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RÉSUMÉ

Les études longitudinales jouent un rôle prépondérant dans des domaines de recherche va-
riés et leur importance ne cesse de prendre de l’ampleur. Les méthodes d’analyse qui leur
sont associées sont devenues des outils privilégiés pour l’analyse de l’étude temporelle d’un
phénomène donné. On parle de données longitudinales lorsqu’une ou plusieurs variables
sont mesurées de manière répétée à plusieurs moments dans le temps sur un ensemble d’in-
dividus. Un élément central de ce type de données est que les observations prises sur un
même individu ont tendance à être corrélées. Cette caractéristique fondamentale distingue
les données longitudinales d’autres types de données en statistique et suscite des méthodo-
logies d’analyse spécifiques. Ce domaine d’analyse a connu une expansion considérable dans
les quarante dernières années. L’analyse classique des données longitudinales est basée sur
les modèles paramétriques, non-paramétriques et semi-paramétriques. Mais une importante
question abondamment traitée dans l’étude des données longitudinales est associée à l’ana-
lyse typologique (regroupement en classes) et concerne la détection de groupes (ou classes ou
encore trajectoires) homogènes, suggérés par les données, non définis a priori de sorte que les
individus dans une même classe tendent à être similaires les uns aux autres dans un certain
sens et, ceux dans différentes classes tendent à être non similaires (dissemblables). Dans cette
thèse, nous élaborons des modèles de clustering de données longitudinales et contribuons
à la littérature de ce domaine statistique en plein essor. En effet, une méthodologie émer-
gente non-paramétrique de traitement des données longitudinales est basée sur l’approche
de l’analyse des données fonctionnelles selon laquelle les trajectoires longitudinales sont per-
çues comme étant un échantillon de fonctions (ou courbes) partiellement observées sur un
intervalle de temps sur lequel elles sont souvent supposées lisses. Ainsi, nous proposons dans
cette thèse, une revue de la littérature statistique sur l’analyse des données longitudinales
et développons deux nouvelles méthodes de partitionnement fonctionnel basées sur des mo-
dèles spécifiques. En effet, nous exposons dans le premier volet de la présente thèse une
revue succinte de la plupart des modèles typiques d’analyse des données longitudinales, des
modèles paramétriques aux modèles non-paramétriques et semi-paramétriques. Nous pré-
sentons également les développements récents dans le domaine de l’analyse typologique de
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ces données selon les deux plus importantes approches : l’approche non paramétrique et l’ap-
proche fondée sur un modèle. Le but ultime de cette revue est de fournir un aperçu concis,
varié et très accessible de toutes les méthodes d’analyse des données longitudinales. Dans
la première méthodologie proposée dans le cadre de cette thèse, nous utilisons l’approche
de l’analyse des données fonctionnelles (ADF) pour développer un modèle très flexible pour
l’analyse et le regroupement de tout type de données longitudinales (balancées ou non) qui
combine adéquatement et simultanément l’analyse fonctionnelle en composantes principales
et le regroupement en classes. La modélisation fonctionnelle repose sur l’espace des coeffi-
cients dans la base des splines et le modèle, conçu dans un cadre bayésien, est basé sur un
mélange de distributions de Student. Nous proposons également un nouveau critère pour
la sélection de modèle en développant une approximation de la log-vraisemblance margi-
nale (MLL). Ce critère se compare favorablement aux critères usuels tels que AIC et BIC.
La seconde méthode de regroupement développée dans la présente thèse est une nouvelle
procédure d’analyse de données longitudinales qui combine l’approche du partitionnement
fonctionnel basé sur un modèle et une double pénalisation de type Lasso pour identifier les
classes homogènes ou les individus avec des tendances semblables. Les courbes individuelles
sont approximées dans un espace dérivé par une base finie de splines et le nombre optimal de
classes est déterminé en pénalisant un mélange de distributions de Student. Les paramètres
de contrôle de la pénalité sont définis par la méthode d’échantillonnage par hypercube latin
qui assure une exploration plus efficace de l’espace de ces paramètres. Pour l’estimation des
paramètres dans les deux méthodes proposées, nous utilisons l’algorithme itératif espérance-
maximisation.

Mots clés : Données longitudinales, partitionnement fonctionnel, classification
non supervisée, modèles de mélange pour classification, analyse des données
fonctionnelles, algorithme EM, statistique bayésienne.
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ABSTRACT

Longitudinal studies play a salient role in many and various research areas and their rele-
vance is still increasing. The related methods have become a privileged tool for analyzing the
evolution of a given phenomenon across time. Longitudinal data arise when measurements
for one or more variables are taken at different points of a temporal axis on individuals
involved in the study. A key feature of such type of data is that observations within the
same subject may be correlated. That fundamental characteristic makes longitudinal data
different from other types of data in statistics and motivates specific methodologies. There
has been remarkable developments in that field in the past forty years. Typical analysis of
longitudinal data relies on parametric, non-parametric or semi-parametric models. However,
an important question widely addressed in the analysis of longitudinal data is related to
cluster analysis and concerns the existence of groups or clusters (or homogeneous trajecto-
ries), suggested by the data, not defined a priori, such that individuals in a given cluster
tend to be similar to each other in some sense, and individuals in different clusters tend to be
dissimilar. This thesis aims at contributing to that rapidly expanding field of clustering lon-
gitudinal data. Indeed, an emerging non-parametric methodology for modeling longitudinal
data is based on the functional data analysis approach in which longitudinal trajectories are
viewed as a sample of partially observed functions or curves on some interval where these
functions are often assumed to be smooth. We then propose in the present thesis, a succinct
review of the most commonly used methods to analyze and cluster longitudinal data and
two new model-based functional clustering methods. Indeed, we review most of the typical
longitudinal data analysis models ranging from the parametric models to the semi and non
parametric ones, as well as the recent developments in longitudinal cluster analysis according
to the two main approaches : non-parametric and model-based. The purpose of that review
is to provide a concise, broad and readily accessible overview of longitudinal data analysis
and clustering methods. In the first method developed in this thesis, we use the functional
data analysis approach to propose a very flexible model which combines functional principal
components analysis and clustering to deal with any type of longitudinal data, even if the
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observations are sparse, irregularly spaced or occur at different time points for each indivi-
dual. The functional modeling is based on splines and the main data groups are modeled
as arising from clusters in the space of spline coefficients. The model, based on a mixture
of Student’s t-distributions, is embedded into a Bayesian framework in which maximum a
posteriori estimators are found with the EM algorithm. We develop an approximation of
the marginal log-likelihood (MLL) that allows us to perform an MLL based model selection
and that compares favourably with other popular criteria such as AIC and BIC. In the
second method, we propose a new time-course or longitudinal data analysis framework that
aims at combining functional model-based clustering and the Lasso penalization to identify
groups of individuals with similar patterns. An EM algorithm-based approach is used on a
functional modeling where the individual curves are approximated into a space spanned by a
finite basis of B-splines and the number of clusters is determined by penalizing a mixture of
Student’s t-distributions with unknown degrees of freedom. The Latin Hypercube Sampling
is used to efficiently explore the space of penalization parameters. For both methodologies,
the estimation of the parameters is based on the iterative expectation-maximization (EM)
algorithm.
Keywords : Longitudinal data, functional clustering, model-based clustering,
functional data analysis, EM algorithm, Bayesian framework.
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Chapitre 1

INTRODUCTION

Dans plusieurs domaines de recherche, notamment dans les sciences sociales, les études lon-
gitudinales sont devenues un outil essentiel pour analyser l’évolution d’un phénomène donné
dans le temps, qui peut revêtir un caractère plus important que la simple connaissance du
moment d’apparition d’un tel phénomène. Elles sont constituées de mesures répétées d’une
ou de plusieurs variables, prises sur un ensemble d’individus, à différents points d’un axe
temporel. Une caractéristique fondamentale de ce type de données est que les observations
recueillies sur un même sujet tendent à être corrélées. Il s’agit de la corrélation intra-sujet.
En effet, la connaissance de la valeur observée de la variable réponse à une date donnée four-
nit de l’information sur sa valeur probable à date future (voir Fitzmaurice and Ravichandran
[9]). La corrélation entre les mesures répétées va à l’encontre de l’hypothèse fondamentale
d’indépendance qui constitue la pierre angulaire de plusieurs techniques standard en statis-
tique (test t, régression linéaire, anova). Cette particularité des données longitudinales est
décrite dans plusieurs articles et ouvrages traitant du sujet et notamment dans Fitzmaurice
et al. [8] qui présente également les différentes sources et nature de la corrélation dans ce
type de données ainsi que les conséquences potentielles lorsque celle-ci n’est pas prise en
compte dans l’analyse statistique. De plus, les données longitudinales diffèrent des autres
types de données en statistique telles que les données multivariées, les études transversales,
les séries temporelles, et leur analyse requiert par conséquent des méthodologies spécifiques.

La méthodologie statistique d’analyse des données longitudinales a connu au cours des
trente dernières années un développement considérable, qui a été facilité par l’émergence de
technologies nouvelles qui favorisent les applications numériques sur des ordinateurs de plus
en plus puissants. Les méthodes les plus couramment utilisées dans l’analyse des données
longitudinales sont basées sur des modèles paramétriques tels que les modèles linéaires à
effets mixtes proposés par Laird and Ware [14] pour l’étude des variables réponses conti-
nues observées au fil du temps. Ces méthodes reposent sur une décomposition explicite de
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la variation dans les données en variabilité inter et intra-sujet (Verbeke and Molenberghs
[28]). La classe des modèles paramériques comprend également les modèles marginaux et
les modèles linéaires généralisés à effets mixtes (McCullagh and Nelder [16]) qui sont deux
généralisations importantes des modèles linéaires aux cas où la variable réponse est discrète,
ainsi que les modèles non linéaires à effets mixtes. Plusieurs exemples d’applications empi-
riques telles que Zeger and Diggle [32], Brumback and Rice [2], Lin and Ying [15] et Diggle
et al. [5] montrent que les hypothèses paramétriques ne sont pas toujours appropriées pour
modéliser la dynamique temporelle entre une variable d’intérêt et des variables explicatives
dans une étude longitudinale. Ainsi, les méthodes non-paramétriques et semi-paramétriques
ont émergé dans la littérature statistique afin de proposer des formes fonctionnelles plus
flexibles dans l’analyse des données longitudinales. Il s’agit essentiellement d’adapter les
méthodes par noyaux (Wand and Jones [30], Fan and Gijbels [6]) et les méthodes de lissage
par splines (Wahba [29], Green and Silverman [11], Stone et al. [24]) qui ont été élaborées
pour l’étude de données indépendantes, aux spécificités des données longitudinales notam-
ment la corrélation intra-sujet entre les mesures répétées dans le temps.

Une autre méthodologie non paramétrique de la modélisation des données longitudinales
est fournie par l’approche de l’analyse de données fonctionnelles (ADF) selon laquelle les
mesures répétées recueillies auprès des individus sont considérées comme des portions de
courbes (Ramsay and Silverman [21]). En effet, les trajectoires longitudinales sont perçues
comme étant un échantillon de fonctions (ou courbes) partiellement observées sur un inter-
valle de temps sur lequel elles sont souvent supposées lisses. En d’autres termes, les données
longitudinales sont considérées comme des données fonctionnelles irrégulièrement observées.
L’objectif de cette approche est donc d’utiliser les outils de l’analyse de données fonction-
nelles pour prédire chaque trajectoire individuelle à partir des mesures effectuées, en tenant
compte des mesures provenant de tous les autres individus impliqués dans l’étude longitu-
dinale.

Depuis quelques années, des méthodes d’extension des techniques de l’analyse de données
fonctionnelles aux données longitudinales font l’objet d’un champ de recherche en pleine
expansion. L’émergence de ce nouveau paradigme repose sur l’idée fondamentale que les
méthodes de l’ADF peuvent constituer un outil remarquable pour optimiser l’analyse des
données longitudinales (Zhao et al. [33], Rice [22]), notamment en ce qui concerne le regrou-
pement en classes (partitionnement ou classification non supervisée ou encore clustering
en anglais) tel qu’illustré dans Ullah and Finch [27] qui présente les récentes applications
majeures de l’approche par l’ADF. Le regroupement en classes a toujours été une méthode
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d’analyse de données priviliégiée dans le cas des données longitudinales et porte sur l’identi-
fication de groupes, non définis a priori et suggérés par les données, de sorte que les individus
dans un même groupe tendent à être similaires dans un certain sens (défini par le critère de
regroupement) et ceux dans différents groupes tendent à être non similaires. Par exemple,
le partitionnement des données d’expression génétique est un enjeu important en bioinfor-
matique car la compréhension des gènes qui se comportent de façon similaire conduit à la
découverte d’importantes informations biologiques (McNicholas and Subedi [18]). Les tra-
vaux qui s’inscrivent dans le contexte d’extension de l’ADF utilisent essentiellement l’analyse
fonctionnelle en composantes principales (AFCP) qui a émergé comme un outil majeur en
ADF et qui permet de réduire la dimensionalité d’un ensemble de données fonctionnelles en
identifiant les modes de variation les plus significatifs. Ramsay and Silverman [21] propose
une excellente présentation de la théorie de l’AFCP, des techniques de calcul des compo-
santes principales telles que la discrétisation des fonctions observées et l’expansion dans une
base de fonctions, ainsi qu’une étude comparative de ces différentes approches de l’AFCP.

L’objectif de cette thèse est de contribuer à l’élaboration de nouveaux modèles plus flexibles,
basés sur l’approche de l’analyse des données fonctionnelles pour l’analyse et le regroupe-
ment en classes des données longitudinales ou des courbes d’évolution corrélées. La théorie
classique de l’ADF s’intéresse aux données de dimension infinie telles que les courbes ou
les images. Elle est donc essentiellement appropriée pour l’étude des données longitudinales
balançées c’est à dire des mesures prises à intervalles réguliers (grille temporelle uniformé-
ment graduée), de sorte que tous les sujets sont évalués aux mêmes périodes de temps et
admettent donc le même nombre de mesures. Mais dans la réalité, la plupart des études
longitudinales résultent très souvent en des données non balançées (mesures irrégulières,
prises à des périodes de temps assez différentes pour les individus, et de plus, tous les sujets
peuvent ne pas avoir le même nombre de mesures).

Nous présentons dans le cadre de cette thèse, deux nouveaux modèles de classification non-
supervisée de données longitudinales basés sur l’approche de l’analyse des données fonction-
nelles, qui tiennent compte de la forme générale des variables-trajectoires et qui constituent
des contributions notoires dans la panoplie des méthodes d’analyse disponibles dans ce do-
maine. Ces modèles font l’objet d’articles scientifiques et se démarquent non seulement par
leur flexibilité, la pertinence et l’originalité de leurs hypothèses et lois a priori, mais aussi
et surtout par le fait qu’ils sont conçus pour convenir à tous les types de données longi-
tudinales, aussi bien balançées que non balançées. Par exemple, la première méthodologie
proposée réalise le partitionnement de données longitudinales à partir d’une seule variable
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(1D) ou de deux variables conjointement (2D) mais reste facilement extensible au regroupe-
ment en classes basé sur 3 ou plus de 3 variables avec prise en compte possible d’effets fixes.
Par ailleurs, une contribution majeure dans la deuxième méthodologie proposée dans cette
thèse est cette idée d’utiliser une pénalisation du type Lasso comme loi a priori, dans le
sens qu’au lieu de chercher le paramètre optimal Lasso, il est incorporé directement comme
paramètre du modèle et il faut impérativement estimer la constante de normalisation qui
lui est associée. Nous présentons également dans cette thèse, une revue assez concise de la
littérature existante sur les différents modèles d’analyse et de partitionnement des données
longitudinales.

Le premier chapitre non introductif de cette thèse présente un aperçu général des différentes
méthodes de traitement des données longitudinales selon une perspective historico-évolutive,
en examinant les approches paramétrique, semi-paramétrique et non-paramétrique. Une em-
phase particulière est mise sur les méthodes et procédures de regroupement en classes (mo-
dèles de clustering) qui constituent une question importante et largement discutée dans la
littérature sur les données longitudinales. En effet, depuis quelques décennies, plusieurs tra-
vaux méthodologiques ont porté sur l’extension aux données longitudinales, des différentes
méthodes de partitionnement bien développées en matière de données indépendantes et qui
ne sont pas adaptées au traitement des mesures répétées. La synthèse proposée dans ce
chapitre se démarque d’autres études similaires existantes (Fitzmaurice et al. [7], Gibbons
et al. [10], Jacques and Preda [12], Bouveyron and Brunet [1]) par sa diversité (différentes
méthodologies selon différents angles de traitement des données longitudinales) et son inté-
gration des méthodes et algorithmes de partitionnement plus récents.

Dans le deuxième chapitre de cette thèse, nous présentons le modèle flexible développé pour
l’analyse et le partitionnement de données longitudinales (balancées ou non). Le modèle
combine l’analyse fonctionnelle en composantes principales et le regroupement en classes,
qui repose sur l’espace des coefficients dans la base des splines et un modèle de mélange de
distributions de Student de degrés de liberté inconnus. Nous développons une approxima-
tion de la log-vraisemblance marginale (MLL) pour la sélection de modèles qui se compare
favorablement aux critères usuels (AIC et BIC). Nous considérons également une extension
du modèle aux courbes multidimensionnelles. Des études de simulations et de comparaison
avec d’autres modèles du genre, ainsi que des applications sur des données réelles ont été
menées pour évaluer la pertinence et la performance du modèle. En effet, la méthodologie
a été appliquée sur plusieurs jeux de données assez connus tels que les données de rats
publiées dans Crowder and Hand [4] et étudiées dans McNicholas and Murphy [17] dans
un contexte longitudinal, les données de croissance provenant des études de croissance de
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Berkeley (Tuddenham and Snyder [26]), les données d’activité électrique cardiaque étudiées
dans Olszewski [19], l’ensemble de données génétiques sur le cycle cellulaire de Cho et al. [3]
et les données sur le virus du syndrome respiratoire et de reproduction chez les porcs (voir
Rowland et al. [23]). James and Sugar [13] avaient proposé un modèle similaire mais notre
modèle présente l’avantage d’être plus précis et exact par rapport à la structure imposée sur
les courbes individuelles et la procédure pour identifier les groupes suggérés par les données.
L’estimation des paramètres est effectuée à partir de l’algorithme EM, de plus en plus utilisé
et modifié en analyse de données longitudinales.

Dans le troisième chapitre, nous présentons une nouvelle procédure de partitionnement
fonctionnel (functional clustering) pour l’analyse des données longitudinales. L’idée origi-
nale du modèle proposé est inspirée des récents travaux dans le domaine de la sélection de
variables pour le partitionnement de données à très grande dimension dont une revue est
présentée par Bouveyron and Brunet [1], dans laquelle une emphase particulière est mise sur
le critère de pénalisation dans la classification non supersivée. Il s’agit en effet d’introduire,
à l’instar de Pan and Shen [20] et Wang and Zhou [31], des termes de pénalité du type L1

ou L∞ dans la fonction de log-vraisemblance. La méthode que nous proposons diffère de
celles existantes par son approche. Au lieu de simultanément partitionner les données et en
réduire la dimensionalité en déterminant les variables les plus pertinentes pour le processus
de regroupement, notre procédure de partitionnement basée sur un modèle utilise l’approche
fonctionnelle et une pénalisation double du type Lasso (Tibshirani [25]) pour simultanément
déterminer la dimension appropriée de la base finie de fonctions (reduction de la dimension)
et le nombre approprié de groupes homogènes (partitionnement). La performance et l’utilité
de la procédure sont démontrées par la simulation et l’application sur des données réelles,
notamment les données d’exposition des rats à la fumée de tabac dans le cadre d’études
cliniques.
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Chapitre 2

A REVIEW OF LONGITUDINAL DATA ANALYSIS
AND CLUSTERING METHODS

Abstract
We review the recent developments in longitudinal cluster analysis according to the two main
approaches, non-parametric and model-based. We deemed it useful and relevant to present
at first, most of the typical longitudinal data analysis methods ranging from the parametric
models to the semi and non parametric ones. Then, the clustering methods are discussed.
The main purpose of this review is to provide a concise, broad and readily accessible overview
of the most important and available methods for analyzing and clustering longitudinal data.

Key words : Longitudinal data, model-based clustering, sparse longitudinal data, func-
tional data analysis, gene expression, mixture student.
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2.1. Introduction
Longitudinal studies have become an essential tool for studying the evolution in time of a
given phenomena as they play a salient role in many various research areas. Longitudinal
data arises when one or more outcomes are measured at a sequence of observation times
on multiple subjects (Diggle et al. [23]). For each subject, the measurements are taken at
different times during a certain period leading to a sequence of observations. That funda-
mental characteristic of possible correlation between observations coming from the same
subject (within-subject correlation) makes longitudinal data different from other types of
data in statistics (such as multivariate data, cross-sectional data, time series data) and calls
for specific methodologies. For example, longitudinal data differ from classical time series
data because they consist of a large number of independent trajectories that are sparsely
and potentially irregularly sampled over time, rather than a few random processes that are
uniformly sampled over time (Heggeseth [51]). Similarly, historical development of ideas re-
lated to longitudinal studies and their advantages over cross-sectional studies are presented
in many books or papers such as Rajulton [100] ; Hedeker and Gibbons [50] and Rindfleisch
et al. [105].

The statistical methodology for the analysis of longitudinal data is essentially based around
three axes : parametric models, non-parametric models and semi-parametric models. In the
past forty years, that statistical methodology has evolved remarkably, due to increasingly so-
phisticated technologies which allow numerical applications on high performance machines.
Therefore, several new avenues have been explored. For example, the works of Zhao et al.
[134] and Rice [103] have shown that longitudinal data can be viewed as a type of functional
data. As a consequence, a non-parametric methodology for modeling longitudinal data and
based on the functional data analysis (FDA) approach has emerged. In the FDA approach
pioneered by Ramsay and Silverman [101], longitudinal trajectories are viewed as a sample
of partially observed functions or curves on some interval where these functions are often
assumed to be smooth.

In this review, we are particularly interested in an important question widely addressed in
the analysis of longitudinal data : the issue of cluster analysis (Hennig et al. [52] ; Bruckers
[8]). It concerns the existence of groups or clusters (or homogeneous trajectories), suggested
by the data, not defined a priori, such that individuals in a given cluster tend to be simi-
lar to each other in some sense, and individuals in different clusters tend to be dissimilar.
The extension of cluster analysis to longitudinal data has been the focus of a lot of metho-
dological work. These methods range from heuristic approaches such as k-means (Hartigan
and Wong [47] ; Tarpey [117] ; Genolini and Falissard [41]), distances or dissimilarities-based
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algorithms (Komarek and Komarkova [65] ; Hennig et al. [52]) to model-based procedures
(Fraley and Raftery [33] ; Fraley and Raftery [35] ; James and Sugar [60]). Most methods
can be categorized into one of two approaches : nonparametric and model-based methods.

The first section of the this paper, along the same lines as reviews such as Fitzmaurice
et al. [31] and Gibbons et al. [44], highlights the longitudinal data analysis methods ranging
from the parametric models to the semi and non parametric models. We present herein the
most notable developments with an emphasis on the main characteristics of each model. The
second section is mainly dedicated to the review of the two clustering categories including
methods based on the functional data analysis approach.

2.2. Analysis methods for longitudinal data
The most popular and extensively used methods in the analysis of longitudinal data are
based on the parametric models which often contain random effects, such as the linear
mixed-effects model proposed by Laird and Ware [67] for continuous responses. The para-
metric models also include marginal models, generalized linear mixed models for discrete
responses and non-linear mixed-effects models. Many examples of empirical applications
such as Brumback and Rice [9], Zeger and Diggle [131], Lin and Ying [72] and Diggle et al.
[23] demonstrate that parametric assumptions are not always appropriate to modelize the
temporal dynamic between a response variable and covariates in longitudinal studies. Hence,
non-parametric and semi-parametric methods have emerged in the statistical literature in
order to propose more flexible functional forms in the analysis of longitudinal data. This
mainly relates to extending and adapting kernel methods (Wand and Jones [124] ; Fan and
Gijbels [29]) and smoothing splines methods (Green and Silverman [45] ; Wahba [122] ; Stone
et al. [114]), originally developed for independent data, to the particularities of longitudinal
data, especially the within-subject correlation among repeated measures over time. Another
non parametric methodology in modeling longitudinal data is provided by the functional
data analysis (FDA) approach in which the sequence of measurements collected for each
individual are considered as portions of curves. The observed measurements correspond to
values of a random trajectory corrupted by measurement error. The objective is to use FDA
tools to predict individual trajectories from the measurements made for a subject, borro-
wing strength from the entire sample of subjects (Fitzmaurice et al. [31, chap. 10]). The
research associated with the extension of FDA methodology to the analysis of longitudinal
data, especially the use of functional principal components analysis (FPCA), is an area in
great expansion.
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2.2.1. Parametric models for analysis of longitudinal data

Parametric models, which often contain random effects, represent an analysis approach
commonly used by statisticians. There is a large variety of such models, depending on the
type of the response variable or the objective of the statistical analysis. Amongst others,
there are linear models, generalized linear models and non linear models.

2.2.1.1. Linear models for longitudinal data

Linear parametric models are essentially based on normality assumptions and are useful for
continuous longitudinal data. Introduced by Laird and Ware [67], the linear mixed-effects
model is probably the most popular method in this class of models. In general, a linear
mixed-effects model is specified as (Verbeke and Molenberghs [121]) :

⎧
⎪⎪⎨

⎪⎪⎩

Yi = Xiβ + Zibi + ϵi

bi ∼ Nq(0, D) ; ϵi ∼ Nni(0, Σi)
b1, ..., bN , ϵ1, ..., ϵN are independent

(2.2.1)

where Yi is the ni-dimensional vector of measurements of the subject i with 1 ≤ i ≤ N ; and
N being the total number of subjects in the longitudinal study. Xi and Zi are respectively,
the covariates matrices of dimensions (ni, p) and (ni, q). β is a p-dimensional vector repre-
senting the fixed effects ; bi is a q-dimensional vector representing the random effects ; ϵi is
the ni-dimensional vector corresponding to the errors. The matrices D and Σi represent the
variance-covariance matrices of random effects and errors, respectively.
Conditionally to the random effects bi, Yi has a multivariate normal distribution of mean
Xiβ + Zibi and variance-covariance matrix Σi. Unless the model is estimated using a Baye-
sian approach (Gelman et al. [39]), the parameter estimation and the inference are based
on the marginal distribution of Yi which is provided by :

p(yi) =
∫

p(yi|bi)p(bi)dbi.

Given the Gaussian distribution of the random effects bi, it is demonstrated that the res-
ponse vector Yi of each individual follow a multivariate normal distribution with mean Xiβ

and variance-covariance matrix Vi = ZiDZT
i + Σi.

Many models are proposed in the statistical literature depending on the choice of the cova-
riance structure of the errors Σi. Most models are special cases of the general model proposed
by Diggle et al. [23]. These authors propose the general linear model with the assumption
that the covariance structure of the sequence of measures collected on each individual can be
specified by a certain number of unknown parameters represented by the vector α. Indeed,
if yi = (yi1, ..., yini) is the ni-dimensional vector of measurements of the individual i and the



13

vector ti = (ti1, ..., tini) represents the measurement time points, then the yi are assumed to
be realizations of independent Gaussian vectors Yi ∼ Nni(Xiβ, Vi(ti, α)). The originality of
the presentation in Diggle et al. [23] relies on two important points. First, they make an ex-
plicit distinction between the mean and covariance structures by stipulating Yi = Xiβ + εi

with εi ∼ Nni(0, Vi(ti, α)). Second, they propose an additive formulation of the different
sources of random variation in longitudinal data which are : random effects, within-subject
variability and measurement errors. Formally, the vector εi and the term εij associated to
the jth measurement of individual i are defined as follows :

⎧
⎨

⎩
εi = Zibi + Wi(ti) + ϵi

εij = ZT
i(j,·)bi + Wi(tij) + ϵij; i = 1, ..., N ; j = 1, ..., ni.

(2.2.2)

In this decomposition, the bi represent the random effects and are a set of N q-dimensional
independent Gaussian vectors with mean vector zero and covariance matrix D. The Zi(j,·)

are q-dimensional vectors of explanatory variables attached to individual measurements and
represent the jth row of the (ni, q)-dimensional matrix Zi. The terms {Wi(tij)} represent the
within-subject serial correlation and are N independent realizations of a Gaussian stationary
process of mean zero and variance σ2 with correlation function ρ(u). The ϵij represent
measurement errors and are a set of M mutually independent normal random variables
with mean zero and variance τ 2 where M = [∑N

i=1 ni]. Let Ri be the (ni, ni)-dimensional
matrix with the (j, k)th element being the correlation hijk between Wi(tij) and Wi(tik)
defined as hijk = ρ(|tij − tik|). Let Ini be the (ni, ni)-identity matrix. The covariance matrix
of εi = (εi1, ..., εini) is defined as :

V ar(εi) = ZiDZT
i + σ2Ri + τ 2Ini . (2.2.3)

With this specification of the covariance structure for longitudinal data, it is up to the
analyst to introduce one or several sources of variability in the linear model according to
the context of the experience or study. One can see that the linear mixed-effects model in
Equation (2.2.1) corresponds to the particular case of Equation (2.2.2) where the within-
subject serial correlation is omitted and a diagonal covariance structure is imposed on the
measurement errors.

The inference and parameter estimation of these models (Verbeke and Molenberghs [121] ;
Diggle et al. [23] ; Fitzmaurice et al. [32] ; Molenberghs and Verbeke [92] ; Fitzmaurice et al.
[31]) are based on the well-known principle of maximum likelihood (ML) or the restricted
maximum likelihood (REML) estimations. The REML is used to adjust the bias introduced
by the maximum likelihood estimation of the covariance components.

There are in the literature several algorithms for the computation of maximum likelihood



14

or REML estimators. Laird and Ware [67] showed how the expectation-maximization (EM)
algorithm proposed by Dempster et al. [22] can not only be applied to obtain ML estimators,
but can be useful to compute REML estimators through an empirical Bayesian approach.

Other alternative procedures such as the Newton-Raphson algorithm, the quasi-Newton
algorithm or the simplex algorithm of Nelder and Mead (1965) are used very often. Howe-
ver, a Bayesian approach through determination of the posterior probability distribution
is sometimes preferred to estimate the random effects bi in the linear mixed-effects models
(Molenberghs and Verbeke [92, chap. 10]).

2.2.1.2. Generalized linear models for longitudinal data

Generalized linear models (McCullagh and Nelder [82]) are a class of regression models on
the independent observations of a discrete or continuous variable. Statisticians have then
developed extensions of generalized linear models for longitudinal data in order to take into
account the context of correlated observations. We present three main extensions : marginal
models, generalized linear mixed-effects models and transition models.

Marginal models : In a marginal model, the regression of a response variable on some
explanatory variables and the within-subject correlation are analyzed separately according
to the following assumptions :

(1) The mean of each response E(Yij|Xij) = µij depends on the explanatory variables
Xij through γ(µij) = XT

ijβ where γ(·) is a known link function such as the logit for
binary responses.

(2) The variance of each Yij given the covariates, is assumed to depend on the mean
through V ar(Yij|Xij) = ϕv(µij) where ϕ is a scale parameter and v is a known
variance function.

(3) The correlation between Yij and Yik is a function of the corresponding means and
additional parameters α through Cor(Yij, Yik) = ρ(µij, µik; α) where ρ is a known
function.

It is the third component of the marginal model specification, the within-subject correlation
between measurements collected for the same individual, that represents the main extension
of generalized linear models to longitudinal data.

Generalized linear mixed-effects models : In a certain sense, marginal models take
into account the within-subject correlation but they provide no explanation about the po-
tential source of that correlation. An alternative approach that takes into account that
within-subject correlation and provides its source consists in the introduction of random
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effects in the model. This is the case of generalized linear mixed-effects models defined by
the following assumptions :

(1) Conditionally to the random effects vector bi, the Yij are independent and have
distributions from an exponential family with a conditional mean that depends on
fixed effects as well as random effects according to γ{E(Yij|bi)} = XT

ijβ+ZT
ijbi where

γ(·) is a known link function.

(2) The conditional variance is a function of the conditional mean through :
V ar(Yij|Xij) = ϕv{E(Yij|bi)} where v is a known variance function and ϕ is a scale
parameter known or to be estimated.

(3) The random effects bi are independent from explanatory variables Xij and follow a
multivariate normal distribution with mean zero and covariance matrix G of dimen-
sion (q, q).

The interpretation of the regression parameters is distinct in the marginal models and in
the generalized linear mixed-effects models due to the difference in the target of inference.
Generalized linear mixed-effects models are more appropriate when the study objective is
to make inference on individuals rather than on whole population (Fitzmaurice et al. [31,
chap. 2]).

Transition models : In a transition model, each realization Yij of a longitudinal se-
quence Yi is defined as a function of past responses and covariates. The dependence bet-
ween repeated measures is modeled as resulting from the influence of past values on the
present observation. Thus, in transition models, one assumes that γ (E{Yij|Xij, Hij}) =
XT

ijβ + ∑s
r=1 αrηr(Hij), where Hij = (Yi1, ..., Yij−1) represents the history of measures col-

lected before the jth occasion, and the ηr are known functions (often linear but not neces-
sarily). With generalized linear mixed-effects models and transition models, it is possible to
estimate unknown parameters using traditional maximum likelihood methods (Diggle et al.
[23]). The most commonly used methods for estimation in generalized linear mixed-effects
models are : maximum likelihood (ML), penalized quasi-likelihood (PQL) and Monte Carlo
Markov chain methods (MCMC). For example, to obtain ML estimates, the numerical in-
tegration or the Monte Carlo integration is combined to optimization algorithms such as
Newton-Raphson, Fisher Scoring or EM algorithm (Fitzmaurice et al. [31]). For parameter
estimation in marginal models, the most commonly used approach is the generalized es-
timating equations (GEE) method developed by Zeger and Liang [132]. Molenberghs and
Verbeke [92] present a standard iterative procedure for estimation using GEE.
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2.2.1.3. Non-linear models for longitudinal data

Non-linear models are an important class of longitudinal data analysis models. Unlike ge-
neralized linear models where a certain restricted form of non-linearity can be introduced
through the link function, non-linear models are fundamentally non-linear. Indeed, in mar-
ginal and generalized mixed-effects models, a non-linear link function γ(·) determines an
appropriate scale on which the transform of the mean of a measurement Yij is linear in the
regression parameters (and random effects according to the underlying model). However,
in a non-linear model, the concept of linear predictor is abandoned and one obtains, in the
case of marginal model for example :

E(Yij|Xij) = η(Xij, β), (2.2.4)

where η(·) is an arbitrary function of covariates and parameters. All three types of genera-
lized linear models can be extended to non-linear models. Mixed-effects non-linear models
are the most commonly used. An excellent description of those models is presented in Mo-
lenberghs and Verbeke [92] and Fitzmaurice et al. [31].

2.2.2. Non-parametric and semi-parametric models
for longitudinal data analysis

In longitudinal data analysis, one is usually interested in the estimation of the underlying
curve that generate the observed measures. For that purpose, parametric models are very
often proposed. However, the main problem with parametric modeling is the quest of a
suitable model with a limited number of parameters and that is the best fit to the data.
Furthermore, these models suffer from an inflexibility to analyze structures sometimes very
complicated and challenging in longitudinal data. It would then be more appropriate that the
relationship between the mean of a response variable and covariates does not rely completely
on parametric assumptions. Non-parametric and semi-parametric models then represent an
alternative to parametric models and have encountered very significative developments in
the past years. Non-parametric and semi-parametric models for independent data have then
been extended to longitudinal data where the presence of within-subject correlation is a
major challenge to take up.

Let’s consider a longitudinal study with a single explanatory variable X. Let (Yij, Xij) be the
dependent variable and the covariate for individual i (i = 1, ..., N) measured at time point tij

(j = 1, ..., ni). The dependent variable can be continuous or discrete. The marginal mean and
the marginal variance of Yij are given by : µij = E(Yij|Xij) and V ar(Yij|Xij) = ϕ−1v(µij)
where v(.) is a variance function and ϕ is a scale parameter. It is assumed that the marginal
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mean depends on Xij according to :

γ(µij) = θ(Xij), (2.2.5)

where θ(·) is an unknown smooth function and γ(·) is a known link function. The commonly
used link functions include the identity link [γ(µ) = µ] for Gaussian realizations ; the logit
link [γ(µ) = log{µ/(1 − µ)}] or the probit link [γ(µ) = Φ−1(µ)] for binary realizations
(Φ is the cumulative distribution function of a Gaussian distribution) ; and the log link
[γ(µ) = log(µ)] for Poisson type realizations. Among non-parametric models, which are
distinct according to the method of estimation of the θ function, there are models based on
kernel methods and models based on spline methods.

2.2.2.1. Kernel-based non parametric methods

There are two main methods : the local polynomial kernel generalized estimating equations
(LPK-GEE) estimator and the kernel-seemingly unrelated estimator (kSUR). The LPK-
GEE estimator (Lin and Carroll [73]) is an extension of the conventional local polynomial
kernel (Fan and Gijbels [29]) estimator to longitudinal data through the introduction of a
covariance matrix in a way similar to the method of generalized estimating equations for
generalized linear models. Specifically, at a target point x, θ(Xij) is locally approximated
by a dth-order polynomial as :

θ(Xij) ≈ α0 + · · · + αd(Xij − x)d = XT
i(j,·)α (2.2.6)

where Xi(j,·) = {1, ..., (Xij − x)d} and α = (α0, ..., αd)T. The estimation equation of the
symmetric LPK-GEE estimator is :

N∑

i=1
XT

i ∆iK1/2
ih V−1

i K1/2
ih {Yi − µi} = 0 (2.2.7)

where Xi is the matrix whose jth row is Xi(j,·) ; ∆i = diag{δij} with δij = 1/γ
′(µij) ;

Kih = diag{Kh(Xij − x)}. Note that Kh(s) = h−1K(s/h) where h is a bandwidth and K(·)
is a kernel function that is often chosen as a symmetric probability density function of mean
zero. The matrix Vi is a “working” covariance matrix defined as Vi =

[
S1/2

i Ri(ξ)S1/2
i

]
with

Si = diag{ϕ−1v(µij)} and Ri is an invertible correlation matrix, which possibly depends
on a vector of parameters ξ that can be estimated using the method of moments. Also,
µi = {µi1, ..., µini}T with µij = γ−1(XT

i(j,·)α). Most commonly used kernel functions K(·)
include the Gaussian kernel, the uniform kernel and the Epanechnikov kernel.

Note that Ri is a user-specified working correlation matrix. It is used to account for the
within-subject correlations of responses and to estimate the true correlation structure which
is unknown. The three most common used working correlation structures are Independent
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(Cor(Yij, Yik) = 0, j ̸= k), Exchangeable or Compound symmetry (Cor(Yij, Yik) = ρ, j ̸= k)
and AR(1) or First-order autoregressive (Cor(Yij, Yik) = ρ|j−k|, j ̸= k). Hu et al. [54], among
others, discussed the choice of a good working correlation structure and develop a nonpa-
rametric and data-adaptive method for selecting the correlation structure.

Equation (2.2.7) can be solved using the Fisher Scoring algorithm via iteratively re-weighted
least squares. Let α̂ be the solution of that equation. Then, the estimator LPK-GEE of θ(x)
is θ̂K(x) = α̂0. Lin and Carroll [73] have also considered a non-symmetric LPK-GEE es-
timator by replacing

[
K1/2

ih V−1
i K1/2

ih

]
by

[
V−1

i Kih

]
and the asymptotic performance of the

estimator is similar to the symmetric case. In Chen and Jin [15], the authors have propo-
sed an improved version of the LPK-GEE estimator which uses a degenerate local working
covariance matrix. Unlike the original LPK-GEE estimator which is more efficient while
the within-subject correlation is ignored (Wu and Zhang [127]), the efficiency of the kernel
estimator of Chen and Jin [15] is the same, no matter whether one ignores correlation or
accounts for correlation.

A heuristic explanation concerning the failure of the LPK-GEE estimator to efficiently
account for the within-subject correlation is that it is based on the principle of local likeli-
hood (Fitzmaurice et al. [31, chap. 9]). The design of a kernel-based estimator that accounts
for the correlation in longitudinal data should then not rely on the traditional local likeli-
hood. Thus, Wang [125] proposed the kernel-based seemingly unrelated (kSUR) estimator.
Specifically, let’s consider a dth-order polynomial kernel estimator using the approximation
in Equation (2.2.7). If θ̂[l]

K(x) represents the kSUR estimator of θ(x) at the lth iteration, then
at the (l + 1)th iteration, one has θ̂[l+1]

K (x) = α̂0 where α̂ = (α̂0, α̂1, ..., α̂d)T is solution to the
following equation :

N∑

i=1

ni∑

j=1
Kh(Xij − x)XT

i V−1
i {Yi − µi(j)} = 0. (2.2.8)

In Equation (2.2.8), Vi is the working covariance matrix ; Xi is a (ni, d + 1)-dimensional
matrix of zeros except at the jth row which is {1, (Xij − x), ..., (Xij − x)d}T ; Kh is a kernel
function and

µi(j) =
{

θ̂[l]
K(Xi1), ..., θ̂[l]

K(Xi,j−1),
d∑

k=0
(Xij − x)kαk, θ̂[l]

K(Xi,j+1), ..., θ̂[l]
K(Xini)

}T

.

The kSUR estimator θ̂∗
K(x) = α̂0 is obtained at the convergence. The Fisher Scoring algo-

rithm can be used to iteratively solve Equation (2.2.8). The kSUR estimator is convergent
and effectively accounts for the within-subject correlation. Simulation results showed that
it is more efficient than the kernel-based GEE estimator in term of the quadratic mean



19

error (Wang [125]). Lin and Carroll [75] have extended the kSUR method to the likelihood
principle.

2.2.2.2. Splines-based non parametric methods

An alternative method to non-parametrically estimate the function θ(x) in Equation (2.2.5)
consists in the use of smoothing splines. A smoothing spline estimates the non-parametric
regression function θ(x) using a piecewise polynomial function with all the observed covariate
values Xi used as knots, where smoothness constraints are assumed at those knots (Wahba
[122], Green and Silverman [45]). For longitudinal data, there are essentially, the generalized
smoothing splines estimator, the P-splines estimator and the regression splines estimator.
To illustrate key features of the generalized smoothing splines estimator, let’s consider the
Gaussian realizations (identity link), thus the model :

Yij = θ(Xij) + ϵij, (2.2.9)

where the ϵi = (ϵi1, ..., ϵini)T are independent with zero mean and covariance matrix Σ.
By assuming a working covariance matrix Vi, the rth-order smoothing splines estimator
minimizes

− 1
2N

N∑

i=1
{Yi − θi}TV−1

i {Yi − θi} − 1
2λ

∫
{θ(r)(x)}2dx (2.2.10)

= − 1
2N

N∑

i=1
{Yi − θi}TV−1

i {Yi − θi} − 1
2λθTΩθ (2.2.11)

where θi = {θ(Xi1), ..., θ(Xini)} ; λ is a tuning parameter controlling the trade-off between
the fitting quality and smoothing level of the curve θ(·) ; Ω is the smoothing matrix (Green
and Silverman [45]). Consequently, the rth-order smoothing splines estimator of θ(x) is :

θ̂S = (Ṽ −1 + NλΩ)−1Ṽ
−1

Y , (2.2.12)

where Ṽ = diag(V1, ..., VN) and Y = (YT
1 , ..., YT

N)T. Lin et al. [76] have studied the theo-
retical properties of the smoothing splines estimator and demonstrated that it is asympto-
tically equivalent to the kernel SUR estimator. Their results indicated that the generalized
smoothing splines estimator is a higher order kernel SUR estimator (for example, the cubic
smoothing splines estimator (r = 2) is a fourth-order kernel SUR estimator). In addition,
the generalized smoothing splines estimator is convergent and the most efficient estimator
θ̂S is obtained when the within-subject correlation is accounted for.

Smoothing splines use all measurement points as knots. Hence, for very large datasets their
computations can be long and complex. Regression splines (Stone et al. [114]) that use a
small number of knots have been proposed for non-parametric regression on longitudinal
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data under the model in Equation (2.2.9) (Rice and Wu [104] ; Huang et al. [56]). A regres-
sion spline approximates θ(·) by θ(x) = ∑L

l=0 Bl(x)αl where the number of knots is small and
{Bl(·)}L

l=0 is a set of L basis functions such as B-splines. The coefficients αl are estimated
by weighted least squares.

Another alternative consists in using the P-splines (Eilers and Marx [26] ; Ruppert et al.
[107]) that require a moderate number of knots (usually smaller than the sample size but
greater than the number of knots in the regression splines case). If {(x−x1)3

+, ..., (x−xM)3
+}

refers to a plus functions basis built from the M knots x1, ..., xM (a+ = a if a > 0 and 0
otherwise), then θ(·) can be approximated by

θ(x) = α0 + α1x + α2x
2 + α3x

3 +
M∑

m=1
(x − xm)3

+αm+3 = B(x)Tα (2.2.13)

where B(x) = {1, x, x2, x3, (x − x1)3
+, ..., (x − xM)3

+}T and α = (α0, ..., αM)T. Note that
in this case, L = M + 3 + 1. Under the model in Equation (2.2.9), the coefficients α are
estimated using the penalized log-likelihood.

2.2.2.3. Semi-parametric methods

Semi-parametric models have parametric as well as non-parametric components. Let’s as-
sume that Yij is the jth measurement (j = 1, ..., ni) of individual i (i = 1, .., N). Equation
(2.2.14) represents a marginal semi-parametric model where Xij is a p-dimensional vector
of covariates whose effects are modeled parametrically and Wij is another scalar covariate
whose effects are modeled non-parametrically. Specifically,

γ(µij) = Yij = XT
ijβ + θ(Wij) (2.2.14)

where γ(·) is a known link function and θ(·) is an unknown smooth function as in Equation
(2.2.5). Following Zeger and Diggle [131], Lin and Carroll [74] have studied the model of
Equation (2.2.14) by first estimating θ(·), given β, using the non-parametric method LPK-
GEE. Then, given the resulting local polynomial kernel GEE estimator of θ(·) denoted
by θ̂(w; β) and equal to α̂0 (defined as in Section 2.2.2.1), the regression coefficients β

are estimated through the profile method which consists in solving the profile estimating
equation :

N∑

i=1

∂µT
i

∂β
V −1

i [Yi − µi] = 0, (2.2.15)

where θ̂i = {θ̂(Wi1; β), ..., θ̂(Wini ; β)}T ; V i is a working covariance matrix and µi is the
vector whose jth component is µij = γ−1{XT

ijβ + θ̂(Wij; β)}.
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The results of Lin and Carroll [74] indicate that these estimations fail to analyze cor-
rectly longitudinal data when the within-subject correlation is accounted for in the model.
Therefore, Wang et al. [126] have proposed to estimate θ(w) using the kSUR estimator
(Section 2.2.2.1) and β still by the profile method in Equation (2.2.15). They have then
demonstrated that the profile/kSUR estimator of β is convergent for any given working
covariance matrix and is the most efficient when the working matrix V i is equal to the true
covariance of Yi.

A useful extension of the marginal semi-parametric model in Equation (2.2.14) to the likeli-
hood paradigm is the generalized mixed-effects semi-parametric model in which one assumes
that, conditionally to the random effects bi, Yij follows a distribution from an exponential
family with mean µij according to :

γ(µij) = XT
ijβ + θ(Wij) + ZT

ijbi, (2.2.16)

where X, W, β, and θ(.) are defined as in Equation (2.2.14). The Zij is a q-dimensional vec-
tor of covariates associated with random effects bi which are normally distributed Nq(0, D(ξ)).
The estimation of θ(.) and (β, ξ) are done through the profile/kSUR method where θ(.) is
estimated using the non-parametric kSUR method and the estimation of (β, γ) is based on
log-likelihood maximization of :

N∑

i=1
l{Yi; β, ξ, θ̂(Wi1; β, ξ), ..., θ̂(Wini ; β, ξ)}. (2.2.17)

An alternative estimation method in semi-parametric models is based on the use of splines
(smoothing splines or P-splines) to estimate the non-parametric function θ(·).

2.2.2.4. The estimation of the covariance in longitudinal data analysis

All those non-parametric and semi-parametric models require the specification of a co-
variance matrix in order to adequately estimate the mean, but they do not provide any
systematic procedure to estimate the covariance structure.

Some authors have worked on the non-parametric modeling of the covariance structure.
Capra and Müller [10] as well as Staniswalis and Lee [113] have developed implementations
with kernel-based smoothing methods. Briefly, the mean function is estimated by smoothing
the aggregated data (tij, Yij) i = 1, ..., N ; j = 1, ..., ni where tij and Yij are respectively
time point and value of the jth measurement from the individual i. Once the mean function
µ(t) is obtained, raw covariances are computed from all observed pairs (tij, Yij), (til, Yil)
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according to :
Vijl = (Yij − µ̂(tij))(Yil − µ̂(til))

Then, a second surface smoothing step is applied on the cloud ((tij, til), Vijl) in order to
obtain the estimated covariance surface. Several types of smoothing can be applied and
the smooth covariance function is then discretized in a uniform temporal grid, where it is
represented as the covariance matrix.

Diggle and Verbyla [24] have introduced a non-parametric estimator of the covariance matrix
for longitudinal data through the smoothing of the sample variogram. More recent works
on the issue include Wu and Pourahmadi [128] and Huang et al. [55]. Also, Fan et al. [30]
have studied sparse longitudinal data and proposed a semi-parametric method based on
maximization of quasi-likelihood to estimate the covariance function. In that method, the
variance function is modeled non-parametrically as a function of time while the correlation
function is assumed parametric. The natural extension of that method is to estimate the
covariance function fully non-parametrically, which is more and more implemented in func-
tional data analysis (FDA). Li [70] proposed a method that combines the semi-parametric
estimator through the profile method (described in Section 2.2.2.3) and the non-parametric
estimation for the covariance.

2.3. Clustering methods for longitudinal data
Sometimes, the analysis of longitudinal data, in addition to the typical analyses presented
in Section 2.2, consists in building groups or clusters suggested by the data, not defined
a priori. Indeed, clustering the subjects from a longitudinal study and analyzing them by
cluster turns out to be an approach increasingly adopted by data analysts from various fields
of study. Moreover, the obtained clusters can then be used in regression models to predict
outcomes. Hence, methods have been developed to extend multivariate cluster analysis to
longitudinal data with the objective of clustering subject trajectories. As discussed in He
[49], that extension is necessary and motivated by the difference in the longitudinal data
structure (generally unequal number of measurements for individuals, observations not ne-
cessarily obtained at the same time points, and presence of missing data).

Clustering refers to unsupervised classification and consists in performing a cluster analysis
on a dataset with no cluster information other than the observed values. Most available clus-
tering methods to be adapted to longitudinal data can be categorized into two approaches :
a non-parametric approach and a model-based approach. Those two approaches
aggregate the five clustering algorithm categories presented in Elavarasi et al. [27] : Hie-
rarchical, Partition, Spectral, Grid-based and Density-based. They are also consistent with
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the three types of clustering algorithms proposed in Ren [102] : connectivity models (based
on the distance and linkage criteria), centroid models (such as the k-means algorithm), and
distribution models (assuming the existence of a mixture of distributions and using conven-
tionally the EM-algorithm for estimation). The classes of clustering models presented in He
[49] (hierarchical models, centroid models and mixture models) can also be merged in those
two approaches.

The non-parametric approach contains usual partition-based clustering techniques such as
k-means (and its many extensions), hierarchical clustering, methods using specific distances
or dissimilarities and methods using new heuristics or geometric criteria to cluster. The
model-based clustering approach considers a probability distribution and mostly involves
fitting a finite mixture of distributions.

2.3.1. Non-parametric clustering methods

This approach relates to classical algorithmic methods and is essentially based on identifying
similar groups through the quantification of the similarity between two objects. The simila-
rity measure is metric-based rather than based on a probability distribution. As indicated in
Heggeseth [51], the three key ingredients to these methods are the dissimilarity measure, the
clustering algorithm, and the number of clusters. Metric, distance, dissimilarity and simila-
rity are all related concepts. Among the most popular metrics are the Euclidean distance,
Manhattan distance, Pearson’s correlation for continuous features, Spearman’s rank correla-
tion, Kendall’s Tau for ordinal features, simple matching coefficient and Jaccard coefficient
for binary features. The choice of the similarity measure should consider the features type
and scale, the desired interpretation of similarity (e.g., proximity or association), sensitivity
to outliers, and underling distributional assumptions for the features (see Bruckers [8]).

Regarding the clustering algorithm, there is a distinction to be made between hierarchi-
cal and partitional clustering methods. In hierarchical clustering, a hierarchy of clusters is
created, which can be represented by a tree structure called dendogram. One can either start
with the leaves of the tree (each individual as a separate cluster) and merge the clusters
together to the root (agglomerative), or alternatively start at the root of the tree and split
the clusters into leaves (divisive) (see Dufour [25]). The split or combination of clusters is
done using the similarity measure in multiple ways : single linkage, complete linkage and
average linkage. Partitional techniques produce a single partition of the objects into k ≥ 2
disjoint clusters, by optimizing a criterion function. Two popular methods in this class are
k-means and partitioning around medoids (PAM). The k-means algorithm attempts to mi-
nimize the sum of the squared distances between the objects and their cluster centers, by
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iteratively reallocating objects to the clusters until convergence. The PAM method aims at
partitioning N objects into G clusters in which each object is assigned to the cluster with
the closest medoid (see Lin [71]). For these methods, the number of clusters needs to be
specified unlike hierarchical methods.

Liu and Luo [77] mentioned the sensitiveness to data, the difficulty to determine the number
of clusters of the well-known partition-based clustering algorithm k-means and the failure of
the Euclidean distance (typically used in k-means as similarity measure) to get a good per-
formance in pattern clustering on longitudinal data. They propose then, the Max-Difference
iterative clustering algorithm (combining a new distance called Max-Difference distance and
an iterative optimization) which, according to their results, has advantages on performance,
computational complexity and non-sensitiveness to data compared with k-means. Similarly,
Usami [119] discussed the importance of constraints in clustering methods. They proposed
a new constrained k-means method with lower bound constraints on cluster proportions and
distances among clusters at focused variables and time points to fulfill various needs in clus-
tering longitudinal data. The new method, deemed to be satisfactory based on simulated
and real data, assumes a large number of clusters at the onset and iteratively deletes and
combines clusters according to these constraints and directly estimate the unknown number
of clusters.

Lin [71] develops a new clustering method to deal with a new type of longitudinal data,
category-ordered data which has features of categorical and ordinal scales. For these data,
the implemented model-based clustering methods are hard to use, due to missing values
of type missing at random, and the existing dissimilarity functions are not suitable. Thus,
the authors proposed a method that involves a new dissimilarity function, the so-called
p-dissimilarity. In addition, the method lets the data select the appropriate clustering algo-
rithm (hierarchical linkage or PAM) based on cluster stability and coherence, respectively
measured via the Prediction Strength (PS) index and the Average Silhouette Width (ASW).

2.3.2. Model-based clustering methods

Model-based clustering is the increasingly popular area of cluster analysis that relies on a
probabilistic description of data via finite mixture models. In this approach, each cluster
is mathematically represented by a parametric distribution. The data are assumed to be
generated by a mixture of underlying distributions described by a set of parameters. In the
most general form of a mixture, the density of a random variable Y takes the form :

p(y|π) =
G∑

g=1
πgpg(y) (2.3.1)
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where πg represents the gth mixing proportion or the probability that an observation belongs
to the gth group (or cluster) with corresponding density pg called the gth mixing or group
density. The number G represents the total number of groups and is to be additionally
estimated when it is unknown. Note that π = (π1, π2, ..., πG)T with πg ∈ (0, 1) and ∑G

g=1 πg =
1. Usually, the component densities pg are assumed to be of parametric form pg(y) =
pg(y|Πg) with a completely known functional form. Equation (2.3.1) can then be rewritten
and takes the form

p(y|Π) =
G∑

g=1
πgpg(y|Πg) (2.3.2)

of Equation (2.3.2), which is referred to as a finite mixture model with parameter vector
Π = (πT, ΠT

1 , ΠT
2 , ..., ΠT

G)T. Further review of finite mixture models can be found in McLa-
chlan and Peel [85] and Melnykov and Maitra [90].

The most common type of mixture considered in the literature is unquestionably the Gaus-
sian mixture model, but other models investigated are the Poisson mixture, the skew-Normal
and t-distribution mixtures (as heavy-tailed alternative to Gaussian mixtures, see McLa-
chlan and Peel [84]). The Gaussian mixture model assumes a multivariate Gaussian distri-
bution for each group and is expressed as :

p(y) =
G∑

g=1
πgφ(y|µg, Γg) (2.3.3)

where πg is as previously defined and φ(y|µg, Γg) is the density of a multivariate Gaussian
distribution with mean µg and covariance matrix Γg. Many works such as Banfield and Raf-
tery [3], Celeux and Govaert [12], Fraley and Raftery [34, 36, 37] parameterized the group
covariance structure Γg through an eigenvalue decomposition in the form Γg = λgΛg∆gΛT

g

where Λg is the orthogonal matrix of eigenvectors, ∆g is a diagonal matrix whose elements
are proportional to the eigenvalues and λg is an associated constant of proportionality. The
idea underlying this decomposition is to treat λg, ∆g and Λg as independent sets of parame-
ters and either constrain them to be the same for each cluster or allow them to vary among
clusters in order to give a wide range of parsimonious covariance structures. The diverse
exploitations of that decomposition resulted in a well-known family of mixture models for
model-based clustering : the Mclust family (Fraley and Raftery [37]) which consists of ten
mixture models that arise from the imposition of constraints upon the cluster covariance
(Fraley and Raftery [38]). The clustering algorithm attempts to find the best estimates of
the parameters by maximizing the log-likelihood function via the EM algorithm (see Mel-
nykov and Maitra [90] ; McLachlan and Peel [85]).
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Another family of eight Gaussian mixture models with parsimonious covariance structure
has been introduced in McNicholas and Murphy [86] by extending the mixture of factor
analyzers model (Ghahramani and Hinton [43]). Under the general mixture of factor analy-
zers model, the density of an observation in group g is multivariate Gaussian with mean µg

and the covariance structure is assumed of the form Γg = ΛgΛT
g + ∆g, where the loading

matrix Λg is a p × q matrix of parameters typically with q ≪ p and the noise matrix ∆g is
a diagonal matrix. The maximum likelihood estimates for the parameters in these models
are found using the Alternating Expectation-Conditional Maximization (AECM) algorithm
(Meng and van Dyk [91]). That algorithm is an extension of the EM algorithm that uses
different specifications of missing data at each stage.

In model-based clustering, clusters are defined as observations coming most likely from
the same distribution. For parameter estimation in mixture models, possible approaches
include the method of moments and distance-based procedures but the maximum likeli-
hood estimation carried out by means of the EM algorithm and the Bayesian approach
(via Markov chain Monte Carlo procedures) are by far the most popular methods. More
developments on the estimation issues (possibility of unbounded likelihood function, singu-
lar covariance matrices, spurious solutions, the EM initialization difficulties etc.) of finite
mixture models are presented in Celebi [11, chap. 1] and Melnykov [89]. The uncertainty for
cluster-membership assignment of each observation is naturally quantified via the posterior
probabilities. Indeed, each individual is classified into the group to which it has the highest
estimated posterior probability.

For the optimal model selection in model-based clustering, an information criterion is usually
chosen and the two most popular are the Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC). Overall, the two criteria minimize the negative log
likelihood function augmented by some penalty or adjustment imposed to reflect model
complexity. If L(Π̂|y) denotes the likelihood function evaluated at the ML estimate of Π,
the criteria are calculated for each fitted candidate model as : AIC = −2 log L(Π̂|y)+(2×d)
and BIC = −2 log L(Π̂|y) + (log(N) × d) where d is the dimension of Π and N is the size of
the data. As discussed in studies such as Everitt et al. [28] and Melnykov and Maitra [90],
AIC and BIC are easily implemented criteria with good performance in the selection of the
adequate number of clusters but they have some inconsistencies. For example, AIC tends
to overestimate G while BIC tends to underestimate G when the sample size is small.
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2.3.3. Recent developments in longitudinal cluster analysis

For longitudinal data specifically, the objective of cluster analysis leads to the exercise of
finding groups of subjects with similar trajectories or patterns in one or more variables.
Longitudinal data consist of measurements taken at different times on each individual,
with the typical feature, especially in clinical settings or behavioral sciences, that both
the number of measurements and the time points may differ across the individuals. The
correlation structure associated with that type of data also presents significant modeling
challenges. The usefulness of clustering methods dedicated specifically to longitudinal data
analysis has only recently become well recognized among researchers (Usami [119]). In the
last two decades, there has been extensive methodological work to extend the methods from
multivariate cluster analysis to the area of longitudinal data. Most of the clustering methods
proposed to deal with longitudinal data are purposely designed to address a specific inherent
characteristic of such data by modifying or adjusting a technical aspect of existing clustering
methods for multivariate data from the two approaches (non-parametric and model-based).

2.3.3.1. Longitudinal cluster analysis in gene expression data

A rapid expansion of algorithms for longitudinal data originates, amongst others, from their
need in gene-expression data analysis where the clustering of co-regulated genes is an im-
portant task as it is critical for reliable inference of the underlying biological processes.
Statistically, the problem of clustering time course data is a special case of the more ge-
neral problem of clustering longitudinal data (McNicholas and Subedi [88]). As discussed
in Chan et al. [14], the k-means algorithm, although efficient and regularly used in that
area, is prone to produce only locally optimal solutions that are, in addition, sensitive to
the initial conditions. In order to alleviate these problems, Chan et al. [14] proposed a novel
global clustering method called the greedy elimination method (GEM). They showed that
the GEM is effective in enhancing the global optimality and consistency of the clustering
solutions, based on real gene expression data.

Another approach widely adopted in that area of bioinformatics applications is the model-
based clustering with a challenge associated with the correlation structure. The application
of the model-based approach to clustering gene expression data was first discussed in Yeung
et al. [130], where a Gaussian mixture model was used. Following the mixture modeling
framework, De la Cruz-Mesia et al. [20] showed some merits of model-based clustering over
non-probabilistic clustering techniques and introduced, as an extension of the work of Pauler
and Laird [96], a mixture of nonlinear hierarchical models in which each component density
is subject-specific. Indeed, a vector yi = (yi1, yi2, ..., yini) of measurements taken at different
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times for an individual i is assumed to follow a mixture model :

yi ∼
G∑

g=1
πgpg(hg(Πig, xig); Σig) (2.3.4)

where the densities pg(hg(Πig, xig); Σig) are indexed by a mean hg(.) and a (ni × ni) co-
variance matrix Σig which only depends on i for its dimension. They assume hg(.) to be
a nonlinear function of unknown individual-specific parameters Πig and known covariates
xig. For each g, the parameters vector Πig of dimension p follows a multivariate Gaussian
distribution Np(µg, Γg). For parameter estimation, the authors studied both frequentist
(maximum likelihood estimation via an EM-type algorithm) and Bayesian (a sequence of
Gibbs and Metropolis-Hastings steps) approaches. Concerning model selection, the BIC cri-
terion was chosen and from a Bayesian viewpoint, they used the Bayes factor as selection
tool. However, the only modeling of the covariance structure in their model was the impo-
sition of the isotropic constraint Σig = σ2

gIni , suggesting that the variability is the same at
all time points.

McNicholas and Murphy [87] introduced a family of mixture models with a covariance
structure considered to be specifically designed for the model-based clustering of longitudi-
nal data. They assume a Gaussian mixture model with a modified Cholesky decomposition
for each group covariance structure Γg of the form :

Γ−1
g = T T

g ∆−1
g T g (2.3.5)

where T g is a unique (p × p) lower triangular matrix with diagonal elements 1 and ∆g is
a unique (p × p) diagonal matrix with strictly positive diagonal entries. Equation (2.3.5)
is the equivalent expression of the known modified Cholesky decomposition of Γg which is
originally expressed as ∆g = T gΓgT T

g and has been used in Krzanowski et al. [66] and Pou-
rahmadi [98]. Based on the decomposition in Equation (2.3.5), the density of an observation
yi in group g is given by :

φ(yi|µg, T g, ∆g) = 1
√

(2π)p|∆g|
exp{−1

2(yi − µg)TT T
g ∆−1

g T g(yi − µg)} (2.3.6)

Let z denote the group membership indicators (zig = 1 if individual i belongs to group g

and 0 otherwise). Let L(Π|y, z) denote the likelihood of the complete-data (y, z) and let
Q(Π) denote the conditional expectation of the complete-data log likelihood with respect
to the missing data z, given the observed data y and the set of the parameters Π. The
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expressions of L(Π|y, z) and Q(Π) (the expected value) are given by :
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

L(Π|y, z) = ∏N
i=1

∏G
g=1

[
πgφ(yi|µg, (T T

g ∆−1
g T g)−1)

]zig

Q(Π) = ∑G
g=1

∑N
i=1 ẑig log

[
πgφ(yi|µg, (T T

g ∆−1
g T g)−1)

]

=
(∑G

g=1 Ng log πg

)
−

(
np
2 log(2π)

)
−

(∑G
g=1

Ng

2 log |∆g|
)

−
(∑G

g=1
Ng

2 tr{T gSgT T
g ∆−1

g }
)

(2.3.7)

where Sg = 1
Ng

∑N
i=1 zig(yi −µg)(yi −µg)T and Ng = ∑N

i=1 zig. As stated in Shaikh [110], the
group-covariance decomposition of Equation (2.3.5) is particularly useful for longitudinal
data as the diagonal entries of matrix ∆g reflect the variations within each time point of
group g while the sub-diagonal elements of T g represent relationships between time points
of group g. The various constraints that can be placed upon T g and ∆g result in a family
of eight Gaussian mixture models that are fitted using an EM algorithm. The Bayesian
information criterion (BIC) is used to select the best member of this family.

Shaikh et al. [111] extended that modeling framework (with modified Cholesky-decomposed
covariance structure) to accommodate incomplete longitudinal data, meaning that there is
missing data in addition to the missing group memberships (Shaikh [110]). Their main
contribution consists in developing a modified EM algorithm in which the missing data are
imputed at each iteration and taken into account in the next iteration. The imputed values
are then combined with the observed values to produce an approximation to the expected
value of the complete-data log-likelihood given by :

Q(Π) =
G∑

g=1

N∑

i=1
zig log

[
πgφ(ỹi|µg, (T T

g ∆−1
g T g)−1)

]
. (2.3.8)

The vector ỹi is the ith individual observations where ỹij is the imputed value of yij if it is
missing or the observed value if it is available. This expression of Q(Π) is identical to the
one of McNicholas and Murphy [87] in Equation (2.3.7) except that ỹi is used instead of yi.
Indeed, the vector yi of dimension p is partitioned so that y1

i ∈ Rr represents the r missing
values and y2

i ∈ Rp−r represents the observed values. As in the usual EM algorithm (used in
McNicholas and Murphy [87]), the group membership indicators ẑig are estimated at each
iteration. In addition, the imputed values in ŷ1

i used to replace the missing values in the
expectation step are calculated via the expression :

ŷ1
i =

G∑

g=1
zig

[
µ1

g + Γ12gΓ−1
22g(y2

i − µ2
g)

]
(2.3.9)

where µ1
g ∈ Rr is the mean of the gth group at the r time points corresponding to the

missing y1 ; µ2
g ∈ Rp−r is the mean of the gth group at the p − r time points corresponding

to the observed y2 ; Γ12g and Γ22g are block matrices for group g defined as in Appendix
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A.1. The algorithm used in Shaikh et al. [111] is not a proper EM algorithm and is termed
pseudo-EM algorithm due to that approximation to the expected value of the complete-data
log-likelihood.

Furthermore, McNicholas and Subedi [88] utilized the more robust mixtures of multiva-
riate t-distributions (motivated by McLachlan and Peel [84]) as a heavier-tailed alternative
to the Gaussian mixture model for model-based clustering. Equation (2.3.10) represents the
form of the density for a mixture of multivariate t-distributions model with G components :

p(y|Π) =
G∑

g=1
πgpg(y|µg, Γg, νg) (2.3.10)

where pg(y|µg, Γg, νg) is the density of a multivariate t-distribution with mean µg, scale
matrix Γg and νg degrees of freedom. For data y = (y1, ..., yN)T where each yi is measured at
n time points t1, ..., tn, McNicholas and Subedi [88] use the modified Cholesky decomposition
of Equation (2.3.5) on each group scale matrix Γg and consider a linear model for the group
mean of the form µg = Qβg where

Q =
⎛

⎝ 1 1 ... 1
t1 t2 ... tn

⎞

⎠
T

, βg =
⎛

⎝ag

bg

⎞

⎠ . (2.3.11)

Like McNicholas and Murphy [87], constraints can be placed upon the group scale matrices,
leading to a novel family of eight mixture models. Parameters, including the group degrees
of freedom νg, are estimated using an EM algorithm. For model selection, McNicholas and
Subedi [88] considered two approaches : the BIC criterion and the integrated completed
likelihood (ICL) as an alternative to the BIC. The ICL has been proposed by Biernacki
et al. [6] and essentially penalizes the BIC for estimated mean entropy, thereby punishing
mixture components that are more spread out. An approximate ICL is used in practice and
is given by :

ICL ≈ BIC +
N∑

i=ξ+1

G∑

g=1
MAP{ẑig} log ẑig (2.3.12)

where ξ is the number of free parameters in the model ; MAP{ẑig} is the maximum a pos-
teriori classification given ẑig, that is MAP{ẑig} = 1 if max{ẑig} occurs in group g and
MAP{ẑig} = 0 otherwise.

According to Ciampi et al. [17], the spectral decomposition of the matrices (parameteri-
zation of the scale matrices or the covariance matrices, up to a multiplicative constant)
as considered in the papers cited above, is of limited help when analyzing longitudinal
data with non negligible correlations, since it does not address the special form that the
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variance-covariance matrices may take. Along the same lines with the modeling of the cor-
relation structure, Ciampi et al. [17] studied a model that is a mixture of regressions, with
variance-covariance matrices that are allowed to vary within the extended linear mixed mo-
del (ELMM, see Pinheiro and Bates [97]) family. Longitudinal data are usually unbalanced :
both the number of measurements and the time points may differ across individual units.
Let Yi(tij) be the observation of the ith individual at time tij for i = 1, ..., N , j = 1, ..., ni,
where N is the total number of individuals and ni is the number of time points at which
the ith individual has been observed. The ELMM can be written as :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yi = Xiβ + Zibi + ϵi

Xi =

⎛

⎜⎜⎝

k1(ti1) ... kp(ti1)
... ... ...

k1(tini) ... kp(tini)

⎞

⎟⎟⎠ , Zi =

⎛

⎜⎜⎝

h1(ti1) ... hq(ti1)
... ... ...

h1(tini) ... hq(tini)

⎞

⎟⎟⎠

β = (β1, ..., βp)T, bi = (bi1, ..., biq)T, ϵi ∼ Nni(0, σ2Σi)

(2.3.13)

where Xi and Zi are design matrices ; bi and ϵi are assumed independent ; Yi is independent
of Yj for i ̸= j and Σi is a ni × ni matrix that may depend on i through the time intervals
tij but not otherwise. Typically, Σi is parameterized in terms of a relatively small number
of variance parameters. Furthermore, the distribution of the random effects bi is assumed
to be Nq(0, D) where D is a symmetric positive definite matrix which may depend on
parameters to be estimated. The ki’s and hi’s denote the elements of a basis in function
space and in practice, the columns of Zi are often chosen as subset of the columns of Xi.
These descriptions lead to the following distributions for Yi|bi and Yi :

Yi|bi ∼ Nni(Xiβ + Zibi, σ2Σi) and Yi ∼ Nni(Xiβ, ZiDZT
i + σ2Σi) (2.3.14)

The random effects bi may be considered as missing data and maximum likelihood estima-
tion is done by the EM algorithm. Under the assumption that N individuals are sampled
from G distinct component or group distributions, Ciampi et al. [17] write :

p(Yi|bi) =
G∑

g=1
πgφ(Yi|(Xiβ(g) + Zibi(g)), σ2

(g)Σ(g)) (2.3.15)

where the πg’s are still the mixing coefficients. In the model formulation of Equation (2.3.15),
each component g is distinct and uniquely defined by the parameters β(g), σ2

(g), D(g) and
Σ(g). In addition, the distributions in Equation (2.3.14) apply for each couple (Yi(g), bi(g))
with the corresponding group parameters and the joint log-likelihood of (Yi(g), bi(g)) denoted
logL(g)

(
β(g), σ2

(g), D(g), Σ(g)|yi, bi(g)
)

is equal to the log-likelihood of
(
(Yi(g)|bi(g)), bi(g)

)
and

is obtained as :

logL(g) (·|·) = −1
2

N∑

i=1

(

log(|2πD(g)|) + log(|2πσ2
(g)Σ(g)|) + bT

i(g)D−1
(g)bi(g) (2.3.16)
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+
(Yi − Xiβ(g) − Zibi(g))TΣ−1

(g)(Yi − Xiβ(g) − Zibi(g))
σ2

(g)

)

Note that Yi(g) = Xiβ(g) + Zibi(g) + ϵi(g). The log-likelihood of the mixture model is defined
as logL = ∑N

i=1 log(∑G
g=1 πg · elogL(g)(·|·)). As direct maximization of that log-likelihood can

be quite difficult due to the sum of terms inside the logarithm, the data can be "completed"
by considering the unobserved latent indicator variables zig which are equal to 1 if the
observation i belongs to cluster g and 0 otherwise. Then, the complete data log-likelihood
is rewritten as :

logL =
N∑

i=1

G∑

g=1

{
zig log(πg) + ziglogL(g)

(
β(g), σ2

(g), D(g), Σ(g)|yi, bi(g)
)}

(2.3.17)

The maximum likelihood estimates of the parameter vector Π = (π, β, σ2, D, Σ) are obtai-
ned using the EM algorithm.

Recently, Coffey et al. [19] have addressed the issue of clustering longitudinal profiles in
time-course gene expression data. In the introduction to their approach, they recalled the
irrelevance of multivariate clustering methods for time-course gene expression data, due to
the fact that such studies result generally in extremely high-dimensional data and exhibit
problems such as missing values, unequal sampling times and/or large measurement errors.
According to them, the techniques developed to cope with these difficulties such as Baye-
sian mixture models (Wakefield et al. [123]), mixtures of linear mixed effects models (Celeux
et al. [13], Ng et al. [94], Qin and Self [99], Nueda et al. [95]), clustering based on shape
similarity (Hestilow and Huang [53]) or clustering of time-course data using self-organizing
maps (Chen [16]), do not facilitate the removal of noise from the measured data thus igno-
ring any smoothness that may be evident in the gene expression profiles. And, that has led
to the emergence of curve-based clustering methods which assume that gene expression over
time is a continuous process to be represented by a continuous smooth curve or function.
Some of the earliest papers describing the curve-based methods include Bar-Joseph et al.
[4], Luan and Li [78], James and Sugar [60], Leng and Müller [69], Song et al. [112], Kim
et al. [63], Kim and Kim [64] 1.

Coffey et al. [19] emphasized that the estimation of the cluster mean curves in the curve-
based methods requires choosing an optimal number of basis functions (or the joint points
for these functions, called knots) and that is a complex problem essentially due to the diffi-
culty to control the degree of smoothing applied to the data. One solution, as implemented
in papers such as Ma et al. [79], Déjean et al. [21], Ma et al. [81], Ma and Zhong [80], is

1. These methods are reviewed in the next section.
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to use smoothing splines regression, where a knot is placed at each unique time point and
the resulting over-fitting is controlled by adding a penalty term to the optimization crite-
rion. However, a major drawback of clustering using smoothing spline regression is the high
computational overhead associated with these methods (numerical evaluation of the integral
associated with the penalty term, choice of an optimal value for the smoothing parameter
λ for each cluster).

Coffey et al. [19] used, in contrast, penalized splines (P-splines) smoothing (Eilers and
Marx [26], Ruppert et al. [106]) to model the gene expression profiles in each cluster. In-
deed, Coffey et al. [19] proposed an alternative method that exploits the connection between
the linear mixed effects model and P-spline (low-rank smoothing, moderate number of basis
functions, easy to compute since the penalty is discrete) to simultaneously smooth the gene
expression data to remove any measurement error/noise and cluster the expression profiles
using finite G-mixtures of mixed effects models. The observed gene expression data for a
single gene measured at a discrete number n of time points tj (j = 1, ..., n) is modeled as

yj = θ(tj) + εj, (2.3.18)

where θ(tj) is the value at time point tj of the smooth expression profile θ(·) and εj is
measurement error. While other basis functions such as B-splines are possible, Coffey et al.
[19] uses for demonstration purpose, the expression of θ(·) in a pth degree truncated power
basis with M knots κ1, ..., κM as :

[
θ(tj) = β0 + β1tj + ... + βptp

j + ∑M
m=1 β1m(tj − κm)p

+
]

and
re-writes Equation (2.3.18) as a linear regression model to estimate the coefficients βl.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y = Xβ + ε; ε ∼ Nn(0, σ2
εI); β = (β0, β1, ..., βp, β11, ..., β1M)T ;

X =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 t1 · · · tp
1 (t1 − κ1)p

+ · · · (t1 − κM)p
+

1 t2 · · · tp
2 (t2 − κ1)p

+ · · · (t2 − κM)p
+

... ... . . . ... ... . . .
1 tn · · · tp

n (tn − κ1)p
+ · · · (tn − κM)p

+

⎞

⎟⎟⎟⎟⎟⎟⎠

(2.3.19)

For the estimation of the coefficients, the proposed method uses the P-splines smoothing
approach to choose a relatively large number of basis functions by choosing the number
of knots

[
M = max(5, min(n

4 , 35))
]

placed at the quantiles of the data, and introduces
a ridge penalty term in the fitting criterion to account for over-fitting. Note that the
number of basis functions depends on the number of knots. The formula for choosing M

is a rule-of-thumb provided by Ruppert [108]. The fitting criterion is then to minimize
PRSS =

[
||y − Xβ||2 + λβTΩβ

]
where Ω is a penalty matrix penalizing the basis function

coefficients and λ is a tuning parameter. In the case of the pth degree truncated power basis,
only the coefficients of the truncated line basis functions are penalized and the matrix Ω is
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chosen so that
[
βTΩβ = ∑M

m=1 β2
1m

]
.

Further in the proposed method, Coffey et al. [19] relates the fitting criterion to a linear
mixed effects model y = Xβ +Zb+ε by letting the fixed effects design matrix X be consis-
ted of the first (p+1) basis functions and the random effects design matrix Z be consisted of
the remaining M basis functions. The vector of fixed effects is β = (β0, β1, ..., βp)T and the
vector of random effects is b = (b1, b2, ..., bM)T. The minimization criterion for the penalized
smoothing problem can then be expressed as PRSS = [||y − Xβ − Zb||2 + λ||b||2] where β̂

and b̂ are the best linear unbiased predictors (BLUP) of the mixed model :

y = Xβ + Zb + ε; b ∼ NM(0, σ2
b I); ε ∼ Nn(0, σ2

εI). (2.3.20)

Note that [σ2
b = σ2

ε/λ] ;
[
V ar(y) = (σ2

b ZZT + σ2
εI)

]
; b and ε are assumed to be mutually

independent. Further, that smoothing in a mixed model framework for a single gene has
been generalized to model gene expression clusters with gene-specific shifts around the
cluster mean. Assuming that a gene i is known to be in cluster g, its expression profile is
written as :

yij = µg(tij) + b̃i + εij, i = 1, ..., Ng; j = 1, ..., ni (2.3.21)
where µg(t) is the mean expression curve in cluster g ; b̃i ∼ N (0, σ2

bg) is an additional random
effect to allow for gene-specific shifts from that mean curve ; εij ∼ N (0, σ2

εg) ; Ng is the total
number of genes in cluster g ; ni is the number of measures for gene i. The curve µg(t) and
the b̃i for all Ng genes in that cluster are estimated by stacking the data from the Ng genes
and using the linear mixed effects model representation of P-splines such that :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Yg = Xg,sβg,s + Zg,sbg,s︸ ︷︷ ︸
µg(t)

+Z̃g,bb̃g + εg;

Y g =
(
yT

1 , yT
2 , ..., yT

Ng

)T
; yi = (yi1, yi2, ..., yini)

T

Xg,s =
(
X1,s, X2,s, ..., XNg ,s

)T
; Zg,s =

(
Z1,s, Z2,s, ..., ZNg ,s

)T

Xi,s =

⎛

⎜⎜⎜⎜⎜⎜⎝

1 ti1 · · · tp
i1

1 ti2 · · · tp
i2

... ... . . . ...
1 tini · · · tp

ini

⎞

⎟⎟⎟⎟⎟⎟⎠
; Zi,s =

⎛

⎜⎜⎜⎜⎜⎜⎝

(ti1 − κ1)p
+ · · · (ti1 − κM)p

+

(ti2 − κ1)p
+ · · · (ti2 − κM)p

+
... . . . ...

(tini − κ1)p
+ · · · (tini − κM)p

+

⎞

⎟⎟⎟⎟⎟⎟⎠

Z̃g,b = diag(Z̃1,b, Z̃2,b, ..., Z̃Ng ,b); Z̃i,b = (1, 1, ..., 1)T

bg,s ∼ NM(0, σ2
bgI); b̃g ∼ NNg(0, σ̃2

bgI); εg ∼ N(
∑Ng

i=1 ni)(0, σ2
εgI).

(2.3.22)
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The vectors bg,s, b̃g and εg are assumed to be independent. The model for gene i in cluster
g can be written as

yi = Xi,sβg,s + Zi,sbg,s︸ ︷︷ ︸
µg(ti)

+Z̃i,bb̃i + εi; (2.3.23)

where Xi,s of dimension (ni, p + 1), Zi,s of dimension (ni, M) and Z̃i,b of dimension (ni, 1)
are the design submatrices for the ith gene and ti is the vector of measurement time points
for gene i.
In practice, the cluster membership is unknown and it is assumed that yi comes from a
mixture of G components such that

{
p(yi|Π) = ∑G

g=1 πgpg(yi|Πg)
}

where pg(.) are the com-
ponent densities that depend on the vector of unknown parameters Πg = (βg,s, σ2

bg, σ̃2
bg, σ2

εg).
Also Π = (ΠT

1 , ..., ΠT
G, π1, ..., πG). Since the EM algorithm can be quite unstable in high-

dimensional settings, a modification of the standard EM algorithm called rejection-controlled
EM (RCEM) is employed for parameter estimation. RCEM is described by Liu et al. (1998)
and Ma et al. (2006), who use the algorithm to speed up and stabilize the standard EM
algorithm. For model selection, the model-fitting process is repeated for varying values of
G (number of components for the mixture) and the solution with minimum BIC is chosen.
As mentioned in Coffey et al. [19], the proposed methodology was presented in the context
of time-course gene expression data, but it can be applied to any longitudinal dataset where
cluster analysis is required.

2.3.3.2. Clustering methods using the functional data analysis approach

In longitudinal studies, measurements collected at different time points for a single sub-
ject can be seen as trajectories (Genolini and Falissard [41]). Indeed, longitudinal data are
usually lined up to trajectories based on time and Functional data analysis (FDA) is a form
of longitudinal analysis that is used to model such trajectory/trend patterns in time. Clus-
tering functional data has received particular attention in the last decade, notably since the
idea that FDA methods can be a very useful complement to the tools for the analysis of
longitudinal data has been exposed in Zhao et al. [134]. As an illustration, one of the major
applications of the FDA approach as highlighted in Ullah and Finch [118] is an apparent
increasing interest in clustering. Consideration of clustering problems using the FDA setting
provides ways to take time dependency into account by using tools such as basis function
expansion or functional principal component analysis (FPCA) to describe the partially ob-
served curves.

Let’s consider a longitudinal study involving N subjects, and assume that ni measure-
ments were collected for subject i, i = 1, . . . , N . In the functional data analysis approach
(Ramsay and Silverman [101]), for each subject i ∈ {1, . . . , N}, the observed measurements
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yi = (yi1, ..., yini) are assumed to be realizations with measurement errors of a random
function Xi at times ti = (ti1, ..., tini) according to the model :

yij = Xi(tij) + ϵij j = 1, ..., ni i = 1, ..., N ; (2.3.24)

where the ϵij’s are independent and identically distributed, with moments E(ϵij) = 0 and
E(ϵ2

ij) = σ2. The functions {X1, ..., XN} are assumed to be independent realizations of a
second order stochastic process X (t) defined on a compact domain I (the temporal axis),
with mean µ(t) = E(X(t)) and covariance function V (s, t) = V ar (X (s), X (t)) (t, s ∈ I).

As stated in Jacques and Preda [59], the main source of difficulty when dealing with func-
tional data consists in the fact that the observations are supposed to belong to an infinite
dimensional space, whereas in practice one only has sampled curves observed into a finite
set of time points. Due to that fact, the first step in FDA is often the reconstruction of
the functional form of the data from discrete observations, through the expansion of the
sampled curves in a finite dimensional space spanned by some basis of functions. Indeed,
the dimension reduction consists generally in approximating the curves into a finite basis of
functions (such as B-splines, wavelet basis, Fourier basis), or using FPCA. From a compu-
tational point of view, one generally needs to use also a basis approximation of the curves
in the case of FPCA.
In the case of the basis function approach, the dimension reduction results in the expression

Xi(tij) =
L∑

l=1
αilBl(tij) = Biαi (2.3.25)

where {Bl}L
l=1 is a set of basis functions and {αil}L

l=1 is a set of the corresponding coefficients
for the ith curve, with αi = (αi1, ..., αiL)T and Bi = {Bl(tij)}1≤j≤ni;1≤l≤L. As presented in
Song et al. [112], in the basis function approach, three types of computational issues need to
be addressed : (a) choosing an appropriate type of basis function, (b) determine the num-
ber of basis functions, and (c) computing the best linear combination. The least squares
approach is a standard method to determine the approximating basis expansion by minimi-
zing the sum of squares [||yi − Biαi||2] which leads to the estimates

[
α̂i = (BT

i Bi)−1BT
i yi

]
.

Regarding the FPCA, it has become a major tool in FDA to achieve dimension reduction,
by reducing random trajectories to a set of k FPC scores. Each individual curve can be
expressed as in Equation (2.3.26) which results from the Karhunen-Loeve expansion of a
second-order L2-continuous stochastic process X in Equation (2.3.27).

Xi(t) = µ̂(t) +
k∑

j=1
αij f̂j(t) (2.3.26)
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X (t) = µ̂(t) +
∑

j≥1
αj f̂j(t), t ∈ T , (2.3.27)

where µ̂(t) is the mean function, f̂j(.) are the functional principal components (FPC) and the
αij are the FPC scores. See Ramsay and Silverman [101], Leng and Müller [69], Jacques and
Preda [59] among others, for computational methods related to FPCA and the Karhunen-
Loeve expansion. However, as discussed in Yao et al. [129], this method encounters difficulties
when applied to sparse longitudinal data, with measurements collected at only few different
times per subject. They develop a version of FPCA referred as principal components analy-
sis through conditional expectation (PACE) for longitudinal data. In that method, the FPC
scores are framed as conditional expectations and the authors demonstrated that it extends
the applicability of FPCA to situations in longitudinal data analysis, where only few and
sufficiently irregularly spaced measurements are available per subject.

Jacques and Preda [59] reviewed the main contributions to functional data clustering, and
particularly the three methodologies on which are based most approaches used for cluste-
ring functional data : (1) dimension reduction before clustering, (2) nonparametric methods
and (3) model-based clustering methods. In the first methodology also named two-stage
methods, functional data are summarized either by their coefficients in a basis of functions
or by their first principal component scores and then, usual clustering algorithms are used
to estimate the clusters. The second methodology uses specific distances or dissimilarities
between curves and the third methodology assumes a probabilistic distribution on either
the principal components (modeling the FPC scores) or the coefficients of functional data
expansion into a finite dimensional basis of functions. In the latter, contrary to the two-stage
methods in which the estimation of these coefficients is done before clustering, these two
tasks are performed simultaneously with model-based techniques.

Besides the functional clustering methods surveyed in Jacques and Preda [59], few other
clustering methods have been proposed specifically for functional data, and some of them
have found successful applications to time course microarray data. In gene expression data,
Luan and Li [78] used linear combinations of basis functions to model the mean expression
profile in each cluster and cluster the estimated basis function coefficients. They proposed
the following mixed-effects model for the observed expression level at time tij for the gene
i in cluster g = 1, ..., G :

Xi(tij) =
⎛

⎝
L1∑

l=1
ᾱ(g)

l B̄l(tij)
⎞

⎠ +
⎛

⎝
L2∑

l=1
αilBl(tij)

⎞

⎠ + ϵij (2.3.28)
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where the first term is used to model the mean average expression profile of the gth cluster
with a basis of B-splines B̄ =

{
B̄l(), l = 1, ..., L1

}
for all the G clusters, and the second

term is used to model the random effect curve for the ith curve with a basis of B-splines
B = {Bl(), l = 1, ..., L2} possibly different from B̄. The αil are normal random coefficients
with mean 0 and covariance matrix V ar(γi) = Γ varying across genes. Finally, the last
term is used to model the uncorrelated normal measurement errors ϵij with E(ϵij) = 0,
V ar(ϵij) = σ2. The clustering was based on a mixture model using an EM algorithm.
Bar-Joseph et al. [4] independently developed a similar model using the same cubic spline
basis for both mean and random effects. They also present a discussion on the differences
between cubic and B-splines.

A curve-based clustering method called functional clustering model (FCM) has been in-
troduced in James and Sugar [60] to cluster sparsely sampled time course data. In their
specification, gene curve i, given cluster membership g, is modeled as

yi = B(t)(α0 + Λαg + bi) + ϵi (2.3.29)

where t is a uniform time grid t = (t1, ..., tj, ..., tn)T ; n is the number of sampling points ;
yi = (yi1, ..., yij, ..., yin)T ; B(t) is the (n × L) spline basis matrix ; α0 is the basis coefficient
vector for the overall shape function ; αg is the q-dimensional basis coefficient vector for the
gth cluster shape function and Λ is the (L × q) transition matrix to reduce the parameter
dimension from L to q with q ≤ min(L, G − 1). The model admits random individual spe-
cific coefficients bi ∼ NL(0, D) and errors ϵi ∼ Nn(0, σ2In). With bi integrated out, the
marginal sampling model for yi is

{
yi ∼ ∑G

g=1 πgNn (Bi(α0 + Λαg), Σi)
}

where πg is the
cluster g membership probability, Bi is the spline basis matrix evaluated on the time grid
and

[
Σi = σ2In + BiDBT

i

]
. Under several identifiability conditions, the model is fitted via

the EM algorithm and the number of clusters G can be determined through model selection
using an alternative approach based on a "distorsion function" and suggested by Sugar and
James [116].

In the same vein, Leng and Müller [69] has represented the expression profiles using a linear
combination of functional principal components and performed functional logistic regression
of the scores to classify the expression profiles into clusters. Song et al. [112] determined
the FPC using basis functions expansion and clustered based on the FPC scores. Kim et al.
[63] used a linear combination of Fourier basis functions to represent the expression profiles
for clustering. Kim and Kim [64] clustered based on the derivative coefficients of a Fourier
series.
Ma et al. [79] developed the smoothing splines clustering (named SSClust method) in which
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gene expression curves are modeled to include random intercepts within a finite location
mixture. Specifically, for gene i at time tj, given cluster membership g, it is assumed that

yij = µg(tj) + bi + ϵij (2.3.30)

where µg(·) is the gth cluster specific shape function of time, bi ∼ N (0, σ2
bg) is the gene

specific random intercept and ϵij ∼ N (0, σ2) is the error term. With bi integrated out, the
sampling model for the observed vector yi = (yi1, ..., yin)T can be written as a finite mixture{
yi ∼ ∑G

g=1 πgNn

(
µg, Γg

)}
, where Γg = σ2

bg1n1T
n + σ2In and µg = (µg(t1), ..., µg(tn))T. The

estimates of µg are obtained by maximizing a penalized likelihood function and the number
of clusters G is determined via BIC. Ma et al. [81] extended that model to a Bayesian setting
and Ma and Zhong [80] included additional covariates in the clustering algorithm. Déjean
et al. [21] used smoothing splines regression to estimate the derivatives of the gene expres-
sion profiles before clustering based on the principal component scores of the discretized
derivative functions. More recent papers in the field of clustering functional data include
Suarez and Ghosal [115], Hasenstab et al. [48] and Ciollaro et al. [18].

The recent works of Adjogou et al. [1] result in the development of a flexible and Bayesian-
embedded model based on B-splines in which the clusters are modeled by a mixture of
Student t-distributions. The proposed model combines functional principal components ana-
lysis and clustering to deal with any type of longitudinal data even if the observations are
sparse, irregularly spaced or occur at different time points for each individual.

2.3.3.3. Software-implemented clustering methods

Due to computational advances, many clustering methods for longitudinal data have been
implemented in specific packages. The most popular ones associated with the model-based
approach are : the longitudinal mixture modeling analysis procedure in SAS named Proc
Traj (see Jones et al. [62] ; Jones and Nagin [61]) ; FlexMix in the software R which imple-
ments a general framework for finite mixtures of regression models using the EM algorithm
and allowing the modeling of longitudinal trajectories (see Leisch [68] ; Gruen and Leisch
[46]) ; Funclust from the Funclustering package in R (see Jacques and Preda [57, 58]) and
fclust in R (available directly from James’s webpage, James and Sugar [60]). The procedure
SSSclust (Ma et al. [79]) is also implemented in the R package Model Based Functional
Data Analysis. Mplus (Muthen and Muthen [93]) is also a statistical software that provides
a general framework that can deal with mixture modeling on longitudinal data. Regarding
the non-parametric approach, KmL (see Genolini and Falissard [40] ; Genolini and Falissard
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[41]) is an implementation of k-means method designed in R to work specifically on longi-
tudinal data. It deals with missing values and runs the algorithm several times, varying the
starting conditions and/or the number of clusters sought.

2.3.3.4. Some comparison studies among longitudinal data clustering methods

Many studies related to clustering longitudinal data have focused on comparing one method
to another. Amongst them, Genolini and Falissard [40] compared the performances of KmL
to Proc Traj based on artificial and real data. According to their report, the two techniques
give very close clustering results when trajectories follow polynomial curves and KmL gives
much better results on non-polynomial trajectories. Similarly, Dufour [25] compared the
k-means method (with their own implementation) to a model-based method (implemented
using FlexMix in R) according to the ability to correctly classify subject trajectories into
groups (Correct Classification Rate,CCR). The results based on a simulation study revealed
that both methods are found to perform well under most circumstances, but in 64% of
the scenarios examined, the model-based method outperforms the k-means approach. For
Schramm et al. [109], the main issues with the current methods in the context of longitu-
dinal cluster analyses are sample size and variability of the times of measurements. After
recalling the increasing use of the current parametric and non-parametric methods in me-
dical research, they discussed some limitations of those methods. These limitations suggest
the need for a new method to take into account the treatment effect when there is both a
small sample and variability in the times of measurement. For that purpose, they propose a
clustering of longitudinal data with an extended baseline (CLEB method) comprising two
steps : first, building a linear mixed model with an extended baseline and second clustering
the random predictions through a model-based or a non-parametric algorithm.

2.4. Conclusions and discussion
In this paper, we present an overview of the main methodologies of clustering longitudinal
data. We also make a brief and concise presentation of methods to analyze such data. As
discussed throughout the paper, the field of longitudinal data analysis in general and parti-
cularly the one of longitudinal cluster analysis is in constant evolution and requires insight
from various other fields such as high-dimensional and functional data analysis. Although
most of the recent developments in the field of longitudinal cluster analysis have been pre-
sented, the current review does not purport to be exhaustive. The topic of longitudinal data
analysis is related to so many issues that an exhaustive review needs to cover too many
fields of statistics.

Broadly, apart from the category (non-parametric or model-based) in which each method
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can be classified, the significant differences among the clustering methods are related to
various issues such as the structure of the data targeted (balanced, unbalanced or both),
the type of the outcome (continuous, discrete), the assumptions underlying the model (for
example normal or Student distributions for the mixtures ; constraints on the covariance
matrices) or the degree of smoothing applied to the data. The current review has the ad-
vantage to enumerate a variety of clustering methods for longitudinal data but for practical
reasons, data analysts are more likely to choose the software-implemented methods. Thus,
it would be a wise move for researchers and specialists in the domain to facilitate as much
as possible the implementation of the clustering methods.

Longitudinal data involve measuring one or many outcome variables on a relatively big set
of individuals repeatedly through time and usually result in high-dimensional data. Assent
[2] provided an overview of the effects of high-dimensional spaces and their implications for
different clustering paradigms. They also reviewed models and algorithms that address clus-
tering in high dimensions, with pointers to the literature, and sketched open research issues.
According to Bouveyron and Brunet-Saumard [7], classical model-based clustering methods
show a disappointing behavior in high-dimensional spaces and that is mainly due to the fact
that they are dramatically over-parametrized in that case (the well-known curse of dimensio-
nality introduced by Bellman [5]). Focusing on model-based clustering of high-dimensional
data, they reviewed recent works in dimension reduction approaches, regularization-based
techniques, parsimonious modeling, subspace clustering methods and clustering methods
based on variable selection.

On another issue, Ren [102] discussed the fact that in longitudinal studies one is often
interested in simultaneously clustering observations at both subject and time-levels. The
goal is to cluster subjects with similar profiles, and within each subject-level cluster, one
wants also to cluster the consecutive time points such that the profiles during those periods
are relatively stable. For that specific purpose, they presented a non-parametric Bayesian
method (Dirichlet process mixture model) to hierarchically cluster both subjects and conse-
cutive time points for a longitudinal data by defining a specific base measure. The Gibbs
sampler, a well-known MCMC algorithm, is implemented for the Bayesian posterior distri-
butions and estimates.

It is worth noting that some aspects of clustering longitudinal data such as the clustering
of joint trajectories (as in Genolini et al. [42]) or multivariate longitudinal data analysis
(as in Verbeke et al. [120]) are beyond the scope of this paper. Indeed, it is increasingly
likely (due to budget constraints for example) that a longitudinal study involves more than
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one outcome (of the same or different types) collected repeatedly on a set of individuals.
And it might be a challenge to analyze those variables jointly or cluster the so-called joint-
trajectories. Furthermore, the current review does not thoroughly address the increasingly
important challenge of clustering high-dimensional longitudinal data especially the case of
brain images.



Bibliographie

[1] Adjogou, F., K. Dorman, and A. Murua (2017). Functional model-based clustering for
longitudinal data. Article to be submitted.

[2] Assent, I. (2012). Clustering high dimensional data. WIREs Data Mining and Knowledge
Discovery, Issue 4 2, 340–350.

[3] Banfield, J. D. and A. E. Raftery (1993). Model-based gaussian and non-gaussian clus-
tering. Biometrics 49, 803–821.

[4] Bar-Joseph, Z., G. Gerber, D. Gifford, T. Jaakkola, and I. Simon (2003). Continuous
representations of time-series gene expression data. Journal of Bioinformatics and Com-
putational Biology 10, 341–356.

[5] Bellman, R. (1957). Dynamic Programming. Princeton University Press.
[6] Biernacki, C., G. Celeux, and G. Govaert (2000). Assessing a mixture model for clustering
with the integrated completed likelihood. IEEE Transactions on Pattern Analysis and
Machine Intelligence 22(7), 719–725.

[7] Bouveyron, C. and C. Brunet-Saumard (2014). Model-based clustering of high-
dimensional data : A review. Computational Statistics and Data Analysis 71, 52–78.

[8] Bruckers, L. (2014). Challenges in Cluster Analyses for Longitudinal Data. Ph. D. thesis,
Interuniversity Institute for Biostatistics and statistical Bioinformatics.

[9] Brumback, B. and J. Rice (1998). Smoothing spline models for the analysis of nested
and crossed samples of curves. Journal of the American Statistical Association 93, 961–976.

[10] Capra, W. B. and H. G. Müller (1997). An accelerated-time model for response curves.
Journal of the American Statistical Association 92, 72–83.

[11] Celebi, E. (2014). Partitional Clustering Algorithms. Springer, 2014.
[12] Celeux, G. and G. Govaert (1995). Gaussian parsimonious clustering models. Pattern
Recognition 28, 781–793.

[13] Celeux, G., O. Martin, and C. Lavergne (2005). Mixture of linear mixed models for
clustering gene expression profiles from repeated microarray experiments. Statistical Mo-
delling 5, 243–267.



44

[14] Chan, Z. S., L. Collins, and N. Kasabov (2006). An efficient greedy k-means algorithm
for global gene trajectory clustering. Expert Systems with Applications 30, 137–141.

[15] Chen, K. and Z. Jin (2005). Local polynomial regression analysis of clustered data.
Biometrika 92, 59–74.

[16] Chen, X. (2009). Curve-based clustering of time course gene expression data using
self-organizing maps. Journal of Bioinformatics and Computational Biology 7, 645–661.

[17] Ciampi, A., H. Campbell, A. Dyachenko, B. Rich, J. McCusker, and M. G. Cole
(2012). Model-based clustering of longitudinal data : Application to modeling disease course
and gene expression trajectories. Communications in Statistics-Simulation and Computa-
tion 41, 992–1005.

[18] Ciollaro, M., C. R. Genovese, and D. Wang (2016). Nonparametric clustering of func-
tional data using pseudo-densities. eprint arXiv :1601.07872.

[19] Coffey, N., J. Hinde, and E. Holian (2014). Clustering longitudinal profiles using p-
splines and mixed effects models applied to time-course gene expression data. Computa-
tional Statistics and Data Analysis 71, 14–29.

[20] De la Cruz-Mesia, R., F. A. Quintana, and G. Marshall (2008). Model-based clustering
for longitudinal data. Computational Statistics and Data Analysis 52, 1441–1457.

[21] Déjean, S., G. Martin, A. Baccini, and P. Besse (2007). Clustering time-series gene
expression data using smoothing spline derivatives. EURASIP Journal on Bioinformatics
and Systems Biology. Article ID 70561.

[22] Dempster, A. P., N. M. Laird, and D. B. Rubin (1977). Maximum likelihood from
incomplete data via the em algorithm (with discussion). Journal of the Royal Statistical
Society 39, 1–38.

[23] Diggle, P. J., P. J. Heagerty, K.-Y. Liang, and S. L. Zeger (2002). Analysis of Longitu-
dinal Data, 2nd Ed. Oxford : Oxford University Press.

[24] Diggle, P. J. and A. P. Verbyla (1998). Nonparametric estimation of covariance structure
in longitudinal data. Biometrics 54, 401–415.

[25] Dufour, A. B. (2013). Cluster analysis of longitudinal trajectories. Ph. D. thesis, Boston
University, Graduate School of Arts and Sciences.

[26] Eilers, P. H. and B. D. Marx (1996). Flexible smoothing with b-splines and penalities
(with discussion). Statistical Science 11, 89–121.

[27] Elavarasi, S., J. Akilandeswari, and B. Sathiyabhama (2011). A survey on partitio-
ning clustering algorithms. International Journal of Enterprise Computing and Business
Systems, Issue1. 1.

[28] Everitt, B., S. Landau, M. Leese, and D. Stahl (2011). Cluster Analysis. Wiley Series
in Probability and Statistics. Wiley.



45

[29] Fan, J. and I. Gijbels (1996). Local Polynomial Modelling and Its Applications. London,
Chapman Hall.

[30] Fan, J., T. Huang, and R. Li (2007). Analysis of longitudinal data with semiparametric
estimation of covariance function. Journal of the American Statistical Association 102,
632–641.

[31] Fitzmaurice, G., M. Davidian, G. Verbeke, and G. Molenberghs (2008). Longitudinal
Data Analysis. Chapman & Hall CRC Handbooks of Modern Statistical Methods.

[32] Fitzmaurice, G. M., N. M. Laird, and J. H. Ware (2004). Applied Longitudinal Analysis.
John Wiley and Sons, New York.

[33] Fraley, C. and A. E. Raftery (1993). Model based gaussian and non gaussian clustering.
Biometrics 49, 803–821.

[34] Fraley, C. and A. E. Raftery (1998). How many clusters ? which clustering methods ?
answers via model-based cluster analysis. The Computer Journal 41, 578–588.

[35] Fraley, C. and A. E. Raftery (1999). Mclust : Software for model-based cluster analysis.
Journal of Classification 16(2), 297–306.

[36] Fraley, C. and A. E. Raftery (2002). Model-based clustering, discriminant analysis, and
density estimation. Journal of the American Statistical Association 97(458), 611–632.

[37] Fraley, C. and A. E. Raftery (2003). Enhanced software for model-based clustering,
density estimation, and discriminant analysis : Mclust. Journal of Classification 20, 263–
286.

[38] Fraley, C. and A. E. Raftery (2006). Mclust version 3 for r : Normal mixture modeling
and model-based clustering. Technical Report 504. Department of Statistics, University of
Washington.

[39] Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (1995). Bayesian Data Analysis.
London, Chapman Hall.

[40] Genolini, C. and B. Falissard (2010). Kml : K-means for longitudinal data. Computa-
tional Statistics 25, 317–332.

[41] Genolini, C. and B. Falissard (2011). Kml : A package to cluster longitudinal data.
Computer Methods and Programs in Biomedicine 104, 34.

[42] Genolini, C., J. B. Pingault, T. Driss, S. Côté, R. E. Tremblay, F. Vitaro, C. Arnaud,
and B. Falissard (2013). Kml3d : A non-parametric algorithm for clustering joint trajec-
tories. Computer Methods and Programs in Biomedicine 109, 104–111.

[43] Ghahramani, Z. and G. Hinton (1997). The EM algorithm for factor analyzers. Tech-
nical report. Technical Report CRG-TR-96-1, University of Toronto, Toronto.

[44] Gibbons, R., D. Hedeker, and S. DuToit (2010). Advances in analysis of longitudinal
data. Annual Review of Clinical Psychology 6, 79–107.



46

[45] Green, P. J. and B. Silverman (1994). Nonparametric Regression and Generalized Linear
Models A Roughness Penalty Approach. London, Chapman Hall.

[46] Gruen, B. and F. Leisch (2008). Flexmix version 2 : Finite mixtures with concomitant
variables and varying and constant parameters. Journal of Statistical Software 28, 1–35.

[47] Hartigan, J. and M. Wong (1979). A k-means clustering algorithm. Journal of the
Royal Statistical Society. Series C (Applied Statistics) 28, 100–108.

[48] Hasenstab, K., C. Sugar, D. Telesca, S. Jeste, and D. Senturk (2016). Robust func-
tional clustering of erp data with application to a study of implicit learning in autism.
Biostatistics Advance access, 1–15.

[49] He, Y. (2014). Bayesian Cluster Analysis with Longitudinal Data. Ph. D. thesis, Uni-
versity of California, Irvine.

[50] Hedeker, D. and R. Gibbons (2006). Longitudinal Data Analysis. Wiley Series in
Probability and Statistics.

[51] Heggeseth, B. C. (2013). Longitudinal Cluster Analysis with Applications to Growth
Trajectories. Ph. D. thesis, University of California, Berkeley.

[52] Hennig, C., M. Meila, F. Murtagh, and R. R. (2015). Handbook of Cluster Analysis.
Chapman & Hall CRC Handbooks of Modern Statistical Methods.

[53] Hestilow, T. and Y. Huang (2009). Clustering of gene expression data based on shape
similarity. EURASIP Journal on Bioinformatics and Systems Biology. Article ID 195712.

[54] Hu, J., P. Wang, and A. Qu (2015). Estimating and identifying unspecified correlation
structure for longitudinal data. Journal of Computational and Graphical Statistics 24(2),
455–476.

[55] Huang, J. Z., L. Liu, and N. Liu (2007). Estimation of large covariance matrices
of longitudinal data with basis function approximations. Journal of Computational and
Graphical Statistics 16, 189–209.

[56] Huang, J. Z., C. O. Wu, and L. Zhou (2002). Varying-coefficient models and basis
function approximations for the analysis of repeated measurements. Biometrika 89, 111–
128.

[57] Jacques, J. and C. Preda (2013a). Funclust : A curves clustering method using func-
tional random variable density approximation. Neurocomputing 112, 164–171.

[58] Jacques, J. and C. Preda (2013b). Model-based clustering for multivariate functional
data. Computational Statistics and Data Analysis. In press.

[59] Jacques, J. and C. Preda (2014). Functional data clustering : a survey. Advances in
Data Analysis and Classification, Springer Verlag 8(3).

[60] James, G. and C. A. Sugar (2003). Clustering for sparsely sampled functional data.
Journal of the American Statistical Association 98, 397–408.



47

[61] Jones, B. L. and D. S. Nagin (2007). Advances in group-based trajectory modeling and
an sas procedure for estimating them. Sociological Methods & Research 35(4), 542–571.

[62] Jones, B. L., D. S. Nagin, and K. Roeder (2001). A sas procedure based on mixture
models for estimating developmental trajectories. Sociological Methods & Research 29(3),
374–393.

[63] Kim, B. R., L. Zhang, A. Berg, J. Fan, and R. Wu (2008). A computational approach
to the functional clustering of periodic gene-expression profiles. Genetics 180, 821–834.

[64] Kim, J. and H. Kim (2008). Clustering of change patterns using fourier coefficients.
Bioinformatics 24, 184–191.

[65] Komarek, A. and L. Komarkova (2013). Clustering for multivariate continuous and
discrete longitudinal data. The Annals of Applied Statistics 7 (1), 177–200.

[66] Krzanowski, W. J., P. Jonathan, W. V. McCarthy, and M. R. Thomas (1995). Discrimi-
nant analysis with singular covariance matrices : Methods and applications to spectroscopic
data. Journal of the Royal Statistical Society Series C, 4, 101–115.

[67] Laird, N. M. and J. H. Ware (1982). Random-effects models for longitudinal data.
Biometrics 38, 963–974.

[68] Leisch, F. (2004). Flexmix : A general framework for finite mixture models and latent
class regression in r. Journal of Statistical Software 11(8), 1–18.

[69] Leng, X. and H. Müller (2006). Classification using function data analysis for temporal
gene expression data. Bioinformatics 22, 68–76.

[70] Li, Y. (2011). Efficient semiparametric regression for longitudinal data with nonpara-
metric covariance estimation. Biometrika 98(2), 355–370.

[71] Lin, C.-J. (2014). A pattern-clustering method for longitudinal data - heroin users
receiving methadone. Ph. D. thesis, University College London.

[72] Lin, D. and Z. Ying (2001). Semiparametric and nonparametric regression analysis of
longitudinal data. Journal of the American Statistical Association 96, 103–126.

[73] Lin, X. and R. J. Carroll (2000). Nonparametric function estimation for clustered data
when the predictor is measured without with error. Journal of the American Statistical
Association 95, 520–534.

[74] Lin, X. and R. J. Carroll (2001). Semiparametric regression for clustered data using
generalized estimating equations. Journal of the American Statistical Association 96, 1045–
1056.

[75] Lin, X. and R. J. Carroll (2006). Semi-parametric estimation in general repeated mea-
sures problems. Journal of the Royal Statistical Society Series B 68, 69–88.

[76] Lin, X., N. Wang, A. H. Welsh, and R. J. Carroll (2004). Equivalent kernels of smoothing
splines in nonparametric regression for clustered longitudinal data. Biometrika 91, 177–193.



48

[77] Liu, Y. and N. Luo (2014). A new approach in pattern clustering on longitudinal data.
Journal of Computational Information Systems 14, 6209–6222.

[78] Luan, Y. and H. Li (2003). Clustering of time-course gene expression data using a
mixed-effects model with b-splines. Bioinformatics 19, 474–482.

[79] Ma, P., C. Castillo-Davis, W. Zhong, and J. Liu (2006). A data-driven clustering
method for time course gene expression data. Nucleic Acids Research 34, 1261–1269.

[80] Ma, P. and W. Zhong (2008). Penalized clustering of large-scale functional data with
multiple covariates. Journal of the American Statistical Association 103, 625–636.

[81] Ma, P., W. Zhong, Y. Feng, and J. Liu (2008). Bayesian functional data clustering for
temporal microarray data. International Journal of Plant Genomics. Article ID 231897.

[82] McCullagh, P. and J. A. Nelder (1989). Generalized Linear Models, 2nd Edition. Lon-
don : Chapman and Hall.

[83] McLachlan, G., R. W. Bean, and D. Peel (2002). A mixture model-based approach to
the clustering of microarray expression data. Bioinformatics. 18, 1–10.

[84] McLachlan, G. and D. Peel (1998). Robust cluster analysis via mixtures of multivariate
t-distributions. Lecture Notes in Computer Science : Springer-Verlag, Berlin. 1451, 658–
666.

[85] McLachlan, G. and D. Peel (2000). Finite Mixture Models. New York : Wiley, 2000.
[86] McNicholas, P. D. and T. B. Murphy (2008). Parsimonious gaussian mixture models.
Statistics and Computing 18(3), 285–296.

[87] McNicholas, P. D. and T. B. Murphy (2010). Model-based clustering of longitudinal
data. Canadian Journal of Statistics 38, 153–168.

[88] McNicholas, P. D. and S. Subedi (2012). Clustering gene expression time course data
using mixtures of multivariate t-distributions. Journal of Statistical Planning and Infe-
rence 142, 1114–1127.

[89] Melnykov, V. (2013). Challenges in model-based clustering. WIREs Comp Stat 5,
135–148.

[90] Melnykov, V. and R. Maitra (2010). Finite mixture models and model-based clustering.
Statistics Surveys 4, 80–116.

[91] Meng, X. and D. van Dyk (1997). The em algorithm ? an old folk song sung to the fast
tune (with discussion). J. Roy. Stat. Soc. Serie B 59, 511–567.

[92] Molenberghs, G. and G. Verbeke (2005). Models for Discrete Longitudinal Data. Sprin-
ger. New York.

[93] Muthen, L. K. and B. O. Muthen (1998-2010). Mplus User’s Guide. Los Angeles, CA.
[94] Ng, S. K., G. McLachlan, K. Wang, L. Ben-Tovim Jones, and S.-W. Ng (2006). A
mixture model with random-effects components for clustering correlated gene-expression
profiles. Bioinformatics 22, 1745–1752.



49

[95] Nueda, M., A. Conesa, J. Westerhuis, H. Hoefsloot, A. Smilde, M. Talo, and A. Ferrer
(2007). Discovering gene expression patterns in time course microarray experiments by
anova-sca. Bioinformatics 23, 1792–1800.

[96] Pauler, D. K. and N. M. Laird (2000). A mixture model for longitudinal data with
application to assessment of noncompliance. Biometrics 56, 464–472.

[97] Pinheiro, J. C. and D. Bates (2000). Mixed-Effects Models in S and S-PLUS. New
York : Springer.

[98] Pourahmadi, M. (2000). Maximum likelihood estimation of generalised linear models
for multivariate normal covariance matrix. Biometrika 87, 425–435.

[99] Qin, L. X. and S. Self (2006). The clustering of regression models method with appli-
cations in gene expression data. Biometrics 62, 526–533.

[100] Rajulton, F. (2001). The fundamentals of longitudinal research : An overview. Special
Issue on Longitudinal Methodology, Canadian Studies in Population 28(2), 169–185.

[101] Ramsay, J. and B. Silverman (2005). Functional Data Analysis. New York : Springer.
[102] Ren, Y. (2012). A Non-parametric Bayesian Method for Hierarchical Clustering of
Longitudinal Data. Ph. D. thesis, Department of Mathematical Sciences of the McMicken
College of Arts and Sciences, University of Cincinnati.

[103] Rice, J. (2004). Functional and longitudinal data analysis : Perspectives on smoothing.
Statistica Sinica.

[104] Rice, J. and C. Wu (2001). Nonparametric mixed effects models for unequally sampled
noisy curves. Biometrics 57, 253–259.

[105] Rindfleisch, A., A. J. Malter, S. Ganesan, and C. Moorman (2008). Cross-sectional
versus longitudinal survey research : concepts, findings and guidelines. Journal of Marketing
Research 45(3), 261–279.

[106] Ruppert, D., M. Wand, and R. Carroll (2003a). Semiparametric Regression. Cam-
bridge University Press, Cambridge, UK.

[107] Ruppert, D., M. P. Wand, and R. J. Carroll (2003b). Semiparametric Regression.
Cambridge : Cambridge University Press.

[108] Ruppert, M. (2002). Selecting the number of knots for penalized splines. Journal of
Computational and Graphical Statistics 11, 735–757.

[109] Schramm, C., C. Vial, A. Bachoud-Levi, and S. Katsahian (2015). Clustering of
longitudinal data by using an extended baseline : A new method for treatment efficacy
clustering in longitudinal data. Statistical Methods in Medical Research, 1–21.

[110] Shaikh, M. (2009). Clustering incomplete data. Ph. D. thesis, University of Guelph.
[111] Shaikh, M., P. D. McNicholas, and A. F. Desmond (2010). A pseudo-em algorithm for
clustering incomplete longitudinal data. The International Journal of Biostatistics, Issue
1, Article 8. 6.



50

[112] Song, J. J., H. Lee, J. S. Morris, and S. Kang (2007). Clustering of time-course gene
expression data using functional data analysis. Computational Biology and Chemistry 31,
265–274.

[113] Staniswalis, J. G. and J. J. Lee (1998). Nonparametric regression analysis of longitu-
dinal data. Journal of the American Statistical Association 93, 1403–1418.

[114] Stone, C., M. Hansen, C. Kooperberg, and Y. K. Truong (1997). Polynomial splines
and their tensor products in extended linear modeling (with discussion). Annals of Statis-
tics 25, 1371–1470.

[115] Suarez, A. J. and S. Ghosal (2016). Bayesian clustering of functional data using local
features. Bayesian Analysis, Number 1 11, 71–98.

[116] Sugar, C. A. and G. M. James (2003). Finding the number of clusters in a data set :
An information-theoretic approach. Journal of the American Statistical Association 98,
750–778.

[117] Tarpey, T. (2007). Linear transformations and the k-means clustering algorithm :
Applications to clustering curves. The American Statistician 61(1), 34–40.

[118] Ullah, S. and C. F. Finch (2013). Applications of functional data analysis : A syste-
matic review. BMC Medical Research Methodology 1471-2288, 13–43.

[119] Usami, S. (2014). Constrained k-means on cluster proportion and distances among
clusters for longitudinal data analysis. Japanese Psychological Research, No. 4 56, 361–372.

[120] Verbeke, G., S. Fieuws, G. Molenberghs, and M. Davidian (2014). The analysis of
multivariate longitudinal data : A review. Statistical Methods in Medical Research 23(1),
42–59.

[121] Verbeke, G. and G. Molenberghs (2000). Linear Mixed Models for Longitudinal Data.
Springer series in statistics. New York.

[122] Wahba, G. (1990). Spline Models for Observational Data. Philadelphia : CBMS-NSF
Regional Conference Series, SIAM.

[123] Wakefield, J., C. Zhou, and S. Self (2003). Modelling gene expression data over time :
curve clustering with informative prior distributions. In Bayesian Statistics 7 (eds. J. M.
Bernardo, M. J. Bayarri, B. J. O, A. P. Dawid, D. Heckerman, A. F. M. Smith and M.
West). Oxford : Clarendon Press.

[124] Wand, M. P. and M. C. Jones (1995). Kernel Smoothing. London : Monographs on
Statistics and Applied Probability, Chapman & Hall.

[125] Wang, N. (2003). Marginal nonparametric kernel regression accounting for within-
subject correlation. Biometrika 90, 43–52.

[126] Wang, N., R. J. Carroll, and X. Lin (2005). Efficient semi-parametric marginal estima-
tion for longitudinal/clustered data. Journal of the American Statistical Association 100,
147– 157.



51

[127] Wu, H. and J. T. Zhang (2006). Nonparametric Regression Methods for Longitudi-
nal Data Analysis, Mixed-Effects Modeling Approaches. Wiley Series in Probability and
Statistics, John Wiley & Sons,2006.

[128] Wu, W. B. and M. Pourahmadi (2003). Nonparametric estimation of large covariance
matrices of longitudinal data. Biometrika 90, 831–844.

[129] Yao, F., H. G. Müller, and J. L. Wang (2005). Functional data analysis for sparse
longitudinal data. Journal of the American Statistical Association 100, 577–590.

[130] Yeung, K. Y., C. Fraley, A. Murua, A. E. Raftery, and W. L. Ruzzo (2001). Model-
based clustering and data transformations for gene expression data. Bioinformatics 17,
977–987.

[131] Zeger, S. L. and P. J. Diggle (1994). Semiparametric models for longitudinal data
with application to cd4 cell numbers in hiv seroconverters. Biometrics 50, 689–699.

[132] Zeger, S. L. and K.-Y. Liang (1986). Longitudinal data analysis for discrete and
continuous outcomes. Biometrics 42, 121– 130.

[133] Zhang, Y., S. Horvath, R. Ophoff, and D. Telesca (2014). Comparison of clustering
methods for time course genomic data : Applications to aging effects. UCLA : 346168.
Retrieved from : http ://escholarship.org/uc/item/6pc0068s.

[134] Zhao, X., J. Marron, and M. Wells (2004). The functional data analysis view of
longitudinal data. Statistica Sinica 14, 789–808.



Chapitre 3

FUNCTIONAL MODEL-BASED CLUSTERING
FOR LONGITUDINAL DATA

abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) causes respiratory
symptoms in growing pigs and spontaneous abortions in pregnant sows. The annual eco-
nomic losses due to PRRSV are estimated to be 670 million in the United States alone.
A particular gene seems to be a major genetic determinant for the disease. Following pre-
vious studies, its effect appears to be different for different groups of pigs. We develop a
flexible Bayesian model for the analysis of a multivariate longitudinal study carried out by
the PRRSV Host Genetics Consortium. The model applies to general longitudinal or time-
course data that presents unknown clusters of individuals. It combines functional principal
component analysis and model-based clustering in order to simultaneously model and clus-
ter the individual longitudinal trajectories. Model selection and inference are carried out
using a Laplace approximation to the Bayes factors.

Key words : Longitudinal data, model-based clustering, sparse longitudinal data, func-
tional data analysis, mixture Student, PRRSV.
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3.1. Introduction
In many fields, longitudinal studies have become an essential tool for studying the evolu-
tion in time of a given phenomena. They are composed of measurements taken at different
points of a temporal axis on individuals involved in the study. A fundamental characteristic
of this type of data is that the observations on the same individual tend to be correlated.
The statistical methodology for the analysis of longitudinal data has evolved remarkably in
the past thirty years, due to increasingly sophisticated technologies that nowadays can be
implemented on high performance machines. Commonly used methods for longitudinal data
analysis are based on parametric models such as the linear mixed-effects model proposed by
Laird and Ware [25].

Many empirical examples such as Brumback and Rice [6] in reproductive health, Zeger
and Diggle [44], Lin and Ying [27] in longitudinal trajectories in AIDS research or Diggle
et al. [12] in age effects on childhood respiratory diseases, have shown that fully parametric
assumptions are not always appropriate to analyze the temporal dynamic between response
variable and covariates in longitudinal studies. Non-parametric and semi-parametric models
have been developed to propose more flexible functional forms to handle longitudinal data.
These models are essentially based on kernel and spline smoothing methods. An emerging
non-parametric methodology for modeling longitudinal data is based on the functional data
analysis (FDA) approach in which longitudinal trajectories are viewed as samples of par-
tially observed smooth functions or curves on some interval.

In this paper, we design an appropriate functional model for the analysis of the porcine
reproductive and respiratory syndrome virus (PRRSV). This is a 15kb positive-stranded
RNA virus in the family Arteriviridae. It emerged nearly simultaneously in the United
States and Europe in the late 1980s (Wensvoort et al. [41] ; Loula [28]), but has now spread
to Asia (Tian et al. [36]). Upon infection of the pig, PRRSV replicates rapidly, remaining
detectable in the blood for about 28 days, but persisting elsewhere, and rendering the pig
infectious, for as many as 200 days (Rowland et al. [35]). The virus causes respiratory symp-
toms in growing pigs and spontaneous abortions in pregnant sows (Collins et al. [9]). Its
tendency to cause prolonged subclinical infection is associated with a variety of debilita-
ting syndromes involving co-infecting pathogens (Rowland et al. [35]). The annual economic
losses due to PRRSV are estimated to be 670 million in the United States alone (Holtkamp
et al. [17]).

The PRRS Host Genetics Consortium (PHGC) was established to identify pig genetic de-
terminants of PRRS susceptibility and tolerance (Lunney et al. [29]). In order to have
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sufficient power, the PHGC experimentally infected hundreds of young pigs with PRRSV
isolate NVSL97-7985 (GenBank accession AY545985) in a few large experimental trials over
a few years. Each trial started with 200 pigs at weaning (3-4 weeks old) supplied by a single
pig breeding company from a farm testing negative for PRRSV, Mycoplasma hyopneumo-
niae, and swine influenza virus. Pigs were from at least 30 litters from at least 10 sires
mated with 3-8 dams/sire (Rowland et al. [35]). The pigs were transported to the biosecure
Kansas State University testing facility, divided among at least 12 pens, and treated with
broad spectrum antibiotics for seven days, then infected and followed for 42 days. Blood
samples were collected at 0, 4, 7, 10, 14, 21, 28, 35, and 42 days post infection (dpi), and
pigs were weighed weekly. The amount of virus in the blood, the virus load, was quanti-
fied using quantitative real-time Polymerase Chain Reaction (qPCR) (Kubista et al. [24]).
All pigs were confirmed to be infected with PRRSV. The virus load peaked around 7-14
dpi (Rowland et al. [35]), then decayed to undetectable in most pigs by 28 dpi. A subset
(10-20%) of pigs suffered a rebound in virus around 28-35 dpi that cleared by 42 dpi. Pig
growth curves, as measured by weight gain, were suppressed compared to controls from the
same litter that were not infected (Lunney et al. [29]). There was extensive variation in both
pig growth curves and virus load trajectories. Later analyses revealed an important genetic
determinant of this variation (Boddicker et al. [3]), suggesting the presence of discrete sub-
populations of pigs with distinct responses to infection.

We use the functional data analysis approach to propose a very suitable and flexible model
to analyze this type of data. The model combines multi-dimensional functional principal
components analysis and clustering to deal with any type of longitudinal data even if the
observations are sparse, irregularly spaced or occur at different time points for each indivi-
dual. This is specially suitable for the analysis of PRRSV evolution which must take into
account both the virus load and weight gain trajectories simultaneously. In addition to the
longitudinal aspects of each trajectory (that is, different measurement days for different
pigs), these trajectories present the added complexity that both variables, virus load and
weight gain, were not necessarily measured on the same days for the same pigs.

The study of the effect of the gene WUR (for locus WUR10000125) which following the
study of Boddicker et al. [3] appears to be a major genetic determinant of PRRSV disease,
is of particular interest in the analysis. As suggested by Boddicker et al. [3], we model
through clustering the presence of subpopulations of pigs that respond differently to infec-
tion so that there are latent effects associated with each subpopulation. The effect of WUR
is then adjusted according to the latent effects which in turn hint to specific characteristics
common in certain groups of pigs. The clusters are unknown and must be estimated along
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the latent fixed and random effects involved in the model.

The paper is organized as follows. In Section 2, we define the model underlying the analysis
of longitudinal data and the estimation procedure based on the Expectation-Maximization
(EM) algorithm (Dempster et al. [11]). We also present the tools for model selection. Sec-
tion 3 deals with simulation experiments as well as performance comparisons with other
functional models applied on real data sets. The analysis of the porcine reproductive and
respiratory syndrome virus is presented in Section 4.

3.2. Functional data analysis and clustering
Consider a longitudinal study involving N subjects. Assume that ni measures were collected
for subject i. For each subject i ∈ {1, . . . , N}, the observed measurements Yi = (yi1, ..., yini)
are assumed to be realizations with measurement errors of a random function Xi at time
points ti = (ti1, ..., tini) according to the model :

yij = Xi(tij) + ϵij j = 1, ..., ni i = 1, ..., N ; (3.2.1)

where the ϵij’s are independent and identically distributed, with moments E(ϵij) = 0 and
E(ϵ2

ij) = σ2. The functions {X1, ..., XN} are assumed to be independent realizations of a
second order stochastic process X (t) defined on a compact domain I (the temporal axis).

3.2.1. The model

The model proposed here for longitudinal data combines functional principal components
analysis and model based clustering. The functional principal components analysis utilizes
the approach of James et al. [22], which is based on the mixed effects model, while the
clustering model, although developed independently, is strongly related to the functional
clustering model suggested by James and Sugar [23]. Our model differs from that of James
and Sugar [23] in that we use a Bayesian framework for the parameters, and a different pa-
rameterization for the clusters. Our methodology also differs from that of James and Sugar
[23] in that we perform model selection via an approximation to the Bayes factors. While
James and Sugar [23] suggest several ad hoc but clever ways to choose the dimensions of
several parameters, we adopt a unified and principled way to choose all these dimensions
through our approximation to the Bayes factors. Below, we explain these points in more
details.

Let Yi(·) be the function or curve underlying the observed measurements Yi for subject
i and Yi(t) be the evaluation of Y (·) at time point t. We assume that there exists an overall
mean function µ̂(t) and a finite orthogonal basis of norm-one (square-integrable) functions
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in L2, {f̂1(t), . . . , f̂k(t)} such that

Yi(t) = µ̂(t) +
k∑

j=1
αij f̂j(t) + ϵi(t) (3.2.2)

= µ̂(t) + f̂(t)Tαi + ϵi(t) i = 1, ..., N

for some random k-dimensional vectors αi = (αi1, ..., αik) (the component scores), and
error terms ϵi(t), i = 1, ..., N , where f̂(t)T = (f̂1(t), . . . , f̂k(t)) (here and throughout the
manuscript, the superscript T indicates transposition). The functions f̂j(t) are sometimes
referred to as the principal component functions. The clustering model assumes a mixed
effects framework on the component scores αi :

αi = µzi
+ γzi

i (3.2.3)

where zi denotes the unknown cluster the individual i belongs to. The cluster indicator
zi takes the possible values 1, 2, ..., G where G is the number of clusters. The vector µzi

represents the individual i’s cluster mean and γzi
i indicates the specific effect of the individual

or the deviation from it’s cluster effect. With this formulation, the functional clustering
model can be written as :

Yi(t) = µ̂(t) + f̂(t)Tµzi
+ f̂(t)Tγzi

i + ϵi(t) i = 1, ..., N. (3.2.4)

Conditionally on the cluster to which an individual belongs, its longitudinal trajectory is
decomposed into the sum of three components plus an error term. The first component
represents the overall mean, the second component stands for the cluster or group effect,
and the third component indicates the subject-specific effect (or deviation from its group
effect). As in James et al. [22] and James and Sugar [23], we use a specification of the model
in a finite-dimensional basis b(t)T = (b1(t), . . . , bq(t)) of B-splines. Under this specification,
we can write µ̂(t) = b(t)Tθµ, with θµ ∈ Rq. Similarly, we can write f̂(t)T = b(t)TΘ for a
q × k matrix Θ. This new parameterization yields

Yi(t) = b(t)Tθµ + b(t)TΘµzi
+ b(t)TΘγzi

i + ϵi(t) (3.2.5)

which is equivalent to :

Yi = Biθµ + BiΘµzi
+ BiΘγzi

i + ϵi (3.2.6)

where Yi is the vector of the measurements at time points ti and Bi = [b(ti1), ..., b(tini)]T
is the matrix of the spline basis evaluated at those time points. The q-dimensional vector
θµ and the matrix Θ represent, respectively, the coefficients in the basis of the overall mean
function µ̂(t) and the principal components functions f̂(t). To accommodate for certain
departure from normality in the data, we assume that the measurement errors ϵi follow a
multivariate Student’s t distribution with unknown degrees of freedom ν0.
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Bayesian framework :

Let zi = (zi1, ..., ziG) ∈ {0, 1}G be such that zig = 1 if the individual i belongs to the
cluster g (1 ≤ g ≤ G) and 0 otherwise (i = 1, . . . , N). These are the cluster membership
indicators. They are assumed independent and identically distributed multinomials with
parameters (1, π1, ..., πG), where πg is the prior probability that an individual belongs to the
gth cluster (mixing probabilities). With a slight abuse of notation, we will denote by {zi = g}
the expression {zi = eg} where eg is a G-dimensional vector with a 1 in the gth coordinate
and 0’s elsewhere. To complete the setup of the proposed model, we further assume that :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

µg ∼ Nk(0, Γµ) and Γµ ∼ InvWishart(m, (m − k − 1)Ik)
γg

i ∼ Nk(0, Γg) and Γg ∼ InvWishart(m, (m − k − 1)D)
D = diag(d11, d22, . . . , dkk) with djj ∼ Inv χ2(m) and i.i.d (j = 1, . . . , k)
(π1, . . . , πG) ∼ Dirichlet(a1, . . . , aG)

(3.2.7)

Let B = [b(min tij), ..., b(max tij)]T be the matrix of the spline basis evaluated on a fine grid
of the range of the temporal axis, so that every observed time point in the data is included
in the grid. Let δij = 1, if i = j, and be zero, otherwise. To approximate the orthogonality
constraint

{∫
f̂j f̂l = δjl

}
, we choose the basis of functions b(.) so that BTB = Iq and

ΘTΘ = Ik. There are two important identifiability constraints in the model. These ensure
that Biθµ is the overall mean and that BiΘµg is the mean curve of cluster g :

⎧
⎨

⎩

∑G
g=1 πgµg = 0

∑N
i=1 Pigγg

i = 0, for all g = 1, ..., G
(3.2.8)

where Pig denote the posterior probability that the individual i belongs to group g. In order
to simplify the formulas, we augment our model by representing the error terms as mixture
between a Normal and an inverse-Chi-squared variables :

⎧
⎨

⎩
ϵi|νi ∼ Nni(0, σ2νiIni) and νi ∼ Inv χ2(ν0) ⇒ ϵi ∼ tν0(0, σ2Ini)
with σ2 ∼ InvGamma(ασ, βσ).

(3.2.9)

Note that m, ασ, βσ and the ag, 1 ≤ g ≤ G are hyper-parameters. The structure of this
model is appealing since the clustering of the individuals relies essentially on a space of
much reduced dimension than the original longitudinal trajectories. Note that choosing
k ≤ 3 would allow some form of visualization of the groups. The model of James and Sugar
[23] adds another layer of parameterization in the clusters so that the clustering is forced to
lie in a subspace of very small dimension. We prefer to let the data tell us which dimension
better describes the clustering structure. Note that the model supposes that the variance-
covariance matrix of the vector of measurements Y, conditional on the hyper-parameters is
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equal to :

V ar(Y) = V ar(E(Y|g)) + E(V ar(Y|g)) (3.2.10)
= V ar(E(Bθµ + BΘµg + BΘγg + ϵ)) + E(V ar(Bθµ + BΘµg + BΘγg + ϵ))

= V ar(Bθµ) + E([BΘΓµΘTBT] + [BΘΓgΘTBT] + [(σ2ν0
/

(ν0 − 2))In])

= BΘ(Ik + D)ΘTBT + (σ2ν0
/

(ν0 − 2))In.

This can be estimated using the Maximum A Posteriori (MAP) estimators of the parameters,
which are in turn obtained by the EM algorithm described next. As an illustration of
this covariance estimate, consider the yeast cycle data described below in Section 3.3.3.4.
Figure 3.1 shows the observed and estimated variance-covariance matrices associated with
the four clusters found by our procedure. The overall (accross clusters) yeast-cycle observed
and estimated covariances are shown in Figure 3.2.

Figure 3.1. Yeast cycle data. The observed (top row) and estimated (bot-
tom row) variance-covariance matrices by cluster. The clusters are arranged
from left to right, starting with Cluster 1.
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3.2.2. Extension to multiple dimensions

The model can be easily extended to a multidimensional model. The motivation for this
extension relies on the belief that the explicit and simultaneous modeling of multiple curves
from an individual carries more information than the modeling of a single curve that sum-
marizes all the information from the individual. However, if the curves are highly correlated,
then there is no loss of information in combining all the curves from an individual into a
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Figure 3.2. Yeast cycle data. The overall observed (left) and estimated
(right) variance-covariance matrices.
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single representative curve. The approach is illustrated here for a bidimensional model be-
cause this is the dimension needed to analyze the PRRSV data, but it remains valid for
multiple curves.

Suppose that we have N two-dimensional functional observations {Y 1
i (t), Y 2

i (t)} with t ∈ I
where Y l

i (t) is the value at time t of the lth variable measured on the i-th individual, l = 1, 2 ;
i = 1, . . . , N . These curves are assumed to come from the following model

Yi = Biθµ + BiΘµzi
+ BiΘγzi

i + Υi, (3.2.11)

where Yi = (Y1
i , Y2

i )T is the vector of dimension (n1
i + n2

i ) arising from stacking into one
single vector the observations from the curves {Y 1

i (t), Y 2
i (t)} ; Bi is the spline basis matrix

derived from the one-dimensional basis matrix Bi as

Bi =
⎛

⎝ Bi ⃝
⃝ Bi

⎞

⎠

and the vector of residuals Υi = (ϵ1
i , ϵ2

i )T. Although here for simplicity in the exposition we
have assumed that curves from the same individual are measured at the same time points,
this assumption is not necessary. If the curves are measured at different time points, it
suffices to change Bi for Bil, for each dimension l. As in the one-dimensional model, we
assume that the clustering parameter priors are given as in (3.2.7) but where Ik is replaced
by I2k and τ1 and τ2 are set this time to (m−2k−1) due to the increase in the dimension, and
Υi ∼ tν0(0, σ2I2ni). The parameter estimation and model selection for the multidimensional
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model are performed in the same manner as in the one-dimensional case which is described
next.

3.2.3. Parameter estimation

The estimation of the parameters is carried out by the maximization of the mixture model
likelihood in the presence of the “latent data” W given by the cluster labels zi and the
random effects γzi

i . For that purpose, we use the EM algorithm. This maximizes the function
Q defined as :

Q(Π|Π(t)) = EW|Y;Π(t) [log p(Y, W; Π)] (3.2.12)
where Y denotes the “observed” data, and p(·) denotes the corresponding probability func-
tion associated with the model (from now on we will write p(·) for all probability functions
or densities which can be identified by the context in which they appear). The vector of
unknown parameters is Π and Π(t) denote the tth updated value of Π. In the expectation
step (E-step), the cluster labels zi and random effects γzi

i are estimated by conditional ex-
pectation of the complete log-likelihood given the observed data and the current value of
the parameter vector. The function Q is maximized in the maximization step (M-step), and
the (t + 1)th updated value Π(t+1) of Π is obtained through :

Π(t+1) = argmax
Π

Q(Π|Π(t)). (3.2.13)

The maximum likelihood estimator of Π can be obtained by repeating the E and M
steps until convergence. Let ν⃗ = {ν1, ..., νN}, µ⃗ = {µ1, ...µG}, Γ⃗ = {Γ1, ..., ΓG} and
Λ = {θµ, Θ, D, Γµ, π1, π2, ..., πG, ν0, σ2}. The parameters of the model are given by Π =
{ν⃗, µ⃗, Γ⃗, Λ}. The log-likelihood of the “complete data” (Y, W) is given by :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log[p(Y, W; Π)] = log
{

p(Y, Z, γz; ν⃗, µ⃗, Γ⃗, Λ)
}

= log
{ [∏N

i=1 p(Yi, zi, γzi
i

∣∣∣∣νi, µ⃗, Γ⃗, Λ) × p(νi

∣∣∣∣µ⃗, Γ⃗, Λ)
] [∏G

g=1 p(µg, Γg)
]

[p(Λ)]
}

= ∑N
i=1

{

log p(Yi, zi, γzi
i

∣∣∣∣νi, µ⃗, Γ⃗, Λ) + log p(νi

∣∣∣∣µ⃗, Γ⃗, Λ)
}

+ ∑G
g=1

{

log p(µg, Γg)
}

+ log p(Λ)
(3.2.14)
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By introducing the probability density functions of the different distributions (the para-
meters and the hyper-parameters), the expression of the log-likelihood log[p(Y, W; Π)] be-
comes :

log[p(Y, W; Π)] =
N∑

i=1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−ni
2 log(νiσ2) − 1

2νiσ2

∥∥∥Yi − (Biθµ + BiΘµzi
+ BiΘγzi

i )
∥∥∥

2

−1
2 log(

∣∣∣Γzi

∣∣∣) − 1
2γT

i,zi
Γ−1

zi
γzi

i + ∑G
g=1 Zig log(πg)

+νo
2 log(νo

2 ) − log[Γ(νo
2 )] − (1 + νo

2 ) log(νi) − νo
2νi

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+
G∑

g=1

⎧
⎨

⎩
−1

2 log(
∣∣∣Γµ

∣∣∣) − 1
2µT

g Γ−1
µ µg + m

2 log(
∣∣∣(m − k − 1)D

∣∣∣)
− (m+k+1)

2 log(
∣∣∣Γg

∣∣∣) − (m−k−1)
2 trace[DΓ−1

g ]

⎫
⎬

⎭

+
{

km
2 log(m − k − 1) − (m+k+1)

2 log(
∣∣∣Γµ

∣∣∣) − (m−k−1)
2 trace[Γ−1

µ ]
}

+
k∑

j=1

{
+m

2 log(m
2 ) − log[Γ(m

2 )] − (1 + m
2 ) log(djj) − m

2djj

}

+
{

ασ log(βσ) − log[Γ(ασ)] − (ασ + 1) log(σ2) − βσ

σ2

}

+
{

− log[B(a1, ..., aG)] + ∑G
g=1(ag − 1) log(πg)

}

+ C (3.2.15)

where C is a normalizing constant and B(a1, ..., aG) = B(a) is the multivariate Beta function
which can be expressed in terms of the Gamma function Γ(·) as B(a) = [

∏G

g=1 Γ(ag)]
[Γ(

∑G

g=1 ag)]
.

The Appendix A.2 presents all the analytical developments of the expectation step of the
EM algorithm. It repeats, on purpose, some of the features of the model in order to be
complete. At the end of the expectation step, one obtains the expression of the EM function
Q introduced in Equation (3.2.12) as :

Q(Π|Π(t)) =
N∑

i=1

G∑

g=1
Pig ×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ni
2 log(νiσ2) − 1

2 log(
∣∣∣Γg

∣∣∣) + log(πg)
− 1

2νiσ2

{∥∥∥Yi − Biθµ − BiΘµg − BiΘγ̂g
i )

∥∥∥
2}

+ 1
2νiσ2

{
trace

[
BiΘV̂ g

i ΘTBT
i

] }

−1
2

{
γ̂igΓ−1

g γ̂ig + trace
[
Γ−1

g V̂ g
i

] }

+νo
2 log(νo

2 ) − log[Γ(νo
2 )] − (1 + νo

2 ) log(νi) − νo
2νi

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+
G∑

g=1

⎧
⎨

⎩
−1

2 log(
∣∣∣Γµ

∣∣∣) − 1
2µT

g Γ−1
µ µg + m

2 log(
∣∣∣(m − k − 1)D

∣∣∣)
− (m+k+1)

2 log(
∣∣∣Γg

∣∣∣) − (m−k−1)
2 trace[DΓ−1

g ]

⎫
⎬

⎭

+
{

km
2 log(m − k − 1) − (m+k+1)

2 log(
∣∣∣Γµ

∣∣∣) − (m−k−1)
2 trace[Γ−1

µ ]
}

+
k∑

j=1

{
+m

2 log(m
2 ) − log[Γ(m

2 )] − (1 + m
2 ) log(djj) − m

2djj

}

+
{

ασ log(βσ) − log[Γ(ασ)] − (ασ + 1) log(σ2) − βσ

σ2

}

+
{

− log[B(a1, ..., aG)] + ∑G
g=1(ag − 1) log(πg)

}
+ C
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where the expressions of γ̂zi
i and V̂ zi

i are :

γ̂zi
i =

{
νi

(t)σ
2
(t)Γ−1(t)

zi
+ ΘT

(t)BT
i BiΘ(t)

}−1 ΘT
(t)BT

i

{
Yi − Biθ

(t)
µ − BiΘ(t)µ

(t)
zi

}

V̂ zi
i =

⎧
⎨

⎩Γ−1(t)
zi

+
ΘT

(t)BT
i BiΘ(t)

νi
(t)σ

2
(t)

⎫
⎬

⎭

−1

The maximization step consists in maximizing the function Q(Π|Π(t)) with respect to the
vector of parameters Π which yields :
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ(t+1)
g =

[(∑N
i=1

Pig

ν
(t)
i

ΘT
(t)BT

i BiΘ(t)

)
+ σ2

(t)Γ−1(t)
µ

]−1 [∑N
i=1

Pig

ν
(t)
i

ΘT
(t)BT

i

(
Yi − Biθ

(t)
µ − BiΘ(t)γ̂

g
i

)]

Γ(t+1)
g =

[(∑N
i=1 Pig

)
+ (m + k + 1)

]−1 [(∑N
i=1 Pig(γ̂igγ̂T

ig + V̂ g
i )

)
+ (m − k − 1)D(t)

]

π(t+1)
g = (∑N

i=1 Pig)+(ag−1)

N+
(∑G

g=1 ag

)
−G

(0 ≤ π(t+1)
g ≤ 1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ(t+1)
µ =

[∑N
i=1

(
BT

i Bi

)
ν−1(t)

i

]−1 [∑N
i=1

∑G
g=1

Pig

ν
(t)
i

BT
i

(
Yi − BiΘ(t)µ(t)

g − BiΘ(t)γ̂
g
i

)]

Θ(t+1)
j =

{∑N
i=1

∑G
g=1

Pig

ν
(t)
i

[
(αig)2

j + (V̂ g
i )jj

] (
BT

i Bi

)}−1
{Ω1 − Ω2} ; for j = 1, ..., k.

Ω1 = ∑N
i=1

∑G
g=1

Pig

ν
(t)
i

[
(αig)jBT

i

(
Yi − Biθ

(t)
µ

)]
; (αig)j = (µg + γ̂g

i )j

Ω2 = ∑N
i=1

∑G
g=1

Pig

ν
(t)
i

[∑k
h ̸=j

(
(αig)j(αig)h + (V̂ig)hj

) (
BT

i Bi

)
Θh

]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ2
(t+1) =

1
2

{∑N

i=1
∑G

g=1
Pig

ν
(t)
i

[∥∥∥Yi−Biθ
(t)
µ −BiΘ(t)µ

(t)
g −BiΘ(t)γ̂g

i

∥∥∥
2
+trace

(
BiΘ(t)V̂igΘT

(t)BT
i

)]}
+βσ

1
2 [∑N

i=1 ni]+(ασ+1)

ν(t+1)
0 = bν0 +1+

√
2bν0 +1

bν0
with bν0 = exp

(
1
N

∑N
i=1(log ν(t)

i + 1/ν(t)
i ) − 1

)

ν(t+1)
i =

{
ν

(t)
0 +

∑G

g=1
P̂ig

σ2
(t)

[∥∥∥Yi−Biθ
(t)
µ −BiΘ(t)µ

(t)
g −BiΘ(t)γ̂g

i

∥∥∥
2
+trace

(
BiΘ(t)V̂igΘT

(t)BT
i

)]}

ni+2+ν
(t)
0

d(t+1)
jj = 1

2

⎡

⎢⎢⎣

(mG−m−2)+
√

(mG−m−2)2+4m×(m−k−1)×
∑G

g=1

{
Γ−1(t)

g

}

jj

(m−k−1)×
∑G

g=1

{
Γ−1(t)

g

}

jj

⎤

⎥⎥⎦ (j = 1, . . . , k)

{
Γ(t+1)

µ

}

jj
= 1

m+k+1+G

[{∑G
g=1 µg(t)µ

T
g(t)

}

jj
+ (m − k − 1)

]
(j = 1, . . . , k).
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The matrix D is assumed to be diagonal for model identifiability reasons. Indeed, as the va-
riance of Yi is obtained as V ar(Yi) =

[
BΘ(Ik + D)ΘTBT + (σ2ν0

/
(ν0 − 2))Ini

]
, one needs

to impose D diagonal in addition to ΘTΘ = Ik so that not only the term
[
ΘDΘT

]
will

be identifiable but both Θ and D. The non-imposition of that constraint can lead to the
existence of two different values of the set (Θ, D) giving the same value for

[
ΘDΘT

]
. The

matrix Θ produced by the procedure will not necessarily be orthonormal. We transform it
into an orthonormal matrix through the Gram-Schmidt algorithm (Golub and Van Loan
[16]). An additional diagonality constraint is imposed on Γµ for simplicity.

Initialization of the algorithm :

The parameters θµ, Θ and σ2 are initialized by assuming a model with a single cluster
(i.e., G = 1). Then for a fixed G > 1, the cluster parameters such as µg, Γg, and πg as well
as the cluster membership indicators zi may be initialized by applying any clustering pro-
cedure to the scores αi yielded by the single-cluster model. In our experiments, we used the
Gaussian model-based clustering procedure implemented in the mclust package (see Fraley
and Raftery [13], Fraley and Raftery [14], Fraley and Raftery [15]).

3.2.4. Model selection

An important feature of our model is the principled manner in which the values of the
number of clusters G, the dimension k of the principal component function f̂(t), and the
dimension q of the B-spline basis are chosen. We develop an approximation of the log mar-
ginal likelihood (or marginal log-likelihood, MLL) that allows us to perform an MLL-based
model selection. The MLL is a key quantity used to choose between different models within
a Bayesian model selection paradigm through Bayes factors. The marginal log-likelihood is
the quantity that results from integrating out both the latent variables and the parameters.
Using our model specification of observed data, latent variables and vector of parameters,
we have :

MLL = log
{∫

(W,Π)
p

(
Y

∣∣∣W, Π
)

p (W, Π) d(W, Π)
}

(3.2.16)

Traditionally, the marginal likelihood is approximated either using analytical methods or
via sampling-based approaches such as Markov chain Monte Carlo. Here, we decide to use
a multivariate Laplace approximation which yields

∫

(W,Π)
p

(
Y

∣∣∣W, Π
)

p (W, Π) d(W, Π) ≈ p(Y
∣∣∣Ŵ, Π̂)×p(Ŵ, Π̂)×(2π) d

2 ×
∣∣∣−H

∣∣∣
− 1

2 , (3.2.17)
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where (Ŵ, Π̂) is the the MAP estimator of the latent variables and parameters, d is the
dimension of (W, Π) and H is the Hessian of log

{
p

(
Y

∣∣∣(W, Π)
)

p (W, Π)
}

evaluated at
(Ŵ, Π̂). Taking the log of the expression in Equation (3.2.17), we obtain

MLL ≈ log
{
p(Y

∣∣∣Ŵ, Π̂)
}

+ log
{
p(Ŵ, Π̂)

}
+ d

2 log(2π) − 1
2 log(

∣∣∣ − H
∣∣∣). (3.2.18)

We further simplify this expression by using the approximation
∣∣∣ − H

∣∣∣ ≃
[

trace(−H)
d

]d
, which

arises from assuming that all the eigenvalues of −H are the same and necessarily equal to
[trace(−H)/d]. Finally the expression of the MLL is given by :

MLL = log p(Y
∣∣∣Ŵ, Π̂) + log p(Ŵ, Π̂) − d

2 log
(

trace(−H)
2πd

)

. (3.2.19)

In order to choose a model, we evaluate this latter MLL quantity for each potential triplet
(q, k, G). The model selected is the one that maximizes MLL(q, k, G). In our experiments,
we compare this MLL criterion with two classical criteria : the Akaike information criterion
(AIC), and the Bayesian information criterion (BIC). We recall here that these two criteria
are given, respectively by

⎧
⎨

⎩
AIC = log p(Y

∣∣∣Ŵ, Π̂) − d

BIC = log p(Y
∣∣∣Ŵ, Π̂) − d

2 log(N),
(3.2.20)

where N is the number of individuals and d is the number of model parameters.

3.3. Experiments with simulated and real data
In this section we start by showing the results of a simulation carried out to study the
performance of our model. We test two main aspects of the model : its ability to reproduce
the original clusters, and its ability to predict the original curves. The simulation study is
based on four parameters : the sample size N ∈ {100, 500, 900} ; the spline basis dimension
q ∈ {10, 15, 20} ; the score coefficients dimension k ∈ {2, 4, 6} and the number of clusters
G ∈ {3, 6, 9}.

3.3.1. Simulation study for the one-dimensional model

In order to simulate data for fixed values of (q, k, G), we generate the model parameters
in the list {µ1, ...µG, Γ1, ..., ΓG, θµ, Θ, D, Γµ, π1, π2, ..., πG, ν0, σ2} at random based on the
assumptions and constraints of our model. We choose a vector of measurement time points
of length 21. The q-dimensional vector θµ is generated as a sample of q realizations of a
standard normal distribution. The matrix Θ is generated from a normal distribution and is
then orthonormalized in order to satisfy the orthogonality constraint. Each djj (j = 1, . . . , k)
is sampled from an Inverse-χ2 distribution to make the diagonal matrix D. The matrix Γµ is
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obtained via the diagonal values of a sampled matrix from an Inverse-Wishart distribution
with parameters m = (k + 2) and (m − k − 1)Ik. The number of individuals in each cluster
ng is chosen at random, and the probabilities πg are set to the proportions (ng

n ). Given
known D and Γµ, the vectors µg are generated from a multivariate normal distribution.
The matrices Γg are generated from an Inverse-Wishart distribution and are then used to
sample the vectors γg

i for each individual. The values of σ2 and ν0 are generated from an
Inverse-χ2 distribution. Finally, the error terms are generated from a Student t distribution.

Simulation results :

For each combination of (N, q, k, G), we create several data sets as explained above. We
try different values of (q, k, G) and choose the best model using our MLL criterion. For
comparison purposes, we also apply the AIC and BIC criteria for model selection. The qua-
lity of the results is assessed by comparing the partitions (clustering) created by the model
and the original (true) cluster memberships. The comparison is performed with a single
measure of similarity, the Adjusted Rand Index (ARI) (Rand [33], Hubert and Arabie [18]).
A perfect agreement between the two partitions yields an ARI score of 1. The closest the
score is to 1, the more similar the partitions are.

The examination of the simulation results is based on an analysis of variance of the ARI
scores as a function of G, k, q and N . The ARI was first transformed to the inverse sinus
function, arcsin(ARI). The values of the two dimensional parameters k and q did not af-
fect the ARI scores. Only the sample size N and the number of clusters were statistically
significant. Figure 3.3 shows the results. Note that all three model selection criteria, MLL,
AIC and BIC, performed very similarly. Clearly, the ARI score decreases with the number
of clusters, as the data structure becomes more complex. There is no such clear pattern
with the sample size. It appears that a large sample size makes the discovery of the cluster
structure more difficult. However, this effect might be attributable to more curves filling
in the space or gap between the clusters. So we decided to study the effect of the separa-
tion between clusters. We recall here two measures of separability between clusters : the
inter-gap and the intra-gap. The inter-gap measure is defined as the mean distance between
the cluster mean curves. The intra-gap measure as presented in Tibshirani et al. [37] is the
pooled within-cluster sum of squares of the Euclidean distances to the cluster means. More
explicitly, for N curves clustered in G clusters C1, C2, ..., CG with ng = |Cg|, let di,i′ be the
Euclidean distance between curves i and i′, i, i′ = 1, . . . , N . Let Dg = ∑

i,i′∈Cg
dii′ be the sum

of the pairwise distances for all curves in cluster Cg. Let µg and µ∗ be, respectively, the mean
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curve associated with cluster Cg, and the overall mean curve associated with the ensemble
of N curves. The inter-gap and intra-gap measures are given by the following expressions :

InterGap =
G∑

g=1
πgdµg ,µ∗ and IntraGap =

G∑

g=1

1
2ng

Dg. (3.3.1)

We measured the gap between the true clusters using the inter-gap measure, and the the
gap within each true cluster with the intra-gap measure. Another ANOVA, this time with
these two gap measures in the model, shows that after adjusting for the gaps, the sample
size N is not significant (p-value = 0.20). However, G remains very significant (p-value
< 0.005). We conclude that the ARI scores depend only on the number of clusters G, and
the complexity of the data (given by the gap measures). Figure 3.4 shows how often the

Figure 3.3. One-dimensional model. Boxplots of the ARI scores for the
models selected by MLL (top), AIC (middle) and BIC (bottom). The light
grey boxes correspond to G = 3, whereas the darker grey ones correspond to
G = 9. The middle grey boxes correspond to G = 6. N stands for sample size.
The boxplots are organized first by N and then by G.
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model selection criteria chose the right number of clusters. Again, all three criteria seem
to have performed similarly : there is a clear tendency to overestimate the number of clusters.
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Figure 3.4. One-dimensional model. Proportion of times each criteria chose
a particular number of clusters.
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3.3.2. Simulation study for the two-dimensional model

Another simulation study is carried out on the two-dimensional model. The generation of
the simulated data is analogous to that described in Section 3.3.1. The only difference is in
the generation of the parameters θµ, Θ, D and Γµ for which the dimensions change. Since
the results from the one-dimensional model indicate that the dimension parameters k and
q as well as the sample size N are not significantly affecting the ARI scores, we fixed the
values of the dimension parameters q and k (q = 10; k = 2), and generated five data sets of
size N = 100 with varying number of clusters G = 2, 4, 6, 8 and G = 10, respectively. We
repeat this procedure ten times.

Figure 3.6 shows a simulated dataset with N = 100 curves generated from the two-
dimensional model with q = 10, k = 2 and G = 6. As in the one-dimensional model
simulation, the assessment of the clustering performance is based on the ARI score between
the known true partition and the estimated partition from the three model selection cri-
teria (MLL, AIC and BIC). For example, for the dataset depicted in Figure 3.6, the three
criteria perfectly selected the correct model with q = 10, k = 2, G = 6 yielding a very high
ARI of 0.931. The box plots in Figure 3.5 show the simulation results. The ARI scores are
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relatively high especially for smaller number of clusters. As in the one-dimensional case, the
ARI scores also decrease with the number of clusters.
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Figure 3.5. Two-dimensional model. Box plots of the ARI scores for the
models selected by MLL (left), AIC (middle) and BIC (right).

3.3.3. Comparison study with real datasets

In this section we test our functional model-based clustering model on real datasets which
have already been analyzed by several authors such as James and Sugar [23], McNicholas
and Murphy [30] and Jacques and Preda [20, 21]. These authors have applied their own
models for clustering longitudinal data. Here we report our results as well as theirs. We also
present an application to the well-known Yeast Cell Cycle data Cho et al. [7] and compare
our results to those of other researchers that have also used these data for comparison
purposes.

3.3.3.1. The Rats data

The Rats dataset has been studied in a setting of longitudinal model-based clustering by
McNicholas and Murphy [30]. The data were published in Crowder and Hand [10]. They
consist of the body weights of rats on one of three different dietary supplement treatments.
There were eight rats on Diet 1, four on Diet 2 and four on Diet 3. Weights were recorded first
after a settling-in period, and then weekly for a period of nine weeks. An extra measurement
was taken at 44 days to help calculate the effect of another treatment that occurred during



69

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

 0  5 10 15 20

�
6

�
4

�
2

 0
 2

 4

�2

�1

 0

 1

 2

 3

 4

Time

Y
1

Y
2

Figure 3.6. Two-dimensional model. Example of a dataset with six clusters

the sixth week. A total of eleven measurements were recorded for each rat. Following our
proposed model selection methodology, we found that the best model consists of four groups
of sizes eight, three, one and four. Our model yielded an ARI of 0.94. For the same dataset,
McNicholas and Murphy [30] reported an ARI of 0.88. Figure 3.7 shows the original and
predicted curves together with the original and estimated clusters. The estimated one-rat
cluster represents an « estimated » outlier rat with a much larger weight that the other rats
in the original cluster.

3.3.3.2. Growth data

The Growth data, available in the fda package of the software R, comes from the Berkeley
growth study (Tuddenham and Snyder [38]). In this dataset, the heights of 54 girls and 39
boys were measured at 31 stages, from 1 to 18 years. The goal is to cluster the growth curves
and to determine whether the resulting clusters reflect gender differences. Our selection
procedure chose a model with two clusters. The dimensions (q, k) chosen by the different
criteria were different. MLL and BIC chose a model with dimensions (q = 18, k = 2),
whereas AIC chose a model with (q = 19, k = 2). Overall, these models were very similar.
That is, the value of the dimension q did not make a big difference. Therefore, we adopted
the smaller model which yielded an ARI of 0.513 and a correct classification rate of 86.02%.
Figure 3.8 shows the original and predicted curves together with the original and estimated
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Figure 3.7. Original (left) and Predicted (right) curves for the Rats dataset

clusters. For the original partition, the black curves represent the 39 boys and the red curves
represent the 54 girls. The clustering algorithm yields two clusters of sizes 50 and 43. With
regard to the partition matrix (see Table 3.1) we can say that the estimated cluster 1 of
size 50 (predicted curves in black) consists mostly of boys and the estimated cluster 2 of
size 43 (predicted curves in red) consists mostly of girls. A partition matrix obtained from
two partitions C1 and C2 is a matrix PM where an element PMij represents the number of
individuals in cluster i of C1 that also fall in cluster j of C2. For the same dataset, Jacques

Table 3.1. Partition matrix for Growth data

True clusters Estimated clusters
1 2

Boys 38 1
Girls 12 42

and Preda [20, 21] using their Funclust procedure report a correct classification rate of
69.89%. They also evaluated the fclust procedure developed by James and Sugar [23]. This
also yielded a a correct classification rate of 69.89%.
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Figure 3.8. Original (left) and Predicted (left) curves for the Growth dataset

3.3.3.3. ECG data

The electrocardiogram (ECG) database studied in Olszewski [32] contains measurements of
cardiac electrical activity as recorded from electrodes at various locations on the body. The
ECG database was taken from http://www.cs.ucr.edu/eamonn/timeseriesdata/, which
is the website of the UCR Time Series Classification and Clustering. It contains 200 data
sets sampled at 96 time instants where 133 were identified as normal and 67 were identified
as abnormal. Jacques and Preda [20, 21] reported a correct classification rate of 84% with
the Funclust procedure and a correct classification rate of 74.5% for the fclust procedure.
Our analysis of the ECG dataset found three groups which yielded an ARI of 0.84 and a
correct classification rate of 78%.

3.3.3.4. The yeast cycle data

Longitudinal data are in general sparse (unbalanced) and the functional model-based cluste-
ring proposed herein is suitable for the analysis of all types of longitudinal data. The model
is particularly well suited for the analysis of time-course data sets such as gene expression
data. We present the results of the application of our model to the yeast cell cycle dataset.
This records the fluctuations of the expression levels of about 6000 genes over two cell cycles
comprising 17 time points. We consider the 5-phase subset of the data in Cho et al. [7]. It
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consists of 386 genes which have been assigned to one of the five phases of the cells cycle.
The fives phases are estimated by experts. The clustering results should reveal five groups
of genes associated with the five phases. However, to our knowledge, there is no clustering
procedure that can automatically reproduce these phases adequately. Our model selection
results for each of the three criteria are shown in Figure 3.9.

Each bar on the Figure 3.9 indicates the value on the y-axis of the criterion (AIC, BIC
or MLL from top to bottom) for the triplet (q, k, G) where the couple (q, k) is shown on
the x-axis and the number of clusters G is displayed by the color of the bar. The objective
of the figure is to reveal, for a given criterion, the best model (or the best triplet (q, k, G))
through the highest bar (the one with the highest y-axis value).
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Figure 3.9. Model selection results for yeast cell cycle data

The AIC criterion indicates a five-cluster partition with an associated ARI 0.45, whereas
both criteria MLL and BIC suggest a four-cluster partition with an associated ARI of
slightly over 0.47. These results are highly comparable to those obtained by other studies
on the same data set. Indeed, The Potts model clustering of Murua et al. [31] yielded nine
clusters with an ARI of 0.45. Yeung et al. [42] analyzed the same subset of these data using
model-based clustering based on Gaussian mixtures developed in Banfield and Raftery [2].
They reported four clusters with an ARI of about 0.43. Figure 3.10 shows the four mean
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curves associated with the four-cluster solution yielded by the MLL and BIC criteria. The
figure displays the observed and the estimated mean curves. For comparison purposes, we
show in Figure 3.11 the five mean curves associated with the five original clusters proposed
by Cho et al. [7]. The overall mean of the curves is displayed in the left panel of Figure 3.12.
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Figure 3.10. Yeast cycle data. Observed and model-estimated mean curves
for the four clusters yielded by the MLL and BIC criteria

Observe that the mean curves associated with the four estimated clusters are very similar
to the first four clusters found by Cho et al. [7]. The fifth cluster of Cho et al. [7] lies
between clusters two and four of the estimated clusters. The covariance structure of the
four estimated clusters is displayed in Figure 3.1. Observe that there is high correlation
between time points close to valleys and peaks in the mean curves. One can also observe a
slightly negative correlation for points further away from the valleys and peaks. This pattern
is also observed in the overall covariance structure displayed in Figure 3.2 with respect to
the overall mean curve of the data (see left panel of Figure 3.12). The estimated degrees
of freedom were ν0 = 3. The right panel of Figure 3.12 displays the distribution of the νi

variables associated with each observation. Recall that the error terms ϵi were modeled as a
convolution of Normal and Inverse-χ2 distributions, so that small values of νi give evidence
of non-nomally distributed errors.

3.4. Application to the PRRS viremia dataset
This section shows the analysis of the results of the application of the two-dimensional (2D)
model to the porcine reproductive and respiratory syndrome virus (PRRSV) described in
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Figure 3.11. Yeast cycle data. Observed and model-estimated mean curves
for the five clusters found by Cho et al. [7]
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the introduction. Recall that the dataset consists of longitudinal data from pigs experimen-
tally infected with the virus PRRSV. Each pig (1331 total, coming from high health farms
that were free of PRRSV, Mycoplasma hypopneumoniae and swine influenza virus) has two
responses measured, not necessarily, in fact often not, at the same time points : Virus load
and Weight. We worked with the the logarithmic transform of Virus load, which we will be
denoted by lVirus. The records of each individual have been standardized by overall mean
and overall standard deviation. A somehow strange feature in the dataset is the presence of
175 pigs for which the last measure of Weight has been recorded at day 42 instead of day
40 as it is the case for the other 1156 pigs. A consequence of this feature is the presence
of a sharp negative slope in the mean curves from day 40 to day 42 which can be seen in
Figure (3.13). The left panel of Figure (3.13) shows the mean curve of all 1331 pigs with
the emphasis on the slope. The middle panel shows the mean curve for the 175 pigs with
the last measurement at day 42, and the right panel displays the mean curve of the 1156
pigs whose last measurement was at day 40.
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Figure 3.13. Illustration of the difference at days 40 and 42

In addition to the existing model and as specifically requested by the data structure, we
develop a version of the two-dimensional model which explicitly incorporates some fixed
effects. We will refer in this section to these versions of our model as mixed-effects models.
For the dataset in study, the two fixed effects considered are the variables : Wur (for locus
WUR10000125, a major genetic determinant of PRRSV disease studied in Boddicker et al.
[3]) with 3 categories {0,1,2} (associated to the genotypes 1, 2, 3, respectively), and Expe-
riment with 7 categories {1,2,3,4,5,6,7}. They can be introduced in the model separately or
simultaneously. The main difference from the original 2D model lies in the treatment of the
overall mean in the new model. Unlike the model presented in Equation (3.2.11), where the
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vector θµ is constant, the mixed-effects model assumes a decomposition of that vector into
vectors representing the fixed effects. Indeed, θµ is now an individual-indexed parameter
which incorporates the the fixed effects. The following four models have been considered for
analyzing the PRRSV data :

(1) The model M0 is the original 2D model including no fixed effects.
(2) The model M1 is the 2D model including the Wur fixed effect. The overall mean θµ

in the M0 model is now an individual-indexed parameter which incorporates the Wur
effect :

Yi = Bi (θgen
µ + Swi)︸ ︷︷ ︸

θi
µ

+BiΘµzi
+ BiΘγzi

i + Υi,

where wi ∈ {0, 1, 2} are effects indicators. The category wi = 0 is considered to be
reference, meaning that the vector S0 is null. Thus, for individuals with wi = 0,
θi

µ = θgen
µ .

(3) The model M2 is the 2D model including the Experiment fixed effect wich takes values
ranging from 1 to 8. The overall mean θµ in the M0 model is now an individual-
indexed parameter which incorporates the Experiment effect :

Yi = Bi (θgen
µ + Tei)︸ ︷︷ ︸

θi
µ

+BiΘµzi
+ BiΘγzi

i + Υi,

where ei ∈ {0, 1, 2, 3, 4, 5, 6, 7} are the effect indicators. The category ei = 0 which
corresponds to Experiment = 8 in the study, is considered to be reference, meaning
that the vector T0 is null. Thus, for individuals with ei = 0, θi

µ = θgen
µ .

(4) The model M12 is the 2D model including both Wur and Experiment fixed effects.
The model is expressed as

Yi = Bi (θgen
µ + Swi + Tei)︸ ︷︷ ︸

θi
µ

+BiΘµzi
+ BiΘγzi

i + Υi,

where wi ∈ {0, 1, 2} and ei ∈ {0, 1, 2, 3, 4, 5, 6, 7} are the effects indicators. The cate-
gories wi = 0 and ei = 0 (corresponding to Experiment = 8) are considered to be
references (S0 = T0 = 0). For individuals with wi = 0 and ei = 0, θi

µ = θgen
µ .

In the models M1, M2 and M12 the additional parameters θµ ; S1, S2 ; T1, T2, ..., T7 are to
be estimated. There’s no substantial change in the EM steps except in the equations in-
volving θµ. For illustration purposes, the parameter estimation calculations associated with
the model M12 are shown in Appendix A.3. For each model considered, the first step is the
identification of the optimal model through model selection based mainly on the criterion
MLL (or AIC or BIC). Recall that a model is identified by the three parameters (q, k, G),
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respectively the dimension of the B-spline basis, the dimension of the principal component
function and the number of clusters. For a given criterion, optimal models are compared
using either the adjusted Rand index (ARI) or the kappa coefficient (Cohen [8]). This latter
index is also a measure of the agreement between partitions but requires that the partitions
have equal number of classes (see Youness and Saporta [43], Reilly et al. [34] and Warrens
[40] for studies related to the kappa coefficient and some comparison with the ARI in cluster
analysis). As the partitions we compare are not necessarily equal in the number of classes,
we use a transformation of the partition matrix (obtained from two partition tables) for
the computation of the kappa statistic. The purpose of using this index is to find out if a
smaller partition could be viewed as a partition formed by merging clusters from a larger
partition, or inversely, if a larger partition could be viewed as a partition formed by splitting
clusters in the smaller partition. Let C1 and C2 be two partitions (clustering) of the same
dataset with r1 and r2 clusters, respectively. The associated r1 ×r2 partition matrix PM is a
matrix with entries PMij = number of individuals in cluster i of C1 and cluster j of C2. The
transformation of PM makes it a square matrix in the following manner. Let us suppose,
without loss of generality, that r1 < r2. If r1 = r2, then there is nothing to transform. For
each column PMj (1 ≤ j ≤ r2), the row with the maximum number of individuals denoted
jmax (1 ≤ jmax ≤ r1) is identified. After a sweep of all columns, all those clusters with equal
jmax are merged. This ensures that the transformed partition C2 contains at most r1 clus-
ters. Table 2 show an illustration of this procedure. From now on we will use the notation
xG-partition to denote a partition with x clusters (recall that G stands for the number of
clusters).

Table 3.2. Illustration of the partition matrices for the computation of the
kappa coefficient

Real partition matrix
3G-partition 5G-partition

1 2 3 4 5
1 142 25 105 0 0
2 0 155 228 0 272
3 0 9 0 181 214

Transformed partition matrix

1 2 3
1 142 130 0
2 0 655 0
3 0 223 181

For the interpretation of the kappa coefficient values, we use a commonly cited scale based
on the table of interpretation given by Landis and Koch [26]. Next, we first explore the
best models selected and study the effect, if any, of Wur and Experiment in the clustering
results. Once the best models are selected, we study the effect of each fixed effect variable
in the logarithm of the Virus load and Weight.

The M0 model : The best three M0 models based on the MLL criterion are, in order :
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(8, 5, 3), (8, 5, 11) and (8, 4, 7). In addition, the kappa coefficient values between the 3G-
partition and the other two (7G-partition and 11G-partition) are respectively 0.60 and
0.82, indicating substantial agreement or similarity between the small partition and the two
larger ones. The 3G-partition is the optimal M0 model according to the MLL (it is also the
best choice for the other two criteria AIC and BIC). The related original and estimated mean
curves are presented in Figure (3.14). The smoothed curves in the left panels (and in each
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Figure 3.14. The M0 3G-partition mean curves

cluster) are the estimated mean curves for each cluster defined as : [Cg = Biθµ + BiΘµg].

The M1 model : The best three M1 models based on the MLL criterion are, in order :
(8, 5, 14), (8, 5, 3) and (8, 5, 12). The MLL criterion clearly chooses the 14G-partition as
optimal. The mean curves presented in Figure (3.15), are very similar for all categories of
Wur within each cluster. In these plots, the colors indicate the cluster and the line types
indicate the effect. However, the kappa coefficient values between the 3G-partition and the
two larger ones (14G-partition and 12G-partition) are respectively 0.8 and 0.75, indicating
high similarity between the partitions. The 3G-partition is the optimal M1 model accor-
ding to the other criteria AIC and BIC. The ARI and kappa coefficient between the M1

3G-partition and the M0 3G-partition are respectively 0.98 and 0.99, suggesting that Wur
has no effect on the clustering. This result seems to be confirmed in Figure (3.16), where
the cluster mean curves are very similar for all categories of Wur. In these plots, the colors
indicate the clusters and the line types indicate the effect.
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Figure 3.15. The M1 14G-partition mean curves by Wur category
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Figure 3.16. The M1 3G-partition mean curves by Wur category

The M2 model : The best three M2 models based on the MLL criterion are, in order :
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(8, 5, 8), (8, 5, 11) and (8, 5, 3). The MLL criterion clearly chooses the 8G-partition as opti-
mal. The kappa coefficient values between the 3G-partition and the two larger ones (8G-
partition and 11G-partition) are respectively 0.6 and 0.7, indicating substantial similarity
between the partitions. The ARI between the M2 8G-partition and the M0 3G-partition is
0.14, suggesting that the Experiment has an effect on the clustering (the large number of
clusters and categories makes it difficult to appropriately represent the mean curves). The
3G-partition is the optimal M2 model for the other criteria AIC and BIC. The ARI between
the M2 3G-partition and the M0 3G-partition is 0.32, again suggesting, as with the M2

8G-partition, that the Experiment has an effect on the clustering results. This fact is confir-
med in Figure (3.17), where the cluster g (g = 1, 2, 3) mean curves are clearly separated
from one Experiment category to another, especially according to Weight (the Y2 variable in
the plot). In these plots, the colors indicate the effect and the line types indicate the clusters.

The M12 model : The best three M12 models based on the MLL criterion are, in or-
der : (8, 5, 3), (8, 5, 12) and (8, 4, 4). The kappa coefficient values between the 3G-partition
and the other two (12G-partition and 4G-partition) are respectively 0.77 and 0.88, indi-
cating substantial similarity. The 3G-partition is then considered the optimal M12 model
(it is, in addition, the best choice for the other criteria AIC and BIC). The ARI between
the M12 3G-partition and the M0 3G-partition is only 0.32, suggesting that both variables
have an effect on the clustering results. However, the M12 3G-partition is strongly similar
to the M2 3G-partition with an ARI of 0.81 and a kappa coefficicent value of 0.89. This
confirms that Wur has no effect on the clustering. The cluster mean curves related to the
M12 3G-partition are presented in Figures (3.18), (3.19) and (3.20). In these plots, the colors
indicate the Experiment category and the line types indicate the Wur category. It can be
seen from the plots that for each cluster, and for each Experiment category, all the curves
with different line types are strongly similar. However, the curves are distinct according to
the color, indicating the effect on clustering of the Experiment category.

All the optimal partitions from all the models (M0, M1, M2 and M12) have estimated q = 8
and k = 5 with various number of clusters. For the purpose of comparison, Figure (3.21)
shows the variation of the MLL values according to the number of clusters. The best model
chosen by MLL is the 3G-partition model M12 with q = 8 and k = 5. To investigate if Wur
and/or Experiment are significant in the model, we use the approximation to the logarithm
of the Bayes factors given by the difference between MLL associated to the corresponding
models. Following the results above on clustering, we only compare the 3G-partitions asso-
ciated with each model. We see that Experiment is significant when adjusted by the presence
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Figure 3.17. The M2 3G-partition mean curves by Experiment category
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Figure 3.18. The M12 3G-partition mean curves by Wur and Experiment
for cluster 1



82

10 20 30 40

-2
0

2
4

Legend

Days

[wur=0,exp=0,g=2]
[wur=0,exp=1,g=2]
[wur=0,exp=2,g=2]
[wur=0,exp=3,g=2]
[wur=0,exp=4,g=2]
[wur=0,exp=5,g=2]
[wur=0,exp=6,g=2]
[wur=0,exp=7,g=2]
[wur=1,exp=0,g=2]
[wur=1,exp=1,g=2]
[wur=1,exp=2,g=2]
[wur=1,exp=3,g=2]
[wur=1,exp=4,g=2]
[wur=1,exp=5,g=2]
[wur=1,exp=6,g=2]
[wur=1,exp=7,g=2]
[wur=2,exp=0,g=2]
[wur=2,exp=1,g=2]
[wur=2,exp=2,g=2]
[wur=2,exp=3,g=2]
[wur=2,exp=4,g=2]
[wur=2,exp=5,g=2]
[wur=2,exp=6,g=2]
[wur=2,exp=7,g=2]

10 20 30 40

-2
0

2
4

Y1:Smoothed mean curves

Days
0 10 20 30 40

-1
0

1
2

Y2:Smoothed mean curves

Days

Figure 3.19. The M12 3G-partition mean curves by Wur and Experiment
for cluster 2
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Figure 3.20. The M12 3G-partition mean curves by Wur and Experiment
for cluster 3

of Wur with MLL(M12) − MLL(M1) = 649.40, and also that Wur is significant after ad-
justing for Experiment, with MLL(M12) − MLL(M2) = 237.42. Therefore, there is strong
evidence that both variables have an effect on the response.
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However, as noted above, WUR has no effect on the clustering, while Experiment does. So
whatever is driving the clustering, this is somehow related and interacting with Experiment
but not with WUR. Therefore, it seems that the effect of WUR is purely additive. Looking
at the figures with the curves by cluster, it appears that the strongest effect of Wur is
associated with pigs with genotype 3 (that is, Wur = 2).
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3.5. Conclusions and discussion
The PHGC trials were undertaken to identify host genetic determinants of PRRSV infection
outcome. There was hope that a few genetic loci would strongly control the host response,
so that PRRSV resistance could be bred into the next generation of pigs. If a few alleles
control PRRSV infection and these alleles segregate in the tested populations, then the pigs
should separate into clusters with distinct disease trajectories. Of course, there could be
other factors, both known and unknown, that drive clustering.

Our analysis of the eight trials finds at least three clusters, possibly attributable to, as yet,
unknown factors. In addition, we find that experimental trial has a large effect on disease
trajectories. Since experimental trials differed by time of year, breeding company supplier
of pigs, breed of pig, and more, there are many possible and often confounded biological
determinants of this experiment-to-experiment variation. Finally, in agreement with repea-
ted evidence across these trials that locus WUR10000125 is a major genetic determinant of
PRRSV disease (Boddicker et al. [3] ; Boddicker et al. [4] ; Boddicker et al. [5]), we confirm
a major effect of this locus. The agreement on the WUR10000125 finding is not surprising
since this locus was identified as highly significant from among 56118 SNPs after correction
for multiple testing (Boddicker et al. [3]). Previous work has only considered a univariate
response, either area under the virus load curve between days 0 and 21 (AUC21) or weight
gain between days 0 and 42 (WG42). Our model shows a clear effect of WUR10000125
between days 7 and 21, which matches quite well with their chosen univariate measure.
However, as shown in Figure 5 of Boddicker et al. [3], which analyzed only trials 1 through
3, the effect of WUR10000125 on weight gain trajectories was small compared to the diffe-
rences in our cluster mean weight curves across eight trials.

Previous researchers have grouped the pigs from these trials by virus load trajectories.
Trial 1 pigs were separated into four “extreme” groups of High or Low virus load crossed
with High or Low weight gain by separating on the uncorrelated linear combinations (prin-
cipal components) of the variables AUC21 and WG42 (Arceo et al. [1]). Trial 1-3 pigs were
grouped visually as rebound pigs and non-rebound pigs (Boddicker et al. [3]). Islam et al.
[19] visually identified three types of virus load curves from all eight trials and identified
parametric curves appropriate for each type, which allowed statistically driven classification
of pigs into two curve types, rebound and non-rebound. Our analysis supports at least three
distinct groups of pigs, but “rebound pigs” appear in all three groups (Figure (3.16)), likely
because weight trajectories seem to be more important in determining clusters. The advan-
tage of our approach for identifying clusters is that it does not rely on arbitrary boundaries
to define groups (as in Arceo et al. [1]) or preliminary visual detection of groups (as in
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Boddicker et al. [3] and Islam et al. [19]).

There are a number of potential further directions for this research. In the short term,
since virus load was moderately more associated with WUR than weight gain (Boddicker
et al. [3]), it would also be of interest to test the virus load time series alone for effect of
WUR. Previous trials found little evidence of a difference between WUR genotypes 1 and
2, so we might also reduce this effect to a binary trait and retest. In the long term, exten-
ding the model to handle additional random effects and, particularly, fixed effects from the
many other loci measured in such a study would make this model available as a tool for
Genome-wide association studies (GWAS).

The advantage of this model is that it allows simultaneous analysis of multivariate responses,
which typically have been reduced to a single univariate measure before use in GWAS (see
Visscher et al. [39]). There is always trouble choosing a univariate response or defending the
one chosen against questions of hidden optimization (how many measures did the resear-
cher test before settling on the one published in the study ?). In addition, extension of the
model to handle covariation between time series could reveal relevant biological associations.

In this work, we proposed a multi-dimensional functional model-based clustering procedure
for the analysis of time-course and longitudinal data. We developed a criterion based on an
approximation of the marginal log-likelihood for model selection. The MLL criterion proved
to be very effective. The simulation study and numerical experiments on real datasets (from
gene expression field, bioinformatics or biology) showed that the model performs very well
and challenges other models committed to the same analysis. One of the important aspects
of the model is its ability to incorporate mixed effects in the clustering analysis. The model
has been implemented in JAVA code and it is available from the second author’s web-site.
For the comparison study, we were hindered by the non-availability of easy to implement
codes from competing algorithms.
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Chapitre 4

FUNCTIONAL MODEL-BASED CLUSTERING
WITH LASSO-TYPE PENALIZATION FOR

LONGITUDINAL DATA

Abstract
We propose a new time-course or longitudinal data analysis framework that aims at com-
bining functional model-based clustering and the Lasso penalization to identify groups of
individuals with similar patterns. An EM algorithm-based approach is used on a functional
modeling where the individual curves are approximated into a space spanned by a finite
basis of B-splines which dimension as well as the required number of functional principal
components and the number of clusters are determined by penalizing a mixture of Student’s
t-distributions with unknown degrees of freedom. The first penalty term shrinks the coef-
ficients of the cluster means on each functional principal component and helps to estimate
the optimal number of principal components. The second penalty term shrinks the pairwise
distances of cluster means and leads to an optimal estimation of the unknown number of
clusters. The penalization or tuning parameters are set by Latin Hypercube Sampling (LHS)
and their optimal values are found either by cross-validation or through the Bayesian Lasso
functional clustering model developed herein. We use simulation study with few numerical
examples and we apply the new methodology to a chronic obstructive pulmonary disease
real dataset in a study of the microarray transcriptome of rats exposed to cigarette smoke.

Key words : Longitudinal data, model-based clustering, sparse longitudinal data, func-
tional data analysis, mixture student, gene expression, Lasso penalization.
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4.1. Introduction
Longitudinal data are usually analyzed using the very flexible class of linear mixed models
(Laird and Ware [21] ; Verbeke and Molenberghs [31]) which explicitly decompose the va-
riation in the data into between and within-subject variability. However, the work of [34]
has shown that another flexible methodology, Functional data analysis (FDA), can be a
very useful complementary tool. Functional data analysis, which was primarily designed for
the analysis of random trajectories and infinite-dimensional data, is rapidly evolving. Many
interesting procedures incorporating this approach have recently emerged in statistics and
bioinformatics in order to analyze time-course gene expression data. Clustering and classi-
fication techniques are two of the major applications of the functional approach with this
type of genomic data (Ullah and Finch [30]). By definition, functional data clustering is
used to search for natural groupings of data with similar characteristics. Recently, [19] re-
viewed the main literature on functional data clustering. They noted that most approaches
fall within three broad categories : (a) the two-stage method that consists of applying di-
mension reduction techniques to the data before performing clustering ; (b) the machine
learning approach that uses nonparametric techniques on specifically defined distances or
dissimilarities between curves ; and (c) the model-based clustering approach which assumes
a probabilistic mixture distribution on either the principal components (the FPCA scores)
or the expansion coefficients associated with a functional data expansion into a finite di-
mensional basis of functions. Our present work falls into this latter category.

James and Sugar [20] seems to have been the first authors to introduce a functional model-
based clustering method. They incorporated in the functional model a Gaussian-mixture
distribution for the expansion coefficients associated with a finite spline basis. For rougher
curves, Giacofci et al. [11] proposed a Gaussian-mixture model on a wavelet decomposition
of the curves. Recently, Adjogou et al. [1] introduced a Bayesian model based on splines in
which the clusters are modeled by a mixture of Student’s t-distributions. An advantage of
this latter model lies in the introduction of a principled way based on Bayes factors to choose
the number of clusters, a problem that is the focus of the present paper. A different ap-
proach has been proposed by [26]. These authors assume that the curves arise from a mixture
of regressions on a polynomial basis, with possible changes in regime at each instant of time.

In this work, we are particularly interested in shedding light into the mechanisms underlying
critical exposure to tobacco smoke. Exposition to tobacco smoke at long-term chronic levels
as well as at acute high levels represent known risks to human health. In order to understand
the initial molecular events of chronic obstructive pulmonary disease (COPD) that leads to
smoking related symptoms, [28] studied the microarray transcriptome of rats exposed to
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cigarette smoke. During a period of 34 weeks, male Spague-Dawley rats were examined in
a time-course study. This consisted of triplicate measures at 12 precise time points. The
interval periods were chosen so that time-points 2 to 5 may be considered as early stage
exposure with acute symptoms, while time-points 8 to 13 may be considered as prolonged
exposure with chronic symptoms. The initial study analyzed the data with t-statistics asso-
ciated with gene expression differences between exposed and control rats. These revealed a
strong presence of upregulation of metabolic processes accompanied by stress response and
genes involved in inflammation. During the later phase of smoke exposure the expression of
genes related with immunity, and defense progressively increased.

In this paper, we extend the analysis of these data using the functional approach mar-
ried with model based clustering. The idea is to find groups or classes of genes/proteins
that are either upregulated or downregulated at the different stages of the exposure. The
functional approach is needed since the data consist of time-course expressions ; the model-
based approach is used to cluster these time-courses. This is roughly done by reducing the
dimension of the functional data to a set of latent variables which are in turn used for clus-
tering. The discovering of the latent variables and the clustering are done simultaneously
in the proposed model using a Lasso-type penalization approach embedded into a Bayesian
framework.

Our method is also useful for the analysis and clustering of general complete or sparse
time-course or longitudinal data. It is inspired by recent works in variable selection for
clustering of high-dimensional data (see for example Bouveyron and Brunet [2] for a nice
review). Nowadays, penalizing criteria for clustering are the preferred methods of variable
selection for high-dimensional data. Since the pioneering work of Tibshirani [29], where the
Lasso was introduced, several works on model based clustering have introduced L1 or L∞

penalty terms in the log-likelihood function (Pan and Shen [24], Wang and Zhou [32]). This
is done to yield model sparsity in the form of variable selection (which may also be seen as
a form of dimension reduction). Traditionally, the Lasso penalizes the absolute values (L1-
norm) of coefficients that are key to the model. Our procedure uses a double Lasso-penalty
in the clustering criterion in order to yield optimal choices for the reduced dimension of
the data (similar to variable selection in the regression context) and the number of clusters.
The strength of the regularization is then determined by two penalization parameters whose
optimal values are unknown. Usually, these parameters are tuning parameters, that is, the
model is estimated for some particular chosen values of these parameters. Their optimal
values are usually determined by cross-validation techniques. In this work, we introduced a
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Bayesian Lasso penalization model. Cross-validation is not necessarily needed. The regula-
rization parameters are incorporated in the model through a Lasso-driven prior distribution.

The paper is organized as follows. Section 2 introduces the model-based clustering with
Lasso penalty (model, parameter estimation, implementation). Section 3 discusses the mo-
del selection method. Section 4 describes a simulation study and comparison with existing
methods. In Section 5 we apply our methodology to the analysis of the tobacco exposure
data.

4.2. Functional model-based clustering with Lasso penaliza-
tion

We introduce in this section our penalized functional model-based clustering method and
the inference procedure including the expectation-maximization (EM) algorithm (Dempster
et al. [4]). The fundamentals of the model are similar to the one developed in Adjogou et al.
[1]. It combines functional principal components analysis and model-based clustering in a
mixed effects model setting and a Bayesian framework for the estimation of the parameters.

4.2.1. Fundamentals of the model

We recall below the main characteristics of the basis model. If Yi(·) denotes the source
function that originally generates the ni observed measurements Yi = (yi1, ..., yini) at time
points ti = (ti1, ..., tini) for the individual i in a longitudinal study, it’s evaluation at a
specific time t is assumed to be decomposed in the form :

⎧
⎨

⎩
Yi(t) = µ̂(t) + f̂(t)Tαi + ϵi(t) (i = 1, ..., N)
αi = µzi

+ γzi
i

(4.2.1)

where µ̂(t) is an overall mean function ; the functions f̂j(t) are the k functional princi-
pal components (FPC) with f̂(t)T = (f̂1(t), . . . , f̂k(t)) and the ϵi(t) are error terms. The
k-dimensional vectors αi = (αi1, ..., αik) are the component scores representing the coef-
ficients of Yi(t) on the FPCs. Furthermore, a mixed effects framework is imposed on the
clustering model through the component scores. Indeed, the component scores of each indi-
vidual i are expressed as the sum of the individual i’s cluster mean µzi

and his own effect
γzi

i (or the deviation from it’s cluster effect). The variables zi are the cluster membership
indicators. Thus, the combination of the two expressions of Equation (4.2.1) yields a 3-term
decomposition for the curve Yi(t) in addition to the error term ϵi(t) : the overall mean [µ̂(t)],
the cluster effect

[
f̂(t)Tµzi

]
and the individual-specific effect

[
f̂(t)Tγzi

i

]
. All those terms

are rewritten in a matrix form using the specification of the model in a finite-dimensional
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basis b(t)T = (b1(t), . . . , bq(t)) of B-splines to obtain the following expression :

Yi = Biθµ + BiΘµzi
+ BiΘγzi

i + ϵi. (4.2.2)

In Equation (4.2.2), the ni-dimensional vector Yi contains the observed measurements at
time points ti and Bi = [b(ti1), ..., b(tini)]T is the matrix of the spline basis evaluated at
those time points. The q-dimensional vector θµ and the matrix Θ represent, respectively,
the coefficients in the basis of the overall mean function µ̂(t) = b(t)Tθµ and the principal
components functions f̂(t)T = b(t)TΘ. The measurement errors ϵi are assumed to follow a
multivariate Student’s t distribution with unknown degrees of freedom ν0. The functional
model-based clustering in Equation (4.2.2) is embedded into a Bayesian framework and the
following assumptions are made to complete the setup.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

zi ∼ Multinomial(1; π1, . . . , πG) with (π1, . . . , πG) ∼ Dirichlet(a1, . . . , aG)
µg ∼ Nk(0, Γµ) and Γµ ∼ InvWishart(m, (m − k − 1)Ik)
γg

i ∼ Nk(0, Γg) and Γg ∼ InvWishart(m, (m − k − 1)D)
D = diag(d11, d22, . . . , dkk) with djj ∼ Inv χ2(m) and i.i.d (j = 1, . . . , k)
[ϵi|νi ∼ Nni(0, σ2νiIni) and νi ∼ Inv χ2(ν0)] ⇒ [ϵi ∼ tν0(0, σ2Ini)]
with σ2 ∼ InvGamma(ασ, βσ).

(4.2.3)

In general, the clustering of the individuals based on this model relies essentially on a space
of much reduced dimension than the original longitudinal trajectories through the decompo-
sition on the functional principal components. In the perspective of the EM algorithm used
to estimate the parameters, the log-likelihood of the model as stated in Equations (4.2.2) and
(4.2.3) is obtained by considering the « complete data » (Y, W) where Y = {Y1, ..., YN}
denotes the observed data composed of the N longitudinal trajectories (i = 1, ..., N) and
W = {z1, ..., zN , γz1

1 , ..., γzN
N } = {z⃗, γ⃗z} denotes the missing data composed of the cluster

indicators and the individual-specific effects. Let Π denote the set of the model parameters
to be estimated and, let L(Y, W; Π) = log[p(Y, W; Π)] denote the log-likelihood derived
from the distributions involved in the model. Note that Π = {ν⃗, µ⃗, Γ⃗, Λ} where

⎧
⎨

⎩
ν⃗ = {ν1, ..., νN}; µ⃗ = {µ1, ...µG}; Γ⃗ = {Γ1, ..., ΓG};
Λ = {θµ, Θ, D, Γµ, π1, π2, ..., πG, ν0, σ2}.

(4.2.4)

The expression of L(Y, W; Π) is presented in Appendix A.2 as well as the details leading
to its computation.

4.2.2. The penalized log-likelihood

One of the main goals of the model is to adequately determine the two characteristic mo-
del parameters : the number of clusters G and the dimension k of the functional principal
components f̂(t). Unlike in Adjogou et al. [1], the dimension q of the B-splines basis is not
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considered as a parameter to be estimated. The number of basis functions is either set to a
specific value with respect to the measurement time points of all individuals, or indirectly
defined by supplying the break points or knots. The motivation for this decision comes from
one of the conclusions of the simulation study in Adjogou et al. [1] which indicates that the
value of the parameter q has very little influence on the clustering results especially on the
Adjusted Rand Index (ARI) scores.

In this new framework, we choose to estimate k and G by penalizing the log-likelihood
function. The two penalizations are Lasso-type ones. The main objective is to obtain a
sparse solution with many estimates of cluster means basis coefficients automatically shrin-
ked, thus realizing dimension reduction and with many inter-cluster distances shrinked, thus
merging homogeneous clusters. The proposed penalized log-likelihood function is defined as

Lpen(Y, W; Π) = L(Y, W; Π) − Pλ(Π) (4.2.5)
= log[p(Y, W; Π)] − Pλ(µ⃗)

where µ⃗ = {µ1, ...µG} and Pλ(·) denotes a Lasso-type penalty function with tuning para-
meter λ. In our model, a Lasso-type penalty function is applied to the cluster means and
another one is applied to the distances between those cluster means. The penalization Pλ(µ⃗)
then takes the form :

Pλ(µ⃗) =
k∑

j=1
Pλ1

⎛

⎝
G∑

g=1

∣∣∣µj
g

∣∣∣

⎞

⎠ +
G∑

g=1

g∑

h=1
Pλ2

(
Dist(µg, µh)

)

= λ1

k∑

j=1

⎛

⎝
G∑

g=1

∣∣∣µj
g

∣∣∣

⎞

⎠ + λ2

G∑

g=1

g∑

h=1
Dist(µg, µh) (4.2.6)

where the function Dist(., .) can optionally be the L1 norm distance or the L2 norm distance.
The first term of the penalty function which is associated with the hyperparameter λ1 is used
to shrink towards zero, for a given j, the estimates (∑G

g=1

∣∣∣µj
g

∣∣∣) which are close to zero. As a
consequence, the model will reduce the dimension k of the cluster space by eliminating those
principal components j that are irrelevant for the model. The second term of the penalty
function which is associated with the hyperparameter λ2 is used to shrink towards zero the
distances of very similar estimated cluster means. As a consequence, any two clusters with
very similar cluster means will be forced to merge. This will reduce the initial assumed
number of clusters G. Only clusters with very different means are expected to remain.

4.2.3. Choosing the penalty parameters by cross-validation

Most of the literature concerning Lasso-type penalization suggest using cross-validation in
order to estimate and fix the value of the penalty parameters λ1 and λ2. Note that this



96

procedure basically amounts to estimating the model for a given pair of optimal values
of (λ1, λ2), ignoring the fact that the data (and the model) have been previously used to
choose the pair (λ1, λ2). Another issue with cross-validation is its computational cost. This
may be large for large data and complex models such as the one considered in this paper.
Note that in order to find an optimal pair (λ1, λ2), a grid of values in the two-dimensional
space of penalty parameters must be chosen. Therefore, a third issue with this procedure
relates to how to choose the grid. If a simple uniform grid is to be chosen, then most of
the time, the size of the grid would be too large. For example, for a 20 × 20 grid, one al-
ready needs to fit 400 models times the number of the cross-validation folds ; if one performs
a 5-fold cross-validation, the number of times one would need to fit the model would be 2000.

In a K-fold cross-validation for each pair (λ1, λ2), the dataset is randomly split into K

mutually exclusive subsets of approximately equal size, called the folds. The model is esti-
mated and a measure of the goodness of fit such as the log-likelihood is computed K times.
Each time, (K − 1) subsets are put together and used as training set to estimate the model.
The other remaining subset is used as validation set to compute the log-likelihood. The
cross-validation log-likelihood is the overall mean from the K folds.

We suggest to choose a grid by using techniques from design of experiments. One parti-
cular useful technique for computer experiments is the use of Latin hypercube sampling
(LHS). These are designs that try to fill in the search space much more efficiently than a
uniform grid. For example, a uniform grid of size 10×10 may be too coarse to really find the
optimal pair. But a LHS array of size 100 would cover the space of the penalty parameters
in an efficient way. The LHS technique has been applied to many different computer models
since 1975 (Steck et al. [27], Iman et al. [16, 17], Iman and Conover [14, 15], Iman and
Helton [18], Wyss and Jorgensen [33]).

We suggest to use a hierarchical search with small LHS arrays. This sampling approach
is computationally cheap and ensures that each of the input variables has all portions of
its range represented, which is a very interesting requirement in order to evaluate as many
values of the tuning parameters as possible. First, in order to find the right order of ma-
gnitude of the penalty parameters, a search over a Latin array of size 50 is made. Once the
optimal values in this initial search is found, a second search is directed in a reduced space
of values (that hopefully covers the region where the true optimal parameters are found)
given again by a small-size LHS array. This search strategy works well in our experiments.
For the implementation of LHS in our procedure, we use the package DiceDesign (Dupuy
et al. [5]) developed in the software R.



97

The cross-validation criterion is entirely based on the penalized log-likelihood presented
in Equation (4.2.5). The most commonly used cross-validation practices are based on either
a 3-fold or a 10-fold. Depending on the size of the dataset to be analyzed, one may prefer
the 3-fold for some gain in the execution time.

4.2.4. The Bayesian Lasso functional clustering model

Even though we managed to reduce the number of model fits considerably by using LHS
procedure, the cost of the search is sometimes still too high for large datasets. To alleviate
this cost and to make sure we have obtained the optimal penalty parameters, we propose a
model where the penalty function is part of the likelihood. This allows us to consider the
pair (λ1, λ2) as model parameters, just as the rest of the parameters. Since the form of the
penalty function is essential, we simply propose to normalize the penalized likelihood, that
is, to make it a density. Therefore, this solution requires finding the normalizing constant
of the penalized likelihood function.

Indeed, the penalized likelihood function derived from the penalized log-likelihood in Equa-
tion (4.2.5) can be expressed as

[
Lpen(Y, W; Π) = p(Y, W; Π) · e−Pλ(µ⃗)

]
and we search an

appropriate transformation to be applied to that expression in order to make it a den-
sity function. The complete expression of the density function p(Y, W; Π) and details on
its computation are presented in Appendix A.2. We simply recall here that p(Y, W; Π)
satisfies :

p(Y, W; Π) = p(Y⃗, z⃗, γ⃗z; ν⃗, µ⃗, Γ⃗, Λ) (4.2.7)

=
N∏

i=1
p(Yi, zi, γzi

i

∣∣∣νi, µ⃗, Γ⃗, Λ) · p(νi

∣∣∣µ⃗, Γ⃗, Λ) ·
G∏

g=1
p(µg) · p(Γg) · p(Λ)

= p̄(Y, W; Π) ·
G∏

g=1
p(µg).

where
[
p̄(Y, W; Π) = ∏N

i=1 p(Yi, zi, γzi
i

∣∣∣∣νi, µ⃗, Γ⃗, Λ) · p(νi

∣∣∣∣µ⃗, Γ⃗, Λ) · ∏G
g=1 p(Γg) · p(Λ)

]
. The

only component in Equation (4.2.7) that involves explicitly the cluster means µg as in
the penalty function Pλ(µ⃗) is the term p(µg) or more precisely the distributions of the µg

which are Nk(0, Γµ). The other components (gathered in p̄(Y, W; Π)) are known density
functions that do not depend on µ⃗. In order to normalize Lpen(Y, W; Π), we only need
to normalize the induced prior on µ⃗, given by

[∏G
g=1 p(µg) · e−Pλ(µ⃗)

]
. That is, we need to
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compute the integral

C(λ1, λ2, Γµ) =
⎡

⎣
∫ ⎛

⎝
G∏

g=1

e− 1
2 µT

g Γ−1
µ µg

(2π)k/2|Γµ|1/2

⎞

⎠ e−Pλ(µ⃗)d(µ1, ..., µG)
⎤

⎦ . (4.2.8)

The normalized penalized log-likelihood is given by

Lpen
c (Y, W; Π) = log[p(Y, W; Π)] − Pλ(µ⃗) − log C(λ1, λ2, Γµ). (4.2.9)

We refer to the model based on this normalized penalized log-likelihood as a Bayesian Lasso
functional clustering model or Bayesian Lasso FCM for short. We use Monte Carlo numerical
integration to estimate the integral in (4.2.8). We sample values {µ⃗m}M

m=1 according to a
kG-Multivariate Normal distribution with mean zero and block-diagonal variance-covariance
matrix with G blocks equal to Γµ. The sampling is done with respect to the prior distribution
of µ⃗, which is exactly the term in parentheses in the integral above. Consequently, our
estimator C̃(λ1, λ2, Γµ) is given by

C̃(λ1, λ2, Γµ) =
[

1
M

M∑

m=1
e−λ1

∑k

j=1(
∑G

g=1 |µj
g(m)|)−λ2

∑G

g=1
∑g

h=1 Dist(µg(m),µh(m))
]

. (4.2.10)

4.2.5. EM algorithm : Expectation and Maximization steps

As mentioned in Section 4.2.1, the iterative EM algorithm is used to estimate the parameters
of the model. The function S(Π|Π(t)) to be maximized by the EM algorithm for maximum
likelihood methods is defined as :

S(Π|Π(t)) =
⎧
⎨

⎩
Q(Π|Π(t)) − Pλ(µ⃗) − log C(λ1, λ2, Γµ) for the Bayesian Lasso FCM,
Q(Π|Π(t)) − Pλ(µ⃗) for cross-validation of the penalized clustering.

(4.2.11)
where

[
Q(Π|Π(t)) = EW|Y;Π(t) [log p(Y, W; Π)]

]
. The observed data Y and the missing data

W are as previously defined in Section 4.2.1. The computation of Q(Π|Π(t)) at the expec-
tation step is identical to that of Adjogou et al. [1]. All the analytical developments leading
to its calculus are the same as presented in Appendix A.2.

The maximization step is similar to the one in Adjogou et al. [1] apart from a few dif-
ferences. Indeed, the maximization of S(Π|Π(t)) is identical to the one of Q(Π|Π(t)) for all
the parameters except for the cluster means µg because of their additional appearance in
the penalty function. The results of the M-step for the other parameters do not depend on
the model chosen, since the normalizing constant of the Bayesian Lasso FCM depends only
on the current value of the parameters. The M-step equations are presented below. Note
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that Appendix A.2 includes details on the expressions involved in the following equations
such as Pig, γ̂ig and V̂ g

i .

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Γ(t+1)
g =

[(∑N
i=1 Pig

)
+ (m + k + 1)

]−1 [(∑N
i=1 Pig(γ̂igγ̂T

ig + V̂ g
i )

)
+ (m − k − 1)D(t)

]

π(t+1)
g = (∑N

i=1 Pig)+(ag−1)

N+
(∑G

g=1 ag

)
−G

(0 ≤ π(t+1)
g ≤ 1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ(t+1)
µ =

[∑N
i=1

(
BT

i Bi

)
ν−1(t)

i

]−1 [∑N
i=1

∑G
g=1

Pig

ν
(t)
i

BT
i

(
Yi − BiΘ(t)µ(t)

g − BiΘ(t)γ̂
g
i

)]

Θ(t+1)
j =

{∑N
i=1

∑G
g=1

Pig

ν
(t)
i

[
(αig)2

j + (V̂ g
i )jj

] (
BT

i Bi

)}−1
{Ω1 − Ω2} ; for j = 1, ..., k.

Ω1 = ∑N
i=1

∑G
g=1

Pig

ν
(t)
i

[
(αig)jBT

i

(
Yi − Biθ

(t)
µ

)]
; (αig)j = (µg + γ̂g

i )j

Ω2 = ∑N
i=1

∑G
g=1

Pig

ν
(t)
i

[∑k
h ̸=j

(
(αig)j(αig)h + (V̂ig)hj

) (
BT

i Bi

)
Θh

]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ2
(t+1) =

1
2

{∑N

i=1
∑G

g=1
Pig

ν
(t)
i

[∥∥∥Yi−Biθ
(t)
µ −BiΘ(t)µ

(t)
g −BiΘ(t)γ̂g

i

∥∥∥
2
+trace

(
BiΘ(t)V̂igΘT

(t)BT
i

)]}
+βσ

1
2 [∑N

i=1 ni]+(ασ+1)

ν(t+1)
0 = bν0 +1+

√
2bν0 +1

bν0
with bν0 = exp

(
1
N

∑N
i=1(log ν(t)

i + 1/ν(t)
i ) − 1

)

ν(t+1)
i =

{
ν

(t)
0 +

∑G

g=1
P̂ig

σ2
(t)

[∥∥∥Yi−Biθ
(t)
µ −BiΘ(t)µ

(t)
g −BiΘ(t)γ̂g

i

∥∥∥
2
+trace

(
BiΘ(t)V̂igΘT

(t)BT
i

)]}

ni+2+ν
(t)
0

d(t+1)
jj = 1

2

⎡

⎢⎢⎣

(mG−m−2)+
√

(mG−m−2)2+4m×(m−k−1)×
∑G

g=1

{
Γ−1(t)
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.
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The results of the M-step for the cluster means µg are presented below for each of the two
options of the Dist(·, ·) function in the second penalty term from Equation (4.2.6).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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µj(t+1)
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⎡

⎢⎢⎣
A1−λ1

{
sign(µj(t)

g )
}

+
{

λ2
∑G

h̸=g

µ
j(t)
h

Dist(µg,µh)

}

B1+
{

λ2
∑G

h̸=g
1

Dist(µg,µh)

}

⎤

⎥⎥⎦ for the L2 norm distance

µj(t+1)
g =

⎡

⎣
A1−λ1

{
sign(µj(t)

g )
}

−λ2

{∑G

h=1 sign(µj(t)
g −µ

j(t)
h )

}

B1

⎤

⎦ for the L1 norm distance.

Note that sign(x) equals −1 if x < 0, equals 1 if x > 0 and equals 0 if x = 0. It is worth
noting that all the constraints imposed on the parameters in Adjogou et al. [1] (such as D
being diagonal) still prevail here in the estimation of the parameters.

4.3. Model selection
In this section, we describe the steps toward the selection of the optimal model. While Ad-
jogou et al. [1] performs model selection by computing criteria such as AIC, BIC or MLL
(Marginal log-likelihood) developed therein, we consider in this new framework two Lasso-
type penalizations and select the optimal model through cross-validation or preferably, the
Bayesian Lasso FCM which is equivalent to a 1-fold cross-validation. For either a K-fold
cross-validation criterion (where, usually, K = 3 or 10) or the Bayesian Lasso FCM, the first
step of model selection consists of identifying the optimal values of the two tuning parame-
ters (λopt

1 , λopt
2 ) from a grid of proposed values defined through Latin hypercube sampling

(see Section 4.2.3). The second step consists of identifying the optimal number of functional
principal components kopt and the optimal number of clusters Gopt. The following are the
steps for model selection :

(1) Postulate values for k and G : Let kpos and Gpos be the postulated values of the
number of functional components and the number of clusters, respectively. As men-
tioned in Section 4.2.2, the B-splines basis dimension q is not estimated but rather
set manually. However, the value of q is not chosen at random. Some rules govern its
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choice. For a B-splines basis of order mB (with polynomials of degree dB = mB − 1),
the number of basis functions can be expressed as q = mB +iB where iB is the number
of interior knots. And q must satisfy q ≥ mB. For example, q must be at least 4 in
the case of cubic splines. Furthermore, the value of q must be large enough to ensure
a significant number of interior knots that will be equally spaced within the range of
the measurement time points [min tij, max tij] (1 ≤ i ≤ N ; 1 ≤ j ≤ ni) in order to
span the individual curves. Also, as the columns of the (q,k)-dimensional matrix Θ
are orthonormal due to the orthogonality constraint ΘTΘ = Ik, the value of q must
also satisfy q ≥ kpos. The values (q,kpos,Gpos) are used to initialize each single run of
the EM-algorithm.

(2) Perform the EM algorithm with (λ1,λ2) : For each couple (λ1, λ2) and for each
postulated (initial) values of the parameters (kpos, Gpos), either the Bayesian Lasso
FCM is fitted using the whole dataset, or a K-fold cross-validation is performed on
the training/validation sets as described in Section 4.2.3.
The parameters Θ, θµ and σ2 are initialized by assuming a model with a single clus-
ter. The cluster parameters such as µg, Γg and πg as well as the cluster membership
indicators zi may be initialized by applying any clustering procedure to the scores
αi yielded by the single-cluster model. In our experiments, we used the Gaussian
model-based clustering procedure implemented in the mclust package (Fraley and
Raftery [6, 7, 8]).

(3) Find (λopt
1 , λopt

2 ) : For the Bayesian Lasso FCM, step 2 ends up with the computed
value of the penalized log-likelihood, the estimated number of valid clusters (that is,
the number of non-empty clusters), denoted Gvalid, and the estimated parameters.
Recall that step 2 is performed for each couple (λ1, λ2) in the LHS grid. The opti-
mal values (λopt

1 , λopt
2 ) are defined as the couple (λ1, λ2) that maximizes the Bayesian

Lasso FCM log-likelihood. The next step in this case is to determine kopt and Gopt

based on the estimators yielded by the corresponding FCM with (λopt
1 , λopt

2 ).

In the case of a K-fold cross-validation, the penalized log-likelihood value associated
with each (λ1, λ2) is computed as the mean of the K penalized likelihood values from
the validation sets of the data folds (as opposed to the training sets of the data folds
used for estimation). The optimal values of the tuning parameters are defined as the
couple (λ1, λ2) that maximizes the cross-validated penalized log-likelihood. Then, a
final run of the algorithm with the chosen (λopt

1 , λopt
2 ) is launched using the whole
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dataset. The estimators from this run are used to compute kopt and Gopt.

(4) Find (kopt,Gopt) : The optimal values of G and k are identified by examining, res-
pectively, the matrix of the between distances of the cluster means, DM , and the
vector of elements vj =

[∑G
g=1

∣∣∣µj
g

∣∣∣
]

with j = 1, ..., kpos, which will be denoted by
VM = (vj)kpos

j=1 .

• Determining kopt : The optimal number of functional principal components is
obtained by reducing kpos. The elements associated with very small values of vj are
dropped from the model. For that purpose, two criteria are proposed and we consider
as kopt the minimum of the values provided by these two criteria.

(a) The first criterion is inspired by the notion of inertia in classical principal compo-
nents analysis. Recall that the inertia of a factor corresponds to the information
it carried. In our setup, the inertia of a the jth component is associated with its vj

value. Similarly to the criterion of cumulative proportion of total inertia, we search
among the top ranked vj values for the minimum number of principal components
contributing to at least 80% of the cumulative sum ; that is, we look for the smal-
lest k∗ ≤ kpos such that ∑k∗

j=1 v(j) ≥ 0.80 ∑kpos

j=1 vj, where v(1) ≥ v(2) ≥ .... ≥ v(kpos)

are the ranked statistics associated with the components of the vector VM .
(b) The other criterion is based on an approximate multiple testing procedure. Consi-

der {µj
1, . . . , µj

G}, as a sample, and vj =
[∑G

g=1

∣∣∣µj
g

∣∣∣
]

as an associated statistic. We
would like to test the null hypothesis of zero posterior expectation E(µj

g) = 0, for
all g = 1, . . . , G. As a heuristic, we suppose that under the null hypothesis the
posterior of each µj

g follows a mean-zero Normal distribution with a common va-
riance σ2

k. Under the null hypothesis, vj is distributed as a sum of G independent
half-Normal(0, σ2

k). The half-normal distribution is a fold at the mean of an ordi-
nary normal distribution with mean zero. It is essentially the distribution of the
absolute value of a normal distribution with mean zero. Although the distribution
of our test statistic is known, its density is not known in closed form. However, we
could easily estimate percentiles from this distribution by Monte Carlo simulation
if σ2

k were known. Note that under the null hypothesis, E(|µj
g|) = σk

√
2/π. There-

fore, up to a constant, the mean of the components of the vector VM is an estimate
of σk. In practice, we expect only a few components to be negligible ; so the es-
timate of σk may be taken from only the smallest vjs, or even just the minimum
of the vjs. Since kpos simultaneous tests need to be performed (one for each vj),
we apply a Bonferroni correction and work with a threshold Rα/k so that we do
not reject the null hypothesis if the observed value of vj is smaller or equal to this
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threshold. Note that the threshold is given by the equation P (T ≤ Rα/k) = α/k,
where T is distributed as σk times the sum of G independent half-Normal(0, 1).
That is,

Rα/k = σkqT̃ ,α/k

where qT̃ ,α is the 100 αth percentile of the sampled distribution of the sum of G

independent half-Normal(0, 1).

• Determining Gopt : We recall that the fundamental idea in the identification of the
optimal number of clusters is the merging of clusters with identical characteristics,
that is, with very small between distances. We suppose that the distances between
vectors given by the matrix DM = (Dgh)1≤g,h≤G are Euclidean distances. Our heu-
ristic assumes that under the null hypothesis of null distance (that is µg = µh), the
posterior distribution of each pair of means is given by (µg − µh) ∼ Nk(0, σ2

GIk) with
a common scale parameter σ2

G. In this case, we have :

D2
gh =

[
k∑

l=1
(µl

g − µl
h)2

]

∼ σ2
Gχ2

k

We estimate the scale parameter σ2
G with the mean of the squared distances as

σ̂2
G =

[
2

G(G−1)
∑k

g<h D2
gh

]
, and plug this estimator in the above equation. As in the

case of kopt, in practice, we only use the smallest elements Dgh in the estimation of
σ̂2

G. Using the Bonferroni correction for multiple testing, the null hypothesis is not
rejected if the observed value D2

gh is not larger than σ̂2
G times the lower 100(α/G)th

percentile of a χ2
k distribution. Note that for simplicity, we have assumed mutual

independence between the distances.

4.4. Simulation study
We conduct a simulation study to examine the performance of the proposed methodology.
We investigate specifically the ability of the method to reproduce and cluster original curves
by correctly estimating the key parameters from postulated values. Following the described
model selection procedure, the simulation study also concentrates on identifying the most
relevant threshold to consider for the determination of Gopt.



104

Simulations setup

The process used to generate the simulated curves is the same as described in Adjo-
gou et al. [1]. Various curves are generated based on different values of the sample size
N ∈ {100, 500, 900, 4000}, the spline basis dimension q ∈ {10, 12, 14, 15, 20}, the num-
ber of functional principal components k ∈ {2, 4, 5, 6, 8} and the number of clusters G ∈
{3, 6, 9, 15, 20, 40}. Overall, for each combination of (N, q, k, G), the parameters of the model
{θµ, Θ, D, Γµ, π1, π2, ..., πG, ν0, σ2, µ1, ...µG, Γ1, ..., ΓG} are generated at random according
to the distributions assumed in the proposed model. We consider individual curves measured
at 12 period times. This choice reflects the size of data from the microarray transcriptome
of rats exposed to cigarette smoke (see Section 4.5).

For the simulations, nLHS = 50 couples (λ1, λ2) are randomly obtained from LHS with
bounds (aLHS = 0.1 and bLHS = 50). As the B-splines basis dimension q is not estimated,
its value is set to the one used to generate the curves. We postulate kpos = 8 for the number
of functional principal components. For the sake of efficiency in the simulations, the pos-
tulated values Gpos for the number of clusters are data dependent, and depend on the true
number of clusters G. The corresponding set of values are given in Table 4.1.

Three different thresholds were proposed to estimate the optimal number of clusters. As
mentioned in the previous section, we consider only the smallest distances for the estima-
tion of σ̂2

G. The first criterion, 1low, uses the smallest distance in DM ; the second criterion,
25low, uses the mean of the distances falling below the first quartile of the distances in
DM ; and the third criterion, 50low, uses the mean of the distances falling below the median
of the distances in DM .

Table 4.1. Values of postulated number of clusters according to G

G Gpos values
3 12 10 8 6 4
6 16 14 12 10 8
9 19 17 15 13 11
15 26 24 22 20 18
20 30 28 26 24 22
40 50 48 46 44 42
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Simulation analysis tools

The simulation is based on 12 datasets generated as described above, each one corres-
ponding to a specific (and different) combination of (N, q, k, G). For each dataset, the
couples (λ1, λ2) were generated and the procedure was launched for each value of Gpos,
with kpos = 8. The quality of the results is assessed by comparing the partitions (cluste-
ring) created by the model and the original (true) cluster memberships. The comparison
was made through the Adjusted Rand Index (ARI) (Rand [25], Hubert and Arabie [13]).
A perfect agreement between the two partitions yields an ARI score of 1. The closest the
score is to 1, the more similar the partitions are. The ARI has become the standard mea-
sure of comparison in the statistical literature on clustering. Therefore, in addition to the
model parameters estimates, the relevant quantities yielded by each simulation run are
{kopt, Gopt

1low, ARI1low, Gopt
25low, ARI25low, Gopt

50low, ARI50low}, where the subindex represents the
criterion used to choose Gopt.

In order to calibrate the ARI index with the difficulty of the problem, we also report a
measure of data complexity as presented by Chen et al. [3]. Let N be the total number of
curves in the data, ng be the number of curves in cluster g, and MCg be the mean curve of
cluster g. Consider the following quantities of Homegeneity and Separation given respectively
by

H.ave =
[

1
N

N∑

i=1
Dist(Yi, MCzi)

]

, S.ave =
⎡

⎣ 1
∑G

g ̸=h ngnh

G∑

g ̸=h

ngnhDist(MCg, MCh)
⎤

⎦ .

The Homogeneity is calculated as the average distance between each curve and the mean
curve of the cluster it belongs to. It reflects the compactness of the clusters. The Separation
is calculated as the weighted average distance between the cluster mean curves. It reflects
the overall distance between clusters. As the indices H.ave and S.ave are closely related to
respectively within-cluster and between-cluster variances, the similarity ratio

Ratio =
[
1 −

(
N

N − 1

) (
H.ave

H.ave + S.ave

)]

serves as a measure of homogeneity. Therefore, datasets with large Ratios are easier to clus-
ter than those with small Ratios.

Simulation results

The first element of the simulation study is the comparison of the three criteria proposed to
estimate the optimal number of clusters. For each dataset, we computed, for each criterion,
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the average of the ARIs from the five different postulated Gpos. The results of an analysis
of variance indicate that the criteria are significantly different. As shown in Figure 4.1, the
criterion 1low appears to perform best. In Figure 4.2, we compare the similarity ratios and
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Figure 4.1. Comparison of the three criteria for model selection.

the criterion 1low average ARI1low for every dataset. In addition, in this figure we also
compare the performance of the current model with the one presented in Adjogou et al.
[1]. This latter model uses an approximate Bayes-factor type criterion to choose the model
parameters k, q and G. Because this model evaluates all possible models in a grid of values
of (k, q, G), its performance might be better than the one of our model. However, for the
same reason, its computational cost is much larger than ours. The boxplots in Figure 4.2 are
associated with the ARI values obtained from the five different postulated Gpos. The figure
shows that the results from the two different functional model-based clustering models are
comparable. However, our model has found the clusterings with much less computational
cost. Also, note that the trend in the similarity ratio is also depicted in the ARI averages.
This observation reflects that the clustering strength of the models are highly related to the
degree of complexity of the data.

Another element analyzed in the simulation is the impact of the proposed number of cluster
Gpos. The question addressed here is whether there is a significant difference in the clus-
tering results if Gpos is far or close to the real number of clusters. The answer would give
an indication on how to select Gpos in practice. For that purpose, we draw in Figure 4.3 a
scatterplot of the values (

√
Gpos −

√
G) (representing the gap between proposed and real
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Figure 4.2. Similarity ratio and model performance.

G) against the corresponding ARI1low criterion). There is no structure nor trend observable
from this figure. The conclusion is that there appears to be no relationship between the
clustering performance and the proposed G in the algorithm. No matter how close or far
Gpos is to the real number of clusters, the model performs similarly.
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Figure 4.3. Influence of postulated G

Finally, we evaluate the capacity of the model to replicate the real number of clusters in
the data. Consider the gap variable between estimated and real G given by (

√
Gest −

√
G).

For the non-penalized functional model of [1], the gap is a single value for each dataset.
For the penalized functional model presented here, the gap variable is represented by the
set of Gest obtained through the postulated values for G. This is reflected by the boxplots
in Figure 4.4. Note that the average gap values for the current model are very small and
comparable to the ones from the non-penalized functional model.
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Figure 4.4. Comparison of True and estimated number of clusters

4.5. Chronic obstructive pulmonary disease
We applied the Bayesian Lasso functional clustering model to shed light into the initial
molecular events linked to chronic obstructive pulmonary disease (COPD). The dataset,
described previously in the introduction section, relates to time-course genetic expression
difference between tobacco-smoke exposed rats (the treatment group) and a control group of
non-exposed rats (Stevenson et al. [28]). The dataset comes from the project GEO GSE7079
(Gene Expression Omnibus [9]) and is related to a study of molecular changes due to the
exposure of rats to tobacco smoke. It is a time-course data with 12 day time-points : 1, 3, 5,
14, 21, 28, 42, 56, 84, 112, 182 and 238. Probesets (genes) without any GO annotation were
discarded (Gene Ontology Consortium [10]). The 3464 probesets considered in our study
correspond to 39.4% of the original 8799 probesets in the dataset.

Analysis

We set the initial proposed number of clusters Gpos equal to 50, 20, and 10. These choices
led respectively to models with 22, 11 and 7 clusters. Despite the difference in the num-
ber of clusters, all three partitions are very similar in the sense that those partitions with
smaller number of clusters are basically formed by merging of clusters in the larger parti-
tions. Figure 4.5 displays the cluster means from all three partitions. The bottom row shows
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the estimated cluster-specific mean curves, while the plots on the first row show the two-
dimensional graphical representation of the functional principal components scores. Recall
that the cluster mean curves are given by linear combinations of the functional principal
components. For this particular data, these two-dimensional representations are exact be-
cause the estimated dimension k of the curves is exactly 2.
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Figure 4.5. Cluster mean curves for the three partitions found by the Baye-
sian Lasso clustering model. The first row displays the clusters in the two-
dimensional space of functional principal components (FPC) scores. The bot-
tom row shows the cluster mean-curves.

The three partitions of genes given by the Bayesian Lasso functional clustering model
were inspected for enrichment of functionalities with the DAVID platform (Huang et al.
[12], Maere et al. [22], National Institute of Allergy and Infectious Diseases, NIH [23]). The
partition of 22 clusters revealed several clusters highly enriched in functions previously attri-
buted to acute and chronic exposure to cigarette smoke : immune response/immune system
(clusters 1, 8, and partially 12), inflammation (clusters 15, 16), and apoptosis (clusters 3, 5,
6, 11). Surprisingly, these latter clusters, which are associated to late/prolonged exposure
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with cigarette smoke, do not share general expression patterns such as global up or down-
regulation profiles. However, clusters 15 and 16, associated with early exposure, do share
a common upregulated expression pattern. In the 7-cluster partition, four clusters may be
characterized by enrichment of gene functions directly related to early and late phases of
tobacco smoke exposure. Among them, there is a cluster which despite its large size still
has an interesting expression profile and excellent GO ontology enrichment scores : it re-
presents genes that are gradually and increasingly repressed during the entire process of
exposure to smoke. Curiously, all clusters enriched in gene functions associated with early
phase of smoke exposure are also enriched in functions associated to long/chronic exposure.
Among these, genes in cluster 2 do not show major expression changes during the late phase.
Probably, these genes are not genes triggering chronic symptoms, but are genes that when
activated « set the stage », that is, they may be associated with acute sensitivity for develo-
ping symptoms at a prolonged smoke exposure. In contrast, the cluster of genes specifically
upregulated in the late phase has a more fuzzy profile, that is, there is no simple or clear
tendency in the gene expressions. The 11-cluster partition presents three clusters identified
as predominantly characterizing gene-functions associated with exposure to smoke. In all
three clusters, the expression profile are in perfect accord to whether genes functions are
associated with early or late phases of smoking.

4.6. Conclusion
In this paper, we introduced a model-based Bayesian Lasso functional clustering method for
the analysis of longitudinal data. The model combines dimension reduction and clustering
through functional principal component analysis, and model-based clustering. Model selec-
tion is done through a Lasso driven prior for the cluster means. Latin Hypercube Sampling
was used to efficiently explore the space of penalty parameters.

The analysis of gene expression from smoke exposure showed that many deregulation events
are associated with relevant gene-functions. This suggests that gene-repression may be a
very common effect associated with biological effects of smoke exposure. We note that gene-
repression is typically more difficult to find by classical data analysis approaches, and in
consequence, it is frequently less regarded. The case of upregulated genes may thus be more
punctual for specific aspects. In summary, one may conclude that the clustering approach
allowed for identification of large groups of gradually deregulated genes that otherwise might
be difficult to capture using traditional statistical approaches such as multiple testing of two
groups (e.g., smoke-exposed versus control groups).
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Chapitre 5

CONCLUSION

Devenues un outil majeur dans l’étude de l’évolution temporelle d’un phénomène, les don-
nées longitudinales sont essentiellement caractérisées par la dépendance entre les mesures
répétées prises sur un même individu et requièrent une analyse statistique spécifique et
appropriée. Le développement de telles méthodologies statistiques constitue un domaine
d’étude en pleine expansion dans la majorité des disciplines scientifiques notamment en
sciences sociales et médicales où les données longitudinales sont de plus en plus utilisées.

Cette thèse regroupe nos contributions dans le domaine des méthodologies d’analyse et
de partitionnement des données longitudinales, qu’elles soient balançées ou non balançées.
Nous y présentons deux méthodologies nouvelles, performantes et compétitives de classifi-
cation non supervisée basée sur l’approche de l’analyse des données fonctionnelles (ADF)
ainsi qu’une revue de la littérature sur l’ensemble des méthodes de regroupement en classes
de données longitudinales. Selon l’approche de l’ADF qui est de plus en plus exploitée en
analyse de données longitudinales ou de données de grande dimension en général, les mesures
répétées recueillies auprès des individus sont considérées comme des fonctions ou courbes
partiellement observées sur un axe temporel. Ces méthodes de regroupement en classes
basées sur des modèles que nous proposons dans le cadre de la présente thèse utilisent
conjointement l’analyse fonctionnelle en composantes principales et la modélisation à effets
mixtes mais se distinguent par leur flexibilité, la pertinence des hypothèses sous-jacentes ou
encore leur construction dans un cadre bayésien.

Le premier chapitre de cette thèse a été consacré à l’introduction. Dans le deuxième cha-
pitre, nous avons présenté un aperçu général des différentes méthodes d’analyse des données
longitudinales avec une emphase particulière sur les méthodes de regroupement en classes
selon les approches les plus communément utilisées. La grande majorité des procédures exis-
tantes dans ce domaine proviennent de l’extension de méthodes disponibles pour l’analyse
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de données indépendantes.

Dans le deuxième chapitre de cette thèse, nous avons présenté le modèle flexible développé
pour l’analyse et le partitionnement de tout type de données longitudinales, que les mesures
soient uniformément ou non uniformément obtenues sur l’axe temporel pour les différents
individus. Le modèle combine l’analyse fonctionnelle en composantes principales et le re-
groupement en classes qui repose sur l’espace des coefficients dans la base des splines et un
modèle de mélange de distributions de Student de degrés de liberté inconnus. Un nouveau
critère de sélection de modèle basé sur une approximation de la log-vraisemblance margi-
nale (MLL) a été développé. Les études de simulations réalisées et les applications sur des
données réelles d’expression génétique, ainsi que les comparaisons effectuées avec d’autres
procédures existantes dans ce domaine en plein essor confirment la pertinence et l’efficacité
du nouveau modèle proposé. Une extension de ce modèle au cas multidimensionnel a été
proposée et également évaluée.

Nous avons présenté dans le troisième chapitre de cette thèse, une autre nouvelle procédure
de partitionnement pour l’analyse des données longitudinales, qui utilise l’approche fonc-
tionnelle et une pénalisation double du type Lasso dans la fonction de log-vraisemblance
pour simultanément déterminer la dimension appropriée de la base finie de fonctions (réduc-
tion de la dimension) et le nombre approprié de groupes homogènes (partitionnement). La
performance et l’utilité de la procédure ont été démontrées par la simulation et l’application
sur des données réelles. Il faut rappeler qu’un des aspects novateurs dans cette méthodologie
est lié à l’utilisation du « Latin Hypercube Sampling (LHS) » pour le choix de la grille de
valeurs des deux paramètres d’ajustement du modèle.

Une caractéristique importante et commune aux deux méthodologies de regroupement pro-
posées est le développement d’outils spécifiques et efficaces pour la sélection de modèles.
D’une part, un nouveau critère basé sur une approximation de log-vraisemblance marginale
(MLL) a été proposé et se compare efficacement à d’autres critères usuels similaires tels que
AIC et BIC. D’autre part, outre l’option de la validation croisée, l’approche directe d’opti-
misation utilise une transformation particulière appliquée à la log-vraisemblance pénalisée
et basée sur une méthode d’intégration numérique de Monte Carlo dans le but de réaliser
la sélection de modèle optimal.

Une quantité de travail non négligeable associée à la réalisation de cette thèse réside dans le
développement des programmes automatisés ou codes pour l’exécution des méthodologies
proposées. Ces codes écrits en R et Java feront très prochainement l’objet d’une mise à jour
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pour la création d’une application logicielle ou progiciel spécialisé dans le partitionnement
de données longitudinales, qu’elles soient constituées d’une seule ou de plusieurs variables
réponses, qu’elles soient balancées ou non balancées, et avec prise en compte d’un ou de
plusieurs effets fixes.

Quelques aspects des éléments novateurs proposés dans cette thèse peuvent faire valablement
l’objet d’amélioration ou d’extension. Par exemple, étant donné que l’analyse des données
fonctionnelles (ADF) s’intéresse aux données à dimension infinie telles que les courbes ou les
images, les modèles proposés peuvent être étendus pour traiter également le regroupement
en classes de données longitudinales lorsque les observations ne sont plus des courbes, mais
des images. En effet, dans le domaine de la médecine, de la neuroscience et de la psychologie,
les données d’imagerie par résonance magnétique fonctionnelle (IRMf) sont de plus en plus
analysées par l’approche de l’analyse des données fonctionnelles (Lindquist [1]). Ces images
mesurent les réponses hémodynamiques du cerveau et indiquent l’évolution de l’activité
neuronale avec une grande résolution spatiale. Chaque image étant constituée de voxels qui
partitionnent uniformément le cerveau, il est possible de suivre la variation de l’amplitude
de l’activité neuronale à chaque voxel à travers le temps. De plus, cette expérience peut être
répétée plusieurs fois sur le même sujet, aussi bien que sur d’autres sujets. Il serait donc
intéressant d’étudier les modes de variation ou les caractéristiques communes de l’activité
cérébrale de plusieurs individus à partir des données de IMRf. Notons que Tian [2] présente
quelques techniques statistiques d’analyse de données fonctionnelles comme la réduction de
dimension dans les études d’imagerie cérébrale.
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Annexe A

SOME ANALYTICAL DETAILS ON
PARTITIONING AND EM STEPS

A.1. Partitioning of an incomplete multivariate Gaussian data
If a p-dimensional random variable Y is partitioned as

⎡

⎣Y 1

Y 2

⎤

⎦ ∼ MV N
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⎤
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⎠ (A.1.1)

where Y 1 is an r-dimensional vector and Y 2 is an (p − r)-dimensional vector, it can be
shown that the conditional distribution of Y 1, given that Y 2 = y2, is multivariate Gaussian
with mean

[
µ1 + Γ12Γ−1

22 (y2 − µ2)
]

and covariance
[
Γ11 − Γ12Γ−1

22 Γ21
]
. See Shaikh et al. [1].

A.2. Analytical developments for EM expectation step :
The log-likelihood log[p(Y, W; Π)] is

N∑

i=1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−ni
2 log(νiσ2) − 1

2νiσ2

∥∥∥Yi − (Biθµ + BiΘµzi
+ BiΘγzi

i )
∥∥∥

2

−1
2 log(

∣∣∣Γzi

∣∣∣) − 1
2γT

i,zi
Γ−1

zi
γzi

i + ∑G
g=1 Zig log(πg)

+νo
2 log(νo

2 ) − log[Γ(νo
2 )] − (1 + νo

2 ) log(νi) − νo
2νi

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

+
G∑

g=1

⎧
⎨

⎩
−1

2 log(
∣∣∣Γµ

∣∣∣) − 1
2µT

g Γ−1
µ µg + m

2 log(
∣∣∣(m − k − 1)D

∣∣∣)
− (m+k+1)

2 log(
∣∣∣Γg

∣∣∣) − (m−k−1)
2 trace[DΓ−1

g ]

⎫
⎬

⎭

+
{

km
2 log(m − k − 1) − (m+k+1)

2 log(
∣∣∣Γµ

∣∣∣) − (m−k−1)
2 trace[Γ−1

µ ]
}

+
k∑

j=1

{
+m

2 log(m
2 ) − log[Γ(m

2 )] − (1 + m
2 ) log(djj) − m

2djj

}

+
{

ασ log(βσ) − log[Γ(ασ)] − (ασ + 1) log(σ2) − βσ

σ2

}

+
{

− log[B(a1, ..., aG)] + ∑G
g=1(ag − 1) log(πg)

}

+ C (A.2.1)



A-ii

where C is the normalizing constant, and B(a1, ..., aG) = B(a) is the multivariate Beta func-
tion which can be expressed in terms of the Gamma function Γ(·) as B(a) = [

∏G

g=1 Γ(ag)]
[Γ(

∑G

g=1 ag)]
.

We can rewrite the last expression of log[p(Y, W; Π)] as log[p(Y, W; Π)] = L + H where
L groups the terms depending on the individuals i = 1, . . . , N :
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N∑

i=1
li(µ⃗, Γ⃗, Λ) =

N∑

i=1
−ni

2 log(νiσ
2) − 1

2νiσ2

∥∥∥Yi − (Biθµ + BiΘµzi
+ BiΘγzi

i )
∥∥∥

2

− 1
2 log(

∣∣∣Γzi

∣∣∣) − 1
2γT

i,zi
Γ−1

zi
γzi

i +
G∑

g=1
zig log(πg)

+ νo

2 log(νo

2 ) − log[Γ(νo

2 )] − (1 + νo

2 ) log(νi) − νo

2νi

and H groups the remainder terms. The function Q to be maximized is

Q(Π|Π(t)) = EW|Y;Π(t) [log p(Y, W; Π)] = EZ,γ⃗z|Y,ν⃗(t),µ⃗(t),Γ⃗(t)
,Λ(t) [L + H]

=
N∑

i=1
Ezi,γ

zi
i |Yi,ν

(t)
i ,µ⃗(t),Γ⃗(t)

,Λ(t)

[
li(µ⃗, Γ⃗, Λ)

]
+ H

=
N∑

i=1
Ezi|Yi,ν

(t)
i ,µ⃗(t),Γ⃗(t)

,Λ(t)

{

E
γ

zi
i |zi,Yi,ν

(t)
i ,µ⃗(t),Γ⃗(t)

,Λ(t) [li(µ⃗, Γ⃗, Λ)]
}

+ H. (A.2.2)

Let mi(zi, µ⃗, Γ⃗, Λ) = E
γ
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Note that all distributions involved in this expression are Gaussian. Let Nr(µ, Σ) denote an
r-variate Gaussian distribution with mean µ and covariance Σ. We have
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These simplifications lead to a multivariate Gaussian distribution
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by the expectation. Consider the following identity that applies to any random vector U of
dimension n.
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where Û = E(U), and V̂U = V ar(U). Using this, we get

E
γ

zi
i |Yi,zi,ν

(t)
i ,µ⃗(t),Γ⃗(t)

,Λ(t)

{∥∥∥Yi − (Biθµ + BiΘµzi
+ BiΘγzi

i )
∥∥∥

2
}

=
∥∥∥Yi − Biθ

(t)
µ − BiΘ(t)µ

(t)
zi

− BiΘ(t)γ̂
zi
i )

∥∥∥
2

+ trace
[
BiΘ(t)V̂

zi
i ΘT

(t)BT
i

]
,

and

E
γ

zi
i |Yi,zi,ν

(t)
i ,µ⃗(t),Γ⃗(t)

,Λ(t)

{

γT
i,zi

Γ−1
zi

γi,zi

}

= γ̂T
i,zi

Γ−1
zi

γ̂i,zi
+ trace

[
Γ−1

zi
V̂ zi

i

]
,

which leads to the computation of mi(zi, µ⃗, Γ⃗, Λ).
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The computation of the expression in (A.2.6) requires knowledge of the distribution of the
random variable Yi|zi, ν(t)
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, Λ(t), which is a ni-variate Gaussian random variable
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This distribution has been obtained by integrating out the individual random effects
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Thus, from Equation (A.2.2), we have :
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, Λ(t)
)

+ H.

Finally, after the expectation step, the expression of the function Q(Π|Π(t)) where all the
parameters are at their tth updated value is given by :

Q(Π|Π(t)) =
N∑

i=1

G∑

g=1
Pig ×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ni
2 log(νiσ2) − 1

2 log(
∣∣∣Γg

∣∣∣) + log(πg)
− 1

2νiσ2

{∥∥∥Yi − Biθµ − BiΘµg − BiΘγ̂g
i )

∥∥∥
2}

+ 1
2νiσ2

{
trace

[
BiΘV̂ g

i ΘTBT
i

] }

−1
2

{
γ̂igΓ−1

g γ̂ig + trace
[
Γ−1

g V̂ g
i

] }

+νo
2 log(νo

2 ) − log[Γ(νo
2 )] − (1 + νo

2 ) log(νi) − νo
2νi

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+
G∑

g=1

⎧
⎨

⎩
−1

2 log(
∣∣∣Γµ

∣∣∣) − 1
2µT

g Γ−1
µ µg + m

2 log(
∣∣∣(m − k − 1)D

∣∣∣)
− (m+k+1)

2 log(
∣∣∣Γg

∣∣∣) − (m−k−1)
2 trace[DΓ−1

g ]

⎫
⎬

⎭



A-v

+ km
2 log(m − k − 1) − (m+k+1)

2 log(
∣∣∣Γµ

∣∣∣) − (m−k−1)
2 trace[Γ−1

µ ]

+
k∑

j=1

{
+m

2 log(m
2 ) − log[Γ(m

2 )] − (1 + m
2 ) log(djj) − m

2djj

}

+ ασ log(βσ) − log[Γ(ασ)] − (ασ + 1) log(σ2) − βσ

σ2

+ − log[B(a1, ..., aG)] + ∑G
g=1(ag − 1) log(πg) + C (A.2.10)

A.3. The updating EM equations for the mixed-effects model
for PRRSV

In the models M1, M2 and M12 the additional parameters θµ ; S1, S2 ; T1, T2, ..., T7 are
to be estimated. There’s no substantial change in the EM steps except in the equations
involving θµ. The parameter estimation calculations associated with the model M12 lead to
the following equations for the two effects model M12. In these equations, Sl = Swi|wi=l (l =
1, 2) and Th = Tei|ei=h (h = 1, 2, .., 7). Let N∗

l be the subset of individuals with {wi = l}
and N∗

h be the subset of individuals with {ei = h}, and define
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A1 =
[∑N

i=1
(
BT

i Bi

)
ν−1(t)

i

]−1

A2 =
[∑N

i=1
∑G

g=1
Pig

νt
i

BT
i

(
Yi − BiS(t)

wi
− BiT(t)

ei
− BiΘ(t)(µ(t)

g + γ̂g
i )

)]
,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A3 =
[∑

i∈N∗
l

(
BT

i Bi

)
ν−1(t)

i

]−1

A4 =
[∑

i∈N∗
l

∑G
g=1

Pig

νt
i

BT
i

(
Yi − Biθ

gen(t)
µ − BiT(t)

ei
− BiΘ(t)(µ(t)

g + γ̂g
i )

)]
,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

A5 =
[∑

i∈N∗
h

(
BT

i Bi

)
ν−1(t)

i

]−1

A6 =
[∑

i∈N∗
h

∑G
g=1

Pig

νt
i

BT
i

(
Yi − Biθ

gen(t)
µ − BiS(t)

wi
− BiΘ(t)(µ(t)

g + γ̂g
i )

)]
.

Then
θgen(t)

µ = A1 × A2, S(t)
l = A3 × A4, T(t)

h = A5 × A6.



Annexe B

AN ILLUSTRATION OF THE CODE FOR THE
FUNCTIONAL MODEL-BASED CLUSTERING

ANALYSIS
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