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Résumé 

Il est difficile d'imaginer des entreprises modernes sans analyse, c'est une tendance dans 

les entreprises modernes, même les petites entreprises et les entrepreneurs individuels 

commencent à utiliser des outils d'analyse d'une manière ou d'une autre pour leur entreprise. Pas 

étonnant qu'il existe un grand nombre d'outils différents pour les différents domaines, ils varient 

dans le but de simples statistiques d'amis et de visites pour votre page Facebook à grands et 

sophistiqués dans le cas des systèmes conçus pour les grandes entreprises, ils pourraient être 

shareware ou payés. Parfois, vous devez passer une formation spéciale, être un spécialiste 

certifiés, ou même avoir un diplôme afin d'être en mesure d'utiliser l'outil d'analyse. D'autres 

outils offrent une interface d’utilisateur simple, avec des tableaux de bord, pour satisfaire leur 

compréhension d’information pour tous ceux qui les ont vus pour la première fois. Ce travail 

sera consacré aux outils d'analyse Web. Quoi qu'il en soit pour tous ceux qui pensent à utiliser 

l'analyse pour ses propres besoins se pose une question: "quel outil doit je utiliser, qui convient 

à mes besoins, et comment payer moins et obtenir un gain maximum". Dans ce travail je vais 

essayer de donner une réponse sur cette question en proposant le système de recommandation 

pour les outils analytiques web –WARES, qui aideront l'utilisateur avec cette tâche "simple". 

Le système WARES utilise l'approche hybride, mais surtout, utilise des techniques 

basées sur le contenu pour faire des suggestions. Le système utilise certains ratings initiaux 

faites par utilisateur, comme entrée, pour résoudre le problème du “démarrage à froid”, offrant 

la meilleure solution possible en fonction des besoins des utilisateurs. Le besoin de consultations 

coûteuses avec des experts ou de passer beaucoup d'heures sur Internet, en essayant de trouver 

le bon outil. Le système lui–même devrait effectuer une recherche en ligne en utilisant certaines 

données préalablement mises en cache dans la base de données hors ligne, représentée comme 

une ontologie d'outils analytiques web existants extraits lors de la recherche en ligne précédente. 

Mots–clés: Analytique, système de recommandation, moteur de recherche, ontologies. 
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Abstract 

It is hard to imagine modern business without analytics; it is a trend in modern business, 

even small companies and individual entrepreneurs start using analytics tools, in one way or 

another, for their business. Not surprising that there exist many different tools for different 

domains, they vary in purpose from simple friends and visits statistic for your Facebook page, 

to big and sophisticated systems designed for the big corporations, they could be free or paid. 

Sometimes you need to pass special training, be a certified specialist, or even have a degree to 

be able to use analytics tool, other tools offers simple user interface with dashboards for easy 

understanding and availability for everyone who saw them for the first time. Anyway, for 

everyone who is thinking about using analytics for his/her own needs stands a question: “what 

tool should I use, which one suits my needs and how to pay less and get maximum gain”. In this 

work, I will try to give an answer to this question by proposing a recommender tool, which will 

help the user with this “simple task”. This paper is devoted to the creation of WARES, as 

reduction from Web Analytics REcommender System. Proposed recommender system uses 

hybrid approach, but mostly, utilize content–based techniques for making suggestions, while 

using some user’s ratings as an input for “cold start” search. System produces recommendations 

depending on user’s needs, also allowing quick adjustments in selection without need of 

expensive consultations with experts or spending lots of hours for Internet search, trying to find 

out the right tool. The system itself should perform as an online search using some pre–cached 

data in offline database, represented as an ontology of existing web analytics tools, extracted 

during the previous online search. 

Keywords: Web analytics, recommender system, search engine, ontologies. 
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Introduction 

 

 In this thesis, I will present a recommender system for making suggestions about the 

Web Analytics tools, which I called WARES, short from Web Analytics REcommender 

System. This system intends to help its users in the selection of “appropriate” web analytics 

tools, for whatever their personal criteria are. 

 

Problematic 

 

Many problems in the field of recommender systems are already solved, but for 

particular recommender systems, not in the whole field of recommender systems e.g. in movies, 

recommendations exist IMDB. In sales exist Amazon and eBay, this system works pretty well, 

because they already have databases in their specific areas, this data allows them to make 

recommendations using content–based approach, and they also have many users, which 

simultaneously permits making suggestions based on collaborative filtering approach. In this 

paper we will consider the design process of the recommender system, which does not have lots 

of users. The WARES is intended for a single user, who needs particular web analytics tool, 

which satisfies his/her particular needs. In this case the best solution for the WARES will be an 

implementation of the content–based filtering approach. During the development of the 

WARES we also faced the main issue for the most recommender systems – the “cold start 

problem” (when recommender system cannot produce recommendations for users or items 

about which it has not yet gathered “enough” information). To make reliable recommendations 

the system should have a lot of ratings data for items, but this data comes from a large number 

of users, which we do not have, which in its turn does not allow us to implement collaborative 

filtering approach. Another existing problem is constantly changing source data, meaning that 

to produce a relevant recommendation the system needs “fresh” data, because nobody wants to 

see irrelevant “expired” recommendations, that is why the proposed recommender system 

should be, in some way, always aware about web analytics tools on the market. That is why was 

considered to use an online search, also was considered that WARES should have an ontology 

for storing data about existing web analytics tools and constantly update this ontology between 



 

2 

user’s requests. There is also a flexibility problem, because users have a trend always changing 

their own preferences, that is why WARES should somehow envisage this, allowing user to 

change search criteria. An algorithm for making suggestions is needed. A very urgent problem 

in the Internet space to date is privacy. In WARES privacy problem is solved, because the 

system does not store any personal data about active user, there is no user database with real 

names or credit card numbers, e.g. like in Netflix or eBay. Because in the proposed 

recommender system exists only one abstract user, without any personal information, all the 

data about web analytics tools, which was found during the recommendation process and some 

data about user’s preferences are stored in the ontology, on user’s computer. 

   

Contributions 

 

WARES share many features with existing recommender systems, however WARES 

adds some novelty in an existing variety of recommender systems. First, it is unique on its own, 

because it exists several recommender systems about music, movies, consumer goods, however, 

to the best of my knowledge, there is no such a system for the web analytics. This paper also 

will present the brand new ontology developed specifically for the domain of web analytics, as 

well as an algorithm for making recommendations and the algorithm will share adopted features 

from existing algorithms, in the field of recommender systems.   

 

Plan of this thesis 

 

This thesis is structured as follows: in the first chapter, will be defined basic concepts of 

the web analytics, and basic notions about recommender system, examples and a short 

comparison of some most popular existing web analytics tools on the market. In the second we 

will consider and compare collaborative and content–based algorithms and methods, and 

possible ways to use these techniques into the WARES. The third chapter describes the structure 

of the WARES: user’s model, application model, data model, ontology, user’s interface, and 

briefly describes how WARES works altogether. The fourth chapter is the validation and a brief 

comparison of the WARES to some well-known recommender systems on the market. The fifth 

chapter will conclude this paper, summarizing what was done and possible future works. 
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Chapter 1 – State of the art 

 

In this chapter, will be describe the domain of “Web Analytics”, what is it and what it 

consist of. Before starting developing WARES recommender system, a preliminary study about 

recommender system as a notion should be done, to understand it. Basics will be explained about 

recommender systems, how they works in general and what tasks they pursued, different 

approaches to the solution of the recommendations problem. Finally, in the end of this chapter 

examples of existing web analytics tools will be shown, with a summarizing table comparing 

their important features.  

 

1.1 – Web Analytics 

 

“Web analytics” is not a simple discipline, it is a complex of technologies and methods 

allowing collection, measurement, analysis and reporting of websites and web application data 

in order to understand, improve and optimize their performance [Zheng and Peltzverger, 2015]. 

Today, web analytics is used for different purposes, including marketing, traffic monitoring, 

information architecture, e–commerce optimization, advertising, web development, web–based 

campaigns, website performance improvement, etc. Here are some fundamental areas where 

web analytics is used: 

- Improving performance and identification problems in web applications: web page 

loading metrics such as average page load time by the browser and geographic location 

are used for measuring website’s performance. Analysis of the real-time load allows 

detecting and investigate problems concerning website’s performance, e.g. by 

optimizing the size of downloadable images or modifying HTTP headers used for 

caching of the website content. Web analytics metrics, e.g. click path, might also help to 

detect website errors, such as user’s clicks on links leading to incorrect or “blank” URL. 

For the developers of the web applications, web analytics could be applied for detection 

of the code errors connected with website interactions. 
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- Improving website (application) design and user experience: by modifying existing 

website appearance, e.g. changing the order of presented content and its visual 

representation to the end-users, thus improving navigation convenience and layout, or 

by analyzing clickstream information predicting the “best” positions for ads. banners. 

Using web analytics feature called “heat map” could help to identify user’s degree of 

interest and attention to the certain areas of the website, which is again very important 

while placing ad banners or key buttons like “buy it now”, “sign in”, “register”, etc. 

- Tracking and measuring success of actions: activities such as online commercial 

campaigns, and polls need to be somehow measured, web analytics helps to cope with 

this by tracking a wide variety of traffic sources, marketing channels, and visitor types. 

In these campaigns, an important common question is “how and where participants 

found that information?” Common traffic source metrics used in web analytics allows 

us to answer this question very precise, by tracking direct traffic from user’s emails, 

browser, social media and mobile devices, if not used anonymizers like Tor browser or 

multiple virtual private networks.  

- Optimizing e–Commerce and improving e–CRM (customer relationship 

management): by analyzing different data about previous customer’s interactions with 

website thus improving business relationships with customers, targeting on customer 

retention and ultimately driving sales growth. Web analytics greatly helps to analyze 

usage of website date and content, allowing achieving different goals, e.g. increase 

spending time in social networks by reducing “bounce rate” of users, increase traffic 

capacity through certain websites for achieving maximum revenue from advertisements, 

or improve sales increase by helping to detect the most popular products. 

Historically, web analytics techniques usually are separated into two major categories: 

on–site and off–site web analytics. On–site web analytics refers to data collected on the current 

site, it is used to effectively measure many aspects of direct user–website interactions, such as 

number of visits, click path, time on site, etc. Off–site analytics are usually offered by third party 

companies with using external web log storages, e.g. on the side of service provider or any other 

host. However, this meaning is quite blurred, mainly because of vendors providing tools that 
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span both categories. Many different vendors, e.g. Google Corporation with its Google 

Analytics, provide on–site web analytics software and services. 

 

Figure 1: Basic steps of Web Analytics [Clifton, 2010] 

 

It exists many ways to implement web analytics process, but in common sense, they are 

all the same sequence of actions, typical basic steps in web analytics is shown in figure 1. 

[Clifton, 2010] let us consider those four essential steps: 

- Collection of data: collection of the basic elementary data, usually, this data is counts 

of some things e.g. visits, clicks. The objective of this stage is just to gather raw data for 

further processing. 

- Processing of data into information: on this stage, usually making counts and makes 

ratios. The objective of this stage is to take the data and transform it into information, 

which is in most cases called “metrics”. 

- Developing of KPIs: this stage focuses on using collected ratios and counts, and express 

them as a business solutions and strategies, referred to as Key Performance Indicators or 

KPIs. 
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- Formulating online strategy: reaching business effectiveness in online goals, 

objectives, and standards for the organization or business, these strategies usually related 

to making money, saving money, or increasing market share. 

Each stage impacts on the following stage or can affect on the preceding stage or follow 

it. For example, sometimes specificity of the data available for collection affects the online 

strategy and the online strategy affects the data to be collected. 

1.1.1 – Web Analytics data sources 

 

Data for web analysis can be gathered from surveys, market reports, competitor 

comparison, public information, etc. but mainly the data comes from four data sources [Hu and 

Cercone, 2004] categorized into following types: 

- Direct HTTP data traffic: is the user browser passing a web session or visit, which is 

started without a referer (HTTP header field that identifies the address of the web page). 

By checking the referrer we can see where the request is originated. An example of the 

typical HTTP request message is shown in figure 2. An HTTP request consists of a 

request command shown in the first line and HTTP headers.  

- Application level data sent with HTTP requests:  data generated and processed by 

application-level programs, such as JavaScript, PHP, and ASP.Net, it is usually 

embedded into HTTP requests. It includes “Session” data, which identifies client 

interactions with the website. Session data usually sent as URL parameters or session 

cookies. They are very important for calculating metrics like the number of visits, time 

on site, the number of page views per visit, etc. “Referral” data can be used to analyze 

traffic levels from expected and unexpected sources, or to gauge channel effectiveness 

in advertisement tracking. 

 

- Figure 2: How HTTP request header displayed in Google Chrome browser 
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- User action data: it is mostly keyboard and mouse actions made by users, e.g. user’s 

input of search parameters, and mouse actions like cursor coordinates, movements, 

clicks. It also includes application specific action such as playback of video or audio, 

bookmarking, etc. User action data also includes device specification information, e.g. 

display resolution, CPU model, or any other information about user’s settings not 

restricted by security policies. 

- Network level and server generated data associated with HTTP requests: this data 

is not a part of the HTTP request, but it is required for successful request transmissions. 

Most of this information is exchanging on the TCP/IP level, thus hidden from the user 

and logged by the web server. Server generated details used for internal reference and 

recorded in the server log files. The log file, typically, records transferred files size, 

transfer time, server IP, request ID, etc. 

- External data: any other data gathered during user activities on the web site, like 

registration, search history, income from advertisement traffic, etc. This is any data, 

which can be associated with a specific web page. This data could also come from the 

indirect indicators, e.g. geo-location, revenue generated by the web site, various data 

gathered by the third party data providers. 

1.1.2 – Basic means of data mining of the typical Web Analytics tools 

 

There are three major methods: web server logging, page tagging, and the most recent 

method – the application logging. The first and the oldest method for data collection is the web 

server logging, appeared at the same time when World Wide Web was invented. This method 

is based on data collection on the server’s side, where the web site is hosted, it records HTTP 

headers and some of the server’s activities into a textual log file, typically they are: server IP, 

date and time, HTTP request command, response status, and response size, e.g. a common log 

file implemented using Apache Web Server version 2.2 is shown in figure 3. 

Additional information, such as HTTP headers, process id, scripts, request rewrite, etc. 

can be logged in numerous proprietary formats, called the “Extended log file format”. After 

emerging of the first web crawlers and search “bots” along with web proxies and dynamically 
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assigned IP addresses for large companies and ISPs, it became more difficult to identify unique 

human visitors on the website. 

 

Figure 3: Example of the log file format in the Apache web server 

Log analyzers responded by tracking visits with cookies, and by ignoring requests from 

known web crawlers. The use of web cache also makes a problem for log file analysis, because 

if users revisits a page, the second request will be retrieved from the browser's cache, and 

logging web server will receive no request. This means that the user's path through the site is 

lost. Caching can be passed by configuring the web server, but this can result in reduced 

performance for the users and increased calculation load on the server side, which is undesirable 

or even inacceptable in some cases. Today log file analysis has its own advantages, such as: 

- No changes to the website required: each web server normally already produces log 

files, so the raw data is already available.  

- Privacy and security: all the data are stored on the company's own servers and is a 

standard, rather than a proprietary format, which makes it easy for a business to switch 

web analytics software if needed, facilitating the use of the different software. 

- Log files: contain information on visits from the search engines, which generally do not 

execute any logging scripts on the web page, and therefore is not recorded by the page 

tagging. Although these actions should not be reported as part of the human user’s 

activity, but it might be a useful information for the search engine or traffic analysis. 

- No additional DNS lookups or TCP slow starts: there is no external server calls, which 

can slow down web page load speed, or result in uncounted page views. 

- Transactions: the web server records every action it makes, e.g. playing video files and 

content generated by scripts hosted on the web page, and does not rely on the visitor’s 

browser actions. 

Finally, economic factors of the log file analysis include: 
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- Local performance: log file analysis usually performed locally, which means the owner 

somehow need to manage this growing data by his/her own means, which makes 

additional load on the IT department. 

- Software purchase: company needs to purchase log file analysis software, which 

imposes some limitations because vendors may introduce maximum annual page view 

limit with additional costs to process additional information. In addition to commercial 

offerings, several open–source log file analysis tools are available free of charge. 

- Data storage: to perform log file analysis, a company has to store and archive its own 

data, which increases in volumes dramatically and very quickly, resulting in purchasing 

more storage space. In recent years, cost of the hardware dropping each year, but costs 

connected with the maintenance of the IT personnel, responsible for hardware servicing, 

is rising. 

- Maintenance: for the log file analysis, the company needs to maintain logging software, 

including updates, security patches and of course cost for the IT department supporting 

the system. 

Web page tagging is the second and more recent method, which uses client-side 

programs such as embedded scripts, browser add–ons and plug–ins. Page tagging de facto has 

become a standard in the modern web analytics. For example, using tracking method with 

JavaScript, a piece of JavaScript code is embedded in the web page and tracks different user’s 

activity, storing information in the cookie files. Then information is sent to a processing server, 

which might be not the same server that hosts tracked web site, e.g. the most widespread web 

analytics software - Google Analytics and open-source Open Web Analytics actively uses page 

tagging technology. For many companies and individuals, it has become a major type of usage 

of their web data collections. General advantages of the page tagging are: 

- Instant start: page tagging statistics is activated by opening the web page in user’s 

browser, indicating that the web client runs the tagging scripts. If the web page is cached, 

the server will not count it, because cached pages can constitute a considerable part of 

all page views.  

- Data: is gathered via the “tag” component on the page, usually written in JavaScript, 

though Java, ASP.NET or Flesh can be used instead. Ajax (a set of Web development 
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techniques using many Web technologies on the client side to create asynchronous Web 

applications) can also be used in conjunction with a server–side scripting language, such 

as PHP, to manipulate and store data in the database, enabling complete control over 

how the data is represented. 

- Script: may have access to the additional information about Web client or user, which 

is not sent in the query, e.g. user’s screen resolution or prices for goods he/she purchased. 

- Page tagging: can report on events, which do not involve a request to the Web server, 

such as interactions within Flash movies, partial form completion, mouse events, such 

as onClick, onMouseOver, onFocus, onBlur etc. 

- Cookies: page tagging service manages the process of assigning cookies to the visitors, 

with log file analysis, but the server has to be configured properly in order to do this. 

- Availability: page tagging is available to companies and users who do not have their 

own web servers. 

The third method of data collection is called application level logging. In recent times, 

it has gained wide popularity due to extreme usefulness for the marketing research. Application 

level logging is closely connected with an application, making it a functional feature of the 

application itself. This extends possibilities of the traditional web analytics, which now focuses 

not only on generic HTTP requests and user’s actions. The web application can be anything 

from a small retail shop to a big social networking service. Each of these applications now has 

its own unique data, e.g. user's registration information, product prices, metadata, etc. that data 

is collected beyond generic web requests but by user’s actions. For example, Microsoft 

SharePoint 2010 provides framework specific analytics data, like usage of templates and web 

parts. 

 

1.1.3 – Key metrics used in typical Web Analytics tools 

 

It exists many metrics, which are used for the web analysis. Each software package could 

have its own metrics, next will be considered only the most commonly used ones [Kaushik, 

2009] and those, which will be used in the WARES recommender system: 
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- Hit: a request for a file from the Web server. The number of hits received by the website 

is frequently cited to assert its popularity, but the total number of visits or page views 

provides a more realistic and accurate assessment of popularity. 

- Page view: a request for a file, or sometimes an event such as a mouse click, that is 

defined as a page in the setup of the web analytics tool. 

- Event: a discrete action or class of actions that occurs on the website. A page view is a 

type of event. Events also encapsulate clicks, form submissions, key press events, and 

other client–side user actions. 

- Visit/Session: a visit or a session defined as a series of page requests or in the case of 

tags, image requests from the same uniquely identified client. A unique client is 

commonly identified by the IP address or a unique ID that is placed in the browser’s 

cookie. Data collectors and analysis tools have no reliable way of knowing if a visitor 

has looked at other sites between page views; a visit considered “a single” visit as long 

as the events such as page views, clicks, whatever being recorded, are within 30 minutes 

or less interval. Note that a visit can consist of one page view, or thousands. A unique 

visit's session can be extended if the time between page loads indicates that a visitor has 

been viewing web pages continuously. 

- First Visit/First Session: or “Absolute Unique Visitor”, in some web analytics tools. A 

visit from a uniquely identified client that has theoretically not made any previous visits. 

Note that the first visit label is not reliable if the site's cookies have been deleted since 

their previous visit. 

- Visitor/Unique Visitor/Unique User: the uniquely identified client that is generating 

page views or hits within a defined time period, e.g. day, week or month. A uniquely 

identified client is usually a combination of a device and a browser. The identification 

is usually via a persistent cookie that has been placed on the device by the site page code.  

- Repeat Visitor: a visitor that has made at least one previous visit. The period between 

the last and current visit called visitor “recency” and is measured in days. 

- Return Visitor: a unique visitor with activity consisting of a visit to a site during a 

reporting period and where the “unique visitor” visited the site prior to the reporting 

period. The individual is counted only once during the reporting period. 
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- New Visitor: a visitor that has not made any previous visits.  

- Impression: the most common definition of “Impression” is an instance of an 

advertisement appearing on the viewed page, but most measures of impressions do not 

necessarily mean an advertisement has been viewed. 

- Single Page Visit/Singleton: a visit in which only a single page is viewed or a “bounce”. 

- Bounce Rate: the percentage of visits that are single page visits. 

- Exit Rate / % of Exit: a statistic applied to an individual page, not a website. The 

percentage of visits seeing a page where that page is the final page viewed in the visit. 

- Page Time Viewed/Page Visibility Time/Page View Duration: the time a single page 

or a blog, Ad Banner, was viewed. On the screen is measured as the calculated difference 

between the time of the request for that page and the time of the next recorded request, 

note that if there is no next recorded request, then the viewing time of that instance of 

that page is not included in reports. 

- Session Duration/Visit Duration: an average amount of time that visitors spend on the 

site each time they visit. This metric can be complicated by the fact that analytics 

programs cannot measure the length of the final page view. 

- Average Page View Duration: an average amount of time that visitors spend on an 

average page of the site. 

- Active Time/Engagement Time: an average amount of time that visitors spend actually 

interacting with content on the web page, based on mouse moves, clicks, hovers and 

scrolls. Unlike Session Duration and Page View Duration/Time on Page, this metric can 

accurately measure the length of engagement in the final page view, but it is not available 

in many analytics tools or data collection methods. 

- Average Page Depth/Page Views per Average Session: page depth is the approximate 

“size” of an average visit, calculated by dividing the total number of page views by the 

total number of visits. 

- Frequency/Session per Unique: it measures how often visitors come to a website in a 

given time period. It is calculated by dividing the total number of sessions or visits by 

the total number of unique visitors during a specified time period, such as a month or 

year. Sometimes it is used interchangeably with the term “loyalty”. 
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- Click path: the chronological sequence of page views within a visit or a session. 

- Click: a single instance of user’s action following a hyperlink from one Web page to 

another. 

- Site Overlay: report technique in which statistics of clicks or hot spots are 

superimposed, by physical location, on a visual snapshot of the web page. 

The common type of analysis, which could be performed by most modern web analytics 

tools, are the dimensional analysis, which involves metrics described above, and other derived 

metrics, aggregated at the different levels. For example, we can use dimensional analysis to 

answer the question: “how many visits per month, per day, per period?”. Dimensional analysis 

is the fundamental part of other analysis types and reports. The other most common types of 

analysis are: 

- Trends analysis: overlooks the data along the time dimension and shows the 

chronological changes of the selected metrics. For example, the data can show how the 

percentage of the mobile client access has changed for the past two years. 

- User interest/attention analysis: is an “internal” page analysis, which analyzes user’s 

attention to certain web page details during the browsing process. It uses embedded 

script to track user’s mouse movements and actions, and shows results in a form of a 

color matrix or “heat map”, where “cold” areas colored in blue or purple indicating a 

low level of attention and “hot” color areas such as orange and red indicating a high level 

of user’s attention. It can also show how far down visitors scroll the page. Analysis of 

“popularity” areas of attention helps to develop content placement strategies. For 

example, it could help to determine where the advertisement should be placed to have 

the most attention from the users. 

- Cohort analysis: is a subset of behavioral analytics that takes the data from a given 

dataset, e.g. an e–commerce platform, web application, or online game, and rather than 

looking at all users as one unit, it breaks them into related groups for analysis. These 

related groups called cohorts, usually share common characteristics or experiences 

within a defined time–span. Cohort analysis allows a company to see patterns “clearly” 

across the life cycle of a customer (user), rather than slicing across all customers blindly 

without accounting for the natural cycle that a customer undergoes. An example of the 
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cohort analysis is an owner of the online store, who may only be interested in customers 

who signed up in the last two weeks and who made a purchase, in this case, this group 

of users is an example of a specific cohort.  

- Distribution analysis: explains metric values by building various charts and count 

tables. Values are usually calculated as percentages of the total by one or more 

dimensions. It is often used to analyze the number of visitors per period and distribution 

of preferences in client profiles. For example, the percentages of visits from the different 

time zones per month may give information about clients shopping habits. Other 

commonly used dimensions for this type of analysis are: geo location, operation system 

version, device type, referral source, etc. 

- Clickstream analysis: also called a click paths, it analyzes the navigation path of the 

user through a website. A clickstream is a list of actions for all web pages viewed by a 

user, represented in the viewing order. Applying clickstream analysis may help to 

improve website’s design and overall usability. 

- Funnel Reports: using a series of events that lead towards a defined goal, e.g. from 

user’s engagement in a mobile application to a sale in an e–commerce platform or 

advertisement to purchase in online advertising. The funnel analyses is an effective way 

to calculate conversion rates on specific user behaviors. This can be done in the form of 

a sale, registration, or other intended action from an audience. The origin of the term 

funnel analysis comes from the nature of a funnel where individuals will enter the funnel, 

yet only a small number of them will perform the intended goals. 

- Conversion analysis: is one of the key analyses in e–commerce and other sectors. The 

conversion rate is calculated by dividing the number of completed targeted actions, e.g. 

purchases, by the number of unique users visited the site. All web analytics providers 

strive to improve conversion tracking. For example, Google Analytics provides reports 

that show what campaigns, sources, or channels have contributed to a visitor's multi–

visit conversion. 

- Performance analysis: helps to reveal website performance issues, such as loading time 

or linking errors. For example, after a website redesign, indirect traffic volume needs to 

be watched. If there is less indirect traffic, then some links from other sites and/or 

bookmarks were potentially broken after the redesign. 
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- Engagement analysis: is one of the most frequently used analyses in the industry. It 

measures the following factors: “how many pages were visited per session?”, “what is 

the duration of a visit?”, “how often new visitors become returning visitors?”, “how 

often visitors return to the site, term loyalty?”. The goal of the visitor engagement 

analysis is to find out why the multitude of operations performed on a website did not 

end in conversion.  

 

1.2 – Basic concepts about recommender systems 

 

The typical definition of the Recommender System, as was described by Peter Falk [Falk, 

2015] - a system that applies data mining techniques and some prediction algorithms in order to 

predict user’s interest on certain items, information, products or services among the tremendous 

amount of the similar items available on the market. In modern reality, the vast growth of 

information on the Internet adds new challenges for recommender systems, which are: 

producing accurate recommendation, coping with huge amounts of data, handling many 

recommendations efficiently with the growing number of participants in the system.  Each 

recommender system has its own unique structure, but most features are shared between every 

recommender system. It was proposed using the following dimensions to describe a 

recommender system: Domain, Purpose, Context, Personalization Level, Whose Opinions, 

Privacy and Trustworthiness, Interfaces, Recommendations Algorithms [Falk, 2015].  

- Domain: is the type of content, which will be recommended. For example in the IMDB, 

it is movies, series and actors, but it can be anything: cars, e–learning courses, job 

listings, food, books, hotels, etc. in the case of WARES it is web analytics tools. Domain 

is an important because it provides hints on what would you do with recommendations.  

- Purpose: defines why the recommender system was created and the goals which it 

pursues. For example, a typical end–user’s purpose of the eBay recommendations is to 

find a product that user wants to buy. The purpose for the recommendation provider 

(eBay) is ultimately to make customers pay for their purchases by having a certain % of 

the final purchase price. Another example of a purpose is to give an information or to 

help, to entertain, to educate the user, but in most cases, the purpose is - to sell more. In 
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the case with WARES the purpose is to give a single or few recommendations for the 

user that typically arrives once or a few times and expects a “good” recommendation. 

- Context: is the environment in which the consumer receives a recommendation. For 

example, Netflix delivers service on many different platforms. The device, which 

customer is using is the context. The context is also could be the current location of the 

user, what time it is, and what the user is doing. Does the user have time to study the 

suggestions or a quick decision is needed? Context could also be the weather around the 

user. Consider a search for a restaurant using Google Maps. Is the user sitting at home 

and looking for a good restaurant or he is standing on the street and it just started raining? 

In the first scenario, the best response would be about good quality in a bigger radius, 

while in the second scenario, recommendations would ideally contain only the nearest 

place where you can drink and eat while the rain passes. In the case of WARES the 

context of the recommendation expected to be an office or home place, so the user will 

have some time before taking the final decision. 

- Personalization: recommendations can come at many levels of personalization, from 

using basic statistics to looking at individual user’s data, three levels of personalization 

could be highlighted: 

a) Non–personalized: a list of the most popular items is considered non–personalized 

recommendations: it is expected the current user might like the same items as most others 

do. Non–personalized recommendations also include showing things on sale or ordering 

items by date, such as showing the lowest price items first. Everybody who interacts 

with the recommender system receives the same list of recommendations, e.g. if user 

visiting Amazon.com as not registered (anonymous) user Amazon shows (recommend) 

items that are currently viewed by other users.  

b) Segment–personalized: is when you divide users into groups. There is many different 

ways to segment users. It can be done by age, by nationality, by specific patterns, such 

as entrepreneurs or students, car drivers or bike cycle riders. Example of segment–

personalization can be a concert ticket selling system that would recommend concerts 

based on the country or city. If user listening music using a smartphone, the system 

might try to deduce whether a person is out for exercising, by using the GPS and seeing 

that, the device is moving. While if it is stationary and considered as “at home”, then the 
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consumer is probably sitting on the sofa and the relevant music might be different, the 

recommender system does not know anything personal about you as a person, only as a 

member of a group. Other people who fit into the same group will get the same 

recommendations. 

c) Personalized: a recommendation, which is based on the data about current user. Based 

on how the user interacted with a system in the past, as well as data on other forms of 

user’s behavior. This will generate recommendations specifically for this user. Most 

recommender systems using segments and popularity when creating personalized 

recommendations. For example, if a user looking for car parts at the bottom part of the 

web page of each eBay’s auction you can see a section “More Parts for your vehicle”, it 

is a personalized recommendation. Netflix is an extreme example of personalized, it will 

apply different types of recommendations, but so far, there are only a few examples like 

Netflix where everything is personalized. On YouTube you will see the list of videos, 

which is recommended based on your list of previously viewed videos. In the WARES 

given recommendations will be non–personalized. 

- Whose options: in other words the area of experts, popular feature used on many 

websites in the past, for example “Canadian Tire recommends this brand of tires for your 

vehicle”, but is rarely used nowadays. Majority of the recommender systems integrated 

into websites now uses the opinion of the “masses”. In the past were expert systems, 

where pre-recorded variants from some experts was combined to recommend products 

such as wines or books, where it was, “accepted” that someone should be an expert to 

understand what is “good”, but modern recommender system, has no specific experts 

who decide, an algorithm representing opinion of the “masses” does all the work. 

- Privacy and trustworthiness: nowadays it is a serious concern! How well does the 

system keep user’s personal data, how the collected information is used, how it is stored, 

etc.? The privacy is most likely the question of security measures, taken by recommender 

system owners, for storing personal user data complying with local laws about user’s 

data. Another aspect is trust, for example, it is quite common that you will have to pay 

money for your pension plan, which is handled by commercial banks. Often these banks 

will have different kinds of retirement savings schemes. A system, which should 

recommend these options, should have very strict rules for privacy. Imagine a user, 
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filling some data to get a pension plan recommendations, and describing that he has back 

problems, and a minute later receiving a phone call from a chiropractor with great offers 

to handle your exact problem. Or even worse, you buy a special bed for people with 

backbone problems, and an hour later, you receive an email that your health insurance 

premium has gone up. Many people think that recommendations are manipulation, 

because they present choices that a customer is more likely to pick than if they were 

offered as a random selection. Most shops are trying to sell more, so the fact that some 

shops are using recommendations to sell more makes people think that they are being 

manipulated. In fact, any form of filtering is a manipulation, but if that means watching 

a film that would entertain rather than bore, then it is okay. The trustworthiness is about 

how much the consumer will trust recommendations instead of considering them as 

commercials or attempts to manipulate them, it means if a user takes recommendations 

seriously, the system could be considered trustworthy. In WARES trustworthiness 

cannot be measured for several reasons: it is new, nobody except me tested it, the system 

has no intention to store any personal user’s data, like names, addresses or credit card 

numbers, only certain survey data about user’s needs in web analytics, which could be 

deleted after session ends.     

- Interface of the recommender system is considering what kind of input and output it 

will produce. For example, Netflix enables the users to enter taste preferences by rating 

content, and add preferences on genres and topics. Netflix outputs recommendations in 

many ways. Netflix estimates predictions, they provide personalized suggestions, they 

show popular items, which normally is shown in the form of a “top 10”, but Netflix even 

personalizes that. It also provides suggestion based on the content you watch. Types of 

output could be predictions, recommendations or filtering. If the recommendations are 

integrated as a natural part of the page, it is called organic presentation. The rows shown 

on the Netflix website are a good example of the organic recommendations, they do not 

seem like a recommendations, it looks like an integral part of the web site; while the 

recommendations shown on Amazon are considered as non–organic personalized 

recommendations, and are shown in the field “Customers who bought this…”. Example 

of organic and non–organic recommendations is shown on the figure 4. The WARES is 
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designed to be a web application, it means the user could use WARES via his/her favorite 

web browser and will receive non–organic personalized recommendations. 

 

 

Figure 4: Organic (right) vs. non–organic recommendations representation 

- Algorithms: there are essentially two groups of them, based on what data the one uses 

to make recommendations. Algorithms that uses the user’s data are called collaborative 

filtering. Algorithms that uses content metadata and user profiles to calculate 

recommendations are called content-based filtering, more detailed they will be 

considered in the next section and in the chapter 2. 

Some recommender systems will try to explain given recommendations, which is called 

the white box recommenders. For example, Amazon shows following text “Customers who 

bought this item also bought…”, which could serve as an explanation why this item was 

recommended to you, while recommender systems which do not try to explain are called the 

black box, e.g. Netflix just showing covers of recommended movies, without any explanations. 

Examples of such cases are shown on the figure 4. This is important to consider, when choosing 

the algorithm, since not all of them provide a clear path back to a reasoning in the prediction 

process. Deciding whether you want to produce a white box recommender or black box is quite 

important, since it can put quite a lot of restraint on which algorithms you can use and it also 

affects the level of the trustworthiness for your recommender system. The less your system 

needs to explain the more simple the algorithm will to be. The WARES will implement some 

of the white–box features. 
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1.2.1 – Basic approaches to solving recommendations problem today. 

 

There are two major groups of algorithms, differing from each other by the data they are 

using to produce recommendations. Group of algorithms that uses collected data of user’s 

behavior are called collaborative filtering. Algorithms that use data from the description of the 

item and from the user's profile preferences are called content–based filtering.  

Collaborative filtering: a set of methods which are based on collecting and analyzing a 

large amount of information on users’ behaviors, activities or preferences and predicting what 

users will like based on their similarity to other users. Figure 5 illustrates a simple way of 

collaborative filtering process. The outer set is the full catalogue. The middle set is a group of 

users, which consumes similar items. A recommender system will now recommend items from 

the “segment of user’s preferences” set, assuming that if users liked the same items as the 

current user, then a current user will also like other items in this group. This means that a current 

user is matched with other users. Then a gap of content, which the current user is missing, will 

be recommended, i.e. the part of the “middle sized” set which is not covered by the set 

representing what the current user likes. Collaborative filtering is based on the assumption that 

people who agreed in the past will agree in the future, and that they will like similar kinds of 

items as they liked in the past. 

 

Figure 5: Collaborative filtering process 
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Many algorithms are used for measuring user similarity or item similarity in 

recommender systems. For example, the k–nearest neighbors (k–NN) approach and the Pearson 

Correlation, see chapter 2 for details. 

Content based filtering: is all about looking at the relationships between the items and 

original user’s profile preferences, based on objects and items user interacted in the past a 

“second” user’s profile is built to indicate the type of items this user likes. The system then 

constructs a profile for the each user, which contains categories of the content. To create this 

“second” user profile, the system mostly focuses on the original profile of the user's preferences 

and a history of user's interaction with the recommender system. Therefore, this method uses an 

item profile i.e. a set of discrete attributes and features, characterizing the item within the 

system. The system creates a content–based profile of users based on a weighted vector of item 

features. The weights denote the importance of each feature to the user and can be computed 

from individually rated content vectors, using a variety of techniques. Simple approaches use 

the average values of the rated item vector while other sophisticated methods use machine 

learning techniques such as Bayesian Classifiers, cluster analysis, decision trees, and artificial 

neural networks in order to estimate the probability that the user is going to like the item, for 

see chapter 2 for details. 

 

1.3 – Comparative review of some existing Web Analytics tools 

 

Today a wide range of tools for the web analysis was developed, to better understand 

their variety, and what user should expect from them, a comparative review of some notable 

web analytics tools was made. All these web analytic tools were present on the market when 

this review was done, year 2016. A table at the end of this section shows them all together, 

comparing some of their key features. 

 

1.3.1 – Google Analytics 

 

Beginning with the major favorite [w3techs] on the market of the Internet–related 

services, a Google Corporation with its well–known “Google Analytics” [Google Analytics, 
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2016], next GA. It is a widely popular tool because of its integration with Google search engine, 

wide variety of metrics and relatively simple interface and fast setup, consisting of three simple 

steps, which are shown on the figure 6. 

 

Figure 6: Google Analytics setup, (screenshot from Google.com) 

Google launched GA service in November 2005 after acquiring Urchin Software 

Corporation, which was widely known by its web analytics product “Urchin” applying log file 

analysis on the server side, designed to show traffic information on the website based upon the 

log data. GA offers a full range of analysis for Web, but as always with Google in exchange of 

your privacy, it means that Google will have access to some of the user’s personal data such as 

geo-location, your search history, click history, etc. After completing the first step, consisting 

of entering the URL for the website, for which statistics will be gathered. Desirable name for 

analysis report and some other data, e.g. reporting time zone, and some extra features, user will 

get a Tracking ID and universal analytics tracking code, which user could insert into every web 

page that he/she wants to track, example of the JavaScript code and tracking ID for GA is shown 

on the figure 7. 
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Figure 7: Google Analytics tracking ID and tracking script, (screenshot from Groogle.com) 

 

For example, this tracking code was inserted into one of the web pages hosted on the 

University of Montreal web server for students. A resulting report for one–month period from 

mid–October 2016 to mid–November 2016 is shown on the figure 8. This is a standard report 

about visitors, representing total number of visits, average session duration, country of user’s 

origin, etc. 

 

Figure 8: Google analytics results for 1 month, (screenshot from Google.com) 
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By customizing this report, many other metrics and goals, could be added, see section 

1.1 for details about used metrics. Typically, a goal is an action that the site owner wants a user 

to complete, e.g. viewing a particular number of pages, going to a specific page, clicking on a 

specific button, clicking a link, making a purchase, and so on. Goal completion is meeting the 

conditions set in the goal parameters. A session in which the goal was completed is called a 

conversion. A single conversion may include multiple completions of the same goal. The ratio 

of conversions to the total number of sessions is called the conversion rate. 

Some major features of Google Analytics are: 

- Cloud hosting with computational power from the leading data centers on Earth. 

- Documentation, lots of documentation about it, so anyone could learn how to use it. 

- Video performance, allows to measure your video performance using YouTube service. 

- Integration with AdWords, DoubleClick Bid Manager, AdSense, AdMob, and other 

advertising service for businesses wanting to display ads on Google. 

- Support for all devices, running Windows, Linux, Android, iPhone/iPad and Mac. 

- Cutting edge technology from the leading IT company on the market for Internet 

services. 

Some disadvantages of Google Analytics are: 

- Privacy – it is a major tradeoff for receiving free quality service in web analytics from 

Google, as by using GA, you automatically agree to share your data with Google. 

- Support is limited to a help center and user forum unless you hire support from a 

certified partner. 

Standard and customized reports could be distributed by any accessible time periods, 

e.g. day, week, month, and what is very important in the age of social networks GA could detect 

user bounces from social networks such as Facebook or Twitter and evaluate user’s social 

network preferences, e.g. user’s most popular categories in a social network. GA also providing 

Cohort analysis, see section 1.1.3 for details, which helps to understand the behavior of 

component groups of users apart from total population of users. It is very much beneficial to 

marketers and analysts for successful implementation of marketing strategy. GA is a “freemium” 

service, which means it is provided free of charge, but money (premium) is charged for 

proprietary features, functionality, or virtual goods, for example a user can have 100 GA site 
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profiles. Each profile generally corresponds to one website. It is limited to sites, which has traffic 

of fewer than 5 million page views per month, roughly it is two page–views per second, so to 

have more statistical data the one must pay for maintenance of additional profiles, unless the 

site is linked to a Google AdWords campaign. As reported by Web Technologies Survey website 

[w3techs], which is making surveys for various types of technologies used on the web, market 

share claimed by Google Analytics is around 54% of all websites in the world. 

1.3.2 – Open Web Analytics 

 

An open source web analytics software “Open Web Analytics” package [OWA, 2016], 

which anybody can use to track and analyze how users use websites and applications. OWA is 

licensed under the GPL license and provides website owners and developers with easy ways to 

add web analytics to their sites using simple JavaScript, PHP, or REST based applications, it 

has nice and relatively clear user interface, which is shown on the figure 9. Like all open–source 

software its source code is open, so this mean if the one knows something in the matter of 

programming he/she can modify this web analytics tool for his/her own needs. 

Major benefit features of OWA are: 

- No restrictions on the amount of user data, it can be used for multiple URL resources. 

- Information about last visit, individual and detailed reports on the last site visitor with 

its locations, type of browser, pages viewed, visit duration, referral, etc. 

- Click–stream, heat click and click tracking maps, which intend to record user’s cursor 

movements, where user click the most, track where exactly on the site user click’s. 

- Support for WordPress and MediaWiki plugins. 

- PHP applications support. 

- Cost – Free! 

- Privacy means all the data is stored on your own server. 

Major disadvantages of using OWA are: 

- Time – it takes some time to install and figure out how to use, as always with most GPL 

applications. 

- No mobile applications support. 



 

26 

- No export – no support for file export function from the application interface, you can 

only do this from the database. 

 

Figure 9: Open Web Analytics dashboard, (screenshot from Open Web Analytics website) 

1.3.3 – Yandex Metrica 

 

Another powerful web analytic tool is Russian Yandex Metrica [YM, 2016], in the post–

soviet countries of Eastern Europe and in Russia it considered as a major adversary of Google 

Analytics. It is connected with Russian search engine, which is also called Yandex. By 

registering a user account for Yandex, called “Yandex passport”, a user automatically gets free 

access to Yandex Metrica services. To configure YM first the one should register with Yandex, 

it is like a Google account for GA, but Yandex claims that it will not use user’s personal 

information to gain profit, as Google does. Second log in into your account, go to YM page, 

insert website’s URL, the one wants to track and get tracking HTML code for it, and it is done. 

Now the user can start creating his/her own dashboards and charts, with the most popular metrics 

and some unique features only available for Yandex Mertica users, such as Yandex Direct, 

which is actually an analogue of Google AdWords. Hence, this web analytics tool was 
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developed in Russia, it also provides an English user’s interface, so potentially it could be used 

by US and Canada users.  

Yandex Metrica provides four major conversion types: 

- Goals related to tracking someone landing on a specific page URL. 

- Achievements – plan for achieving a specific amount of page views. 

- Events, such as clicks on specific buttons. 

- Multistep goals where you can combine up to five page URLs or events. 

One account in Metrica allows the one to track multiple websites, each having its own 

set of goals. YM offers an asynchronous code by default in code settings.  This type of code 

does not block or influence the loading speed of your website. It also does not matter where the 

code is placed, e.g. in the header, body or the footer, even if someone decides to leave the page 

before it loads completely it will still be classed as a “visit”. Visitor’s actions are reflected in 

Metrica’s reports between 30 seconds and 5 minutes after the actions, whereas all the other 

statistics are updated every 30 seconds. All the data is displayed in the table, or on the dashboard, 

as well as in a variety of neatly presented graphs, interface of the YM is shown on the figure 10, 

alongside with a simple dashboard. 

 

Figure 10: Yandex Metrica dashboard, (screenshot from Yandex website) 
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Yandex Metrica offers following major reporting features: 

- Traffic and source reports, including traffic source by region, traffic behavior on your 

website (number pages viewed, bounce rate, time spent on each page, etc.) 

- Visitors interests, which are calculated using analytics technology called Crypta. This 

technology classifies web users based on their previous online actions. Crypta is based 

on Yandex’s own machine learning method MatrixNet. 

- Sources which leads visitors to your site, e.g. ads, search queries, social networks. 

- Content reports, which shows statistics on visitor’s interaction with the site’s content 

such as entry and exit pages, traffic from external links, file downloads, orders made by 

visitors and their costs, it is very useful for marketing research. 

- Behavior reports:  if YM user wondered how people behave when they land on his/her 

website, using Metrica he/she can see a recording of every visit, up to 1000 per day!  

- Analysis of user behavior during filling of a web form, this tool provides information 

on the number of views of the page containing the form, the number of interactions with 

the form, the data on sent forms as well as the video recordings of how people behaved 

when filling in the form. 

- Click path analysis with text highlighted in different colors on the map depending on 

their popularity. 

- Heat maps, which measure and displays statistics for clicks on the website, also 

highlighting by colors most clicked areas. Unlike the link map, the heat map shows clicks 

on all page elements and not just on links, and even further if a user has 3D glasses 

he/she can see 3D map! 

- Scroll map, by using the scroll map, it is possible to find out how users of long websites 

view different elements of the page. 

- Report builder, allows to create your own report from all the statistics available with a 

variety of filters and segmentation options to choose from. 

- Offline monitoring, Metrica can track when your website is down and provides a report 

on this data. If a user connected his/her Yandex account with Yandex Direct (Yandex 
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advertising account, analogue Google AdWords), Metrica will switch off your ads to 

prevent unnecessary traffic spend and it will send you an email saying that it did it. 

 

1.3.4 – Piwik 

 

The Piwik [Piwik, 2016] is an open–source web analytics platform developed in France 

back in 2007. It has paid features called Piwik Pro, which is actually a team of Piwik developers 

performing customization of the Piwik engine for particular client needs. It is also an interesting 

fact that Canadian government [Piwik study, 2016] using modified Piwik engine for Fisheries 

and Oceans Canada as a high–performance and robust analytics tool, other Canadian 

governmental institutions also employees Piwik for intranet and web sites as an alternative for 

Google Analytics, because of its “unsecure” usage of personal information, which is not 

acceptable in the governmental sector. Piwik has all major web analytic tools features such as 

traffic analysis, click analysis, etc. 

 

 

Some major and unique Piwik features are; 

- Self–Hosted, means it allows a customer deploys analytics engine on his/her own 

infrastructure and enjoy 100% control and ownership of his/her data and information. 

- Piwik Pro Cloud, offering full support for customer’s web analytics project from Piwik 

team with secure hosting of your data in the Piwik cloud server, first 30 days are free 

then you should pay $65 per month. 

- High privacy standards, Piwik enterprise analytics enables you to comply with EU and 

local privacy regulations and ensures user’s privacy is protected.  

- Unlimited number of websites and users for statistical data. 

- Multi language user interface, supporting 53 languages! e.g. on the figure 11 is shown 

how typical Piwik dashboard looks like in Russian language. 
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Figure 11:  Piwik dashboard demonstrating Russian interface, (screenshot from Piwik website) 

- Tracking of individual users, allowing site’s owner to create a user profile for  specific 

user or group of users to study user’s behavior more deeply through the owned website.   

- High customization offers wide variety of customization options allowing transforming 

Piwik platform to meet almost any needs, from high security sphere of banking and 

healthcare to simple website statistics. 

1.3.5 – Woopra 

 

The Woopra [Woopra, 2016], is an interesting example of the web analysis tools in the 

way how it focuses on the marketing. Like any other web analytics software, it can perform all 

the basic web analytic procedures using script code on the desirable web page. It provides the 

full array of the statistical information about visitors: number of page views, traffic, clicks, top 

referrers, visitor language, browser setting, etc. But, the key unique feature of the Woopra that 

it positioning itself as a real–time customer analytics service tailored for use especially in sales 

and marketing teams. The major difference from all the previous web analytics tools that 

Woopra uses application interface, not the web interface like majority web analytics tools do, 

but offering a variety of methods and techniques for tracking user’s activities, giving very 
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detailed information, e.g. which product was added into the customer’s basket in real time. 

Woopra’s interface is shown on the figure 12. 

Some unique Woopra’s features are: 

- Deep user monitoring and customization, allowing even assigning names for certain 

users for subsequent identification, using Woopra profiles. 

- Funnel Reports, allowing using Funnel analytics, see section 1.1.3 for details, to 

pinpoint where users drop off in the conversion process and to understand why your 

leads do not convert, which facilitates monitoring on how different segments move 

through your “funnel” to identify the best and the worst conversion types of the 

customers. 

- Measures user retention, allowing increasing customer lifetime by giving suggestions 

if users continue to do important actions, such as purchases, use your product, or even 

open your emails and helps the website’s owner better understand if users are engaged 

enough with your offerings to keep coming back. 

- Live chat, it means as an owner or admin of the website you can even communicate 

with your website users through the specific interface. 

- Personal tech support from Woopra’s customer service. 

Woopra is a proprietary software, but it offers a free account with 30.000 user actions 

per month and limitation for data storage for 2 months, if you need more you should pay starting 

from $80 per month or higher depending on your volumes of information. 

Disadvantages of using Woopra:  

- Complicated interface: Woopra application itself has relatively complicated interface. 

- No support for mobile applications. 

- English interface only. 

- Storage limit: even with paid subscription, your data will be stored maximum up to 24 

months. 
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Figure 12:  Interface of the Woopra main application window, (screenshot from Woopra website) 

1.3.6 – Summary on comparison of web analytics tools 

The list of the web analytics products could be endless, but I think I gave an idea what 

web analytics tools look like and what they are offering for their users. Table 1 highlights the 

final comparison of all reviewed web analytics tools. It is difficult to compare all the existing 

properties, the table would be simply too long, with too many features, because of the nature of 

the whole paper the comparison is not an objective itself, that is why this comparison was made 

based on availability of the certain properties, which could represent the interest for the certain 

potential users: 

- Mobile support: possibility to gather statistical data from the mobile devices like 

smartphones or tablets. 

- Real–time statistics: possibility to have statistical data, changing in the real-time. 

- User click–streams: availability of the click–stream analysis. 

- Conversion methods: possibility to have multiple sessions in which goals, which will 

be analyzed, were achieved by the visitors. 



 

33 

- Free–trial: show the possibility of using this web analytics tools in a trial mode. 

- $ per month: this field representing a price, which potential user will need to pay 

monthly in order to use one of these web analytics tools. 

 

Table 1:  Comparative summary of the considered Web Analytics tools 

 
Open Web 

Analytics 

Google 

Analytics 

Yandex 

Metrica 
Piwik Woopra 

Mobile 

support 
no 

Android, iOS, 

Unity 
Android, iOS Android, iOS no 

Real–time 

statistics 
no yes yes Every 5 sec. yes 

User click–

streams 
yes no yes no no 

Conversion 

methods 
yes yes yes yes yes 

Widespread* <0.1% 54% 5.4% 1.3% 0.2% 

Free–trial unlimited unlimited unlimited 30 days 
>30k user actions/month – 

free 

$ per month Free “Freemium”   Free 
Free/$65/cust

om 
Free/$80 

 

This short comparison concludes this section, in the following we will consider some of 

the most widely-used methods and algorithms for solving the recommendation problem. 

 

 

 

 

 

 

 

 

 

* according to the statistics from https://w3techs.com, December 2016 

https://w3techs.com/
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1.4 – Conclusion  

In this chapter, was given an idea in which direction this report will continue. While 

designing a recommender system, it is essential to know the basics highlighted above. First part 

was dedicated to the field of the web analytics, describing it as a niche of the software market. 

To continue it is very important to know these concepts, methods and metrics by which the web 

analytics software operates, because it is impossible to design a recommender system without 

knowing the field in which recommendations will be made. Second, it was explained what is 

the recommender system, how it should work, what are the typical objectives for the 

recommender system, current trends in the development of the recommender systems and two 

major approaches for implementing them: content–based and collaborative filtering techniques. 

Finally, was made a comparative review of some chosen web analytic tools available today (the 

year 2017) on the market, showing their advantages and disadvantages, which gave us an 

excellent opportunity to see how different web analytic tools works and how they look in 

practice. This was an essential starting point for this paper, which gave us a direction where to 

move next. In the next chapter will be described in details some chosen algorithms and 

techniques used for creating recommender systems. These techniques will be described from 

the collaborative and content–based viewpoints, at the same time, focusing on the consideration 

of those methods that will be used in the WARES recommender system. 
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Chapter 2 – Methodology 

 

In this chapter will be discussed methods and techniques, which was used for the 

WARES and some others that are commonly used in the field of the recommender systems 

development. Most of them was already implemented in such well–known e–commerce projects 

like Amazon, Netflix and eBay, considering them step by step will allow us to decide which 

ones are suitable for the WARES recommender system and which are not. Those techniques 

and algorithms, considering essential to the WARES recommender system, will be explained in 

details.  

The appearance and growth of the online markets have had a considerable impact on the 

habits of consumers, providing them access to a greater variety of products and information on 

these goods. While this freedom of purchase has made online commerce into a multi–billion 

dollar industry, e.g. for consumer goods Amazon.com, eBay.com, for services (watching films, 

series) – Netflix, but it also made more difficult for consumers to select the products best fitting 

their needs. One of the main solutions proposed for this information overload problem are 

recommender systems, which could provide automated and personalized suggestions of 

products to consumers. 

In its most general form, the problem of recommendations is reduced to assigning some 

rating values for different goods and services, which are not yet known to the potential 

user/customer, e.g. 5–stars ratings on Amazon.com, is a simple feedback, which users would 

leave after purchasing the product, or even make a review on 5–star scale. In the case with 

WARES this “goods” are web analytics tools. Obviously, that such an assessment, or rating, 

could be given based on previous analysis of user’s/customer’s preferences or any other 

information on it. After the recommender system predicts ratings for not yet known consumer 

products those, which receive the highest scores, are recommended to a potential customer. If 

the recommender system does not possess a certain number of users and ratings, the new ratings, 

for yet not evaluated products, could be synthetically produced by various methods like 

heuristics, approximation and various machine learning techniques. This “new” ratings are 



 

36 

based on previously received small set of ratings, or if the rating for certain products are 

unknown (absent) by an extrapolation from known to unknown ratings by using: 

- Heuristic rules: a choice of heuristics that define a utility function, and empirical 

justification for functional behavior. 

- Utility functions: various functions, which optimize the parameters of ratings, e.g. a 

standard deviation.  

Once the analysis of unknown ratings is done, the user receives recommendations for 

products or services with the highest ratings from the whole set which was analyzed. Typically, 

recommender system gives recommendations in two ways: in a form of a set of products most 

appropriate for the customer or set of customers which are most relevant to the product. 

Nowadays most recommender systems are built on one of the following approaches:  

- Content–based recommendations – the customer will receive the recommendation of 

goods similar to those he/she has chosen previously, e.g. recommendations on 

Amazon.com representing algorithms used to personalize the online store for each 

customer, showing programming titles to a software engineer and baby toys to a new 

mother. 

- Collaborative recommendations – consumer products will be offered as similar to 

those, which was chosen in the past by a group of selected people with similar tastes to 

customer’s preferences. For example, recommendations for music on last.fm internet 

online music service, where you receive recommendations type “users who listening this 

song also liked this… ”. 

- Hybrid methods – recommendations that combine the two previous methods. In this 

chapter, combinations of content–based and collaborative filtering techniques will not 

be highlighted, they are simply too many. Instead will be considered major content–

based and collaborative techniques. For example, Amazon is a bright example of a 

hybrid recommender system, which uses content–based approach for recommending 

items based on item–item approach and at the same time uses collaborative component 

to recommend products based on 5–star feedback from other users who already bought 

similar products. 
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2.1 – Collaborative filtering approach and possible ways of 

applications in WARES.  

 

Collaborative filtering is almost all about different rating values and a large number of 

users who give these ratings. By using collaborative filtering methods various user-specific 

recommendations of items could be produced based on patterns of user’s ratings or customers 

actions, e.g., clicks and purchase history, without the need for different information about items 

or users itself. To better understand collaborative filtering approach a good example is needed, 

here and further let us consider Netflix as such an example. As by its nature, recommender 

systems based on the collaborative approach rely on various types of input and the most valuable 

among it is an explicit feedback, where users directly report on their interest in products. A 

movie recommender system Netflix collects star as ratings for movies, while TV series 

subscribers shows their preferences by hitting thumbs–up/thumbs-down buttons. Frequently 

explicit feedback, is not available, that is why some recommender systems infer ratings from 

such called implicit feedback, which indirectly reflects preferences through observing various 

user’s behavior [Oard and Kim, 1998]. Sources of the implicit feedback could be: user’s 

purchase history, browsing history, navigation patterns, etc. For example, a user who watched 

many films with Clint Eastwood probably likes that actor. Implicit feedback is a valuable source 

of information for recommender systems where users have not provided enough explicit 

feedback. Next step, in order to build recommendations, RS based on collaborative filtering 

need to relate two fundamentally different entities: the items and the users. There is two most 

widely-used techniques for collaborative filtering:   

- Neighborhood approach: focuses on the relationships between items and users, called 

item–item model, where user’s preferences on the items based on ratings of the similar 

items rated by the same user. 

- Latent factor models: or matrix factorization, also known as singular vector 

decomposition, a technique where items and users are transformed into the same latent 

factor space. The latent space explains ratings by characterizing products and users on 

factors automatically inferred from the different sources of user’s feedback. 
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Section 2.1.1 describes theory and practical details behind some of the most recent 

matrix factorization techniques, their relatively high accuracy of prediction also has made them 

the preferred technique for the Netflix data set.   

Section 2.1.2 gives attention to the family of neighborhood methods, their resulting 

accuracy is close to an accuracy of matrix factorization models, while offering some advantages 

by lifting the limit on neighborhood size, and addressing temporal dynamics. Explains how to 

predict ratings using neighborhood techniques and also gives an idea how to measure accuracy, 

stability and efficiency of user-based and item-based rating prediction models. 

Section 2.1.3 considers most widely-used similarity measurement methods and their 

applications in recommender systems in general and in WARES in particular.  

To better understand possible perspectives of application collaborative techniques in the 

WARES let us consider a typical collaborative filtering model, as was described in the article 

about collaborative filtering by Yehuda Koren and Robert Bell [Koren and Bell, 2011]. Let us 

consider that ratings are given for m users and n items, using letters to distinguish users from 

items: for users u,v, and for items i, j, l. A rating rui indicates the preference by user u of item i, 

where higher values mean stronger preference. For example, values can be stars (integers) 

ranging from 1, indicating no interest to 5, indicating a strong interest. Predicted ratings from 

known users using the notation 𝒓̂ui for the predicted value of rui. The scalar tui denotes the time 

of rating rui. In most cases lots of ratings are unknown, e.g. like in the Netflix database 99% 

where only a small portion of the movies have been rated by the user. The (u, i) pairs for which 

rui is known are stored in the set K = {(u, i) | rui}, where rui is known. User u is associated with 

a set of items R(u), which contains all the items rated by u. The set R(i) denotes users who rated 

item i. Sometimes a set denoted by N(u), is used, which contains all the items for which u 

provided an implicit preference like items that user rented, purchased, watched, etc. Models for 

the rating data are learnt by fitting the previously observed ratings. However, the goal is to 

generalize those in a way that allows predicting future unknown ratings, but caution should be 

exercised to avoid “over fitting” the observed data, this could be achieved by regularizing the 

learnt parameters using constants λ1, λ2,…λn. Exact values of these constants are determined by 

cross validation. Average overall rating is denoted by μ. A prediction for an unknown rating rui 

is denoted by bui : 
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bui = μ +bu+bi 

The parameters bu and bi indicate the observed deviations of user u and item i, from the 

average. For example, suppose that we want to know a rating of the movie “The Terminator” 

by some user John. Let us say that the average rating over all movies, μ, is 3 stars. “The 

Terminator” is a popular movie, so it tends to be rated 0.6 stars above the average. On the other 

hand, John is a critical user, who tends to rate movies 0.4 stars lower than the average. Thus, the 

baseline predictor for “The Terminator” rating by John would be 3.2 stars by calculating 

3−0.4+0.6. In order to estimate bu and bi the least squares problem should be solved (2.1) [Koren 

and Bell, 2011] 

𝒎𝒊𝒏𝒃 = ∑ (𝒓𝒖𝒊 − 𝝁 − 𝒃𝒖 − 𝒃𝒊)
𝟐 + 𝝀𝟏(∑ 𝒃𝒖

𝟐 +𝒖 ∑ 𝒃𝒊
𝟐

𝒊 )(𝒖,𝒊)∈𝑲                     (2.1) 

Here, the term ∑ (𝒓𝒖𝒊 − 𝝁 − 𝒃𝒖 − 𝒃𝒊)
𝟐

(𝒖,𝒊)∈𝑲  strives to find bu’s and bi’s that fit the given 

ratings. The regularizing term 𝝀𝟏(∑ 𝒃𝒖
𝟐 +𝒖 ∑ 𝒃𝒊

𝟐
𝒊 ) – avoids over fitting by penalizing the 

magnitudes of the parameters. This least square problem can be solved “fairly” efficiently by 

the method of stochastic gradient descent, e.g. for the Netflix database the mean rating μ is 3.6. 

As for the learned user biases bu, their average is 0.044 with standard deviation of 0.41. The 

average of their absolute values |bu| is: 0.32. The learned item biases bi average to –0.26 with a 

standard deviation of 0.48. The average of their absolute values |bi| is 0.43. An easier, yet 

somewhat less accurate way to estimate these parameters is by decoupling the calculation of the 

bi’s from the calculation of the bu’s. First, for each item i we set: 

𝑏𝑖 =
∑ (𝑟𝑢𝑖 − 𝜇)𝑢∈𝑅(𝑖)

𝜆2 + |𝑅(𝑖)|
 

Then, for each user u we set  

𝑏𝑢 =
∑ (𝑟𝑢𝑖 − 𝜇 − 𝑏𝑖)𝑖∈𝑅(𝑢)

𝜆3 + |𝑅(𝑢)|
 

Averages are shrunk towards zero by using the regularization parameters λ2, λ3, which are 

determined by cross validation. Typical values for the Netflix dataset are: λ2 = 25, λ3 = 10. 

In previous paragraph was considered an explicit user feedback, when it is unavailable, 

there are always additional sources of implicit feedback, and they can be exploited for better 
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understanding user’s behavior. This helps to combat data sparseness and can be particularly 

helpful for users with few explicit ratings. Another well-known recommender system – the 

Amazon uses browsing and purchase history to get additional implicit feedback of the each user. 

In the Netflix dataset, the perfect source of the implicit feedback could be movie rental history, 

which directly shows user’s preferences without requiring to rate rented movies. For example, 

the Netflix does not only tell us the rating values, but it also tells which movies users rate, 

regardless of how they rated these movies. In other words, a user implicitly tells about his/her 

preferences by choosing to voice her opinion and vote by high or low rating. This creates a 

binary matrix, where “1” stands for “rated”, and “0” for “not rated”. While this binary data may 

not be as informative as other independent sources of implicit feedback, incorporating this 

implicit data does significantly improves prediction accuracy. The benefit of using the binary 

data is closely related to the fact that ratings are not missing at random, and users deliberately 

choose which items to rate [Marlin et al., 2007]. 

 

2.1.1 – Matrix factorization methods applicable to recommendations 

 

Latent factor models used in collaborative filtering to uncover latent features that explain 

received ratings, also known as SVD–based (singular vector decomposition) models. Matrix 

factorization models have gained popularity, because of their relatively high accuracy and 

scalability. The complications of usage SVD with explicit ratings in the collaborative filtering 

domain are the high amount of missing data (not rated items), SVD model is undefined when 

knowledge about the matrix is incomplete and prone to overfitting. Past works in matrix 

factorization relied on imputation [Kim and Yum, 2005], which fills in missing ratings and 

makes the rating matrix “dense”. However, imputation can be very expensive as it significantly 

increases the amount of data. In addition, the data may be considerably “distorted” due to 

inaccurate imputation. Hence, other works [Bell et al., 2007] suggested modeling of only 

explicit ratings, while avoiding overfitting through an adequately regulated model.  
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2.1.1.1 – SVD model 

 

Let us consider what was shown about the SVD model in the article “Advances in 

collaborative filtering” [Koren and Bell, 2011]. SVD model maps both users and items to a joint 

latent factor space of dimensionality f, such that user–item interactions are modeled as inner 

products in that space. The latent space tries to explain ratings by characterizing both items and 

users on factors automatically inferred from user feedback. For the case with WARES where 

items are different web analytics tools, ratings could be calculated as an average of several 

inferior ratings, representing certain web analytic tool features, e.g. user statistics, software 

platforms, geo statistics, traffic statistics, etc. Each of the inferior rating is measured by factors, 

e.g. for user statistics, it would have following dimensions: user type, count of sessions, days 

since last session, users, page views, unique page viewers, new users, number of sessions per 

user, days active. Accordingly, each item i is associated with a vector qi∈ Rf, and each user, if 

there are many, u is associated with a vector pu∈ Rf. For a given item i, the elements of qi 

measure the extent to which the item possesses those factors, positive or negative. For a given 

user u, the elements of pu measure the extent of interest the user has in items that are high on 

the corresponding factors, which could be positive or negative.  

Dot product between two vectors x,y∈ Rf is 𝑥𝑇𝑦 = ∑ 𝑥𝑘 ∗ 𝑦𝑘
∫
𝑘=1                    (2.2) 

The resulting dot product 𝑞𝑖
𝑇𝑝𝑢 (2.2) captures the interaction between the user u and item 

i, the overall interest of the user in characteristics of the item. The final rating is created by 

adding aforementioned baseline predictors that depend only on the user or item. Thus, a rating 

is predicted by the following rule: 

𝑟𝑢𝑖̂ = 𝜇 + 𝑏𝑖 + 𝑏𝑢 + 𝑞𝑖
𝑇𝑝𝑢                               (2.3) 

In order to learn the model parameters (bu, bi, pu and qi) we minimize the regularized 

squared error: 

min
𝑏∗,𝑞∗,𝑝∗

∑ (𝑟𝑢𝑖 − 𝜇 − 𝑏𝑖 − 𝑏𝑢 − 𝑞𝑖
𝑇𝑝𝑢)2 + 𝜆4(𝑏𝑖

2 + 𝑏𝑢
2 + ||𝑞𝑖||

2
+ ||𝑝𝑢||2 )

(𝑢,𝑖)∈𝐾

 

 

The constant λ4, which controls the extent of regularization, is usually determined by 

cross validation. Minimization is typically performed by either stochastic gradient descent or 
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alternating least squares. Alternating least squares techniques rotate between fixing the pu’s to 

solve for the qi’s and fixing the qi’s to solve for the pu’s. Notice that when one of these is taken 

as a constant, the optimization problem is quadratic and can be optimally solved as seen in [Bell 

and Koren, 2007], [Bell et al., 2007]. An easy stochastic gradient descent optimization was 

popularized by [Funk, 2016]. The algorithm loops through all ratings in the training data. For 

each given rating rui, a prediction 𝒓̂ui is made, and the associated prediction error eui = rui − 𝒓̂ui 

is computed. For example in some training case rui, we could modify parameters by moving in 

the opposite direction of the gradient, yielding: 

bu ← bu + γ*(eui  – λ4*bu) 

bi ← bi + γ*(eui – λ4*bi) 

qi ← qi + γ*(eui*pu – λ4*qi) 

pu ← pu + γ*(eui*qi – λ*pu) 

Where γ – learning rate, and λ4 regularization parameter. Better accuracy could be 

achieved by dedicating separate learning rates γ and regularization λ to each type of learned 

parameter. Thus, it is advised to employ distinct learning rates to user biases, item biases and 

the factors themselves. A good, intensive use of such a strategy is described in [Takacs et al., 

2008].  

 

2.1.1.2 – SVD++ model 

 

SVD++ allow us to increase accuracy of original SVD by considering an implicit 

feedback, which provides an additional indication of user’s preferences [Koren, 2008]. This is 

especially helpful for those users that provided much more implicit feedback than explicit one. 

To this end, a second set of item factors is added, relating each item i to a factor vector yi∈ Rf. 

Those new item factors are used to characterize users based on the set of items that this user has 

been rated, this is such a called SVD++ model: 

𝑟𝑢𝑖̂ =  𝜇 + 𝑏𝑖 + 𝑏𝑢 + 𝑞𝑖
𝑇(𝑝𝑢 + |𝑅(𝑢)|−

1

2 ∗ ∑ 𝑦𝑗𝑗∈𝑅(𝑢) )       (2.4) 

The set R(u) contains the items rated by user u. Now, a user u is modeled as                                

𝑝𝑢 + |𝑅(𝑢)|−
1

2 ∗ ∑ 𝑦𝑗𝑗∈𝑅(𝑢) . Here a free user–factors vector, pu is used much like in (2.3), which 

is learnt from the given explicit ratings. This vector is complemented by the sum 𝑝𝑢 +
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|𝑅(𝑢)|−
1

2 ∗ ∑ 𝑦𝑗𝑗∈𝑅(𝑢) , which represents the perspective of implicit feedback. Since the yj’s are 

centered around zero, by the regularization, the sum is normalized by |𝑅(𝑢)|−
1

2, in order to 

stabilize its variance across the range of observed values of |R(u)|. Model parameters are 

determined by minimizing the associated regularized squared error function through stochastic 

gradient descent.  

 

2.1.1.3 – SVDtime model 

 

Finally, the most accurate and most sophisticated model for the matrix factorization is 

the SVDtime model, it concludes the latent factor models review. Above, the temporal dynamics 

was omitted, but users could change their preferences over time. An example of using SVDtime 

for WARES, a company owner who is using PIWIK and stores all website statistics on his own 

server, who does not want to share his/her data with others while using third party cloud-based 

solutions, like Google Analytics, next year could switch to cloud-based services due to lack of 

money needed for supporting own IT department. This type of evolution is modeled by taking 

the user factors, vector pu, as a function of time. In fact, these temporal effects are the hardest 

to capture, once again, we need to model those changes at the very fine level of a daily basis, 

while facing the built–in scarcity of user ratings. The resulting model is denoted as SVDtime 

where ratings predicted as: 

𝑟𝑢𝑖̂ =  𝜇 + 𝑏𝑖(𝑡𝑢𝑖) + 𝑏𝑢(𝑡𝑢𝑖) + 𝑞𝑖
𝑇(𝑝𝑢(𝑡𝑢𝑖) + |𝑅(𝑢)|−

1

2 ∗ ∑ 𝑦𝑗𝑗∈𝑅(𝑢) )       (2.5) 

Where bi(tui) is a time–changing item biases, 𝒃𝒖(𝒕𝒖𝒊) are real valued functions that 

changes over time and user’s preferences are pu(tui). Time complexity per iteration is linear with 

the input size, while running time is approximately doubled compared to SVD++, due to the 

extra overhead required for updating the temporal parameters. Importantly, convergence rate 

was not affected by the temporal parameterization, and the process converges in around 30 

iterations [Koren and Bell, 2011]. 
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2.1.2 – Neighborhood methods applicable to recommendations 

 

This is the most common approach in collaborative filtering, based on user-user 

neighborhood models [Herlocker et al., 1999], where estimating unknown ratings based on 

recorded ratings of users with the same opinion. Later, appeared a similar approach for items 

called the item–item [Linden et al., 2003]. A bright example of using neighborhood models is 

the web site Amazon.com, which became the largest internet-based retailer. In neighborhood 

methods, a rating is estimated using known ratings made by the same user on similar items. 

Item-item approach have better scalability and accuracy in many cases [Bell and Koren, 2007]. 

In addition, item–item methods are more capable in explaining the reasoning behind the ratings 

predictions, because users are familiar with items they have rated before.  

This section will be focused on the item–item approaches and will use some explanations 

about considered methods from the article of Yehuda Koren and Robert Bell [Koren and Bell, 

2011], of course in the context of the WARES web analytics tool will be considered as an item. 

Comparing to the previous section, latent factor models have more possibilities in representation 

of different aspects of the data and provides more accurate results than neighborhood methods, 

but neighborhood models dominates in e-commerce solutions mostly due to their simplicity, 

and ability to provide intuitive explanations of the reasoning behind given recommendations, 

e.g. the Amazon uses well-known “What other items do customers buy after viewing this 

item…”, this aspect most ordinary users values more than accuracy. Second, they can provide 

immediate recommendations based on newly entered user’s feedback, their main advantages 

are: 

- Simplicity: neighborhood–based methods are relatively simple to implement. In its 

simplest form, only one parameter, the number of neighbors is used during the prediction 

process. 

- Justifiability:  as was mentioned before, neighborhood methods provides a readable 

and comprehensible justification for the computed predictions e.g. the list of items, as 

well as the ratings given by the user to these items, which can help a user better 

understand given recommendation and its relevance [Bell et al., 2007]. 
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- Efficiency:  neighborhood-based methods require no costly training phases, ratings 

could be done when users are offline, thus giving faster whole recommendations when 

connected to the online database, memory requirements are minimal comparing to any 

other methods, making them scalable for any large applications. 

- Stability: final dataset almost unaffected by addition of new users and items, meaning 

that when all similarities have been calculated there is no need to recalculate everything 

with few new users/items, only similarities between this new item and the ones already 

existing in the system need to be recalculated. 

The main goal of the neighborhood methods is the same as for the matrix factorization 

approach: to find the best product/item i for user u and how to give him top–N 

recommendations, and do it in the most accurate way. Let us consider item–item rating 

calculation problem from the point of view of neighborhood methods [Koren and Bell, 2011]. 

We have I – set of all items and Iu – a set of items rated to a user u, than the first problem is 

finding item i∈I/Iu for which u is most likely to be interested in. When ratings are available, 

this task is most often defined as a regression or (multi–class) classification problem, where the 

goal is to learn a function f:U×I→S that predicts a rating f(u,i) of a user u for a new item i. 

Where U is a set of all users and S is the set of possible values for ratings. This function than 

will be used for recommending to a currently active user ua an item i* with the rating, which has 

the highest estimate value. 

𝒊∗ = arg max 𝑓(𝑢𝑎, 𝑗)    j ∈
𝑰

𝑰𝑢
                                    (2.6) 

To be able to evaluate the performance of the given recommendation the accuracy could 

be evaluated, to do this ratings R are divided into a training set Rtr used to learn function f, and 

a test set Rt is used to evaluate accuracy of the prediction, and then mean absolute error, MAE 

– 2.7, or root mean squared error, RMSE – 2.8, function is applied. 

𝑀𝐴𝐸(𝑓) =
𝟏

|𝑹𝒕|
∑ |𝒇(𝒖, 𝒊) − 𝒓𝒖𝒊|𝑹𝒖𝒊∈𝑹𝒕

                        (2.7) 

𝑅𝑀𝑆𝐸 (𝑓) = √
𝟏

|𝑹𝒕|
∑ (𝒇(𝒖, 𝒊) − 𝒓𝒖𝒊)𝟐

𝑹𝒖𝒊∈𝑹𝒕
                (2.8) 
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For the WARES starting ratings are not available, because the designed system intend 

to make recommendations for a single new user. In this case the problem of finding the best 

suitable web analytic tools is usually transformed into the task of recommending to an active 

user ua a list Lua containing N items likely to interest him/her, or such a called “top list” [Crestani 

and Lee, 2000]. The quality of such method can be evaluated by splitting the items of I into a 

training set Itr, used to learn function L, and a test set It. Let us say the set of items that user find 

relevant is   T(u) ⊂ Iu ∩ It  if the user responses are binary (yes or no), these can be the items 

that u has rated positively. Otherwise, if only a list of purchased or accessed items is given for 

each user u, then these items can be used as T(u). The performance of this method is then 

computed using the measures of precision (2.9) and recall (2.10). 

𝑃𝑟𝑒𝑠𝑐𝑖𝑠𝑖𝑜𝑛(𝐿) =
𝟏

|𝑼|
∑

𝑳(𝒖)∩𝑻(𝒖)

𝑳(𝒖)𝒖∈𝑼              (2.9) 

𝑅𝑒𝑐𝑎𝑙𝑙(𝐿) =
𝟏

|𝑼|
∑

𝑳(𝒖)∩𝑻(𝒖)

𝑻(𝒖)𝒖∈𝑼                     (2.10) 

But the drawback of this recommendation method is that the all items from the list L(u) 

are considered equally “interesting” to a user u and thus the final decision is made by a user, 

not by a recommender system, and he/she need to sort this results on his own.   

 

2.1.2.1 – Rating prediction and classification using standard Neighborhood methods  

 

Regression user–based neighborhood recommendation method [Koren and Bell, 2011], 

tends to predict rating rui of a user u for a new item i using ratings given to i by users most 

similar to u. Suppose we have for each user v ≠ u a value wuv representing the preference 

similarity between u and v, how this similarity can be computed was described in the previous 

section. The k–nearest–neighbors, next k–NN, of u, denoted by N(u), are the k users v with the 

highest similarity wuv to u. However, only the users who have rated item i can be used in the 

prediction of rui, and thus we should consider the k users most similar to u that have rated I, let 

this set of neighbors be Ni(u), then the rating rui can be estimated as the average rating given to 

i by these neighbors: 
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𝑟𝑢𝑖̂ =
1

|𝑁𝑖(𝑢)|
∑ 𝑟𝑣𝑖𝑣∈𝑁𝑖(𝑢)              (2.13) 

A problem with 2.13 is that is does not take into account the fact that the neighbors can 

have different levels of similarity. A common solution to this problem is to weigh the 

contribution of each neighbor by its similarity to u. However, if these weights do not sum to 1, 

the predicted ratings can be well outside the range of allowed values. Consequently, it is 

customary to normalize these weights, such that the predicted rating becomes: 

𝑟𝑢𝑖̂ =
∑ 𝑤𝑢𝑣 ∗ 𝑟𝑣𝑖𝑣∈𝑁𝑖(𝑢)

∑ |𝑤𝑢𝑣|𝑣∈𝑁𝑖(𝑢)
             (2.14) 

Where wuv is a user’s weight contribution |wuv| is used instead of wuv because negative 

weights can produce ratings outside the allowed range. Also, wuv can be replaced by 𝑤𝑢𝑣
𝛼  where 

α > 0 is an amplification factor [Breese et al., 1998] When α > 1, as is it most often employed, 

an even greater importance is given to the neighbors that are the closest to u. Equation (2.23) 

also has an important flaw: it does not consider the fact that users may use different rating values 

to quantify the same level of appreciation for an item. For example, one user may give the 

highest rating value to only a few outstanding items, while a less difficult one may give this 

value to most of the items he likes. This problem is usually addressed by converting the 

neighbors ratings rvi to normalized ones h(rvi) [Breese et al., 1998] and giving the following 

prediction: 

𝑟𝑢𝑖̂ = ℎ−1 ∗
∑ 𝑤𝑢𝑣 ∗ ℎ(𝑟𝑣𝑖)𝑣∈𝑁𝑖(𝑢)

∑ |𝑤𝑢𝑣|𝑣∈𝑁𝑖(𝑢)
 

Note that the predicted rating must be converted back to the original scale, hence the h−1 

in the equation. So when it comes to assigning a rating to an item, each user has its own personal 

scale. Even if an explicit definition of each of the possible ratings is supplied (e.g. 1=“strongly 

disagree”, 2=“disagree”, 3=“neutral”, etc.), some users might be reluctant to give high/low 

scores to items they liked/disliked. The most common approaches to normalize are Mean–

centering and Z–score, described below. 

Mean–centering. The idea of mean–centering [Breese et al., 1998] is to determine 

whether a rating is positive or negative by comparing it to the mean rating. In user–based 
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recommendation, a raw rating rui is transformation to a mean–centered one h(rui) by subtracting 

to rui the average ru of the ratings given by user u to the items in Iu: 

ℎ(𝑟𝑢𝑖) = 𝑟𝑢𝑖 − 𝑟𝑢 

 

Using this approach the user–based prediction of a rating rui is obtained as: 

𝑟𝑢𝑖̂ = 𝑟𝑢 +
∑ 𝑤𝑢𝑣 ∗ (𝑟𝑣𝑖 − 𝑟𝑣)𝑣∈𝑁𝑖(𝑢)

∑ |𝑤𝑢𝑣|𝑣∈𝑁𝑖(𝑢)
 

In the same way, the item–mean–centered normalization of rui is given by: 

ℎ(𝑟𝑢𝑖) = 𝑟𝑢𝑖 − 𝑟𝑖  

Where 𝑟𝑖̂ corresponds to the mean rating given to item i by user in Ui. Rating rui is predicted as: 

𝑟𝑢𝑖̂ = 𝑟𝑢 +
∑ 𝑤𝑖𝑗 ∗ (𝑟𝑢𝑗 − 𝑟𝑗)𝑗∈𝑁𝑢(𝑖)

∑ |𝑤𝑖𝑗|𝑗∈𝑁𝑢(𝑖)
 

 

This normalization technique is most often used in item–based recommendation, e.g. on 

Amazon.com. An interesting property of mean–centering is that one can see right–away if the 

appreciation of a user for an item is positive or negative by looking at the sign of the normalized 

rating. Moreover, the module of this rating gives the level at which the user likes or dislikes the 

item. 

Z–score, two users A and B that both have an average rating of 3. Moreover, suppose 

that the ratings of A alternate between 1 and 5, while those of B are always 3. A rating of 5 given 

to an item by B is more exceptional than the same rating given by A, and, thus, reflects a greater 

appreciation for this item. While mean–centering removes the offsets caused by the different 

perceptions of an average rating, Z–score normalization [Herlocker et al., 1999] also considers 

the spread in the individual rating scales. Once again, this is usually done differently in user–

based than in item–based recommendation. In user–based methods, the normalization of a 

rating rui divides the user–mean–centered rating by the standard deviation σu of the ratings given 

by user u: 
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ℎ(𝑟𝑢𝑖) =
𝑟𝑢𝑖 − 𝑟𝑢

𝜎𝑢
 

A user–based prediction of rating rui using this normalization approach would therefore be 

obtained as: 

𝑟𝑢𝑖̂ = 𝑟𝑢 + 𝜎𝑢 ∗
∑ 𝑤𝑢𝑣 ∗ (𝑟𝑣𝑖 − 𝑟𝑣)/𝜎𝑢𝑣∈𝑁𝑖(𝑢)

∑ |𝑤𝑢𝑣|𝑣∈𝑁𝑖(𝑢)
 

Likewise, the Z–score normalization of rui in item–based methods divides the item–mean–

centered rating by the standard deviation of ratings given to item i: 

ℎ(𝑟𝑢𝑖) =
𝑟𝑢𝑖 − 𝑟𝑖

𝜎𝑢
 

The item–based prediction of rating rui would then be: 

𝑟𝑢𝑖̂ = 𝑟𝑢 + 𝜎𝑢 ∗
∑ 𝑤𝑖𝑗 ∗ (𝑟𝑣𝑗 − 𝑟𝑗)/𝜎𝑢𝑗∈𝑁𝑢(𝑖)

∑ |𝑤𝑖𝑗𝑢𝑣|𝑗∈𝑁𝑢𝑖(𝑖)
 

In some cases, rating normalization can have undesirable effects. For instance, imagine 

the case of a user that gave only the highest ratings to the items he has purchased. Mean–

centering would consider this user as “easy to please” and any rating below this highest rating, 

whether it is a positive or negative rating, would be considered as negative. However, it is 

possible that this user is in fact “hard to please” and carefully selects only items that he will like 

for sure.  

To answer the question which implementation (user–based or an item–based) will suit 

the most recommender system’s goals, let us consider table 2 and 3, from the article “Advances 

in collaborative filtering” [Koren and Bell, 2011]:  

Table 2: The average number of neighbors vs. average number of ratings 

 # of Avg. neighbors # of Avg. ratings 

User–based method (|𝑈| − 1) (1 − (
|𝐼| − 𝑝

|𝐼|
)

𝑝

) 
𝑝2

|𝐼|
 

Item–based method (|𝐼| − 1) (1 −  (
|𝑈| − 𝑞

|𝑈|
)

𝑞

) 
𝑞2

|𝑈|
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Uniform distribution of ratings is assumed with average number of ratings per user p = |R|/|U|, 

and average number of ratings per item q = |R|/|I| 

Table 3: The space and time complexity of user–based and item–based neighborhood 

 space Time training Time online 

User–based method 𝑂(|𝑈|2) 𝑂(|𝑈|2 ∗ 𝑝) 𝑂(|𝑈| ∗ 𝑘) 

Item–based method 𝑂(|𝐼|2) 𝑂(|𝐼|2 ∗ 𝑞) 𝑂(|𝐼| ∗ 𝑘) 

 

Where p = maxu |Iu|, is the maximum number of ratings per item q = maxi |Ui|, and k is the 

maximum number of neighbors used during the prediction process. For the WARES 

recommender system, it is clear that we should use item-item approach, because by its nature it 

relies on items rather than ratings made by numerous users.  

 

2.1.3 – Typical similarity measurement methods in recommender systems 

 

Measure of the similarity between two objects a and b, is often used in information 

retrieval, it consists in representing these objects in the form of two vectors xa and xb and 

computing the Cosine Vector or Vector Space similarity [Billsus et al., 2002] between these 

vectors: 

cos(𝑥𝑎, 𝑥𝑏) =
𝑥𝑎 ∗ 𝑥𝑏

||𝑥𝑎|| ∗ ||𝑥𝑏||
 

In the context of item recommendation, this measure can be employed to compute user’s 

similarities by considering a user u as a vector xu∈ R|I|, where xui = rui if user u has rated item i, 

and 0 otherwise. The similarity between two users u and v would be computed as: 

Cosine Vector(u, v) = cos(𝑥𝑢, 𝑥𝑣) =
∑ 𝑟𝑢𝑖 ∗ 𝑟𝑣𝑖𝑖∈𝐼𝑢𝑣

√∑ 𝑟𝑢𝑖
2

𝑖∈𝐼𝑢
∗ ∑ 𝑟𝑣𝑗

2
𝑗∈𝐼𝑣

 

Where Iuv once denotes the items rated by both u and v. A problem with this measure is 

that it does not consider the differences in the mean and variance of the ratings made by users u 

and v. but Pearson Coefficient does, see below. 
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A popular measure of similarity in the most of “item–item” approaches is based on the 

Pearson correlation coefficient, ρi j, which measures the tendency of users to rate items i and j 

similarly. Since many ratings are unknown, some items may share only a handful of common 

observed raters. The empirical correlation coefficient, ρi j, based only on the common user’s 

support. It is advised to work with residuals from the baseline predictors, bui, to compensate for 

user–specified and item–specific deviations. Thus, the approximated correlation coefficient is 

denoted by the following formula: 

 

𝑝𝑖𝑗 =
∑ (𝑟𝑢𝑖−𝑏𝑢𝑖)∗(𝑟𝑢𝑗−𝑏𝑢𝑗)𝑢∈𝑈(𝑖,𝑗)

√∑ (𝑟𝑢𝑖−𝑏𝑢𝑖)2∗∑ (𝑟𝑢𝑗−𝑏𝑢𝑗)2
𝑢∈𝑈(𝑖,𝑗)𝑢∈𝑈(𝑖,𝑗)

                   (2.11) 

The set U(i, j) contains users who rated both items i and j. Because estimated correlations 

based on a greater user support are more reliable, an appropriate similarity measure, denoted by 

si j, is a shrunk correlation coefficient of the following form: 

𝑠𝑖,𝑗 =
𝑛𝑖,𝑗−1

𝑛𝑖,𝑗−1−𝜆8
               (2.12) 

The variable ni j = |U(i, j)| denotes the number of users that rated both i and j. A typical 

value for λ8 is 100. Such shrinkage can be motivated from a Bayesian perspective see [Gelman 

et al., 1995].  

 

2.2 – Content–based filtering approach and possible ways of 

applications in WARES.  

 

Content–based recommender systems, distinct from the Collaborative–based 

recommenders in the way that for rating calculation they matching different attributes of user’s 

profile, with the attributes of some “content” object, instead of matching ratings given by the 

different users. This section provides an overview of the content–based filtering methods, their 

advantages and drawbacks and some algorithms used for the rating prediction.  

To implement a content–based recommendation approach, a set of documents and/or 

descriptions of items previously rated by a user should be analyzed, and to build a model or 
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profile of user’s interests based on the features of the objects rated by that user. A typical user 

profile suitable for content-based filtering consists of a structured representation of user’s 

interests, adopted to recommend new “interesting” items. The recommendation process works 

as continuous process of matching attributes of the user’s profile against the attributes of the 

content object. The result is a relevance judgment that represents the user’s level of interest in 

that object. In context of the WARES recommender system, content-based techniques could be 

used to filter online search results for the web analytic tools and grouping them according to the 

original user’s preferences. 

Most research on content–based recommender systems takes place at the intersection of 

Information Retrieval [Baeza–Yates and Ribeiro–Neto, 1999] and Artificial Intelligence. From 

information retrieval, research on recommendation technologies derives the vision that users 

searching for recommendations are engaged in an information seeking process. In information 

retrieval systems the user expresses a one–off information need by giving a query, which usually 

a list of keywords. Items to be recommended can be very different depending on the number 

and types of attributes used to describe them. Each item can be described through the same small 

number of attributes with known set of values, in the case of WARES this is not an appropriate 

form for Web Analytic tools, because in all cases they are being described through unstructured 

text. In that case there are no attributes with well–defined values, thus usage of document 

modeling techniques from the domain of information retrieval is required, see section 2.2.2 for 

details.  

 

2.2.1 – Advantages and disadvantages of the content–based filtering 

  

Content-based filtering approach has strong and weak sides comparing to collaborative 

filtering, let us consider how these sides was described by Google staff research scientist, PhD 

in computer science Yehuda Koren [Koren and Bell, 2011]:  

- User independence: content–based systems uses only ratings provided by the active 

user in order to build its own profile, while collaborative-based systems requiring lots of 

ratings from other users in order to give more or less suitable recommendations. 
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- Transparency: explicit explanations is a strong side of the content-based methods, e.g. 

a simple listing on which recommendations was based could be very helpful for any user 

in order to decide whether to trust a recommendation or not, while most collaborative-

based systems considered as a “black boxes” where is no explanation how 

recommendation was built, except “someone else also liked it”. 

- New items: content–based recommenders can recommend items which are not yet being 

rated. Thus they almost do not suffered from such a called “cold-start” problem for 

recommending items, while still have problems with “user cold-start”, which also affects 

most collaborative-based systems.  

This advantages seems very impressive, but there also exists some major drawbacks: 

- Limited context analysis: for the content–based techniques domain knowledge is often 

needed in order to produce reliable recommendations e.g., WARES recommendations 

system needs to know as many properties as possible for an entity “web analytic tool”, 

and that is why usage of the domain ontology is strongly recommended, see section 3.3 

for the details.   

- Over–specialization:  content–based recommender systems does not possess methods 

for inferring some unexpected results. Meaning the system cannot recommends items 

which features goes beyond user’s profile settings, meaning the user will most likely get 

items similar to those he/she already rated. This drawback is also called a serendipity 

problem.  

- New user problem: in order to produce “accurate” recommendations for a particular 

user recommender system need to collect enough ratings to “understand” user’s 

preferences.  Meaning, when few ratings are available, as for a new user, the system will 

not be able to provide accurate recommendations for the current user, a “user cold start” 

problem. Some strategies for tackling the “cold start” problem will be considered later 

in the sub-section 2.2.3. 
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2.2.2 – Item representation in the content–based recommender approach 

 

In the content-based methods, all items from the dataset are described by a certain 

number of features, called attributes or properties. For example in the WARES recommender 

system features describing a certain web analytic tool, next item, are: unique number of visitors, 

clicks, price, user’s interface language, special unique features, etc... When each item is 

described by the same set of attributes, and there is a known set of values the attributes may 

take, the items are represented as a structured data. In this case, many machine learning 

algorithms can be used in order to learn a user’s profile [Pizzani and Billsus, 2007]. In most 

content–based filtering systems, as in WARES recommender system, item descriptions consists 

of the features, which should be extracted from the web pages describing certain web analytic 

tools. For WARES we have unstructured data, thus attributes should be extracted before 

recommender process starts. Textual features create a number of complications when learning 

a user’s profile, due to the natural language ambiguity. The problem is that traditional keyword–

based profiles are unable to capture the semantics of user’s interests because they are primarily 

driven by a string matching operation. If a string, or some morphological variant, is found, in 

both the profile and the document, a match is made and the document is considered as relevant, 

while string matching suffers from the following problems: 

- Polysemy: when one word have multiple meanings. 

- Synonymy: multiple words with the same meaning. 

Thanks to synonymy, relevant information contained on the developer’s websites, 

representing web analytic tool can be missed, while due to polysemy, wrong documents 

(websites) could be deemed relevant. Here the Semantic analysis comes in handy and its 

integration in personalization models is one of the most innovative and interesting approaches 

proposed in literature to solve those problems. The key idea is the adoption of knowledge bases, 

such as lexicons or ontologies, for annotating items.  

In the “traditional” keyword–based Vector Space Model of the text document [Koren 

and Bell, 2011] keywords are represented by the frequency and inverse document frequency 

weightings, and each document is represented by a vector in the n–dimensional space, where 

each dimension corresponds to a term from the overall vocabulary of a given document 
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collection. Formally, every document is represented as a vector of term weights, where each 

weight indicates the degree of association between the document and the term. Let D = {d1, d2, 

..., dN} denote a set of documents or corpus, and T = {t1, t2, ..., tn} be the dictionary, that is to say 

the set of words in the corpus, T is obtained by applying some standard natural language 

processing operations, such as tokenization, stop–words removal, and stemming [Baeza–Yates 

and Ribeiro–Neto, 1999]. Each document dj is represented as a vector in a n–dimensional vector 

space, so dj = {w1j, w2j, ...,dnj}, where wkj is the weight for term tk in document dj. 

This document representation raises two issues: weighting the terms and measuring the 

feature vector similarity. The most commonly used term weighting scheme is Term Frequency–

Inverse Document Frequency (TF–IDF) weighting is based on following empirical observations 

regarding text [Salton, 1989]: 

- Rare terms are not less relevant than frequent terms – IDF assumption. 

- Multiple occurrences of a term in a document are not less relevant than single 

occurrences, TF assumption. 

- Long documents are not preferred to short documents (normalization assumption). 

In other words, terms that occur frequently, TF, in one document, for the WARES document are 

replaced with websites, but rarely in the rest of the corpus, IDF, are more likely to be relevant 

to the topic of the document. These assumptions represented in the TF–IDF function: 

𝑇𝐹 − 𝐼𝐷𝐹(𝑡𝑘, 𝑑𝑗) = 𝑇𝐹(𝑡𝑘, 𝑑𝑗) ∗ log
𝑁

𝑛𝑘
         (2.15) 

Where N denotes the number of documents in the corpus, and nk denotes the number of 

documents in the collection in which the term tk occurs at least once, and log
𝑁

𝑛𝑘
 is a formula for 

IDF. 

𝑇𝐹(𝑡𝑘, 𝑑𝑗) =  
𝑓𝑘,𝑗

max
𝑧

𝑓𝑧,𝑗
 

The maximum is computed over the frequencies fz,j of all terms tz that occur in document dj. In 

order for the weights to fall in the {0, 1} interval and for the documents to be represented by 

vectors of equal length, weights obtained by Equation (2.15) are usually normalized by cosine 

normalization, which enforces the normalization assumption: 
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𝑤𝑘,𝑗 =
𝑇𝐹 − 𝐼𝐷𝐹(𝑡𝑘, 𝑑𝑗)

√∑ (𝑇𝐹 − 𝐼𝐷𝐹(𝑡𝑠, 𝑑𝑗)2|𝑇|
𝑠=1

 

For example, suppose that we have term count tables of a corpus consisting of only two 

documents, shown on the figure 13. 

 

Figure 13: Two documents with terms 

 

The calculation of TF–IDF for the term "this" is performed in its raw frequency form, 

TF is just the frequency of the "this" for each document. In each document, the word "this" 

appears once, but as the document 2 has more words, its relative frequency is smaller. An IDF 

is constant per corpus, and accounts for the ratio of documents that include the word "this". In 

this case, we have a corpus of two documents and all of them include the word "this". So TF–

IDF is zero for the word "this", which implies that the word is not very informative as it appears 

in this documents.  

The methods of similarity measures, used to describe the proximity of two vectors, was 

considered in the section 2.1.3. In the content–based recommender systems, relying on vector 

space model, both user profiles and items are represented as a weighted term vectors. For 

example, predictions of a user’s interest in a particular item can be derived by computing the 

cosine similarity or Pearson correlation. But the most important lesson learned from the analysis 

of the recommender systems developed in the last years [Ricci et al., 2015] is that keyword–

based representation for both items and profiles can give accurate predictions. Keyword–based 

approach works pretty fine, but shows its limitations connected to synonymy and polysemy. For 

example, in the WARES recommender system a user needs web analytic tool for analysis of 

user’s “click stream” on his website, keyword–based approaches will only find websites in 

which the words “click” and “stream” occur. But websites with “clickstream and “click–stream” 
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will not appear in the set of recommendations, even though they are likely to be very relevant 

for that user. More advanced representation strategies are needed in order to equip content–

based recommender systems with “semantic intelligence”, see next section. 

2.2.3 – Semantic analysis in the content–based recommender systems, using 

ontologies  

 

Semantic analysis allows us creating more accurate profiles that contains descriptive 

data and concepts defined in the external knowledge bases. The main motivation for this 

approach is the challenge of providing a recommender system with the linguistic background 

knowledge, which characterizes the ability of interpreting natural language texts and reasoning 

on their content. The description of these strategies should be carried out by taking into account 

following criteria: 

- Type of knowledge source:  lexicon or ontology. 

- Techniques: different techniques for the annotations and items representations. 

- Type of content included in the user profile. 

- Item–profile matching strategy.  

Proposed recommender system, WARES, incorporates an ontology, created specifically 

for the domain of web analytic, of course it is not new implementation, several recommender 

systems created before also uses ontologies. As an example I would like to compare WARES 

with another recommender system for Interactive Digital Television, proposed by Blanco–

Fernandez [Blanco–Fernandez et al., 2008], where the authors apply reasoning techniques 

borrowed from the Semantic Web in order to compare user’s preferences with items, in their 

case item are represented by TV programs. For this system the linguistic knowledge comes 

exclusively from the WordNet lexical ontology [WordNet]. TV programs available, during the 

recommendation process annotated by metadata that accurately describes their main attributes, 

both TV domain data and the user’s profiles was created using Web Ontology Language [OWL, 

2012]. The OWL languages are characterized by formal semantics, and are built upon a W3C 

XML [XML, 2008] standard for objects called the Resource Description Framework [RDF, 

2014]. Ontology–profile provide a formal representation of the user’s preferences, being able to 
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“reason” about them and “discover” extra knowledge about their interests. The recommendation 

phase exploits the knowledge stored in the user profile to discover hidden semantic associations 

between the user’s preferences and the available products.  

2.2.4 – Methods for Learning User’s Profiles, applicable to the content–

based recommender systems  

 

For the task of inducing content–based profiles, machine learning techniques are widely 

used, and they are well–suited for text categorization [Sebastiani, 2002]. An inductive process 

automatically builds needed text classifier by learning from a set of “training documents” 

labeled with categories they belong to. For example, the problem of learning user profiles can 

be cast as a binary text categorization task: each document has to be classified as “relevant” or 

“not relevant” with respect to the user’s preferences. Let us denote a set of categories by C = 

{c+, c−}, where c+ is the positive class or “relevant” and c− the negative or “not relevant” (user–

dislikes). Below, in this section will be considered machine learning algorithms frequently used 

for the content–based recommender systems. They are able to learn a function that models user’s 

interests. These methods typically require users to label documents by assigning a relevance 

score, and automatically infer profiles exploited in the filtering process to rank documents 

according to the user’s preferences. 

 

2.2.4.1 – Probabilistic Methods and Naïve Bayes 

 

Naïve Bayes is a probabilistic approach to inductive learning, and belongs to the general 

class of Bayesian classifiers, it generates a probabilistic model based on previously observed 

data. The model estimates “a posteriori” probability, P(c|d), of the document d belonging to the 

class c. This estimation is based on several probabilities: the a priori probability, P(c), of 

observing a document in the class c, P(d|c), the probability of observing the document d given 

c, and P(d), the probability of observing the instance d. Using these probabilities, the Bayes 

theorem is applied to calculate P(c|d): 

𝑃(𝑐|𝑑) =
𝑃(𝑐) ∗ 𝑃(𝑑|𝑐)

𝑃(𝑑)
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To classify the document d, the class with the highest probability is being chosen: 

𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑗

𝑃(𝑐𝑗) ∗ 𝑃(𝑑|𝑐𝑗)

𝑃(𝑑)
 

Where P(d) is generally removed as it is equal for all cj. As we do not know the value for P(d|c) 

and P(c), we estimate them by observing the training data.  Although naïve Bayes performance 

is not as good as some other learning methods such as nearest–neighbor classifiers or support 

vector machines, it has been shown that it can perform surprisingly well in the classification 

tasks [Domingos and Pizzani, 1997]. Another advantage of the naïve Bayes approach is that it 

is very efficient and easy to implement compared to other learning methods.  
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2.3 – Conclusion   

 

In this chapter was surveyed possible ways and applications of the collaborative and 

content–based filtering techniques in recommender systems, was provided an extensive 

overview for the most important, in my opinion, algorithms, and techniques, which could be 

used for the WARES recommender system. Although there exist lot more algorithms and 

techniques for building different types of recommender systems, but I think it was necessary to 

consider what was considered because it explains why these methods should not be used in the 

WARES, while others should be. And yes there was used lots of citations from the external 

sources, of course accompanied by the references to the articles of these authors. Basics which 

was explained in this sections was written by the respected authors long before this paper was 

conceived, do not see the point explaining these basics from the scratch, while I can use them 

in the context of the WARES. It was discovered that both collaborative and content-based 

filtering approaches extensively uses user’s profile information to better predict ratings, but 

differs in the way how existing user’s ratings being used for creating item-item and user-item 

cross-ratings. In the section 2.1 was considered an issue when some items have not yet received 

their ratings, and how to overcome this issue using additional data from the implicit user’s 

feedback sources. Was considered and explained how to use two well–known methods for 

measuring similarities between set of items: Pearson’s correlation and cosine similarity. Finally, 

after considered content-based approach in the section 2.2, I came to the conclusion that for the 

WARES recommender system, some approaches, like collaborative filtering, and the set of 

algorithms connected to this technique are not applicable, due to the specificity of the 

recommended content. Collaborative filtering approach seems to be inappropriate because the 

WARES recommender system does not have great number of users, from the beginning it was 

conceived for a single user. Everything considered in this chapter was useful and helped me in 

the further implementation of the WARES recommender system.  
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Chapter 3 – Structure of the WARES recommender system 

 

There exists lots of data processing and metadata processing methods, many user 

models, vast variety of filtering techniques, many accuracy metrics, and many levels of 

personalization. Due to its domain the WARES implies several constraints due to its purpose 

and specificity, e.g. the environment impose some architectural limitations; data may be not in 

a suitable format, number of users in the system, etc. This can make the task of building such a 

recommender system very complicated and a long–term task for a single person. In this chapter, 

relying on the studies of other works, will be shown how WARES was designed. Following 

existing guidings it will be shown how to build a solid architecture based on three models: data 

model, user model and application model. 

3.1 – Generalized overview about recommender systems structure 

 

After considering two well–known approaches for building recommender systems and 

become acquainted with corresponding algorithms and techniques it can be asserted that 

collaborative filtering approach does not suit WARES needs, because there is a major 

complication with collaborative approach, it needs users and their rating, lots of them, and 

WARES does not have this data, because it intends to give a recommendations to a single user, 

who supposed to use this recommender system for the first time that is why there is no thousands 

or even tens of users who can give rating on previously recommended web analytics tools. 

Collaborative techniques cannot be applied because WARES simply do not have data, as 

collaborative filtering recommender systems are based on the statistical processing of opinions 

expressed by many users. On the other hand the content–based approach seems more 

appropriate, because even with one user in the system, we can do item–user and item-item 

matching, using ontology, see section 3.3, as an extension to “items” (web analytic tool) profile. 

Summarizing what was learned about recommender systems, let us consider an existing example 

of the content-based recommender system proposed by the professor of the University of Bari 

in Italy, Pasquale Lops in his article “Content-based recommender systems: state of the art and 

trends” [Lops et al., 2011] and examine which parts could be used for the WARES and which 

are not, see figure 15.  
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Figure 14: Architecture of the content–based recommender system, [Lops et al., 2011] 

In order to understand the main components of the content–based architecture let us 

explain each block. The recommendation process performed in three steps, each of which 

handled by a separate component: 

- Content analyzer – When information has no structure, e.g. textual description of web 

analytic tool on the developer’s website, some kind of pre–processing step is needed to 

extract structured relevant information. The main goal of this block – representation of 

the items, e.g. web pages containing valuable data about web analytics tool, in a form 

suitable for the profile learning.  

- Profile learner – This module collects data representing user’s preferences and tries to 

generalize this data, in order to construct a user profile. Usually, the generalization 

strategy implemented through the machine learning techniques, described in the section 

2.2.4, which infers a model of the user’s interests.  

- Filtering component – This module exploits the user profile in order to suggest relevant 

items by matching the user’s profile to items dataset. The result is a binary or continuous 
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item vectors, computed using one of the similarity metrics described in 2.1.3, in the latter 

case resulting a ranked list of potentially interesting items.  

The first step of the recommendation process is the one performed by the content 

analyzer, which usually uses various information retrieval and data mining technique to gather 

relevant information useful for the recommendation process. Item descriptions coming from the 

“information source”, for the WARES it is web pages containing description of the different 

web analytic tools, are processed by the content analyzer, which extracts features like keywords, 

concepts, etc. from the unstructured text to produce a structured item representation, stored in 

the repository Represented Items. In order to construct and update the profile of an active user 

feedbacks for items are stored in the dataset repository, later these feedbacks will be also used 

for ratings prediction. Typically, it is possible to distinguish between two kinds of relevance 

feedback: positive, inferring features liked by the user, and negative, inferring features the user 

does not like or not interested in. Two different techniques can be adopted for recording user’s 

feedback: explicit and implicit, described through the sections 2.1.1 – 2.1.2. 

To get an explicit feedback, while using content–based filtering approach, we can use 

one of the following well–known methods [Lops et al., 2011]: 

- Like/dislike: items are being classified as “relevant” or “not relevant” by adopting a 

simple binary rating scale 0, 1. 

- Ratings: a discrete numeric scale is usually adopted to judge items. 

- Text comments: comments about a single item are collected and presented to the users 

as a means of facilitating the decision–making process.  

Now, when we considered the generalized architecture of the content-based 

recommender system and its components let us proceed to the design stage. The major concern 

at the stage of the design and planning that any further changes in the development is very costly. 

In order to tackle this problem in a systematic way, it is useful to step back and see from a wider 

perspective what are the main design decisions to make and the factors, which influence them. 

To facilitate the design process of the WARES recommender system I will follow the structural 

model for the recommender system proposed by the researcher from the Alcatel-Lucent Bell 

labs, Jerome Picault in his article “How to get the recommender out of the lab” [Picault et al., 

2011], the general model is shown on the figure 16. 
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Figure 15:  Recommender system in its environment [Picault et al., 2011] 

 Designing a recommender system means making choices categorized into the three 

following domains: 

- Architecture: how the system will be deployed, will it be centralized or distributed? 

- User’s profile: what is the user model, is profile adaptation needed? 

- Algorithms: which recommendation methods to be used? 

In most cases these choices are constrained by the environment of the recommender system. 

That is why when building a recommender system it is important to study system’s environment. 

Following the best practice recommendations from the article of Jerome Picault [Picault et al., 

2011] I will describe the WARES’ environment along three dimensions: 

- Application: the overall scope of an application of which recommender is a part of? 

- Users: who are the users, what are their goals? 

- Data: what are the characteristics of the data on which recommendations are based? 

 

3.2 – Understanding WARES recommender system environment 

 

Let us consider in details these three models mentioned in the previous section and how 

they correspond to the WARES: the user model, the data model, and the application model. 

This section considers at large these models from the point of view described by Jerome Picault 

in his paper [Picault et al., 2011], transferring proposed models to my recommender system will 

help me to decide how WARES should be implemented, and help to reveal key constraints of 

the WARES design, allowing to answer the following questions:  
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- Choice of the application model and recommendation algorithm for the WARES. 

- Choice and possibilities of adaptation of the user’s profile.  

- Choice of the data model for the WARES recommender.  

 

3.2.1 – Application model 

 

Though a recommender system itself is a complex piece of software and as was 

mentioned before often is the part of a larger system (application). Globally the recommender 

system is one of the features of the application. It may be a minor feature or a main selling point, 

the application may be pre–existing or built together with the recommender, but in any case the 

design of the recommender system has to be integrated within the design of an application 

hosting it. This section studies the main factors regarding the host application influencing 

recommender system design, base features [Picault et al., 2011] of the application model is 

shown in table 4. 

Table 4: General application model components [Picault et al., 2011] 

Model feature Possible values 

Recommender purpose 
major service, long–tail focused, increase revenues, 

increase loyalty, increase system efficiency 

Recommender type  single item, multiple items, sequence 

Integration with navigation features  Stand–alone application, or in–browser  plugin 

Performance criteria  
correctness, transparency, serendipity, risk–taking, 

response speed, robustness to attack 

Device to support the application  fixed, mobile, multiple 

Number of users Single or group of users 

Application infrastructure  browser–based application, distributed application 

Screen real–estate  limited, not limited 

 

The table above contains all the possible values, they will be explained in the next two sub-

sections, but not all of them are applicable to the WARES, those which are relevant is shown in 

table 5. 
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Table 5: Application model for the WARES recommender system 

Recommender Purpose 

major service - the only purpose of this system to give 

suggestions about “best” web analytics tool or set of 

tools, increase loyalty, increase revenues, increase 

system efficiency 

Recommender type  multiple items 

Integration with navigation features  

“tight” integration through coupling with the 

information retrieval techniques to deliver a 

personalized search service 

Performance criteria  
First of all it is correctness than transparency and 

response speed 

Device to support the application  desktop personal computers and laptops 

Number of users single use application 

Application infrastructure  browser-based application with personalized search 

Screen real-estate  not limited 

 

As was mentioned above, the recommender system is always a part of an application, but is it 

just a small useful feature or the whole application is built around the recommender system? In 

the case with the WARES it is a major feature of an application, thus the whole application is 

built around the WARES. 

 

3.2.1.1 – Understanding the recommender role in the application 

 

The main question to answer before starting designing a recommender system 

application is to determine its main goals. It is not so easy as it seems, because depending on 

what was determined we could have long-lasting consequences through the future 

implementation stages. In this section will be considered all the possible features of the 

recommender system as an application. Relying on the list of properties from the table 4, as was 

proposed by the Jerome Picault in his article [Picault et al., 2011], the WARES recommender 

system will have the following set features: 

–  “Major service” – RS may be a “major service” provided by the application. Many such 

recommender systems already have been developed in different fields, e.g. for music 

last.fm, for movies Netflix, as for the WARES, it was intended to be a “major service” 

from the beginning.  

–  Increase loyalty of users: customers usually return to the services that gives them best 

match their needs. Loyalty can be increased by involving users in the recommendation 
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process, asking them for ratings or manual profile, highlight new recommendations, etc. 

This is not the case for WARES, because I have no intention to implement any long–

time stored user profiles, to make my system “safer”, in a sense of personal data.  

– Increase revenues: through the promotion of targeted products. In that case, the 

recommendations would be determined by both the user’s preferences and some 

marketing rules defined to follow a particular strategy. It is necessary to carefully balance 

the expectations of the users and the business strategy, to ensure users perceive value in 

the system. It could be an option when WARES will be fully functional, to promote 

specific web analytic tools in exchange for the monetary compensation from developers, 

as a fee for the marketing service. 

– Increase system efficiency: by allowing a user to get content he/she is looking for, the 

WARES recommender system can lower time spent for search, and lower an amount of 

data to be exchanged, thus lowering the costs of time and rising user’s efficiency in 

selection appropriate web analytics tool.  

Potentially a recommender system can provide several sorts of recommendations, from 

a single item or a simple list of items to a sequence of items. It is exactly what WARES do, 

because not every time user will want to see tens of recommendations about web analytics tools, 

most time it is “top 5” or “top 10” lists. A user will need to know a lot of ongoing stuff about 

recommended analytics tool, and theoretically here WARES could come in handy by providing, 

right away, explanations about the features, which suggested web analytic tool possess. As was 

explained in the section 1.1.3 there are many metrics, theoretically new users could be unaware 

about what they does and how to use them.  

Next question is how the recommendations will be integrated with other content 

navigation features. In most cases, users will be offered with means to browse content in 

addition to getting recommendations. I am considering the following methods that can greatly 

enhance the user’s experience of WARES:  

- Separate or integrated recommendations: meant recommendations for the user are 

shown in the separate window (tab) of the user’s default internet browser, as a main 

feature of the application, and since an application itself implemented as a web–
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application such recommendations may also appear right away in the recommender 

system’s main window, integrated.  

- Optional or a mandatory: usage of the recommender system is a mandatory part of the 

interaction model, because it is the main feature of the designed application, without the 

possibility to recommend the application has no sense of existence. Following this option 

the WARES should work in the “background”, meaning that there should be no context 

pop–up windows like “please wait recommending process in progress”. If a user started 

WARES application, than he/she should get something on the screen while 

recommendations being prepared, e.g. “tip of the day” about web analytics tools or kind 

of a “did you know” interesting facts about capabilities of the WARES. 

It is important to define targets for the performance of the system along a number of 

criteria. Not only these criteria will allow to evaluate the system once it is built, but they are 

also a key for selection of the proper algorithms. Many criteria for a comprehensive reference 

can be used, see [Picault et al., 2011] some key ones should be: 

- Transparency and “explainability”: in the WARES, I think it is highly desirable to 

have a certain level of transparency and “explainability” and it should be implemented 

as an indispensable part of the system, e.g. in the form of pop-up tips, while pointing the 

results with a mouse, containing explanations why this particular web analytic tool was 

placed (rated) higher in the list than another.  

- Risk taking: the recommendations made for the user should be with a high probability 

of liking, no “risky” items can be recommended. For the WARES it is a controversy 

point, as it limits “novelty” of recommended items, but I think for the professionals, who 

value their time and money, and of course they do, will be preferable to get a “reliable” 

recommendation with “high probability of liking”, no “new” random items should be 

recommended, only these web analytic tools, which are highly corresponding to user’s 

needs. 

- Response speed/performance: in some cases, users want to see the fast reaction from 

the application and sometimes reaction speed could be more important than the accuracy 

of the produced results. For the WARES it is not a critical point, the system just should 

work without crashes and freezes. 
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- Reliability: for the WARES, this is not a bottleneck, it simply must work without 

crashes and freezes, it is not the donor organ matching system for the hospital where it 

should have the highest level of reliability.    

- Robustness to attacks: if the recommender system has a vital commercial role, e.g. 

eBay or Amazon, it may be a subject to the various hacker attacks from the competitors 

or just from some hooligans, in order to lower its performance and results. In the case of 

the WARES there is no such a threat, because at this stage it is not a commercial system 

and it is not designed as a client-server application, where the server could be the attack 

target. 

 

3.2.1.2 – Understanding the influence of the application implementation 

 

In addition to the features described in the section above, some aspects of the application 

implementation also will have a considerable influence on the way how the recommender 

system will be designed from the point of view of interaction with devices and OS platforms 

where it will be runt.  

Single or multiple devices: is the same application designed for the multi-platform use? 

e.g. user could launch it from his/her cell phone or tablet, PC. For now I am considering 

implementing WARES only for PC platform, and only for Microsoft Windows, but as a part of 

future work and improvements considering to implement mobile access and porting into another 

OS platforms.   

Single or multiple users: if the device being used by the several users the application 

should have the profiles management option, or if it is a client-server application, how to store 

profiles?  This impacts on the architecture of the RS, rising requirements for the different 

identification methods, e.g. using cookies or login and passwords. For the WARES there is no 

problems mentioned above, it simply has one single user, and every time when application is 

launched it stores all the necessary data in its local folder, without any personal profiles, only 

basic settings which are the same for anybody who lunches the application.  
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Application infrastructure: here the two cases can be identified, whether the 

application is accessed through a browser as a client-server application or it runs locally on the 

user device. 

- Browser–based client-server application: in this case most of the processing usually is 

done on the server side, whence the client will then receive only the results from the 

server. Not the case for the WARES. 

- Browser–based local application: when the application runs on a local computer. On the 

current stage, the WARES recommender system is a relatively simple low-resource 

consuming application, there is no need in enormous processing power of the relevant 

devices, but it is quite sensitive to the network connectivity. The network connection 

should be permanent. The data needed for producing recommendations is getting from 

the ontology, which is stored locally and filled while the application is running. 

Screen “real estate”: simply determines how much of the screen space will be taken by 

the recommender application. In some cases, the screen-space might be limited by the 

application's user’s interface design, but for the WARES it is not a problem, as it runs in a 

browser’s window, thus the amount of the screen-space is determined by the user, who shrink-

elongate the browser’s window as he/she considers necessary. For example, if the WARES 

would be a fixed-size window application and if it has provided more recommendations, it is 

obvious that total amount of needed screen-space will rise and at some point recommendations 

may go beyond the application’s window borders, but WARES is a browser-based application, 

user could always scroll up-down and left-right to see the all text.   

3.2.2 – User model 

 

In the modern world of commercial applications understanding needs of its users is a 

key to success of any recommender system. Insights of the user's needs should be modeled as 

early as possible because it may impact on the final efficiency and overall usability of the 

recommender system as a part of the application. In this section, will be considered how to 

characterize users by some chosen properties that may have an impact on the WARES design 

in the future. The recommender system may face some difficulties or complete unusability if 
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user’s needs were incorrectly identified or interpreted, list of all user’s properties, proposed by 

the Jerome Picault in his article [Picault et al., 2011] is shown in table 6.  

Table 6: General user model components [Picault et al., 2011] 

Model features Possible values 
Demographics information  Is present, not present 

Goal existence and nature implicit, explicit 

Level of expectation  high, medium, low 

Possible change of expectation over time  yes, no 

Limited capabilities of user’s device  CPU, memory size, screen resolution, etc. 

Importance of user’s situation  high, medium, low 

Social environment  alone, in the group of other people 

Trust and privacy concerns  high, medium, low 

 

If we want to go deeply while developing a recommender system the user, as en entity, might 

be studied very deeply based on the international standard [ISO–13407], but we will stick to 

those proposed in the article “How to get the recommender out of the lab” [Picault et al., 2011]. 

Table 7: User model for the WARES recommender system 

Demographics information  There is no discriminatory demographic factors, 

anyone could use this system 

Goal existence and nature 

Explicit goals are expressed through user queries;  

End-users have no other goal than being informed 

about new web analytic tools, which are reflected 

through queries.  

Level of expectation  Medium to low 

Possible change of expectation over time  
Yes: expectations of users should increase when they 

progressively 

discover the benefits of personalized search functions 

Limited capabilities of user device  No: typically there is no limitations for PS platforms 

Importance of user’s situation  Low: the recommender system does not concern 

about user’s situation. 

Social environment  
Alone: by nature, selection of something, in this case - 

web analytics tool, is an individual activity, conducted 

by the decision-making person. 

Trust and privacy concerns  Not considered, because proposed recommender 

system does not store any personal information. 

 

It is essential to understand who will be the end–users, what he/she expects when using WARES, 

what are the user’s central contextual factors surrounding the use of the system? Only by clearly 

answering on each of these questions the fundamental requirements for the system design and 

choice of the technology will become clear, all properties for the WARES user model is shown 

in table 7. 
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3.2.2.1 – Importance of understanding who are the users 

 

It is important to concentrate on the identification of user’s characteristics because it has 

special utility in terms of recommender system design. By identifying user’s characteristics, 

mean building a portrait of the different groups of users through demographic information, such 

as age, gender, job area, nationalities, and spoken languages. Knowing these characteristics 

allows to start building a relationship with users and get an appreciation of their needs. 

Understanding who are the future users will help to resolve two major concerns:  understanding 

user’s key identifying characteristics and user’s skill levels and their prior experience with 

similar systems. 

Creation of user group clusters allows building simple recommendations based on 

demographics, this feature is commonly used in targeted advertising campaigns and define 

stereotypes of this group of users. Stereotyping techniques allow definition of a set of certain 

defining characteristics for a group of users, which may help when a new user introduced to the 

system. Predefined stereotypes could be assigned for new users, based on their personal data, 

which allows activating a set of default preferences that may be further refined over time thanks 

to user’s profile adaptation methods [Burke, 2002].  

3.2.2.2 – Understanding user’s motivation, goals and expectations 

 

Knowing goals and motivations is very important for me as the designer of the 

recommender system. This knowledge may help to understand is an application could satisfy 

potential users or not. For example, the eBay is offering to its users the possibility get 

recommendations while browsing/buying item. From the user’s point of view, while using this 

recommendations the goal is to buy or not to buy these items, while eBay’s goal is to motivate 

users to buy more, by showing “relevant” items. We need to try to identify and to understand 

user’s motivation and goals behind his/her actions, in order to make recommender system user-

friendly and in the future to improve user’s experience and the overall outcome of the system 

[Picault et al., 2011].  

The goal: could be an implicit, when a user is "not sure" why he/she is using the 

recommender system, in this case, he/she may be offered a certain set of actions within a 
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recommender application, or the goal might be inferred during the interaction process of the 

recommender system with a user. Or it might be explicit, when user knows for sure what he/she 

will do within the recommender. For the WARES the goal is defined as an explicit because the 

users already know why they are using this recommender system (to get recommendations 

concerning the web analytics tools). 

Level of expectation: the proposed recommender system is totally new, and at this point 

designed not for the commercial use, that is why the level of the expectations from the users 

might be “medium”, means the recommender system returning “some good items” or “low”, 

means the user does not expect outstanding results but expects the recommender system at least 

just working. User’s expectations also may change over time, in the process of acquaintance 

with the system or with increases of their own needs. 

 

3.2.2.3 – Understanding user’s context 

 

The last part to be taken into account are the various contextual issues surrounding the 

use of the recommender system [Picault et al., 2011]:  

User’s device: the first consideration is “what device will be used by the user to access 

the recommender system”? For example, if this is a mobile device (smartphone or a tablet) we 

should consider using minimalistic user’s interface. For the WARES recommender system, the 

device which will be used is the laptop or desktop computer, so there is basically no limitations 

on the design implementation. 

Situation of interaction: situational considerations may include user’s current location, 

where the user using the system – on the workplace in the formal setting or at home while being 

relaxed. Temporal factors, e.g. relevance of given recommendations during the certain period 

of time, etc. For the WARES recommender system, there is no limitation by situational 

interaction, because it recommends content which could be browsed anywhere and does not 

impose any limitations for its users.  

Social environment: environment, where the use of the recommender system is usually 

carried out. Is it usually done alone or within some social group of other people, is there age 
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restrictions, etc. This may result in some design decision resulting in the final implementation, 

e.g. data collection methods or recommendations presentation methods. And again for the 

WARES there are no limitations on this factor, the content of its recommendations is not rated 

as “adult” or “disturbing”, so anybody could use the system anywhere, in the workplace in the 

office, with friends or even in the family circle. But we think it will be used mostly alone by the 

one person, because by nature, selection of something, in this case - web analytics tool, is an 

individual activity, conducted by the decision-making person.  

 

3.2.3 – Data Model 

 

The last thing, that should be studied, are the characteristics of the items with which the 

WARES recommender system will work. In table 8 is shown general data model components 

and all the characteristics of the data model, proposed by Jerome Picault in his article [Picault 

et al., 2011] and to be considered in this the section. It is important to consider data model 

because it helps to identify the main characteristics of data that may influence the design of the 

recommender system. 

Table 8: General data model components [Picault et al., 2011] 

Model feature Possible values 
Data type  structured, semi–structured, unstructured 

Metadata quality and quantity high, medium, low 

Metadata expressiveness  keyword–based, semantic–based 

Description based on standards  yes, no 

Volume of items  tens, thousands, millions ,etc. 

Diversity of items  homogeneous, heterogeneous 

Distribution of items  “long–tail”, mainstream 

Stability vs. persistence of items  stable, changing, changing a lot 

User ratings  implicit, explicit, none 

 

Not all components from the table above could be used in WARES, because of 

specificity connected with web analytics tools, and because of the need to extract these data 

from the unstructured textual documents (web pages). In table 9 are listed all data model 

components which are used in the WARES recommender system. 
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Table 9: Data model for WARES recommender system 

Data type  
Unstructured, data should be extracted from the web 

pages, describing particular web analytic tools.  

Metadata quality and quantity 

Low: poor expressiveness almost without any 

semantic annotation of content, many metadata should 

be extracted by the semi-automatic means. 

Metadata expressiveness  

Keyword-based: most of the information about web 

analytic tool gathered by filtering keywords and 

semantic text analysis in the body of web pages. 

Description based on standards  Yes: proposed ontology for web analytics tools is used. 

Volume of items  

Medium: depending on how long recommender 

system is working, and how many web analytics tools 

were found during this period. 

Diversity of items  
Homogeneous content composed of web analytic 

tools. 

Distribution of items  Mainstream formed of web analytics tools. 

Stability vs. persistence of items  

Stable: most of the web analytics tools, found during 

the web search process, remains unchanged in the 

“short” period of time, while recommendations are 

made.  

User ratings  

Explicit or none: user builds his/her own preference 

table during first interaction with recommender system 

when he/she asked about initial preferences. 

 

 

3.2.3.1 – Understanding the type of available data to describe items 

 

According to the Jerome Picault [Picault et al., 2011], the main aim of the data model is 

to support the development of the recommender system by providing the insights about the data, 

which it uses. There exist many ways to describe data sources, but the best-known approach 

focuses on the three types of data: structured, semi-structured and unstructured data. 

Unstructured data: in the case of the WARES recommender system, we are dealing 

with unstructured data, where an item can be represented only in unstructured form, it means 

that the data does not have a standardized data model e.g. in our case - unstructured text. In this 

case a certain preprocessing need to be done to extract significant keywords, or concepts, which 

are helping to distinguish relevant items from other textual information. For example, Apache 

Lucene [Lucene, 2016] allows extracting keywords from unstructured text.   

The use of unstructured data has many impacts and limitations on the recommender 

system’s design. First of all it reflects on the algorithms, which might be used, dealing with 
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unstructured data excludes a full set of recommender algorithm families, e.g. Bayesian models. 

To work with such date we first need to extract keywords, see section 3.3.2 for details, then 

build and item profile (ontology) and only after this manipulations we could start producing 

recommendations by manipulating received data in the way we do with the structured data, using 

of a vector of keywords representing user’s profile.   

 

3.2.3.2 – Understanding the quality/quantity of data 

 

Quality and quantity of the data are important performance factors for any recommender 

system, especially when using a content–based recommender approach, like we do in the case 

of WARES, performance of the recommender system depends on data quality, precision of the 

recommendations depends on quantity of available data.   

Quality:  in general, an item data is considered “high quality” if it enables one item to 

be distinguished from another. The quality feature of the data is a major “hot” point of the 

design for the WARES recommender system, it depends on the web pages filtering, using a 

certain set of keywords. I need to balance the accuracy of the produced recommendations and 

the recommender system performance in terms of time to respond, storage capacity and 

processing costs. For example, if we prefers the “best” performance then we have to introduce 

some constraints on the architecture and avoid implementing the RS on a lightweight client (a 

device that depends heavily on another computer, its server, to fulfill its computational roles). 

Alternatively, I can choose to perform recommendations using a two–step algorithm, distributed 

between the server and the client device [Picault et al., 2011].  

Expressiveness: the data must reflect user’s points of view on items, and represent what 

users consider as differentiating characteristics of items. The expressiveness of the data is crucial 

to the whole performance of the recommender system. The data, described using semantic 

concepts enables us to use more sophisticated recommender algorithms, such as ontology–

content–based filtering method [Shoval et al., 2008] that takes into account the existence of 

“related” items according to their position in the ontology hierarchy. Or spreading of semantic 

preferences, i.e. the extension of ontology–based user profiles through the semantic relations of 

the domain ontologies, as described in [Sieg et al., 2007].   However, it exists certain technical 
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issues: semantic reasoning is increasing overall processing time and if the given data are not 

considered “sufficiently” semantically described it may also resulting in inaccurate 

recommendations. 

Quantity: the amount of data is an important factor to consider: few data may lead to 

inaccurate recommendations, whereas too much metadata may lead to useless processing and 

overall slowdown. In addition, data description may vary in terms of degree of precision (depth), 

variety of description (breadth) [Picault et al., 2011]. The risk with superficial description is to 

propose items to users that do not correspond exactly to what they expect. Very in–depth 

descriptions may reinforce some drawbacks of the content–based filtering algorithms, in 

particular in terms of overspecialization.   

Description based on standard: regardless of their level of expressiveness, the data can 

be described in different ways using various standards such as: Dublin Core, MPEG, etc. For 

the WARES recommender system the date is described by the ontology, proposed in this paper. 

 

3.2.3.3 – Understanding the properties of the item set 

 

Volume of items: in addition to the quantity of the relevant data per item, we should 

consider the volume of items in the data set. It represents an important factor in the choice of a 

recommender system technique. The size of the data set is crucial for the collaborative-filtering 

techniques to compute correlations efficiently, while the content–based algorithms can cope 

with a smaller data set, this is another reason why for the WARES was decided to use content-

based approach [Picault et al., 2011]. 

Distribution of items: it is also essential to consider how items are distributed among 

the data set. In the WARES recommender system the items are distributed as a mainstream, 

meaning there is no high proportion of items annotated with some special concepts “action”, all 

items are forming a set where each item is as important as everyone else. The level of depth of 

the annotations of the data is "in order" and all data is considered as of equal quality. [Picault et 

al., 2011]. 
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User ratings: existence of user’s ratings and their amount influences on the type of 

techniques which could be selected for the recommender system, as in the WARES 

recommender system there are no initial ratings made by other users, the user may rate or may 

not rate all the recommended items after the first recommendation session, for the following 

filtering process, if desired. If there exists no user ratings related to the items inside a data set 

then this excludes the whole family of collaborative filtering methods.  

 

 

3.2.4 – Summary on Recommender Environment and how it will be used 

further 

 

The three models considered above, help us to understand the environment of the 

developed recommender system. For each model and for each feature/property, was proposed 

guidelines to define requirements and constraints for the WARES. To understand the importance 

of those features was used a two–step method: 

- Identify the dependencies between features: by considering all the properties we were 

able to find out which are relevant and might be used, and which are not may be used in 

the WARES recommender system. This helped help us to understand how a change of 

the one feature may affect the overall recommender environment. For example, how 

changing the type of the application from client-server to local may change the 

recommender system’s device platform. 

- Identify key features of the models: those that have the most significant impact on the 

recommender system's architecture, affect the choice of algorithm, etc. For example, the 

type of data which will be used (unstructured data) determined the concept of further 

development for the WARES recommender system, thus it was confirmed, that using 

the content-based approach is preferable than using a collaborative-filtering family of 

methods.  

In this section, while describing relevant features and properties also were identified the 

constraints, which should be taken into account, when designing the WARES recommender 

system. 
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3.3 – Architecture of the WARES recommender system 

 

The purpose of the WARES was described in the introduction and relying on models 

considered in the first part of chapter 3, I can now start describing WARES itself. Three models: 

application model, user model, and data model for WARES was shown in the tables 5, 7 and 9 

and the Architecture is shown in figure 17. 

Worth emphasizing that in practice, these three models by themselves will not allow 

having a perfect design at the first go. However, they are a very useful support for an iterative 

design methodology, which is the best way to go beyond technical excellence and reach the goal 

that matters in the end: user satisfaction.  

The architecture of the proposed WARES recommender system is shown in figure 17. 

The first block is the part of user interface, it will be described below in the section 3.3.1, it is 

responsible for gathering user’s expectations and desirable parameters about his “ideal” web 

analytic tool, this parameters, along with basic search parameters, will be used during the online 

search. Second block is an online search itself, which is responsible for filling ontology with all 

necessary data for recommendation process; see section 3.3.2 for details. Block 3 is an ontology 

itself, which is used for the description of web analytic tools as a class and as a database, storing 

all data necessary for recommendation process, see section 3.3.3. Block 4 is responsible for 

making recommendations and uses an algorithm described in the section 3.3.4, this algorithm 

works with data collected through the steps in block 2 and 3. 

In figure 17, block 3 is connected with block 2 and 4 with two–way arrows, which means 

that there is a constant information exchange between this three blocks. It is essential for 

recommender system functioning, because to produce recommendations block 4 needs access 

to the data, stored in the ontology and block 2 needs access to the ontology in order to fill it with 

new data. Block 5 is a part of the user interface, which presents recommendations to a user in 

the application window as a list of URLs with a short description of selected web analytic tools, 

with their key features respectively. 
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Figure 16:  Architecture of the WARES recommender system for web analytic tools 

 

Finally, the block 6 offers clarifications about received results, it means if user not 

satisfied with received recommendations he/she will be granted with possibility rate received 

results on the scale from 0 to 5 and then will have a choice to use previously received results 

with ratings for “refinement”, along with possibility to start a new recommendation search. 

3.3.1 – User’s interface 

 

On figure 17 the blocks 1, 5 and 6 are the part of user interface. Described in general 

user model in the section 3.3 the recommender system should be implemented as a web 

application, which means all input data and recommendations itself will be shown in the web 

browser’s window. 
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Figure 17: the WARES recommender settings 1 

As a starting parameter for the online search, recommender system has a phrase “web 

analytics”, it is hidden inside the application code, if the user specified additional parameters, 

the system concatenates starting parameter string with these “user-specified parameters”. “User 

specified parameters” could contain all possible values described in detail in the section 3.3.3, 

sub-section “Define the properties of classes”. All possible values represented as a text with 

“checkbox” near it, see figure 18, if the user wants to include one or another property he/she 

should simply check it and the system will know that this property is “important”. Also a user 



 

82 

will be asked, how many results he/she would like to see after recommender process is 

completed, see figure 19.  

 

 

Figure 18: WARES recommendation settings 2 

Next, during the filtering process, see figure 21, the system will “favor” pages containing 

in their body text with properties marked by the user. These “marked” pages will be listed as 

those, which represent certain web analytic tool and used during recommendation process, along 

with other information from the ontology. And finally user could enter anything he/she think 

important, about desirable web analytic tool, which he/she is looking for, e.g. a remark “free” 

or “reliable”, this text will be added to the starting parameter, so the final string for search engine 

will be “web analytics, free” or “web analytics, reliable”. 

When the recommender process is complete, see block 5 in figure 17, the application 

will show a list of the links to the corresponding web analytic tools, which were recommended 

by the system, see figure 20, ordered accordingly to user’s requirements, formulated in the block 

1. It is meant, if a recommended web analytic tool possess all the properties selected by the user 
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in the section “user-specified parameters” then this link will be shown in the first place in the 

list of recommendations, and so on, all links are shown in the order sorted by the highest rating 

corresponding to “user-specified parameters”. If a recommended web analytic tool has fewer 

properties corresponding to the  “user-specified parameters”,  it will be displayed after all links 

which have all desirable properties, the fewer properties web analytic tool has, lower the place 

in the list it will get. 

 

 

Figure 19: WARES recommendations results 

By clicking on each of link, the user can see the main page of the selected web analytic 

tool, thus the user does not need any explanations from the recommender system, about why 

this particular web analytic tool was recommended, he will see all the needed information by 

himself on the developer’s website. 

Finally the block 6 allows to select what to do next, simply asking the user, would he/she 

start a new search with new parameters or would like to modify/change previously entered 

properties to narrow (extend) received results of the previous search and recommendations. If 

user selected “adjust desirable web analytic tools parameters”, he/she will see web page with 
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previously checked “user-specified parameters”, and will be able to modify whatever he/she 

wants, then new parameters will be applied to previously obtained recommendations, except 

steps 1, 2 and 3, see figure 18. This process could be repeated as many times as needed until the 

user closes WARES application or chooses to start a new search. 

 

3.3.2 – Online search and data mining in WARES 

 

One of the key features of WARES recommender system that it uses an online search 

for making recommendations. Online – mean using web search engine for retrieving a list of 

web sites containing potentially useful data about web analytics tools, for the future 

recommending process. Theoretically, there is a possibility to create a new web–search engine, 

or use one of the existing frameworks of available open–source web search engines, but this 

task itself is so big and complex that it appears to be a topic for a separate thesis! That is why 

was considered to use already implemented excellent search engine like Google, so for this 

particular task was decided not to develop own search engine and took advantage of already 

well–established Google engine. The usage of Google search is pretty simple, e.g. using Java 

library jsoup [jsoup, 2016]: 

Document doc = Jsoup 

 .connect("https://www.google.com/search?q=Request&num=5"); 

 .userAgent("Mozilla/5.0") 

 .timeout(5000).get(); 

Where Request is the word or set of words for input in Google search bar, and 

“&num=5” is the number of retrieved search results, in this case it is 5. The results then being 

parsed and filters out the domain names for each website, giving a list, e.g.: 

https://piwik.org 

https://www.woopra.com 

https://metrica.yandex.com/ 

http://www.openwebanalytics.com/ 

http://www.google.com/analytics/ 
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Next, comes the step 3 from figure 21, where for each website we need to build a site 

map, WARES recommender system will need it for extraction of data about web analytics tools. 

Usually, details about web analytic tool are not available on the main page, which in most cases 

just a “welcome” page, e.g. web analytic tool Piwik main page is https://piwik.org/ but key 

features about it could be found on the page https://piwik.org/features/. Other useful 

information, which is used in ontology, see section 3.3.3, could be hidden on the same site, but 

on the other pages, that is why we need to filter as many web pages as possible to find all 

possible useful data for “web analytic tool” class instances, during ontology building stage, see 

section 3.3.3. By retrieving a “site map”, we will have access to all web pages of the current 

site, to do so we can use existing open–source code from sitemapgen4j Java library 

[sitemapgen4j, 2016], which can build XML site map for each site in format: 

…… 

<url> 

    <loc>https://piwik.org/features/</loc> 

    <lastmod>2016–10–15T17:01+02:00</lastmod> 

    <changefreq>never</changefreq> 

    <priority>0.8</priority> 

  </url> 

…… 

Where each child element <url> containing information about web page, belonging to 

particular website, child element <loc> of <url> contains the actual URL link to one of this 

page. Having actual web pages URL’s we can continue to the step 4, which is a text-filtering 

process of the entire web page body for the specific keywords describing web analytics tool, for 

the full list of keywords see section 3.3.3. If a keyword was found it is marked as “true” if, 

during the all parsing session for each web page of the website from the site map, corresponding 

to a certain web analytics tool, no entries were found it is marked as “false” for the currently 

analyzed web analytics tool. If at least 1 keyword were found, all the data is written into the 

ontology, as well all other found keywords characterizing the current web analytic tool instance, 

and search cycle is repeated again until all the results from the step 2 are being processed. Data 

retrieval process is shown in figure 21. 

https://piwik.org/
https://piwik.org/features/
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Figure 20: Search cycle "Filling the ontology" 

Step 5 is actually a block of recommender system, which implements filtering by 

keywords from the ontology and some semantic analysis, because not all information could be 

expressed by keywords, e.g. data property from the ontology – “interface language”, see next 

section for details. To be able to answer the question “which languages available for the user's 

interface?” text from the web page should be parsed using machine learning algorithms, e.g. 

Naïve Bayes is the simplest [McCallum, and Nigam, 1998].     

 

3.3.3 – Proposed ontology for WARES  

This ontology for my recommender system will have two purposes; first as classic 

ontology, it will describe the “web analytic tool” as a domain and second, it will be used as a 

database, storing data about web analytics tools, i.e. through class instances, for further analysis 

and making recommendations.  

Ontologies are written in one of the OWL languages [OWL, 2012], designed for use by 

applications that need to process the content of information instead of just presenting 

information to humans. OWL facilitates greater machine interpretability of Web content than 
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that supported by XML [XML, 2008], RDF [RDF, 2014], and RDF Schema [RDFs, 2014] by 

providing additional vocabulary along with a formal semantics. OWL has been designed to meet 

this need for a Web Ontology Language. OWL is part of the growing stack of W3C 

recommendations related to the Semantic Web.  OWL can be used to explicitly represent the 

meaning of terms in vocabularies and the relationships between those terms. This representation 

of terms and their interrelationships is called an ontology.  

Using the simple approach to creating web ontologies, which I learned from the course 

“Semantic Web”, given in 2015 by the professor of the University of Montreal Ph. D. Guy 

Lapalme. I created a quite simple ontology for web analytics tools, using ontology editor Protégé 

5 [Protégé, 2016]. The whole description of this ontology built in seven steps, with screenshots 

from Protégé 5 ontology editor, each step listed below describing an important piece of ontology 

structure. 

Determine the domain and scope of the ontology, this section answers the following 

questions: 

- What is the domain that the ontology will cover? 

- For what we are going to use the ontology? 

- For what types of questions the information in the ontology should provide answers? 

- Who will use and maintain the ontology? 

The answers to these questions may change during the ontology–design process, but at 

any given time, they help limit the scope of the model. Obviously, the domain is “web analytics 

tools”. This ontology to be used for the WARES recommender system that suggests web 

analytic tools based on some user’s preferences. The information in this ontology should provide 

an answer on the classification of existing web analytic tools. At this stage of the development, 

maintenance and support of this ontology is solely in my jurisdiction, but I do not exclude that 

it might be maintained by anyone who is interested in the idea of developing “web analytic 

tools” ontologies. 

Consider reusing existing ontologies: it is almost always worth considering what 

someone else has done and checking if we can refine and extend existing sources for our 

particular domain and task. Reusing existing ontologies may be a requirement if the system 
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needs to interact with other applications that have already committed to particular ontologies or 

controlled vocabularies. Many ontologies are already available in electronic form and can be 

imported into an ontology–development Protégé. Before starting development of this ontology 

was considered using similar ontologies, but for such a domain as “web analytics tools” I was 

unable to find any, so the solution was to design my own ontology for this domain. 

Enumerate important terms in the ontology: it is useful to write down a list of all 

terms we would like either to make statements about or to explain to a user. What are the terms 

we would like to talk about? What properties do those terms have? What would we like to say 

about those terms? Initially, it is important to get a comprehensive list of terms without worrying 

about the overlap between concepts they represent, relations among the terms, or any properties 

that the concepts may have. Actually, my ontology contains one main term "web analytic tool" 

which describes a class around which everything is built. 

Define the classes and the class hierarchy: there are several possible approaches in 

developing a class hierarchy [Uschold and Gruninger, 1996]: 

- A top–down development process starts with the definition of the most general concepts 

in the domain and subsequent specialization of the concepts. For example, let us consider 

general concepts of Wine as Food. Then we should specialize the Wine class by creating 

some of its subclasses: White wine, Red wine, Rosé wine. We can further categorize the 

Red wine class, for example, into Syrah, Red Burgundy, Cabernet Sauvignon, and so on. 

- A bottom–up development process starts with the definition of the most specific classes, 

the leaves of the hierarchy, with a subsequent grouping of these classes into more general 

concepts. For example, we start by defining classes for Pauillac and Margaux wines. 

Then we could create a common superclass for these two classes Medoc, which in turn 

is a subclass of Bordeaux, etc. 

- A combination development process is a combination of the top–down and bottom–up 

approaches. We define the more salient concepts first and then generalize and specialize 

them appropriately. We might start with a few top–level concepts such as Wine, and a 

few specific concepts, such as Margaux. We can then relate them to a middle–level 

concept, such as Medoc. Then we may want to generate all of the regional wine classes 

from France, thereby generating a number of middle–level concepts. 
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This particular ontology for the WARES recommender system, describing the “web analytic 

tool” as an item, does not have any specific classes, neither combinations, because here I have 

only one term “web analytic tool”, so technically the top–down approach is used, see figure 22. 

 

Figure 21: Class hierarchy for "web analytics tools" ontology 

Define the properties of classes: class properties or slots, only one class in my case, 

alone will not provide enough information to answer the competency questions, so we need to 

describe the internal structure of the concept “web analytic tool”. As properties for “web analytic 

tool” will be used most of the properties described in the section 1.1.3, and some other, which 

was considered as “essential” for the domain “web analytics tools”. Here is a full list of 

properties, sorted by categories: 

Metrics, which are includes:  

a) “Traffic source metrics”: company, referral path, full referrer, source, mediator, 

social network, social source referral, ad content. 

b) “User statistic”: user type, count of sessions, days since last session, users, page 

views, unique page viewers, new users, number of sessions per user, days active. 

c) “Session statistics”: session duration, sessions, host name, hits, bounce, bounce rate, 

number of sessions per user. 

d) “Platform or device statistics”: browser, browser version, browser size, operating 

system, operating system version, mobile device brand, mobile device model, data 

source. 

e) “Geo statistics”: continent, sub–continent, country, region, city, longitude, latitude, 

network domain, service provider, city id, region id, country id, sub–continent id. 
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f) “System statistics”: flash version, java support, language, screen resolution, screen 

colors, screen device name. 

g) “User actions”: clicks path, click stream, heat map, scroll map. 

- “Statistics type”: real–time, discrete. 

- “Payment model”: free, proprietary (trial, support price, base price, price per month) 

- “Interface language”. 

- “Plugins supported”. 

- “Special features”. 

- ID code. 

- Name. 

The overall properties structure is shown in figure 23, with some child sub–properties, 

e.g. “session statistics”, gathered into one parent sub–property, because the list is too long for 

one picture. Each property has its own data type and domain, the data type can vary from simple 

Boolean “true”, “false” which intends to show if current web analytic tool possesses this 

property or not, to more complex types as String, containing list of supported plugins or just a 

name of web analytics tool. Obviously only one domain – “web analytic tool”.  

Define the facets of the slots: slots can have different facets describing the value type, 

allowed values, the number of the values (cardinality), and other features of the values the slot 

can take. For example, the value of an “ID code” slot is “1”. That is, “ID code” is a slot with 

value type integer. Some classes could have multiple instances, but in my case, there is only one 

class “web analytic tool”, that is why for simplicity was decided not to define any facets in 

object properties, but in the future, it is possible to extend this definition if ontology will 

continue to exist and develop. 
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Figure 22: Properties defined for "web analytic tool" class 

Create instances: the last step for each ontology is creating individual instances of 

classes in the hierarchy. Defining an individual instance of a class requires choosing a class, 

then creating an individual instance of that class and filling in the slot values for this instance. 

As an example, figure 24, we can see an instance of the class “web analytic tool” called 

“Woopra”, which in its turn represents the web analytics tool with the same name, considered 

in section 1.3 of this thesis. 
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Figure 23: Example of an instance of the class "web analytic tool" 

 

All the properties filled with appropriate values; you can see them on the right side of the figure 

but not all shown on the picture above, because as with the “data properties” the list is very long.  

3.3.4 – Algorithm for the web analytic tools selection process. 

Finally, the pseudo algorithm for making recommendations is shown below, with 

explanations for each step after it: 

For a ∈ A 

If (new search) 

1:   Generate weights wi of each metric from ontology using TF–IDF 

2:   Calculate n occurrences of the each term in a 

3:   Calculate sumwi    

4:   Calculate Sumx  

5:   recommend web tools ordered by max(maxa(n in A )+max(sumwi   + Sumx)) 

6:   ask user rate results with ri 

Else (refinement) 

7:   ask for new parameters parami for refinement  

8:   do steps 2, 3 and 4 but with additional parameters parami  

9:   calculate Pearson’s correlation pij for new results with parami  

10:   recommend web tools ordered by max(pij) 

End for 
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Here a is the web analytic tool instance with all metrics retrieved during the step 2, see 

figure 17, and written into ontology during step 3, see figure 17, described in the proposed 

ontology, see section 3.3.3 and A is the set of all a.  

- Step 1: Calculating word weights for each term, representing metrics describing web 

analytic tool. This is made during the stage 2, see fig. 17, because it saves time and 

memory resources and could be done while processing text from the web pages 

associated with each web analytic tool. We need this wi because it will help us detect the 

significance of each metric for current web analytic tool, where i is the metric’s index 

number. 

- Step 2: Calculating a total number of terms specified by the user on the stage 1, see fig. 

17, which was found during the web page filtering process for each web analytic tool ai, 

this data will be used during the step 5.  

- Step 3: Calculation sumwi which is the sum of all metrics found during the stage 2, see 

fig. 17, on the website for current web analytic tool ai.  

- Step 4: Calculation sumx number of inputs of additional parameters if they was specified 

by the user, for each web analytic tool ai on a corresponding website. 

- Step 5: Making recommendations and ordering them by max(maxa(n in A )+max(sumwi   

+ Sumx)) which represents the web analytic tool with highest number of occurrences of 

terms wi selected by user from the desirable metrics list selected by user on the stage 1,  

see figure 17, with additional parameters, if specified, on the website corresponding to 

ai. This means the results will be ordered by decreasing, the lower the max score, lower 

the position or the web analytics tool in the final recommendations list. 

- Step 6: Ask user to rate given recommendation scaling from 0 to 5, if he/she wants to 

make refinement of received results. 

- Step 7: Ask additional parameters for refinement, it could be new keywords specified 

by user or new metrics of the desired web analytic tool from the list of all available 

metrics, note that user can add or remove metrics, anyway this new criterion will be 

saved as parami. 

- Step 8: Repeat steps 2 , 3 and 4 but with additional parameters parami  
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- Step 9: Calculate Pearson’s correlation pij for new results with parami and initially 

received recommendations rated by the user, after this step this results became “initial” 

if the user wants to continue “refinement”. 

- Step 10: Gives a user the new set of recommendations ordered by max(pij) 

 

3.3.5 – Sample script explaining usage of WARES recommender system. 

 

So let us imagine a scenario, where you are a new user, what he/she should do if he/she 

want to start using this recommender system but this is his/her first time, how to use it? This 

section explains how to use WARES recommender system. 

First, the user should download the latest version of the WARES recommender system 

from developers website (it does not exist for this moment, to be done in the future, this is just 

an imaginary explanation). The recommender system is build using Java SE Runtime 

Environment 7, so the user must ensure that he/she has the latest Java machine installed on 

his/her computer. After installation process complete the user should launch an application, 

he/she will see his default Internet browser opened and in the new tab he/she will see the 

welcome screen of the WARES. After pressing the start button in the center the user will see 

one button offering to start a new recommendation search along with the help/instruction button 

and the third button offering the refinement of the previous results, which will be inactive and 

will activate only after the first recommendation search is finished. Pressing “new search” will 

open another view in the same tab offering to check desirable features what he/she wants to see 

in the web analytics tool(s). Selection of desirable features is very simple, user just need to click 

on the checkbox with desirable feature (metric), there are 69 most common web analytics tools 

features, which user can check, and at the end of the page there is a textbox in which user could 

enter some “special” feature which is not on the list, but he/she wants it to be present in web 

analytic tool. By pointing the mouse cursor on one of the features user will see a tooltip with a 

short description of the indicated feature, this may help him/her to decide what to check. If the 

user does not know what he/she want he/she can just leave all checkboxes unchecked and empty 

text boxes for additional keywords and number of received recommendations, the system will 

do the search with default parameters.   
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After he/she checked all desirable features, or leaved fields empty, he/she should enter a 

desirable number of results, which he/she will get after WARES accomplish the search, and 

press “next”. Then the user should wait for a while before the list of recommendation appears 

in the new tab, time of waiting depending on the number of desirable results and on the user's 

Internet connection bandwidth. Finally, the user will see a web page with recommendations 

structured like an ordinary Google search results, the “most relevant” web analytics tools will 

be on top of the list and less relevant will be lower on the list with a short description below the 

link. By clicking on the web analytic tool name from the list, which at the same time is the link, 

the user will be redirected to the main page (welcome page) of the web analytics tool’s website 

where he/she can download it or look for additional information. If the user is not satisfied with 

a given results he/she can click “refinement” button which became active after the first search 

or chose to start a new search with a new parameter.  

If the user decided to “refine” existing results, after clicking on the “refine” button he/she 

will see the page with his previous choices and will be offered to check/uncheck additional 

features and enter/remove additional keywords from the textbox for additional features and will 

be asked to rate previous results for compliance with his/her expectations using scale from 0 to 

5 and then press “next” again. The system will do the recommender search among previous 

results and present a new list of web analytic tools. The user could do refinement as many times 

as he/she wants or start a new search or simply close an application by clicking on the small red 

cross in the upper right corner. 
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3.4 – Conclusion 

 

In in the beginning of this chapter were reviewed the set of “best practices” in creating 

recommender systems, showing a general structure of the content-based recommender system. 

Next through the section 3.2, were formulated requirements and constraints for the WARES 

recommender system, along with different ways of its implementation. Model-based approach 

was selected, using template design from the article of Jerome Picault [Picault et al., 2011], the 

WARES was described by the three models: data model, user model, and application model, for 

each of the models, were explained how they are used in the WARES, alongside with selected 

model’s components, transferring the properties of these models to the WARES recommender 

system. Finally, in section 3.3 an architecture of the WARES recommender system was 

presented. Through sections 3.3.1 – 3.3.5 was explained how each part of proposed architecture 

works.  
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Chapter 4 – Evaluation and validation of the WARES 

recommender system 

 

Design and implementation is an important part of the development but evaluation, and 

testing also is an integral part. Based on a set of properties that are relevant to the WARES it 

will be a mostly theoretical evaluation because I do not have enough users and their ratings to 

perform a “full-scale” test, although some I did some real tests, giving to try this system to only 

17 users.  

The classic way of the evaluation of any recommender systems is to show its prediction 

power, which means to evaluate their ability to predict and to rate related content, it is important, 

but today some people [Gunawardana and Shani, 2011] believes it became a secondary 

requirement. What became more important is the user’s experience with a recommender system, 

because one way or other users are the central part of the system, it is created for them, not only 

for some abstract results in order to get 99.9% of accuracy but first of all to get satisfaction. In 

many applications people use a recommendation system for more than an exact anticipation of 

their tastes, or for confirmation of what they already knew, but wanted to hear it from someone 

else just to be sure “I’m not alone who think so”.    

Often it is easiest to perform offline experiments using existing data sets and a protocol 

that models user behavior to estimate recommender performance measures such as prediction 

accuracy, but for the WARES recommender system, it is impossible to use existing datasets, 

because exists datasets for movies, for image recognition, voice samples, but there is no such 

dataset for the domain “web analytics”, so there will be no test like this. A more expensive 

option is a user study, where a small set of users is asked to perform a set of tasks using the 

system, typically answering questions afterward about their experience, it was asked some of 

my friends to evaluate the system and try to rate it somehow, see section 4.2 for details. Finally, 

a large–scale experiments could be run on a fully deployed system, which called online 

experiments. Such experiments evaluate many aspects of recommender system’s performance 

on real users who are oblivious to the conducted experiment, but it is also not an option because 

the proposed system never been deployed like a real e-commerce application.  
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4.1 – Validation of the WARES recommender system 

In order to test the accuracy of the proposed algorithm, see section 3.3.4, we used a leave-

one-out cross-validation with a specifically created list of the test users and their test ratings. 

We randomly select a user and a web analytic tool rated by that user, we assume that the user 

has not rated yet current web analytic tool and we attempt to predict his rating. Finally, we 

compare the predicted rating with the actual rating, in order to evaluate the accuracy of the 

predictions. To evaluate the accuracy itself was used Mean Absolute Error, deriving following 

equation: 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑓𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 

Where n is the number of predictions, fi is a prediction I and yi is the actual value, so the MAE 

represents the average difference between the prediction and the actual value.  

 The data set on which the tests were performed was built using a pseudo-random 

generator, because The WARES does not contain sufficient data in order to perform valid tests 

and draw conclusive results, similarly with user’s profiles was also generated in a pseudo-

random manner and was pretty sparse and could not be used properly to test the approach. The 

data set was built in 2 steps, first 30 users were created, and then for each user ratings was 

randomized, for the total number of 30 web analytic tools. In order to reduce the random effect 

of the ratings and to create a certain correlation between the users we augment the initial dataset 

of 30 users in a pseudo-random manner, as a result, and additional set of 15 users, whose ratings 

were based on the ratings of the “initial” users, considering Ra,i is a set of ratings of the initial 

user a for a web analytics tool i. Then the set of ratings for the new user j is Ra,i + random value 

from a vector {-1,0,1}, based on the initial 30 users 15 more was created from with ratings 

randomly chosen  from vectors: {-1.0.1}, {-2,-1,0,1,2}, {0,1,2}, {1,2,3}, {-2,-1,0}, {-2,-1,0,1}, 

and each vector at least once chosen in each case. As a result total number of 330 users were 

created (30 initial + 300 additional) and each user rated 30 web analytic tools. 

 In order to test proposed algorithm a test set of 150, “user/web analytic tool” pairs were 

selected randomly, test ratings were predicted and compared to actual ratings using MAE, using 

the proposed algorithm from the 3.3.4 and SVD as an alternative, see figure 25.  



 

99 

 

 

Figure 24: MAE comparison 

In order to interpret the values of MAE, it is important to keep in mind the scale on which the 

ratings are performed, the MAE of 0.5 indicates that the predictions, on average, differed by the 

0.5 of the actual rating. To evaluate the impact of this difference, keep in mind that difference 

in 0.5 on the scale from 1 to 5 is more significant than on the scale 1 to 20. As a result, we 

compared the variation of the MAE to the scale to assess its actual impact; that is MAE of 0.5 

on the scale of 5 represents 10% when on the scale of 20 it only represents 2.5% and 

consequently lowers the impact on the accuracy. Figure 26 highlights the average value of MAE 

evaluated on the scale 5. Actually, the results are not bad at all but leaves some space for future 

improvements.  

 

Figure 25: Average MAE interpretation 
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During the experiments was discovered that performance of the WARES mainly depends 

on the Internet bandwidth. Such a dependency is due to the specificity of the recommender 

system design, especially of the online search module, which regularly interchanges data with 

Google search engine. If the user decides to run WARES in the “quick” mode, which means 

that he/she wants to get recommendations immediately the system makes request to the search 

engine, receives fast response, but then when it accessing the web pages from the previously 

built “site map” there is a dramatic fall in productivity and further delays if the bandwidth is not 

enough. Figure 27 is showing the average time needed to process all 35 web pages for 50 site 

maps, using different bandwidth allocation. 

 

Figure 26: Time to complete recommendation process with different bandwidth allocation. 

Another picture is observed if the system was started in the “background” mode, 

meaning the user set his/her preferences and left the system to work for a “long” time, an 

experiment: 30 minutes, user just got “instantly” without delays all the recommendations which 

he/she wanted to see, after the waiting time. During this experiment number of web sites was 

not limited to the number of recommendations was a lot more, and they were capped by 50 first 

relevant, this number could be changed via user interface, but academic research [Deursen et 

al., 2009] indicates that 91% of searchers do not go past page 1 of the search results and over 

50% do not go past the first 3 results on page 1. On the other hand the precision of finding web 

analytic tools, corresponding to user's search criteria was higher (0.87%) for the background 

mode, comparing to the “quick” mode (0.68%) and probably the user satisfaction will be higher 

for the “background” mode, but we lack data due to a small number of users.  
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4.2 – Evaluation of the user’s experience with WARES 

We made a survey on a total number of 17 participants, see table 10, they are all my 

friends from the social network. The scenario as pretty simple: the WARES recommender 

system was given to each of them, alongside with questionnaire, and time of 3 days were given 

to complete the test. The main goal of the test was overall usability of the system and acceptance 

of the user’s interface. 

Table 10: Test participants information 

Number of participants  17 

Profiles of participants  17 

Type of feedback Explicit 

Type of evaluation Scales from 1 to 5 

Female evaluators  6 

Male evaluators 11 

Number of recommendations per user 10 (170 total) 

 

All users were asked to rate each aspect of the system on the scale from 1 to 5. The 

following questions were asked:  

- Overall rating: how user evaluates proposed recommender system in general through 

his/her personal experience with it, during the test time. 

- Novelty: degree of excitement, meant how surprising and how new was the topic of the 

proposed system, comparing to their personal experience with other recommender 

systems.     

- Convenience of the user’s interface: how easy was to understand how to use the system 

and, was it hard to navigate through the recommendation, how useful were the tooltips, 

etc. 

- Ease of use and intelligibility: clarity of the content, is there was an ambiguity, or 

everything was clear through language, familiarity, aesthetics, forgiveness, efficiency, 

etc. 

- Stability: means how often system crashed, is there were disconnections during the 

online search sessions, did the system hang? 
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- Meeting expectations: by user’s personal feelings, does the system gives really relevant 

recommendations or not? 

Table 11: How users rated the system 

Overall rating 3.588 

Novelty 4.751 

Convenience of the user’s interface 3.342 

Ease of use and intelligibility 4.341 

Stability  5 

Meeting expectations 4.029 

 

An interesting detail was discovered during the user's test: all users reported that the 

system consumes almost all the Internet bandwidth, meant that when an online search is in 

progress, the speed of downloading/uploading of any other content is dramatically lowered, 

meaning that the WARES tries to use all available bandwidth for its needs. Another interesting 

discovery was mistakes consisting of referencing irrelevant recommended contend due to giving 

URL’s corresponding to the different blogs, describing or reviewing web analytic tools in 

details, while not actually appears to be a web analytics tool’s home page it was helpful as a 

review, according to the testers quiz. 

4.3 – Comparison of the WARES with other well–known systems 

on the market 

Through the chapter 4, based on the “best practices”, was explained how WARES 

recommender system could be evaluated and tested, of course, a more demonstrative way of 

evaluation – comparing things related to each other by some shared features. In case of 

recommender systems, theoretically, we could evaluate effectiveness, usability and many other 

parameters of the WARES recommender system, comparing it to already existing recommender 

systems. A good question arises – how can we compare recommender systems? No doubt, that 

in any field of science reproducibility is an important thing helping in conducting tests and 

comparison. But, in the field of recommender systems reproducibility almost unattainable 

because of specificity of the content, even it the same areas, such as recommending of scientific 
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articles, different recommender systems give different sets of recommendations. Several 

content–based filtering (CBF) and collaborative filtering (CF) approaches for research papers 

recommendations were tested [Beel and Breitinger, 2016]. In one experiment, CF and CBF 

performed similarly well, other experiments, CBF outperformed CF and in some more 

experiments, CF outperformed CBF.    

Various authors showed that offline and online evaluations often provide contradictory 

results, and several more papers about various aspects of recommender systems evaluation 

have been published [Beel, 2015], [Beel and Langer, 2015]. Also was conclude that 

recommender systems research community is facing a crisis where a significant number of 

papers present results that contribute little to collective knowledge, often because the research 

lacks the evaluation to be properly judged and, hence, to provide meaningful contributions 

[Konstan and Adomavicius, 2013]. Why these contradictions occurred, even among very 

similar literature recommendation scenarios, remains widely unknown. The authors of the 

studies only mention a few potential reasons for the variations, such as different datasets or 

variations in the recommendation approaches. The current difficulties in reproducing 

recommender system results lead to a problematic situation for comparison. Developers who 

need an effective recommendation approach, and researchers who need a baseline against 

which to compare a novel approach, find little guidance in existing publications. So how 

WARES could be compared to other ones, e.g. well–known Amazon, eBay, Netflix, Pandora 

or YouTube? First of all to evaluate performance we need to use the same data set on all 

previously listed well–known recommender systems, but this is impossible because each of 

this systems specifically tailored for their narrow tasks, like WARES tailored for web analytic 

tools. As was highlighted above, it is really hard to compare not only my recommender system 

to another systems, but any recommender system in one domain to another recommender system 

in other domain. The few thing what we can do are: describe previously mentioned 

recommender systems (Amazon, eBay, Netflix, Pandora and YouTube) by algorithms what they 

use, number of users, recommender type (content–based, collaborative or hybrid), user’s 

interface features, generated revenue, field of given recommendations, and some unique special 

features inherent to this systems, but cannot compare effectiveness by any numbers indicating 

accuracy, like MAE or RMSE. 
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Summarize this section, in table 12, you can see the comparative characteristics of 

considered well–known recommender system to one, proposed in this thesis. 

Table 12:  Comparative summary of well–known recommender systems and WARES 

RS name RS type 
number 

of users 

field of 

recommendations  

user 

interface 
special features 

revenu

e 

Amazon 
CB item–

to–item 

~305m 

accounts 
goods and services web interface  

Preview: "Search 

Inside the Book" 

before buying 

135.98 

billion 

eBay 
CB graph 

based 

~167m 

accounts 
goods and services web interface  

PayPal billing 

system 

9 

billion 

Netflix 

Hybrid, 

but 

mostly 

CBF 

~95m 

accounts 
Video streaming 

Web 

interface 

Possibility to see 

what your friends 

are watching now 

8.8 

billion 

Pandora 
Hybrid 

CB–CBF 

~80m 

active 

users, 

~250m 

registered 

Music streaming 

Web 

interface or 

special 

Application 

for PC or 

Mobile 

device 

Possibility to see 

lyrics while 

listening to a song 

1.2 

billion 

YouTube 
Hybrid 

CB–CBF 

~1.3b 

accounts 
Video streaming 

Web 

interface 

Subtitles 

generation, video 

stabilization 

9 

billion 

WARES CBF 1 web analytics tools 

web interface 

(browser 

based) 

ontology for web 

analytic tools 
n/a 
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4.4 – Conclusion 

Because of the difficulty of the posed task of creating the recommender system, almost 

no real data from WARES were given, mostly theoretical guidelines on how to evaluate each 

aspect of the WARES recommender system. Was described the concerns that need to be 

addressed when designing offline and online experiments and user studies, outlined a few 

important measurements that one must take into account when designing experiments for the 

recommender system. In section 4.3 was explained why it is hard to compare one recommender 

system, e.g. WARES, to another recommender systems, but still manage to compare WARES 

recommender systems to the major “behemoths” on the market, resulting a table with a few 

common characteristics by which they could be compared. 
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Chapter 5 – Conclusion and future works 

Proposed recommender system, WARES, is more likely to be a prototype, a concept. 

During my research, was considered hundreds of scientific articles about recommenders 

systems, but this is just a top of an iceberg. To implement proposed recommender system was 

essential to use various techniques, and recommendation process only one of them. Difficulties 

come from the ambitious goal defined from the beginning, a search of the textual information 

by keywords is itself a big area of information retrieval, search on the web just an extension of 

the semantic analysis.   

Was considered two basic approaches how to make recommendations, the content–based 

and collaborative filtering, most notable methods and how they could be used in the proposed 

recommender system was explained in chapter 2. Here another problem arose, from the lack of 

real data, because all this method is centered on user’s ratings, and in the WARES recommender 

system there is no users, the “cold start” problem. Partly this could be solved by saturating the 

system with “false” rating data, artificially generated by some pseudorandom number generator. 

But, in my case this is not a solution because these ratings should correspond to the real–existing 

websites, representing web analytics tools. This problem remains open and could serve as one 

of the directions for future works. 

In chapter 3, was presented an architecture developed for the WARES recommender 

system, implementing well–known approach for application development based on three 

models: user model, data model and application model, each of which describes an important 

part of any application during the design process. In this case, this approach was applied to 

design a recommender system, but with minor changes, including the use of proposed ontology. 

A good contribution from this work could be an ontology, developed for the domain of web 

analytics tools, of course, this is not a new trend, ontologies started being used in applications 

long ago, but in case of WARES, was proposed an ontology for entirely new domain – web 

analytic tools. This could be a considerable innovation because during literature study I was 

unable to find any mentions about any existing ontology for web analytics. As a future work in 

this area, it is possible to focus on a more detailed elaboration of this ontology, not a secret that 

in last years, with an era of the Semantic Web ontologies become a common thing all around 
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the Web, and what is more important they could be reused and supplemented by anyone 

concerned about it. The ontologies on the Web ranges from large taxonomies categorizing 

websites, such as Google and Yahoo, to categorizations of products for sale and their features, 

such as on Amazon. Ontologies enable reuse of the domain knowledge, and by developing an 

ontology for the web analytics I could contribute to the WWW community or some other 

scientists who are working in the field of the WWW.  

In the section 3.3.2 was described how online search for web analytics tools will work 

applied to the WARES recommender system. There was not enough time and resources for 

developing completely new specialized web–search engine for web analytics tools so was 

decided to use Google as a basis. But before that, there were attempts to implement something 

different, something new, based on the open–source web crawler Apache Lucene [Lucene, 

2016], which is a full–featured text search engine library written entirely in Java programing 

language. It is a technology suitable for nearly any application, which requires full–text search, 

especially cross–platform. But it requires time for deployment, not only for understanding how 

it works and writing own code with modifications, it is least what was needed, but real “time” 

and resources. Means processing time, hard disk space, memory and CPU computation power, 

as a part of “crawling” process, the system should work days even months for indexation of 

existing resources on the Web. Only then, these indexes could be used for web analytics tools 

search and recommendations, as my own data. Which in its turn making recommender system 

structure more complex, by forcing usage of the client–server approach, and to some extent, it 

became similar to a “heavy” systems like Amazon. This could be a very good direction for the 

future work if funding will be found, or maybe someone else will decide to use the framework 

proposed in this paper for the full–scale commercial recommender system.  

In chapter 4 was given a qualitative validation of the proposed recommender system, 

although during the testing process it was discovered some flaws in performance, which are 

connected with an Internet bandwidth. The system was tested on local computers of different 

users with different Internet speed connection, it was discovered that an optimal performance 

achieved with 5 megabit per second and higher. The accuracy of given recommendations is 

relatively high, it was rated 4 out of 5 stars during the test process with 17 participants, and most 

tested users found them helpful.  
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