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RÉSUMÉ  

Les mitochondries proviennent d’une alphaprotéobactérie ingérée qui a développé une 

relation endosymbiote permanente avec son hôte. Par la suite, la plupart des gènes de 

l'endosymbionte ont été perdus ou migrés vers l'hôte, et le mitoribosome a été remodelé 

en raccourcissant les ARNr mitochondriaux (ARNr-mt) et en recrutant de nouvelles 

protéines ribosomiques mitochondriales (protéines-r-mt). Pourtant, comment exactement 

ce remodelage évolutionnaire a eu lieu reste spéculatif en raison du petit nombre d'études 

chez les eucaryotes primitifs. Ici, nous montrons que la petite sous-unité du mitoribosome 

d’Andalucia godoyi, un jakobid hétérotrophe flagellé avec le génome mitochondrial le 

plus primitif, a une proportion élevée de composants de type bactérien par rapport à son 

homologue dans les eucaryotes hautement divergents. Nous avons trouvé dans l'analyse 

par spectrométrie de masse que la petite sous-unité du mitoribosome d’A. godoyi contient 

plus de protéines ribosomiques bactériennes (21 protéines) que son homologue dans tout 

autre eucaryote (9 à 20 protéines). Bien que la petite sous-unité du mitoribosome d’A. 

godoyi représente un stade plus primitif du remodelage des mitoribosomes, certaines des 

protéines spécifiques à la mitochondrie sont déjà présentes (S25, S29, S33, S35, Rsm22 

et Mrp10), or dans une moindre mesure que dans la petite sous-unité du mitoribosome de 

S. cerevisiae (16 protéines) et H. sapiens (13 protéines). En outre, la petite sous-unité du 

mitoribosome d’A. godoyi ne contient pas les protéines-r-mt S22, S26, S27, S31, S34, 

S36, S37, S38, S39, S41, S42, S43, S44, S45, S46, S48, et S49 - dont la plupart sont 

spécifiques aux eucaryotes. Nos résultats, en combinaison avec les caractéristiques de 

type bactérien dans les ARNr-mt d’A. godoyi, démontrent que cet organisme possède la 

petite sous-unité du mitoribosome la plus primitive connue à cette date. La caractérisation 

des mitoribosomes primitifs peut constituer un point de départ pour l'étude des étapes 

précoces et intermédiaires de l'évolution du mitoribosome. 

 

Mots-clés : Andalucia godoyi, mitoribosome, petite sous-unité, évolution, jakobids, 

Discoba, Excavata. 
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ABSTRACT  

Mitochondria originated from an ingested alpha-proteobacterium that developed a 

permanent endosymbiont relation with its host. Thereafter, most of the endosymbiont’s 

genes were lost or migrated to the host, and the mitoribosome was remodeled by 

shortening the mito-ribosomal RNAs (mt-rRNAs) and the recruitment of new 

mitochondrion-specific ribosomal proteins (mito-r-proteins). Yet, how exactly this 

evolutionary remodeling took place remains speculative due to the small number of 

studies in primitive eukaryotes. Here we show that the mt-SSU ribosome of A. godoyi, a 

free-living heterotrophic flagellated jakobid with the most primitive mitochondrial 

genome, has an elevated proportion of bacteria-like components compared to its 

counterpart in highly diverged eukaryotes. We found by mass spectrometry analysis that 

the mt-SSU ribosome of A. godoyi contains more homologs of bacterial r-proteins (21 

proteins) than its counterpart in any other eukaryote (from 9 to 20 proteins). Although the 

mt-SSU ribosome of A. godoyi represents a more primitive stage of mitoribosome 

remodeling, some of the mitochondrion-specific proteins are already present (S25, S29, 

S33, S35, Rsm22, and Mrp10), yet to a smaller extent than in the mt-SSU ribosome of S. 

cerevisiae (16 proteins) and H. sapiens (13 proteins). Furthermore, the mt-SSU ribosome 

of A. godoyi lacks the mito-r-proteins S22, S26, S27, S31, S34, S36, S37, S38, S39, S41, 

S42, S43, S44, S45, S46, S48, and S49 -most of which are eukaryotic-specific. Our 

results, in addition to the bacteria-like features of A. godoyi’s mt-rRNAs, demonstrate 

that this organism possesses the most primitive mt-SSU ribosome known. The 

characterization of primitive mitoribosomes may be a starting point for studying the early 

and intermediate steps in mitoribosome evolution.  

 

Key words: Andalucia godoyi, mitoribosome, small subunit, evolution, jakobids, 

Discoba, Excavata. 
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1. INTRODUCTION  

 

1.1 Mitochondrial genomes  

 

The mitochondrion is a double-membrane bounded organelle that is present in most known 

eukaryotic organisms. This organelle originated from an ingested alpha-proteobacteria and 

is an integrative part of extant eukaryotes. The mitochondrion provides cellular energy, 

and is involved in other cellular tasks such as signalling, cellular differentiation, cell death, 

maintaining control of the cell cycle, and cell growth (1).  

 Mitochondria contain their own genome that consists of several copies of a single 

circular chromosome. However, mitochondrial genomes have diverged to such a degree 

that makes difficult to recognize their bacterial origin. For instance, the number of genes 

in mitochondrial genomes is three orders of magnitude smaller than in typical bacterial 

genomes, and gene organization does not follow operon rules. Moreover, a single-subunit 

enzyme performs transcription in mitochondria instead of a four subunit RNA polymerase 

as in bacteria. 

Mitochondrial evolution in different eukaryotic lineages have resulted in a great 

diversity of sizes, content, and organization of mtDNAs. For instance, mitochondrial DNA 

(mtDNA) can vary in length from 6 to 2,400 kb and be present in many thousands of copies 

depending on the specie or cell type. Chromera velia contains the smallest mitochondrial 

genome, which harbors only 2 protein-coding genes (2). The most gene-rich mtDNAs 

containing ~100 genes are found in a recently discovered eukaryotic group, the jakobids, 

which will be discussed in more detail in later sections.  

Extant mitochondrial genomes have lost most of their ancestral bacterial genes due 

to (i) deletion of genes that are no longer needed for survival of the endosymbiont and (ii) 

unidirectional transfer of genes to the nucleus (3, 4). Gene migration from mitochondria to 

the nucleus has been explained by the mutagenic nature of reactive oxygen species that 

arise from the electron transport chains, population genetic aspects, and the physical 

polarity of endosymbiosis creating a one-way street of gene transfer from lysed organelles 
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to the nucleus (5-8). Moreover, DNA transfer from an organelle to the nucleus does not 

have sequence-specific barriers (4, 9-11).  

The mitochondrial genomes of all eukaryotes are thought to have retained genes 

that encode components of the electron transport chain due to the need of co-location for 

redox regulation, and to avoid the mistargeting of hydrophobic membrane proteins to the 

endoplasmic reticulum (4, 12, 13). Additionally, mitochondrial genomes encode ribosomal 

RNAs (rRNAs) and transfer RNAs (tRNAs) needed for the translation of mitochondrion-

synthesized messenger RNAs (mt-mRNAs) (4). The rest of the mitochondrial proteins that 

are not mitochondrion-encoded are synthetized in the cytoplasm and then imported into the 

organelle (14).  

The unidirectional transfer of genes from the mitochondrial genome to the nucleus 

seems to confer adaptive advantages to the eukaryotic cell too. For instance, the nuclear 

genes encoding mitochondrial proteins can be recombined by sex. Further, the 

mitochondrial DNA has a higher mutation rate than the nuclear DNA due to the oxidative 

stress that accumulates in mitochondria. Therefore, mutation in genes encoding 

mitochondrial proteins is reduced if these genes are nucleus-encoded (4).  

 

1.2 The most bacteria-like mtDNAs 

 

The mtDNA of jakobids, an order of eukaryotes in the megagroup of Discoba, appear to 

have the most bacteria-like mt-DNAs currently known due to their high number of 

mitochondrion-encoded transcripts, gene organization, structure of mitochondrion-

encoded rRNAs (mt-rRNAs), and bacteria-like regulatory elements of gene expression.  

The jakobid mtDNAs contain gene clusters that are densely packed and their gene 

rearrangement is generally alike to the one of free-living alpha-proteobacteria (15). 

The jakobid mtDNAs encode molecules not usually encoded in the mtDNA of most 

eukaryotes. For instance, a four-subunit RNA polymerase, the SecY complex, the 5S rRNA, 

and an structural RNA linked to the mitochondrial RNP complex (15, 16). Moreover, the 
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5S rRNA is likely integrated in the mitoribosomes of jakobids since it is expressed in these 

organelles (17).  

 The mt-rRNAs of nine jakobids strongly resemble to the typical models of E. coli 

16S and 23S rRNAs. The universal core of mt-rRNAs shares a high degree of sequence 

identity between jakobids and its bacterial counterparts. Furthermore, the mitochondrion-

encoded genes possess upstream Shine-Dalgarno-like motifs that match to the 3-prime-

terminal pyrimidine-rich motif in the mt-rRNA of the small subunit of the mitoribosome 

(mt-SSU-rRNA) (15).   

 

1.3 Prokaryotic translation 

 

Translations is the process by which a ribosome reads the sequence of mRNAs to 

synthesize proteins (18).  

 

Translation of genes in Prokaryotes has been widely investigated and described (19-

25). Prokaryotic translation can be divided in four steps: initiation, elongation, termination, 

and recycling. Several interactions between tRNAs, mRNAs, rRNAs, and proteins occur 

in every translation step to ensure the synthesis of correct peptides at the right time. In 

initiation, the initiation factors IF1, IF2, and IF3 recruit the initiator fMet-tRNAfMet and 

the small 30S subunit (SSU) to an AUG start codon (characterized by an upstream Shine-

Dalgarno sequence in the mRNA). Then, the AUG codon and the f-Met-tRNA are 

positioned to the P site of the ribosome, and the large 50S subunit (LSU) is stably 

associated before starting the elongation step. In elongation, the ribosome selects the 

cognate aminoacyl tRNAs specified by the mRNA sequence that is bound to the A site of 

the ribosome. Then, the tRNA cognate to the next mRNA codon is transported to the A site 

in complex with the elongation factor (Ef-Tu) and GTP, which is followed by peptide bond 

formation with the tRNA in the P site. Subsequently, the nascent polypeptide is transported 

to the P site, and the elongation factor G (EF-G) catalyzes the translocation of the two 

tRNAs and the mRNA by one codon. Thereafter, the tRNA in the P site is ejected through 
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the E site and the elongation step is repeated until the ribosome reaches a stop codon 

defined by UAA, UAG, or UGA. The release factors 1 and 2 (RF1 and RF2) recognize the 

stop codon and release the nascent polypeptide. Then, the dissociation of RF1 and RF2 is 

promoted by the release factor (RF3). Subsequently, EF-G and the recycling factor (RRF) 

help to dissociate the ribosome subunits and the remaining tRNA in the P site. Finally, the 

ribosome subunits can be recycled for another translation cycle.  

 

1.4 Translation in mammalian mitochondria  

 

Translation of genes in mammalian mitochondria has been widely investigated (26-

32). The mammalian mitochondria encode 9 monocistronic and two dicistronic mt-

mRNAs. The mt-mRNAs have a modified codon usage with the standard UGA stop codon 

recognized as tryptophan and the standard AGA and AGG arginine codons being instead 

used as stop codons. The folding and excising of mt-tRNA structures is carried out by the 

mitochondrial tRNase Z ELAC2 and the mitochondrial RNase P respectively. The 

mitochondrial poly(A) polymerase adds a poly(A) end of approximately 50 nt to maturate 

every light-strand protein-encoding mt-mRNA. The translation of mt-mRNAs proceeds in 

three steps: initiation, elongation, termination and recycling (figure 1).  

 

1.3.1 Initiation and elongation in mammalian mitochondrial translation   

 

The small subunit of the mitoribosome (mt-SSU ribosome) recruits the mt-mRNA that is 

bound to the initiation factor mtIF3 (figure 1). This step blocks the reassociation of the mt-

SSU with the large subunit of the mitoribosome (mt-LSU ribosome) (33). The 

mitoribosome recognizes either of three initiation triplets AUG, AUA, and AUU. Then, 

the initiation factor mtIF2:GTP recruits the f-Met-tRNA to the initiation triplets (34). 

Subsequently, the mt-SSU forms a complex with the mt-LSU. This prompts the hydrolysis 

of mtIF2-bound to GTP producing GDP and liberating the initiation factors mtIF2/mtIF3 

from the mt-SSU. 
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Figure 1. Translation on mammalian mitochondria proceeds in 

four consecutive steps: Initiation, elongation, termination, and 

recycling. The elongation factor mtEF-G1 interacts with the 

mitoribosome, which leads to changes in the structural conformation 

of the mitoribosome. This liberates the mitochondrial transfer RNA 

(mt-tRNA) from the A-site and moves the dipeptidyl-tRNA into the 

P-site. Then, the deacylated mt-tRNA moves to the E-site (35, 36). 

The elongation step is repeated until a stop codon is located in the 

A-site. Adapted from (33). 

 

The elongation factor mtEF-Tu, a GTP and a charged mt-tRNA form the ternary 

complex (GTP:mtEF-Tu complex) that enters the A site (figure 1). Then, the mitoribosome 

hydrolyzes GTP to liberate GDP and mtEF-Tu. Subsequently, the peptidyl transferase 

centre (PTC) in the mt-LSU catalyzes the formation of the peptide bond. The dipeptidyl-

tRNA moves to the P-site and a new deacylated mt-tRNA enters the A-site. The movement 

of the mt-tRNA and the mt-mRNA is guided by the mtEF-G factor during translocation 
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(37). Finally, the interaction between mtEF-Tu and the exchange factor mtEF-Ts re-

establishes the GTP:mtEF-Tu complex. 

 

1.3.2 Termination of mammalian mitochondrial translation and recycling of 

mitoribosomes 

 

In humans, the mitochondrial release factor mtRF1 recognizes the stop codons in 

mitochondrial open reading frames (OPRs) (figure 1) (38). Then, the ester bond between 

the mt-tRNA and the final amino acid is hydrolyzed. Other mammalian species may have 

other additional mitochondrial release factors (39). 

 The mitochondrial release factors mtRRF1 and mtEF-G2 help the dissociation of 

the mt-SSU and the mt-LSU (figure 1). This releases the mt-mRNA and the deacylated mt-

tRNA (40, 41). Finally, mtRRF1 and mtEF-G2 are released to reinitiate the translation 

cycle in mitochondria. 

 

1.4 Differences of translation in bacteria, and mammalian and yeast mitochondria  

 

During translation initiation in bacteria, base pairing occurs between the Shine-

Dalgarno sequence in the 5-prime untranslated region (5-prime UTR) located upstream of 

the start codon of the mRNA and the 3-prime end in the rRNA of the SSU. However, 

mammalian mt-mRNAs lack the 5-prime UTR and all mt-mRNAs are devoid of the 5-

prime cap structure (32, 42). Yeast mt-mRNAs usually contain the 5-prime UTRs that are 

targeted by transcript specific activators (32, 43, 44). 

The mitochondrial factors that regulate translation initiation, elongation, 

termination, and recycling of mitoribosomes are nucleus-encoded and operate in concert 

with the mitoribosomes. Many of these factors have homologs in bacteria, but 

specialization occurred in response to the evolutionary changes in the mitochondrial 
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genetic code, mitoribosome structure, mitoribosome composition and nature of 

mitochondrion-encoded transcripts (42).  

 Initiation factors such as IF1, IF2, and IF3 determine the accuracy and effectiveness 

of translation in bacteria (32). Mammalian and yeast mitochondria have only two initiation 

factors compared to bacteria, mtIF2 (homolog of bacterial IF2)  and mtIF3 (homolog of 

bacterial IF3) (45, 46). Although a mitochondrial homolog of IF1 is absent, mammalian 

IF2mt could provide structural compensation for the lack of IF1 (47, 48).  

In bacteria, there is a high number of interactions between binding sites in r-proteins 

(L5, and L25), helices in rRNAs (h38, h76, h77, and h84), and the elbow region in tRNAs 

(49). Since every tRNA-binding site that is known from bacteria is present in the 

mammalian mitoribosome, one may think that elongation is the most conserved 

translational step. Yet, in contrast to bacterial tRNAs, mt-tRNAs in mammals attach to the 

LSU only by the acceptor stem due to the great diversity of elbow region shapes in the mt-

tRNAs (32). In bacteria, EF-Tu delivers tRNA to the ribosome and participates in 

decoding, and translocation is catalyzed by the elongation factor EF-G (32, 50). 

Mammalian mitochondria have the same elongation factors as bacteria. However, 

mammalian mtEF-Tu  and mtEF-Ts differ in structure from their bacterial homologs (51, 

52). Moreover, bakers’ yeast mitochondria are lacking mtEF-Ts (32, 53).  

 

 The bacterial EF performs recycling of ribosomes too, whereas the RRF1mt and 

mtEF-G2 (an homolog of bacterial EF-G) perform recycling of mitoribosomes in 

mammalian and yeast mitochondria (41). In addition, a third mitochondrial dissociation 

factor, mtIF3 was proposed  to play a role in the recycling of mitoribosomes in yeast and 

mammals (32).  

 A final difference is that stop codons in bacteria are recognized by two termination 

factors, RF1 and RF2, while mammalian and yeast mitochondrial translation systems only 

possess RF1 (54-56).    
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1.5 Ribosome composition 

 

Ribosomes across the tree of life have a large subunit (LSU) and a small subunit (SSU) 

composed of r-proteins and rRNAs. These subunits work together to translate mRNAs into 

a polypeptide chain. All ribosomes share a conserved core structure mainly composed of 

rRNA and r-proteins localized near the ribosome surface (16). The interface between the 

LSU and the SSU has three binding sites for the tRNAs, the A site, the P site and the E site 

(figure 2) (57). The A site is the access point for the aminoacyl tRNA in the ribosome 

(except for the first aminoacyl tRNA that enters through the P site during translation 

initiation). The P site is where the peptide bond is formed, and the E site (exit site) is where 

the uncharged tRNA is ejected after its amino acid was used to form a peptide bond in the 

nascent polypeptide chain. As described above, the mRNA binds to the SSU and moves 

through the ribosome one codon a time during the elongation of the nascent polypeptide 

chain.  

 

 

Figure 2. Structural view of the bacterial ribosome. (a) The 30S small subunit is 

displayed in gray and the 50S large subunit in purple, and the mRNA is displayed in 

red. The yellow covers indicate the localization of the L1 stalks, the tRNA-binding 

sites (A, P, and E sites), and the GTPase center. The tRNAs bind to the ribosome at 

the A site, passes through the P site, and exits through the E site. (b) The tunnel of the 

E site is observed occupied by the mRNA and the tRNA. Adapted from (25). 
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The different types of ribosomes differ in their RNA and protein content. For 

instance, eukaryotic (cytosolic) ribosomes have a rRNA: r-protein ratio that is close to one 

(50), whereas in bacterial ribosomes and in mammalian mitoribosomes, it is 7:3 and 3:7 

respectively (33). The different types of ribosomes also differ in their sedimentation 

coefficient, length and number of rRNAs, and r-protein number (table 1). 

 

1.6 The mammalian mitoribosome 

 

The two subunits of bacterial ribosomes interact mainly via RNA:RNA bridges (58). In 

contrast, the intersubunit bridges of mammalian mitoribosomes are mainly composed by 

protein-protein and RNA-protein connections (35, 36). The 5S rRNA is absent from 

mammalian mitoribosomes and it is compensated by a tRNA-Val that forms several 

interactions with mitoribosome proteins (mito-r-proteins), which allows to mediate 

interactions between the mt-SSU and the mt-LSU (32, 49, 59, 60). The mito-r-proteins in 

the mammalian mt-LSU ribosome have contacts with an average of 4.9 neighbouring 

proteins whereas bacterial r-proteins have on average only 1.5 neighbors (49). Several 

mito-r-proteins, for instance S6, S16, S18, S25, L10, and L66, contain zinc-binding motifs 

that coordinate a single zinc ion between two proteins (16). 

The mitoribosome recruited new proteins, and accumulated N- and C-terminal 

extensions of otherwise conserved proteins. In Mammalia, the mt-rRNA was reduced, with 

mito-r-proteins replacing the missing rRNA segments, and providing additional functions 

such as association to the inner mitochondrial membrane (35, 36, 61). 
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Table 1. Summary of the composition in several characterized ribosomes. 

 Eukaryotic 

cytosolic 

(62) 

Bacteria 

(62) 

Mammalian 

mitochondria 

(35, 36) 

Yeast 

mitochondria 

(63, 64) 

Leishmania 

mitochondria 

(63, 65) 

Trypanosoma 

mitochondria 

(63, 66, 67) 

Ribosome       

Sedimentation 

coefficient  

80S 70S 55S 74S 50S N/A 

Number of 

rRNAs 

4 3 3 2 2 2 

Number of 

proteins  

79-80 54 82 82 54 136 

Large subunit       

Sedimentation 

coefficient  

60S 50S 39S 54S 40S 40S 

rRNAs 26S–28S 

(3,396–

5,034 nt) 

23S 

(2,904 

nt) 

16S (1,569 nt) 21S (3,296 nt) 12S (1,173 nt) 12S (1,150 nt) 

 5.8S (156–

158 nt) 

     

 5S (120–

121 nt) 

5S (120 

nt) 

CP tRNA (73–

75 nt) 

   

Number of 

proteins  

46-47 33 52 46 34 78 

 

Small subunit        

Sedimentation 

coefficient  

40S 20S 28S 37S 30S 25S 

rRNAs 18S (1,800–

1,870 nt) 

16S 

(1,534 

nt) 

12S (962 nt) 15S (1,649 nt) 9S (610 nt) 9S (610 nt) 

Number of 

proteins  

33 21 30 36 20 58 

Modified from (16). *; CP, central protuberance; N/A, not purified as a monosome.  

 

 The mt-mRNA entrance channel in the mt-SSU ribosome of mammals is highly 

remodeled regardless of the conservation of its central core (33, 61, 68). The mt-SSU 

ribosome of mammals lacks the protein S4 and the C-terminus of the protein S3, which are 

critical for defining the ringed shape of the mRNA entrance channel in the bacterial SSU 
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(bt-SSU) (figure 3) (33). This lost is compensated in mammalian mitoribosomes by 

extensions in the proteins S5 and S39 (a PPR-containing protein with RNA-binding 

activity) located close to the entrance channel (figure 3) (33, 69, 70). Moreover, the absence 

of the anti-Shine-Dalgarno motif and the 5-prime UTR in mt-mRNAs, which are needed 

to align the mitoribosome with the start codon, is compensated by the protein S29 (figure 

3) (33, 71).  

 

 

Figure 3. Differences of mRNA entrance site and polypeptide exit site in bacterial ribosomes and 

human mitoribosomes. The E. coli ribosome and the human mitoribosome are depicted left and right, 

respectively. The black circles in the monosomes indicate the expanded region for visualization 

purposes. The position of the mRNA entrance site in the small subunit of E. coli ribosome (a) and 

human mitoribosome (b) is shown at the top of the image. The position of the exit site in the large 

subunit of E. coli ribosome (c) and human mitoribosome (d) is shown at the bottom. Prefixes are used 

before or after protein names to indicate their nomenclature of origin: u + protein name refers to 

bacterial r-proteins, m + protein name to mito-r-proteins, u + protein name + m to proteins shared by 

both bacterial ribosomes and mitoribosomes. *; r-proteins, ribosomal proteins; mito-r-proteins, 

mitoribosome proteins. Adapted from (33). 
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 The exit channel in the mammalian mt-LSU ribosome contains the mitochondrion-

specific proteins L39, L44, and L45 that may play a role in the synthesis of hydrophobic 

proteins (33). Moreover, the mito-r-protein L45 is predicted to mediate the attachment of 

the mitoribosome to the inner mitochondrial membrane (42, 61).  

 

1.7 The yeast mitoribosome 

 

Overall, the secondary structure of the 15S mt-rRNA resembles that of the bacterial 16S 

rRNA with discrepancies only at the periphery of the mitoribosome (72). The 5S rRNA is 

absent in yeast mitoribosomes as described before in the human mitoribosome, which is 

compensated by mt-rRNA expansion segments rather than tRNAs as in mammals (32). The 

yeast mitoribosome possess most of the intersubunit bridges characteristic of bacterial 

ribosomes (72). Moreover, the mt-SSU ribosome of yeast possesses more homologs of 

bacterial r-proteins than its mammalian counterpart (72). The mt-mRNA entrance channel 

lacks the large-scale remodeling seen in the mammalian mt-mRNA entrance channel. 

Furthermore, the decoding center in the yeast mt-SSU ribosome is composed of a loop in 

the mito-r-protein S12 and several nucleotides that have equivalents in the decoding centre 

of bacterial ribosomes (72). 

Although the yeast mitoribosome possess an elevated number of bacteria-like 

features compared to the mammalian mitoribosome, it also contains features that are unique 

to yeast. For instance, yeast specific mito-r-proteins and nine additional mitochondrion-

specific intersubunit bridges. The majority of the yeast mito-r-proteins with homologs in 

bacterial and mammalian mitoribosomes have N- and C-terminal extensions that increase 

the protein interconnectivity, but these terminal extensions are not conserved in structure, 

sequence, or length across homolog mito-r-proteins (72). The 3-prime end sequence of the 

15S mt-rRNA lacks the anti-Shine-Dalgarno sequences and is covered by proteins in the 

body of the mt-SSU ribosome in contrast to the bacterial 16S rRNA that possesses an anti-

Shine-Dalgarno sequence and is restricted to the exit channel (72). Moreover, the yeast mt-

mRNA exit channel is flanked by a protuberance in the S42-S43 heterodimer and 

extensions in several mito-r-proteins (72). Furthermore, Mba1 (homolog of mammalian 
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L45) and several mt-rRNA expansion segments attach the yeast mitoribosome to the inner 

mitochondrial membrane (42, 73, 74). 

 

1.8 Mitoribosome composition in kinetoplastids 

 

The kinetoplastids are a group of flagellate protists from the megagroup Discoba (to which 

jakobids belong) whose mitoribosomes have been extensively characterized. T. brucei 

contains 133 mito-r-proteins and L. tarantolae more than 50 mito-r-proteins (66, 75). The 

mitoribosome of kinetoplastids has few bacterial and mammalian homologs, and most of 

its constituent proteins are either kinetoplastid-specific or organism-specific (66, 75, 76). 

Moreover, most of the conserved mito-r-proteins are far lengthier than their homologs in 

bacteria, yeast, and mammals due to N- and C-terminal extensions (60, 66, 77-79).  

The 9S and the 12S mt-rRNAs of T. brucei and L. tarantolae mitoribosomes are 

shorter and have a minimal secondary structure compared to their bacterial counterparts 

(75, 80). The additional protein mass in mitoribosomes of kinetoplastids, and lengthier N- 

and C-terminal extensions in homolog proteins may counterbalance the highly reduced  

nature of their mt-r-rRNAs (66, 80). The same phenomena has been observed, but to a 

lesser extent in mammalian mitoribosomes (59).  

The mitoribosome of T. brucei contains a high number of unique mt-r-proteins (105 

out of 136 mito-r-proteins) that could be part of a larger “supercomplex” associated with 

the mitoribosome that possess additional functions. For instance, some of these proteins 

contain PPR and GTP binding motifs. Moreover, some of these proteins possess  predicted 

activities such as GTPase, methyltransferase, peptidyl-prolyl isomerase, helicase activity, 

and chaperone function. These motifs and functions potentially play a role in ribosome 

assembly, RNA folding, mt-rRNA processing, protein assembly, protein-RNA 

interactions, and subunit structure stabilization (66, 81).  

In L. tarantolae mitoribosome, the mt-mRNA entrance and the exit channels contain 

Leishmania-specific mito-r-proteins. Moreover, these mito-r-proteins replace the missing 

rRNA segments in the A, P, and E sites (76). 
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1.9 Mitoribosome evolution 

 

1.9.1 Evolution of the mitoribosome structure  

 

Endosymbiotic bacteria tend to accumulate mutations that reduce the stability of 

their rRNAs and most mitochondrial genomes have a higher A+T content than bacterial 

genomes, which confers a higher number of weak base pairs to the mt-rRNAs (82). 

Moreover, high mutation rates, small effective population sizes, and low rate of 

recombination in mitochondria cause slightly deleterious mutations in the mt-RNAs (83).  

Genome analysis of several model organisms showed that, compared to bacterial 

ribosomes, the protein mass of mitoribosomes is generally larger, while the length of most 

mt-rRNAs is similar or smaller. Although highly diverged eukaryotes have structurally 

reduced mt-rRNAs and an elevated number of mito-r-proteins, there is no strict correlation 

between the loss of mt-rRNA segments and the gain of mito-r-proteins (59).  

It has been suggested that many mitoribosome proteins may have already been 

recruited early in eukaryotic evolution, converting the mitoribosome from “mt-rRNA rich 

and protein-poor” to “mt-rRNA rich and protein-rich” (figure 4) (59). The reduction of mt-

rRNA may have started only when metazoan diverged and resulted in “mt-rRNA poor and 

protein-rich” mitoribosomes (figure 4).  

Additionally, several N- and C-terminal extensions in mito-r-proteins occurred in 

different linages and separately, after the divergence of the last eukaryotic common 

ancestor (LECA), so that the length of homolog proteins can differ considerably. 
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Figure 4. Representation of the constructive evolution of mitoribosomes. a) Proteobacterial 

ribosome, b) Early mitoribosome with additional rRNA expansion segments and early mitoribosome 

proteins. Adapted from (16). 

 

1.9.2 Evolution of mitoribosome protein composition  

 

The evolutionary history of mito-r-proteins has been traced in the phylogenetic tree of 

eukaryotes (figures 5 and 6) by the identification of homologs of alpha-proteobacterial r-

proteins and mito-r-proteins in a wide range of nuclear, mitochondrial, bacterial and 

archaeal genomes (63). The phylogenetic tree based on mito-r-proteins indicates that 54 

mito-r-proteins (21 in the SSU, and 33 in the LSU) were likely present in the alpha-

proteobacterial ancestor of the mitoribosome (figure 6). The protein S20 was apparently 

lost early in eukaryotic evolution, since it is absent in all analyzed eukaryotic genomes 

(figure 6).  
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Figure 5. Phylogenetic tree of eukaryotes used to predict the evolutionary history of mitoribosome 

proteins. *; LECA, last common eukaryotic ancestor. Adapted from (63). 

 

A set of 27 alpha-proteobacterial mito-r-proteins was likely encoded in the 

mitochondrial genome of the last eukaryotic common ancestor (LECA) because it is still 

encoded in the mitochondrial genome of Reclinomonas americana (84), a jakobid protist 

that contained the largest mitochondrion-encoded gene set that was known at the time of 

the analysis. The other 26 alpha-proteobacterial mito-r-proteins not encoded in any 

available mitochondrial genome were predicted to be relocated to the host nuclear genome 

before the divergence of the major eukaryotic linages (figure 6). The migration of genes 

encoding alpha-proteobacterial r-proteins from the mtDNA to the nucleus probably started 

before the recruitment of eukaryotic-specific mito-r-proteins since gene migration from 

endosymbionts to the host is a common event in endosymbiosis. Then, nineteen eukaryotic-

specific mito-r-proteins were apparently recruited before the divergence of the LECA, 

which added up to a total of 72 mito-r-proteins (63).  
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Figure 6. Prediction of mito-r-proteins possessed by the LECA and its following evolution 

in Bikonts and Unikonts. Red arrows designate losses of mito-r-proteins, whereas green arrows 

designate gains.  The mitochondrion-encoded mito-r-proteins of alpha-proteobacterial origin are 

shown in bold. Mitochondrion-encoded mito-r-proteins are shown in red, whereas nucleus-

encoded mito-r-proteins are shown in black. Eukaryotic-specific mito-r-proteins are shown in 

blue italic font. The crosses indicate eukaryotic linages that have lost their mitochondria. *; mito-

r-proteins, mitoribosome proteins. Adapted from (63). 

 

Considerable changes happened between the endosymbiosis and the diversification 

of present-day eukaryotic lineages because the LECA already possessed a remodeled 

mitoribosome and a quite developed genome reduction process after endosymbiosis (63). 

Losses and gains of mito-r-proteins are still ongoing as there are great differences between 

the mitoribosomes of closely related organisms (63). Gains and losses have occurred 

independently and repeatedly in different lineages. Moreover, there appears to be no 

general trend in protein dispensability since the losses have affected both alpha-

proteobacterial  and eukaryotic-specific mito-r-proteins (figure 6) (63).  
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1.10 Andalucia godoyi 

 

The etymology of Andalucia refers to the region of Spain and it was named after José 

Godoy, a well-known philanthropist from Andújar, Spain (85). Andalucia godoyi is a 

member species of the jakobids.  

Jakobids are small, bacterivorous, heterotrophic flagellates found in freshwater and 

marine habitats. They are unicellular eukaryotes typified by two flagella, one of which is 

guided posteriorly, and a devouring groove along the body utilized for uptake and ingestion 

of little particles and bacteria (86, 87). This group is a clade within Discoba and includes 

nine different genera: Andalucia, Velundella, Stygiella, Moramonas, Jakoba, 

Stomatochone, Stenocodon, Reclinomonas, and Histiona (85, 86, 88-92).  

 The two flagella of A. godoyi are inserted subapically and apically of its feeding 

groove (85) (figure 7). The cells have a size of 3–5 µl, and possess a paranuclear body and 

tubular mitochondrial cristae. The flagella are twice the length of the cell. 

A. godoyi contains the largest mitochondrial gene set currently known (15). 

Moreover, its mtDNA encodes trnT, cox15 and rpL35 that are absent in the mtDNA of 

other jakobids. 

 

 

Figure 7. Light micrographs of A. godoyi. a) Static cell, b) Mobile cell, c) Mobile cell, an arrow points the 

feeding groove, d) Cyst. Adapted from (85). 
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2. HYPOTHESIS  

 

In the course of eukaryotic evolution, the mitoribosome, has experienced losses of 

components originating from the ribosome of the bacterial ancestor and in turn has gained 

eukaryote-specific mito-r-proteins. Since the mitoribosome composition has been only 

investigated in highly diverged eukaryotes such as yeast, mammals, and kinetoplastids, the 

question arises when exactly and how this transition happened, gradually or as a wholesale 

restructuring.  Since A. godoyi has the least diverged mitochondrial genome currently 

known, we expect that its mitoribosome represents an intermediate state in the transition 

from a bacteria-like ribosome to the mitoribosome as we know it from model organisms. 

Therefore, we hypothesize that the Andalucia mitoribosome has a higher number of 

bacteria-like proteins and fewer mitochondrion-specific r-proteins than its 

counterparts in the model organisms discussed above. 

To test this hypothesis, we initially attempted to characterize entire mitoribosomes 

of this jakobid, but their purification proved extremely complicated. Therefore, we focused 

our investigation on the mt-SSU ribosome, which we succeeded to readily enrich. In fact, 

this subunit of the mitoribosome is more extensively remodeled than the mt-LSU ribosome, 

and thus is well suited for the study. Specifically, the objectives of this thesis are inferring 

the mitoribosome composition of A. godoyi from its genomic sequences, experimental 

characterization of its mt-SSU ribosome, and comparison with the composition in the mt-

SSU of model organisms discussed above.  

 

3. MATHERIALS AND METHODS  

 

3.1  A. godoyi cell culture 

 

A. Simpson kindly provided Andalucia godoyi (85). We feed A. godoyi using Enterobacter 

aerogenes as a food source. We grew A. godoyi in plastic culture bottles containing 15 ml 
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of WCL medium at 20 °C for 2 weeks. Subsequently, we transferred the culture to 100 ml 

of WCL medium and incubated it as specified before. Then, we transferred it to 500 ml of 

WCL medium and incubated it as specified before. The cells were checked regularly under 

the microscope and more E. aerogenes was added when most of it was consumed by A. 

godoyi. The titer at the stationary phase was 1.875x106 cells/ml.  

 We harvested protist cells when all bacteria were consumed.  The culture was 

centrifuged in a GSA rotor at 8,000 g for 20 min at 4 °C. The supernatant was discarded, 

and the pellet resuspended in 1 ml of WCL medium. Then, the cells were centrifuged at 

7969 g for 3 min and the supernatant discarded. The cells were resuspended in 1% DMSO 

and stored at – 80 °C until their utilization.  

 

3.2  Sucrose gradient purification of the small subunit of the mitoribosome (mt-

SSU ribosome) 

 

We tested four cell-lysis buffers with different ratios of monovalent to divalent ion 

concentrations (appendixes 8.2.9 to 8.2.16) (93). Then, we selected the buffer A because it 

produced the lowest degree of mt-rRNA degradation. 

 Andalucia cells were resuspended in one volume of homogenization buffer A and 

lysed with two volumes of lysis buffer A, 1X EDTA-free protease inhibitor, and 

SUPERase·In™ (4 U/μL) to inhibit the degradation of the mt-rRNAs.  The homogenate 

was mixed and then incubated on ice for 5 min followed by centrifugation at 18,000 g for 

10 min. The supernatant was loaded on top of a 5 ml 15-40 % sucrose gradient and 

centrifuged at 45,900 rpm for 3 h at 4°C using an AH-650 swinging-bucket rotor. Gradient 

fractions of 250 μL were collected using a micropipette from the top.  

The mt-SSU ribosome of A. godoyi is present in the gradient fractions enriched in 

mt-SSU-rRNAs because intact ribosomes contain r-proteins bound to rRNAs. RNA was 

extracted from every sucrose gradient fraction to analyze the migration pattern of mt-

rRNAs. We added 5 sample volumes of homemade trizol substitute and vortexed for 15 

sec followed by 5 min of incubation at room temperature (94). Then, we added the 
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equivalent of one sample volume of chloroform and shacked vigorously for 30 sec followed 

by 5 min of incubation at room temperature. Subsequently, the samples were centrifuged 

at 20,000 g for 15 min at 4 °C and the upper aqueous phase was collected. 3 µl of glycogen 

(5 mg/ml) and 1.1 sample volumes of isopropanol were added followed by incubation for 

40 min at 4 °C. Subsequently, the samples were centrifuged at 20,000 g for 15 min at 4 °C 

and the isopropanol was discarded. 200 µl of cold 70% ethanol were added and the sample 

centrifuged at 20,000 g for 10 min at 4 °C. Then, the 70% ethanol was discarded, and the 

RNA pellet was resuspended in 5 µl of DEPC-treated H2O.  

 Every RNA sample was mixed with one sample volume of Thermo Scientific 2X 

RNA Loading Dye followed by incubation for 8 min at 80 °C and run at 110 mV in a 1 % 

agarose gel in 0.5x TBE. The run was stopped once the blue color of the loading dye was 

positioned 2.5 cm before the gel end. We used total RNA extracted from whole cells of A. 

godoyi as a positive control of mt-rRNA and cytoplasmic rRNA (cyt-rRNA), and total 

RNA extracted from Enterobacter as a control of contamination with bacterial rRNA. 

 We used the RNase-free DNase I from Roche® to digest the total RNA extracted 

from every sucrose gradient fraction. Briefly, 5 µl of total RNA were mixed with 5 µl of 

1X reaction buffer, and 5 units of DNase I in a total volume of 50 µl followed by incubation 

at 37 °C for 30 min. Trizol RNA extraction was performed to remove the enzyme.  

We utilized the avian myeloblastosis virus (AMV) reverse transcriptase from Roche 

to synthesize cDNA using rRNAs as a template. 0.8 µl of the above RNA sample were 

mixed with 0.5 µl of each 10 mM primer, and 1 mM of each dNTP followed by incubation 

at 80 °C for 2 min. Then, 1X of the reverse transcriptase buffer and one unit of the reverse 

transcriptase enzyme were added in a final volume of 10 µl followed by 1 h of incubation 

at 42 °C. Different primers were used to PCR-amplify each one of the ribosomal rRNAs in 

A. godoyi and E. aerogenes (table 2 and appendix 8.3).  
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Table 2. Primers used for RT of rRNAs (see the appendix 8.3). 

Organism Amplicon a Ribosome type Primer 

A. godoyi mt-SSU-rRNA Mitoribosome ag06 

A. godoyi mt-LSU-rRNA Mitoribosome ag02 

E. aerogenes 16S bt-rRNA Bacterial ribosome ag06 

E. aerogenes 23S bt-rRNA Bacterial ribosome ag02 

A. godoyi SSU-cyt-rRNA Cytosolic ribosome NS5 

     a mt, mitochondrial; bt, bacterial; cyt, cytosolic; rRNA, ribosomal RNA. 

 

 We used the Q5® High-Fidelity DNA Polymerase set from New England Biolabs 

and followed the guidelines of the supplier. Briefly, 0.25 μl of the cDNA were mixed with 

0.2 mM of each dNTP, 0.5 mM of each primer, 1X Q5 buffer, and 0.05 μl of Q5 DNA 

Polymerase (2000 units/ ml). The annealing temperature was calculated with the Tm 

calculator v1.9.7 from the website of New England Biolabs 

[https://tmcalculator.neb.com/#!/main], as 2X (A or T) + 4X (C or G) -5 °C. We used 

different primer pairs and number of PCR cycles to amplify the cDNA synthesised from 

different rRNA types (table 3 and appendix 8.3). The thermal cycles were: 98 °C for 2 min, 

98 °C for 10 sec, annealing temperature for 10 sec, 72 °C for 15 sec, go to step 2 (98 °C 

for 10 sec), 72 °C for 2 min, and 4 °C forever. 

 

Table 3. Primers pairs and number of cycles used to amplify rRNAs. 

Amplicon Primer pairs b Annealing 

temperature 

PCR 

cycles 

A. godoyi mt-LSU-rRNA  ag01 + ag02 63 °C 22 

A. godoyi mt-SSU-rRNA ag05 + ag06 68 °C 15 

E. aerogenes 16S bt-rRNA ag06 + eb04 68 °C 15 

E. aerogenes 23S bt-rRNA ag02 + eb01 66 °C 22 

A. godoyi cyt-SSU-rRNA NS5fwd + BMB-C-

rev 

70 °C 18 

a mt, mitochondrial; bt, bacterial; cyt, cytosolic; rRNA, ribosomal RNA. 

b for primer sequences, see Appendix 8.3. 
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3.3  Validation of the enrichment of the mt-SSU-rRNA  

 

3.3.1 RNA quantification  

We performed Northern Blot analysis of mt-rRNAs in order to quantify the 

enrichment of the mitoribosome subunits in sucrose gradient fractions. The RNA extracted 

from each sucrose gradient fraction was quantified in a NanoDrop machine before the 

electrophoretic separation of RNAs (table 4).  

 

Table 4. RNA quantification of samples used in Northern blot. 

Sample a ng / µl A260/A280 b A260/A230 c 

Enterobacter total RNA (R1) 1179 1.864 0.876 

Andalucia total RNA (R2) 1118 1.816 0.683 

Andalucia total RNA (R3) 1563 1.899 0.900 

A 280 1.371 0.272 

B 106 1.485 0.238 

C 91.3 1.621 0.178 

D 177 0.220 1.569 

E 414 1.401 0.239 

F 928 1.951 0.557 

G 1021 1.315 0.275 

H 270 1.737 0.289 

a A, gradient fractions 1-2 (see figure 9); B, 3-4; C, 5-6; D, 7-8; E, 9-10; F, 11-12; G, 13-14; 

H, 15-16. 

b A260/A280, Nucleic Acid 260/280 ratio calculated by dividing the absorbance of the 

sample at 260 nm between the absorbance at 280 nm.  

c A260/A280, Nucleic Acid 280/260 ratio calculated by dividing the absorbance of the 

sample at 280 nm between the absorbance at 260 nm. 

 

3.3.2 Electrophoretic separation of rRNAs 

We conducted  electrophoresis with the TT buffer (see appendix 8.2.18 for the 

composition) that was shown to improve the separation of long rRNAs (95). 4 µl of each 

RNA sample were mixed with 50% formamide, 1X of the TT buffer, 0.5 mM EDTA, and 
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0.02% bromophenol blue in a final volume of 8.5 µl followed by denaturation at 70 °C for 

5 min. Subsequently, the samples were placed on ice and formaldehyde was added to a 

final concentration of 0.4 M. The samples were run at 6 V/cm in a 2 % agarose gel and a 

buffer containing 1.1% formamide and 1X TT buffer until the loading dye was positioned 

2.5 cm before the gel end.  

 

3.3.3 Radiolabelling of probes 

 

We used the DNA probe ag03 for selectively highlighting the mt-SSU-rRNA, eb03 for 23S 

bt-rRNA, ag04 for mt-LSU-rRNA, and eb02 for bt-rRNA (table 5 and appendix 8.4). The 

oligonucleotides were radioactively labeled at their 5-prime end. For that, 2.5 μM of the 

oligonucleotide were mixed with 1X of the polynucleotide kinase (PNK) buffer, 2.5 of 

µCi/µl 6000 Ci/mmol [γ-32P]-ATP, and 0.5 U/μl of the T4 PNK in a final volume of 20 μl 

followed by incubation for 45 min at 37 °C. Then, the enzyme was inactivated at 65 °C for 

20 min. The unincorporated radioactive label was removed using NucAway™ Spin 

Columns according to the manufacturer’s instructions.  

 

 

3.3.4 Northern blot hybridization  

The agarose gel was rinsed in DEPC-treated H2O for 1 h and then soaked in 10X SSC 

transfer buffer. The nylon membrane was first saturated with milli-Q H2O and then with 

10X SSC buffer. We let RNA to transfer to the nylon membrane overnight in the Northern 

blot apparatus, and then we dried it at room temperature for a couple of min and marked 

the orientation of the membrane with a soft pencil. Subsequently, the membrane was dried 

for 2 h at 80 °C.  

We qualitatively estimated the transfer efficiency by subtracting the RNA amount 

remaining in the agarose gel from the RNA amount that was loaded. The agarose gel was 

stained with 2.5 µl of ethidium bromide (10 mg/ml) while gently shaking for 15 min in 250 
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ml of 1X TT buffer. The picture was taken in a UV trans-illuminator to estimate the transfer 

efficiency. 

 

Table 5. Probes used for Northern blot of rRNAs (see appendix 8.4). 

Amplicon Probe Tm °C 

mt-SSU-rRNA ag03 59.7 

mt-LSU-rRNA  ag04 61.4 

16S bt-rRNA  eb02 62.5 

23S bt-rRNA eb03 64.4 

          *; mt, mitochondrial; bt, bacterial; rRNA, ribosomal RNA. 

  

 The nylon membrane was incubated with I) 2X SSC buffer for a moment at room 

temperature, II) pre-hybridization solution for a moment at room temperature, III) pre-

hybridization solution for 45 min at 65 °C.  

10 µL of the labeled probe were mixed with 90 µL of distilled H2O and denatured 

at 95 °C for 5 min followed by cooling on ice for 2 min. The DNA probes were added to 

the hybridization solution and hybridized overnight with the nylon membrane at the Tm of 

the DNA probes minus 5 to 10 °C (see table 5). Subsequently, the nylon membrane was 

incubated with I) 2X SSC and 0.1% SDS at room temperature for a moment, II) a volume 

of 2X SSC and 0.1% SDS equivalent to 3-5 volumes of the Pre-hybridization solution for 

5 min at room temperature, III) a volume of 2X SSC and 0.1% SDS equivalent to 3-5 

volumes of the Pre-hybridization solution for 15 min at the Tm of DNA probes minus 10 

to 15 °C,  IV) the step III was repeated.   

Thereafter, the membrane was dried for 5 min at room temperature, wrapped in a 

plastic bag, exposed onto a phosphorimager-type screen (Imaging Screen-K; Kodak), and 

scanned after an exposure of several hours using Molecular Imager FX™ (BioRad).  
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3.3.5 SDS-PAGE of mitoribosome proteins (mito-r-proteins) 

 

The samples were incubated in 0.1 M DTT, 1X SDS-PAGE loading buffer, and DEPC-

treated H2O at 95 °C for 5 min and run in a 18% SDS-PAGE at 80 mV until the dye was 

positioned 1 cm before the gel end. The SDS-PAGE was stained for 1 h using Coomassie 

Brilliant Blue G-250 in 45% methanol and 10% acetic acid while gently shaking. 

Subsequently, it was first incubated for 1 h with distaining solution while gently shaking 

and then overnight with the same solution. Finally, it was washed with milli-Q H2O and 

the picture was taken using the Gel Doc™ EZ system. 

 

3.4  Mass spectrometry analysis   

 

Samples were concentrated as follows: We loaded fractions enriched in the mt-SSU 

ribosome on a 10-kDa Amicon® Ultra-0.5 centrifugal filter (Millipore Sigma) and 

performed centrifugation at 14,000 g for 30 min at 4 °C. The mito-r-proteins remained in 

the column and the eluate was discarded. The centrifugation in the Amicon® Ultra-0.5 

filter unit was repeated until the entire sample was concentrated into 65 µL. Then, the 

column was placed upside down in a new centrifugation tube and the concentrated mito-r-

proteins were recovered by centrifugation at 1,000 g for 2 min at 4 °C.  

Proteins were precipitated as follows: The concentrated mito-r-proteins were mixed 

with UA buffer (for the buffer composition, see appendix 8.2.28) to a final concentration 

of 6M urea, and loaded on top of a 3-kDa Amicon® Ultra-0.5 centrifugal filter unit 

followed by centrifugation at 14,000 g until obtaining a sample volume of 100 μl. Then, 

the sample was mixed with 50 μl of distilled H2O and 250 μl of UA buffer followed by 

centrifugation at 14,000 g until obtaining a sample volume of 100 μl. Afterwards, the 

sample was mixed with 100 μl of distilled H2O and 200 μl of UA buffer followed by 

centrifugation at 14,000 g until obtaining a sample volume of 100 μl. Finally, the column 

was placed upside down in a new centrifugation tube and the concentrated mito-r-proteins 

were recovered by centrifugation at 1,000 g for 2 min at 4 °C.  
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 Prior to submission to the MS analysis, we quantified the proteins by the Bradford 

method using a calibration curve of bovine serum albumin (BSA) (table 6 and figure 8). 1 

µl of denatured proteins were mixed with 160 µl of Bio-Rad Protein Assay Dye Reagent, 

and 640 µl of milli-Q H2O followed by incubation for 5 min at room temperature. The 

absorbance was measured at 595 nm.  

 

Table 6. BSA standards used in the linear regression analysis for protein 

quantification. 

1 µg/µl BSA  1 2 3 4 5 

Abs at 595 nm 0,0695 0,1585 0,1826 0,2417 0,2641 

 

 

Figure 8. Linear regression analysis performed for protein quantification. *; Y, 

absorbance at 595 nm; X, µg of BSA; R2, R squared value. 

 

In-solution trypsin digestion and LC-MS/MS analysis of the peptide mixture were 

performed at the proteomics platform of the IRCM (Institut de recherches cliniques de 

Montréal). 
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3.5  Sequence analysis   

 

MS/MS samples were analyzed with MaxQuant v1.6.1.0 software using the custom 

database of A. godoyi proteins (based on the predicted mitochondrial and nuclear genes), 

assuming trypsin as the digestion enzyme (96). Spectra were searched with a fragment ion 

mass tolerance of 0.5 Da and a precursor ion tolerance of 20 ppm. Carbamidomethyl of 

cysteine was specified as a fixed modification. Oxidation of methionine, deamidation of 

asparagine or glutamine, phosphorylation of serine, threonine or tyrosine, and conversion 

of glutamine to pyrrolidonecarboxylic acid (PCA) were specified as variable 

modifications. Five or less per-peptide modifications were allowed. Minimum and 

maximum peptide lengths were set to 7 and 25 amino acid residues, respectively, with the 

molecular weight range from 700 to 4,600 Da. False discovery rate (FDR) for peptide-

spectrum matches (PSMs) was set to 1%. As positive protein identifications were 

considered those for which at least one unique peptide could be assigned with a minimum 

identification probability above the calculated 1% FDR (false discovery rate).  

 

4. RESULTS  

 

The main objectives of this work were the prediction of the composition of A. godoyi 

mitoribosome using its genomic sequences, experimental characterization of the protein 

composition in its mt-SSU ribosome, and comparison against its counterpart’s composition 

in the model organisms discussed above.  

 

4.1 Sucrose gradient purification of the A. godoyi small subunit mitoribosome 

 

 We estimated the enrichment of the small subunit of the mitoribosome (mt-SSU 

ribosome) based on the quantification of mt-SSU-rRNA in gradient fractions containing 

protein complexes, because free rRNA does not enter sucrose layers of concentration 
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superior to 10%. To analyze the enrichment of mt-SSU-rRNA bound to mito-r-proteins, 

RNA from the gradient fractions was extracted and migrated (see section 3.2).  

The jakobid mitochondria is physically associated with other subcellular structures 

and there are not standardized protocols for its purification (87). Since preliminary 

purification experiments in our research group showed low yields of mitochondria, we 

chose to use the sucrose gradient ultracentrifugation to purify the mt-SSU ribosome of A. 

godoyi directly from the whole-cell lysates.  

The agarose gel in figure 9 shows the RNA profile across the various sucrose 

gradient fractions. A. godoyi mt-SSU-rRNA (1588 nt) migrates indeed slightly above 1,500 

nt, and it is observed in all pooled fractions. The enrichment of mt-SSU-rRNA starts in 

pool C, with nearly no other RNA species visible. In contrast, the yield is highest in pools 

F and G, which contain approximately equimolar quantities or even more of cytosolic 

rRNAs and mt-LSU-rRNA.   

 

 

Figure 9. RNA extracted from fractions of a 5 ml 15-40% sucrose 

gradient. Every two subsequent fractions were pooled. *; mt, 

mitochondrial; C1, total RNA from E. aerogenes; C2, total RNA from 

A. godoyi; A, fractions 1-2; B, 3-4; C, 5-6; D, 7-8; E, 9-10; F, 11-12; 

G, 13-14; H, 15-16; I, 17-18. 

  

Since A. godoyi uses bacteria as a food source, we analyzed the presence of the 16S 

bt-rRNA to rule out contamination from bacterial ribosomes. The 16S bt-rRNA (1533 nt) 
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from the food bacterium has a very similar migration behaviour as A. godoyi mt-SSU-

rRNA. To unambiguously distinguish the two SSU-rRNAs, we performed PCR 

amplification with specific primers on selected unpooled sucrose-gradient fractions. Figure 

10 shows that contaminating SSU-rRNAs occur in fractions 8 and higher. The evidences 

of Figures 9 and 10 combined demonstrate that A. godoyi mt-SSU-rRNA is the purest in 

fractions 5 to 7.   

 

 

Figure 10. Amplification of SSU-rRNAs in single gradient fractions. Primers ag06 + ag05 were used 

for mt-SSU-rRNA, NS5-fwd + BMB-C-rev for cyt-SSU-rRNA, and ag06 + eb04 for 16S bt-rRNA (See 

appendix 8.3). *; M, marker; mt, mitochondrial; cyt, cytosolic; bt, bacterial. 7-10 individual gradient 

fractions. 

 

4.2 Validating the enrichment of A. godoyi mt-SSU-rRNA 

 

Northern hybridization served as the final validation of mt-SSU ribosome 

enrichment in sucrose gradient fractions. For that, we used RNA extracted from the pooled 

gradient fractions (see table 4) and probes specific for the 16S bt-rRNA, 23S bt-rRNA, mt-

SSU-rRNA, and the mt-LSU-rRNA (see the table 5 and the appendix 8.4). The fractions 5 

and 6 were enriched in the mt-SSU ribosome of A. godoyi (see section 4.1).  
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A strong signal for 16S bt-rRNA and 23S bt-rRNA was detected using the probes 

eb02 and eb03 in Enterobacter total RNA (figure 11). We detected a weak signal in 

Andalucia total RNA and in the heavier gradient fractions, which may be due to non-

specific cross hybridization of probes eb02 and eb03 with the cyt-rRNAs. Non-specific 

cross hybridization can be observed in the RNA marker as well. The gradient fractions 1-

12 were free from bacterial ribosomes because we did not detect any hybridization signal 

in the fraction pools A-F (figure 11).  

 

 

Figure 11. The enrichment of the 16S bt-rRNA and the 23S bt-rRNA was analyzed by 

Northern blot (see figure 9). The probes eb02 and eb03 were used for detection of 16S bt-

rRNA and 23S bt-rRNA, respectively (See appendix 8.4). R1, Enterobacter total RNA; R2-

R3, Andalucia total RNA; A-H, pooled gradient fractions (see the legend of the figure 9). 

 

A strong signal representing the mt-SSU-rRNA was detected using the probe ag03 

with Andalucia total RNA (figure 12). A weak non-specific cross hybridization can be 

detected in the RNA marker as well. We did not detect any hybridization signal in the 

fraction pools A-B. The mt-SSU ribosome is enriched in the pools C and D (fractions 5-8) 

because the peak of the mt-SSU-rRNA started at the fraction pool C and the strongest signal 

was detected in the pool D (figure 12). However, we chose only the pool C for the 

characterization of the mt-SSU ribosome to avoid contamination with Andalucia cyt-SSU-

rRNA contained in the gradient fraction 8 (pool D) (see figure 9). 
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Figure 12. The enrichment of the mt-SSU-rRNA was quantified by Northern blot (see figure 9). The 

probe ag03 was used for mt-SSU-rRNA detection (see appendix 8.4). R1, Enterobacter total RNA; R2-R3, 

Andalucia total RNA; A-H, gradient fraction pools (see the legend of the figure 9). 

 

A strong signal for the mt-LSU-rRNA was detected in Andalucia total RNA using 

the probe ag04 (figure 13), but not in fraction pools A-E. The upmost fraction containing 

the mt-LSU-rRNA is pool F and the strongest signal was detected in pool G (figure 13).  

 

 

Figure 13. The enrichment of the mt-LSU-rRNA was analyzed by Northern blot (see figure 9). 

The probe ag04 was used for 16S mt-rRNA detection (See appendix 8.4). R1, Enterobacter total RNA; 

R2-R3, Andalucia total RNA; A-H, gradient fraction pools (see the legend of the figure 9). 

 

We finally analysed the profile of protein bands in the gradient fractions 5-6 (see 

figure 9), which turned out to differ considerably from the profile in the whole-cell lysate 

(figure 14). Moreover, the protein concentration in these gradient fractions appears to be 

smaller than in the whole-cell lysate. We infer that the concentration of cytoplasmic 

proteins is lower in the gradient fractions where the mt-SSU ribosome is enriched.  
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Figure 14. Protein electrophoresis. M, protein marker; 1, whole-cell lysate of A. godoyi; 

2, proteins from fractions 5-6 (see figure 9). The grid of detected protein bands by the 

Image Lab™ software is shown on the right. 

 

4.3 Mass spectrometry analysis and comparison with predicted SSU mito-r-

proteins 

 

It is known that small polar proteins can be easily lost during the purification of ribosomes 

(97). Therefore, we compared the protein composition in the mt-SSU ribosome of A. 

godoyi in silico. 

 Michael W. Gray kindly provided the annotation of nucleus-encoded mito-r-

proteins of A. godoyi. Then, we compiled this protein set with previously annotated 

mitochondrion-encoded mito-r-proteins (15), strongly suggesting that Andalucia’s 

mitoribosome contains 69 mito-r-proteins, of which 28 belong to the mt-SSU ribosome and 

41 to the mt-LSU ribosome (table 7).  
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Table 7. Mito-r-proteins inferred from the A. godoyi 

nuclear and mitochondrial genome sequences. 

Small subunit (mt-SSU) Large subunit (mt-LSU) 

S1 S25 L1 L24 

S2 S29 L2 L25 

S3 S33 L3 L27 

S4 S35 L4 L28 

S5 Rsm22 L5 L29 

S6 Ppe1 L6 L31 

S7 Mrp10 L9 L32 

S8  L10 L33 

S9  L11 L34 

S10  L12 L35 

S11  L13 L36 

S12  L14 L38 

S13  L15 L40 

S14  L16 L41 

S15  L17 L43 

S16  L18 L45 

S17  L19 L46 

S18  L20 L49 

S19  L21 L53 

S21  L22 L54 

S23  L23  

   *; mito-r-proteins, mitoribosome proteins. 

 

Trypsin digestion and analysis by LC-MS/MS allowed detection of each mito-r-

protein predicted to be part of the mt-SSU ribosome of A. godoyi (table 8) with at least two 

unique peptides in the gradient fraction enriched with the mt-SSU ribosome. The only 

exceptions were S25 and Ppe1, for which, in this experiment, we did not detect peptides. 

Still, an earlier MS experiment performed on lysates of a subcellular fraction enriched in 

mitochondria reported multiple peptides of the S25 protein (though none for Ppe1). Table 

8 compares the sets of mito-r-proteins across different organism, employing  the unified 

nomenclature for mito-r-proteins proposed by (98).  



44 
 

Table 8. Proteins in the small subunit of the mitoribosome. 

New name a 

(98) 

Yeast 

(64, 72) 

Human 

(98) 

Bacteria 

(98)  

A. godoyi : 

genome-

sequence 

inferred 

A. godoyi : 

MS/MS 

Trypanosome 

(63, 66, 67) 

Leishmania 

(75) 

(63) 

Plant 

(99, 

100) 

bS1  - MRPS28 S1 S1 S1 - - - 

uS2    Mrp4 MRPS2 S2 S2 S2 b - - S2 

uS3    Var1? MRPS24 S3/S24 S3 S3 - - S3 

bS4   Nam9 - S4 S4 S4b - - S4 

uS5    Mrps5 MRPS5 S5 S5 S5b S5 S5 S5 

bS6    Mrp17 MRPS6 S6 S6 S6b S6 S6 S6 

uS7    Rsm7 MRPS7 S7 S7 S7 - - S7 

bS8   Mrps8 - S8 S8 S8b S8 S8 S8 

bS9    Mrps9 MRPS9 S9 S9 S9b S9 S9 S9 

uS10    Rsm10 MRPS10 S10 S10 S10b - - S10 

uS11    Mrps18 MRPS11 S11 S11 S11 S11 S11 S11 

uS12    Mrps12 MRPS12 S12 S12 S12 S12 - S12 

bS13  Sws2 - S13 S13 S13b - - S13 

uS14    Mrp2 MRPS14 S14 S14 S14b - - S14 

uS15    Mrps28 MRPS15 S15 S15 S15b S15 S15 S15 

bS16    Mrps16 MRPS16 S16 S16 S16b S16 S16 S16 

uS17    Mrps17 MRPS17 S17 S17 S17 S17 S17 - 

- - - - - - - - S17B 

- - - - - - - - S17C 

- - - - - - - - S17D 

mS18b   - MRPS18-2 S18 - - - - - 

bS18c    Rms18 MRPS18-1 S18 S18 S18 S18 S18 S18 

uS19 Rsm19 - S19 S19 S19b - - S19 

bS21    Mrp21 MRPS21 S21 S21 S21b - - - 

uS22  - MRPS22 S22 - - - - - 

uS23    Rsm25 MRPS23 S23 S23 S23b - - - 

mS25   Mrp49 MRPS25 - S25 S25c - - - 

mS26  - MRPS26 - - - - - - 

mS27   - MRPS27 - - - - - - 

mS29   Rsm23 MRPS29 - S29 S29b S29 S29 S29 

mS31  - MRPS31 - - - - - - 

mS33   Rsm27 MRPS33 - S33 S33b - - - 

mS34  - MRPS34 - - - S34 S34 - 

mS35   Rsm24 MRPS35 - S35 S35b - - - 

mS36   Ymr31 MRPS36 - - - - - - 

 

(Continues in the next page) 
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New name a Yeast Human Bacteria A. godoyi : 

genome-

sequence 

inferred 

A. godoyi : 

MS/MS 

Trypanosome 

 

Leishmania 

 

Plant 

 

mS37  - MRPS37 - - - - - - 

mS38  Cox24 MRPS38 - - - - - - 

mS39  - MRPS39 - - - - - - 

mS40   Rsm22 - - Rsm22 Rsm22 Rsm22 Rsm22 - 

mS41   Mrps35 - - - - - - - 

mS42   Mrp51 - - - - - - - 

mS43   Mrp13 - - - - - - - 

mS44  Mrp1 - - - - - - - 

mS45  Pet123 - - - - - - - 

mS46  Rsm26 - - - - - - - 

mS47  Mrp10 - - Mrp10 Mrp10 - - - 

mS48  Rsm28 - - - - - - - 

mS49  Ppe1 - - Ppe1 - Ppe1 Ppe1 - 

a The ribosome community proposed a unifying nomenclature for mito-r-proteins, which uses the prefix “b” for 

bacterial proteins that lack a eukaryotic or archaeal homolog, the prefix “u” for proteins observed in all 

kingdoms of life, and the prefix “m” for mitochondrion-specific proteins. Modified from (98). *; mito-r-

proteins, mitoribosome proteins                                                                                                                                

b Detected in the mtSSU-enriched fraction of the total cell lysate and in the mitochondrial lysate.                         

c Only detected in the mitochondrial lysate, but not in the mtSSU-enriched fraction.                                                                                   

 

The mt-SSU ribosome of A. godoyi is composed of at least 27 proteins (figure 15), 

a number which is larger than in the SSU of E. coli (21 proteins), but smaller than in the 

mt-SSU ribosome of S. cerevisiae (36 proteins), H. sapiens (31 proteins), T. brucei (58 

proteins), and L. tarantolae (20 proteins). Of these 27 proteins in the mt-SSU ribosome of 

A. godoyi, 21 are homologs of bacterial r-proteins (figure 16), which is more than in the 

mt-SSU ribosome of all model organism, notably S. cerevisiae (20 proteins), H. sapiens 

(18 proteins), A. thaliana (17 proteins), T. brucei (9 proteins), and L. tarantolae (10 

proteins). In turn, the number of eukaryote-specific mito-r-proteins in A. godoyi mt-SSU 

ribosome is six, which is smaller than in its counterparts from S. cerevisiae (16 proteins) 

and H. sapiens (13 proteins), but larger than in its counterparts in A. thaliana (one protein), 

and T. brucei and L. tarantolae (4 proteins) (figure 17). 
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Figure 15. Total number of proteins in the SSU of E. coli and the mt-SSU 

ribosome of select eukaryotes. *; SSU, small subunit of the ribosome; mt-SSU, 

small subunit of the mitoribosome. 

 

 

Figure 16. Number of bacterial homolog proteins in the mt-SSU ribosome 

of different organisms. *; mt-SSU, small subunit of the mitoribosome. 
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Figure 17. Number of eukaryotic-specific proteins in the mt-SSU ribosome of 

different organisms. *; mt-SSU, small subunit of the mitoribosome.  

 

4.4 Additional proteins detected in the mt-SSU ribosomal fraction of Andalucia 

godoyi 

 

As described above, we detected 27 bona-fide mito-r-proteins in our preparation of 

enriched Andalucia mt-SSU ribosome. In addition to these, the preparation contained also 

133 proteins annotated as “hypothetical proteins” in the database of genome-inferred 

Andalucia proteins. These hypothetical proteins had the same range of peptide coverage in 

MS/MS (i.e., 5 to 27) as the conserved mito-r-proteins, but did not share significant 

similarity with any known protein. It is currently uncertain, whether these proteins are 

indeed part of the mt-SSU ribosome or rather of another complex that fortuitously co-

sedimented with the former in sucrose gradient separation.  

 

 



48 
 

4.5 Tracing the evolutionary history of SSU mitoribosomal proteins in Discoba  

 

The mt-SSU ribosome of the last Bikont ancestor was predicted to possess 28 mito-

r-proteins and to have subsequently lost, S21, S23, S33, S35, S36, and Mrp10 during the 

diversification of the lineage that leads to the Discoba  (previously known as Excavata), 

leaving 22 mito-r-proteins at the basis of this clade (63). However, a new picture arose 

when the prediction of mito-r-proteins in the ancestor of Discoba was refined using the set 

of mito-r-proteins inferred from genome sequences of A. godoyi (analysis performed by 

MW. Gray; table 9). Now, the mt-SSU ribosome of this ancestor is predicted to have 

possessed the same mito-r-protein set as the Bikont ancestor with only one difference, 

notably S36, which was lost during the diversification of the linage leading to the Discoba. 

The mt-SSU ribosome of the ancestor of the latter contains fewer mito-r-proteins than its 

counterpart in the ancestor of animals (30 mito-r-proteins) and fungi (31 mito-r-proteins), 

which already possessed a significantly remodeled mt-SSU ribosome.  Mrp10 was likely 

lost in the branch that lead to non-jakobid groups of Discoba, as it is present in the mt-SSU 

ribosome of A. godoyi, but absent in the mt-SSU ribosome of other Discoba members.  

 

Table 9. Inference of the set of mito-r-proteins present in the mt-SSU ribosome of the last common ancestor of 

Discobaa. 

Nucleus-encoded Mitochondrion-encoded 

S5, S6, S9, S15, S16, S17, S18, S21, S23, 

S25, S29, S33, S34, S35, Rsm22, Mrp10 

S1, S2, S3, S4, S7, S8, S10, S11, S12, 

S13, S14, S19 

aNames of newly inferred proteins are underscored (MW. Gray, unpublished).  
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5. DISCUSSION  

 

The mitoribosome underwent drastic changes during eukaryotic evolution, featuring novel 

proteins and shortened rRNAs (59). Specifically, the small subunit of the mitoribosome 

(mt-SSU ribosome), which contains the mt-mRNA entrance channel, was extensively 

remodeled, apparently to adapt to the particularities of mitochondrial protein synthesis and 

mitochondrial mRNAs. To get insight into mt-SSU ribosome evolution, we analyzed the 

composition of this subunit from A. godoyi, a free-living jakobid that contains the most 

bacteria-like mitochondrial genome currently known (15, 85), which made us assume that 

the mitoribosome is less divergent compared to that of other eukaryotes.  

 

5.1 Technical challenges in the purification of A. godoyi mt-SSU ribosome 

 

This project was not without unexpected technical challenges. Obtaining enough cellular 

material was time consuming because A. godoyi has a replication time of 32-48 hr and 

reaches the stationary phase already at 1.875x106 cells/ml. Since the preliminary 

experiments in our research group showed that the yield of mitochondria is too small for 

the characterization of the Andalucia’s mitoribosome, we attempted purification of the 

mitoribosome from whole-cell lysates. However, the mt-LSU ribosome could not be 

separated from the cytosolic ribosome in sucrose gradient ultracentrifugation, and 

therefore, this subunit was not suited for further examination. In contrast, we succeeded to 

obtain by this method a fraction highly enriched in the mt-SSU ribosome that we 

investigated in detail.  

 

5.2 Identification and analysis of SSU mitoribosomal proteins from A. godoyi 

 

Mass spectrometry analysis of the enriched mt-SSU ribosome preparation identified nearly 

all of the mito-r-proteins predicted from the A. godoyi nuclear and mitochondrial genomes 
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(26 out of 28 mito-r-proteins) with the exception of S25 and Ppe1. S25, which was detected 

in MS analyses of whole mitochondrial lysates in a previous experiment in our research 

group is a mitochondrion-specific r-protein, which is located at the periphery of 

mammalian mitoribosomes (35). If S25 of Andalucia is also located at the periphery of the 

mitoribosome, this might explain why it has been lost during the purification procedure. 

The same phenomenon has been observed with the proteins S1 and L9 during the 

purification of bacterial ribosomes (97). The second missing protein, Ppe1, was 

traditionally thought to be a constituent of yeast mitoribosomes (79). As it has not been 

identified in the most recent structural studies, it is now thought to be only transiently 

associated with the mt-SSU ribosome (72). The same may apply to Ppe1 of A. godoyi, 

because it was not detected either in samples enriched in mt-SSU ribosomes or in whole 

mitochondrial lysates.  

Thus, in sum, we succeeded to validate experimentally 27 out of the 28 mito-r-

proteins, confirming that the mt-SSU ribosome of A. godoyi contains the most conserved 

core of mito-r-proteins currently known, harboring more bacterial homologs than its 

counterparts in yeast, mammals, kinetoplastids, and plants, and at the same time containing 

fewer mitochondrion-specific r-proteins than any other eukaryote studied so far.   

  

5.3 The composition of A. godoyi mt-SSU ribosome 

 

There is apparently no correlation between the size of mt-rRNAs and the number of mito-

r-proteins (59). Nonetheless, the sequence similarity of mt-rRNAs with bacterial rRNAs 

may be correlated with the number of bacterial-like r-proteins. For instance, Andalucia mt-

SSU-rRNA has a high degree of sequence similarity with E. coli 16S rRNA and possess 

more bacteria-like r-proteins than its mammalian counterpart. The same phenomenon has 

been observed, but to a lesser extent in the mt-SSU ribosome of yeast (72).  

The mt-SSU ribosome of A. godoyi appears to be at a more primitive stage in the 

evolutionary process of mito-r-proteins recruitment because its total protein number is 

smaller than that of other eukaryotes. However, as of now, we cannot discard the presence 
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of clade-specific mito-r-proteins in A. godoyi, since the structure of its mitoribosome has 

not been determined, which would allow to distinguish fortuitous proteins present in our 

preparation and genuinely novel components of this ribosome. 

 

5.4 Evolution of protein composition in the mt-SSU ribosome of Discoba  

 

The analysis of genomic sequences of A. godoyi allowed us to refine the predicted set of 

mito-r-proteins in the ancestor of Discoba. The linage that lead to the ancestor of Discoba 

may have split very rapidly from the Bikont ancestor because only the mito-r-protein S36 

was lost during this evolutionary transition. Then, the linage leading to jakobids probably 

remained evolutionary stagnant, whereas other clades within Discoba, most drastically 

exemplified by kinetoplastids, lost numerous homologs of bacterial r-proteins. The mt-SSU 

ribosome of Naegleria gruberi, another member of Discoba, did not lose as many 

homologs of bacterial mito-r-proteins as that of kinetoplastids, however it is not as 

conserved as its counterpart in A. godoyi (63). 

The mt-SSU ribosome of the ancestors of Archaeplastida and Discoba contains the 

same protein number (27 mito-r-proteins) and an almost identical mito-r-protein set. The 

only differences are S25 that is absent in the ancestor of Archaeplastida, and S26 that is 

absent in the ancestor of Discoba. Since the mt-SSU ribosome contains the mt-mRNA 

entrance channel that is required for translation initiation, both ancestors likely possessed 

a similar mechanism of mitochondrial translation initiation. Further, the mitochondria of 

both ancestors probably possessed similar target sequences for the recruitment of mt-

mRNAs to the mt-SSU ribosome, and a similar number and structure of initiation factors. 

Moreover, both ancestors likely had comparable mechanisms of translation initiation steps 

such as mt-mRNA recruitment, recognition of initiation triplets, recruitment of mt-tRNAs, 

and the association of both mitoribosome subunits.  
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6. OUTLOOK AND FUTURE WORK 

 

We confirmed experimentally the predicted protein composition of the A. godoyi mt-SSU 

ribosome and compared it with the protein composition of the bacterial SSU and the mt-

SSU ribosome of more divergent eukaryotes. Bacterial rRNAs have a higher base paring 

conservation of secondary, tertiary, and A-minor interaction sites than mt-rRNAs (59). In 

order to determine in how far the arrangement of proteins and rRNA in this ribosome 

deviates from bacteria on one side and model eukaryotes on the other, we need to determine 

the structure of the Andalucia mt-SSU ribosome, e.g., by cryo-Electron Microscopy (cryo-

EM) (101). However, a prerequisite to this approach is the establishment of protocols that 

allow the isolation of mitochondria in sufficient quantity and quality, which are currently 

not in place.  

  The functional innovation of mt-rRNAs could be studied through mutation or 

insertion of expansion segments in the mt-rRNA sequences. However, protocols for genetic 

manipulations are currently not available for any jakobid (15). 

 Although the global composition of Andalucia mt-SSU ribosome resembles its 

bacterial counterpart, it would be interesting to analyze if the individual mito-r-proteins 

themselves are more bacterial-like or eukaryotic-like. This can be achieved by comparing 

the sequence similarity and the functional domains of each protein in the Andalucia mt-

SSU ribosome with its bacterial and eukaryotic counterparts. Moreover, the degree of 

hydrophobicity and the PI of each mito-r-protein could be compared with their values in 

counterparts from other organisms.  

Another interesting avenue would be to identify nucleotide modifications of 

Andalucia mt-SSU-rRNA. In particular, it has been shown in model organisms that 

methylation at specific rRNA positions is required for the assembly and stability of the 

mitoribosome. Rsm22, which is associated with the ribosomal SSU, seems to catalyze this 

reaction (102-104).  

To assess ribosome remodelling during eukaryotic evolution, we could employ an 

in silico approach, whereby N- and C-terminal extensions of mito-r-proteins will be 
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identified to compare their sizes across different organisms. These extensions are believed 

to have allowed deletions to different degrees in several segments of the mt-rRNAs. We 

expect that the size of N- and C- terminal extensions in conserved proteins of the mt-SSU 

ribosome of A. godoyi is smaller than that of their homologs in the mt-SSU ribosome of 

highly diverged eukaryotes.  

Another aspect worth examining is the degree of protein interconnectivity in the 

mitoribosome. The mammalians mito-r-proteins S6, S16, S18, S25, L10, and L66 possess 

zinc-binding motifs involved in protein interconnectivity. On the other hand, the bacterial 

homologs of these proteins lack zinc-binding motifs, and the overall number of these motifs 

in the E. coli ribosome is smaller compared to the mammalian mitoribosome (105). The 

identification of zinc binding motifs in mito-r-proteins would allow to test the hypothesis 

that the structure of Andalucia’s mitoribosome has a lesser degree of protein 

interconnectivity compared to the mitoribosome of more divergent eukaryotes. 

In addition to the shared set of eukaryotic-specific mito-r-proteins, the 

mitoribosomes of S. cerevisiae, H. sapiens, T. brucei, and L. tarantolae contain several 

organism-specific mito-r-proteins. The mt-SSU ribosome preparation from A. godoyi also 

contains several additional proteins that do not share significant similarity with any known 

ribosomal protein. Highly sensitive in silico analysis will be required such as searches with 

profile Hidden Markov Models to assess the potential of these components to constitute 

indeed unique components of the Andalucia’s mitoribosome (106). Moreover, 

computational prediction of mitochondrial import signals and experiments to test protein 

import into isolated yeast mitochondria could corroborate mitochondrial localization (107, 

108). Furthermore, we could study the regulation of the mitoribosome composition by 

analysing the mt-SSU ribosome of Andalucia cultivated under stress or perturbation 

conditions that alter mitochondrial translation. Such experiments will most likely allow 

refining the list of potential novel mito-r-proteins.  

 Finally, we need to determine if the features of the Andalucia mitoribosomal SSU 

are indeed (as we assumed throughout this thesis) shared by all jakobids or are specific 

characteristics of A. godoyi. While the former view is corroborated by preliminary analyses 
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of genome sequences from several Jakoba and Reclinomonas species, a comprehensive 

comparison is needed to give a definitive answer. 

Traditionally, the evolution of the mitoribosome has been investigated by 

comparing the composition of bacterial ribosomes with the mitoribosome composition of 

highly diverged eukaryotes such as mammals and yeast. Our work is an attempt to 

characterize mitoribosomes from more primitive eukaryotes, and therefore could help us 

to refine our understanding of the early and intermediate stages in the evolution of the 

mitochondrial translation machinery.  
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8.  APPENDICES   

 

8.1 Materials 

 

Yeast Extract  

Bacto Tryptone  

NaCl 

NaOH 

AGAR 

Glycerol 50 %  

H₂O 

CuSO4X5H₂O 

ZnSO4X7H₂O 

CoCl2X6H₂O 

MnCl2X4H₂O 

NaMoO4X2H₂O 

Biotin  

B12 

Thiamine HCL  

HEPES  

http://www.els.net/WileyCDA/ElsArticle/refId-a0002617.html
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CaCl2X2H₂O 

MgSO4X7H₂O 

DMSO  

Liquid nitrogen  

SDS  

Ice 

DEPC-treated  H2O 

Sucrose 

Tris-HCL 

MgCl2 

Tris 

DTT 

EDTA  

SUPERase·In™ 

EDTA-free protease inhibitor 

Trizol 

Chloroform 

Ambion glycogen  

Isopropanol  

70 % ethanol 

Agarose 

Ethidium bromide   

Thermo Scientific RNA Gel Loading Dye (2X) 
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Boric acid 

Acrylimide  

TEMED  

Ammonium persulfate (APS)  

Glycine  

Methanol  

Acetic acid  

Coomassie Brilliant Blue G-250  

Milli-Q H2O  

Avian myeloblastosis virus (AMV) reverse transcriptase 

Avian myeloblastosis virus (AMV) reverse transcriptase 5X buffer 

dNTPs 

Q5® High-Fidelity DNA Polymerase set 

Formamide  

Tricine 

Triethanolamine  

Formamide  

Formaldehyde 

Bromophenol blue  

Na3-citrate 

NH4Cl 
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8.2 Solutions and buffers 

 

8.2.1 Solid LB 

 

Component Composition in 200 ml 

Bacto™ Tryptone 2 g 

Yeast extract 1 g 

NaCl 10 g 

1N NaOH 3 ml 

Agar 3 g 

50 % Glycerol 4.5 ml 

 

Adjust pH to 7.5 with 1N NaOH. Complete the volume to 200 ml and autoclave.  

 

8.2.2 Liquid LB 

 

Component Composition in 200 ml 

Bacto™ Tryptone 2 g 

Yeast extract 1 g 

NaCl 10 g 

1N NaOH 3 ml 

 

Adjust pH to 7.5 with 1N NaOH. Complete the volume to 200 ml and autoclave.  
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8.2.3 Trace elements  

 

Stock solution Volume added in a 

final 1 L medium 

Final concentration 

CuSO4X5H2O (0.98 g/100 ml) 1 ml 0.0098 mg/L 

ZnSO4X7H2O (2.20 g/100 ml) 1 ml 0.0220 mg/L 

CoCl2X6H2O (1.0 g/100 ml) 1 ml 0.0100 mg/L 

MnCl2X4H2O (1.8 g/100 ml) 1 ml 0.0180 mg/L 

NaMoO4X2H2O (0.63 g/100 ml) 1 ml 0.0063 mg/L 

 

Complete the volume to 1 L and autoclave.  

 

8.2.4 1000X Vitamins  

 

Component Composition in 100 ml Final concentration 

Biotin 0.1 mg 0.001 mg/L 

B12 1.1 mg 0.011 mg/L 

Thiamine HCL 20 mg 0.200 mg/L 

 

Complete the volume to 100 ml. Filter in a 0.22 μm membrane.  
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8.2.5 1000X Trace elements 

 

Component Final concentration 

NaNO3 75 g/L 

NaHCO3 12.6 g/L 

H3BO3 6 g/L 

KCL 7.45 g/L 

NaH2PO4XH20 5 g/L 

NH4Cl 2.65 g/L 

 

 

8.2.6 WCL medium for protists  

 

Component Volume added in 1 L   Final concentration 

1M HEPES pH 7.5 10 ml 10 mM 

CaCl2X2H2O (36.76 g/L) 1 ml 36.6 mg/L 

MgSO4X7H2O (36.97 g/L) 1 ml 36.97 mg/L 

1000X Trace elements 1 ml 1X 

1000X Vitamins 1 ml  1X 

 

Complete the volume to 1 L with previously autoclaved distilled H2O. 
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8.2.7 40% (w/w) sucrose gradient buffer   

 

Component Composition for one sample Final concentration 

50% Sucrose 3.2 ml 40 % 

1M Tris-HCL 20 μL 5 mM 

1M MgCl2 4 μL 1 mM 

1M DTT 4 μL 1 mM 

0.5 M EDTA 1 μL 0.125 mM 

DEPC-treated H2O  0.771 ml - 

 

8.2.8 15% (w/w) sucrose gradient buffer  

 

Component Composition for one sample Final concentration 

50% Sucrose 0.72 ml 15 % 

1M Tris-HCL 12 μL 5 mM 

1M MgCl2 2.4 μL 1 mM 

1M DTT 2.4 μL 1 mM 

0.5 M EDTA 0.6 μL 0.125 mM 

DEPC-treated H2O  1.6626 ml - 

 

8.2.9 Homogenization buffer A 

 

Component 

5 mM Tris-HCL 

1 mM MgCl2 

1 mM DTT 

0.25 mM EDTA 
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8.2.10 Homogenization buffer B  

 

Component 

10 mM Tris-HCL 

10 mM MgCl2 

1mM DTT 

1 mM EDTA 

 

 

8.2.11 Homogenization buffer C  

 

Component 

100 mM Tris-HCL 

5 mM MgCl2 

50 mM NH4Cl 

1 mM DTT 

 

 

8.2.12 Homogenization buffer D  

 

Component 

20 mM Tris-HCL 

10 mM MgCl2 

30 mM NH4Cl 

1 mM DTT 

 

 

 

 

 

 



68 
 

8.2.13 Lysis buffer A  

 

Component 

5 mM Tris-HCL 

1 mM MgCl2 

1 mM DTT 

0.25 mM EDTA 

2% Triton 

 

8.2.14 Lysis buffer B 

 

Component 

10 mM Tris-HCL 

10 mM MgCl2 

1mM DTT 

1 mM EDTA 

2% Triton 

 

8.2.15 Lysis buffer C 

 

Component 

100 mM Tris-HCL 

5 mM MgCl2 

50 mM NH4Cl 

1 mM DTT 

2% Triton 
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8.2.16 Lysis buffer D  

 

Component 

20 mM Tris-HCL 

10 mM MgCl2 

30 mM NH4Cl 

1 mM DTT 

2% Triton 

 

 

8.2.17 5X TBE   

 

Component Composition in 4 L Final concentration 

EDTA 0.5 M 80 ml 0.01 mM 

Boric acid powder 110 g 27.5 g/L 

Tris powder 216 g 54 g/L 

 

Complete volume to 4 L.  

 

8.2.18 50X TT 

 

Component Composition in 4 L Final concentration 

99% Tricine 31.93 g 7.98 g/L 

99% Triethanolamine 26.6 ml 6.58% 

 

Complete volume to 4 L. 
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8.2.19 1 % Agarose gel  

 

Component Composition in 70 ml Final concentration 

Agarose 0.7 g 0.01 g/ml 

Ethidium bromide (10 

mg/ml) 

1.75 µl 0.25 mg/ml 

 

Complete volume to 70 ml with 0.5 X TBE.  

 

8.2.20 2 % Agarose gel  

 

Component Composition in 70 ml Final concentration 

Agarose 1.4 g 0.02 g/ml 

Ethidium bromide (10 

mg/ml) 

1.75 µl 0.25 mg/ml 

 

Complete volume to 70 ml with 0.5 X TBE.  

 

8.2.21 2% Agarose gel with Formaldehyde  

 

Component Composition in 100 ml Final concentration 

Agarose 2 g 0.02 g/ml 

37 % Formaldehyde 3 ml 1.11 % 

50X TT 2 ml 1X 

 

Complete the volume 100 ml with distilled H2O. 
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8.2.22 SDS-PAGE gel  

• 4 % Stacking gel  

 

Component Composition in 5 ml Final concentration 

49.5 % Acrylimide 0.39 ml 3.82 % 

Tris-HCL 1M pH 6.8 0.625 ml 123.64 mM 

10% SDS 50 μL 0.1 % 

TEMED 5 μL 0.01% 

10% Ammonium persulfate (APS) 50 μL 0.1 % 

H2O 3.935 ml - 

 

• 18 % Separation gel  

 

Component Composition in  

10 ml 

Final concentration 

49.5 % Acrylimide 3.564 ml 17.64 % 

Tris-HCL 1M pH 6.8 2.5 ml 250 mM 

10% SDS 100 μL 0.1 % 

TEMED 10 μL 0.1 % 

10% Ammonium persulfate (APS) 32 μL 0.32 % 

H2O 3.794 ml - 
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8.2.23 5X SDS-PAGE loading buffer 

 

Composition 

0.313 M Tris pH 6.8  

10 % SDS 

0.05% BPB 

0.65M DTT 

50% Glycerol  

 

8.2.24 5X Tris-Glycine SDS-PAGE running buffer  

 

Component Composition in 1 L Final concentration 

125 mM Tris pH 8.3 125 mL 15.63 mM 

760 mM glycine 72.06 g 69.18 mM 

0.5 % SDS 50 mL 0.025 % 

 

Complete volume to 1 L.  

 

8.2.25 Protein fixation solution  

 

Composition 

50 % Methanol 

7 % acetic acid 
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8.2.26 Distaining solution  

 

Composition 

10 % Methanol 

7 % acetic acid 

 

8.2.27 20X SSC 

 

Composition in 1 L Final concentration 

175.3 g NaCl 3M 

88.2 g Na3-citrate 342 mM 

800 ml H₂O - 

 

Adjust pH to 7.0 and volume to 1 L. Then, autoclave it.  

 

 

8.2.28 UA buffer 

 

Composition 

8M urea 

0.1M Tris-HCl pH 8.5 
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8.3 Primers used in RT-PCR 

 

➢ ag01 (mt-LSU-rRNA, forward): 

TCTAATGGGAATTTGACGAACAC 

➢ ag02 (mt-LSU-rRNA, reverse; 23S bt-rRNA, reverse): 

TCGCTACCTTAGGACCGTTA 

➢ ag05 (mt-SSU-rRNA, forward): 

AGAAGGGTGATGGTTTGACAGG 

➢ ag06 (mt-SSU-rRNA, reverse; 16S bt-rRNA, reverse):  

TGGTGTGACGGGCGGTGT 

➢ eb01 23S (23S bt-rRNA, forward): 

CTGAGGTGTGATGACGAGGC 

➢ eb04 (16S bt-rRNA, forward): 

CCTTCGGGAACTCTGAGACAG 

➢ NS5fwd (cyt-SSU-rRNA, forward): 

GACGGAAGGGCACCACC 

➢ BMB-C-rev (cyt-SSU-rRNA, reverse): 

CGACGGGCGGTGTGTAC 

 

8.4 Probes used in Northern blot  

 

➢ ag03: (12S mt-SSU-rRNA): 

TGTCAAACCATCACCCTTCTTCTCTCAAA 

➢ ag04 (mt-LSU-rRNA): 

CCCAATTCTGTGCCGCCTATGAAACA 

➢ eb02 (16S bt-rRNA):  

GTCTCAGAGTTCCCGAAGGCACCAA  

➢ eb03: (23S bt-rRNA): 

TGCCTCGTCATCACACCTCAGCGT  


