CAHIER 9548 # EXACT TESTS FOR STRUCTURAL CHANGE IN FIRST-ORDER DYNAMIC MODELS Jean-Marie DUFOUR1 and Jan F. KIVIET2 - Département de sciences économiques and Centre de recherche et développement en économique (C.R.D.E.), Université de Montréal - Tinbergen Institute and Faculty of Economics & Econometrics, University of Amsterdam October 1995 This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada, the Social Sciences and Humanities Research Council of Canada, the Government of Québec (Fonds FCAR) and the Canadian International Development Agency (PARADI Program). The authors thank Donald Andrews, Peter Burridge, Eric Ghysels, Peter Hackl and an anonymous referee for useful comments. Ce cahier a également été publié au Centre de recherche et développement en économique (C.R.D.E.) (publication no 4395). Dépôt légal - 1995 Bibliothèque nationale du Québec Bibliothèque nationale du Canada ISSN 0709-9231 ## RÉSUMÉ Nous proposons des tests de stabilité des paramètres contre la présence de changement structurel pour un modèle de régression linéaire avec une variable dépendante retardée et des erreurs normales indépendantes. Les procédures proposées incluent des tests d'analyse de covariance, des tests de type CUSUM et CUSUM de carrés et des tests prédictifs. L'approche utilisée pour obtenir ces tests requiert l'application de trois techniques : la dérivation d'une région de confiance exacte pour le paramètre autorégressif du modèle (laquelle est fondée sur une régression étendue appropriée), une technique d'union-intersection et (lorsque requis) une méthode de randomisation. Nous illustrons les tests proposés sur des données artificielles et appliquons ceux-ci à un modèle dynamique représentant l'investissement domestique privé aux É.-U. Mots clés : analyse de covariance, test à bornes, test CUSUM, test CUSUM de carrés, inférence exacte, modèle autorégressif d'ordre un, test de Monte Carlo, test prédictif, randomisation, changement structurel #### ABSTRACT Several finite-sample tests of parameter constancy against the presence of structural change are proposed for a linear regression model with one lagged dependent variable and independent normal disturbances. The procedures derived include analysis-of-covariance, CUSUM, CUSUM-of-squares and predictive tests. The approach used to obtain the tests involves the application of three techniques: derivation of an exact confidence set for the autoregressive parameter (based on using an appropriately extended regression), a union-intersection technique and (when required) randomization. The tests proposed are illustrated with some artificial data and applied to a dynamic trend model of gross private domestic investment in the U.S. Key words: analysis-of-covariance test, bounds test, CUSUM test, CUSUM-of-squares test, exact inference, first-order autoregressive model, Monte Carlo test, predictive test, randomization, structural change ## 1. INTRODUCTION Test and confidence set procedures for dynamic regression models are typically based on large-sample approximations whose reliability can be quite poor; see, for instance, Nankervis and Savin (1987) and Kiviet and Phillips (1993). A major problem in this context comes from the fact that usual test statistics have an indeterminate null distribution, since the latter depends on the values of unknown nuisance parameters. This is true, for example, even for tests of linear restrictions in a linear dynamic regression with one lagged dependent variable, a few exogenous regressors and Gaussian errors. Consequently, it is not surprising that to date finite-sample tests against the presence of structural change were not available for such models. In this paper, we exploit recent results from Dufour (1989, 1990), Kiviet and Phillips (1990, 1992) and Dufour and Kiviet (1993) to derive exact finite-sample structural change tests in a basic linear dynamic model. Specifically, the model we shall consider is (1.1) $$y_t = \lambda y_{t-1} + x_t' \beta + u_t', \qquad u_t^{ind} N(0, \sigma^2), \qquad t = 1, ..., T,$$ where y_t is the dependent variable (at time t), x_t is a k × 1 vector of fixed (or strongly exogenous) regressors, u_1 , ..., u_T are mutually independent random disturbances following a N(0, σ^2) distribution, and y_0 is either fixed or random but independent of u_1 , ..., u_T ; the parameters λ , β and σ^2 are unknown, and $\lambda \in \mathcal{D}_{\lambda}$ where $\mathcal{D}_{\lambda} \subseteq \mathbb{R}$ is a nonempty set of admissible values for λ . Depending on the context, the set \mathcal{D}_{λ} may be \mathbb{R} itself, the open interval (-1, 1), the closed interval [-1, 1], or any other appropriate subset of \mathbb{R} . It will be convenient to write model (1.1) in matrix form: (1.2) $$y = \lambda y_{-1} + X\beta + u , u \sim N(0, \sigma^2 I_T)$$ where $$y=(y_1,\ y_2,\ \dots\ ,\ y_T)'$$, $y_{-1}=(y_0,\ y_1,\ \dots\ ,\ y_{T-1})',\ X=[x_1,\ x_2,\ \dots\ ,\ x_T]'$ and $u=(u_1,\ u_2,\ \dots\ ,\ u_T)'$. In order to derive exact structural change tests for model (1.2), we will consider in turn two distinct cases, depending on whether the autoregressive parameter λ is assumed to be constant under the alternative or not. In the first case, we study two categories of tests: (1) generalizations of standard analysis-of-covariance (AOC) tests in static linear regressions [Kullback and Rosenblatt (1957), Chow (1960) and Dufour (1982a)], which are built against alternatives where β may change at m known breakpoints (m \geq 2); (2) generalizations of the CUSUM and CUSUM-of-squares tests proposed by Brown, Durbin and Evans (1975), which are built against more general alternatives. In the second case, we study again two types of tests: (a) predictive tests which generalize those proposed by Chow (1960) and Dufour (1980, 1982c) for static linear regressions; (b) AOC-type tests against alternatives where λ may change at a known breakpoint. The tests suggested are obtained by adapting to structural change problems the exact inference procedures proposed in Dufour and Kiviet (1993) for model (1.2), which are themselves generalizations of the approach suggested in Dufour (1990) for making exact inference in a linear regression with AR(1) errors. The basic building block in our approach is the possibility of finding exact confidence sets for the coefficient λ , from the full sample or from subsamples. In particular, this can be done by applying least squares to an extended regression, as set out in Kiviet and Phillips (1990, 1992) where two procedures are suggested. These confidence sets are similar and have the desired size, i.e. for any confidence level $1 - \alpha$, with $0 \le \alpha < 1$, the probability that λ be contained in the set is precisely $1 - \alpha$. The confidence set for λ is then combined with "conditional" tests on the other coefficients (which assume λ to be known) to obtain (unconditional) "generalized bounds tests". These bounds tests are exact in the sense that the probability of rejecting the null hypothesis does not exceed the chosen level. Concerning the definition of the level of a test or confidence set (as opposed to its size), the reader may consult Lehmann (1986, section 3.1, p. 69). Finally, when the distribution of a test statistic (for given $\lambda = \lambda_0$) is not well tabulated or is not analytically tractable, we suggest using a "randomized" (or Monte Carlo) version of the test which remains exact irrespective of the number N of replications and becomes equivalent to the original non-randomized test as $N \rightarrow \infty$. In section 2, we give two lemmas which will be useful in later developments: the first one provides a simple way of deriving exact generalized bounds tests, while the second one shows how a genuinely exact test can be obtained when the distribution of a (similar) test statistic is simulated with an arbitrary number of replications. In section 3, we show how an exact confidence set for λ can be built. Sections 4 and 5 describe the analysis-of-covariance and CUSUM tests, against alternatives where λ is assumed to be constant. Section 6 proposes predictive tests and analysis-of-covariance tests against alternatives where λ may change. In section 7, the various procedures are illustrated with both artificial data and a dynamic trend model for U.S. real gross domestic private investment in non-residential structures. Section 8 concludes. # 2. NUISANCE PARAMETERS, BOUNDS PROCEDURES AND RANDOMIZATION The most basic difficulty one meets in deriving finite-sample inference procedures for a dynamic model of the form (1.2) comes from the fact that usual inference procedures (such as Wald, likelihood ratio or Lagrange multiplier tests) involve nuisance parameters: the null distribution of a test statistic for $\lambda = \lambda_0$ typically depends on the unknown parameter β (and possibly σ^2), while the null distribution of a test statistic for some restriction on β depends on the unknown value of λ . Even though this dependence may tend to disappear in large samples, it does not in finite samples. In particular, the dependence on λ appears to be especially difficult to alleviate. Recently, however, Kiviet and Phillips (1990, 1992) showed that exact tests and confidence sets for λ can be derived by extending appropriately the matrix X of fixed regressors in (1.2). The purpose of using an extended regressor matrix is precisely to eliminate nuisance parameters. We will describe in the next section how an exact confidence set for λ can be obtained. Given an exact confidence set for λ , it is possible to obtain finite-sample tests and confidence sets for the vector β (or subvectors of it) by using the union-intersection
approach proposed in Dufour (1990) for linear regressions with AR(1) errors; see Dufour and Kiviet (1993). In the present paper, we apply this approach to obtain exact structural change tests in the context of model (1.2). For that purpose, we will repeatedly exploit the following lemma, which generalizes some of the basic ideas used in Dufour (1990) and Dufour and Kiviet (1993). LEMMA 1: Let y be a random vector whose distribution depends on a parameter $\gamma \in A$, where A is a nonempty subset of \mathbb{R}^p , let $Q(y; \gamma)$ be a real-valued statistic and let $C(y) \subseteq A$ be a confidence set for γ . Define also (2.1) $$Q_L(y) = \inf\{Q(y; \gamma_0) : \gamma_0 \in C(y)\},$$ (2.2) $$Q_U(y) = \sup\{Q(y; \gamma_0) : \gamma_0 \in C(y)\}\$$, where we set $Q_L(y) = -\infty$ and $Q_U(y) = +\infty$ when C(y) is empty. Then, for any $x \in \mathbb{R}$ and for any $\gamma_1 \in A$, we have the two following inequalities: (2.3) $$P[Q_L(y) \ge x] \le P[Q(y; \gamma_1) \ge x] + P[\gamma_1 \in C(y)],$$ (2.4) $$P[Q_{U}(y) \le x] \le P[Q(y; \gamma_{l}) \le x] + P[\gamma_{l} \in C(y)]$$. Proof: By definition $$\gamma_l \in \mathrm{C}(y) \ \Rightarrow \ \mathrm{Q}_L(y) \leq \mathrm{Q}(y; \, \gamma_l) \leq \mathrm{Q}_U(y) \; ,$$ where the "event" $\gamma_1 \in \emptyset$ is interpreted as an "impossible event" having probability zero, while $\gamma_1 \notin \emptyset$ is a "sure event" having probability 1 (\emptyset is the empty set). Then $$\begin{split} P[Q_L(y) \geq x] &= P[Q_L(y) \geq x \text{ and } \gamma_1 \in C(y)] + P[Q_L(y) \geq x \text{ and } \gamma_1 \notin C(y)] \\ &\leq P[Q_L(y) \geq x \text{ and } \gamma_1 \in C(y)] + P[\gamma_1 \notin C(y)] \\ &\leq P[Q(y; \gamma_1) \geq x] + P[\gamma_1 \notin C(y)] \end{split}$$ and $$\begin{split} P[Q_U(y) \leq x] &= P[Q_U(y) \leq x \text{ and } \gamma_1 \in C(y)] + P[Q_U(y) \leq x \text{ and } \gamma_1 \notin C(y)] \\ &\leq P[Q_U(y) \leq x \text{ and } \gamma_1 \in C(y)] + P[\gamma_1 \notin C(y)] \\ &\leq P[Q(y; \gamma_1) \leq x] + P[\gamma_1 \notin C(y)] \;. \end{split}$$ Q.E.D. This lemma will be applied as follows. Consider the case where - i) $\gamma_1 = \gamma$, where γ is the true value of the parameter vector, - ii) Q(y; γ) has a unique known distribution, - iii) $P[\gamma \in C(y)] \ge 1 \alpha_1$, with $0 \le \alpha_1 < 1$, and let $c(\alpha)$ be a point such that (2.5) $$P[Q(y; \gamma) \ge c(\alpha)] = \alpha$$ where $0 \le \alpha \le 1$. Then (2.6) $$P[Q_L(y) \ge c(\alpha_2)] \le \alpha_2 + \alpha_1$$, (2.7) $$P[Q_{U}(y) \le c(\alpha_{2}')] \le 1 - \alpha_{2}' + \alpha_{1} = 1 - (\alpha_{2}' - \alpha_{1}').$$ Let us now interpret $Q(y; \gamma_0) \ge c(\alpha)$ as a critical region for testing a hypothesis H_0 , which usually concerns parameters other than γ and has size α when $\gamma = \gamma_0$. Taking $$(2.8) 0 \le \alpha_1 < \alpha < 1, \alpha_2 = \alpha - \alpha_1, \alpha_2' = \alpha + \alpha_1 < 1,$$ we then have $$(2.9) P[Q_L(y) \ge c(\alpha_2)] \le \alpha,$$ (2.10) $$P[Q_U(y) \le c(\alpha_2')] \le 1 - \alpha$$. This suggests the following (unconditional) generalized bounds test with level α for \boldsymbol{H}_0 : (2.11) reject $$H_0$$ when $Q_L(y) \ge c(\alpha_2)$, accept H_0 when $Q_U(y) < c(\alpha_2')$, consider the test inconclusive otherwise. For further discussion of such procedures, see Dufour (1989, 1990). A second problem one meets in deriving exact tests in the context of model (1.2) comes from the fact that the test statistics used may have fairly complex forms, even though their distribution under the null hypothesis does not depend on nuisance parameters. In such cases, the analytical evaluation of the distribution of a test statistic can be quite difficult, but the same distribution may be easy to simulate by Monte Carlo methods. In such cases, it is possible to consider a "randomized" version of the test that can have any desired level. Even though the basic property used to derive such tests is well known [see Dwass (1957), Barnard (1963), Birnbaum (1974), Edgington (1980), Foutz (1980) and Jöckel (1986)], we state it here in a lemma for future reference [for a proof, see Dufour and Kiviet (1993)]. LEMMA 2: Let Z_j , $j=1,\ldots,N$, be independent and identically distributed (i.i.d.) real random variables with a continuous distribution, and let R_j be the rank of Z_j when Z_1,\ldots,Z_N are ranked in nondecreasing order $(j=1,\ldots,N)$, i.e., (2.12) $$R_j = \sum_{i=1}^{N} U(Z_j - Z_i)$$, where U(x) = 1 if $x \ge 0$, and U(x) = 0 if x < 0. Then, for j = 1, ..., N, (2.13) $$P[R/N \ge x] = 1 , \text{ if } x \le 0$$ $$= \frac{I[(1-x)N] + 1}{N} , \text{ if } 0 < x \le 1$$ $$= 0 , \text{ if } x > 1,$$ where I[x] is the largest integer less than or equal to x. This lemma will be used in the following way. Let Z_N be the value of a test statistic computed from an observed sample, let Z_1, \ldots, Z_{N-1} be i.i.d. random variables which are distributed like Z_N under H_0 , and let $0 < \alpha < 1$. Then, by selecting $c_N(\alpha)$ to be a positive real number such that $$(2.14) l[(1 - c_{N}(\alpha))N] + 1 \le N\alpha,$$ the critical region $R_N/N \ge c_N(\alpha)$ has size not larger than α . Thus, R_N/N may be viewed as a modified test statistic for H_0 . From (2.13), it is easy to see that the critical point (2.15) $$c_N(\alpha) = 1 - \frac{1[N\alpha]}{N} + \frac{1}{N}$$ yields a test of size $l[N\alpha]/N$, so that $\alpha - (1/N) \le P[R_N/N \ge c_N(\alpha)] \le \alpha$, and thus provides the desired result; in particular, when $N\alpha$ is an integer, we get $P[R_N/N \ge c_N(\alpha)] = \alpha$ by taking $c_N(\alpha) = 1 - \alpha + (1/N)$. With $c_N(\alpha)$ defined as in (2.15), the critical region $R_N/N \ge c_N(\alpha)$ can be rewritten in the intuitively attractive form $p_N \le l[N\alpha]/N$, where (2.16) $$p_N = 1 - \frac{R_N}{N} + \frac{1}{N}$$ can be interpreted as a "randomized" or "Monte Carlo" p-value. Because the function $I[\cdot]$ is discrete, several values of $c_N(\alpha)$ may yield the same critical region: all critical points c such that $\{I[(1-c)N]+1\}/N=\alpha$ correspond to the same test with size α . The only levels for which the equality in (2.14) can hold exactly are j/N, $j=0,1,\ldots,N-1$, but it is easy to find a critical point $c_N(\alpha')$ such that we have both $P[R_N/N \ge c_N(\alpha')] \le \alpha$ and $|\alpha'-\alpha| \le 1/N$: clearly, by taking N sufficiently large, the difference $|\alpha'-\alpha|$ can be made arbitrarily small, and, if αN is an integer, we can have $P[R_N/N \ge c_N(\alpha)] = \alpha$. Note also that the test $R_N/N \ge c_N(\alpha)$ is not equivalent to the nonrandomized test $Z_N \ge c(\alpha)$ where $P[Z_N \ge c(\alpha)] = \alpha$. But, as $N \to \infty$, the two tests become equivalent under weak regularity conditions. For further discussion, see Birnbaum (1974), Dwass (1957), Foutz (1980) and Jöckel (1986); for applications of Monte Carlo tests in time series contexts, see Dufour and Hallin (1987, p. 426) and Theil and Shonkwiler (1986). ## 3. EXACT CONFIDENCE SETS FOR λ To apply Lemma 1, we will need an exact confidence set for λ . For this purpose, we shall use the approach developed in Kiviet and Phillips (1990, 1992), which is based on deriving first exact similar tests for the hypothesis $\lambda = \lambda_0$. Dufour (1990) also proposed a related approach to obtain an exact confidence set for the autoregressive parameter in a linear regression with AR(1) errors from an exact test. Kiviet and Phillips (1990, 1992) give two procedures for testing the null hypothesis $\lambda = \lambda_0$ exactly in model (1.2); a third one is given in Dufour and Kiviet (1992). The null distributions of these test statistics are free of the nuisance parameters β and σ ; moreover, they are invariant with respect to the value and the (stochastic) nature of y_0 . However, the null distribution of these tests does depend on both λ_0 and X, and so it is not feasible to produce general tables of exact critical values. The actual application of these tests requires considerable computational efforts, but by adapting them in the form of simulation tests according to Lemma 2, these procedures are operational and relatively easy to execute. Exact confidence sets for λ can be constructed by "inversion" of these test procedures for $\lambda = \lambda_0$. These three particular exact tests are based on straightforward least-squares results in a regression model which corresponds to (1.2) augmented by a number of redundant strongly exogenous regressors: (3.1) $$y = \lambda y_{-1} + X(\lambda_0)\beta_* + u$$, where $X(\lambda_0)$ is a full column rank matrix whose columns span the same space as the space spanned by the columns of $[X : \iota_T(\lambda_0) : J_T(\lambda_0)X]$, and (3.2) $$i_{T}(\lambda) = \begin{bmatrix} 1 \\ \lambda \\ \lambda^{2} \\ \vdots \\ \lambda^{T-1} \end{bmatrix}, J_{T}(\lambda) = \begin{bmatrix} 0 & \dots & 0 \\ 1 & 0 & \vdots \\ \lambda & 1 & 0 & \vdots \\ \lambda^{2} & \dots & \vdots \\ \vdots & \vdots & \ddots & \vdots \\ \lambda^{T-2} & \dots & \lambda & 1 & 0 \end{bmatrix}.$$ Extending a model by including particular redundant regressors in order to achieve test invariance has also been suggested in Dagenais and Dufour (1985) to test serial correlation with missing observations, and Dufour and King (1991, p. 125) with respect to testing hypotheses about the autocorrelation coefficient in a linear regression with AR(1) errors. For the least-squares estimator of λ in (3.1), we have (3.3) $$\hat{\lambda}(\lambda_0) = (y'_{-1}M[X(\lambda_0)]y_{-1})^{-1}y'_{-1}M[X(\lambda_0)]y,$$ where $M[X(\lambda_0)] = I - X(\lambda_0)[X(\lambda_0)' X(\lambda_0)]^{-1}X(\lambda_0)'$. In order to test $\lambda = \lambda_0$ exactly, Kiviet and Phillips (1990, 1992) have suggested the following statistics: (3.4)
$$c^*_{\lambda}(\lambda_0) = \hat{\lambda}(\lambda_0) - \lambda_0$$ and the t-ratio $$(3.5) \qquad \iota_{\lambda}^{*}(\lambda_{0}) = c_{\lambda}^{*}(\lambda_{0})/\widehat{\sigma}[\widehat{\lambda}(\lambda_{0})] \ ,$$ where . (3.6) $$\hat{\sigma}[\hat{\lambda}(\lambda_0)]^2 = \frac{1}{T - \text{rank}[X(\lambda_0)]} \frac{[y - \hat{\lambda}(\lambda_0)y_{-1}] M[X(\lambda_0)][y - \hat{\lambda}(\lambda_0)y_{-1}]}{y_{-1}^{\dagger}M[X(\lambda_0)]y_{-1}}$$ is the estimated variance of $\hat{\lambda}(\lambda_0)$. In addition to those, we shall also consider here two other statistics suggested in Dufour and Kiviet (1993) which have the nice feature of being derived as monotonic transformations of particular likelihood ratio statistics: namely, (3.7) $$\mathcal{L}_{\lambda}^{*}(\lambda_{0}) = \frac{S_{0}^{*}(\lambda_{0})}{S_{1}^{*}(\lambda_{0})}$$ and $$(3.8) \qquad \mathcal{L}_{\lambda}^{**}(\lambda_0) = \frac{S_0(\lambda_0)}{S_1^*(\lambda_0)}\,,$$ where (3.9) $$S_0^*(\lambda_0) = \min_{\beta_*} [y(\lambda_0) - X(\lambda_0)\beta_*][y(\lambda_0) - X(\lambda_0)\beta_*],$$ (3.10) $$S_0(\lambda_0) = \min_{\beta} [y(\lambda_0) - X\beta]'[y(\lambda_0) - X\beta],$$ (3.11) $$S_{1}^{*}(\lambda_{0}) = \min_{\lambda, \beta_{*}} [y - \lambda y_{-1} - X(\lambda_{0})\beta_{*}][y - \lambda y_{-1} - X(\lambda_{0})\beta_{*}]$$ with $y(\lambda_0) = y - \lambda_0 y_{-1}$. It is easily verified that $$\left[\mathfrak{t}_{\lambda}^{*}(\lambda_{0})\right]^{2}=\left(\mathrm{T-rank}[\mathrm{X}(\lambda_{0})]\right)\left[\mathcal{L}_{\lambda}^{*}(\lambda_{0})-1\right].$$ Clearly, tests based on $\mathcal{L}^*_{\lambda}(\lambda_0)$ are likely to be more powerful than those based on $\mathcal{L}^*_{\lambda}(\lambda_0)$ because $\mathcal{L}^*_{\lambda}(\lambda_0)$ takes into account a wider set of restrictions entailed by $\lambda = \lambda_0$ in the extended model (3.1). Under $\lambda = \lambda_0$, the three residual sums of squares defined in (3.9)-(3.11) reduce to : (3.12) $$S_0^*(\lambda_0) = u'M[X(\lambda_0)]u$$, (3.13) $$S_0(\lambda_0) = u'M[X]u$$, $$(3.14) \qquad S_{1}^{*}(\lambda_{0}) = u'M[y_{-1} \vdots X(\lambda_{0})]u = u'M[X(\lambda_{0})]u - \frac{\{u'M[X(\lambda_{0})]J_{T}(\lambda_{0})u\}^{2}}{u'J_{T}(\lambda_{0})'M[X(\lambda_{0})]J_{T}(\lambda_{0})u}.$$ For the derivation of the latter result, see Dufour and Kiviet (1993). It is important to note here that, under $\lambda = \lambda_0$, the coefficient vector β and the start-up value y_0 do not appear in the residual sum of squares. Further, the statistics $\mathcal{L}^*_{\lambda}(\lambda_0)$ and $\mathcal{L}^{**}_{\lambda}(\lambda_0)$ are then functions of ratios of quadratic forms in u, so that their null distributions do not depend on σ either. An exact confidence set with level $1-\alpha$ for λ can be built by "inverting" either one of the above tests. To see how this is done, let us focus on the construction of a confidence set obtained (for example) from the $\mathscr{L}_{\lambda}^{**}(\lambda_{0})$ test procedure and by making use of the simulation procedure set out in Lemma 2. We first generate N-1 mutually independent $T \times 1$ vectors η_{j} , j = 1, ..., N-1, with $\eta_{j} \sim N(0, I_{T})$. For particular values $\lambda_{0} \in \mathscr{D}_{\lambda}$, to be determined below, we can calculate $$(3.15) \qquad T_{j}(\lambda_{0}) = \frac{\eta_{j}^{\prime}M[X]\eta_{j}}{\eta_{j}^{\prime}M[X(\lambda_{0})]\eta_{j} - \frac{\{\eta_{j}^{\prime}M[X(\lambda_{0})]J_{T}(\lambda_{0})\eta_{j}\}^{2}}{\eta_{j}^{\prime}J_{T}(\lambda_{0})^{\prime}M[X(\lambda_{0})]J_{T}(\lambda_{0})\eta_{j}}}$$ for $j=1,\ldots,N-1$, and set $T_N(\lambda_0)=\mathscr{L}_\lambda^{**}(\lambda_0)$ which is obtained by formula (3.8) from the actual data. If $c_N(\alpha)$ is defined as in (2.15) and $R_N(\lambda_0)$ is the rank of $T_N(\lambda_0)$ among $T_j(\lambda_0)$, $j=1,\ldots,N$, then the set (3.16) $$\begin{aligned} C_{\lambda}(\alpha) &= \{\lambda_0 \mid \lambda_0 \in \mathcal{D}_{\lambda} \text{ and } R_N(\lambda_0)/N \ge c_N(\alpha)\} \\ &= \{\lambda_0 \mid \lambda_0 \in \mathcal{D}_{\lambda} \text{ and } R_N(\lambda_0) \ge N - I[N\alpha] + 1\} \end{aligned}$$ is a confidence set for λ with size $1-(I[N\alpha]/N)$. In particular, if $N\alpha$ is an integer, the size of the confidence set is precisely $1-\alpha$. The actual establishment of such a set requires iterative numerical procedures such as grid search, bi-section, etc. First, $T_j(\lambda_0)$, $j=1,\ldots,N$ are calculated for a series of λ_0 values; for each λ_0 value, the same $\{\eta_1,\ldots,\eta_{N-1}\}$ vectors are used and $R_N(\lambda_0)$ is determined. This provides an initial location of the confidence set. The set is not necessarily compact, but if it is, the confidence bounds are rather straightforwardly obtained after a series of further refinements by which one checks whether or not particular λ_0 values belong to the confidence set. ## ANALYSIS OF COVARIANCE TESTS WHEN λ IS CONSTANT In this section and the next one, we study the problem of testing the stability of model (1.2) against alternatives where λ and σ^2 are assumed constant. We will consider in turn two cases: (1) m possible breakpoints for changes in β are known (or assumed); (2) the form of the structural changes is unknown. In the first case, we will propose generalizations of analysis-of-covariance tests similar to those proposed in Kullback and Rosenblatt (1957), Chow (1960) and Dufour (1982a). In particular, we will extend to model (1.2) the general analysis-of-covariance tests given in Dufour (1982a). In the second case, which we consider in the next section, we will propose analogues of the CUSUM tests suggested by Brown, Durbin and Evans (1975). Let us consider the following partitions of y, y_{-1} , X and u defined in (1.2) into m subvectors or submatrices (m \geq 2): $$(4.1) y = \begin{bmatrix} y_{(1)} \\ y_{(2)} \\ \vdots \\ y_{(m)} \end{bmatrix}, y_{-1} = \begin{bmatrix} y_{(1)}^{(1)} \\ y_{-1}^{(2)} \\ \vdots \\ y_{-1}^{(m)} \end{bmatrix}, X = \begin{bmatrix} X_{(1)} \\ X_{(2)} \\ \vdots \\ X_{(m)} \end{bmatrix}, u = \begin{bmatrix} u_{(1)} \\ u_{(2)} \\ \vdots \\ u_{(m)} \end{bmatrix}$$ where $y_{(i)}$, $y_{-1}^{(i)}$ and $u_{(i)}$ are $T_i \times 1$ vectors, $X_{(i)}$ is a $T_i \times k$ matrix, $T_i \ge 1$ and $T_i \equiv \text{rank}(X_{(i)}) \ge 0$, i = 1, ..., m, and $T = \sum_{i=1}^{m} T_i \ge m \ge 2$. We do not assume here that the matrices $X_{(1)}$, ..., $X_{(m)}$, X have full column ranks. As the alternative to model (1.2), we consider the extended model (4.2) $$y_{(i)} = \lambda y_{-1}^{(i)} + X_{(i)} \beta_i + u_{(i)}, u_{(i)} \stackrel{\text{ind}}{-} N(0, \sigma^2 1_{T_i}), i = 1, ..., m,$$ where β_i is a k × 1 vector of unknown coefficients and y_0 is independent of u. Thus, the i-th regression in (4.2) represents a model of the form (1.2) for the observations $T_{i-1}+1,\ldots,T_i$ (i = 1, ..., m, where $T_0=0$). β_1,\ldots,β_m may differ but we will assume that λ and σ remain constant across the m subsamples. We want to test (4.3) $$H_0: \beta_1 = \beta_2 = ... = \beta_m$$ To develop a test of H_0 , it will be convenient to rewrite (4.2) in the more compact form : (4.4) $$y = \lambda y_{-1} + \overline{X} \, \overline{\beta} + u \,, u \sim N(0, \sigma^2 \, L_T)$$ where X is a $T \times (mk)$ matrix and B is a $(mk) \times 1$ vector defined by (4.5) $$\overline{X} = \operatorname{diag}(X_{(i)}) = \begin{bmatrix} X_{(1)} & 0 & \dots & 0 \\ 0 & X_{(2)} & \dots & 0 \\ \vdots & \vdots & & & \\ 0 & 0 & \dots & X_{(m)} \end{bmatrix}, \ \overline{\beta} = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_m \end{bmatrix}.$$ Let us now suppose that $\lambda = \lambda_0$, with λ_0 known. Then the model $$(4.6) y(\lambda_0) = \overline{X} \overline{\beta} + u$$ where $y(\lambda_0) = y - \lambda_0 y_{-1}$ satisfies all the assumptions of the classical linear model (conditional on X and y_0), without possibly the assumption that X has full column rank. The problem of testing H_0 then has the form considered in Dufour (1982a), and the generalized Chow statistic for testing H_0 is (4.7) $$D(\lambda_0) = \frac{v}{v_0} \frac{S_0(\lambda_0) - S_1(\lambda_0)}{S_1(\lambda_0)}$$ where $S_0(\lambda_0)$ and $S_1(\lambda_0)$ are the restricted and unrestricted minimum sum of squares, i.e. (4.8) $$S_0(\lambda_0) = \min_{\beta} [y(\lambda_0) - X\beta][y(\lambda_0) - X\beta],$$ (4.9) $$S_1(\lambda_0) = \min_{\beta} [y(\lambda_0) - X \beta][y(\lambda_0) - X \beta],$$ while v and v_0 are the appropriate degrees of freedom : (4.10) $$v = \sum_{i=1}^{m} (T_i - r_i)$$, $v_0 = \sum_{i=1}^{m} r_i - r_0$ with $r_0 = \operatorname{rank}(X)$ and $r_i = \operatorname{rank}(X_{(i)})$, i = 1, ..., m. Under H_0 (with $\lambda = \lambda_0$), $D(\lambda_0)$ is distributed like $F(\nu_0, \nu)$, a Fisher random variable with (ν_0, ν) degrees of freedom, and the critical region $D(\lambda_0) \geq F(\alpha; \nu_0, \nu)$ has level α , where $P[F(\nu_0, \nu) \geq F(\alpha; \nu_0, \nu)] = \alpha$ and $0 < \alpha < 1$; see Dufour (1982a). When the matrices $X_{(1)}$, ..., $X_{(m)}$ all have full column rank, the restricted and unrestricted minimum sum of squares correspond to unique least squares estimates of β and $\overline{\beta}$ respectively, and the degrees of freedom are (4.11) $$v = T - km$$, $v_0 = (m - 1)k$. The basic difficulty now is that λ is unknown. Let $C_{\lambda}(\alpha_1)$ be an exact confidence set for λ with level $1-\alpha_1$ (at least) where $0 \le \alpha_1 < \alpha < 1$: $$(4.12) P[\lambda \in C_{\lambda}(\alpha_1)] \ge 1 - \alpha_1.$$ We saw in section 3 that we can in fact construct an exact similar confidence set with size $1 - \alpha_1$, i.e., such that $P[\lambda \in C_{\lambda}(\alpha_1)] = 1 - \alpha_1$ irrespective of the values of λ , β ,
σ and y_0 . Consider now the two following statistics: $$(4.13) \quad D_{L}(\alpha_{1}) = \inf\{D(H_{0}; \lambda_{0}) : \lambda_{0} \in C_{\lambda}(\alpha_{1})\},$$ (4.14) $$D_U(\alpha_1) = \sup\{D(H_0; \lambda_0) : \lambda_0 \in C_{\lambda}(\alpha_1)\}$$. Taking $\alpha_2=\alpha-\alpha_1$ and $\alpha_2'=\alpha+\alpha_1<1$, we see easily from Lemma 1 that, under H_0 , $$(4.15) \qquad P[D_{L}(\alpha_{1}) \geq F(\alpha_{2}; \ v_{0}, \ v)] \leq \alpha_{2} + \alpha_{1} = \alpha \ ,$$ $$(4.16) P[D_{U}(\alpha_{1}) < F(\alpha_{2}'; \nu_{0}, \nu)] \le 1 - \alpha_{2}' + \alpha_{1} = 1 - \alpha.$$ We thus have the following level- α generalized bounds test for H_0 : (4.17) reject H_0 when $D_L(\alpha_1) \ge F(\alpha_2; \nu_0, \nu)$, accept H_0 when $D_U(\alpha_1) < F(\alpha'_2; \nu_0, \nu)$, consider the test inconclusive otherwise, where α , α_1 , α_2 and α_2 satisfy (2.8). Defining the tail area function (4.18) $$G(x; v_0, v) = P[F(v_0, v) \ge x],$$ the above procedure is also equivalent to: (4.19) reject H_0 when $G[D_L(\alpha_1); \nu_0, \nu] \le \alpha_2$, accept H_0 when $G[D_U(\alpha_1); \nu_0, \nu] > \alpha_2'$, consider the test inconclusive otherwise. The probability $\alpha_L \equiv G[D_L(\alpha_1); \nu_0, \nu]$ can be interpreted as a "conservative" p-value for testing H_0 , while $\alpha_U \equiv G[D_U(\alpha_1); \nu_0, \nu]$ is a "liberal" p-value for H_0 . It is easy to see how equality restrictions between subvectors of β_i , $i=1,\ldots,m$, can be tested in a comparable way. The confidence set for λ can be obtained from at least two different models: the restricted model (1.2) or the unrestricted model (4.4). Both, of course, yield valid confidence sets for λ as well as valid bounds tests under H_0 . On the other hand, the confidence set based on (1.2) is not generally valid under the alternative (4.4), and this may deflect the power properties of such a procedure. Finding which one is preferable is left to further research. ## 5. CUSUM TESTS Analysis-of-covariance tests are built against specific alternatives where the breakpoints of the changes in β are specified a priori. To get tests against less specific structural change alternatives, we now consider generalizations of the well-known CUSUM and CUSUM-of-squares tests proposed by Brown, Durbin and Evans (1975, henceforth BDE). For this purpose, we will make the additional rank assumption: $$(5.1) \qquad \operatorname{rank}(X_k) = k$$ where $X_r = [x_1, x_2, ..., x_r]'$ is the $r \times k$ matrix of regressors for the first r observations $(1 \le r \le T)$. Note that (5.1) implies (5.1)' $$\operatorname{rank}(X_r) = k, r = k, k + 1, ..., T$$. As we did for analysis-of-covariance tests, let us suppose first that $\lambda = \lambda_0$, with λ_0 known. Then, model (1.2) can be written (5.2) $$y(\lambda_0) = X\beta + u , u - N(0, \sigma^2 I_n)$$ where all the assumptions of the classical linear model are satisfied. The CUSUM test against the presence of structural change is based on the statistic (5.3) $$CS(\lambda_0) = max\{|\tilde{W}_r(\lambda_0)| : r = k + 1, ..., T\},$$ where $$(5.4) \qquad \widetilde{\mathbb{W}}_{\mathbf{r}}(\lambda_0) = \{ \sum_{t=k+1}^{r} w_t(\lambda_0) \} / \{ \widehat{\sigma}(\lambda_0) \Delta(\mathbf{r} - \mathbf{k}, \, \mathbf{T} - \mathbf{k}) \} \; ,$$ (5.5) $$\Delta(r-k, T-k) = \sqrt{T-k} \left\{1 + 2\left(\frac{r-k}{T-k}\right)\right\},\,$$ $w_t(\lambda_0)$, t = k+1, ..., T, are the recursive residuals based on model (5.2), and $\hat{\sigma}(\lambda_0)^2 = \sum_{t=k+1}^{T} w_t(\lambda_0)^2/(T-k)$. The recursive residuals are defined by (5.6) $$w_t(\lambda_0) = [y_t(\lambda_0) - x_t'b_{t-1}(\lambda_0)]/d_t(\lambda_0)$$, $t = k+1, ..., T$, where $$\begin{split} &b_{t}(\lambda_{0}) = (X_{t}' X_{t})^{-1} X_{t}' Y_{t}(\lambda_{0}) \;,\; t = k \;,\; \dots \;,\; T \;, \\ \\ &d_{t}(\lambda_{0}) = [1 + x_{t}'(X_{t-1}' X_{t-1}')^{-1} x_{t}]^{1/2} \;,\; t = k+1,\; \dots \;,\; T, \end{split}$$ and $Y_t(\lambda_0) = [y_1(\lambda_0), y_2(\lambda_0), \dots, y_t(\lambda_0)]'$. Under model (5.2), the residuals $w_t(\lambda_0)$, $t = k+1, \dots, T$ are i.i.d. N(0, σ^2). The CUSUM test rejects the null hypothesis of stability at level α when $CS(\lambda_0) \ge c_1(\alpha)$, where $c_1(\alpha)$ is selected so that $P[CS(\lambda_0) \ge c_1(\alpha)] = \alpha$ when $w_{k+1}(\lambda_0)$, ..., $w_T(\lambda_0)$ are i.i.d. $N(0, \sigma^2)$. BDE (1975) only provided approximate (although quite accurate) critical values for the CUSUM statistic. However, when $\lambda = \lambda_0$, we have $w_t(\lambda_0)/\sigma \sim N(0, 1)$, t = k + 1, ..., T. If we define the random variable (5.7) $$CS_n = max\{|\tilde{W}_r| : r = 1, ..., n\}$$ where $\tilde{W}_r = \{\sum_{t=1}^r v_t\}/\{(\sum_{t=1}^n v_t^2/n)^{1/2} \Delta(r,n)\}$, $r=1,\ldots,n$, and v_1,\ldots,v_n are i.i.d. N(0,1) variables, then we see immediately that $CS(\lambda_0)$ is distributed like CS_{T-k} when $\lambda = \lambda_0$. Further, it is straightforward to simulate the distribution of CS_{T-k} , so that an exact Monte Carlo CUSUM test can be performed as described at the end of section 2. To obtain a procedure valid without knowing λ , we consider again a confidence set for λ that satisfies (4.12) and define the statistics : $$(5.8) \quad \operatorname{CS}_{L}(\alpha_{1}) = \inf\{\operatorname{CS}(\lambda_{0}) : \lambda_{0} \in \operatorname{C}_{\lambda}(\alpha_{1})\}, \operatorname{CS}_{U}(\alpha_{1}) = \sup\{\operatorname{CS}(\lambda_{0}) : \lambda_{0} \in \operatorname{C}_{\lambda}(\alpha_{1})\}.$$ Then, provided (2.8) holds, we get from Lemma 1: $$(5.9) \quad \text{P[CS}_{L}(\alpha_1) \ge c_1(\alpha_2)] \le \alpha \text{, P[CS}_{U}(\alpha_1) \le c_1(\alpha_2')] \le 1 - \alpha$$ which yields the bounds test: (5.10) reject stability if $CS_L(\alpha_1) \ge c_1(\alpha_2)$, accept stability if $CS_U(\alpha_1) < c_1(\alpha_2)$, consider the test inconclusive otherwise. Similarly, for $\lambda = \lambda_0$ given, the CUSUM-of-squares test based on model (5.2) has the form $CQ(\lambda_0) \ge c_2(\alpha)$ for a test of level α , where (5.11) $$CQ(\lambda_0) = \max\{ \left| S_{k+t}(\lambda_0) - \frac{t}{T-k} \right| : t = 1, 2, ..., T-k \}$$ where $$S_r(\lambda_0) = \sum_{t=k+1}^r w_t(\lambda_0)^2 / \sum_{t=k+1}^T w_t(\lambda_0)^2$$, $r = k+1, ..., T$; see BDE (1975) and Dufour (1982b, 1986). Again, computation of the distribution of the CUSUM-of-squares statistic is discussed by BDE (1975), who provided an approximation based on the earlier results of Durbin (1969). Further, as for the CUSUM test, it is easy to see that $CQ(\lambda_0)$ is distributed like the variable CQ_{T-k} defined by: (5.12) $$CQ_n = max\{|S_r - \frac{r}{n}| : r = 1, 2, ..., n\}$$ with n = T-k, where $S_r = (\sum\limits_{t=1}^r v_t^2)/(\sum\limits_{t=1}^n v_t^2)$, $r=1,\ldots,n$, and $v_1,\ldots,v_n \sim N(0,1)$. Clearly, it is quite easy to simulate CQ_{T-k} and thus to perform an exact Monte Carlo version of the test. By applying Lemma 1, we see that $$(5.13) P[CQ_{L}(\alpha_{1}) \ge c_{2}(\alpha_{2})] \le \alpha, P[CQ_{U}(\alpha_{1}) < c_{2}(\alpha_{2}')] \le 1 - \alpha,$$ where $$(5.14) \ \ \operatorname{CQ}_L(\alpha_1) = \inf\{\operatorname{CQ}(\lambda_0) : \lambda_0 \in \operatorname{C}_{\lambda}(\alpha_1)\} \ , \ \operatorname{CQ}_U(\alpha_1) = \sup\{\operatorname{CQ}(\lambda_0) : \lambda_0 \in \operatorname{C}_{\lambda}(\alpha_1)\},$$ and (2.8) holds, which yields a generalized bounds test analogous to the one in (5.10). ## 6. TESTS AGAINST CHANGES IN λ The tests described in sections 4 and 5 are built against alternatives where the dynamic parameter λ is assumed constant. This does not mean that they have no power against alternatives where λ changes: shifts in λ will clearly affect the distributions of the analysis-of-covariance and CUSUM test statistics previously described. However, since these tests do not explicitly allow for the possibility of changes in λ , they can easily be biased against such alternatives. In this section as well as the following one, we describe two tests that consider in a more explicit way the possibility of changes in λ . The first one is a predictive test which looks at "prediction errors" for the observations in the second sample obtained after estimating regression coefficients from the first sample. The second one is an AOC-type procedure which considers the difference between "estimators" of λ based on the two samples and chosen so that the null distribution of the difference between the two estimators does not depend on nuisance parameters. We consider a partition of y, y_{-1} , X and u into two subvectors or submatrices, giving the following extension of model (1.2): (6.1) $$y_{(i)} = \lambda_i y_{-1}^{(i)} + X_{(i)} \beta_i + u_{(i)}, u_{(i)}^{ind} \sim N[0, \sigma_i^2 I_{T_i}], i = 1, 2,$$ where $y_{(i)}$, $y_{-1}^{(i)}$ and $X_{(i)}$ are defined as in (4.1) with m=2, $T_1+T_2=T$, $T_i\geq 1$, $\lambda_i\in \mathcal{D}_{\lambda_i}$, $i=1,2,\mathcal{D}_{\lambda}$ is the set of admissible values for λ , and (6.2) $$1 \le r_1 = \operatorname{rank}(X_{(1)}) = k < T_1;$$ no rank condition is imposed on X(2). We want to test (6.3) $$H'_0: \beta_1 = \beta_2, \lambda_1 = \lambda_2, \sigma_1 = \sigma_2$$ against an alternative in which all parameters (including λ) may change. Suppose now that $\lambda_1 = \lambda_0$. Then, under H_0' , a natural way of testing H_0' against (6.1) consists in testing whether the elements of the vector of prediction errors (6.4) $$\tilde{u}_{(2)}(\lambda_0) = y_{(2)}(\lambda_0) - X_{(2)} \hat{\beta}_1(\lambda_0)$$ have mean zero, where $y_{(i)}(\lambda_0) = y_{(i)} - \lambda_0 y_{-1}^{(i)}$, i = 1, 2, and $\hat{\beta}_1(\lambda_0) = (X_{(1)}, X_{(1)})^{-1}$ $X_{(1)}^{\prime}y_{(1)}(\lambda_0)$ is the least
squares estimate of β_1 obtained from the regression (6.5) $$y_{(1)}(\lambda_0) = X_{(1)}\beta_1 + u_{(1)}$$ This yields the well-known predictive Chow statistic (assuming $\lambda_1 = \lambda_2 = \lambda_0$) which can be written in two alternative forms: (6.6) $$PC(\lambda_0) = \frac{T_1 - k}{T_2} \left\{ \frac{\tilde{u}_{(2)}(\lambda_0)'[I_{T_2} + X_{(2)}(X'_{(1)} X_{(1)})^{-1}X'_{(2)}]^{-1} \tilde{u}_{(2)}(\lambda_0)}{\overline{S}_1(\lambda_0)} \right\}$$ $$= \frac{T_1 - k}{T_2} \left\{ \frac{S_0(\lambda_0) - \overline{S}_1(\lambda_0)}{\overline{S}_1(\lambda_0)} \right\}$$ where $S_0(\lambda_0)$ is the minimum sum of squares (4.8) from the estimation of the complete regression (4.4) with $\lambda = \lambda_0$, while $\overline{S}_1(\lambda_0)$ is the minimum sum of squares from the estimation of the first regression in (6.1) also with $\lambda = \lambda_0$, i.e., (6.7) $$\overline{S}_{1}(\lambda_{0}) = \min_{\beta_{1}} [y_{(1)}(\lambda_{0}) - X_{(1)}\beta_{1}][y_{(1)}(\lambda_{0}) - X_{(1)}\beta_{1}].$$ Under H_0' and $\lambda_1 = \lambda_0$, $PC(\lambda_0) \sim F(T_2, T_1 - k)$ so that the appropriate level- α critical region is $PC(\lambda_0) \ge F(\alpha; T_2, T_1 - k)$. Let $C_{\lambda_1}(\alpha_1)$ be an exact confidence set for λ_1 with level not smaller than $1-\alpha_1$, which is valid at least under H_0' : (6.8) $$P[\lambda_1 \in C_{\lambda_1}(\alpha_1)] \ge 1 - \alpha_1.$$ Such a confidence set can be constructed by applying the methods of section 2 to the first sample $(y_1, t = 0, 1, ..., T_1)$. Let also $$(6.9) \ \ \operatorname{PC}_{L}(\alpha_{1}) = \inf \{\operatorname{PC}(\lambda_{0}) : \lambda_{0} \in \operatorname{C}_{\lambda_{1}}(\alpha_{1})\} \ , \ \operatorname{PC}_{U}(\alpha_{1}) = \sup \{\operatorname{PC}(\lambda_{0}) : \lambda_{0} \in \operatorname{C}_{\lambda_{1}}(\alpha_{1})\} \ .$$ Then, provided (2.8) holds, we have: $$(6.10) \qquad \text{P[PC}_{L}(\alpha_{1}) \geq F(\alpha_{2}; T_{2}, T_{1} - k)] \leq \alpha \text{ , P[PC}_{U}(\alpha_{1}) < F(\alpha_{2}'; T_{2}, T_{1} - k)] \leq 1 - \alpha \text{ ,}$$ which yield the bounds test (6.13) reject H_0^* if $PC_L(\alpha_1) \ge F(\alpha_2; T_2, T_1^{-k})$, accept H_0^* if $PC_U(\alpha_1) < F(\alpha_2^*; T_2, T_1^{-k})$, consider the test inconclusive otherwise. It is interesting to note that $PC(\lambda_0)$ is the Fisher statistic for testing model (1.2) against an extended model where a dummy variable has been added for each observation in the second period ($t = T_1 + 1, ..., T$): $$(6.14) \qquad y_{t}(\lambda_{0}) = x_{t}'\beta + \sum_{s=T_{1}+1}^{T} \gamma_{s} \, D_{ts} + u_{t} \, , \, t=1, \, \ldots \, , \, T \, \, ,$$ where $D_{ts} = 1$ if t = s, and $D_{ts} = 0$ if $t \neq s$; see Dufour (1980, 1982c). Further, we can look at the t-statistics for each element of the vector $\gamma = (\gamma_{T_1+1}, \gamma_{T_1+2}, \dots, \gamma_T)'$: $$(6.15) \qquad t_{s}(\lambda_{0}) = \hat{\gamma}_{s}(\lambda_{0})/\hat{\sigma}_{s}(\lambda_{0}) = \frac{y_{s} - x_{s}' \hat{\beta}_{1}(\lambda_{0})}{s_{1}(\lambda_{0})[1 + x_{s}'(X_{(1)}' X_{(1)})^{-1}x_{s}]^{1/2}} \ ,$$ $s=T_1+1,\ldots,T$, where $s_1(\lambda_0)^2=S_1(\lambda_0)/(T_1-k)$, each of which follows a Student distribution $t(T_1-k)$ under H_0' (when $\lambda_1=\lambda_0$). As suggested in Dufour (1980), these statistics provide a simple way of analyzing the form and timing of possible structural changes over the second period. To get tests valid without knowing λ_1 , we consider the statistics: (6.16) $$F_s^L(\alpha_1) = \inf\{(t_s(\lambda_0))^2 : \lambda_0 \in C_{\lambda_1}(\alpha_1)\}, s = T_1+1, ..., T,$$ (6.17) $$F_s^U(\alpha_1) = \sup\{(\iota_s(\lambda_0))^2 : \lambda_0 \in C_{\lambda_1}(\alpha_1)\}, s = T_1 + 1, ..., T.$$ Clearly again, $$(6.18) \qquad P[F_s^L(\alpha_1) \geq F(\alpha_2; \ 1, \ T_1 - k)] \leq \alpha \ , \ \ P[F_s^U(\alpha_1) \leq F(\alpha_2'; \ 1, \ T_1 - k)] \leq 1 \ - \ \alpha \ ,$$ ¹ For a related (asymptotic) generalization to dynamic possibly nonlinear models, see Dufour, Ghysels and Hall (1994). so that we have a sequence of bounds tests for each observation in the second sample: (6.19) reject $$H'_0$$ when $F_s^L(\alpha_1) \ge F(\alpha_2; 1, T_1 - k)$, accept H'_0 when $F_s^U(\alpha_1) < F(\alpha_2'; 1, T_1 - k)$. Predictive tests like those just defined may be viewed as portmanteau tests aimed at detecting any form of structural change that could affect the coefficients of the model $(\lambda, \beta \text{ or } \sigma)$. Since it would also be of interest to have a procedure for detecting change in λ , irrespective of whether β or σ has changed, we now derive an AOC-type test for changes in λ which is insensitive to changes in β and σ of the form allowed in (6.1). More precisely, we again take model (6.1) and we consider the problem of testing (6.20) $$\overline{H}_0: \lambda_1 = \lambda_2 \text{ against } \overline{H}_1: \lambda_1 \neq \lambda_2$$, where it is not assumed that $\beta_1 = \beta_2$ nor $\sigma_1 = \sigma_2$ under H_0 . Further to allow one to estimate the model separately on the two subperiods considered, we replace (6.2) by the stronger assumption (6.21) $$1 \le r_i = \operatorname{rank}(X_{(i)}) = k < T_i, i = 1, 2$$. To derive a test of \overline{H}_0 , we consider first the more restrictive hypothesis $$(6.22) \qquad \overline{H}_0(\lambda_0): \lambda_1 = \lambda_2 = \lambda_0$$ where $\lambda_0 \in \mathcal{D}_{\lambda}$. For each $\lambda_0 \in \mathcal{D}_{\lambda}$, we can compute estimates $\hat{\lambda}_1(\lambda_0)$ and $\hat{\lambda}_2(\lambda_0)$ of λ_1 and λ_2 based on extended regressions such as (3.1): i.e. (6.23) $$y_{(i)} = \lambda_i y_{-1}^{(i)} + X_{(i)}(\lambda_0) \beta_{i*} + u_{(i)}, i = 1, 2,$$ where $X_{(i)}(\lambda_0)$ has full column rank and spans the same space as that spanned by the columns of the matrix $[X_{(i)} \\\vdots \\ \iota_{T_i}(\lambda_0) \\\vdots \\ J_{T_i}(\lambda_0) \\X_{(i)}]$. When $\lambda_i = \lambda_0$, (6.24) $$\hat{\lambda}_{i}(\lambda_{0}) = \lambda_{i} + Q_{i}(\lambda_{0}, u_{(i)})$$, $i = 1, 2$, where $$(6.25) Q_{i}(\lambda_{0}, u_{(i)}) = \frac{u'_{(i)}^{J} J_{T_{i}}(\lambda_{0}) M[X_{(i)}(\lambda_{0})] u_{(i)}}{u'_{(i)}^{J} J_{T_{i}}(\lambda_{0}) M[X_{(i)}(\lambda_{0})] J_{T_{i}}(\lambda_{0}) u_{(i)}}$$ $$= \frac{v'_{(i)}^{J} J_{T_{i}}(\lambda_{0}) M[X_{(i)}(\lambda_{0})] v_{(i)}}{v'_{(i)}^{J} J_{T_{i}}(\lambda_{0}) M[X_{(i)}(\lambda_{0})] J_{T_{i}}(\lambda_{0}) v_{(i)}}, i = 1, 2,$$ where $v_{(i)} = u_{(i)} / \sigma_i \sim N[0, L_{T_i}]$. Clearly, the distribution of $Q_i(\lambda_0, u_{(i)})$ does not depend on any nuisance parameter. Now to test $\overline{H}_0(\lambda_0)$, it is natural to consider the difference $\Delta(\lambda_0) = \hat{\lambda}_1(\lambda_0) - \hat{\lambda}_2(\lambda_0)$. When $\lambda_1 = \lambda_2 = \lambda_0$, (6.26) $$\Delta(\lambda_0) = Q_1(\lambda_0, v_{(1)}) - Q_2(\lambda_0, v_{(2)}) \equiv \overline{\Delta}(\lambda_0, v)$$ where $v = (v'_{(1)}, v'_{(2)})' \sim N[0, I_T]$, a random variable whose distribution involves no nuisance parameter. Let (6.27) $$G_{\Delta}(x; \lambda_0) = P[|\overline{\Delta}(\lambda_0, v)| \ge x | \overline{H}_0(\lambda_0)]$$ be the probability of the event $|\overline{\Delta}(\lambda_0, \mathbf{v})| \ge \mathbf{x}$ when $\lambda_1 = \lambda_2 = \lambda_0$, and let $\widehat{\Delta}(\lambda_0)$ be the observed value of $\Delta(\lambda_0)$. Then the test which rejects $\overline{H}_0(\lambda_0)$ when (6.28) $$G_{\Delta}(|\hat{\Delta}(\lambda_0)|; \lambda_0) \le \alpha$$ has level α . Further, it is easy to obtain a randomized version of the test in (6.28) by using Lemma 2. Given the function $G_{\Delta}(x; \lambda_0)$, there are at least two ways of getting exact tests of the less restrictive hypothesis \overline{H}_0 . First, it is straightforward to see that the test which rejects \overline{H}_0 when $$(6.29) \quad \sup\{\mathsf{G}_{\Delta}(|\hat{\Delta}(\lambda_0)|;\,\lambda_0):\lambda_0\in\mathcal{D}_{\lambda}\}\leq\alpha$$ has level α . Second, when a confidence set $C_{\lambda}(\alpha_1)$ with level $1-\alpha_1$ (at least under H_0) is available, i.e. $$(6.30) \quad P[\lambda \in C_{\lambda}(\alpha_1)] \ge 1 - \alpha_1,$$ the following procedure is a valid generalized bounds test at level α : (6.31) reject H_0 when $\sup\{G_{\Delta}(|\hat{\Delta}(\lambda_0)|; \lambda_0) : \lambda_0 \in C_{\lambda}(\alpha_1)\} \le \alpha_2$, accept H_0 when $\inf\{G_{\Delta}(|\hat{\Delta}(\lambda_0)|; \lambda_0) : \lambda_0 \in C_{\lambda}(\alpha_1)\} > \alpha_2'$, consider the test inconclusive otherwise. where (2.8) holds. A simple way to get an appropriate confidence set for λ is to build one by the Kiviet-Phillips procedure from either one of the two subsamples considered. The validity of the bounds test follows again from Lemma 1. Correspondingly, randomized bounds tests can be obtained in the same way after replacing the test in (6.28) with its randomized analogue. Note that the same set of artificial replications should be used for all values of λ_0 . ## 7. ILLUSTRATIONS We will show now that the inference procedures developed here are operational by applying them to an empirical first-order dynamic autoregressive model for the logarithm of U.S. gross private domestic investment in non-residential structures (1982 dollars, quarterly, 1952: 1 - 1986: 4). But before we do that, we will first illustrate the tests on some artificial data sets. In these calculations, we can choose and change the specification and the parameter values of the model in such a way that some interesting features of the various tests can be demonstrated. So, we perform a few controlled experiments. These, of course, cannot (and are not meant to) replace a full scale Monte Carlo analysis from which the power performance of the tests would be assessed (which goes beyond the scope of
the present paper). We just examine a few single realizations of particular data generating processes in order to show that our exact procedures are feasible and behave reasonably well. Note also that for the model studied in the previous sections, no alternative *finite-sample* structural change test appears to be available. We focus on a model with one lagged dependent variable, an intercept, and possibly a linear trend with various forms of structural breaks and shocks to the system. First, we examine a first-order autoregressive process with non-zero mean and a unit root (i.e., a random walk with drift). The data were generated according to: (7.1) $$y_t = \lambda_1 y_{t-1} + \beta_1 + u_t$$, $t = 1, ..., T_1$, $y_t = \lambda_2 y_{t-1} + \beta_2 + \delta d_t + u_t$, $t = T_1 + 1, ..., T$, where $y_0 = 1$ and u_1 , ..., u_T are independent and normally distributed with mean zero. For the first T_1 observations of the sample, we invariably have: (7.2) $$T_1 = 30$$, $\lambda_1 = 1$, $\beta_1 = 0.02$, $\sigma_1 = 0.01$, $Var(u_t) = \sigma_1^2$ for $t = 1$, ..., T_1 . For the second part of the sample, consisting of $T_2 = T - T_1$ observations, we have : (7.3) $$T_2 = 20$$, d_t is a dummy variable, and $Var(u_t) = \sigma_2^2$ for $t = T_1 + 1$, ..., T ; moreover, we consider six distinct cases: A (no structural change) : $\lambda_2 = 1.0$, $\beta_2 = 0.02$, $\delta = 0$, $\sigma_2 = 0.01$; B (change in β only) : $\lambda_2 = 1.0$, $\beta_2 = 0.03$, $\delta = 0$, $\sigma_2 = 0.01$; C (change in λ only) : $\lambda_2 = 0.95$, $\beta_2 = 0.02$, $\delta = 0$, $\sigma_2 = 0.01$; D (change in σ only) : $\lambda_2 = 1.0$, $\beta_2 = 0.02$, $\delta = 0$, $\sigma_2 = 0.02$; E (two isolated shocks) : $\lambda_2 = 1.0$, $\beta_2 = 0.02$, $\delta = 0.05$, $\sigma_2 = 0.01$, with $d_1 = 1$ for $d_2 = 0.02$, $d_3 = 0.02$, $d_4 = 0.02$, $d_5 = 0.03$, $d_5 = 0.03$, $d_6 d F (jump in drift) $\lambda_2 = 1.0, \ \beta_2 = 0.02, \ \delta = 0.02, \ \sigma_2 = 0.01, \ \text{with } d_1 = 1 \text{ for } t \ge 40, \ \text{and } d_1 = 0 \text{ otherwise.}$ For the six data sets so generated, we estimated the model (7.4) $$y_t = \lambda y_{t-1} + \beta_1 + u_t$$, and applied the various exact structural change tests described in the previous sections of this paper.² The least-squares estimates of the parameters for both the complete sample $(1 \le t \le T)$ and the relevant subsamples $(1 \le t \le T_1, T_1 + 1 \le t \le T)$ appear in Table 1, while the p-values of the structural change tests are presented in Table 2. We also present exact (randomized) confidence sets for λ at various levels $(1 - \alpha_1 = 0.999, 0.975, 0.95, 0.925)$ based on the LR-type statistics $\mathscr{L}(\lambda_0)$ and $\mathscr{L}(\lambda_0)$. Each of these confidence sets is obtained from the first sample $(1 \le t \le 30)$ under the restriction $|\lambda| \le 1$, and the randomization uses N - 1 = 499 artificial replications of $\mathscr{L}(\lambda_0)$ or $\mathscr{L}(\lambda_0)$ under the null hypothesis [see (3.16)]. We see from these results that the confidence sets based on $\mathscr{L}(\lambda_0)$ are typically shorter than those based on $\mathscr{L}(\lambda_0)$, which illustrates the fact that the statistic $\mathscr{L}(\lambda_0)$ takes into account all the restrictions implied by $\lambda = \lambda_0$ on the extended model (3.1) [see the discussion in section 3]. Furthermore, the confidence sets appear to be rather insensitive to the level selected (at least for this data set). For the structural change tests, we will use the confidence set [0.9445, 1] based on $\mathscr{L}(\lambda_0)$ with $\alpha_1 = 0.05$. To assess the significance of the structural change tests, we shall use a 0.10 level $(\alpha=0.10)$. As expected, none of the tests is significant under the null hypothesis (data set A), while the alternative tests appear differently sensitive to various alternatives. The analysis-of-covariance test for β (AOC- β) easily detects permanent changes in β_1 (sets B and F), a type of alternative against which it is designed, as well as λ (set C). The change in λ is also detected by the CUSUM, the CUSUM-of-squares and the predictive tests. The variance shift (set D) and the two isolated shocks (set E) are detected by the CUSUM-of-squares and the predictive test, which illustrates the fact that these tests are quite sensitive to heteroskedasticity. It is also of interest to note that the individual predictive tests both detect and allow one to date the isolated shocks (E). The jump in the intercept (F) leads to a series of low p-values. The AOC test for λ (AOC- λ) does not detect any of the structural shifts considered here, which suggests that this test has rather low power. For the sake of comparison, we also present in The six data sets are obtained from one and the same realization of u_1/σ_1 , ..., u_{Γ_1}/σ_1 , u_{Γ_1+1}/σ_2 , ..., u_{Γ_1}/σ_2 . The samples used in these illustrations are available from the authors upon request. $Table \ 1$ $Simple \ AR(1) \ models : OLS \ estimates \ and \ exact \ \lambda \ confidence \ sets^1$ | | â | | â | 1 | s | |---|-------|---------|--------|---------|-------| | First subsample (T ₁ = 30) | 0.980 | (0.010) | 0.048 | (0.014) | 0.011 | | Second subsample (T ₂ = 20) A B C D E F | 0.972 | (0.018) | 0.071 | (0.032) | 0.008 | | | 0.983 | (0.012) | 0.063 | (0.022) | 0.008 | | | 0.961 | (0.008) | 0.006 | (0.010) | 0.009 | | | 0.929 | (0.037) | 0.149 | (0.067) | 0.016 | | | 0.969 | (0.031) | 0.082 | (0.058) | 0.019 | | | 1.034 | (0.013) | -0.034 | (0.024) | 0.010 | | Complete sample (T = 50) A B C D E | 0.991 | (0.005) | 0.034 | (0.008) | 0.010 | | | 1.005 | (0.005) | 0.016 | (0.007) | 0.011 | | | 1.016 | (0.021) | -0.023 | (0.027) | 0.033 | | | 0.989 | (0.007) | 0.037 | (0.010) | 0.014 | | | 0.998 | (0.007) | 0.025 | (0.011) | 0.015 | | | 1.012 | (0.005) | 0.006 | (0.008) | 0.011 | Exact confidence sets for λ (from first subsample) | Level | 0.99 | 0.975 | 0.95 | 0.925 | |--------------|-------------|-------------|-------------|-------------| | Based on L | [0.8660, 1] | [0.8713, 1] | [0.8745, 1] | [0.8785, 1] | | Based on £** | [0.9370, 1] | [0.9414, 1] | [0.9445, 1] | [0.9473, 1] | OLS standard errors appear in parenthesis. The exact confidence sets for λ are randomized with N - 1 = 499 Monte Carlo samples. s is the estimated disturbance standard error. Table 2 Simple AR(1) models: Exact tests for structural change (p-values) based on the confidence set from the first subsample; α = 0.10, α_1 = 0.05, α_2 = 0.05, α_2' = 0.15 ("r" indicates rejection at level 0.10; "a" indicates acceptance at level 0.10) | A) Global tests | | | | | | | ···· | |--|--|--|---|--|--|--|---| | ΛOC-β | D_{L} | A
0.927 | B
0.006 r | C
0.000 r | D
0.949 | E
0.425 | F
0.005 | | | D_U | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | CUSUM1 | CS ₁ | 0.952 | 0.664 | 0.006 r | 0.998 | 0.966 | | | | CS _U | 0.002 | 0.002 | 0.002 | | | 0.660 | | CUSUM of squares1 | cq_L | 0.762 | 0.602 | | 0.002 | 0.002 | 0.002 | | | cQ_U | 0.008 | | 0.002 r | 0.050 r | 0.012 r | 0.194 | | Predictive test | ω.
U | | 0.002 | 0.002 | 0.004 | 0.002 | 0.002 | | | PCL | 0.873 | 0.530 | 0.000 r | 0.014 г | 0.004 r | 0.191 | | | ^{PC}U | 0.003 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | | voc-γ _I | ${ m P}_{oldsymbol\Delta}^{f L}$ | 0.922 | 0.956 | 0.608 | 0.058 | 0.292 | 0.714 | | | $P^{\mathbf{U}}_{\mathbf{\Delta}}$ | 0.006 | 0.004 | 0.002 | 0.002 | 0.064 | 0.168 a | | B) Individual predicti | ve tests (con | scrvative p-v | values) | | | | | | Predicted observation | | | | | | | | | 31 | ۸ ۸ | В | C | D | | E | F | | 32 | 0.115 | 0.018 r | 0.001 r | 0.002 | | | 0.115 | | 33 | 0.988 | 0.476 | 0.000 r | 0.976 | 0.9 | | 0.988 | | 34 | 0.532 | 0.138 | 0.000 r | 0.187 | 0.5 | | 0.532 | | 35 | 0.997 | 0.981 | 0.000 r | 0.897 | 0.99 | | 0.997 | | 36 | 0.573 | 0.154 | 0.000 r | 0.229 | 0.00 | | 0.573 | | | 0.989 | 0.703 | 0.000 r | 0.992 | | | | | | | | | | | | | | 37 | 0.973 | 0.564 | | | 0.99 | | 0.989 | | 37
38 | | | 0.000 r | 0.975 | 0.99 | 99 | 0.973 | | 37
38
39 | 0.973 | 0.564
0.343 | 0.000 г
0.000 г | 0.975
0.822 | 0.99
0.94 |)9
15 | 0.973
0.945 | | 37
38
39
40 | 0.973
0.945 | 0.564
0.343
0.212 | 0.000 r
0.000 r
0.000 r | 0.975
0.822
0.402 | 0.99
0.94
0.70 |)9
15
)6 | 0.973
0.945
0.706 | | 37
38
39
40
41 | 0.973
0.945
0.706 | 0.564
0.343
0.212
0.983 | 0.000 r
0.000 r
0.000 r
0.000 r | 0.975
0.822
0.402
0.974 | 0.99
0.94
0.70
0.99 |)9
 5
 6
 0 | 0.973
0.945
0.706
0.536 | | 37
38
39
40
41
42 | 0.973
0.945
0.706
0.969
0.989 |
0.564
0.343
0.212
0.983
0.386 | 0.000 r
0.000 r
0.000 r
0.000 r
0.000 r | 0.975
0.822
0.402
0.974
0.951 | 0.99
0.94
0.70
0.99
0.98 | 99
15
96
90 | 0.973
0.945
0.706
0.536
0.086 | | 37
38
39
40
41 | 0.973
0.945
0.706
0.969
0.989
0.737 | 0.564
0.343
0.212
0.983
0.386
0.227 | 0.000 r
0.000 r
0.000 r
0.000 r
0.000 r | 0.975
0.822
0.402
0.974
0.951
0.449 | 0.99
0.94
0.70
0.99
0.98
0.73 | 09
15
06
00
19 | 0.973
0.945
0.706
0.536
0.086
0.042 r | | 37
38
39
40
41
42 | 0.973
0.945
0.706
0.969
0.989
0.737
0.976 | 0.564
0.343
0.212
0.983
0.386
0.227
0.956 | 0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r | 0.975
0.822
0.402
0.974
0.951
0.449
0.980 | 0.99
0.94
0.70
0.99
0.98
0.73
0.96 | 09
15
06
00
19
17 | 0.973
0.945
0.706
0.536
0.086 | | 37
38
39
40
41
42
43 | 0.973
0.945
0.706
0.969
0.989
0.737
0.976
0.915 | 0.564
0.343
0.212
0.983
0.386
0.227
0.956
0.325 | 0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r | 0.975
0.822
0.402
0.974
0.951
0.449
0.980
0.763 | 0.99
0.94
0.70
0.99
0.98
0.73
0.96 | 99
15
96
90
99
77
99 | 0.973
0.945
0.706
0.536
0.086
0.042 r | | 37
38
39
40
41
42
43 | 0.973
0.945
0.706
0.969
0.989
0.737
0.976
0.915
0.869 | 0.564
0.343
0.212
0.983
0.386
0.227
0.956
0.325
0.298 | 0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r | 0.975
0.822
0.402
0.974
0.951
0.449
0.980
0.763
0.677 | 0.99
0.94
0.70
0.99
0.98
0.73
0.96
0.91 | 09
15
06
00
09
7
9
5 | 0.973
0.945
0.706
0.536
0.086
0.042 r | | 37
38
39
40
41
42
43
44 | 0.973
0.945
0.706
0.969
0.989
0.737
0.976
0.915
0.869
0.975 | 0.564
0.343
0.212
0.983
0.386
0.227
0.956
0.325
0.298 | 0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r | 0.975
0.822
0.402
0.974
0.951
0.449
0.980
0.763
0.677
0.989 | 0.99
0.94
0.70
0.99
0.98
0.73
0.96
0.91
0.00 | 99
15
90
99
17
99
5
0 r | 0.973
0.945
0.706
0.536
0.086
0.042 r
0.472
0.068 | | 37
38
39
40
41
42
43
44
45 | 0.973
0.945
0.706
0.969
0.989
0.737
0.976
0.915
0.869
0.975 | 0.564
0.343
0.212
0.983
0.386
0.227
0.956
0.325
0.298
0.970 | 0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r | 0.975
0.822
0.402
0.974
0.951
0.449
0.980
0.763
0.677
0.989
0.959 | 0.99
0.94
0.70
0.99
0.98
0.73
0.96
0.91 | 99
15
06
00
09
7
7
9
5
0 r | 0.973
0.945
0.706
0.536
0.086
0.042 r
0.472
0.068 | | 37
38
39
40
41
42
43
44
45
46 | 0.973
0.945
0.706
0.969
0.989
0.737
0.976
0.915
0.869
0.975
0.974 | 0.564
0.343
0.212
0.983
0.386
0.227
0.956
0.325
0.298
0.970
0.974 | 0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r | 0.975
0.822
0.402
0.974
0.951
0.449
0.980
0.763
0.677
0.989
0.959 | 0.99
0.94
0.70
0.99
0.98
0.73
0.96
0.91
0.00 | 99
15
90
99
97
5
0 r (8 | 0.973
0.945
0.706
0.536
0.086
0.042 r
0.472
0.068
0.060 | | 37
38
39
40
41
42
43
44
45
46
47 | 0.973
0.945
0.706
0.969
0.989
0.737
0.976
0.915
0.869
0.975
0.974
0.529 | 0.564
0.343
0.212
0.983
0.386
0.227
0.956
0.325
0.298
0.970
0.974
0.137 | 0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r | 0.975
0.822
0.402
0.974
0.951
0.449
0.980
0.763
0.677
0.989
0.959
0.183 | 0.99
0.94
0.70
0.99
0.98
0.73
0.96
0.91
0.00
0.98 | 99
15
90
99
77
99
55
0 r (0
8 | 0.973
0.945
0.706
0.536
0.086
0.042 r
0.472
0.068
0.060
0.500 | | 37
38
39
40
41
42
43
44
45
46
47
48
49
50 | 0.973
0.945
0.706
0.969
0.989
0.737
0.976
0.915
0.869
0.975
0.974
0.529
0.964
0.691 | 0.564
0.343
0.212
0.983
0.386
0.227
0.956
0.325
0.298
0.970
0.974 | 0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r | 0.975
0.822
0.402
0.974
0.951
0.449
0.980
0.763
0.677
0.989
0.959 | 0.99
0.94
0.70
0.99
0.98
0.73
0.96
0.91
0.00
0.98
0.96 | 99
15
16
19
17
17
19
17
19
10
10
10
10
10
10
10
10
10
10
10
10
10 | 0.973
0.945
0.706
0.536
0.086
0.042 r
0.472
0.068
0.060
0.500 | | 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Some tests with λ k | 0.973
0.945
0.706
0.969
0.989
0.737
0.976
0.915
0.869
0.975
0.974
0.529
0.964
0.691 | 0.564
0.343
0.212
0.983
0.386
0.227
0.956
0.325
0.298
0.970
0.974
0.137 | 0.000 r
0.000 r | 0.975 0.822 0.402 0.974 0.951 0.449 0.980 0.763 0.677 0.989 0.959 0.183 0.980 0.380 | 0.99
0.94
0.70
0.99
0.98
0.73
0.96
0.91
0.00
0.98
0.52
0.98 | 99
15
16
10
19
17
17
19
19
10
10
10
10
10
10
10
10
10
10
10
10
10 | 0.973
0.945
0.706
0.536
0.086
0.042 r
0.472
0.068
0.060
0.500
0.548
0.022 r
0.481 | | 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Some tests with λ k | 0.973
0.945
0.706
0.969
0.989
0.737
0.976
0.915
0.869
0.975
0.974
0.529
0.964
0.691 | 0.564
0.343
0.212
0.983
0.386
0.227
0.956
0.325
0.298
0.970
0.974
0.137
0.965
0.205 | 0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r
0.000 r | 0.975
0.822
0.402
0.974
0.951
0.449
0.980
0.763
0.677
0.989
0.959
0.183
0.980
0.380 | 0.99
0.94
0.70
0.99
0.98
0.73
0.96
0.91
0.00
0.98
0.96
0.522
0.98: | 99
15
16
10
10
19
17
17
19
19
10
10
10
10
10
10
10
10
10
10
10
10
10 | 0.973
0.945
0.706
0.536
0.086
0.042 r
0.472
0.068
0.060
0.500
0.500
0.548
0.002 r
0.481 | | 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Some tests with λ k ΛΟC - β CUSUM | 0.973
0.945
0.706
0.969
0.989
0.737
0.976
0.915
0.869
0.975
0.974
0.529
0.964
0.691 | 0.564
0.343
0.212
0.983
0.386
0.227
0.956
0.325
0.298
0.970
0.974
0.137
0.965
0.205 | 0.000 r
0.000 r | 0.975
0.822
0.402
0.974
0.951
0.449
0.980
0.763
0.677
0.989
0.959
0.183
0.980
0.380 | 0.99
0.94
0.70
0.99
0.98
0.73
0.96
0.91
0.00
0.98
0.96
0.522
0.982
0.69 | 09
15
16
10
10
10
10
10
10
10
10
10
10
10
10
10 | 0.973
0.945
0.706
0.536
0.086
0.042 r
0.472
0.068
0.060
0.500
0.500
0.548
0.002 r
0.481
0.037 r | | 37 38 39 40 41 42 43 44 45 46 47 48 49 50 Some tests with λ k | 0.973
0.945
0.706
0.969
0.989
0.737
0.976
0.915
0.869
0.975
0.974
0.529
0.964
0.691 | 0.564
0.343
0.212
0.983
0.386
0.227
0.956
0.325
0.298
0.970
0.974
0.137
0.965
0.205 | 0.000 r
0.000 r | 0.975
0.822
0.402
0.974
0.951
0.449
0.980
0.763
0.677
0.989
0.959
0.183
0.980
0.380 | 0.99
0.94
0.70
0.99
0.98
0.73
0.96
0.91
0.00
0.98
0.96
0.522
0.98: | 09
15
16
10
10
10
10
10
10
10
10
10
10
10
10
10 | 0.973
0.945
0.706
0.536
0.086
0.042 r
0.472
0.068
0.060
0.500
0.500
0.548
0.002 r
0.481 | Table 2 (part C) tests obtained under the assumption that λ is known and constant (i.e., the autoregressive part of each equation is eliminated by subtracting it from the dependent variable, under each model considered). We see from these results that the inferences are not affected by the estimation of λ . In fact, we note that the infima for the CUSUM-of-squares and predictive test statistics are often obtained when λ is equal to one. Next, we examine an AR(1) model with intercept and linear trend term for cases where the lagged dependent variable coefficient is high, but smaller than one. The data here were generated according to the model: (7.5) $$y_{t} = \lambda_{1} y_{t-1} + \beta_{11} + \beta_{21} (V100) + u_{t}, t = 1, ..., T_{1}$$ $$y_{t} = \lambda_{2} y_{t-1} + \beta_{12} + \beta_{22} (V100) + \delta d_{t} + u_{t}, t = T_{1} + 1, ..., T$$ where u_1, \dots, u_T are defined as in (7.1)-(7.3), and y_0 was generated independently of u_1, \dots, u_T according to the normal distribution $N(\mu_0, \sigma_1^2/(1-\lambda_1^2))$ with $\mu_0 = [\beta_{11}/(1-\lambda_1)] - [(\beta_{21}/100) \lambda_1/(1-\lambda_1)^2]$ (this choice avoids "warming-up" problems in the simulation). For
the first period, we have (7.6) $$T_1 = 50, \lambda_1 = 0.9, \beta_{11} = 1.0, \beta_{21} = 1.0, \sigma_1 = 0.02$$ while, for the second period, we have $T_2 = 30$ and $\sigma_2 = \sigma_1 = 0.02$, and we consider again six cases: A (no change) : $\lambda_2 = 0.9$, $\beta_{12} = 1.0$, $\beta_{22} = 1.0$, $\delta = 0$; B (change in trend) : $\lambda_2 = 0.9$, $\beta_{12} = 1.0$, $\beta_{22} = 0.9$, $\delta = 0$; C (change in intercept) : $\lambda_2 = 0.9$, $\beta_{12} = 1.2$, $\beta_{22} = 1.0$, $\delta = 0$; D (change in λ) : $\lambda_2 = 0.92$, $\beta_{12} = 1.0$, $\beta_{22} = 1.0$, $\delta = 0$; D (change in λ) : $\lambda_2 = 0.92$, $\beta_{12} = 1.0$, $\beta_{22} = 1.0$, $\delta = 0$, E (isolated shocks) : $\lambda_2 = 0.9$, $\beta_{12} = 1.0$, $\beta_{22} = 1.0$, $\delta = 0.1$, with $d_1 = 1$ for t = 60 and 70, and $d_1 = 0$ otherwise; F (jump in intercept) : $\lambda_2 = 0.9$, $\beta_{12} = 1.0$, $\beta_{22} = 1.0$, $\delta = 0.2$, with $d_t = 1$ for t > 65, and $d_t = 0$ otherwise. Now, the results are based on estimating the equation (7.7) $$y_t = \lambda y_{t-1} + \beta_1 + \beta_2 (t/100) + u_t$$ instead of (7.4). The parameter estimates appear in Table 3 and the p-values associated with the various structural change tests in Table 4. We see again that the Table 3 $\label{eq:AR} AR(1) \mbox{ with linear trend models}: OLS \mbox{ estimates and exact } \lambda \mbox{ confidence sets}^1$ | | | â | 1 4 | 11 | | β ₁₂ | s | |---|-------|---------|--------|---------|--------|-----------------|--------| | First subsample $(\Gamma_1 = 50)$ | 0.871 | (0.029) | 1.286 | (0.276) | 1.236 | (0.255) | 0.0220 | | Second subsample (T ₂ = 30) A B C D E F | 0.664 | (0.146) | 3.105 | (1.306) | 3.371 | (1.457) | 0.0198 | | | 0.881 | (0.071) | 1.175 | (0.704) | 1.057 | (0.552) | 0.0207 | | | 0.884 | (0.019) | 1.293 | (0.130) | 1.265 | (0.310) | 0.0205 | | | 0.908 | (0.015) | 1.031 | (0.061) | 1.267 | (0.333) | 0.0205 | | | 0.653 | (0.149) | 3.168 | (1.311) | 3.555 | (1.540) | 0.0333 | | | 0.932 | (0.039) | 0.257 | (0.228) | 1.498 | (0.642) | 0.0538 | | Complete sample (T = 8()) A B C D E F | 0.888 | (0.021) | 1.114 | (0.193) | 1.095 | (0.192) | 0.0213 | | | 0.923 | (0.028) | 0.808 | (0.272) | 0.671 | (0.240) | 0.0263 | | | 0.971 | (0.011) | 0.315 | (0.098) | 0.490 | (0.135) | 0.0470 | | | 0.985 | (0.009) | 0.169 | (0.077) | 0.450 | (0.131) | 0.0640 | | | 0.892 | (0.023) | 1.082 | (0.220) | 1.078 | (0.221) | 0.0271 | | | 1.018 | (0.012) | -0.119 | (0.107) | -0.011 | (0.124) | 0.0415 | Exact confidence sets for λ (from first subsample) | Level | 0.99 | 0.975 | 0.95 | 0.925 | |--------------|-------------|-------------|-------------|-------------| | Based on L | [0.6490, 1] | [0.6665, 1] | [0.6810, 1] | [0.6875, 1] | | Based on £** | [0.7610, 1] | [0.7736, 1] | [0.7866, 1] | [0.7922, 1] | Table 4: AR(1) with linear trend models: Exact tests for structural change (p-values) based on the $\mathscr{L}_{\lambda}^{**}$ confidence set from the first subsample; $\alpha = 0.10$, $\alpha_{\frac{1}{2}} = 0.05$, $\alpha_{2} = 0.05$, $\alpha_{2}^{*} = 0.15$ ("r" indicates rejection at level 0.10; "a" indicates acceptance at level 0.10) |) Global tests | | ۸ ۵۰۶۵ | B
0.000 r | C
0.000 s | D
0,000 | E
0.956 | 1 ⁷
0.006 r | |--------------------------|--|-------------|--------------|--------------|------------|------------|---------------------------| | ιoc-β | $^{ m D}_{ m L}$ | 0.953 | | 0.000 | 0.000 | 0.000 | 0.000 | | | v_0 | 0.001 | 0.000 | | 0.532 | 1.000 | 0.584 | | JUSUM | CS _L | 1.000 | 0.256 | 0.686 | | | 0.002 | | | csu | 0.002 | 0.002 | 0.002 | 0.002 | 0.002 | | | CHICLIA of compage | cu | 0.982 | 0.406 | 0.002 | r 0.002 | r 0.028 r | 0.002 f | | CUSUM of squares | | 0.380 a | 0.022 | 0.002 | 0.002 | 0.004 | 0.002 | | | co_{U} | | 0.204 | 0.000 | г 0.000 | r 0.016 r | t 000.0 | | Predictive test | PC_L | 0.778 | | | | | 0.000 | | | PC_{U} | ().327 a | 0.002 | 0.000 | 0.000 | 0.00 | • | | Λυς-λ | $\mathbf{P}_{\mathbf{A}}^{\mathbf{L}}$ | 0.822 | 0.864 | 1.000 | 1.000 | 0.916 | 0.766 | | | $P_{\Delta}^{i,j}$ | 0.326 a | 0.326 a | 0.684 | a 0.596 | a 0.416 a | 0.406 a | | | 'Δ | V.,.20 W | | | | | | | B) Individual predictive | tests (cons | ervative p- | values) | | | | | | Predicted observation | Λ | В | C | | D | E 0.702 | 1 [;]
0.792 | | 51 | 0.792 | 0.338 | 0.00 | | 1 000.0 | 0.792 | 0.732 | | 52 | 0.945 | 0.019 | r 0.00 |)() t | 1 000.0 | 0.945 | 1.000 | | 53 | 0.999 | 0.058 | 0.00 | Ю r | 0.000 r | 0.999 | 0.694 | | 54 | 0.694 | 0.289 | 0.0 | | 0.000 r | 0.694 | 0.054 | | 55 | 0.997 | 0.019 | r 0.0 | 01 r | 0.000 r | 0.997 | 0.997 | | 56 | 0.997 | 0.099 | 0.0 | 00 г | 1 000.0 | 0.997 | 0.489 | | 57 | 0.489 | 0.002 | r 0.0 | 71 | 1 000.0 | 0.489 | 0.997 | | 58 | 0.997 | 0.117 | 0.0 | 05 r | 0.000 r | 0.997 | 0.997 | | 59 | 0.997 | 0.293 | 0.0 | 04 т | 0.000 г | 0.997 | 0.999 | | | 0.999 | 0.122 | 0.0 | 35 r | 1 000.0 | 0.004 # | 0.549 | | 60 | 0.549 | 0.785 | 0.0 | Ю3 r | 1 000.0 | 0.810 | | | 61 | 0.997 | 0.365 | 0.0 | 35 r | 1 000.0 | 0.997 | 0.997 | | 62 | 0.944 | 0.004 | | 989 | 0.047 r | 0.993 | 0.944 | | 63 | 0.906 | 0.543 | |)59 | 0.000 r | 0.998 | 0.906 | | 64 | 0.996 | 0.012 | | 969 | 0.072 | 0.996 | 0.996 | | 65 | | 0.000 | | 958 | 0.201 | 0.995 | 1 000.0 | | 66 | 0.941 | 0.003 | | 979 | 0.208 | 0.995 | 0.000 r | | 67 | 0.970 | | | 409 | 0.010 r | 0.998 | 1 000.0 | | 68 | 1.000 | 0.352 | _ | 390 | 1 010.0 | 0.994 | 1 000.0 | | 69 | 0.996 | 0.452 | _ | 594 | 0.026 r | 0.005 € | 1 000.0 | | 70 | 0.996 | 0.344 | | 965 | 0.132 | 0.996 | 0.003 г | | 71 | 0.999 | 0.12 | | | 0.132 | 0.995 | 0.011 r | | 72 | 0.997 | 0.12 | | .982 | 0.336 | 0.993 | 0.051 r | | 73 | 0.995 | 0.07 | ٠ | .982 | | 0.998 | 0.050 r | | 74 | 0.994 | 0.15 | | .992 | 0.237 | 0.994 | 0.021 r | | 75 | 0.999 | 0.46 | - | .784 | 0.081 | 0.992 | 0.195 | | 76 | ().993 | 0.13 | | .961 | 0.378 | 0.998 | 0.209 | | 77 | 0.997 | 0.19 | • | 1.964 | 0.321 | 0.990 | 0.744 | | 78 | 0.993 | 0.04 | |).983 | 0.842 | | 0.966 | | 79 | 0.997 | | |).982 | 0.981 | 0.992 | 0.719 | | 80 | 0.999 | | 19 (|).965 | 0.662 | 0.993 | U.11.2 | | | 2 . | | | | | | •- | | C) Some tests with | A known | В | | С | 10 | 35 | 17 | | _ | ۸ ۵۷ | | 00 r | 0.000 r | | 0.706 | 0.000 | | AOC - β | 0.799 | | | 0.002 1 | - | 1.000 | 0.004 | | CUSUM | 1.00.1 | · | | 0.002 r | _ | 0.004 г | 0.002 | | CUSUM of squares | 0.410 | | | 0.002 i | | 0.005 r | 0.000 | | Predictive test | ().72 | , 0.0 | ,.,, | ******** | | | | AOC- β test detects the permanent changes in the trend coefficient (data set B), the intercept (C and F) and λ (D), but does not find the isolated shocks (E). The intercept and λ shifts are also detected by the CUSUM-of-squares and predictive tests. While the two latter tests do not detect the shift in trend (B), they do find the two isolated shocks (E). Further, the individual predictive tests again provide useful information on the timing and form of the structural shifts (especially in cases D and F). The CUSUM and AOC- λ tests do not detect any of the structural shifts considered. Finally, from part C of Table 4, we see that knowing the true value of λ has little effect for the inferences based on the AOC- β and CUSUM-of-squares tests. However, for these data, the CUSUM test appears to be more powerful for the cases B, C and F, and the predictive test detects the change in trend (B) when λ is known. Finally, we examine U.S. gross private domestic investment in non-residential structures (1982 dollars): 140 quarterly observations from 1952:1 to 1986:4 [source: Berndt (1991, p. 278)], which we divided into two roughly equal subperiods (1952:1 - 1969:4 and 1970:1 - 1986:4). Taking the logarithm of this variable, we find that the first half of the sample (1952:1 - 1969:4) can be described reasonably well by the just examined AR(1) model with intercept and trend: $$(7.8) \qquad I_{t} = \lambda I_{t-1} + \beta_{1} + \beta_{2}(t/100) + u_{t}, \, |\lambda| \le 1$$ where I_t is the logarithm of real gross domestic investment in non-residential structures. Although the intercept and trend coefficients are not significant according to the usual asymptotic standards, we find that such a specification does not suffer manifestly from omitted higher order lags/serial correlation, heteroskedasticity or non-normal errors. The OLS estimates for the two subsamples and the complete sample, as well as some standard diagnostics, appear in Table 5A. To perform structural change tests, we first obtained a confidence set for λ (with size 0.95) based on the statistic $\mathcal{L}^{**}_{\lambda}$ and the first subsample, which yielded the interval [0.8744, 1.0].³ The p-values for the various test statistics are reported in Tables 5B and 5C (for the individual predictive tests, in order to economize space, we only report the conservative p-values which are lower than 0.05); the complete series of individual predictive tests (p-values) is also graphed in Figure 1. Using $\alpha = 0.10$ as the critical level (with $\alpha_1 = \alpha_2 = 0.05$), we see that the AOC and CUSUM tests do not show evidence of structural change, while the CUSUM of squares and predictive tests Because of the relatively large sample size (T = 139), we only used N - 1 = 199 Monte Carlo samples in building the confidence set for λ and for assessing the significance of the relevant structural change tests. Table 5 AR(1) with linear trend model for logarithm of US gross domestic investment in non-residential structures in 1982 dollars (I_t); quarterly data (1952:1 - 1986:4) [Source : Berndt (1991, p. 278; series IS of file Kopcke)] $I_t = \lambda I_{t-1} + \beta_1 + \beta_2(t/100) + u_t, |\lambda| \le 1$ | A) OLS estimates | â | β ₁ | $\hat{\boldsymbol{\beta}}_2$ | S | R^2 |
---------------------------------|--|------------------|--------------------------------|----------------|-------------------------| | First subsample $(T_1 = 71)$ | 0.921
(0.046) | 0.872
(0.506) | 0.070
(0.044) | 0.022 | 0.9878 | | Second subsample $(T_2 = 68)$ | 0.930
(0.049) | 0.788
(0.543) | 0.033
(0.032) | 0.031 | 0.9443 | | Complete sample (T = 139) | 0.956
(0.028) | 0.503
(0.309) | 0.018
(0.019) | 0.027 | 0.9899 | | Diagnostics for first subsample | First-order serial Fourth-order serial | correlation : | F(1, 67) = 2
n : F(4, 64) = | 2.54
= 1.72 | p-value
0.12
0.16 | | | Heteroskedasticit | v :Breusch-l | Pagan: $\chi^2(2)$ | = 2.50 | 0.20 | | | 11010100110011011 | Koenker: | $\chi^2(2) = 1.92$ | 2 | 0.38 | | | Non-normal dist | | | | 0.56 | ## B) Global test for structural change (exact) Confidence set for λ based on $\mathcal{L}_{\lambda}^{**}$ ($\alpha_1 = 0.05$): [0.8744, 1.00] | | Conservative p-value (L) | Liberal
p-value (U) | |--|---|---| | AOC- β CUSUM ¹ CUSUM of squares ¹ Predictive AOC- λ ¹ | 0.788
0.785
0.005 r
0.004 r
0.840 | 0.015
0.580 a
0.005
0.001
0.585 a | ## C) Individual predictive tests (exact) | Quarter | Conservative p-value | | |--------------------------------------|---|--| | 74:3
75:1
82:2
83:1
86:2 | 0.006 r
0.014 r
0.046 r
0.002 r
0.000 r | | Randomized p-values based on N - 1 = 199 Monte Carlo samples. provide rather strong evidence against it. Further, there are five individual predictive test statistics (out of 68) with p-values of F_L lower than 0.05 (74:3, 75:1, 82:2, 83:1, 86:2), indicating clusters of low p-values near the end of 1974, in 1982-83, and in 1986. These results suggest relatively short-lived deviations from the model although not permanent structural changes. ## 8. CONCLUSION In this paper, we have described how finite-sample structural change tests can be obtained for a linear regression model with one lagged dependent variable and normal disturbances. The latter are based on combining three distinct techniques: first, using an extended regression, we build an exact confidence set for the autoregressive parameter λ , which is valid at least under the null hypothesis of no structural change; second, after selecting a structural change test whose level can be established for any given $\lambda = \lambda_0$ (which can typically be done by adapting a structural change test designed for static linear regression), we use a "union-intersecction" technique to combine these "conditional tests" (for given $\lambda = \lambda_0$) with the confidence set for λ , and so produce valid "unconditional" tests; thirdly, when it is difficult to evaluate analytically the null distribution of a test statistic (for given $\lambda = \lambda_0$) but the latter can be simulated, the test is replaced by a "randomized" (or Monte Carlo) analogue which remains exact irrespective of the number N of replications and becomes equivalent to the original non-randomized test as $N \rightarrow \infty$. The tests considered above include extensions of analysis-of-covariance (for β and λ), predictive, CUSUM and CUSUM-of-squares tests. The feasibility of the approach suggested was also illustrated with both artificial data and a dynamic trend model for real gross domestic investment in the U.S. The artificial data suggest that alternative tests react differently to various structural-change alternatives, the AOC- β test and (to a lesser extent) the CUSUM test being more to permanent shifts in coefficients, while the predictive CUSUM-of-squares tests can detect more easily transitory shifts. predictive tests also provide useful information on the form and timing of structural changes. The empirical results on the investment equation indicate the presence of some form of structural change but of a transitory nature. It is important to note that the general approach used here to obtain structural change tests for a dynamic linear regression is not limited to the particular tests described above: about any test designed for a static linear regression can be extended to the case of a first-order dynamic linear regression in the same way. Further, in addition to being exact for any full-column rank regressor matrix X (provided it is independent of the disturbance vector), the procedures proposed in this paper remain "asymptotically valid" in the usual sense (i.e., the probability of type I error does not exceed the stated level as the sample size goes to infinity) under various assumptions of stochastic regressors and non-normal disturbances, provided the structural change tests are themselves asymptotically valid for given $\lambda = \lambda_0$ under such assumptions. This can be shown easily by an argument similar to the one in Dufour and Kiviet (1993). ## REFERENCES - Barnard, G.A., 1963, Discussion on M.S. Bartlett, The spectral analysis of point processes, Journal of the Royal Statistical Society B 25, 294. - Berndt, E.R., 1991, The practice of econometrics: classic and contemporary (Addison-Wesley, Reading, Mass.) - Bimbaum, Z.W., 1974, Computers and unconventional test-statistics, in: F. Proschan and R.J. Serfling, eds.: Reliability and biometry (SIAM, Philadelphia) 441-458. - Brown, R.L., J. Durbin and J.M. Evans, 1975, Techniques for testing the constancy of regression relationships over time (with discussion), *Journal of the Royal Statistical Society B* 37, 149-192. - Chow, G.C., 1960, Tests of equality between sets of coefficients in two linear regressions, *Econometrica* 28, 591-605. - Dagenais, M., and J.-M. Dufour, 1985, Durbin-Watson tests for serial correlation in regressions with missing observations, *Journal of Econometrics* 27, 371-381. - Dufour, J.-M., 1980a, Dummy variables and predictive tests for structural change, *Economics Letters* 6, 241-247. - Dufour, J.-M., 1982a, Generalized Chow tests for structural change: a coordinate-free approach, *International Economic Review* 23, 565-575. - Dufour, J.-M., 1982b, Recursive stability analysis of linear regression relationships: an exploratory methodology, *Journal of Econometrics* 19, 31-76. - Dufour, J.-M., 1982c, Predictive tests for structural change and the St-Louis equation, in: 1982 Proceedings of the Business and Economic Statistics Section of the American Statistical Association (Washington, D.C.) 323-327. - Dufour, J.-M., 1986, Recursive stability analysis: the demand for money during the German hyperinflation, in: D.A. Belsley and E. Kuh, eds.: Model reliability (The MIT Press, Boston) 18-61. - Dufour, J.-M., 1989, Nonlinear hypotheses, inequality restrictions and non-nested hypotheses: exact simultaneous tests in linear regressions, *Econometrica* 57, 441-473. - Dufour, J.-M., 1990, Exact tests and confidence sets in linear regressions with autocorrelated errors, *Econometrica* 58, 475-494. - Dufour, J.-M., E. Ghysels and A. Hall, 1994, Generalized predictive tests and structural change analysis in econometrics, *International Economic Review* 35, 199-229. - Dufour, J.-M., and M. Hallin, 1987, Tests non paramétriques optimaux pour le modèle autorégressif d'ordre un, Annales d'économie et de statistique 5, 411-434. - Dusour, J.-M., and M.L. King, 1991, Optimal invariant tests for the autocorrelation coefficient in linear regressions with autocorrelated errors, *Journal of Econometrics* 47, 115-143. - Dufour, J.-M., and J.F. Kiviet, 1993, Exact inference methods in first-order autoregressive distributed lag models, Working paper (Université de Montréal and University of Amsterdam). - Durbin, J., 1969, Tests for serial correlations in regression analysis based on the periodogram of least-squares residuals, *Biometrika* 56, 1-15. - Dwass, M., 1957, Modified randomization tests for nonparametric hypotheses, Annals of Mathematical Statistics 28, 181-187. - Edgington, E.S., 1980, Randomization tests (Marcel Dekker, New York). - Foutz, R.V., 1980, A method for constructing exact tests from test statistics that have unknown null distributions, Journal of Statistical Computation and Simulation 10, 187-193. - Jöckel, K.H., 1986, Finite sample properties and asymptotic efficiency of Monte Carlo tests, *Annals of Statistics* 14, 336-347. - Kiviet, J.F., and G.D.A. Phillips, 1990, Exact similar tests for the root of a first-order autoregressive regression model, AE Report 12/90, University of Amsterdam, paper presented at ESWM'90, Barcelona. - Kiviet, J.F., and G.D.A. Phillips, 1992, Exact similar tests for unit roots and cointegration, Oxford Bulletin of Economics and Statistics 54, 349-367. - Kiviet, J.F., and G.D.A. Phillips, 1993, Alternative bias approximations in regressions with a lagged-dependent variable, *Econometric Theory* 9, 62-80. - Kullback, S., and H.M. Rosenblatt, 1957, On the analysis of multiple regression in k categories, *Biometrika* 44, 67-83. - Lehmann, E.L., 1986, Testing statistical hypotheses, second edition (Wiley, New York). - Nankervis, J.C., and N.E. Savin, 1987, Finite sample distributions of t and F statistics in an AR(1) model with an exogenous variable, *Econometric Theory* 3, 387-408. - Theil, H., and J.S. Shonkwiler, 1986, Monte Carlo tests of autocorrelation, *Economics Letters* 20, 157-160. FIGURE ## Université de Montréal Département de sciences économiques Centre de documentation C.P. 6128, succursale Centre-ville Montréal (Québec) H3C 3J7 ## Cahiers de recherche (Discussion papers) 1994 à aujourd'hui (1994 to date) Si vous désirez obtenir un exemplaire, vous n'avez qu'à faire parvenir votre demande et votre paiement (5 \$ l'unité) à l'adresse ci-haut mentionnée. / To
obtain a copy (\$ 5 each), please send your request and prepayment to the above-mentioned address. - 9401: Mercenier, Jean et Bernardin Akitoby, "On Intertemporal General-Equilibrium Reallocation Effects of Europe's Move to a Single Market", janvier 1994, 41 pages. - 9402: Gauthier, Céline et Michel Poitevin, "Using Ex Ante Payments in Self-Enforcing Risk-Sharing Contracts", février 1994, 38 pages. - 9403: Ghysels, Eric et Joanna Jasiak, "Stochastic Volatility and Time Deformation: an Application of Trading Volume and Leverage Effects", février 1994, 37 pages. - 9404: Dagenais, Marcel G. et Denyse L. Dagenais, "GMM Estimators for Linear Regression Models with Errors in the Variables", avril 1994, 33 pages. - 9405: Bronsard, C., Fabienne Rosenwald et Lise Salvas-Bronsard, "Evidence on Corporate Private Debt Finance and the Term Structure of Interest Rates", avril 1994, 42 pages. 9406: Dinardo John Nicole M. Form of Theorem 1994, 42 pages. - 9406: Dinardo, John, Nicole M. Fortin et Thomas Lemieux, "Labor Market Institutions and the Distribution of Wages, 1973-1992: A Semiparametric Approach", avril 1994, 73 pages. 9407: Campbell Bryan et lean Marie Dufour "Forcet No. 1994". - 9407: Campbell, Bryan et Jean-Marie Dufour, "Exact Nonparametric Tests of Orthogonality and Random Walk in the Presence of a Drift Parameter", avril 1994, 32 pages. 9408: Bollersley Tim et Frie Charalt "Bryan et Prin Bryan - 9408: Bollerslev, Tim et Eric Ghysels, "Periodic Autoregressive Conditional Heteroskedasticity", mai 1994, 29 pages. - 9409: Cardia, Emanuela, "The Effects of Government Financial Policies: Can We Assume Ricardian Equivalence?", mai 1994, 42 pages. - 9410: Kollmann, Robert, "Hidden Unemployment: A Search Theoretic Interpretation", mai 1994, 9 pages. - 9411: Kollmann, Robert, "The Correlation of Productivity Growth Across Regions and Industries in the US", juin 1994, 14 pages. - 9412: Gaudry, Marc, Benedikt Mandel et Werner Rothengatter, "Introducing Spatial Competition through an Autoregressive Contiguous Distributed (AR-C-D) Process in Intercity Generation-Distribution Models within a Quasi-Direct Format (QDF)", juin 1994, 64 pages. 9413: Gaudry Marc et Alexandra L. J. - 9413 : Gaudry, Marc et Alexandre Le Leyzour, "Improving a Fragile Linear Logit Model Specified for High Speed Rail Demand Analysis in the Quebec-Windsor Corridor of Canada", août 1994, 39 pages. - 9414: Lewis, Tracy et Michel Poitevin, "Disclosure of Information in Regulatory Proceedings", juillet 1994, 38 pages. - Ambler, Steve, Emanuela Cardia et Jeannine Farazli, "Export Promotion and Growth", 9415: - Ghysels, Eric et Haldun Sarlan, "On the Analysis of Business Cycles Through the août 1994, 41 pages. Spectrum of Chronologies", août 1994, 37 pages. 9416: - Martel, Jocelyn et Timothy C.G. Fisher, "The Creditors' Financial Reorganization Decision: New Evidence from Canadian Data", août 1994, 21 pages. 9417: - Cannings, Kathy, Claude Montmarquette et Sophie Mahseredjian, "Entrance Quotas and Admission to Medical Schools: A Sequential Probit Model", septembre 1994, 9418: - Cannings, Kathy, Claude Montmarquette et Sophie Mahseredjian, "Major Choices : Undergraduate Concentrations and the Probability of Graduation", septembre 1994, 9419: - Nabeya, Seiji et Pierre Perron, "Approximations to Some Exact Distributions in the First Order Autoregressive Model with Dependent Errors", septembre 1994, 40 pages. 9420: - Perron, Pierre, "Further Evidence on Breaking Trend Functions in Macroeconomic 9421: - Variables", octobre 1994, 50 pages. Vogelsang, Timothy J. et Pierre Perron, "Additional Tests for a Unit Root Allowing for a Break in the Trend Function at an Unknown Time", novembre 1994, 57 pages. 9422: - Ng, Serena et Pierre Perron, "Unit Root Tests in ARMA Models with Data Dependent 9423: - Methods for the Selection of the Truncation Lag", décembre 1994, 41 pages. Perron, Pierre, "The Adequacy of Asymptotic Approximations in the Near-Integrated 9424: - Autoregressive Model with Dependent Errors", décembre 1994, 37 pages. Ghysels, Eric et Pierre Perron, "The Effect of Linear Filters on Dynamic Time Series - 9425 : with Structural Change", décembre 1994, 35 pages. Boyer, Marcel, Jean-Jacques Laffont, Philippe Mahenc et Michel Moreaux, "Sequential 9426: - Location Equilibria Under Incomplete Information", décembre 1994, 38 pages. Perron, Pierre et Serena NG, "Useful Modifications to Some Unit Root Tests with - Dependent Errors and their Local Asymptotic Properties", décembre 1994, 41 pages. 9427: Garcia, René et Pierre Perron, "An Analysis of the Real Interest Rate Under Regime 9428: - Shifts", décembre 1994, 42 pages. Boyer, Marcel et Jean-Jacques Laffont, "Environmental Risks and Bank Liability", - 9501: - Margolis, David. N., "Firm Heterogeneity and Worker Self-Selection Bias Estimated 9502: Returns to Seniority", décembre 1994, 29 pages. - Abowd, John M., Francis Kramarz et David N. Margolis, "High-Wage Workers and 9503 : High-Wage Firms", janvier 1995, 73 pages - Cardia, Emanuela et Steve Ambler, "Indexation Lags and Heterodox Stabilization 9504: Programs", janvier 1995, 29 pages. - Garcia, René et Huntley Schaller, "Are the Effects of Monetary Policy Asymmetric?", 9605 : février 1995, 42 pages. - Parent, Daniel, "Survol des contributions théoriques et empiriques liées au capital 9506: humain", février 1995, 70 pages. - Parent, Daniel, "Wages and Mobility: The Impact of Employer-Provided Training", 9507: - Parent, Daniel, "Industry-Specific Capital and the Wage Profile: Evidence from the 9508: NLSY and the PSID", février 1995, 21 pages. - Parent, Daniel, "Matching, Human Capital, and the Covariance Structure of Earnings", 9509: février 1995, 54 pages. - Garcia, René, "Asymptotic Null Distribution of the Likelihood Ratio Test in Markov 9510 : Switching Models", mars 1995, 50 pages. 9511: - Garcia, René, Annamaria Lusardi et Serena Ng, "Excess Sensitivity and Asymmetries in Consumption: An Empirical Investigation", mars 1995, 26 pages. - Sprumont, Yves, "An Axiomatization of the Pazner-Schmeidler Rules in Large Fair 9512 : Division Problems", mars 1995, 26 pages. - 9513: Ghysels, Eric, Lynda Khalaf et Cosmé Vodounou, "Simulation Based Inference in Moving Average Models", mars 1995, 10 pages. - Ng, Serena, "Looking for Evidence of Speculative Stockholding in Commodity 9514: Markets", mars 1995, 25 pages. - Ng, Serena et Huntley Schaller, "The Risky Spread, Investment, and Monetary Policy 9515: Transmission: Evidence on the Role of Asymmetric Information", mars 1995, - 9516: Ng, Serena, "Testing for Homogeneity in Demand Systems when the Regressors are Non-Stationary", mars 1995, 26 pages. 9517: - Ghysels, Eric, Clive W.J. Granger et Pierre L. Siklos, "Is Seasonal Adjustment a Linear or Nonlinear Data Filtering Process?", mars 1995, 34 pages. 9518: - Ghysels, Eric, Alastair Hall et Hahn S. Lee, "On Periodic Structures and Testing for Seasonal Unit Roots", mars 1995, 45 pages. 9519: - Sprumont, Yves, "On the Game-Theoretic Structure of Public-Good Economies", mars 1995, 21 pages. 9520 : - Charles, Sandra, François Vaillancourt et Nicolas Marceau, "The Impact of Decentralization on Growth and Democracy: A Note", mars 1995, 13 pages. 9521: - Sprumont, Yves, "Balanced Egalitarian Redistribution of Income", mars 1995, 17 pages. 9522: Bronsard, Camille, Lise Salvas-Bronsard et Alain Trognon, "On the Residual Dynamics - Implied by the Rational Expectations Hypothesis", mars 1995, 18 pages. Campbell, Bryan et Eric Ghysels, "An Empirical Analysis of the Canadian Budget 9523 : - Process", mars 1995, 30 pages. Ghysels, Eric, Alain Guay et Alastair Hall, "Predictive Tests for Structural Change with 9524: - Unknown Breakpoint", avril 1995, 29 pages. 9525: Ghysels, Eric, "On Stable Factor Structures in the Pricing of Risk", avril 1995, - 9526: - Kollmann, Robert, "Mark Up Fluctuations in U.S. Manufacturing and Trade: Empirical Evidence Based on A Model of Optimal Storage", avril 1995, 18 pages. 9527 : - Laberge-Nadeau, Claire, Georges Dionne, Urs Maag, Denise Desjardins, Charles Vanasse et J.-M. Ékoé, "Medical Conditions and the Severity of Commercial Motor Vehicle (CMV) Drivers' Road Accidents", mai 1995, 26 pages. 9528: - Dionne, Georges, Manuel Artis et Montserrat Guillén, "On the Repayment of Personal Loans Under Asymmetrical Information: A Count Data Model Approach", mai 1995, 32 pages. 9529 ; - Ruge-Murcia, Francisco J., "Government Expenditure and the Dynamics of High Inflation", juin 1995, 45 pages. 9530 : - Persaran, M. Hashem et Francisco J. Ruge-Murcia, "A Discrete-Time Version of Target Zone Models with Jumps", juin 1995, 50 pages. 9531: - Dionne, Georges et N. Fombaron, "Non-Convexities and Efficiency of Equilibria in Insurance Markets with Asymmetric Information", juin 1995, 22 pages. 9532: - Bronsard, C., P. Michel et L. Salvas-Bronsard, "Singular Demand Systems as an Instrument of Scientific Discovery", juillet 1995, 17 pages. - 9533: Dionne, G. et C. Fluet, "Incentives in Multi-Period Regulation and Procurement: A - Graphical Analysis", juillet 1995, 46 pages. 9534: Ng, Serena et Pierre Perron, "Estimation and Inference in Nearly Unbalanced, Nearly Cointegrated Systems", août 1995, 38 pages. - Cointegrated Systems", août 1995, 38 pages. Ng, Serena et Pierre Perron, "The Exact Error in Estimating the Spectral Density at the Origin", août 1995, 33 pages. - Origin", août 1995, 33 pages. 9536: Ghysels, Eric, Christian Gouriéroux et Joanna Jasiak, "Market Time and Asset Price Movements: Theory and Estimation", septembre 1995, 61 pages. - 9537: Dionne, Georges, Robert Gagné et Charles Vanasse, "Inferring Technological Parameters from Incomplete Panel Data", septembre 1995, 40 pages. - 9538: Dufour, Jean-Marie et Eric Renault, "Short-Run and Long-Run Causality in Time Series : Theory", septembre 1995, 40 pages. - 9539: Dufour, Jean-Marie, "Some Impossibility Theorems in Econometrics with Applications to Instrumental Variables, Dynamic Models and Cointegration,
septembre 1995, 42 pages. - 9540: Mercenier, Jean et Philippe Michel, "Temporal Aggregation in a Multi-Sector Economy with Endogenous Growth", septembre 1995, 17 pages. - 9541: Loranger, Jean-Guy, "Neoliberalism and the Overwhelming Influence of Financial Markets: a Comparative Analysis between NAFTA Countries and Other G-7 - Countries", septembre 1995, 34 pages. 9542: Proulx, Pierre-Paul, "La décentralisation: facteur de développement ou d'éclatement du Québec", août 1995, 26 pages. - 9543: Arcand, Jean-Louis, Ghazi Boulila et Christian Tritten, "Intergenerational Contracts, Remittances, and Growth", octobre 1995, 57 pages. - 9544: Kichian, Maral, René Garcia et Eric Ghysels, "On the Dynamic Specification of International Asset Pricing Models", octobre 1995, 29 pages. - 9545: Arcand, Jean-Louis, "Land Ownership, Working Capital, and Agricultural Output: Egypt", 1913-1958, octobre 1995, 93 pages. - 9546: Arcand, Jean-Louis et Marcel G. Dagenais, "The Empirics of Economic Growth in a Cross Section of Countries: Do Errors in Variables Really Not Matter?", octobre 1995, - 9547: Dufour, Jean-Marie et Jan F. Kiviet, "Exact Inference Methods for First-Order Autoregressive Distributed Lag Models", octobre 1995, 52 pages. - 9548: Dufour, Jean-Marie et Jan F. Kiviet, "Exact Tests for Structural Change in First-Order Dynamic Models", octobre 1995, 39 pages.