the
difference Iof - od can be made arbitrasily small, and, if aN is an integer, we can have
P{RN!N 2¢, (0] =0 Note also that the test RN/N 2 cN(a) is not equivalent to the

nonrandomized test ZN 2 ¢(o) where P[Z.N 2¢(o)] = a. But, as N + w, the two tesis
become equivalent under weak regularity conditions. For further discussion, see
Bimbaun (1974), Dwass (1957), Fouiz {1980) and Jockel (1986); for applications of
Monte Carlo lests in time series contexts, see Dufour and Hallin (1987, p. 426) and
Theil and Shonkwiler (1986).

3. EXACT CONFIDENCE SETS FOR 2

To apply Lemma 1, we will need an exact confidence set for A. For this purpose,
we shall use the approach developed in Kiviet and Phillips (1990, 1992), which is
based on deriving first exact similar tests for the hypothesis A = }‘0' Dufour (1990) also
proposed a related approach 1o obtain an exact confidence set for the autoregressive
parameter in a linear regression with AR(1) errors from an exacl test.

Kiviet and Phillips (1990, 1992) give two procedures for testing the null
hypothesis A = AO exactly in model (1.2); a third one is given in Dufour and
Kiviet (1992). The null distributions of these test statistics are free of the nuisance
parameters B and o ; moreover, they are invariant with respect to the value and the
(stochastic) nature of Yor However, the null distribution of these tests does depend on
both AO and X, and so it is not feasible to produce general tables of exact critical
values. The actual application of these tests requires considerable computational
efforts, but by adapting them in the form of simulation tests according to Lemma 2,
these procedures are operational and relatively easy to execule. Exact confidence sets
for A can be constructed by "inversion” of these test procedures for A = )‘0' These three
particular exact tests are based on straightforward least-squares results in a regression
model which corresponds 1o (1.2) augmented by a number of redundant strongly
EX0EENOUS regressors :



@Gy y=iy_ +X(GpBs+vu.

where X(lo) is a full column rank matrix whose columns span the same space as the

space spanned by the columns of [X i 1Ay H1 XD and

1] 0 . ... .0
1 0
22 A 10

3.2) !T(l) =| . ' J.r(l)= a2 .

A7) T2 a0

Extending a model by including particular redundant regressors in order to achieve test
invariance has also been suggested in Dagenais and Dufour (1985) 1o test serial
correlation with missing observations, and Dufour and King (1991, p. 123) with respect
{o testing hypotheses about the autocorrelation coefficient in a linear regression with
AR(1) errors.

For the least-squares estimator of Ain (3.1), we have
63 Aag= o MXAYly_ Ty MIXAY .

where M[X(AQ)] =1- X(AO)[X(}\O)' X(/\O)]'IX(AO)'. In order to test A = Ao exactly,
Kiviet and Phillips (1990, 1992) have suggested the following statistics :

(4 )= i(AO) - 4,

and the t-ratio

35 gy = cRyoIAR

where -

ly - Aagy_,1MIXGILY - Adgy )

A A 2 _ i
(3.6) GM(AO)] = 'I‘«ranle()»O)} yllMlX(lU)]Y_;




is the estimated variance of 3(/10)., In addition 1o those, we shall also consider here two
other statistics suggested ip Dufour and Kiviet (1993) which have the nice feature of
being desived as monotonic transformations of particular likelihood ratio statistics :
namely,

SHEN
3.7 .{i(lo) = W
and
SO(AO)

3.8) .q*(lo) = W ,

where

B9 StAp=m ;3 n y(Ag) - X(RB, IR - X(A)B,],
*

G10) S A)=m [13 n lyAy - XBIly(Ry) - Xpy ,

GBIy Sty = r/{ﬂ;} [y - Ay_; - XA)B,Ily - Ay_; - X8,
o 3

with y(?to) =y~ A()y—l' It is easily verified that

2 3 - -
(G A" = (T-rankIX(A)) [ £4(A,) - 1.
Clearly, tests based on .fx*(lo) are likely to be more powerful than those based on
.fi(zlo) because .i’i*(lo) takes into account a wider set of restrictions entailed by

A= ).0 in the extended mode] 3.1,

Under A = ).0, the three residual sums of squares defined in (3.9)-(3.11) reduce
to:

(3.12) Sa(lo) = u'M{X(AO)]u ,

3.13) SO(AO) =uM[XJu,
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. . orr v N'Mlx(lo)]JT(Ao)u)z
@314 S l(Ao) =1 Mly_l : X(Ao)]u =u M[X(lo)}u - mT( 10) MIX( Ao)“T(lo)“ .

For the derivation of the latter result, see Dufour and Kiviet (1993). It is important to
note here that, under A = 10, the coefficient vector B and the start-up value y, do not
appear in the residual sum of squares. Further, the statistics .z;_(xo) and .q*(lo) are
then functions of ratios of quadratic forms in u, so that their null distributions do not
depend on o either.

An exact confidence set with level 1-a for A can be built by “inverting" either one
of the above tests. To see how this is done, let us focus on the construction of a
confidence set obtained (for example) from the .2'1*().0) test procedure and by making
use of the simulation procedure set out in Lemma 2. We first generate N-1 mutually
independent T X 1 vectors nj,j =1, .., N-1, with nj ~ N(0, 11.). For particular values
Ao € F,,10 be determined below, we can calculate

niM[XMj

— (1 MIX(2) A1)
IMIXAQI = Frr (T MK TA,

(3.15) Tj(lo) =

forj=1, .., N-1, and set TN(AO) = .2’5_*(10) which is obtained by formula (3.8) from
the actual data. If cN(a) is defined as in (2.15) and RN(AO) is the rank of TN(AO)
among Tj(lo), j=1,...N, then the set

(3.16) CA((Z) = {20 | AO €9, and RN(AO)/N 2 cN(a)}

= Mol}\oe .@Aand RN(XO)ZN - INa] + 1)

is a confidence set for A with size 1-({No}/N). In particular, if Na is an integer, the
size of the confidence set is precisely 1-o. The actual establishment of such a sct
requires iterative numerical procedures such as grid search, bi-section, etc. First,
'l‘j(lu), j=1,..,Nare calculated for a series of AO values; for each 2‘0 value, the same
ml, v nN_l] vectors are used and RN(AO) is determined. This provides an initial
location of the confidence set. The sct is not necessarily compact, but if it is, the
confidence bounds are rather straightforwardly obtained after a series of further
refinements by which one checks whether or not particular }‘0 values belong to the
confidence scl.
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4. ANALYSIS OF COVARIANCE TESTS WHEN A 1S CONSTANT

In this section and the next one, we study the problem of testing the stability of

model (1.2) against alternatives where A -and 02 are assumed constant. We will
consider in turn two cases : (1) m possible breakpoints for changes in B are known
(or assumed); (2) the form of the structural changes is unknown. In the first case, we
will propose generalizations of analysis-of-covariance tests similar to those proposed
in Kullback and Rosenblatt (1957), Chow (1960) and Dufour (1982a). 1In particular, we
will extend to model (1.2) the general analysis-of-covariance tests given in
Dufour (1982a). In the second case, which we consider in the next section, we will
propose analogues of the CUSUM tests suggested by Brown, Durbin and Evans (1975),

Let us consider the following partitions of y, Y_p» X and u defined in (1.2) into m
subvectors or submatrices (m 2 2):

[yu)'
Yoy -1 Xy Y
(2) ,
Y y_ u
@n y=|"® cyo =T x= fz) = f:)
y(m) (m) X(m) “(m)
Yoy )
(i)

where Yay Y- and Uy are Ti x 1 vectors, X(i) is a 'I‘i x k matrix, Ti 2 1 and

m
L= rank(Xm) 20,i=1,..,mand T = _Z Ti 2m 2 2. We do not assume here that
i=

the matrices X By o X(m), X have full column ranks. As the alternative to
model (1.2), we consider the extended model

in

(4.2) =ayVax pau YN0 PL) el m
. y(;)_ Y 4 i Tl U(i) (0, .ri vi=1,..,m,

where ﬂi is a k x 1 vector of unknown coefficients and Yo is independent of u. Thus,
the i-th regression in (4.2) represents a model of the form (1.2) for the observations
T._l +1, ., 'I‘i (i=1, .., m where TO = Q). ﬁl, ey ﬂm may differ but we will

1
assume that A and o remain constant across the m subsamples. We want to test
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4.3) H,: ﬂl = 52 =.= ﬂm .

To develop a test of Ho. it will be convenient to rewrite (4.2) in the more compact
form :

4.4) y=Ay_l+XB+u,u~N(0,ozl.r)

where X is a T X (mk) matrix and Pis a (mk) x 1 vector defined by

X 0 - 0 B,
0 X, .. O B

@“5) X =diagX,)= @ . B=1 2.
0 0 . Xy B,

Let us now suppose that 2 = 4, with A, known. Then the model

@6  yA)=XP+u

where y(lo) =y~ ).0 Y., satisfies all the assumptions of the classical linear model

(conditional on X and y,), without possibly the assumption that X has full column rank.
The problem of testing H() then has the form considered in Dufour (1982a), and the
generalized Chow statistic for testing Ho is

SO(XO) - Sl(lo)

@7 DRy =¥
0V 1(4g)

where SO(AO) and S l(}\0) are the restricted and unrestricted minimum sum of squarcs,
ie.

@8) S A)=m ;3 n [y, - XBIly(Ay - XBI .

4.9) S,(AO) =min {y(lo) - KBJ'[)'(AO) -XPB.
B
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while v and Vp are the appropriate degrees of freedom :

m m
410 v=I(T,-1), Vo=1
i=l 1 1 izl

ri-ro

with = rank(X) and L= rank(X(i)), i=1,..,m Under Ho (with A = AO), D(lo) is

distributed like F(VO’ V), a Fisher random variable with (VO’ V) degrees of freedom, and
the critical region D(lo) 2 Fla; vo, V) has level o, where P[F(vo, v) 2 F(ex; Yo Wi=o

and 0 < & < 1; see Dufour (1982a). When the matrices Xm, ey X(m) all have full

column rank, the restricted and unrestricted minimum sum of Squares correspond to
unique least squares estimates of Band B respectively, and the degrees of freedom are

@.1n v=T—km,vO=(m - k.

The basic difficulty now is that A is unknown. Let Cl(al) be an exact confidence
set for A with level 1 - o, (at least) where 0 < o <a<l:

(4.12)  PlAe Cl(al)] 21 - a .

We saw in section 3 that we can in fact construct an exact similar confidence set with
size 1 -~ o, ie., such that P[A ¢ Cl(al)} =1]1- o, irrespective of the values of A B,
o and Yo Consider now the two following statistics :

4.13) DL(al) = mf(D(HO; /'lO) : AO € C}l(al)} s

(4.14) DU(al) = sup(D(HO; AO) : A() € C.l(al” .

Taking o =a- o and o = o+ a, < 1, we see easily from Lemma 1 that,
under Ho’

(4.15) P[DL(ocl) 2 F(a2; Vor V)] < o, + o =a,
(4.16) P{DU(al) < F(az‘; Vor Vi<l -o + a = 1 -a.

2

We thus have the following level- o generalized bounds test for Ho :



i4

4.17)y  reject HO when DL(al) 2 F(az; Vo vy,
accept Ho when Du(al) < F(ai; Vo V),

consider the test inconclusive otherwise ,
where @, o, a, and aé satisfy (2.8). Defining the tail area function
(4.18) G(x; Vo V)= P[F(vo, v)2x},
the above procedure is also equivalent 10

4.19)  reject Ho when G[DL(a,); Vo visa,,
accept H0 when G[DU(al); Vo vl> o),

consider the test inconclusive otherwise.

The probability o = G[DL(a‘); Vo v} can be interpreted as a “conservative” p-value
for testing H, while oy, = G[Du(al); Vor v} is a "liberal” p-value for H,. It is casy W
sec how equality restrictions betwecn subvectors of ﬁi’ i=1,..,m,can be tested in a
comparable way.

The confidence set for A can be obtained from at least two different models : the
restricted model (1.2) or the unrestricted model (4.4). Both, of course, yield vaiid
confidence sets for A as well as valid bounds tests under HO. On the other hand, the
confidence set based on (1.2) is not generally valid under the alternative (4.4), and this
may deflect the power propertics of such a procedure. Finding which one is preferable
is left to further research.

5. CUSUM TESTS

Analysis-of -covariance tesis are built against specific alternatives where the
breakpoints of the changes in B are specified a priori. To get (ests against less specific
structural change alternatives, we now consider gencralizations of the well-known
CUSUM and CUSUM-of -squares (ests proposcd by Brown, Durbin and Evans (1975,
henceforth BDE). For this purpose, we will make the additional rank assumption :

5.1 mnk(Xk) =Kk
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where Xr = [xl, Xy oy xr]' is the r x k matrix of regressors for the first r observations
(1 £r<T). Note that (5.1) implies

.1y rank(Xr)=k,r=k,k+l,...,T.

As we did for analysis-of-covariance tests, let us suppose first that A = 2.0, with
AO known. Then, model (1.2) can be written

(52) - yA)=XB+u , u~N©, 1)

where all the assumptions of the classical linear model are satisfied. The CUSUM test
against the presence of structural change is based on the statistic

(5.3) CS(AO) = max(lWr(AO)l r=k+1,..,T),

where

r A
G W=t I wi ot )ac- T -,

(5.5  Ar-kT-k=[T-k(I +2(0=K,

wt(AO), t=k+l, .., T, are the recursive residﬁals based on model (5.2), and

T
3(/'\”)2 = X wl(/'lo)zl(T -k). The recursive residuals are defined by
t=k+1

(5.6) w((AO) = [yt(/'lo) - x;bt_l(AO)]/dl(Ao) st=k+l, .., T,
where
] ‘l ] —
b‘(lo) = (X' X‘) X‘ Yl(l()) Ji=k,.... T,

_ . -1
d@Ag =1+ x0 X 07" t=kar, LT

and Y:(AO) = [yl(/'lo), yz(ﬂo), sy y‘(AO)]'. Under model (5.2), the residuals w!(/lﬂ),
t=k+1, .., T are iid. N(0, 02). The CUSUM test rejects the null hypothesis of
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stability at level o when CS(AO) 2 cl(a), where cl(a) is selected so that
PICS(A,) 2 ¢,(@)]) = @ when w, (), ..., wy(Ay) are 1d. N, 6.

BDE (1975) only provided apprdximate (although quite accurate) critical values
for the CUSUM statistic. However, when A:Ao, we have wt(lo)la izd N, 1),
t=k + 1, .., T. If we define the random variable

5.7 CSn = max(lwrl ir=1,..,n}

where W —{2 v}/{(E vzln)"2 Ar,m}, r=1,..,n, and v,.., v arc ii.d.

N@©, D) vanables, then we see immediately that CS(K ) is distributed like CSr K when
A= A Further, it is straightforward to simulate the dxstnbunon of CS.I K 50 that an
exact Mome Carlo CUSUM test can be performed as described at the end of scction 2.

To obtain a procedure valid without knowing A, we consider again a confidence
set for A that satisfies (4.12) and define the statistics :

(58) CS (a)= inf{CS(Ay : Aye Cye)}, CSyla) = sup{CS(4) Aye Cyla)} .
Then, provided (2.8) holds, we gel from Lemma 1 : |

(59) PICS, (a)) 2 c (o)) a, PICS j(a)) S ¢ (el < 1-o

which yields the bounds test

(5.10)  reject stability if CS, (a‘)zcl(az),
accept stability if CSU(al)<cl(ai),

consider the test inconclusive otherwise .

Similarly, for A = A’() given, the CUSUM-of -squares 1esl based on model (5.2) has
the form CQ().G) 2 cz(a) for a test of level o, where
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tl.,_ _
(5.11) CQ(AO) = max| Skuao) STE =12, T-k)

where
SA)= I (A)’/% A, r=k+l, .., T
h = w w = +,..., M
O ke U ey 0O

see BDE (1975) and Dufour (1982b, 1986). Again, computation of the distribution of
the CUSUM-of-squares statistic is discussed by BDE (1975), who provided an
approximation based on the earlier results of Durbin (1969). Further, as for the
CUSUM test, it is easy 1o see that CQ(AO) is distributed like the variable CQT_k
defined by :

- A A
(5.12) CQn—max(lSr nl.r-l,2,...,n)

T 2 n 2 ind
with n = T-k, where § =(L vO(L v ,r= I,..,n,andv, .., v - N, 1.
T =1 t =1 ! 1 n
Clearly, it is quite easy to simulate CQ.].~k and thus to perform an exact Monte Carlo
version of the test.
By applying Lemma 1, we see that
(5.13) ; P[CQL(al) 2 c2(a2)] fa, P[CQU(al) < cz(aé)J £l -a,
where
(5.14) CQL(al) = inf(CQ(/lO) : )‘() € C/l(al)’ ’CQU(al) = sup(CQ(AO) : X() € Cl(al)}’
and (2.8) holds, which yields a generalized bounds test analogous to the one in (5.10).

6. TESTS AGAINST CHANGES IN 1

The tests described in sections 4 and 5 are built against alternatives where the
dynamic parameter A is assumed constant. This does not mean that they have no power
against alternatives where A changes : shifts in 4 will clearly affect the distributions of
the analysis-of -covariance and CUSUM test statistics previously described. However,
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since these tests do not explicitly allow for the possibility of changes in A, they can
easily be biased against such alternatives. In this section as well as the following one,
we describe two tests that consider in a more explicit way the possibility of changes
inA. The first one is a predictive test which looks at "prediction errors” for the
observations in the second sample obtained after estimating regression coefficients from
the first sample. The second one is an AOC-type procedure which considers the
difference between "estimators” of A based on the two samples and chosen so that the
null distribution of the difference between the two estimators does not depend on
nuisance parameters.

We consider a partition of ¥, y_ X and u into two subvectors or submatrices,
giving the following extension of model (1.2) :

() ind 02 .
61) Yo =A4 Y2 + Xy B 0y Yy NO, & 1), i=1.2,

. (i) : . - -
where ym, Y, and X(i) are defined as in (4.1) with m = 2, T]+T2 =T, Ti 21,

Ae 9,,i= 1,2, 9, is the sel of admissible values for A, and
6.2) 1< = rank(xm) =k < Tl ;
no rank condition is imposed on X Q@ We want 1o test

63) H('):ﬂ!=[i2,zl=l2,cl=az

against an altcrnative in which all parameters (including A) may change.

Suppose now that /'\l = AO. Then, under Hy, a natural way of testing H, against
(6.1) consists in testing whether the elements of the vector of prediction errors

©4) gt =Yk - Xy Bidy

_ _ () . _ A oy -1
have mean zero, where ym(AO) =Yg Ayoy = 1, 2, and ﬁl(lo) = (X(i) Xm)
X;”ym(lu) is the least squares estimate of ﬂ‘ obtained from the regression

6.5 Yk =Xy + )
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This yields the well-known predictive Chow statistic (assuming ‘11 = ).2 = AO) which
can be written in two alternative forms ;

o C [ =ty -1 =~
- k| Ya®lr + X)Xy XX G0

2 5,0y

T, -k soao) - S,(AO)
T, 5,)

Tl
66)  PCRY) =t

where SO(AO) is the minimum sum of squares (4.8) from the estimation of the complete

regression (4.4) with A = AO’ while S'I(AO) is the minimum sum of squares from the
estimation of the first regression in (6.1) also with A = /10, ie.,

67 5(A)=m [1’ " Yy = X )BTy )R - X Byl
1

Under H, and Al = Jlo , PC(AO) ~ F(T,, T,-k) so that the appropriate level-a critical
region is PC(AO) 2 F(e; T2, T] -k).

Let CA (al) be an exact confidence set for Al with level not smaller than l—a’.
1

which is valid at least under H(') :

6.8) PMl € Cll(al)] 21~ a .

Such a confidence set can be constructed by applying the methods of section 2 to the
first sample (y‘, t=0,1,.., Tl). Let also

6.9) PCL(al) = inf(PC(AO) : '10 € CA (al)} s PCU(al) = sup(PC(lO) : /10 € C;tl(a])} .
1

Then, provided (2.8) holds, we have :

(6.10) P[PCL(al) 2 F(az; T2, T]-k)} fa, PiPCU(al) < F(a&; Tz. T-Ki<l-a,

which yield the bounds test
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(6.13)  reject H(') if PCL(a‘) 2 Fla,: T, Tl-k) .
accept H(') if PCU(al) < Flay; T, Trk) .
consider the test inconclusive otherwise .
It is interesting to note that PC(AO) is the Fisher statistic for testing model (1.2)

against an extended model where a dummy variable has been added for each
observation in the second period (1 = Tl+l, T ) 4

T
6.14)  yA)=xp+ i 7D _+u,t=1..T,
[N t S=T]+1 s s t

where Dls =1ift=s,and D‘s = 0if t #s; see Dufour (1980, 1982¢).! Further, we can
Jook at the t-statistics for each element of the vector Y= (¥ 1o ¥y 40 = y,r)' :
1 1

A
A A ys - X; Bl(lo)
6.15) ts(AO)=YS(AO)/05(KO)= 7 ’

s A + X (X iy X(py) X

s=T, +1, .. , T, where sl(lo)2 = SI(AO)I(T K each of which follows a Student
distribution (T l'k) under H(‘) (when Al = }\0). As suggested in Dufour (1980), these
statistics provide a simple way of analyzing the form and timing of possible structural
changes over the second period. To gel tesis valid without knowing Al' we consider
the statistics :

6.16) Fta)= inf{(ts(lo))z tA,€Cy (@) s=Th . T,
) i
617 Fle)= sup((ts(lo))z :Ay€Cy (@) =T+l T
1
Clearly again,

(6.18) P[F‘;(a‘)z Flay 1, T-Kl S a, P[F‘:(al) <Fog 1, TS -«

! For a related (asymptotic) generalization to dynamic possibly nonlinear models, see Dufour,
Ghysels and Hall (1994).
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so that we have a sequence of bounds tests for each observation in the second sample :

(6.19)  reject Hy when F's“(al) 2F(ay 1,T,-k),

accept Hy when Fo(a,) < F(a; 1, T,k).

Predictive tests like those just defined may be viewed as portmanteau tests aimed
at detecting any form of structural change that could affect the coefficients of the
model (4, Bor 0). Since it would also be of interest to have a procedure for detecting
change in A, irrespective of whether B or o has changed, we now derive an AOC-type
test for changes in A which is insensitive 1o changes in B and o of the form allowed
in (6.1). More precisely, we again take model (6.1) and we consider the problem of
testing

(6.20) Ho : ll = 3,2 against ﬁl : /’ll # 12 R

where it is not assumed that ﬁ] = [32 nor o, = 0, under HO‘ Further to allow one to
estimate the model separately on the two subperiods considered, we replace (6.2) by the
stronger assumption

6.21) 1Sxi=rank(xm)=k<Ti,i=1,2.
To derive a test of HO’ we consider first the more restrictive hypothesis
(6.22) HO(AO) : Al = 12 = '10

where 10 € g 2 For each Ao € g a0 We can compute estimates ﬁ‘(lo) and 3.2(,10) of
}'l and 12 based on extended regressions such as (3.1):ie.

623) = Ay D+ XAy +u i=1,2,

)’
where X(i)(lo) has full column rank and spans the same space as that spanned by the

columns of the matrix [X ® : l.ri(lo) : JTi(AO)Xﬁ)]. When }’i = 10 s
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624) LAY =4+Qyuy) . i=12,

where
25 Q) wir,®o) MX Ry
N A i P
( o V) =T i(ao)ﬂtx(i)ao)uT gy

(Ag) MIX(;;AIv ;)

( ) T;
= ‘T = 1, 2 N
Vorr, AgMIR ;g W UV,
where v(i) = u(i)lai ~ N0, Ll.i].
Clearly, the distribution of Qi(A ) does not depend on any nuisance parameter.

Now to test Ho(lo), it is natural to consxder the difference A( = l (AD) 12(3.0).
When )”1 = A2=A ,

(6.26) A(AO) = Ql(lo. v (l)) - Qz(}\o, v (2)) =AR,, V)

where v = (vil), viz))‘ ~ N[0, L ], a random variable whose distribution involves no

.
nuisance parameter. Let

©27n G A(x; AO) = PlIAGA, IZ2 x| ﬁo(/'lo)]

be the probability of the event 1A, v)l 2 x when A, = 12 = AO’ and let K(lo) be the

observed value of A(AO). Then the test which rejects Ho(lo) when
A
628 G A(!A(AO)I; A)So

has level o Further, it is easy to obtain a randomized version of the test in (6.28) by
using Lemma 2.

Given the function G, (x; Ao). there are at least two ways of getting exact tests of
the less restrictive hypothesis HO. First, it is straightforward to see that the test which

rejects ﬁo when
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629  sup(G A(tﬁ(xo)l; A)idye D) sa

has level a. Second, when a confidence set Cl(al) with level 1 - o (al least

under HO) is available, i.e.
(6.30) PjAe Cl(al)] 21 - a .,

the following procedure is a valid generalized bounds test at level o :

(631)  reject Hy when sup(G,,(AGh ) A):dyeCoa)) sa,,
accept Hy when inf(G ,(A(A )1 A9t Ay e Cy@)) > a,

consider the test inconclusive otherwise ,

where (2.8) holds. A simple way to get an appropriate confidence set for A is to build
one by the Kiviet-Phillips procedure from either one of the two subsamples considered.
The validity of the bounds test follows again from Lemma 1. Correspondingly,
randomized bounds tests can be obtained in the same way after replacing the test
in (6.28) with its randomized analogue. Note that the same set of artificial replications
should be used for all values of /10.

7. ILLUSTRATIONS

We will show now that the inference procedures developed here are operational by
applying them to an empirical first-order dynamic autoregressive model for the
logarithm of U.S, gross private domestic investment in non-residential structures
(1982 doliars, quarterly, 1952:1 - 1986 : 4). But before we do that, we will first
illustrate the tests on some artificial data sets. In these calculations, we can choose and
change the specification and the parameler values of the model in such a way that some
interesting features of the various tests can be demonstrated. So, we perform a few
controlled experiments. These, of course, cannot (and are not meant 10) replace a full
scale Monte Carlo analysis from which the power performance of the tests would be
assesscd (which goes beyond the scope of the present paper). We just examine a few
single realizations of particular data generating processes in order 1o show that our



24

exact procedures are feasible and behave reasonably well. Note also that for the model
studied in the previous sections, no alternative finite-sample structural change test
appears to be available.

We focus on & model with one lagged dependent variable, an intercept, and
possibly a linear trend with various forms of structural breaks and shocks to the system.

First, we examine a first-order autoregressive process with non-zero mean and a unit
root (i.., a random walk with drift). The data were generated according to :

(1.1) yt=lly“+ﬂl+u‘, t=1,..,T,,
y‘=l2y‘_‘+[32+8dl+u‘, l=Tl+1,...,T,

where y, = landu,..,upare independent and normally distributed with mean zero.

For the first 'l‘l observations of the sample, we invariably have :

1.2) T1=30,11=1.Bl=0.02.61=0.01,Var(u‘)=o:‘; for t=1,...T,

For the second part of the sample, consisting of T2 =T- T1 observations, we have :

(73)  T,=20,d,isa dummy variable, and Varw) = & fort=T +1,...T;
moreover, we consider six distinct cases :

A (no structural change) : 4, = 1.0, ﬂ2 =002,8=0,0,= 0.01;

B (change in p only) :4,=10,B,= 0.03,6=0,0,= 0.01;

C (change in A only) : A, =095, ﬂ2 =0.02,6=0,0,= 0.01;

D (change in o only) 1A, =10, Bz =0.02,8=0, o) = 0.02;

E (two isolated shocks) : A, =10, ﬂz =002, 6 =005 0, = 0.01, with dl =1 for
t = 35 and 45, and dt = (0 otherwise;

F (jump in drift) : 7&2 = 1.0, [32 = 0.02, § = 0.02, o, = 0.01, with d‘ =1 for
t 2 40, and dl = () otherwise.

NN NN N



25

For the six data sets so generated, we estimated the model
(7.4) ¥, = lyl_l + ﬁl +u,

and applied the various exact structural change tests described in the previous sections
of this paper.2 The least~squares estimates of the parameters for both the complete
sample (1 St<T) and the relevant subsamples (1 SlSTl, T' +1<t<T) appear in
Table 1, while the p-values of the structural change tests are presenicd in Table 2. we
also present exact (randomized) confidence sets for A at various levels (1 - o = 0.999,
0.975, 0.95, 0.925) based on the LR-type statistics .2"‘(/10) and .{**(/10). Each of
these confidence sets is obtained from the first sample (1 < t < 30) under the restriction
IS 1, and the randomization uses N - 1'=499 antificial replications of .2”‘(/\0) or
.2’**(10) under the null hypothesis [see (3.16). We see from these results that the
confidence sets based on .2“**(/10) are typically shorter than those based on !*(10),
which illustrates the fact that the statistic .f‘**(lo) takes into account all the restrictions
implied by l=lo on the extended model (3.1) [see the discussion in section 3].
Furthermore, the confidence sets appear to be rather insensitive 10 the level selected
(at least for this data set). For the structural change tests, we will use the confidence
set [0.9445, 1] based on .2""*(10) with o, = 0.05.

To assess the significance of the structural change tests, we shall use a 0.10 level
(@ =10.10). As expected, none of the tests is significant under the null hypothesis (data
set A), while the alternative tests appear differently sensitive 1o various alternatives.
The analysis-of -covariance test for B (AOC- ) easily detects permanent changes in ﬁl
(sets B and F), a type of alternative against which it is designed, as well as A (set C).
The change in A is also detected by the CUSUM, the CUSUM-of -squares and the
predictive tests. The variance shift (set D) and the two isolated shocks (set E) are
detecled by the CUSUM-of -Squares and the predictive test, which illustrates the fact
that these tests are quite sensitive to heteroskedasticity. 1t is also of interest to note that
the individual predictive tests both detect and allow one to date the isolated shocks (E).
The jump in the intercept (F) leads to a series of low p-values. The AOC test for A
(AQOC-1) does not detect any of the structural shifts considered here, which suggests
that this test has rather low power. For the sake of comparison, we also present in

——e

2 The six datn sets arc obained from one and the same realization of ulic} SRR lcl.
!

v ”102 ey ul/oz. The samples used in these illustrations are available from the authors

1
upen request,
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Table 1
Simple AR(1) models : OLS estimates and exact A confidence sets!

A 3, :
First subsample
(T 1= 30) 0.980  (0.010) 0.048  (0.014) 0.011
Sccond subsample
(T,= 20)
A 0972  (0.018) 0.071 (0.032) 0.008
B 0.983  (0.012) 0.063 0.022) 0.008
C 0.961 (0.008) 0.006  (0.010) 0.009
D 0929  (0.037) 0.149  (0.067) 0.016
E 0969  (0.031) 0.082 (0.058) 0.019
F 1.034  (0.013) -0.034  (0.024) 0.010
Complete sample
(T =50)
A 0.991 (0.005) 0.034  (0.008) 0.010
B 1.005 (0.005) 0.016  (0.007) 0.011
C 1.016  (0.021) -0.023 0.027) 0.033
D 0.989  (0.007) 0.037 0.010) 0.014
E 0998  (0.007) 0.025 (0.011) 0.015
F 1012 (0.005) 0.006  (0.008) 0.011
Exact confidence sets for A (from first subsample)
Level | 099 | 0975 | 0.95 | 0.925
Based on % 10.8660, 1] [0.8713, 1} 10.8745, 1} 10.8785, 1]
Based on .fi* 10.9370, 1} [0.9414, 1] 10.9445, 1] 10.9473, 1}

I OLS standard errors appear in parenthesis. The exact confidence sets for A are
randomized with N - 1=499 Monte Carlo samples. s is the estimated
disturbance standard error.
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Table 2

Smml)modekzﬂmmrammdnnge(p-mm)mmmc .2’1'

confidence set from the first subsampic; @ = 0,10, al = 0.05, 02 = 0.05, a_‘; = Q.15
(1" indicates rcjection at level 0.10; "a” indicates acceplance at Jevel 0.10)
A) Global tests
A B C D E F
AOC-f8 DL - 0927 0006r 0000r 0949 0.425 0.005r
DU 0.000 0.000 0.000 0.000 0.000 0.000
Ccusumli CSl 0.952 0.664 0.006r 00998 0.966 0.660
CSU 0.002 0.002 0.002 0.002 0.002 0.002
CUSUM of squares! CQL 0.762 0.602 0002r 0050r Qo121 o 194
CQU 0.008 0.002 0.002 0.004 0.002 0.002
Predictive test PCL 0.873 0.530 0000r 00147 Q0041 0.191
l’CU 0.003 0.000 0.000 0.000 0.000 0.000
AOC-Al I’Z‘ 0.922 0.956 0.608 0.058 0.292 0.714
PX 0.006 0.004 0.002 0.002 0.064 0.168 a
B) Individual predictive tests (conscrvative p-values)
Predicied
observation A B C D E F
31 0.115 0.018¢ 0.001 r 0.002 ¢ 0.115 0.115
32 0.988 0.476 0.000 r 0.976 0.988 0.988
33 0.532 0.138 0.000 r 0.187 0.532 0.532
34 0.997 0.981 0.000 r 0.897 0.997 0.997
35 0.573 0.154 0.000 r 0.229 0.000 ¢ 0.573
36 0.989 0.703 0.000 ¢ 0.992 0.996 0.989
37 0.973 0.564 0.000 r 0.975 0.999 0.973
38 0.945 0.343 0.000 r 0.822 0.945 0.945
39 0.706 0.212 0.000 ¢ 0.402 0.706 0.706
40 0.969 0.983 0.000 r 0974 0.990 0.536
41 0.989 0.386 0.000 r 0.951 0.989 0.086
42 0.737 0.227 0.000 ¢ 0.449 0.737 0.042 ¢
43 0.976 0.956 0.000 r 0.980 0.969 0.472
44 0.915 0.325 0.000 r 0.763 0915 0.068
45 0.869 0.298 0.000 r 0.677 0.000 r 0.060
46 0.975 0.970 0.000 ¢ 0.989 0.988 €0.500
47 0.974 0.974 0.000 r 0.959 0.961 0.548
48 0.529 0.137 0.002 ¢ 0.183 0.529 0022«
49 0.964 0.965 0.000 r 0.980 0.983 0.481
50 0.691 0.205 0.002r 0.380 0.691 0.037r
C) Some icsts with A known
A B C D E K
AOC - B 0.600 0.006 r - 0.604 0.425 0.005 r
CUSUM 0.344 0.436 - 0.556 0.744 0.540
CUSUM of squares 0416 0.602 - 0.050r 0012 r 0.194
Predictive test 0.868 0.530 - 0014 0.004 r 0.191

i

Randomized p-values based on N-~1=

499 Monte Carlo samples.
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Table 2 (part C) tests obtained under the assumption that A is known and constant (i.e.,
the autoregressive part of each equation is eliminated by subtracting it from the
dependent variable, under each model considered). We see from these results that the
inferences are not affected by the estimation of A. In fact, we note that the infima for
the CUSUM-of-squares and predictive test statistics are often obtained when A is
equal to one.

Next, we examine an AR(1) model with intercept and linear trend term for cases
where the lagged dependent variable coefficient is high, but smaller than one. The data
here were generated according to the model :

1.5 ytzll Yo +[i"+{321(t/100)+u‘.t= 5. T,

Y, = A Yoq +[312+ [322(11100)4- 5dl+ u‘,1='r‘ +1,..,T

where 4., ..., U

1 . are defined as in (7.1)-(7.3), and Yo Was generated independently of

u according to the normal  distribution N(uo, of/(l-l%)) with

v s U
| A |
uozlﬁ“l(l - Al)] - [(13211100) ).l/(l - Al)z] (this choice avoids “warming-up"
problems in the simulation). For the first period, we have

(1.6) T, = 50, 'll =0.9, 13” = 1.0, 132l =10,0,= 0.02

while, for the sccond period, we have T, = 30 and 0, =0, = 0.02, and we consider
again six cases :

A {(no change) 14,=09, B,,=10. B, =10, 6=0;
B (change in trend) AZ =039, ﬂlz = 1.0, B22 =09,6=0;
C (change in intercept) : A, =09, B, =12, B, =10,0=0;
2 12 22
D (change in A) : 12 =092, [312 = 1.0, ﬂ22 =10,86=0;
E (isolated shocks) : Az =09, ﬂlz = 1.0, ﬂzz = 1.0, 8= 0.1, with d = 1 for t =60
and 70, and d( = 0 otherwise;
F (jump inintercept)  : A, =09, B, = 1.0, =1.0, § = 0.2, with d_ = 1 for 1> 65,
2 12 22 t

and dl = () vtherwise.

Now, the results are based on estimating the equation

17y =4y, + B, + B,(100) + u,

instead of (7.4). The parameter estimales appear in Table 3 and the p-values
associated with the various structural change tests in Table 4, We scc again that the
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Table 3

AR(1) with linear trend models : OLS estimates and exact A confidence sets!

A
A ﬁn Blz §
First subsample
(Tl = 50) 0.871 (0.029) | 1.286 0.276) | 1.236 (0.255) | 0.0220
Second subsample
(T2 = 30)
A 0.664 (0.146) { 3.105 (1.306) | 3.371 (1.457) | 0.0198
B 0.881 (0.071) { 1.175 0.704) | 1.057 (0.552) | 0.0207
C 0.884 (0.019) | 1.293 (0.130) | 1.265 (0.310) | 0.0205
D 0.908 (0.015) | 1.031 (0.061) | 1.267 (0.333) | 0.0205
E 0.653 (0.149) | 3.168 (1.31 1) | 3.555 (1.540) | 0.0333
F 0.932 (0.039) | 0.257 (0.228) | 1.498 (0.642) | 0.0538
Complete sample
(T =80
A 0.888 (0.021) | 1.114 (0.193) | 1.095 (0.192) { 0.0213
B 0.923  (0.028) | 0.808 (0.272) | 0.671 (0.240) | 0.0263
C 0.971 (0.011) | 0.315 (0.098) | 0.490 (0.135) | 0.0470
D 0.985 (0.009) | 0.169 (0.077) | 0.450 (0.131) | 0.0640
E 0.892 (0.023) | 1.082 (0.220) | 1.078 (0.221) | 0.0271
F 1018 (0.012) |-0.119 0.107) [-0.011  (0.124) | 0.0415
Exact confidence sets for A (from first subsample)
Level ] 0.99 | 0975 | 0.95 | 0.925
Based on .Z} 10.6490, 1] 10.6665, 1] [0.6810, 1} 10.6875, 1]
Based on .2‘1* [0.7610, 1] [0.7736, 1} [0.7866, 1] 10.7922, 1]
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‘Table 4 1 AR(1) with Bacar sremd models @ Bxect icsis s structural change (p-values) based on e
.2';" confidence set from the fiest subsample; &2 = 010, Q‘ = {105, “2 = (.05, ixé = .15

(s indicates sojection at level 0.10; "&" hedicaics scoeptance at teved .30}

A) Global tests

A B C D E g
AOC-PB D, 0.953 0000r VOODr VO 0956 0.006
l)‘ § 0.001 0.000 0.000 0.000 0000 G000
CUSUM CSL 1.000 0.256 0.686 0.532 1.000 0.584
CSU 0.002 0.002 0.002 0.002 0.002 0.002
CUSUM of squaies CQL 0.982 0.406 0002r  0002r 00281 0.002 1
C()U 0.380a 0022 0.002 0.002 0.004 0.002
Prediciive test I’Cl 0.778 0.204 0.000 ¢ 0000 1 00161 0.000 1
I‘(," ) 03272 0.002 Q.00 0.000 0.001 0.000
AUC-A oo omn oser Lo oW 0916 0766
!'x 03268 03262 0.684n 0596a 0416  0A0Ga
1) Individual predictive fests (conscrvative p-values)
Taedicted observation A 1) C D E ¥
51 0.792 0.338 0.000 ¢ 0.000 ¢ 0.7192 0.792
52 0.945 0.019 ¢ 0.000 ¢ 0.000 ¢ 0.945 0.945
53 0.999 0.058 0000 ¢ 0.000 ¢ 0.999 1O
54 0.694 0.289 0.000 Q.000 1 0.694 0.694
55 0.997 0019 r 0.001 ¢ 0.000 ¢ 0.997 0.997
56 0.997 0.099 0.000 1 0.000 ¢ 0.997 0.997
57 0.489 0.002 ¢ 0.07 0.000 1 (.489 0.489
58 0.997 0417 0005 1 0.000 ¢ 0.997 0.997
59 0.997 0.293 0.004 v 0.000 ¢ 0.997 0.997
60 0999 0.122 0.035r Q000 1 0.004 ¢ 0.999
61 0.549 0.785 0.003 ¢ 0.000 1 0.810 0.519
62 0.997 0.365 0035 0.000 1 0.997 0.997
63 0.944 0.0 5 0.989 0.047 ¢ 0.993 0.944
oA 0.906 0.543 0.059 0.000 « 0.998 0.906
65 0.996 0.0121¢ 0.969 0.072 0.996 0.996
60 0.941 0.006 ¢ 0958 0.201 0.995 0.000 ¢
67 0970 0013 0.979 0.208 0.995 0.000 r
68 1.000 0.352 0.409 0.010r 0.998 0.000 1
69 0.996 0.452 0.390 00101 0.994 0.000 ¢
70 ©.996 (.344 0.594 0026 ¢ 0.005 ¢ 0.000 ¢
71 0.999 0.127 0.965 0.132 0.996 0003 1
7 0.997 0.124 0.982 0.181 0.995 0011
73 0.995 0.078 0.982 0.336 0.993 0.051 ¢
74 0.994 0.157 0.992 0.237 0.998 0050 ¢
15 0.999 0.468 0.784 0.081 0.994 002t r
76 0.993 0.134 0.961 0378 0.992 0.195
71 0.997 0.198 0.964 0.321 0.998 020
7R 0.993 0.049 1 0.983 0.842 0.990 0.744
79 0.997 00421 0.982 0981 0.992 0.966
80 0.999 0.119 0.965 0.662 0993 0.719
) Some tests with A known
A " C D | P ¥
AOC - 0.799 0.000 1 0.000 1 - 4706 0000 £
CUSUM 1000 QUi8 1 0.002 ¢ - 1.000 G004 1
CUSUM of squates 0416 0.084 0002 ¢ - 0004 ¢ 00021

Predictive test 0.721 BRI 0.000 1 - 0005 ¢ Q000 ¢
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ACGC-§ test detects the permanent changes in the trend coefficient (data set B), the
intercept (C and F) and A (D), but does not find the isolated shocks (E). The intercept
and A shifts are also detected by the CUSUM -of-squares and predictive tests, While
the two latter tests do not detect the shift in trend (B), they do find the two isolated
shocks (E). Further, the individual prediclive tests again provide useful information on
the timing and form of the structural shifis (especially in cases D and F). The CUSUM
and AOC-2 tests do not detect any of the structural shifts considered. Finally, from
part C of Table 4, we see that knowing the true value of A has little effect for the
inferences based on the AOC-f and CUSUM-of-squares tests. However, for these
data, the CUSUM test appears to be more powerful for the cases B, C and F, and the
predictive test detects the change in trend (B) when 2 is known.

Finally, we examine U.S. gross private domestic investment in non-residential
structures (1982 dollars) : 140 qQuarterly observations from 1952:1 10 1986:4
[source : Bemndt (1991, p- 278)}, which we divided into two roughly equal subperiods
(1952:1 - 1969:4 and 1970:1 - 1986:4), Taking the logarithm of this variable, we find
that the first half of the sample (1952:1 - 1969:4) can be described reasonably well by
the just examined AR(1) model with intercept and trend :

(7.8) ]t =1 I(_] + BI + B2(1/100) +u, g1

where !t is the logarithm of real gross domestic investment in non-residential
Structures.  Although the intercept and trend coefficients are not significant according
to the usual asymptotic standards, we find that such a specification does not suffer
manifestly from omitted higher order lags/serial correlation, heteroskedasticity or
non-normal errors. The OLS estimates for the two subsamples and the complete
sample, as well as some standard diagnostics, appear in Table 5A.

To perform structural change tests, we first obtained a confidence set for A
(with size 0.95) based on the statistic -3* and the first subsample, which yielded the
interval [0.8744, 1.0].32 The p-values for the various test statistics are reported in
Tables 5B and 5C (for the individual predictive tests, in order 10 economize space, we
only report the conservative p-values which are lower than 0.05); the complete scrics
of individual predictive tests (p-values) is also graphed in Figure 1. Using = 0.10 as
the critical level (with a = a, = 0.05), we see that the AOC and CUSUM tests do not
show evidence of structural change, while the CUSUM of squares and predictive tests

v et

3 Because of the relatively large sample size (T'=139), we only used N- | = 199 Maonte Carlo
samples in building the confidence sel for A and for assessing the significance of the relevam
structural change (ests,
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Table 5

AR(1) with linear trend model for logarithm of US gross domestic investment
in non-residential structures in 1982 dollars (I‘); quarterly data (1952:1 - 1986:4)

{Source : Berndt (1991, p. 278; series IS of file Kopcke)]
L=, + B, + B,100) +u, Al s 1

A) OLS estimates

A ' 2
A al az s R
First subsample 0.921 0.872 0.070 0.022 0.9878
(T, = 71) (0.046) (0.506) (0.044)
Second subsample 0.930 0.788 0.033 0.031 0.9443
(T, = 68) (0.049) (0.543) (0.032)
Complete sample 0.956 0.503 0.018  0.027 0.9899
(T =139) (0.028) (0.309) (0.019)
Diagnostics for p-value
first subsample First-order serial correlation : F(1, 67) = 2.54 0.12
Fourth-order serial correlation : F(4, 64) = 172 0.16
Heteroskedasticity :Breusch-Pagan : x2 (2) =2.50 0.20
Koenker : £°(2) = 1.92 0.38
Non-normal disturbances : 2°(2) = 1.16 0.56

B) Global test for structural change (exact) ’
Confidence set for 4 based on .5!’_* (o, = 0.05) : |0.8744, 1.00]

Conservative Liberal
p-value (L) p-value (U)
AOC-B 0.788 0.015
CUSUM! 0.785 0.580 a
CUSUM of squares! 0.005r 0.005
Predictive 0.004 r 0.001
AOC-A} 0.840 0.585a
©) Individual predictive tests (exact)
Quarter Conservative
p-value
74:3 0.006 r
75:1 0.014r
82:2 0.046 r
83:1 0.002r
86:2 0.000 r

1 Randomized p-values basedon N - 1 = 199 Monte Carlo samples.
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provide rather strong evidence against it. Further, there are five individual predictive
test statistics (out of 68) with p-values of FL lower than 0.05 (74:3, 75:1, 82:2,
83:1, 86:2), indicating clusters of low p-values near the end of 1974, in 1982-83, and
in 1986. These results suggest relatively short-lived deviations from the model
although not permanent structural changes.

8. CONCLUSION

In this paper, we have described how finite~sample structural change tests can be
obtained for a linear regression model with one lagged dependent variable and normal
disturbances. The latter are based on combining three distinct techniques : first, using
an extended regression, we build an exact confidence set for the autoregressive
parameter 4, which is valid at least under the null hypothesis of no structural change;
second, after selecting a structural change test whose level can be established for any
given A = lo (which can typically be done by adapting a structural change test designed
for static linear regression), we use a "union-intersecetion" technique to combine these
"conditional tests" (for given A = 10) with the confidence set for A, and so produce
valid "unconditional” tests; thirdly, when it is difficult to evaluate analytically the null
distribution of a test statistic (for given 1 = Ao) but the latter can be simulated, the test
is replaced by a "randomized” (or Monte Carlo) analogue which remains exact
irrespective of the number N of replications and becomes equivalent to the original
non-randomized test as N -« The tests considered above include extensions of
analysis-of-covariance (for B and 1), predictive, CUSUM and CUSUM-of-squares
tests. The feasibility of the approach suggested was also illustrated with both artificial
data and a dynamic trend model for real gross domestic investment in the U.S. The
artificial data suggest that alternative tests react differently to various structural-change
alternatives, the AOC-PB test and (10 a lesser extent) the CUSUM test being more
sensitive t0 permanent shifts in coefficients, while the predictive  and
CUSUM-of-squares tests can detect more casily transitory shifts. Individual
predictive tests also provide useful information on the form and timing of structural
changes. The empirical results on the investment equation indicate the presence of
some form of structural change but of a transitory nature.

It is important to note that the general approach used here to obtain structural
change tests for a dynamic linear regression is not limited to the particular tests
described above : about any test designed for a static linear regression can be extended
1o the case of a first~order dynamic linear regression in the same way. Further, in



addition to being exact for any full-column rank regressor matrix X {provided it is
independent of the disturbance vector), the procedures proposed in this paper remain
*asympiotically valid” in the usual sense (ie., the probability of type I error does not
excead the stated level as the sample size goes o infinity) under various assumptions of
siochastic regressors and non-normal disturbances, provided the structural change (ests
are themselves asymptotically valid for given A = 3.0 under such assumptions. This can
be shown easily by an argument similar to the one in Dufour and Kiviet {1993).
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