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RESUME

Cet article, préparé pour le Handbook of Statistics (vol. 14 : "Statistical Methods in
Finance®), passe en ravue les moddles de volalilité stochastique, On traite les sujets
suivants : volaliité des actifs financiars {volatilitd instantande des rendements d'actifs,
volatilités implicites dans les prix d'option el régularitds empinques), modélisation
slatistique on temps discret et continu et, enfin, inlérence statistique (méthodes de
moments, pseudo-maximum de vraisamblance, méthodes bayésiennes et autres fondées
sur la vraisemblance, inférence indirecte).

Mots clés :  rendemenis d'actifs, hétéroscédasticité conditionnelie, prix d'option, modéies
état-espace, processus de diffusion

ABSTRACT

This paper, prepared for the Handbook of Statistics (Vol. 14 ; "Statistical Methods
in Finance™), surveys the subject of stochastic volafility. The following subjects are
covered : volatility in financial markets {instantanecus volatility of asset returns, implied
volatilities in option prices and related stylized facts), statistical modelling in discrete and
continuous time and, finally, siatistical inference (methods of moments, quasi-maximum
likelihood, liketihood-based and bayesian methods and indirect inference).

Key words : asset retumns, conditional heteroskedasticity, option prices, state-space
models, diffusion process






1. Introduction

The class of stochastic volatility (SV) models has its roots both in mathematical finance and financial
econometrics. In fact, several variations of SV models originated from resesrch laoking at very different
issues, Clark (1973}, for instance, suggested to model asset returns as a function of & random process of
information arrival. This so-called time deformation approach yielded a time-varying volatility model of
asset returns. Later Tauchen and Pitta (1983} refined this work proposing a mixture of distributions model
of asset returnz with temporal dependence in information arrivals. Hull and White (1987) were not direcily
concerned with linking asset returne to information arrival but rather were interesting in pricing European
options assuming continuous time SV models for the underlying asset. They suggested a diffusion for asset
prices with volatility following a positive diffusion process. Yet another approach emerged from the work
of Taylor (1986) who formulated a discrete time SV model as an alternative to Autoregressive Conditional
Heteroskedasticity (ARCH) models. Until recently estimating Taylor’s model, or any other SV model,
remained almost infeasible. Recent advances in econometric theory have made estimation of SV models
rnuch easier. As a result, they have become an atiractive class of models and an slternative to other classes
such as ARCH.

Contributions to the literasture on 8V models can be found both in mathematical finance and econo-
metries. Herion, we face quite a diverse set of topics. We say very little about ARCH models because
several excellent surveys on the subject have sppeared recently, including those by Bera and Higgins
{1995), Bollerslev, Chou and Kroner (1992), Bollerslev, Engle and Nelson (1994) and Diebeld and Lopez
(1995). Furthermore, since this chapter is written for the Handbook of Statistics, we keep the coversge
of the mathematical finance fiterature to a minimum. Nevertheless, the subject of option pricing figures
prominently out of necessity. Indeed, section 2, which deals with definitions of volatility has extensive
caverage of Black-Scholes implied volatilities. It also summarizes empirical stylized facts and condudes
with statistical modelling of volatility. The reader with a greater interest in statistical concepts may want
10 sldp the first three subsections of section 2 which are more finance oriented snd start with section
2.4. Section 3 discusses discrste time models, while section 4 reviews continuous time muodels. Statistical
inference of SV models is the subject of section 5. Section 6 cancludes.

2. Volatility in Financial Markets

Volatility plays a central role in the pricing of derivative securities. The Black-Scholes model for the pricing
of an European option is by far the most widely used formula even when the underlying assumptions are
knowm to be violated. Section 2.1 will therefore take the Black-Scholes model as a reference point from
which to discuss several notions of volatility. A discussian of stylized facts regerding volatility and option
prices will appear next in section 2.2, Both sections set the scene for a formal framework defining stochastic
volatility which ie treated in section 2.3. Finally, section 2.4 introduces the statistical models of stochastic
volatility.



2.1. The Black-Scholes Model and Implied Volatilities

More than half a century after the seminal work of Louis Bachelier (1900), continuous time stochastic
processes have become a standard tool to describe the Lehavior of asset prices. The work of Black and
Scholes (1973) and Merton (1990) has been extremely influential in that regard. In section 2.1.1 we review
some of the assumptions that are made when modelling asset prices by diffusions, in particular to present
the concept of instantaneous volatility. In section 2.1.2 we turn to option pricing models and the various
concepts of implied volatility.

2.1.1. An Instantaneous Volatility Concept

‘We consider a financial asset, say a stock, with teday’s (time t) market price denoted by 5,2 Let the
information available at time ¢ be described by /, and consider the conditional distribution of the retumn
Sisa/S: of halding the aewet over the period [t,1+ h] given [;.7 A maintained assumption throughout this
chapter will be that asset returns have finite conditional expectation given [ or :

Ey (Sein/Se) = S;}E¢5H b < 400 {2.1.1)
und likewise finite conditional variance given I;, namely

VilSuan/S) = 57 ViSun < oo (212)

The continuously cornpounded expected rate of return will be characterized by 271 log B, (S;44/5:). Then
& first assumption can be stated as follows :

Assumption £.1.1.A : The continuously compounded expected rate of return converges almost surely to-
wards a finite value ug (J;) when h > 0 goes to zero.

From this assumption one has E Sy » ~ S¢ ~ hps (£) S or in terms of its differential representation :

d
B8] = us (1) S slmost surely (2.1.3)
st

where the derivatives are taken from the right. Equation {2,1.3) is sometimes loosely defined as : £, (dS,) =
pg {f:) Sidt. The next assumption pertains to the conditional variance and can be stated ns :

Assumption £.1.1.8 : The conditional variance of the return h"VZ {Ses+n/S:) converges elmost surely to-
wards a finite value 02 (1,) when h > 0 goes to zero.
Agsin, in terms of ita differentis] representation this amounts to :

%Vnr‘ (8 =0i(1)S? elmost surely {2.1.4)

et

and one locsely associates with the expression V; (d5,) = o2 (1,) §7dt.

Here snd in the remainder of the paper we will focus on options written on stocks or exchange rates. The large literature
on the term structure of interest rates and reisied derivetive securities will not be covered.

3ection 2.3 will provide s more rigorous discussion of information sets, It shoald alo be noted that we will indifferently
be using conditional distributions of asset prices 5,5 and of returos S;,4/5¢ since S¢ belongs (o 1.



Both sssumptions 2.1.1.A and B lead to o representation of the asset price dynamics Ly an equation
of the following form :

48, = ps{1)8edt + o5{1)S AW, (2.1.5)

where W, is a standard Brownisn Motian, Hence, every time a diffusion equation is written for an asset
price process we have automatically defined the so-called instantanecus volatility process og (I} which
from the above representation can also be written as :

s (1) = [‘iﬁ‘ Y (S S0 (2.1.6)

Before turning to the next section we would like to provide a brief discussion of some of the foundations

for the Assumptions 2.1.1.A and B. It was noted that Bachelier (1900} proposed Brownian Motion process
a8 a model of stock price movements. In modern terminology this amounts to the random walk theory
of aseet pricing which claims that asset returns ought not to be predictable because of the informational
efficiency of financial markets. Hence, it assumes that returns on consecutive regularly sampled periods
ft+k, t+k+1], k=0,2..,h~ 1 are indopendently (identically} distributed. With such a benchmark
in mind, it is natural to view the expectstion and the variance of the continuously compounded rate of
return log {S¢;4/5:) a8 proportional to the maturity  of the investment.
Obviously we no longer use Brownian Motions 88 a process for asset prices but it is nevertheless worth
noting that Assumptions 2.1.1.A and B also imply that the expected rate of retwrn and the sssociatad
squared risk (in terms of varience of the rate of return) of an investment over an infinitely-short interval
[t,t + h] is proportional to k. Sims (1984) provided some rationale for both assumptions through the
concept of “local unpredictability” .

To conclude, let us briefly discuss a particular special case of (2.1.5) predominantly used in theoretical
developments and also highlight an implicit restriction we mede. When pgs {l}) = pg and o5 (J;) = ¢ are
constants for all ¢ the neset price is a Geometric Brownian Motion. This process was used by Black and
Scholes (1973) to derive their well-known pricing formule for Buropean options. Obviously, since a5 (ly)
is a constant we no longer have an instantaneous volatility process but rather a single parameter og - a
situation which undoubtedly greatly simplifies many things including the pricing of options, A second
point which needs to be stressed is that Assumptions 2.1.1.A and B allow for the possibility of discrete
jumnps in the assst price process. Such jumps are typically represented by a Poisson process and have been
prominent in the option pricing literature since the work of Merton (1976). Yet, while the assumptions
allow in principle for jumps, they do not appear in (2.1.5). Indeed, throughout this chapter we will maintain
the assumption of sample path continuity and exclude the poseibility of jumps as we focus exclusively on
SV models.

2.1.2. Option Prices and Implied Volatilities

It was noted in the introduction that SV models ariginated in part from the Literature on the pricing of
options. We have witnessed over the past two decades & spectacular growth in options and other derivative
security merkets. Such markets are sometimes characterized as places where “volatilities are traded”, In
this section we will provide the rationale for such statements and study the relationship between so-called
options implied volatilities and the coneepts of instantanecus and averaged volatilities of the underlying
poset veturn process. ’



The Black-Scholes option pricing model is based on a Log-Normal or Geometric Brownian Motion
model for the underlying asset price:

d&; = pgS;dl + {’sS;dec {2.1.7)

where ug and oy are fixed parameters. A European call option with strike price K and maturity ¢ + & has
2 payoff:
Sur— K Sua2 K
[Sesn ~ KJ' = { (2.1.8
0 otherwise

Since the seminal Black and Scholes {1973) paper, there is now & well established literature proposing
various ways to derive the pricing formula of such a contract. Obviously, it is beyond the scope of this
paper to cover this literature in detail.* Instead, the bare minimum will be presented here allowing us to
discuss the concepts of interest regarding volatility.

With vontinuous costless treding assumed to be fensible, it is possible to form in the Black-Scholes
economy & portfolio using one call and & short-sale strategy for the underlying stock to eliminate all risk.
This is why the option price can be characterized without ambiguity, using only arbitrage arguments, by
equating the market rate of return of the riskless portfolio containing the call option with the risk-free
rate. Moreover, such arbitrage-based option pricing does not depend on individual preferences.®

This is the reason why the sasiest way to derive the Black-Scholes option pricing formula is via » “risk-
neutral world”, where asset price processes are specified through e medified probability measure, referred
to as the risk neutral probability measure denoted Q (as discussed more explicitly in section 4.2). This
fictitious world where probabilities in general do not toincide with the Data Generating Process (DGP),
is only used to derive the option price which remains valid in the objective probability setup. In the risk
neutral world we have:

S,/ = rydt + o 5dW, 239

= C (S, K, h,1) = B(t,t + EZ (S — K {2.1.10)

where E7 is the expectation under §, B{t,t + ) is the price at time ¢ of & pure discount bond with payoff
one unit at time ¢+ h and 1
ro = -m-};l;og Bt +h) {2.1.11)

is the riskless instantaneous interest rate.® We have implicitly assumed that in this market interest rates
are nonstochastic {W, is the only source of riak} so that:

B(t,t + h) = exp [-. [ " r,d,] . (2.1.1)

4See however Jarrow snd Rudd (1983), Cmandnwﬁmu(lm),l}u!ﬂc(lﬁﬂ.mﬂn(lm),nnll {1993} o Hull (1995}
smong others for more elaborate coverage and other d

Whmmfs«iwumﬁu ophion pricing. mtermmobsy may somewhat be misleading since

di are implicitly taken into in the markel price of the stock and of the risklees bond. However,
thommmon}ydmdawi»dwndutpmtmmmmmmﬂm

“For notational convenience we derote by the same symbo! W; a Brownian Motion under P (in 2.1.7) and under @ (in
2.1.9). Indeed, G ‘g il stablishes the link b these two b {see e.5 Duffie (1992) and section 4.2.1).




By definition, there are no risk premis in a risk neutral context. Therefore r; coincides with the
instantaneous expected rate of return of the stock and hence the call option price C; is the discounted
value of its terminal payoff (Sn — K)* as stated in (2.1.10).

The log-normality of 544 given S, allows one to compute the expectation in (2.1.10) yielding the call
price formula at time &

Ce = Sepldy) — KB(t,t + hypld, ~ osvh) (2.113)

where ¢ is the cumulative standard normal distribution function while d; will be defined shortly. Formula
{2.1.13) is the so-called Black-Scholes option pricing formula. Thus, the option price C; depends on the
stock price S, the strike price K and the discount factor B(f,t + k). Let us now define :

Zo = Log /KB, t+h) (2.1.14)

Then we have:
CufSe = ¢lde) — €™ ¢ldy ~ o5V ) {(2.1.15)

with d; = (::./oss/)_l) + agv/R/2. 1t is easy to see the critical role played by the quantity z,, called the
moneyness of the option.

e If z; = 0, the current stock price 5; coincides with the present valus of the strike price X. In
other words, the contract may appesr to be fair to somebody who would not take into account the
stochestic changes of the stock price between t and £ + A, We shall say that we have in this case an
at the money oplion

s If 2y > O (respectively 2, < 0) we shall aay thet the option is in the money (respectively out the
money).”

It was noted before that the Black-Scholes formula is widely used among practitioners, even when its
sssumptions are known to be violated. In particular the assumption of a constant volatility o is unrealistic
{see section 2.2 for empirical evidence). This motivated Hull and White (1987} to introduce an option
pricing model with stochastic volatility assuming that the volatility itself is a state variable independent
of W, #

dS,/5; = rdt + agdW, (2.1.16)
(750)sepy » (Wieeomy independent Markovian -

It should be noted that {2..1.16) is still written in a risk neutral context since r; coincides with the
instantaneous expected retum of the stock. On the other hand the sxogenous volatility risk is not directly
traded, which prevents us from defining wnambiguously & risk neutral probability measure, as discussed
in more detail in section 4.2. Nevertheless, the option pricing formula (2.1.10) remains valid provided the
expectation is computed with respect io the joint probability distribution of the Markovian process (S,0s),
given (S, 05,)." We can then rewrite (2.1.10) as follows :

"We use here s slightly modified terminology with respect to the ususl one. Indeed, it i more common 1o call at the
money /in the money/ out of the money options, when §; = K/5; > K/S: < K respectively. From an economic point of
view, it i more appealing to compare S; with the present value of the strike price K.

3(0ther stochastic volatility modela similar to Hull and White (1987} sppeer in Johneon and Shaano {1957}, Scott (1887),
Wiggine {1987), Chesney and Scott {1989), Siein and Stein (1091) and Heston {1993) among others,

PWe implicitly sseume here that the available information I, contains the past values (S;,0,), o,. This assumption will
be discussed in pection 1.2, -




Ci= B(t,t+h) E(Suen— KY = B(1,14 W) B {E [(Suan = K)* [05r)egrennn] } (2.117)
where the expectation inside the brackets is taken with respect to the conditionsl probability distribution
of Siyn given I; and a volatility path os,, t £ 7 < ¢t + h, However, since the volatility process og, is
independent from W,, we cbtain using (2.1.15) that :

Bt + ) B [(Sen ~ KV |05 dicrgaen] = SeBe [6 (dae) — 6 (du)] (21.18)

where dy; and dy sre defined ss follows :

dy = (/v (t,t+ A)VE) + 7 (L.t + h) VR/2
dy = dy ~y{t,t + R)

where y(t, ¢+ h) > D and :

1
Pt h) = il as,df {2.1.19)
This yields the so-called Hull and White option pricing formula :

Ci=5E: [b(du) — e ¢ (d)] , (2.1.20)

where the expectation is taken with respect to the conditional probability distribution (for the risk neutral
probability messure) of -y (£,t + h) given og.'0

In the remainder of this section we will assume that obmerved option prices obey Hull and White's
formula (2.1.20). Then option prices would yield two types of implied volatility concepts : (1) an instan-
taneous implied volatility and (2) an averaged implied volatility. To make this more precise, let us sssume
that the risk neutral probability distribution belongs to a parametric family, 5, § € ©. Then, the Hull
and White option pricing formula yields an expression for the option price as a function :

Cy = 8F logs, 71, 8) (2.1.21)

where 8, is the true unknown value of the parameters. Formula (2.1.21) reveals why it is often claimed
that “option markets can be thought of as markets trading volatility” (see e.g. Stein (1989)). As a matier
of fact, if for any given (z,,8), F{-,z,,0) is one-to-one, then equntwn {2.1.21) can be inverted to yield an
implied instanianeous volatility :1!

a7 (6) = G5, Ci, 7, 6] (2.1.22)

Bajeux and Rochet (1992), by showing that this one-to-one relationship between option prices and
instantaneous volatility holds, in fact formalize the use of option markets as an appropriate instrument to
hedge volatility risk. Obviously implied instantaneous volatilities (2.1.22) could only be useful in practice
for pricing or hedging derivative instruments when we know the true unknown value 8, or , at least, are
sble to compute a sufficiently accurate estimate of it.

W'I”heuaudnmnmghwnhmpectwmdmnwmmuthcwmammhmmuwkmﬁom!,(tbeptmoh
d %o be Mark pendent from W),

“Tbe!wtthat?{,:n,ﬁ) Is one-to-one is shown 10 be the vese for any diffosion model on 0, under ceetain reguinrity

conditions, see Bajeux and Rochet {1982).




Hawever, the difficultiss involved in estimating SV models has for long prevented their wide spread
use in empirical applications. This is the reason why practitioners often prefer another concept of im-
plied volstility, namely the so-called Black-Scholes implied volatility introduced by Latane and Rendleman
(1976). It is 8 process w™? (t,t + h) defined by :

Ci = 5 [pldy) — e ¢ {dn)}]
dye = (/™ (8,0 + B) VR) + 0™ (t,t + h) VB2 (2.1.23)
day = dye — @ (4,2 + h) VA

where C, is the observed option price.!?

The Hull and White option pricing model can indeed be seen as s theoretical foundation for this
practice; the comparison between {2.1.23) and (2.1.20) sllows us to interpret the Black Scholes implied
volatility w*™7 (t,2 + h) as an implied averaged volatility since w*™ (1, + h) is something like & conditional
expectation of v{t,t + h) (sssuming obeerved option prices coincide with the Hull and White pricing
formula). To be more precise, let us consider the simplest case of at the money options (the general case
will be studied in section 4.2). Since z; = 0 it follows that dy = —d;; and therefore : ¢ (dy) —e~ "¢ (dn) =
2p (dye} — 1. Hence, wf™® (1,1 + &) (the index o is added to underline that we consider at the money options)
is defined by : .

Wi (1.1 + k) vRY _ A(t,t+h) A
(M) - e (200)

Sinee the cumulative standard normal distribution Runction is roughly linear in the neighborhood of zero,
if follows that (for small maturities h) :

(2.1.24)

WP (Lt 4+ Ry s Exy (Lt + h)

This yields an interpretation of the Black-Scholes implied volatility wi™ (£,£ + k) as an implied average
volatility : )

i
Wi (£,1 + h) s B [—:; [ * agrdr} {2.1.25)

2.2. Some Stylized Facts

The search for model specification and selection is always guided by empirical stylized facts. A model’s
ability to reproduce such stylized facts is a desirable feature and failure to do so is most often a criterion to
dismiss a specification although one typically does not try to fit or explain all possible empirical regularities
at once with & single model. Stylized facts about wolstility have been well documented in the ARCH
literature, see for instance Bollerslev, Engle and Nelson (1994). Empirical regularities regarding derivative
securities and Implied volatilities are slso well covered for instance by Bates (1995a). In this section we
will summerize empirical stylized facts, complementing and updating some of the material covered in the
aforementioned references.

*We do not explicitly study here the dependence between w7 (¢, 4 h) and the varions reluted processes : C;, 5, z:.
This i the reason why, for sake of simplicity, this depend is ot app in A otation w7 (1, + k),




{a) Thick lails

Since the early sixties it was observed, notably by Mandelbrot (1963}, Fama (1963, 1965), among others
that asset returns have leptokurtic distributions. As a result, numercus papers have proposed to made]
asget returns as i.i.d. draws from fat-tailed distributions such as Paretian or Lévy.

(b) Volatslity clustering

Any casual observations of financial time series reveals bunching of high and low volstility episodes. In
fact, volatility clustering and thick tails of asset returns are intimately related. Indeed, the latter is a static
explanation whereas a key insight provided by ARCH models is a formal link between dynamic (conditionsl)
volatility behavior and (unconditionsl) heavy tails. ARCH models, introduced by Engle (1982) and the
numerous extensions thereaftor as well as SV models are essentially built to mimic volatility clustering.
It is also widely documented that ARCH effects disappesr with temporal aggregation, see e.g. Diebold
(1988) and Drost and Nijman (1993},

{c) Leverage effecis

A phenomenon coined by Black (1976) as the leverage effect suggests that stock price movements are
negatively correlated with volatility. Because falling stock prices imply an incressed leverage of firms it
is believed that this entails more uncertainty and hence volatility. Empirical evidence reported by Black
(1976), Christie (1982) and Schwert {1989) suggests, however, that leverage alone is too small to explain the
empirical asymmetries one observes in stock prices. Others reporting empirical evidence regarding leverage
effects include Nelson (1991}, Gallant, Roesi and Tauchen (1952, 1993), Campbell and Kyle (1593) and
Engle and Ng (1993).

(d) Information arrivals

Asset returns are typicelly measured and modeled with observations sampled at fixed frequencies such
as daily, weekly or monthly observations. Several suthers, including Mandelbrot and Taylor (1967) and
Clark (1973) suggested to link asset returns explicitly to the flow of information arrivals. In fact it was
already noted that Clark proposed one of the early examples of SV models. Information arrivals are non-
uniform through time and quite often not directly observable, Conceptually, one can think of asset price
movements ss the realization of a process ¥} = Y3, where Z, is a so-called directing process. This positive
nondecreasing stochastic process Z; can be thought of as being related to the arrivel of information. This
idea of time deformation or subardinated stochastic processes was used by Mandelbrot and Taylor (1967)
to explain fat tailed returns, by Clark (1973) to explain volatility and was recently refined and further
explored by Ghysels, Gouriéroux and Jesiak (1995s). Moreover, Easley and O’Hara (1992) provide a
microstructure model involving time deformation. In practice, it suggests o direct link between market
volatility and (1) trading volume, (2) quote arrivals, (3} forecastable events such as dividend announcernents
or macroeconomic date releases, (4) market closures, among many other phenomena linked to information
arrivals.

Regarding trading volume and volatility there are severs! papers documenting stylized facts notably
linking high trading volume with market volatility, see for example Karpoff (1687} or Gallant, Roesi
and Tauchen (1992). The intraday patterns of volatility and market activity messured for instance by
quote arrivals is also well-known and documented. Wood, Mclnish and Ord (1985) and Harris (1986)
studied this phenomenon for securities markets and found a U-shaped pattern with volatility typically

3 There are models, £ ] and empiricsl, linking trading volume and seeel returns which we cannot discus
in detail A partial list includes Foster and Viswanathan {1983ab), Ghysels and Jasiak {1984,b), Hausman and Lo (1981),
Huffman (1987}, Lamourenx and Lastrapes {1990, 1943), Wang {1993) and Andersen {1805).




high st the open snd close of the market. The around the clock trading in foreign exchange markels
also yields a distinct volatility pattern which is tied with the intensity of matket activity and produces
strong seasonal patterns. The intradaily patterns for FX markets are analyzed for instance by Miiller et al.
{1590), Baillie and Bollerslev (1991}, Harvey and Huang (1991), Dacorogna et al. {1993), Bollerslev and
Ghysels (19904), Andersen and Bollerslev (1985), Ghysels, Gouriéroux and Jasiak (1995b) among others.
Another related empirical stylized fact is that of overnight and weekend market closures and their eflect on
volatility. Fama (1965) and French and Roll (1986} have found that information accumulates more alowly
when the NYSE and AMEX are closed resulting in higher volatility on those markets after weekends and
holidays. Similar evidenoe fur FX markets bas been reported by Baillie and Bollerslev (1989). Finally,
numerous papers documented increased volatility of financial markets around dividend announcernents
{Cornell (1978}, Patell and Wolfson {1979,1981)) and macroeconomic date releases {Harvey and Huang
(1991, 1992), Ederington and Lee (1993)).

{e) Long y and persistence

Generally spesking voletility is highly persistent. Particularly for high frequency data one finds evi-
dence of near unit root behavior of the conditional variance process. In the ARCH literature numerous
estimates of GARCH models for stock market, commodities, foreign exchange and other agset price eeries
are consistent with an IGARCH specification. Likewise, estimation of stochastic wolatility models show
similar patterns of persist {see for instance Jecquier, Polson and Rossi (1994)). These findings have
led to a debate regarding modelling pessistence in the conditional variance process either via a unit root
or a long memory process, The latter approach has been suggested both for ARCH and SV models, see
Baillie, Bollerslev and Mikkelsen (1993), Breidt et al. (1993}, Harvey (1993) and Comte snd Rensult
{1995). Ding, Granger and Engle (1993) studied the serial correlations of jr {£,t + 1){° for positive values
of ¢ where 7 (2,2 + 1) is & one-period return on & speculative asset. They found jr (1,2 4 1)|° to have quite
high autocorrelations for long lags while the strongesi temporal dependence wae for ¢ close to one. This
regult initially found for daily S&P500 return series was also shown to hold for other stock market indices,
commodity markets and foreign exchangs series (see Granger and Ding (1994)).

(f) Volatility comovements

There is an extensive literature on international comovements of speculative markets. Concerns whether
globalization of equity markets increase price volatility and correlations of stock returns has been the sub-
ject of many recent studies including, von Fustenberg and Jean (1989), Hamso, Masulis and Ng (1990},
King, Sentana and Wadhwani (1994), Harvey, Ruiz and Sentana (1992), Lin, Engle and Ito (1994). Typi-
cally one uses factor models to model the commonality of internationsl volatility, ss in Diebold and Nerlove
(1989), Harvey, Ruiz and Sentana (1992), Harvey, Ruiz and Shepherd (1594) or explores so-called cormmon
features, see 2.g. Engle and Kozicki (1893} and common trends as studied by Bollerslev and Engle (1893},

{g) Implied volatility correlations

Stylized facts are typically reported as model-free empirical observations.* Implied volstilities are
obvicusly model-based as they are calculated from a pricing equation of a specific model, namely the Black
and Scholes model s noted in section 2.1.3. Since they are computed on s daily basis there is obviously
an internal inconsistency since the model presumes constant volatility. Yet, since many option prices are
in fact quoted through their implied volatilities it is natural to study the time series behavior of the latter.
Often one computes s composite measure since synchronous option prices with different strike prices and

“Thhummpnnﬁanmmhmmmdmkrmwhm&heymdemnddwmmﬂyw
Beth d ng and are model-basad. For the p ially severe impest of detrending on stylized facts
m(hnm(lm)wdﬂarwyand.lm (1963) and for the eKacz ofaenuousl sdjustment on empirical regularities pee
Ghyaels ot al. (1993).




maturities for the same underlying asset yield different implied volatilities. The composite measure is
usually obtained from a weighting scheme putting more weight on the nenr‘the»money options which are
the moet heavily traded on organized markets.'®

The time series pruperties of implied volatilities obtained from stock, stock index and currency options
are quite similar, They sppear stationary and are well described by a first order autoregressive model
(eee Merville and Pieptea {1080} and Sheikh (1993) for stock options, Poterba and Summers {1986), Stein
(1989), Harvey and Whaley (1992) and Diz and Finucsne (1993) for the S&P100 contract and Taylor
and Xu (1984), Campa and Chang {1995) and Jorien (1895) for currency options). It was noted from
equation (2.1.25) that implied (average) volatilities are expected Lo contain information regarding future
volatility and therefore should predict the latter. One typically tests such hypotheses by regressing realized
volatilities on past implied ones.

The esmpirical evidence regarding the predictable content of implied volatilities is mixed. The time
series study of Lamoureux and Lastrapes (1993) considers options on non-dividend paying stocks and
comparsd the forecasting performance of GARCH, implied volatility and historical volatility estimates
and found thet implied volstilities forecasts, though they are bissed as one would expect from (2.1.25),
outperform the others. In sharp contrasi, Canina and Figlewski {1993) studied S&P100 index call options
for which there is an extremely active market, They found that implied volatilities were virtuslly useless
in forecesting future realized volatilities of the S&P100 index. In a different setting using weekly sampling
intervals for S&P100 option contracts and s different sample Dav and Lewis {1992) not only found that
implied volatilities had a predictive content but also were unbissed. Studies examining options on foreign
currencies, such as Jorion {1985} also found that implied volatilities were predicting future realizations and
GARCH as well as historical volatilities were not outperforming the implied messures of volatility.

(h) The term structure of implied volatilities

The Black-Scholes model predicts a fiat term structure of volatilities, In reality, the term structure of
at-the-money implied volatilities is typically upward sloping when short term volatilities are low and the
reverse when they are high (see Stein{1989)). Taylor and Xu {1994) found that the term structure of implied
volatilities from foreign currency options reverses slope every few months. Stein (1989) also found that the
actusl sensitivity of medium to short term implied volatilities was greater than the estimated sensitivity
from the forecest term structure and concluded that mediun term implied volatilities overreacied to
informstion. Diz and Finucene {1993) used different estimation techniques and rejected the overresction
hypothesis, even reported evidence suggesting underresction.

(1) Smiles

If option prices in the market were conformable with the Black-Scholes forrnula, all the Black-Scholes
implied volatilities corresponding to various options written on the same asset would coincide with the
volstility parameter o of the underlying asset. In reality this is not the case, and the Black-Scholes implied
volatility w*™ (£,1 + h) defined by (2.1.23) heavily depends on the calendar time ¢, the time to maturity
h end the moneyness =, = LogS,/I(B (1t + A} of the option. This may produce various biases in option
pricing or hedging when BS implied volatilities are used to evaluate new options with different strike prices
K and maturities h . These price distortions, well-known to practitioners, are usually documented in the
empiricsl Literature under the terminology of the smile gffect, where the so-called “smile” refers to the
U-shaped pattern of implied volatilities acroes different strike prices. More precisely, the following stylized
facts are extensively d ted (see for instance Rubinstein (1985), Clewlow and Xu (1993), Taylor and

Different weighting schemes have been suggested, ace for instance Latane and Rendleman {1976), Chires and Manaster
{1978}, Beckers (1981), Whaley (1982}, Day nnd Lewis (1988), Engle and Mustafa {1992) and Bstes {1995b).
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Xu {1993)) :

v The U.shaped pattern of w"# (1,1 4 k) as a function of K (or log K} has its minirnum centered at
near - the - money options {discounted K close to 5, i.e. x, close to zerc}.

o The volatility smile is often but not alweys symmetric as & function of log K (or of r,;). When the
smile is asymmetric, the skewness effect can often be described as the addition of & monotonic curve
to the standard symmetric smile: if a decreasing curve is added, implied volatilities tend to rise more
for decreasing than for increasing strike prices and the implied volatility curve has ite minimum out
of the money. In the reverse case (addition of an increasing curve), implied volatilities tend to rise
more with increasing strike prices and their minimum is in the money.

s The amplitude of the smile increases quickly when time to maturity decreases. Indeed, for short
maturities the smile effect is very pronounced {BS implied volatilities for synchronous option prices
may vary between 15% and 25%) while it almost completely disappears for longer maturities.

It 35 widely believed that volatility smiles have to be explained by a model of stochastic volatility.
This is natural for several reasons: First, it is tempting to propose a model of stochastically time varying
volatility to account for stochastically time varying BS implied volatilities. Moreover, the decressing
amplitude of the smile being a function of time to maturity is conformable with formule like (2.1.25).
{ndeed, it shows that, when time to maturity is increased, temporal sggregation of wvolatilities erases
conditional heteroskedasticity, which d the smile phenomenon. Finally, the skewness itself may
alse be attributed to the stochastic feature of the volatility process and overall to the correlation of this
process with the price process {the so-called Jeverage effect). Indeed, this effect, while sensible for stock
prices dats, is small for interest rate and exchange rate series which is why the skewness of the smile is
more often observed for options written on stocks.

Nevertheless, it is important to be cautious about tempting sssociations: stochastic implied volatility
and stochastic volatility; esymmetry in stocks and skewness in the smile. As will be discussed in section
4, such analogies are not always rigorously proven. Morecver, other arguments to explain the smile and
its skewness (jumps, transaction costs, bid-ask spreads, non-synchronous trading, liquidity problems, ..}
have also to be taken in account both for theoretical reasons and empirical ones. For instance. there exists
empirical evidence suggesting that the most expensive options (the upper parts of the smile curve) are
also the least liquid; skewness may therefore be attributed to specific configurations of liquidity in option
markets.

2.3. Information sets

So far we left the specification of information sets vague. This was done on purpose to focus on one issue
at the time. In this section we need to be more formal regarding the definition of information since it
will allow us to clarify several missing links between the verious SV models introduced in the literature
and also between SV and ARCH modele. We know that SV models emerged from research looking at a
very diverse set of issues. In this section we will try to define a common thread and a general unifying
framework. We will accomplish this through a careful analysis of information sets and associste with it
notions of non-causality in the Granger sense, These causality conditions will allows us to characterize in
section 2.4 the distinct features of ARCH and SV models.'®

1¢The anslysis in thia section has some featuree in common with Andersen (1992} regarding the use of informstion sets to
clarify the difference betwesn 5V and ARCH type models.
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2.3.1, State variables and information sets

The Hull and White {1987) model is a simple #xample of a derivalive ssset pricing model where the
stock price dynamics are governed by some unobservable state variables, such as random volatility. More
generally, it is convenient to assume that a multivariate diffusion process U; summarizes the relevant state
variables in the sense that:

d8;] S = pudt + o dW,
aUy = ydi + 6, WY (2.31)
Cov (dW,, dWP') = pidt

where the stochastic processes ty, 0, %, 8 and pe are I = [U,, 7 < 1] adepted (Assumption 2.9.1). This
mesns that the process U summarizes the whole dynsamics of the stock price process .5 (which justifies
the terminology “state” variable) since, for a given sample path (Us)g., < of state variables, consecutive
returns Sy, ,, / 8.0 < 8 <ty < ... < Iy £ T are stochastically independent and log-normal (as in the
benchmark BS model).

The arguments of section 2.1.2 can be extended to the state variables framework (see Garcia and Renault
(1995)) discussed here. Indeed, such an extension provides a theoretical justification for the common use of
the Black and Scholes mode! as a standard method of quoting option prices via their implied volatilities.}?
In fact, it is a way of introducing neglected heterogensity in the BS option priting model {see Rensult
(1995) who draws attention to the similarities with introducing heterogeneity in microeconometric models
of labor markets, stc.).

In continuous time models, available information at time & for traders (whose information determines
option prices) is characterized by continuous time observations of both the state variable sample path and
stock price process sample path; namely:

L=o[UnS ;7<) (2.3.2)

2.3.2, Discrete sampling and Granger noncausality

In the next section we will treat explicitly discrete time models. It will necessitate formulating discrete
time analogues of equation {2.3.1). The discrete sampling snd Granger non causality conditions discussed
here will bring us & step closer to building a formal framework for statistical modelling wing discrete time
data. Clearly, a discrete time analogue of equation (2.3.1) is:

10g 8341/8: = () + o (Ui} £ {2.3.3)

provided we impose some restrictions on the process ¢;. The restrictions we want to impose must be fexible
enough to accommodate phenomena such as leverage effects for instance. A setup that does this is the
following :

Assumption 2.9.8.A : The process ¢ in (2.3.3) is i.i.d. and not Granger caused by the state variable process
Ug‘

YQGarcia and Renault (1995) argued that Assumption 2.3.1 s in} 1o smsure the homogeneity of option prices with
respect to the peir (stock price, strike price} which jn turn sasures thet BS implied volstilities do not depend on the stock
price Jevel but only on the moneyness S/K. This homogeneity property wae first emphasized by Merton {1973).
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Assumption 2.9.£.B : The process ¢; in (2.3.3) does not Grangsr cause U,.

Assumption 2.3.2.B is useful for the practical use of BS implied volatilities as it is the discrete time
analogue of Assumption 2.3.1 where it is stated that the coefficients of the process U are IV sdapted
(for further details see Garcia and Renault {1995)). Aseumption 2.3.2.A is important for the statistical
interpretation of the functions 2 {U;) and o {U,) respectively as trend and volstility coefficients. Namely,

Elog Ses1 /5 | (S5 /8eri S 2))
= E{E{log Sis1/8 | (Ur &t S O} 1S /Se-niT < )] (2.3.4)
= E (U | (8/8-;7 <1}

since Elegyy | (Ur es;T <8 = Elegry | £57 < 1] = 0 due to the Granger noncausality from U, to € of
Assumption 2.3.2.A. Likewise, une can easily show that

Var flog S /5 ~ p (U} 1 {5 /8.7 S 8)]
= Elo? (U) [ (8:/5-3i7 < 1)
Implicitly we have introduced & new information eet in (2.3.4) and {2.3.5) which besides I, defined
in (2.3.2) will be useful as well for further analysis. Indeed, one often confines (stotistical) analysis to
information conveyed by a discrete time sampling of stock return series which will be denoted by the
information set

(2.3.5)

IB=0i8,/8.1:7=01,.,0— 14 {2.3.6)

where the superscript R stands for returns. By extending Andersen (1994), we shall adopt as the most
general framework for univariate volatility modelling, the setup given by the Assumptions 2.3.2.4, 2.3.2B
and:
Assumption £.8.2.C : p (U} is I® meesursble,

Therefore in (2.3.4) end (2.3.5) we have essentially shown that :

E {1083c+1f5: | fft] = g2 (Uy) (2.3.7)
Var [(log Sua/S) |If] = E [o* (W] IF] (2.3.8)

2.4. Statistical Modelling of Stochastic Volatility

Financial time series are observed at discrete time intervals while a majority of theoretical models are
formulated in continuous time, Generally speaking there are two statistical methodologies to resolve this
tension. Either one considers for the purpose of estimation statistical discrete time models of the continuous
time processes. Alternatively, the statistical model may be specified in continuous time and inference is
done via & discrete time approximation. In this section we will discuse in detsil the former approach while
the latter will be introduced in section 4, The class of discrete time statistical models discussed here is
general. In section 24.1 we introduce same notstion and terminologies. The next section discuss the
so-called stochastic sutoregressive volatility model introduced by Andersen (1994) as a rather general and
flexible semi-parametric framework to encompsss various representations of stochastic wvolatility already
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available in the literature. ldentification of paramelers and the restrictions required for it are discussed in
section 2.4.3 .

2.4.1. Notation and Terminology

In section 2.3, we left unspecified the functional forms which the trend g () and volatility 7 () take, Indeed,
in sorne sense we built 8 nonparsmetric framework recently proposed by Lezan, Rensult and de Vitry (1995)
which they introduced to discuss a notion of stochastic volatility of unknoum form.'™ This nonparametric
framework encompasses standard parametric models (see section 2.4.2 for more formal discussion}. For
the purpose of illustration let us consider two extreme cases, assuming for simplicity that p (U,) = 0 :
(i) the discrete time anelogue of the Hull and White model (2.1.16) is obtained when o (I/;) = o, is a
stachastic process independent from the stock return stendsrdized innovation process € and (i) o, may
be & deterministic function A (gy, 7 < t) of past innovations. The latter is the complete opposite of (i) and
leads to & large variety of choices of paremetrized functions for A yielding X-ARCH mwodels (GARCH,
EGARCH, QTARCH, Periodic GARCH, etc.).

Besides these two polar cases where Assumption 2.3.2.A is fulfilled in 2 trivial degenerate way, one
can also accommodate leverage effects.'® In particular the contemporaneous correlation structure between
irnovations in U and the return process can be nonzero, since the Granger non-causality assumptione deal
with temporal causal links rather than contemporanecus ones. For instance, we may have o (U;) = o, with:

k)s Sg.n/ S; = Tp€pey (2.4»1)

Cov (ﬁzn, ol If) #0 (242

A negative covariance in (2.4.2) is a standard case of leverage effect, without violating the non-causality
Assumptione 2.3.2.A and B,

A few concluding obeervations are worth maldng to deal with the burgeoning veriety of terminologies
in the literature. First, we have not considered the distinction due to Taylor (1994) between “lagged
autoregressive random variance models” given by (2.4.1) and “contemporaneous autoregressive random
variance models” defined by:

log Sey1/ St = Gr416e41 (2.4.3)

Indeed, since the volatility process oy is uncheervable, the settings (2.4.1) and (2.4.3} are observationally
equivalent as long as they are not completed by precise (non)-causality sssumptions. For instance : (i)
(2.4.1) and assumption 2.3.2.A together appear to be a correct and very general definition of & SV model
possibly completed by Assumption 2.3.2.B for option pricing and (2.4.2) to introduce leverage effects, (ii)
(2.4.3) sssociated with (2.4.2) would not be a correct definition of & 8V model since in this case in general:
E llog 843/ 8e | I‘”] # 0, and the mode} would introduce via the process o a forecast which is related not
only to volatility but also to the expected return.

“Iaun Rennult and deVitry (1995) dmwmdmilwwmpmm”v&mny clwmnginthu
fr k. As a .nwmmmwwmg: ““) ot They d
ﬁm:mmboamtmbemefulmnﬁmmmnnm{wsﬂim igori ing a specific p ﬂcmodd
{mee Section §),

1 Assnmmption 2.3.2.B is fulfilled in case (i) bot may fail in the GARCH case (ii). When it fails to hold in the loiter case it
miokes the GARCH kamework not very well-guited for option pricing.
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For notational simplicity, the framework (2.4.3) will be used in section 3 with the leverage effect captured
by Cov{oui1,6:) # 0 instead of Cov (0¢4),£041) # 0. Another terminology was intraduced by Amin and
Ng (1983) for option pricing. Their distinction between “predictable” and “unpredictable” volatility is
very close to the leverage effect concept and can also be analyzed through causality concepts as discussed
in Garcia and Renault (1995). Finally, it will not be necessary to make a distinction between wesk,
semi-strong and strong definitions of SV models in analogy with their ARCH counterparts (see Drost and
Nijman (1993)). Indeed, the class of SV models ae defined here can accommodate parametrizations which
are closed under temporal aggregation (see also section 4.1 on the subject of temporal aggregation).

2.4.2. Stochastic Autoregressive Volatility

For simplicity, let us consider the following univariate volatility process :

That = + Oceqy {2.4.4)

where  is & measurable function of observables 5, € If, 7 < 1. While our discussion will revolve around
(2.4.4), we will discuss several issues which are general and not confined to that specific model; extensions
will be covered more explicitly in section 3.5. Following the result in {2.3.8) we know that :

Var [ymu:'] =E[a| 7 {2.4.5)

suggesting (1) that volatility clustering can be captured via sutoregressive dynamics in the conditional
expectation (2.4.5) and (2) that thick tails can be obtained in either one of three ways, namely (a) via
heavy tails of the white noise &, distribution, (b) via the stochastic features of E [¢7] IF] and (c) via specific
randomness of the volatility process o, which makes it latent i.e. o, ¢ 152 The woletility dynarics that
follow from (1) and (2) are usually an AR{1) model for some nonlinear function of 0,. Hence, the volatility
process is assumed to be stationary and Markovian of order one but not necessarily linear AR(1) in ¢ itoelf,
This is precisely what motivated Andersen (1994) to introduce the Stochastic Autoregressive Variance or
SARV elass of models where o, (or 02) is a polynomial function g (K,) of & Markov process K, with the
following dynamic specification :

Ke=w+ BKe + Iy +aKigjw (24.6)

where & = uy — 1 is zero-mean white noise with unit variance. Andersen (1994) discusses sufficient
regularity conditions which ensure stationarity and ergodicity for K;, Without entering into the details,
let us note that the fundamental non-causalily Assumption 2.3.2A implies that the u, process in (2.4.6)
does not Granger cause ¢ in (2.4.4). In fact, the non-causality condition suggests a slight modification
of Andercen’s (1994) definition. Narnely, it suggests assuming £,y independent of u,_y, 7 2> 0 for the
conditionsl probability distribution, given €,.;, § > 0 rather than for the unconditional distribution, This
modificstion does not invalidate Andersen’s SARV class of models as the most general parametric statistical
model studied so far in the volatility literatiure, The GARCH(1,1) model is straightforwardly obtained from
(2.4.6) by letting K, = o}, = 0 and w, = £2. Note that the deterministic relationship u; = &7 between the
stochastic compaonents of (2.4.4) and (2.4.6) emphasizes that, in GARCH medels, there is no randomness

PKim and Shephard (1994), using data on weskly returns on the S&P500 Index , found that 5 t-GARCH model has an

almont identical likelibood 22 the normal besed SY model, This example shows that a specific rands in o; may prod
the same level of marginal kurtodie se a heavy tailed student distribution of the white noise 2.
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specific to the volatility process. The Autoregressive Random Variance model popularized by Taylor (1986)
also belongs to the SARV class. Here:

lagogy =§{ + plogor + myy 241

where 1) is a white noise disturbance such thet Cov{n. g, &044) # 0 to accommodate leverage effects.
This is & SARV model with K, = loga,, a = 0 and n4y = Y, 2

2.4.3. Identification of parameters

Introducing s general class of processes for volatility, like the SARV claes discussed in the previous section
prompts questions regarding identification. Suppose again that

Heer = Ty
of  =g(Ky),qe {12} (2.48)
Ky =w+BKey+y+aKegjue.
Andersen (1994}, noted the model is better interpreted by considering the zero-mean white noise process
fy = —1:

K= (w4 ) +la+ ) Ky + (1+aKea) i . (2.4.9)

1t is clear from the latter that it may be difficult to distinguish empiricelly the constant w from the
"stachastic” constant -yu,. Similarly, the identification of the & and § parameters separately is also prob-
lematic a8 {& + ) governs the persistence of shocks to volatility. These identification problems are nsually
resolved by imposing {(arbitrary} restrictions on the pairs of parameters (w,v) and {«, 8).

The GARCH(1,1) and Autoregressive Random Variance specifications assume that 7y = 0 and o = 0
respectively, Identification of all perameters without such restrictions generally requires additional con-
straints, for instance via some distributional assumptions on £, and u,, which restrict the semi-parametric
framework of (2.4.6) into a parametric statistical model.

To address more rigorously the issue of identification, it is useful to consider, according to Andersen
(1994), the following reparamstrization (assuming for notational convenience that o # 0} :

{ K = (wtn/Q~a-5)
4
&

a+g (2.4.10)
Henos equation (2.4.8) can be rewritten as :

L

o7k

Ke= K+ p(Kier = K) 4 (6 + Ken) 02

where U; = adi.

1t is clear from {2.4.10), that only three functions of the original parameters a, £, v, w may be identified
and that the three parameters K,p,& are identified from the first thres unconditional momente of the
process K for instance,

3 Andarsen (1994) also nhows Lhat the SARV framework encompesees ancther type of random variance model that we have
considered a4 ill-specified since it combines (2.4.2) and (2.4.3).
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To give to these identification results an empirical content, it is essentisl to know : (1) how to go from
the moments of the observable process Y; to the moments of the volstility process o, and (2) how to go
from the moments of the volatility process o, to the moments of the latent process K,. The firat point
is easily eolved by specifying the corresponding moments of the standardized innovation process ¢, If we
assume for instance s Gaussian probability distribution, we obtain that :

Ehﬁi = f2/%x Eu
Elplin-s1 = 2fz Elow.y) (2.4.11)
Elgflln-4| = /7 Elolony)

The solution of the second point requires in general the specification of the mapping g and of the
probability distribution of u; in (2.4.6). For the so-called Log-normal SARV model, it is assumed that
a = 0 and K = log o, {Teylor’e autoregressive random variance model) and that 1, is normally distributed
{Log-normality of the volatility provess). In this case, it is easy to show that :

Eo? = expln EK, +n*VarK,/2)
E(opPor;) = EoPEo} explmaCon(K, K. )} (2.4.12)
CoulKy, K, j) = fVark,

Without the normality assumption {i.e. QML, mixture of normal, Student distribution ...) this model
will be studied in much more detail in sections 3 and § from both probabilistic and statistical points of
view. Moreover, this is s template for studying other specifications of the SARV class of models. In
addition, various specifications will be considered in section 4 as proxies of continvous time models.

3. Discrete Time Models

The purpoes of this ssction will be to discuss the statistical handling of discrete time SV models, using
simple univariste cases. We start by defining the most basic SV model corresponding the autoregressive
random variance model discusssd earlier in (2.4.7). We study its statistical properties in section 3.2 and
provide a comparison with ARCH meodels in section 3.3. Section 3.4 is devoted to filtering, prediction and
smoothing. Various extensions, including multivariate models, are covered in the last section. Estimation
of the parammsters governing the volatility process is discussed later in section 5.

3.1. The Discrete Time SV Model
The discrete time 3V mode! rmay be written as

%= Ok, t=1,..,T, {3.1.1)
where ¥, denotes the demesned return process g = log (5:/S;-1) ~ 4 and log o} follows an AR(1} process.
1t will be assumed that ¢ is a series of independent, identically distributed random disturbances. Usually
£, is specified to have a standard distribution so its variance o7 is known. Thus for a riormal distribution
oF is unity while for & t-distribution with v degrees of freedom it will be 1/ (v ~ 2). Following a convention
often sdopted in the literature we write for ;= logoh:

¥ = 05 (31.2)
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where @ i a scale parameter, which removes the need for & constant term in the stationary first-order
autoregressive process
By = dhe+m,m ~ 1D(0,03), |4l < 1. (3.1.3)

It was noted before that if ; and 1, are allowed to be correlated with each other, the model can pick
up the kind of asymmetric behavior which is often found in stock prices. Indeed s negative correlation
between £; and 1, induces & leverage effect. As in section 2.4.1, the timing of the disturbance in (3.1.3)
ensures that the observations are still a martingale difference, the equation being written in this way so as
to tie in with the state space litevature.

It should be streseed that the above mode} is only an approximation to the continuous time models of
section 2 observed at discrete intervals. The accuracy of the appraximation is examined in Dassios {1995}
using Edgeworth expansions (see also sections 4.1 and 4.3 for further discussion).

3.2, Statistical Properties

The following properties of the SV model hold even if £; and 1, are contemporaneously correlated. Firstly,
as noted, ¥ is a martingale difference. Secondly, ststionarity of h implies stationarity of y,. Thirdly, if
1 is normally distributed, it follows from the properties of the lognormal distribution that Elexp{ah)] =
explatol f2), where o is & constent and of is the variance of k. Hence, if ¢, has & finite vatiance, the
veriance of y is given by
Var(y) = o’} exp(a}/2) (3.2.1)

where a¥ is assumed known, e.g. o2 = 1 when ¢ ii.d. N{0,1). Similarly if the fourth moment of ¢, exists,
the kurtosis of y, is xexp{v3), where x is the kurtosis of &, so y exhibit more kurtosis than £, Finally all
the odd moments are zero.

For many purposes we need to consider the moments of powers of absolute values. Again, 1, is assuuned
to be normally distributed. Then for £, having a standard normal distribution, the following expressions
are derived in Harvey (1993):

r{s4+d
Ely =22 ex;;(éa,’,),c >~1,c#0 {3.2.2)
r{ 8
r c+-l rig+4
Vor jy = 0% 2%exp ( ,e> 05, e 0

T}

Note that T'(1/2) =./7 and I'(1) = 1. Corresponding expressions may be camputed for ather distributions
of &4 including Student’s i and the General Error Distribution (see Nelson (1991)).

Finally, the square of the coefficient of variation of o7 is often used ns a measure of the relative strength
of the SV process. This is Var(o?)/{E(e?)] = exp(0}) ~ 1. Jacquier, Polson and Roesi {(1994) argue that
this is more sasily interpretable than a’ In the empirical studies they quote it is rarely less than 0.1 or
greater than 2,

and
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3.2.1. Aulocorrelation Functions

If we assume that the disturbances £, and 7, are mutually independent, and 7 is normal, the ACF of the
absolute values of the observations raised to the power ¢ is given by

g0 = Elw s 19— {EQu 9)? _ expl(Gotons) —1
. E(u ) - {B(u PP~ seep(§al) -1

where x, is

T2 1e> ~05,c#0 (3.2.3)

we = E{l g P E( 5 O, (3.2.4)
and pr,, 7 = 0,1,2,... denotes the ACF of h, . Taylor (1986) gives this expression for ¢ equal to one and
two and £, normally distributed. When ¢ = 2, x_ is the kurtosis and this is three for a normal distribution.
More generally,

re = Tle+ TATE + e 0
272 2 2

For Student’s i-distribution with v degrees of freedom :

- T+ 3)0(=c+ LI
{FG+Pr-5+ 91

Note that ¥ must be at least five if ¢ is two. )
The ACF, pi), has the following features, First, if oF is smsll and/or pry is close to one,
Loty -1
PO . i) bk S
277 % Pagr T2 328
" (ke exp(Fo3) ~ 1) 29

compare Taylor (1986, p. 74-5). Thus the shape of the ACF of h, is appraximately carried over to pf9
except that it is multiplied by a factor of proportionality, which must be less than one for ¢ positive as
&, in greater than one. Secondly, for the t-distribution, &, declines as v goes to infinity. Thus p{9 is a
maximum for & normal distribution. On the other hand, a distribution with less kurtoesis than the normal
will give rise to higher values of pi9),

Although {3.2.6) gives an explicit relationship between p{) and ¢, it does not appear possible to make
any general statements regarding p{" being maximized for certain values of c. Indeed different values of o2
lead to different values of ¢ maximizing p{). If of is chosen 50 as to give values of pi9 of a similar size to
those reported in Ding, Granger and Engle (1993) then the maximum appears to be attained for ¢ slightly
leas than one. The shape of the curve relating pi® to ¢ is similar to the empirical relationships reported in
Ding, Granger and Engle, a5 noted by Harvey (1293).

def <wf2,c#0 (3.2.5)

3.2.2. Logarithmic Transformation
Squaring the observations in (3.1.2) and tsking logarithms gives

log 3} = logo® + ks + logel, (3.2.7)
Alternatively

gyl =w+h + 6, (3.2.8)
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where w = logo? + Eloge?, 50 that the disturbance {; has zero mean by construction,

The mesn and variance of log €7 are known to be -1.27 and #?/2 =4.93 when ¢; has a standard normal
distribution; see Abramovitz and Stegun {1970). However, the distribution of log:? is far from being
normal, being heavily skewed with a long tsil.

Mare generally, if £, has a t-distribution with v degrees of freedom, it can be expressed as:

~0.%
g= (g

where (; is a standard normal variate and x, is independently distributed such that v, is chi-square with
v degrees of freedom. Thus

loge] = log(F — log s,

and again using results in Abramovitz and Stegun (1970), it follows that the mean and variance of loge?
are -1.27 «(1/2) ~ log(v/2) and 4.93 + ¢/ (/2) respectively, where ¥{(.} is the digamma function. Note
that the moments of £ exist even il the model is formulsated in such 8 way that the distribution of & is
Ceuchy, that is v == 1, In fact in this case £ is symmetric with excess kurtosis two, compared with excess
kurtosis four when &, is Gaussian.

Since loge? is serially independent, it is straightforwsard to work out the ACF of logy? for h, following
any stationary process:

AN = maf{l+oifor),r 2] (3.29)

The notation pf reflects the fact that the ACF of & power of an absolute value of the observation is the
same as that of the Bax-Cox transform, that is {ly]" — 1} /¢, and hence the logarithmic transform of an
absolute value, raised to any { non-zero} power, corresponds to ¢ = 0. {But note that one cannot simply
set ¢ = 0 in (3.2.3)).

Note that even if 5 and £, are not mutnally independent, the n, and ¢, disturbances are uncorrelated
if the joint distribution of &, and 1, is symmetric, that is f{e;, ) = f{~&,—m); see Harvey, Ruiz and
Shephard (1994). Hence the expression for the ACF in (3.2.0) remains valid.

8.3, Comparison with ARCH models

The GARCH(1,1) modsl has been spplied extensively to financial time series. The variance in (3.1.1) is
assumed to depend an the variance and squared observation in the previous time period. Thus

gt =y v ol 4B, t=1..T. (3.3.1)

The GARCH model was proposed by Bollerslev {1886) and Taylor (1986), and is a generalization of
the ARCH model formulated by Engle (1982). The ARCH(1) mudel is a epecial case of GARCH(1,1) with
P = 0. The motivation comes from forecasting; in an AR(1) model with independent disturbances, the
optimal prediction of the next observation is a fraction of the current observation, snd in ARCH(1) it is
» fraction of the current squared observation (plus & constant). The reason is that the optimal forecast is
constructed conditional on the current information and in an ARCH mods] the variance in the next period
is sssumed to be known. This construction leads directly to 2 likelihood function for the model once a
distribution is assumed for &,. Thus estimation of the parameters upon which o7 depends is straightforwerd
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in principle. The GARCH formulstion introduces terms anslogous to moving average terms in an ARMA
model, thereby making forecasts a function of a distributed lag of past squared obeervations.

1t is straightforward to show that 1y, is a martingale difference with (uncanditional) variance ¥/(1—a~g8).
Thue o+ 8 < 1 is the condition for covariance stationarity. As shawn in Bollerslev (1986), the condition
under which the fourth moment exists in a Gaussian model is 20 + {a + 8)? < 1. The model then exhibits
excess kurtosis. However, the fourth moment candition may not always be satisfied in practice. Somewhat
paradaxically, the conditions for strict stationarity are much wenker and, as shown by Nelson (1990}, even
include the case o + f = 1.

The specification of GARCH(1,1) means that we can write

v=ytoyl, A fel  du=at {a+ Ayl + v~ Pu,y

where vy = y? ~ o} is a martingale difference. Thus y} has the form of an ARMA(1,1) process and so
its ACF can be evalusted in the same way. The ACF of the corresponding ARMA model seems to be
indicative of the type of patterns likely to be obeerved in practice in correlograms of y7.

The GARCH model extends by adding more lags of o7 and 32. However, GARCH(1,1) seems to be the
most widely used. Tt dieplays similar properties to the SV model, particularly if ¢ is close to one. This
should be clear from {3.2.6} which has the patiern of an ARMA(1,1) process. Clearly ¢ playe a role similar
to that of &+ 4. The main difference in the ACFs seems to show up most at lag one. Jacquier ot al. {1994,
p. 373) present a graph of the correlogram of the squared weekly returns of a portfolio on the New York
Stock Exchange together with the ACFs implied by fitting 8V and GARCH(1,1) models. In this case the
ACF implied by the SV model is closer to the sample values.

The SV model displays excess kurtosis even if ¢ is zero since y, is & mixture of distributians, The
o2 parameter governs the degree of mixing independently of the degree of smoothness of the variance
evolution. This is not the case with 8 GARCH model where the degree of kuriosis is tied to the roots
of the variance equation, o and 23 in the case of GARCH(1,1). Hence, it is very often necessary to use a
non-Gaussien GARCH model to capture the high kurtosis typically found in & finandal time series.

The basic GARCH model does not allow for the kind of asymmetry captured by an SV model with
contemporaneously correlated disturbances, though it can be modified az suggested in Engle and Ng (1993).
The EGARCH model, proposed by Nelson (1891}, handles asymmetry by taking log ¢7 to be a function of
past squazres and absolute values of the observations.

3.4. Filtering, Smeothing and Prediction

For the purposes of pricing options, we need to be able to estimate and predict the variance, of, which
of course, is proportional to the exponent of A,. An estimate based on all the observations up to, and
poseibly including, the one at time { is called a filiered estimate. On the other hand an estimste besed on
all the observations in the sample, including those which came after time { is called a smoothed estimate.
Prediclions are estimates of future values. As a metter of historical interest we may wish to examine the
evolution of the variance over time by looking at the smoothed estimates, These might be compared with
the wolatilities implied by the cotresponding options prices as discussed in section 2.1.2. For pricing ‘at
the money’ options we may be able to simply use the filtered estimate at the end of the sample and the
predictions of future values of the variance, as in the method suggested for ARCH models by Noh, Engle
and Kane (1994). More generally, it may be necessary to bese prices on the full distribution of future
valuea of the variance, perhaps obtained by simulation techniques; for further discussion see section 4.2,

21



One can think of constructing filtered end smoothed estimates in a very simple, but arbitrary way, by
taking functions (involving estimeated parameters} of moving aversges of transformed observations. Thua ;

6 =9l ¥ v}t = LT, (34.1)
o1
where r =0 or ] for a filtered estimate and r = ¢ ~ T for a smoothed estimate.

Since we have formulated 2 stochastic volatility model, the natural course of action is to use this as
the basis for filtering, smoothing and prediction. For & linear and Caussian time series model, the state
space form can be used as the basis for optimal filtering and smoothing algorithms. Unfortunately, the SV
mode] is nonlinear. This leaves us with three possibilities:

&, compute ineflicient estimates based on & linear state space model;
b. use computer intensive techniques 10 estimate the optimal filter to a desired level of accuracy;
. use an (unspecified) ARCH mode] to appraximate the optimal filter.

We now turn to examine each of these in some detail.

3.4.1. Linear State Space Form

The transformed observations, the log ¥ s, can be used to construct a linear state space model as suggested
by Nelson (1988) and Harvey, Ruiz and Shephard (1994). The measurement equation is {3.2.8) while {3.1.3)
is the transition equation. The initia} conditions for the state, A, are given by its unconditional mean and
variance, that i zero and 02/(1 ~ ¢*) respectively.

While it may be reasonable to assume that vy iz normal, £ would only be normal if the absolute value
of £¢ were lognormal. This is unlikely. Thus application of the Kalman filter and the sssociated smoothers
yields estimetors of the state, h;, which are only optimal within the cless of estimators based un linear
combinations of the log y¥’s. Furthermore, it is not the Als which are required, but rather their exponents.
Suppose hyr denotes the smoothed estimator obtained from the linear state space form. Then exp(hyr) is
of the form (3.4.1), multiplied by an estimate of the scaling constant, ¢°, It cen be written as a weighted
geometric mean. This makes the estimates vulnerable to very small observations and is an indication of
the limitations of this approach.

Working with the logarithmic transformation reises an important practicsl issue, nemely how to handle
obgervations which are zere. This is a reflection of the point reised in the previous paragraph, since
obviously any weighted geometric mean involving a zero observation will be zevro, More generally we wish
to avoid very small observations. One possible solution is to remowve the sample mean. A somewhat more
satisfactory alternative, suggested by Fuller, and studied by Breidt and Carriquiry (1995), is to make the
following transformation based on & Taylor series expansion:

logy} = log(u +csp) —cay /(i +e5), t=1,--,T, (34.2)

where 5 is the sample variance of the y}s and ¢ is & small number, the suggested value being 0.02. The
effect of this transformation is to reduce the kurtosis in the transformsd obeervations by cutting down the
long tail made up of the negative values obtained by teking the logarithma of the ‘inliers’. In other words
it is & form of trimming. It might be more satisfactory, to carry out this procedure after correcting the
observations for heteroakedasticity by dividing by preliminery estimates, 5;” s. The log &% a are then added
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to the transformed obeervations. The 5;*s5 could be constructed from a first round or by using a totally
different procedure, perhaps a nonparametric one.

The linear state space form can be modified 80 88 to desl with asymmetric models. It was noted
earlier that even if 7 and £, are not mutually independent, the disturbances in the state space form are
uncorrelated if the joint distribution of ¢, and n, is symmetric. Thus the above filtering and smoothing
operations are still valid, but there is a ioes of information stemming from the squaring of the observations,
Harvey and Shephard (1993) show that this information may be recovered by conditioning on the signs
of the observations denoted by s, o variable which takes the value +1 (-1) when y, is positive (negative)}.
These signs sre, of course, the same a5 the signs of the £,'s. Let £,[E.) denote the expectation conditional
on & being positive (negative), and assign & similar interpretation to vatiance and covariance operators.
The distribution of § is not affected by conditioning on the signs of the £,s, but, remembering that E{nje.)
is an odd function of &,

B = By (m) = By |Bnded = —E-(m),
and

7" = Cony (e, &) = Ey(nedy) — Ex(q)BlE) = Ey(mée) = —Cou. (mh, &),
because the expectation of £, is zero and

Ey (k) = E3[El{nied) log&r] — p* Elog ) = — E. {mky).

Finally
Var, e = E-»(ﬂzz) - B4 {’?:)F = 03, - #d-

The linear stete space form is now

g = whh+§

* . 1

hery hy + Bept
AT TN (@49
n o AR PN 03 ~p‘7 .

The Kalman filter may still be initialized by teking s to have mean zero and variance 03/(1 — ¢°).

The parameterization in (3.4.3) does not directly involve a parameter representing the correlation
between ¢, and 1. The relationship between u* and 7" and the original parameters in the model can only
be obtained by making a distributional assumption shout £, a5 well ag 7. When &; and 7, are bivariate
normal with Corr(e, ) = p, E{nele.) = posee, and so

= Eoln) = pon By le) = pogsJ2/m = 0.7979p0,. {3.4.4)
Furthermore,
T = poyB{lec|log £]) ~ 0.7979p0, E(log £]) = 1.1061p0,,. (3.4.5)

When & hes a t-distribution, it can be written a5 (™, and (¢ and 7 can be regarded as having s
bivariate normal distribution with correlation p, while x; is independent of both, To evaluate p* and ~*
one proceeds as before, except that the initial conditioning is on ¢ rather than on &, and the required
expressjone are found to be exactly as in the Gaussian case.

The filtered estimate of the log volatility A, written as hy,q, tekes the form:

(Pye—3 + "8 ) .
hyggy = dhypg + P::-y n ;‘T’:: +‘2}3(1°8%’ —w = hyey) + sept”,
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where py,..y s the corresponding mean square error of the hy_y. If p < 0, then v* < 0, and the filtered
sstimator will behave in a similsr way to the EGARCH model estimsted by Nelson (1991), with negative
observations causing bigger increases in the estimated log volatility than corresponding positive values.

3.4.2, Nonlinear Filters

In principle, an exact filtex may be written down for the original (3.1.2) and {3.1.3}, with the former taken
as the mensurement equation. Evaluating such a filter requires appraximating a series of integrals by
nurnerical methods. Kitagawn (1987) has proposed a genersl method for implementing such s filter and
Watanabe (1993) hae spplied it to the SV model, Unfortunately, it appears to be so time consuming es
to render it impractical with cwrent computer technology.

An part of their Bayesian treatment of the mods! as a whole, Jacquier, Poleon and Rossi (1894) show
how it is poesible to obtain amoothed estimates of the volatilities by simulation. What is required is the
mean vector of the joint distribution of the volatilities conditional on the observations. However, because
simulating this joint distribution is not s practical proposition, they decomposs it into a set of univariate
distributions in which each volatility is conditional on all the others. These distributions may be denoted
p{ot]o-¢,y), where o_; denotes all the volatilities apart from 7. What one would like to do is to sample
frorn each of these distributions in turn, with the elements of o, set equal to their latest estimates, and
repeat several thousand times. As such this is a Gibbs sampler. Unfortunately, there are difficulties. The
Markov structure of the SV model may be exploited to write

plodo.,y) =p(olory, 000 o p (s he) p(hd heat) p (Bepal B)

but although the right hand side of the above expression can be written down explicitly, the density is not
of & standard form and there is no analytic expression for the normalizing constant. The solution adopted
by Jacquier, Polson and Rossl is to employ a series of Metropolis accept/reject independence chains,

Kim and Shephard (1994) argue that the single mover algorithm employed by Jacquier, Poleon and
Roesi will be slow if ¢ is close to one and/or o3 is small. This is because oy changes slowly; in fact when
it is constant, the algorithm will not converge at all. Another approach based on the linear state epace
form, is to capture the non-normal disturbance term in the messurement equation, &, by & mixture of
normels, Watanabe (1993) suggested an appraximate method based on a mixture of two moments. Kim
and Shephard (1984) propose a multimove sampler based on the linear state space form. Blocks of the
s are sampled, rather than taking them one st s time. The technique they use is based on mixing an
appropriate number of normal distributions to get the required lével of accuracy in spproximating the
disturbance in (3.2.7). Mahieu and Schotman (1994a} extend this approach by intreducing more degrees
of freedom in the mixture of normals where the parameiers are estimated rather than fixed a priori. Note
that the distribution of the o,s can be obtained from the simulated distribution of the his.

Jacquier, Palson and Rossi (1954, p416) acgue that no metter how many mixture components are used
in the Kim and Shephard method, the tail behavior of logs? can never be satisfactorily appraximated.
Indeed, they note that given the discreteness of the Kim and Shephard state space, not all staies can have
been visited enough in the small number of draws mentioned, i.e. the socalled inlier problem {(see also
soction 3.4.1 and Nelson (1994)) is still present.

As » final point it should be noted that when the hyperparateters are unknown, the simulated distri-
bution of the state produced by the Bayesian approach allows for their sampling varisbility.
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3.4.3. ARCH Models as Approximate Filters

The purposs here is to draw attention to a subject that will be discussed in greater detail in section 4.3.
in an ARCH model the conditional variance is nssurned to be an exact function of past observations. As
pointed out by Nelson and Foster (1994, p.32) this assumption is ad zoc on both economic and statistical
grounds. However, because ARCH models are relatively vasy to estimate, Nelson {1992) and Nelson and
Foster {1994) have argued that a useful strategy is to regard them as filters which produce estimates of the
conditional variance, Thus even if we believe we have a continuous time or diecrete time SV model, we may
decide to estimate 2 GARCH(2,1) model and treat the 0¥s as an spproximate filter, as in (3.4.1). Thus
the estimate is o weighted average of past squared observations. It delivers an estimate of the mean of
the distribution of o, conditional on the observations at time t-1. As an alternative, the model suggested
by Taylor (1986) and Schwert (1889), in which the conditional standard deviation is set up as a linear
combinstion of the previous conditional standard deviation and the previous absolute value, could be used.
This rmay be more robust to outliers as it is a linear combination of past absolute values.

Nelson and Foster derive an ARCH model which will give the closest approximation to the conlinuous
time SV formulation (see section 4.3 for more details). This does not cotrespond to one of the standard
modsls, though it is fairly close to EGARCH, For discrete time SV madels the filtering theory is not
a5 extensively developed. Indeed, Nelson and Foster point out that a change from stochastic different
equations to difference squations makes s considerable difference in the limit theorems and optimality
theory. They study the case of near diffusions as an example to illustrate these differences.

3.56. Extensions of the Model
3.5.1. Persistence and Seasonality

The simplest nonstationary SV model has i following a random walk. The dynamic properties of this
model are easily obteined if we work in terms of the logarithmically transformed observations, log y7. All we
have to do is first difference to give a stationary process. The untransformed cbservations are nanstationary
but the dynamic structure of the model wilt appear in the ACF of | y,/3..; ¥, provided that ¢ < 0.5,

The model is an alternative to IGARCH, that is {3.3.1) with @+ # = 1. The IGARCH model s such
that the squared observations have some of the features of an integrated ARMA process and it is said to
exhibit persistence; see Bollerslev and Engle (1983). However, its properties are not straightforward. For
example it must contain & constant, 7, otherwise, as Nelson (1990) has shown, 02 converges almost surely
to zero and the model has the peculiar feature of being strictly stationary but not weakly stationary. The
nonstationary SV model, on the other hand, can be analyzed on the basis that h; is & standard integreted
of order one process.

Filtering and smoothing can be carried out within the linear state space framework, since logg? is just
2 random walk plus noise. The initiel conditions are handled in the same way as is normaslly done with
nonstationary structural time series models, with a proper prior for the state being effectively formed from
the first observation; see Harvey (1989). The optimal filtered estimate of by within the class of estimates
which are linesr in psst logy;"'s, that is Ay, is & constant plus an equally weighted moving average
(EWMA) of past logyPs. In IGARCH 02 is given exactly by a constant plus an EWMA of past squared
observations.

The random walk volatility can be replaced by other nonstationary specifications. One possibility is
the doubly integrated randorn walk in which A%h, is white noise. When formulated in continuous time,
this model is equivalent to & cubic spline and is known to give a relatively smooth trend when applied
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in levels models. It is attractive in the SV context if the aim ie to find a weighting function which fite 2
smoothly evolving veriance. However, it may be less stable for prediction,

Other nonstationary somponents can easily be brought into k. For axample, a seasonal or intra-daily
cornponent can be included; the specification is exactly as in the corresponding levels models discussed in
Harvey (1989) and Harvey and Koopman {1993). Agsin the dynamic properties are given straightforwardly
by the usual transformation applied to log 3, snd it isnot difficult to transform the abeolute valires suitably.
Thus if the volatility consists of a random walk plus a slowly changing, nonstationary seasonal as in Harvey
(1989, p. 40-3}, the appropriate transformations are A, logy? and | w/t-. |° where 5 is the number of
seasons. The state space formulation follows along the lines of the corresponding structural time series
models for Jevels, Handling such effects is not so easy within the GARCH framework.

Different approaches to seasonality can also be incorporated in 8V models using ideas of time defor-
mation as diecussed in a later sub-section. Such approaches may be particularly relevant when dealing
with the kind of abrupt changes in seasonality which seem to occur in high frequency, like five minute or
tick-by-tick, foreign exchange dats.

3.5.2. Interventions and other deterministic effects

Intervention variables are easily incorporated into 5V models. For example, a sudden structural change in
the volatility process can be captured by assuming that

loga? = logo? + hy + Ay

where w, is zero before the break snd one after and ) is an unknown parameter. The logarithmic transfor-

mation gives (3.2.8) but with Jw, added to the right hand side. Care needs to be taken when incorporating

such effects into ARCH models. For example, in the GARCH(1,1) a sudden break hes to be modelled as
of = v+ Mty — (a+ Bwey + oyl + foi,

with A constrained so that a} is always positive.

More generslly observable explanatory variables, as opposed to intervention dummies, may enter into
the model for the variance.
3.5.3. Muitivariate Models
The multivariate model corresponding to (3.1.2) assumes that each serien is generated by a model of the
form

Wi = O™t =1, T, (3.5.1)
with the covariance (correlation) matrix of the vector & = {£y,, ..., €)v;) being denoted by X, . The vector
of volatilities, h, follows a VAR(1) process, that is
hypp = Bh + H,

where 7y ~ JID{0,X,). This specification allows the movements in volatility to be correlated across
different series via E,. Interactions can be picked up by the offi-diagonal elemente of ®.
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The logarithmic transformation of squared observations leads to a multivariate linear state space model
from which estimates of the volatilities can be computed as in section 3.4.1.

A simple nonstationary model is obtained by assuming that the volatilities follow a multivariare random
walk, that is @ = 1. If 2, is singular, of rank K<N, there are only K components in volatility. that is each
hy in (3.5.1) is & linear combination of K < N common trends, that is

h= ©hj+h (352
where h! is the K x 1 vectar of common random walk volatilities, & is a vector of constants and @ is an
N x K matrix of factor loadings. Certain restrictions sre needed on 8 and | to ensure identifiability; see
Harvey, Ruiz and Shephard (19%4). The logarithms of the squared observations are ‘co-integrated’ in the
sense of Engle and Granger {1987) since there are N — K linear combinations of them which are white noise
znd hence stetionary. This implies, for example, that if two series of returns exhibit stochastic volatility,
but this voletility is the same with &' = (1,1}, then the ratio of the series will have no stochastic volatility.
The application of the relsted concept of ‘co-persistence’ can be found in Bollerslev and Engle (1993).
However, as in the univariate case there is scane ambiguity about what actually constitutes persistence.

There is no reason why the idea of common components in volatility should not extend to stationary
models. The formulation of (3.5.2) would apply, without the need for i, and with h{ modelled. for example,
by a VAR(1).

Bollerslev, Engle and Wooldridge (1988) show that a multivariate GARCH model can, in principle, be
estimated by maximum likelihood, but because of the large number of parameters involved computational
problems are often encountered unless restrictions are made. The multivariate SV model is much simpler
than the general formulation of & muitivariate GARCH. However, it is limited in that it does not model
changing covariances. In this sense it is analogous to the restricted multivariate GARCH model of Bollerslev
(1986) in which the conditional cerrelations are assumed to be constant.

Harvey, Ruiz and Shephard (1994) apply the nonstationary model to four exchange rates and find
just two common factors driving volatility. Another application is in Mahieu and Schotman (1984b). A
completely different way of modelling exchange rate volatility is to be found in the latent factor ARCH
model of Diebold and Nerlove (1989).

3.5.4. Observation intervals, aggregation and time deformation

Supposee that an SV model is observed every ¢ time periods. In this cese, h,, where 7 denotes the new
observation (sampling) interval, is still AR{1) but with parameter ¢*. The variance of the disturbance, r,
increases, but o7 remains the same. This property of the SV model makes it easy to make comparisons
across different sampling intervals; for example it makes it clear why if ¢ is around 0.98 for daily observa-
tions, a value of around 0.9 can be expected if an observation is made every week (essuming a week has 5
days).

If averages of observations are observed over the longer period, the compaerison is more complicated, as
k. will now follow an ARMA(1,1} process. However, the AR parameter is still ¢°. Note that it is difficult
to change the observation interval of ARCH processes unless the structure is weakened as in Drost and
Nijman {1993); see also section 4.4.1.

Since, a8 noted in section 2.4, one typically uses & discrete time approximation to the cantinuous time
model, it is quite etraightforward to handle irregularly spaced obeervetions by using the linear stete space
form ee described, for example, in Harvey (1989). Indeed the approach originally proposed by Clark
{1973) based on subordinated processes to describe asset prices and their volatility fits quite well into this
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framework. The techniques for handling irregularly spaced observations can be used as the basis for dealing
with time deformed cbservations, as noted by Stock (1988). Ghysels and Jasiak {1994a, b) suggest a SV
mode} in which the operational time for the continuous time volatility equation is determined by the flow
of information. Such time deformed processes may be particularly suited to dealing with high frequency
data. If 7 = g(t} is the mapping between calendar time 7 and operationa) time ¢, then

dS; = pSedt + o (g{t)) S dWy,
and
dlog o{r) = a ((b~ logo{r))dr + cdWy,

where Wy; and W, are standard, independent Wiener processes., The discrete time approximation gen-
eralizing {3.1.3), but including & term which in {3.1.2) is incorporated in the constant scale factor o, is
then

hygy = [1 — e 00N 4 gmo200 g

where Ag(t) is the change in operationa] time between two consecutive calendar time observations and 5,
is normally distributed with mean zero and variance *(1 — e~20476)) /20 Cleasly if Ag{t) = 1, ¢ = €™®
in (3.1.3). Since the flow of information, and hence 4g(t), is not directly observable, a mapping to
calendar time must be specified to make the model operational. Ghysels and Jasiak (1994s) discuss several
specifications revolving around a scaled exponential function relating g{t} to observables such as past
volume of {rade and past price changes with ssymmetric leverage effects. This approach wss also used by
Ghysels and Jasiak (1994b) to model retum-volume co-movemnents and by Ghysels, Gouriéroux and Jasiak
{1995b) for modeling intra-daily high frequency data which exhibit strong seasonal patterns [cfr. section
3.5.1).

3.5.5. Long Memory

Baillie, Bollerslev and Mikkelsen {1993) propose a way of extending the GARCH class to account for
long memory. They call their models Fractionally Integrated GARCH (FIGARCH), and the key feature
is the inclusion of the fractional difference operator, (1 — L)Y, where L is the lag operator, in the lag
structure of pest squared observations in the conditional variance equation. However, this model can
only be stationary when d = 0 and it reduces to GARCH. In a Iater paper, Bollerslev and Mikkelsen
(1995} consider a generalization of the EGARCH miodel of Nelson (1991) in which logo? is modelled
as a distributed lag of past £;8 involving the fractional difference operator. This FIEGARCH model is
stationary and invertible if {d |< 0.5,
Breidt, Crato and de Lima (1993) and Harwey (1993) propose an SV model with hy genersied by
fractional noise
he=mf(1= LY ne ~ NID(0,02),0 £d < 1. (3s.1)

Like the AR(1)} model in (3.1.3), this process reduces to white noiss and s random walk st the boundary
of the parameter space, thet is d = 0 and 1 respectively. However, it is only stationary if d<0.5. Thus
the tzansition from stationarity to nonstationarity proceeds in a different way to the AR(1) model. As
in the AR(1) cese it is ressonable 1o constrain the sutocorrelations in (3.5.1) to be positive. However, a
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negative value of d is quxte legitimate and indeed differencing A, when it is nonststwnmy gives a stationary
‘intermediate memory’ process in which ~0.5 <4< 0.

The properties of the long memory SV model can be obtained from the formulae in sub-section 3.2,
A comparison of the ACF for h, following a long memory process with d = 0.45 snd o} = 2 with the
corresponding ACF when &, is AR(1) with ¢ = 0.99 can be found in Harvey {1993). Recsll that a
characteristic property of long memory is & hyperbolic rate of decay for the autocorrelations instead of an
exponential rate, a feature observed in the data {see section 2.2(e)}. The slower decline in the long memary
model is very clear and, in fact, for 7 = 1000, the long memeory autocorrelation is still 0.14, whereas in
the AR case it is only 0.000013. The long memory shape closely matches that in Ding, Granger and Engle
{1993, p. 8B6-8).

The model may be extended by letting 1 be an ARMA process and/or by adding more components to
the volatility equation.

As regards smoothing and filtering, it has already been noted that the stete space approach is spprox-
imate because of the truneation involved and is relatively cumbersome because of the length of the state
vectar. Exact smoothing and filtexing, which is optimal within the class of estimators linear in the logy®s
, can be carried out by a direct approach if one is prepared to construct and invert the T x T' covariance
matrix of the logy?s .

4, Continuous Time Models

At the end of section 2 we presented n framework for statistical modelling of 8V in discrete time and
devoted the entire section 3 to specific discrete time SV models. To motivate the continuous time models
we study first of all the exact relationship (i.e. without approximation error) between differential equations
and SV models in discrete time, We examine this relationship in section 4.1 vis & class of sfatistical models
which are closed under temporal aggregation and proceed (1) from high frequency discrete time to lower
frequencies and (2) from continuous time to discrete time. Next, in section 4.2, we study option pricing
and hedging with continuous time models and elaborate on features such as the smile effect. The practical
implementation of option pricing formulae with SV often requires discrete time SV and/for ARCH models
as filters and forecasters of the continucus time volatility processes. Such filters, covered in section 4.3,
are in general discrete time appraximations {and not exact discretizations as in section 4.1} of continuous
time S5V models. Section 4.4 concludes with extensions of the basic model.

4.1. From discrete to continuous time

The purpose of this section is to provide a rigorous discussion of the relationship between discrete and
continuous time SV models. The presentation will proceed first with a discussion of temporal aggregation
in the context of the SARV class of models and focus on specific cases including GARCH models. This
material is covered in section 4.1.1. Next we turn our attention to the aggregation of continuous time SV
models to yield discrete time representations. Thie is the subject matter of section 4.1.2.

4.1.1, Temporal Aggregation of Discrete Time Models

Andersen’s SARV class of models was presented in section 2.4 as a general discrete time parametric SV
statistical model. Let us consider the zero-mean case, namely :
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Yt = diErq) (4.1.1)

end of for g = 1 or 2 is & polynomial function g{ K,) of the Markov process K, with stationary sutoregressive
representation :

Ki=sw4 K i+ o (41.2)
where |f] <1 and
Elerlen, vy T <] =0 {4.1.3a)
Elel |er v m s 4] =1 (4136)
Elvgider,v.r <t)=0 {4.1.3¢c)

The restrictions {4.1.3a-c} imply that v iz a martingale difference sequence with respect to the filtration
F, = olgr,v;, 7 < 1.7 Moreover, the conditional moment conditions in (4.3.1a-c) also imply that ¢ in
{4.1.1} is @ white noise process in a semi-strong sense, i.e. Blee, |2, 7 < t] =Dand E[e,ﬂlsv,r < t] =1,
and is not Granger caused by v.¥ From the very beginning of section 2 we choose the continucusly
compounded rate of retarn over a particular time horizan as the starting point for continuous time processes.
Therefore, let 3741 in (4.1.1) be the continuously compounded rate of return for £, t + 1] of the asset price
process 8;, consequently :

Y1 = log S/ S (4.1.4)

Since the unit of time of the sampling intervel is to 2 large extend arbitrary, we would surely want the

SV model defined by equations {4.1.1) through (4.1.3), (for given ¢ and fimction g) to be closed under

temporal aggregation. As rates of return are flow variables, closednese under temporal aggregation means
that for any integer m :

v = 10g Sin/ Semm = 2 Yin-x

in again conformable to n model of the type (4.1.1) through (4.1.3) for the same choice of g and ¢ involving
suitsbly adapted parameter values. The analysis in this section follows Meddahi and Renault (1995) who
study temporal aggregation of SV models in detail, particularly the cases (1) of = K, ,je. g=2and g
is the identity function and (2) o} = exp{K,) which is the leading discrete time SV model. We will focus
here on the former as it is related to the socalled continuous time GARCH approach of Drost and Werker
(1994). Hence, we have {4.1.1) with:

o =w i fol 4w (4.1.5)

TINote thet we do not use here the decomposition appearing in (24.9) namely, ve = [y + aK 1] ;.
BThe G Yity idered here for 2, i weake than Asssmption 2.3.2.A as it spplies only to the fimst two

wonditional mmeuta
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With conditionsal moment restrictions (4.1.3a~) this model is closed under aggregation. For instance,
farm=2:

95:): = ey bW = atti)leﬁ)!
with : )2 RN )
(G:w}l = w4 g (”t—a) +u
where :
v = w(l+h)
g = g
v = (B+1)[Bra+ vegf

Morseover, it also worth noting that whenever a leverage effect is present at the aggregate level, ie. :
. ¢
Cou [u?,,eP] #0

with zg'l = (Yoo + te-2) / ag), » it necessarily sppears at the disaggregate level, ie. Cov{vy,2) # D.

For the general case Meddahi and Renault {1995) show that model (4.1.5) together with conditional
moment Testrictions (4.1.3a-¢) is a class of processes closed under aggregation. Given this result, it is
of interest to draw a comparison with the work of Drost and Nijman (1993) an temporal aggregation
of GARCH. While establishing this link between Meddsahi and Renault (1995) and Drost and Nijman
{1993) we will also uncover issues of leverage properties in GARCH models. Indeed, contrary to what is
often believed, we will find leverage effact restrictions in socalled weak GARCH processes defined below.
Moreover, we will slso find from the results of Meddahi and Renault that the class of weak GARCH
processes includes certain SV models.

To find & class of GARCH processes which is closed under aggregation Drost and Nijman (1993)
weakened the definition of GARCH, nsmely for a positive stationary process a¢ :

o =wtagt, +bol, (4.1.6)
where a + b < 1, they defined : '

s gtrong GARCH if ¥4 fo¢ is i.i.d. with mean zero and variance 1
o semi-strong GARCH if E{gra| 1,7 < 8] =0 and E[m’ﬂ e, 7 < t] = o?
s weak GARCH if EL[pnr| po,92,7 < t} = 03 BL i, [y 33,7 < t] = qrn

Diroet and Nijman show that weak GARCH proceases temporally aggregate and provide explicit formula
for their coefficients. In section 2.4 it was noted that the framework of SARV includes GARCH processes
whenever there is no randomness specific to the volatility process. This property will allow us to show
that the class of weak GARCH processes -as defined zbove- in fact includes more general SV processes
which are strietly speaking not GARCH. The arguments, following Meddahi and Renault (1995}, require a

¥or any Hilbert space H of L7, ELIx, 2, 2 € H] s the best limear predictor of 2, in terms of 1 and z € H. 1t should be
noted thet s sirong GARCH process s & fortiori semi-strong which jtsell is also a weak GARCH procws.
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classification of the models defined by (4.1.3} and (4.1.5) according to the value of the correlation between
v, and y?, namely :

(a) Models with perfect correlation : This firet class, henceforth denoted Cy, is characterized by a linesr
correlation between v, and yf conditional on {&,,t;, 7 <t} which is either 1 or -1 for the model in (4.1.5).

{b) Models without perfect correlation : This second class, henceforth denoted C; has the above condi-
tional correlation less than one in absolute value,

The class ') containe sll semi-strong GARCH pro indeed whenever Var [yf|es, vr, 7 < ] ig pro-
portional to Var [vy|er,us,7 <8 in C; we have a wms-strong GARCH. Consequently, a semi-strong
GARCH processes is & model (4.1.5) with (1) restrictions (4.1.3), (2} a perfect conditional correlation
a8 in €, and (3) restrictions on the conditional kurtosis dynamics.®

Let us consider now the following essumption :

Assumption {.1.1 : The following two conditional expectations are zero :

Elewlervr, 1< t)=0 {4.1.78)

E[elesstr,7 < z] =0, (4.1.710)

This sssumption amounts to an absence of leverage effects, where the latter is defined in & conditional
covariance sense to capture the notion of instantaneous causality discussed in section 2.4.1 and applied
here in the context of weak white nicise.®® It should also parenthetically be noted that (4.1.7a) and (4.1.7b)
are in genersl not equivalent except for the processes of clase C;.

The class C; allows for randomness proper to the volatility process due to the imperfact correlation,
Yet, despite this volatility-specific randomness one can show that under Assumption {.1.1 processes of C;
satisfy the weak GARCH definition. A fortiori, any SV model conformable to {4.1.3a-c}, (4.1.5}, (4.7.1e-
b} and Assumption §.1.1 is a weak GARCH process. It is indeed the symmetry assumption (4.1.7a-b),
ar restrictions on leverage in GARCH, that makes that EL[;:,’.H 2.7 < t] = o} (together with the
conditional moment restrictions {4.1.3a-c}} and yields the internal consistency for témporal aggregation
found by Droet and Nijman {1993, example 2, p.915) for the class of socalled symmetric weak GARCH(1,1).
Hence, this ;lasa of wesk GARCH(1,1) processes can be viewed as & subclass of processes satisfying (4.1.3)
and (4.1.5).

4.1.2, Temporal sggregation of continuous time models

To facilitate our discussion we will specialize the general continuous time model (2.3.1) to pracesses with
zero drift, j.e.

dlog S; = 0, dW, ' (4.1.8a)

Z1u fact, Nelson and Foster (1994) obeerved thet the bwet commonly used ARCH models effectively assume that the
varisnce of the verinncs rises linestly in of, which i the main drawbsck of ARCH models to appraximate SV models in
continuous time (sec alao section 4.3).

B The conditions! expectation (4.1.7b) can be viewsd as a conditional covariance between £, apd €. ) is this conditional
coveriance which, if nonsero, produces leverage affects in GARCH.

ITAx noted before, the class of processes satiefying {4.1.3) and {4.1.5) is closed under temporal aggregation, including
processes with leverage effects not estisfying Assumption {.1.1.
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= et + BdW? {4.1.8b)

Cov (dW,, dW?) = pyde {4.1.5¢)
where the stochastic processes o, ., & and p, sre If = {o.; T < t] ndapted. To ensure that ¢, is 2 nonneg.
ative process one typically follows either one of two strategies : (1) considering a diffusion for log o? or (2)
describing o] as a CEV process (or Constant Elasticity of Variance process following Cox {1975) and Cux
end Ross (1876)).® The former is frequently encountered in the option pricing literature (see e.g. Wiggins
(1987)) and is also clearly related to Nelson (1991), who introduced EGARCH, and to the Jog-Normal 5V
model of Teylor {1986). The second class of CEV processes can be written as

dof=#k (9 - af) dt+ (a?)s awy {4.1.9)

where § > % ensures thet of is & stationary process with nonnegative values. Equation {4.1.9) can be
viewed as the continuous time analogue of the discrete time SARV class of models presented in section
2.4. This observation establishes links with the discussion of the previous section 4.1.1 and yields exact
discretization results of continuous time SV models. Here, as in the previous section it will be tempting
to draw comparisons with the GARCH class of models, in particular the diffusions propased by Drost and
Werker (1994) in line with the temporal aggregation of weak GARCH processes.

Firstly, one should note that the CEV process in (4.1.9) implies an autoregressive model in discrete
time for oF , namely :

4L

gy =0 (1 _ e-tm) e tAgT okt j oty (0.3)5 awe {41.19)
t

Meddahi and Rensult (1995} show that whenever (4.1.9) and its discretization (4.1.10) govern volatility
then the discrete time process log Sepuenar / Seiracs k € X is a SV process satisfying the model restrictions
(4.1.3s-c) and (4.1.5). Hence, from the diffusion (4.1.9) we obtain the class of discrete time SV models
which is closed under temporal aggregation, as discussed in the previous section. To be ruore specific,
consider for instance Af = 1, then from (4.1.10) it foliows that :

Yerr = JogSu1 /S = ouEisy

(4.1.11)
g} = w+fol 4 u
where from (4.1.10) :
A=e*w= 0(1 -k
{4.1.12)
1
P ! -ty (52 We.
®Occnsionally one apmﬁmtmmwhmhdommxemnn@lﬂtydﬂwa,m For the sake of compa-
tational simplicity scme authors for i bave iderod Ornstein-Ublenbeck p for 5y ur o7 (see e.g. Stein sod

Steln (1991)).
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It is important to note from {4.1.12) that absence of leverage effect in continuous time, i.e. o, = 0in
{4.1.8¢), means no such eflect at low frequenciss and the two symmetry conditions of Assumption 4.1.1 are
fulfiled. This line of reasoning also explains the temporal aggrogation result of Drost and Werker (1984),
but one more generally can interpret discrete time SV models with leversge offects as exact discretizations
of continuous time SV models with leverage.

4.2. Option pricing snd hedging

Section 4.2.1 is devoted to the basic option pricing model with 5V, namely the Hull and White model
of section 2. 'We are better equipped now to elaborate on jte theoretical foundations. The practical
implications appear in section 4,2.2 while 4.2.3 concludes with some extensions of the basic model.

4.2.1. The Basic Option Pricing Formula

Consider again formula (2.1.10) for a European option contract maturing at time £ + i = T'. As noted in
saction 2.1.2, we assume continuous and frictionless trading. Moreover no arbitrage profits can be made
from trading in the underlying asset and riekless bonds ; interest rates are nonstochastic so that B(t,T)
defined by {2.1.12) denctes the time ¢ price of & unit discount bond maturing st time 7', Consider now the
probability space (2, F, P}, which ie the fundamentsi space of the underlying asset price process § :

48, /5 = p(t, 8 Ujdt + o dW
o = f(U) : (4.2.1)
au, = a(t,U)dt+ b(t,U)dWy?

where W; = (W7, W¢), s a standard two dimensional Brownian Motion (W and W7 are independent,
zero-menn and unit variance) defined on (7, F, P). The function f, calied the volatility function, is assiumed
to be ans-to-one, In this framework (under suitable regularity conditions) the no free lunch assumption
is equivalent to the existence of a probability disiribution @ on ({,F), equivalent to P, under which
discounted price processes are martingales (see Harrison and Kreps (1979)). Such s probability is called
an equivelent martingale measure and is unique if and enly if the markets are complete (ses Harrison and
Pliska (1881)).™ From the integral form of martingale representations (see Karatzas and Shreve (1988),
p. 184}, the {(positive) demsity process of any probability measurs { equivalent to P can be written as :

- _asge 1 513 _fa' _,lj‘ 02}
M, exp{ [ xsaws -3 /o' () au - [ 2aws -5 [0 du (4.2.2)
where the processes A7 and X sre adapted to the natursl filtration oy = o{W,,7 < #],t > 0, and satisfy
the integrability cogzdiﬁom {elmoet surely) :
Ea% 232
/:(A,,) du<+camdj:(&) du < +o0
By Girsanov’s theorem the process W = (W’, W’)' defined by :

W= W+ [ N and W7 = w7 + [ 3du (4.2.3)

B Hexe, the market is seen se incomplete (before taking into scoount the market pricing of the option) so that we have to
h nvet of equivalent martiogale mensures,
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is & two dimensionsl Brownisn Motion under Q. The dynamic of the underlying asset price under Q is

obtainad directly from {4.2.1) and (4.2.3). Moreover, the discounted ssset price process 5,8 (0,1) 0 <t <
T, is & martingale if and only if for r; defined in (2.1.11) :

g _ s, SU) -1

- —

Since S is the only traded asset, the process A? is not fixed. The process XY defined by (4.2.4) in called

the asset risk premium. By analogy, any process A? satisfying the required integrality condition can be

viewed as a volatility risk premium and for any choice of A7 , the probability @ (A9} defined by the density

process M in {4.2.2) i an equivalent martingale measure. Therefore, given the volatility risk premium

process A7 :

(4.2.4)

C¥ = B(t, TV EX” [Maz 0,57 - K]}, 0<t< T (4.25)
is an admissible price process of the European call option.®
The Hull and White option pricing mode] relies on the following assumption, which restricts the set of
equivalent martingsle measures :

Assumption 4.2.1 : The volatility risk premium A only depends on the curent value of the volatility
process : X = X {,U;} vt € [0, 7]

This assumption is consistent with an intertemporal equilibrium model where the agent preferences are
described by time separable isoelastic wtility functions (see He (1993) and Pham and Touzi (1993)). I
ensures that WP and W7 are independent, so that the ( (37) distribution of log 8¢ /S,, conditionally on
F, and the volatility path (0y,0 < ¢ < T') is normal with mean f7 rodu —~ 442 (£, T} end variance v {t, T} =
J7 o3du. Under Assumption {.£.1 one can compute the expectation in (4.2.5) conditionally on the volatility
path, and we obtain finslly:

G =SB [b(du) - e (dar)] (4.26)
with the same notation as in (2.1.20). To conclude it is worth noting that many option pricing formulae
svailable in the literature heve a festure common with (4.2.6) as they can be expressed as an expectation
of the Black-Scholes price over on heterogeneily distribution of the volatility parameter (see Renault {1885)
for an elaborate discussion on this subject),

4.2.2. Pricing and Hedging with the Hull and White model

The Matkov feature of the process (5,1) implies that the option price (4.2.6) only depends on the con-
temporansous valuee of the underlying asset prices and its volatility. Moreover, under mild regularity
conditiona, this function is differentiable. Therefors, a natural way to solve the hedging problem in this
stochastic volatility context is to hedge a given option of price } by A] units of the underlying aseet and
¥: units of any other option of price CF where the hedging ratios solve

8C) 188 — A} — T3 8CE 85, = 0
{ 8C] fBo, ~ Ifac"/aag M 42

®iere slsowhere E3 () = E (| %) stands for the conditionsl expectation operatoc given %; when the price dynamics are
governed by Q.
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Such a procedure, known as the delta-sigma hedging strategy, has been studied by Scott {(1991). By
showing thet any Europesn option completes the market, i.e. 8C2/80; # 0, 0 € t < T, Bajeux and
Rochet (1992) justify the existence of an unique solution to the delie-sigma hedging problem (4.2.7) and
the implicit. assumption in the previous sections that the available information I; contains the past values
(81,0:), 7 £ t. In practice, option traders often focus on the risk due to the underlying asset price variations
and consider the imperfect hedging strategy ¥, = 0 and A, = 8C}/8S;. Then, the Hull and White option
pricing formuls (4.2.6) provides directly the theoretical value of A, :

A, =3CK 88, = EX g (d) {4.28)

This theoretical value iz hard to use in practice since : {1} even if we knew the J (A} conditional
probability distribution of dy, given I; (summarized by 6;), the derivation of the expectation (4.2.8) might
be computationally d ding end (2) the conditional probebility is directly related to the conditional
probability distribution of 42 (,T) = T o2du given o, which in turn may involve nontrivially the pa-
rameters of the latent process ;. Moreover, these parameters are those of the conditional probability
distribution of ? (t, T) given o, under the risk-neutral probability (2 (3*) which is generally different fram
the Data Generating Process P. The statistical inference issues are therefore quite complicated, We will
argue in section 5 that only tools like simulation-based inference methods involving both asset and option
prices (via an option pricing model) may provide some satisfactory solutions,

Nevertheless, n practical way to avoid thess complications is to use the Black-Scholes option pricing
model, even though it is known to be misspecified. Indeed, option traders know that they cannot generally
obtain sufficiently socurate option prices and hedge ratios by using the BS formula with historical estimates
of the volatility parameters based on time series of the underlying assst price. However, the concept of
Black-Scholes implied volatility (2.1.23) is known to improve the pricing and hedging properties of the BS
model. This reises two issues : (1) what ie the internal consistency of the simultaneous use of the BS
model {which assumes constant volstility) and of BS implied volatility which ia clearly time-varying sand
stochastic and (2) how to sxploit the penel structure of aption pricing errora?™!

Concerning the first issue, we noted in section 2 that the Hull and White option pricing model can
indeed be seen as a theoretical foundation for this practice of pricing. Hedging issues and the panel
structure of option pricing errors are studied in detail in Reneult and Touzi (1992) and Renault {1995).

4.2.3. Smile or Smirk?

As noted in section 2.2, the smile effect is now & well documented empirical stylized fact. Moreover the
smile becames sometimes a smirk since it sppears more or less lopsided {the socalled skewness effect).
We cautioned in section 2 that some explanations of the smile/amirk sffect are often founded on tempting
analogies rather than rigorous proofe. .

To the best of our knowledge, the state of the art is the following : (i) the first formal proof that a Hull
and White option pricing formula implies a symmetric smile was provided by Rensult and Touzi (1992), (i)
the first complete proof that the smile/smirk effects can alternatively be explained by liquidity problems
{the upper parts of the smile curve, i.e. the most expensive options are the least liquid) was provided by
Plaiten and Schweizer (1994) using a microstructure model, (iii) there i no formal proof that asymmetries
of the probability distribution of the underlying asset price process (leverage effeci, non-normality,...) are

*'The value of o which equates the BS formuls to the obwerved market prios of the option heavily depends on the actual
date 1, the strike price i, the time to maturity (T — ¢} and therdore creates & panel data strocture.
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able to capture the cbserved skewness of the smile. A different attempt to explain the observed skewness
is provided by Rensult (1995). He showed that n slight discrepancy between the underlying asset price
8, used to infer BS implied volatilities and the stock price 5, considered by option traders may generate
an empirically plausible skewness in the smile. Such nonsymchronous 5, and §; may be related to various
igsues : bid-ask spreads, non-synchronous trading between the two markets, forecasting strategies based
on the leverage effect, etc.

Finally, to conclude it is also worth noting that a new approach initiated by Gouriéroux, Monfort,
Tenreiro {1994) and followed also by Ait-Sahalia, Bickel, Stoker (1994} is to explain the BS implied volatility
using a nonparametric function of some observed state varisbles. Gouriéroux, Monfort, Tenreire (1995}
obtain for example a good nonparamnetric fit of the following form :

0:(Ss, K) = a(K) + b(K) (log 8 /5,1 )"

A claseical amile effect is directly observed on the intercept a{ K’} but an inverse smile effect appears for
the path-dependent effect parameter b(K}. For American options & different nonparametric approach is
pursued by Broadie, Detemple, Ghysels and Torrés (1995) where besides volatility alsc exercise boundaries
for the option contracts are nonparametrically obtained. >

4.3, Filtering and Discrete Time Approximations

In section 3.4.3 it was noted that the ARCH class of models could be viewed as filters to extract the
(continvous time) conditional variance process from discrete time data. Several papers were devoted to
the subject, namely Nelson {1990, 1992, 1995a,b} and Nelson and Foster (1904, 1995). It was one of Nelson's
seminal contributions to bring together ARCH &nd continuous time SV. Nelson's firet contribution in his
1990 paper was to show that ARCH models, which model volatility as functions of past (squared) returns,
converge weakly to a diffusion process, either a diffusion for logof or 8 CEV process as described in section
‘4.1.2. In particular, it was shown that a GARCH{1,1} model observed at finer and finer time intervals
At = h with conditional variance parameters wy = hw, o) = oz(h/?)‘i and B, =1~a(h/ 2)i —~ @h and
conditional mean gy = hoo} converges to s diffusion limit quite similar to equations (4.1.8s) combined
with (4.1.9) with & = 1, namnely

dlog 5, = cotdt + o dW,
do? = (w - fol)dl + o2dWy .

Similarly, it was also shown that a sequence of AR{1}-EGARCH(1,1} models converges weakly to an
Ornstein-Uhlenbeck diffusion for Inof :

dinel=c (ﬁm lna?)dt +dWy.

Hence, these basic insights showed that the contirmuouns time stochastic difference equations emerging
as diffusion limits of ARCH models were no longer ARCH but instead SV models. Moreover, following
Nelson (1992) even when misspecified ARCH models still kept desirable properties regarding extracting
the continuous time volstility. The argument was that for a wide variety of misspecified ARCH models
the difference between the ARCH filter volatility estimates and the true underlying diffusion volatilities

G slso Bossserta and Hillion (1895) for the use of & nonparametric hedginé procedure and the emile effect.
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conwerges to zero in probability as the length of the sampling time interval goes to zero at an appropriste
rate. For instance the GARCH(1,1} model with wy, @, and f, described before estimates 62 as follows :

R
(1 5)7" + E“nﬁi!&mun
=0

where g = log S¢ /Se-n. This filter can be viewed as a particular case of equation {3.4.1). The GARCH(1,1)
and many other models, effectively achieve consistent estimation of 0, vie & lag polynomial function of
past squared returns close to time £,

The fact thet s wide variety of misspecified ARCH models consistently extract ¢, fromn high frequency
dats raises questions regarding efficiency of filters. The answera to such questions are pravided in Nelson
{1995a,b) and Nelson and Foster {1994, 1995). In section 3.4 it wes noted that the linear state space
Kalman filter can also be viewed as a {suboptimal) extraction filter for ;. Neleon and Foster (1994) show
that the uympboucally optimal linear Kalman filter has asymptotic variance for the normualized estimation
error -4 i in (62) ~ Ino?} equal to XY( 1/2)* where Y(z) = d{ln I'(z)] /dz and ) is scaling factor. A model,
closely related to EGARCH of the follmvmg form :

In (83,,) = 1n (83) + £A (Suen ~ S) 677
+A {1~ p?)é [I‘(l/?)% T(E/g)* 1Seen — Sel &7t — T*]

yields the asymptotically o}ptxmal ARCH filter with asymptotic veriance for the normalized estimation
ervor equal to A[2(1 — p?)]? where the parameter p measure the leverage effect. These results also show
that the differences between the most efficient suboptiraal Kalman filter and the optimal ARCH filter can
be guite substantial. Besides filtering one must also deal with smoothing and forecesting. Both of these
issues were discussed in section 3.4 for discrete time SV models. The prediction properties of (mmspu::ﬁed)
ARCH models were studied extensively by Nelson and Foster (1995). Nelson {(1993) takes ARCH models
a step further by studying smoothing filters, i.e. ARCH models involving not only lagged squared returns
but also future realizations, i.e. 7 =t ~ T in equation (3.4.1).

4.4. Long Memory

We conclude this section with a brief discussion of long memory in continuous time SV models. The purpose
is to build continuous time long memory stochastic volatility models which are relevant for high frequency
financial data and for (long term) option pricing. The ressons motivating the use of long memory models
were discussed in sections 2.2 and 3.5.5. The advantage of considering continuous e long memory is
their relative ability to provide a more structural interpretation of the parameters governing short term
and long terrn dynamics. The first subsection defines fractional Brownian Motion. Next we will turn our
attention to the fractional SV model followed by a section on filtering and discrete time appraximations.

4.4.1. Stochastic integration with respect to fractional Brownlan Motion

We Tecall in this subsection a fow definitions and properties of fractional and long memory processes in
cantinuous time, extensively studied for instance in Comte snd Renault (1993). Consider the scalar process:

Ty o= fa(t — 5)dW, : 4.4.1)
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Such a process is asymptotically equivalent in quadratic mean to the stationary process :

"= f _alt-gaw, (4.4.2)

whenever f * a® (z) dz < +00. Such processes are cslled frectional processes if a () = 2%a {x) ;T (1 + a)for
laf < 1/2, & continuously differentiable on [0,T] and where I'(1 + a) is a scaling factor useful for nor-
malizing fractional derivation operators on [0,T]. Such processes admit several representations, and in
particular that they can also be written:
! -8
m.*fc(:~s Y W, Wo,_/ 5 H)a)dw (4.4.3)
where W,, is the so-called fractional Brownian Motion of order o {see Mandelbrot and Van Ness (1568)).
The relation between the functions a snd ¢ is one-to-ome, One can show that W, is nof a semi-

martingale (see e.g. Rogers (1995)) but stochastic integration with respect to W, can be defined properly.
The processes x, are long memory if:

lim 28 (2} = 0 , 0 < < 1/2 and 0 < @y < +o0. (1.4.4)
Tt 00 : o
for instance,
Az = ~kxedt + 0dWoe n=0k>00<a< /2 (4.4.5)
with its solution given by :
g = f = o (T (1 4a)) " duf® (4.4.6)
2 = L‘ e 5N diy, (4.4.60)

Note that, x(“) the derivative of order o of z;, is & solution of the usual SDE: dz; = —kzdt + 0dW,.

4.4.2. The fractionsl SV model

To facilitate comparison with both the FIEGARCH model and the fractionsl extensions of the log-Normal
SV model discussed in section 3.5.5 let us consider the following fractional 8V model (henceforth FSV) :

45, /5, = cdW, (4.4.7a)

dlog oy = —k log ogdt + ydW,,, {4.4.7h)

where k > 0 and 0 € a < 1/2. If nonzero, the fractional exponent a will provide some degree of freedom
in the order of regularity of the volatility process, namely the greater a the smoother the path of the
volatility process, If we denote the autoocovariance function of o by r,(-) then:

>0 = (5 (B — 7y () /A— 085 h— 0.
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This would be incorrectly interpreted as near-integrated behavior, widely found in high frequency data
for instence, when:

To(h)= 1, (0)/h=(s" = 1)/ h— logpes h 0,

end o; is & continuous time AR(1) with corelation p near 1.

The long memory continuous time approach allows us to model persistence with the following features
(1) the volatility process iteelf {(and not only its logarithm) has hyperbolic decay of the correlogram ;
{2) the persistence of volatility shocks yields leptokurtic features for return which vanishes with temporal
sggregation st & slow hyperbolic rate of decay.® Indeed for rate of return on [0, 4}

E{logSuun/ S - E(Iog Seunf S)F'/ (Ellog Seen/ S ~ Elog Sean/ SIF)” — 3

as h — oo at a rate h*! if a €10, 1/ 2] and a rate exp{—kh/ 2) if a = 0.

4.4.3. Filtering and Discrete Time Approximations
The volatility process dynamics are described by the solution to the SDE (4.4.5), namely :

log o, = /; {t - 8)° /T (14 o) dlogal™ (4.4.6)
where Jogo'® follows the O-U process :

diogol® = ~klogo{dt + ydW, (4.4.7)

To compute a discrete time appraximation one must evaluate numerically the integral {4.4.6) using only

values of the process logol® on a discrete patition of jo, 1] at points j/n,j = 0,1..., [n]¥ A natural
way to proceed is to use step functions. generating the following proxy process:

in1)
logo} =3 _ (¢t~ (7 ~1)/n)" [T(1 +a)Alogat) {4.48)
P!
where Aloga(“) logcr toy !egcr”_,m,, Cornte and Renault (1995) show that log &, converges to the
log o, process ér n - 00 umfoz'mly on compact sets. Moreover, by rearranging {4.4.8) one obtains:

§-1
log 8% = z (i +1)° — i) /T (1 + ) L] log o) (449

where L, is the lag operator corresponding to the sampling scheme j/n, ie. LnZjp = Zoym. With
this sampling scheme log o' is » discrete time AR(1) deduced from the continuous time process with the
following representation :

(1 = paln) log o) =uym (4.410)

2With nsual GARCH or SV model, it venishes ot an exponentia] rate {see Drost apd Nijmsn (1993) and Drost and
Werkexr {1004] for these immes in the short memory case).
B[z} i the integer ksuch that k S 2 < k+ 1.
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where pp = exp (—k/n) and u ,, is the associated innovations process, Since the process is stationary we
are allowed to write (assuming hgo‘;:,z, =y =0fa §<0):

log &), = {E (:.‘:;‘lt)w )L‘] (1=l s e

which gives s parametrization of the volatility dynamics in two parts : (1) a long memory part which
corresponds ta the filter ’ang Li/ n* withay = [{i + 1) ~ 1%} /T (1 + ) and (2) a short mermory part which

is characterized by the AR{!) process 1 {1 — pudm)” . Indeed, one can show that the long memory
filter is “Jong-term equivalent” to the usual discrete time long memory filters {1 — L) in the sense that
there is a long term relationship (a cointegration relation} between the two types of processes. However,
this long-term equivnlence between the long-memory filter and the usual discrete time one (1~ L) does
no imply that the standard psrametrization FARIMA(1, o, 0) is well-suited in our framework. Indeed, ane
can show that the usual discrete time filter (1 — L)™™ introduces some mixing between long and short
term characteristics wh the parsimenious continuous time model doesn’t.3 This feature clearly puts
the continupus time FSV at an edvantage with regard to the discrete time SV and GARCH long-memory
models.

5. Statistical Inference

Evaluating the likelihood function of ARCH models is a relatively straightforward task. In sharp contrast
for SV models it is impossible to obtain explicit expressions for the likelihood function. This is & generic
feature common to almost all nonlinear latent varisble models. The lack of estimation procedures for SV
models made them for s long time an unsttractive class of models in comparison to ARCH. In recent
years, however, remarkable progress has been made regarding the estimation of nonlinear latent variable
models in general and 5V models in particular. A furry of methods are now available and are up and
Tunning on computers with ever increasing CPU performance. The early attempts to estimate SV models
used a GMM procedure. A prowninent example is Melino and Turnbull {1990). Section 5.1 is devoted to
GMM estimation in the context of SV models. Obviously, GMM is not designed to handle continuous
time diffusions as it yequires discrete time processes satisfying certain regularity conditions. A continuous
time GMM approach, developed by Hansen and Scheinkmen {1994}, involves moment conditions directly
drawn from the continuous time representation of the process, This spproach is discussed in Section 5.3.
In between, namely in section 5.2, we discuss the QML approach suggested by Harvey, Ruiz and Shephard
(1994) and Nelson (1988). 1t relies on the fact that the nonlinear (Gsussian) SV model can be transformed
into a linesr non-Gaussian state space model as in Section 3, and from this a Gaussian quasi-likelihood
can be computed. None of the methods covered in Sections 5.1 through 5.3 involve simulation. However,
ineressed computer power has made simulstion-bated estimation techniques increaringly popular, The
simulated method of moinente, or simulation-based GMM approach proposed by Daffie and Singleton
(1993}, is a first example which is covered in Section 5.4. Next we discuss the indirect inference approach
of Gourléroux, Monfort and Rensunlt (1993} and the moment matching methods of Gallant and Tauchen
{1994} in Section 5.5. Finally, Section 5.6 covers a very large class of sstimators using computer intermive
Markov Chain Mante Carlo methods applied in the context of SV models by Jacquier, Polson and Rossi

®Namely, (1 Zn}" log 87, & not an AR(1) process.
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{1994) and Kim and Shephard (1994), and simulation based ML estimation proposed in Danielsson (1994)
and Danjelsson and Richard (1993). .

In each section we will only try to Limit our focus to the use of estimation procedures in the context
of SV models and avoid details regarding econometric theary. Some useful references to camplement the
materiel which will be covered are (1) Hansen (1992), Gallant and White (1988), Hall (1993} and Ogalki
(1993) for GMM estimatian, (2) Gouriéraux and Monfort (1983b) and Wooldridge (1994) for QMLE, (3)
Gouriéroux and Monfort (1905) and Tauchen {1995) for simulation based econemetric methods incloding
indirect inference and moment matching, and finally (4) Geweke (1995) and Shephard (1995) for Markov
Chain Monte Carlo roethads.

5.1. Generalized Method of Moments

Let us consider the simple version of the discrete time SV as presented in equations (3.1.2) and (3.1.3}) with
the additional assumption of normality for the probability distribution of the innovation process (£:, 7).
This log-normal SV model has been the subject of at least two extensive Monte Carlo studies on GMM
estimation of SV models. They were conducted by Andersen and Serenson {1093) and Jacquier, Pobbon
and Rossi {(1094). The main idea is to exploit the stationary and ergodic properties of the SV mode
which yield the convergence of sample moments to their unconditional expectations. For instance, the
secand and fourth moments are simple expressions of 0% end o}, namely o’axp{0?/2) and 3a'exp(20})
respectively. If these moments are computed in the sample, 07 can be estimated directly fram the sample
kurtosis, %, which is the ratio of the fourth moment to the secand moment squared. The expression is just
5% = log( %/ 3). The parameter ¢* can then be estimated from the second moment by substituting in this
estimate of o}. We might also compute the first-order autocovariance of ¢?, or simply the sample mean
of iy, which has expectation o*exp({1 + ¢}of) and from which, given the estimate of ¢® and af , it is
straightforward to get an estimate of ¢. :

The above procedure is an example of the applicetion of the method of moments. In general terme, m
moments are camputed. For a sample of gize T, let g{3) denotes the m x 1 vector of differences between
each sample moment and its theoretical expression in terms of the mode! parameters 4. The generalized
method of moments {(GMM) estimator is constructed by minimizing the criterion function

Br =Argmin or(5) Wrgr(6)

where Wr is an m X m weighting matrix reflecting the importance given to matching each of the momenta.
When ¢ and n; are mutually independent, Jacquier, Polson and Rossi {1994) suggest using 24 momenta.
The first four are given by (3.2.2) for ¢ = 1,2,3,4, while the analytic expression for the others is:

Ellyivi, | = {o*2T (§ + })P/r}exp(odll + 6" =1,2,7 = 1,2, 10

In the more general case when €, and 1y ere carrelated, Melino and Turnbull {1990} included estimates
of : Ell i | $e—s] ;7 = 0,41, 42,...,10. They presented an explicit expression in the case of T = 1 and
show that its sign is entirely determined by p.

The GMM method may also be extendsd to handle & non-normal distribution for &. The required
snalytic expressions can be obtained es in section 3.2. On the other hend, the analytic expression of

35 simple way to decive these moment conditions I via » two-stsp epproach similar in spirit to (2.4.8) and (2.4.9) or
{32.3).
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unconditional moments presented in section 2.4 for the general SARV model may provide the basis of
GMM estimation in more general settings (see Andersen (1994)).

From the very start we expect the GMM estimator not to be efficient. The question is how much
ineficiency should be tolerated in exchange for its relative simplicity. The generic setup of GMM leaves
unspexified the number of moment conditions, except for the minimal number required for identification, as
wall as the explicit choice of moments. Moreover, the computations of the weighting matrix is also an issue
since many options exist in practice. The axtensive Monte Carlo studies of Andersen and Serensen (1993)
and Jacquier, Polson and Rossi (1904) attempted to answer these many nutsianding questions. In general
they find that GMM is a fairly inefficient procedure primarily stemming from the stylized fact, noted in
section 2.2, that ¢ in equatiun (3.1.3) is quite close to unity in moet empirical findings because volatility
is highly persistent. For parameter values of & close Lo unity convergence to unconditional moments is
extremely slow suggesting that only large samples can rescue the sitination. The Monte Carlo study of
Andersen and Sgrensen (1993} provides some guidance on how to control the extent of the inefficiency,
notably by keeping the number of moment cenditions small. They also provide specific recommendations
for the choice of weighting matrix estimators with data-dependent bandwidth using the Bartlett kernel.

5.2. Quasi Maximum Likelihood Estimation
5.2.1. The Basic Model

Consider the linesr state space mode! described in sub-section 3.4.1, in which (3.2.8) is the messurement
equation snd (3.1.3) is the transition equation. The QML estimators of the parameters ¢, ¢7 and the
variance of £, of, are obtained by treating {; end 1, as though they were normal and maximizing the
prediction error decomposition form of the likelihood obtained via the Kalman filter. As noted in Harvey,
Ruiz and Shephard (1994), the quasi maximum likelihood (QML) estimators are asymptotically normal
with covariance matrix given by applying the theory in Dunsmuir(1979, p. 502). This assumes that 7 and
£ have finite fourth moments and that the parameters are not on the boundary of the parameter space.

The parametar ur can be estimated st the same time as the other parameters, Altematively, it can be
estimated as the mean of the log 3's, since this is asymptotically equivalent when ¢ is less than one in
absolute value.

Application of the QML method does not require the assumption of a specific distribution for &. We
will refer to this as unrestricted QML. However, if 2 distribution is assumed, it is no longer necessary to
estimate o, as it is known, and an estimate of the scale factor, 0%, can be obtained from the estimate of
w. Alternstively, it can be obtained as suggested in sub-section 3.4.1.

If unrestricted QML estimation is carried out, a value of the parameter determining a particular die-
tribution within a class may be inferred from the estimated varisnce of ;. For example in the case of the
Student’s t, may be determined fram the knowledge that the theoretical value of the variance of & is
4.93 + ¢/ (1/2) (where ¥ (-} is the digamms function introduced in section 3.2.2).

5.2.2. Asymmetric Model

In an asymmetric model, QML may be based on the modified state space form in (3.4.3). The parameters
a(’, az,db, #*, and 4" can be estimated via the Kalmen filter without any distributional assumptions, apart
fram the existence of fourth moments of 1, and & and the joint symmetry of £ and 7. However, if an

timate of p is ted it is 'y to make distributional assumptions about the disturbances, leading
to formules like (3.4.4) and (3.4.5). These formulae can be used to set up an optimization with respect to
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the original parameters a?, 02, ¢ and p. This hae the advantage that the constraint |} < 1 can be imposed.
Note that any L-distribution gives Lho same relationship between the parameters, so within this clas it is
not necessary to specify the degrees of freedom.

Using the QML method with both the original disturbances assumed to be Geussian, Harvey end
Shephard {1093) estimate a model for the CRSP daily returns on a value weighted US market index for
3rd July 1962 to 31t December 1987. These data were used in the paper by Nelvon (1991) to illustrate
his EGARCH model. The empirical results indicate a very high negative corralation.

5.2.3. QML in the Frequency Domain

For a long memary SV model, QML estimation in the time damain becomes relatively less attractive
because the state space form (SSF} can only be used by expressing h, es an sutoregressive or moving
average process and truncating at a suitably high lag Thus the approach is cumbersome, though the
initial state covariance matrix is easily constructed, and the truneation does not affect the asymptotic
properties of the estimators. If the autoregreseive spproximation, and therefore the SSF, is not used,
time domain QML requires the repeated construction and inversion of the T' x T' covariance matrix of the
log y¥'s; see Sowell {1992). On the other hand, QML estimation in the frequency domain ie no more difficult
than it is in the AR{1) case. Cheung and Diebald {1994) present simmulation evidence which suggests that
although time domain estimation is more efficient in amall samples, the difference is less marked when a
mean has to be estimated.
The frequency domain {quasi) log-likelihood function is, neglecting constants,

1721 T-1 | ' ;
logl = “E“EIMQJ"*EI(*J)/Q: (8.2.1)

where f(A) is the sample spectrum of the log 4£7s and gy is the speciral generating function (SGF), which
for (3.5.1) is
g; = 63[2(1 — cos M)} ¢ + af

Note that the summation in (5.2.1) is from j = 1 rather than § = 0. This is because go cannot be
evaluated for positive d . However, the omission of the zero frequency does remove the mean. The
unknown parameters are 03,07 and d, but ¢} may be concentraied out of the likelihood function by s
reparameterisation in which cré is replaced by the signal-noise ratio ¢ = o3/of. On the other hand if &
distribution is assumed for ¢, then ¢7 is imown. Breidt, Creto and de Lima {(1993) show the consistency
of the QML estimator,

When d lies between 0.5 and one, h, is nonstationary, but differencing the logys yields a zero mean
stationary process, the SGF of which is

9y = O3[2(1 - com )" + 2(1 — cos )o
One of the attractions of long memory maodels is that inference is not affected by the kind of unit root
issuen which arise with sutoregressions. Thus a likelihood based test of the hypotheses that d = 1 against
the alternative thet it iz less than one can be constructed using standard theory; see Robinson (1993).
5.2.4. Comparison of GMM and QML

Simulation evidence on the finite sample performance of GMM and QML can be found in Andersen and
Sarensen {1993), Ruiz (1984), Jecquier, Polson and Roexi (1994), Breidt and Carriquiry (1995), Andersen
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and Serensen (1996} and Harvey and Shephard (1996). The general conclusion seems to be that QML
gives estimates with s emaller MSE when the volatility is relatively strong as reflected in & high coefficient
of variation. This is because the normally distributed volatility component in the messurement equation,
(3.2.8), is large relative to the non-normal error term. With a lower coefficient of variation, GMM dom-
inatas, However, in thia case Jacquier, Polson and Roesi {1994, p. 383) obeerve thet "...the performance
of both the QML and GMM estimators deteriorates rapidly.” In other words the case fa one of the more
computer intensive methods outlined in Section 5.6 becomes stronger.

Other things being equsl, an AR coefficient, ¢, close to one tends to favor QML because the autocor-
relations are slow to die out and are hence captured less well by the moments used in GMM, For the same
reason, GMM is likely to be rather poor in estimating a long memory model.

The attraction of QML is that it is very easy to implement and it extends easily to more genera! models,
for example nonstationary and multiveriste ones. At the same time, it provides filtered and smoothed
estimaies of the state, and predictions. The one-step shead prediction errors can also be used to construct
diagnostics, such as the Box-Ljung statistic, though in evaluating such tests it must be remembered that
the observations are non-normal. Thus even if the hyperparameters are eventually estimated by another
method, QML msy have a vsluable role to play in finding » suitable model specification.

5.3. Continuous Time GMM

Hansen and Scheinkman (1995) propose to estimate continuous time diffusions using a GMM procedure
specifically teilored for such processes. In section 5.1 we discussed estimation of 8V models which are either
explicitly formulsted s discrete time processes or elae are discretizations of the cantinuous time diffusions.
In both cases inference is based on minimizing the difference between unconditional moments and their
sample equivalent. For continuous time processes Hansen and Scheinkman (1985) draw directly upon the
diffusion raiher than its discretization to formulate moment conditions. To describe the generic setup of
the method they proposed let us consider the following (multivariate) system of n diffusion equations:

= pi{y; B)dt + o (ye; )dW, (5.3.1)

A comparison with the notation in section 2 immediately drawe attention to certain limitations of the
setup. First, the functions pe () = u(;0) and 04 (-) = 0 {1 ) are parameterized by y, only which restricts
the stste variable process U; in section 2 to contemporaneous values of 3. The diffusion in (5.3.1) involves
& general vector process 3, hence y; could include a volatility process to accornmodate SV models. Yet,
the g vector is assumed observable. For the moment we will leave these issues aside, but return to them
&t the end of the section. Hansen and Scheinkman (1995) consider the infinitesimal opemtor A defined for
a class of square integrable functions ¢ R* — R as follows:

Ao (1) = ____(ﬂm W)+ —-Tr (oe (v) o () EE&%}) . {5.3.2)

Because the operator is defined as a limit, namely :
Asp ()=lim ™ [E (p(e)} vo = v} -],
it does not necessarily exist for all square integrable functions y but only for a restricted domain D). A eet

of moment conditions can now be obtained for this class of functions p € D). Indead, as shown for instance
by Revuz and Yor (1991}, the following equalities hold :
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EAwp () =0, (5.3.3)

E{Asp (1) 9 (1) — 0 (0er1) 430 ()] = 0, (534

where A} is the adjoint infinitesimal operator of A for the scalar product associated with the invariant
measurs of the process 3.2 By choosing an appropriate sst of functions, Hansen and Scheinkman exploit
moment conditions (5.3.3) and (5.3.4) to canstruct @ GMM estimator of §.

The choice of the function v € D and & € D* determines what moments of the data are used to sstimate
the parameters. This obviously raises questions regarding the choice of functions to enhance efficiency of
the estimator but firat and foremost also the identification of # via the conditions (5.3.3) and (5.3.4). It
wae notad in the beginning of the section that the multivariate process ¥, in order to cover SV models,
must somehow include the latent conditional variance process. Gouriéroux and Monfort { 1994, 1995) point
out that since the moment canditions based on ¢ and @ cannot include any latent process it will often
{but not always) be impoesible to attain identification of all the parameters, particularly those governing
the latent volatility process. A possible remedy is to augment the model with observations indirectly
related to the latent volatility process, in a sense making it observable. One possible candidate would be
to include in g, both the security price and the Black-Scholes implied volatilities obtained through option
market quotations for the underlying asset. This approach is in fact suggested by Pastorello, Renault and
Touzi (1993} although not in the context of continuous time GMM but instead using indirect inference
methoda which will be discussed in section 5.5 Another possibility is to rely on the time deformation
representation of SV models as discussed in the context of continuous time GMM by Conley et al. (1095).

5.4. Simulated Method of Moments

The estimation procedures discussed so far do not involve any simulation technigues. From now on we
cover methods combining simulation and estimation beginning with the simulated method of moments
{SMM) estimator, which is covered by Duffie and Singleton (1993) for time series processes.™ In section
5.1 we noted that GMM estimation of SV models is based on minimizing the distance betwsen a sat of
chosen sample moments and unconditional population moments expressed as analytical functions of the
mode] parameters. Suppose now that such analytical expressions are hard to obtain. This is particulerly
the case when such expressions involve marginalizations with respect 10 s latent provess such a stochastic
volatility process. Could we then simulate data from the model for a particular value of the parameters and
match moments from the simulated data with sample moments as s substitute? This strategy is precisely
what SMM is all about. Indeed, quite often it is fairly straightforward to simulats processes and therefore
take advantage of the SMM procedure, Let ue consider again as point of reference and illustration the
(multivariste) diffusion of the previous section (equstion (5.3.1)) and conduct H simulationsi = 1,....
using & discretization:
AT (8) = p{F(6):0) +o (i (0):0) s andi=1,. . Handt=1,T

”Pbaﬁno&cthﬂA.hmhmh&edﬂhadumunﬂ'lomweDundfﬁe D i (&34)

3H was noted in section 2.1.3 that implied woistilities sre biased. The used by P I
Renaukt and Tourd (1993) can sops with such bisses, s will be explained in section 5.5, 'Ibmdopﬂmmdﬂau
further discussed in .u:tm 5.7

®SMM wae o d for cross-section spplications, see Pakes and Pollard (1989) and McFedden (1989). See
sin0 Gourﬁtm sod Monfort, (1993s).
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where §; {8) are simulated given s parameter # and ¢, is i.i.d. Gaussian.®® Subject to identification and
other regularity conditions one then considers

H
B = trgminl 1 w1, 95) = 5 1 (B0 .55 @) |

with a suitable choice of norm, i.e. weighting matrix for the quadratic form as in GMM, and function f
of the data, i.e. moment conditions. The asymptotic distribution theory is quite similsr to that of GMM,
except that simulation introduces an extra source of random error affecting the efficiency of the SMM
estimator in comparison to ite GMM counterpart. The efficiency loes can be controlled by the cheice of
11’41

5.5. Indirect Inference and Moment Matching

The key insight of the indirect inference approach of Gouriéroux, Monfort and Rensault {1993) and the
moment matching approsch of Gallant and Tauchen {1994) is the introduction of an suxiliary model
parameterized by 2 vector, say /3, in order to estimate the model of interest. In our case the latter is the
SV model®? In the ficst subsection we will describe the general principle while a second one will focus
exclusively on estimating diffusions.

5.6.1. The Principle

We noted at the beginning of section 5 that ARCH type models are relatively sasy to estimate in comparison
to 8V madels, For this reason an ARCH type model may be a possible candidate as an auxiliary model. An
alternative strategy would be o try to summarize the features of the data via a SNP density as developed
by Gallant and Tauchen (1989). This empirical SNP density. or more specifically its score, could also fulfill
the role of auxiliary model. Other possibilities could be considered as well. The idea is then to use the
auxiliary mode! to estimate B, so that:

- T
Br =Argmaz Xllos.f* (| 911, 8) (5.5.1)
o

where we restrict our attention here to a simple dynamic model with one lag for the purpose of illustration.
The objective function f* in (5.6.1) can be a pseudo-likelihood function when the auxiliary model is
deliberately misspecified to facilitate estimation. As an alternative [* can be tsken from the class of SNP
densities.® Gouriéroux, Monfort and Renault then propose to estimate the same parameter vector £ not
using the actual sample data but instead wsing samples {7 (9)}3;, simulated i = 1, ...} times drawn from
the mode] of interest given #. This yields a new estimator of B, namely:

H'We dincuss in detadl the simmlation techniques fn the next section. Indeed, 1o control for the discretization biss, one has
to simulste with a fines sampling interval.

“The asymptotic variance of the SMM estimator depends on H through » {actor(l + H™1), see e.g. Gouridroux and
Monfort (1995).

21t is worth noting ihat the simulation based inference methods we will describe here sre applicable to many other types
of modets for cross-soctivnal, time eeries and panel date.

“The discuesion should not Jewve the impression that the suxilisry model can cmly be estimated vie Ml-type estimators.
Any rect T consistent ssymptotically sormal estimations procedure may be used.
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H T
Bure 0) =Argmaz (1/H)} 3 g 1* (8 6) | -, 9) . ). (652)

The next step is to minimize a quadratic distance using & weighting matrix Wy to choose an indirect
estimator of £ based on H simulation replications and & sample of T' observations, namely:

Girr =Argmin (Br = Bur 6)) Wr (Br ~ Bur () (5.5.3)

The approach of Gallant and Tauchen (1094) svuids the step of estimating Bur (6) by computing the
score function of f* and minimizing a quadratic distance similer to (5.5.3) but involving the score function
evaluated at fr and replacing the sample data by simulated ecries generated by the model of interest.
Under suitable regularity conditions the estimator 87 is root T consistent and asymptotically normal. As
with GMM and SMM there is again an optimal weighting matrix. The resulting asymptotic covariance
matrix depends on the number of simulations in the same way the SMM estimator depends on H.

Gouriéroux, Monfort and Renault (1993) illustrated the use of indirect inference estimator with a simple
example that we would like to briefly discuss here. Typically AR models are easy to estimate while MA
modeals require more elaborate procedures. Suppose the model of interest is a moving average model of
order ane with parameter 6. Instead of estimating the MA parameter directly from the data they propose
to estimate an AR(p.) model involving the parameter vector . The next step then consists of simulating
data using the MA model and proceed further as described ahawe.“ They found that the indirect inference
sstimator for Ay appeared to have better finite eample propesties than the more traditional meximum
likelihood estimators for the MA parameter. In fact the indirect inference estimator exhibited features
similar to the median unbiased estimator proposed by Andrews (1993). These properties were canfirmed
and clarified by Gouriéroux, Renault and Touzi (1894) who studied the second order asymptotic expaneion
of indirect inference estimators and their ability to reduce finite sample bias.

5.5.2. Estimating Diffusions

Let us consider the same diffusion equation as in section 5.3 which dealt with continuous time GMM,
namely:

dy = (i 8) dt + o (; 0) dW, (5.5.4)

In section 5.9 we noted that the above equation holds under certain restrictions such as the functions
u and o being restricted to y; as arguments. While these resirictions were binding for the setup of section
5.3 this will not be the case for the estimation procedures discussed here. Indeed, equation (5.5.4) is only
used as an illustrative example. The diffusion is then simulated either via exact discretizations or some
type of approximate discretization {e.g. Euler or Mil'shiein, see Pardoux and Talay (1985) ar Kloeden and
Platten (1992) for further detsils). More precissly we define the procees 3{” such that:

Yrne = vhs +p (005 0) 8+ 0 (4 0) 6770, (5.5.5)

“ Again one could use & score principle here, MGMMW(!M} In fact io m linear Gemssian setting
the SNP b to fit dsta g d by & MA (1) model wonid be o estimate on AR(p) mdel. Giysels, Kbalaf and
\Mmm{lm)wmammdmmdmhldud tors of MA models s well
#s their relation with more standard estimators.
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Under puitable regularity conditions (see for instance Strook and Varadhan (1979)) we know that the
diffusion admits a unigue solution {in distribution) snd the process ¥i*! converges to y, as § goes to zero.
Therefore one can expect to simulate y; quite accurately for § sufficiently smsll. The auxiliary model may
be a discretization of (5.5.4) choasing 6 = 1. Hence, one formulates & M1, estimator based on the nonlinear
AR model appearing in {5.5.5) setting & = 1, To control for the discretization biss one can simulate the
underlying diffusion with 6 = 1/10 or 1/20, for instance, and aggregate the simulated data to correspund
with the sumpling frequency of the DGF. Brose, Scaillet and Zekoian (1994) discuss of the eflect of the
simulation step size on the asymplotic distribution.

i The use of simulation-based inference methods becomes particularly sppropriate and attractive when
diffusions involve latent processes, such as is the case with SV models. Gouriéroux and Monfort (1994,
1995) discuss several examples and study their performance via Monte Carlo simulation. It should be
noted that estimating the diffusion at a coarser discretization is not the only possible choice of auxiliary
model. Indeed, Pastarello, Renpult and Touzi (1993), Engle and Lee (1084) and Gallant and Teuchen
(1994) suggest the use of ARCH-type models.

There have been several successful epplications of these methods to financisl time series. They include
Broze et al.(1995), Engle and Lee {1994), Gallant, Hisiech and Tauchen (1994), Gallant and Tauchen (1994,
1995), Ghysels, Gouriéroux and Jasiak (1995b), Ghysels and Jasiak (1994e and b}, Pastorello et al. (1993),
among others.

5.6. Likelihood-based and Bayesian Methods

In a Gaussian linear state spsce mode! the likelihood function is constructed from the one step abead
prediction errors. This prediction errar decompesition form of the likelihood is used as the eriterion
function in QML but of course it is not the exact likelihood in this case. The exact filter proposed
by Watanebe {1993) will, in principle, yield the exact likelihood. However, as was noted in section 3.4.2,
hecauge this filter uses numerical integration, it takes a long time to compute and if numerical optimization
i to be carried out with respect to the hyperparameters it becomes impractical.

Kim and Shephard (1094} work with the linear state space form used in QML but spproximate the
log(x?®) distribution of the messurement error by a mixture of normels. For each of these normals, a
prediction error decomposition likelihood function can be computed, A simulated EM algorithm is used
to find the best mixture and hence calculate spproximate ML estimates of the hyperparamaters,

The exact likelihood function can niso be constructed as a mixture of distributions for the observations
conditional on the volatilities, that is

Liyié,0%0% = [ plulmlp(hicn

where y and A contain the T elernents of y: and hy respectively. This expression can be written in terms of
the ¢¥s, rather than their logarithms, the Als, but it makes little difference to what follows. Of course the
problem is that the above likelihood has no closed form, so it must be calenlated by some kind of simuletion
method. Excellent discussions can be found in Shephard (1095) and in Jacquier, Polson snd Rossi (1994),
including the comments. Conceptually, the simplest approach is to use Monte Carlo integration by drawing
from the unconditional distribution of h for given values of the parameters,{¢,02,0%), and estimating the
likelihood as the average of the p(yjh)'s. This is then repented, searching over ¢,07 until the maximum
of the simulated likelihood i found. As it stenda this procedure is not very satisfactory, but it may be
improved by using ideas of importance sampling. This has been implemented for ML eatimation of SV
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modele by Danielsson and Richard (1993) and Danielsson {1994). However, the method becomes mure
difficult as the sample size increasen.

A more promising way of attacking likelihood estimation by simulation techniques is to use Markov
Chain Monte Carlo (MCMC) to draw from the distribution of volatilities conditionsl on the observations.
Ways in which this can be done were outlined in sub-section 3.4.2 on nonlinear filters and emoothers. Kim
and Shephard (1894) suggest a method of computing ML estimators by putting their multimove algorithm
within & simulated EM algorithm. Jacquier, Polsen and Rossi (1994) adopt 2 Bayesian approach in
which the specification of the model has o hierarchical structure. in which a prior distribution for the
hyperparameters, p = (o,,,¢,o) , joins the conditionsl distributions, yh and hjy. (Actually the gps
are used rather than the hus). The Jomt posterior of h and y is proportionsl to the product of these
three distributions, thet is p(h,wly) & plyisip (hle)p(p). The introduction of h makes the statistical
treatment tractable and is an example of what is called date augmentation; see Tanner and Wong {1987).
From the joint posterior, p(h,wly), the marginal p(hly) solves the smoothing problem for the anobserved
volstilities, taking account of the sampling veriability in the hyperparameters. Conditional on h, the
pasterior of ,p({lh,¥) is simple to compute from standard Bayesian treatment of linear models. If it
were also possible to sample directly from p(hjp,y) at low cost, it would be straightforward to construet
a Markov chain by slternating back and forth drawing from p(plh,y) and p(hlp,y). This would produce
8 cyclic chain, & special case of which is the Gibbe sampler. However, as was noted in subssection 3.4.2,
Jacquier, Polson and Roesi (1994) show that it is much better to decompoee p (kg, ¥) into a set of univariate
distributions in which sach A, or rather gy, is conditionsd on all the others.

The prior distribution for w, the parameters of the volatility process in JPR (1994), is the standard
conjugate prior for the linear model, a (truncated) Normel-Gamma. The priors can be made extremely
diffuse while remaining proper. JPR conduct an extensive sampling experiment to document the per-
formance of this and more traditional approaches. Simulating stochastic volatility series, they compare
the sampling performances of the posterior mean with that of the QML and GMM point estimates. The
MOMC posterior mean exhibit root mean squared errors anywhere between half and & quarter of the size of
the GMM and QML point estimates. Even more striking are the volatility smoothing performance results.
The root mean squared error of the posterior mean of he produced by the Bayesian filter is 10% smaller
than the point estimate produced by an approximate Kalman filter supplied with the frue parameters.

Shephard and Kim in their comment of JPR (1994) point out that for very high ¢ and small o, the rate
of convergence of the JPR algorithm will slow down. More drawe will then be required to obtain the same
amount of information. They propose to approximate the volatility disturbance with a discrete mixture
of normals. The benefit of the method is that a draw of the vector h is then possible, faster than T draws
from each h;. However this is at the cost that the draws navigate in a much higher dimensional space due
to the discretisation effected. Also, the convergence of chains based upon discrete mixtures is sensitive to
the number of components and their assigned probability weights. Mahieu and Schotman (1994) add some
generality to the Shephard and Kim idea by letting the data produce estimates of the characteristics of
the discretized state space (probabilities, mesn and variance). )

The original implementation of the JPR algorithm was limited to & very basic mode! of stochastic
volatility, AR{1} with uncorrelated mean and wolatility disturbances. In a univeriate setup, correleted
digturbances are likely to be important for stock returns, i.¢., the o called leverage effect. The evidence in
Gallant, Rossi, and Tauchen (1994) also points at non normal conditional errors with both skewness and
kurtosis. Jacquier, Polson, and Rossi (1995a) show how the hierarchical framework allows the convenient
extension of the MCMC algorithm to more general models. Namely, they estimate univariate stochastic
volatility models with correlated disturbances, and skewed and fat-teiled variance disturbance, as well as
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multivariate models. Alternatively, the MCMC elgorithm can be extended to & factor structure. The
factors exhibit stochastic volatility snd can be obeervable or non obeervable.

5.7. Inference and Option Price Data

Some of the continuous tirne SV modeis currently found in the literature were developed to answer questions
regarding derivative security pricing. Given this rather explicit link between derivates and SV diffusions it is
perhape somewhat surprising that relatively little sttention hes been paid to the use of option price date to
estirnate continuous time diffusions. Melino (1994) in his survey in fact notes: “Clearly, information asbout
the stochastic properties of an asacl’s price is contained both in the history of the asset’s price and the price
of eny options umitlen on 4t Curvent stralegies for combining these lwe sources of information, including
inplicit estimation, are uncomfortably ad hoc. Statistically spesking, we need te model the source of the
prediction errors in eption pricing and to relate the distribution of these ervors to the stock price process.
For example implicit estimation, Iike computation of BS implied volatilities, is certainly uncomfortsbly
ad hoc from a statistical point of view. In general, each observed option price introduces one source of
prediction error when compared to s pricing model. The challenge is to model the joint nondegenerate
probsbility distribution of options and esset prices via & number of uncbeerved state variables. This
approsch has been pursued in & number of recent papers, including Christensen {(1992), Rensult and Touzi
(1992), Pastorello et al. (1993}, Duan {1994) and Renault (1995).

Christensen (1992) considers a pricing model for n assets as a function of a state vector z, which
is {{+n) dimensiona! and divided in a l-dimensionsl observed (z;) and n-dimensional unobserved {ax)
component. Let py be the price vector of the n assets, then:

P = (2, ux,6) {5.7.1)

Equation (5.7.1) provides a one-to-one relationship between the n latent state variables w, and the

n observed prices p,, for given z and 8. From a financial viewpoint, it implies thet the n sseets are

appropriate instruments to complete the markets if wo assume that the observed state variables 2 are

already mimicked by the price dynamics of other (primitive) assets. Moreover, from a statistical viewpoint

it allows full structural meximum likelihood estimation provided the log-likelihood function for observed

prices can be deduced easily from a statistical model for z;. For instance, in a Markovian setting where,
conditionally on Zp, the joint distribution of #] = (Z¢)y¢ e I8 glven by the density:

T
S« (27 170,6) = [T 7 (2, 203,061, 6) (5.7.2)
=3

the conditional distribution of data DT = (p, 24); gecr £iven D = {po, 20} is obtained by the usual Jacobian

formuls;

Jo (DT |Do,0) = }i ! ot (zp) oo mi (2ea, ) O] 2
[9m (25 (220 0)

where 1y 1 (z,.) is the w-inverse of m(z,.,§) defined formally by m;* (2,7 (2,6, 6}) = w while V,m ()
represents the columns corresponding to w of the Jacobian matrix. This MLE using price data of derivatives
wes proposed independently by Christensen (1992) and Duan (1994). Rensult and Touzi (1992} were
instead more specifically interested in the Hull and White option pricing formule with: z, = S obeerved

(5.7.3)
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underlying asset price, and wy = o, uncheerved stochastic volatility process. Then with the joint process
= (5;,0,) being Markovian we heve a call price of the form:

= m(z, 8, K)

where § = (a' *{) involves two types of parameters: (1} the vector o of paramsters describing the dynamics
of the joint process xz¢ = (5,06;) which under the squivalent martingale measure allows to compute the
expectation with respect to the {risk-neutiral) conditional probability distribution of ¥* (2,1 + A) given oy
and (2) the vector v of parameters which characterize the risk premia determining the relation betwesn
the risk neutral probability distribution of the x process and the Data Genersting Process,

_Structural MLE is often difficult to implement. This motivated Renault and Touzi (1992) and Pas-
torello, Renault and Touzi {1993) to consider less efficient but simpler and more robust procedures involving
some praxies of the structural likelihood (5.7.3).

To illustrate these procedures let us consider the standard log-normal 5V model in continuous time:

dloga, = k (o~ logoy) dt + cdW?. 574

Standard option pricing arguments allow us to ignore misspecifications of the drift of the underlying
asset price process. Hence, & first step towards simplicity and robustness is to isolate from the likelihood
function the volatility dynsmics, namely:

" - - 2
11 (271(:’) 1)mcp [- (2(:’) ! (lugo;‘ - ogo, -0 (1 - e"““))] ‘ (5:7.5)
=1

associated with & sample 0y,,i = 1,... ,nand t; — ¢; , = At. To approximaie this expression one can

consider a direct method, as in Renault and Touzi (1992) or an indirect method, as in Pastorello et al
(1993). The former involves ealculating implied volatilities from the Hull and White model 1o create pssudo
samples oy, parameterized by k, a and ¢ and computing the maximum of (5.7.5) with respect to those three
paremeters.® Pastorello et al. (1993} proposed several indirect inference methods, described in section
5.5, in the context of {5.7.5). For instance, they propose to use an indirect inference strategy involving
GARCH(1,1) volatility estimates obtained form the underlying esset (also independently suggested by
Engle and Lee {1904)). This produces asymptotically unbissed but rather inefficient estimates. Pastorello
et al. indeed find that an indirect inference simplification of the Rensult and Touzi direct, procediure
involving option prices is far more efficient. It is o clear illustration of the intuition that the use of option
price data paired with suitable statistical methode should largely improve the accurarcy of estimating
volatility diffusion parameters,

5.8. Regression Models with Stochastic Volatility
A single equation regression model with stochastic volatility in the disturbance term may be written

n=xf+wm t=1,.7T, ‘ (5:8.1)
where g, denates the { — th observetion, x;is a k£ x 1 vector of explenatory variebles, Sis a k x 1 vector
of coefficients and w, = 0z, exp(0.54;) as discussed in section 3. As a special case, the observations may
simply have e nan-zero mean 8o that 28 =u¥t.

“The direct mmdmmtiond(&?,b)mmgBSmplmdmumtﬁhmahobeenmpoud ace ¢.g.  Heynen, Kemna sud
Vomt(lm) Obviously the use of BS implied volatility inducoe & pecification binz due to the BS model sssutptions.
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Since u, is stationary, an OLS regression of y, on x, yields a consistent estimator of 8. However it is
not efficient.

For given values of the BV parameters, ¢ and 03, a smoothed estimator of Jy, hyr, can be computed
using one of Lthe methods outlined in section 3.4. Multiplying (5.8.1) through by exp{— Shyr) gives

h=RB+it=1,.,T (5.8.2)

where the fi;’s can be thought of as heteroskedssticity corrected disturbances. Harvey and Shephard (1843)
show that these disturbances have zero mean, constant variance and are serially uncorrelated and hence
suggest the construction of a fessible GLS estimator

T -t .
8= [Z e“"”x‘x;] S eteragy (5.8.3)
=1 t=1
In the clagsical heteroskedastic regression model by is deterministic and depends on a fixed number of
unknown parameters. Because these parameters can be estimated consistently, the feasible GLS estimator
has the same ssymptotic distribution as the GLS estimator. Here A is stochastic and the MSE of its
estimator is of O(1). The situation is therefore somewhat different. Harvey and Shephard (1993) show
that, under standard regularity conditions on the sequence of x, Bis asymptotically normal with mean
8 and a covariance matrix which can be consistently estimated by

-1
avar(F) = [E e"“'”xcx’] Z(m ) {Ze “'*Tx;x’] (5.8.4)

When hyr is the smoothed estimate given by the linear state space form, the analysis in Harvey and
Shephard (1993) suggests that, asymptotically, the feasible GLS estimator is almost as efficient as the
GLS estimator and considerably more efficient than the OLS estimator. It would be possible to replace
exp{hgr) by a better estimate computed from one of the methods described in section 3.4 but this may
not have much effect on the efficiency of the resulting feasible GLS estimator of 8.

When h, is nonstetionary, or nearly nonstationary, Hansen (1995) shows that it is possible to construct
a feasible adaptive least squares estimator which is asymptotically equivalent to GLS.

8. Conclusions

No survey is ever complete. There are two particulsr areas we expect to flourish in the years to come but
which we were not able to cover. The first is the area of market microstructures which is well surveyed in a
recent review paper by Goodhart and O'Hara {1095). With the ever increasing availability of high frequency
data series, we anticipate more work involving game theoretic models. These can now be estimated because
of recent advances in econormetric methods, similar to those enabling us to estimste diffusions. Another
area where we expect interesting research to ermerge is that involving nonparametric procedures to estimate
8V continuous tire and derivative securities models. Recent papers include Ait-Sahalis (1994), Ait-Sahalia
et al. {1994), Bossaerts, Hafner and Hirdle (1995), Broadie et al. {1995), Conley et al, (1995), Elsheimer
et al, (1995), Gouriéroux, Monfort snd Tenreiro (1994), Gouriéroux and Scaillet (1895), Hutchinson, Lo
and Poggio (1994}, Lezan et ol, (1995), Lo {1995), Pagan and Schwert (1992).

Rescarch into the econometrics of Stochestic Volatility models 'is relatively new. As our survey has
shown, there has been & burst of sctivity in recent years drawing on the latest statistical technology. As
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regards the relationship with ARCH, our view is that SV and ARCH sre not necessarily direct competitors,
but rather complement each other in certain respects. Recent advances such as the use of ARCH models
as filters, the weakening of GARCH and temporal sggregation and the introduction of nonparametric
metheds to fit conditional variances, illustrate that a unified strategy for modelling volatility needs to
draw on both ARCH and 8V.
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