

Université de Montréal

“WARES”, a Web Analytics Recommender System

par Sedliar Kostiantyn

Département d'informatique et de recherche opérationnelle

Faculté des arts et des sciences

Mémoire présenté à la faculté des arts et des sciences

en vue de l’obtention du grade de Maitrise

en Sciences et Informatique

Octobre 2017

© Sedliar Kostiantyn, 2017

i

Résumé

Il est difficile d'imaginer des entreprises modernes sans analyse, c'est une tendance dans

les entreprises modernes, même les petites entreprises et les entrepreneurs individuels

commencent à utiliser des outils d'analyse d'une manière ou d'une autre pour leur entreprise. Pas

étonnant qu'il existe un grand nombre d'outils différents pour les différents domaines, ils varient

dans le but de simples statistiques d'amis et de visites pour votre page Facebook à grands et

sophistiqués dans le cas des systèmes conçus pour les grandes entreprises, ils pourraient être

shareware ou payés. Parfois, vous devez passer une formation spéciale, être un spécialiste

certifiés, ou même avoir un diplôme afin d'être en mesure d'utiliser l'outil d'analyse. D'autres

outils offrent une interface d’utilisateur simple, avec des tableaux de bord, pour satisfaire leur

compréhension d’information pour tous ceux qui les ont vus pour la première fois. Ce travail

sera consacré aux outils d'analyse Web. Quoi qu'il en soit pour tous ceux qui pensent à utiliser

l'analyse pour ses propres besoins se pose une question: "quel outil doit je utiliser, qui convient

à mes besoins, et comment payer moins et obtenir un gain maximum". Dans ce travail je vais

essayer de donner une réponse sur cette question en proposant le système de recommandation

pour les outils analytiques web –WARES, qui aideront l'utilisateur avec cette tâche "simple".

Le système WARES utilise l'approche hybride, mais surtout, utilise des techniques

basées sur le contenu pour faire des suggestions. Le système utilise certains ratings initiaux

faites par utilisateur, comme entrée, pour résoudre le problème du “démarrage à froid”, offrant

la meilleure solution possible en fonction des besoins des utilisateurs. Le besoin de consultations

coûteuses avec des experts ou de passer beaucoup d'heures sur Internet, en essayant de trouver

le bon outil. Le système lui–même devrait effectuer une recherche en ligne en utilisant certaines

données préalablement mises en cache dans la base de données hors ligne, représentée comme

une ontologie d'outils analytiques web existants extraits lors de la recherche en ligne précédente.

Mots–clés: Analytique, système de recommandation, moteur de recherche, ontologies.

ii

Abstract

It is hard to imagine modern business without analytics; it is a trend in modern business,

even small companies and individual entrepreneurs start using analytics tools, in one way or

another, for their business. Not surprising that there exist many different tools for different

domains, they vary in purpose from simple friends and visits statistic for your Facebook page,

to big and sophisticated systems designed for the big corporations, they could be free or paid.

Sometimes you need to pass special training, be a certified specialist, or even have a degree to

be able to use analytics tool, other tools offers simple user interface with dashboards for easy

understanding and availability for everyone who saw them for the first time. Anyway, for

everyone who is thinking about using analytics for his/her own needs stands a question: “what

tool should I use, which one suits my needs and how to pay less and get maximum gain”. In this

work, I will try to give an answer to this question by proposing a recommender tool, which will

help the user with this “simple task”. This paper is devoted to the creation of WARES, as

reduction from Web Analytics REcommender System. Proposed recommender system uses

hybrid approach, but mostly, utilize content–based techniques for making suggestions, while

using some user’s ratings as an input for “cold start” search. System produces recommendations

depending on user’s needs, also allowing quick adjustments in selection without need of

expensive consultations with experts or spending lots of hours for Internet search, trying to find

out the right tool. The system itself should perform as an online search using some pre–cached

data in offline database, represented as an ontology of existing web analytics tools, extracted

during the previous online search.

Keywords: Web analytics, recommender system, search engine, ontologies.

iii

Table of content

Résumé ... i

Abstract ... ii

Table of content ... iii

List of Tables ... vi

List of figures .. vii

Acknowledgments.. ix

Introduction ... 1

Chapter 1 – State of the art ... 3

1.1 – Web Analytics .. 3

1.1.1 – Web Analytics data sources .. 6

1.1.2 – Basic means of data mining of the typical Web Analytics tools 7

1.1.3 – Key metrics used in typical Web Analytics tools ... 10

1.2 – Basic concepts about recommender systems ... 15

1.2.1 – Basic approaches to solving recommendations problem today. 20

1.3 – Comparative review of some existing Web Analytics tools .. 21

1.3.1 – Google Analytics .. 21

1.3.2 – Open Web Analytics ... 25

1.3.3 – Yandex Metrica ... 26

1.3.4 – Piwik ... 29

1.3.5 – Woopra .. 30

1.3.6 – Summary on comparison of web analytics tools .. 32

1.4 – Conclusion ... 34

Chapter 2 – Methodology ... 35

2.1 – Collaborative filtering approach and possible ways of applications in WARES. 37

2.1.1 – Matrix factorization methods applicable to recommendations 40

2.1.1.1 – SVD model……..…………….………………………………………….…….. 41

 2.1.1.3 – SVD++ model……………………..…………………………………….…….. 42

iv

 2.1.1.3 – SVDtime model..………………….…………………………………….…….. 43

2.1.2 – Neighborhood methods applicable to recommendations 44

2.1.2.1 – Rating prediction and classification using standard Neighborhood methods.…46

2.1.3 – Typical similarity measurement methods in recommender systems 50

2.2 – Content–based filtering approach and possible ways of applications in WARES. 51

2.2.1 – Advantages and disadvantages of the content–based filtering 52

2.2.2 – Item representation in the content–based recommender approach 54

2.2.3 – Semantic analysis in the content–based recommender systems, using ontologies 57

2.2.4 – Methods for Learning User’s Profiles, applicable to the content–based

recommender systems ... 58

2.3 – Conclusion ... 60

Chapter 3 – Structure of the WARES recommender system .. 61

3.1 – Generalized overview about recommender systems structure 61

3.2 – Understanding WARES recommender system environment 64

3.2.1 – Application model ... 65

3.2.1.1 – Understanding the recommender role in the application…………………….…66

3.2.1.2 – Understanding the influence of the application implementation……………….69

3.2.2 – User model .. 70

3.2.2.1 – Importance of understanding who are the users……………………………......72

3.2.2.2 – Understanding user's motivation, goals and expectations...................................72

3.2.2.3 – Understanding user’s context..73

3.2.3 – Data Model.. 74

3.2.3.1 – Understanding the type of available data to describe items................................75

3.2.3.2 – Understanding the quality/quantity of data..76

3.2.3.3 – Understanding the properties of the item set...77

3.2.4 – Summary on Recommender Environment and how it will be used further 78

3.3 – Architecture of the WARES recommender system ... 79

3.3.1 – User’s interface ... 80

3.3.2 – Online search and data mining in WARES... 84

3.3.3 – Proposed ontology for WARES .. 86

v

3.3.4 – Algorithm for the web analytic tools selection process. 92

3.3.5 – Sample script explaining usage of WARES recommender system. 94

3.4 – Conclusion ... 96

Chapter 4 – Evaluation and validation of the WARES recommender system 97

4.1 – Validation of the WARES recommender system .. 98

4.2 – Evaluation of the user’s experience with WARES .. 101

4.3 – Comparison of the WARES with other well–known systems on the market 102

4.4 – Conclusion ... 105

Chapter 5 – Conclusion and future works... 106

References .. i

vi

List of Tables

Table 1: Comparative summary of the considered Web Analytics tools................................. 33

Table 2: The average number of neighbors vs. average number of ratings 49

Table 3: The space and time complexity of user–based and item–based neighborhood 50

Table 4: General application model components .. 65

Table 5: Application model for the WARES recommender system ... 66

Table 6: General user model components ... 71

Table 7: User model for the WARES recommender system .. 71

Table 8: General data model components ... 74

Table 9: Data model for WARES recommender system .. 75

Table 10: Test participants information .. 101

Table 11: How users rated the system .. 102

Table 12: Comparative summary of well–known recommender systems and WARES 104

vii

List of figures

Figure 1: Basic steps of Web Analytics .. 5

- Figure 2: How HTTP request header displayed in Google Chrome browser 6

Figure 3: Example of the log file format in the Apache web server ... 8

Figure 4: Organic (right) vs. non–organic recommendations representation 19

Figure 5: Collaborative filtering process .. 20

Figure 6: Google Analytics setup ... 22

Figure 7: Google Analytics tracking ID and tracking script ... 23

Figure 8: Google analytics results for 1 month ... 23

Figure 9: Open Web Analytics dashboard .. 26

Figure 10: Yandex Metrica dashboard .. 27

Figure 11: Piwik dashboard demonstrating Russian interface ... 30

Figure 12: Interface of the Woopra main application window .. 32

Figure 13: Two documents with terms ... 56

Figure 15: Architecture of the content–based recommender system .. 62

Figure 16: Recommender system in its environment .. 64

Figure 17: Architecture of the WARES recommender system for web analytic tools 80

Figure 18: the WARES recommender settings 1 .. 81

Figure 19: WARES recommendation settings 2 ... 82

Figure 20: WARES recommendations results .. 83

Figure 21: Search cycle "Filling the ontology" ... 86

Figure 22: Class hierarchy for "web analytics tools" ontology .. 89

Figure 23: Properties defined for "web analytic tool" class ... 91

Figure 24: Example of an instance of the class "web analytic tool" ... 92

Figure 25: MAE comparison .. 99

Figure 26: Average MAE interpretation ... 99

Figure 27: Time to complete recommendation process with different bandwidth allocation. 100

viii

List of acronyms

CBF – Content–based Filtering
CF – Collaborative Filtering
CPU – Central Processing Unit
DNS – Dynamic Names System
EU – European Union
GA – Google Analytics
GPL – General Public License
HTTP – Hypertext Transfer Protocol
IMDB – Internet Movie Database, http://www.imdb.com/
IT – Information Technologies
KPI – Key Performance Indicator
MAE – Mean Absolute Error
OS – Operating System
OWL – Web Ontology Language
PC – Personal Computer
PDF – Portable Data Format by Adobetm corporation
PHP – Personal Home Page scripting language
pLSA – probabilistic Latent Semantic Analysis
REST – Representational State Transfer
RMSE – Root Mean Square Error
ROI – Return of Investment
RS – Recommender System
SVD – Singular Vector Decomposition
TCP – Transfer Control Protocol
TF–IDF – Term Frequency – Inverse Document Frequency
URL – Uniform Resource Locator
W3C – Word Wide Web Consortium
WWW – World Wide Web
XML – Extended Markup Language
YM – Yandex Metrica

ix

Acknowledgments

First and above all, I would like to thank my supervisor, Ph. D. professor Esma Aïmeur

of the Department of Computer Science and Operational Research at University of Montreal.

Without this woman, this thesis would have been impossible to accomplish, not only because of

her help and guidance, but also because of her fate in me. I took a very slow start, I changed the

topic, I made mistakes, I had psychological problems with concentration. However, she never

gave up on me, she was always friendly during our weekly "team" presentations. Friendly and

at the same time strict and serious. I would like to thank her from all my heart!

In addition, I would like to thank Zakaria Sahnoune, who is a Ph. D. student with Esma.

He was kind to me and helped several times with advices on my topic, and gave me some

general, but useful tips on how to structure and formalize my thesis.

Also I would like to thank Mouna Selmi, she defended her Ph. D. with Esma just before

me, and she also helped me several times with useful tips on my topic.

1

Introduction

 In this thesis, I will present a recommender system for making suggestions about the

Web Analytics tools, which I called WARES, short from Web Analytics REcommender

System. This system intends to help its users in the selection of “appropriate” web analytics

tools, for whatever their personal criteria are.

Problematic

Many problems in the field of recommender systems are already solved, but for

particular recommender systems, not in the whole field of recommender systems e.g. in movies,

recommendations exist IMDB. In sales exist Amazon and eBay, this system works pretty well,

because they already have databases in their specific areas, this data allows them to make

recommendations using content–based approach, and they also have many users, which

simultaneously permits making suggestions based on collaborative filtering approach. In this

paper we will consider the design process of the recommender system, which does not have lots

of users. The WARES is intended for a single user, who needs particular web analytics tool,

which satisfies his/her particular needs. In this case the best solution for the WARES will be an

implementation of the content–based filtering approach. During the development of the

WARES we also faced the main issue for the most recommender systems – the “cold start

problem” (when recommender system cannot produce recommendations for users or items

about which it has not yet gathered “enough” information). To make reliable recommendations

the system should have a lot of ratings data for items, but this data comes from a large number

of users, which we do not have, which in its turn does not allow us to implement collaborative

filtering approach. Another existing problem is constantly changing source data, meaning that

to produce a relevant recommendation the system needs “fresh” data, because nobody wants to

see irrelevant “expired” recommendations, that is why the proposed recommender system

should be, in some way, always aware about web analytics tools on the market. That is why was

considered to use an online search, also was considered that WARES should have an ontology

for storing data about existing web analytics tools and constantly update this ontology between

2

user’s requests. There is also a flexibility problem, because users have a trend always changing

their own preferences, that is why WARES should somehow envisage this, allowing user to

change search criteria. An algorithm for making suggestions is needed. A very urgent problem

in the Internet space to date is privacy. In WARES privacy problem is solved, because the

system does not store any personal data about active user, there is no user database with real

names or credit card numbers, e.g. like in Netflix or eBay. Because in the proposed

recommender system exists only one abstract user, without any personal information, all the

data about web analytics tools, which was found during the recommendation process and some

data about user’s preferences are stored in the ontology, on user’s computer.

Contributions

WARES share many features with existing recommender systems, however WARES

adds some novelty in an existing variety of recommender systems. First, it is unique on its own,

because it exists several recommender systems about music, movies, consumer goods, however,

to the best of my knowledge, there is no such a system for the web analytics. This paper also

will present the brand new ontology developed specifically for the domain of web analytics, as

well as an algorithm for making recommendations and the algorithm will share adopted features

from existing algorithms, in the field of recommender systems.

Plan of this thesis

This thesis is structured as follows: in the first chapter, will be defined basic concepts of

the web analytics, and basic notions about recommender system, examples and a short

comparison of some most popular existing web analytics tools on the market. In the second we

will consider and compare collaborative and content–based algorithms and methods, and

possible ways to use these techniques into the WARES. The third chapter describes the structure

of the WARES: user’s model, application model, data model, ontology, user’s interface, and

briefly describes how WARES works altogether. The fourth chapter is the validation and a brief

comparison of the WARES to some well-known recommender systems on the market. The fifth

chapter will conclude this paper, summarizing what was done and possible future works.

3

Chapter 1 – State of the art

In this chapter, will be describe the domain of “Web Analytics”, what is it and what it

consist of. Before starting developing WARES recommender system, a preliminary study about

recommender system as a notion should be done, to understand it. Basics will be explained about

recommender systems, how they works in general and what tasks they pursued, different

approaches to the solution of the recommendations problem. Finally, in the end of this chapter

examples of existing web analytics tools will be shown, with a summarizing table comparing

their important features.

1.1 – Web Analytics

“Web analytics” is not a simple discipline, it is a complex of technologies and methods

allowing collection, measurement, analysis and reporting of websites and web application data

in order to understand, improve and optimize their performance [Zheng and Peltzverger, 2015].

Today, web analytics is used for different purposes, including marketing, traffic monitoring,

information architecture, e–commerce optimization, advertising, web development, web–based

campaigns, website performance improvement, etc. Here are some fundamental areas where

web analytics is used:

- Improving performance and identification problems in web applications: web page

loading metrics such as average page load time by the browser and geographic location

are used for measuring website’s performance. Analysis of the real-time load allows

detecting and investigate problems concerning website’s performance, e.g. by

optimizing the size of downloadable images or modifying HTTP headers used for

caching of the website content. Web analytics metrics, e.g. click path, might also help to

detect website errors, such as user’s clicks on links leading to incorrect or “blank” URL.

For the developers of the web applications, web analytics could be applied for detection

of the code errors connected with website interactions.

4

- Improving website (application) design and user experience: by modifying existing

website appearance, e.g. changing the order of presented content and its visual

representation to the end-users, thus improving navigation convenience and layout, or

by analyzing clickstream information predicting the “best” positions for ads. banners.

Using web analytics feature called “heat map” could help to identify user’s degree of

interest and attention to the certain areas of the website, which is again very important

while placing ad banners or key buttons like “buy it now”, “sign in”, “register”, etc.

- Tracking and measuring success of actions: activities such as online commercial

campaigns, and polls need to be somehow measured, web analytics helps to cope with

this by tracking a wide variety of traffic sources, marketing channels, and visitor types.

In these campaigns, an important common question is “how and where participants

found that information?” Common traffic source metrics used in web analytics allows

us to answer this question very precise, by tracking direct traffic from user’s emails,

browser, social media and mobile devices, if not used anonymizers like Tor browser or

multiple virtual private networks.

- Optimizing e–Commerce and improving e–CRM (customer relationship

management): by analyzing different data about previous customer’s interactions with

website thus improving business relationships with customers, targeting on customer

retention and ultimately driving sales growth. Web analytics greatly helps to analyze

usage of website date and content, allowing achieving different goals, e.g. increase

spending time in social networks by reducing “bounce rate” of users, increase traffic

capacity through certain websites for achieving maximum revenue from advertisements,

or improve sales increase by helping to detect the most popular products.

Historically, web analytics techniques usually are separated into two major categories:

on–site and off–site web analytics. On–site web analytics refers to data collected on the current

site, it is used to effectively measure many aspects of direct user–website interactions, such as

number of visits, click path, time on site, etc. Off–site analytics are usually offered by third party

companies with using external web log storages, e.g. on the side of service provider or any other

host. However, this meaning is quite blurred, mainly because of vendors providing tools that

5

span both categories. Many different vendors, e.g. Google Corporation with its Google

Analytics, provide on–site web analytics software and services.

Figure 1: Basic steps of Web Analytics [Clifton, 2010]

It exists many ways to implement web analytics process, but in common sense, they are

all the same sequence of actions, typical basic steps in web analytics is shown in figure 1.

[Clifton, 2010] let us consider those four essential steps:

- Collection of data: collection of the basic elementary data, usually, this data is counts

of some things e.g. visits, clicks. The objective of this stage is just to gather raw data for

further processing.

- Processing of data into information: on this stage, usually making counts and makes

ratios. The objective of this stage is to take the data and transform it into information,

which is in most cases called “metrics”.

- Developing of KPIs: this stage focuses on using collected ratios and counts, and express

them as a business solutions and strategies, referred to as Key Performance Indicators or

KPIs.

6

- Formulating online strategy: reaching business effectiveness in online goals,

objectives, and standards for the organization or business, these strategies usually related

to making money, saving money, or increasing market share.

Each stage impacts on the following stage or can affect on the preceding stage or follow

it. For example, sometimes specificity of the data available for collection affects the online

strategy and the online strategy affects the data to be collected.

1.1.1 – Web Analytics data sources

Data for web analysis can be gathered from surveys, market reports, competitor

comparison, public information, etc. but mainly the data comes from four data sources [Hu and

Cercone, 2004] categorized into following types:

- Direct HTTP data traffic: is the user browser passing a web session or visit, which is

started without a referer (HTTP header field that identifies the address of the web page).

By checking the referrer we can see where the request is originated. An example of the

typical HTTP request message is shown in figure 2. An HTTP request consists of a

request command shown in the first line and HTTP headers.

- Application level data sent with HTTP requests: data generated and processed by

application-level programs, such as JavaScript, PHP, and ASP.Net, it is usually

embedded into HTTP requests. It includes “Session” data, which identifies client

interactions with the website. Session data usually sent as URL parameters or session

cookies. They are very important for calculating metrics like the number of visits, time

on site, the number of page views per visit, etc. “Referral” data can be used to analyze

traffic levels from expected and unexpected sources, or to gauge channel effectiveness

in advertisement tracking.

- Figure 2: How HTTP request header displayed in Google Chrome browser

7

- User action data: it is mostly keyboard and mouse actions made by users, e.g. user’s

input of search parameters, and mouse actions like cursor coordinates, movements,

clicks. It also includes application specific action such as playback of video or audio,

bookmarking, etc. User action data also includes device specification information, e.g.

display resolution, CPU model, or any other information about user’s settings not

restricted by security policies.

- Network level and server generated data associated with HTTP requests: this data

is not a part of the HTTP request, but it is required for successful request transmissions.

Most of this information is exchanging on the TCP/IP level, thus hidden from the user

and logged by the web server. Server generated details used for internal reference and

recorded in the server log files. The log file, typically, records transferred files size,

transfer time, server IP, request ID, etc.

- External data: any other data gathered during user activities on the web site, like

registration, search history, income from advertisement traffic, etc. This is any data,

which can be associated with a specific web page. This data could also come from the

indirect indicators, e.g. geo-location, revenue generated by the web site, various data

gathered by the third party data providers.

1.1.2 – Basic means of data mining of the typical Web Analytics tools

There are three major methods: web server logging, page tagging, and the most recent

method – the application logging. The first and the oldest method for data collection is the web

server logging, appeared at the same time when World Wide Web was invented. This method

is based on data collection on the server’s side, where the web site is hosted, it records HTTP

headers and some of the server’s activities into a textual log file, typically they are: server IP,

date and time, HTTP request command, response status, and response size, e.g. a common log

file implemented using Apache Web Server version 2.2 is shown in figure 3.

Additional information, such as HTTP headers, process id, scripts, request rewrite, etc.

can be logged in numerous proprietary formats, called the “Extended log file format”. After

emerging of the first web crawlers and search “bots” along with web proxies and dynamically

8

assigned IP addresses for large companies and ISPs, it became more difficult to identify unique

human visitors on the website.

Figure 3: Example of the log file format in the Apache web server

Log analyzers responded by tracking visits with cookies, and by ignoring requests from

known web crawlers. The use of web cache also makes a problem for log file analysis, because

if users revisits a page, the second request will be retrieved from the browser's cache, and

logging web server will receive no request. This means that the user's path through the site is

lost. Caching can be passed by configuring the web server, but this can result in reduced

performance for the users and increased calculation load on the server side, which is undesirable

or even inacceptable in some cases. Today log file analysis has its own advantages, such as:

- No changes to the website required: each web server normally already produces log

files, so the raw data is already available.

- Privacy and security: all the data are stored on the company's own servers and is a

standard, rather than a proprietary format, which makes it easy for a business to switch

web analytics software if needed, facilitating the use of the different software.

- Log files: contain information on visits from the search engines, which generally do not

execute any logging scripts on the web page, and therefore is not recorded by the page

tagging. Although these actions should not be reported as part of the human user’s

activity, but it might be a useful information for the search engine or traffic analysis.

- No additional DNS lookups or TCP slow starts: there is no external server calls, which

can slow down web page load speed, or result in uncounted page views.

- Transactions: the web server records every action it makes, e.g. playing video files and

content generated by scripts hosted on the web page, and does not rely on the visitor’s

browser actions.

Finally, economic factors of the log file analysis include:

9

- Local performance: log file analysis usually performed locally, which means the owner

somehow need to manage this growing data by his/her own means, which makes

additional load on the IT department.

- Software purchase: company needs to purchase log file analysis software, which

imposes some limitations because vendors may introduce maximum annual page view

limit with additional costs to process additional information. In addition to commercial

offerings, several open–source log file analysis tools are available free of charge.

- Data storage: to perform log file analysis, a company has to store and archive its own

data, which increases in volumes dramatically and very quickly, resulting in purchasing

more storage space. In recent years, cost of the hardware dropping each year, but costs

connected with the maintenance of the IT personnel, responsible for hardware servicing,

is rising.

- Maintenance: for the log file analysis, the company needs to maintain logging software,

including updates, security patches and of course cost for the IT department supporting

the system.

Web page tagging is the second and more recent method, which uses client-side

programs such as embedded scripts, browser add–ons and plug–ins. Page tagging de facto has

become a standard in the modern web analytics. For example, using tracking method with

JavaScript, a piece of JavaScript code is embedded in the web page and tracks different user’s

activity, storing information in the cookie files. Then information is sent to a processing server,

which might be not the same server that hosts tracked web site, e.g. the most widespread web

analytics software - Google Analytics and open-source Open Web Analytics actively uses page

tagging technology. For many companies and individuals, it has become a major type of usage

of their web data collections. General advantages of the page tagging are:

- Instant start: page tagging statistics is activated by opening the web page in user’s

browser, indicating that the web client runs the tagging scripts. If the web page is cached,

the server will not count it, because cached pages can constitute a considerable part of

all page views.

- Data: is gathered via the “tag” component on the page, usually written in JavaScript,

though Java, ASP.NET or Flesh can be used instead. Ajax (a set of Web development

10

techniques using many Web technologies on the client side to create asynchronous Web

applications) can also be used in conjunction with a server–side scripting language, such

as PHP, to manipulate and store data in the database, enabling complete control over

how the data is represented.

- Script: may have access to the additional information about Web client or user, which

is not sent in the query, e.g. user’s screen resolution or prices for goods he/she purchased.

- Page tagging: can report on events, which do not involve a request to the Web server,

such as interactions within Flash movies, partial form completion, mouse events, such

as onClick, onMouseOver, onFocus, onBlur etc.

- Cookies: page tagging service manages the process of assigning cookies to the visitors,

with log file analysis, but the server has to be configured properly in order to do this.

- Availability: page tagging is available to companies and users who do not have their

own web servers.

The third method of data collection is called application level logging. In recent times,

it has gained wide popularity due to extreme usefulness for the marketing research. Application

level logging is closely connected with an application, making it a functional feature of the

application itself. This extends possibilities of the traditional web analytics, which now focuses

not only on generic HTTP requests and user’s actions. The web application can be anything

from a small retail shop to a big social networking service. Each of these applications now has

its own unique data, e.g. user's registration information, product prices, metadata, etc. that data

is collected beyond generic web requests but by user’s actions. For example, Microsoft

SharePoint 2010 provides framework specific analytics data, like usage of templates and web

parts.

1.1.3 – Key metrics used in typical Web Analytics tools

It exists many metrics, which are used for the web analysis. Each software package could

have its own metrics, next will be considered only the most commonly used ones [Kaushik,

2009] and those, which will be used in the WARES recommender system:

11

- Hit: a request for a file from the Web server. The number of hits received by the website

is frequently cited to assert its popularity, but the total number of visits or page views

provides a more realistic and accurate assessment of popularity.

- Page view: a request for a file, or sometimes an event such as a mouse click, that is

defined as a page in the setup of the web analytics tool.

- Event: a discrete action or class of actions that occurs on the website. A page view is a

type of event. Events also encapsulate clicks, form submissions, key press events, and

other client–side user actions.

- Visit/Session: a visit or a session defined as a series of page requests or in the case of

tags, image requests from the same uniquely identified client. A unique client is

commonly identified by the IP address or a unique ID that is placed in the browser’s

cookie. Data collectors and analysis tools have no reliable way of knowing if a visitor

has looked at other sites between page views; a visit considered “a single” visit as long

as the events such as page views, clicks, whatever being recorded, are within 30 minutes

or less interval. Note that a visit can consist of one page view, or thousands. A unique

visit's session can be extended if the time between page loads indicates that a visitor has

been viewing web pages continuously.

- First Visit/First Session: or “Absolute Unique Visitor”, in some web analytics tools. A

visit from a uniquely identified client that has theoretically not made any previous visits.

Note that the first visit label is not reliable if the site's cookies have been deleted since

their previous visit.

- Visitor/Unique Visitor/Unique User: the uniquely identified client that is generating

page views or hits within a defined time period, e.g. day, week or month. A uniquely

identified client is usually a combination of a device and a browser. The identification

is usually via a persistent cookie that has been placed on the device by the site page code.

- Repeat Visitor: a visitor that has made at least one previous visit. The period between

the last and current visit called visitor “recency” and is measured in days.

- Return Visitor: a unique visitor with activity consisting of a visit to a site during a

reporting period and where the “unique visitor” visited the site prior to the reporting

period. The individual is counted only once during the reporting period.

12

- New Visitor: a visitor that has not made any previous visits.

- Impression: the most common definition of “Impression” is an instance of an

advertisement appearing on the viewed page, but most measures of impressions do not

necessarily mean an advertisement has been viewed.

- Single Page Visit/Singleton: a visit in which only a single page is viewed or a “bounce”.

- Bounce Rate: the percentage of visits that are single page visits.

- Exit Rate / % of Exit: a statistic applied to an individual page, not a website. The

percentage of visits seeing a page where that page is the final page viewed in the visit.

- Page Time Viewed/Page Visibility Time/Page View Duration: the time a single page

or a blog, Ad Banner, was viewed. On the screen is measured as the calculated difference

between the time of the request for that page and the time of the next recorded request,

note that if there is no next recorded request, then the viewing time of that instance of

that page is not included in reports.

- Session Duration/Visit Duration: an average amount of time that visitors spend on the

site each time they visit. This metric can be complicated by the fact that analytics

programs cannot measure the length of the final page view.

- Average Page View Duration: an average amount of time that visitors spend on an

average page of the site.

- Active Time/Engagement Time: an average amount of time that visitors spend actually

interacting with content on the web page, based on mouse moves, clicks, hovers and

scrolls. Unlike Session Duration and Page View Duration/Time on Page, this metric can

accurately measure the length of engagement in the final page view, but it is not available

in many analytics tools or data collection methods.

- Average Page Depth/Page Views per Average Session: page depth is the approximate

“size” of an average visit, calculated by dividing the total number of page views by the

total number of visits.

- Frequency/Session per Unique: it measures how often visitors come to a website in a

given time period. It is calculated by dividing the total number of sessions or visits by

the total number of unique visitors during a specified time period, such as a month or

year. Sometimes it is used interchangeably with the term “loyalty”.

13

- Click path: the chronological sequence of page views within a visit or a session.

- Click: a single instance of user’s action following a hyperlink from one Web page to

another.

- Site Overlay: report technique in which statistics of clicks or hot spots are

superimposed, by physical location, on a visual snapshot of the web page.

The common type of analysis, which could be performed by most modern web analytics

tools, are the dimensional analysis, which involves metrics described above, and other derived

metrics, aggregated at the different levels. For example, we can use dimensional analysis to

answer the question: “how many visits per month, per day, per period?”. Dimensional analysis

is the fundamental part of other analysis types and reports. The other most common types of

analysis are:

- Trends analysis: overlooks the data along the time dimension and shows the

chronological changes of the selected metrics. For example, the data can show how the

percentage of the mobile client access has changed for the past two years.

- User interest/attention analysis: is an “internal” page analysis, which analyzes user’s

attention to certain web page details during the browsing process. It uses embedded

script to track user’s mouse movements and actions, and shows results in a form of a

color matrix or “heat map”, where “cold” areas colored in blue or purple indicating a

low level of attention and “hot” color areas such as orange and red indicating a high level

of user’s attention. It can also show how far down visitors scroll the page. Analysis of

“popularity” areas of attention helps to develop content placement strategies. For

example, it could help to determine where the advertisement should be placed to have

the most attention from the users.

- Cohort analysis: is a subset of behavioral analytics that takes the data from a given

dataset, e.g. an e–commerce platform, web application, or online game, and rather than

looking at all users as one unit, it breaks them into related groups for analysis. These

related groups called cohorts, usually share common characteristics or experiences

within a defined time–span. Cohort analysis allows a company to see patterns “clearly”

across the life cycle of a customer (user), rather than slicing across all customers blindly

without accounting for the natural cycle that a customer undergoes. An example of the

14

cohort analysis is an owner of the online store, who may only be interested in customers

who signed up in the last two weeks and who made a purchase, in this case, this group

of users is an example of a specific cohort.

- Distribution analysis: explains metric values by building various charts and count

tables. Values are usually calculated as percentages of the total by one or more

dimensions. It is often used to analyze the number of visitors per period and distribution

of preferences in client profiles. For example, the percentages of visits from the different

time zones per month may give information about clients shopping habits. Other

commonly used dimensions for this type of analysis are: geo location, operation system

version, device type, referral source, etc.

- Clickstream analysis: also called a click paths, it analyzes the navigation path of the

user through a website. A clickstream is a list of actions for all web pages viewed by a

user, represented in the viewing order. Applying clickstream analysis may help to

improve website’s design and overall usability.

- Funnel Reports: using a series of events that lead towards a defined goal, e.g. from

user’s engagement in a mobile application to a sale in an e–commerce platform or

advertisement to purchase in online advertising. The funnel analyses is an effective way

to calculate conversion rates on specific user behaviors. This can be done in the form of

a sale, registration, or other intended action from an audience. The origin of the term

funnel analysis comes from the nature of a funnel where individuals will enter the funnel,

yet only a small number of them will perform the intended goals.

- Conversion analysis: is one of the key analyses in e–commerce and other sectors. The

conversion rate is calculated by dividing the number of completed targeted actions, e.g.

purchases, by the number of unique users visited the site. All web analytics providers

strive to improve conversion tracking. For example, Google Analytics provides reports

that show what campaigns, sources, or channels have contributed to a visitor's multi–

visit conversion.

- Performance analysis: helps to reveal website performance issues, such as loading time

or linking errors. For example, after a website redesign, indirect traffic volume needs to

be watched. If there is less indirect traffic, then some links from other sites and/or

bookmarks were potentially broken after the redesign.

15

- Engagement analysis: is one of the most frequently used analyses in the industry. It

measures the following factors: “how many pages were visited per session?”, “what is

the duration of a visit?”, “how often new visitors become returning visitors?”, “how

often visitors return to the site, term loyalty?”. The goal of the visitor engagement

analysis is to find out why the multitude of operations performed on a website did not

end in conversion.

1.2 – Basic concepts about recommender systems

The typical definition of the Recommender System, as was described by Peter Falk [Falk,

2015] - a system that applies data mining techniques and some prediction algorithms in order to

predict user’s interest on certain items, information, products or services among the tremendous

amount of the similar items available on the market. In modern reality, the vast growth of

information on the Internet adds new challenges for recommender systems, which are:

producing accurate recommendation, coping with huge amounts of data, handling many

recommendations efficiently with the growing number of participants in the system. Each

recommender system has its own unique structure, but most features are shared between every

recommender system. It was proposed using the following dimensions to describe a

recommender system: Domain, Purpose, Context, Personalization Level, Whose Opinions,

Privacy and Trustworthiness, Interfaces, Recommendations Algorithms [Falk, 2015].

- Domain: is the type of content, which will be recommended. For example in the IMDB,

it is movies, series and actors, but it can be anything: cars, e–learning courses, job

listings, food, books, hotels, etc. in the case of WARES it is web analytics tools. Domain

is an important because it provides hints on what would you do with recommendations.

- Purpose: defines why the recommender system was created and the goals which it

pursues. For example, a typical end–user’s purpose of the eBay recommendations is to

find a product that user wants to buy. The purpose for the recommendation provider

(eBay) is ultimately to make customers pay for their purchases by having a certain % of

the final purchase price. Another example of a purpose is to give an information or to

help, to entertain, to educate the user, but in most cases, the purpose is - to sell more. In

16

the case with WARES the purpose is to give a single or few recommendations for the

user that typically arrives once or a few times and expects a “good” recommendation.

- Context: is the environment in which the consumer receives a recommendation. For

example, Netflix delivers service on many different platforms. The device, which

customer is using is the context. The context is also could be the current location of the

user, what time it is, and what the user is doing. Does the user have time to study the

suggestions or a quick decision is needed? Context could also be the weather around the

user. Consider a search for a restaurant using Google Maps. Is the user sitting at home

and looking for a good restaurant or he is standing on the street and it just started raining?

In the first scenario, the best response would be about good quality in a bigger radius,

while in the second scenario, recommendations would ideally contain only the nearest

place where you can drink and eat while the rain passes. In the case of WARES the

context of the recommendation expected to be an office or home place, so the user will

have some time before taking the final decision.

- Personalization: recommendations can come at many levels of personalization, from

using basic statistics to looking at individual user’s data, three levels of personalization

could be highlighted:

a) Non–personalized: a list of the most popular items is considered non–personalized

recommendations: it is expected the current user might like the same items as most others

do. Non–personalized recommendations also include showing things on sale or ordering

items by date, such as showing the lowest price items first. Everybody who interacts

with the recommender system receives the same list of recommendations, e.g. if user

visiting Amazon.com as not registered (anonymous) user Amazon shows (recommend)

items that are currently viewed by other users.

b) Segment–personalized: is when you divide users into groups. There is many different

ways to segment users. It can be done by age, by nationality, by specific patterns, such

as entrepreneurs or students, car drivers or bike cycle riders. Example of segment–

personalization can be a concert ticket selling system that would recommend concerts

based on the country or city. If user listening music using a smartphone, the system

might try to deduce whether a person is out for exercising, by using the GPS and seeing

that, the device is moving. While if it is stationary and considered as “at home”, then the

17

consumer is probably sitting on the sofa and the relevant music might be different, the

recommender system does not know anything personal about you as a person, only as a

member of a group. Other people who fit into the same group will get the same

recommendations.

c) Personalized: a recommendation, which is based on the data about current user. Based

on how the user interacted with a system in the past, as well as data on other forms of

user’s behavior. This will generate recommendations specifically for this user. Most

recommender systems using segments and popularity when creating personalized

recommendations. For example, if a user looking for car parts at the bottom part of the

web page of each eBay’s auction you can see a section “More Parts for your vehicle”, it

is a personalized recommendation. Netflix is an extreme example of personalized, it will

apply different types of recommendations, but so far, there are only a few examples like

Netflix where everything is personalized. On YouTube you will see the list of videos,

which is recommended based on your list of previously viewed videos. In the WARES

given recommendations will be non–personalized.

- Whose options: in other words the area of experts, popular feature used on many

websites in the past, for example “Canadian Tire recommends this brand of tires for your

vehicle”, but is rarely used nowadays. Majority of the recommender systems integrated

into websites now uses the opinion of the “masses”. In the past were expert systems,

where pre-recorded variants from some experts was combined to recommend products

such as wines or books, where it was, “accepted” that someone should be an expert to

understand what is “good”, but modern recommender system, has no specific experts

who decide, an algorithm representing opinion of the “masses” does all the work.

- Privacy and trustworthiness: nowadays it is a serious concern! How well does the

system keep user’s personal data, how the collected information is used, how it is stored,

etc.? The privacy is most likely the question of security measures, taken by recommender

system owners, for storing personal user data complying with local laws about user’s

data. Another aspect is trust, for example, it is quite common that you will have to pay

money for your pension plan, which is handled by commercial banks. Often these banks

will have different kinds of retirement savings schemes. A system, which should

recommend these options, should have very strict rules for privacy. Imagine a user,

18

filling some data to get a pension plan recommendations, and describing that he has back

problems, and a minute later receiving a phone call from a chiropractor with great offers

to handle your exact problem. Or even worse, you buy a special bed for people with

backbone problems, and an hour later, you receive an email that your health insurance

premium has gone up. Many people think that recommendations are manipulation,

because they present choices that a customer is more likely to pick than if they were

offered as a random selection. Most shops are trying to sell more, so the fact that some

shops are using recommendations to sell more makes people think that they are being

manipulated. In fact, any form of filtering is a manipulation, but if that means watching

a film that would entertain rather than bore, then it is okay. The trustworthiness is about

how much the consumer will trust recommendations instead of considering them as

commercials or attempts to manipulate them, it means if a user takes recommendations

seriously, the system could be considered trustworthy. In WARES trustworthiness

cannot be measured for several reasons: it is new, nobody except me tested it, the system

has no intention to store any personal user’s data, like names, addresses or credit card

numbers, only certain survey data about user’s needs in web analytics, which could be

deleted after session ends.

- Interface of the recommender system is considering what kind of input and output it

will produce. For example, Netflix enables the users to enter taste preferences by rating

content, and add preferences on genres and topics. Netflix outputs recommendations in

many ways. Netflix estimates predictions, they provide personalized suggestions, they

show popular items, which normally is shown in the form of a “top 10”, but Netflix even

personalizes that. It also provides suggestion based on the content you watch. Types of

output could be predictions, recommendations or filtering. If the recommendations are

integrated as a natural part of the page, it is called organic presentation. The rows shown

on the Netflix website are a good example of the organic recommendations, they do not

seem like a recommendations, it looks like an integral part of the web site; while the

recommendations shown on Amazon are considered as non–organic personalized

recommendations, and are shown in the field “Customers who bought this…”. Example

of organic and non–organic recommendations is shown on the figure 4. The WARES is

19

designed to be a web application, it means the user could use WARES via his/her favorite

web browser and will receive non–organic personalized recommendations.

Figure 4: Organic (right) vs. non–organic recommendations representation

- Algorithms: there are essentially two groups of them, based on what data the one uses

to make recommendations. Algorithms that uses the user’s data are called collaborative

filtering. Algorithms that uses content metadata and user profiles to calculate

recommendations are called content-based filtering, more detailed they will be

considered in the next section and in the chapter 2.

Some recommender systems will try to explain given recommendations, which is called

the white box recommenders. For example, Amazon shows following text “Customers who

bought this item also bought…”, which could serve as an explanation why this item was

recommended to you, while recommender systems which do not try to explain are called the

black box, e.g. Netflix just showing covers of recommended movies, without any explanations.

Examples of such cases are shown on the figure 4. This is important to consider, when choosing

the algorithm, since not all of them provide a clear path back to a reasoning in the prediction

process. Deciding whether you want to produce a white box recommender or black box is quite

important, since it can put quite a lot of restraint on which algorithms you can use and it also

affects the level of the trustworthiness for your recommender system. The less your system

needs to explain the more simple the algorithm will to be. The WARES will implement some

of the white–box features.

20

1.2.1 – Basic approaches to solving recommendations problem today.

There are two major groups of algorithms, differing from each other by the data they are

using to produce recommendations. Group of algorithms that uses collected data of user’s

behavior are called collaborative filtering. Algorithms that use data from the description of the

item and from the user's profile preferences are called content–based filtering.

Collaborative filtering: a set of methods which are based on collecting and analyzing a

large amount of information on users’ behaviors, activities or preferences and predicting what

users will like based on their similarity to other users. Figure 5 illustrates a simple way of

collaborative filtering process. The outer set is the full catalogue. The middle set is a group of

users, which consumes similar items. A recommender system will now recommend items from

the “segment of user’s preferences” set, assuming that if users liked the same items as the

current user, then a current user will also like other items in this group. This means that a current

user is matched with other users. Then a gap of content, which the current user is missing, will

be recommended, i.e. the part of the “middle sized” set which is not covered by the set

representing what the current user likes. Collaborative filtering is based on the assumption that

people who agreed in the past will agree in the future, and that they will like similar kinds of

items as they liked in the past.

Figure 5: Collaborative filtering process

21

Many algorithms are used for measuring user similarity or item similarity in

recommender systems. For example, the k–nearest neighbors (k–NN) approach and the Pearson

Correlation, see chapter 2 for details.

Content based filtering: is all about looking at the relationships between the items and

original user’s profile preferences, based on objects and items user interacted in the past a

“second” user’s profile is built to indicate the type of items this user likes. The system then

constructs a profile for the each user, which contains categories of the content. To create this

“second” user profile, the system mostly focuses on the original profile of the user's preferences

and a history of user's interaction with the recommender system. Therefore, this method uses an

item profile i.e. a set of discrete attributes and features, characterizing the item within the

system. The system creates a content–based profile of users based on a weighted vector of item

features. The weights denote the importance of each feature to the user and can be computed

from individually rated content vectors, using a variety of techniques. Simple approaches use

the average values of the rated item vector while other sophisticated methods use machine

learning techniques such as Bayesian Classifiers, cluster analysis, decision trees, and artificial

neural networks in order to estimate the probability that the user is going to like the item, for

see chapter 2 for details.

1.3 – Comparative review of some existing Web Analytics tools

Today a wide range of tools for the web analysis was developed, to better understand

their variety, and what user should expect from them, a comparative review of some notable

web analytics tools was made. All these web analytic tools were present on the market when

this review was done, year 2016. A table at the end of this section shows them all together,

comparing some of their key features.

1.3.1 – Google Analytics

Beginning with the major favorite [w3techs] on the market of the Internet–related

services, a Google Corporation with its well–known “Google Analytics” [Google Analytics,

22

2016], next GA. It is a widely popular tool because of its integration with Google search engine,

wide variety of metrics and relatively simple interface and fast setup, consisting of three simple

steps, which are shown on the figure 6.

Figure 6: Google Analytics setup, (screenshot from Google.com)

Google launched GA service in November 2005 after acquiring Urchin Software

Corporation, which was widely known by its web analytics product “Urchin” applying log file

analysis on the server side, designed to show traffic information on the website based upon the

log data. GA offers a full range of analysis for Web, but as always with Google in exchange of

your privacy, it means that Google will have access to some of the user’s personal data such as

geo-location, your search history, click history, etc. After completing the first step, consisting

of entering the URL for the website, for which statistics will be gathered. Desirable name for

analysis report and some other data, e.g. reporting time zone, and some extra features, user will

get a Tracking ID and universal analytics tracking code, which user could insert into every web

page that he/she wants to track, example of the JavaScript code and tracking ID for GA is shown

on the figure 7.

23

Figure 7: Google Analytics tracking ID and tracking script, (screenshot from Groogle.com)

For example, this tracking code was inserted into one of the web pages hosted on the

University of Montreal web server for students. A resulting report for one–month period from

mid–October 2016 to mid–November 2016 is shown on the figure 8. This is a standard report

about visitors, representing total number of visits, average session duration, country of user’s

origin, etc.

Figure 8: Google analytics results for 1 month, (screenshot from Google.com)

24

By customizing this report, many other metrics and goals, could be added, see section

1.1 for details about used metrics. Typically, a goal is an action that the site owner wants a user

to complete, e.g. viewing a particular number of pages, going to a specific page, clicking on a

specific button, clicking a link, making a purchase, and so on. Goal completion is meeting the

conditions set in the goal parameters. A session in which the goal was completed is called a

conversion. A single conversion may include multiple completions of the same goal. The ratio

of conversions to the total number of sessions is called the conversion rate.

Some major features of Google Analytics are:

- Cloud hosting with computational power from the leading data centers on Earth.

- Documentation, lots of documentation about it, so anyone could learn how to use it.

- Video performance, allows to measure your video performance using YouTube service.

- Integration with AdWords, DoubleClick Bid Manager, AdSense, AdMob, and other

advertising service for businesses wanting to display ads on Google.

- Support for all devices, running Windows, Linux, Android, iPhone/iPad and Mac.

- Cutting edge technology from the leading IT company on the market for Internet

services.

Some disadvantages of Google Analytics are:

- Privacy – it is a major tradeoff for receiving free quality service in web analytics from

Google, as by using GA, you automatically agree to share your data with Google.

- Support is limited to a help center and user forum unless you hire support from a

certified partner.

Standard and customized reports could be distributed by any accessible time periods,

e.g. day, week, month, and what is very important in the age of social networks GA could detect

user bounces from social networks such as Facebook or Twitter and evaluate user’s social

network preferences, e.g. user’s most popular categories in a social network. GA also providing

Cohort analysis, see section 1.1.3 for details, which helps to understand the behavior of

component groups of users apart from total population of users. It is very much beneficial to

marketers and analysts for successful implementation of marketing strategy. GA is a “freemium”

service, which means it is provided free of charge, but money (premium) is charged for

proprietary features, functionality, or virtual goods, for example a user can have 100 GA site

25

profiles. Each profile generally corresponds to one website. It is limited to sites, which has traffic

of fewer than 5 million page views per month, roughly it is two page–views per second, so to

have more statistical data the one must pay for maintenance of additional profiles, unless the

site is linked to a Google AdWords campaign. As reported by Web Technologies Survey website

[w3techs], which is making surveys for various types of technologies used on the web, market

share claimed by Google Analytics is around 54% of all websites in the world.

1.3.2 – Open Web Analytics

An open source web analytics software “Open Web Analytics” package [OWA, 2016],

which anybody can use to track and analyze how users use websites and applications. OWA is

licensed under the GPL license and provides website owners and developers with easy ways to

add web analytics to their sites using simple JavaScript, PHP, or REST based applications, it

has nice and relatively clear user interface, which is shown on the figure 9. Like all open–source

software its source code is open, so this mean if the one knows something in the matter of

programming he/she can modify this web analytics tool for his/her own needs.

Major benefit features of OWA are:

- No restrictions on the amount of user data, it can be used for multiple URL resources.

- Information about last visit, individual and detailed reports on the last site visitor with

its locations, type of browser, pages viewed, visit duration, referral, etc.

- Click–stream, heat click and click tracking maps, which intend to record user’s cursor

movements, where user click the most, track where exactly on the site user click’s.

- Support for WordPress and MediaWiki plugins.

- PHP applications support.

- Cost – Free!

- Privacy means all the data is stored on your own server.

Major disadvantages of using OWA are:

- Time – it takes some time to install and figure out how to use, as always with most GPL

applications.

- No mobile applications support.

26

- No export – no support for file export function from the application interface, you can

only do this from the database.

Figure 9: Open Web Analytics dashboard, (screenshot from Open Web Analytics website)

1.3.3 – Yandex Metrica

Another powerful web analytic tool is Russian Yandex Metrica [YM, 2016], in the post–

soviet countries of Eastern Europe and in Russia it considered as a major adversary of Google

Analytics. It is connected with Russian search engine, which is also called Yandex. By

registering a user account for Yandex, called “Yandex passport”, a user automatically gets free

access to Yandex Metrica services. To configure YM first the one should register with Yandex,

it is like a Google account for GA, but Yandex claims that it will not use user’s personal

information to gain profit, as Google does. Second log in into your account, go to YM page,

insert website’s URL, the one wants to track and get tracking HTML code for it, and it is done.

Now the user can start creating his/her own dashboards and charts, with the most popular metrics

and some unique features only available for Yandex Mertica users, such as Yandex Direct,

which is actually an analogue of Google AdWords. Hence, this web analytics tool was

27

developed in Russia, it also provides an English user’s interface, so potentially it could be used

by US and Canada users.

Yandex Metrica provides four major conversion types:

- Goals related to tracking someone landing on a specific page URL.

- Achievements – plan for achieving a specific amount of page views.

- Events, such as clicks on specific buttons.

- Multistep goals where you can combine up to five page URLs or events.

One account in Metrica allows the one to track multiple websites, each having its own

set of goals. YM offers an asynchronous code by default in code settings. This type of code

does not block or influence the loading speed of your website. It also does not matter where the

code is placed, e.g. in the header, body or the footer, even if someone decides to leave the page

before it loads completely it will still be classed as a “visit”. Visitor’s actions are reflected in

Metrica’s reports between 30 seconds and 5 minutes after the actions, whereas all the other

statistics are updated every 30 seconds. All the data is displayed in the table, or on the dashboard,

as well as in a variety of neatly presented graphs, interface of the YM is shown on the figure 10,

alongside with a simple dashboard.

Figure 10: Yandex Metrica dashboard, (screenshot from Yandex website)

28

Yandex Metrica offers following major reporting features:

- Traffic and source reports, including traffic source by region, traffic behavior on your

website (number pages viewed, bounce rate, time spent on each page, etc.)

- Visitors interests, which are calculated using analytics technology called Crypta. This

technology classifies web users based on their previous online actions. Crypta is based

on Yandex’s own machine learning method MatrixNet.

- Sources which leads visitors to your site, e.g. ads, search queries, social networks.

- Content reports, which shows statistics on visitor’s interaction with the site’s content

such as entry and exit pages, traffic from external links, file downloads, orders made by

visitors and their costs, it is very useful for marketing research.

- Behavior reports: if YM user wondered how people behave when they land on his/her

website, using Metrica he/she can see a recording of every visit, up to 1000 per day!

- Analysis of user behavior during filling of a web form, this tool provides information

on the number of views of the page containing the form, the number of interactions with

the form, the data on sent forms as well as the video recordings of how people behaved

when filling in the form.

- Click path analysis with text highlighted in different colors on the map depending on

their popularity.

- Heat maps, which measure and displays statistics for clicks on the website, also

highlighting by colors most clicked areas. Unlike the link map, the heat map shows clicks

on all page elements and not just on links, and even further if a user has 3D glasses

he/she can see 3D map!

- Scroll map, by using the scroll map, it is possible to find out how users of long websites

view different elements of the page.

- Report builder, allows to create your own report from all the statistics available with a

variety of filters and segmentation options to choose from.

- Offline monitoring, Metrica can track when your website is down and provides a report

on this data. If a user connected his/her Yandex account with Yandex Direct (Yandex

29

advertising account, analogue Google AdWords), Metrica will switch off your ads to

prevent unnecessary traffic spend and it will send you an email saying that it did it.

1.3.4 – Piwik

The Piwik [Piwik, 2016] is an open–source web analytics platform developed in France

back in 2007. It has paid features called Piwik Pro, which is actually a team of Piwik developers

performing customization of the Piwik engine for particular client needs. It is also an interesting

fact that Canadian government [Piwik study, 2016] using modified Piwik engine for Fisheries

and Oceans Canada as a high–performance and robust analytics tool, other Canadian

governmental institutions also employees Piwik for intranet and web sites as an alternative for

Google Analytics, because of its “unsecure” usage of personal information, which is not

acceptable in the governmental sector. Piwik has all major web analytic tools features such as

traffic analysis, click analysis, etc.

Some major and unique Piwik features are;

- Self–Hosted, means it allows a customer deploys analytics engine on his/her own

infrastructure and enjoy 100% control and ownership of his/her data and information.

- Piwik Pro Cloud, offering full support for customer’s web analytics project from Piwik

team with secure hosting of your data in the Piwik cloud server, first 30 days are free

then you should pay $65 per month.

- High privacy standards, Piwik enterprise analytics enables you to comply with EU and

local privacy regulations and ensures user’s privacy is protected.

- Unlimited number of websites and users for statistical data.

- Multi language user interface, supporting 53 languages! e.g. on the figure 11 is shown

how typical Piwik dashboard looks like in Russian language.

30

Figure 11: Piwik dashboard demonstrating Russian interface, (screenshot from Piwik website)

- Tracking of individual users, allowing site’s owner to create a user profile for specific

user or group of users to study user’s behavior more deeply through the owned website.

- High customization offers wide variety of customization options allowing transforming

Piwik platform to meet almost any needs, from high security sphere of banking and

healthcare to simple website statistics.

1.3.5 – Woopra

The Woopra [Woopra, 2016], is an interesting example of the web analysis tools in the

way how it focuses on the marketing. Like any other web analytics software, it can perform all

the basic web analytic procedures using script code on the desirable web page. It provides the

full array of the statistical information about visitors: number of page views, traffic, clicks, top

referrers, visitor language, browser setting, etc. But, the key unique feature of the Woopra that

it positioning itself as a real–time customer analytics service tailored for use especially in sales

and marketing teams. The major difference from all the previous web analytics tools that

Woopra uses application interface, not the web interface like majority web analytics tools do,

but offering a variety of methods and techniques for tracking user’s activities, giving very

31

detailed information, e.g. which product was added into the customer’s basket in real time.

Woopra’s interface is shown on the figure 12.

Some unique Woopra’s features are:

- Deep user monitoring and customization, allowing even assigning names for certain

users for subsequent identification, using Woopra profiles.

- Funnel Reports, allowing using Funnel analytics, see section 1.1.3 for details, to

pinpoint where users drop off in the conversion process and to understand why your

leads do not convert, which facilitates monitoring on how different segments move

through your “funnel” to identify the best and the worst conversion types of the

customers.

- Measures user retention, allowing increasing customer lifetime by giving suggestions

if users continue to do important actions, such as purchases, use your product, or even

open your emails and helps the website’s owner better understand if users are engaged

enough with your offerings to keep coming back.

- Live chat, it means as an owner or admin of the website you can even communicate

with your website users through the specific interface.

- Personal tech support from Woopra’s customer service.

Woopra is a proprietary software, but it offers a free account with 30.000 user actions

per month and limitation for data storage for 2 months, if you need more you should pay starting

from $80 per month or higher depending on your volumes of information.

Disadvantages of using Woopra:

- Complicated interface: Woopra application itself has relatively complicated interface.

- No support for mobile applications.

- English interface only.

- Storage limit: even with paid subscription, your data will be stored maximum up to 24

months.

32

Figure 12: Interface of the Woopra main application window, (screenshot from Woopra website)

1.3.6 – Summary on comparison of web analytics tools

The list of the web analytics products could be endless, but I think I gave an idea what

web analytics tools look like and what they are offering for their users. Table 1 highlights the

final comparison of all reviewed web analytics tools. It is difficult to compare all the existing

properties, the table would be simply too long, with too many features, because of the nature of

the whole paper the comparison is not an objective itself, that is why this comparison was made

based on availability of the certain properties, which could represent the interest for the certain

potential users:

- Mobile support: possibility to gather statistical data from the mobile devices like

smartphones or tablets.

- Real–time statistics: possibility to have statistical data, changing in the real-time.

- User click–streams: availability of the click–stream analysis.

- Conversion methods: possibility to have multiple sessions in which goals, which will

be analyzed, were achieved by the visitors.

33

- Free–trial: show the possibility of using this web analytics tools in a trial mode.

- $ per month: this field representing a price, which potential user will need to pay

monthly in order to use one of these web analytics tools.

Table 1: Comparative summary of the considered Web Analytics tools

Open Web

Analytics

Google

Analytics

Yandex

Metrica
Piwik Woopra

Mobile

support
no

Android, iOS,

Unity
Android, iOS Android, iOS no

Real–time

statistics
no yes yes Every 5 sec. yes

User click–

streams
yes no yes no no

Conversion

methods
yes yes yes yes yes

Widespread* <0.1% 54% 5.4% 1.3% 0.2%

Free–trial unlimited unlimited unlimited 30 days
>30k user actions/month –

free

$ per month Free “Freemium” Free
Free/$65/cust

om
Free/$80

This short comparison concludes this section, in the following we will consider some of

the most widely-used methods and algorithms for solving the recommendation problem.

* according to the statistics from https://w3techs.com, December 2016

https://w3techs.com/

34

1.4 – Conclusion

In this chapter, was given an idea in which direction this report will continue. While

designing a recommender system, it is essential to know the basics highlighted above. First part

was dedicated to the field of the web analytics, describing it as a niche of the software market.

To continue it is very important to know these concepts, methods and metrics by which the web

analytics software operates, because it is impossible to design a recommender system without

knowing the field in which recommendations will be made. Second, it was explained what is

the recommender system, how it should work, what are the typical objectives for the

recommender system, current trends in the development of the recommender systems and two

major approaches for implementing them: content–based and collaborative filtering techniques.

Finally, was made a comparative review of some chosen web analytic tools available today (the

year 2017) on the market, showing their advantages and disadvantages, which gave us an

excellent opportunity to see how different web analytic tools works and how they look in

practice. This was an essential starting point for this paper, which gave us a direction where to

move next. In the next chapter will be described in details some chosen algorithms and

techniques used for creating recommender systems. These techniques will be described from

the collaborative and content–based viewpoints, at the same time, focusing on the consideration

of those methods that will be used in the WARES recommender system.

35

Chapter 2 – Methodology

In this chapter will be discussed methods and techniques, which was used for the

WARES and some others that are commonly used in the field of the recommender systems

development. Most of them was already implemented in such well–known e–commerce projects

like Amazon, Netflix and eBay, considering them step by step will allow us to decide which

ones are suitable for the WARES recommender system and which are not. Those techniques

and algorithms, considering essential to the WARES recommender system, will be explained in

details.

The appearance and growth of the online markets have had a considerable impact on the

habits of consumers, providing them access to a greater variety of products and information on

these goods. While this freedom of purchase has made online commerce into a multi–billion

dollar industry, e.g. for consumer goods Amazon.com, eBay.com, for services (watching films,

series) – Netflix, but it also made more difficult for consumers to select the products best fitting

their needs. One of the main solutions proposed for this information overload problem are

recommender systems, which could provide automated and personalized suggestions of

products to consumers.

In its most general form, the problem of recommendations is reduced to assigning some

rating values for different goods and services, which are not yet known to the potential

user/customer, e.g. 5–stars ratings on Amazon.com, is a simple feedback, which users would

leave after purchasing the product, or even make a review on 5–star scale. In the case with

WARES this “goods” are web analytics tools. Obviously, that such an assessment, or rating,

could be given based on previous analysis of user’s/customer’s preferences or any other

information on it. After the recommender system predicts ratings for not yet known consumer

products those, which receive the highest scores, are recommended to a potential customer. If

the recommender system does not possess a certain number of users and ratings, the new ratings,

for yet not evaluated products, could be synthetically produced by various methods like

heuristics, approximation and various machine learning techniques. This “new” ratings are

36

based on previously received small set of ratings, or if the rating for certain products are

unknown (absent) by an extrapolation from known to unknown ratings by using:

- Heuristic rules: a choice of heuristics that define a utility function, and empirical

justification for functional behavior.

- Utility functions: various functions, which optimize the parameters of ratings, e.g. a

standard deviation.

Once the analysis of unknown ratings is done, the user receives recommendations for

products or services with the highest ratings from the whole set which was analyzed. Typically,

recommender system gives recommendations in two ways: in a form of a set of products most

appropriate for the customer or set of customers which are most relevant to the product.

Nowadays most recommender systems are built on one of the following approaches:

- Content–based recommendations – the customer will receive the recommendation of

goods similar to those he/she has chosen previously, e.g. recommendations on

Amazon.com representing algorithms used to personalize the online store for each

customer, showing programming titles to a software engineer and baby toys to a new

mother.

- Collaborative recommendations – consumer products will be offered as similar to

those, which was chosen in the past by a group of selected people with similar tastes to

customer’s preferences. For example, recommendations for music on last.fm internet

online music service, where you receive recommendations type “users who listening this

song also liked this… ”.

- Hybrid methods – recommendations that combine the two previous methods. In this

chapter, combinations of content–based and collaborative filtering techniques will not

be highlighted, they are simply too many. Instead will be considered major content–

based and collaborative techniques. For example, Amazon is a bright example of a

hybrid recommender system, which uses content–based approach for recommending

items based on item–item approach and at the same time uses collaborative component

to recommend products based on 5–star feedback from other users who already bought

similar products.

37

2.1 – Collaborative filtering approach and possible ways of

applications in WARES.

Collaborative filtering is almost all about different rating values and a large number of

users who give these ratings. By using collaborative filtering methods various user-specific

recommendations of items could be produced based on patterns of user’s ratings or customers

actions, e.g., clicks and purchase history, without the need for different information about items

or users itself. To better understand collaborative filtering approach a good example is needed,

here and further let us consider Netflix as such an example. As by its nature, recommender

systems based on the collaborative approach rely on various types of input and the most valuable

among it is an explicit feedback, where users directly report on their interest in products. A

movie recommender system Netflix collects star as ratings for movies, while TV series

subscribers shows their preferences by hitting thumbs–up/thumbs-down buttons. Frequently

explicit feedback, is not available, that is why some recommender systems infer ratings from

such called implicit feedback, which indirectly reflects preferences through observing various

user’s behavior [Oard and Kim, 1998]. Sources of the implicit feedback could be: user’s

purchase history, browsing history, navigation patterns, etc. For example, a user who watched

many films with Clint Eastwood probably likes that actor. Implicit feedback is a valuable source

of information for recommender systems where users have not provided enough explicit

feedback. Next step, in order to build recommendations, RS based on collaborative filtering

need to relate two fundamentally different entities: the items and the users. There is two most

widely-used techniques for collaborative filtering:

- Neighborhood approach: focuses on the relationships between items and users, called

item–item model, where user’s preferences on the items based on ratings of the similar

items rated by the same user.

- Latent factor models: or matrix factorization, also known as singular vector

decomposition, a technique where items and users are transformed into the same latent

factor space. The latent space explains ratings by characterizing products and users on

factors automatically inferred from the different sources of user’s feedback.

38

Section 2.1.1 describes theory and practical details behind some of the most recent

matrix factorization techniques, their relatively high accuracy of prediction also has made them

the preferred technique for the Netflix data set.

Section 2.1.2 gives attention to the family of neighborhood methods, their resulting

accuracy is close to an accuracy of matrix factorization models, while offering some advantages

by lifting the limit on neighborhood size, and addressing temporal dynamics. Explains how to

predict ratings using neighborhood techniques and also gives an idea how to measure accuracy,

stability and efficiency of user-based and item-based rating prediction models.

Section 2.1.3 considers most widely-used similarity measurement methods and their

applications in recommender systems in general and in WARES in particular.

To better understand possible perspectives of application collaborative techniques in the

WARES let us consider a typical collaborative filtering model, as was described in the article

about collaborative filtering by Yehuda Koren and Robert Bell [Koren and Bell, 2011]. Let us

consider that ratings are given for m users and n items, using letters to distinguish users from

items: for users u,v, and for items i, j, l. A rating rui indicates the preference by user u of item i,

where higher values mean stronger preference. For example, values can be stars (integers)

ranging from 1, indicating no interest to 5, indicating a strong interest. Predicted ratings from

known users using the notation 𝒓̂ui for the predicted value of rui. The scalar tui denotes the time

of rating rui. In most cases lots of ratings are unknown, e.g. like in the Netflix database 99%

where only a small portion of the movies have been rated by the user. The (u, i) pairs for which

rui is known are stored in the set K = {(u, i) | rui}, where rui is known. User u is associated with

a set of items R(u), which contains all the items rated by u. The set R(i) denotes users who rated

item i. Sometimes a set denoted by N(u), is used, which contains all the items for which u

provided an implicit preference like items that user rented, purchased, watched, etc. Models for

the rating data are learnt by fitting the previously observed ratings. However, the goal is to

generalize those in a way that allows predicting future unknown ratings, but caution should be

exercised to avoid “over fitting” the observed data, this could be achieved by regularizing the

learnt parameters using constants λ1, λ2,…λn. Exact values of these constants are determined by

cross validation. Average overall rating is denoted by μ. A prediction for an unknown rating rui

is denoted by bui :

39

bui = μ +bu+bi

The parameters bu and bi indicate the observed deviations of user u and item i, from the

average. For example, suppose that we want to know a rating of the movie “The Terminator”

by some user John. Let us say that the average rating over all movies, μ, is 3 stars. “The

Terminator” is a popular movie, so it tends to be rated 0.6 stars above the average. On the other

hand, John is a critical user, who tends to rate movies 0.4 stars lower than the average. Thus, the

baseline predictor for “The Terminator” rating by John would be 3.2 stars by calculating

3−0.4+0.6. In order to estimate bu and bi the least squares problem should be solved (2.1) [Koren

and Bell, 2011]

𝒎𝒊𝒏𝒃 = ∑ (𝒓𝒖𝒊 − 𝝁 − 𝒃𝒖 − 𝒃𝒊)
𝟐 + 𝝀𝟏(∑ 𝒃𝒖

𝟐 +𝒖 ∑ 𝒃𝒊
𝟐

𝒊)(𝒖,𝒊)∈𝑲 (2.1)

Here, the term ∑ (𝒓𝒖𝒊 − 𝝁 − 𝒃𝒖 − 𝒃𝒊)
𝟐

(𝒖,𝒊)∈𝑲 strives to find bu’s and bi’s that fit the given

ratings. The regularizing term 𝝀𝟏(∑ 𝒃𝒖
𝟐 +𝒖 ∑ 𝒃𝒊

𝟐
𝒊) – avoids over fitting by penalizing the

magnitudes of the parameters. This least square problem can be solved “fairly” efficiently by

the method of stochastic gradient descent, e.g. for the Netflix database the mean rating μ is 3.6.

As for the learned user biases bu, their average is 0.044 with standard deviation of 0.41. The

average of their absolute values |bu| is: 0.32. The learned item biases bi average to –0.26 with a

standard deviation of 0.48. The average of their absolute values |bi| is 0.43. An easier, yet

somewhat less accurate way to estimate these parameters is by decoupling the calculation of the

bi’s from the calculation of the bu’s. First, for each item i we set:

𝑏𝑖 =
∑ (𝑟𝑢𝑖 − 𝜇)𝑢∈𝑅(𝑖)

𝜆2 + |𝑅(𝑖)|

Then, for each user u we set

𝑏𝑢 =
∑ (𝑟𝑢𝑖 − 𝜇 − 𝑏𝑖)𝑖∈𝑅(𝑢)

𝜆3 + |𝑅(𝑢)|

Averages are shrunk towards zero by using the regularization parameters λ2, λ3, which are

determined by cross validation. Typical values for the Netflix dataset are: λ2 = 25, λ3 = 10.

In previous paragraph was considered an explicit user feedback, when it is unavailable,

there are always additional sources of implicit feedback, and they can be exploited for better

40

understanding user’s behavior. This helps to combat data sparseness and can be particularly

helpful for users with few explicit ratings. Another well-known recommender system – the

Amazon uses browsing and purchase history to get additional implicit feedback of the each user.

In the Netflix dataset, the perfect source of the implicit feedback could be movie rental history,

which directly shows user’s preferences without requiring to rate rented movies. For example,

the Netflix does not only tell us the rating values, but it also tells which movies users rate,

regardless of how they rated these movies. In other words, a user implicitly tells about his/her

preferences by choosing to voice her opinion and vote by high or low rating. This creates a

binary matrix, where “1” stands for “rated”, and “0” for “not rated”. While this binary data may

not be as informative as other independent sources of implicit feedback, incorporating this

implicit data does significantly improves prediction accuracy. The benefit of using the binary

data is closely related to the fact that ratings are not missing at random, and users deliberately

choose which items to rate [Marlin et al., 2007].

2.1.1 – Matrix factorization methods applicable to recommendations

Latent factor models used in collaborative filtering to uncover latent features that explain

received ratings, also known as SVD–based (singular vector decomposition) models. Matrix

factorization models have gained popularity, because of their relatively high accuracy and

scalability. The complications of usage SVD with explicit ratings in the collaborative filtering

domain are the high amount of missing data (not rated items), SVD model is undefined when

knowledge about the matrix is incomplete and prone to overfitting. Past works in matrix

factorization relied on imputation [Kim and Yum, 2005], which fills in missing ratings and

makes the rating matrix “dense”. However, imputation can be very expensive as it significantly

increases the amount of data. In addition, the data may be considerably “distorted” due to

inaccurate imputation. Hence, other works [Bell et al., 2007] suggested modeling of only

explicit ratings, while avoiding overfitting through an adequately regulated model.

41

2.1.1.1 – SVD model

Let us consider what was shown about the SVD model in the article “Advances in

collaborative filtering” [Koren and Bell, 2011]. SVD model maps both users and items to a joint

latent factor space of dimensionality f, such that user–item interactions are modeled as inner

products in that space. The latent space tries to explain ratings by characterizing both items and

users on factors automatically inferred from user feedback. For the case with WARES where

items are different web analytics tools, ratings could be calculated as an average of several

inferior ratings, representing certain web analytic tool features, e.g. user statistics, software

platforms, geo statistics, traffic statistics, etc. Each of the inferior rating is measured by factors,

e.g. for user statistics, it would have following dimensions: user type, count of sessions, days

since last session, users, page views, unique page viewers, new users, number of sessions per

user, days active. Accordingly, each item i is associated with a vector qi∈ Rf, and each user, if

there are many, u is associated with a vector pu∈ Rf. For a given item i, the elements of qi

measure the extent to which the item possesses those factors, positive or negative. For a given

user u, the elements of pu measure the extent of interest the user has in items that are high on

the corresponding factors, which could be positive or negative.

Dot product between two vectors x,y∈ Rf is 𝑥𝑇𝑦 = ∑ 𝑥𝑘 ∗ 𝑦𝑘
∫
𝑘=1 (2.2)

The resulting dot product 𝑞𝑖
𝑇𝑝𝑢 (2.2) captures the interaction between the user u and item

i, the overall interest of the user in characteristics of the item. The final rating is created by

adding aforementioned baseline predictors that depend only on the user or item. Thus, a rating

is predicted by the following rule:

𝑟𝑢𝑖̂ = 𝜇 + 𝑏𝑖 + 𝑏𝑢 + 𝑞𝑖
𝑇𝑝𝑢 (2.3)

In order to learn the model parameters (bu, bi, pu and qi) we minimize the regularized

squared error:

min
𝑏∗,𝑞∗,𝑝∗

∑ (𝑟𝑢𝑖 − 𝜇 − 𝑏𝑖 − 𝑏𝑢 − 𝑞𝑖
𝑇𝑝𝑢)2 + 𝜆4(𝑏𝑖

2 + 𝑏𝑢
2 + ||𝑞𝑖||

2
+ ||𝑝𝑢||2)

(𝑢,𝑖)∈𝐾

The constant λ4, which controls the extent of regularization, is usually determined by

cross validation. Minimization is typically performed by either stochastic gradient descent or

42

alternating least squares. Alternating least squares techniques rotate between fixing the pu’s to

solve for the qi’s and fixing the qi’s to solve for the pu’s. Notice that when one of these is taken

as a constant, the optimization problem is quadratic and can be optimally solved as seen in [Bell

and Koren, 2007], [Bell et al., 2007]. An easy stochastic gradient descent optimization was

popularized by [Funk, 2016]. The algorithm loops through all ratings in the training data. For

each given rating rui, a prediction 𝒓̂ui is made, and the associated prediction error eui = rui − 𝒓̂ui

is computed. For example in some training case rui, we could modify parameters by moving in

the opposite direction of the gradient, yielding:

bu ← bu + γ*(eui – λ4*bu)

bi ← bi + γ*(eui – λ4*bi)

qi ← qi + γ*(eui*pu – λ4*qi)

pu ← pu + γ*(eui*qi – λ*pu)

Where γ – learning rate, and λ4 regularization parameter. Better accuracy could be

achieved by dedicating separate learning rates γ and regularization λ to each type of learned

parameter. Thus, it is advised to employ distinct learning rates to user biases, item biases and

the factors themselves. A good, intensive use of such a strategy is described in [Takacs et al.,

2008].

2.1.1.2 – SVD++ model

SVD++ allow us to increase accuracy of original SVD by considering an implicit

feedback, which provides an additional indication of user’s preferences [Koren, 2008]. This is

especially helpful for those users that provided much more implicit feedback than explicit one.

To this end, a second set of item factors is added, relating each item i to a factor vector yi∈ Rf.

Those new item factors are used to characterize users based on the set of items that this user has

been rated, this is such a called SVD++ model:

𝑟𝑢𝑖̂ = 𝜇 + 𝑏𝑖 + 𝑏𝑢 + 𝑞𝑖
𝑇(𝑝𝑢 + |𝑅(𝑢)|−

1

2 ∗ ∑ 𝑦𝑗𝑗∈𝑅(𝑢)) (2.4)

The set R(u) contains the items rated by user u. Now, a user u is modeled as

𝑝𝑢 + |𝑅(𝑢)|−
1

2 ∗ ∑ 𝑦𝑗𝑗∈𝑅(𝑢) . Here a free user–factors vector, pu is used much like in (2.3), which

is learnt from the given explicit ratings. This vector is complemented by the sum 𝑝𝑢 +

43

|𝑅(𝑢)|−
1

2 ∗ ∑ 𝑦𝑗𝑗∈𝑅(𝑢) , which represents the perspective of implicit feedback. Since the yj’s are

centered around zero, by the regularization, the sum is normalized by |𝑅(𝑢)|−
1

2, in order to

stabilize its variance across the range of observed values of |R(u)|. Model parameters are

determined by minimizing the associated regularized squared error function through stochastic

gradient descent.

2.1.1.3 – SVDtime model

Finally, the most accurate and most sophisticated model for the matrix factorization is

the SVDtime model, it concludes the latent factor models review. Above, the temporal dynamics

was omitted, but users could change their preferences over time. An example of using SVDtime

for WARES, a company owner who is using PIWIK and stores all website statistics on his own

server, who does not want to share his/her data with others while using third party cloud-based

solutions, like Google Analytics, next year could switch to cloud-based services due to lack of

money needed for supporting own IT department. This type of evolution is modeled by taking

the user factors, vector pu, as a function of time. In fact, these temporal effects are the hardest

to capture, once again, we need to model those changes at the very fine level of a daily basis,

while facing the built–in scarcity of user ratings. The resulting model is denoted as SVDtime

where ratings predicted as:

𝑟𝑢𝑖̂ = 𝜇 + 𝑏𝑖(𝑡𝑢𝑖) + 𝑏𝑢(𝑡𝑢𝑖) + 𝑞𝑖
𝑇(𝑝𝑢(𝑡𝑢𝑖) + |𝑅(𝑢)|−

1

2 ∗ ∑ 𝑦𝑗𝑗∈𝑅(𝑢)) (2.5)

Where bi(tui) is a time–changing item biases, 𝒃𝒖(𝒕𝒖𝒊) are real valued functions that

changes over time and user’s preferences are pu(tui). Time complexity per iteration is linear with

the input size, while running time is approximately doubled compared to SVD++, due to the

extra overhead required for updating the temporal parameters. Importantly, convergence rate

was not affected by the temporal parameterization, and the process converges in around 30

iterations [Koren and Bell, 2011].

44

2.1.2 – Neighborhood methods applicable to recommendations

This is the most common approach in collaborative filtering, based on user-user

neighborhood models [Herlocker et al., 1999], where estimating unknown ratings based on

recorded ratings of users with the same opinion. Later, appeared a similar approach for items

called the item–item [Linden et al., 2003]. A bright example of using neighborhood models is

the web site Amazon.com, which became the largest internet-based retailer. In neighborhood

methods, a rating is estimated using known ratings made by the same user on similar items.

Item-item approach have better scalability and accuracy in many cases [Bell and Koren, 2007].

In addition, item–item methods are more capable in explaining the reasoning behind the ratings

predictions, because users are familiar with items they have rated before.

This section will be focused on the item–item approaches and will use some explanations

about considered methods from the article of Yehuda Koren and Robert Bell [Koren and Bell,

2011], of course in the context of the WARES web analytics tool will be considered as an item.

Comparing to the previous section, latent factor models have more possibilities in representation

of different aspects of the data and provides more accurate results than neighborhood methods,

but neighborhood models dominates in e-commerce solutions mostly due to their simplicity,

and ability to provide intuitive explanations of the reasoning behind given recommendations,

e.g. the Amazon uses well-known “What other items do customers buy after viewing this

item…”, this aspect most ordinary users values more than accuracy. Second, they can provide

immediate recommendations based on newly entered user’s feedback, their main advantages

are:

- Simplicity: neighborhood–based methods are relatively simple to implement. In its

simplest form, only one parameter, the number of neighbors is used during the prediction

process.

- Justifiability: as was mentioned before, neighborhood methods provides a readable

and comprehensible justification for the computed predictions e.g. the list of items, as

well as the ratings given by the user to these items, which can help a user better

understand given recommendation and its relevance [Bell et al., 2007].

45

- Efficiency: neighborhood-based methods require no costly training phases, ratings

could be done when users are offline, thus giving faster whole recommendations when

connected to the online database, memory requirements are minimal comparing to any

other methods, making them scalable for any large applications.

- Stability: final dataset almost unaffected by addition of new users and items, meaning

that when all similarities have been calculated there is no need to recalculate everything

with few new users/items, only similarities between this new item and the ones already

existing in the system need to be recalculated.

The main goal of the neighborhood methods is the same as for the matrix factorization

approach: to find the best product/item i for user u and how to give him top–N

recommendations, and do it in the most accurate way. Let us consider item–item rating

calculation problem from the point of view of neighborhood methods [Koren and Bell, 2011].

We have I – set of all items and Iu – a set of items rated to a user u, than the first problem is

finding item i∈I/Iu for which u is most likely to be interested in. When ratings are available,

this task is most often defined as a regression or (multi–class) classification problem, where the

goal is to learn a function f:U×I→S that predicts a rating f(u,i) of a user u for a new item i.

Where U is a set of all users and S is the set of possible values for ratings. This function than

will be used for recommending to a currently active user ua an item i* with the rating, which has

the highest estimate value.

𝒊∗ = arg max 𝑓(𝑢𝑎, 𝑗) j ∈
𝑰

𝑰𝑢
 (2.6)

To be able to evaluate the performance of the given recommendation the accuracy could

be evaluated, to do this ratings R are divided into a training set Rtr used to learn function f, and

a test set Rt is used to evaluate accuracy of the prediction, and then mean absolute error, MAE

– 2.7, or root mean squared error, RMSE – 2.8, function is applied.

𝑀𝐴𝐸(𝑓) =
𝟏

|𝑹𝒕|
∑ |𝒇(𝒖, 𝒊) − 𝒓𝒖𝒊|𝑹𝒖𝒊∈𝑹𝒕

 (2.7)

𝑅𝑀𝑆𝐸 (𝑓) = √
𝟏

|𝑹𝒕|
∑ (𝒇(𝒖, 𝒊) − 𝒓𝒖𝒊)𝟐

𝑹𝒖𝒊∈𝑹𝒕
 (2.8)

46

For the WARES starting ratings are not available, because the designed system intend

to make recommendations for a single new user. In this case the problem of finding the best

suitable web analytic tools is usually transformed into the task of recommending to an active

user ua a list Lua containing N items likely to interest him/her, or such a called “top list” [Crestani

and Lee, 2000]. The quality of such method can be evaluated by splitting the items of I into a

training set Itr, used to learn function L, and a test set It. Let us say the set of items that user find

relevant is T(u) ⊂ Iu ∩ It if the user responses are binary (yes or no), these can be the items

that u has rated positively. Otherwise, if only a list of purchased or accessed items is given for

each user u, then these items can be used as T(u). The performance of this method is then

computed using the measures of precision (2.9) and recall (2.10).

𝑃𝑟𝑒𝑠𝑐𝑖𝑠𝑖𝑜𝑛(𝐿) =
𝟏

|𝑼|
∑

𝑳(𝒖)∩𝑻(𝒖)

𝑳(𝒖)𝒖∈𝑼 (2.9)

𝑅𝑒𝑐𝑎𝑙𝑙(𝐿) =
𝟏

|𝑼|
∑

𝑳(𝒖)∩𝑻(𝒖)

𝑻(𝒖)𝒖∈𝑼 (2.10)

But the drawback of this recommendation method is that the all items from the list L(u)

are considered equally “interesting” to a user u and thus the final decision is made by a user,

not by a recommender system, and he/she need to sort this results on his own.

2.1.2.1 – Rating prediction and classification using standard Neighborhood methods

Regression user–based neighborhood recommendation method [Koren and Bell, 2011],

tends to predict rating rui of a user u for a new item i using ratings given to i by users most

similar to u. Suppose we have for each user v ≠ u a value wuv representing the preference

similarity between u and v, how this similarity can be computed was described in the previous

section. The k–nearest–neighbors, next k–NN, of u, denoted by N(u), are the k users v with the

highest similarity wuv to u. However, only the users who have rated item i can be used in the

prediction of rui, and thus we should consider the k users most similar to u that have rated I, let

this set of neighbors be Ni(u), then the rating rui can be estimated as the average rating given to

i by these neighbors:

47

𝑟𝑢𝑖̂ =
1

|𝑁𝑖(𝑢)|
∑ 𝑟𝑣𝑖𝑣∈𝑁𝑖(𝑢) (2.13)

A problem with 2.13 is that is does not take into account the fact that the neighbors can

have different levels of similarity. A common solution to this problem is to weigh the

contribution of each neighbor by its similarity to u. However, if these weights do not sum to 1,

the predicted ratings can be well outside the range of allowed values. Consequently, it is

customary to normalize these weights, such that the predicted rating becomes:

𝑟𝑢𝑖̂ =
∑ 𝑤𝑢𝑣 ∗ 𝑟𝑣𝑖𝑣∈𝑁𝑖(𝑢)

∑ |𝑤𝑢𝑣|𝑣∈𝑁𝑖(𝑢)
 (2.14)

Where wuv is a user’s weight contribution |wuv| is used instead of wuv because negative

weights can produce ratings outside the allowed range. Also, wuv can be replaced by 𝑤𝑢𝑣
𝛼 where

α > 0 is an amplification factor [Breese et al., 1998] When α > 1, as is it most often employed,

an even greater importance is given to the neighbors that are the closest to u. Equation (2.23)

also has an important flaw: it does not consider the fact that users may use different rating values

to quantify the same level of appreciation for an item. For example, one user may give the

highest rating value to only a few outstanding items, while a less difficult one may give this

value to most of the items he likes. This problem is usually addressed by converting the

neighbors ratings rvi to normalized ones h(rvi) [Breese et al., 1998] and giving the following

prediction:

𝑟𝑢𝑖̂ = ℎ−1 ∗
∑ 𝑤𝑢𝑣 ∗ ℎ(𝑟𝑣𝑖)𝑣∈𝑁𝑖(𝑢)

∑ |𝑤𝑢𝑣|𝑣∈𝑁𝑖(𝑢)

Note that the predicted rating must be converted back to the original scale, hence the h−1

in the equation. So when it comes to assigning a rating to an item, each user has its own personal

scale. Even if an explicit definition of each of the possible ratings is supplied (e.g. 1=“strongly

disagree”, 2=“disagree”, 3=“neutral”, etc.), some users might be reluctant to give high/low

scores to items they liked/disliked. The most common approaches to normalize are Mean–

centering and Z–score, described below.

Mean–centering. The idea of mean–centering [Breese et al., 1998] is to determine

whether a rating is positive or negative by comparing it to the mean rating. In user–based

48

recommendation, a raw rating rui is transformation to a mean–centered one h(rui) by subtracting

to rui the average ru of the ratings given by user u to the items in Iu:

ℎ(𝑟𝑢𝑖) = 𝑟𝑢𝑖 − 𝑟𝑢

Using this approach the user–based prediction of a rating rui is obtained as:

𝑟𝑢𝑖̂ = 𝑟𝑢 +
∑ 𝑤𝑢𝑣 ∗ (𝑟𝑣𝑖 − 𝑟𝑣)𝑣∈𝑁𝑖(𝑢)

∑ |𝑤𝑢𝑣|𝑣∈𝑁𝑖(𝑢)

In the same way, the item–mean–centered normalization of rui is given by:

ℎ(𝑟𝑢𝑖) = 𝑟𝑢𝑖 − 𝑟𝑖

Where 𝑟𝑖̂ corresponds to the mean rating given to item i by user in Ui. Rating rui is predicted as:

𝑟𝑢𝑖̂ = 𝑟𝑢 +
∑ 𝑤𝑖𝑗 ∗ (𝑟𝑢𝑗 − 𝑟𝑗)𝑗∈𝑁𝑢(𝑖)

∑ |𝑤𝑖𝑗|𝑗∈𝑁𝑢(𝑖)

This normalization technique is most often used in item–based recommendation, e.g. on

Amazon.com. An interesting property of mean–centering is that one can see right–away if the

appreciation of a user for an item is positive or negative by looking at the sign of the normalized

rating. Moreover, the module of this rating gives the level at which the user likes or dislikes the

item.

Z–score, two users A and B that both have an average rating of 3. Moreover, suppose

that the ratings of A alternate between 1 and 5, while those of B are always 3. A rating of 5 given

to an item by B is more exceptional than the same rating given by A, and, thus, reflects a greater

appreciation for this item. While mean–centering removes the offsets caused by the different

perceptions of an average rating, Z–score normalization [Herlocker et al., 1999] also considers

the spread in the individual rating scales. Once again, this is usually done differently in user–

based than in item–based recommendation. In user–based methods, the normalization of a

rating rui divides the user–mean–centered rating by the standard deviation σu of the ratings given

by user u:

49

ℎ(𝑟𝑢𝑖) =
𝑟𝑢𝑖 − 𝑟𝑢

𝜎𝑢

A user–based prediction of rating rui using this normalization approach would therefore be

obtained as:

𝑟𝑢𝑖̂ = 𝑟𝑢 + 𝜎𝑢 ∗
∑ 𝑤𝑢𝑣 ∗ (𝑟𝑣𝑖 − 𝑟𝑣)/𝜎𝑢𝑣∈𝑁𝑖(𝑢)

∑ |𝑤𝑢𝑣|𝑣∈𝑁𝑖(𝑢)

Likewise, the Z–score normalization of rui in item–based methods divides the item–mean–

centered rating by the standard deviation of ratings given to item i:

ℎ(𝑟𝑢𝑖) =
𝑟𝑢𝑖 − 𝑟𝑖

𝜎𝑢

The item–based prediction of rating rui would then be:

𝑟𝑢𝑖̂ = 𝑟𝑢 + 𝜎𝑢 ∗
∑ 𝑤𝑖𝑗 ∗ (𝑟𝑣𝑗 − 𝑟𝑗)/𝜎𝑢𝑗∈𝑁𝑢(𝑖)

∑ |𝑤𝑖𝑗𝑢𝑣|𝑗∈𝑁𝑢𝑖(𝑖)

In some cases, rating normalization can have undesirable effects. For instance, imagine

the case of a user that gave only the highest ratings to the items he has purchased. Mean–

centering would consider this user as “easy to please” and any rating below this highest rating,

whether it is a positive or negative rating, would be considered as negative. However, it is

possible that this user is in fact “hard to please” and carefully selects only items that he will like

for sure.

To answer the question which implementation (user–based or an item–based) will suit

the most recommender system’s goals, let us consider table 2 and 3, from the article “Advances

in collaborative filtering” [Koren and Bell, 2011]:

Table 2: The average number of neighbors vs. average number of ratings

 # of Avg. neighbors # of Avg. ratings

User–based method (|𝑈| − 1) (1 − (
|𝐼| − 𝑝

|𝐼|
)

𝑝

)
𝑝2

|𝐼|

Item–based method (|𝐼| − 1) (1 − (
|𝑈| − 𝑞

|𝑈|
)

𝑞

)
𝑞2

|𝑈|

50

Uniform distribution of ratings is assumed with average number of ratings per user p = |R|/|U|,

and average number of ratings per item q = |R|/|I|

Table 3: The space and time complexity of user–based and item–based neighborhood

 space Time training Time online

User–based method 𝑂(|𝑈|2) 𝑂(|𝑈|2 ∗ 𝑝) 𝑂(|𝑈| ∗ 𝑘)

Item–based method 𝑂(|𝐼|2) 𝑂(|𝐼|2 ∗ 𝑞) 𝑂(|𝐼| ∗ 𝑘)

Where p = maxu |Iu|, is the maximum number of ratings per item q = maxi |Ui|, and k is the

maximum number of neighbors used during the prediction process. For the WARES

recommender system, it is clear that we should use item-item approach, because by its nature it

relies on items rather than ratings made by numerous users.

2.1.3 – Typical similarity measurement methods in recommender systems

Measure of the similarity between two objects a and b, is often used in information

retrieval, it consists in representing these objects in the form of two vectors xa and xb and

computing the Cosine Vector or Vector Space similarity [Billsus et al., 2002] between these

vectors:

cos(𝑥𝑎, 𝑥𝑏) =
𝑥𝑎 ∗ 𝑥𝑏

||𝑥𝑎|| ∗ ||𝑥𝑏||

In the context of item recommendation, this measure can be employed to compute user’s

similarities by considering a user u as a vector xu∈ R|I|, where xui = rui if user u has rated item i,

and 0 otherwise. The similarity between two users u and v would be computed as:

Cosine Vector(u, v) = cos(𝑥𝑢, 𝑥𝑣) =
∑ 𝑟𝑢𝑖 ∗ 𝑟𝑣𝑖𝑖∈𝐼𝑢𝑣

√∑ 𝑟𝑢𝑖
2

𝑖∈𝐼𝑢
∗ ∑ 𝑟𝑣𝑗

2
𝑗∈𝐼𝑣

Where Iuv once denotes the items rated by both u and v. A problem with this measure is

that it does not consider the differences in the mean and variance of the ratings made by users u

and v. but Pearson Coefficient does, see below.

51

A popular measure of similarity in the most of “item–item” approaches is based on the

Pearson correlation coefficient, ρi j, which measures the tendency of users to rate items i and j

similarly. Since many ratings are unknown, some items may share only a handful of common

observed raters. The empirical correlation coefficient, ρi j, based only on the common user’s

support. It is advised to work with residuals from the baseline predictors, bui, to compensate for

user–specified and item–specific deviations. Thus, the approximated correlation coefficient is

denoted by the following formula:

𝑝𝑖𝑗 =
∑ (𝑟𝑢𝑖−𝑏𝑢𝑖)∗(𝑟𝑢𝑗−𝑏𝑢𝑗)𝑢∈𝑈(𝑖,𝑗)

√∑ (𝑟𝑢𝑖−𝑏𝑢𝑖)2∗∑ (𝑟𝑢𝑗−𝑏𝑢𝑗)2
𝑢∈𝑈(𝑖,𝑗)𝑢∈𝑈(𝑖,𝑗)

 (2.11)

The set U(i, j) contains users who rated both items i and j. Because estimated correlations

based on a greater user support are more reliable, an appropriate similarity measure, denoted by

si j, is a shrunk correlation coefficient of the following form:

𝑠𝑖,𝑗 =
𝑛𝑖,𝑗−1

𝑛𝑖,𝑗−1−𝜆8
 (2.12)

The variable ni j = |U(i, j)| denotes the number of users that rated both i and j. A typical

value for λ8 is 100. Such shrinkage can be motivated from a Bayesian perspective see [Gelman

et al., 1995].

2.2 – Content–based filtering approach and possible ways of

applications in WARES.

Content–based recommender systems, distinct from the Collaborative–based

recommenders in the way that for rating calculation they matching different attributes of user’s

profile, with the attributes of some “content” object, instead of matching ratings given by the

different users. This section provides an overview of the content–based filtering methods, their

advantages and drawbacks and some algorithms used for the rating prediction.

To implement a content–based recommendation approach, a set of documents and/or

descriptions of items previously rated by a user should be analyzed, and to build a model or

52

profile of user’s interests based on the features of the objects rated by that user. A typical user

profile suitable for content-based filtering consists of a structured representation of user’s

interests, adopted to recommend new “interesting” items. The recommendation process works

as continuous process of matching attributes of the user’s profile against the attributes of the

content object. The result is a relevance judgment that represents the user’s level of interest in

that object. In context of the WARES recommender system, content-based techniques could be

used to filter online search results for the web analytic tools and grouping them according to the

original user’s preferences.

Most research on content–based recommender systems takes place at the intersection of

Information Retrieval [Baeza–Yates and Ribeiro–Neto, 1999] and Artificial Intelligence. From

information retrieval, research on recommendation technologies derives the vision that users

searching for recommendations are engaged in an information seeking process. In information

retrieval systems the user expresses a one–off information need by giving a query, which usually

a list of keywords. Items to be recommended can be very different depending on the number

and types of attributes used to describe them. Each item can be described through the same small

number of attributes with known set of values, in the case of WARES this is not an appropriate

form for Web Analytic tools, because in all cases they are being described through unstructured

text. In that case there are no attributes with well–defined values, thus usage of document

modeling techniques from the domain of information retrieval is required, see section 2.2.2 for

details.

2.2.1 – Advantages and disadvantages of the content–based filtering

Content-based filtering approach has strong and weak sides comparing to collaborative

filtering, let us consider how these sides was described by Google staff research scientist, PhD

in computer science Yehuda Koren [Koren and Bell, 2011]:

- User independence: content–based systems uses only ratings provided by the active

user in order to build its own profile, while collaborative-based systems requiring lots of

ratings from other users in order to give more or less suitable recommendations.

53

- Transparency: explicit explanations is a strong side of the content-based methods, e.g.

a simple listing on which recommendations was based could be very helpful for any user

in order to decide whether to trust a recommendation or not, while most collaborative-

based systems considered as a “black boxes” where is no explanation how

recommendation was built, except “someone else also liked it”.

- New items: content–based recommenders can recommend items which are not yet being

rated. Thus they almost do not suffered from such a called “cold-start” problem for

recommending items, while still have problems with “user cold-start”, which also affects

most collaborative-based systems.

This advantages seems very impressive, but there also exists some major drawbacks:

- Limited context analysis: for the content–based techniques domain knowledge is often

needed in order to produce reliable recommendations e.g., WARES recommendations

system needs to know as many properties as possible for an entity “web analytic tool”,

and that is why usage of the domain ontology is strongly recommended, see section 3.3

for the details.

- Over–specialization: content–based recommender systems does not possess methods

for inferring some unexpected results. Meaning the system cannot recommends items

which features goes beyond user’s profile settings, meaning the user will most likely get

items similar to those he/she already rated. This drawback is also called a serendipity

problem.

- New user problem: in order to produce “accurate” recommendations for a particular

user recommender system need to collect enough ratings to “understand” user’s

preferences. Meaning, when few ratings are available, as for a new user, the system will

not be able to provide accurate recommendations for the current user, a “user cold start”

problem. Some strategies for tackling the “cold start” problem will be considered later

in the sub-section 2.2.3.

54

2.2.2 – Item representation in the content–based recommender approach

In the content-based methods, all items from the dataset are described by a certain

number of features, called attributes or properties. For example in the WARES recommender

system features describing a certain web analytic tool, next item, are: unique number of visitors,

clicks, price, user’s interface language, special unique features, etc... When each item is

described by the same set of attributes, and there is a known set of values the attributes may

take, the items are represented as a structured data. In this case, many machine learning

algorithms can be used in order to learn a user’s profile [Pizzani and Billsus, 2007]. In most

content–based filtering systems, as in WARES recommender system, item descriptions consists

of the features, which should be extracted from the web pages describing certain web analytic

tools. For WARES we have unstructured data, thus attributes should be extracted before

recommender process starts. Textual features create a number of complications when learning

a user’s profile, due to the natural language ambiguity. The problem is that traditional keyword–

based profiles are unable to capture the semantics of user’s interests because they are primarily

driven by a string matching operation. If a string, or some morphological variant, is found, in

both the profile and the document, a match is made and the document is considered as relevant,

while string matching suffers from the following problems:

- Polysemy: when one word have multiple meanings.

- Synonymy: multiple words with the same meaning.

Thanks to synonymy, relevant information contained on the developer’s websites,

representing web analytic tool can be missed, while due to polysemy, wrong documents

(websites) could be deemed relevant. Here the Semantic analysis comes in handy and its

integration in personalization models is one of the most innovative and interesting approaches

proposed in literature to solve those problems. The key idea is the adoption of knowledge bases,

such as lexicons or ontologies, for annotating items.

In the “traditional” keyword–based Vector Space Model of the text document [Koren

and Bell, 2011] keywords are represented by the frequency and inverse document frequency

weightings, and each document is represented by a vector in the n–dimensional space, where

each dimension corresponds to a term from the overall vocabulary of a given document

55

collection. Formally, every document is represented as a vector of term weights, where each

weight indicates the degree of association between the document and the term. Let D = {d1, d2,

..., dN} denote a set of documents or corpus, and T = {t1, t2, ..., tn} be the dictionary, that is to say

the set of words in the corpus, T is obtained by applying some standard natural language

processing operations, such as tokenization, stop–words removal, and stemming [Baeza–Yates

and Ribeiro–Neto, 1999]. Each document dj is represented as a vector in a n–dimensional vector

space, so dj = {w1j, w2j, ...,dnj}, where wkj is the weight for term tk in document dj.

This document representation raises two issues: weighting the terms and measuring the

feature vector similarity. The most commonly used term weighting scheme is Term Frequency–

Inverse Document Frequency (TF–IDF) weighting is based on following empirical observations

regarding text [Salton, 1989]:

- Rare terms are not less relevant than frequent terms – IDF assumption.

- Multiple occurrences of a term in a document are not less relevant than single

occurrences, TF assumption.

- Long documents are not preferred to short documents (normalization assumption).

In other words, terms that occur frequently, TF, in one document, for the WARES document are

replaced with websites, but rarely in the rest of the corpus, IDF, are more likely to be relevant

to the topic of the document. These assumptions represented in the TF–IDF function:

𝑇𝐹 − 𝐼𝐷𝐹(𝑡𝑘, 𝑑𝑗) = 𝑇𝐹(𝑡𝑘, 𝑑𝑗) ∗ log
𝑁

𝑛𝑘
 (2.15)

Where N denotes the number of documents in the corpus, and nk denotes the number of

documents in the collection in which the term tk occurs at least once, and log
𝑁

𝑛𝑘
 is a formula for

IDF.

𝑇𝐹(𝑡𝑘, 𝑑𝑗) =
𝑓𝑘,𝑗

max
𝑧

𝑓𝑧,𝑗

The maximum is computed over the frequencies fz,j of all terms tz that occur in document dj. In

order for the weights to fall in the {0, 1} interval and for the documents to be represented by

vectors of equal length, weights obtained by Equation (2.15) are usually normalized by cosine

normalization, which enforces the normalization assumption:

56

𝑤𝑘,𝑗 =
𝑇𝐹 − 𝐼𝐷𝐹(𝑡𝑘, 𝑑𝑗)

√∑ (𝑇𝐹 − 𝐼𝐷𝐹(𝑡𝑠, 𝑑𝑗)2|𝑇|
𝑠=1

For example, suppose that we have term count tables of a corpus consisting of only two

documents, shown on the figure 13.

Figure 13: Two documents with terms

The calculation of TF–IDF for the term "this" is performed in its raw frequency form,

TF is just the frequency of the "this" for each document. In each document, the word "this"

appears once, but as the document 2 has more words, its relative frequency is smaller. An IDF

is constant per corpus, and accounts for the ratio of documents that include the word "this". In

this case, we have a corpus of two documents and all of them include the word "this". So TF–

IDF is zero for the word "this", which implies that the word is not very informative as it appears

in this documents.

The methods of similarity measures, used to describe the proximity of two vectors, was

considered in the section 2.1.3. In the content–based recommender systems, relying on vector

space model, both user profiles and items are represented as a weighted term vectors. For

example, predictions of a user’s interest in a particular item can be derived by computing the

cosine similarity or Pearson correlation. But the most important lesson learned from the analysis

of the recommender systems developed in the last years [Ricci et al., 2015] is that keyword–

based representation for both items and profiles can give accurate predictions. Keyword–based

approach works pretty fine, but shows its limitations connected to synonymy and polysemy. For

example, in the WARES recommender system a user needs web analytic tool for analysis of

user’s “click stream” on his website, keyword–based approaches will only find websites in

which the words “click” and “stream” occur. But websites with “clickstream and “click–stream”

57

will not appear in the set of recommendations, even though they are likely to be very relevant

for that user. More advanced representation strategies are needed in order to equip content–

based recommender systems with “semantic intelligence”, see next section.

2.2.3 – Semantic analysis in the content–based recommender systems, using

ontologies

Semantic analysis allows us creating more accurate profiles that contains descriptive

data and concepts defined in the external knowledge bases. The main motivation for this

approach is the challenge of providing a recommender system with the linguistic background

knowledge, which characterizes the ability of interpreting natural language texts and reasoning

on their content. The description of these strategies should be carried out by taking into account

following criteria:

- Type of knowledge source: lexicon or ontology.

- Techniques: different techniques for the annotations and items representations.

- Type of content included in the user profile.

- Item–profile matching strategy.

Proposed recommender system, WARES, incorporates an ontology, created specifically

for the domain of web analytic, of course it is not new implementation, several recommender

systems created before also uses ontologies. As an example I would like to compare WARES

with another recommender system for Interactive Digital Television, proposed by Blanco–

Fernandez [Blanco–Fernandez et al., 2008], where the authors apply reasoning techniques

borrowed from the Semantic Web in order to compare user’s preferences with items, in their

case item are represented by TV programs. For this system the linguistic knowledge comes

exclusively from the WordNet lexical ontology [WordNet]. TV programs available, during the

recommendation process annotated by metadata that accurately describes their main attributes,

both TV domain data and the user’s profiles was created using Web Ontology Language [OWL,

2012]. The OWL languages are characterized by formal semantics, and are built upon a W3C

XML [XML, 2008] standard for objects called the Resource Description Framework [RDF,

2014]. Ontology–profile provide a formal representation of the user’s preferences, being able to

58

“reason” about them and “discover” extra knowledge about their interests. The recommendation

phase exploits the knowledge stored in the user profile to discover hidden semantic associations

between the user’s preferences and the available products.

2.2.4 – Methods for Learning User’s Profiles, applicable to the content–

based recommender systems

For the task of inducing content–based profiles, machine learning techniques are widely

used, and they are well–suited for text categorization [Sebastiani, 2002]. An inductive process

automatically builds needed text classifier by learning from a set of “training documents”

labeled with categories they belong to. For example, the problem of learning user profiles can

be cast as a binary text categorization task: each document has to be classified as “relevant” or

“not relevant” with respect to the user’s preferences. Let us denote a set of categories by C =

{c+, c−}, where c+ is the positive class or “relevant” and c− the negative or “not relevant” (user–

dislikes). Below, in this section will be considered machine learning algorithms frequently used

for the content–based recommender systems. They are able to learn a function that models user’s

interests. These methods typically require users to label documents by assigning a relevance

score, and automatically infer profiles exploited in the filtering process to rank documents

according to the user’s preferences.

2.2.4.1 – Probabilistic Methods and Naïve Bayes

Naïve Bayes is a probabilistic approach to inductive learning, and belongs to the general

class of Bayesian classifiers, it generates a probabilistic model based on previously observed

data. The model estimates “a posteriori” probability, P(c|d), of the document d belonging to the

class c. This estimation is based on several probabilities: the a priori probability, P(c), of

observing a document in the class c, P(d|c), the probability of observing the document d given

c, and P(d), the probability of observing the instance d. Using these probabilities, the Bayes

theorem is applied to calculate P(c|d):

𝑃(𝑐|𝑑) =
𝑃(𝑐) ∗ 𝑃(𝑑|𝑐)

𝑃(𝑑)

59

To classify the document d, the class with the highest probability is being chosen:

𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑐𝑗

𝑃(𝑐𝑗) ∗ 𝑃(𝑑|𝑐𝑗)

𝑃(𝑑)

Where P(d) is generally removed as it is equal for all cj. As we do not know the value for P(d|c)

and P(c), we estimate them by observing the training data. Although naïve Bayes performance

is not as good as some other learning methods such as nearest–neighbor classifiers or support

vector machines, it has been shown that it can perform surprisingly well in the classification

tasks [Domingos and Pizzani, 1997]. Another advantage of the naïve Bayes approach is that it

is very efficient and easy to implement compared to other learning methods.

60

2.3 – Conclusion

In this chapter was surveyed possible ways and applications of the collaborative and

content–based filtering techniques in recommender systems, was provided an extensive

overview for the most important, in my opinion, algorithms, and techniques, which could be

used for the WARES recommender system. Although there exist lot more algorithms and

techniques for building different types of recommender systems, but I think it was necessary to

consider what was considered because it explains why these methods should not be used in the

WARES, while others should be. And yes there was used lots of citations from the external

sources, of course accompanied by the references to the articles of these authors. Basics which

was explained in this sections was written by the respected authors long before this paper was

conceived, do not see the point explaining these basics from the scratch, while I can use them

in the context of the WARES. It was discovered that both collaborative and content-based

filtering approaches extensively uses user’s profile information to better predict ratings, but

differs in the way how existing user’s ratings being used for creating item-item and user-item

cross-ratings. In the section 2.1 was considered an issue when some items have not yet received

their ratings, and how to overcome this issue using additional data from the implicit user’s

feedback sources. Was considered and explained how to use two well–known methods for

measuring similarities between set of items: Pearson’s correlation and cosine similarity. Finally,

after considered content-based approach in the section 2.2, I came to the conclusion that for the

WARES recommender system, some approaches, like collaborative filtering, and the set of

algorithms connected to this technique are not applicable, due to the specificity of the

recommended content. Collaborative filtering approach seems to be inappropriate because the

WARES recommender system does not have great number of users, from the beginning it was

conceived for a single user. Everything considered in this chapter was useful and helped me in

the further implementation of the WARES recommender system.

61

Chapter 3 – Structure of the WARES recommender system

There exists lots of data processing and metadata processing methods, many user

models, vast variety of filtering techniques, many accuracy metrics, and many levels of

personalization. Due to its domain the WARES implies several constraints due to its purpose

and specificity, e.g. the environment impose some architectural limitations; data may be not in

a suitable format, number of users in the system, etc. This can make the task of building such a

recommender system very complicated and a long–term task for a single person. In this chapter,

relying on the studies of other works, will be shown how WARES was designed. Following

existing guidings it will be shown how to build a solid architecture based on three models: data

model, user model and application model.

3.1 – Generalized overview about recommender systems structure

After considering two well–known approaches for building recommender systems and

become acquainted with corresponding algorithms and techniques it can be asserted that

collaborative filtering approach does not suit WARES needs, because there is a major

complication with collaborative approach, it needs users and their rating, lots of them, and

WARES does not have this data, because it intends to give a recommendations to a single user,

who supposed to use this recommender system for the first time that is why there is no thousands

or even tens of users who can give rating on previously recommended web analytics tools.

Collaborative techniques cannot be applied because WARES simply do not have data, as

collaborative filtering recommender systems are based on the statistical processing of opinions

expressed by many users. On the other hand the content–based approach seems more

appropriate, because even with one user in the system, we can do item–user and item-item

matching, using ontology, see section 3.3, as an extension to “items” (web analytic tool) profile.

Summarizing what was learned about recommender systems, let us consider an existing example

of the content-based recommender system proposed by the professor of the University of Bari

in Italy, Pasquale Lops in his article “Content-based recommender systems: state of the art and

trends” [Lops et al., 2011] and examine which parts could be used for the WARES and which

are not, see figure 15.

62

Figure 14: Architecture of the content–based recommender system, [Lops et al., 2011]

In order to understand the main components of the content–based architecture let us

explain each block. The recommendation process performed in three steps, each of which

handled by a separate component:

- Content analyzer – When information has no structure, e.g. textual description of web

analytic tool on the developer’s website, some kind of pre–processing step is needed to

extract structured relevant information. The main goal of this block – representation of

the items, e.g. web pages containing valuable data about web analytics tool, in a form

suitable for the profile learning.

- Profile learner – This module collects data representing user’s preferences and tries to

generalize this data, in order to construct a user profile. Usually, the generalization

strategy implemented through the machine learning techniques, described in the section

2.2.4, which infers a model of the user’s interests.

- Filtering component – This module exploits the user profile in order to suggest relevant

items by matching the user’s profile to items dataset. The result is a binary or continuous

63

item vectors, computed using one of the similarity metrics described in 2.1.3, in the latter

case resulting a ranked list of potentially interesting items.

The first step of the recommendation process is the one performed by the content

analyzer, which usually uses various information retrieval and data mining technique to gather

relevant information useful for the recommendation process. Item descriptions coming from the

“information source”, for the WARES it is web pages containing description of the different

web analytic tools, are processed by the content analyzer, which extracts features like keywords,

concepts, etc. from the unstructured text to produce a structured item representation, stored in

the repository Represented Items. In order to construct and update the profile of an active user

feedbacks for items are stored in the dataset repository, later these feedbacks will be also used

for ratings prediction. Typically, it is possible to distinguish between two kinds of relevance

feedback: positive, inferring features liked by the user, and negative, inferring features the user

does not like or not interested in. Two different techniques can be adopted for recording user’s

feedback: explicit and implicit, described through the sections 2.1.1 – 2.1.2.

To get an explicit feedback, while using content–based filtering approach, we can use

one of the following well–known methods [Lops et al., 2011]:

- Like/dislike: items are being classified as “relevant” or “not relevant” by adopting a

simple binary rating scale 0, 1.

- Ratings: a discrete numeric scale is usually adopted to judge items.

- Text comments: comments about a single item are collected and presented to the users

as a means of facilitating the decision–making process.

Now, when we considered the generalized architecture of the content-based

recommender system and its components let us proceed to the design stage. The major concern

at the stage of the design and planning that any further changes in the development is very costly.

In order to tackle this problem in a systematic way, it is useful to step back and see from a wider

perspective what are the main design decisions to make and the factors, which influence them.

To facilitate the design process of the WARES recommender system I will follow the structural

model for the recommender system proposed by the researcher from the Alcatel-Lucent Bell

labs, Jerome Picault in his article “How to get the recommender out of the lab” [Picault et al.,

2011], the general model is shown on the figure 16.

64

Figure 15: Recommender system in its environment [Picault et al., 2011]

 Designing a recommender system means making choices categorized into the three

following domains:

- Architecture: how the system will be deployed, will it be centralized or distributed?

- User’s profile: what is the user model, is profile adaptation needed?

- Algorithms: which recommendation methods to be used?

In most cases these choices are constrained by the environment of the recommender system.

That is why when building a recommender system it is important to study system’s environment.

Following the best practice recommendations from the article of Jerome Picault [Picault et al.,

2011] I will describe the WARES’ environment along three dimensions:

- Application: the overall scope of an application of which recommender is a part of?

- Users: who are the users, what are their goals?

- Data: what are the characteristics of the data on which recommendations are based?

3.2 – Understanding WARES recommender system environment

Let us consider in details these three models mentioned in the previous section and how

they correspond to the WARES: the user model, the data model, and the application model.

This section considers at large these models from the point of view described by Jerome Picault

in his paper [Picault et al., 2011], transferring proposed models to my recommender system will

help me to decide how WARES should be implemented, and help to reveal key constraints of

the WARES design, allowing to answer the following questions:

65

- Choice of the application model and recommendation algorithm for the WARES.

- Choice and possibilities of adaptation of the user’s profile.

- Choice of the data model for the WARES recommender.

3.2.1 – Application model

Though a recommender system itself is a complex piece of software and as was

mentioned before often is the part of a larger system (application). Globally the recommender

system is one of the features of the application. It may be a minor feature or a main selling point,

the application may be pre–existing or built together with the recommender, but in any case the

design of the recommender system has to be integrated within the design of an application

hosting it. This section studies the main factors regarding the host application influencing

recommender system design, base features [Picault et al., 2011] of the application model is

shown in table 4.

Table 4: General application model components [Picault et al., 2011]

Model feature Possible values

Recommender purpose
major service, long–tail focused, increase revenues,

increase loyalty, increase system efficiency

Recommender type single item, multiple items, sequence

Integration with navigation features Stand–alone application, or in–browser plugin

Performance criteria
correctness, transparency, serendipity, risk–taking,

response speed, robustness to attack

Device to support the application fixed, mobile, multiple

Number of users Single or group of users

Application infrastructure browser–based application, distributed application

Screen real–estate limited, not limited

The table above contains all the possible values, they will be explained in the next two sub-

sections, but not all of them are applicable to the WARES, those which are relevant is shown in

table 5.

66

Table 5: Application model for the WARES recommender system

Recommender Purpose

major service - the only purpose of this system to give

suggestions about “best” web analytics tool or set of

tools, increase loyalty, increase revenues, increase

system efficiency

Recommender type multiple items

Integration with navigation features

“tight” integration through coupling with the

information retrieval techniques to deliver a

personalized search service

Performance criteria
First of all it is correctness than transparency and

response speed

Device to support the application desktop personal computers and laptops

Number of users single use application

Application infrastructure browser-based application with personalized search

Screen real-estate not limited

As was mentioned above, the recommender system is always a part of an application, but is it

just a small useful feature or the whole application is built around the recommender system? In

the case with the WARES it is a major feature of an application, thus the whole application is

built around the WARES.

3.2.1.1 – Understanding the recommender role in the application

The main question to answer before starting designing a recommender system

application is to determine its main goals. It is not so easy as it seems, because depending on

what was determined we could have long-lasting consequences through the future

implementation stages. In this section will be considered all the possible features of the

recommender system as an application. Relying on the list of properties from the table 4, as was

proposed by the Jerome Picault in his article [Picault et al., 2011], the WARES recommender

system will have the following set features:

– “Major service” – RS may be a “major service” provided by the application. Many such

recommender systems already have been developed in different fields, e.g. for music

last.fm, for movies Netflix, as for the WARES, it was intended to be a “major service”

from the beginning.

– Increase loyalty of users: customers usually return to the services that gives them best

match their needs. Loyalty can be increased by involving users in the recommendation

67

process, asking them for ratings or manual profile, highlight new recommendations, etc.

This is not the case for WARES, because I have no intention to implement any long–

time stored user profiles, to make my system “safer”, in a sense of personal data.

– Increase revenues: through the promotion of targeted products. In that case, the

recommendations would be determined by both the user’s preferences and some

marketing rules defined to follow a particular strategy. It is necessary to carefully balance

the expectations of the users and the business strategy, to ensure users perceive value in

the system. It could be an option when WARES will be fully functional, to promote

specific web analytic tools in exchange for the monetary compensation from developers,

as a fee for the marketing service.

– Increase system efficiency: by allowing a user to get content he/she is looking for, the

WARES recommender system can lower time spent for search, and lower an amount of

data to be exchanged, thus lowering the costs of time and rising user’s efficiency in

selection appropriate web analytics tool.

Potentially a recommender system can provide several sorts of recommendations, from

a single item or a simple list of items to a sequence of items. It is exactly what WARES do,

because not every time user will want to see tens of recommendations about web analytics tools,

most time it is “top 5” or “top 10” lists. A user will need to know a lot of ongoing stuff about

recommended analytics tool, and theoretically here WARES could come in handy by providing,

right away, explanations about the features, which suggested web analytic tool possess. As was

explained in the section 1.1.3 there are many metrics, theoretically new users could be unaware

about what they does and how to use them.

Next question is how the recommendations will be integrated with other content

navigation features. In most cases, users will be offered with means to browse content in

addition to getting recommendations. I am considering the following methods that can greatly

enhance the user’s experience of WARES:

- Separate or integrated recommendations: meant recommendations for the user are

shown in the separate window (tab) of the user’s default internet browser, as a main

feature of the application, and since an application itself implemented as a web–

68

application such recommendations may also appear right away in the recommender

system’s main window, integrated.

- Optional or a mandatory: usage of the recommender system is a mandatory part of the

interaction model, because it is the main feature of the designed application, without the

possibility to recommend the application has no sense of existence. Following this option

the WARES should work in the “background”, meaning that there should be no context

pop–up windows like “please wait recommending process in progress”. If a user started

WARES application, than he/she should get something on the screen while

recommendations being prepared, e.g. “tip of the day” about web analytics tools or kind

of a “did you know” interesting facts about capabilities of the WARES.

It is important to define targets for the performance of the system along a number of

criteria. Not only these criteria will allow to evaluate the system once it is built, but they are

also a key for selection of the proper algorithms. Many criteria for a comprehensive reference

can be used, see [Picault et al., 2011] some key ones should be:

- Transparency and “explainability”: in the WARES, I think it is highly desirable to

have a certain level of transparency and “explainability” and it should be implemented

as an indispensable part of the system, e.g. in the form of pop-up tips, while pointing the

results with a mouse, containing explanations why this particular web analytic tool was

placed (rated) higher in the list than another.

- Risk taking: the recommendations made for the user should be with a high probability

of liking, no “risky” items can be recommended. For the WARES it is a controversy

point, as it limits “novelty” of recommended items, but I think for the professionals, who

value their time and money, and of course they do, will be preferable to get a “reliable”

recommendation with “high probability of liking”, no “new” random items should be

recommended, only these web analytic tools, which are highly corresponding to user’s

needs.

- Response speed/performance: in some cases, users want to see the fast reaction from

the application and sometimes reaction speed could be more important than the accuracy

of the produced results. For the WARES it is not a critical point, the system just should

work without crashes and freezes.

69

- Reliability: for the WARES, this is not a bottleneck, it simply must work without

crashes and freezes, it is not the donor organ matching system for the hospital where it

should have the highest level of reliability.

- Robustness to attacks: if the recommender system has a vital commercial role, e.g.

eBay or Amazon, it may be a subject to the various hacker attacks from the competitors

or just from some hooligans, in order to lower its performance and results. In the case of

the WARES there is no such a threat, because at this stage it is not a commercial system

and it is not designed as a client-server application, where the server could be the attack

target.

3.2.1.2 – Understanding the influence of the application implementation

In addition to the features described in the section above, some aspects of the application

implementation also will have a considerable influence on the way how the recommender

system will be designed from the point of view of interaction with devices and OS platforms

where it will be runt.

Single or multiple devices: is the same application designed for the multi-platform use?

e.g. user could launch it from his/her cell phone or tablet, PC. For now I am considering

implementing WARES only for PC platform, and only for Microsoft Windows, but as a part of

future work and improvements considering to implement mobile access and porting into another

OS platforms.

Single or multiple users: if the device being used by the several users the application

should have the profiles management option, or if it is a client-server application, how to store

profiles? This impacts on the architecture of the RS, rising requirements for the different

identification methods, e.g. using cookies or login and passwords. For the WARES there is no

problems mentioned above, it simply has one single user, and every time when application is

launched it stores all the necessary data in its local folder, without any personal profiles, only

basic settings which are the same for anybody who lunches the application.

70

Application infrastructure: here the two cases can be identified, whether the

application is accessed through a browser as a client-server application or it runs locally on the

user device.

- Browser–based client-server application: in this case most of the processing usually is

done on the server side, whence the client will then receive only the results from the

server. Not the case for the WARES.

- Browser–based local application: when the application runs on a local computer. On the

current stage, the WARES recommender system is a relatively simple low-resource

consuming application, there is no need in enormous processing power of the relevant

devices, but it is quite sensitive to the network connectivity. The network connection

should be permanent. The data needed for producing recommendations is getting from

the ontology, which is stored locally and filled while the application is running.

Screen “real estate”: simply determines how much of the screen space will be taken by

the recommender application. In some cases, the screen-space might be limited by the

application's user’s interface design, but for the WARES it is not a problem, as it runs in a

browser’s window, thus the amount of the screen-space is determined by the user, who shrink-

elongate the browser’s window as he/she considers necessary. For example, if the WARES

would be a fixed-size window application and if it has provided more recommendations, it is

obvious that total amount of needed screen-space will rise and at some point recommendations

may go beyond the application’s window borders, but WARES is a browser-based application,

user could always scroll up-down and left-right to see the all text.

3.2.2 – User model

In the modern world of commercial applications understanding needs of its users is a

key to success of any recommender system. Insights of the user's needs should be modeled as

early as possible because it may impact on the final efficiency and overall usability of the

recommender system as a part of the application. In this section, will be considered how to

characterize users by some chosen properties that may have an impact on the WARES design

in the future. The recommender system may face some difficulties or complete unusability if

71

user’s needs were incorrectly identified or interpreted, list of all user’s properties, proposed by

the Jerome Picault in his article [Picault et al., 2011] is shown in table 6.

Table 6: General user model components [Picault et al., 2011]

Model features Possible values
Demographics information Is present, not present

Goal existence and nature implicit, explicit

Level of expectation high, medium, low

Possible change of expectation over time yes, no

Limited capabilities of user’s device CPU, memory size, screen resolution, etc.

Importance of user’s situation high, medium, low

Social environment alone, in the group of other people

Trust and privacy concerns high, medium, low

If we want to go deeply while developing a recommender system the user, as en entity, might

be studied very deeply based on the international standard [ISO–13407], but we will stick to

those proposed in the article “How to get the recommender out of the lab” [Picault et al., 2011].

Table 7: User model for the WARES recommender system

Demographics information There is no discriminatory demographic factors,

anyone could use this system

Goal existence and nature

Explicit goals are expressed through user queries;

End-users have no other goal than being informed

about new web analytic tools, which are reflected

through queries.

Level of expectation Medium to low

Possible change of expectation over time
Yes: expectations of users should increase when they

progressively

discover the benefits of personalized search functions

Limited capabilities of user device No: typically there is no limitations for PS platforms

Importance of user’s situation Low: the recommender system does not concern

about user’s situation.

Social environment
Alone: by nature, selection of something, in this case -

web analytics tool, is an individual activity, conducted

by the decision-making person.

Trust and privacy concerns Not considered, because proposed recommender

system does not store any personal information.

It is essential to understand who will be the end–users, what he/she expects when using WARES,

what are the user’s central contextual factors surrounding the use of the system? Only by clearly

answering on each of these questions the fundamental requirements for the system design and

choice of the technology will become clear, all properties for the WARES user model is shown

in table 7.

72

3.2.2.1 – Importance of understanding who are the users

It is important to concentrate on the identification of user’s characteristics because it has

special utility in terms of recommender system design. By identifying user’s characteristics,

mean building a portrait of the different groups of users through demographic information, such

as age, gender, job area, nationalities, and spoken languages. Knowing these characteristics

allows to start building a relationship with users and get an appreciation of their needs.

Understanding who are the future users will help to resolve two major concerns: understanding

user’s key identifying characteristics and user’s skill levels and their prior experience with

similar systems.

Creation of user group clusters allows building simple recommendations based on

demographics, this feature is commonly used in targeted advertising campaigns and define

stereotypes of this group of users. Stereotyping techniques allow definition of a set of certain

defining characteristics for a group of users, which may help when a new user introduced to the

system. Predefined stereotypes could be assigned for new users, based on their personal data,

which allows activating a set of default preferences that may be further refined over time thanks

to user’s profile adaptation methods [Burke, 2002].

3.2.2.2 – Understanding user’s motivation, goals and expectations

Knowing goals and motivations is very important for me as the designer of the

recommender system. This knowledge may help to understand is an application could satisfy

potential users or not. For example, the eBay is offering to its users the possibility get

recommendations while browsing/buying item. From the user’s point of view, while using this

recommendations the goal is to buy or not to buy these items, while eBay’s goal is to motivate

users to buy more, by showing “relevant” items. We need to try to identify and to understand

user’s motivation and goals behind his/her actions, in order to make recommender system user-

friendly and in the future to improve user’s experience and the overall outcome of the system

[Picault et al., 2011].

The goal: could be an implicit, when a user is "not sure" why he/she is using the

recommender system, in this case, he/she may be offered a certain set of actions within a

73

recommender application, or the goal might be inferred during the interaction process of the

recommender system with a user. Or it might be explicit, when user knows for sure what he/she

will do within the recommender. For the WARES the goal is defined as an explicit because the

users already know why they are using this recommender system (to get recommendations

concerning the web analytics tools).

Level of expectation: the proposed recommender system is totally new, and at this point

designed not for the commercial use, that is why the level of the expectations from the users

might be “medium”, means the recommender system returning “some good items” or “low”,

means the user does not expect outstanding results but expects the recommender system at least

just working. User’s expectations also may change over time, in the process of acquaintance

with the system or with increases of their own needs.

3.2.2.3 – Understanding user’s context

The last part to be taken into account are the various contextual issues surrounding the

use of the recommender system [Picault et al., 2011]:

User’s device: the first consideration is “what device will be used by the user to access

the recommender system”? For example, if this is a mobile device (smartphone or a tablet) we

should consider using minimalistic user’s interface. For the WARES recommender system, the

device which will be used is the laptop or desktop computer, so there is basically no limitations

on the design implementation.

Situation of interaction: situational considerations may include user’s current location,

where the user using the system – on the workplace in the formal setting or at home while being

relaxed. Temporal factors, e.g. relevance of given recommendations during the certain period

of time, etc. For the WARES recommender system, there is no limitation by situational

interaction, because it recommends content which could be browsed anywhere and does not

impose any limitations for its users.

Social environment: environment, where the use of the recommender system is usually

carried out. Is it usually done alone or within some social group of other people, is there age

74

restrictions, etc. This may result in some design decision resulting in the final implementation,

e.g. data collection methods or recommendations presentation methods. And again for the

WARES there are no limitations on this factor, the content of its recommendations is not rated

as “adult” or “disturbing”, so anybody could use the system anywhere, in the workplace in the

office, with friends or even in the family circle. But we think it will be used mostly alone by the

one person, because by nature, selection of something, in this case - web analytics tool, is an

individual activity, conducted by the decision-making person.

3.2.3 – Data Model

The last thing, that should be studied, are the characteristics of the items with which the

WARES recommender system will work. In table 8 is shown general data model components

and all the characteristics of the data model, proposed by Jerome Picault in his article [Picault

et al., 2011] and to be considered in this the section. It is important to consider data model

because it helps to identify the main characteristics of data that may influence the design of the

recommender system.

Table 8: General data model components [Picault et al., 2011]

Model feature Possible values
Data type structured, semi–structured, unstructured

Metadata quality and quantity high, medium, low

Metadata expressiveness keyword–based, semantic–based

Description based on standards yes, no

Volume of items tens, thousands, millions ,etc.

Diversity of items homogeneous, heterogeneous

Distribution of items “long–tail”, mainstream

Stability vs. persistence of items stable, changing, changing a lot

User ratings implicit, explicit, none

Not all components from the table above could be used in WARES, because of

specificity connected with web analytics tools, and because of the need to extract these data

from the unstructured textual documents (web pages). In table 9 are listed all data model

components which are used in the WARES recommender system.

75

Table 9: Data model for WARES recommender system

Data type
Unstructured, data should be extracted from the web

pages, describing particular web analytic tools.

Metadata quality and quantity

Low: poor expressiveness almost without any

semantic annotation of content, many metadata should

be extracted by the semi-automatic means.

Metadata expressiveness

Keyword-based: most of the information about web

analytic tool gathered by filtering keywords and

semantic text analysis in the body of web pages.

Description based on standards Yes: proposed ontology for web analytics tools is used.

Volume of items

Medium: depending on how long recommender

system is working, and how many web analytics tools

were found during this period.

Diversity of items
Homogeneous content composed of web analytic

tools.

Distribution of items Mainstream formed of web analytics tools.

Stability vs. persistence of items

Stable: most of the web analytics tools, found during

the web search process, remains unchanged in the

“short” period of time, while recommendations are

made.

User ratings

Explicit or none: user builds his/her own preference

table during first interaction with recommender system

when he/she asked about initial preferences.

3.2.3.1 – Understanding the type of available data to describe items

According to the Jerome Picault [Picault et al., 2011], the main aim of the data model is

to support the development of the recommender system by providing the insights about the data,

which it uses. There exist many ways to describe data sources, but the best-known approach

focuses on the three types of data: structured, semi-structured and unstructured data.

Unstructured data: in the case of the WARES recommender system, we are dealing

with unstructured data, where an item can be represented only in unstructured form, it means

that the data does not have a standardized data model e.g. in our case - unstructured text. In this

case a certain preprocessing need to be done to extract significant keywords, or concepts, which

are helping to distinguish relevant items from other textual information. For example, Apache

Lucene [Lucene, 2016] allows extracting keywords from unstructured text.

The use of unstructured data has many impacts and limitations on the recommender

system’s design. First of all it reflects on the algorithms, which might be used, dealing with

76

unstructured data excludes a full set of recommender algorithm families, e.g. Bayesian models.

To work with such date we first need to extract keywords, see section 3.3.2 for details, then

build and item profile (ontology) and only after this manipulations we could start producing

recommendations by manipulating received data in the way we do with the structured data, using

of a vector of keywords representing user’s profile.

3.2.3.2 – Understanding the quality/quantity of data

Quality and quantity of the data are important performance factors for any recommender

system, especially when using a content–based recommender approach, like we do in the case

of WARES, performance of the recommender system depends on data quality, precision of the

recommendations depends on quantity of available data.

Quality: in general, an item data is considered “high quality” if it enables one item to

be distinguished from another. The quality feature of the data is a major “hot” point of the

design for the WARES recommender system, it depends on the web pages filtering, using a

certain set of keywords. I need to balance the accuracy of the produced recommendations and

the recommender system performance in terms of time to respond, storage capacity and

processing costs. For example, if we prefers the “best” performance then we have to introduce

some constraints on the architecture and avoid implementing the RS on a lightweight client (a

device that depends heavily on another computer, its server, to fulfill its computational roles).

Alternatively, I can choose to perform recommendations using a two–step algorithm, distributed

between the server and the client device [Picault et al., 2011].

Expressiveness: the data must reflect user’s points of view on items, and represent what

users consider as differentiating characteristics of items. The expressiveness of the data is crucial

to the whole performance of the recommender system. The data, described using semantic

concepts enables us to use more sophisticated recommender algorithms, such as ontology–

content–based filtering method [Shoval et al., 2008] that takes into account the existence of

“related” items according to their position in the ontology hierarchy. Or spreading of semantic

preferences, i.e. the extension of ontology–based user profiles through the semantic relations of

the domain ontologies, as described in [Sieg et al., 2007]. However, it exists certain technical

77

issues: semantic reasoning is increasing overall processing time and if the given data are not

considered “sufficiently” semantically described it may also resulting in inaccurate

recommendations.

Quantity: the amount of data is an important factor to consider: few data may lead to

inaccurate recommendations, whereas too much metadata may lead to useless processing and

overall slowdown. In addition, data description may vary in terms of degree of precision (depth),

variety of description (breadth) [Picault et al., 2011]. The risk with superficial description is to

propose items to users that do not correspond exactly to what they expect. Very in–depth

descriptions may reinforce some drawbacks of the content–based filtering algorithms, in

particular in terms of overspecialization.

Description based on standard: regardless of their level of expressiveness, the data can

be described in different ways using various standards such as: Dublin Core, MPEG, etc. For

the WARES recommender system the date is described by the ontology, proposed in this paper.

3.2.3.3 – Understanding the properties of the item set

Volume of items: in addition to the quantity of the relevant data per item, we should

consider the volume of items in the data set. It represents an important factor in the choice of a

recommender system technique. The size of the data set is crucial for the collaborative-filtering

techniques to compute correlations efficiently, while the content–based algorithms can cope

with a smaller data set, this is another reason why for the WARES was decided to use content-

based approach [Picault et al., 2011].

Distribution of items: it is also essential to consider how items are distributed among

the data set. In the WARES recommender system the items are distributed as a mainstream,

meaning there is no high proportion of items annotated with some special concepts “action”, all

items are forming a set where each item is as important as everyone else. The level of depth of

the annotations of the data is "in order" and all data is considered as of equal quality. [Picault et

al., 2011].

78

User ratings: existence of user’s ratings and their amount influences on the type of

techniques which could be selected for the recommender system, as in the WARES

recommender system there are no initial ratings made by other users, the user may rate or may

not rate all the recommended items after the first recommendation session, for the following

filtering process, if desired. If there exists no user ratings related to the items inside a data set

then this excludes the whole family of collaborative filtering methods.

3.2.4 – Summary on Recommender Environment and how it will be used

further

The three models considered above, help us to understand the environment of the

developed recommender system. For each model and for each feature/property, was proposed

guidelines to define requirements and constraints for the WARES. To understand the importance

of those features was used a two–step method:

- Identify the dependencies between features: by considering all the properties we were

able to find out which are relevant and might be used, and which are not may be used in

the WARES recommender system. This helped help us to understand how a change of

the one feature may affect the overall recommender environment. For example, how

changing the type of the application from client-server to local may change the

recommender system’s device platform.

- Identify key features of the models: those that have the most significant impact on the

recommender system's architecture, affect the choice of algorithm, etc. For example, the

type of data which will be used (unstructured data) determined the concept of further

development for the WARES recommender system, thus it was confirmed, that using

the content-based approach is preferable than using a collaborative-filtering family of

methods.

In this section, while describing relevant features and properties also were identified the

constraints, which should be taken into account, when designing the WARES recommender

system.

79

3.3 – Architecture of the WARES recommender system

The purpose of the WARES was described in the introduction and relying on models

considered in the first part of chapter 3, I can now start describing WARES itself. Three models:

application model, user model, and data model for WARES was shown in the tables 5, 7 and 9

and the Architecture is shown in figure 17.

Worth emphasizing that in practice, these three models by themselves will not allow

having a perfect design at the first go. However, they are a very useful support for an iterative

design methodology, which is the best way to go beyond technical excellence and reach the goal

that matters in the end: user satisfaction.

The architecture of the proposed WARES recommender system is shown in figure 17.

The first block is the part of user interface, it will be described below in the section 3.3.1, it is

responsible for gathering user’s expectations and desirable parameters about his “ideal” web

analytic tool, this parameters, along with basic search parameters, will be used during the online

search. Second block is an online search itself, which is responsible for filling ontology with all

necessary data for recommendation process; see section 3.3.2 for details. Block 3 is an ontology

itself, which is used for the description of web analytic tools as a class and as a database, storing

all data necessary for recommendation process, see section 3.3.3. Block 4 is responsible for

making recommendations and uses an algorithm described in the section 3.3.4, this algorithm

works with data collected through the steps in block 2 and 3.

In figure 17, block 3 is connected with block 2 and 4 with two–way arrows, which means

that there is a constant information exchange between this three blocks. It is essential for

recommender system functioning, because to produce recommendations block 4 needs access

to the data, stored in the ontology and block 2 needs access to the ontology in order to fill it with

new data. Block 5 is a part of the user interface, which presents recommendations to a user in

the application window as a list of URLs with a short description of selected web analytic tools,

with their key features respectively.

80

Figure 16: Architecture of the WARES recommender system for web analytic tools

Finally, the block 6 offers clarifications about received results, it means if user not

satisfied with received recommendations he/she will be granted with possibility rate received

results on the scale from 0 to 5 and then will have a choice to use previously received results

with ratings for “refinement”, along with possibility to start a new recommendation search.

3.3.1 – User’s interface

On figure 17 the blocks 1, 5 and 6 are the part of user interface. Described in general

user model in the section 3.3 the recommender system should be implemented as a web

application, which means all input data and recommendations itself will be shown in the web

browser’s window.

81

Figure 17: the WARES recommender settings 1

As a starting parameter for the online search, recommender system has a phrase “web

analytics”, it is hidden inside the application code, if the user specified additional parameters,

the system concatenates starting parameter string with these “user-specified parameters”. “User

specified parameters” could contain all possible values described in detail in the section 3.3.3,

sub-section “Define the properties of classes”. All possible values represented as a text with

“checkbox” near it, see figure 18, if the user wants to include one or another property he/she

should simply check it and the system will know that this property is “important”. Also a user

82

will be asked, how many results he/she would like to see after recommender process is

completed, see figure 19.

Figure 18: WARES recommendation settings 2

Next, during the filtering process, see figure 21, the system will “favor” pages containing

in their body text with properties marked by the user. These “marked” pages will be listed as

those, which represent certain web analytic tool and used during recommendation process, along

with other information from the ontology. And finally user could enter anything he/she think

important, about desirable web analytic tool, which he/she is looking for, e.g. a remark “free”

or “reliable”, this text will be added to the starting parameter, so the final string for search engine

will be “web analytics, free” or “web analytics, reliable”.

When the recommender process is complete, see block 5 in figure 17, the application

will show a list of the links to the corresponding web analytic tools, which were recommended

by the system, see figure 20, ordered accordingly to user’s requirements, formulated in the block

1. It is meant, if a recommended web analytic tool possess all the properties selected by the user

83

in the section “user-specified parameters” then this link will be shown in the first place in the

list of recommendations, and so on, all links are shown in the order sorted by the highest rating

corresponding to “user-specified parameters”. If a recommended web analytic tool has fewer

properties corresponding to the “user-specified parameters”, it will be displayed after all links

which have all desirable properties, the fewer properties web analytic tool has, lower the place

in the list it will get.

Figure 19: WARES recommendations results

By clicking on each of link, the user can see the main page of the selected web analytic

tool, thus the user does not need any explanations from the recommender system, about why

this particular web analytic tool was recommended, he will see all the needed information by

himself on the developer’s website.

Finally the block 6 allows to select what to do next, simply asking the user, would he/she

start a new search with new parameters or would like to modify/change previously entered

properties to narrow (extend) received results of the previous search and recommendations. If

user selected “adjust desirable web analytic tools parameters”, he/she will see web page with

84

previously checked “user-specified parameters”, and will be able to modify whatever he/she

wants, then new parameters will be applied to previously obtained recommendations, except

steps 1, 2 and 3, see figure 18. This process could be repeated as many times as needed until the

user closes WARES application or chooses to start a new search.

3.3.2 – Online search and data mining in WARES

One of the key features of WARES recommender system that it uses an online search

for making recommendations. Online – mean using web search engine for retrieving a list of

web sites containing potentially useful data about web analytics tools, for the future

recommending process. Theoretically, there is a possibility to create a new web–search engine,

or use one of the existing frameworks of available open–source web search engines, but this

task itself is so big and complex that it appears to be a topic for a separate thesis! That is why

was considered to use already implemented excellent search engine like Google, so for this

particular task was decided not to develop own search engine and took advantage of already

well–established Google engine. The usage of Google search is pretty simple, e.g. using Java

library jsoup [jsoup, 2016]:

Document doc = Jsoup

 .connect("https://www.google.com/search?q=Request&num=5");

 .userAgent("Mozilla/5.0")

 .timeout(5000).get();

Where Request is the word or set of words for input in Google search bar, and

“&num=5” is the number of retrieved search results, in this case it is 5. The results then being

parsed and filters out the domain names for each website, giving a list, e.g.:

https://piwik.org

https://www.woopra.com

https://metrica.yandex.com/

http://www.openwebanalytics.com/

http://www.google.com/analytics/

85

Next, comes the step 3 from figure 21, where for each website we need to build a site

map, WARES recommender system will need it for extraction of data about web analytics tools.

Usually, details about web analytic tool are not available on the main page, which in most cases

just a “welcome” page, e.g. web analytic tool Piwik main page is https://piwik.org/ but key

features about it could be found on the page https://piwik.org/features/. Other useful

information, which is used in ontology, see section 3.3.3, could be hidden on the same site, but

on the other pages, that is why we need to filter as many web pages as possible to find all

possible useful data for “web analytic tool” class instances, during ontology building stage, see

section 3.3.3. By retrieving a “site map”, we will have access to all web pages of the current

site, to do so we can use existing open–source code from sitemapgen4j Java library

[sitemapgen4j, 2016], which can build XML site map for each site in format:

……

<url>

 <loc>https://piwik.org/features/</loc>

 <lastmod>2016–10–15T17:01+02:00</lastmod>

 <changefreq>never</changefreq>

 <priority>0.8</priority>

 </url>

……

Where each child element <url> containing information about web page, belonging to

particular website, child element <loc> of <url> contains the actual URL link to one of this

page. Having actual web pages URL’s we can continue to the step 4, which is a text-filtering

process of the entire web page body for the specific keywords describing web analytics tool, for

the full list of keywords see section 3.3.3. If a keyword was found it is marked as “true” if,

during the all parsing session for each web page of the website from the site map, corresponding

to a certain web analytics tool, no entries were found it is marked as “false” for the currently

analyzed web analytics tool. If at least 1 keyword were found, all the data is written into the

ontology, as well all other found keywords characterizing the current web analytic tool instance,

and search cycle is repeated again until all the results from the step 2 are being processed. Data

retrieval process is shown in figure 21.

https://piwik.org/
https://piwik.org/features/

86

Figure 20: Search cycle "Filling the ontology"

Step 5 is actually a block of recommender system, which implements filtering by

keywords from the ontology and some semantic analysis, because not all information could be

expressed by keywords, e.g. data property from the ontology – “interface language”, see next

section for details. To be able to answer the question “which languages available for the user's

interface?” text from the web page should be parsed using machine learning algorithms, e.g.

Naïve Bayes is the simplest [McCallum, and Nigam, 1998].

3.3.3 – Proposed ontology for WARES

This ontology for my recommender system will have two purposes; first as classic

ontology, it will describe the “web analytic tool” as a domain and second, it will be used as a

database, storing data about web analytics tools, i.e. through class instances, for further analysis

and making recommendations.

Ontologies are written in one of the OWL languages [OWL, 2012], designed for use by

applications that need to process the content of information instead of just presenting

information to humans. OWL facilitates greater machine interpretability of Web content than

87

that supported by XML [XML, 2008], RDF [RDF, 2014], and RDF Schema [RDFs, 2014] by

providing additional vocabulary along with a formal semantics. OWL has been designed to meet

this need for a Web Ontology Language. OWL is part of the growing stack of W3C

recommendations related to the Semantic Web. OWL can be used to explicitly represent the

meaning of terms in vocabularies and the relationships between those terms. This representation

of terms and their interrelationships is called an ontology.

Using the simple approach to creating web ontologies, which I learned from the course

“Semantic Web”, given in 2015 by the professor of the University of Montreal Ph. D. Guy

Lapalme. I created a quite simple ontology for web analytics tools, using ontology editor Protégé

5 [Protégé, 2016]. The whole description of this ontology built in seven steps, with screenshots

from Protégé 5 ontology editor, each step listed below describing an important piece of ontology

structure.

Determine the domain and scope of the ontology, this section answers the following

questions:

- What is the domain that the ontology will cover?

- For what we are going to use the ontology?

- For what types of questions the information in the ontology should provide answers?

- Who will use and maintain the ontology?

The answers to these questions may change during the ontology–design process, but at

any given time, they help limit the scope of the model. Obviously, the domain is “web analytics

tools”. This ontology to be used for the WARES recommender system that suggests web

analytic tools based on some user’s preferences. The information in this ontology should provide

an answer on the classification of existing web analytic tools. At this stage of the development,

maintenance and support of this ontology is solely in my jurisdiction, but I do not exclude that

it might be maintained by anyone who is interested in the idea of developing “web analytic

tools” ontologies.

Consider reusing existing ontologies: it is almost always worth considering what

someone else has done and checking if we can refine and extend existing sources for our

particular domain and task. Reusing existing ontologies may be a requirement if the system

88

needs to interact with other applications that have already committed to particular ontologies or

controlled vocabularies. Many ontologies are already available in electronic form and can be

imported into an ontology–development Protégé. Before starting development of this ontology

was considered using similar ontologies, but for such a domain as “web analytics tools” I was

unable to find any, so the solution was to design my own ontology for this domain.

Enumerate important terms in the ontology: it is useful to write down a list of all

terms we would like either to make statements about or to explain to a user. What are the terms

we would like to talk about? What properties do those terms have? What would we like to say

about those terms? Initially, it is important to get a comprehensive list of terms without worrying

about the overlap between concepts they represent, relations among the terms, or any properties

that the concepts may have. Actually, my ontology contains one main term "web analytic tool"

which describes a class around which everything is built.

Define the classes and the class hierarchy: there are several possible approaches in

developing a class hierarchy [Uschold and Gruninger, 1996]:

- A top–down development process starts with the definition of the most general concepts

in the domain and subsequent specialization of the concepts. For example, let us consider

general concepts of Wine as Food. Then we should specialize the Wine class by creating

some of its subclasses: White wine, Red wine, Rosé wine. We can further categorize the

Red wine class, for example, into Syrah, Red Burgundy, Cabernet Sauvignon, and so on.

- A bottom–up development process starts with the definition of the most specific classes,

the leaves of the hierarchy, with a subsequent grouping of these classes into more general

concepts. For example, we start by defining classes for Pauillac and Margaux wines.

Then we could create a common superclass for these two classes Medoc, which in turn

is a subclass of Bordeaux, etc.

- A combination development process is a combination of the top–down and bottom–up

approaches. We define the more salient concepts first and then generalize and specialize

them appropriately. We might start with a few top–level concepts such as Wine, and a

few specific concepts, such as Margaux. We can then relate them to a middle–level

concept, such as Medoc. Then we may want to generate all of the regional wine classes

from France, thereby generating a number of middle–level concepts.

89

This particular ontology for the WARES recommender system, describing the “web analytic

tool” as an item, does not have any specific classes, neither combinations, because here I have

only one term “web analytic tool”, so technically the top–down approach is used, see figure 22.

Figure 21: Class hierarchy for "web analytics tools" ontology

Define the properties of classes: class properties or slots, only one class in my case,

alone will not provide enough information to answer the competency questions, so we need to

describe the internal structure of the concept “web analytic tool”. As properties for “web analytic

tool” will be used most of the properties described in the section 1.1.3, and some other, which

was considered as “essential” for the domain “web analytics tools”. Here is a full list of

properties, sorted by categories:

Metrics, which are includes:

a) “Traffic source metrics”: company, referral path, full referrer, source, mediator,

social network, social source referral, ad content.

b) “User statistic”: user type, count of sessions, days since last session, users, page

views, unique page viewers, new users, number of sessions per user, days active.

c) “Session statistics”: session duration, sessions, host name, hits, bounce, bounce rate,

number of sessions per user.

d) “Platform or device statistics”: browser, browser version, browser size, operating

system, operating system version, mobile device brand, mobile device model, data

source.

e) “Geo statistics”: continent, sub–continent, country, region, city, longitude, latitude,

network domain, service provider, city id, region id, country id, sub–continent id.

90

f) “System statistics”: flash version, java support, language, screen resolution, screen

colors, screen device name.

g) “User actions”: clicks path, click stream, heat map, scroll map.

- “Statistics type”: real–time, discrete.

- “Payment model”: free, proprietary (trial, support price, base price, price per month)

- “Interface language”.

- “Plugins supported”.

- “Special features”.

- ID code.

- Name.

The overall properties structure is shown in figure 23, with some child sub–properties,

e.g. “session statistics”, gathered into one parent sub–property, because the list is too long for

one picture. Each property has its own data type and domain, the data type can vary from simple

Boolean “true”, “false” which intends to show if current web analytic tool possesses this

property or not, to more complex types as String, containing list of supported plugins or just a

name of web analytics tool. Obviously only one domain – “web analytic tool”.

Define the facets of the slots: slots can have different facets describing the value type,

allowed values, the number of the values (cardinality), and other features of the values the slot

can take. For example, the value of an “ID code” slot is “1”. That is, “ID code” is a slot with

value type integer. Some classes could have multiple instances, but in my case, there is only one

class “web analytic tool”, that is why for simplicity was decided not to define any facets in

object properties, but in the future, it is possible to extend this definition if ontology will

continue to exist and develop.

91

Figure 22: Properties defined for "web analytic tool" class

Create instances: the last step for each ontology is creating individual instances of

classes in the hierarchy. Defining an individual instance of a class requires choosing a class,

then creating an individual instance of that class and filling in the slot values for this instance.

As an example, figure 24, we can see an instance of the class “web analytic tool” called

“Woopra”, which in its turn represents the web analytics tool with the same name, considered

in section 1.3 of this thesis.

92

Figure 23: Example of an instance of the class "web analytic tool"

All the properties filled with appropriate values; you can see them on the right side of the figure

but not all shown on the picture above, because as with the “data properties” the list is very long.

3.3.4 – Algorithm for the web analytic tools selection process.

Finally, the pseudo algorithm for making recommendations is shown below, with

explanations for each step after it:

For a ∈ A

If (new search)

1: Generate weights wi of each metric from ontology using TF–IDF

2: Calculate n occurrences of the each term in a

3: Calculate sumwi

4: Calculate Sumx

5: recommend web tools ordered by max(maxa(n in A)+max(sumwi + Sumx))

6: ask user rate results with ri

Else (refinement)

7: ask for new parameters parami for refinement

8: do steps 2, 3 and 4 but with additional parameters parami

9: calculate Pearson’s correlation pij for new results with parami

10: recommend web tools ordered by max(pij)

End for

93

Here a is the web analytic tool instance with all metrics retrieved during the step 2, see

figure 17, and written into ontology during step 3, see figure 17, described in the proposed

ontology, see section 3.3.3 and A is the set of all a.

- Step 1: Calculating word weights for each term, representing metrics describing web

analytic tool. This is made during the stage 2, see fig. 17, because it saves time and

memory resources and could be done while processing text from the web pages

associated with each web analytic tool. We need this wi because it will help us detect the

significance of each metric for current web analytic tool, where i is the metric’s index

number.

- Step 2: Calculating a total number of terms specified by the user on the stage 1, see fig.

17, which was found during the web page filtering process for each web analytic tool ai,

this data will be used during the step 5.

- Step 3: Calculation sumwi which is the sum of all metrics found during the stage 2, see

fig. 17, on the website for current web analytic tool ai.

- Step 4: Calculation sumx number of inputs of additional parameters if they was specified

by the user, for each web analytic tool ai on a corresponding website.

- Step 5: Making recommendations and ordering them by max(maxa(n in A)+max(sumwi

+ Sumx)) which represents the web analytic tool with highest number of occurrences of

terms wi selected by user from the desirable metrics list selected by user on the stage 1,

see figure 17, with additional parameters, if specified, on the website corresponding to

ai. This means the results will be ordered by decreasing, the lower the max score, lower

the position or the web analytics tool in the final recommendations list.

- Step 6: Ask user to rate given recommendation scaling from 0 to 5, if he/she wants to

make refinement of received results.

- Step 7: Ask additional parameters for refinement, it could be new keywords specified

by user or new metrics of the desired web analytic tool from the list of all available

metrics, note that user can add or remove metrics, anyway this new criterion will be

saved as parami.

- Step 8: Repeat steps 2 , 3 and 4 but with additional parameters parami

94

- Step 9: Calculate Pearson’s correlation pij for new results with parami and initially

received recommendations rated by the user, after this step this results became “initial”

if the user wants to continue “refinement”.

- Step 10: Gives a user the new set of recommendations ordered by max(pij)

3.3.5 – Sample script explaining usage of WARES recommender system.

So let us imagine a scenario, where you are a new user, what he/she should do if he/she

want to start using this recommender system but this is his/her first time, how to use it? This

section explains how to use WARES recommender system.

First, the user should download the latest version of the WARES recommender system

from developers website (it does not exist for this moment, to be done in the future, this is just

an imaginary explanation). The recommender system is build using Java SE Runtime

Environment 7, so the user must ensure that he/she has the latest Java machine installed on

his/her computer. After installation process complete the user should launch an application,

he/she will see his default Internet browser opened and in the new tab he/she will see the

welcome screen of the WARES. After pressing the start button in the center the user will see

one button offering to start a new recommendation search along with the help/instruction button

and the third button offering the refinement of the previous results, which will be inactive and

will activate only after the first recommendation search is finished. Pressing “new search” will

open another view in the same tab offering to check desirable features what he/she wants to see

in the web analytics tool(s). Selection of desirable features is very simple, user just need to click

on the checkbox with desirable feature (metric), there are 69 most common web analytics tools

features, which user can check, and at the end of the page there is a textbox in which user could

enter some “special” feature which is not on the list, but he/she wants it to be present in web

analytic tool. By pointing the mouse cursor on one of the features user will see a tooltip with a

short description of the indicated feature, this may help him/her to decide what to check. If the

user does not know what he/she want he/she can just leave all checkboxes unchecked and empty

text boxes for additional keywords and number of received recommendations, the system will

do the search with default parameters.

95

After he/she checked all desirable features, or leaved fields empty, he/she should enter a

desirable number of results, which he/she will get after WARES accomplish the search, and

press “next”. Then the user should wait for a while before the list of recommendation appears

in the new tab, time of waiting depending on the number of desirable results and on the user's

Internet connection bandwidth. Finally, the user will see a web page with recommendations

structured like an ordinary Google search results, the “most relevant” web analytics tools will

be on top of the list and less relevant will be lower on the list with a short description below the

link. By clicking on the web analytic tool name from the list, which at the same time is the link,

the user will be redirected to the main page (welcome page) of the web analytics tool’s website

where he/she can download it or look for additional information. If the user is not satisfied with

a given results he/she can click “refinement” button which became active after the first search

or chose to start a new search with a new parameter.

If the user decided to “refine” existing results, after clicking on the “refine” button he/she

will see the page with his previous choices and will be offered to check/uncheck additional

features and enter/remove additional keywords from the textbox for additional features and will

be asked to rate previous results for compliance with his/her expectations using scale from 0 to

5 and then press “next” again. The system will do the recommender search among previous

results and present a new list of web analytic tools. The user could do refinement as many times

as he/she wants or start a new search or simply close an application by clicking on the small red

cross in the upper right corner.

96

3.4 – Conclusion

In in the beginning of this chapter were reviewed the set of “best practices” in creating

recommender systems, showing a general structure of the content-based recommender system.

Next through the section 3.2, were formulated requirements and constraints for the WARES

recommender system, along with different ways of its implementation. Model-based approach

was selected, using template design from the article of Jerome Picault [Picault et al., 2011], the

WARES was described by the three models: data model, user model, and application model, for

each of the models, were explained how they are used in the WARES, alongside with selected

model’s components, transferring the properties of these models to the WARES recommender

system. Finally, in section 3.3 an architecture of the WARES recommender system was

presented. Through sections 3.3.1 – 3.3.5 was explained how each part of proposed architecture

works.

97

Chapter 4 – Evaluation and validation of the WARES

recommender system

Design and implementation is an important part of the development but evaluation, and

testing also is an integral part. Based on a set of properties that are relevant to the WARES it

will be a mostly theoretical evaluation because I do not have enough users and their ratings to

perform a “full-scale” test, although some I did some real tests, giving to try this system to only

17 users.

The classic way of the evaluation of any recommender systems is to show its prediction

power, which means to evaluate their ability to predict and to rate related content, it is important,

but today some people [Gunawardana and Shani, 2011] believes it became a secondary

requirement. What became more important is the user’s experience with a recommender system,

because one way or other users are the central part of the system, it is created for them, not only

for some abstract results in order to get 99.9% of accuracy but first of all to get satisfaction. In

many applications people use a recommendation system for more than an exact anticipation of

their tastes, or for confirmation of what they already knew, but wanted to hear it from someone

else just to be sure “I’m not alone who think so”.

Often it is easiest to perform offline experiments using existing data sets and a protocol

that models user behavior to estimate recommender performance measures such as prediction

accuracy, but for the WARES recommender system, it is impossible to use existing datasets,

because exists datasets for movies, for image recognition, voice samples, but there is no such

dataset for the domain “web analytics”, so there will be no test like this. A more expensive

option is a user study, where a small set of users is asked to perform a set of tasks using the

system, typically answering questions afterward about their experience, it was asked some of

my friends to evaluate the system and try to rate it somehow, see section 4.2 for details. Finally,

a large–scale experiments could be run on a fully deployed system, which called online

experiments. Such experiments evaluate many aspects of recommender system’s performance

on real users who are oblivious to the conducted experiment, but it is also not an option because

the proposed system never been deployed like a real e-commerce application.

98

4.1 – Validation of the WARES recommender system

In order to test the accuracy of the proposed algorithm, see section 3.3.4, we used a leave-

one-out cross-validation with a specifically created list of the test users and their test ratings.

We randomly select a user and a web analytic tool rated by that user, we assume that the user

has not rated yet current web analytic tool and we attempt to predict his rating. Finally, we

compare the predicted rating with the actual rating, in order to evaluate the accuracy of the

predictions. To evaluate the accuracy itself was used Mean Absolute Error, deriving following

equation:

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑓𝑖 − 𝑦𝑖|

𝑛

𝑖=1

Where n is the number of predictions, fi is a prediction I and yi is the actual value, so the MAE

represents the average difference between the prediction and the actual value.

 The data set on which the tests were performed was built using a pseudo-random

generator, because The WARES does not contain sufficient data in order to perform valid tests

and draw conclusive results, similarly with user’s profiles was also generated in a pseudo-

random manner and was pretty sparse and could not be used properly to test the approach. The

data set was built in 2 steps, first 30 users were created, and then for each user ratings was

randomized, for the total number of 30 web analytic tools. In order to reduce the random effect

of the ratings and to create a certain correlation between the users we augment the initial dataset

of 30 users in a pseudo-random manner, as a result, and additional set of 15 users, whose ratings

were based on the ratings of the “initial” users, considering Ra,i is a set of ratings of the initial

user a for a web analytics tool i. Then the set of ratings for the new user j is Ra,i + random value

from a vector {-1,0,1}, based on the initial 30 users 15 more was created from with ratings

randomly chosen from vectors: {-1.0.1}, {-2,-1,0,1,2}, {0,1,2}, {1,2,3}, {-2,-1,0}, {-2,-1,0,1},

and each vector at least once chosen in each case. As a result total number of 330 users were

created (30 initial + 300 additional) and each user rated 30 web analytic tools.

 In order to test proposed algorithm a test set of 150, “user/web analytic tool” pairs were

selected randomly, test ratings were predicted and compared to actual ratings using MAE, using

the proposed algorithm from the 3.3.4 and SVD as an alternative, see figure 25.

99

Figure 24: MAE comparison

In order to interpret the values of MAE, it is important to keep in mind the scale on which the

ratings are performed, the MAE of 0.5 indicates that the predictions, on average, differed by the

0.5 of the actual rating. To evaluate the impact of this difference, keep in mind that difference

in 0.5 on the scale from 1 to 5 is more significant than on the scale 1 to 20. As a result, we

compared the variation of the MAE to the scale to assess its actual impact; that is MAE of 0.5

on the scale of 5 represents 10% when on the scale of 20 it only represents 2.5% and

consequently lowers the impact on the accuracy. Figure 26 highlights the average value of MAE

evaluated on the scale 5. Actually, the results are not bad at all but leaves some space for future

improvements.

Figure 25: Average MAE interpretation

1,3996

0,9507

0,4821

1,4421

1,0177

0,6025

0,0000

0,2000

0,4000

0,6000

0,8000

1,0000

1,2000

1,4000

1,6000

A V G M A E M I N M A E M A X M A E

WARES SVD

18,00%

18,50%

19,00%

19,50%

20,00%

20,50%

WARES SVD

WARES;
19,00%

SVD;
20,40%

100

During the experiments was discovered that performance of the WARES mainly depends

on the Internet bandwidth. Such a dependency is due to the specificity of the recommender

system design, especially of the online search module, which regularly interchanges data with

Google search engine. If the user decides to run WARES in the “quick” mode, which means

that he/she wants to get recommendations immediately the system makes request to the search

engine, receives fast response, but then when it accessing the web pages from the previously

built “site map” there is a dramatic fall in productivity and further delays if the bandwidth is not

enough. Figure 27 is showing the average time needed to process all 35 web pages for 50 site

maps, using different bandwidth allocation.

Figure 26: Time to complete recommendation process with different bandwidth allocation.

Another picture is observed if the system was started in the “background” mode,

meaning the user set his/her preferences and left the system to work for a “long” time, an

experiment: 30 minutes, user just got “instantly” without delays all the recommendations which

he/she wanted to see, after the waiting time. During this experiment number of web sites was

not limited to the number of recommendations was a lot more, and they were capped by 50 first

relevant, this number could be changed via user interface, but academic research [Deursen et

al., 2009] indicates that 91% of searchers do not go past page 1 of the search results and over

50% do not go past the first 3 results on page 1. On the other hand the precision of finding web

analytic tools, corresponding to user's search criteria was higher (0.87%) for the background

mode, comparing to the “quick” mode (0.68%) and probably the user satisfaction will be higher

for the “background” mode, but we lack data due to a small number of users.

11,3456

2,3346
1,1973 0,7572 0,5524

0

2

4

6

8

10

12

1 Mbit/s 2 Mbit/s 5 Mbit/s 10 Mbit/s 25 Mbit/s

response time for 50 web sites, "quick" mode

101

4.2 – Evaluation of the user’s experience with WARES

We made a survey on a total number of 17 participants, see table 10, they are all my

friends from the social network. The scenario as pretty simple: the WARES recommender

system was given to each of them, alongside with questionnaire, and time of 3 days were given

to complete the test. The main goal of the test was overall usability of the system and acceptance

of the user’s interface.

Table 10: Test participants information

Number of participants 17

Profiles of participants 17

Type of feedback Explicit

Type of evaluation Scales from 1 to 5

Female evaluators 6

Male evaluators 11

Number of recommendations per user 10 (170 total)

All users were asked to rate each aspect of the system on the scale from 1 to 5. The

following questions were asked:

- Overall rating: how user evaluates proposed recommender system in general through

his/her personal experience with it, during the test time.

- Novelty: degree of excitement, meant how surprising and how new was the topic of the

proposed system, comparing to their personal experience with other recommender

systems.

- Convenience of the user’s interface: how easy was to understand how to use the system

and, was it hard to navigate through the recommendation, how useful were the tooltips,

etc.

- Ease of use and intelligibility: clarity of the content, is there was an ambiguity, or

everything was clear through language, familiarity, aesthetics, forgiveness, efficiency,

etc.

- Stability: means how often system crashed, is there were disconnections during the

online search sessions, did the system hang?

102

- Meeting expectations: by user’s personal feelings, does the system gives really relevant

recommendations or not?

Table 11: How users rated the system

Overall rating 3.588

Novelty 4.751

Convenience of the user’s interface 3.342

Ease of use and intelligibility 4.341

Stability 5

Meeting expectations 4.029

An interesting detail was discovered during the user's test: all users reported that the

system consumes almost all the Internet bandwidth, meant that when an online search is in

progress, the speed of downloading/uploading of any other content is dramatically lowered,

meaning that the WARES tries to use all available bandwidth for its needs. Another interesting

discovery was mistakes consisting of referencing irrelevant recommended contend due to giving

URL’s corresponding to the different blogs, describing or reviewing web analytic tools in

details, while not actually appears to be a web analytics tool’s home page it was helpful as a

review, according to the testers quiz.

4.3 – Comparison of the WARES with other well–known systems

on the market

Through the chapter 4, based on the “best practices”, was explained how WARES

recommender system could be evaluated and tested, of course, a more demonstrative way of

evaluation – comparing things related to each other by some shared features. In case of

recommender systems, theoretically, we could evaluate effectiveness, usability and many other

parameters of the WARES recommender system, comparing it to already existing recommender

systems. A good question arises – how can we compare recommender systems? No doubt, that

in any field of science reproducibility is an important thing helping in conducting tests and

comparison. But, in the field of recommender systems reproducibility almost unattainable

because of specificity of the content, even it the same areas, such as recommending of scientific

103

articles, different recommender systems give different sets of recommendations. Several

content–based filtering (CBF) and collaborative filtering (CF) approaches for research papers

recommendations were tested [Beel and Breitinger, 2016]. In one experiment, CF and CBF

performed similarly well, other experiments, CBF outperformed CF and in some more

experiments, CF outperformed CBF.

Various authors showed that offline and online evaluations often provide contradictory

results, and several more papers about various aspects of recommender systems evaluation

have been published [Beel, 2015], [Beel and Langer, 2015]. Also was conclude that

recommender systems research community is facing a crisis where a significant number of

papers present results that contribute little to collective knowledge, often because the research

lacks the evaluation to be properly judged and, hence, to provide meaningful contributions

[Konstan and Adomavicius, 2013]. Why these contradictions occurred, even among very

similar literature recommendation scenarios, remains widely unknown. The authors of the

studies only mention a few potential reasons for the variations, such as different datasets or

variations in the recommendation approaches. The current difficulties in reproducing

recommender system results lead to a problematic situation for comparison. Developers who

need an effective recommendation approach, and researchers who need a baseline against

which to compare a novel approach, find little guidance in existing publications. So how

WARES could be compared to other ones, e.g. well–known Amazon, eBay, Netflix, Pandora

or YouTube? First of all to evaluate performance we need to use the same data set on all

previously listed well–known recommender systems, but this is impossible because each of

this systems specifically tailored for their narrow tasks, like WARES tailored for web analytic

tools. As was highlighted above, it is really hard to compare not only my recommender system

to another systems, but any recommender system in one domain to another recommender system

in other domain. The few thing what we can do are: describe previously mentioned

recommender systems (Amazon, eBay, Netflix, Pandora and YouTube) by algorithms what they

use, number of users, recommender type (content–based, collaborative or hybrid), user’s

interface features, generated revenue, field of given recommendations, and some unique special

features inherent to this systems, but cannot compare effectiveness by any numbers indicating

accuracy, like MAE or RMSE.

104

Summarize this section, in table 12, you can see the comparative characteristics of

considered well–known recommender system to one, proposed in this thesis.

Table 12: Comparative summary of well–known recommender systems and WARES

RS name RS type
number

of users

field of

recommendations

user

interface
special features

revenu

e

Amazon
CB item–

to–item

~305m

accounts
goods and services web interface

Preview: "Search

Inside the Book"

before buying

135.98

billion

eBay
CB graph

based

~167m

accounts
goods and services web interface

PayPal billing

system

9

billion

Netflix

Hybrid,

but

mostly

CBF

~95m

accounts
Video streaming

Web

interface

Possibility to see

what your friends

are watching now

8.8

billion

Pandora
Hybrid

CB–CBF

~80m

active

users,

~250m

registered

Music streaming

Web

interface or

special

Application

for PC or

Mobile

device

Possibility to see

lyrics while

listening to a song

1.2

billion

YouTube
Hybrid

CB–CBF

~1.3b

accounts
Video streaming

Web

interface

Subtitles

generation, video

stabilization

9

billion

WARES CBF 1 web analytics tools

web interface

(browser

based)

ontology for web

analytic tools
n/a

105

4.4 – Conclusion

Because of the difficulty of the posed task of creating the recommender system, almost

no real data from WARES were given, mostly theoretical guidelines on how to evaluate each

aspect of the WARES recommender system. Was described the concerns that need to be

addressed when designing offline and online experiments and user studies, outlined a few

important measurements that one must take into account when designing experiments for the

recommender system. In section 4.3 was explained why it is hard to compare one recommender

system, e.g. WARES, to another recommender systems, but still manage to compare WARES

recommender systems to the major “behemoths” on the market, resulting a table with a few

common characteristics by which they could be compared.

106

Chapter 5 – Conclusion and future works

Proposed recommender system, WARES, is more likely to be a prototype, a concept.

During my research, was considered hundreds of scientific articles about recommenders

systems, but this is just a top of an iceberg. To implement proposed recommender system was

essential to use various techniques, and recommendation process only one of them. Difficulties

come from the ambitious goal defined from the beginning, a search of the textual information

by keywords is itself a big area of information retrieval, search on the web just an extension of

the semantic analysis.

Was considered two basic approaches how to make recommendations, the content–based

and collaborative filtering, most notable methods and how they could be used in the proposed

recommender system was explained in chapter 2. Here another problem arose, from the lack of

real data, because all this method is centered on user’s ratings, and in the WARES recommender

system there is no users, the “cold start” problem. Partly this could be solved by saturating the

system with “false” rating data, artificially generated by some pseudorandom number generator.

But, in my case this is not a solution because these ratings should correspond to the real–existing

websites, representing web analytics tools. This problem remains open and could serve as one

of the directions for future works.

In chapter 3, was presented an architecture developed for the WARES recommender

system, implementing well–known approach for application development based on three

models: user model, data model and application model, each of which describes an important

part of any application during the design process. In this case, this approach was applied to

design a recommender system, but with minor changes, including the use of proposed ontology.

A good contribution from this work could be an ontology, developed for the domain of web

analytics tools, of course, this is not a new trend, ontologies started being used in applications

long ago, but in case of WARES, was proposed an ontology for entirely new domain – web

analytic tools. This could be a considerable innovation because during literature study I was

unable to find any mentions about any existing ontology for web analytics. As a future work in

this area, it is possible to focus on a more detailed elaboration of this ontology, not a secret that

in last years, with an era of the Semantic Web ontologies become a common thing all around

107

the Web, and what is more important they could be reused and supplemented by anyone

concerned about it. The ontologies on the Web ranges from large taxonomies categorizing

websites, such as Google and Yahoo, to categorizations of products for sale and their features,

such as on Amazon. Ontologies enable reuse of the domain knowledge, and by developing an

ontology for the web analytics I could contribute to the WWW community or some other

scientists who are working in the field of the WWW.

In the section 3.3.2 was described how online search for web analytics tools will work

applied to the WARES recommender system. There was not enough time and resources for

developing completely new specialized web–search engine for web analytics tools so was

decided to use Google as a basis. But before that, there were attempts to implement something

different, something new, based on the open–source web crawler Apache Lucene [Lucene,

2016], which is a full–featured text search engine library written entirely in Java programing

language. It is a technology suitable for nearly any application, which requires full–text search,

especially cross–platform. But it requires time for deployment, not only for understanding how

it works and writing own code with modifications, it is least what was needed, but real “time”

and resources. Means processing time, hard disk space, memory and CPU computation power,

as a part of “crawling” process, the system should work days even months for indexation of

existing resources on the Web. Only then, these indexes could be used for web analytics tools

search and recommendations, as my own data. Which in its turn making recommender system

structure more complex, by forcing usage of the client–server approach, and to some extent, it

became similar to a “heavy” systems like Amazon. This could be a very good direction for the

future work if funding will be found, or maybe someone else will decide to use the framework

proposed in this paper for the full–scale commercial recommender system.

In chapter 4 was given a qualitative validation of the proposed recommender system,

although during the testing process it was discovered some flaws in performance, which are

connected with an Internet bandwidth. The system was tested on local computers of different

users with different Internet speed connection, it was discovered that an optimal performance

achieved with 5 megabit per second and higher. The accuracy of given recommendations is

relatively high, it was rated 4 out of 5 stars during the test process with 17 participants, and most

tested users found them helpful.

108

References

[Agrawal et al., 1993] – R. Agrawal, T. Imielinski, and A. Swami – “Mining association rules

between sets of items in large databases”. SIGMOD Rec., 22(2), pp207–216, 1993.

[Agresti, 2010] – Agresti, A. “Analysis of Ordinal Categorical Data” (Second ed.). New York:

John Wiley & Sons. 2010

[Amatriain et al., 2009] – Amatriain, X., Pujol, J. M., & Oliver, N. “I like it... I like it not:

Evaluating user ratings noise in recommender systems.” In International Conference on User

Modeling, Adaptation, and Personalization, pp. 247–258. Springer Berlin Heidelberg. 2009

[Anand and Mobasher, 2007] – Anand, S.S., Mobasher, B. “Contextual recommendation. In:

From Web to Social Web: Discovering and Deploying User and Content Profiles”, Lecture

Notes in Computer Science, pp.142–160. Springer–Verlag (2007)

[Anderson, 2006] – Anderson, Chris. “The long tail: Why the future of business is selling less

of more.” Hachette Books, 2006.

[Baeza–Yates and Ribeiro–Neto, 1999] – Baeza–Yates, R., Ribeiro–Neto, B.: “Modern

Information Retrieval”. Addison–Wesley (1999)

[Beel and Breitinger, 2016] – Beel, Joeran, Corinna Breitinger, Stefan Langer, Andreas

Lommatzsch, and Bela Gipp. “Towards reproducibility in recommender–systems research.”

User modeling and user–adapted interaction 26, no. 1, pp. 69–101. (2016)

[Beel and Langer, 2015] – Beel J., Langer S. – “A comparison of offline evaluations, online

evaluations, and user studies in the context of research–paper recommender systems.” In

Proceedings of the 19th International Conference on Theory and Practice of Digital Libraries

(TPDL). Lecture Notes in Computer Science, pp. 153–168 (2015).

[Beel, 2015] – Beel Joeran – “Towards effective research–paper recommender systems and

user modeling based on mind maps” PhD Thesis. Otto–von–Guericke University, Magdeburg

(2015)

[Bell and Koren, 2007] – Bell, R., and Koren, Y., “Scalable Collaborative Filtering with Jointly

Derived Neighborhood Interpolation Weights”, IEEE International Conference on Data Mining

(ICDM’07), pp. 43–52, 2007.

[Bell et al., 2007] – Bell, Robert, Yehuda Koren, and Chris Volinsky. “Modeling relationships

at multiple scales to improve accuracy of large recommender systems.” In Proceedings of the

13th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 95–

104. ACM, 2007.

[Bias and Mayhew, 1994] – Bias, R., Mayhew, D. “Cost–Justifying usability.” Morgan

Kaufman Publishing, 1994

[Billsus et al., 2002] – Billsus, D., Brunk, C.A., Evans, C., Gladish, B., Pazzani, M. “Adaptive

interfaces for ubiquitous web access.” Communications of the ACM 45(5), pp34–38 (2002)

[Blanco–Fernandez et al., 2008] – Blanco–Fernandez, Y., Pazos–Arias J. J., G.S.A., Ramos–

Cabrer, M., Lopez–Nores, M. “Providing Entertainment by Content–based Filtering and

Semantic Reasoning in Intelligent Recommender Systems.” IEEE Transactions on Consumer

Electronics 54(2), pp. 727–735, 2008

[Breese et al., 1998] – Breese, J.S., Heckerman, D., Kadie, C. “Empirical analysis of predictive

algorithms for collaborative filtering.” In: Proc. of the 14th Annual Conf. on Uncertainty in

Artificial Intelligence, pp. 43–52. Morgan Kaufmann (1998)

[Breese et al., 1998] – Breese, J.S., Heckerman, D., Kadie, C.M. “Empirical analysis of

predictive algorithms for collaborative filtering.” In Proceedings of the Fourteenth conference

on Uncertainty in artificial intelligence, pp. 43–52 (1998)

[Burke, 2002] – Burke, R. “Hybrid recommender systems: Survey and experiments.” User

Modeling and User Adapted Interaction 12(4), pp. 331–370 (2002)

[Clifton, 2010] – Brian Clifton – “Advanced Web Metrics with Google Analytics, 2nd edition”,

Sybex, 2010

[Crestani and Lee, 2000] – Crestani F., Lee P.L. “Searching the Web by constrained spreading

activation.” Information Processing and Management, 36(4), pp. 585–605 (2000

[Davidson et al., 2010] – James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy,

Taylor Van Vleet, Ullas Gargi, Sujoy Gupta, Yu He, Mike Lambert, Blake Livingston – “The

YouTube video recommendation system”, in Proceedings of the fourth ACM conference on

Recommender systems, pp. 293–296, Barcelona, Spain — September 26 – 30, 2010

[Deerwester et al., 1990] – Deerwester, S., Dumais, S., Furnas, G.W., Landauer, T.K. and

Harshman, R., “Indexing by Latent Semantic Analysis”, Journal of the Society for Information

Science 41, pp. 391–407, 1990

[Deshpande and Karypis, 2004] – Deshpande M., Karypis G. “Item–based top–N

recommendation algorithms”. ACM Transaction on Information Systems 22(1), pp. 143–177,

2004

[Deursen et al., 2009] – Van Deursen, Alexander J.A.M., and Jan A.G.M. Van Dijk. "Using the

Internet: Skill related problems in users’ online behavior." Interacting with computers #21.5, pp

393-402. 2009

[Domingos and Pizzani, 1997] – Domingos, P., Pazzani, M.J. “On the Optimality of the Simple

Bayesian Classifier under Zero–One Loss.” Machine Learning 29(2–3), pp. 103–130, 1997

[Falk, 2015] – Kim Falk, “Practical recommender system”, manning publications, 2015

[Fischer, 2001] – Fischer, G. “User modeling in human–computer interaction. User Model.”

User–Adapted Interaction 11(1–2), pp. 65–86 (2001)

[Fredricks and Nelsen, 2007] – Fredricks, G.A., Nelsen, R.B. “On the relationship between

spearman’s rho and Kendall’s tau for pairs of continuous random variables.” Journal of

Statistical Planning and Inference 137(7), pp 2143–2150 (2007)

[Gabrilovich and Markovitch, 2007] – Gabrilovich, E., Markovitch, S. “Computing Semantic

Relatedness Using Wikipedia–based Explicit Semantic Analysis.” In: M.M. Veloso (ed.)

Proceedings of the 20th International Joint Conference on Artificial Intelligence, pp. 1606–

1611 (2007)

[Gawesh et al., 2010] – Gawesh J., Szomszor M., Kostkova P. “Comparison of implicit and

explicit feedback from an online music recommendation service”, Proceedings of the 1st

International Workshop on Information Heterogeneity and Fusion in Recommender Systems,

pp. 47–51 , Barcelona, Spain – 26 September 2010

[Gelman et al., 1995] – Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B., “Bayesian Data

Analysis.” Chapman and Hall, 1995.

[Gomez–Uribe and N. Hunt, 2015] Gomez–Uribe, Carlos A., and Neil Hunt. “The Netflix

recommender system: Algorithms, business value, and innovation.” ACM Transactions on

Management Information Systems (TMIS) 6, no. 4, p. 13 (2016)

[Gunawardana and Shani, 2011] – Shani, Guy, and Asela Gunawardana. “Evaluating

recommendation systems.” Recommender systems handbook, pp. 257–297. Springer US, 2011.

[Herlocker et al., 1999] – Herlocker, J.L., Konstan, J.A., Borchers, A., and Riedl, J., “An

Algorithmic Framework for Performing Collaborative Filtering”, Proc. 22nd ACM SIGIR

Conference on Information Retrieval, pp. 230–237, 1999.

[Herlocker et al., 2004] – Herlocker, L., Konstan, J.A., Terveen, L.G., Riedl, J.T. “Evaluating

Collaborative Filtering Recommender Systems.” ACM Transactions on Information Systems

22(1), pp. 5–53, 2004

[Hu and Cercone, 2004] – Hu, X., Cercone, N. “A Data Warehouse/Online Analytic Processing

Framework for Web Usage Mining and Business Intelligence Reporting” International Journal

of Intelligent Systems, 19(7), pp. 585–606, 2004

[Huang et al., 2016] – Huang Tony Cheng–Kui, Yen–Liang Chen, and Min–Chun Chen. “A

novel recommendation model with Google similarity.” Decision Support Systems 89, pp. 17–

27. (2016)

[ISO–13407] – International Organization for Standardization (ISO): ISO 13407: “Human

centered design processes for interactive systems.”

[Jarvelin and Kekalainen, 2002] – Jarvelin, K., Kekalainen, J. “Cumulated gain–based

evaluation of information retrieval techniques.” ACM Transactions on Information Systems,

20(4), pp. 422–446 (2002).

[Kaushik, 2009] – Kaushik, A. “Web Analytics 2.0: The Art of Online Accountability and

Science of Customer Centricity” 1st ed. Indianapolis, John Wiley & Sons 2009

[Kendall and Gibbons, 1990] – Kendall, M., Gibbons, J.D.: “Rank Correlation Methods”, 5th

edition. Charles Griffin, 1990

[Kim and Yum, 2005] – Kim, D., and Yum, B., “Collaborative Filtering Based on Iterative

Principal Component Analysis”, Expert Systems with Applications 28, pp. 823–830. 2005

[Konstan and Adomavicius, 2013] – Konstan, J.A., Adomavicius, G. “Toward identification

and adoption of best practices in algorithmic recommender systems research.” In: Proceedings

of the International Workshop on Reproducibility and Replication in Recommender Systems

Evaluation, pp. 23–28. ACM, New York, 2013

[Koren and Bell, 2011] – Koren Y., Bell R., “Advances in Collaborative Filtering” –

Recommender Systems Handbook, pp. 145–186, springer 2011

[Koren, 2008] – Koren Yehuda. “Factorization meets the neighborhood: a multifaceted

collaborative filtering model.” In Proceedings of the 14th ACM SIGKDD international

conference on Knowledge discovery and data mining, pp. 426–434. ACM, 2008.

[Koren, 2010] – Koren, Y. “Collaborative filtering with temporal dynamics.” Communications

of the ACM, 53(4), pp. 89–97. 2010

[Lees–Miller et al., 2008] – Lees–Miller, J., Anderson, F., Hoehn, B., Greiner, R. “Does

Wikipedia Information Help Netflix Predictions?” In: Seventh International Conference on

Machine Learning and Applications (ICMLA), pp. 337–343. IEEE Computer Society (2008).

ISBN 978–0–7695–3495–4

[Linden et al., 2003] – Linden, G., Smith, B., and York, J., “Amazon.com Recommendations:

Item–to–Item Collaborative Filtering”, IEEE Internet Computing 7, pp. 76–80, 2003

[Lops et al., 2011] – Pasquale Lops, Marco de Gemmis and Giovanni Semeraro, “Content–

based Recommender Systems: State of the Art and Trend”, Recommender systems handbook,

Springer, 2011, pp. 73–106

[Lorrentz, 2016] – Pierre Lorrentz, “Artificial Neural Systems – Principle and Practice.”

Bentham Science Publishers, 2016

[Marlin et all, 2007] – Marlin, B.M., Zemel, R.S., Roweis, S., and Slaney, M., “Collaborative

Filtering and the Missing at Random Assumption”, Proc. 23rd Conference on Uncertainty in

Artificial Intelligence, 2007

[McCallum, and Nigam, 1998] – McCallum, Andrew, and Kamal Nigam. “A comparison of

event models for naïve Bayes text classification.” AAAI–98 workshop on learning for text

categorization. Vol. 752. pp. 41–48, 1998.

[Mooney and Roy, 2000] – Mooney, R.J., Roy, L. “Content–Based Book Recommending Using

Learning for Text Categorization.” In: Proceedings of the 5th ACM Conference on Digital

Libraries, pp. 195–204. ACM Press, New York, US, San Antonio, US (2000)

[Netflix, 2015] – Carlos A. Gomez–Uribe and Neil Hunt – “The Netflix Recommender

System: Algorithms, Business Value, and Innovation”, ACM Transactions on Management

Information Systems, Vol. 6, No. 4, pp. 13, December 2015

[Oard and Kim, 1998] – Oard, D.W. and Kim, J., “Implicit Feedback for Recommender

Systems”, Proc. 5th DELOS Workshop on Filtering and Collaborative Filtering, pp. 31–36,

1998

[Picault and Ribiere, 2008] – Picault, J., Ribiere, M. “An empirical user profile adaptation

mechanism that reacts to shifts of interests.” Submitted to the 18th European Conference on

Artificial Intelligence (2008).

[Picault et al., 2011] – J. Picault, M. Ribiere, D. Bonnefoy, K. Mercer “How to get the

recommender out of the lab”, Recommender Systems handbook p 333–365, Springer 2011

[Pizzani and Billsus, 2007] – Pazzani, M.J., Billsus, D. “Content–Based Recommendation

Systems.” The Adaptive Web, Lecture Notes in Computer Science, vol. 4321, pp. 325–341,

2007

[Poirier et al., 2010] – POIRIER D., FESSANT F., TELLIER I., “De la Classification d’Opinion

à la Recommandation: l’Apport des Textes Communautaires”, TAL : traitement automatique

des langues, revue semestrielle de l’ATALA, vol. 51, no. 3, pp. 19–46, 2010.

[Salton, 1989] – Salton, G. “Automatic Text Processing”. Addison–Wesley (1989)

[Sarwar et al., 2001] – Sarwar, B., Karypis, G., Konstan, J., and Riedl, J., “Item–based

Collaborative Filtering Recommendation Algorithms”, Proc. 10th International Conference on

the World Wide Web, pp. 285–295, 2001.

[Schein et al., 2002] – Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M. “Methods and

metrics for cold–start recommendations.” In: SIGIR ’02: Proceedings of the 25th annual

international ACM SIGIR conference on Research and development in information retrieval,

pp. 253–260. ACM, New York, NY, USA (2002)

[Schwab et al., 2001] – Schwab, Ingo, Alfred Kobsa, and Ivan Koychev. “Learning user interests

through positive examples using content analysis and collaborative filtering.” Internal Memo,

GMD, St. Augustin, Germany (2001).

[Sebastiani, 2002] – Sebastiani, F, “Machine learning in automated text categorization”, ACM

computing surveys (CSUR), 34(1), pp.1–47, 2002

[Shani et al., 2005] – Shani, G., Heckerman, D., Brafman, R.I. “An mdp–based recommender

system.” Journal of Machine Learning Research 6, pp. 1265–1295 (2005)

[Shardanand and Maes, 1995] – Shardanand, U., Maes, P. “Social information filtering:

Algorithms for automating “word of mouth”.” In: CHI ’95: Proc. of the SIGCHI Conf. on

Human factors in Computing Systems, pp. 210–217. ACM Press/Addison–Wesley Publishing

Co., New York, NY, USA (1995)

[Sharma et al., 2016] – Sharma, A., Jiang, J., Bommannavar, P., Larson, B., & Lin, J. “GraphJet:

real–time content recommendations at twitter.” Proceedings of the VLDB Endowment, 9(13),

pp. 1281–1292. 2016

[Shoval et al., 2008] – Shoval, P., Maidel, V., Shapira, B. “An ontology–content–based filtering

method.” International Journal of Information Theories and Applications (15), pp. 303–318,

2008

[Sieg et al., 2007] – Sieg, A., Mobasher, B., Burke, 2002, R. “Ontological user profiles for

personalized web search.” In: Proceedings of AAAI 2007 Workshop on Intelligent Techniques

for Web Personalization, pp. 84–91. Vancouver, BC, Canada (2007)

[Spertus et al., 2005] – E. Spertus, M. Sahami, and O. Buyukkokten – “Evaluating similarity

measures: a large–scale study in the orkut social network” In KDD ’05, pp. 678–684, New

York, NY, USA, 2005. ACM.

[Symeonidis et al., 2008] – Symeonidis, P., Nanopoulos, A., Manolopoulos, Y. “Justified

recommendations based on content and rating data.” In: WebKDD Workshop on Web Mining

and Web Usage Analysis, 2008

[Takacs et al., 2008] – Takacs G., Pilaszy I., Nemeth B. and Tikk, D., “Matrix Factorization and

Neighbor based Algorithms for the Netflix Prize Problem”, Proc. 2nd ACM conference on

Recommender Systems (RecSys’08), pp.267–274, 2008.

[Toms, 2000] – Toms, Elaine G. “Serendipitous Information Retrieval. ” In DELOS Workshop:

Information Seeking, Searching and Querying in Digital Libraries, pp. 17–20. 2000.

[Uschold and Gruninger, 1996] – Uschold, Mike, and Michael Gruninger. “Ontologies:

Principles, methods and applications.” The knowledge engineering review 11, no. 02, pp. 93–

136. (1996)

[Xia et all, 2015] – Xia, P., Liu, B., Sun, Y., & Chen, C. “Reciprocal recommendation system

for online dating.” In Proceedings of the 2015 IEEE/ACM International Conference on

Advances in Social Networks Analysis and Mining 2015, pp. 234–241. ACM. 2015

[Yao, 1995] – Yao, Y.Y.: “Measuring retrieval effectiveness based on user preference of

documents.” Journal of the Association for Information Science and Technology, #46(2), pp.

133–145 (1995)

[Zhang and Hurley, 2008] – Zhang, M., Hurley, N. “Avoiding monotony: improving the

diversity of recommendation lists.” In: RecSys’08: Proceedings of the 2008 ACM conference

on Recommender systems, pp. 123–130. ACM, New York, NY, USA (2008)

[Zhang et al., 2002] – Zhang, Y., Callan, J., Minka, T. “Novelty and Redundancy Detection in

Adaptive Filtering.” In: Proceedings of the 25th International ACM SIGIR Conference, pp. 81–

88, 2002

[Zheng and Peltzverger, 2015] – Zheng, J. G. and Peltsverger, S. “Web Analytics Overview,”

article in Encyclopedia of Information Science and Technology, Third Edition, IGI Global 2015

[Zhou R. et al., 2016] – Zhou, Renjie, Samamon Khemmarat, Lixin Gao, Jian Wan, and Jilin

Zhang. “How YouTube videos are discovered and its impact on video views.” Multimedia Tools

and Applications 75, no. 10, pp. 6035–6058. (2016)

[Zuo et al., 2016] – Zuo, Y., Zeng, J., Gong, M., & Jiao, L. “Tag–aware recommender systems

based on deep neural networks.” Neurocomputing, #204, pp. 51–60. 2016

[Ding and Liu, 2015] – Ding, Y., & Liu, C. “Exploring drawbacks in music recommender

systems: the Spotify case.” 2015, http://www.diva-

portal.org/smash/record.jsf?pid=diva2%3A896794&dswid=4262 last access 24.12.2016

[eBay, 2013] – Thomas Pinckney – “Graph–based Recommendation Systems at eBay”,

https://www.youtube.com/watch?v=Tg3dP2fZGSM last access 15.01.2017

[Funk, 2016] – Funk, S., http://sifter.org/~simon/journal/20061211.html “Netflix Update: Try

This At Home”, last access 09.11.2016.

[Google Analytics, 2016] – https://analytics.google.com/analytics/web last access 09.11.2016

[Howe, M, 2009] – Howe Michael, “Pandora’s Music Recommender. A Case Study”, I, pp. 1–

6. https://courses.cs.washington.edu/courses/csep521/07wi/prj/michael.pdf last access

11.03.2017

http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A896794&dswid=4262
http://www.diva-portal.org/smash/record.jsf?pid=diva2%3A896794&dswid=4262
https://www.youtube.com/watch?v=Tg3dP2fZGSM
http://sifter.org/~simon/journal/20061211.html
https://analytics.google.com/analytics/web%20last%20access%2009.11.2016
https://courses.cs.washington.edu/courses/csep521/07wi/prj/michael.pdf%20last%20access%2011.03.2017
https://courses.cs.washington.edu/courses/csep521/07wi/prj/michael.pdf%20last%20access%2011.03.2017

[jsoup, 2016] – https://jsoup.org/ last access 15.11.2016

[Lucene, 2016] – http://lucene.apache.org/core/ last access 22.11.2016

[OWA, 2016] – http://www.openwebanalytics.com/ last access 05.11.2016

[OWL, 2012] – https://www.w3.org/OWL/ last access 18.03.2017

[Piwik Study, 2016] – https://piwik.pro/wp–

content/uploads/2016/01/Canada_Government_Case–Study.pdf last access 07.11.2016

[Piwik, 2016] – https://piwik.org/ last access 07.11.2016

[Protégé, 2016] – http://protege.stanford.edu/ last access 10.10.2016

[RDF, 2014] – https://www.w3.org/TR/rdf11–concepts/ last access 12.10.2016

[RDFs, 2014] – https://www.w3.org/TR/rdf–schema/ last access 19.02.2017

[sitemapgen4j, 2016] – https://code.google.com/archive/p/sitemapgen4j/ last access 09.10.2016

[w3techs, 2016] – https://w3techs.com/technologies/details/ta–googleanalytics/all/all last

access 04.11.2016

[Woopra, 2016] – https://www.woopra.com/ last access 19.10.2016

[WordNet] – https://wordnet.princeton.edu/ last access 09.10.2016

[XML, 2008] – https://www.w3.org/TR/REC–xml/ last access 12.10.2016

[YM, 2016] – https://metrica.yandex.com last access 06.11.2016

https://jsoup.org/
http://lucene.apache.org/core/
http://www.openwebanalytics.com/
https://www.w3.org/OWL/
https://piwik.pro/wp-content/uploads/2016/01/Canada_Government_Case-Study.pdf%20%20last%20access%2007.11.2016
https://piwik.pro/wp-content/uploads/2016/01/Canada_Government_Case-Study.pdf%20%20last%20access%2007.11.2016
https://piwik.org/
http://protege.stanford.edu/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf-schema/
https://code.google.com/archive/p/sitemapgen4j/
https://w3techs.com/technologies/details/ta-googleanalytics/all/all%20last%20accessed%20on%2004.11.2016
https://w3techs.com/technologies/details/ta-googleanalytics/all/all%20last%20accessed%20on%2004.11.2016
https://www.woopra.com/
https://wordnet.princeton.edu/
https://metrica.yandex.com/

