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Résumé 

Les cellules CD8 T mémoire (Tm) offrent une protection tout au long de la vie contre les 

infections récurrentes. Elles sont maintenues grâce à des mécanismes d'auto-renouvellement. Les 

cellules souches hématopoïétiques (CSH) peuvent aussi s'auto-renouveller lentement, en assurant 

leur maintenance à long terme. Les deux types de cellules utilisent la moelle osseuse comme 

principale niche de prolifération. CD8 Tm et CSH partagent partiellement un profil 

transcriptionnel, y compris certains gènes connus pour contrôler l'auto-renouvellement. Les 

gènes Hox, dont Hoxb4 qui est un activateur puissant de l’expansion des CSH in vitro et in vivo, 

sont exprimés par les CSH. Basé sur les similitudes entre les CSH et les cellules Tm, nous 

émettons l'hypothèse que les gènes impliqués dans l’auto-renouvellement des CSH, comme 

Hoxb4, favoriseront l'expansion des cellules CD8 Tm. Pour tester cette hypothèse, nous avons 

déterminé l'effet de la surexpression de Hoxb4 dans les cellules T à partir de souris transgéniques 

jeunes et âgées, et sur la prise de greffe et le maintien des cellules CD8 Tm après leur 

transplantation dans des souris immunocompétentes ou immunosupprimées. 

À l'état basal, la composition et le phénotype des cellules T naïves et mémoire n’ont pas 

été affectés par la surexpression de Hoxb4. Pour étudier le maintien des cellules CD8 Tm, les 

souris transgéniques Hoxb4 et OT-1 ont été croisées. Les cellules T des souris OT-1, entre autre, 

expriment un récepteur de lymphocyte T qui reconnaît le peptide d'ovalbumine (OVA), présenté 

par le complexe majeur d’histocompatibilité de classe I. En utilisant ce modèle, nous avons 

généré in vitro un grand nombre de cellules CD8 Tm pour les expériences du transfert adoptif. 

Ces cellules sont monoclonales et spécifiques pour la reconnaissance d’OVA. Le nombre et le 

phénotype des cellules CD8 Tm générées en culture n’ont pas été affectés par la surexpression de 

Hoxb4. Ces cellules ont été transplantées dans des souris de type sauvage afin d'évaluer leur 

prise de greffe et leur maintien à long terme. Après la transplantation chez des souris soit 

immunocompétentes ou immunosupprimées, la prise de greffe et le maintien des cellules CD8 

Tm surexprimant Hoxb4 n'a pas été améliorée lorsque comparée aux cellules CD8 Tm de type 

sauvage. Ces résultats suggèrent que Hoxb4 ne favorise pas l’auto-renouvellement des cellules 

CD8 Tm. D'autres études vont essayer d'identifier les facteurs contrôlant l’auto-renouvellement 

des cellules CD8 Tm. 
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Mots-clés: Hoxb4, cellules CD8 T mémoire, cellules souches hématopoïétiques, auto-

renouvellement, prolifération homéostatique et modèles de souris transgéniques. 

Abstract 

 

CD8 memory T (Tm) cells provide life long protection against recurrent infections and 

are maintained through self-renewal mechanisms. Hematopoietic stem cells (HSC) also possess 

the capacity to slowly self-renew assuring their long-term maintenance. Both cell types use the 

bone marrow as their preferred proliferation niche. CD8 Tm and HSC partially share a 

transcriptional profile including some genes known to control self-renewal. Hox genes are 

expressed in HSCs, among them Hoxb4 is a potent enhancer of HSC expansion in vitro and in 

vivo. Based on the similarities between HSC and Tm cells, we hypothesize that genes involved 

in HSC self-renewal, like Hoxb4, will promote CD8 Tm cell expansion. To test this hypothesis, 

we have determined the effect of Hoxb4 overexpression in T cells from young and old transgenic 

mice, and on the engraftment and maintenance of CD8 Tm cells after transplantation into 

immunocompetent or immunodeficient mice. 

At the steady-state, the composition and phenotype of the naïve and memory T cells were 

not affected by Hoxb4 overexpression. To study CD8 Tm cell maintenance, the Hoxb4 and the 

OT-1 transgenic mice were crossed; the latter express a T cell receptor that recognizes the 

ovalbumin (OVA) peptide, presented by major histocompatibility complex class I. Using this 

model, we generated in vitro large numbers of monoclonal and OVA specific CD8 Tm cells for 

adoptive transfer experiments. The number and the phenotype of Tm cells generated in culture 

were not affected by Hoxb4 overexpression. These cells were transplanted into wild type mice to 

evaluate their engraftment and long-term maintenance. After transplantation in either 

immunocompetent or immunodeficient mice, Hoxb4 overexpressing Tm cell engraftment or 

maintenance was not enhanced when compare to wild-type Tm cells. These results demonstrate 

that Hoxb4 does not promote CD8 Tm cell self-renewal. Further studies will try to identify the 

factors controlling CD8 Tm cell self-renewal. 

 

Keywords: Hoxb4, CD8 memory T cells, hematopoietic stem cells, self-renewal, 

homeostatic proliferation and transgenic mice model.   
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1.- Hematopoietic stem cells 

 

One of the most extremely regenerative tissues in the human body is the blood. It is very 

complex, but at the same time, it is probably one of the most studied and understood 

developmental systems. Its organization consists of cellular hierarchies where all the cells come 

from a common precursor which continues to differentiate to give rise to all of mature blood cell 

types. The hematopoietic stem cells (HSCs) are at the base of this hierarchy. They self-renew 

and differentiate to maintain the production of the blood cells. The self-renewal is a cellular 

division which is critical to preserve the multipotential differentiation capacity of the parental 

HSC in at least 1 of the daughter cells (Sieburg et al., 2013).The principal niche of HSCs is the 

bone marrow (BM), where they receive the necessary signals for their function (Doulatov et al., 

2012). 

 

The HSCs qualities (self-renewal and differentiation potential) can be proven when the 

cells can fully reconstitute lethally irradiated mice after transplantation. This has been the leading 

assay to the discovery and understanding the HSCs. From the 60’s it was realized that colony-

forming-units could generate similar colonies upon transplantation into secondary recipients 

although it was difficult to purify the HSC (Lessard et al., 2004). By the end of the 80’s, different 

phenotypic markers were used to purify and characterized the HSCs. Spangrude and 

collaborators (Spangrude et al., 1988) showed that 50% of lethally irradiated mice are rescued 

with 30 cells (Lin
-
 Thy-1

low
 Sca-1

+
). Then c-kit was showed to be essential for hematopoiesis in 

BM and self-renewal of hematopoietic progenitor cells (Ogawa et al., 1991). These experiences 

result in the LSK (Lineage
-/low

, Sca-1
+
, c-Kit

+
) marker set use canonically to identify HSCs 

enrichment. The identification of the SLAM family receptors (including CD150, CD244, CD229 

and CD48) has allowed a better detection of HSCs from the LSK cells fraction in the BM (Kiel 

et al., 2005; Oguro et al., 2013). Currently, transplantation of a single HSC into lethally 

irradiated mouse result in long-term reconstitution of the lymphohematopoietic system (Osawa et 

al., 1996). 
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The majority of the HSCs are in a quiescent state dividing infrequently, but they can 

cycle with regularity renewing the pool in few weeks. In order to respond to hematopoietic stress 

like BM injury, HSCs can switch from the quiescent to the active state increasing their division 

for replenishing the HSC pool or differentiating to replenish the missing mature blood cells. 

When normal levels of cells are regained, activated HCSs return to the quiescent state (Fleming 

et al., 1993; Wilson et al., 2008). 

 

 

1.1.- Ontogeny 

 

During embryonic development, the niches for the HSCs and blood cell production 

change. Mouse primitive hematopoiesis begins at embryonic day (E) 7.5 in the yolk sac, where 

primitive erythroid cells are produced. These cells will function to deliver oxygen to the embryo 

and they are the predominant blood cell type before the definitive erythrocyte production. Then, 

around E8.25, myelo-erythroid progenitor cells from yolk sac will migrate to the fetal liver 

where they will generate enucleated erythrocytes. These cells will rapidly become more 

numerous than the primitive population (Baron et al., 2013; Clements and Traver, 2013; Frame 

et al., 2013; Sugiyama et al., 2011). At E8.5 the appearance of the first multipotent progenitors in 

the yolk sac and the placenta has been demonstrated (Alvarez-Silva et al., 2003). At E12.5, 

definitive hematopoiesis starts in the fetal liver, where HSCs have arrived and expanded. Then, 

they can enter the fetal spleen (SPL) at E13.5. Finally, after E16.5 the adult hematopoiesis is 

established with the migration of HSCs to the fetal bone marrow where they will stay to generate 

the different blood cell types (Baron et al., 2013; Clements and Traver, 2013; Sugiyama et al., 

2011). At the end of gestation, when BM becomes the dominant site, the number of HSC is 

stabilized and this number will be maintained in adult life. It is not clear where definitive HSCs 

are generated during embryogenesis before liver formation at E11.5. The different origins 

proposed are the extraembryonic mesoderm at the yolk sac, the vascular endothelium in the 

intraembryonic para-aortic-splanchnopleural mesoderm / aorta-gonad-mesonephros region and 

also the proposition that some cells come from the placenta (Adamo and Garcia-Cardena, 2012; 

Medvinsky et al., 2011; Sugiyama et al., 2011). 
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Adult hematopoiesis is a process of cell differentiation and proliferation resulting in the 

production of all the different blood cell types (Figure 1). The understanding of this hierarchical 

process has changed from a simple linear differentiation to a system that is much more complex. 

In a simplified way, HSCs will progressively differentiate generating multipotent progenitor cells 

with an intermediate or short-term repopulation capacity. These progenitor cells gradually 

continue to acquire characteristics of a more specific lineage. Then, they will generate one of the 

lineage committed cells like the megakaryocyte-erythrocyte progenitor (MkEP), granulocyte-

macrophage progenitor (GMP) and the common lymphoid progenitor (CLP). In turn, the lineage 

committed cells will finish their differentiation into specific mature blood cell types. Intrinsic 

and extrinsic factors are involved in defining the decision of the cellular fate (Lensch, 2012; 

Orkin, 2000; Rieger and Schroeder, 2012). 

 

 

Figure 1.- Blood cell ontogeny. 

Hematopoietic stem cells can self-renew and differentiate to produce all the mature blood cell 

types. The self-renewal potential is lost with the progressive differentiation. HSC = 

Hematopoietic stem cells, MPP = multipotent progenitor, CMP = common myeloid progenitor, 

LMPP = lymphoid-primed multipotent progenitor, MkEP = megakaryocyte-erythrocyte 
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progenitor, GMP = granulocyte-macrophage progenitor, CLP = common lymphoid progenitor, 

RBC = red blood cell (erythrocyte), Meg = megakaryocyte, Neutro = neutrophil, Baso = 

basophil, Eosin = eosinophil, Mono = monocyte, Macro = macrophage, DC = dendritic cell, NK 

cell = natural-killer cell. Adapted from: An Evolving Model of Hematopoietic Stem Cell 

Functional Identity. Stem cell reviews (Lensch, 2012). 

 

Originally, HSCs were considered as a single homogenous population of cells, however 

recent studies showed that HSCs are heterogeneous and have different regeneration potentials. 

Three types of HSCs have been proposed based on their ability to generate different lineage 

(Figure 1). These are the unbiased that divide into all, the myeloid-biased and the lymphoid-

biased long term HSCs (Babovic and Eaves, 2014; Lensch, 2012; Zhang et al., 2013). 

 

1.2.- Hematopoietic stem cell niches 

 

HSCs need to be maintained in the body without losing their ability to differentiate and to 

self-renew. HSCs are located in a specific microenvironment, the “HSC niche” which supplies 

the necessary components and signals to maintain and to regulate the cycling state of HSCs 

(Isern and Mendez-Ferrer, 2011). The principal niche of adult HSCs is located in the BM 

(Doulatov et al., 2012). Within the BM, two specific microenvironments are identified: the 

endosteum niche and the vascular niche. 

 

1.2.1.- The endosteum niche 

 

The inner surface between the bone and the BM is known as the endosteum. This surface 

is well vascularized. HSC populations and primitive hematopoietic progenitors are localized in 

the endosteum. Different mechanisms have been suggested for the way the endosteal cells 

contribute to the maintenance of HSCs. These cells can be acting by direct contact, releasing 

soluble factors or regulating the function of intermediate cells (Chotinantakul and 

Leeanansaksiri, 2012; Kiel and Morrison, 2008). 
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The endosteal cells can produce some of the necessary factors for the HSC maintenance, 

however these factors are still not completely characterized. The osteoblasts localized in this 

surface are suggested to be the main supportive cells for HSCs, because they provide factors that 

can regulate the maintenance, quiescence and localization in the niche of HSCs, including 

soluble factor as angiopoietin-1, stromal cell derived factor 1 (SDF-1) and osteopoietin 

(Chotinantakul and Leeanansaksiri, 2012; Kiel and Morrison, 2008). 

 

Besides the role to support HSCs maintenance in normal conditions, the endosteum 

seems to play an important role when the BM is damaged, promoting HSC expansion. For 

example, irradiation can damage the BM and eliminate HSCs from the body. When HSCs are 

transplanted into irradiated mice, they preferentially localize in the endosteum where they 

expand to re-establish the blood cell populations of the mice. The irradiated niche produces 

cytokines. This localization is different when HSCs are transplanted to normal mice where they 

are randomly distributed (Xie et al., 2009). 

 

 

1.2.2.- The vascular niche 

 

The vascular niche is also thought to be involved in the maintenance of the HSCs. During 

the development of the embryo, vascular or perivascular niches are probably the primary 

residence for HSCs before they finally migrate to the BM through the vascular system (Kiel and 

Morrison, 2008). The vascular system also plays a role in adult HSCs migration given that the 

cells can be mobilized rapidly into circulation after stimulus like interleukin-8 (IL-8) (Laterveer 

et al., 1995). 

 

Within the vascular niche, the endothelial cells are suggested to be the providers of the 

necessary signals for the maintenance and differentiation of the HSCs (Chotinantakul and 

Leeanansaksiri, 2012). However, it is still not clear if the endothelial cells are needed for both 

mechanisms or just for one (Kiel and Morrison, 2008). Endothelial signaling seems to be 
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mediated through the cytokine receptors that share the subunit gp130. Transplantation assays 

demonstrated that when HSCs are transplanted into mice with endothelial cells deleted for 

gp130, normal hematopoiesis is not re-established and mice fail to recover, even if HSCs enter 

the BM (Yao et al., 2005). These results suggest that endothelial cells are important for the 

maintenance of hematopoiesis; however, it is still not clear if the endothelial cells are acting 

directly or indirectly on HSCs (Kiel and Morrison, 2008). 

 

1.2.3.- Additional cell types supporting HSCs  

 

Other cells, like the reticular cells, could have a role contributing to the niche for HSCs 

either directly or indirectly. Probably, the HSCs niche can be considered a combination of all the 

different supporting cells (Kiel and Morrison, 2008). 

 

An example of these cells is the reticular cells known as CAR cells, which reside in the 

perivascular niche. This name was given because they abundantly produce CXC-chemokine 

ligand 12 (CXCL12) also known as SDF-1. HSCs are in contact with CAR cells. CXCR4 is the 

primary receptor for CXCL12. When this receptor is deleted in HSCs, their number is reduced. 

In contrast, this deletion does not affect more mature progenitors. It seems that the signaling 

trough CXCR4 provided by CAR cells is important for the maintenance of HSCs (Sugiyama et 

al., 2006). 

 

Every day, numbers of HSCs are entering and exiting the circulation, which means that 

HSCs are not only staying in the BM. In the mouse, between 100 to 400 HSCs are estimated to 

be circulating in the blood (Wright et al., 2001). This opens the possibility that HSCs could have 

other niches that are still not defined. Other cell types and microenvironments could be 

supporting the maintenance of HSCs by providing direct or indirect signals. Moreover, after 

injury, the mechanisms that maintain HSCs could change to induce the appropriate response of 

the cells (Kiel and Morrison, 2008). 
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1.3.- Self-renewal of HSCs 

 

To prevent exhaustion of HSCs that would jeopardize blood cell production, HSCs divide 

without differentiation to maintain numerical stability, a process also called self-renewal. 

Depending on the requirement of the organism, HSCs will self-renew to maintain or to expand 

the population. To obtain either maintenance or expansion of HSCs, self-renewal distinguishes 

either  symmetrical or asymmetrical division (Lessard et al., 2004). 

 

The symmetrical division is defined as a division resulting in two daughter cells that 

preserve the characteristics of the parental cell. It is also known as self-renewal expansion. It is 

observed during embryogenic development when HSCs expand in the fetal liver. In adult, 

hematopoiesis an expansion of HSCs only occurs when hematopoietic stress takes place, for 

example following transplantation or BM injury. The mechanisms controlling HSCs self-renewal 

in both, embryonic and stress hematopoiesis, may be similar (Lacadie and Zon, 2011; Lessard et 

al., 2004). 

 

The asymmetrical division results in two different daughter cells. One will preserve the 

characteristics of the parental cell and the other will be more differentiated and continue the path 

to produce the blood cells necessaries for the body (Ting et al., 2012). It has been observed that 

the asymmetrical division of HSCs can produce one daughter that remains quiescent while the 

other multiplies (Huang et al., 1999). The molecular mechanism is still not well known. With the 

use of videomicroscopy it was observed that the endocytic protein AP2A2 is asymmetrically 

segregated during mitosis of HSCs, suggesting that this protein could play a role in this type of 

division (Ting et al., 2012). In contrast to the segregation during asymmetric division of this 

protein, it was shown that chromosomes are randomly segregated (Kiel et al., 2007). 

 

To maintain the HSCs pool and to give rise to the different blood cell types a balance 

between symmetrical and asymmetrical division is required (Huang et al., 1999). Studies are 

ongoing to unravel the mechanisms regulating the self-renewal of the HSC. 
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1.4.- Molecules involved in HSC self-renewal 

 

There are multiple factors known to be involved in the regulation of HSC self-renewal. 

Very generally, they can be divided in intrinsic or extrinsic factors. The intrinsic control of HSC 

self-renewal includes transcription factors and chromatin-associated factors regulating the gene 

expression, like the homeobox (Hox) genes and the growth factor independence 1 gene (Gfi1). 

The extrinsic factors coming from the environment could modulate the gene expression. There 

are multiple extrinsic regulators of HSCs self-renewal like growth factors, cytokines or chemical 

modulators. HSCs express receptors for different extrinsic regulators. These receptors can 

activate developmental pathways that could modulate the fate of HSCs. Wingless-type (Wnt), 

Notch and Sonic hedgehog (Shh) are among these pathways (Walasek et al., 2012). 

 

HSCs express Gfi1 which seems to play a role in the homeostasis of the cells. Gfi1 

function to restrain HSC proliferation. When these cells are Gfi1 deficient, they highly 

proliferate which leads to cellular exhaustion and reduced population in the host BM. These 

deficient cells are also incapable of sustaining hematopoiesis and mice reconstitution after 

transplantation (Hock et al., 2004; Zeng et al., 2004). The regulation of this gene is very 

complex; it seems to be controlled by 5 different transcription factors including Runt-related 

transcription factor 1 gene (Runx1) and the Gata binding protein 2 (Gata2) (Wilson et al., 2010). 

In adult HSCs, Runx1 deletion inhibit the production of the lymphocyte progenitors (Growney et 

al., 2005), whereas Gata2 expression induces a quiescent state in HSCs (Tipping et al., 2009). 

Moreover, Gata2 is implicated in survival and proliferation of HSCs (Tsai and Orkin, 1997). 

Both roles seem to be agreeing with the Gfi1 role to restrain HSCs excessive proliferation 

(Wilson et al., 2010). 

 

The Wnt is a main pathway in HSCs self-renewal. The Wnt signaling pathway is 

involved in the regulation of the HSCs fate. During hematopoiesis, Wnt is activated and 

regulates HSCs fate in a dose dependent manner. -catenin is the canonical signaling transducer 

of this pathway leading to the activation of gene transcription. (Luis et al., 2011; Walasek et al., 

2012). The inhibition of Wnt pathway by blocking its receptor (Frizzled) leads to inhibition of 



 

10 

 

 

cellular growth in vitro and reduce in vivo reconstitution of HSCs (Reya et al., 2003). On the 

other hand, the overexpression of -catenin can expand the HSCs pool in vitro. Wnt activation 

can induce the expression of other genes involved in HSCs self-renewal, like Hoxb4 and Notch1. 

The different regulators involved in the self-renewal of HSC could interact in a hierarchical way. 

However, during HSC self-renewal, Wnt signaling could have different outcomes depending on 

the levels of activation which resulted in expansion at intermediates levels and exhaustion at 

higher levels (Luis et al., 2011). Moreover, Wnt signalling has also been related to ageing, with a 

reduction in the self-renewal capacity of the HSCs (Florian et al., 2013). The elevated expression 

of Wnt5a seems to induce HSC ageing, as it induces this process in young HSCs and its 

haploinsufficiency reduces HSCs ageing. The different outcomes produce by Wnt signaling 

could be the result of a complex regulation of this pathway. 

 

During hematopoiesis, the Notch pathway plays a role modulating the balance between 

lineage specificity and self-renewal of HSCs. Constitutive activation of the Notch1 receptor 

leads to an increase in HSCs numbers due to enhance self-renewal and decrease differentiation. 

It also favors lymphoid over myeloid lineage formation (Stier et al., 2002). However, this 

pathway is not essential for hematopoiesis because mice with Notch1 and one of its ligand 

Jagged1 inactivation can normally survive, and HSCs with Notch1 deficiency can reconstitute 

irradiated normal or a Jagged1 deficient host after transplantation (Mancini et al., 2005). 

 

The protein, Sonic hedgehog is also involved in HSCs self-renewal. The pathway that it 

activates can lead to HSC expansion. Shh signaling acts through downstream bone 

morphogenetic protein (BMP) signaling (Bhardwaj et al., 2001). While BMP-4 can increase the 

survival of HSCs, the inhibition of BMP-4 can block the expansion induced by Shh signaling. 

Interestingly, a link placing the Wnt canonical signaling through -catenin downstream of Shh 

signaling has been made in human myeloid leukemia progenitors (Su et al., 2012).  

 

As discussed above, different regulators are involved in HSCs self-renewal and could be 

participating together. Shh seems to be place upstream of Wnt which can induce Notch1. The 

Hox genes also play an important role in HSCs hematopoiesis and self-renewal that will be 

further discussed. The interactions of different mechanisms controlling the self-renewal of HSCs 
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are very complex. Dysregulation of this balance could lead to diverse hematopoietic 

malignancies. 

 

 

2.- Hox genes 

 

Hox genes are characterized by a homeodomain which consist of 183 base pairs coding a 

helix-loop-helix that allows binding to the DNA (Gehring and Hiromi, 1986; Hill et al., 1989). 

These genes are known as master transcription factors, they are at the top of the cascade 

developmental programs and they control the expression of multiple genes. Hox genes control 

the body plan of the embryo, are highly regulated and have been highly conserved throughout 

evolution. They were discovered and characterized in Drosophila by their ability to regulate the 

position identity along the anterior-posterior body axis during development. The Hox genes play 

key functions in early hematopoietic cells (Alharbi et al., 2013; Argiropoulos and Humphries, 

2007; Gehring et al., 1994). Besides, it was shown that, in order for Hox genes to bind its DNA 

target, they require the action of cofactors (Popperl et al., 1995). 

 

The Hox genes consist of 39 genes in mammals. They are located in 4 chromosomes and 

divided into 4 clusters known as A, B, C and D (Figure 2). Comparing the composition of these 

clusters between species, paralogue groups are observed. These paralogues groups are very 

similar in sequence and redundant in function. There are 13 paralogue groups in mammals. 

(Alharbi et al., 2013; Argiropoulos and Humphries, 2007; Krumlauf, 1994). 

 

This study will focus on the Hoxb4 gene. Hoxb4 is a member of the HoxB cluster 

localized on mouse chromosome 11. It is expressed during development and in adult human and 

mouse hematopoietic stem and progenitor cells. Interestingly, it is down regulated with the 

differentiation of HSCs (Pineault et al., 2002; Ramirez-Solis et al., 1993). 
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Figure 2.- Schematic representation of Hox genes clusters. 

The four Hox clusters (A, B, C and D) contain 8-11 genes. The identical colors represent the 

paralog groups. Human and Drosophila homologies are also shown by colors. Adapted from: 

The role of Hox genes in normal hematopoiesis and acute leukemia, Leukemia; and Hox genes in 

hematopoiesis and leukemogenesis, Oncogene (Alharbi et al., 2013; Argiropoulos and 

Humphries, 2007). Lab = labial, Pb = proboscipedia, Dfd = Deformed, Scr = Sex combs reduced, 

Antp = antennapedia, Ubx = Ultrabithorax, Abd = abdominal (A or B).  

 

 

 

2.1.- Hox genes in hematopoiesis 

 

In the hematopoietic cells, the Hox genes undergo down-regulation of expression with 

differentiation and some of them like the HOXB3 and HOXB4 are almost exclusively expressed 

in the most primitive BM cells (Pineault et al., 2002; Sauvageau et al., 1994). Another example 

is the HoxA cluster. This cluster is express at higher level in HSCs compared to early progenitors 

and when its expression is diminished, the maintenance of HSCs is also reduced (Lebert-Ghali et 

al., 2010). 
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However, it has been difficult to determine the precise role of the Hox genes in 

hematopoiesis. Single Hox genes mutants cannot always help to determine their role. A reason 

for this difficulty is that the Hox genes share overlapping function in addition to unique roles. 

For example, during embryonic development Hoxa3 and Hoxd3 can play the same biological 

role and they present particular roles when they are quantitatively modulated (Greer et al., 2000).  

 

The role of Hoxb4 in hematopoiesis has been studied extensively. Studies on the Hoxb4 

mutant showed that this gene is not necessary for the generation of HSCs during embryogenesis 

or the definitive hematopoiesis because the animals lacking this gene can normally develop 

although they have minor alterations (Bijl et al., 2006; Brun et al., 2004; Ramirez-Solis et al., 

1993). It has been shown with the double Hoxb3/Hoxb4-deficient mice that HSCs lacking these 

genes have impaired repopulation capacities and slower cell cycle, demonstrating that both genes 

are required for the maximal proliferative response (Bjornsson et al., 2003). Moreover, under 

stress hematopoiesis, like when the HSCs are transplanted into irradiated mice, the capacity of 

Hoxb4 deficient HSCs to expand and repopulate the niche is reduced (Brun et al., 2004). 

Indicating that Hoxb4 plays a role in the enhancement of the HSCs self-renewal capacity. 

 

Retroviral overexpression studies in mouse showed that Hoxb4 is a potent enhancer of 

HSC expansion in vivo and in vitro, without leading to leukemia (Sauvageau et al., 1995). After 

BM transplantation, the numbers of HSCs are not recovered to normal levels but cells 

overexpressing Hoxb4 can fully reconstitute the HSC compartment (Thorsteinsdottir et al., 

1999). Moreover, the activation of the Wnt pathway leading to an enhancement of HSC self-

renewal is associated with increased Hoxb4 expression suggesting that the expansion of HSCs by 

Wnt is mediated through Hoxb4 (Reya et al., 2003). 

 

The function of Hoxb4 is compensated by the up regulation of genes from other cluster 

genes, because depletion of Hoxb1-b9 did not affect HSC functional reconstitution of mouse 

(Bijl et al., 2006). Therefore, other Hox genes could provide similar expansion on HSCs. In the 

case of Hoxa4 overexpression, the expansion of the cells is unbalanced resulting in higher 

preferences for lymphoid over myeloid progenitors (Fournier et al., 2012). Hoxc4 overexpression 

leads to the expansion of human CD34
+
 hematopoietic cells (Auvray et al., 2012). 
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The Hox genes are linked to the self-renewal program crucial for HSCs. However, high 

Hox gene expression have been observed in myeloid and lymphoid leukemias, which could be 

providing the self-renewal capacity to the cancer stem cells (Argiropoulos and Humphries, 

2007). The cancer stem cells are able to regenerate the tumor, causing relapse and metastasis. 

Properties associated to HSCs are also found in cancer stem cells, they possess the ability to self-

renew and differentiate into all the cell types that are specifics for the particular tumor or cancer. 

It has been suggested that signaling pathways controlling the self-renewal are common to both 

cancer and hematopoietic stem cells (Lobo et al., 2007). 

 

For acute myeloid leukemia (AML) a poor prognosis has been associated with an 

increased expression of homeodomain transcription factors including Hoxb3, Hoxb4, Hoxa7-11. 

The overexpression of Hox proteins leads to the expansion of different BM populations. It can 

cause the block of the differentiation and the generation of myeloproliferation and AML in vivo 

(Eklund, 2011). Hoxa9 is an example, its overexpression is associated with a very poor leukemic 

prognosis and it can promote immortalization of HSCs (Brumatti et al., 2013). The 

homeodomain region of this gene can intrinsically control the transformation from a normal to a 

leukemic cell. When this homeodomain region is exchanged with the same region in HOXA1, it 

can induce the aggressive features observed in HOXA9; while realising the opposite experiment 

leads to a reduction of the aggressiveness (Breitinger et al., 2012). 

 

In T-cell acute lymphoblastic leukemia (T-ALL), chromosome rearrangements lead to the 

overexpression of oncogenic transcription factors, including Hox genes. Proteins that control 

developmental checkpoints in early thymocytes are collaborating with these genes that control 

HSCs self-renewal. The consequence is the increased self-renewal and survival of the abnormal 

thymocytes (Tremblay et al., 2010). The childhood T-ALL presents another interesting 

characteristic, the up regulation of -catenin expression in more than 85% of the patients. When 

this gene is silenced, the cancerous cells become more apoptotic (Ng et al., 2014). As discussed 

before, the Wnt--catenin pathway plays an important role in HSCs self-renewal and it can 

induce other genes like Hoxb4 (Luis et al., 2011; Reya et al., 2003; Walasek et al., 2012). 
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2.2.- Modulation of the Hoxb4 effect in HSCs self-renewal  

 

Besides the compensatory effect of the paralog Hox genes, different molecules could be 

involved in the modulation of Hoxb4 effect in HSCs self-renewal like the signal transducer and 

activator of transcription 3 (STAT3) and the Co-factors like Pbx1. 

 

The activation of STAT3 can lead to HSCs expansion in a similar way to the expansion 

induced by Hoxb4 overexpression. However, activating both does not produce an additive effect. 

In contrast, when Stat3 is inhibited, it can reduce the effect caused by Hoxb4 overexpression. 

Moreover, Hoxb4 and STAT3 present an overlap in the transcription factors induced in HSCs, 

including pluripotent genes involved in the maintenance of cellular stemness. Therefore, it seems 

that in HSCs self-renewal regulation, the effect of Hoxb4 passes through STAT3 and that both 

factors can play an equivalent role inducing similar outcomes (Hong et al., 2014). 

 

Pbx1 is a homeoprotein of the TALE subfamily that function as a cofactor for Hox 

proteins modulating their binding to DNA (Chang et al., 1995). It has been shown that reduction 

of Pbx1 expression, using a retroviral construct with antisense Pbx1, the effect of Hoxb4 

overexpression is enhanced. Therefore, Pbx1 could be a negative regulator in this process. Most 

likely, multiple cofactors act in combination to modulate the Hoxb4 induction of self-renewal in 

HSCs (Cellot et al., 2007). 

 

As discussed, Hoxb4 can induce HSCs self-renewal without surpassing a normal 

expansion of the cells. However, the mechanisms controlling HSCs self-renewal are very 

complex involving several molecules. The interactions of the different mechanisms need to be 

well controlled to avoid the development of malignancies. 
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3.- Adaptive immunity 

 

To defend the body, innate and adaptive (acquired) immune mechanisms are used. The 

innate immunity, activated by chemical properties of the antigen (Ag), consists of nonspecific 

defense like physical barriers, chemicals and cells that attack foreign cells. The adaptive 

immunity consists of an Ag specific response; in this case, the Ag is processed and recognized, 

then the cells that are capable of recognition will clear the infection. Very importantly, the 

adaptive immunity creates memory cells that will be maintained in the body in order to provide a 

more efficient defence against a subsequent encounter with the specific Ag. 

 

When pathogens like virus and bacteria reinvade the body, the memory cells from the 

adaptive immunity are activated in order to mount a stronger and faster attack on the recurrent 

infection. The key for this ability is the immunological memory capable of recognized the 

antigens expressed by the recurrent invaders (Smith, 2012). The B and T lymphocytes that can 

recognize and respond to practically any peptide non-self Ag are the basis of this system 

(Janeway, 2001b). Large repertoires of B and T cell receptors (TCR) are randomly generated, 

creating a library for the recognition of peptide non-self Ag. 

 

 

3.1.- Lymphocytes 

 

The lymphocytes are the central players of the adaptive immune system. As all the types 

of mature blood cells, they differentiate from the HSCs that go through a series of sequential 

divisions generating intermediates known as precursors, in a process that will end with the 

formation of particular lineages (Karsunky et al., 2008). The existence of a lymphoid-biased long 

term HSC (Figure 1) that differentiate to generate all T cells, B cells and NK cells has been 

proposed (Lensch, 2012). 
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3.1.1.- T Lymphocytes 

 

To become a T cell, lymphocyte precursor cells migrate periodically from the BM and 

enter the thymus. (Saran et al., 2010; Schwarz and Bhandoola, 2006; Yang et al., 2010). The 

thymus has a distinctive anatomical organization that allow the entering cells to move in 

microenvironments perceiving signals that are critical for the development of T cells. Functional 

T cells capable of recognize non-self Ag but also to be tolerant to self Ag exit the thymus (Starr 

et al., 2003). These mature cells are CD4 or CD8 T cells called naïve (Tn) because they have not 

encountered the Ag that they are capable of recognizing through their TCR (Ma et al., 2013; 

Starr et al., 2003). These mature T cells recirculate through the secondary lymphoid organs in 

order to encounter their specific Ag which is brought to these organs by the Ag presenting cells 

(APCs). 

 

The TCR is a disulfide-linked heterodimer of α and β chains. There is a TCR composed 

of γδ chains, which is less abundant than the αβ TCR but structurally similar. The Ag binding 

site is compose by 6 complementary determining regions formed by each chain, been 3 α and 3 β 

chains. A variable and a constant Ig-like domain are the composition of each chain. The variable 

region is the one that binds the Ag-MHC complex. The constant domain is followed by the 

transmembrane region and a short cytoplasmic tail. The TCR is expressed at the membrane in a 

complex with the CD3 chains which are responsible for the signal transmission. The co-receptors 

CD8 or CD4, via their cytoplasmic domain, are associated with the TCR-CD3 complex. The 

TCR binds the membrane distal Ag-MHC molecule while simultaneously, the co-receptors 

CD8/CD4 bind distant to this site and nearest to the membrane, to the invariant domain of the 

Ag-MHC helping with the process of cell activation (Bhati et al., 2014; Huang et al., 2012; 

Janeway, 2001a). 

 

The TCR recognize the peptide Ag only when presented by the MHC molecules on the 

own cells surface, but not the Ag or the MHC alone. For the recognition, TCR requires the help 

of co-receptors (Huang et al., 2012). The CD8 T cells can recognize the Ag presented by the 

MHC class I, while the CD4 T cells recognize the Ag presented by the MHC class II (Sprent et 
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al., 2008). The absence of the co-receptor signal impairs the differentiation and activation of the 

T cells. The co-receptor expressed by each T cell is associated to the action of the T cell. The T 

cells expressing CD4 are regulatory/helper/inducer T cells while the T cells expressing CD8 are 

killer/cytotoxic T cells (Mak, 1994). 

 

 

3.1.2.- T cell activation 

 

The Ag recognition by the TCR can lead to the activation of T cells. The activation of T 

cells requires three important signals: 1) the recognition of the Ag by the engagement of the TCR 

to MHC molecules presenting the antigenic peptide, 2) a co-stimulation signal provided by the 

interaction of the CD28 receptor on the T cells with the costimulatory ligands on the APCs and 

3) cytokine stimulation (Mescher et al., 2007). 

 

 

3.1.2.1.- First signal: TCR engagement 

 

The recognition of the Ag peptide on the MHC by the TCR is the beginning of the T cell 

signaling. However, the TCR does not have signaling domains and in order to generate a signal, 

it is coupled with the CD3 complex. The CD3 complex consists of four accessory chains (two ε, 

one δ, one γ) and the ζ chain, which is a large intracytoplasmic homodimer. This complex is 

associated with two αβTCR heterodimers in the cell surface (Castro et al., 2014; Janeway, 2001a; 

Mak, 1994; Smith-Garvin et al., 2009). After TCR engagement with Ag peptide-MHC, the CD3 

complex initiates a signaling cascade activating the cells. The CD3 complex has immunoreceptor 

tyrosine-based activation motifs (ITAMS) that become phosphorylated and recruit other 

molecules to initiate the signaling cascade (Birnbaum et al., 2014; Guy and Vignali, 2009; 

Huang et al., 2012; Smith-Garvin et al., 2009). The co-receptors CD4 or CD8, upon association 

with the MHC, are responsible for the ITAMS phosphorylation required for the T cell activation 

The lymphocyte-specific protein tyrosine kinase (Lck), a Src family kinase, is associated to the 
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cytoplasmic domains of the co-receptors and phosphorylates the ITAMs of the CD3 complex 

(Castro et al., 2014; Huang et al., 2012; Janeway, 2001a; Mak, 1994; Smith-Garvin et al., 2009). 

 

 

3.1.2.2.- Second signal: T cell co-stimulation 

 

For Tn cells, the first signal is not sufficient to induce a complete T cell response. 

Therefore, other cell surface receptors play an important role in providing the signals needed for 

activating T cells. T cell anergy (long-lived non-responsive state), deletion or development of 

immune tolerance are produced when T cell activation occurs without co-stimulation. The CD28 

receptor expressed by T cells can robustly provide the co-stimulation signal. It can interact with 

the co-stimulatory ligands B7-1 (CD80) and B7-2 (CD86) that are present on the surface of 

activated APCs. The result of this engagement is an increase in the magnitude and the regulation 

of the response generated by the first signal. On the other hand when this signal is not provided, 

the ability to respond to some pathogens can be dramatically reduced (Mak, 1994; Mescher et al., 

2007; Smith-Garvin et al., 2009). 

 

 

3.1.2.3.- Third signal: Cytokine stimulation of T cells 

 

Now that the T cells have interacted with the APCs, recognized and respond to the Ag, a 

third signal is required for Tn cells in order to differentiate, expand and survive. It consists of 

inflammatory cytokines that can be produced by different cells including the APCs. For CD8 T 

cells, the cytokines IL-12 and type I interferon (INF-I) have been largely studied for their role, 

leading to full activation, proliferation and memory generation. The cytokine requirement was 

evident when CD8 T cells were purified and in vitro stimulated with artificial APCs. CD8 T cells 

were capable of receiving the first and second signal, but they were not able to fully proliferate; 

however, the addition of the cytokines IL-12 or INF- leads to a stronger proliferation of the 

cells. The lack of these cytokines leads to reduction in the cell ability to respond and when both 
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receptors are eliminated, there is no memory generation (Curtsinger et al., 2003; Curtsinger et 

al., 1999; Curtsinger et al., 2005; Keppler and Aichele, 2011; Mescher et al., 2007). For CD4 T 

cells, the third signal is very important for making the decision to differentiate into a specific 

effector type. Common gamma c cytokines are involved in this decision. The common gamma 

chain is a cytokine receptor sub-unit common for different interleukin receptors including IL-2, 

IL-4, IL-7, IL-9, IL-15, IL-21. For example: IL-12 and INF-γ are involved in the differentiation 

of helper T 1 cells, IL-4 and IL-2 in helper T 2 cells, transforming growth factor β and IL-6 in 

helper T 17 cells, IL-6 and IL21 in follicular helper T cells, IL-2 and transforming growth factor 

β in regulatory T cells (Dong, 2008; Luckheeram et al., 2012; Yamane and Paul, 2013). 

 

 

3.2.- CD8 T cell response 

 

Remembering the encountered pathogen leads to enhanced responses after a secondary 

encounter. The bases for this immunological memory are specialized cells known as memory T 

(Tm) and B cells. This mechanism has been used to generate a successful vaccination, inducing 

immunological long-lived protection against specific Ag. (Kaech et al., 2002b). 

 

The journey to generate CD8 Tm cells begins with the CD8 Tn cells exiting the thymus, 

entering the secondary lymphoid organs including the lymph nodes (LN) in order to scan APCs 

looking for their specific Ag (Munoz et al., 2014). Notably, LN structure facilitates the contact of 

CD8 T cells with APCs, providing an important niche for the antigen surveillance and the 

generation of the immune response (Mandl et al., 2012; Munoz et al., 2014). APCs migrate to the 

secondary lymphoid organs like the draining lymph nodes after taking the Ag in the infection 

place (Janeway, 2001a). 

 

During the normal course of an immune response, CD8 Tn cells will encounter a foreign 

specific Ag that they can recognize and get activated. Three phases of T cell response occur 

following this activation. The expansion is the first one, the activated Tn cells will expand and 

differentiate into effector T (Te) cells. CD8 Te cells can release cytokines like INF-γ which 
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directly inhibits viral replication, they can kill target cells that display the specific peptide 

fragments on MHC-I at the cell surface by secreting perforin and granzymes, and they can also 

trigger apoptosis in some target cells trough Fas ligand. With this, they eliminate the pathogen 

within days. The second phase, known as the contraction period, follows the Ag clearance. The 

majority of the CD8 Te cells die during this period (>90%). The memory phase is the third 

phase, a few (<10%) CD8 Te cells further differentiate into CD8 Tm cells that will be 

maintained for life through self-renewal mechanisms (Badovinac et al., 2002; Cui and Kaech, 

2010; Harty and Badovinac, 2008; Joshi and Kaech, 2008). 

 

3.2.1.- CD8 Tm cell generation 

 

Following Ag clearance, different CD8 Tm cell populations are generated, although it is 

still not clear how this process works . Different models of CD8 Tm cell differentiation have 

been suggested, for example: A) the Tn cells can give rise to Te or directly to Tm cells. B) The 

Te cells will generate Tm cells after Ag clearance (Kaech et al., 2002b). 

 

Given the heterogeneity of the CD8 Te cells, certain characteristics have been used to try 

to distinguish which cells will generate CD8 Tm cells. At the peak of the immune response, cells 

that are proposed to be the memory cells precursors (killer cell lectin-like receptor G1 (KLRG1) 

lo/int
 CD127

hi
) are present (Gerlach et al., 2011). KLRG1 cells appear during early stages of 

infection. The CD8 T cells expressing hi KLRG1 go downregulating IL-7 receptor and become 

the short-lived effector cells. While the cells with low levels of KLRG1 keep high expression of 

IL-7 receptor and become the memory precursor effector cells. During the priming of CD8 T 

cells, inflammatory molecules like IL-2 can instruct the signaling process leading to the choose 

between memory precursor or short-lived effector cells. IL-2 can dose dependently modulates T-

bet. In turn, high levels of T-bet induce high expression of KLRG1 and low levels of T-bet 

induce low expression of KLRG1 (Joshi et al., 2007). It has been suggested that the acquisition 

of the memory properties is a progression of events giving rise to the different Te cell 

populations. During the immune response, Te cells receive different signals like Ag and 

inflammatory molecules. Differences in the duration and the quantity of these signals, during the 
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different stages of the immune response, can influence the cells decisions between death after Ag 

clearance or survival and differentiation into Tm cells (Gerlach et al., 2011). Changes in the gene 

expression between Tn, Te and Tm cells support the notion of progressive differentiation of 

naïve T cells into Tm cells (Kaech et al., 2002a; Sarkar et al., 2008). 

 

3.3.- Main differences between Tn and Tm cells 

 

The Tm cells, that are generated after Tn cells encounter for the first time their specific 

Ag and mount an immune response, possess some characteristics that allow them to better 

respond the next time the Ag is encountered (Joshi and Kaech, 2008; Kaech et al., 2002b). 

 

First, there are few (tens to hundreds of cells per mouse) Tn cells capable of recognizing 

one specific pathogen. In contrast, the numbers of Ag specific Tm cells exceed the number of Ag 

specific Tn cells. That is because during the immune response, each Tn cells will divide 

generating more than 10,000 cells, then less than 10% of these number of cells will survive after 

the contraction period as Tm cells. This means that there are more cells ready to eliminate the 

pathogen for the next infection (Harty and Badovinac, 2008). 

 

Second, while Tn cells recirculate through secondary lymphoid organs, Tm cells can also 

migrate to peripheral sites where pathogens generally enter the body. As Tm cells are present in 

the sites of infections, this facilitates the encounter with the pathogen (Ebert et al., 2005; 

Weninger et al., 2001). 

 

Third, for the activation of the CD8 T cells, in contrast with Tn cells, the CD8 Tm cells 

do not required co-stimulation (Flynn and Mullbacher, 1996). 

 

Fourth, CD8 Tm cells also have an increased sensitivity to Ag compared to Tn cells 

because they have redistribute their TCR resulting in enriched oligomeric TCR complexes 

(Kumar et al., 2011). Also, during the immune response, the Tn cells that possess a higher 

affinity to bind Ag-MHC complexes will selectively respond expanding and generating the Tm 
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cells. Resulting in CD8 Tm cell population expressing TCRs with higher affinity for the Ag-

MHC complexes (Busch and Pamer, 1999). 

 

Fifth, compared to Tn cells, Tm cells divided after a shorter time interval and present 

different effector functions in the same cells (Veiga-Fernandes et al., 2000). 

 

Sixth, CD8 Tm cells are more ready to respond than CD8 Tn cells because they retain 

some characteristics of CD8 Te cells like the expression of several cytotoxic proteins, 

chemokines and cytokines. Moreover, comparing their gene expression patterns, CD8 Tm cells 

are between CD8 Tn and CD8 Te cells, thus sharing some characteristics with both cell types 

leading to a more rapid response (Goldrath et al., 2004; Holmes et al., 2005; Kaech et al., 2002a; 

Veiga-Fernandes and Rocha, 2004). 

 

Seventh, with age Tn cell number diminish. On contrary, Tm cells survive for long period 

providing long-term protection. For example, people vaccinated against smallpox retain the 

ability to respond after 75 years (Hammarlund et al., 2003; Vescovini et al., 2014). 

 

In summary, the increased number of highly sensitive Ag-specific Tm cells, their 

anatomical location, their faster division, non-requirement for co-stimulation and their gene 

expression patterns that facilitates their faster responses, together with their longevity explains 

why Tm cells provide an enhanced long-term protective immunity compared to Tn cells. 

 

 

3.4.- CD8 Tm cell populations 

 

The different CD8 Tm cell populations that have been describe include central memory T 

(Tcm) cells, effector memory T (Tem) cells, memory stem T cells (Tscm), lymphopenia induced 

homeostatic proliferation (HP) Tm cells and tissue-resident memory T (Trm) cells. Some of the 

characteristics of these cells are shown in Table 1. 
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3.4.1.- Characteristics of the different CD8 Tm cell populations 

 

The CD8 Tcm cells are preferentially located in lymphoid tissues, and they can strongly 

proliferate in response to Ag encounter. CD62L and CCR7, which allow efficient homing to 

secondary lymphoid tissue, are expressed on the surface of these cells and have been used to 

distinguish them from other Tm populations. CD8 Tcm can better persist in vivo and as they 

possess an increased proliferation potential, they are more efficient to mediate immunity 

compare to the Tem cell (Huster et al., 2004; Weninger et al., 2001; Wherry et al., 2003). This 

was demonstrated by evaluating the ability to rapidly control pathogen growth after transferring 

the CD8 Tcm or Tem cells in different viral challenge models (Wherry et al., 2003). 

 

The CD8 Tem cells recirculate through blood and spleen and migrate to non-lymphoid 

tissues. As Tcm, they possess the ability to generate an immediate effector function after Ag 

encounter. CD8 Tem cells barely express CD62L or CCR7 or not at all (Masopust et al., 2001). 

IL-7 receptor (CD127) is expressed on their surface as well as on Tcm cells (Huster et al., 2004). 

 

The CD8 Tscm population was identified studying graft-versus-host disease. They are 

capable of maintaining some characteristics of a Tn phenotype like low expression of the 

hyaluronan receptor CD44 and high levels of CD62L; in contrast, they express higher levels of 

stem cell antigen-1 (Sca-1), CD122 and Bcl-2. Tscm are capable of enhanced expansion after 

Ag-reencounter and it seems that this population is also capable of generating both Tcm and Tem 

populations (Yu and Anasetti, 2005; Zhang et al., 2005). Gattinoni and collaborators have 

characterized a human T cell population with the features of Tscm. This cell population can self-

renew and differentiate into Tcm, Tem and Te cells (Gattinoni et al., 2011; Gattinoni et al., 

2009). Moreover, Cieri and collaborators have found that Tscm accumulate when Il-7 and IL-15 

availability is high, their gene expression profile is between Tn and Tcm cells and Tscm can 

mediate the graft versus host disease (Cieri et al., 2013). 

 

The lymphopenia induced HP Tm cells were identified studding different models like 

after transferring CD8 Tn cells to T cell depleted host, neonatal models and Ag-free mice 
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(Haluszczak et al., 2009; Hamilton and Jameson, 2008; Hamilton et al., 2006; Kieper and 

Jameson, 1999; Le Campion et al., 2002; Sprent and Surh, 2011). These cells do not express 

early activation markers (CD69, CD25, CD71) but they progressively express memory markers 

(CD44, CD122, Ly6C) with division (Murali-Krishna and Ahmed, 2000). They also acquire the 

abilities to lyse target cells and secrete INF-. (Cho et al., 2000; Dummer et al., 2002). For CD8 

HP Tm cells to acquire these characteristics, CD8 Tn cells need to divide multiple times (Cho et 

al., 2000). It was proposed that CD8 HP Tm cells can protect the host without interfering with 

the CD8 Tm cell populations that are normally generated during infection. The CD8 HP Tm cell 

population can respond to infection but when they are challenged in competition with CD8 Tm 

cells, CD8 HP Tm cells are less effective and die more quickly (Cheung et al., 2009). 

 

CD8 Trm cells are a distinguishable population of CD8 Tm cells that is established in 

nonlymphoid organs. In humans, Sathaliyawala and collaborators have characterized the Trm 

cell populations in lymphoid and mucosal tissues from individual donors. These cells express the 

activation marker CD69, CD103 which allow them to adhere to E-cadherin and is linked to their 

homing into epithelial tissues, and they are capable of INF- and IL-2 production after 

stimulation while the other memory T cell populations do not express CD69 nor CD103 

(Sathaliyawala et al., 2013). Another Trm cell population was identified in the murine 

submandibular glands, which also express CD69 and CD103. Interestingly, after adoptive 

transfer of these murine Trm cells and rechallenge, they preferentially relocalized into their 

original tissue (Hofmann and Pircher, 2011). In intestinal epithelium, Trm have been studied by 

Masopust and collaborators. They found that the Trm cell population did not migrate and rather 

stay in their tissue. They use two approaches, one was evaluating the migration of Trm cells in 

mice after transplanting part of the intestine containing Trm cells, the other was evaluating the 

number of Trm cells after treating mice with FTY720 which induce the accumulation of 

recirculating lymphocytes into the lymphoid tissue while reducing their presence in other tissues 

(Masopust et al., 2010). Schenkel and collaborators have proposed that Trm cells serve as local 

sensor capable of recruiting circulating Tm cells. In the case of female mouse reproductive tract, 

after rechallenge, they found that CD8 Trm cells can potentiate local response and recruitment of 

CD8 Tm circulating cells; they also observed the expression of INF- by these cells (Schenkel et 

al., 2013). In general, we can say that the CD8 Trm cells have distinctive characteristics from  
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Table 1.- Characteristics of mouse CD8 T cell populations. 

 

CD8 T cells 

Naive Effector 
Memory 

stem 

Central 

memory 

Effector 

memory 

Resident 

memory 

S
u

rf
a
ce

 p
h

en
o
ty

p
e
 

CD44 L H L H H  

CD62L H L H H L  

Ly6C L/M L/M H H H N/L 

1B11 L H 

 

L H  

CD127 M/H N/L M/H H M/H N/L 

Sca-1 N/L M H M/H M  

CD69 N H M/H N N H 

CD28 L/M H H H N /L  

CCR7 H N/L H H N/L N 

CD122 N/L M/H H M/H M/H  

CD25 L H L L L N 

Bcl-2 M/H L H H L/M  

KLRG1 N/L H N L L/M N 

CD103 N N/L N N N/L H 

E
ff

ec
to

r 

fu
n

ct
io

n
 

IFNγ N H N/L M H H 

TNFα N H/M 

 

H H/M H 

IL-2 N L/M L H N/L H 

Cytoxicity N H N/L L H H 

Self-

renewal L 

 

H M/H L 

M/H 

S
u

rv
iv

a
l 

F
a
ct

o
rs

 

 

IL-7 

 

IL-7 IL-7 IL-15  

   

IL-15 IL-15 

 

 

T
ra

n
sc

ri
p

ti
o
n

 

F
a
ct

o
rs

 EOMES L L/M L L M L 

TCF7 H L/M H M L  

FOXP1 H N/L M L N  

Adapted from: Paths to stemness: building the ultimate antitumor T cell, Nat. Rev. 

Cancer; Anti-viral CD8 T cells and the cytokines that they love, Virology; Memory stem cells 

sustain disease, Nat. Med.(Cox et al., 2013; Gattinoni et al., 2012; Yu and Anasetti, 2005). N = 

negative, L = low, M = medium, H = high. 
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other CD8 Tm cell populations, among them, their no recirculation and preferential localization 

to their specific nonlymphoid organs where they function to locally generate an immune 

response. 

 

 

3.4.2.- CD8 Tm cell populations differentiation models 

 

Different models have been proposed to describe the differentiation of the CD8 Tm cell 

populations. The linear model proposes that CD8 Tn cells differentiate into Te cells and then into 

Tm cells; after this, the differentiation from Tcm to Tem or the inverse have been proposed. 

Another model proposed that Tcm and Tem differentiate directly from effector cells (Gerlach et 

al., 2011; Lefrancois and Marzo, 2006). 

 

Wherry and collaborators support the linear model: Tn  Te  Tem  Tcm 

differentiation pathway. Using adoptive transfer of Tcm or Tem cell population into naïve host, 

they show that Tem convert into Tcm in the absence of Ag. They consider the Tcm cells as the 

“true memory” with the ability to self-renew and to survive long-term. When CD8 Tcm cells are 

re-exposed to Ag, they rapidly proliferate and generate effector response (Wherry et al., 2003). 

 

The other model suggests that both Tcm and Tem are separate terminal lineages with 

different capacity to self-renew and home (Lefrancois and Marzo, 2006). Evidence coming from 

human studies supports this idea, since no conversion between Tcm and Tem was found when 

following the circulating human repertoire over 9 months (Baron et al., 2003). Another evidence 

was found by Marzo and collaborators, they did not find conversion from Tem to Tcm or vice 

versa by studying polyclonal populations of CD62L 
high or low

 CD8 Tm cells separately transferred 

to naïve mice (Marzo et al., 2005). 
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3.4.3.- CD8 Tm cell populations generation 

 

For CD8 Tcm cells, the Wnt pathway seems to be important for the generation of these 

cells. The T cell factor 1 (Tcf1) is a nuclear effector of this pathway. Mice lacking Tcf-1 present 

a normal primary response generating Te and Tem cells, but they do not respond well to a 

secondary challenge as the generated cells expand poorly and they lack CD8 Tcm cells (Jeannet 

et al., 2010). On the other hand, constitutive activation of Wnt signaling promotes Tcm 

generation and higher response in a secondary challenge (Zhao et al., 2010). 

 

For CD8 Tem IL-2 seems to play a role in their generation. When CD8 T cells are primed 

in culture in the presence of IL-2, the resulting cells are similar to CD8 Tem cells and they 

accumulate in inflamed tissues but not in lymphoid organs (Weninger et al., 2001). CD8 T cells 

lacking the receptor for IL-2 poorly generated Tem cells and CD8 Tm cells lacking the receptor 

for IL-2, after secondary challenge, cannot repopulate the effector compartment (Mitchell et al., 

2010). 

 

For the generation of CD8 Tscm, IL-7, IL-15 and the CD3/CD28 engagement seems to be 

important (Cieri et al., 2013). Very interestingly, Wnt signaling can promote the generation of 

these cells suggesting a role for this pathway on the maintenance of the stem cell-like 

characteristics for the mature CD8 Tm cells (Gattinoni et al., 2011; Gattinoni et al., 2009). 

 

In the case of the CD8 HP Tm cells, it is proposed that the free space and the contact with 

self-MHC ligands promote the changes in the Tn cells that with subsequent divisions, will lead to 

the generation of the HP Tm cells (Goldrath and Bevan, 1999; Hamilton and Jameson, 2008; 

Kieper and Jameson, 1999). Compared with CD8 Tm cells, the CD8 HP Tm cells do not required 

IL-2 or co-stimulation via CD28 for their generation (Cho et al., 2000). Moreover, while 

cytokines like IL-4 or IL-15 enhance the generation of CD8 HP Tm cells, IL-7 is critical for their 

generation (Tan et al., 2001). 
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The generation of CD8 Trm cells is not well understood. It seems to be related to the site 

of the infection, where they will preferentially stay  (Sheridan et al., 2014). In mucosal tissues, 

inhibition of the mammalian target of rapamycin blocks the CD8 Trm formation (Sowell et al., 

2014). 

 

 

3.5.- Homeostatic maintenance of T cells 

 

The immune system needs to maintain Tn cells to be capable of recognizing all the 

possible invaders. To assure the defense of the host from reinvading pathogens, the immune 

system needs to maintain the memory cells. The niche provide the factors needed for their 

maintenance and the T cell numbers are stably maintained over time (Nolz et al., 2012). 

Homeostatic maintenance mechanisms work to preserve a varied functional pool of T 

lymphocytes that will survive a long time (Boyman et al., 2012). Homeostatic proliferation 

mechanisms promote the cell proliferation in conditions where for example the numbers are 

reduced by irradiation or drugs, in order to re-establish the cell levels to normal numbers; this 

process is known as lymphopenia induced proliferation. The factors involved in homeostatic 

proliferation and survival vary within the different T cell populations, although some 

mechanisms are common (Boyman et al., 2009). 

 

CD8 Tm cells are present in both lymphoid (LN, SPL, BM) and nonlymphoid tissues 

(peripheral tissues like lung or skin). Their preferred site for proliferation is the BM: CD8 Tm 

cells divide more in the BM compare to other locations (Becker et al., 2005; Parretta et al., 

2008). In the case of CD4 Tm cells, it has been observed that during the following weeks after 

their generation, these cells migrate to the BM where they are maintained in a resting and highly 

reactive state (Tokoyoda et al., 2009). Thus, the BM works as the niche for both HSCs and Tm 

cells providing them with the necessary signals for their maintenance. 

 

Different survival factors must be provided by the niche to maintain T cell homeostasis. 

For example, in the LN, the T zone fibroblastic reticular cells are the principal source of IL-7 
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which has been involved in T cell survival (Link et al., 2007). In the secondary lymphoid organs, 

the stromal cell networks are responsible for providing homeostatic factors and guidance to the 

trafficking of T cells (Takada and Jameson, 2009a). 

 

 

3.5.1.- Factors involved in Tn cell homeostasis 

 

The interaction of the TCR with self-peptide-MHC-I complexes is required for 

homeostatic maintenance (survival) of CD8 Tn cells (Ernst et al., 1999; Takada and Jameson, 

2009b). Besides, after CD8 or CD4 Tn cells are respectively transferred to MHC-I or MHC-II 

depleted and irradiated mice, the proliferation of these cells is minimal (Tan et al., 2002). 

 

Different cytokines are involved in the homeostatic maintenance and proliferation of CD8 

Tn cells. Studies in vitro have found that IL-4, IL-7 and IL-15 play a role in the survival of CD8 

Tn cells and enhance homeostatic proliferation in vivo (Boise et al., 1995; Tan et al., 2001; Vella 

et al., 1997). For example, mice lacking IL-15 present reduced Tn populations (Kennedy et al., 

2000). However, only IL-7 was found to be a critical factor for both, the survival and 

homeostatic proliferation in vivo, because CD8 Tn cells hardly proliferate when transferred to 

hosts lacking this cytokine and they disappear with time (Tan et al., 2001). Additionally, CD4 Tn 

cell proliferation is not enhanced by the addition of IL-4, IL-7, IL-15 or their combination in 

vitro. CD4 Tn cells, as CD8 Tn cells, do not proliferate in IL-7 deficient mice even if the mice 

have more available resources due to the lack of mature T and B cells, like in the RAG
-/-

 mice 

(Schluns et al., 2000). In the case of human CD4 Tn cells isolated from umbilical cord blood, 

they can be maintained in culture by the addition of IL-7 and they modestly proliferate (Webb et 

al., 1999). 

 

CD8 Tn cells die when they receive prolonged IL-7 signaling if they do not possess TCR 

low-affinity for self-peptide MHC-I (Kimura et al., 2013). To allow the homeostasis of CD8 Tn 

cells, a mechanism of coreceptor tuning was proposed. It is the result from the interplay between 

the IL-7 cytokine and the TCR signaling (Park et al., 2007). On one hand, IL-7 signaling induces 
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more CD8 expression, which in turn promotes TCR engagement to self-ligands. On the other 

hand, TCR signaling impairs cytokine signaling. The reduction in the cytokine signaling leads to 

a decrease in the expression of CD8. When CD8 is less express, TCR engagement is reduce 

allowing the effect of IL-7 cytokine signaling and re-starting the cycle. Thus, the CD8 Tn cell 

homeostatic maintenance is dependent on IL-7 and on signals received from the TCR 

engagement of self-peptide MHC complexes (Takada and Jameson, 2009a). 

 

 

3.5.2.- Factors involved in Tm cell homeostasis 

 

Different factors have been studied for their relation with Tm cells homeostasis. 

Including cytokines, receptors for the tumor necrosis factor (TNF), the Wnt signaling pathway 

and factors involved in Tn cell homeostasis like the TCR engagement with self-peptide-MHC-I. 

 

 

3.5.2.1.- The role of  the interaction TCR-self peptide in Tm cell 

homeostasis 

 

While Tn cells require an interaction with self MHC molecules for survival, Ag specific 

CD8 Tm cells do not need TCR engagement to survive, because they can survive and divide 

after transferring them into MHC-I deficient mice (Murali-Krishna et al., 1999). T cells from a 

transgenic mouse model which possesses the particularity that tetracycline administration blocks 

TCR expression, were transferred into normal mice and followed after immunization to observe 

the generated Tm cell populations (Leignadier et al., 2008). When TCR expression is ablated at 

the Tm stage by tetracycline administration, the CD8 Tm cells continue to normally self-renew 

and survive. Besides, studying the cells in a model where the transgenic TCR expression is 

affecting only 10 to 20% of CD4 T cells, following the CD4 Tm phenotype cells after the 

tetracycline administration, it was showed that a subset of these cells were capable of surviving 
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even in competition with the normal cells (Leignadier et al., 2008). Furthermore, when CD8 or 

CD4 Tm phenotype cells are transfer to MHC-I or MHC-II (respectively), or MHC-I-II deficient 

mice which were rendered lymphopenic by irradiation, both cell types extensively proliferate 

while Tn cells minimally proliferate (Tan et al., 2002). Therefore, TCR engagement is not 

required for CD8 or CD4 Tm cell homeostatic proliferation during lymphopenia, self-renewal or 

survival as it is required for CD4 and CD8 Tn cells. 

 

 

3.5.2.2.- The role of cytokines in Tm cell homeostasis 

 

Transferring OT-1 CD8 Tm cells into IL-7
-/-

 irradiated mice, showed that there was a 

reduction in the homeostatic proliferation of these cells compared to the transfer into non-

irradiated or irradiated normal mice (Schluns et al., 2000). Indicating that IL-7 is required for the 

proliferation of a subset of CD8 Tm cells under these conditions. When CD8 Tm cells are 

transferred into lymphopenic IL-15 deficient hosts, the cells can survive but they hardly divide. 

On the other hand, CD8 Tm cells can slowly proliferate when transplanted into lymphopenic IL-

7 deficient mice. But when the lymphopenic IL-15 deficient mice are also treated with anti-IL-

7Rα, the homeostatic proliferation of CD8 Tm cells is completely blocked (Goldrath et al., 

2002). In the case of CD4 Tm phenotype cells sorted from normal non-immunized mice, their 

homeostatic proliferation is not affected when transplanted into lymphopenic IL-7 or IL-15 

deficient mice, neither when transplanted into lymphopenic IL-15 deficient mice treated with 

anti-IL-7/7Rα (Tan et al., 2002). In contrast, after immunization, sorted CD4 Tm cells that are 

transplanted into irradiated normal, IL-7, IL-15 or IL-7/15 deficient mice indicated that they are 

more dependent on IL-7 for their proliferation and only when both cytokines are missing their 

proliferation is abolished (Purton et al., 2007). Thus, IL-7 and IL-15 have no role in homeostatic 

proliferation during lymphopenia in CD4 Tm phenotype cells. While CD4 Tm cells that are 

generated after immunization are more dependent on IL-7 and like CD8 Tm cells they fail to 

proliferate only when both IL-7 and IL-15 signals are missing under lymphopenic conditions. 

CD8 Tm cells can use either IL-7 or IL-15 to perform homeostatic proliferation during 

lymphopenia (Goldrath et al., 2002; Purton et al., 2007; Tan et al., 2002). 
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CD8 Tm cells divide slowly under homeostatic conditions. They are absent in IL-15R 

deficient mice and their proliferation is reduced when this receptor is blocked by antibodies (Ku 

et al., 2000). The role of IL-15 and IL-7 in homeostatic proliferation was also studied in full 

lymphoid compartments. The CD8 Tm cells transferred into normal hosts are able to self-renew, 

but when transfer into IL-15 deficient hosts they hardly divide. When the CD8 Tm cells are 

transferred into normal hots treated with anti-IL-7Rα, their proliferation is slightly reduced 

compared to non-treated mice. Therefore, IL-7 is not necessary while IL-15 is essential for their 

self-renewal homeostatic proliferation in a full compartment (Goldrath et al., 2002). Experiments 

transferring Ag experienced CD4 Tm cells, non-Ag experienced CD4 Tm phenotype cells and 

CD8 Tm phenotype cells into normal hosts which then received IL-15 injection, showed that the 

CD8 Tm phenotype and the Ag experienced CD4 Tm cells proliferate in response of IL-15, 

while the CD4 Tm phenotype cells were indifferent. Transferring the Ag experienced CD4 Tm 

cells into IL-15 or IL-7 deficient host showed a little division that is eliminated in the IL-7/15 

deficient host, showing the need of Ag-experienced CD4 Tm cells for both cytokines in order to 

self-renew in a full compartment (Purton et al., 2007). 

 

Studies with thymectomized mice treated with anti-IL-7Ra, showed a decay in the total 

numbers of CD4 and CD8 cell populations suggesting a role for this cytokine in the survival of 

the cells (Vivien et al., 2001). Comparing OT-1 and OT-1 IL-7R
-/-

 cells transferred to normal 

mice, which were then infected with vesicular stomatitis virus expressing ovalbumin and 

monitored for the T cell response and memory production, it was found that the memory 

population consist almost only of OT-1 cells sufficient for IL-7R. Showing that without IL-7 the 

CD8 Tm cells cannot survive (Schluns et al., 2000). Experiments performed in full lymphoid 

compartments also lead to a better understanding of the role of IL-15 and IL-7 in the survival of 

the cells. CD8 Tm cells can be found in IL-15 deficient hosts 50 days after transferring the cells, 

presenting a little reduction in their number compare to the cells transferred to normal hosts. 

However, anti-IL-7Rα treatment of normal or IL-15 deficient hosts leads to a major decrease in 

the numbers of CD8 Tm cells recovered with time (Goldrath et al., 2002). Therefore, IL-7 is 

necessary for the survival of CD8 Tm cells in a full compartment, while IL-15 is not critical. In 

the case of Ag experienced CD4 Tm cells, when they are transplanted into IL-7, IL7R deficient 
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or anti-IL-7 treated mice, there is a progressive loss of the cells, in addition the CD4 Tm 

phenotype cells from the mice treated with anti-IL-7 are also decline, suggesting the IL-7 

dependence of memory phenotype and Ag experienced memory CD4 T cells for their survival 

(Kondrack et al., 2003). Moreover, Ag experienced CD4 Tm cells transferred into IL-15 

deficient mice showed a reduction in the number of recovered cells with time, compared to 

transplantation into normal mice. This reduction is even greater when the cells are transplanted 

into IL-7 or IL-7/15 deficient mice, showing a bigger requirement of IL-7 compared to IL-15 for 

the survival of Ag experienced CD4 Tm cells in a full compartment (Purton et al., 2007). 

 

 

3.5.2.3.- The role of TNF family ligands in Tm cell homeostasis 

 

In addition to cytokines, signaling trough the receptors for the TNF family ligands, 

including OX40, CD30 and 4-1BB, has an impact on Tm cell maintenance. After infection, not 

only numbers of CD8 Tm cells generated in 4-1BB deficient mice are reduced with time 

compared to normal mice, but also the secondary response is affected, suggesting its 

involvement in the survival and turnover of Tm cells (Bertram et al., 2002). Furthermore, 4-

1BBL (Ligand)
-/-

 mice generates a normal primary immune response, but with lower numbers of 

Ag-experienced CD8 Tm cells and are less capable of eliminate the infection after challenge 

compared to normal mice, supporting the involvement of 4-1BB in the survival of CD8 Tm cells 

(Tan et al., 2000). CD8 Tm cells survive less when transferred into 4-1BBL deficient hosts. 

Moreover, IL-15 can induce the in vitro expression of 4-1BB in a dose and time dependent 

manner on CD8 Tm cells (Pulle et al., 2006). Therefore, Sabbagh and collaborators proposed a 

model suggesting that after encountering a source of IL-15, cells upregulate 4-1BB activating 

this signaling pathway, leading to upregulation of anti-apoptotic molecules and downregulation 

of pro-apoptotic molecules, and finally resulting in an increased cell survival (Sabbagh et al., 

2007). The TNF receptor-associated factors (TRAFs) are a family of adapter proteins that 

mediate the signal of the pro-survival members of the TNFR family, connecting them with 

downstream signaling pathways like c-Jun N-terminal kinase, p38 mitogen-activated protein 

kinases and nuclear factor kappa-light-chain-enhancer of activated B cells pathways. Mice with a 
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dominant negative form of TRAF2 have T cell defects and dramatically impaired secondary T 

cell response (Cannons et al., 2002). Moreover, TRAF1 deficient CD8 Tm cells accumulate 

higher levels of pro-apoptotic molecules in vitro compared to normal cells, and present a 

decreased recovery in vivo (Sabbagh et al., 2006), providing more evidence for the role of the 

TNF family in the survival of CD8 Tm cells. 

 

The OT-1 Ox40
-/-

Cd30
-/-

 CD8 Tm cells were compared to OT-1 CD8 Tm cells, both 

generated after transferring spleen cells into Rag-deficient hosts in competition. The OT-1 Ox40
-

/-
Cd30

-/-
 CD8 Tm cells were less detectable after 14 days post-primary immunization and also 

after 63 days post-secondary immunization, indicating their role in the survival of CD8 Tm cells 

(Bekiaris et al., 2009). Besides, using OT-1 with single deficiency, Ox40
-/-

 was observed to 

present a more dominant effect compared to Cd30
-/-

, but their consequence was synergistic, 

showing their contribution in the survival of CD8 Tm cells. For CD4 Tm cells, the lamina 

propria of the intestine is a major reservoir. CD30 or OX40 deficiency reduces the total CD4 T 

cell numbers in the small intestinal lamina propria, and the depletion of the cells is severe when 

both are absent. Transferred OT-II Ox40
-/-

Cd30
-/-

 CD4 T cells into normal mice fail to persist 7 

days after immunization, compared to OT-II CD4 T cells transferred in competition, showing 

that they are required for the survival of CD4 T cells in the lamina propria (Withers et al., 2009). 

This was also observed by transferring OT-II normal and Ox40
-/-

Cd30
-/-

 CD4 T cells in 

competition into RAG-deficient mice, 3 weeks after immunization the CD4 Tm deficient cells 

where found markedly reduced compared to the normal OT-II CD4 Tm cells (Gaspal et al., 

2005). Therefore, the TNF family members are associated to the survival of both, CD4 and CD8 

Tm cells after immunization.  

 

 

3.5.2.4.- The role of Wnt signaling pathway in Tm cell homeostasis 

 

The Wnt signaling pathway plays a role in CD8 Tm cell generation and has also been 

suggested to play a role in CD8 Tm cell homeostasis (Zhou et al., 2010). The nuclear effector of 

this pathway is Tcf-1. Compared to normal cells transferred in competition, CD8 Tm cells 
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deficient in TCF-1 have a significantly diminished secondary proliferation after transferring into 

normal hosts and re-challenge. Moreover, TCF-1 deficient CD8 Tm cells are progressively lost 

with time after transferring into normal hosts and present a diminished BrDU uptake, which 

demonstrates defective self-renewal. Moreover, CD8 Tm cells deficient in TCF-1 present a 

reduced proliferation in vitro in the presence of IL-15, which is an important factor that 

stimulates the self-renewal proliferation. IL-2Rβ also known as CD122, is a shared receptor 

subunit between IL-2 and IL-15 and its expression was found to be decreased in TCF-1 deficient 

CD8 Tm cells. Eomesodermin (Eomes), a paralogue of T-bet, was also found among the most 

downregulated genes in TCF-1 deficient CD8 Tm cells by transcriptome analysis. Eomes
+/-

 mice 

had a decrease in CD8 Tm phenotype cell populations which is more notorious in Eomes
+-/

T-bet
-

/-
 mice (Intlekofer et al., 2005). Comparing Eomes KO mice with normal mice, their CD8 central 

memory phenotype T cells are less abundant. In mice chimeras compose of Eomes KO and 

normal BM, 30 and 70 days after infection, a reduction in the CD8 Tm cell population generated 

from Eomes KO was observed compared to the CD8 Tm cells generated from normal mice. 

Besides, BrdU incorporation 60 days after infection was reduced in the Eomes KO CD8 Tm cells 

in BM, suggesting a defect in the self-renewal of these cells. As in Eomes
+-/

T-bet
-/-

 mice and the 

negative induction of Eomes in vitro, Eomes KO CD8 Tm cells possess a modest defect in 

CD122 expression. Eomes KO CD8 Tm cells also present a reduced expression of Bcl-2 mRNA, 

proposing a survival disadvantage (Banerjee et al., 2010). These experiments suggest that Eomes 

could be involved in the self-renewal and the survival of CD8 Tm cells. In the case of CD4 Tm 

cells, larger numbers of Ag-specific cells are generated under constitutive activation of the Wnt 

pathway (Zhao et al., 2010), and T-bet has also been found higher expressed in human CD4 T 

helper (Th) 1 Tem cells and Eomes in CD4 Th1 Tem and Tcm cells (Knox et al., 2014). The 

CD4 Th1 cell population derived from CD4 Th17 cells possess the ability to long-live and self-

renew as memory or stem cells (Muranski et al., 2011). Using gene set enrichment analysis, it 

was showed that the long-live in vivo CD4 Th1 cell population derived from CD4 Th17 cells 

possess a molecular signature of memory cells, including the enrichment of the gene Tcf7 which 

encodes for TCF-1, suggesting that it could play a role in the long-term maintenance of these 

cells. 
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In summary, different factors are involved in the homeostasis of Tm cells. CD8 and CD4 

Tm cell survival and proliferation is independent of the interaction of the TCR with self-peptide-

MHC. CD8 Tm cell self-renewal homeostatic proliferation in a full compartment is more 

dependent on IL-15 while their survival is more dependent on IL-7. Ag-experienced CD4 Tm 

cells required both IL-7 and IL-15 to self-renew in a full compartment, and they present a greater 

requirement for IL-7 to survive. The TNF family ligand is also involved in the survival of CD4 

and CD8 Tm cells. And recently, the Wnt pathway through its nuclear effector TCF-1 has been 

shown to be involved in CD8 Tm cell self-renewal. The different signals together, could be 

interacting to modulate the response of the Tm cells to different microenvironments. 
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Hypothesis 
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Remarkably, CD8 Tm cells share several characteristics with HSC. First, both cell types 

use the BM as their reservoir (niche) for their long-term maintenance (Becker et al., 2005; Isern 

and Mendez-Ferrer, 2011). 

 

 

Second, Tm cells and HSC partially share a transcriptional profile including some genes 

known to control self-renewal. Long-term HSCs and memory T and B cells need to be 

maintained for the lifetime of the organism. It was shown that these cells share a transcriptional 

program by comparing the gene-expression profiles of naive, effector and memory CD8 T cells 

with those of long-term, short-term HSCs, and lineage-committed progenitors. The up and down 

regulation of the transcripts is more similar in HSCs and memory cells compared to the other 

cells. For example, transcripts which start with higher levels in HSCs and end with lower levels 

in the more differentiated cells are also higher in memory cells and in the opposite direction from 

differentiation, go to lower levels in naïve cells. Their common signature suggests that HSCs and 

memory T and B cells share a self-renewal phenotype (Luckey et al., 2006). 

 

 

Third, the Wnt pathway is involved in the self-renewal of both cell types and in the case 

of HSC, Wnt enhances HSC self-renewal likely through an increased expression of Hoxb4. It has 

been shown that the Wnt pathway is involved in the maintenance of both cell types. On one 

hand, Wnt favors CD8 Tm cell formation and the maintenance of the stem-like characteristics of 

the population. (Gattinoni et al., 2009; Jeannet et al., 2010; Zhao et al., 2010). While IL-15 

signaling is needed for CD8 Tm cell self-renewal (Goldrath et al., 2002); the Wnt pathway can 

activate Tcf-1 which is linked to the positive regulation of IL-15R and Eomes, thus regulating 

the proliferative self-renewal capacities of CD8 Tm cells (Zhou et al., 2010). Moreover, 

deficiency in Tcf-1 results in impaired CD8 Tm cell maintenance and proliferative response after 

rechallenge (Jeannet et al., 2010; Zhou et al., 2010). Therefore, Wnt could be regulating different 

pathways that are interrelated for the control of CD8 Tm cell maintenance and proliferative 

capacities. On the other hand, activation of Wnt signaling expands the pool of long-term HSCs, 

while blocking Wnt signaling inhibits HSC growth and reduces hematopoietic reconstitution of 

mice. Moreover, activation of the Wnt signaling in HSCs induces higher expression of Hoxb4 
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(Reya et al., 2003), which is a potent enhancer of HSCs self-renewal expansion (Sauvageau et 

al., 1995; Thorsteinsdottir et al., 1999). Besides, it has been shown that the Hoxb cluster genes 

are barely (Hoxb1) or not express in quiescent human T cells but over induced with activation. 

Furthermore, when Hoxb2 or 4 are blocked, the proliferation and activation of human quiescent 

T cells is drastically inhibited (Care et al., 1994). 

 

 

In summary, there is now evidence that the stem cell-like attributes and signaling 

pathways are present in CD8 Tm cells, including the signals that regulate their maintenance, 

proliferation and differentiation (Gattinoni et al., 2012). 

 

 

Based on these similarities between HSCs and CD8 Tm cells we hypothesize that genes 

involved in HSC self-renewal, like Hoxb4, will promote CD8 Tm cell expansion. 
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Objectives 

 

 

 
  



 

42 

 

 

 

 

General objective: 

 

– Evaluate the competitive advantage provided by the overexpression of Hoxb4 in 

CD8 Tm cells. 

 

 

 

Specific objectives: 

 

– Determine the size of the CD8 Tm cell populations in a transgenic mouse model 

where Hoxb4 is overexpressed in lymphoid cells. Evaluate if there is a difference 

between young and old mice. 

 

– Monitor the engraftment and long-term maintenance of CD8 Tm cells 

overexpressing Hoxb4 following their transfer into immunocompetent mice. 

 

– Compare the engraftment and long-term maintenance of CD8 Tm cells 

overexpressing Hoxb4 following their transfer into immunodeficient mice. 
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Material and methods 
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I.- Mice 

 

All the mice were bred and maintained under specific pathogen-free conditions at the 

animal facility of the Maisonneuve-Rosemont Hospital Research Center. All protocols were 

approved by the local animal protection committee. 

 

We used a mouse model were the Hoxb4 transgene is expressed in lymphoid cells. These 

mice were generated using the pLIT3 vector as previously described (Bijl et al., 2008). Briefly, 

downstream of a TCR V promoter, Hoxb4 murine cDNA was cloned, with immunoglobulin 

enhancer elements and sequences from the proximal promoter of the lck gene. To provide introns 

for enhanced expression, the human growth hormone gene containing a frameshift mutation in 

the coding region was inserted. 

 

Wild type mice C57BL/6 (CD45.2) and B6.SJL (CD45.1) were purchased from Jackson 

Laboratories (Bar Harbor, ME). Hoxb4 transgenic mice (CD45.2) were bred to B6.SJL mice to 

generate combined CD45.1/.2 Hoxb4 transgenic for transplantation assays. 

 

OT-1 (CD45.1/2) Rag1
-/-

 mice (Hogquist et al., 1994), from Jackson Laboratories (Bar 

Harbor, ME), were donated from the laboratory of Nathalie Labrecque, and bred to Hoxb4 

(CD45.2) to obtain the compound transgenic mice. 

 

 

II.- Mice genotyping 

 

To identify the Hoxb4 transgenic mice, we used genomic DNA from the tail and 

performed the polymerase chain reaction for the human growth hormone gene (sense sequence: 

CGGACTGGGCAGATCTTCAA, anti-sense sequence: CCTTGTCCATGTCCTTCCTGAA). 
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The OT-1 transgenic mice were identified by FACS using the Mix number 1, observing 

the expression of Vα2 TCR. 

 

 

III.- In vitro generation of CD8 Tm cells  

 

To generate a large numbers of OT1 CD8 Tm cells, spleen cells were stimulated with the 

ovalbumin peptide SIINFEKL (OVA, from Midwest Biotech). For example: 20 million cells 

were suspended in 8 ml of medium and stimulated with 0.1 µl/ml of the OVA peptide (10 

mg/ml). The stimulation was stopped after 16h by washing the cells. Medium was a preparation 

of RPMI 1 X (Wisent Inc., St-Bruno, QC, Canada) medium supplemented with 10 % Fetal 

Bovine Serum, 2 mM L-Glutamine (both Gibco), 100 U/ml penicillin, 100 ug/ml streptomycin 

(both Wisent Inc.), 10
-5

 M -mercaptoethanol (Mallinckrodt Baker Inc., Phillipsburg, NJ), 

sodium pyruvate 1 mM, Hepes 10 mM and non-essential aminoacids 1 X (all from Life 

Technologies). The medium was changed on day 2. On day 3, the viable cells were separated 

using a Ficoll gradient (Ficoll Paque
TM

 plus), resuspended at 1 million cells per ml of media and 

then they were stimulated with 20 ng/ml human IL-15 (Invitrogen) every 2 days (days 3, 5 and 

7). To monitor the cellular activation and memory T cell differentiation, the cellular phenotype 

was followed on days 0, 1, 2, 3, 5, 7 and 9 by staining the cells with antibodies directed against 

different cell surface markers with the combinations shown in Table 2 and 3, and characterized 

by Fluorescence Activated Cell Sorting (FACS) analysis. On day 9, cells were prepared for the 

transplantation assays by washing and resuspending at 3 or 6 million cells per 200 µl of PBS 1 X 

(no serum). 

 

 

IV.- CFSE staining 

 

10
7
 cells in 1 ml PBS1 X were incubated with 0.1 µl of the fluorescent cell staining dye 

carboxyfluorescein succinimidyl ester (CFSE, from Lifetechnologies) 5 mM for 10 min at 37°C 
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protected from light and frequently mixed. Excess CFSE was then removed by adding 1 volume 

of fetal calf serum or fetal bovine serum. To eliminate the serum and excess CFSE, the recovered 

cells were washed and resuspended at 3 or 6 million cells per 200 µl of PBS 1 X (no serum) prior 

to transplantations assay and a sample was kept for FACS analysis. 

 

 

V.- Antibody staining and FACS analysis 

 

Tm cell surface markers were characterized by FACS performed on LSRII with a UV 

laser (BD Bioscience). For staining, 1 million cells were resuspended in 50 µl FACSWASH 

(DMEM without phenol red + 3 % of horse serum + Hepes 30 mM + 0.1 % sodium azide) with 

the corresponding antibodies at the optimal concentration (determined by titration) and incubated 

on ice for 30 minutes, protected from light. Cells were then washed and resuspended in 

FACSWASH before FACS analysis observations on the LSRII. To further analyze the different 

cell populations, the FlowJo software (Tree Star Inc., Ashland, OR, USA) was used. 

 

 

 

Table 2.- Antibodies mixed for the different assays.  

MIX Used for: 

1 Transgenic OT-1 mice verification 

2 CD8 Tm in vitro generation 

3 CD8 Tm in vitro generation 

4 Transplantation to WT normal mice 

5 Transplantation in competition into lymphopenic induced mice 

 

 

 

 

 



 

47 

 

 

Table 3.- List of antibodies used for surface staining. 

Antibody Fluorocrome MIX Company Clone 

CD45.1 

(Ly5.1) Pacific blue 4, 5 BioLegend, San Diego, CA A20 

CD45.2 

(Ly5.2) FITC 1, 4 eBioscience, San Diego, CA 104 

CD45.2 

(Ly5.2) APC 5 BioLegend, San Diego, CA 104 

Vα2 TCR PE 1 BD Biosciences, Mississauga, ON B20.1 

CD8 APC 1, 3 BioLegend, San Diego, CA 53-6.7 

CD8 FITC 2 BioLegend, San Diego, CA 53-6.7 

CD8 APCCy7 4, 5 BD Biosciences, Mississauga, ON 53-6.7 

CD4 PerCP 1 BioLegend, San Diego, CA GK1.5 

CD19 PECy7 1 BD Biosciences, Mississauga, ON 1D3 

CD69 FITC 3 BioLegend, San Diego, CA H1.2F3 

CD44 PECy7 2, 3, 4, 5 BioLegend, San Diego, CA IM7 

CD62L PE 2, 4, 5 BioLegend, San Diego, CA MEL-14 

Ly6C Biotin 2, 5 BD Biosciences, Mississauga, ON AL-21 

Ly6C APC 4 BioLegend, San Diego, CA HK1.4 

1B11 (CD43) APC 2 BioLegend, San Diego, CA 1B11 

Sca-1 

(Ly6A/E) Pacific blue 2 BioLegend, San Diego, CA 

E13-

161.7 

CD127 PerCPCy5.5 2 BioLegend, San Diego, CA A7R34 

Streptavidin APCCy7 2 BioLegend, San Diego, CA   

Streptavidin PerCPCy5.5 5 BD Biosciences, Mississauga, ON   

 

 

VI.- Transplantation assays to normal WT mice 

 

3x10
6
 (in 200 µl of PBS 1 X) of OT-1 or Hoxb4/OT-1 transgenic (CD45.1/2) in vitro 

generated CD8 Tm cells were transplanted into WT (CD45.2) sex matched congenic mouse by 

tail vein injection. LN surgery was performed to follow the same mice after 1, 4 or 8 weeks. The 

LN, SPL and BM where taken at 3 months when mice were euthanized to characterize the cells 

by FACS. 



 

48 

 

 

VII.- Lymph node surgery 

 

To follow the engraftment of the transplanted cells in the same mice, the LN surgery was 

performed as previously described (Mathieu and Labrecque, 2012). The brachial or inguinal LN 

was removed by making a small incision in the skin of an anesthetised (isoflurane 2 %, 1 L 

oxygen) mouse. The LN were kept on ice and processed to obtain the cells by pressing them 

against frosted slides. Then, cells were stained and analysed by FACS. It is a superficial surgery 

and it is rapidly performed allowing the mice to easily recover. 

 

 

VIII.- Competitive transplantation assays 

 

In vitro generated CD8 Tm cells were stained with CFSE, equally mixed and used in a 

total dose of 6x10
6
 (in 200 µl of PBS 1 X) per transplanted WT (CD45.1) sex matched congenic 

mice. Lymphopenic recipient mice for transplantation assays were generated by irradiating WT 

mice with 600 cGy the day before the transplantation. Transgenic mice were carefully selected to 

be able to differentiate them by the combination of CD45.1/.2 or expressing only CD45.2. The 

lymphoid organs were taken from the euthanized mice after 1 day, 1 week, 1 or 3 months and the 

recovered cells were characterized by FACS. 

 

 

IX.- Statistical analysis  

 

A two-tailed Student’s t-test evaluation was used to obtain the significant difference 

between cell fractions of mutant mice versus wild type mice. P-value was considered significant 

when <0.05 indicating difference in cell populations. 

 

  



 

49 

 

 

 

 

 

Results 
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I.  Hoxb4 overexpression does not affect the composition of the T 

cell pools in young and old mice 

 

The pool of T cells can vary with age. With time, the host will have undergone more Ag 

encounters resulting in accumulation of Tm cells. On the other hand, thymus involution will lead 

to a decrease in the generation of Tn cells. As a consequence, an older host will have higher 

numbers of Tm cells and lower numbers of Tn cells than a younger host (Vescovini et al., 2014). 

In the Hoxb4 transgenic mice, the transgene is specifically overexpressed in the lymphoid cells, 

which allows us to study its effect on T cells. We first wanted to evaluate if Hoxb4 has an impact 

on the distribution of the different T cell populations, in particular of the naïve and memory 

populations with age. Thus, we characterized the T cell subpopulations in young and old Hoxb4 

transgenic mice. 

 

Previously we have demonstrated that the Hoxb4 transgene was expressed in the thymus 

and spleen (Bijl et al., 2008). We further evaluated whether Hoxb4 was overexpressed in the 

naïve T cells and the memory-like T cell phenotype (MP T) (Frison et al., 2013). The expression 

of the transgene was several folds higher than the endogenous Hoxb4 expression. The 

overexpression of Hoxb4 transgene mRNA compared to WT was 40x in naïve, 7x in MP CD4 T 

cells, 43x in naïve and 90x in MP CD8 T cells. The highest overexpression was found in CD8 

Tm cells (Frison et al., 2013). 

 

FACS analysis of the different T cell populations did not show any significant differences 

in the proportion of CD4 naïve and CD8 naïve (CD44lo, CD62Lhi), CD4 MP and CD8 MP 

(CD44hi) T cells within the LN of young (2-3 months) WT and Hoxb4 mice (Figure 3). Similar 

results were obtained in the SPL and BM (Figure 4). As expected, a higher frequency of Tn is 

observed in LN and SPL from young mice and this hold true for Hoxb4 transgenic mice (Figure 

4). On the other hand, CD4 and CD8 MP T cells are in higher percentage in the BM from both 

WT and Hoxb4 mice, which is a well-known niche for Tm cells. Furthermore, it is well 

documented that the Tn cell population decline with age, while Tm cell number is stable. 

Therefore, the percentage of the different T cell populations in old (>28 months) mice was 
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compared between WT and Hoxb4 mice. Both, the WT and Hoxb4 old mice have a higher 

percentage of CD4 and CD8 MP T cells and a lower percentage of CD4 and CD8 Tn cells in LN, 

SPL and BM. Also, the CD4 and CD8 Tn cell percentage is reduced with age in both WT and 

Hoxb4 mice while the CD4 and CD8 MP T cell percentage is increased (Figure 4). Moreover, 

we did not observe any differences in the proportions of MP T cells. Altogether, our results 

suggest that Hoxb4 overexpression does not affect the intrinsic and extrinsic mechanisms 

regulating the size of the different T cell pool. We demonstrated that the overexpression of 

Hoxb4 is not affecting the steady state T cell homeostasis through the life of the mice. 
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Figure 3.- Similar T cell compartment in WT and Hoxb4 young adult transgenic mice. 

A) Representative FACS profile showing the distribution of naïve (CD44
lo

, CD62L
hi

) and 

memory phenotype (CD44
hi

) CD4 and CD8 T cell compartments in the lymph node of WT and 

Hoxb4 transgenic mice. B) Hoxb4 overexpression does not affect the frequency of CD4 and CD8 

T cells within the lymph nodes. The mean +/- standard deviation percentage of CD4 and CD8 T 

cells is shown. n=6 for WT and 7 for Hoxb4 transgenic mice. A student test did not reveal any 

statistical difference between WT and Hoxb4 transgenic mice. MP T = memory phenotype T 

cells, Tn= naïve T cells, WT = wild type mice. 
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Figure 4.- Similar changes in T cell populations compartment in WT and Hoxb4 transgenic mice 

with age. 

Scatter plots show the percentage of the naïve and memory A) CD4 and B) CD8 T cells in the 

different organs (LN, SPL and BM) from young (3-4 months) and old mice (>28 months). n=6 

for WT and 8 for Hoxb4 transgenic mice. T cell populations are shown as naive (CD44
lo

, 

CD62L
hi

), MP (CD44
hi

) and MP T fraction (CD44
hi

, Ly6C
hi

). * P<0.05, 2-tailed Student test. 

BM = bone marrow, LN= lymph node, MP = memory phenotype T cells, SPL = spleen, WT = 

wild type mice. 
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II.  Hoxb4 overexpression does not provide an advantage to the 

engraftment and long-term maintenance of CD8 Tm cells after 

independent transplantation into immunocompetent mice. 

 

 

II.I.-  Hoxb4 overexpression does not affect the in vitro 

generation of CD8 Tm cells. 

 

Our results showed that the steady-state T cell homeostasis is not affected by Hoxb4 

overexpression. However, in the transgenic model, it is not possible to evaluate if Hoxb4 

overexpression provides an advantage on the self-renewal of the cells. Thus, we decided to use 

the transplantation model that could allow us to better evaluate if there is an advantage provide 

by Hoxb4 overexpression in CD8 Tm cells. Consequently, we needed to have access to a large 

number of CD8 Tm cells for transplantations. Therefore, we chose one of the most widely used 

transgenic TCR model, the OT-1 transgenic mice, to obtain the cells for our in vitro CD8 Tm cell 

generation. In these mice, the CD8 T cells express a TCR specific for the SIINFEKL peptide of 

ovalbumin presented by the MHC class I molecule H-2K
b
. This model allows us to easily 

produce CD8 Tm cells with a defined specificity and to follow the cell phenotype by FACS all 

along the in vitro generation. Moreover, as the CD8 Tm cells generated with this model were 

expressing different leukocytic surface antigens, it was easier to follow the transplanted cells in 

vivo. 

 

We first needed to corroborate if the Hoxb4 transgenic CD8 T cells were able to respond 

to their antigen and to differentiate into Tm cells. Hoxb4 transgenic mice were crossed with the 

OT-1 transgenic mice. The resulting double transgenic mice were used to generate the in vitro 

CD8 Tm cells specific for SIINFEKL-K
b
 and Hoxb4 overexpression. We monitored both, WT 

and Hoxb4 cultures during the 9 days required for in vitro generation of CD8 Tm cells. There 



 

55 

 

 

was no difference in the absolute numbers of CD8 Tm cells that were generated, comparing WT 

and Hoxb4 overexpressing cells, as shown in Figure 5A. We also monitored the expression of 

different surface markers during the in vitro generation. An example of the expression of CD44 

and CD62L on day 0, 3 and 9, is shown in Figure 5B. We evaluated if the CD8 Tn cells get 

activated normally when they overexpress Hoxb4. We observed at day 2 a similar increased in 

the expression of CD69 and CD44, and a decreased of CD62L expression in WT and Hoxb4 

CD8 T cells. Then, we evaluated if their differentiation was affected by Hoxb4 overexpression, 

by following the cells surface phenotype of the in vitro culture by FACS overtime (days 3 to 5). 

No phenotypic differences were observed between WT and Hoxb4 T cells. In both cases, we 

observed a rapid loss of CD69 and CD62L expression, and a gain of CD44 and 1B11 expression. 

We also observed an increased expression of Sca1, CD127 and Ly6C over time in both WT and 

Hoxb4 T cell cultures. Finally, at day 9 (Figure 6), we evaluated if Hoxb4 overexpression was 

affecting the memory phenotype of in vitro CD8 Tm cells. Both cultures presented no expression 

of CD69, and compared to the initial CD8 T cells, higher expression of CD44, Sca1, 1B11, 

CD127, Ly6C and regained a higher expression of CD62L as expected for CD8 Tm cells. In 

summary, there were no differences in the phenotype of WT and Hoxb4 CD8 Tm cells during in 

vitro generation. These results suggest that Hoxb4 overexpression does not interfere with the in 

vitro generation of CD8 Tm cells. At day 9 of in vitro generation, the resulting CD8 T cells are 

considered as a central memory (CD44
+
, CD62L

+
, Ly6C

+
) population that will end its 

differentiation after transplantation, possess the ability to persist in vivo and to mount a response 

to Ag reencounter. 
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Figure 5.-Similar number and phenotype of WT and Hoxb4 CD8 T cells during in vitro 

differentiation culture. 

Briefly, the splenocytes from OT-1 or Hoxb4/OT-1 transgenic mice were stimulated with the 

OVA peptide SIINFEKEL for 16 h. Cells were washed and keep in culture up to 3 days. At day 

3, viable cells were enriched using a Ficoll gradient and culture with human IL-15 up to day 9. 

Cells surface staining was performed at different time points do follow T cell activation and 

differentiation throughout the culture. A) Number of CD8 T cells recovered during the in vitro 

culture.  The data is from 4 independent experiments and a 2-tailed Student test did not reveal 

any statistical differences between WT and Hoxb4 cultures. B) Expression of CD44 and CD62L 

by CD8 T cells during the in vitro differentiation culture. Representative FACS profile gated on 

CD8
+
 T cells are shown. The number on the FACS profile indicate the percentage of cells 

positive for the cell surface marker. OVA = ovalbumin, WT = wild type mice. 
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Figure 6.- Similar expression of cell surface markers on WT and Hoxb4 CD8 Tm cells generated 

in vitro. 

Average percentage of surface markers in CD8 Tm cells at day 9 of in vitro culture (n=6). No 

statistical significant differences were observed comparing WT vs. Hoxb4 overexpressing cells. 

2-tailed Student test. WT = wild type mice. 

 

 

II.II.-  Hoxb4 overexpression does not affect the 

transplantation of the in vitro generated CD8 Tm cells 

into normal mice 

 

Then, we wanted to know if the in vitro generated CD8 Tm cells overexpressing Hoxb4 

were able to enter the lymphoid organs (LN, SPL, BM) and to compete with the WT cells 

present in a full niche. Normally, after the generation of the CD8 Tm cells in the body, these 

cells will compete with the population that is already stablished. The Hoxb4 or WT in vitro 

generated CD8 Tm cells (CD45.1/2) were independently transplanted into WT mice (CD45.2) 

and followed by LN surgery after 1 week, 1 and 2 months. The LN surgeries allow us to follow 

the transplanted cells in the same mice through time. The cellular phenotype, comparing WT and 

Hoxb4 transplanted cells remained similar during the course of the experiment (Figure 7A) 
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retaining characteristics of central memory CD8 T cells with high levels of CD44, CD62L and 

Ly6C. With the LN surgeries performed on the normal mice, we observed that WT transplanted 

cells had a tendency to be present in higher numbers compared with the Hoxb4 CD8 Tm cells, 

although no statistical significance was reached (Figure 7B). Furthermore, no statistical 

difference in numbers was found in lymph nodes, spleen and bone marrow, which is considered 

as their main niche, after 3 months when mice were euthanized (Figure 7C). Hence, Hoxb4 

overexpression does not confer an advantage for the entry and maintenance of CD8 Tm cells in a 

full niche. 
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Figure 7.- Comparable CD8 Tm cell population are maintained after independent transplantation 

into immunocompetent mice. 

3x10
6
 of OT-1 or Hoxb4/OT-1 transgenic in vitro generated CD8 Tm cells were transplanted into 

WT sex matched congenic mouse. A) Representative FACS profile of WT and Hoxb4 CD8 Tm 

cells obtained from LN surgeries after 1 week. The values in the graph correspond to the 

percentage of the CD8 T cells that are positive and high expressing the corresponding marker. 
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B) Absolute numbers of WT and Hoxb4 CD8 Tm cells recovered from LN surgeries after 

transplantation at 1 week (n =6 for WT and 8 for Hoxb4 transgenic mice), 1 and 2 months (n=3 

for WT and 4 for Hoxb4 transgenic mice). C) Absolute numbers of Hoxb4 (n=3) and WT (n=3) 

CD8 Tm cells recovered from different organs (LN, spleen and bone marrow) at 3 months after 

transplantation into immunocompetent mice. No significant differences were observed. 2-tailed 

Student test. LN = lymph node, WT = wild type mice. 

 

 

 

II.III.-  Hoxb4 and WT CD8 Tm cells home properly to 

secondary lymphoid organs and tertiary sites. 

 

We observed that the WT transplanted cells tend to be conserved in higher numbers than 

the Hoxb4 CD8 Tm cells therefore, we decided to explore if the difference in the early homing 

capacity of the cells could be one of the reasons. To evaluate the capacity of Hoxb4 

overexpressing cells to early home to different organs, the in vitro generated cells were stained 

with CFSE, independently transplanted into WT normal mice and sacrificed the next day for 

analysis. We dissected the SPL, BM, peritoneal cavity (PC), skin draining lymph nodes (SDLN) 

and mesenteric lymph nodes (MLN) to evaluate the presence of the transplanted cells by FACS. 

We found that the percentage of WT and Hoxb4 CD8 transplanted Tm cells were not 

significantly different except in the SDLN where Hoxb4 CD8 Tm cells were found in higher 

numbers compared to WT transplanted cells (Figure 8). These results showed that cells 

overexpressing Hoxb4 were capable to migrate to the different organs. Therefore, the migration 

capacity of Hoxb4 overexpressing CD8 Tm cells is not the reason why they tend to be 

maintained in lower numbers compared to WT transplanted cells. 
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Figure 8.- Similar migratory capacity of in vitro generated WT and Hoxb4 OT-1 CD8 Tm cells 

following their adoptive transfer into immunocompetent mice. 

3x10
6
 in vitro generated WT (OT-1) or Hoxb4/OT-1 CD8 Tm cells were labeled with CFSE and 

transplanted into WT sex-matched congenic mice. Hoxb4 (n=2) and WT (n=3) CD8 Tm cells 

(CFSE
+
, CD8

+
) were recovered from SDLN, MLN, SPL, BM and PC after 1 day of 

transplantation into immunocompetent mice. The percentage of CD8 Tm cells recovered from 

the different organs is similar except for SDLN. *p<0.05, 2-tailed Student test. BM = bone 

marrow, MLN = mesenteric lymph node, PC = peritoneal cavity, SDLN = skin draining lymph 

node, SPL = spleen, WT = wild type mice. 

 

 

III.  Hoxb4 overexpression does not provide an advantage to the 

engraftment and long-term maintenance of CD8 Tm cells after 

competitive transplantation into lymphopenic mice. 

 

The independent transplantation of CD8 Tm cells into immunocompetent mice did not 

reveal any advantage provided by Hoxb4 overexpression. In immunocompetent mice the 

available niche is limited, because the mice have normal number of the different cells types 

competing to survive in their niche. Therefore, the cells can only slowly self-renew. We decided 
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to evaluate if Hoxb4 could provide an advantage on the self-renewal of the cells when 

transplanted into an empty niche, where they do not have to compete with other cells already 

established in the niche. In order to evaluate if the Hoxb4 CD8 Tm cells could have an advantage 

over WT CD8 Tm cells under lymphopenic conditions, the WT and Hoxb4 in vitro generated 

CD8 Tm cells were labeled with CFSE and transplanted in competition in a ratio of 1 to 1 into 

lymphopenic mice. A 600 cGy non-lethal irradiation of WT mice the day before the 

transplantation allow us to generate a temporary empty niche, these lymphopenic mice are able 

to recover and to start the generation of their blood cells from HSCs. To monitor the contribution 

of the transplanted cells, peripheral blood was taken and organs (LN, SPL and BM) were 

processed after euthanasia at 1 day, 1 week, 1 and 3 months, and analyzed by FACS for CD45.1 

and CD45.2 expression to differentiate the cells. Upon mice genotyping, depending on which 

mice was overexpressing Hoxb4, CD45.1 or CD45.2 was selected to follow the WT or the Hoxb4 

cells during transplantation. 

  

Our results (Figure 9A) showed that the absolute numbers of CD8 Tm cells recovered 

from lymph node, spleen and bone marrow are not significantly different between the Hoxb4 and 

WT transplanted cells at any time point. However, there was a trend for a lower recovery of 

Hoxb4 CD8 Tm cells when compared to WT. We also confirmed that there were no differences 

in the cell numbers present in the skin draining and mesenteric lymph nodes after 3 months. 

However, when the WT and Hoxb4 in vitro generated CD8 Tm cells are mixed prior to 

transplantation, the mix of Hoxb4/WT cells is not a perfect 50:50 ratio. Therefore, we corrected 

the percentage of the recovered cells according to the real transplantation percentages (nearby 55 

to 45%) measured by FACS in the cellular mix before transplantation. With this correction 

(Figure 9B) we evaluated the ratio of contribution of Hoxb4/WT cells to the different organs. At 

day 1 post transfer Hoxb4 CD8 Tm cells seems to stay more in the blood and could have a delay 

to enter to the other lymphoid organs compared to the WT transplanted cells. However, at 1 

week, they are almost at the same levels in all the organs. After 1 and 3 months, the percentage 

of Hoxb4 CD8 Tm cells that are found in the LN and SPL gets lower compared to the WT 

transplanted cells. Interestingly, in the BM, we found that the levels of Hoxb4 CD8 Tm cells 

were similar to those of WT transplanted cell. Therefore, Hoxb4 does not enhance CD8 Tm cell 

numbers in the different organs, but seams to lower in LN and SPL. 
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We also evaluated if the CD8 Tcm markers continued to be expressed with time. After 1 

month, we found that the expression of the CD44, CD62L and Ly6C markers were similar 

between the WT and the Hoxb4 CD8 Tm transplanted cells (Figure 10A). We observed similar 

results at each time point of observation and until the end of the experiment at 3 months as 

shown in Figure 10B. Therefore, the phenotype of the Hoxb4 CD8 Tm cells remained similar to 

the WT transplanted cells. 

 

The empty niche allows us to provide in abundance all the signals required for the cells to 

self-renew. Besides measuring the number of cells recovered, to evaluate if Hoxb4 could provide 

a self-renewal advantage compared to the WT transplanted cells under this condition, we decided 

to stain the cells with CFSE. The progressive dilution of CFSE was used to observe the cellular 

division. Our results are display in the LN FACS profile Figure 11A. Marked peak of division 

were not always observed in the experiments. Therefore, we did not quantify the division peak, 

but clearly all the cells have divided. We overlapped the gate profiles from day one on the other 

days and observed the progressive dilution of the CFSE at day 8. As cellular division continues, 

we were not able to detect the CFSE in the majority of the cells at day 30. The mean 

fluorescence intensity was measured on the gates (bold marker in Figure 11A) with the majority 

of the cells from each time point. We use this measure to plot in Figure 11B the progressive 

dilution of the CFSE in the CD8 Tm cells at 1, 8 and 30 days, from the different organs (LN, 

SPL and BM). We observed that the progressive dilution of the CFSE was similar between 

Hoxb4 and WT CD8 Tm transplanted cells. Hence, the division of both cell types was similar. 

For all the reasons mentioned before (contribution, phenotype and division), we conclude that 

Hoxb4 does not enhance CD8 Tm self-renewal. 
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Figure 9.- Contribution analysis of Hoxb4 and WT CD8 Tm cells after competitive 

transplantation into lymphopenic mice reveled no advantage conferred by Hoxb4. 

A total dose of 6x10
6
 in vitro generated CD8 Tm cells (1:1), stained with CFSE, were 

transplanted into lymphopenic (600 cGy irradiated) mice. A) Absolute numbers of Hoxb4 and 

WT CD8 Tm cells recovered from different organs at 1, 8, 30 and 90 days post transfer into 

lymphopenic mice. No significant differences were observed. 2-tailed Student test. B). CD8 Tm 

cell contribution to the different organs. Hoxb4 and WT CD8 Tm cells were recovered after 1, 8, 

30 and 90 days from peripheral blood, LN, SPL and BM. First, a correction for the initial 

percentage evaluated by FACS prior to transplantation was done. Then, a ratio Hoxb4/WT. The 

line at value 1 represents equal contribution. *p<0.01, 2-tailed Student test. BM = bone marrow, 

LN = lymph node. M= Mesenteric LN, SD= skin draining LN, SPL = spleen, WT = wild type 

mice. 
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Figure 10.- Similar phenotype of in vitro generated WT and Hoxb4 CD8 Tm cells after 

competitive transplantation into lymphopenic mice. 

A total dose of 6x10
6
 in vitro generated CD8 Tm cells (1:1), stained with CFSE, were 

transplanted into lymphopenic (600 cGy irradiated) mice. CD45.1 and CD45.2 were used to 

differentiate between WT and Hoxb4 CD8 Tm cells. A) Representative LN FACS profile of 

Hoxb4 and WT CD8 Tm cells recovered after 1 month of transplantation in competition. The 

values in the graph correspond to the percentage of the CD8 Tm cells that are double positive for 

the corresponding marker. B) Percentage of CD8 Tm recovered cells expressing surface markers 

(CD44, CD62L and Ly6C) after 3 months from LN, spleen and bone marrow. No significant 

differences were observed. 2-tailed Student test. WT = wild type mice, LN = lymph node. 
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Figure 11.- Similar CFSE dilution after competitive transplantation of WT and Hoxb4 in vitro 

generated CD8 Tm cells into lymphopenic mice. 

A total amount of 6x10
6
 in vitro generated CD8 Tm cells (1:1), labelled with CFSE, were 

transplanted into lymphopenic (600 cGy irradiated) mice. After gating on CD8 T cells, CD45.1 

and CD45.2 were used to differentiate between WT and Hoxb4 CD8 Tm cells. A) Representative 

FACS profile of the CFSE staining in the Hoxb4 and WT CD8 Tm cells recovered from the LN. 

The bold marker showed the majority of the cells on each graph. These markers were used to 

measure the mean fluorescence intensity which is indicated on the plot. The marker from day 1 

was copied to the other days as a light line to observe the progressive dilution of the CFSE. B) 

Compilation of CFSE mean fluorescence intensity within in Hoxb4 and WT CD8 Tm cells from 

different organs at different times post-transplantation. No significant differences were observed. 

2-tailed Student test. WT = wild type mice, LN = lymph node.  
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Discussion 
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Our results showed that Hoxb4 overexpression in T cells does not affect the homeostasis 

of CD8 T cells as we did not observe any difference in the proportion of the naïve and memory T 

cell populations. We also showed that adoptive transfer of Hoxb4 overexpressing CD8 Tm cells 

did not enhanced the long-term contribution of CD8 Tm cells to the memory pool. 

 

Our laboratory has previously shown that Hoxb4 is overexpressed in naïve and memory T 

cells from Hoxb4 transgenic mice and markedly increased in MP CD8 T cells (Frison et al., 

2013). In normal mice, with age the CD8 Tm cell pool enlarge, while CD8 Tn cell number 

decrease (Vescovini et al., 2014). Besides, mice kept under pathogen free conditions develop a 

memory T cell-like population (Vos et al., 1992). In mice with Hoxb4 deficiency, HSC 

generation and lineage distribution is not affected (Brun et al., 2004). In the case of our mouse 

model overexpressing Hoxb4, they did not develop any leukemia, so we considered that Hoxb4 is 

not affecting the normal regulation of the cells. As expected, the transgenic mice maintain 

normal distribution of the T cell populations. With age, as in normal mice, a reduction on the Tn 

cell compartment and an increase on the MP T cell population was observed in the Hoxb4 

transgenic mice. These results can be explained comparing results found in HSCs. The 

overexpression of Hoxb4 does not override the mechanisms controlling the normal pool size 

limit of HSCs (Thorsteinsdottir et al., 1999). We can say that the T cells overexpressing Hoxb4 

are behaving like the normal cells in any normal mice. Most likely, the mechanisms that control 

the population numbers remain intact in this model. We conclude that the overexpression of 

Hoxb4 does not negatively affect T cell homeostasis during the life of the mice. However, 

studying mice overexpressing Hoxb4 in all T cells does not answer if the CD8 Tm cells could 

have a proliferative advantage compared to WT cells. 

 

To address this question, we first generate in vitro the CD8 Tm cells from the OT-1 and 

Hoxb4 double transgenic mice. The Hoxb cluster is almost not expressed in human quiescent T 

cells, while induced with activation (Care et al., 1994). As we were overexpressing Hoxb4, 

which is normally occurring during T cell activation, there could be an enhanced activation 

response. We did not expect that because in the Hoxb4 overexpressing mice, the T cell 

populations remained normal, suggesting that the activation mechanism should not be affected. 

As expected, the overexpression of Hoxb4 did not interfere with the in vitro generation of CD8 
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Tm cells. These results show that the cells keep their ability to give a normal response following 

antigen encounter. 

 

To evaluate if Hoxb4 could provide a competitive advantage to the CD8 Tm cells, we 

proceeded to monitor the engraftment and long term maintenance of the in vitro generated cells 

in transplantation assays. The Wnt pathway induces the expression of Hoxb4 in HSCs (Reya et 

al., 2003), and Hoxb4 is a powerful enhancer of HSCs self-renewal (Sauvageau et al., 1995; 

Thorsteinsdottir et al., 1999). On the other hand, the Wnt pathway promotes CD8 Tm cell 

formation and maintenance (Zhao et al., 2010); and the CD8 Tm cells generated by Wnt 

signaling possess a higher ability to self-renew (Gattinoni et al., 2009). Moreover, Wnt-Tcf-1 

pathway is necessary for the maintenance of CD8 Tm cells (Zhou et al., 2010). In summary, Wnt 

can control the CD8 Tm cell self-renewal and it has been associated to a higher self-renewal of 

HSCs trough Hoxb4. Thus, we were expecting that Hoxb4 overexpression in CD8 Tm cells 

would enhance their self-renewal, but this was not observed. It could be that in CD8 Tm cells, 

unlike HSCs, the Wnt signaling does not go through Hoxb4. However, we cannot exclude that 

Hoxb4 could be modulating the self-renewal abilities of CD8 Tm cells depending on other 

cellular context for example, after re-challenge or when the cells homeostatic proliferate once the 

re-challenge has passed; because it was shown that Wnt-Tcf-1 pathway also depend on the 

cellular situation like activation, differentiation and upon re-challenge (Paley and Wherry, 2010; 

Zhou et al., 2010). Moreover, Wnt signaling has also been associated with outcomes that differ 

with its self-renewal effect on HSC, depending on the expression levels. Elevated expression is 

associated with ageing and exhaustion (Florian et al., 2013; Luis et al., 2011). Therefore, it could 

be that the Hoxb4 overexpression in CD8 Tm cells, instead of improving self-renewal of the 

cells, it is inducing a state similar to ageing or exhaustion. However, CD8 Tm cells 

overexpressing Hoxb4 are maintained in the BM of the mice 3 months after transplantation 

without difference compared to WT transplanted cells. Also they present a similar progressive 

dilution of the CFSE staining, leading us to believe that the cells are not exhausted. With our 

results, we can conclude that Hoxb4 overexpression is not interfering with the CD8 Tm cell in 

two cellular contexts: their generation and their long-life maintenance in normal conditions; but 

we do not know what would happen after the cells re-encounter the Ag. It could be possible that 

after re-challenge, the overexpression of Hoxb4 could conferee an advantage in the cellular 
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maintenance. To find this answer, the Listeria monocytogenes model could be used to re-

challenge the mice transplanted with WT and Hoxb4 overexpressing CD8 Tm cells. This is a 

well-known controlled model, we can use a non-lethal dose to follow the response and observe 

the behavior of our cells for long time after the infection. This experiment could also give us 

information to verify senescence, as senescent cells would not be able to optimally respond to a 

re-challenge. 

 

Different factors (including signaling pathways and cytokines) control CD8 Tm cell 

homeostasis, balancing and precisely regulating memory cell proliferation and death rate, in 

order to keep a stable number of cells under normal conditions (Boyman et al., 2009; Nolz et al., 

2012). Transplantation assays in immunocompetent mice demonstrated no advantage of Hoxb4 

overexpression on CD8 Tm cell maintenance. In this setting, our CD8 Tm cells overexpressing 

Hoxb4 entered and competed with the existing Tm cells. We considered that due to the limited 

resources that are available in the normal mice, as their niche is full, the transplanted cells are 

only being maintained. In the case of HSCs, the experiments where an advantage was found 

were done under lethal irradiation conditions, which conferred hematopoietic proliferative stress 

to the transplanted cells because the niche is empty. Therefore, in the second model that we used, 

we could give more resources for the cells to expand by giving empty niches. So we transplanted 

in competition the in vitro generated Hoxb4 and WT CD8 Tm cells into irradiated mice. 

However, we did not find the expected proliferative advantage from Hoxb4 overexpression. Yet, 

we considered that the cells were proliferating in a similar way, due to the comparable 

progressive dilution of the CFSE staining. BrdU staining could be used to verify the proliferation 

capacity of the cells. From HSCs overexpressing Hoxb4, and from the observation done in the 

Hoxb4 transgenic mice, our results could be interpreted as if the cells are maintaining normal 

proliferative capacities even with higher available resources. We can conclude that Hoxb4 is not 

affecting the self-renewal capacity of the CD8 Tm cells, but they seem disadvantaged. 

 

Our results from the transplantation experiments into immunocompetent or lymphopenic 

mice showed a tendency of Hoxb4 overexpressing cells to be maintained in the LN or SPL at 

lower numbers compared to the WT transplanted CD8 Tm cells. The generation of death-

intermediate memory T cells (TDIM), as a result from cellular division, has been linked to the 
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control of the CD8 Tm cells numerical stability (Nolz et al., 2012); the proliferating CD8 Tm 

cells generate the TDIM cells that are apoptotic and nonfuntional. Moreover, besides its 

proliferative effect in HSCs, Hoxb4 has been suggested to have a different role depending on the 

cell type, even promotion of apoptotic pathways in some embryonic structures (Morgan et al., 

2004). Therefore, another reason why we found lower numbers of Hoxb4 CD8 Tm cells 

compared to WT could be that the proliferation of our cells leads to the generation of TDIM cells. 

To further investigate this, we could stain the cells with Annexin V to verify cellular apoptosis 

and test functionality of the recovered cells by stimulation with PMA/ionomycin to measure 

cytokine production. 

 

The lower contribution of Hoxb4 overexpressing CD8 Tm cells compare to WT into the 

LN or SPL could be due to cellular death (as a consequence of their differentiation into TDIM) or 

their migration to other niches. Therefore, it would be interesting to verify if the Hoxb4 

overexpressing CD8 Tm cells are differentiating into other subpopulations and thus migrating to 

other organs. We transplanted in vitro generated CD8 Tm cells with central memory 

characteristics according to the high expression of CD44, CD62L (which allows them to migrate 

through LNs) and non-expression of activation marker CD69 at day 9 of in vitro generation. 

However, Tcm cells may possibly differentiate into Tem (CD44 high, CD62L low) or stem like 

Tm (CD44 low, CD62L high) (Gattinoni et al., 2012; Yu and Anasetti, 2005; Zhang et al., 2005). 

The extra-lymphoid CD8 Tem cell populations have been described to possess different 

characteristics compared to their SPL counterparts and preferentially reside in non-lymphoid 

tissues (Masopust et al., 2001). More interestingly, the resident CD8 Tm cell populations from 

different non-lymphoid organs are being studied and are associated with CD69 expression and 

non-recirculation trough lymphoid organs (Hofmann and Pircher, 2011; Masopust et al., 2010; 

Sathaliyawala et al., 2013; Schenkel et al., 2013). In our results cells retain high expression of 

CD44, CD62L and Ly6C surface markers. Thus, we did not observe the conversion to effector 

(CD62L low) or stem like (CD44 low) CD8 Tm cells in the BM, LN or SPL. We did not 

evaluate the expression of CD69 in the CD8 Tm cells after transplantation. As we did not 

evaluate any non-lymphoid organ, we cannot completely exclude the possibility that CD8 Tm 

cells could differentiate, migrate into non-lymphoid organs and stay there; which could explain 

the lower contribution found in the LN and SPL. Therefore, we should evaluate the contribution 
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of Hoxb4 overexpressing CD8 Tm cells to non-lymphoid organs like liver, lungs or intestinal 

epithelium; and if we found our cells into any of this organs, it would be interesting to further 

characterize them in order to know if they are differentiating into Trm cells and acquiring 

features that allow them to rather stay in the organ and not recirculate to lymphoid organs. 

 

For CD8 Tm cells, it has been shown that the BM is their preferred proliferation site, it 

contained a major pool of the most actively dividing cells and this division is abrogated in IL-15 

deficient mice (Becker et al., 2005). Hence, the BM is the most important niche for the CD8 Tm 

cells. Our results show the preferred localization in BM over LN or SPL for the Hoxb4 

overexpressing CD8 Tm cells. After transplantation in competition into lymphopenic mice, BM 

is the only organ where we found similar levels of cells during the follow up of the transplanted 

mice and until 3 months. As the BM provides IL-15 for the Tm cell homeostatic proliferation, 

this could mean that Hoxb4 overexpressing CD8 Tm cells are more dependent on cytokine 

signaling for their proliferation. It would be very interesting to know what happens when a 

proliferation signal like IL-15 is missing. By transplanting the in vitro generated CD8 Tm cells 

into IL-15 deficient mice, we could find if the Hoxb4 overexpression is truly dependent on this 

signal or if it can confer an advantage by expanding the cells overcoming the missing signal. 

 

In our model, the Hoxb4 overexpressing mice, the CD8 T cells present a higher 

expression of Hoxb4 than the CD4 T cells. Studies performed by us to analyze the CD4 MP T 

cells overexpressing Hoxb4, have shown that in short-term competitive repopulation, WT and 

transgenic cells contributed equally to LN and BM but WT dominated over Hoxb4 in SPL. In 

medium-term competitive repopulation, WT cells presented a higher contribution over Hoxb4. 

With further characterization of the cell surface markers, it was found that Hoxb4 might indeed 

favor self-renewal of CD4 MP T cells, but only for the CD62L high cell subpopulation (Frison et 

al., 2013). Our results with CD8 Tm cells show that WT cells seem to be similarly dominating 

over the transgenic cells in general. We did not found differences in the surface markers studied, 

but we cannot exclude that the Hoxb4 overexpressing CD8 Tm cells could be differentiating and 

migrating to other organs. We have also to consider that while CD4 MP T cell populations were 

sorted and contained a mix of both effector and central Tm cells, while we generate in vitro CD8 

Tcm cells. Although the OT1 model to produce CD8 Tm cells is widely accepted and used, we 
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cannot exclude that the cells generated in vivo could present a different behavior. It could also be 

possible that Hoxb4 confers a different proliferative capacity to others subpopulations of CD8 

Tm cells. Thus, we could generate an in vivo response, sort the CD8 Tm cell populations and 

transplant them into lymphopenic mice to evaluate their self-renewal capacity. 

 

The balance between the quantity, quality and function of the CD8 Tm cells confers the 

ability to better respond when an antigen is re-encountered. For example, vaccination strategies 

attempt to produce a good quantity of Tm cells that will support the defense against the recurrent 

infection. If we can maintain more CD8 Tm cells, they will be able to massively respond after a 

secondary challenge. For example, when CD8 Tm cells that respond to Ag expressed by 

recurrent pathogens or even to cancerous cells, a method to maintain a good quantity of the CD8 

Tm cells would be an advantage in order to rapidly eliminate the re-infection or prevent the re-

apparition of the cancer. That is why we wanted to use genes involved in HSC self-renewal to 

increase CD8 Tm cell self-renewal, particularly Hoxb4 because it is a known factor capable of 

expanding HSCs without inducing leukemia. Our strategies did not show any advantage for CD8 

Tm cell self-renewal. However, a great benefit could be found if the Hoxb4 overexpressing CD8 

Tm cells that stay in the host can better respond to a reencounter. We did not explore this 

potential with our experiments. For this, the Listeria monocytogenes model, where we can infect 

the transplanted mice and follow the response in vivo could give us valuable information. 

Finding a mechanism to promote a better secondary response could also be used as a strategy to 

increase the ability of the CD8 Tm cells to fight against recurrent pathogens or cancerous cells. 
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Conclusion 
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The objective of this study was to evaluate the competitive advantage provided by the 

overexpression of Hoxb4 on CD8 Tm cells. We were looking particularly at the ability of this 

gene to enhance the self-renewal of the CD8 Tm cells. When we evaluated young and old Hoxb4 

overexpressing mice, T cell homeostasis was maintained as in normal mice which means that 

these cells are not proliferating more in normal conditions. We also found that the transgene does 

not affect the capacity to in vitro generate CD8 Tm cells. With the transplantations assays, we 

found that Hoxb4 does not enhance CD8 Tm cells self-renewal neither in immunocompetent or 

immunodeficient mice. Comparing WT and Hoxb4 overexpressing cells transplanted cells, we 

did not observe changes in the phenotype in any marker evaluated, the cells where capable to 

migrate to the different lymphoid organs but the ability to replace WT cells in normal host was 

not enhanced. Therefore, we conclude that Hoxb4 overexpression does not have an impact on the 

self-renewal of CD8 Tm cells under these experimental settings. 
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Future plans 
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It would be interesting to identify novel factors involved in CD8 Tm self-renewal to 

improve their maintenance. A selection for candidate genes has already given us 45 candidate 

genes. We based our selection strategy on three different points: 1) The genes highly expressed 

in both CD8 Tm and HSC, these information was obtained from the public data base in the 

immunological genome project. 2) Their reported property to enhance HSC self-renewal 

(Deneault et al., 2009). 3) The transcriptional program that is shared by both cell types (Luckey 

et al., 2006). However, HSCs are not the only cells that need to self-renew therefore, comparing 

the behavior of our candidates in other cells like leukemic and neural stem cells could give us a 

hint on which could be the best candidates to explore. We believe that the cells could use similar 

mechanisms to be maintained and that is the reason why the best candidates would be involved 

in the different cell types. 

 

We could first evaluate the expression of our 45 candidates in our in vitro generated Tm 

cells. A retroviral expression system with a Flag tag and GFP selection could be used to stably 

overexpress the candidate genes in the in vitro generated CD8 Tm cells at the third day of 

culture, validate by Western blot using anti Flag. The CD8 Tm development and changes in the 

number of cells generated would be evaluated to confirm any difference compare with the WT. 

Furthermore, to screen the intrinsic potential of these genes for self-renewal, cells could be 

cultured in the absence of IL-15, because IL-15 provides the necessary signal to promote CD8 

Tm cell self-renewal division. Cells overexpressing the most promising genes could be finally 

evaluated in vivo. Competitive assays could be performed, which would be analysed for growth 

(cell numbers), cell cycle (BrdU), phenotype, apoptosis (AnnexinV/7-AAD), maintenance, 

homing and functionality over time. 
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