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RESUME 

Cet article, prepa~ pour le Handbook of SlstisticS (vol. 14 : ·statistical Methods in 

Finance"), passe en revue les modllles de volatilli.) stochastlque. On traite les su)ets 

suivants : volatillte des actils financiers (volatilite lnstantan'8 des rendemenlS d'aclifs, 

volatilltes implicltes clans les prix d'op1ion et r~larites empiriq.Jes), modelisation 

statistique en temps disc:ret et contlllll et, enfin, in~rence statistique (methodes de 

moments. pseudo-maximum de vraisemblance, m6thodes bayeslennes et autres fondees 

sur la vraisemblanoe, Inference lndirecte). 

Mots cles : rendements d'actifs, heteroscedasticlleconditlonnelle, prix d'option, modeles 

&tat-a.space, processus de diffusion 

ABSTRACT 

This paper, prepared for the Handbook of Stalistics (Vol. 14 : "Statistical Methods 

in Finance"), surveys the subject of stochastic volatHity. The following subjects are 

covered : volatility In financial maikets (instantaneous volatility of asset returns, Implied 

volatllitles In option prices and related stylized facts), statistical modening In discrete and 

continuous time and, finally, statistical inference (methods of moments, quasi-maximum 

likelihood, Mkefihood-based and bayeslan methods and Indirect Inference). 

Key words : asset returns, conditional heteroskedasticity, option prices, state-space 

models, diffusion process 





1. Introduction 

The ewa of &tochastie volatility (SV) modeJ. has ita root& both in mathematical finance and financial 
econometrics. In fact, ..,_a) va.riatione of SV models originated from research looking at very different 
i8SUe8. Clark (1973), for itl8tance, suggested to model asset return& as l!i function of a random pl'OCell8 of 
information arrival. Thill so-called time deformation i!ipproach yielded a time-varying volatility model of 
a.soet returna. Later Tauclten and Pitta (1983) refu,@d this work proposing a mixture of distributiofll! model 
of 8"8et returns with temporal dependence in information arrivals. Hull and White (1987) were not directly 
concerned with linking auet returns to information arrival but rather ,vere intere,iting in pricing European 
options assuming continuous time SV models for the underlying asset. They •uggeated a diffusion for asset 
pria,s with volatility following a positiw diffusion process. Yet another approach emerged from the work 
of Taylor (1986) who formulated a discrete time SV model u an alternative to Autoregr.,..,ive Conditional 
Heteroskedaatidty (ARCH) models. Until reamtly estimating Taylor's model, or any other SV model, 
remained almost infeasible. Recent advances in econometric theory have made estimation of SV models 
much euier. Aa a result, they ha"" become an 1>ttra<:tiw daEB of model• and an alternative to other etas.es 
suchaeARCH. 

Contributions to the literature on SV models can be found both in mathematical finance and econo­
metrica. Hence, we f1>ee quite a diveree set of topics. We ""Y very little about ARCH models because 
ae""ral excellent surveys on the subject have appeared recently, including those by Bera and Higgins 
(1995), Ball"'11lev, Chou and Kroner (1992), Bollerslev, Engle and Nelson (1994) and Diebold and Lopez 
(1995). Furthermore, since this chapter is written for the Handbook of Sudistics, we keep the coverage 
of the mathematical finance literature to a minimum. Nevertheless, the subject of option pricing figures 
prominently out of necessity. Indeed, Netion 2, which deaJ. with definitions of volatility has extensive 
cowrage of Black-Scholes implied volatilitie,i. It also summarll!"" empirical stylized facts and concludes 
with statistical modelling of volatility. The reader with a greater interest in atatiat.ical concepts may want 
to skip the first three subeectiom of -tion 2 which are more finance oriented and start with section 
2.4. Section 3 discllB6e<! diattete time modeJ., while aection 4 reviews continuous time models. Statistical 
inference of SV models is the subject of oection 5. Section 6 condudea. 

2. Volatility in F'mancial Markets 

Volatility playt1 e. central role in the pricing of derivative securities. The Blacl:-Schola model for the pricing 
of an European option is by far the moat widely used formula even when the underlying assumptions are 
known to be violated. Section 2.1 will thereforn talre the Black-Schol• model as a reference point from 
which to di8Cll88 several notions of volatility. A discUHion of stylized facts regarding volatility and option 
prices will appear next in aection 2.2. Both 6'lCtions eet the scene for a formal framework defining 6toch"6tic 
volatility which is treated in -tion 2.3. Finally, ,;ection 2.4 introduceo the st.atiatico.l models of stochastic 
volatility. 
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2.1. The Black-Scholes Model and Implied Volatilities 

More than half a century after the seminal work of Louis Bachelier (1900}, continuous time stochastic 
prooeaea haw, become a standard tool to deKribe the Lehavior of ~ prices. The work of Black and 
Scholes (1973) and Merton (1990) has been extremely influential in that regard. In section 2.1.l we review 
eome of the usumptiorul that are made when modelllng u,et pria,8 by diffusion,,, in particular to pr-t 
the ~t of inlltantanE!oull volatility. In section 2. l .2 we twn to option pricing models and the various 
concepte or implied volatility. 

2.1.1. An Instantaneous Volatility Concept 

We consider a financial aaaet, say a stock, with today's (time I) market price denoted by S,.' Let the 
information available at time I be described by /, and consider the conditional distribution of the return 
S,+A/S, of holding the-t over the period [t,t+ hj given 1,.3 A maintained aaeumption throughout this 
chapt,,r will be that uset return• have finite conditional expectation giwn 1, or : 

E, (S.H/S,} = s;-i E,SHh < +oo 
and lilmwiae finite conditional variance given 1., ne.mely 

(2.l.l} 

(2.1.2) 

Thi! continuously compounded expected rate of return will be characterized by h-1 Jog .E, (Si+•/S,}. Then 
a first aa,mmption can be stated as follows : 

Auumption !U.J.A : The continuously compounded expected rate of return conv«ges almoet surely to­
we.tde a finite value µ5 (1,) when h > 0 goes to zero. 

From thi1 assumption one haa E,Si+h S, - hµs (1,) S, or in IA!rms of it& differential repr"""ntation : 

(2.1.3) 

where the derivati..,,. are taken from the right. Equation (2.1.3) is sometimea looaely defined u: .E, (dS,} = 
µ9 (I,) S.dt. The next assumption periaina to the conditional variane!! and can be stated "" : 

Auumption !U.J.B: The conditional variance of the return h" 1V. (S1+~/S,) convergea almoet surely to­
ward& a finlt.e value 11; (1,) when h > 0 goes t.o zero. 
Again, in tenm of it.a differential representation this amounts to , 

_dd Var, ( S,) I = u} (I,) 5'{ almost surely 
r ,.., 

(2.1.4) 

and one looeely uaociats with the expression Vi (dS,) = ol (J,) S;dt. 

1llen and in the remainder of \be paper - will focue on optiooo writ ta oa ol:oda, or exche.n,J.,, ,-. The large Jit«ature 
on the IMlrrn otructure or~ .,.to, and ...i.ted derivative NCUrltim will not be """"8<1. 

•Section 2.3 will provide a more rigoroua diocusoion ol inr«-tion oel.e. It llhould aloo be noted that - will indiffi!ttotly 
be uolng conditloo&I diotributioo9 of -1. prica S,., and or return. s, ... i.JS, '"""" S, beloo111 to I,. 
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Both MSumptione 2.1.1.A and B lead to a representation of the asset price dynamics by an equation 
of the following form : 

dS, = µ 5 (1,)S,dt + a8 (J,}S1dW1 (2.1.5) 

where W, is a standard Brownian Motion. Hence, every time a diffusion equaUon i• \\7i tten for an asset 
price process we have automatically defined the oo-caUed instantaneollS volatility process as (J,) which 
from the abov,, representation can ah,o be writt.en ao : 

as (J,) (2.1.6) 

Before turning to the next section we would like to provide a brief discussion of some of the foundations 
for the AIIBllmptions 2.Ll.A and B. It was noted that B.achelier (1900) proposed Brownian Motion process 
as a model of stock price movement&. In modem terminology th.ie amount& to the random walk theory 
of asset pricing which claims th&t asset returns ought not to be predictable because of the informational 
efficiency of financial marlreta. Hence, it aaoumes that returns on consecutive regularly sampled periods 
It+ k, t + k + l], le= 0, 2, ... ,h - 1 are independently (identically) distributed. With such a bench.mark 
in mind, it is natural to view the expectation and the variance of the conUnuously compounded rate of 
return log (SH,./ S,) fl.8 proportional to the maturity h of the in,.....t,ment. 
Obviously we no longer use Brownian Motions as a process for .._t prices but it is nevertheless worth 
noting that Assumptions 2.1.1.A and B also imply that the expected rate of return and the uoociated 
squared riek (in terms of variance of the rate of return) of an investment <:M!r an infinitely-short interval 
ft, t + hJ ie proportional to h. Sims (1984) provided some rationale for both assumptions through the 
concept of "local unpredictability". 

To conclude, let 118 briefly diacuss a. particular special case of (2.1.5) predominantly used in theoretical 
developments and also highlight an implicit restriction we made. When µs (I,) = J's and as(/,) = O's are 
constants for all t the a-t price is a Geometric Brownian Motion. Thie process wu used by Black and 
Scholes (1973) to derive their well-known pricing formula for European options. Obviously, since O's (1,) 
is a conetant we no longer ha.ve an instantaneow, volatility process but rather a single parameter as - a 
situation which undoubtedly greatly simplifies many things including the pricing of options. A second 
point which needs to be stressed is that Assumptions 2.1.1.A and B allow for the possibility of discrete 
jumps in the aseet price process. Such jumpe are typically repreented by a Poisson process and have been 
prominent in the option pricing literature since the work of Merton (1976). Yet, while the assumptions 
allow in principle for jumps, they do not appear in (2.1.5). Indeed, throughout this chapter we will maintain 
the 8811umption of IWJlple path continuity and exclude the poaeibility of jumps as we focus exclusively on 
SV models. 

2.1.2. Option Prices and Implied Volatilities 

It was noted in the introduction that SV models origin.,.ted in part from the literature on the pricing of 
options: We have witneseed over the past two decades a spectacular growth in options and other derivaUve 
security mar!G,ts. Such markets are sometimes characterized ae places where "volatilities are traded", In 
thi11 section ....,, will provide the rationale for such atatementa and study the relationehip between so-called 
options implied volatilities and the oonc-epts of instantaneous and averaged volatilities of the underlying 
asset return process. · 
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The Black-Scholes option pricing model i• based on a Log-Normal or G<iometric Brownian Motion 
model for the underlying uset price: 

(2.1.7) 

where l's and as are fixed parameters. A European call option wit.h strike price K and maturity t + h has 
a payoff: 

{ 

S,+•- Kif S.+o·~ K 
(SHA - KJ~ = (2.1.8) 

0 otherwise 

Since the seminal Black and Scholes (1973) paper, there is now a well established literature proposing 
various ways to derive t.he pricing formula of such a contract. Obviously, it is beyond the IIOOpe of this 
paper to cover this literature in detail.• In.stead, the bare minimum will be presented here allowing us to 
diecW1111 the concepts of intereat regarding volatility. 

With continuous eostleA trading uaumed to be feasible, it is possible to form in the Black-Scholes 
economy a portfolio using one call and a short-aale strategy for the underlying 8tock to eliminate all risk. 
This is why the option price can be characterized without ambiguity, uaing only arbitrage arguments, by 
equating the market rate of return of the rialdeu portfolio containing the call option with the riak-free 
rate. Moreover, such arbitrage-hued option pricing does not d<,pend on individual preferences.• 

Thie is the reason why the easiest way to deriw the Black-Scholes option pricing formula is via a "risk­
neutral world~, where asset price proceseea are specified through a modified probability meanre, referred 
to as the risk neutral probability measure denoted Q (as discll66ed more explicitly in section 4.2). This 
fictitious world where probabilities in general do not coincide with the Data Generating Process (DGP), 
is only used to derive the option price which mnalne valid in the objectiw probability setup. In the risk 
neutral world we have: 

C, = C(S,,K,h,t) = B(t,t + h)Ef1(S1+h - K)+ 

(2.1.9) 

(2.1.10) 

where Bf is the expectation under Q, B(t, t + h) is the price at time t 0£ a pure diacowit bood with payoff 
one unit at time t + h and 

r, = -~iLcg B(t,t+h) (2.1.11) 

is the risldeaa inetantaneous int«est rate.• We have implicitly &s11urned that in this market interest rates 
are nonstochastic (W, is the only source of risk) eo that: 

B(t,t + h) - exp [- r.+• r.,.d,.]. (2.1.12) 

---------------• s.e 1-eYl!7 Jam,w ud Rudd (1983), Cox and Rubluteia (1985), Duffie (19811), Duftlo (199'l}, Hull (1993} « HuD (U)OO) 
among at.her.a far more elaborale ..,....... of option,, and oc.hor derivatift """'1ritlm. 

'Th. lo --.;..,.. .........i t.o .. prrJ,,rm«. ,,... oplllln ,msnf. Thlo ~ IMiY --hat. be mioleoding olooe 
iodivid...J pmer,mcea an, impllmJ;r tai- into eccount in I.he marW price of the 11.ock and of the risld- bond. I"--, 
the q,tioa. price only depend,, oo Individual prer-\~ the """* and bol>d mart.et pric,oo. 

1For notational"""~ .,.denote by tbeaame1,!'lllbol W, a B""'11ian Motion Wider P (in 2.1.7) and UDdor Q (in 
2.U}. l..-1, Ginse.lMW'• theorem eatabliohoa tbe link i......, U-1--(- e.g. Duffie (1992) imd. oecloon U.l). 
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By definition, there a.re no risk premia in a risk neutral cont.ext. Therefore r, coincides with the 
inotantant,ow, expe,:ted rate of return of the stock and hence the call option price C, is the discounwd 
value of its t.erminal payoff (S,..,, - K)-+ as stated in (2.UO). 

The log-normality of S.+h given S, allows one to compute the expectation in (2.1.10) yielding the call 
price formula at time t: 

C, = S,tf,(d.,) - K B(t, t + h)4'(d, - u9 ../h) (2.l.13) 

where ,J, is the cumulative standard normal distribution function while d, will be defined shortly. Formula 
(2.1.13) is the so-called Black-Scholes option pricing formula. Thus, the option price C, depends on the 
stocl< price S., the strike price Kand the diecount factor B(t,t + h). Let us now define: 

x,= Log S./KB(t,t+h) (2.1.14) 

Then we have: 
(2.l.15) 

with d, = (x,/asJ"iO + us../h/2. lt is easy to see the critical role played by the quantity x11 called the 
moneyness of the option. 

• If Xt = 0, the current stock price S, coincides with the present value of the strike price K. In 
other words, the cootract may appear to be fair to somebody who would not take into account the 
stochastic changes of the stock price between t and t + h. We shall say that we havie in this case an 
at the money option. 

• If x, > 0 (reepecti,..,,Jy z, < 0) "'"'sh.a.JI say that the option is in the money (respectively out the 
money).7 

It wae noted before that the Black-Scholes formula is widely used among practitioners, even when its 
assumptions are known to be violated. In particular the BS11umption of a constant volatility a9 is unrealistic 
(see section 2.2 for empirical evidence). This motivated Hull &11d White (1987} to introduce an option 
pricing model with stochastic volatility assuming that the volatility itself is a state variable independent 
ofW,-!' 

{ 
dS,/S, = r,dt +as,dW, 
(asi)«J0.11 • (W,)tEI0,1l independent Markovioo 

(2.1.16) 

It should be noted that {2 .. 1.16) is still written in a risk neutral context since r, coincides with the 
inatantllMOUB expected return of the stock. On the other hand the exogenous volatility risk is not directly 
traded, which prevents us horn defining unambiguously a risk neutral probability measure, a.s discussed 
in more detail in oect;ion 4.2. Neverthelesa, the option pricing formula (2.1.10) remains valid provided the 
expectation is computed with respect to the joint probability distribution of the Markovian process (S,qs), 
given (S.,u91}.9 We can I.hen rewrite (2.1.10} 11,11 follows: 

1 We - here a ollghtly modified t.amiooloj!y with roopect to the usual one. Indeed, it is "'°"' mrnmon to call at the 
l!lO!M!1 /in tbe ~/ out cl I.he money optioos, when S, ~ K/S, > K/S, < K "'8p<!Ctively. from an economic point of 
view, it is ......, appM1ing to compare S, with tbe ~t "'1ue of the strike price K. 

8~Jwr llloc:hutic wlatility models similar to Hull o:nd WhM (1987) - in JobNlml and Shu.no (1987), Scott (1987), 
Wiggin,, (U187), Chesney and Scou (1969), Stein and Stein (111111) Md Heoton (1993) among oth<,re. 

•we implicitly -,,,ne hen! that tbe available lnfonno.tion I, oontahuo tbe past valllEO (ST,.,,),<,· This ....umption will 
be diacuased in oection 4.2. -
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(2.1.17) 

whore the expectation inside the brackets is taken witb reepeet to the conditional probability distribution 
of S<+h given J, and a volatility path a8,, t $ r $ t + h. How,ever, einoe the volatility proceas as, is 
independent from W., we obtwn using (2.1.15) that : 

B (t,t + h) E. f (St+h - Kt !(as,)1,s,,si+h] = S.E. [,t,(du) - e-••,t, (d,.)] 

wbere d11 and d,, are defined a.a follow• : 

where 1'(t,t + h) > 0 and: 

{ 
du = (:r,h (t,t + h) ,/h) + 1' (t,t + h) v'h/2 
d,t Cd, -'}'(t,t + h) Jh 

, 1r+h2. 
1' (t,t + h) = h 

I 
as,d-r. 

This yields the so-called Hull and White option pricing fonnula : 

C, = S,E, [4>(du)- ,c••,t,(d:1e)J, 

(2.1.18) 

(2.1.19) 

(2.1.20) 

where the expectation is taken with respect to the conditional probability dletribution (for the risk neutral 
probability meuure) of'}'(t,t + h) given aa,.10 

In the remainder of this section we will asllume that observed option prices obey Hull and White's 
formula (2.1.20). Then option prices would yield two types of implied volatility concepts: (1) an instan­
taneous implied volatility and (2) an averaged implied volatility. To make this mare precise, let us assume 
that I.he risk neutral probability distribution belongs to a parametric family, Pe, () E 8. Then, the Hull 
and White option pricing formula yield! an expremon for the option price as a function : 

(2.1.21) 

where (J0 is the true unknown value of the parameters. Formula (2.1.21) reveals why it is often claimed 
that "option markets can be thought of s market.s trading volatility" (see e.g. Stein (1989)). As a matter 
of fact, if for any given (x,, ()), F ( ·, x;, 9) i& one-to-one, then equation (2.1.21) can be inverted to yield an 
implied instantaneous wlatiHty ,n 

<r!'°"(9) = G[Sc.C,,:r,,9] (2.1.22) 

Bajeux and Rochet (1992), by showing that this one-to-one relationship between option prices and 
instantaneous volatility holds, in fact formalize the uoe of option markets as an appropriate instrument to 
hedge volatility risk. Obviously implied instantaneous volatilities (2.1.22) could only be l18eful in practiee 
for pricing or hedging derivative instruments wben we know the true unknown value 90 or , at least, are 
able to compute a sufficiently accurate estimate of it. 

'°The conditioning la with "'"i>"Ot 1o "• lince it wmnwi- the relewnt Wonoatioa takm rrom I, ( the - r, ii 
-urned lo be Mariawiu and i~ from W). 

11Tbo fact that F(·,:r,,f/) ii, onc,.to-one i,, shown lo be the cmo far 6111 diffu&ion model on oa, under <>rlain regularity 
oondltlona, ... Bajeu:x and Rochot ( 1992). 
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However, the difficulties involved in estimating SV models has for long prevented their wide opread 
w,e in empirical applicationa. This is the reason why prnct.it.ionera often prefer another concept of im­
plied volatility, namely the ll<realled Blad:..Sdwles implied 110latwt11 introduced by Latane and Rendleman 
(1976). It is a process w""P (t, t + h) defined by: 

{ 

0 1 = S1 [,p (d,,) - e·••,t,("2,)) 
du = (x,/wia9 (t, t + h) v?i) + wifflfo (t, t + h) ..,/i,./2 
"2, = du w'""' (t, t + h) Jh 

where C. is the observed option price.12 

(2.1.23) 

The Hull e.nd White option pricing model can indeed be -n as a theoretical foundation for this 
practice; the comparison between (2.1.23) and (2.1.20) allowt1 us to interpret the Black Scholes implied 
volatility wimp (t, t + h) as e.n implied averaged volatility since w""P (t, t + h) is something like a conditional 
expectation of -y(t,t + h) (aaurning oboerved option prices coincide with the Hull and White pricing 
formula). To be more preciae, let us consider the simplest ca.ee of at the money options (the general case 
will be studied in section 4.2). Since x1 = 0 it follows that d,i = -du end therefore: ef, (du)-e·•14> (d2,J = 
24> (du)- I. Hence, w~ (t, t + h) {the index o is added to underline that - consider at the money opt.ions) 
is defined by : 

(2.1.24) 

Since the cumulative standard nonnal distribution function is roughly linear in the neighborhood of zero, 
if follows that (for small maturities h) : 

w~ (t,t + h) i,,. Ei-r (t, t + h) 

This yields an interpretation of the Black-Scholes implied volatility w~ ( t, t + h) as an implied average 
volatility : 

[
1 [H' ]f w!mz, (t, t + h) A$ Ee h , a},dr (2.I.25) 

2.2. Some Stylized Facts 

The search for model apecification and selection us always guided by empirical stylized facts. A model's 
ability to reproduce such stylized fact.. i• a desirable feature and failure to do so is moot often e criterion to 
di81ru1!8 a specification although one typically does not try to fit or explain all pooeible empirical regularities 
at once with a sing).;, model. Styli.zed fact& about volatility have been well documented in the ARCH 
li~rature, see for instance Bollerslev, Engle and Nelson (1994). Empirical regularities regarding derivative 
securities and implied volatilities are alllO w.,Jl covered for irnrt.ance by Bates {1995a). In this section we 
will summarize empirical stylized fact.., complementing and updating IIODle of the material covered in the 
aforementioned referencea. 

12We do not •plicitly 91ud,y here the dependence between """"'(t,t+h) a,,d the wrions related - : C., S,. :z,. 
Thito ii the """'°n why, for sake ol oimplicity, this dependoooo is not apparent in the notation ,r'7 (t,t +h). 
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(a) Thick tails 
Since tM early eixtiee it was observed, notaWy by Mandelbrot (1963), Fama (1963, 1965), among others 

that asset returns haw leptokurtic distributions. A• a result, numerous papers have propooed to model 
asset returns "" i.i.d. draws from fat-tailed di&tributiona •uch 88 Paretian or Levy. 

(b) Volatititg clustering 
Any cuual observations of financial time Miea nweala bunching of high and low volatility episodes. In 

fact, volatility dUl!tering and thiclc tai!l! of 8"8et returns are intimately related. Indeed, the latter is a atatk 
e:xplanation whereas a key insight provided by ARCH models is a formal link between dynamic (conditional) 
wlatility behavior and (unconditional) heavy tails. ARCH models, introduced by Engle (1982) and the 
numeroua extensions thereafter "" well as SV models a.re essentially built to mimic volatility clustering. 
It ia also widely documented that ARCH effect& disappear with temPQral aggregation, see e.g. Diebold 
(1988) and Drost and Nijman (1993). 

(c) 1-muge effeds 
A phenomenon coined by Black (1976) a. the leverage effect suggests that stcck price movements are 

negatively correlated with volatility. Beca1.111e falling stock prices imply an increased leverage of firms it 
is believed that this entails more unr,ertainty and hence volatility. Empirical evidence reported by Black 
(1976), Christie (1982) and Sdnvert (1989) suggests, however, that leverage alone is too &mall to explain the 
empirical uymmetries one observes in stcck prices. Others reporting empirical evidence regarding leverage 
effects include Nehlon (1991), Gallant, Rossi and Tauchen (1992, 1993), Campbell and Kyle (1993) and 
Engle and Ng (1993). 

(d) Information arritials 
Asset returns are typically measured and modeled with observations sampled at fixed frequencies such 

as daily, -kly or monthly observations. Sewral author&, including Mandelbrot and Taylor (1967) and 
Clark (1973) suggested to link asset return& explicitly to the flow of information arrivals. In fact it was 
already noted that Clark proix-d one of the early examples of SV models. Information Birivals are non­
uniform through time and quite often not directly observable. Conceptually, one can think of a.so.et price 
movements 88 the realization of a process Y, = Yi, where z, i& a so-called directing process. This positive 
nondecreasing stochastic proc- Z, can be thought of"" being related to the arrival of information. This 
idea of time deformation or subordinated stochastic proceaaes was used by Mandelbrot and Taylor (1967) 
to <!Xplain fat tailed retums, by Clark (1973) to explain volatility and was recently refined and further 
explored by Ghy...ls, Gourieroux and Jasiak (1995a). Moreover, Easley and O'Hara (1992) provide a 
:mforoatructun model involving t.ime deformation. In practice, it sugge,its a direct link bet_,,n market 
volatility and (1) trading volume, (2) quote arrivals, (3) forecaatable events such 88 dividend announcements 
or ma.c.roeconomic data releases, (4) market closun:s, among many other phenomena linked to information 
arrivals. 

Regarding trading volume and volatility there a.re sevsral papers documenting etylized facts notably 
linking hlgh trading volume with market volatility, see for example Karpoff (1987) or Gallant, Rossi 
and Taucben (1992).13 The intraday patterns of volatility and market activity meuured for instance by 
quote arrivals ill alao well-known and docUlnfflted. Wood, Mcln.iah and Ord (1985) and Harris (1986) 
studied thia phenomenon for securities markets and found a U-ah_aped pattern with volatility typically 

131'1,,n """ nu......,... modolo, theoretical and ompirical, linking trading volume and -. returno which we can- discla 
in det&it A partial llst. lncludeo Foster and Vu,-nathan (19t13a,b), Ghyaela ud J...iak (19114a.,b), Ha11&man and Lo {1991), 
Huffman (1987), Lamoureux and Laot.rapes (1000, 1993), Wang {1993) end Andenen (1911&). 
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high at the open and claae of the market. The around the dock trading in foreign exchange market& 
al&O yields a distinct '11'.>latility pattern which ill tied with the intensity of market activity and produces 
strong seaBOrul.l patterns. The intradaily patterns for FX market.a are analyzed for instance by Millier et al. 
(1990), Baillie a.nd Bollerslev (1991), Harvey and Huang (1991), Dacorogna et al. (1993), Bollerslev and 
Ghysels (1994), Andersen and Bollerslev (1005), Ghysels, Gourieroux and Jasiak (1995b) among othen,. 
Another related ~pirical otylized fact is that of overnight and """'kend market closures and their effect on 
volatility. Fama (1966) and French and Roll (1986) have found that information accumulates more slowly 
when the NYSE and AMEX are cloeed resulting in hlgher volatility on those markets after weekends and 
holiday&. Similar evidence for FX market, bu been reported by Baillie and Bollerslev (1989). Finally, 
numerollll pap<i!lll document.ed increased vol.e.tility of financial markets around dividend announcements 
(Cornell (1978), Patell and Wolfaon (1979,1981)) 11.lld macroeconomic data releases (Harvey and Huang 
( 1991, 1992), Ederington and Lee ( 1993 l). 

(e) Long~ and pt:rrisume 
Generally ,peaking volatility is highly pen,ietent. Particularly for high frequency data one finds evi­

dence of near unit root behavior of the oonditional variance prOC<$15. In the ARCH literature nwnerollli 
eetimates of GARCH models for stock marlret, commodities, foreign exchange and other asset price series 
a.re coruuetent with an IGARCH epeclfication. Likewise, estimation of stochastic volatility models show 
similar patterns of pen,i&tence (see for instance Jacquier, Polson and Rossi (1994)). These findings have 
led ti> a debate regarding modelling persietence in the conditional variance proces either via a unit root 
or a Jong memocy pn><:esa. The latter approach has been suggested both for ARCH and SV models, see 
Baillie, Boll«slev and Mikkelsen (1993), Breidt et al. (1993), Harvey (1993) and Comte and Renault 
(1995). Ding, Granger and Engle (1993) studied the serial com,latione of tr (t,t + tW for positive 1111lues 
of c where r (t, t + 1) is a one-period return on a speculative asset. They found Ir (t, t + 1)1' to have quite 
high autocorrelations for Jong lags while the strongest. temporal dependence was for c close to one. This 
reeult initially found for daily s&P500 return ""riee was also ahown to hold for other .stock market indices, 
commodity markets and foreign exchange aeries (ee,, Granger and l;>ing (1994)). 

(f) Volatilit11 comovements 
There is an extensive literatun, on international comovements of speculative markets. Concerns whether 

globalization of equity marketa increase price volatility and correlations of •tock returns has been the sub­
ject of many recent studi ... including, von Fuat.enberg and Jean (1989), Hamao, Masuli• and Ng (1990), 
King, Sentana and Wadhwani (1994), Harrey, Ruiz and Sent.an& (1992), Lin, Engle and Ito (1994). Typi­
cally one US8 factor models to model the commonality of international volatility, as in Diebold and Nerlov,r; 
(1989), Ha.rwy, Ruiz and Sentana (1992), Harvey, Ruiz and Shephard (1994) or explores so-called common 
features, - e.g. Engle and Kozicki (1993) and common trends as studied by Bollerslev and Engle (1993). 

(g) Implied t10latilits, correlation., 
Stylized fa.eta are typically reported aa model-frN empirical obaervations.14 Implied volatilitie£ are 

obviOUl!ly modal-based as they are ealculated from a pricing equation of a specific model, namely the Black 
and Scholes model aa noted in eeclion 2.1.3. Since they are computed on a daily basis there is obviOU5ly 
an internal inconsistency since Lhe model pre8umes constant volatility. Yet, since many option prices are 
in fact quoted through their implied volatilities it is. natural to study the time series behavior of the latter. 
Often one oompu~ a compoeite meaeure since synchronOUB option prices with different etrike prices and 

i4Tl!le ill iB "°""" Jl'lf' llctitiouo"""" for ~ data ro. i.notame when they .are detreoded or -11y ~­
Both clotmMting 8lld .-onal lO<ljuot- ""' model-bosod. Far the poteolio,lly .........., imp,,ct of detrending on atylwxl facto 
8llO ean.- (11192) 8lld Harvey 8lld J- (1993) and lor the el!'ect. of _,nal fl<\juatmmf. on empirical n,gularlt""""' 
Gbyaels et al. (1993). 
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maturities for the same underlying asset yield different implied volatiliti"6. The comJ)Oi!ite measure is 
U8Ulllly obtained from a wghting scheme putting more ...,ight on the near-the-money opt.iollll which are 
the meet heavily traded on organized rnarlcete. 16 ' 

The time series propertiE!B of implied volatilities obtained from sLoc.k, stock index and currency options 
&NJ qui~ similar. They appear stationary and are well described by a first order autoregressive model 
(""" Merville and Pieptea (1989) and Sheikh (1993) for stock options, Poterba and Summers (1986), Stein 
(1989), Hanley and Whaley (1002) and Diz and F'mucane (1993) for the S&PlOO contract and Taylor 
and Xu (1994), Campa and Chang (1995) and Jorlon (1995) for currency options). IL was noted from 
equation (2.l.26) that implied (average) volatilities are expecr.ed to contain information regarding future 
volatility and therefore should predict the latter. One typically tests ouch hypotheses by regressing realized 
volatilities on past implied ones. 

The empirical evidence regarding the predictable content of implied volatilities is mixed. The time 
series study of Lamoureux and Lastrapes (1993) considen options on non-d;vidend paying stocks and 
compared the forecasting performance of GARCH, implied volatility and historical volatility estimates 
and found that implied volatilities forecast,;, though they are biased as one would expect from (2.1.25), 
outperform the others. In sharp oontr.aat, Canina and Figlewski (1!193) studied S&PlOO index call options 
for which there is an extremely active market. They found that implied volatilities were virtually uoeless 
in forecasting future realized volatilities of the S&PlOO index. In a differ,,nt setting using weekly sampling 
intervala for S&PlOO option contracts and a different sample Day and Lewis (1992) not only found that 
implied volatiliti"" had a predictivoe cootent but also were unbiued: Studies examining option• on foreign 
currencies, euch as Jorion (1995) also found that implied volatilities were predicting future realizations and 
GARCH "" well as historical volatilities were not outperforming the implied mea.suret1 of volatility. 

(h) The term structt1re of implied 110/atifftiea 
The Blade-Schol"" model predicts a flat term structure of volatilities. In reality, the term structure of 

at-the-money implied volatilities is typically upward sloping when short term volatilities are low and the 
reverse when they are hlgh (see Stein(1989)). Taylor and Xu (1994) found that the term structure of implied 
volatilities from foreign currency options~ slope every few months. Stein (1989) also found that the 
actual senaitivity of medium to short term implied volatilities wu greater than the estimated sensitivity 
from the forecast term structure and concluded that medium term implied volatlliti"" overreacted to 
information. Diz and Finucane (1993) uaed different estimation technique• and rejected the overreaction 
hypothesis, even reported eviden~ suggesting underreaction. 

(i) Smiles 
If option prlC<lll in the market '""re conformable with the Black-Scholes formula, all the Black-Sclioles 

implied volatilities rorreflponding to various options written on th<! same asset would coincide with the 
volatility parameter q of the underlying asset. In nwity thie is not the cue, and the Black-Scholes implied 
volatility w""l'(t,t +h) defined by (2.1.23) heavily depends on the calendar time t, the time to maturity 
h and the moneyneee x, = LogS.f KB (t, t + h) of the option. This may produa, varloUB biases in option 
pricing or hedging when BS implied volatilities are used to evaluate new options with different strike prices 
K and maturities h . These price distortions, wdl-known to practitioners, are usually documented in the 
empirical literature under the termlnology of the smi.le effect, where the SCH:alled "smile" refers to the 
U-ehaped pattern of implied ,'Olatilities acrou different etriloe pria,,. More precisely, the following stylized 
fact.e are extensively documented (aee for ins~ Rubinatein (1985), Clewlow and Xu {1993), Taylor and 

15DiJl'erent weighting - 1,a.., been suggested, aoe fur inltanoe L&ume and Re!>dt..nan (1916). Cbin,a and Manaster 
(111711), Beck""' (1981), Whaley (19112), Day aoo Lewi,, (11188), Engle and Muoi.fa (199'1) and Bata (191111b). 
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Xu (1993)): 

• The U-shaped pattern of w"'"' (t, t + h) "" a function of K (or log K) has its minimum centered at 
near· the - money options (discounted K dooe to S., i.e. :r, close to zero). 

• The volatility smile is often but not alwaye symmetric ae a function of logK (or of .r,). When the 
smile is asymmetric, the skewness effect can often be described as the addition of II monotonic curve 
to the standard symmetric smile: if a decreuing curve ia added, implied volatilities tend to rise more 
for decreat1ing than for increasing strike pric .. and the implied volatility curve hu its minimum out 
of the money. In the reYef'8e case (addition uf llll increasing curve), implied volatilities tend to rise 
more with increasing strike prices and their minimum i• in the money. 

• The amplitude of the smile increases quiclcly when time to maturity decreases. Indeed, for abort 
maturities the smile effect is very pronounced (BS implied volatilities for oynchronous option prices 
may vary between 15% and 25%) while it almost completely dioappea.rn for longer maturities. 

It is widely believed that volatility smiles have to be explained by a model of stochastic volatility. 
This is natural for several reaaons: First, it is tempting to propose a model of stochastically time varying 
volatility to acoount for stochastically time varying BS implied volatilities. Moreover, the decreasing 
amplitude of the a.mile being a function of time to maturity is conformable with formula like (2.1.25). 
Indeed, it shows that, when time to maturity is increased, temporal aggregation of volatilities erases 
conditional heteroskeda.sticity, which decreases the smile phenomenon. Finally, the skewness itself may 
alao be attributed to the stochastic feature of the volatility proc- and overall to the correlation of this 
process with the price procesa (the so-called leverage elrect). Indeed, this effect, while sensible for stock 
prices data, is small for inter81t rate and exchange rate series which is why the slrewne"" of the smile is 
more ofl,en observed for options written on stoclai. 

Nevertheless, it is important to be cautious about tempting associations: stochastic implied volatility 
and stochastic wlatility; uymmetry in stocks and skewnese in the smile. As will be discussed in section 
4, euch analogies a:re not always rigorously proven. Moreover, other argumente to explain the smile and 
its skewness (jumps, tranaaction costs, bid-ask spreads, non-synchronous trading, liquidity problems, ... ) 
have a1oo to be taken in account both for theoretical reasons and empirical ones. For instance. there l'!Kists 
empirical evidence suggesting that the most expensive options (the upper parts of the smile curve) are 
also the least liquid; &kewneea may therefore be attributed to specific configuratioru; of liquidity in option 
markets. 

2.3. Information sets 

So far ....., left the specification of information &eta vague. This was done on purpose to focus on one iS&Ue 
at the time. In this section we need to be more formal regarding the definition of information since it 
will allow us to clarify several missing links between the various SV models introduced in the literature 
and alao bet- SV and ARCH models. We know that SV models emerged from research looking at a 
very diwnie set of issues. In thil section we will try to define a common thread and a general unifying 
framt!work. We will accomplish thie through a careful analysis of information aets and associate with it 
notions of non-causality in the Granger aenae. These causality conditions will allowt! us to characterize in 
section 2.4 the distinct features of ARCH and SV models. 10 

1'Tlle analym in \bis oect.ion bao eomo featuree in oommon •ith Andertien (11192) regarding the uae of information eete t.o 
clarify the d1lference ~ SV and ARCH type mooo18. 
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2.3.l. State variables and information aets 

The Hull and Whlte (1987) model is a simple (ll(Jll'llple of a derivative 886et pricing model where the 
stock price dynamia are governed by oome unobservable state variables, such as random volatility. More 
generally, it ie convenient to assume that a multivariate diffueion proct'68 U, mmmarizes the relevant st.ate 
variable& in the sense that: 

{ 

dS,/ S, =µ,di.+ a,dW1 

dU, ,,dt + li,dW,U 
Coo (dW,, dWf) = p,dt 

(2.3.1) 

where the stochastic proceeses µ,,a,,1,,6, and Pt are If= [U,,r $ t] adapted (Assumption 2.9.1). This 
means that the procese U summarizes the whole dynamic• of the stock price process S ( which justifies 
the terminology "stat.en variable) since, for a given sample path (U,)0<,<T of •tate variables, conseeuti"" 

returm S,.., / S,., 0 5 t1 < t2 < . .. < t• 5 T are stochaatically indepe~dent and log-normal (as in the 
benchmark BS model). 

The arguments of section 2.1.2 can be extended to the et.ate variables framework (see Garcia and Renault 
(1995)) di11CU6!1e<l here. Indeed, such an extension provides a theoretical justification for the common uee of 
the Black and Schok,a model as a standard method of quoting option prices vi• their implied volatilitiea.17 

In fact, it ie a way of introducing neglected heterogeneity in the BS option pricing inodl,l (see Renault 
(1995) who draWl! attention to the similaritia with introducing heterogeneity in microeconometric models 
of labor markets, etc.). 

In continuous time models, awilable information at time t for traders (wh.- information determines 
option prices) i• characterized by continuoUB time observatiom of both the state variable sample path and 
stock price process sample path; namely: 

1, = a [u •. s. ; rs tJ (2.3.2) 

2.3.2. Dillcrete sampUng and Granger noncauaality 

1n the next section ...., will tniat explicitly discrete time models. It will necesoitate formulating discrete 
time analogues of equation (2.3. l ). The discrete sampling and Granger non ca.-Uty condition& diacwmed 
hexe will bring us a step clooer to building a formal framework for statistical modelling using discrete time 
data. Clearly, a diacrete time analogue of equation (2.3.l) is: 

logS1+i/S, = µ(U.) + a(U,)E1+1 (2.3.3) 

provided we impose some n!l8trictions on the proceu e,. The restrictions we want to impo,,e must be flexible 
enough to accommodate phenomena such as leverage effects for inlltance. A setup that does this is the 
following: 

A88Ufflption 2.9.J?.A : The process c:, in (2.3.3) is U.d. and not Granger caused by the state variable process 
u •. 

11Gan:ia and Renault (19911) arped that AM&lllp!,ion 2.3.1 lo -...ual w --the~ or option prices with 
._i t.o the p&ir (otod< price, otrike priao) which in turn _u,.. that BS impliod volot.ilm"' do D04 depend on the stock 
price i...eJ but only on Uie money,,... S/K. Thio bomogaeity proporty W81 first emphM!zed bf Merton (1!173). 
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A~sumptfon £.9.2.B : The procellll c, in (2.3.3) doe,, not Granger cauae U,. 

Assumption 2.3.2.B is uaeful for the practical use of BS implied volatilities as it is the discrete time 
analogue of A98umption 2.3.1 where it is stated that the codficienta of the proceas U are If adapt.ed 
(for further details oee Garcia and Renault (1995)). Assumption 2.3.2.A is important for the statistical 
intei:preta.tion of the functions µ ( U,) and o (U,) respectively as trend and volatility coefficients. Namely, 

E{logS,u/S, I (S,/S,-1;r :$ L}l 
= E{E[logS<+,/S, I (UT,ET;-r :5 t)J I (ST/S,-1,r :5 !)] 
= Ejµ(U,) I (S./S,_,;r :5 t)} 

(2.3.4) 

eince E[cHi I (U,,i:T;r :5 t)] = E[er+i I E1;r :5 t] = 0 due to the Granger noncausality from U, to c, of 
A118Umption 2.3.2.A. Likewise, one can easily ehow that 

Var[logS..,1/S, µ(U,) I (S./S,_1;, :5 t)] 
= E [a' (U,) I (S,/ST-l; r :5 t)J (2.3.5) 

Implicitly we ha"" introduced a new information set in (2.3.4) and (2.3.5) which besides J, defined 
in (2.3.2) will be ,lffful 1111 well for further analysis. Indeed, one ol't.m confines (statistical) analysis to 
information conveyed by a discrete time sampling of stock return eeries which wm be denoted by the 
information set 

1{1 =a[S,/ST-J:. =0,1, ... ,t-1,t] (2.3.6) 

where the superscript R Btands for returns. By extending Ande= (1994), we shall adopt as the most 
general framework for univariate volatility modelling, the setup given by the Assumptions 2.3.2.A, 2.3.2.B 
and: 
Assumption 2.9.8.C: µ(U,) is /{1- measurable. 

Therefore in (2.3.4) and (2.3.5) we have e&8eTltially ,hown that : 

E [logSH,/S, I I/'J = µ(U,) (2.3.7) 

(2.3.8) 

2.4. Statistical Modelling of Stochastic Volatility 

Financial time oeriee are observed at discrete time intervals while a majority of theoretical models Me 
formulated in continuous time. C..nerally apeaking there are two etatiatical methodologies to resolve thi• 
teneion. Either one considers for the purpoll<! of estimation statistical discrete time models of the continuous 
time proceaae,;, Altc,matively, the statistical model may be specified in continuow; time and inference i• 
done via a diocrete time approximation. In thia section we will discuss in detsil th<! former approach while 
the latter will be introduced in section 4. The clau of diacrete time statistical models diecus.sed here is 
general. In aection 2.4.l .,.. introduce some notation and t.enninologim. The next ee,ctioo dacuaa the 
ao-called sto<:hutic autoregI!lilllive volatility model introduced by Ander-sen (1994) as a rather general and 
ftexible Mmi-parametrlc framework to encompus various representations of atochBlltic volatility already 
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available in the literature. Identification of parameters and the restrictions required for it are discu81led in 
aection 2.4.3 

2.4.1. Notation and Terminology 

In aection 2.3, we left umpeci6ed the functional forms which the trend µ ( •) and volatility a (,) take. Indeed, 
in llOrlle seru,e we built a nonparametric framework recently propo,,ed by Lezan, Renault and de Vitry (1995) 
which they introduced to diacuss a notion of stocluutic t•clatility of unbwtun form. 18 This nonparametric 
framework encompuses standard parametric models (see section 2.4.2 for more formal diS('ussion). For 
the purp<:llle of illustration let us con•ider two exmm,e casee, aasuming fur simplicity that µ (U,) - O : 
(i) the discrete time analogue of the Hull and White model (2.1.16) i• obtained when a ([T,) = a, i• a 
stochastic process independent from the stodt return standardized innovation prooo;s e: and (ii) a, may 
be a detm:ninistic function h (e:4, T $ t) of past innovation&. The latter io the complete opposite of (i) and 
leads to a large \11Uiety of choialll of parammized functlom for h yielding X-ARCH models (GARCH, 
EGARCH, QTARCH, Pt!rlodic GARCH, etc.). 

Besides these two polar cll8e8 where Assumption 2.3.2.A is fulfilled in a trivial degenerate way, one 
can also accommodate 1-a,p effects.1• In particular the contemporaneous correlation structure between 
innava.tionll in U and the return process can be nonzero, eince the Granger non-ausality MBumptiona deal 
with temporal causal links rather than contemporaneotUl ones. For instance, we may have a (U,) = a, with: 

(2.4.1) 

(2.4.2) 

A negativie co\11Uiance in (2.4 .2) is a standard case of leverage effect, without violating the non-causality 
Assumptions 2.3.2.A and B. 

A r- oonduding obeervations are worth making to deal with the burgeoning variety of terminologies 
in the literature. First, we have not considered the distinction du,, to Taylor (1994) between ~lagged 
autoregJ:esaive random variance models" gi"ffl by (2.4.1) and "con!A!mporaneou,, autoregressh.., random 
variance models» defin«I by: 

log St+1/ s, = <Tt+1E,+1 (2.4.3) 

Indeed, since the volatility process a, ia unobservable, the settings (2.4.l) and (2.4.3) are obeen,ationally 
equivalent 88 long 88 they are not completed by precl&e (non)-caUS8lity 888umptiom. For instance : (i) 
(2.4.l) and aseumption 2.3.2.A together appear to be a correct and v,,ry general definition of a SV model 
poaeibly completed by Aasumption 2.3.2.B for option pricing and (2.4.2) to introduce leverage efl'e<:ta, (ii) 
(2.4.3) associated with (2.4.2) would not be a correct definition of a SV model sin« in this case in general: 
E hog S.,, 1/ S, I J,RJ ,f 0, and the model would introduce via the procea u a forecast which is related not 
onl:y to volatility but also to the expected return. 

11Losao, Renault ,ind de Wry (lllll~) disc..., io delall bow to """"""' p1-omona web ao volatility clustering io thi,, 
rra-ic. ,.. a -~ rr..o:.,,,.,..1< it ..., ha, <Ut,iin ad-- ._.,jlng (robml) mt.hna\ioo. Tb,,y dlMolop for 
lnotaace lllMbodo that can be wooful '"' a lirat ...ti.mation au,p lor oftlclent olgoritb:me -.ming a lll>'l'Oific ptll'-ric model 
<- Section 6). 

10 AM""1ption 2.3.2.B is fulfilled in ""°" (i) bot may fail In the GARCH"""" (ii). WIim it faila to hold in the let.tor cooe it 
mueo the GARCH lra,,_k not ..,.-y we!J.,,..il.<!d !or "llUOll pricing. 
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For notational simplicity, the framework (2.4.3) will be med in aection 3 with the leverage effect captured 
by Cov(aH1,e,) 'F O in.sl6ad of Coo(a,+1,E,+1) 'F 0. Another terminology was introoured by Amin and 
Ng (1993) for option pricing. Their distinct.ion betw-, "predictable" and "unpredictable" volatility i• 
very doee to the leverage effect concept and can also be analyzed through causality oonrepte as diseUS&ed 
in Garcia and Renault (1995). Finally, it will not be necessary to mak<, a distinction between ~ 
semi-ctrong and strong definitions of SV models in analogy with their ARCH counterparts (- Drost. and 
Nijman (1993) ). Indeed, lhe cl.aae of SV models aa defined here can accommodate parametrizations which 
are clOGe<i under temporal aggregation (see also section 4.1 on the subject of temporal aggregation). 

2.4.2. Stocha.&tic Autoregressive Volatility 

For eimplicity, let ue contider the following univariate volatility process : 

1/s+1 = /J.I + 01Et+1 (2.4.4) 

where p, is a measurable function of observables !It E If, T :$ t. While our die<:W!llion wiU revolve around 
(2.4.4), we will di9Cllllll 1MM1Cal issues which are general and not confined to that specific model; extensions 
will be covered more explicitly in section 3.5. Following the result in (2.3.8) we know that : 

(2.4.5) 

BUgge&ting (1) that volatility clustering can be captured via autoragn,mve dynamics in the conditional 
expectation (2.4.5) and (2) that thick tails can be obtained in either one of three way,,, namely (a) via 
heavy tails of the white noiae t:.1 distribution, (b) via the stoch...tic features of E [oil If1'] and (c) via specific 

randomness of the wlatillty process o, which makes it latent i.e. o, (/. Jf1'.20 The volatility dynamics that 
follow from (1) and (2) are 11&ually an AR(l) model for l!Oille nonlinear function of o,. Hence, the volatility 
proc:e811 is uaumed to be etatianary and Markovian of order one but not necessarily linear AR(!) in o1 itself. 
This is precisely what motivated Andenen (1994) to introduce the Stocha.stic Aut.oregreesive Variance or 
SARV cl8118 of mO<Mis where o, (or u:) is a polynomial function g (K,) of a Markov procese K, with the 
following dynamic specification : 

K, = w + {JK,_, + ['Y + oK,-1! u. (2.4.6) 

whee,, it = u, - 1 is zero.mean white noiee with unit variance. Andersen (1994) dis<:usses sufficient 
regularity conditions which ensure stationarity and ergodicity for K,. Without entering into the details, 
let us note thl.t the fundamental non-cauaality Assumption 2.3.2A impli.., that the u, procese in (2.4.6) 
doe& not Granger cause e, in (2.4.4). In fact, the non-causality condition suggests a slight modification 
of Andenien's (1994) definlti<in. Namely, it suggests a&SUming E,+1 independent of "'•-J, j .:: 0 for the 
conditional probability diatribution, gwen e,_,, j;,:: 0 rather than for the unconditional distribution. This 
modification does not invalidate Andersen'• SARV class of models ea the moet general parametric statistical 
model studied so far in the volatility literature. The GARCH(l,l) mode! is straightforwardly obt.ained from 
(2.4.6) by letting K,.,. of ,y = 0 and u, = 4. Note that the deterministic relationship u, = E~ between the 
stocllaatlc componentll of (2.U) and (2.4.6) emphasizes that, in GARCH modea, there ia no randomneea 

""Kim ud Shephard (11l1M), um-,; dllta oo weelly returna on the SkP500 Index , found thel. a t.-ClARCH model ha, an 
almoot idmtic:al liloelihood es the oormal i-e:I SV inod,,l, Tim """"1ple alww,, c.bat a sp«ific randomneaa in o, ma;, J:C'O(luce 
the ....... leYel of marginal kurtoorie ..... heavy tail<,d studont distribution o( the .. bite noieo £. 
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•pecific to the volatility proceu. The Autoregressiw Random VarillJlCe model popularized by Taylor (1986) 
also belongs to the SARY cl8811. He,..,, 

logoHI ={+l/)logo,+,1H1 (2.4.7) 

where flt+a la a white noise disturbance BUCh that Cov(f/1+1, e,+1) / 0 to accommodate leverage effects. 
Trus is a $ARV model with K, = \ogq,, a= 0 and '11+1 = 'l'Ut+t·2' 

2.4.3. Identification of parameters 

Introducing 11 ~al class of proceaoes for volatility, like the SARV cl1188 discueeed in the previous .section 
prompts qu ... tions regarding identili<ation. Suppose again that 

YH1 =a,ei+1 
of = g (K,), q E {1, 2} (2.4.8) 
K, =w+fJK1-1+h+aK,-1J1.1t. 

Ander8'ltl (1994), noted the model is better interpreted by considering the zero.mean white noise process 
ii, =Ut 1: 

K, = (w + '1) +(a+ fj)K,-1 + (')' + aK, .. 1)il,. (2.4.9) 

It is clear from the latter that it mey be difficult to distinguish empirically the constant w from the 
"stocluuitic" constant ')'U,. Similarly, the identification oI. the a 8Jld fJ parametm-s aeparately i& alao prob­
lematic u (a + /3) governi, the persistence of shocks to volatility. These identification problems are usually 
r-,!ved by imposing (arbitrary) restrictions on the paiu of parameten (w, 7) and (a,.8). 

The GARCH(l,1) 8Jld Autoregre86ive Random Variance gpecificatione assume that ,y = 0 and a= O 
re&pectively. Identification of all parameter. without sucl:i restrictions generally requir ... additional con• 
strainta, for inst.anciec via 80me distributional Ullllmptions on er+1 and U., whid, restrict the &emi•parametric 
framework of (2.4.6) into a parametric statistical modeL 

To address more rigorously the issue of identification, it is rn;eful to consider, according to Andersen 
(1994), the following reparametrization (a86uming for notational con,renience that o- ,f, 0) : 

{ 

K = (w + 'Y) /(1 - a - {j) 
P = a+{j 
6 = 7/ a 

(2.4.10) 

Hence equation (2.4.9) can be rewritten as : 

K, = K + p (K,-1 K) + (.5 + K,-1) U, 

where O, = ail,. 
It is clear from (2.4.10), that only three functioru, of I.he original parameters a, {J, "/, 111 may be identified 

8Jld that the three parameters K, p, c5 are identified from the first t!rn,e unamdltional moments of the 
procesa K, for iru,tance. 

21 AD<leraon (1994) ala, •howB that the SARV frameworl< enoompeoa,e another iype or random variance model that ""' have 
am&idend aa ID-epecified "'""" it combi,... (2.4.2) Md (2.4.3). 
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To give to I.OOIMl identification results an empirical content, it i• eNential to know : ( 1) how to go from 
the moments of the observable proceos Y, to the moment• of the volatility proceu 11, ll!ld (2) haw to go 
from the momente of the volatility proa,e, a, to the momenta of the latent proc""" K,. Tb~ fi111t point 
ie eaoily wived by specifying the corresponding moments of the standordized innovation p,-oceas c. If we 

usume for inBtance a Gauuian probability distribution, w,e obtain that : 

{ 

EIY,I = .µr:; Ea; 
El11,llt1t-il = 2J.:!:._ E(a,a,_,) 
Elll1fllh--JI = ,/2/1< E(ala,-;) 

(2.4.11) 

The solution of the o«ond point n,quirea in general the apecification of the mapping g and of the 
probability distribution of u, in (2.4.6). For the &0-called Log-normal SARY model, it is assumed that 
a = 0 and K, = log 11, (Taylor's autoregressive random variance model) and that u, ls normally distributed 
(Log-normality of the volatility pro.:.e). In this case, it is euy to show that : 

= exp [n EK, + n2 Var K./ 2] 
"' Ea;"Ear.;exp(mnCou(K.,Ki-,)I 
= piVarK, 

(2.4.12) 

Without the normality assumption (i.e. QML, mixture of normal, Student distribution ... ) this model 
will be lltudied in much more cletlul in sections 3 and 5 from both probabilistic and statistical pointa of 
view. Moreover, tbio i• a template for studying other specifications of the SARY class of models. In 
addition, various specifications will be coruridered in section 4 u proxies of continuous time models. 

3. Discrete Time Models 

The purpcee of this Retion will be to diseu88 the statistical handling of dieerete time SV modelo, wring 
simple univariate cases. We start by defining the most basic SV model corresponding the autoregresaive 
random variance model cliKuased earlier in (2.4.7). We study its statistical properties in section 3.2 and 
provide .. comparieon with ARCH modele in section 3.3. Section 3.4 it devoted to filtering, prediction and 
smoothing. Variou, extensions, including multivario.te models, are roveNd in the last section. Eotlmation 
of the parameter. governing the vol&tili ty proces ie diacusoed later in section 5. 

3.1. The Discrete Time SV Model 

The dlacrete time SY model may be written as 

t == l,.n,T, {3.1.1) 

where 11, denote. the demeaned return procl!llls v, = log(S,/8,-1)- µ and logaf follows an AR(l) procese. 
It will be Ullumed that t:, i• a eeriee oE independent, identically distributed random disturbances. Ueually 
e, ill specil'ied to haw a mmdard distribution ro it. variance o; i& known. Thus for a normal di&tributioo 
U: is unity while fur a t-diltr:ibution with v degrees of freedom it will be 11/ (v - 2). Following a conventioo 
often adopted in the literature we write for ht = log ul: 

(3.1.2) 
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where o is a scale parameter, which removes the n.d for a coruitant term in the stationary first-order 
autor~ve proceas 

(3.1.3) 

It was noted before that if c, and q, are allowed t.o be correlated with each other, the model can pie.It 
up the kind of asymmetrk behavior which ii oFten found in stock prices. Indeed a negative correlation 
between e;1 and f/, inducea a leverage effect. hi in section 2.4.l, the timing of the disturbance in (3.1.3) 
eruiuret1 that the ol>Nr,,ations an, stiU a martingale difference, the equation being written in thio way so as 
to tie in with the state space literature. 

It ehould be atreseed that the ab<:>ve model is only an approximation to the continuow, time models of 
section 2 ob,erwd at discrete interval,,. The accuracy of the approximation is examined in Dassioo (1995) 
using Edgeworth 6Xp8ll8ione (""" also sections 4.1 and 4.3 for further disc11BSion). 

3.2. Statistical Properties 

The following properties of the SV model hold even if e:, and q, are contemporaneously correlated. Fir,;tly, 
8$ noted, y, is a martingale difference. Secondly, stationarity of h; implies stationarity of y,. Thirdly, if 
f/,. ia normally distributed, it follows from the properties of the lognormal distribution that Elexp(an,)J 
exp(a2uV2), where a is a constant and ui is the variance of 1.,. Hence, if e:, has a finite variance, the 
variance of 11, ie given by 

(3.2.1) 

where u~ is assumed known, e.g. er; = 1 when e:, i.i.d. N(O,l). Similarly if the fourth moment of e:, exists, 
the kurtoei• of y, is l<eXp(uf), where Kio the kurtoois of e,, eo 11, exhibit more kurtoei• than e,. Finally all 
the odd momenta are zero. 

For many purpoees we need to consider the moments of powers of absolute values. Again, q, i• asaumed 
to be normally di!tributed. Then for e, having a standard normal distribution, the following expres&ionB 
are derivied in Harwy (1993): 

(3.2.2) 

and 

Var llh I'= er"2'exp(~<>!irJ(~jL [r r\~ ~ r} ,c> -0.5,c;lO 

Note that r(l/2) =,/ii and r(t) = 1, Correaponding expressions may be computed for otMr distributions 
of e1 including Student's t and the General Error Di•tribution (see Nelson (1991)). 

Finally, the square of the coefficient of variation of er; ill often w,ed as a meuure of the relative strength 
r:l the SV process. This is Var(uf)/[E(unp = exp(oi) -1. Jacquier, Polson and Roeai (1994) argue that 
thio ia more eaaily interpretable than u~, In the empirical studies they quote it is rarely less than 0.1 or 
p,,ater than 2. 
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3.2.1. Autocorrelation Functions 

If we assume that the disturbancea £ 1 and 'It are mutually independent, and 71, is normal, tM ACF of the 
abllolute values of the observations raised to the power c is giwm by 

p(<) = E(I !h Fl !JH I') - { E(l y,, I'))' 
T E(l 1}c If<) - {E(l y, I')}' 

exp(',fuiph,,)-1 > 
(
£? ') ,T _ l,c > -0.5,c ;< 0 

'<,exp • .,.. - 1 
(3.2.3) 

where "< is 
1r.c = E(l y, l")/{E(! 11, j<)}2, (3.2.4) 

and p"'.,r = 0,1,2, ... denotes the ACF of h,. Taylor {1986) givee this expression for c equal to one and 
two and f:t nonnally distributed. When c = 2, ", i• the kurtosis and this is three for a normal distribution. 
More g,inerally, 

For Student's t-diatribution with II degrees of freedom : 

= r(c+i)r(-c+Ur(iJrm 11 /2 -'O 
"" {r({+-;Jr(-I+UF , c < II ,c, (3.2.5) 

Note that II must be at lea,t five if c is two. 
The ACF, ¢,.'l, bu the following features. Fim, if ul is small Md/or Ph,, is close to one, 

(c) ~ exp(~t1) - 1 > l· 
PT - P•,, ( (~ '} l) 'T - ' K,exp 4 uh -

{3.2.6) 

compare Taylor (1986, p. 74-5). Thus the shape of the ACF of ht is apprQXimately carried over to ¢,.'l 
except that it is multiplied by a factor of proportionality, which mw,t be !em than one for c positive as 
1<c ie greater the.n one. Secondly, for the t-distribution, 1<c decline8 as II goes to infinity. Thus pt<J is a 
maximwn for a normal distribution. On the other hand, a distribution with less kurtosis than the normal 
will give riee to hlgher values of pt,). 

Although (3.2.6) giVl)S an explicit relationship between p}•) and c, it does not appear poeaible to make 
any general atatement.8 regarding pi•> being maximized for certain values of c. Indeed different values of t1 
lead to different 'llllluea of c maximizing p.!'l. If t1 io clioeen eo as to give values of pt•> of a elmilar size to 
th""" reported in Ding, GrMger and Engle (1993) then the maximum appears to be attained for c slightly 
less than one. The shape of the curve relating ~·> to c i• similar to the empirical relation.ships reported in 
Ding, Granger and Engle, as noted by Han,,ey (1993). 

3.2.2. Logarithmic ':transformation 

Squaring the 01-ml.tions in (3.1.2) and taking logarithms gives 

logrt, = log<12 +"' + 1og4. (3.2.7) 

(3.2.8) 
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where w = log a 2 + E log el, so that the disturbance{, ha& zero mean by construction. 
The mean and variance of log er are known to be -l.27 and r /2 =4.93 when£, has a stnndard normal 

distribution; see Abramovitz and Stegim (1970). HoweY11r, the distribution of log!~ ie far from being 
normal, being heavily skewed with a long tail. 

More generally, if t:, has a t-distribution with II degrees of freedom, it can be expr ... sed as: 

where {, is a •tandard nonna.1 variate and "< is independently distributed such that v~, is chi-square with 
v degi:ee,s of frl!edom. Thua 

and again using results in Abramovitz and Stegun (1970), it follows that the mean and variance of loge; 
Me -1.27 ·1/J(v/2) - log(v/2) Md 4.93 + l/l(v/2) respectively, where 1/J(.) is the digamma function. Now 
that the moments of {, exist even if the model is formulated in surh a way that the distribution of i;:, is 
Cauchy, that is 11 = l. In fact in this case {, is symmetric with excess kurtosis two, compared with excus 
kurtosis four when e, is Gauaeian. 

Since logt:? is serially independent, it is straightforward t.o work out the ACF of logy; for h, following 
any Jtationary proceN: 

(3.2.9) 

The notation pt•l reflects the fact that the ACF of a power of an absolute value of the observation is the 
same as that of the Bax-Cox transform, that is { !y,!' l} /c, and hence the logarithmic tran•form of an 
aboolute value, rail!&d t.o any ( non-zero) power, correspond. to c: 0. (But now that one cannot simply 
set e- 0 in (3.2.3)). 

Note that even if 'hand e, are not mutually independent, the 'h and{, disturbances are uncorrelated 
if the joint distribution of e:, and 'It is symmetric, that is /(£,, 11,) -= /(-e:,, -1),); see Harvey, Ruiz and 
Shephard (1994). Hence the expression for the ACF in (3.2.9) remains valid. 

3.8. Comparison with ARCH models 

The GARCH(l,1) model haa been applied extensively to financial time series. The variance in (3.1.1) is 
aseumed to depend on the variance and squared ob..,rvation in the previOUB time period. Thus 

(3.3.1) 

The GARCH model was propo,,ed by Bollerslev (1986) and Taylor (1986), and is a generalization of 
the ARCH model formulated by Engle (1982). The ARCH(l) model is n special caee of GARCH(l,l) with 
/3 "' 0. The motivation cornea from forecasting; in an AR(l) model with independent disturbances, the 
optimal prediction of the next o~tion is a fraction of the current observation, nnd in ARCH(l) it is 
a fraction of the current squared ob&ervation (plua a conetant). The reason is that the optimal forecast is 
constructed conditional on the cummt information and in an ARCH model too variance in the nm period 
is auumed to be known. Thia construction leads directly to a likelihood function for the model once a 
di.etribution u, aasumed for e:,. ThU6 estimation of the parameter,, upon which at dep,:'ndB is straightforwa:rd 
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in principle. The GARCH formulation introduces terms analogous t.o moving average terms in an ARMA 
model, thereby making forecasts a function of a distributed lag of paat squared oh.rvations. 

It ia otraightforward to show that y, is a martingale difference with (unconditional) variance 1'/(1-o-fl). 
Thus a+ fl< 1 is the condition for covariance stationarity. As shown in Bollerslev (1986), the condition 
under which the fourth moment exists in a Gauaian model is 2o2 +(a+ /3)2 < l. The model then exhibits 
excel!ll kurtosis. However, the fourth moment condition may not always be satisfied in practice. Somewhat 
parada,cically, I.he condition& for strict stationarity are much wesker and, as shown by Nelson (1990), ewn 
include the case o + /J = l. 

The specification of GARCH(l ,l) means that we can write 

1l = 1' + O?fi_ 1 + /Jol-, + v, = 'l' +(a+ P)!1l-i + v, - /Jv,_, 

where u1 = yr - af is a martingale difference. Thus yJ has the form of an ARMA(l,l) pro-.. and so 
it.. ACF can be evaluated in the same way. The ACF of the corresponding ARMA model seems to be 
indicative of the type of patterno likely to be observed in pradice in correlograms of Yl. 

The GARCH model extends by adding more lags of U: and y'f. However, GARCH(l,l) seems to be the 
moet widely used. It displays similar properties to the SV model, particularly lf ¢ is doee to one. This 
should be clear from (3.2.6) which has the pattern of an ARMA(l,1) process. Clearly 4> plays a role similar 
to that of o + /3. The main difference in the ACF• seems to show up most at lag one. Jacquier et al. (1994, 
p. 373) present a graph of the correlogram of the squared -kly retUITl8 of a portfolio on the New York 
Stock Exchange together with the ACF• implied by fitting SV and GARCH(l,l) models. In this c!llle the 
ACF implied by the SV model is cloeer to the aa.mple values. 

The SV model displayo excess kurtosis even if ¢ is zero since y, is a mixture of distributions. The a: parameter g011erno the degree of mixing independently of the degree of smoothness of the variance 
evolution. Thie i,; not the caoe with a GARCH model where the degree of kurtosis is tied to the roots 
of the variance equation, o and f3 in the caae of GARCH(l,l). Hence, it is very often nece"""ry to uoe a 
noo-Gaussian GARCH model to capture the high kurt06i• typically found in a financial time series. 

The bllBic GARCH model does not allow for the kind of asymmetry captured by an SV model with 
contemporaneously correlated dioturbanoes, though it can be modified ao ouggested in Engle and Ng (1993). 
The EGARCH model, propoeed by Ne!aon (1991), handles asymmetry by taking logo-; to be a function of 
past oquares and abeolute valt1e11 of the obeervation&. 

3.4. Filtering, Smoothing and Prediction 

For the purposes of pricing options, we need to be able to estimate and predict the variance, u;, whicll 
of coux"", ia proportional to the exponent of Ii,. An estimate based on all the observations up to, and 
pos11ibly including, the one at time t is called a filterai estimate. On the other hand an eotimate based on 
all the obee.rvations in the eample, including tho,;e which came after time t is ce.lled a smDothed estimate. 
Predictions are estimates of future values. As a matter of historical interest we may wish to examine the 
evolution of the variance aver time by looking at the ornoothed estimates. These might be compared with 
the volatilities implied by the correoponding option.e prlceo as discua,,ed in oection 2.1.2. For pricing 'at 
the money' options we may be able to simply uae the filtered eetimate at the end of the sample and the 
predictions of future values of the vwiance, as in the method suggeeted for ARCH models by Noh, Engle 
and Kane (1994). More generally, it may be necessary to base prices on the full distribution of future 
valu. of the vwiance, perhapa obtained by simulation teclmiques; for further diecueeion oee oection 4.2. 



OM can think of constructing filtered nnd smoothed eotimates in a very •imple, but arbitrary way, by 
taking functions (involving estimated parameter~) of moving awrages of transformed o1-rvation,. Tlui, : 

a;'"" g{ t w,;!(!h-,)},t = 1, .. , T, (3.4.1) 
i=l-1 

w~ r = 0 or l for a filtered estimate and r = t - T for a smooth«! estimate. 
Since - have formulated a stochastic volatility model, the natural course of action is to uee thi• as 

the basis for filtering, smoothing e.nd prediction. For a linear and Gaussian time series model, the st.ate 
space form can be used u the baais for optimal filtering and smoothing algorithms. Unfortunately, t.he SV 
model i• nonlinear. This leaves us with three poeaibilities: 

a. compute inefficient estimates based on a linear state space model; 
b. use computer intensive techniques to estimate the optimal filter to a desired level of accuracy; 
c. wie an (unspecified) ARCH model to appra,i:imate the optimal filter. 

We now turn to examine each of these in some detail. 

3.4.1. Linear State Space Form 

The transformed ol,..,rvatione, the logy:' s, can be used to oonstruct a linear state space model as suggested 
by Nelson (1988) and Harvey, Ruiz and Shephard (1994). The me&.Burement equation is (3.2.8) while (3.1.3) 
is the transition equation. The initial conditiOM for the state, h,, are given by it. unconditional mean and 
variance, that is zero and 11~/(l - q,1) respectively. 

Whi~ it may be reasonable to assume that 'It is nonnal, e, would only be normal if the absolute value 
of e, were lognormal. This is muikely. Thus application of the Kalman filter and the 88110cie.ted smoothers 
yields estimators of the state, h,, which are only optimal within the claaa of E!lltimaton. based on linear 
combinations of the log yrs. Furt.hernmre, it is not the~• which are required, but rather their exponents. 
Suppose h.1r denotes the smoothed estimator obtained from the linear state space form. Then exp(ht/T) is 
of the form (3.4.1), multiplied by e.n estimate of the l!Wing oonstant, u2• It can be written aa a weighted 
geometric mean. Thill makes the estimate& vulnerable to very small observations and is an indication of 
the limitations of this approach. 

Working with the logarithmic transformation raises an important practicsl i88ue, namely how to handle 
obeen'Dtions which are zero. Thls is a reflection of the point raised in the previow, paragraph, since 
obviously any weighted geometric mean involving a zero o!:J6ervation will be zero. More generally we wish 
to avoid very small observationo. One pos,,ible solution is to remove the samp~ mean. A somewhat more 
satisfactory alternative, suggested by Fuller, and studied by Breidt and Caniquiry (1995), is to make the 
following transformation based on a Taylor miea expansion: 

logy~~ log(yf + cs;) - cs;/br. + cs!), t = 1, · · ·, T, (3.4.2) 

where s: is the sample vnria.nce of the 11t• and c is a small number, the suggested value being 0.02. TM 
effect of thil transformation is to reduce the kurtosis in the traruiformed observations by cutting down the 
long tail made up of the negative values obtained by taking the logarithms of the 'inliers'. In other words 
it is a form of trimming. It might be more eatiafactory, to cany out this. procedun, after correcting the 
oboervatio!lll for heteroskedasticlty by dividing by prelimiru,cy estimates, ?,"' 8. The log ur 8 are then added 
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to the transformed ot-rvations. The a;" s eould be constructed from a first round or by using a tot.ally 
differ(mt pcocedure, perhapo a nonparametric one. 

The liMar stat.e epace form cen be modified so as to deal with asymmetric models. It "'as noted 
earlier that even if 'It and Ee are not mutually independent, the disturbances in the state spaee form are 
uncorrelated if the joint distribution of•• and 11, is symmetric. Thua the above filtering and smoothing 
operations are still VB!id, but there is a loos of information atemming from the equaring of the observations. 
Harvey and Shephard (1993) show that thia information may be l'8COVffl'ed by conditioning on the signs 
of I.he obiervations denoted bys., a variable which takes the value +l (-1) when y, is positive (negative). 
These aigns are, of course, the same a• the signs of the£,'•· Let E+ (E_) denote the expectation conditi0<1al 
on•• being positive (negative), and aeeign a similar intetpret.ation to variance and eovsriance operaton. 
The distribution of{, is not affected by conditioning on the signs of the ei's, but, remembering that E('l,!E,) 
is an odd f,mction of e,, 

and 
"'I•= Coo-,(11t,{,) = E,(,1,(,)-E,(q,)E({,) E+("lt{,) = -Cou_('lt,(,), 

because the expecl.ation of {, is zero and 

E+('lt(,) = E+!E(71,IE1)loge,j-µ: E(logE,) = -K(TJ,{,). 

Finally 
Var .. 11, = E+(r,l) - [E+('l,lJ2 u~ - µ•'. 

The linear ,tate space form is now 

logi = w+h.,+{, 
h,,1 = 1/>h, + s,µ' + 'I; ' 

( !: ) Is, -ID ( ( ~), ( ;.t .,.{-8

~.• ) ) • 

(3.4.3) 

The Kalman filter may still be initialiZAld by taking ho to have mean zero and variance o-!/(1 - ¢2). 
The parameterization in (3.4.3) does not di=tly involve a parameter repreeenting the correlation 

between Et and 'h· The relationship betweenµ• and 7• and the original parameters in the model can only 
be obtained by making a diatributional 8Sllumption about E, as well as 'll· When E, and 71, are bivariate 
normal with Corr(,,, I'/,)= p, E(q,lc,) f)(T.,Ei, and so 

(3.4.4) 

(3.4.5) 

When £1 has a t-diotribution, it can be written ao (,l<j'o.&, and (, and 'It can be regarded as having a 
bivariate normal distribution with correlation p, while ~ is independent of both. To evaluste µ' and "'/" 
one proceeds u before, except that the initial conditioning is on ( 1 rather than on £,, and the required 
expreaiona are found to oo exactly as in the GaU88ian case. 

1ne filten!d "8timate of the log volatility Ii,, written as h,+11,, takes the form: 

9'>(pgH +"'l's,) ( 2 . ) • Ji.+1~ = ¢hi11-1 + .,.,. -• logy, -w - h.it-1 + s,µ , 
PljC-l +~I s, + "( 
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where Pt!I-• is the corresponding mean square error of the h,i,-1• Jf p < 0, then "r' < 0, and the filtered 
eatimator will behave in a simiw way to the EGARCH model estimated by Nel.eon (1991), witb negative 
observations causing bigger in~ in the estimated log volatility than corresponding positive valuee. 

:l.4.2. Nonlinear Filters 

In principle, &n enct filter may be written down for the original (3.1.2) and {3.1.3), with the fonner taken 
ae the measurement equation. Evaluating such a filter requiree appramnating a fl<lriea of integrala by 
numerical methods. Kitagawa ( 1987) has proposed a general method for implementing such a filter and 
Watanabe (1993) has applied it to the SV model. Unfortunately, it appear1 to be so time consuming .,. 
to render it impractical with current computer technology. 

All part of their Ba]'eeian treatment of the model as a whole, Jacquier, Pol.eon and Rossi (1994) show 
how it i• p,ooaible to obtain amoothed estimates of the volatilities by simulation. What is required is the 
mean vector of the joint diotribution of the volatilitiee conditional on the observations. However, because 
eimulatlng this joint distribution is not a practical proposition, they decompooe it into a set of univariate 
diatributions in which each volatility is conditional on all the others. These distribution& may be denoted 
p( a,I O'-o, y), where q _1 denotes all the volatilities apart from u,. What one would like to do is to oample 
from each of th- dietributions in turn, with the elements of u_, set equal to their latest estimateo, and 
repeat &eVllI'al thousand times. AB ouch this is a Gibbs oampler. Unfortunately, there are difficulties. The 
Markov structure of the SV model may be exploited to write 

but although the right hand side of the abov,, expression can be written down explicitly, the density is not 
of a standard form and there is no analytic expreBBion for the normalizing constant. The solution adopted 
by Jacquier, Polson and Roesi is to employ a series of Metropolia accept/reject independence chaim. 

Kim and Shephard (1994) argue that the single mover algorithm employed by Jacquler, Polson and 
Rossi will be slow if ti> is cla;e to one and/or a: is small. This ia because <1; changes slowly; in fact when 
it is constant, the algorithm will not converge at all. Another approach baaed on the linear state space 
form, is to capture the non-normal diaturbance term in the meeaurement equation, {t, by a mixture of 
normals. Watanabe (1993) sugg....ied an approximate method baood on a mixture of two moment.. Kim 
and Shephard (1994) propose a multimow oampl...- haeed on the linear lrt.ate apace form. .Blocke of the 
,.;, a.re eampled, rather than taking them one at a time. The techruque they use is based on mixing an 
appropriate number of normal dist.ri but ions to get the required level of accuracy in approximating the 
disturbance in (3.2. 7). Mahieu and Scltotman (1994a) extend this approach by introducing more degreeB 
of &eecwm in the mixture of normals where the parameters a.re estimated rather than fixed a priori. Note 
that the diatribution of the u;s can be obtained from the simulated du.tribution of the ~,. 

Jacquier, Pol.eon and Roesi (1994, p.416) argue that no matter how many mixture componenta are used 
in the Kim and Shephard method, the tail behavior of 1og4 can never be satisfactorily approximated. 
Indeed, they note that given the diecreteneea of the Kim and Shephard state apace, not all atates can haw 
been vmted enough in the &mall numb« of draw• mentiOMd, i.e. the IIOC&lled inlier problem (see alao 
eectlon S.4.l and Nelson (1994)) Is still present. 

Aa a final point it should be noted that when the hyperparameten. are unknown, the simulated distri­
bution of the state produced by the Bayesian approach alJOWB for their sampling variability. 
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3.4.3. ARCH Models as Approximate Filters 

The purpose here is to draw attention to a subj«t that will be discll88ed in greater detail in section 4.3. 
In an ARCH mod.el the conditional variance is 11SSurned to be an exact function of past observations. Ao 
pointed out by Nelson and Footer (1994, p.32) this "88Umption is ad hoc on both economic and statistical 
ground.a. HOMM!f, beeallSe ARCH models are relati .... ly easy to estimate, Nelson (1992) and Nelson and 
Fo&ter (1994) have argued that a 11Seful strategy is to regard them aa filters which produce estimatu of. the 
conditional variance. Thus ewn if - believe - haw a continuous time or diaerete time SV model, we may 
decide to estimate a GARCH(l,l) model and treat the u'f's as an approximate filter, as in (3.4.1). Thus 
the eatirnate i6 a weighted av,e,rage of past &qUMed ob&ervations. It delivers an estimate of the mean of 
the distribution of ql, conditional on the observations at time t-1. Ail an alternative, the model suggested 
by Taylor (1986) and Sclt-rt (1989), in which the conditional standard deviation is set up as a linear 
combination of the previous conditional standard deviation and the previous abaolute value, could be used. 
This may be more robust to outliers as it is a linear combination of past absolute values. 

Nelson and Foster deri"l> an ARCH model which will give the closest approximation to the continuoll.S 
time SV formulation (see section 4.3 for more d.etailll}. This does not correspond to one of the standard 
models, though it is fairly close to EGARCH. For discrete time SV t00d.els the filtering theory is not 
as extensiwly d.e""1op«i Indeed, Nelson and Foster point out that a change horn stochastic diffin'ent 
equations to difference ..quations makes a considerable difference in the limit theorems and optimality 
theory. They atudy the case of near diffusions as an example to illustrate these differences. 

S.S. Extensions of the Model 

S.5.1. Persistence and Seasonality 

The simple.t nonstationary SV model has h,, following a random walk. The dynamic propertiea of this 
model are easily obtained if we work in terms of the logarithmically transformed observations, log if. All we 
have to do is first difference to give a stationary process. The untransformed observations are nonstationary 
but the dynamic structure of the model will appear in the ACF of I YdY,-1 I', provided that c < 0.5, 

The model is an alternative to IGARCH, that is (3.3.1) with °' + fj = 1. The IGARCH model is r,uch 
that the squared obMrvations have eorne of the featl.ll'el! of an integrated ARMA pro«88 and it is said to 
exhibit persistence; &ee Bollmdev and Engle (1993). However, its properties are not straightforward. For 
example it must contain a ronstant, 1', otherwise, as Nelson (1990) has shown, u; converges alt00st surely 
to zero and the model has the peculiar feature of being strictly stationary but not weakly stationary. The 
noru,tationary SV model, on the other hand, can be analyzed on the buis that Ir., is a standard integrated 
of order one prooees. 

Filtering and smoothing can be carried out within the linear state space framework, since logy; is just 
a random walk plus noioe. The initial conditions are handled in the same way as is normally done with 
nonstationary structural time series models, with a proper prior for the state being effectively formed from 
the first observation; see Harvey (1989). The optimal filtered stimate of h,, within the class of estima.tes 
which are linear in past log yf •, that is h.,i,-i, is a constant plu. an equally weighted moving average 
(EWMA) of past logy;'a. In IGARCH u; is giwn exactly by a constant plus an EWMA of past squared 
oburvationa. 

The random walk volatility can be replaced by other non.stationary specifications. One po&Sibility is 
the doubly integrat«I random walk in whlcli l:,.2/r., is white noise .. When formulated in continuous time, 
this model is equiv.a.lent to a cubic spline and is known to giw a relatively smooth tnmd when applied 
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in levels models. It i• attra<!tive in the SV contfrxt if the aim is to find a weighting function which fits a 
smoothly evolving wriance. However, it may be lem stabk! for prediction. 

Other noru,tationary components can easily be brought into h,. For exampk!, a sel!JIOnal or intra-daily 
oompo.nent can be included; the specification is exactly as in the corresponding levels models discussed in 
Harvey (1989) and Harvey and Koopman (1993). Again the dynamic properti<ls a.re given straightforwardly 
by tl,., usual transformation applied to logy;, and it is not difficult to tranafonn the aboolute valuee auitably. 
Thua if the volatility eonaiata of a random walk plus a slowly changing, nonstatioruu-y seasonal as in Haney 
(1989, p. 40-3), the appropriate transformations are .0., logi and I iJi/1/t-, I' where s i• the number of 
seasons. The state space formulation follows akmg the lille$ of the cornl8p0llding structural time series 
models for levels. Handling such effects is not so ea")' within the GARCH framework. 

Different approaches to seasonality can alao be incorporated in SV models using ideas of time defor­
mation as dis~ in a later truh-section. Sucli approache& may be particularly relevant when dealing 
with the kind of abrupt changes in seasonality which ,;eem to occur in high frequency, like five minute or 
ticlt-by-ticl<, foreign exchan~ date.. 

3.11.2. Interventions and other deterministic effects 

Intervention variables a.re easily incorporated into SV models. For example, a sudden structural change in 
the volatility proces& can be captured by NSUming that 

toga:= logo'+ h., + Aw, 

where w, i& zero before the break and one after and A is an unknown parameter. Tiie logarithmic transfor­
mation gives (3.2.8) but with Aw, added to the right hand side. Care needs to be taken when incorporating 
such effects into ARCH models. For example, in the GARCH(l,1) a sudden break has to be modelled u 

with A ron.6trained so that a; is a.1-y• positive. 
More generally observable explanatory variables, a& opposed to interwntion dummies, may enter into 

the model for the variance. 

3.5.3. Multivariate Models 

The multivariate mcdel corresponding to (3.1.2) assumes that each series ls generated by a model of the 
form 

Yu= a,c,.i™'", t = l, ... , T, (3.5.1) 

with the oovariane<a (correlntion) matrix of the vector l!1 = (eu, ... , cm)' being denoted by I:, . The vector 
of volatilities, he, follows a VAR(l) procea., that is 

ho+, = iflh., + .,., 

where 'h - II D(O, E.,). This specification allows the mowmenta in ""'latilit;y to be correlated a=ies 

different eeries via :E,,. Interactions can be picked up by the off-diagonal elements of+. 
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The logarithmic transformation of squared oi-rvations leads to a multivariate linear statf' spACe model 
from which ..,timate.a of the volatilitieo can be oomputed ""in section 3.4.l. 

A simple nonetationary model is obtained by MSUming that the volatilities follow a multivariatE' random 
walk, that is+"' I. If I:,, is singular, of rank K<N, there are only K components in volatilitr. that is each 
h., in (3.5.t) i• a linear combination of K < N rommon trends, that is 

(3.5.2) 

where h) is the K x 1 vector of common random walk volatilities, h is a vector of constants and 9 is an 
N x K matrix of fact.or loading&. Certain lWl.rlctions are needed on 9 and ii to ensure identifiability; see 
H-y, Ruiz and Shephard (1994). The logarithms of the squared observations are 'co-integrated' in the 
sense of Engle and Granger (1987) since there are N - K linear combinations of them which arE' "·hite noise 
and hence stationazy. 1nls implies, for example, that if two series 'of return,, exhibit stochastic mlatility, 
but this volatility is the same with 8' = (1, 1), then the ratio of the series will have no stochastic ,·olatility. 
Thti application of the reJat.ed concept of 'co-pemstence' can be found in Bollerslev and Engle (1993). 
Howewr, as in the uni"8ria.te case there ia IOl1l" ambiguity about what actually constitutes pE'rsist.ence. 

There lo no rell80ll why the idea of common components in volatility ehould not extend to stationary 
models. The formulation of (3.5.2) would apply, without the need for ii, and with h) modelled, for example, 
bya VAR(l). 

Bolleralev, Engle and Wooldridge (Hl88) show that a multivariate GARCH model can, in principle, be 
eetimated by maximum likelihood, but beea111e of the large nwnber of parameters involved computational 
problems are often encountered unleso restrictiona are made. The multivariate SV model is much simpler 
than the general formulation of a multivariate GARCH. However, it is limited in that it does not model 
changing oovariancell. In this sense it is analogous to the restricted multivariate GAR CH model of Baller1l!ev 
(1986) in which the conditional correlations are -urned to be constant. 

Harvey, Ruiz and Shephard (1994) apply the nonetationary model to four exchange rates and find 
just two common factors driving volatility. Another applicaticm is in Mahieu and Schotman (1994b). A 
completely different way of modelling exchange rate volatility ia to be found in the latent factor ARCH 
model of Diebold and Nerlove (1989). 

3.6.4.. Observation intenals, aggregation and time deformation 

SuppOBe that an SV model is observed every Ii time period&. In this case, h., where T denotes the new 
observation (sampling) interval, ill •till AR(l) but with parameter f/1. The variance of the disturbance, T/c, 
incr-, but CJi remains the same. This property of the SV model makes it easy to make comparleons 
across dilferent sampling intervalt; for example it mabe it clear why if ¢ is around 0.98 for daily observa­
tions, a value of around 0.9 can be expected if an obeervation ie made every week (usuming a week has 5 
days). 

If average,, of obeervatione are observed over the longer period, the comparison is more complicat,,d, as 
h,. will now follow an ARMA(1,1) proces8. Howewr, the AR parameter is still ,ti. Note that it is difficult 
to change the obeenation interwd of ARCH proceeBeB unlese the structure is weakened as in Drost and 
Nijman (1993); - alao eection 4.4.1. 

Since, aa noted in eection 2.4, on,i typically UBeS a discrete time approximation to the continuow, time 
model, it is quite maightforward to handle irregularly spaced oheervations by using the linear $tate space 
form BB described, for example, in Harvey (1989). Indeed the approach originally proposed by Clark 
(1973) blll!ed on eubordinated pl'OCli!SllelJ to deacribe 86Bet prices and their volatility fits quite well into thi• 
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fro.mework. The tec.hniques for handling irregularly epaad oboervation• can be uaed u the baais for dealing 
with time deformed oboervalions, as noted by Stock (1988). Ghyaela and Jaaiak (1994a, b) 8llggl!St a SV 
model in which the operational time for the continuouo time volatility equation ia determined by the flow 
of information. Such time deformed proceues may be particularly suited to dealing with high frequency 
data. If r = g(t) is the mapping between calendar time T and operational time t, then 

dS, = pS,dt + 11 (g(t)} S,dW,. 

and 

dlogu(r} = a((b-logu(r)}dr + cdW117 

where W11 and W:,-, are standard, independent Wiener procesaes. The discrete time approximation gen­
eralizing {3.1.3), but including ate.rm which in (3.1.2) is incorpora«od in the constant scale factor 11, is 
then 

where Ag(t) ie the chsnge in operational time be~n two consecutivie c.e.Jendar time observatione and 'It 
is normally distributed with mean zero and variance c2{1 e-2".Ag(•))/:!a. Clearly if Ag(t} = 1, ,t, = c• 
in (3.1.3). Since the /low of information, and hence Ag(t), is not directly observable, a mapping to 
calendar time must be opecified to make the model operational. Ghysels and Jasiak (1994a) discUS8 sewral 
specifications revolving around a scaled exponential function relating g(t) to observables such as past 
volume of trade and pa&t price changes with asymmetric leverage effect.. This approach was also used by 
Ghyeels and Jasiak (1994b) to model return-volume co-movement& and by Ghyeela, Gourierowc and Jasiak 
(1995b) for modeling intra-daily high frequency data whicl, exhibit strong •easonal patterns (cfr. eect.ion 
3.5.1). 

3.5.5. Long Memory 

Baillie, Bolleralev and Miklrelsen (1993) propooe a way of extending the GARCH claae to account fo:r 
long memory. They call their models Fractionally Integrated GARCH (FIGARCH), and the key feature 
is the inclusion of the fractional difference operator, (1 - L )d, where L io the lag operator, in the lag 
structure of past squared observations in the conditional variance equation. However, this model can 
only be stationary when d = 0 and it reduces to GARCH. In a later paper, Bolleralev and Mikblsen 
(1995) consider a generalization of the EGARCH model of Nelson (1991) in which Jogcrl is modelled 
as a distributed lag of past e;s involving the fractional difference operator. Thia FIEGARCH model is 
stationary and inwrtible if I d I< 0.5. 

Breidt, Cre.to and de Lima (1993) and Harvey (1993) propoae an SV model with h, generated by 
fractional noise 

h, =f1,/(l-L)','th-NlD{O,u!),0:5d:5 l. (3.5.1) 

Like the AR{l) model in (3.1.3), this proceM r«!ucs to white noise and a random walk at the boundary 
of the parameter spaoe, that is d = 0 and 1 -pedlwly. HOM!V6r, it is only stationary if d<0.5. Time 
the transition f:rom stationarity to nonstationarity proceeds in a different way to the AR( 1) model. As 
in the AR(l) case it is reasonable to constrain the autoconelatiom in (3.5.1) to be positive. However, a 
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negative value of dis quite legitimate e.nd indeed differencing Ii., when it is nonste.tionary gil/"5 a stationary 
'int.ennediat.e memory' proe""" in which -0.5 $ d $ O. 

The properties of the long memory SV model can be obtained from the formulae in sub-flection 3.2. 
A comparison of the ACF for hi following a long memory procEISS "ith d = 0.45 and af = 2 with the 
corresponding ACF when hi ill AR(l) with ¢ = 0.99 can be found in Ha.rwy (1993). Reali that a 
characteristie prop,erty of long memory is a hyperbolic rate of decay for the autocorrelations instead of an 
exponential rate, a feature obserwd in the data (aee section 2.2(e)). The !lower decline in the long memory 
model ill very clear and, in fact, for 7 = 1000, the long memory autocorrelation is still 0.14, whereas in 
the AR case it is only 0.000013. The long memory shape dosely matches that in Ding, Granger and Engle 
(1993, p. 86-8). 

The model may be extended by letting 'It be an ARMA process and/or by adding more components to 
the volatility equation. 

Ae regards smoothing and filtmng, it hu already been noted that the stat.e space approach is approx­
imate because of the truncation involved and is relatiwly cumbersome because of the length of the state 
vector. Exact smoothing and filtering, which is optimal within the class of estimators linear in the logtf s 
, can be carried out by a direct approach if one is prepared to con•truct and invert the T x T covarlan,;:e 
matrix of the log 1il' s • 

4. Continuous Time Models 

At the end of eection 2 = presented a framework for statistical modelling of SV in discrete time and 
devoted the entire section 3 to specific discrete time SV models. To motivate the continuous time models 
we study first of all the exact relationship (i.e. without approximation error) between differential equatioru, 
and SV models in discrete time. We examine thia relationship in section 4.1 via a class of st.atilltical models 
which are dosed under temporal a.ggregation and pro,,eed (1) from high frequency diecrete time to lower 
frequencies and (2) from continuous time to discrete time. Next, in 5"'ction 4.2, we study option pricing 
and hedging with continuous time models and elaborate on features such as the smile effect. The practical 
implementation of option pricing fonnula.e with SV often requires discrete time SV and/or ARCH models 
as filters and forecasters of the continuous time volatility proc-. Such filters, covered in section 4.3, 
are in general discrete time approximations (and not exact discretizations as in section 4.1) of continuous 
time SV models. Section 4.4 concludes with extensions of the basic model. 

4.1. From discrete to continuous time 

The purpooe of this eection i! to provide a rigorous discussion of the relationship between discrete and 
continuoua time SV modele. The prl!tlfflt.ation wiU proceed fitst with a dlSCUIISion of temporal aggregation 
in the context of the SARY claa of models end focus on specific cases including GARCH modeb!. This 
material is covered in section 4.1.1. Next = turn our attention to the aggregation of continuoua time SV 
models to yield discrete time representations. This is the subject matter of section 4.1.2. 

4.1.1. Temporal Aggregation of Discrete Time Models 

Ande,-,'e SARV due of models wa.s pn,eented in section 2.4 aa a general diecrete time parametric SV 
statistical model. Let w, consider the zero.mean case, namely : 

29 



(4.1.1) 

and <1~ for q = 1 or 2 is a polynomial function g(K,) of the Markov procllll5 K, with stationary autQregre,,si"'l! 
repreoentation : 

K, =w + {JK,-1 + v, 

where 1/31 <: 1 and 

(4.1.2) 

(4.l.3a) 

(4.1.3b) 

(4.1.3c} 

Tite restrictions (4.l.3a-c) imply that vis a martingale difference sequenoe wit.h n,spect to the filtration 
F, = u{!:,.v,,r :S tJ. 22 Moreover, the conditional moment conditio1111 in (4.3.la-c) also imply that t: in 

(4.1.1) is a white noise proc- in a semi-strong sense, i.e. E(e ... ,le,, r $ t] = 0 and E!e:+1le., r :S tj "'1, 
and is not Granger caused by v.23 From I.he very beginning of section 2 we choose the continuously 
compounded rate of return over a particular time boru:on as the otarting point for continuous time prooesses. 
Therefore, let Y,+1 in (4.1.1) be the continuoualy compounded rate of return for (t, t + l] of the aaset prke 
procesa 8,, consequently : 

(4.1.4) 

Since the unit of time of the sampling interval is to a large l!Xl.end arbitrary, we would surely want the 
SV model defined by equations (4.1.1) through (4.1.3), (for given q and function g) to be cloeed under 
temporal aggregation. As rates of return are flow variable,,, cl~ under temporal aggregation means 
that for any integer m: 

m-1 

vi:::) = 1og s,,,.1 s...,_m .. E Ihm-• 
•..o 

is again conformable to a model of the type (4.1.1) through (4.1.3) for the same choice of q and g involving 
BUitably adapted paramew values. The analysis in tbl1 aectiOII follows Meddahi and Renault (1995) who 
study temporal aggregation of SV models in detail, particularly the c- ( 1) tr, = K, , i.e. q = 2 and g 
is the identity function and (2) er~= l!Xp(K,) which io I.he leading diacrete time SV model. We will focus 
here on the £ormer as it is relat«! to the socalled c:ontinuoWJ time GARCH approach of Droet and Werker 
(1994). Hence, v.,e haw (4.1.1) with: 

(U.5) 

.. NOl.etb.ot wedo not uoe here thedeoompooition ~ in (2.4.9) ~.tit= h+aK,_iJu,. 
"The Granger """"""8a) conoidered here for e, ia -i. th&D Aoonmpl.ion 2.ll.2.A OI It applial only to the 6m two 

ronditiooal inomeota. 
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With conditional moment restrictions (4.1.a&-<,) this model is cloeed under aggregation. For instance, 
form=2: 

with: 

where: 

(a (2} )2 = wl1> + n<2) (ul•I )' + 1.Pl t-1 1-1· r-3 r-1 

M°"'°""r, it also worth noting that whenever a leverage effect is present at the aggregate level, i.e. : 

with cj~, = (y,_, + !h-2) ju';:.~ , it neceoae.rily appears at the disaggregate level, i.e. Cov(v,,c,) ,f D. 
Far t.he general case Meddahi and Renault (1995) ahow that model (4.1.5) together with conditional 

moment restrictions (4.I.3a-c) is a class or procee..., cloeed under aggregation. Given this result, it i• 
of interest to draw a comparison with the work of Dro,t and Nijman (1993) on temporal aggregation 
of GARCH. While establishing this link between Meddahl and R.mault (1995) and Drool and Nijman 
(1993) we will also uncover i&oues of Je,wage properties in GARCH models. Indeed, contrary to what i• 
often believed, we will find leverage effect restrictions in socalled weak GARCH proc.,...,. defined below. 
Moreover, we will also find from the result.. of Meddahl and Renault that the de.as of weak GARCH 
pro<:e81l<l!! include. certain SV models. 

To find a clllSB of GARCH processes which is clooed under aggregation Drost and Nijman (1993) 
weakened the definition or GARCH, namely for a positive stationary process u, : 

(4.1.6) 

where a + b < 1, they defined : 

• strong GARCH if !l<+l /u, is i.i.d. with mean zero and variance 1 

• semi-strong GARCH if E[11<+1! !fr, T $ t] = D and E[vl+i lY.., T $ t] == u; 
• weak GARCH ifEL[Yt+1!!1-r,Y;,T $tl=O; EL [tr.+ilY,,1/;,r $t] >=ul.'• 

Droet and Nijman show that weak GARCH proceases temporally aggregate and provide explicit formula 
for their coefficients. 1n section 2.4 it was noted that I.he framework or SARV includes GARCH processes 
whenever there ia no randomness specific to the volatility proce&S. This property will allow us to show 
that the clase of -k GARCH procesees -a& defined above- in fact includes more general SV processes 
which are strictly speaking not GARCH. The arguments, following Meddahi and Renault (1995), require a 

.. For MY Hilb«t lp800 Hof L2, ELj,:,l•,Hi !lJ iA the b«it i;..,... predictor oh, in terms al I and • E H. It should be 
not<d that a mong GARCH P"""""' io a fort.Jori -,i-atrong which itself ia also a ""'6k GARCH J)r<)Oll!lO. 
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cluaification of the model• defined by (4.1.3) and (4.1.5) according to the value of the correlation bet,..,.n 
u, and yl, namely : 

(a) Models Ulith perfect correlation: Thill fim cl886, henceforth denoted Ci, is characterized by a linear 
correlation between v, and y; oondltional on (t:., tJ., T < I} which is either 1 or -1 for the model in (4.1.5). 

(b} Models witlwvt per/ed correlation : This second cl ...... , henceforth denoted C2 has the above condi­
tional correlation leaa than one in absolute value. 

The clasa C1 containe all eemi•strong GARCH proceesea, indeed whenever Var Iii t:,, v., T < tJ is pro­
portional to Var[v,lt:,,V,,T < tj in Ci we he.we. oomi-atrong GARCH. Conooquently, a semi-rlrong 
GARCH processa is e. model (4.1.5) with (1) restrictions (4.1.3), (2) a perfect conditional correlation 
as in C1, and (3) restrictiona on the conditional kurt.oos dynamics.• 

Let us consider now the following BSSumption : 
Assumption ,1.1.1 : The following two conditional expectation• are zero: 

(4.1.7a) 

(4.l.7b) 

This 11881lfflption amounts to an absence of leverage effects, where the latter is defined in e. conditional 
covariance sense to capture the notion of instantaneous causality discll88ed in section 2.4.1 and applied 
here in the context of weak whlte noise.• It should also parenthetically be noted that (4.1.7a) and (4.1.7b) 
are in gfflel'al not equivalent except for the proces- of clasa C,. 

The class C, allows for randomnesa proper to the volatility process due to the imperfect correlation. 
Yet, despite this volatility-specific randomness one can show that under Assumption ,1.1.1 proC"88e8 of C2 

satisfy the weak GARCH definition. A fortiori, any SV model conformable to (4.l.3a-c), (4.1.5), (4.7.la­
b) and ASBUmption ,I.J.J is a weak GARCH process. It is indeed the symmetry assumption (4.l.7a-b), 

or N&trictions on leverage in GARCH, that makes that EL[!ll+i lllr,Y~,T :S tj = a; (together with the 
conditional moment restrictions (4.1.3"-c)) and yields the internal consistency for temporal aggregation 
found by Drost and N\jman (1993, example 2, p.916) for the clau of IIOC8lled symmetric weak GARCH(l,1}. 
Hence, th.is claaa of weak GARCH(l,1) proc- can be viewed"" a subclass of proct!BlleS satisfying (4.1.3) 
e.nd (4.l.5}.27 

4.1.2. Temporal aggregation or continuous time models 

To facilitate our discunion we will $JM!clalize the general continuous time model (2.3.1) to prOCl!Slle& with 
zero drift, i.e. : 

d log S, = a,dW. (4.1.Sa) 

.. In fact, Neloon and F.- (l99C) oboe,ved thaL the moot commooly ,lllOd ARCH modelo ell'ectmely -ume that the 
varianoe of the variance riat,, linearl)- in at, which lo the main dn,.wback of ARCH tnodelo to a)>Pl'<J>U- SV moddo in 
continuous time (..., oJoo ll<!Ction 4.3). 

"'The coraditional ""pecM,ti<m (4.1.7b) can be viewed "" a coadhiooal covariance b«- <1 and 4. It I,, thia oonditioiw 
covwiaooo which, i! __..,prod,....--·- w GARCH. 

27Aa nol«I befoie, U., cluo of~ oatlofylng (4.1.3) and (4.U) is eboo under kmpon,I aggr,,ption, i.aclD<lil,g 
pr.,_ with i,,-ag,, effecto not atiefylng Auum,tlon 4,J.J. 
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(4.l.8b) 

(4.1.Bc) 

when, the at.ochaetic procee- <1,, ,.,c, and Pt are I!= (<1,; -r :S: tJ adapted. To ensure that"• ie a nonneg­
ative proe. one typically follows either one of two strategies : (1) OOlllJidering a diffusion for log a'f or (2) 
describing "l a.s a CEV procae ( or Constant Ela,,ticity of Variance procel!S following Cox ( 1975) and Cox 
and R08II (1976)). 211 1ne former ia frequent.ly encountered in the option pricing literature (aee e.g. Wiggill8 
(1987)) and is ala<> dearly relat.ed to Xelaon (1991), who introduced EGARCH, and to the log-Normal SV 
model of Taylor (1986). The eecond clall8 of CEV proceosSe6 can be written a• 

da2 
- k (e u•) dt -I ~ ("')' dW' I - --- l • t C t (4.1.9) 

where 6 ~ ~ en•uree that al is a stationary process with nonnegative values. Equation (4.1.9) can be 
viewed All the eontinUOU8 time analogue of the discrete time SARY ciaos of models presented in oection 
2.4. This obeervation establishes links with the diseusaion of the previous section 4.1.l and yields exact 
diaa,,l.ize.tion reeulta of continuoW1 time SV models. Hex,,, as in the previous eection it will be tempting 
to draw canpariaons with the GARCH class of models, in particular the diffusions proposed by Drost and 
Werkier (11194) in line with the temporal. aggregation of weak GARCH proceeses. 

Firstly, one ehould note that the CEV proceoa in (4.1.9) impliee an autoregressive model in discrete 
time for crl , namely , 

t:+At 

<if+tu = II (1 .,-•tu)+ e-tl"<if + e-•.i.• / e•(u-l)'Y (er!)' dW! (4.1.10) 

' Meddahi and Renault (1995) show that whenever (4.1.9) and iu discretization (4.1.10) gowm volatility 
then the discrete time procesa log Sr+(H i)I>., / Sr+IA<, k E Z is a SV process satisfying the model restrictions 
(4.1.3&-e) and (4.1.5). Hence, from the diffusion (4.1.9) we obtain the d8.11$ of disc:n,te time SV mode!B 
which ia clOlied tmder temporal aggregation, &11 discussed in th" previous oection. To be more sped&, 
oorudder for instance ~t = 1, then from ( 4.1.10) it follow,, that : 

l/1+1 logS<+t /S, = "~r+1 

(4.1.11) 
crl w + f3a1_ 1 + v, 

where from (4.1.10) : 
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It i, import.ant IO note from (4.1.12) that t.boenee of le=age effect in continUOUll time, i.e. p, = 0 in 
(U.8c), meane nosuch dect at low frequenci!llll 11nd the two symmetry condition,, of AB,vmption ,4.1.1 an, 

fuliined. Thilo limi of reuoning also explalne the tempol'al aggreption result of O<Ollt and Werker (1994), 
but one more generally can interpret discrele time SV model& with leverage d«ta as emct discreti:utlon,; 
of continuow, time SV modoll! with leverage . 

.«.J. Option pricing and hedging 

Sect.ion 4.2.1 i• devoted to the ba&ic option pricing model with SV, n.an1'lly the Hull and White model 
of eeetian 2. We are better equipped n- to elaborate on it& u-retical foundatiOtlll. The practical 
implications appear in aection 4.2.2 while 4.2.3 conclud• with BOme extensiona of the basic model. 

4.2.1. The Baaic Option Pricing Formula 

Conaider again fom111la (2.1.10) for a European option contract maturing at time t + h = T. As noted in 
section 2.1.2, we 8IISUJlle continuous and frictionlea trading. Mol't>OVW no arbitrage profits can be made 
&om trading in the underlying anet and riakleoa bonds ; interest rates are nonstochastic so that B ( t, T) 
defined by (2.1.12) denotes the time t price of a unit discount bond m&turing a.t time T. Consider now the 
probability apace (0,.1', P), which ie the fundamentd spece of the underlying asaet price proceat S : 

dS,/S, 
u; 
dU, 

µ(t,S,,U,)dt +uidW,S 
= f(U,) 
= a(t,U,)dt + b(t,U1)dW;' 

(4.2.1) 

where W, = (Wf,Wf), is a standard two dimensional Brownian Moticm (Wf and W/' are independent, 
:tero-mean and unit variance) defined on (0, :F,P). The function f, called the ""la.tility function, is aawned 
to be one-to-one. In this framework (under sultable regularity conditions) the no fre£ lunch asaumption 
is equivalent to the existence of II probability distribution Q on (O,F), equivalent to P, under which 
'"-ted price ~ are martingales (- Harmon and Knipe (1979)). Such a probability is called 
an equivalent martingale ll1ea8Ure and is unique if and only if the markete are complete (see HarriBOn and 
Plieka (1981)).211 From the integral form of martingale repnioenta.tione (see Karatzas and Shreve (1988), 
p. 184), the (po.itive) density process of any probability measure Q equivalent to P can be written a11 : 

(4.2.2) 

where the proc- ),8 and ).4 are adapted t.o the natural filtration <11 = u[W~, T 5 t), t 2:: O, and sat.my 
the integrability condition.a (almoet surely) : 

[(>.!)'du<+ oo and [ ('-:)
2 du< +oo 

By Girunov'e theorem the pro-,. w"' (w8
, W')' defined by·: 

Wt' - w: + [ >,!du and ff':' - w;r + [ >.:du (4.2.3) 

•1un, lbe mairloo& lo-, .., in<ompiete {before takill!l Into account tu .......w pricing or the optim,).., that we baY<I to 
dw-.... a eel. of eqvmueul. marllnple _,.,.. 
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ia a two dimensionlll Brownian Motion under Q. Th., dynamic of the underlying asset price under Q ia 
obtained direcUy from (·U.l) and (4.2.3). Moreover, the discounted &SMt price procesa S,B (0,t) ,0 $ t $ 
T, i• a Q-martint;ale if and only if for r1 ddlned in (2.1.l 1) : 

, 5 .. µ(t,S.,U,)-r1 ( 
,.. 4.2.4) 

a, 
Since S io the Gnl.y traded aset, the pf008N ;..• is not fixed. The process >.5 defined by (4.2.4) ia called 

the ueet risk pmnium. By analogy, any pr~ ).• satisfying the required integrality condition can be 
viewed ae a -rolatility rilk premium and for any choice of>.• , the probability Q (>.•) defined by the density 
proa. M in (4.2.2) is an equivalent martingale meuure. Therefore, given the volatility risk premium 
pro<>e8$ )." : 

Ct'= B (t, T).e;X~"l (Max(o,Sr- K]] ,0 $ t :5 T (4.2.5) 

is an admiuible price proceaa of the European call option. 00 

1lie Hull and White option pricing model relies on the following &11sumption, which restricts the aet of 
equivalent martingale meaauree : 

A88Umption ,I.E.1 : The volatility risk premium ).f only dependa on the current value of the volatility 
J>l'0"'8II : ).f = >." (t, U,), Vt E (o, T). 

Thi• .... umption io consiotent with a.n intertemporal equilibrium model where the agent preferences are 
described by time separable iaoelaatic utility functions (see He {1993) and Pham a.nd Touzi (1993)). It 
em1- that W8 and w• are independent, oo that the Q (>.') distribution of 1-0f,Sr JS,, conditionally on 
:F, and the volatility path (u,, 0 $ t $ T) is nomial with mean It r.du - h' (t, T) and variance 12 (t, T) = 
It o!du. Under Assumption ff.1 one can compute the expectation in (4.2.5) conditionally on the volatility 
path, and we obtain finally: 

er -s,E;X~") [4>(d,.) - e-••,,H<i,,)] (4.2.6) 

with the same notatian as in (2.1.20). To conclude it is worth noting that many option prlcing formulae 
avaUable in the literature ha'"' a feature common wltb (4.2.6) as they can be expres&ed as an expectation 
of the Blaclc-Scholai price Oller an heterogemit11 distribution of the volatility pammeter (soee Renault (1995) 
for an elaborate diecunion on this subject) . 

.«.2.2. Pricing and Hedgi111 with the Hull and White model 

The Markov katun of the proceu (S,u) implies that the option price (4.2.6) only ~nds on the con­
tempor&neoWI 'VBIUM of the underlying~ prices and it.II volati'lity. Monowr, under mild ~arity 
conditiom, thia function is differentiable. Therelon,, a natural way to aolv,, the hedging problem in this 
atochutic volatility COlltext. is to hedge a gi""11 option ol price Of by Ai units of the underlying 6118et and 
E; unite of any other option of price Cl where t~ hedging ratioe 110lve : 

{ 
lJC/ /8S, - Aj - E; &<J't /fJS, "' 0 
lJCl/&,- E:8C'f/&, = 0 

(4.2.7) 

ll>ffere eJoowhere E'l (·) = E'J ( ·I .1',) .atando rw the c:ooditloftol ~ ..,;,...t« gi- "· .. hen the price d;rnamial...., 
_.,.ibyQ. 
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Such a prQl'.'.edure, known as the delta-sigma hedging strategy, has ~ studied by Scott ( 1991 ). By 
•hawing that any European option complet.ee the market, i.e. lJC't /&, ,r 0, 0 $. I S T, Bajeux And 
Rochet (1992) jllilt.ify the existence of an unique solution to the delta-eigma hedging problem ( 4.2. 7) and 
the implicit assumption in the previous sections that the available information 1, contain& the p88t wlueo 
(S,, a,), T $. t. In practice, option traders often focus on the rilk due to the underlying llBS4l!t price variations 
and consider the imperfect hedging t1trategy E. • 0 and 6, = £JCJ /8S,. Then, the Hull and White option 
pricing furmula (4.2.6) provides directly the theoretical value of A, : 

(4.2.8) 

Thia theoretical 118.l.ue is hard to use in practice since : (1) ewn if w,, knew the Q p.•) conditional 
probability distribution of du given 1, (summarized by u,), the derivation of the expectation (4.2.8) might 
be oomputationally demanding end (2) the conditional probability is direcUy related to the conditional 
probability distribution of r (t, T) = ft a!du giWlll Ur, which in turn may inYIOlve nontrivially the pa· 
rametere of the latent proc""8 a,. Moreover, these parameten are those of the conditional probability 
distribution of 'Y' (t, T) given u, under the risk-neutral probability Q (l0

) which ill generally different from 
the Data Generating Proc\18a P. The statistical inference issues are therefore quite complicated. We will 
argue in aection 5 that only tools like simulation-baaed inference methods involving both asset and option 
price,, ( via an option pricing model) may provide some satisfactory solutions, 

Newrth..t-, a practical way to avoid the11e complications is to use the Black-Scholee option pricing 
model, ew,n though it is known to be miespecilied. Indeed, option tnidera know that they cannot generally 
obtain euflidently aa:urate option prices and hedge T&tioe by uaing the BS formula with historical ""time.ta 
of the wlatility parameters based on time 11<11.iea of the underlying am>et prloe. However, the concept of 
Black-Sclioles implied volatility (2.1.23) is known to improve the pricing and hedging properties of the BS 
model. Thia raises two issues : (1) what is the internal consistency of the eimultaneoua use of the BS 
model (whlch assume& constant volatility) and of BS implied volatility which is clearly time-varying and 
stochutic and (2) how to exploit the panel structure of option pricing errora?31 

Conceming the first issue, we noted in section 2 that the Hull and White option pricing model can 
indeed be oeen as a theoretical foundation for this practice of pricing. Hedging issues and the panel 
l!tructun, of option pricing em>rs are studied in detail in Renault and Touzi (1992) and Renault (1995). 

4.2.S. Smile or Smirk? 

As noted in section 2.2, the smile effect is now a well documented empirical stylized fact. Moreover the 
amile becomes 110metimes a smirlc since it appears more or lea lopeid«l (the aoce.lled skewlml effect). 
We cautioned in aection 2 that some explanal.iQDII of the amile/.mirk effect are often founded on tempting 
aniuogiee rather than rigorous proofs. 

To the best of our knowledge, the atate of the art is the following : (i) the 6r11t formal proof thilt a Hull 
and Whlte option pricing formula bnpliea a sym.m,,tric smile was provided by Renault and Touzi (1992), (ii) 
the first complete proof that the smile/smirk effect& <:an altemat.iwly be explained by liqUidity problems 
(I.he upper parta of the smile~, i.e. the most expensive options are the least liquid) was provided by 
Plattm and Schweizer (1994) using a microetructure model, (iii) there ia no £omw proof that aaymmetri• 
of the probability distribution of the underlying -i price proces (leverap effect., non-normality, ... ) are 

11Tbo >alue of " whld, eqoatm the BS ro..mu1a to Uie oi---1 marloet price of \he oplion heavily depend, on the actual 
date C, tbie Nike price K, lhe time to inaturity (T - t} and u..rdore cNlfttal a pall!I data otrncture. 

36 



able to capture the ob$erwid &kewne11s of the smile. A different attempt to explain the oLoerved skewn""" 
i• provided by Renault (1995). He showed that a slight discrepancy between the underlying - price 
S, med to infer BS implied volatilities and the •tocl<. price S, considered by option traders may generate 
an empiriea.lly plallllible skewneM in the smile. Such nonsynchronow; S, snd S, may be related to various 
issues : bid-ask spreads, non-synchronous trading between the two markets, forecasting strategi.., based 
on the leverage eff'ed, etc. 

Finally, to concllide it is also worth noting that a new approach initiated by Gourieroux, Monfort, 
Tenreiro {1994) and foll~ also by Ait-Sahalia, Bickel, Stoker (1994) is to explain the BS implied volatility 
Ullin,; a nonparametric functkm of some obserwd state variables. GourieroW<, Monfort, Tenreiro (1995) 
obtain for example a good nonparametric fit of the following form : 

a, (S1, K) = a(K) + b(K) (log 5, JS,., )2
. 

A cl&Mical smile effect is directly observed on the intercept a(K) but an inveroe ,;mile effect appears for 
the path-dependent effed parameter b( K}. For American options a different nonparametric approach i• 
punmed by Broadie, Detemple, Ghysele and Torres (1995) where besides volatility also exercise boundaries 
for the opt.ion contracts are nonparametrically obtained.32 

4.3. Filtering and Discrete Time Approximations 

In section 3.4.3 it was noted that the ARCH dags of models could be viewed as filtere to extract the 
( continuous time) conditional variance process from discrete time data. SeV11ral papers were dewted to 
the subject, namely Nelson (1990, 1992, 1995a,b) and Nelson and Foster (1994, 1995). It was one of Nelson'e 
llellllllal contributions to bring together ARCH and continuous time SV. Nelson'• firet contribution in his 
1990 paper waa to show that ARCH models, which model volatility as functions of past (squared) returns, 
converge weakly to a diffusion process, either a diffllllion for log al or a CEV process 116 de8Cribed in section 
4.1.2. In particular, it was shown that a GARCH(l ,l) model observed at finer and finer time intervals 

At = h with eonditional variance parameters ""• = hw, oh = o ( h/ 2) 1 and /J• = I ~ o ( h/ 2) ! - Oh and 
conditional mean µ,. = hml converges to a diffusion limit quite similar to equations (4.l.8a) combined 
with (4.1.9) with 6"" 1, namely 

dlogS1 = M?dt + a,dW, 
dn; = (w Do-;) dt + aldW;. 

Similarly, it was also shown that a aequ~nce of AR(l)-EGARCH(l,l) models converges weakly to an 
Ornstein-Uhlenbec:k dif!'uaion for In o} : 

dlnu~ = o (P- lna;) dt + dW[. 

Hence, these buic insights showed that the continuou• time •tochastie difference equations emerging 
u diffuaion limits of ARCH models were no longer ARCH but irurtead SV models. Moreover, following 
Neleor, (1992) even when misspecified ARCH models still kept d .... irable properties regarding extracting 
the oontinuOll8 time volatility. The argument wu that for a wide variety of misspecified ARCH models 
the difference between the ARCH filter volatility estima.tea and the true underlying dlifusion vola.tilitie,i 

30s.., aloo Boeeaena and Hillion (199S} for the ,_ of a nonperamet.ri<: h«lging prooedure and the omile ~. 

37 



con'llt!rgi!II to zero in probability "" the length of the sampling time interval goes to zero at an appropriate 
rate. For inatance the GARCH(l,l) mode! with w•, a,. and /Ji. deecribed before estimates uf aa followa: 

a; = ""• (1 - p.r• + f "•Pf.Y~-hMll .... 
where y, = logS./S.-1,. 'l1utl filter can be viewed aa a particular cue of equation (3 . .U). The GARCH(l,1) 
and many other models, effectlvely achie'llt! conslstent estimation of O't via a lag polynomial function of 
past squAN:d returns cloee to time t. 

The fact that a wide variety of misspecified ARCH models consistently extract ,:, 1 from high frequency 
data raises questiomo regarding efficiency of filters. The amwers to such question• are provided in Nelson 
(1995a,b) and Nel,,on and F06t.er (1994, 1995). In ...ction 3.4 it was noted that the linear atate space 
Kalman filter can also be viewed as a (suboptimal) extraction filter for "•· Nebon and Foat.er (1994) show 
that the ...ymptotically optimal linear Kalman filter has asymptotic variance for the normalized .timatian 
error h-i {In (ul) - In al] equal to ,\Y( l/2)i where Y(:r) = d ~n r (x)J /dx and,\ is ualing facto.. A model, 
closely related to EGARCH of the following form : 

In (ii'r+h) = In (ii'n + p,\ (S1+• - S,}a, 1 

+A (l -/)i [r(1/2)i f (3/2)t !Si+h - S,lui' - :d] 

yields the aeymptotically jtimal ARCH filter with asymptotic ".ariance for the normalized E!Oltimation 
em>r equal to .,\ (2 (1 - p2)J where the parameter p ™'8Sure the lev,erage effect. These rault.o also show 
that the differenceo between the most efficient suboptimal Ka.Iman filter and the optimal ARCH filter can 
be quite substantial. Beeidee filtering one must also deal with •moothing and forecasting. Both of.these 
issues were diacussed in section 3.4 for discrete time SV models. The prediction propertias of (misspecified) 
ARCH models were studied extenoively by Nelson and Foeter (1995). Nelson (1995) takes ARCH model,, 
a step further by studying smoothing filters, i.e. ARCH models involving not only lagged sque,red returns 
but a)sQ future realiu.tions, i.e. r = t - T in equation (3.4.l ). 

4.4. Long Memory 

We conclude this aection with a brief discussion of long memory in continuous time SV modelo. The purpa,e 
is to build continuous time long memory stochastic -rolatility models which are rel.,vant for high frequency 
financial <I.a.ta and for (long term) option pricing. The reasons motivating the 111e of long memory modeltJ 
W\ITT! discussed in eeetions 2.2 and 3.5.5. The advantage of considering continuous time long memory is 
their relati'ft! ability to provide a more structural interpretation of the parameters gowming short. term 
and long term dynamics. The first subsection defines fractional Brownian Motion. Next - will tum our 
attention to the fractional SV model followed by a •eetion on filtering and diacrete time appraximatiOllll. 

4.4.1. Stochastic Integration with respect to fractional Brownian Motion 

We recall .in this llllbeection a few definitions and propertis of fractional and long memory prooeaeea in 
cont.inllOWI time, extensively atudied £or instance in Comte and Renault (1993). Consider the 8C&W' ~ 

x.= £ a(t-s)dW, (4.4.1) 
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Such a proce96 iB asymptotically equivalent in quadratic mean to the stationary proc<'S• 

y, = ["' a{t s)dW, (4.4.2) 

whenever .J.i"" a2 (z)dx < +oo. Such proceBlleliare called fra.ct.ionalprocessesifa (z) = x 0 a (x).; r (1 + a)for 
jol < 1 / 2, a continuOUBly differentiable on [O, Tl and where r (1 + o) is a scaling factor USE'ful for nor­
malizing fractional derivation operator, on IO, Tj. Such ~ admit ..,,,.,,.al representations, and in 
particular I.hat they can also be written: 

f' [' (t-s)° 
x, = Jo c(! - s)dW.,., Wo, = lo f(l + o)dW• (4.4.3) 

where W0 is the so-called fractional Brownian Motion af order o (see Mandelbrot and Van ::-.:ess (1968)). 
The relation between the functions a and c is one-to-one. One can ehow that W., is no! a semi­

martingale (see e.g. Rogen; (1995)) but stochaatic integration with respect to W., can be defined properly. 
The prott$se8 x, are long memory if: 

lim xii(:,;) = a,,,, , 0 < o < 1/ 2 and O < a.., < +oo. 
X -t +oo 

for instance, 

dx, = -kx,dt + udW.,, 

with its eolution giVWl by : 

x,=0,k>O,O<o< l/2 

(4.4.4) 

(4.4.5) 

(4.4.6a) 

x\0 l = £ e-•<•-•ludW, (4.4.6b) 

Note that, x)0 l the derivative of order o of:,;,, is a solution of the usual SDE: dz,= -kz,dt + udW,. 

4.4.2. The fr-actional SV model 

To facilitate comparieon with both the FIEGARCH model and the fraetional extensions of the log-Normal 
SV model di11CU-.:I in section 3.5.5 let us consider the following fractional SV model (henceforth FSV) : 

dS. / s. u,dW, 

dlogo-, = -k logo-,dt + ')'dW,,. 

(4.4.7a) 

(4.4.7b) 

where k > 0 and O $ o < 1 / 2. If nonzero, the fractional exponent a will provide eome degre,, of freedom 
in the order of regularity of the volatility pl'O<;<l68, namely the pester a the .smoother the path of the 
volatility prooess. 1f we denote the autooovariance function of o- by r,(·) then: 

a > 0 ~ (r, (h) - r, (0)) /h-• 0 "8 h--+ 0. 
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Thie would be incorrectly interpreted w, near-integtawd b,,havior, widely found in high frequency data 
for inatanee, when: 

and o1 ill a continuous time AR(l) \\ith conelatim p - l. 
'The long memory continuous time approadt allows ua to model ~ce with the following !eattm!& 

(1) the volatility process itself (and not only ita logarithm) bu hyperbolic decay of the correlogram ; 
(2) the persittence of volatility shocks yielda leptolmrtic features for return which vanishes with temporal 
aggregation at a Blow hyperbolic rate of decay.33 Indeed for rate of return on IO, h]: 

E{JogS. ... A/ s, - E(Jos s. .... , s,>r/ (Ef1og s ..... , s, - E(log s,H/ s,)!')2 _.. 3 

aa h-> oo at a rate h2o- 1 if o e Jo, 1/2( and a rate exp(-kh/2) if o = 0. 

4.4.3. Filtering and Discrete Time Approximations 

The volatility procesa dynamics a.re described by the eolution to the SDE (4.4.5), namely: 

log u, = [ (t - s)° Jr (1 + a) dlogo~") 

where log q(o l follows the 0-U proce6s ; 

dlogoj0 l = -klogu/">dt +1dW, 

(4.4.6) 

(4.4.7) 

To compute a dieerete time approximation one must evaluate numerically the integral (4.4.6) using only 
values ol the procea, Jogo(o) on a discrete partition of (o, !] at points j/ n,j = 0, 1 ..• , (nt).34 A natural 
way to proceed is to use step functions. generating the following proxy process: 

!•tl 
log fr~= L ( t - (i - 1)/ n)" /r (1 + o) A logo~,! (4.4.8) 

1~1 

where Alogo~j~ = logo~i! - logut:,11n. Comte and Renault (1995) show that logo-,,. convergea to the 
logo, process furn-+ oo uniformly on compact sets. Mo'""""8f, by rearranging (4.4.8) one obtains: 

[

J-l ] 
logoj/n = ?; (l(i+ l)"-i"J/n"f (l + a)JL!, logu~i~ (4.4.9) 

where L. ia the lag operator comsponding to the t1Ampling acheme j/n, i.e. L..ZJ!n = Zu-1)tn· With 
this eampling echane logol4

) is a disc,,.te time AR(l) deduced from the continuous time proceaa with the 
fol.lowing ~t.ation : 

(1 - p,,£.) logu~1~ = u;,,. (4.4.10) 

13\Vltb mual GARCH or SV modelo, it ,...,..,._ at an ~ rate (- Dmot and Nijman (1.993) ud Dmot and 
W«lwr (llllM) for ti-....., In I.be abort ..-,cry .-). 

Ml.zJ II tbe ~ I< 1UCb Uw k $ • < k + I. 
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where p. = exp ( -k / n) and u j/n is the M8ociated innovatiorui proc""8, Since the process is stationary we 

are e.llowed t.o write (auwning Jogu;j~ = U;fn = 0 for j SO) : 

.(n) [H(i+l)
0

-i
0 

•] -I 
logu ;/• = ~ n"f (l + a) L,. (1 - p,,L,,) "H• (4.4.11) 

which gi- a parametrization of the wlatility dyna.mia in two part., : ( 1) a long memory pe.rt which 

corresponds to the filter Ea. L~/ n" with a.= ((i + l)" - i"J /f (1 + a) and (2) a short memory part which 

is characterized by the rR(l) proceo : (I - p..L..r' "ifn· Indeed, one can show that the long memory 
lilt.er is •Jong.t.erm equivalent" to the usual discrete time long memory filter• (1 - Lr0 in the sense that 
them is a long term relationship (a cointegrat.ioo relation) between the two types of pr~. However, 
this Jong.term equivalence between the long·memory filter and the usual diocrete time one (1- Lr" do"8 
no imply that the etandard parametrization FARIMA(l,n, 0) la Wl!ll-auited in our framework. Indeed, one 
can show that the uwal diecrete time filter (1 - Lf" introduces some mixing between long and ehort 
term characteristic,, whereas the pan.imooiOOll continuoll8 time model doesn't.30 This feature clearly puts 
the continUOWI time FSV at an advantage with regard to the discrete time SV and GARCH long-memory 
models. 

5. Statistical Inference 

Evaluating the likelihood function of ARCH models is a relatively ~aightforward task. In oharp contrast 
for SV models it is impossible to obtain explicit expressions for the likelihood function. This is a generic 
feature common to almom all nonlinear latent variable models. The lack of estimation procedures for SV 
models made them for a long time an unattractive cl- of models in comparison to ARCH. In recent 
years, howev:er, remarkable pr~ has been made regarding the estimation of nonlinear latent variable 
modals in general and f5V modele in particular. A flurry of methods are now available and are up and 
running on computers with ..- increasing CPU performance. The early attempts to estimate SV models 
U!led a GMM procedure. A prominent eicample is Melino and Turnbull (1990). Seetion 5.1 is devoted t.o 
GMM atimation in the context of SV models. Obviously, GMM is not. designed to handle continuous 
time diffusions as it requirell discrete time proce611e8 satisfying certain regularity conditions. A continuous 
time GMM approach, developed by Hansen and Scheinkman (1994), involves moment conditions directly 
drawn from the continuous time representation of the process. Thia approach is <:ilecusoed in Section 5.3. 
In between, namely in section 5.2, we d.iSCUBO the QML approach suggested by H..,.,,.,y, Ruiz and Shephard 
(1994) and Nelson (1988). It rell. on the fact that the nonlinear (Gaussian) SV model can be transformed 
into a linear non-Gauaaian state apace model u in Section 3, and from this a Gaw,sian quasi-likelihood 
can be computed. None of the methode covered in Sections 5.1 through 5.3 involve simulation. However, 
increased computer power has made simulation•based atimation techniques increasingly popular. The 
simulated method of moments, or eimulation-bued GMM approach proposed by Duffie and Singlt!ton 
(1993), ill a first example which is oowred in Section 5.4. Next ..., discuas the in<:ilrect inference approach 
of Gourieroux, Monfort and Reoault (1993) and the moment matching methods of Gallant and Tauchen 
(1994.) in Section 5.5. F'mally, Section 5.6 covers a ~ large cla.118 <A estimaton, using computer inteni,i-.., 
Markov Chain Monte Carlo methods applied in the context of f5V models by Jacquier, Polson and Rossi 

•Namely, (1-L,,)0 lcg1'j1,. lo not a11 AR(l) ~-
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(1994) u,d Kim and Shephard (1994), and limulation baaed ML estimation pr~ in Daniel...,., (1994) 
and Denie1Aun and Richard (1993). 

In eadi oectQI - will only try to limit our fo('WI to the w,e of ... timation proc:<>dur..., in the context 
of SV modela and avoid detail, regarding econometric theory. S<,ine uoeful reference. to complement the 
ma&eriel whkh will be~ are (1) 8- (1992), Gallant and Whiu (1988), Hall (1993) and Ogaki 
(1993) b GMM wtimatian, (2) Gourihoui, and Moo!mt (1993b) and Woolclridfe (1994) for QMLE, (3) 
Gourierour and Monfort {1995) and 1'auchm (1995) {Of oimulal.ioo ba.eed econometric methodo indodi111 
indirect W-.ce end moment matchin«, and finally (4) Geweke (1995) and Sl,.,phard (1995) for MarkD'v 
Chain Monte Ce.do methoda. 

5.1. Generalised Method of Momenta 

Let ua conaidu the aimple -.ion of the dis(nte t.imc SV M pr-nted in equation, (3.1.2) 1111d (3.1.3) with 
the additional .-umpu<>11 d ncnnality for the probability diatribution of I.he. innovation proc- (c., '11)­
Tbi, log-nomial SV model hu 1-n the subject of at leut tlN) atenoiw Monte Carlo studlee on GMM 
Mtil!latian of SV rnodela. They -re conducted by Andenen and S..-m...n (1993) and Jll()(lui..-, Polacin 
and Rc.i (1994). The main idea i, to ellploit the ,tationa.ry and ugodic propertia of the SV model 
which ;yield the conv..rgence al' aample momenu to their unconditional expectatione. For inttance, the 
-d and fourth rnawinta are simple apreee;on, d u2 and~. namely u2axp(ul/2) and 3a'ap(2u?) 
respac:tively. If U- momenta IIR computed in the sample, ul can be eetimated directly from the sample 
kurt.ceia, ii, which ia the ratio of the fourth moment to the -d ~ment equl!led, TIie expr"98ion ia just 
uf • log ( 'ii./ 3). The parameter u' can then be enimated from lite ,eamd moment by aubetituting in this 
atimAt.e of af. We might iilao ccmpute the fuwt.order autocovarianoe of ,if, or simply the sample mean 
of V:ir...1 which hM expectation u4exp( {1 + ¢ }af) and from which, giwn the enimale of uS and ~ , it i• 
111.raigbtforward to get an •tim&t.e of ¢. 

TI,e above· prooedure i1 an example of the applica\iOll of the method of moments. In g,eneral t.errna, m 
momtnte are camputed. For a sample of eise T, let9T(P) denotw them x l vector al differencs between 
each umple lbQlllellt and its tbecm,tical llltpreaion in term, of the model pal'llmeten /3. The ,_ali-1 
method of marnonte (GMM) emmator i, conatructed by minimizing the criterion function 

iJr =Argmin 9r(JJ')WT9r(fJ) 

" 
where WT ie an m x m weightin1 matrix reBeetin« the importance gi""n to matching eacll al' the momenta. 
Whm Et and 'le are mutually independa:it, Jacquier, Polaon and Roui (1994) ,uggeet wring 24 momenta. 
'The fint four ..,. gi-1 by (3.2.2) for c =- l, 2, 3, 4, while the analytic ap.--ion for the o\heno ie: 

E(I r,tf,...,. IJ =- {u:a.2"(I' (i + nJ' /11 }ap(~uf[J +¢')),c = 1, 2,r = 1, 2, .. , 10.• 

1n I.he more pneral cue wbci Et and flt ere carrelaied, Melino and Turnbull (1990) included eetimatea 
d: Efl 11s l 11&--,) ,r = 0, ±1, ±2, ... , 10. They praented an explicit expraaion in the cue of T "' 1 and 
abow that jq sign i• entirely drtennlned by p. 

The GMM method. may u,o be 8Xtendad to handle a non-normal diatribution fur E1• Tb,, required 
analytie expneeiona can be obtained u in IIOdioh 3.2. On the other hand, the analytic ~ rl 

•A a,nplo •Y to dsM t-- -~ It via• t---., ~ limilor io .pirlt &o (2.,.8) and (U.9) 0< 

(3.2.S). 
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unconditional moments presented in ..,ction 2.4 for the general SARV model may provide the basis of 
GMM estimation in more general settings(..,.. Andersen (1994)). 

From the very start we expect the GMM estimator not to be efficient. The question i• how nwch 
inefficiency should be tolerated in exchange for its relative •implicity. The generic &etup of GMM leaves 
un,opedfied the number of moment conditions, except for the minimal number required for identification, as 
well as the explicit choice of moments. M<>£OOVer, the computation,; of the weighting matrix ia also an issue 
since many options mat in practice. The f!Xteoove Monte Carlo studies of Ander&en and S..rensen (1993) 
and Jacquier, Polson and Roooi (1994) attempted to arn,wer th""" many outstanding questions. In geru,ral 
they find that GMM is a fairly inefficient procedun, primarily stemming from the .tylized fact, noted in 
section 2.2, that ,f, in equation (3.1.3) is quite cloae to unity in moet empirical finding,; because volatility 
is highly persistent. For parameter values of </> clooe to unity convergence to unconditional moments is 
extremely slow suggesting that only large sampl.,. can rescue the situation. The Monte Carlo otudy of 
Andersen and S0re11Ben (1993) provides some guidance on how to control th,, extent of the inefficiency, 
notably by keeping the number of moment conditions small. They also provide specific recommendations 
for the choic.e of weighting matrix estimators with data-dependent bandwidth wring the Bartlett kernel. 

5.2. Quasi Maximum Likelihood Estimation 

5.2.1. The Basie Mode) 

Consider the linear state spau model described in sul>-oection 3.4.l, in which (3.2.8) i• the measurem,,nt 
equation and (3.1.3) is the transition equation. The QML estimators of the parameters <I>, er; and the 
variance of {., c1, are obtained by treating {, and ,,, as though they were normal and maximizing the 
prediction error decompooition form of the likelihood obtained via the Kalman filter. Ae noted in Harvey, 
Ruiz and Shephard (1994), the quasi maximum likelihood (QML) e•timator• are asymptotically normal 
with £.ovariance matrix given by applying the theory in Dunsmuir(1979, p. 502). This asmmes that 11, and 
{, have finite fourth moments and that the parameters are not on the boundary of the parameter space. 

The parameter w can be estimated at the same time as the other parameters. Alternatively, it can be 
estimated as the mean of the Jog !J1 's, since this i• asymptotica.lly equivalent when </> is less than one in 
absolute value. 

Application of the QML method doee not r<1quire th,, aesumption of a specific distribution for ,,. We 
will refer to tltia as unre&tricted QML. HoweYer, if a distribution is 8.Sl!umed, it is no longer necessary to 
estimate al, as it is known, and an estimate of the scale factor, cr2, can be obtained from the estimate of 
w. Alternatively, it can be obtained as ,iuggest.ed in sub-section :U.1. 

If unrestricted QML estimation is carried out, a value of the parameter determining a particular die­
tribution within a clase may be inferred from the eotimated variance of{,. For example in the case of the 
Student'a t, 11 may be determined from the knowledge that the theoretical value of the variance of{, is 
4.93 + ,1{(11/2) (where ~ (·) ie the digamma functioo introduced in eection 3.2.2). 

5.2.2. Asymmetric Model 

In an uymmetric model, QML may be based on the modified state epace form in (3.4.3). The parameter• 
o;, cr:,,f,, µ•, and 1• can be estimated via the Ka!nwi filter without any distributional ftl!8l"mptioru,, apart 
from the existence()( fourth momento of flt and (. and the joint symmetry of { 1 and 11<· However, if an 
estimate of p is wanted it is ~ to make distributional aseumptions about the disturbances, leading 
to formul"" like (3.4.4) and (3.4.5). Th""" formulae can be uoed to set up an optimization with reap«:t to 
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~ original puaroeten o•,a:,land p. Thi• hu the ad>a11tap that the col'l8traint IPI < I can be lmpc,eed. 
Note that any 1.-Gatribution gi- I.he oame relatiamhip bei-en the pe.runet.en,, ao with.in thl• c1- It i• 
not _.,. to IJ*:ify 0,., degn,ee of freedom. 

Uein( tbe QML met.hod with both the original diaturb&ncee -urned to be Cwa.ian, Harwy and 
SMphard (1993) eatimate a model for I.he CRSP dail)' Mums on a value ftighted US rnarka inda lot 
3rd July 1962 to 31st December 1987. Thae daia ~ ueed in the paper by Neleon (199]) to ill....trat. 
hia EGARCH model Tbe empirical result. iadicate a ""Y high nept.iw correlation. 

11.2.3. QML in the hequeney Domain 

For a long memory SV model, QML atimation in the timo, d<>main becomee relatiwly 1- attractiw 
because the state apace form (SSF) cM only be med by expreminJ hs u an autoregTessive or IDIMD,!I: 
awrage ~ and truncatin1 at a au.itably high lag. Thue t.he approach ia rumben,ome, th~ the 
initial etaie covariance matrix it euily ccnitNcted, and. the t.ruocation doee not affect lhe uymptotic 
properties of the eet.imatan. If the autoregre.iw apprmiination, and t!Nmon tlw SSF, i, not u.ed, 
time domain QML n,quir111 the repeated oonatruct.ion and inwnion of the T x T C0¥10rianee matrix of the 
log Ir.' a; - SoMll (1992). On the other hand, QML eetimat.ion in Lbe frequency domain ia no men difficult 
than it is in the AR(l) CAN, Cheung and Diebold (1994) p,-il llimulauon mdenoe which wgest. that 
alt.hough time ®main eetimation ia more efticieot in lll\all eamplee, the difference ia 1 .... marked when a 
man hu to be eatimated. 

The frequency domain (quui) log,Jiblihood function i•, neglectin& oonetanta, 

l T-1 T-1 

log L = - 2 E loggr ,r E I(>.;)/g, (6.2.1) 
J•l jaJ 

where J(A1) ia the ...mple •i-tnun of the log if• and 9J ia tbe epectral pnerating function (SGF), whid, 
for (3.5.1) i• 

Note that the summation in (5.2.1) i• fron,. j ., l rather than j "' 0. Thia it becaw,e 9o aumot be 
8Yllluated for poeitiw d . Howevw, the omiMion of the zero freqUl!lley does remove the mean. The 
unknown parametffll are "~• a? and d, but af mq be conoentrat.ed out of I.be lilaelihood function by • 
repwameteriaation in which ~ la replaced by I.he aignal-noiee ratio q c a:JO:, On the other hand if a 
dietn"buUon ia ....wned for e., then u? i• knawn. Breidt, Crato and de Lima (1993} ,how the ~cy 
of the QML eetimator. 

When d lies be~ 0.5 and one, hs i• nonatationary, but dlffemxing the loe;J,:'a yielda a zexo mean 
atatlonary proma, the SGF cl which is 

g1 = u!(2(1- caeA,)JH + 2(1-co.~)'1 

One of the attractio111 of long memory modela ia that infemice ia not affected by the kind <A unit root 
i- wbich ariM with autoregrsafona. Thua a liblihood baaed teat cl the ~ that d "" 1 .gainat 
the altematlw that it ii lea than one can be caoatructed uaing standard theory; ne RobiJleon (1993). 

5.~.4. Compariaon of GMM and QML 

Simulation evidenc,e on I.he finite umple performance cl GMM and QML cu, be found in Andenen and 
Stnneen (1993), Ruiz (1994), Jacquier, Polam aod Re.; (1~), Bniidt and Carriquh:y (1995), Anderwan 



and S-,ru,en (1996} and Han,,,ey and Shephard (1996). The g<!'neral condw,ion aeems to be that QML 
giwa eatimates with a smaller MSE whffl I.he volatility ia relati..,.Jy etrong as reflected in a high coefficient 
of wriatkin. This is because the normally distributed volatility oomponent in too measurement equation, 
(3.2.8), is large relative to the non-normal enw term. With a 1- coefficient of variation, GMM dom­
inates. HoweYet, in ~ ~ Ja,:quier, Po!aon and R<ieei (1994, p. 383) obeerve that • ... the performanoe 
cl both the QML and GMM estimatom deteriorate, rapidly.» In other words the ase f« one of the more 
computer mtenai"Ve methods outlined in Section 5.6 becomes stronger. 

Other things being equal, an AR coofficiont, tf,, cloee to one tendB to favor QML because the autocor­
relations are slow to die out and are hence captunid l.e.q weU by the moments used in GMM. For these.me 
reason, GMM ie likely to be rather pooc in estimating a long memory model. 

Th., attraction of QML is that it is very euy to implement And it extends .,...jly to more general models, 
for example nornitationary and multivariate ones. Al. the same time, it provide,, filtered and mnoothed 
estimates of the state, and predictions. The one-Gtep ahead prediction errors can also be used to coostruct 
diagnostics, such as the Box-Ljung stati,;tic, though in evaluating auch t.,sta it muat be remembered that 
the observations are non-normal. Thus even if the hyperparameters are -tu.ally estimated by another 
method, QML may have a valuable role to play in finding a suitable model specification. 

l.i.3. Continuous nme GMM 

HanNn and Scheinkman (1995) propose to estimate continuous time diffusions using a GMM procedur,i 
specifically tailored for such proCEIISeS. In section 6.1 we diecuased estimation of SV models which are either 
explicitly formulated as discrete time proc- or else are <mcretizations of the continuous time diffusione. 
In both cues inference is based on minimizing the difference betw""n unconditional moments and their 
Bample equivalent For continuous tim<1 processe,; H&n.8en and Schei.nkman (1995) draw directly upon the 
diffusiOII rather than its dittretization to formulate moment conditions. To de&er1"'be the generic eetup of 
the method they propoeed let w, consider the following (muJti,....riate) system of n diffusion equation•: 

dy, = µ(lit; tl)dt + u(y,; ll)dW, (5.3.1) 

A comparison with the notation in section 2 immediately drawa attention to certaln limitations of the 
setup. Fint, the functionsµ.(,) = µ(·; tl) imd u, (,) = q(,; tl) are parameterized by 11, only which restricts 
the state variable proceN U, in section 2 to contemporan4'<>1.ll! values of y,. The diffusion in (5.3.1) im,ol"'-"' 
a general vector ~ '!It, hence y, could include a volatility procesa to a.ceommodate SV models. Yet, 
the lit """1ior is assumed oboerveble. For the moment ....., will leave th-i- aeide, but return to them 
at the end of the section. Hansen and Scheinkrnan (1995) consider the infinitesimal oper:ator A defined for 
a cl111111 of square integrable functions <p: ll" -1. as follows: 

A,ip (11) = ~~~) µ,, (y) + ~Tr ( <Te (7/)u~ (y) ~:};)) . (5.3.2) 

Boca UH the operator is defined 811 a limit, namely : 

it does not neceM&rily exist for all sqwu-e integrable functioru, !{J but only for a restricted domain D. A set 
of moment conditions can now be obtained for this ~ of functions ip e D. Indeed, as ehown for inetance 
by Revuz and Yor (1991), the following equalities hold: 
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EA,,p(y.) =0, (5.3.3) 

(S.3.4) 

where Ai is the a<ijoint lnnniteeimal operator of A, for the ecalar product 1111110Ciated with the invariant 
tru>UUNO of the VOO- y.17 By choosing an appropriate aet ol' l'unetiona, H- and Scheinkman exploit 
moment conditiona (5.3.3) and (5.3.4) to construct a GMM estimator of(). 

The choice af the function ,p E D and ip e D· determines what momenta af the data are Wied to e&timate 
the parameters. This obviously raises <jll'!NltiO!lll regarding the choice of functions to enhance efficiency of 
the estimator but first and foremost also the identification of fJ via the conditions (5.3.3) and (5.3.4). It 
was noted in the beginning of the oection that the multivariate process y,, in order to cow,r SV models, 
mw,t somehow include the latent conditional wriance process. Gourieroux and Monfort ( 1994, 1996) point 
out that since the moment conditions based on '{) and ip cannot include any latent proce&11 it will often 
(but not always) be impoeaible to attain identification of all the parameter&, particularly those govmling 
the latent volatility proc-. A possible remedy is to augment the model with ob&ervaiio!U! indlroctly 
relai«I to the latent volatility process, in a sense making it observable. One possible candidate would be 
to include in y, both the NCU.rity price and the Black-Scholes implied volatilities obtained through option 
market quotation& for the underlying -t. This approach is in fact suggested by Paatarello, Renault and 
TO\Di (1993) iuthough not in the cont.ext of continuous time GMM but instead using indirect inference 
method!, which will be discUlll!OOd in oection 5.5.311 Another J)Ol!Sibility is to rely on the time deformation 
repr<!Mntation of SV model.a as discuased in the cont.ext of continuoui, time GMM by Conley et al. (1005). 

5.4. Simulated Method of Moments 

The estimation procedures discussed so far do not involw any simulation techniques. From now on we 

cover methods combining simulation and estimation beginning with the simulated method of moments 
(SMM) estimator, which i• covered by Duffie and Singleton (1993) for time series proceasea.311 In eectlon 
5.1 ""' noi«I that GMM estimation of SV models is based on minimizing the dlatance between a set of 
choeen sample moments and unoonditionel population moments expressed as analytical funct!Ollll of the 
model parameters. SupJX>II" now that such analytical expressiona are hard to obtain. Trus is particula.ly 
the case when such expresions involve marginaliza.tiona with respect to a latent pro<:eN such a stochastic 
volatility proceoa. Could we Oien simulate data from the model for a particular value of the paramet.ere and 
match moments from the Bimulated data with sample moment.II as a substitute? This strategy i& precisely 
what SMM ill all about. Indeed, quite often it jg fairly straightforward to simulate pr<>.-aes and therefore 
take advantage of the SMM procedun,. Let U!I consider again as point of relerence and illustration the 
(multivariate) diffusion of the previous Sf>dion (~uation (5.3.l)) and conduct H mnulationsi = 1, ... ,H 
using a discretization: 

6v, (9) - µ (iii (fJ) ;9) + '! (ir. (IJ) ;IJ)e:, and i = 1, ... , H and t = 1, ... , T 

"~ - that A; it 11pm -,ciAted with • domain D' "" that y, e D 811d 'fl e D' in (U.4). 
•a - -..11 in -.,.. 2.1.a that implied w1atilil.im ..... i.-i. The ind.- inllnnoe .,.._ .... ueod by Paslon,Jlo, 

n-111t aad 'lbui (1993) can eope "1th aucb - ... will be IIXJ)lainod in llfflion IU. Tbc ,- ol optl<m prico dM8 is 
Further~ in eoc1ion 6.7. 

"'SMM ,_ oriainally pr-1 b ""'""""""'ion applicaim, - p .. and Pollenl {l!l89) and Mc:fliiddea (1989). Seo 
aloo Gourii!roux and Monlor\ (199:la). 
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where ii, (8) are simulated given a parameter 8 and E, is i.i.d. Ganmian.•0 Subject to identification and 
other regularity con<titions one then considen 

o!j. ""Argminfl J(y1, ... !J1·)- "ij f.1 (ii, (0) , ... ,g;.(B)) ft 

" ·-· 
with a suitable choice of norm, i.e. weighting matrix foc the quadratic form as in GMM, and function / 
of the data, i.e. moment oonditiont. The asymptotic difftrlbution theory io quite eimllar to that of GMM, 
except that oimulation introdu- an extra eource of random error affecting the efficiency of the SMM 
estimator in comp,arieon to it. GMM counterpart. The efficiency loes can be controlled by the choice of 
11.•1 

1.\.5. Indirect Inference and Moment Matching 

The key insight of the indin,ct inference approacli of Gourieroux, Monfort and Renault (1993) and the 
moment matcliing approac-h of Gallant and Tauchen (1994) is the introduction of an auxiliary model 
parameterized by a v.e<:tor, oay /J, in order to estimate the model of intere&t. In our case the latter is the 
SV model. 42 In the first subsection we will deocribe the general principle while a second one will focus 
exdusiw,ly on estimating diffueions. 

5.6.1. The Principle 

We noted at the beginning of section 5 that ARCH type model• are relatively eSJIJY to estimate in comparison 
to SV models. For thia reason an ARCH type model may be a p088ible candidate as an auxiliary model. An 
e.lternative strategy would be to try to summarize the features of the data via a SNP density as developed 
by Gall&11t and Taucllen (1989). This empirkal SNP density. or more spedlic..Uy its score, could alao fulfill 
the role of auxiliary model. Other p""8ibilities could be considered as well. The idea is then to use the 
auxiliary model to estimate /3, so that: 

T 

th =ArgmaxElogr(v, I Yt-1,/3) 
~ ... l 

(5.5.1) 

where we restrict our attention here to a simple dynamic model with one lag for the purpoee of illlliltration. 
The objective function /' in (5.5.1) can be a peeudo-likelihood function when the auxiliary model is 
deliberately misspecified to facilitate estimation. As an altematiw /' can be taken from the class of SNP 
densities.43 Go~I'OUJ(, Monfort and Renault then propooe to ertimate the same parameter vector /J not 
using the actual eample data but inst<!ad using samplea {V, (D)} ::_1 simulated i = 1, .. . H times drawn from 
the model of interest giwn 9. Thi• yields a new estimator of /J, namely: 

"'We <liocU88 in d.«.m1 the oimulatioo techniqual In the l>fllCI -ion lndred, to control for the discretization bi.as, one baa 
to oimulete witb a liner 811:mpling im«val. 

"Th• ""ympt<,tic """""""of the SMM -- deponda on H through a factor(!+ n-1
), ..,. e.g. Gourieroux ,md 

Monron (1996). 
CJt io -1.h -in& \hat th<> oimulation bmed inference metlwda "" will deacribe hffil ore applicable t<> many otb<lr tJp<o 

ol ...,.W,, b- ~.time_..., and J*ial data. . 
4The diocuoeion ahould - i...w. tbe im~ thal the auiliary model can only be eetimat«I via ML-t)'Pe eotil11MOl'S. 

Any root T oo11111s4ent ..,yffl!)totically ......,,..1 mtimatiollO proo,dure m,,.y be ....!.. 
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H T 
PHT'(D) =Ar~ (1/H) EI:Jocf' (V.(D) I i1Li(8).P). 

tJ ,. 1,-.1 
(6.5.2) 

The rwxt .tep i• to minimise a quadral.ic diat.ana uoing a .....,ghting matrix WT to ch~ en indirect 
eeti11>ator o( D hued an H oimulation replicaliooe and a oample ol. T obervationa, namely: 

eHT' aArgmin (Pr - PHT (D) )' w,. (Pr - PHT (D)) 
~ 

(5.5.3) 

The approach of Gallant and Tauc:hen (1994) awido tho Btep of •tlmating PHT (D) by rompuung the 
score function off' and minimizing a quadratic di~ 1imilar to (5.6.3) but involving the ecore funclion 
evaluat.ed at P,,. and replacing the oample data ~ r.imulated eeri .. generated by the model d inter.t. 
Under suit-able regularity conditions the eetimatoc DHT ia root T ooneiatent and aaymptotically oonnal. JJ. 
with GMM and SMM there le again an opwnal weighting matrix. 11,e ffllulting uymptotic ~ 
matrix depaide on the number of llimwati<JN in the aame way the SMM estimator depends on H. 

Gotarim>wt, Monfort and Renault (1993) illllltrated t.he meofindirect inf«enceestimator with a oimple 
eumple that we would lib to briefly diacum ~- Typically AR modela are euy \o -Limate while MA 
model• require more elaborate proceduree. Supp<ae the model of i~ i• • mewing awrag,e model ol. 
ceder ane with para.meter 8. l:natead of .. timatini the MA pararnet..- direcLly from t.he data they prop<iee 

to eatimate an AR(p.) model involving the paramet.n wctor p. The MXt Btep I.hen con.ei•ta o( aimulating 
data uair,c the MA model and proceed further u deecrlbed abowos ... TI,e,y found that the indir.d inferenoe 
eotim.Mot- for 9Hr appeared \o ha~ better finite 11811lple proptrliee t.han the more traditional maximum 
lilaelihood eatimat.ora for the MA parameter. In fact the indirect inCuence eetimator ~ibited featuns 
aimilar to the medi&n unbiaaed estimator~ by Androewa (1993). n- proper-ti• -.-e wn&rmed 
and clarified by GoumroUJ1, Renault and Touzi (1994) who ~udied the ....:and order uymp\otic expansion 
of indirect inference e.iimaton and theu ability to niduce finite 1&111ple biu. 

5.5.2. F.e-.imatill8 Difruaiooa 

Let ue conaider the aame diffution equation u in t«tion 5.3 which dealt with continuous tune GMM, 
namely: 

dy, .. p (11,; D) dt + u (11,; 6) dW, (6.5.4) 

In teetioo 5.3 we noted that the ahem, equati<m bulda und.r cctain fflltrict.ona auch • the functiona 
p and u bemg ratricted to 1,1, u argumenta. While tbeae ..tridlonl -. binding for t.he Ntup cl aecticn 
5.3 thie will not be the c..., for t),., estimation procedww diacuaaed here. lnd.d, equa,i<m (S.5.4) i, only 
i,-1 • an illuatratiw uample. 1be diffu.ian • then oimula&ed either via exact diacretizatlona or eome 
type of appru,t.imate diacretization (e.g. Eulet cc Mil'tbtein, - Pardoux and Talay (1985) or Kloeden and 
Platten (1992) for further deteila). More Jllffl,.Y - define the p~ 11i11 ruch that: 

11<
1> z 11<

1> + /J (,,<'>. o) 6 + ti ( 11
1'>. o) 6111.<'> (t+t)I U •U • U, ~(1 .. 1)1 (5.6.5) 

"Apln - could - a - priociple bore, followutc O.u..at ad,.__, (1904). 1n .t lo• ti-c.-1111H1ns 
~ SNP ~ to fit~ ~ bf a MA (1) modol -W be to siaale "" AR{p) IIIO<W. Ohyadt, KWaf and 
Vodoa-, (1!194) prov;de a incn detailed clitcuaicm of -..1-ed aod ind.-~ silnalora of MA IIIOdelo • wall 
- Uieir relation with D><ft 111.aodard eotimatora. 
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Und"'· suitable regularity conditions (..,. for instance Strook and Varadhan (1979)) we know Lhat the 
diffusion admits a unique solution (in distribution) 8.fld the proc- y[6

} converges to y, as 6 goes to zero. 
Therefore one can expect. to simulate y, quite accurately for 6 sufficiently email. The auxiliary model may 
be a discretization of (5.5.4) clioosing Ii = 1. Hence, one forrnulatt!$ a ML e,Jtimator ba,;ed on th• nonlinear 
AR model appearing in {5.5.5) setting l, = 1. To control for the discretization biu one can simulate I.he 
underlying diffusion with 6 = 1/10 or 1/20, fol' inst.Mee, and aggregate the simulated data to correspond 
with the eampling frequency of the DGP. Br«-, &aillet and Zakoian {1994) di=• of the effect of the 
simulation step size on the asymptotic di1tribution. 

The use of eimulation-b.ased inforence methods becomeo particularly appropriate and attractive when 
diffusions involve lal.ent ~. auch as is the CASe with SV model.e. Gourieroux and Monfort (1994, 
1995) diecUBS aeveral example& end study their performance via Monte Carlo simulation. It should be 
noted that estimating the diffusion at a coat11er discretization is not the only pos,sible choice of auxiliary 
model. Indeed, Pastordlo, ReJl4U)t and Tooz.i (1993), Engle and Lee (1994) and Gallant and Tauchen 
(1994) suggest the use of ARCH-type models. 

There he.Ve been ..,..,.a] succeseful applicati,;,ns of theae methods to financial time series. They include 
Broze et al.(1995), Engle and Lee (1994), Gallant, Hsieh and Tauchen (1994), Gallant and Tauchen (1994, 
1995), Ghyrels, Gourieroux and Jasiak (1996b), Ghysel& and Jasiak (1994a and b), Pastorello et al. (1993), 
among othen. 

5.6. Likelihood-based and Bayesian Methods 

In a GaUB&ian linear state opaa, model the likelihood function l• constructed from the one step ahead 
predictioo errors. This prediction error decompo11ition form of the likelihood is used as the criterion 
function in QML, but of eouTM it io not the exact likelihood in this case. The exact filter propo..ed 
by Watanabe (1993) will, in principle, yield the exact likelihood. However, as was noted in section 3.4.2, 
b«e.use this filter u- numerical integration, it tat- a long time to compute and if numerical optimization 
is to be camed out with re8pect to the hyperpararnetern it ber.omes impractical. 

Kim and Shephard (1994) work with the linear rtate space fonn used in QML but approximate the 
log(x2) diatributlon of the measurement error by a mixture of normals. For each of these normals, a 
prediction error decompooition likelihood function can be computed. A simulated EM algorithm is used 
to find the best mixturo and hence calculate approximate ML estimates of the hyperparamaters. 

The exact likelihood function can also be constructed as a mixturo of dietributions for the obserw.tioru; 
conditional on the volatilitie11, that is 

L(y; ,t,, a;, u1) = j p(ylh)p(h)dh 

where y and h contain the T elements of y, and ht respectively. Thia expre88ion can be written in terms of 
the rif' ,, rather than their logarithm&, the 11;.s, but it makes little difference to what follows. Of cotmie the 
probrem is that the abow likelihood has no closed form, so it must be calculated by some kind of •imulation 
method. Excell ant discussions can be found in Shephard (1995) and in Jacquier, Polson and Rossi ( 1994), 
including the commentll. Conceptually, the simplest approach is to use Monte Carlo integration by drawing 
from the unconditional distribution of h for given "11lues of the parameten,(¢,0:,0-2), and estimating the 
likelihood as th<i awrage of the p(yjh)' a. This ie I.hen repeated, """rching ov..r ¢, o-: until the maximum 
of the simulated likelihood is found. As it atands this procedure is not very satisfactory, but it may be 
improved by using ideas of importance sampling. Thie has been implemented for ML estimation of SV 
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models by Danielll80ll and Richard (1993) and Danielsaon (1994). However, the method becomes more 
difficult a the sample size increuee. 

A more promising way of att.aclcing likelihood estimation by .eimulation c..chniquea is to use Markov 
Chain Monte Carlo (MCMC) to draw from the distribution oC volatilities conditional on the oboem>tiona. 
Ways in which thia can be done were outlined in lltlb-e«tion 3.4.2 on nonlinear lilt.ere and smoothers. Kun 
and Shephard (1994) m,ggeat a method of computing ML estimator,, by putting their multim<M, algorithm 
within a eimulated EM algorithm. Jacquier, Polson and Roe.i (1994) adopt a Bayesian approach in 
which the specification of the model has a hierarchical structure in which a prior distribution foe the 
hyperpararnetera, ,p = (u,,,p,u)', joim the conditional distributions, ylh and hl,p. (Actually the u;, 
are UNd rather than the ,.;.,), The j<;>int poeterior of h and ,p is proportional to the product of tmiee 
three distribution&, that is p(h,,pjy) IX p(yih)p(hlcp)p(,p). The introduction of h make,; the statistical 
treatment tractable and is an example of what i• called data augmentation; see Tanner and Wong (1987). 
From the joint posterior, p(h,,pjy), the marginal p(hjy) solves the smoothing problem for the ttnobaerved 
volatilities, taking account of the sampling variability in the hyperpara~. Conditioru,.1 on h, the 
posterior of ,p,p(cpfh,y) i.s 1imple to compute from standard Bayesian treatment of linear models. If it 
were slao possible to omple directly from p (hjcp, y) at low coet, it would be straightforward to construct 
a Markov chain by alternating back and forth drawing from p(cplh,y) and p(hj,p,y). This would produce 
a cydic chain, a special CMe of which is the Cibbe sampler. H~. as was noted in sub-section 3.4.2, 
Jacquier, Polson and Rcesi (1994) show that it i• much better to decompoee p (hlcp, 71) into a set of univariate 
distributions in which each II,, or rather u., is conditioned on all the othen,. 

The prior distribution for w, the parameters of the volatility process in JPR (1994), is the standard 
conjugate prior for the linear model, a (truncated) Normal-Gamma. The prion ean be made extn:mely 
diffuse while remaining proper. JPR conduct an extensiw sampling experiment to document the per· 
formance of this and more traditional approaches. Simulating siocluo.stic volatility series, they oompare 
the sampling performances of the posterior mean with that of the QML and GMM point estimate&. The 
MCMC posterior mean exhibit root mean squared errors anywh,rn, between half and a quart.er of the size of 
the GMM and QML point estimates. Even more striking are the volatility llmOOthing performance results. 
The root mean squared error of the posteri<Tr mean rl he produced by the Bayman filter is 10% ,mialler 
than the point estimate produced by an approximate Kalman filter aupplied with the true parameters. 

Shephard and Kirn in their comment of JPR (1994) point out that for wry high q; and 11mall u~, the rate 
of convergence of the JPR algorithm will slow down. More draWB will then be n,quired to obtain the same 
amount of information. They propose to approximate the volatility disturbance with a diecrete mixture 
of normals. The benefit of the method is that a draw of the ve<:tor h is then p088ible, faster than T draws 
from each h1. However this is at the coot that the draws navigate in a much higher dimensional space dtlt! 
to the di&eretisation effected. Aleo, the conwrgence of chains hued upon discrete rnixtu.ree is sensitive to 
the number of components and their assigned proi,;.bility •ighte. Mahieu and Schotman (1994) add eome 
generality to the Shephard and Kim idea by letting the data produce estimates of the cluoracterietics of 
the discretized state •pare (probabilities, mean and wriance ). 

The original implementation of the JPR algorithm was limited to a 1M[)' basic model of stochastic 
volatility, AR(l) with uncorrelated mean and volatility disturbances. In a univariate setup, correlated 
di&turbances are likely to be important for stock returns, i.e., the ao called leverap effect. The evidmt:e in 
Gallant, Rciei, and Tauchen (1994) also points at non normal conditional enors with both elcewnea and 
kurt.osia Jacquier, Polaon, and &esi (1995a) ehow how the hierarchical framework allom the convenient 
extenalon of the MCMC algorithm to more general models. Namely, they estimate univariate lltofflastic 
volatility models with correlated disturbances, and skewed and fa1Aailed variance disturbance, a well as 
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multivariate models. Alternatively, the MCMC algorithm can be ext.ended to a factor structure. The 
factors exhibit stochastic volatility and can be ot-rvable or non oboervable. 

5.7. Inference and Option Price Data 

Some of the continuous time SV models cu.rrently found in the literature were demopoo to answer questions 
regarding derivati~ -,,lrity pricing. Given this rather ,explicit link bet- derivate& and SV diliusioru, it is 
perhape somewhat surprising that relatiwly little attention has been paid to tM use of option price data to 
estimate continuous time diffusions. Melino (1994) in his Bur'l'e)' in fact notes: "Clearly, information about 
the lftochastil: propernu of an aa•et 'a pril:t! u contained hoth in the history of the asset. 's price and the pri<:e 
of 11ny options writtffl on it. Cun"e'fll strategies for combining these two sources of information, including 
implicit estimatum, are UflCQmfortahly ad /we. Statistirolly sp,,oking, we need to model the source of the 
prediction errors in option pricing and to relate the distribution of tnue em>f'>I tc the ateck price fJTOC!l8!J. 
For example implicit estimation, like computation of BS implied YOlatilities, is certainly uncomfortably 
ad hoc from a statistical point of view. In general, each oboerved option price introdu= one source of 
prediction error when compared to a pricing model. The challen~ is to model the joint nondegenerate 
probability distribution o£ options and asset priC>!$ via a number of unobserved state variables. This 
approach has be,,,r, pw:eued in a number of n,cent papen, including Chriatemlen (1992), Renault and Touzi 
(1992), Prutorello et al. (1993), Ouan (1004) and Renault (1995). 

Christensen ( 1992) conside!'II a pricing model for n .....,ts as a function of a state we tor x, which 
ie (l + n) dimensional and divided in a !-dimensional observed (Zt) and n-dimen&ional unobserv,,d (w,) 
component. Let p, be the price vector of the n assets, then: 

p,=m(z.:,wt,9) (5,7.1) 

Equation (5.7.1) provides a one-to--One relationship between the n latent state variable,; w, and the 
n ot-rved prices p,, for given z, and 0. From a financial viewpoint, it implies that the n aaseb are 
appropriate instruments to complete the markets if we assume that the observed state vsriablee z, a:re 
already mimicked by the price dynamics of other (primitive) asset& Moreover, from a statistical viewpoint 
it allows full structural maximum likelihood estimation provided the log-likelihood function for observed 
prices can be deduced easily from a statistical model for x,. For instance, in a Markovian setting where, 
conditionally on :r,,, the joint distribution o£ if = (z,)1s~r ia gi"'111 by the derurity: 

T 

f. (xflx.i,e) = n f (z,,w,lz,...,w,_,,e) 
1,.1 

(5.7.2) 

the conditional distribution of data DT = (p,, z,)1s,sr given Do = {l;v, Zo) is obtained by the usual Jacobian 
formula: 

fv(DflDo,O) = fi J!z.,m;1(z.,p,)!z.-1,m,1(z,_1,P1-1),9]:r: 
-e.-1 -1 

jv .. m (z., m;' (z,,p,) ,o)I 
(5.7.3) 

where m,1 (z,.J is the w-lnwrae of m(z,.,(IJ defined formally by m,1 (z,m(z,w,9)) = w while V.,m (·) 
represents the column,, corresponding tow d. the Jacobian matrix. This MLE using price data of derivatives 
Wll8 propOMd independently by Christeruien (19112) and Duan (1994). Renault and Touzi (1992) were 
ill&tead more specifically interested in the Hull and White option pricing formula with: z, = S. obeerved 
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underlying asset price, and w, = o, uno1-~ stoch¥tie volatility proce811. Then with the joint proceoa 
x, = (S,, o,) being Markovian ""' han, a call price of the fonn: 

C, = m(x,,11, K) 

where (J"' (Q', "Y) invol-, two types of parameter&: (l) the vector a d.parameten, cleecribing theclynarni"8 
of the joint process :r, = (S,, o,) which under the equivalent martingale meuure allows to compute the 
expectation with rsped. to the (risk-neutral) conditional probability distribution of r (t,t + h) gi¥11Q o,; 
and (2) the vector "'I of parameters which characte.rize the ri&k premia determining th!' relation betMen 
the risk neutral probability distribution of the % proc- and the Data Generating Proeet1a. 

Structural MLE is often difficult to implement. Thia motivated Renault and Touzi (1992) andPaa­
toreUo, Renault and Touzi (1993) to consider lea efficient but simpler and more robust procedures involving 
aome proxi• of the lltruetural likelihood (5. 7.3). 

'I\:, iUustrate theee procedurt!6 let w; consider the standard log-normal SV model in continuoua time: 

dlogo, = k (o.- logo,)dt +cdW;'. (5.7.4) 

Standard option pricing arguments allow u. to ignore misspecincations of the dri~ of the Ullderlying 
8111et price proee.. Hence, a first step towarde simplicity and robustnesa is to ieolat.e from the likelihood 
function the volatility dynamia, namely: 

(5,7.5) 

associated with a sample <11;,i = l, ... ,n and t,-t,_, = At. To approximate this expr"llSion one can 
consider a direct method, as in Renault and Touzi (1992) or an mdired method, as .in Pastorello et al. 
(1993). The former involves calculating implied volatilities from the Hull and White model to create p!lfflldo 
samples O'" parameterbed by le, a and c and computing the maximlll'.ll of (5.7.5) with reepect to those. three 
paramet.ers.46 Pa.etorello et al. (1993) proposed aevwal indirect inference methodll, d"'8C.!ibed in aection 
5.5, in the c<>ntext of (5.7.5). For instance, they propooe to w,e a:n indirect inference 81:rategy involving 
GARCH(l,1) volatility estimates obtained form the underlying aeet (aleo independently sugge11ted by 
Engle and Lee (1994)). Thi• produces asymptotically unbiased but rather inefficient estimates. Pa:etorello 
et al. indeed find that an indirect inference simplification of the Re:oault and Touzi direct ~ 
involving option prices is far more efficient. It is a clear illuatration of the intuition that the use of Option 
price data paired with l!Uitable statistical tn<!thods should largely improve the accuracy of eetimating 
volatility diffusion parameten. 

5.8. R.egr58ion Models with Stochastic Volatility 

A single equation regression model with stochaetic -rolatllity in the disturbance term may be written 

!it= 'G)3 + u., t = 1, ... , T, (5.8.1} 
where !It denotes the t-th observation, x, is a k x l veetor of explanatory variable&, tJ ill a k x l w,ctc,r 
ol co,fticients and u. = oe,exp(0.51.,) as dil!CUBleCi in MCtion 3. ,.. a apecial cue, tche ol;,,,etvaiions may 
simply haw a. non-zero mean 110 that ,r!Jj =µ'vt. · 

'"The direct tmxlmiu.t.lon of (6.7 .11) UBing BS impliocl ..,latnw.., baa aloo been ~. - e.g. lleyi,al, Kemna: and 
VMlt (1994). Obviooo17 the uoe of BS Implied "Olatitit:r inducoo a ~Ion bias d"" 1o tbe BS model~-
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Since u, is •tatiorui.ry, an OLS regression of 1h on x, yields a <Ollfiiatent estimator of~- However it i,, 
not efficient. 

For given values of the SV param..ten, ,/> and a:, a smoothed eetimator of h,, Ii.qr, can be compuW 
using one of the methods outlined in section 3.4. Multiplying (5.8.1) through by exp(-.5h~r) gives 

ii,=~+ ii.,, t = l, ... ,T (5.8.2) 

where the !ii'• can be thought of aa heteroakedaaticity corrected disturbances. Hal"Ye}' and Shephard (1993) 
show that these disturbances have zero me.an, constant variance and are aerially uncorrelated and henoe 
suggest the construction of a feasible GLS estimator 

(1 = [:te-A.rrx,X:.]-I Ee-"-Tx,!lt 
Jal t=l 

(5.8.3) 

In the classical heteroakedaatic regremon model h., is deterministic and depends on a fixed number of 
unknown parameters. Because these parameters can be estimated consistently, the feasible GLS estimator 
ha& the sa:me aayrnptotic distribution a,, the GLS estimator. Here h, i• atochast.ic and the MSE of its 
..timator is of 0(1). The situation i• then,fore somewhat different. Harvey and Shephard (1993) show 
that, Ullder etandud regularity conditions on the sequence of x,, 'jJ is asymptotieally normal with mean 
~ and a covariance matrix which can be eonoistenUy estimated by 

(5.8.4) 

Woon h,!T is t.he smoothed estimate given by the linear state space form, the analysis in Harvey and 
Shephard (1993) BUgge&ts that, asymptotically, the feasible GLS estimator i• almost as efficient as the 
GLS estimator and considerably more efficient than the OLS estimator. It would be po88ible to replace 
exp(h,ir) by a better ,stimate computed from one of the methods deserlbed in section 3.4 but this may 
not have much effect on the diidency of the resulting feasible GLS estimator of (3. 

When h, is nomtationary, or nearly non,tationary, Hansen (1995) shows that it is possible to construct 
a feasible adaptive least squares estimatoc which is asymptotiea.l!y equivalent to GLS. 

6. Conclusions 

No wrvey is ever complete. There are two particular al'eas we expect to flourish in the years to come but 
which -w were not able to cow.. The first is the area of market micro,,tructures which is well surveyed in a 
r«ent review paper by Goodhart and O'Hara (1995). With the ever increasing availability of high m,quency 
data series, - anticipate more work involving game theoretic models. Theee can now be estimated becaUM 
of recent advanc«i in econometric methods, oimilar to those enabling us to eatimate diffuaiom. Another 
area where we expect Interesting research to emerge w that involving nonparametric procedures to estimate 
SY oontinuous time and derivathe Nellritiee models. Recent papen include rut.-Sahalia (1994), Ait-Sabalia 
et al. (1994), &s.aerta, Hafner and Birdie {1995), Broadie et al. (1995), Conley et al. (1995), E!Bheimer 
et al. (1995), Gourleroux, Monfort and Tll'llffll'O (1994), Gourleroux and Scaillet. (1995), Hutchineon, Lo 
and Poggio (1994), Lezan et al. (1995), Lo (1995), Pagan and Sclrwert (1992). 

R<eeearch into t.he econmru,trics of Stochutic Volatility models is relati..Jy new. As our survey has 
shown, there hae been a bunt of activity in reoent years drawing on the lateet statistiea.l technology. All 
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regards the relationship with ARCH, our view is that SV and ARCH are not necessarily direct competit.on, 
but rather complement each al.her in <:eriain respects. Recent advances euch "" the use of ARCH modoli, 
as filters, the weakening of GARCH and temporal aggregation and the introduetion of nonparametric 
methods to fit conditional variances, illustrate that a unified strategy for modelling volatility m,eda to 
draw on both ARCH and SV. 
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