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RESUME

Les modsles & changements de régime markoviens souldvent un probidme particulier connu dans
la Imtérature statistique sous Ia rubrique des tests d'hypothéses dans les modales o un paramétre
de nuisance n'est pas identifié sous I'hypothése nulle. Dans ces cas, les distributions asymptotiques
des tests usuels (ratio de vraisemblance, multiplicateur de Lagrange, Wald) ne sont pas standards,
Dans le présent article, nous montrons que, si nous traitons les probabilités de transition comme des
paraméires de nuisance dans un modéle & changements de régime markoviens et fixons
hypothése nulle uniquement en fonction des paramétres régis par la variable de Markov, la théorie
distributionnelle proposée par Hansen (1981) est applicable aux modéles & changements de régime
markoviens sous centaines hypothéses. Dans ce cadre, nous dérivons analytiquement la distribution
asymptotique du ratio de vraisemblance sous 'hypothése nulle ainsi que les fonctions de covariance
correspondantes pour divers modéles A changements de régime markoviens. Des expériences de
Monte Carlo montrent que les distributions asymplotiques dérivées offrent une trds bonne
approximation de la distribution empirique. La dérivation de la distribution asympiotique de la
statistique du ratio de vraisemblance pour ces modéles simples markoviens 4 deux états sera utiie
pour évaluer fa signification statistique des résultats qui sont apparus dans la littérature et plus
généralement pour offrir un ensemble de valeurs critiques aux futurs chercheurs dans ce domaine.

i

Mots-ciés : tests dans les modéles a changements de régime markoviens, paramétres non
identifiés sous I'hypothése nulle.

ABSTRACT

The Markov switching models raise a special problem known in the statistics Iterature as testing
hypotheses in models where a nuisance parameter is not identified under the null hypothesis. In
these circumstances, the asymptotic distributions of the usual tests (likelihood ratio, Lagrange
multiplier, Wald) are non-standard. In this paper, we show that, if we treat the transition probabilities
as nuisance parameters in a Markov switching model and set the null hypothesis in terms uniquely
of the parameters governed by the Markov variable, the distributional theory proposed by Hansen
(1991) is applicable to Markov switching models under certain assumptions. Based on this
tframework, we derive analytically the asymptotic null distribution of the likelihood ratio test and the
related covariance functions for various two-state Markov switching models. Monte-Carlo
experiments show that the derived asymptotic distributions offer a very good approximation 1o the
empirical distribution. The derivation of the asymptotic distribution of the likelihood ratio statistic for
these simple two-state Markov models will prove useful to assess the statistical significance of the
results that appeared in the literature and to generally offer a set of critical values 1o future
researchers.

Key words: tests in Markov switching models, unidentified parameters under the null hypothesis.






The Markov Switching Model, introduced by Hamilton (1988, 1989), has been used in
numerous economic and financial applications where changes in regime play polentialiy an
important role'. In the most general form of this non-linear model, the mean, the variance and
the autoregressive structure of a time series can be made dependent upon a state or regime, the
realization of which is governed by a discrete-time, discrete-state Markov stochastic process.
While estimation methods for these models are by now well established (Coslett and Lee (1984),
Hamilton (1988, 1989, 1991), Boldin (1989)), such is not the case for the testing procedures.
There are however a few exceptions: Hamilton (1991) proposes some specification tests hased
on the Lagrange multiplier principle to test, for example, various forms of autocorrelation,
generalized ARCH effects, and omitted explanatory variables for both the mean and variance:
Boldin (1989) uses the Davies’ (1987) upper bound test to determine the number of regimes:
Garcia and Perron (1995) use Gallant's ( 1977) test and 2 J-test for non-nested models (Davidson
and Mac-Kinnon (1981)), along with the Davies® lest, to determine also the number of regimes,
The use of these non-standard tests can be explained by the fact that the Markov switching
models raise a special problem known in the statistics literature as testing hypotheses in models
where a nuisance parameter is not identified under the null hypothesis. 1In these circumstances,
the asymptotic distributions of the usual tests (likelihood ratio, ALagrange multiplier, Wald} are
non-standard,

Hansen (1991) provided a series of examples of economic models where this probiem of
unidentified nuisance parameters arises, and studied the corresponding asymptotic distribution

theory. In general, the distributions of the tests are shown to depend upon the covariance

' Cecchetti, lam, and Mark (1990). Engel and Hamilion {1990}, Carcis and Perron {1998}, Hamikon
(1982.19%9), Hassen (1990), Turner, Startz, and Nelson {1989).
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function of chi-square processes. Since this covariance is model and data dependent, Hansen
{1991) proposes a simulation method to approximate the asymptotic null distribution and applies
it to the threshold model. in Hansen (1992), the author proposes another method based on
empirical process theory for the case where, in addition to the problem of unidentified nuisance
parameters, the econometrician is faced with identically null scores. The use of this method is
motivated by the existence of this double problem in Markov switching models. In this paper.
we show that, if we treat the transition probabilities as nuisance parameters and set the null
hypothesis in terms uniquely of the parameters (mean, variance Of autoregressive coefficients)
governed by the Markov variable, the distiributional theory proposed by Hansen (1991) is
applicable 1o Markov switching models since the problem regarding the nullity of the scores can

tepped once some assumptions are made about the conditional state probabilities. Within

&'s (1991) framework, we derive analytically the asymptotic aull distribution of the

{ikelihood ratio test and the related covariance functions for various two-state Markov switching
models: a two-mean model with an uncorrelated and homoskedastic noise component; a two-
mean model with an AR() homoskedastic noise component; and finally a two-mean, twWo-
variance model with an uncorrelated noise component. [n all three cases, Monte-Carlo
sxperiments show that the derived asymptotic distributions offer a very good approximation to
the empirical distribution. The derivation of the asymptotic distribution of the likelihood ratio
satic for these three simple two-state Markov models will prove useful 10 assess the statistical

ficance of the results that appeared in the literature (i.e. Cechetti, Lam, and Mark (1990},

iton (1989), Turner, Startz and Nelson (1989)) and to generally offer a set of critical values

s+ fusure researchers. This method offers a useful alternative to Hansen's (1992) methodology,
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the application of which is limited by computational requirements,

In Section 1, we present a general two-staie Markov swilching model, explain the
problem of non-identification of some nuisance parameters under the nuji hypothesis, and set up
the testing problem as the supremum of likelihood ratio statistics. In Section 2, we briefly
present Hansen’s (1991) asymptotic distribution theory for the trinity of tests (likelihood ratio,
Lagrange multiplier, and Wald) in models where nuisance parameters are not identified under
the null. in Section 3, the covariance function for the general two-state Markov switching mode!
is derived. Section 4 provides the asymptotic null distributions of the LR swtistic for three
specific Markov switching models used by various authors 1o capture changes in regime in
economic and financial time series.- These models differ by the specification of the noise function
in the general two-state Markov switching model. We also compute the power of the LR test for

these three models. Section 5 concludes.

1. Testing in the Context of Markov Switching Modelks

The two-state Markov switching modei is defined as follows”:

y‘t:a(‘!’alsr‘zl

2,22, 4 *$2, o w,S)e,

PS=118 =1)=p

P(S,=O}S,,!=O)=q {(=1,..m

where { y, 17, isa siationary process and € isiid N©,1). Assume one wants to test the null

h

? This specification encompasses the specifications most frequently used in the litersture for two-state Markov
switching models. Two exceptions are noteworthy: the state-dh P gressive specification used in Garcia
and Perron (1995) or the time-varying transition probability mode! used in Dicboid, Lex, and Weinbach {1993) ane
Filurdo (1992).




hypothesis of 2 linear model against the aliernative hypothesis of a Markov switching model. The
null hypothesis can be expressed as either {o, =0,w,=0} or {p=0} or {p=1}. To see the problem
of unidentified nuisance parameters under the null, note that if «, and w, are equal to zero, the
transition probability parameters p and ¢ are unidentified since any value between 0and 1 will
ieave the likelihood function unchanged. As for the problem of identically zero scores, note that
under {p=1}, the scores with fespect op,q,a and o will be identically zero under the
aull and the asymptotic information matrix will be singular’ Under these conditions, the

hikelhihood ratie, Lagrange multiptier, and Wald tests do not have a standard asympiotic

Sistribution. This is the point of depasture of Hansen's (1992) analysis regarding the likelihood

cest under aon-standard conditions, since the two problems of ynidentified nuisance

[

parameters under the null and identically zero scores are present. He uses empirical process
sheory 10 derive a bound for the asymptotic distribution of a standardized likelihood ratio
statistic, Although the method is appealing since it addresses both above-mentioned violations
of the conventional regularity conditions, it seems to run rapidly into computational limitations.
siansen’s testing procedure requires to set a gnid for each parameter depending on the Markov
variable §,, plus p and g. in a model where the mean and the variance of the series change with
the siate, this means a grid over four parameters and to stay computationaily tractable, it is
necessary to limit the number of grid points. Also, Hansen’s method provides a bound for the

likelinood ratio statistic and not a critical value.

¥ This point is Clear when looking at the slement of the score vector corresponding 10 & derived in Lemma
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The problem comes from the fact that al {p=0} or {p=1}, the scores with respect 1o
a,and w, are zero. Although these two points represent part of the null hypothesis, in practice

if the econometrician finds these values as estimates for # while estimating the Markov
switching alternative after having tried many starting values for the parameters, he will conclude
that there is not much evidence for a non-linearity of this type in the series and accept the nuli
of a linear model or try another non-linear model. The more interesting issue arises when the
estimated value for p is different from 0 or 1, since one has to establish whether or not the
parameters governed by the Markov process are significantly different from zero. A way 10
approach the problem is to treat the transition probability parameters P and g truly as nuisance
parameters, since if we fix them at predetermined values other than 0 and 1, there are no scores
with respect to these probability parameters, Moreover, it is shown that the information matrix
for the remaining parameters becomes non-singular at {a;=0,w,=0} once some assumptions are
made about the conditional state probabilities. We can therefore derive the likelihood ratio
statistic for each such set of values for the two transition probability parameters over a cerlain
parameter space, say ' where p and q lie. The likelihood ratic of the original problem is

therefore the supremum over T of the likelihood ratios obtained for each particular set of values

of the p and ¢ parameters. Formally, define LR, and LR (v) as foliows:

LR =2n1Q.8,%)-0,(8)
@

LR (v)=2n1Q,(B(3),v)-Q,(B)]



where ,, the average log-likelihood function of a sample of n observations, is given by:

Q.(0‘7)=%!0g Py 8m) 3
with y=(p.q) and 9=(ao,a\.d>!.-«.d>,.wé.wf). The first statistic LR, refers to the difference
herween the estimated unconstrained 3, ¥) and constrained (§) models. For the second
LR (7). the maximizing vaiue of § under the alternative (8(y)) is obtained for a given value of
5. The statistics LR and LR (y) arc related as follows (see Hansen (199 1), theorem (3)%

LR, =sup LR (v) 4
¥yl

r is 2 metric space from which the values 0 and | have o be excluded 1o keop the

on malrix positive definite as mentioned in Section .

15 the context of hypothesis tests when a nuisance parameter is present only under the

_ Andrews and Ploberger (1993) show that the sup LR test is a best test, in a certain

ainst aliernatives that are sufficiently distant from the aull hypothesis. In Andrews and

+ (1994), they consider a class of wests (average exponential LM, Wald and LR tesis)

. sxhibit optimality properties in ierms of weighted average power for partcular weight

s (multivanate normal densities). The LR test is not admissibie in this class of wests.

o5 the Markov switching model is not included in the examples covered in the paper’,

mpare i lerms of size the sup LR test o the exponential LR test for various two-stale

¢ Andrews and Ploberger (19%4) meation specificaily that their test is not applicable to the Markov switching
el because the information matrix is not uniformly positive definite over the [ space. This is due o the
_peically null score problem mentioned in the introduction. We will see in Section 3 what assumpuions are
saary 10 apply the Sup LR test a5 well as the average Exp LR test to Markov Switching models.
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Markov switching models.
2. The Asymptotic Distribution of the Likelihood Ratio Test

In this section, we state a restricted version of a theorem appearing in Hansen (1991},
Theorem I:  Under the set of assumptions stated in Appendix A and in the absence of serial

correlation and heteroskedasticity in the noise function:®

LR = SupC= Sup C(v) 3
y€T
where C(y) isa chi-square process with covariance matrix I?(.,.)“, defined as follows:

K(v,v,)= V) KO, 1) V) ©)

where 1, is a vector of dimension k (the dimension of the parameter space under the alternative)
with ones in the positions of the parameters constrained to be zero under the null and:
Key)= lim £ [556,7,)506, )]
n-»o
$i0m=20,0.7)

Under the assumptions of the theorem, Hansen (1991) shows that, as in the classical theory, the

LR, LM and Wald statistics all have the same asymptotic distribution,

* By taking the sbsence of serial correlation and heteroskedasticity as given, we assume that the specification
tests related 1o the Markov switching specification have been run, The goal is 2o focus on the mispecification test
of the linear null against the Markov switching alternative.

® A process Z(y) is 8 chi-square process of order k in YET if it can be represented  as

Z(’y)=G('y)'K(‘f,‘y)"G(‘y). where G(7) is & mean zero k-vector Gaussian process with covariance function
KOy, 1) =E1G(1,)Gi) .



Vo= tim n E [50.71S6.]
e @

V(1) =¥(8,7)
One important condition to derive the asymptotic distribution of LR () is that V(v) is positive

definite uniformly over T. If V(y) is singular for some values of y, one must redefine ' 0
exclude these values. As mentioned in the previous section, this is the case in our model. This
problem arises also in structural change models when the timing of the change is an unknown
fraction of the sample size. In this case, the fraction has to be bounded away from 0 and 1.
The other conditions deal mainly with compactness of the parameter spaces [ and O {where
v and 8 respectively tiey, continuity of Q(6.v) and V(8.,y), and stochastic equicominuizy’ in
@) of Q,(8.v)-Q8.7) and V(8.y)-W(8.y) over the corresponding spaces. Verifying whether
all the regularity conditions hold in the present context appears difficult. We will therefore
assume that these conditions hold and, short of a proof, simulate the derived asymptotic
Aistributions of the likelihood ratio statistic for the various models considered and compare them

10 the empirical distributions obtained by Monte-Carlo methods.

3. Derivation of the Covariance Function for the General Two-State Markov Switching
Model

The two-state Markov switching model (1) can be rewritten as follows:

* In Hansen (1991)(footnotz 1, page 10), stochastic equicontinuity is defined as follows:
{G, )} s stoch ically equi i on A if forall € >0 and n >0 there exists some § >0 such

snat lim, P {sup sup 1GN -G (M >£] < y. where p{(...) denotes the distance metric defined on A
NEA pAMNI<B



}’,‘d’,yb,*05;)’,_7“’“‘05,}’,_,'
ah(l»d)i-d>2-~‘~¢>')-al(5"¢»lS,_)~€‘»?S,‘:,~f-é)ﬁ,,}?iwﬁ‘w.s,}(,
The likelihood of observation t, conditional upon ¥ . the information at time 1. is

&

therefore given by:

! e ©
12 exp - 2
Q1) |wyr w51 2w+ w5 (YN
The derivatives with respect to each parameter of the logarithm of the probability of

PO LY, 0,7)=

observation t, conditional upon ¥, the information at time t, and evaluated at 8 are therefore
given by:

dlog p(y,1¥,.8,7) ’

=(1- ¢, ——

600 a‘-\:l )(‘t’o'“‘"’lsi(’y))7
dlog p(y,|¥,.0.7) 3 (
e - L5, )

F] b (“’o’wl‘si‘,y))i,
dlog p(y,| ¥,.6,7) ’
B8 POIYAN i oy

a¢'_ (w‘}*wIS,('Y))

i=1,..r

d1og pO,1¥,07) 1 1+ s (] €l <) s 04)])

duw, 2 (wprw s ) Hagrors ()’

dlog pOL Y1) 1 I +(@l) s )] ells ) () s )]
3’ 2 (wy 0,507 2{wyrw,s (v

(10
Using the foliowing equalities:

aQ 1 dlog p(y e Y1300 Y)
a8 (8 ), =t B P Y ibeY)
55, ey 3,

we derive, in the following lemma, the corresponding scores.



y, evaluated at the true value 6, of the

The elements of the score vector $.(0,,y
isance

Lemma 1:

parameters of interest and at a particular given value vET of the nu

parameters, are given by:

6
(wy+ @5 (*r))’

Z(IX

¢
Si0pM o=
nuhwhﬂx(ﬂ& i=l

§5(8.9) =1 S
8,7, m};hgsa s(}72)‘0(5(10 E‘i’,-‘: ,(7)) PRETTRTEA

P,

€,

i
$.0,,7), = L A Y
( 07) nz:mgc 5, (I';N? (™ )("’u*“’s("{))2

i=1,....r
.t Ll (w) ) ¢
E E W—-G-O‘w’—-s —-—‘———M——“.E’! "p€
A T O I U s T S L N

S@asg L b
s ) el I
R ToenY L FORRYCTIEN

" i

!
$SiBev.s-L E o L
Auctsim=0 5, 0=0

shere p=p(S (M =55 =5, (YY)
she element of the score vector with respect 1o o,

s, proof is provided in Appendix B. In
0y I8 equal to x=(1 - (2-p-q)

i
T

that p,=p(S{7) =5 (1) 5, 0 =5, G710 E RS

neonditional probability of being in state 1, for each

t since under #, (o, =0, w, =0} these

the score becomes identically null. The way we

srobabilities cannot be filtered out. Therefore,
ores is to assume that if the unconditional probability

side-siep this problem of identically null sc
¢ affected to one regime, and the remainder to the other

is x, then xxn of the points will b




regime’. In other words, a proportion 7 of 7, will have value 1, while for the complement

(1-7) of the points, P, will be zero. Inwitively, this reassignment of probabilities reflects the

way the filtering algorithm will most often assign the probabilities in a finite sample drawn under
the null assumption. Asymptotically, as n tends 1o infinity, the score will still be zero at the nuli

8,. To see whether the assumption is valid or not, we will compare the asymptotic distribution

of the LR ratio test derived under this assumption 1o the empirical distribution for various

medels. Since the score is no longer identically zero, we can state the following lemma.

lemma 2: The covariance matrix K(-y,,'y?) of the score vectors, as defined in Section 2, is

equal to:
r 7 ’ 7
-3 67 =0-Y 67 0 - o 0
is} isi
(-3 ¢) min(x,2)4° 0 - 0 0
fe}
POORATILE R 0 wRk 0 0 12
g
0 . 0 o .
22 2w
0 . 0 o . T, min(‘tl,w?)
, S

* Another way 1o side-step the problem of identically gull scores will be 1o set the null arbitranily close 10 zev0,
since in this case the p, could be filiered out.
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where A ° i3 given by:
A= | ”@i *d};*“t"f’f

2T, -3 00,

i2

272,208, -) 6]
is}

272208,

with 7°42,2} denoting the second row, second column element of the mairix T raised 1o the

power i where 17 is the transition probability matrix of the Markov variable 5.

E g 1-¢°
T i f

liept p
| I .
e star denoting the transition probabilities corresponding to max{#, .7} Themin{z,,7,)

clement in the K(x,.7) covariance matrix is obuained under the assurmption that the points of
che sample which are classified i state { under x, will also be classified in state 1 under 7.

%, greater than %,. Finally, & denotes the autocovariance matrix of {y,}, where s

an AR(r), A proof of Lemma 2 is provided in Appendix C.

In ihe nest section, we will derive, hased on this general covariance function, the

sympiotic null distribution of LR, for three specific models: a two-mean model with an

uncarrelated and homoskedastic noise component, used by Cecchetti, Lam, and Mark (1980 10
model the annual growth rate of consumption; a two-mean model with an AR(r) homoskedastic
acise component, used by Hamilton (1989) to model the quarterly growih fale of guiput; and

finaily a two-mean, 1wo-variance model with an uncorrelated noise component, used by Turner,

42-



Startz and Nelson (1989) to model a series of stock returns. The derived critical values will
allow us to test formally the linear nulil againt the Markov switching alternative in ali three

cases. We also compute the power of the Sup LR test for these three models.
4. Asymptotic null distributions of the Sup LR statistic

Based on theorem | and Lemmas t and 2. we derive for each of the three above-

mentionad Markov switching models E’(y,.yz;n the covariance function of the chi-square process

C(y).

4.1 Two-mean model with an uncorrelated and homoskedastic noise component
The two-state MSM with an uncorrelated and homoskedastic noise component is given
by:

Yoragra, S ve,
f’(Si:{ESI_gxl):p (13}
P(5,=0]3,_,=0)=q

The limiting distribution of LR is SupC - Sup  Cly), where (v} is a chi-square
YyET

process with covariance;

* In earlier versions of the paper, it was shown that the asymptotic null distribution of the LR test n this
particular model was identical to the ditribution of the LR test in & one-dimensional threshold mode! {derived by
Chan (1990)) and 0 a structural change model with an unknown change point {Andrews {1993)).
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- B min{7w,, 7,7,y ) )
Ky, .74) = W where 7=
7 (-7 )0 -7y «=p.q.

i-q,

Proof: By theorem 1, the covariance of C(v) is given by:
0

Ky, =10 1 01V(y) Ky Vi)™ |}

0
1 7, 0 —} -1
i-7,
2 ! 1 1 min(x,,7;) 0 2
g T:“— -——r:—-"' 0 -3 g i i
L x, w{l-%) W 0 0 ! 7, (1-7)
2wf, 0

, min{z, 7))~ 7,7,
e
1,12(1»11)(}—72)

In order to simulate the distribution of SupC, we follow ihe general method for

simulating chi-square processes described in Appendix D. In this case, the G(y) and & veclors

reduce to scalars and we generate 2 each draw a Tx1 vector of g(y) as follows:

I B . )
2ir) {’1(1 ”79} 1)

2
*, 1 (7% )"
2 = o |5 WA S — 2
glyy) {lﬂx} . «1) TR «2) ‘ (15)
v )IIZ 12
x 1 (%,-7, (%= %)
= |l L ey @) «N
' L‘"l o ) N



The chi-square process C(y) is therefore equal to:
Con=g(yy'=(1-7) a6
To obtain the supremum of Cly) over I', we must fix the bounds of the parameter space I
or, in our case, of the function = of the parameters p and ¢. Since the K{(.,.) are singular for
¥ equal 10 0 or 1, we must fix the bounds away from 0 and 1 for the theory 1o be valid.

However, it remains 1o be determined how far away from 0 and 1 we must set 7, and v, to

obtain a good approximation to the finite sample distribution. In the context of structural change
models with an unknown change point, Andrews {1993) chooses £.15 and 0.85. To see which
bounds will preduce the best asymptotic approximation to the finite sample distribution, we
simulated the empirical distribution by generating a 1,000 series of 100 observations under the

null Hoa =0 and estimated the likelthood under both the null and the Markov switching

alternative in (13).

Since the true model is a model with no change in regime, one might expect when
estimating the Markov switching model that some sets of optimizing values for the parameters
correspond to local maxima of the likelihood function. This problem has been reported in
Hamilton (1989%) and Garcia and Perron (1995). This means that 2 1,000 replications will
typically produce only a fraction of positive log likelihood ratios, and among these a loi of
values close to zero. A way to minimize this problem is to optimize the likelihood function
under the alternative by using many sets of starting values for each generated series and take the
maximum of the likelihood function over the values so obtained. By proceeding in this fashion,

we hope 10 eliminate or at least reduce the number of local maxima, We applied this method



sets of starting values. The success rate in obtaining a positive likelihood ratio was

sults are shown e the first column of Table 1. The 99% and 95% critical values

1y The next two columns of Table | show the critical values of the

iribution obtained with 10,000 replications of SupC for F€0.01,0.99] and

smptotic dis

i, with increments of 0.001. it appears that the asymptotic values up 10 he 65%

= 10.01,0.99] bounds are very close w

siribution is not approximated as well and 1B

te aiso that these critical values for the fikebihood rabin

sigerably higher than the yalpes of 2 X1}, the distribution of

e of both 12sis

% 1est with the exponcntial LR 18t wili have an aciwal size of

sumption growih estimated by Cecchetis, Lam, &

con

1 000 series based on the following estimates {o,=0.228.




4.2 Two-mean model with an AR(r) homoskedastic noise component

With an autoregressive siructure of arder r and no heteroskedasticity for the noise term, we

obtain the following specification for the Markov switching model:

AR IRYS
)f 2 Faar ] if?}
2, xé?’z;ws e @é";y—r *g,

The limiting distribution of LR, 15 SupC = Sup iy}, where Cly}y is a chi-square process with
yEr

covariance:

N min{s,, €34 " -7, 7 ,(1 -y ey
K(y v =) - o (i8)
x4, ~(1 '5: @)%, 104, -(1 -3 o))

i=l fxi

Proof: The expression follows from:

Ko = o Vin "By oy ) Viy,) Y,
and: ’

ﬂ{g,z ¢‘)zr
el it 9 o
A a
(-3 ¢l (1- ¢
V(y) ' =o? ; sz-!: 0 o
A a
0 0 L
(2
0 0 0 24 |

where: A:r(l-z &) A -(1'2 ¢)Y'x] and K(v,.v,) is deduced from the expression given in
i=l

i=t



(12) for an nomoskedastic process.

We nole that the parameler space T is now two-dimensional since both p and = are
present in ihe covanancd unction, and also that the covariance funciion depends on the
AULOTERTESSIVE PaTamelers. T assess the performance of the sup LR test in the auloregressive
case, we Dirst study the AR(]) case in detail, We determine the bounds of the parameier space
over p and = thal give the asymptotic distribution which provides the best approximation 10 the
empirical disiribution We giso simulate the asymplotic distribution for a range of values of the

meter 10 establish whether the distribution changes of remains stable,

AULOTEZTERHIVE jed

4.2.1 The AR case

To determine the bounds that give the best approximation 10 the empirical distribution
and 1o see if the empincal distribution varies as 2 function of ¢,, we simulated the empirical
gistribution of the likelibood satio for twe AR{1) models with 2, the AUIOTERTESSIVE parameret.
sgual o £.137' and -0 5. The true model ie she AR{1) model and the alternative is the 1twor
state Markov model in (17) with 1=1. “We generated the distribution using 1,000 replications
of the true model and estimating the alternative Markov switching model, starting with six
different sets of values for the six parameters for sach series 1o aveid as much as possibie the
problem of local maxima explained in section 4.1 The critical values obtained for the empirical

distribution of the likelihood ratio are shown in Table 3. They appear 10 be smaller than the
[ ———

0 Tyis value corresponds to the vaiue of the autoregressive coefficient in an AR(1) model for tog GNP,
estimated from 1952 1} 10 1984:1V, the period chosen by Hanulton {1989},
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values obtained for the uncorrelated and homoskedastic case. Also it has to be noted that the
empirical critical values do not seem 1o depend on the value of the auloregressive parameter,
To generate the asymptotic distribution of SupC, we used the interval {0.15,0.35] for
both parameters p and 7, with increments of 0.002 for pand 0.00! for ».
To simulate the distribution of SupC, we generate &t each draw a random Tx1 vector of

2(v). as follows:

02

i
&)= (1)
! rIL")I‘TD] ,
2 .
0% -wip, 7 DR
s=| | Loy enlo LA
.=l b opLw 1, x )
b 33/2 mn
gyp=| 1 e(z),M("[”*"J"‘?[”?“fi; g(z),w":'&’“"’-"':;"{‘"’"'ﬂ) «D
[pu-'xl *r ’{{f)pt:) L”ge?z?‘ Tﬂ’f’r-s-‘r-s} lpr‘"rl -
(19
where [p, 7] is defined as follows:
oxl=1+6{-20 p-(1-¢ ). (20)
The chi-square process C(y) is therefore equal to:
CON=8(n)*x(1 -8 20 p-(1-¢,)'r) @n

The distributions are based on 10,000 replications. The asymptotic critical values are
fairly close to the empirical ones, except again for the left tail, Moreover, the distribution do
not seem 1o depend on the value of the autoregressive parameter. This is confirmed in Table 4,
where we present the asymptotic critical values corresponding to the various percentage levels

for eight different values of #,:0.3,0.5,0.8,0.95 and -0.3, 0.5, -0.8. and -0.95. It has 10 be
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noted however that ihe distribution is not invariant to the value of the autoregressive parameter.
To compare the exponennal LR test 0 the Sup LR iest, we report in Table 5 the actual
sizes of both tesis for nominal sizes of 1% and 5%, for ¢=0.337 and »=-0.5. For both values
of ¢,, a nominal 5% iest with the exponential LR test will have an actual size of around 25%.
compared with a value close 10 5% for the Sup LR test.
To asscss the power of the Sup LR test for a model with an autoregressive structure, we

will use the AR(4) model estimated by Hamilon (1989).
4.2.2 The AR(4) case: the Hamilton (1989) GNP Model

To capture the asymmetry in the growth rate of GNP between booms and recessions.
Hamilton (1989) chose a Markov switching model identical to the model in (17) with a fourth-
order autoregressive noise function. The maximum likelihood estimation results are presenied
in Table 6 along with the maximum likelihood estimates of the AR(4) model. We can first note
that the likelihood ratio qatistic (21.) is equal 1o 4.812. If judged with respect o 4 chi-square
distribution with one degree of freedom, the null of an AR(4) in first differences will be rejected
at about the 3% level.

To assess the estimation results of Hamilton, we need 10 generate the distribution of
SupC defined al the peginning of the secuon for r=4. For the autoregressive parameters, we
use the estimated values shows in Table 6 for the Markov trend model. The results are shown
in Table 7 for bounds of 0.15 and (.85 for the # and p parameters. AS shown in 4.2.1, these
bounds give the best approximation for the empirical distribution of the AR(}) case. Judged by

this distribution, we cannot reject at usual jevels the null of an AR(4) against the Markov trend
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model for the first differences of US log GNP. We reach therefore the same conclusion as
Hansen (1992) with his simulation-based bound method.

Finally, in the right hand side part of Table 7, we report the empirical distribution of the
LR statistic when the daa generating process is the Markov switching model of GNP estimated
by Hamilion (1989) with the parameter values shown in Table 6. The LR staustic disiribution
is obtained by estimating bdlh the lingar AR{4) model and the Markov trend mode! with an
autoregressive structure of order 4 for a 1,000 series produced by the data generating process.

A 5% Sup LR test will have a power close 10 80%.
4.3 Two-mean mode! with an uncorrelated and heteroskedastic noise component

The two-state MSM with an uncorrelated and heteroskedastic noise component is given

by:
y‘ZQO“OxSI*Z,
2, =(w,+w, S,
1 (w‘) wi !}€£ {22)
PSS =1)=p
PS=01S, ,=0)=¢
In this case, the COVATance matrix K(%,y‘,} of the score vectors given in {12) reduces
to:



i i x, Q 0
x, min{r,,7,) 0 0
sllo 0 I 23)
wé 2wy 2w
N 0 —1—'_‘3 m’m(w‘; *,)
L 2wy 2wy

The lirﬁix‘mg distribution of LR, is therefore SupC = Sup C‘(y)«rCz(y), where C (y)
yer

and C,(y) are chi-square processes with respective covariances:
) min{x,, 7)) -7, T,

K (v ) st e
() w”r,rl(l -x ) (1-7y)

, min(x,7,)-* %,

Koy, ) = Loy e 24)
B A (I (

The proof follows exactly the steps described before for the homoskedastic case. Finally,

we arrive at the following covariance matrix for C(v).

min(x,, %)) -7, 0 ]
PR LR AU I
R(Y - w,tz[l—r‘]{l—tl) 25)
" .
0 2:.03, min(r,,7)-%,7%,

x, 7 {1 RERTERE A

Therefore, C(y) can be represented as the sum of two chi-square processes with the covariances
shown above. To simulate the distribution of SupC, we therefore follow the method described
in section 4.1 to generate two independent Gaussian vectors g,(y) and 2y} Table 8 shows the
asymptotic critical values generated with the set of bounds [0.01-0.99] for T, which gives the

best approximation 10 the empirical distribution, along with the empirical critical values. The
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empincal distribution was obtained by generating 1,000 series under the null hypothesis
(a,=0, w =0} and estimating the likelihood ratio between the linear homoskedastic model and

the heteroskedastic Markov switching model, using again six sets of starting values for the
parameters.’

The comparison of the exponential LR test and the Sup LR test is reported in Table 9,
which shows the actual sizes of both tests for nominal sizes of 1% and 3%. Like in the
homoskedastic case, the size‘ of the exponential LR is distorted, but the distorsion is stronger:
anominal 5% test has an actual size of around 60%, compared with a value close 10 5% for the
Sup LR.

Finally, in the lower part of Table 9, we report the power of the Sup LR 1test for the
Markov switching model of stock returns estimated by Turner, Stanz, and Nelson (1989). we

generated a 1,000 series based on the following parameter estimates (a,=0.677, o, =-2.652,
w,=2.693, w,=2.396, p=0.767, §=0.950), and estimated for each series both the linear and the

Markov switching model. A 5% Sup LR test will have in this case a power of about 60%.
5. Conclusion

This paper has shown that the critical values of the asymptotic null distribution of the

likelihood ratio test in Markoy switching models (also valid, under certain conditions, for the

e

YA word of caution shout the peneration of the smpincal distribution is in order. In about 5% of the cases,
the optimizing program reaches singularity points, where either Wy OF W41, are close (o zero, giving high values
for the lLikelihood ratio. These vatlues have been excluded from the empirical distribution.
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Lagrange multiplier and Wald tests) are considerably higher than the critical values implied by
the standard X’ distribution. The paper also shows, for a series of two-state Markov switching
models that the asymptotic distribution is very close 0 the small sample distribution.

The critical values reported for the two-mean and two-mean, two-variance models with
an uncorrelated noise function can be used directly to assess the validity of Markov switching
models with the same specification for various economic and financial time series. For models
with a correlated noise function, we proposc a general simulation method that researchers can
use to generate the asymptotic distribution of the Sup LR test given their estimates of the
autoregressive parameters. we have shown however that this distribution is insensitive 10 the
values of the autoregressive parameters.

For the AR(4) GNP model estimated by Hamilton (l9$9). we generated the asymptotic
distribution of the Sup LR test and shown that, based on this test, the null of an AR(4) cannot
be rejected. In other words, there is no evidence in the period chosen by Hamilton for a Markov
switching model in the GNP growth series. We also assessed the power of the test o be around
80% for this particular model. For the other models studied with an uncorrelated noise function,

the power of the Sup LR test was in the 50-60% range.
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APPENDIX A

We reproduce below the sets of assumptions 1, 2, and 3 in Hansen (1991a).
Assumption |

i) O and [ are compact,

i

froor

Q. m=lim EQ(f8.y) is continuous in (6,y) uniformly over © x I' .
n—»c0

iii) [eXCRY) ~p Q@) forall (f.y) € OxI .

iv) Q,(8.v)-Q(8,y) s stochastically equicontinuous in (8.yyover OXI .

v) Forall y €[, Q(8,y) is uniquely maximized over #E€0 at g, .

Assumption 2

For 0€0,={0€0:h(8)=0}, 0,6,y) does not depend upon y.

Assumption 3
1) M(0,y)=tim EM (8.y) and V(@,y)=lim n E $7(9,v)5:(8,v) arecontinuousin (f.v)

n-»o n-—-oo

uniformly over O xI' , where 8. is some neighborhood of b, .

iy AR IRACRS MO0 foral @B.ypEs xr .

(3]
pv 4



i) M”(é,q‘;v.&f!{@.'y) and V. (0,v)- Vif,y) are stochastically equicontinuous in (8,v) over
6 xT .
iv) M(y)=M(8,,,v) and V(y)=V(8,,y) are positive definite uniformly over y€T .
v} \/;S:(G(),’y)=5'('y) on vET , where S°() is a mean zero Gaussian process with
the

covariance function:

Keyyap=tim 0 i@, )58,
fi—»0oe

where = denotes weak convergence of probability measures with respect 1o the uniform

metric.
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APPENDIX B

Derivation of the scores

Start with the following equality:

dlog P Y 5 1) 8 (V057.0) } 8p(y.,..4.y‘,s‘(y)“.,s‘(y);yﬁ) [
a6, a4, PO ¥ 05,1 8, (V)17 B)
Therefore:
0P oY 5 (Va8 (V7.0 B10BP(Y, e ¥y 501D 5, (17,0
[ [ . ! iy P Y S (V) 3 (1)7.8)
39, a8,
", dlogp(y | ¥ ,,v.0)
-5 ’Ma/; PO Vo P (1) =5, (1), S (1) =5, (1) 1Yo, 7 0)

tat i

where: \!',={y,,l,...,y,_,,s,',(y),.“,s,‘,('y)}

Then, summing over 5(y)....5,_(y)=0,1 for 7=1,..,n and dividing by p(y,....y,,7.8), we obtain:

P sy 37,8) i ‘ L dlogpy ¥ v.0)
=2, - — (S (1) =5 (), S ) =S Y ¥ y.8
a6, PO ) (5 LGl a8, P =57 SV =5, (WY, 7.0
: L dloga(y, | ¥,.v.6)
: Zo > —'m""(;‘é’l‘""p(se(:”):Sx(‘y)-w-sﬂvq(')')25.,4(7):)/,, ..... 97,0
SO0 5 (yis0 f

since  p(yl¥,v.8) depends only on 5{v),8,_(y). The conditional probabilities
PV =5 (7S, V) =5, () 1Y ur-¥07.8) are the so-called smoothed probabilities (see Hamilton
(1989)).
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APPENDIX C

Proof of Lemma 2
We will develop helow the computation of each element of the covariance matrix of the

scores K{vy,.v,), starting with the (og.r) element:

" ” i 1 i 1
mE[SIG) S Jn EL T T % 3 Lageptt
- I seh A 00 5, 0300 3,0)00 5 iy A7 ini w(,

where:
PEPSLYD =500 )80 ) =5,y WYY 80y,
PP ) =5 0700 S )=3, (1) 150 )0y,
The conditioning of p, on 5,(v,) reflects the fact that the filters based on v; and v, are

not independent since they are inferred from the same series {v}.
First note that the sums of the products of the probabilities is equal to 1. Also, by the

serial independence assumption about the ¢, we are left with:

E) - Z. &)’

nELS (00,7) 52 60, )= FZU Zas)’ ~—%—~
'] w@ Wy

We now derive the formula for the expectation of the cross-product of the scores with

respect 10 ay, and a:

L n i H H i
PELS O 1) S 0 JEL Y Y - Y Y - Y La- Eé)(s L7,)- z«w S p,
’ ol 3l 8000 55000 gyl g, a0 M [N

Since the conditional probabilities P, sum 1o one, we are left with:

RES,(60.7,), 5, (8,7,), 1= nE}:}:}_j }j s Zwvm) zé 5, {70)-P,

131 g2l 5 =0 :-n(“;(J i=}

This can be rewritten as:

REYS,(B0.v,), S2 (8 my), ) =nE | ):Z e <x—z¢»)£1u-h) zw,,,(v?)]l\h,oo )

Ixi sx} n“"()

where we have used the independence assumption between ¢ and s(y). Next, we apply

the law of iterated expectations E{EYs (,)- T 5, ()1 ¥, oy, 1} =E13,(7,)- 'T¢', REH]|
=1
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and note that E(s{y))=£(s, L) = =Els, () =%, Therefore, by the serial

independence assumption about ¢, the final expression is given by:

(1-Loy
RELS LBy, Si 007, ) — 7,
Wy

Similarly for the (a,.a ) element:

(1-T )
RELS 07,0, S By J = 7,

Wo

Proceeding in the same way, we obtain the following expression for the(a, o)
element:

€8,

)- Eéﬁ,,,(*/.))(s (v~ Z@S, ISTUIR FEIARA)

nELSi (85,7, 5480, 1 =nE {E):

111 sal n ¢

nELS (B0 Sa (80750, "Eiz E E((S(“{.) Eab,s, Ly N6y Zd>,€, O I SN

TRl LY

o K 2
=nE(Y Y —LIEGv)s () «afE(s,,.u,).va)) s dLEG, (v 5,07
FIK]

1el sel M7y

-, EG (v )5, L)) -6 E65, (v )5 L))+ Z2 0, El (1), (v )+ %é.-@., E(s, (y)5.(vy)

<, Es (795, Ly N0, v )5 L))+ Eéﬂa-.ﬁ(&(v,)&.;(n)) rLod s (5D

-6 £(5,0v,)5,.L72) ~b G, (r s Ly 1}

Now, we state the following results for Markov variables:

Els(v)s (ypl=min(r,7)
Els(v,)s, (v} =min(x,, 27 " [2.2]
Els(v)s, v ) =min(x,, 5T °[2,2]

Els(y)s, Lyl =min(r, o )T 7 [2,2]
where T corresponds to the transition probability matrix for the Markov variable having

the highest probability limit (max(x,,%}) T *2.2] denotes the second row, second
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of the matrix T rzised 1o the power

RELS (60,7)),. 5,16,

PR
Foe Tt Yy ol

208, -y 60, ]

is?

2T Ne,-N a0

ix3

. . 3 B 5
Since the cxpecations of ¢, and ¢, are 0, the expectations of the [SLCASI L CTETS

. . 2 H
of the scores with respect to a, and w; on one hand, and a, and w on the othe

bBoth zero.

The Himits as n tends to infinity of the expectations of the scores with

and o, and o, and ¢, are both zere, as we will show below for &y

the conditional p 2 one and the -

independent. we finally obtain:

s oty L o H . .
7 1:;5,,(gir,.’yij%o?({?ﬁ,'yz)‘ }:ﬁg AR ER NS
: it

(22

] . DR , &N
;20 s S

=3l Le)(1-Le)trel- T il |

wg =3 i1 n i) n 3

The limit as n tends 1o infinity of the average of the y is E(y), i.e. o, under the

null hypothesis. Therefore. the whole expression lends 10 zero.  The development is
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similar for the (a,,9,) element.

For the (6,4, elemesnt, we proceed similarly and arrive at:
& J
n E1$18,7,),5 wa*"'ﬁs) =n EZ ";"?(y:-c'“o)()’:-;’aQ
1«l Mg

(y4~i ao)(y i Cl
L3 Qe
g =t

As n tends to infinity, the sum goes 10 the corresponding element of the
asymptotic autocovariance matrix of the {y}.

All the expectations of the cross-products of the scores with respect 10 ws and wr
on one hand, and © a, «, and &, (i=l...0 on the other, are zero since the
expectation of ¢ and e are 0.

We are therefore left with the cross-products of the scores with respect to the

variance parameters w5 and =}, We derive first the expectation of the cross-product of

the scores with respect to wh:

1 1 l 2
1 £

"E{S (GO’YI) S, (60'72),~l””522 E o s e -1 "‘3" p. P,
191 sel styoe0 5 0r)e0 (a0 3 (300 4@0 Wy Wy

Note that the probabilities sum to 1 and that, by the sérial independence
assumption on the ¢, the expectation of the cross-products of the square-bracketed terms

are zero when U is different from s. We are therefore left with:
e [e ]
!iﬁs:(go,‘)“)‘ 5:(30,72)4] ="‘EE — *'li -1 bt
no Awg | wy

where the last equality follows from: E(e}) =35,

The (ué, wf) element is given by:

1 1 1 2 2
RETS (871550072} -_55;}: Y-F %% -‘-,{‘—';l] [s,’wz)[i’;-n} s,

w5 e sjape@ a0 4 )0 duwg | wo wo
Proceeding as before, we obain:
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ELS(8,7,) 526, ), ;-~£§j S IR CHERIE TN

st 44»9 wﬁ

where we have used the i.1.4.

and the law of Herated expec

and mE(S0,.v) 518,70 ) - )
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APPENDIX D

Method for Simulating Chi-Square Processes

According to the definition in footnote 5, a chi-square process is the product of
Gaussian vector processes which have a certain covariance matrix. We therefore propose
below a general method 1o generate Gaussian vector processes with a given covariance
matrix. Assume that we select a set of T values in the parameter space I' to generate the
distribution of SupC, say ¥,,7,, ¥,

Then the first step consists in drawing T vectors of t.id. N0,1) variates of

dimension k, £(1),eQ2),-,&(7) ., i.e.:

Ele(N]1=0 Vij o islek jeleT
Ele())=1
Ele{Nem)]=0 il =1k jm=1T

As a second step, construct T Gaussian vectors of dimension k, G('y,),m,G('yT), as
follows:
Gl =Adh, De(1)
Gly)=A2, De(1)+A(2,2)e(2)
Gy =A(T. D)e(1)+ AT, 2)(2) » -~ +A(T, Te(T)
The G(y) vectors are Gaussian vectors and have by construction variance and covariance
matrices which are functions of the A(.,.) matrices.
Given the covariance function K('y‘,'yj), one car find the corresponding A(.,.) by
the following steps:
i. Start with:
E1G(y)G(yY)=K(y,7,)=A(1, DELe(D)e(1Y14°(1, 1)

=A(1,1)A(1,1)
The last equality allows to compute the k? elements of the A(1,1) matrix, given
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the k* elements of the K(y,,y,) variance matrix.

2. a. Déterm'me the k! elements of the A(2,1) matrix by:

E[GEy )Gy Y =Ky, v =A(L DAY
given the k7 elements of A(L.1) computed in step 1. The last equality results from the
orthogonality of &(1) and £(2) and by Ele(1)e(1))=1, where | is the identity matrix of
dimension k.
b. Determine the k! glements of the A(2,2) matrix by:
E[G(v )Gy, =K«(72,72)=E({A(2‘336(3)*4(2.2)8(2)1-{A(3V%}8{‘e)'A€2;2)€(2)}3§’

=ETA(2, De(De(1YA(2, 1)« A, De(2)e(2)A /2, 2)]
2A(2, DA(2, 1) A2 DA’ 2,2)

Given the elements of 4(2,1) computed at step 2a., one can find the elements of A(2,2)
given the K(y,,7,) matrix.
3. For any j=3.-,T, determine the elements of the matrix A(f,1) by:

ELG()G() 1 =K(¥, 1) =AU DAG D) +AGDA'G2) - +ALDA V.0

The G()s so constructed are Gaussian with covariance matrices  K(v,v).
is1. T, j=1,~.T. This algorithm is equivalent to calculating the Cholesky
decomposition of the following matrix:

[&(v,v) K(vovy) = Klvovy)
K(72!7|) K('Yp'Yz) K(‘sz?r)

K(ypy) Kiypvy) ~ Klypy)
10 obtain:} = PP’ and generate the vector Pe, where € is a (Tk x 1) vector of i.i.d.
N(O,1) variates. When k is large, this numerical approach might be the only way 0
generate the covariance matrix, but for the relatively simple models studied in this paper,

we will derive analytically the elements of the P matrix.
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TABLE 1

Empirical and Asymptotic Critical Values
of the Likelihood Ratio in a Two-state Markov Switching

Model with Uncorrelated and Homeskedastic Errors

% of Empiricai Asympt. Dist, Asympt. Dist.
Dist. Distribution | Critical Value Critical Value
Critical Value [0.01-0.93] [0.15-0.85]
9% 14.432 13.6% 12,45
95% 10.89 10.18 8.50
0% 8.92 8.68 7.08
85% 7.47 .72 6.13
30% 6.71 7.04 5.47
3% 6.08 6.49 4.93
0% 5.53 6.05 4.50
85% 5.04 5.67 415
60% 4.73 5.33 3.83
55% 4.33 5.00 3.51
50% 4.03 4.72 325
45% 370 4.45 3.00
0% 3.45 4.18 2.77
% 312 3.91 2.55
30% 2.81 3.66 2.35
25% 2.52 341 2.14
20% .22 114 .93
15% 1.78 2.38 1.72
10% 1.39 2.55 1.48
5% 0.99 2.15 1.18
1% 0.45 1.56 0.81
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TABLE 2
Size and Power of the Sup LR test
in # Two-state Markov Switching Model with

nd H
Nominal Size 1% 5%
Sup LR 1.4% 6.5%
Exp LR 10.2% 28.6%
Power - Sup LR 382% 49.5%

Note: The power of Sup LR test has been
computed with respect to the model estimated
by Cecchetti, Lam, and Mark (1990).
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Comparison of Empirical and Asymptotic Critical Values
of the Likelibood Ratio in
with Firy

TABLE 3

ve_an {51

a Twao-state Ma

rkov Switching
skedastic Moise F

for different values of the autoregressive parameter

Model

stion

% Dist Asymptotic Empiricai Asymptotic Empirical
Distribution Distribution Distribution Distribution
Cnitical Values Critical Values | Critical Values | Critical Values
é,=0.337 %, =0.337 $,=0.5 ?,=-0.5
99 % 12.00 11.82 11.88 13.08
5% 8.68 8.72 8.62 8.82
0% 7.05 7.21 7.06 7.21
85% 6.15 6.12 6.11 6.39
80% 5.48 5.52 5.44 5.74
5% 4.92 4.98 4.91 5.27
0% 4.49 4.33 4.43 4.73
65% 413 392 4.10 €.34
60% 3.8t 354 3.80 393
35% 3.50 3.1 3.5 361
50% 3.26 2.83 3.25 328
5% 3.00 2.49 3.00 3.00
0% 2.78 2.29 2.76 2.73
5% 2.55 2.01 2.54 2.43
30% 2.33 1.74 2.33 2.0¢
5% 2.12 1.45 211 .82
20% 1.39 1.20 1.92 .53
15% 1.70 0.96 L L9
0% 1.45 0.66 !.45 0.86
5% i.18 0.31 117 0.57
1% 0.79 0.03 0.8¢ .15




TABLE 4
Asymptotic Critical Values
of the Likelihood Rutio in 8 Two-state Markov Switching Model
with First-Order Autoregressive and Homoskedastic Noise Funclion
for various values of the autoregressive parumeter

% Dist. Critical Values | Criticsl Values | Critical Values | Critical Values
¢,=0.3 ¢, =05 ¢,=0.8 ¢,=0.95
9% 11.92 12.07 11.95 12.08
95% 8.74 8.57 8.48 §.48
0% 7.20 7.06 7.00 1.06
85% 6.20 6.10 6.12 6.17
80% 5.49 5.44 5.44 5.51
5% 4.97 4.94 4.92 4.97
70% 4.55 4.52 4.49 4.52
65% 4.17 4.16 4.10 4.12
60% 3.83 3.83 3.80 3.79
55% 3.54 3.54 3.51 3.49
50% 3.28 kvl 3.26 3.22
5% 3.04 3.01 3.0 2.99
40% 2.80 2.7 2.78 2.75
I5% 2.56 2.35 2.56 2.53
30% 2.35 2.32 2.34 2.33
25% .15 2.11 2.12 2.12
20% 1.93 1.91 1.92 1.90
5% 1.70 1.70 1.70 1.68
10% 1.4 i.46 1.46 1.45
5% 1.2¢ 17 1.17 1.18
1% 079 0.78 0.81 0.83




TABLE 4 (Cont’d)

Asymplotic Critical Values
of the Likelihood Ratio in a Two-state Markov Switching Model

with First- Aut ssive an ski i¢ Noise Function
for various values of the autoregressive parameter
% Dist. Critical Values Critical Values | Critical Values | Critical Values
$,=-0.3 ¢, =-0.3 #,=-0.8 ¢, =-0.95
P¥% 12.26 11.88 12.45 .79
I5% 8.66 8.62 8.68 8.50
0% 7.08 7. 7.08 7.450
85% 6.11 6.1t 6.14 6.15
80% 5.43 5.44 5.5 5.50
75% 4.94 4.91 500 4.96
0% 4.52 4.43 4.55 4.54
65% 4,135 4.10 4.18 4.17
60% 3.82 1.80 3.85 3.84
5% 3.55 3.51 3.55 3.55
0% 3.28 3.25 3.2% 3.28
45% 3.03 3.00 3.04 3.03
0% 2.80 .78 2.81 2.79
33% 2.56 2.54 2.5% 2.57
30% 2.35 2.33 2.37 2.35
5% 2.4 2.11 2.18 2.13
20% i.93 £.92 1.94 191
5% .72 .70 .72 1.70
10% 1.47 1.45 1.49 .47
5% 119 17 .19 i.18
1% 0.32 0.81 0.79 0.81




TABLE §
Size of the Sup LR und Exp LR tests
in 8 Two-state Markov Switching Model with
irst- toregressive un kedasti i
Nominal Size ‘ i% [ 5%
Autoregressive Coefficient = 0,337
Sup LR 0.97% 5.1%
Exp LR 6.1% 22.9%
Autoregressive Coefficient = 0.5
Sup LR 1.6% 5.4%
Exp LR 7.1% 26%

b




i
H
!
H
|
I

TABLE ¢

Maximum Likelihood Estimates - US Real GNP 1952:2-1984:4

Parameters AR(4) Model Markov Trend Model
oy 0.720 (0.112) -0.359 (0.265)
[0.465]
o - 1.522 (0.264;
{0,464}
p - £.904 (0.037;
{0.033§
q - 0.755 (0.097)
{6.101]
&, 0.310 (0.088) 0.014 (0.1203
10,164}
@, 0.127 (0.9 -0.058 (0137
10.219]
-} D121 (0.081) -0.247 {0.107)
{0.148]
*, <G.089 (0.087) 021340110
[0.136}
] 3,983 (0.061) 0.76%9 {0.067;
{0.094}
L 63.29 -60.88

Note 1: The standard errors between parentheses correspond to the values of the
numerically computed Hessian,
The standard ervors hetween brackets are taken from Hansen (1990a) and
correspond to heteroskedastically consistent values.
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TABLE 7
Distributions of the Likelihood
Reiio Statistic - Linear AR{4) against Markev Trend Modd AR®)

Asymptotic Distribution Empirical Distribution
under the Linear Nuil under the Markov Trend Nuil

9% 12.24 33.35

95 % 8.59 26.70

0% 7.10 23.99

B5% 6.16 21.38

80% 5.52 19.63

5% 4.99 18.30

0% 4.52 17.26
65% 4.17 16.42
60% 3.84 15.47

55% 3.55 14.38
50% 3.27 13.47
45% 3.03 12.78
0% 2.79 11.95

35% 2.56 11.08

30% 2.33 10.21

5% 212 9.18

20% 1.93 8.24

15% 1.72 7.52

0% 1.47 6.19

5% 1.18 4.44

1% 0.80 2.10

Motz 11 Thess criticel values were computed using for the © P the

vaiues with the Markov tread model for US GNP (see Tab!e 1)




TABLE 8

Comparison of Empirical and Asymptotic Critical Values
of the Likelihood Ratio in a Two-state Markov Switching Model

with fated and Heterosk ic_Moise Function
% Dist. Empirical Asymptotic
Distribution Distribution
Critical Values Critical Values

{0.01-0.99}
9% 17.38 17.52
% 4.1 13.68
90% 12,23 11.88
85% 10.93 10.78
30% 10.02 9.99
5% 9.42 9.41
0% 8.34 5.85
63% 8.22 8.39
60% 7.80 7.87
55% .37 7.59
50% 6.84 7.22
43% 6.34 6.87
0% 5.98 6.55
5% 3.58 6.23
0% 5.22 5.90
25% 4.82 5.58
0% 4.37 5.25
15% 3.84 4.87
10% 3.25 4.43
5% 2.68 3.87
1% 1.74 3.08

.47.




TABLE 9

Size und Power of the Sup LR test
in @ Two-state Markov Switching Maodel with

Uncorrelated and Heteraskedastic Errors

Nominal Size 1% 5%
Sup LR 0.98% 6.2%
Exp LR 25.7% 41.7%

Power - Sup LR 46% 60.9%

Note: The power of Sup LR test has been
computed with respect 1o the model estimated by

Turner, Swartz, and Nelson (1989).
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