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RÉSUMÉ

Le diagnostic assisté par ordinateur est un domaine de recherche en émergence et se situe

à l’intersection de l’imagerie médicale et de l’apprentissage machine. Les données médi-

cales sont de nature très hétérogène et nécessitent une attention particulière lorsque l’on

veut entraîner des modèles de prédiction. Dans cette thèse, j’ai exploré deux sources

d’hétérogénéité, soit l’agrégation multisites et l’hétérogénéité des étiquettes cliniques

dans le contexte de l’imagerie par résonance magnétique (IRM) pour le diagnostic de la

maladie d’Alzheimer (MA). La première partie de ce travail consiste en une introduction

générale sur la MA, l’IRM et les défis de l’apprentissage machine en imagerie médicale.

Dans la deuxième partie de ce travail, je présente les trois articles composant la thèse.

Enfin, la troisième partie porte sur une discussion des contributions et perspectives fu-

tures de ce travail de recherche. Le premier article de cette thèse montre que l’agrégation

des données sur plusieurs sites d’acquisition entraîne une certaine perte, comparative-

ment à l’analyse sur un seul site, qui tend à diminuer plus la taille de l’échantillon aug-

mente. Le deuxième article de cette thèse examine la généralisabilité des modèles de

prédiction à l’aide de divers schémas de validation croisée. Les résultats montrent que

la formation et les essais sur le même ensemble de sites surestiment la précision du

modèle, comparativement aux essais sur des nouveaux sites. J’ai également montré que

l’entraînement sur un grand nombre de sites améliore la précision sur des nouveaux sites.

Le troisième et dernier article porte sur l’hétérogénéité des étiquettes cliniques et pro-

pose un nouveau cadre dans lequel il est possible d’identifier un sous-groupe d’individus

qui partagent une signature homogène hautement prédictive de la démence liée à la MA.

Cette signature se retrouve également chez les patients présentant des symptômes mod-

érés. Les résultats montrent que 90% des sujets portant la signature ont progressé vers

la démence en trois ans. Les travaux de cette thèse apportent ainsi de nouvelles con-

tributions à la manière dont nous approchons l’hétérogénéité en diagnostic médical et

proposent des pistes de solution pour tirer profit de cette hétérogénéité.

Mots clés: Hétérogénéité, Maladie d’Alzeimer, Apprentissage machine, Multi-

site, Biomarqueur.



ABSTRACT

Computer assisted diagnosis has emerged as a popular area of research at the intersection

of medical imaging and machine learning. Medical data are very heterogeneous in nature

and therefore require careful attention when one wants to train prediction models. In

this thesis, I explored two sources of heterogeneity, multisite aggregation and clinical

label heterogeneity, in an application of magnetic resonance imaging to the diagnosis

of Alzheimer’s disease. In the process, I learned about the feasibility of multisite data

aggregation and how to leverage that heterogeneity in order to improve generalizability

of prediction models. Part one of the document is a general context introduction to

Alzheimer’s disease, magnetic resonance imaging, and machine learning challenges in

medical imaging. In part two, I present my research through three articles (two published

and one in preparation). Finally, part three provides a discussion of my contributions

and hints to possible future developments. The first article shows that data aggregation

across multiple acquisition sites incurs some loss, compared to single site analysis, that

tends to diminish as the sample size increase. These results were obtained through semi-

synthetic Monte-Carlo simulations based on real data. The second article investigates the

generalizability of prediction models with various cross-validation schemes. I showed

that training and testing on the same batch of sites over-estimates the accuracy of the

model, compared to testing on unseen sites. However, I also showed that training on a

large number of sites improves the accuracy on unseen sites. The third article, on clinical

label heterogeneity, proposes a new framework where we can identify a subgroup of

individuals that share a homogeneous signature highly predictive of AD dementia. That

signature could also be found in patients with mild symptoms, 90% of whom progressed

to dementia within three years. The thesis thus makes new contributions to dealing

with heterogeneity in medical diagnostic applications and proposes ways to leverage

that heterogeneity to our benefit.

Keywords: Heterogeneity, Alzeimer’s disease, machine-learning, multisite, biomarker.
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CHAPTER 1

INTRODUCTION

1.1 General context

Machine learning is on a course to change the way clinical diagnoses are established

and delivered. Supervised learning has historically needed large datasets to be able to

perform well and unfortunately, this is a scarce resource in medical imaging. One solu-

tion to increase the sample size is to aggregate data from heterogeneous sources, with the

downside of adding more variance in the dataset. Another source of variance that can

impact the performance of an inference model is the imperfect knowledge of clinical

diagnoses, reflected in the labels used for training and evaluating our models. Clini-

cal diagnoses are often incorrect, incomplete or not specific enough to the variants that

exist in the pathophysiology within a given disorder. Heterogeneous data sources and

heterogeneous clinical labels are two issues particularly prevalent in the diagnosis and

prognosis of Alzheimer’s disease (AD) using magnetic resonance imaging (MRI), which

is the main application of my doctoral work.

The number of Canadians suffering from AD is rapidly increasing, with tremen-

dous social and economic impact. Despite the emergence of promising drugs, the recent

clinical trials with demented patients have failed. Dementia comes very late in the devel-

opment of the disease, at a stage where the degeneration of neural tissues has likely gone

beyond repair. In order to be efficient, therapies should be initiated in the decades predat-

ing dementia, in a preclinical stage where patients experience no or very mild symptoms

(see chapter 1.2). There is, unfortunately, no accurate biomarker(s) that can predict AD

in this preclinical stage, and that could help identify the individuals that would progress

to dementia and benefit from such interventions. It would also be useful to identify pre-

symptomatic markers of the disease in order to understand the underlying mechanism of

the pathology. Promising early AD biomarkers can be captured using MRI, which is a

broadly available and noninvasive technique. Two separate modalities have been shown



to be of great interest in the investigation of the disease progression, namely structural

MRI - that can give information on brain atrophy patterns - and functional MRI - that

investigates functional interactions between various brain structures - (see chapter 1.3).

Generation of biomarkers require a complex process of data preparation: preprocessing

(denoising and spatial alignment) (see chapter 1.4) and features extraction. A standard

way to extract meaningful information from the rich 4D images provided by fMRI is to

use resting-state connectivity measures and is detailed in chapter 1.5. Different practices

like scientific consortia, data sharing and open clinical trials have emerged, and all de-

liver large public and multisite datasets which can be used to discover new biomarkers

(see chapter 1.6). Unfortunately, the gain in sample size due to data aggregation across

sites comes at the price of increased heterogeneity (see chapter 1.7.3.1 and 1.7.3.2) and

may impact the discriminative properties of our markers.

In addition, heterogeneity also exists in the clinical labels (Drysdale et al. 2017) (see

chapter 1.7.3.3). The last point could drastically affect the ability of a prediction model

to converge to a solution that will effectively predict clinical labels. Finally I will outline

the objectives and contributions of my Ph.D. thesis to deal with technical and clinical

sources of heterogeneity in section 1.8.

1.2 Alzheimer’s disease

Alzheimer’s disease (AD) is a major neurodegenerative disorder characterized by

the accumulation of beta amyloid plaques and tau neurofibrillary tangles in the brain.

AD gradually destroys a patient’s memory and ability to reason, make judgments, com-

municate and carry out daily activities (Jeong 2004). With the aging of the population

worldwide, this disorder has attracted much attention. Evidence from elderly individuals

suggests that the pathophysiological process of AD begins years, if not decades, before

the diagnosis of clinical dementia (Morris 2005). The clinical disease stages of AD are

divided into three phases described by Jack and colleagues Jack et al. (2010).

First is a pre-symptomatic phase in which individuals are cognitively normal but

some have pathological changes in AD. Second is a prodromal phase of AD, commonly

2



referred to as mild cognitive impairment (MCI) (Petersen 2004), which is characterized

by the onset of the earliest cognitive symptoms (typically deficits in episodic memory)

that do not meet the criteria for dementia. The severity of cognitive impairment in the

MCI phase of AD varies from an early manifestation of memory dysfunction to more

widespread dysfunction in other cognitive domains. The final phase in the evolution of

AD is dementia, defined as multi-domain impairments that are severe enough to result

in loss of function (Jack et al. 2010).

The use of a biomarker for the early diagnosis of pathologies has a long history,

with many studies showing the feasibility of using an AD biomarker to predict conver-

sion from MCI to AD. These studies show that individuals in the course of developing

AD can be identified earlier in the course of the disease by using the MCI stage with

the addition of imaging and cerebrospinal fluid (CSF) biomarkers to enhance diagnostic

specificity (Chetelat et al. 2003, Jack et al. 1999, Mattsson et al. 2009, Yuan et al. 2009).

It could be possible to diagnose AD after the exclusion of other forms of dementia, al-

though a formal diagnosis can currently only be made after a post-mortem evaluation

of the brain tissue (McKhann et al. 1984). This is one of the reasons why MRI based

analysis and diagnostic tools are currently undergoing intense study in clinical neuro-

science research. The early prediction of disease onset is also needed for clinical trials

investigating disease-modifying therapies, since treatment of patients with no or mild

symptoms are more likely to have a positive outcome, compared to demented subjects

who may have such extensive damage that it may be too late to modify the trajectory of

the disease.

The current dominant hypothesis in the field for the chain of events in AD patho-

physiology is the β -amyloid (Aβ )-cascade. It suggests that interstitial Aβ proteins exert

a toxic effect on surrounding neurons and synapses by forming plaques, thereby dis-

turbing their function (Hardy and Selkoe 2002, Shankar et al. 2008). Moreover, a recent

research study suggests that, prior to neuronal death resulting in brain atrophy, disruption

of functional connectivity may arise in response to an unknown systemic problem and

represent an early outcome of Aβ protein plaque formation in AD (Sheline and Raichle

2013). Atrophy is the result of neuronal death and is measured in vivo using structural
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MRI measuring the thickness of the gray matter of the cortex (also called cortical thick-

ness) or the gray matter volume in various parcels of the brain. Already in the stage

preceding aggregation of Aβ fragments into amyloid plaques, there is a dysfunction of

synaptic transmission in many brain regions due to dimers and monomers from the Aβ

cascade (D’Amelio and Rossini 2012). As illustrated in Sperling et al. (2011) a viable

hypothesis is that functional changes precede the structural changes as well as clinical

symptoms and are believed to start in the preclinical phase of the disease. A multimodal

combination of structural and functional information may, therefore, lead to accurate

predictions of individual clinical trajectories.
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Figure 1.1: Hypothetical model of dynamic biomarkers of the AD expanded to explain
the preclinical phase: Aβ as identified by cerebrospinal fluid Aβ42 assays or PET amy-
loid imaging. Synaptic dysfunction evidenced by fluorodeoxyglucose (F18) positron
emission tomography (FDG-PET) or functional magnetic resonance imaging (fMRI),
with a dashed line to indicate that synaptic dysfunction may be detectable in carriers of
the ε4 alleles of the apolipoprotein E gene before detectable Aβ deposition. Neuronal
injury is evidenced by cerebrospinal fluid tau or phospho-tau, and brain structure is ev-
idenced by structural magnetic resonance imaging. Biomarkers change from normal to
maximally abnormal (y-axis) as a function of disease stage (x-axis). The temporal trajec-
tory of two key indicators used to stage the disease clinically, cognitive and behavioral
measures, and clinical function is also illustrated. Figure from Sperling et al. (2011).

1.3 Overview of magnetic resonance imaging

1.3.1 Overview of structural magnetic resonance imaging

Structural magnetic resonance imaging (sMRI) also called anatomical MRI is an

imaging technique that provides static anatomical information. Some atomic nuclei are
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able to absorb and emit radio frequency energy when placed in an external magnetic

field. In clinical and research MRI, hydrogen atoms are most often used to generate a

detectable radio-frequency signal that is received by antennas in close proximity to the

head. Hydrogen atoms exist naturally in mammals and in abundance, particularly in wa-

ter and fat. For this reason, most of the structural MRI sequences essentially map the

location of water and fat in the body. Pulses of radio waves excite the nuclear spin of the

hydrogen atoms to determine the hydrogen concentration (a proxy for water concentra-

tion), and magnetic field gradients are used to localize the signal in space by encoding

the radio frequency in space. By varying the parameters of the pulse sequence, different

contrasts may be generated between tissues based on the relaxation properties of the hy-

drogen atoms. The main two contrasts used are T 1− and T 2− weighted imaging. This

imaging modality is widely used in hospitals and clinics for medical diagnosis, staging

of disease using brain atrophy (see Figure 1.2) and follow-up without exposing the body

to ionizing radiation.
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Figure 1.2: The figure for brain atrophy at four stages of AD pathology. Figure from
Mayo fondation1

1.3.2 Overview of functional magnetic resonance imaging

In functional magnetic resonance imaging (fMRI), the acquisition process is slightly

different than for the anatomical MRI acquisition. fMRI uses the principle of the relax-

ation of hydrogen nuclei, by using specific fMRI sequences of T 2∗ weighted acquisi-
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tions that are sensitive to local distortions of the magnetic field. Deoxyhemoglobin, a

form of hemoglobin without oxygen, will create such local distortions of the magnetic

field, since it is a paramagnetic molecule (positive magnetic susceptibility) (Ogawa et al.

1990). The data acquired using fMRI rely on the hypothesis that areas showing de-

creased deoxyhemoglobin concentration are due to sustained brain activity. Following

neuronal activity, neurons require energy to restore the electrical and ionic concentra-

tion balance across the cell membrane. The main mechanism to generate this energy is

glucose oxidative metabolism, which requires the delivery of oxygen and glucose by the

blood to the site where brain activity takes place (Ogawa et al. 1990). Initially, fMRI

was thought to be a good technique to measure the cerebral metabolic rate of oxygen,

since the new blood rushing in causes a proportional effect on the venous-end, resulting

in a decrease in deoxyhemoglobin concentration, and thus an increase in fMRI signal.

The concentration of deoxyhemoglobin actually depends mainly on three factors or phe-

nomena: the metabolic rate of oxygen consumption, cerebral blood volume and cerebral

blood flow (Hoge et al. 1999). As a result, the fMRI signal is the outcome of competing

effects following neuronal activity.

Figure 1.3: Representation of the brain and its vasculature (on the left) and a schematic
view of the interaction between the effect of neuronal activity on local changes in blood
oxygenation signal (BOLD) (on the right) (adapted from Heeger and Ress (2002)).

8



1.4 Preprocessing

Normalization of the data is crucial to obtain a consistent and accurate classifier

(Kotsiantis 2007). Therefore particular attention is placed on the correction and normal-

ization procedure applied to the rs-fMRI data used in this study. A series of standard

preprocessing steps is usually applied in an attempt to correct for various artifacts that

would perturb the subsequent analysis and to align the brains of different individuals.

The BOLD effect associated with neuronal activity generally results in a relatively small

fluctuation of the MR signal. Many factors can influence this signal. Among them,

the physiological activity associated mainly with respiration, cardiac pulsations, and pa-

tient’s motion are major contributors to the noise and are spatially spread everywhere

within the brain volume. These sources of noise result in large correlations between

BOLD signals of distant voxels. Another factor is the fact that we need a form of spatial

normalization of the individual brains in order to perform analysis across subjects (due

to anatomical variance among subjects). This spatial normalization (coregistration of the

individual brains with a reference template) is necessary but can potentially be another

source of confound.

Therefore, preprocessing methods were designed in an attempt to remove specifically

the so-called structured noise and motion artifacts from the raw fMRI data. A schematic

representation of the preprocessing pipeline can be seen in Figure 1.4.
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Figure 1.4: Schematic of the preprocessing pipeline including spatial and functional
normalization (NIAK preprocessing pipeline 2).

The basic steps are as follows: (1) correction for slice timing differences due to delay

in acquisition sampling; (2) rigid-body motion estimation for within and between runs.

Motion correction operates by selecting one functional volume as a reference to align

all other functional volumes. Most head motion algorithms describe head movement

by 6 parameters, three translation parameters (displacement) and three rotation param-

eters and are sufficient to characterize the motion of rigid bodies (see Figure 1.5); (3)

Coregistration of the functional data in a reference space; (4) resampling of the func-

tional data in the stereotaxic space (references brain used as a common space between

subjects); (5) regression of confounds in order to remove spatially structured noise from

the fMRI time-series. The confounds are the slow time drift, the high-frequency noise

signal, motion parameters, the average signal white matter as well as the average signal

of the ventricles (containing cerebrospinal fluid CSF a frequent source of noise and ar-

tifact). Some groups have suggested that these corrections are not sufficient to remove

motion artefacts and propose some additional corrective procedure (detailed in Chapter

2); and (6) the spatial smoothing is usually applied using a Gaussian blurring kernel to
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improve signal to noise ratio (SNR), improve validity of the statistical tests by making

the error distribution more normal and finally reduce anatomical and functional varia-

tions between subjects (Mikl et al. 2008, Worsley and Friston 1995).

Neuroimaging Analysis Kit – NIAK – user’s guide

The fMRI preprocessing pipeline

Pipeline options

Motion correction I
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Figure 1.5: Motion estimation based on rigid-body motion estimation of the functional
volumes, the procedure provides 6 motion parameters for each volume (3 translation
and 3 rotation) Schematic of the preprocessing pipeline including spatial and functional
normalization (from NIAK preprocessing pipeline 3).

1.5 Resting-state connectivity

Resting-state (RS) functional connectivity captures the spatial coherence of slow

fluctuations in hemodynamic temporal activity, without performing a prescribed task,

as opposed to the task-based acquisition where the subject has to perform a specific task.

In resting-state acquisition, the subject is instructed to rest with his eyes open or closed.

These temporal fluctuations can be monitored using the signal measured with fMRI. The

first study that introduced the concept of resting state functional connectivity was the one

of Biswal et al. (1995). They considered the left primary sensorimotor cortex as a seed

region for an analysis in a resting-state condition. This analysis consisted in calculating

the temporal correlation between the signal of the seed area and the time course of all

the voxels of the brain. They found RS correlations between brain regions known to

be involved in sensorimotor function. A more recent review done by Fox and Raichle
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(2007) illustrated in Figure 1.6 shows the ability to identify the complete sensorimotor

network using only the BOLD signal from a small region of that network.

Figure 1.6: Generation of resting-state correlation maps. a) Seed region in the left so-
matomotor cortex (LSMC) is shown in yellow. b) Time course of spontaneous blood
oxygen level dependent (BOLD) activity recorded during resting fixation and extracted
from the seed region. c) Statistical z-score map showing voxels that are significantly cor-
related with the extracted time course. Their significance was assessed using a random
effects analysis across a population of ten subjects. In addition to correlations with the
right somatomotor cortex (RSMC) and medial motor areas, correlations are observed
with the secondary somatosensory association cortex (S2), the posterior nuclei of the
thalamus (Th), putamen (P) and cerebellum (Cer) (Fox and Raichle 2007).

These early results from Biswal et al. suggest that it is possible to identify the func-

tional organization of different structures without doing any specific task, just by looking

at spontaneous fluctuations in brain activity. Several studies have demonstrated that pat-
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terns extracted from temporal correlations of RS signals within the brain volume are

organized in space and have a good reproducibility from subject to subject (Damoiseaux

et al. 2006, Dansereau et al. 2014). Each network is a combination of multiple brain

regions or units, not necessarily spatially close to each other, which share similar low

frequency fluctuations of the BOLD signal. This information is usually represented as

a functional connectivity matrix where one column of the matrix represents the connec-

tivity of a region or network with the rest of the brain called a functional connectivity

map (see Figure 1.7). These networks show the functional organization of various brain

regions (see Figure 1.8 for a list of common RS networks).

Figure 1.7: Functional connectome: on the left a representation of a functional parcel-
lation, in the middle a region-level functional connectome representing the connectivity
between each pair of region, and on the right the connectivity map based on a region of
interest extracted from the functional connectome.
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Figure 1.8: The figure shows 12 RS networks identified using a BASC (Bootstrap Anal-
ysis of Stable Cluster (Bellec et al. 2010b)) group level analysis of 25 healthy control
subjects. BASC is a clustering based method using evidence accumulation for the identi-
fication of stable clusters. For each network: 3 slices (coronal, axial, sagittal) are shown
superimposed on an anatomical MRI template (MNI152). Labelling of each network was
done visually based on previously reported intrinsic networks in the literature. The fig-
ure shows networks typically reported in the litterature: Default Mode Network (#1,#10),
Auditory (#3), Visual (#4), Sensory-Motor (#9), Attention (#7,#11) and Language(#12).
BASC also identified 4 other networks, less often reported, but characterized by high
statistical stability: Mesio-Temporal (#2), Mesolimbic (#5), Cerebellum (#6) and Deep
Gray Matter (#8) (Dansereau et al. 2014).

Interestingly, RS fMRI signals have also been used for the diagnosis of some neuro-

logical and psychiatric disorders, such as multiple sclerosis (Lowe et al. 2002), epilepsy

(Waites et al. 2006), schizophrenia (Liang et al. 2006, Salvador et al. 2007, Zhou et al.

2007; 2008), attention deficit hyperactivity disorder (Tian et al. 2007, Zang et al. 2007),
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blindness (Liu et al. 2007, Yu et al. 2007), major depression (Anand et al. 2005, Gre-

icius et al. 2007) and acute brainstem ischemia (Salvador et al. 2005). We believe that

resting-state fMRI will be an increasingly important modality for exploring the func-

tional abnormalities of patients with AD (Buckley et al. 2017) since we would like to

identify signs of the pathology prior to major atrophy or cognitive decline. Therefore

functional alterations and/or compensation are believed to occur earlier in the disease

progression justifying the use of this modality for early detection of AD pathology.

1.6 Multisite

Quality and quantity of data are usually the main factors that influence the ability of a

model to do good inferences. The quantity of data can be expanded through data aggre-

gation, hence why an increasing number of large publicly available cohorts of subjects

has emerged, like the 1000 functional connectome (Biswal et al. 2010), ADNI (Mueller

et al. 2005), and ABIDE (Di Martino et al. 2014), among others (see Woo et al. (2017)

Table 1 for a more exhaustive list). In a clinical trial, the justification for multisite ac-

quisition is more of a logistical one than a financial reason; they need to recruit a large

amount of subjects in a short period of time. In order to achieve this goal, they man-

date the recruitment to multiple clinical centers across the globe which accelerates the

evaluation time of a drug. Although these centers may have been harmonized by their

scanner protocols, scanners will have differences in their software version, the specific

add-on to the scanners, and, most importantly, vendors (even field strength may differ in

some cases). Unfortunately, between studies, MR acquisition methodologies are among

the most commonly cited sources of measurement variation (Friedman et al. 2006). This

is why it is important to assess if multisite resting-state connectivity analysis is feasible:

Can we combine the data from multiple sources while still detecting effects of interest

in the data? What corrective measure on the data should be applied to reduce the bias

introduced by multisite data collection? Among the factors of variability across sites, we

can list the following 3 categories described in (Yan et al. 2013b):
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1. Acquisition-related variations:

(a) Scanner make and model (Friedman et al. 2006)

(b) Sequence type (spiral vs. echo planar; single-echo vs. multi-echo) (Klarhofer

et al. 2002), parallel vs. conventional acquisition (Feinberg et al. 2010) (Lin

et al. 2005)

(c) Coil type (surface vs. volume, number of channels, orientation).

(d) Acquisition parameters: repetition time, number of repetitions, flip angle,

echo time, and acquisition volume (field of view, voxel size, slice thickness/-

gaps, slice prescription) (Friedman and Glover 2006).

2. Experimental-related variations:

(a) Participant instructions (Hartstra et al. 2011), eyes-open/eyes-closed (Yan

et al. 2009) (Yang et al. 2007), visual displays, experiment duration (Fang

et al. 2007) (Van Dijk et al. 2010).

3. Environment-related variations:

(a) Sound attenuation measures (Cho et al. 1998) (Elliott et al. 1999).

(b) Attempts to improve participant comfort during scans (e.g., music, videos)

(Cullen et al. 2009).

(c) Head-motion restraint techniques (e.g., vacuum pad, foam pad, bite-bar,

plaster cast head holder) (Edward et al. 2000) (Menon et al. 1997).

(d) Room temperature and moisture (Vanhoutte et al. 2006).

In 2009, the 1000 Functional Connectomes Project (FCP) released a sample of 1200+

fMRI scans collected at 33 different institutions, which provided a glimpse of the vari-

ability in imaging characteristics employed by the neuroimaging field. The parame-

ters of the imaging acquisition varied across sites, while the majority of subject-related

variables are not reported (due in most cases, to the fact that they were not thoroughly
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recorded). Despite justifiable skepticism, feasibility analyses demonstrated that mean-

ingful explorations of the aggregated dataset could be performed (Biswal et al. 2010).

Although no explicit correction for multisite variability was used, they only used a global

signal correction (GSC) to normalize subjects which may introduce anti-correlations in

the data (Carbonell et al. 2014, Fox et al. 2009, Murphy et al. 2009, Power et al. 2014,

Saad et al. 2012). After accounting for site-related differences, the analysis showed

brain-behavior relationships with variables such as age, gender, and diagnostic label,

and confirmed a variety of prior hypotheses (Biswal et al. 2010, Fair et al. 2012, Tomasi

and Volkow 2010, Zuo et al. 2012). While encouraging, it remains a source of concern

if unharmonized datasets can be aggregated together since many uncontrolled and un-

known factors in the 1000 FCP, may be adding variance unrelated to simple site effects

as highlighted by Yan et al. (2013a). Another demonstration of substantial multisite

variance is the study reported by Nielsen et al. (2013) where the authors compared a

monosite and a multisite dataset of subjects with autism and concluded that the multisite

classification accuracy was much lower for multisite than monosite (Nielsen et al. 2013).

1.7 Prediction of clinical diagnosis using medical images

1.7.1 Prediction in the context of AD

In the past few years, several major studies have been initiated that have aimed to

predict who will develop AD dementia at the prodromal or even asymptomatic stages,

with the ultimate goal of providing a platform for interventions with disease-modifying

therapies. Many of these studies were designed to evaluate the role of neuroimaging

and clinical biomarkers in assessing and predicting progression in individuals without

cognitive impairment and in individuals with MCI.

A recent body of literature has focussed on the classification of subjects at various

stages of AD and progression from a prodromal stage to AD dementia using one of

the various brain imaging modalities available, including positron emission tomogra-

phy (PET) imaging (Cabral et al. 2015, Mathotaarachchi et al. 2017), structural MRI

(Adaszewski et al. 2013, Eskildsen et al. 2013, Liu et al. 2015; 2013, Misra et al. 2009,

17



Salvatore et al. 2015), and functional MRI Challis et al. (2015), Chen et al. (2011), Jie

et al. (2014), Khazaee et al. (2015), see (Rathore et al. 2017) for a complete review.

More recently some groups used multimodal data from the ADNI dataset to improve

prediction accuracy and reported classification performance of the order of 95% accu-

racy to classify patients with AD dementia vs. CN (Xu et al. 2015, Zhu et al. 2014, Zu

et al. 2016) and 80% accuracy to identify patients with MCI who will progress to AD

dementia (Cheng et al. 2015a;b, Korolev et al. 2016, Moradi et al. 2015).

1.7.2 Cross-validation

As machine learning algorithms are increasingly used to support clinical decision

making, it is important to reliably quantify how a prediction model will generalize to

an independent dataset or site. Cross-validation (CV) is the standard approach for eval-

uating the accuracy of such algorithms. Validation is the task of training the data on a

subset of the data and evaluating its performance on the hold-out portion that has never

been seen by the model. Cross-validation, on the other hand, is the repeated measure

of the validation with non-overlapping subsamples. Multiple CV methods exist and, de-

pending on the end goal, some may be better than others to obtain an unbiased estimate

of the model accuracy as reported by (Saeb et al. 2016) where they compared two pop-

ular CV methods: record-wise and subject-wise cross-validation. In their paper, Saeb

and colleagues made the case that record-wise CV leads to overestimated accuracy score

that does not reflect the true prediction accuracy when evaluated on unseen subjects. As

highlighted by Little et al. (2017), Varoquaux (2017) the context and question that we

want to answer will determine the optimal CV scheme.

1.7.3 Dealing with heterogeneity

Accounting for heterogeneous sources of variance is important since they may reduce

the predictive potential of our model.
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1.7.3.1 Feasibility of multisite studies

In order to extract good and reliable biomarkers most machine-learning models re-

quire large sample sizes. Neuroimaging analysis is typically being acquired on one sin-

gle site with the same device. The major limitations of this type of recruitment scheme

is the decimation of small samples (small datasets acquired in parallel with different

protocols on different scanners that increase the number of studies but not the sample

size) and the difficulty to recruit a large amount of participants in the same location in a

reasonable time frame as mentioned previously in the multisite section. A solution for

the previously mentioned issues is to aggregate data from multiple sites into one large

dataset. As referenced earlier, data aggregation poses a number of difficulties due to the

added variability incurred by pooling multiple data from multiple sources. The ques-

tion is: does the tradeoff of having a larger sample supersede the added heterogeneity

obtained by aggregating multiple sites into one large dataset?

As indicated earlier, the problem regarding multisite heterogeneity can easily be

transposed to a more general problem in machine learning related to the aggregation

of various datasets that were not obtained with the same equipment and standards e.g.

pictures taken with various digital camera brands of a diverse range of quality and where

all picture labels are not uniformly distributed across cameras (Deng et al. 2009). Given

sufficient data and a model with enough capacity, this variability can be modeled. We,

unfortunately, do not have enough data (the data is very scarce and expensive to acquire)

to fully model this variability in medical imaging applications. The lack of ground truth

to evaluate the performance of a model in various training configurations and misdiagno-

sis may affect our ability to evaluate the variance contribution of a multisite acquisition.

We, therefore, need to evaluate the detrimental effect of the aggregation of data on our in-

ference models, compared to the standard monosite analysis, using realistic simulations

and this is precisely what we propose to do in the context of fMRI data analysis.
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1.7.3.2 Generalizability of models: Harnessing heterogeneity

In order to be useful, biomarkers that are identified on one dataset need to be gener-

alizable to other datasets. A standard approach to estimate the performance of a given

prediction model on unseen samples is to do cross-validation. This is very well known

principle in the machine learning community and a standard step in the evaluation of a

prediction model (Friedman et al. 2001). Now let us assume that our data is collected

using multiple sources (e.g. recording devices). Multiple scenarios are possible, so we

could use only the data coming from one device and do the cross-validation for that

dataset to obtain an accuracy score. This accuracy score will reflect the performance of

the model for data coming from that specific device but does not give any idea of the

performance of the model for data coming from a different device. The same problem

can be directly applied in neuroimaging where the dataset is obtained from MRI scan-

ners that may have different properties and site specific characteristics. A lot of the early

work on pathology prediction in neuroimaging has reported an accuracy score where the

training and test data came from the same scanner (Arbabshirani et al. 2017, Costafreda

et al. 2009, Fan et al. 2005, Fu et al. 2008, Hahn et al. 2011, Kawasaki et al. 2007, Lao

et al. 2004, Marquand et al. 2008, Mourao-Miranda et al. 2005, Nouretdinov et al. 2011,

Rathore et al. 2017). Unfortunately, more recent work has shown that the accuracy drops

dramatically when the model is applied to another independent dataset (Abraham et al.

2016, Cheng et al. 2015c, Schilbach et al. 2016, Skåtun et al. 2016, Woo et al. 2017).

It is therefore important to evaluate if this behavior was due to a lack of information at

training, rendering the model to be unable to generalize well to independent devices and

sites. In order to explore this question, it is possible to use various sampling strategies to

evaluate if the pooling of multiple sites at training yields a better generalization outcome

for unseen data. This is particularly important for clinical use since the predictive model

will most likely be used with data obtained from a different site than the site(s) used

for training and accuracy evaluation. We, therefore, need a less biased accuracy estimate

that will correctly quantify the generalizability of the model in unseen sites. The site het-

erogeneity needs to be learned while training the model so that the model can become
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invariant to it.

1.7.3.3 Clinical label heterogeneity

Heterogeneity can appear in different forms and at different levels, for example, we

can have acquisition heterogeneity due to: recruitment bias, the use of different scan-

ners, software to process the data, interindividual biological differences or any sort of

acquisition noise present in the data. Those types of heterogeneity, mainly explained in

the previous sections (section 1.7.3.2, and 1.7.3.2), reduce the effect size and therefore

may need to be modeled as much as possible to reduce their impact. Another source of

heterogeneity is the labels heterogeneity. By labels heterogeneity, we mean that they are

not precise enough to encompass the underlying variability of the data or that some sub

groups are underrepresented.

This other source of heterogeneity is well established in the clinical world but is

usually not accounted for until recently in the machine learning world applied to medical

problems. In an ideal scenario you would have multiple sub-diseases in a dataset with

a large number of examples of each sub category. In that context the algorithm would

learn to identify what is common among all of those subjects even if they have drastically

different underlying causes. Unfortunately, in most clinical datasets we are far from

unlimited data and a subgroup may be under-represented or simply not identified in some

cases, crippling the ability of the model to do its job correctly. The fact that the labels are

poorly defined renders the task of a perfect prediction virtually impossible since it is ill

posed from the start. We basically have imposed overly strict and sometimes subjective

categorical labels to disorders like schizophrenia Insel (2010) (that is more seen as a

spectrum disorder) or Alzheimer’s disease that encompasses multiple sub-forms of the

disease (Lam et al. 2013) and/or mixed pathologies.

Since clinical diagnoses are often incorrect, incomplete or not specific enough to the

variants that exist in the pathophysiology, it will impair our ability to have true gold

standard labels and inevitably the prediction model will be affected by this lack of pre-

cision in the clinical labels. For example Beach et al. (2012) have shown that a clinical

error in diagnosis for AD dementia exists after post-mortem neuropathological inves-
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tigation revealed that only 70.9% to 87.3% (depending on the clinical criteria) of the

probable AD subjects were diagnosed correctly. Beach and colleagues also found that a

range between 44.3% to 70.8% (depending on the clinical criteria) of the subjects diag-

nosed as non-AD had, in fact, AD pathology, as defined by post-mortem histopathologic

evaluations. Data-driven analysis of sMRI in AD further showed that symptomatic het-

erogeneity is related to different patterns of atrophy spreading in AD (Dong et al. 2016,

Zhang et al. 2016). Recently, Dong et al. (2016) also reported multiple subtypes of

dysconnectivity in patients suffering from AD dementia, MCI, and subjective cognitive

impairment, using diffusion magnetic resonance imaging, and reported associations be-

tween subtypes and the severity of cognitive impairment. These findings highlight the

existence of a great heterogeneity in the signature of AD pathology.

Most classification models propose a built-in confidence estimate over their predic-

tion. Unfortunately, it is possible for a model to be very confident about a prediction that

is completely wrong (Niculescu-Mizil and Caruana 2005) this can be true with outliers

for example or in over-fitting scenarios (Waterhouse et al. 1996). This is mainly due to

the way confidence is calculated, namely the distance of that sample to the hyperplane.

To deal with outliers a field of statistics called robust statistic has emerged to focus on

that particular issue and render the model to be robust to outliers. Outliers, by definition,

usually represent a very small fraction of the examples, and it is precisely in those con-

ditions that the robust statistic holds (Black and Rangarajan 1996). In our case, although

we have a heterogeneous population, there is no guarantee that a majority of the subjects

are homogeneous, rendering this type of solution unhelpful. The parametric estimation

of the model confidence probability that was proposed by Platt et al. (1999), Wu et al.

(2004) is limited by strong a priori on the data. We would therefore benefit from a non-

parametric metric that could compute the likelihood of a subject to be correctly classified

and use that to identify a highly predictable subgroup of subjects.

The label heterogeneity could be better modeled with a very large dataset encom-

passing most of the labels’ variability. This would help in part to refine clinical labels

based on groups of individuals who share a common phenotypic signature and better

model the intersubject variability. Unfortunately, such large datasets do not exist yet but
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may arise in the future. In the meantime what can be done with the existing datasets?

Would it be possible to extract meaningful information that can be used in a clinical

setup even though they encompass heterogeneous clinical labels?

I propose this approach in the context of AD clinical trial enrichment, but the issue

raised is general and touches many machine learning applications. Any high-risk prob-

lem where some specific action is very impactful or costly, and the lack of action has

a small cost, is relevant. One would want to only implement those actions in the cases

where the positive outcome is highly probable. For example, when trading stocks, we

would like to place an order to buy or sell a stock only when it is highly probable that the

stock will rise or fall in the next time point instead of placing a bet at each time point.

The first part of my scientific contributions is related to realistic multisite simulation

and generalizability, and I have proposed a domain specific solution to a general prob-

lem. For the second part related to the problem of labels heterogeneity, I have proposed

a generic solution to a domain specific problem. Since this solution is generic it could

be used in a variety of other domains.

1.8 Objectives

The overall objective of this thesis was to explore the impact of heterogeneity in its

various forms on imaging analysis and corrective approaches that can be used to reduce

its impact. We mainly focus on two aspects of variance, namely the multisite aggregation

and the clinical labels heterogeneity.

1.8.1 First paper objectives

The first contribution of this thesis (Dansereau et al. (2017)) addressed the feasibility

and impact of multisite fMRI analysis in standard univariate or multivariate machine

learning experiments. This question is very important since it is an emerging strategy

to increase sample size and is gaining a lot of interest in the neuroimaging community.

Since we lack a ground truth where we have the exact same effect and subjects scanned

using a monosite and a multisite scenario, the objective was to use realistic simulations
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to generate an equivalent dataset.

1.8.2 Second paper objectives

The second paper’s objective (Orban et al. (2017a)) was to explore the generaliz-

ability of various training schemes (monosite CV, intra-sites CV, inter-sites CV) in the

context of a multisite dataset to identify if a bias exists in the reported accuracy perfor-

mance. We also aimed to determine the most unbiased strategy to estimate the general-

izability performance of a model on true unseen data coming from a different site. Our

hypothesis was that even though a multisite acquisition may increase the heterogeneity

of the dataset, it is useful to test the generalizability of the results across different sam-

ples, making it more likely to obtain generalizable features reflecting generic traits of

the pathology rather than particularities of a single dataset. To do so we evaluated the

effect of intra-site vs. inter-site training on prediction accuracy performance using real

data from a clinical population acquired on different sites instead of simulated effects of

pathology like we did in my preceding work.

1.8.3 Third paper objectives

The heterogeneity in clinical labels has to our knowledge not been previously ad-

dressed even though it is well-known in the clinical community that diseases like AD

may encompass multiple sub diseases that are currently not diagnosed or identified as

such. The main problems are the comorbid factors and mismatch between pathological

and clinical stages that may cause heterogeneity in the clinical labels. We, therefore,

proposed in the third paper to design a prediction pipeline for the data-driven identifica-

tion of a signature of AD that will account for the heterogeneity of labels and improve

the prediction accuracy on a subset of the population. We will also evaluated if that

signature can be found in a prodromal stage of the disease (MCI) and if it could be a

reliable marker of progression to AD dementia.
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CHAPTER 2

STATISTICAL POWER AND PREDICTION ACCURACY IN MULTISITE

RESTING-STATE FMRI CONNECTIVITY

Published in Neuroimage. 20171

C. Dansereau, Y. Benhajali, C. Risterucci, E. Merlo Pich, P. Orban, D. Arnold, P. Bellec

2.1 Abstract

Connectivity studies using resting-state functional magnetic resonance imaging are

increasingly pooling data acquired at multiple sites. While this may allow investigators

to speed up recruitment or increase sample size, multisite studies also potentially intro-

duce systematic biases in connectivity measures across sites. In this work, we measure

the inter-site effect in connectivity and its impact on our ability to detect individual and

group differences. Our study was based on real, as opposed to simulated, multisite fMRI

datasets collected in N = 345 young, healthy subjects across 8 scanning sites with 3T

scanners and heterogeneous scanning protocols, drawn from the 1000 functional connec-

tome project. We first empirically show that typical functional networks were reliably

found at the group level in all sites, and that the amplitude of the inter-site effects was

small to moderate, with a Cohen’s effect size below 0.5 on average across brain connec-

tions. We then implemented a series of Monte-Carlo simulations, based on real data, to

evaluate the impact of the multisite effects on detection power in statistical tests com-

paring two groups (with and without the effect) using a general linear model, as well

as on the prediction of group labels with a support-vector machine. As a reference, we

also implemented the same simulations with fMRI data collected at a single site using

an identical sample size. Simulations revealed that using data from heterogeneous sites

1http://dx.doi.org/10.1016/j.neuroimage.2017.01.072

http://dx.doi.org/10.1016/j.neuroimage.2017.01.072


only slightly decreased our ability to detect changes compared to a monosite study with

the GLM, and had a greater impact on prediction accuracy. However, the deleterious

effect of multisite data pooling tended to decrease as the total sample size increased, to

a point where differences between monosite and multisite simulations were small with

N = 120 subjects. Taken together, our results support the feasibility of multisite studies

in rs-fMRI provided the sample size is large enough.

Highlights

• Small to moderate systematic site effects in fMRI connectivity.

• Small impact of site effects on the detection of group differences for sample size

> 100.

• Linear regression of the sites prior to multivariate prediction do not improve pre-

diction accuracy.

2.2 Introduction

2.2.1 Main objective

Multisite studies are becoming increasingly common in resting-state functional mag-

netic resonance imaging (rs-fMRI). In particular, some consortia have retrospectively

pooled rs-fMRI data from multiple independent studies comparing clinical cohorts with

control groups, e.g. normal controls in the 1000 functional connectome project (FCP)

(Biswal et al. 2010), children and adolescents suffering from attention deficit hyperac-

tivity disorder from the ADHD200 (Fair et al. 2012, Milham et al. 2012), individuals

diagnosed with autism spectrum disorder in ABIDE (Nielsen et al. 2013), individuals

suffering from schizophrenia (Cheng et al. 2015c), or elderly subjects suffering from

mild cognitive impairment (Tam et al. 2015). The rationale behind such initiatives is to

dramatically increase the sample size at the cost of decreased sample homogeneity. The

systematic variations of connectivity measures derived using different scanners, called
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site effects, may decrease the statistical power of group comparisons, and somewhat mit-

igate the benefits of having a large sample size (Brown et al. 2011, Jovicich et al. 2016).

In this work, our main objective was to quantitatively assess the impact of site effects on

group comparisons in rs-fMRI connectivity.

2.2.2 Group comparison in rs-fMRI connectivity

In this work, we focused on the most common measure of individual functional con-

nectivity, which is the Pearson’s correlation coefficient between the average rs-fMRI

time series of two brain regions. To compare two groups, a general linear model (GLM)

is typically used to establish the statistical significance of the difference in average con-

nectivity between the groups. Finally a p-value is generated for each connection to

quantify the probability that the difference in average connectivity is significantly dif-

ferent from zero (Worsley and Friston 1995, Yan et al. 2013b). If the estimated p-value

is smaller than a prescribed tolerable level of false-positive findings (see for more detail

Table 2.I), generally adjusted for the number of tests performed across connections, say

α = 0.001, then the difference in connectivity is deemed significant.

2.2.3 Statistical power in group comparisons at multiple sites

The statistical power of a group comparison study is the probability of finding a

significant difference, when there is indeed a true difference. A careful study design

Actual
value

Detected value

patho no patho

pa
th

o True
Positive

False
Negative

no
pa

th
o

False
Positive

True
Negative

Table 2.I: Confusion matrix.
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involves the selection of a sample size that is large enough to reach a set level of statistical

power, e.g. 80%. In the GLM, the statistical power actually depends on a series of

parameters (Desmond and Glover 2002, Durnez et al. 2014): (1) the sample size (the

larger the better); (2) the absolute size of the group difference (the larger the better),

and, (3) the intrinsic variability of measurements (the smaller the better) (4) the rejection

threshold α for the null hypothesis.

2.2.4 Sources of variability: factors inherent to the scanning protocol

In a multisite (or multi-protocol) setting, differences in imaging or study parameters

may add variance to rs-fMRI measures, e.g. the scanner make and model (Friedman

et al. 2006; 2008), repetition time, flip angle, voxel resolution or acquisition volume

(Friedman and Glover 2006), experimental design such as eyes-open/eyes-closed (Yan

et al. 2009), experiment duration (Van Dijk et al. 2010), and scanning environment such

as sound attenuation measures (Elliott et al. 1999), or head-motion restraint techniques

(Edward et al. 2000, Van Dijk et al. 2012), amongst others. These parameters can be

harmonized to some extent, but differences are unavoidable in large multisite studies.

The recent work of Yan et al. (2013b) has indeed demonstrated the presence of significant

site effects in rs-fMRI measures in the 1000 FCP. Site effects will increase the variability

of measures, and thus decrease statistical power. To the best of our knowledge, it is not

yet known how important this decrease in statistical power may be.

2.2.5 Sources of variability: within-subject

The relative importance of site effects in rs-fMRI connectivity depends on the am-

plitude of the many other sources of variance. First, rs-fMRI connectivity only has

moderate-to-good test-retest reliability using standard 10-minute imaging protocols (She-

hzad et al. 2009), even when using a single scanner and imaging session. Differences

in functional connectivity across subjects are also known to correlate with a myriad of

behavioural and demographic subject characteristics (Anand et al. 2007, Kilpatrick et al.

2006, Sheline et al. 2010). Taken together, these sources of variance reflect a fundamen-

28



tal volatility of human physiological signals.

2.2.6 Sources of variability: factors inherent to the site

In addition to physiology, some imaging artefacts will vary systematically from ses-

sion to session, even at a single site. For example, intensity non-uniformities across the

brain depend on the positioning of subjects (Caramanos et al. 2010). Room tempera-

ture has also been shown to impact MRI measures (Vanhoutte et al. 2006). Given the

good consistency of key findings in resting-state connectivity across sites, such as the

organization of distributed brain networks (Biswal et al. 2010), it is reasonable to hy-

pothesize that site effects will be small compared to the combination of physiological

and within-site imaging variance.

2.2.7 Multivariate analysis

Another important consideration regarding the impact of site effects on group com-

parison in rs-fMRI connectivity is the type of method used to identify differences. The

concept of statistical power is very well established in the GLM framework, which tests

one brain connection at a time (mass univariate testing). However, multivariate meth-

ods that combine several or all connectivity values in a single prediction are also widely

used and likely affected by the site effects. A popular multivariate technique in rs-fMRI

is support-vector machine (SVM) (Cortes and Vapnik 1995). In this approach, the group

sample is split into a training set and a test set. The SVM is trained to predict group labels

on the training set, and the accuracy of the prediction is evaluated independently on the

test set. The accuracy level of the SVM captures the quality of the prediction of clinical

labels from resting-state connectivity, but does not explicitly tell which brain connection

is critical for the prediction. The accuracy score can thus be seen as a “separability in-

dex” between the individuals of two groups in high dimensional space. Altogether, the

objectives and measures of statistical risk for SVM and GLM are quite different. Be-

cause SVM has the ability to combine measures across connections, unlike univariate

GLM tests, we hypothesized that the GLM and SVM will be impacted differently by
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site effects. Even though the accuracy is expected to be lower for the multisite than the

monosite configuration, it as been shown that the generalizability of a predictive model

to unseen sites is greater for models trained on multisite than monosite datasets as shown

by Abraham et al. (2016).

2.2.8 Specific objectives

Our first objective was to characterize, using real data, the amplitude of systematic

site effects in rs-fMRI connectivity measures across sites, as a function of within-site

variance. We based our evaluation on images generated from independent groups at 8

sites equipped with 3T scanners, in a subset (N = 345) of the 1000 FCP. Our second

objective was to evaluate the impact of site effects on the detection power of group

differences in rs-fMRI connectivity. To answer this question directly, one would need

to scan two different cohorts of participants at least twice, once in a multisite setting

and once in a monosite setting. Such an experiment may be too costly to implement for

addressing a purely technical objective. As a more feasible alternative, we implemented

a series of Monte Carlo simulations, adding synthetic “pathological” effects in the 1000

FCP sample. One interesting feature of the "1000 FCP" dataset is the presence of one

large site of∼ 200 subjects and 7 small sites of∼ 20 subjects per site. We were therefore

able to implement realistic scenarios following either a monosite or a multisite design

(with 7 sites), with the same total sample size. Our simulations gave us full control

on critical aspects for the detection of group differences, such as the amplitude of the

group difference, sample size, and the balancing of groups across sites. We evaluated

the ability of detecting group differences both in terms of sensitivity for a GLM and in

terms of accuracy for a SVM model.

2.3 Method

2.3.1 Imaging sample characteristics

The full 1000 FCP sample includes 1082 subjects, with images acquired over 33

sites spread across North America, Europe, Australia and China. As the 1000 FCP is a
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retrospective study, no effort was made to harmonize population characteristics or imag-

ing acquisition parameters (Biswal et al. 2010). A subset of sites was selected based

on the following criteria: (1) 3T scanner field strength, (2) full brain coverage for the

rs-fMRI scan, and, (3) a minimum of 15 young or middle aged adult participants, with

a mixture of males and females (4) samples drawn from a population with a predomi-

nant Caucasian ethnicity. In addition, only young and middle aged participants (18-46

years old) were included in the study, and we further excluded subjects with excessive

motion (see next Section). The final sample for our study thus included 345 cognitively

normal young adults (150 males, age range: 18-46 years, mean±std: 23.8 ±5.14) with

images acquired across 8 sites located in Germany, the United Kingdom, Australia and

the United States of America. The total time of available rs-fMRI data for these subjects

ranged between 6 and 7.5 min and only one run was available per subject. See Table

2.II for more details on the demographics and imaging parameters at each site selected

in the study. The experimental protocols for all datasets as well as data sharing in the

1000 FCP were approved by the respective ethics committees of each site. This sec-

ondary analysis of the 1000 FCP sample was approved by the local ethics committee at

CRIUGM, University of Montreal, QC, Canada.

2.3.2 Computational environment

All experiments were performed using the NeuroImaging Analysis Kit, NIAK2 (Bel-

lec et al. 2011) version 0.12.18, under CentOS version 6.3 with Octave3 version 3.8.1

and the Minc toolkit4 version 0.3.18. Analyses were executed in parallel on the “Mam-

mouth” supercomputer5 , using the pipeline system for Octave and Matlab, PSOM (Bel-

lec et al. 2012) version 1.0.2. The scripts used for processing can be found on Github6.

Prediction was performed using the LibSVM library (Chang and Lin 2011). Visualiza-

2http://simexp.github.io/niak/
3http://gnu.octave.org/
4http://www.bic.mni.mcgill.ca/ServicesSoftware/

ServicesSoftwareMincToolKit
5http://www.calculquebec.ca/index.php/en/resources/compute-servers/

mammouth-serie-ii
6https://github.com/SIMEXP/Projects/tree/master/multisite
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Site Magnet Scanner Channels N Nfinal Sex Age TR #Slices #Frames

Baltimore, USA 3T Philips Achieva 8 23 21 8M/15F 20-40 2.5 47 123

Berlin, DE 3T Siemens Tim Trio 12 26 26 13M/13F 23-44 2.3 34 195

Cambridge, USA 3T Siemens Tim Trio 12 198 195 75M/123F18-30 3 47 119

Newark, USA 3T Siemens Allegra 12 19 17 9M/10F 21-39 2 32 135

NewYork_b, USA 3T Siemens Allegra 1 20 18 8M/12F 18-46 2 33 175

Oxford, UK 3T Siemens Tim Trio 12 22 20 12M/10F 20-35 2 34 175

Queensland, AU 3T Bruker 1 19 17 11M/8F 20-34 2.1 36 190

SaintLouis, USA 3T Siemens Tim Trio 12 31 31 14M/17F 21-29 2.5 32 127

Table 2.II: Sites selected from the 1000 Functional Connectome Project.

tion was implemented using Python 2.7.9 from the Anaconda 2.2.07 distribution, along

with Matplotlib8 (Hunter 2007), Seaborn9 and Nilearn10 for brain map visualizations.

2.3.3 Preprocessing

Each fMRI dataset was corrected for slice timing; a rigid-body motion was then esti-

mated for each time frame, both within and between runs, as well as between one fMRI

run and the T1 scan for each subject (Collins et al. 1994). The T1 scan was itself non-

linearly co-registered to the Montreal Neurological Institute (MNI) ICBM152 stereo-

taxic symmetric template (Fonov et al. 2011), using the CIVET pipeline (Ad-Dab’bagh

et al. 2006a). The rigid-body, fMRI-to-T1 and T1-to-stereotaxic transformations were

all combined to re-sample the fMRI in MNI space at a 3 mm isotropic resolution. To

minimize artifacts due to excessive motion, all time frames showing a frame displace-

ment, as defined in Power et al. (2012), greater than 0.5 mm were removed and a residual

motion estimated after scrubbing. A minimum of 50 unscrubbed volumes per run was

required for further analysis (13 subjects were rejected). The following nuisance co-

variates were regressed out from fMRI time series: slow time drifts (basis of discrete

7http://docs.continuum.io/anaconda/index
8http://matplotlib.org/
9http://stanford.edu/~mwaskom/software/seaborn/index.html

10http://nilearn.github.io/
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cosines with a 0.01 Hz highpass cut-off), average signals in conservative masks of the

white matter and the lateral ventricles (average Pearson correlation across all subjects is

0.242 between gray matter and white matter signals, and 0.031 between gray matter and

ventricles signals) as well as the first principal components (accounting for 95% vari-

ance) of the six rigid-body motion parameters and their squares (Giove et al. 2009, Lund

et al. 2006). The fMRI volumes were finally spatially smoothed with a 6 mm isotropic

Gaussian blurring kernel. A more detailed description of the pipeline can be found on

the NIAK website11 and Github12.

2.3.4 Inter-site bias in resting-state connectivity

2.3.4.1 Functional connectomes

We compared the functional connectivity measures derived from different sites of the

1000 FCP. A functional brain parcellation with 100 regions was first generated using a

bootstrap analysis of stable clusters (Bellec et al. 2010b), on the Cambridge cohort of the

1000 FCP (N = 195), as described in Orban et al. (2015). For a given pair of regions, the

connectivity measure was defined by the Fisher transformation of the Pearson’s corre-

lation coefficient between the average temporal rs-fMRI fluctuations of the two regions.

For each subject, a 100×100 functional connectome matrix was thus generated, featur-

ing the connections for every possible pair of brain regions.

2.3.4.2 Inter-site effects

The inter-site effects at a particular connection were defined as the absolute differ-

ence in average connectivity between two sites. In order to formally test the significance

of the inter-site effects, we used a GLM including age, sex and residual motion as covari-

ates (corrected to have a zero mean across subjects), as well as dummy variables coding

for the average connectivity at each site. For each site, a “contrast” vector was coded to

measure the difference in average connectivity between this site and the grand average

11http://niak.simexp-lab.org/pipe_preprocessing.html
12https://github.com/SIMEXP/
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of functional connectivity combining all other sites. A p-value was generated for each

connection to quantify the probability that the observed effect using this contrast was

significantly different from zero (Worsley and Friston 1995). The number of false dis-

covery was also controlled (q = 0.05) using a Benjamini-Hochberg false discovery rate

(FDR) procedure (Benjamini and Hochberg 1995). To quantify the severity of inter-site

effects, we derived Cohen’s d effect size measure for each connection: |βc|/σ̂ , with βc

being the weight associated with the contrast. The standard deviation from the noise

σ̂ was calculated as σ̂ =
√

∑e2/(N−K), e being the residuals from the GLM, N the

sample size and K the number of covariates in the model. As secondary analyses, t-tests

were also implemented in the GLM to validate that age, sex as well as residual motion

made significant contributions to the model.

2.3.5 Simulations

2.3.5.1 Data generation process

We implemented Monte-Carlo simulations to assess the detection sensitivity of group

differences in rs-fMRI connectivity. The simulations were based on the 1000 FCP sam-

ple, with 8 sites totaling 345 subjects. The multisite simulations were sampled from 148

subjects, available across S = 7 sites. The monosite simulations were sampled from 195

subjects available at S = 1 site (Cambridge). For each simulation, a subset of subjects

of a given size N was selected randomly and stratified by site. For each site, a ratio W

of the selected subjects was randomly assigned to a so-called “patient” group. We focus

our analysis on connections showing a fair-to-good test-retest reliability based on a pre-

vious study reporting 11 connections likely impacted by Alzheimer’s disease, see Orban

et al. (2015) for details. For each connection, a “pathology” effect was added to the con-

nectivity measures of the subjects belonging to the “patient” group. This additive shift

in connectivity for “patients” was selected as to achieve a specified effect size, defined

below.
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2.3.5.2 Effect size (Cohen’s d)

The Cohen’s d was used to quantify the effect size. For a group comparison, Co-

hen’s d is defined as the difference µ between the means of the two groups, divided by

the standard deviation of the measures within each group, here assumed to be equal. For

a given connection between brain regions i and j, let yi, j be the functional connectivity

measure for a particular subject of the 1000 FCP sample. If the subject was assigned to

the “patient” group in a particular simulation, an effect was added to generate a simulated

connectivity measure y∗i, j equal to yi, j +µ . For a specified effect size d, the parameter µ

was set to d× si, j, where si, j is the standard deviation of connectivity between region i

and j. The parameter si, j was estimated as the standard deviation of connectivity mea-

sures across subjects in the mono-site sample (Cambridge), without any “pathological”

effect simulated.

2.3.5.3 GLM tests

In order to detect changes between the simulated groups at each connection, a GLM

was estimated from the simulated data, using age, sex and frame displacement as con-

founds (corrected to have a zero mean across subjects). To account for site-specific

effects, S− 1 dummy variables (binary vectors coding for each site) were added to the

model, with S being the total number of sites used in the study, in addition to an intercept

accounting for the global average. Finally, one dummy variable coded for the “patient”

group. The regression coefficients of the linear model were estimated with ordinary least

squares, and a t-test, with associated p-value, was calculated for the coefficient of the

“patient” variable. A significant pathology effect was detected if the p value was smaller

than a prescribed α level. The α level needs to be adjusted for multiple comparisons (in

our case 11 connections, but this would depend on the number of connections selected

in a particular study), which can be done in an adaptive manner using FDR. When con-

nections are pre-specified, such as in e.g. Wang et al. (2012), a more liberal threshold

can be applied. In our case, since we wanted to have a constant behavior independent of

the effect size, we tested different typical values for α in {0.001,0.01,0.05}. For each
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simulation sample b and each connection, we derived a p-value p(∗b), and the effect

was deemed detected if p∗b was less than α . The sensitivity of the test for a particu-

lar connection was evaluated by the frequency of positive detections over all simulation

samples.

2.3.5.4 Prediction accuracy

In addition to mass univariate GLM tests, we also investigated a linear SVM (Cortes

and Vapnik 1995) using a Monte-Carlo simulation of the prediction of clinical labels

based on cross-validation. For SVM simulations, all possible connections between the

100 brain regions were used simultaneously to predict the presence of the simulated

pathology in a given subject. For a participant assigned to the “patient” group, a “pathol-

ogy” effect was only simulated in a set percentage of connections, which were randomly

selected. The proportion of connections with a non-null effect was denoted as π1. For

a given simulation at sample size N, the SVM model was trained on N subjects se-

lected randomly and stratified by site. The accuracy of the model was evaluated on a

separate sample consisting of the remaining subjects, unused during training. For ex-

ample, for a multisite simulation with N = 80 subjects for training, the model accuracy

was tested on the remaining 68 subjects: 148 (available subjects) minus 80 (subjects in

the training set). During training, a 10-fold cross-validation was used to optimize the

hyper-parameters of the SVM independently for each simulation. The mean and stan-

dard deviation of accuracy scores across all samples were derived for each simulation

scenario.

2.3.5.5 Simulation experiments

All the simulation parameters have been summarized below:

• Sample size N.

• Patient allocation ratio W .

• Number of sites S.
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• The type of detection method, either GLM or SVM.

• For GLM tests, the false-positive rate α .

• For SVM tests, the proportion of “pathological” connections π1.

• The effect size d.

For a given set of simulation parameters, we generated B= 103 Monte-Carlo samples

to estimate either the sensitivity (for GLM test) or the accuracy (for SVM prediction) of

the method. For all experiments, we investigated effect sizes d ∈ {0,2} with a step of

0.01 and α ∈ {0.001,0.01,0.05}. The number of site(s) was S = 1 for the monosite anal-

ysis and S = 7 for the multisite analysis. We implemented the following experiments:

• (E1) Test the impact of the sample size on GLM N ∈ {40,80,120}, with a fixed

allocation ratio W = 0.5.

• (E2) Test the impact of the allocation ratio on GLM W ∈ {0.5,0.3,0.15} for a

fixed sample size N = 120.

• (E3) Test the impact of multisite correction (regressing out the site effects using

dummy variables coding for each site) and affected connection volume (π1) on

the prediction accuracy. For the prediction scenario, we used a range of π1 ∈
{0.1,1,5%}, and two sample sizes N ∈ {80,120} subjects for training, with model

accuracy estimated on N = 68 and N = 28, respectively.

2.4 Results

2.4.1 Inter-site effects in fMRI connectivity

2.4.1.1 Site effects in the default-mode network

We first focused on the connections associated with a seed region located in the pos-

terior cingulate cortex, a key node of the default-mode network (DMN), which is one of

the most widely studied resting-state networks (Greicius et al. 2004). The connections
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Figure 2.1: Panel A: map of the DMN obtained using a seed in the posterior cingulate
cortex, averaging all subjects and sites together (first row) and then averaging all sub-
jects for each of the 8 sites (subsequent rows). Panel B shows the number of sites with a
significant inter-site difference for each brain region (first row) and the significant differ-
ences between the average functional connectivity maps of one site versus all the others
(subsequent rows).
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were based on the Cambridge 100 parcellation, and were represented as a connectivity

map, (Figure 2.1). Figure 2.1A shows the posterior cingulate cortex connectivity map,

averaged across all subjects and all sites. The key regions of the DMN are easily iden-

tifiable, and include the posterior cingulate cortex, precuneus, inferior parietal lobule,

anterior cingulate cortex, medial pre-frontal cortex (dorsal, anterior and ventral), supe-

rior frontal gyri and the medial temporal lobe (Damoiseaux et al. 2006, Dansereau et al.

2014, Yan et al. 2013b). The average connectivity map of the DMN was then extracted

for each site, Figure 2.1A. Qualitatively, the DMN maps were consistent across sites, as

expected based on the literature. We then tested for the significance of the site effects

(Figure 2.1B), i.e. the difference in average connectivity at a given site and the aver-

age connectivity at all remaining sites. The statistical maps were corrected for multiple

comparisons across the brain with FDR at q ≤ 0.05 (Benjamini and Hochberg 1995).

A significant site effect for at least one connection could be identified for every site,

without exception, Figure 2.1B. Figure 2.1C shows how reproducible the significant site

effects were in connectivity across the brain and sites. The identified significant con-

nections were quite variable across sites, most of them being identified at less than three

sites.

2.4.1.2 Site effects across the connectome

In order to extend these observations outside of the DMN, we derived the entire

connectome using the Cambridge 100 parcellation. Figure 2.2A shows the average con-

nectome, pooling all subjects and sites together. The regions have been re-ordered based

on a hierarchical clustering with Ward criterion. A network structure is clearly visible

as squares of high connectivity on the diagonal of the connectome (as outlined by black

lines). Each diagonal square corresponds to the intra-network connectivity for a parti-

tion into 7 networks (Figure 2.2A). These 7 networks13 were consistent with the major

resting-state networks reported using a cluster analysis in previous works (e.g. Bellec

et al. 2010a, Power et al. 2011, van den Heuvel et al. 2008, Yeo et al. 2011): the DMN,

visual, sensorimotor, dorsal and ventral attentional networks, mesolimbic and cerebellar
13http://neurovault.org/images/39184/
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Figure 2.2: Panel A shows the average functional connectomes for 8 sites of the 1000
FCP. Colors next to the x and y axis correspond to different networks in a 7-cluster so-
lution of the matrix, obtained from a hierarchical clustering (Ward criterion). Panel B
presents the corresponding 7 brain networks, along with labels. Panel C shows average
connectomes for individual sites, as well as connections with a significant site effect.
Panel D shows the number of sites at which a given connection was detected as signif-
icant. ML: mesolimbic, CB: cerebellar, VIS: visual, vATT: ventral attentional, dATT:
dorsal attentional, DMN: default mode network, SM: sensorimotor.
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networks were identified (Figure 2.2B). Figure 2.2C shows how this large-scale connec-

tome organization varied from site to site. The average connectivity per site as well as

significant differences with the average of the remaining sites (q ≤ 0.05) is shown in

Figure 2.2C. Visually, consistent with our previous observations in the DMN, the orga-

nization of the average connectome into large-scale resting-state networks was preserved

across all sites.

Some significant site effects were still detected in the connectivity both within each

network, as well as between networks. By counting the number of sites showing a

significant effect for each pair of regions, it was apparent that significant site effects were

quite variable in their localization and spread across the full connectome (Figure 2.2D).

Concerning the association with the other confounding variables in the model (sex, age

and motion) many connections were found to be significantly associated with motion,

see Supplementary Material Figure S5, although very few connections were found to

be significantly associated with the sex and age, see Supplementary Material Figure S6

and S7. We also checked that the analysis was not predominantly driven by the larger

Cambridge site. We thus ran the same analysis excluding that site (see Supplementary

Material Figure S8). The number of significant pairs remained very similar, although

the spatial location of half of the significant connectivity pairs changed when the large

Cambridge site was removed from the analysis. Those findings do not qualitatively

change our conclusion, but they influence the location of the significant connections.

These differences may be due to the intrinsic variability in the statistical test, and not

just the size of the Cambridge site. In summary, those findings support the inclusion of

age, sex and motion parameters in a GLM in order to remove their confounding effects

in addition to site effects.

2.4.1.3 Site effects vs. within-site variations across subjects

We measured the amplitude of inter-site effects, represented as violin plots across

connections using either the absolute difference in average connectivity (Figure 2.3A,C)

or Cohen’s d effect size measures (Figure 2.3B,D). The violin plots include either ev-

ery connection from the BASC Cambridge parcellation (Figure 2.3A,B), or only the 11
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Figure 2.3: Effect size of the inter-site effects from a subset of 8 sites from the 1000
FCP. Panels A,C show the distribution of absolute differences in functional connectivity,
while panels B,D show Cohen’s d measures of inter-site effects. Panels A,B show violin
plots across every connections in the BASC Cambridge 100 parcellation, while Panels
C,D focus on the selected 11 functional connections used in simulations, only.
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connections selected for Monte-Carlo simulations (Figure 2.3C,D). For absolute differ-

ences, the distributions were mostly consistent across sites, with a median around 0.06,

5% percentile near 0 and 95% percentiles in the 0.08- 0.1 range. For Cohen’s d, the

distributions were also consistent across sites, with a median around 0.33, 5% percentile

near 0 and 95% percentiles in the 0.4- 0.6 range. These effect sizes are typically deemed

small-to-moderate (Cohen 1992), although such a qualitative assessment needs to be

refined based on each application. This result thus suggests that the impact of additive

inter-site effects on statistical tests will be limited. Similar findings were observed across

all possible connections, or across the 11 pairs of connections selected in the simulation

study.

2.4.1.4 Differences in standard deviation across sites

We also investigated the site differences in standard deviation of connectivity across

subjects, see Supplementary Figure S1 for the DMN, Supplementary Material S2 for

the connectomes. The standard group GLM assumes equal variance of resting-state

connectivity across all subjects, or “homoscedasticity”. Significant differences in across-

subject standard deviation between sites violates the homoscedastic assumption, and

may jeopardize the validity of the false-positive rates of the model. Qualitatively, we first

observed that the sites showing the larger number of differences were the one with the

most temporal variance among connections see Supplementary Figure S3. We then ran

a White’s test aimed at rejecting homoscedasticity at each connection, independently.

The White’s tests resulted in a family of p-values, which was corrected for multiple

comparisons using FDR (q < 0.05). The homoscedastic hypothesis was rejected in a

large portion of connections. This was expected due to the large overall number of

subjects and consequently large statistical power of White’s procedure. However, despite

reaching significance, the absolute difference in the average standard deviation between

two sites was 19% of the grand average standard deviation, on average across pairs of

sites. Such a small departure from homoscedasticity likely has only a mild impact on the

GLM, which we formally investigated using Monte-Carlo simulations.
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2.4.2 Multisite Monte-Carlo simulations

2.4.2.1 Validity of the control of false positives in the GLM

An excellent control of the false positive rate was observed at all nominal levels

α ∈ {0.001,0.01,0.05}, both in monosite simulations or in multisite simulations, when

site covariates were included in the GLM, see Figure 2.4. This means that the nominal,

user-specified, false positive rate matched precisely with the effective false positive rate

measured in the simulations. This observation held for any combination of allocation

ratio, W ∈ {15%,30%,50%}, and sample size, N ∈ {40,80,120}. By contrast, when

no site covariates were included in the GLM, the false positive rate was not controlled

appropriately, sometimes by a wide margin. In the absence of site covariates, the pro-

cedure was sometimes too conservative, e.g. W = 50%, and sometimes very liberal,

e.g. N = 120,W = 15%. This experiment showed that, despite the mild departure from

homoscedasticity reported above, the GLM does control for false-positive rate at each

connection very precisely, if and only if site covariates are included in the model.

2.4.2.2 Statistical power and effect size

Figure 2.5A shows the relationship between effect size and a GLM detection power

in experiment (E1), i.e. for a fixed allocation ratio (W = 50%) and three different sample

sizes, N ∈ {40,80,120}. The average and std of detection power was plotted across

the 11 selected connections. The variations of statistical power across connections were

very small for monosite simulations, as the effect size was adjusted based on the standard

deviation of each connection within that sample. As expected, the sensitivity increased

with sample size, quite markedly. In multisite simulations (S = 7), for a large effect size

(d = 1), the detection power was 20% with 40 subjects , 80% with 80 subjects and 95%

with 120 subjects. The sensitivity was larger with a single site than a multisite sample,

yet the difference between the two decreased as sample size increased. With N = 40 and

d = 1, the detection power was close to 30% for a single site sample, compared to 20%

for the multisite sample. With N = 120 and d = 1, the difference in sensitivity was only

of a few percent. The same trend was apparent for all tested effect sizes as well as for
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Figure 2.4: Monte-Carlo simulation of the false positive rate in the absence of group
differences (d = 0), either for a monosite (S= 1, left), a multisite (S= 7) with (middle) or
without (right) site covariates included in the GLM. In panel A, three different α values
have been tested, α ∈ {0.001,0.01,0.05} with a fixed sample size and patient allocation
ratio (N = 120,W = 50%). In panel B, three different sample sizes have been tested,
N ∈ {40,80,120} with a fixed patient allocation ratio (W = 50%) (Experiment (E1)). In
panel C, three different patient allocation ratios have been tested, W ∈ {50%,30%,15%}
with a fixed sample size (N = 120) (Experiment (E2)).
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Figure 2.5: Monte-Carlo simulation of detection power as a function of the effect size
d ∈ [0,2], either for a monosite (S = 1, in red) or a multisite (S = 7, in blue) sample,
when testing differences between two groups with a GLM and a false-positive rate α =
0.001. The plain curves are the average statistical power across 11 connections, and
the shaded area represents ±1 standard deviation across connections. In panel A, the
patient allocation ratio is fixed (W = 50%) and three different sample sizes have been
tested, N ∈ {40,80,120} (Experiment (E1)). In panel B, the sample size is fixed (N =
120) and three different patient allocation ratios have been tested W ∈ {15%,30%,50%}
(Experiment (E2)).
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α ∈ {0.01,0.05} (not shown).

Figure 2.6: Effect size detectable at 80% sensitivity as a function of sample size, for
different false-positive rate α ∈ {0.05,0.01,0.001} (experiment (E1)). All simulations
used a balanced patient allocation ratio W = 50%. The monosite performance is shown
in red and the multisite in blue. The dotted black line shows the detectable effect size for
a classical parametric t-test.

2.4.2.3 Statistical power and group allocation ratio

Figure 2.5B shows the relationship between effect size and a GLM detection power

in experiment (E2), i.e. for a fixed sample size (N = 120) and three different patient

allocation ratio, W ∈ {15%,30%,50%}. Overall, we found that the detection power

increased with W . For example, with d = 1, the detection power was 65% for W = 15%,

and increased to 90% with W = 30%, and finally 95% for W = 50%. The impact of W

was observed in both monosite and multisite samples, with an optimal allocation ratio of

W = 50% for both. This observation was also made for α ∈ {0.01,0.05} (not shown).

2.4.2.4 Detectable effect size, as a function of sample size

An alternative summary of experiment (E1) is to represent the effect size that can be

detected with 80% sensitivity, as a function of sample size for monosite and multisite

configurations, see Figure 2.6. As a reference, we computed the same curve for para-

metric t-test comparisons, under assumptions of normality. As expected, the detectable

effect size for parametric t-tests closely followed the monosite estimation. For a small
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sample size (N = 40), the detectable effect size was notably larger in multisite config-

urations than in a monosite configuration (difference of about 0.25 in Cohen’s d for

α = 0.001). However, the difference decreased for large sample sizes to become smaller

than 0.1 with N = 120 and α = 0.001. The lowest detectable effect size for a sensitiv-

ity of 80% at α = 0.05 was about d = 0.8, achieved in a monosite configuration with

N = 120. At this sample size, the difference between single and multisite configurations

was marginal, with only a few percent’s of difference in detectable effect sizes.

Figure 2.7: Prediction accuracy of patient vs. controls as a function of effect size. Three
simulation settings are presented on each plot: monosite (red curve), multisite with re-
gression of site effects (S = 7, blue curve), and multisite without regression of site effects
(S = 7, black curve). Accuracy was estimated over B = 103 simulation samples with a
patient allocation ratio W = 50% and 3 volumes of affected connections π1 = 0.1% (left
column), π1 = 1% (middle column) and π1 = 5% (right column). Two sample sizes were
tested: N = 120 randomly selected subjects for training, with the remaining N = 28 to
estimate accuracy (first row), and N = 80 randomly selected subjects for training, with
the remaining N = 68 to estimate accuracy (second row).
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2.4.2.5 Prediction accuracy

In experiment (E3), we examined the impact of effect size and the volume of affected

connections on prediction accuracy in a SVM, see Figure 2.7. The volume of changes

π1 had a major impact on prediction accuracy. At π1 = 0.1% (around 5 connections)

the accuracy level was at chance level across all tested effect sizes, (Figure 2.7A). With

π1 = 1%, accuracy slightly increased, but effect sizes larger than d = 2 were still required

to reach over 80% accuracy (Figure 2.7B). With π1 = 5%, 95% accuracy was achieved

at the same effect size (about d = 1.5) for monosite and multisite simulations, although

the accuracy in multisite simulations was notably lower than for monosite simulations

across most effect sizes (Figure 2.7C). The relationship between effect size and accuracy

followed a sigmoidal curve in both settings, yet a sharper, and later transition between

very low and very high accuracy was observed in multisite simulations. Interestingly,

correcting for site effects by regressing out the dummy variable before running the SVM

classifier had no impact on accuracy levels. The sample size (N = 80 vs N = 120 for

training) did have a moderate effect on prediction accuracy: for π1 = 5% and d = 1 and

monosite simulations, accuracy was about 85% with N = 120 (Figure 2.7C) and 75%

with N = 80 (Figure 2.7F).

2.5 Discussion and conclusions

2.5.1 Inter-site effects in rs-fMRI connectivity

Typical resting-state networks, such as the DMN, the attentional, visual and senso-

rimotor networks, were reliably found across sites. This was strongly expected given

the relative consistency of their distribution across individuals, studies, preprocessing

approaches or even methods used to extract networks (e.g. Bellec et al. 2010b, Damoi-

seaux et al. 2006, Power et al. 2011, van den Heuvel et al. 2008, Yeo et al. 2011). We

however found that significant differences in average connectivity existed between sites,

as previously reported by Yan et al. (2013b). These site effects in connectivity may

undermine the generalization of the results derived at a single site. The inter-subject
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(intra-site) standard deviation of the connections was found to be more than twice as

large as the inter-site absolute effect, on average across brain connections. This effect

size measured in Cohen’s d would be deemed small-to-moderate, which suggests that

the impact of additive inter-site effects on statistical tests will be limited. This is a re-

assuring finding supporting the feasibility of statistical tests pooling fMRI data across

multiple sites. Previous studies (Brown et al. 2011, Sutton et al. 2008) had reported

inter-site variance up to 10 times smaller than inter-subject variability, but these studies

had much more homogeneous scanning environments than ours and also used different

fMRI outcome measures. In our case, we still investigated only 3T scanners, mostly

Siemens, and inter-site effects may be larger when considering other manufacturers or

field strengths.

2.5.2 Statistical power and multisite rs-fMRI

After accounting for site-related additive effects in a GLM, the multisite simulation

pooling 7 sites together showed detection power close to that of a monosite simulation

with equivalent sample size. The difference was noticeable for small sample size (total

N = 40), and became very small for a sample size N = 120. Another observation was

that, for a given detection power, the lowest effect size that we were able to detect was

more variable across connections for a low sample size. We demonstrated that a para-

metric group GLM does control precisely for the rate of false positive discoveries, even

in multisite settings, as long as site covariates are included in the model. Taken together,

these observations suggest to use sample sizes larger than 100 subjects for GLM multi-

site studies. This conclusion may depend on the number of sites pooled in the study and

the actual number of subjects in each of those sites, which we could not test in this work

due to the size of the available sample.
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2.5.3 Modeling site effects as random variables

We modeled the effect of each site on the average connectivity between any given

pair of regions as a fixed effect. This means that the proposed GLM inference does apply

only to collection of sites included in a given analysis. The linear mixed-effects model

(Chen et al. 2013) would allow more powerful inferences: by modeling site effects as

random variables, following a specific distribution (e.g. Gaussian), we would be able to

generalize observations potentially to any collection of sites, provided our assumptions

are accurate. The sample of sites available for this study (7 at most) is however too

small in our view to correctly estimate the variability of effects across sites. This work

would also require to formulate and investigate empirically as well as on simulations

different models for the distribution of inter-site variations of site effects (e.g. Gaussian

distribution).

2.5.4 Site heteroscedasticity

We observed mild heteroscedasticity across sites. Our simulations showed that this

does not compromise the control of false positive rate in the GLM, even under ho-

moscedastic assumptions, with the range of contrasts we investigated. Regression mod-

els more robust to heteroscedasticity may be investigated in the future, e.g. weighted

least squares regression or linear mixed-effects modeling (Chen et al. 2013).

2.5.5 Statistical power and sample size

For a medium effect size, e.g. d = 0.5, the sensitivity was low (below 20%), even for

monosite simulations with N = 120 subjects. This sobering result supports the current

trend in the literature to pool multiple data samples to increase sample size, at the cost

of decreased homogeneity. We also found that resting-state studies based on 40 subjects

or less, even at a single site, are seriously underpowered, except for extremely large

effect sizes (Cohen’s d greater than 1.5). Finally, unbalanced patient allocation ratio in

site samples greatly reduces sensitivity, even in monosite studies. Balanced datasets, i.e.

with equal numbers of patients and controls at each site, should therefore be favored.
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2.5.6 Prediction

Comparing the monosite and the multisite accuracy curves reveals a substantial drop

in accuracy from monosite to multisite across a broad range of effect sizes. However,

it should be noted that classifiers trained across multiple data sources will likely gener-

alize better to new observations, which is likely a critical feature in most applications

and reflects the true potential clinical utility of this type of technique. Our conclusions

are consistent with the work of Nielsen et al. (2013), which compares the prediction of

a clinical diagnosis of autism in monosite vs. multisite settings. The authors concluded

that the prediction accuracy for the multisite sample was significantly smaller than for the

monosite sample. A somewhat surprising observation in our analysis was that linear cor-

rection for site-specific effects did not improve accuracy of prediction using SVM. The

SVM model seems to learn features that are invariant across sites, maybe focusing on

connections with the smallest site effect, or looking at differences between connections

similarly impacted by a site effect. Finally, an important conclusion of our simulations

was that the volume of brain connections affected by a disease impacts accuracy as much

as the effect size per connection. This suggests that feature reduction and/or selection is

a very important step to improve sensitivity to small effect sizes.

2.5.7 Beyond additive site effect

An important limitation to our study is that we only investigated the impact of addi-

tive effects in brain connectivity across sites. Areas of future work include interactions

between site effects and pathology, possibly in the form of polynomial and non-linear

interactions. We hope that, in the future, fMRI data acquired on clinical cohorts at tens

of sites will become available, which will enable researchers to test empirically the pres-

ence of such interaction effects.

2.5.8 Other types of multisite data

Another limitation of our study is that we only investigated multisite data featuring

roughly equal sample sizes with fairly balanced patient allocation ratios at each site.
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Multisite studies including a very large number of sites with sometimes only a few sub-

jects per site are however quite common, e.g. the Alzheimer’s disease neuroimaging

initiative (ADNI) (Mueller et al. 2005) and many pharmaceutical clinical trials at phase

II and III 14. In this type of design, the multisite effect may play a much more pronounced

role than in our simulations as it cannot be modeled in the GLM, and will become an

intrinsic added source of inter-subject variance (Feaster et al. 2011). Unfortunately, this

type of design could not be tested with the current dataset due to the limited number of

sites available. This represents an important avenue of future work.

2.5.9 Underlying causes of the site effects

Not all sites seemed to be equally impacted by the site effects, with sites like Berlin or

Saint-Louis showing a small number of connections significantly different then the grand

average connectivity matrix, while sites like Baltimore, Queensland and Oxford showed

many more connections affected by the site effects. Interestingly this can potentially

be due to temporal variance of the connections (see Supplementary Figure S3) partly

explained by the scanner make since Queensland and Baltimore site used scanners from

different makers (namely Bruker and Philips) than the rest of the sites used in this study

(Siemens scanners). This may suggest that scanners SNR (signal to noise ratio) may

partly explain the variance of connectivity. These differences may not be statistically

significant, or they may reflect real differences due to protocol, scanner characteristics

at these sites or differences in sampling across sites. Multiple causes may be interacting

together to produce the site effects, as reported by Yan et al. (2013b), although some of

these sources of variance could be better controlled like the scanner parameters, paired

with the use of a phantom to promote more homogeneous configurations across sites

(Friedman and Glover 2006, Friedman et al. 2006; 2008, Glover et al. 2012). Even

in standardized experiments, it should be noted that differences in scanner protocols

remain (Brown et al. 2011). A much larger multisite sample with systematically varying

parameters could enable a data-driven identification of the critical parameters impacting

14http://www.rochetrials.com/trialDetailsGet.action?studyNumber=
BP28248
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site effects. The various releases made by the INDI initiative may fill that gap in the

literature in the future, as the scanner protocols are much better described in recent

releases, such as CoRR (Zuo et al. 2014), than they were in the initial FCP release.

These findings stress the need for more work to find the source of that variance rather

than ad-hoc procedures to correct for them.
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Figure S1: Standard deviation of resting-state connectivity across subjects, in the DMN,
for each site, superimposed on the MNI152 template.
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Figure S2: Standard deviation of resting-state connectivity across subjects, for the full
connectome and each site.
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Figure S3: Standard deviation of resting-state time-series across subjects, averaged
across all connections, at each site.

Figure S4: Panel A shows the results of a White test for homoscedasticity, across sites.
Panel B show the average absolute difference in standard deviation between any pair
of sites, and Panel C show the same difference, relative to the average of the standard
deviation at the two sites.
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Figure S5: The figure shows average connectomes across all sites, as well as connections
with a significant motion effect.
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Figure S6: The figure shows average connectomes across all sites, as well as connections
with a significant sex effect.
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Figure S7: The figure shows average connectomes across all sites, as well as connections
with a significant age effect.
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Figure S8: Average connectomes for individual sites, as well as connections with a sig-
nificant site effect. This Figure is identical to Figure 2 in the paper, with the difference
that the Cambridge site was excluded from the analysis. The intersection (∩) of the
significant site effects are shown in red and the symmetric difference (4) of the signif-
icant site effects are shown in yellow. Baltimore ∩ : 9,4 : 16, Berlin ∩ : 318,4 : 333,
Newark ∩ : 23,4 : 36, New-York.b ∩ : 25,4 : 45, Oxford ∩ : 377,4 : 251, Queensland
∩ : 946,4 : 389, Saint-Louis ∩ : 49,4 : 162
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CHAPTER 3

MULTISITE GENERALIZABILITY OF SCHIZOPHRENIA DIAGNOSIS

CLASSIFICATION BASED ON FUNCTIONAL BRAIN CONNECTIVITY

Published in Schizophrenia Research. 20171

P. Orban†, C. Dansereau†, L. Desbois, V. Mongeau-Pérusse, C. Giguère, H. Nguyen, A.

Mendrek, E. Stip, P. Bellec

† Equally contributed to this work.

3.1 Abstract

Our objective was to assess the generalizability, across sites and cognitive contexts,

of schizophrenia classification based on functional brain connectivity. We tested differ-

ent training-test scenarios combining fMRI data from 191 schizophrenia patients and

191 matched healthy controls obtained at 6 scanning sites and under different task con-

ditions. Diagnosis classification accuracy generalized well to a novel site and cognitive

context provided data from multiple sites were used for classifier training. By contrast,

lower classification accuracy was achieved when data from a single distinct site was

used for training. These findings indicate that it is beneficial to use multisite data to train

fMRI-based classifiers intended for large-scale use in the clinical realm.

3.2 Introduction

Psychiatrists and other mental health professionals could benefit in the not-so-far

future from neuroimaging-based classification tools to assist diagnosis and prognosis

in mental illness (Huys et al. 2016). Recent developments in the neuroimaging field

1http://dx.doi.org/10.1016/j.schres.2017.05.027
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have led to a shift from group comparisons based on averaging across subjects to ma-

chine learning techniques making prediction at the individual level (Dubois and Adolphs

2016). In this approach, the emphasis is put on the ability of an algorithm to classify in-

dividuals into clinical categories with good generalizability to unseen subjects. Over

the last decade, hundreds of studies have successfully classified various psychiatric and

neurological disorders based on in vivo brain imaging (reviewed in Arbabshirani et al.

(2017), Wolfers et al. (2015)). For instance, Arbabshirani et al. (2017) identified 30 pub-

lished studies that distinguished schizophrenia patients from healthy controls with an

average accuracy of 83% using functional magnetic resonance imaging (fMRI), either

under task or rest states.

To date, however, the vast majority of classification works in mental illness were per-

formed in a research context, using data from single sites of acquisition. Such findings

may not generalize to large-scale clinical settings, with patients being scanned at widely-

spread sites and possibly under various mental states. In most cases, the performance of

classifiers was only assessed for unseen, test subjects with the exact same characteristics

as the sample used for training. Yet, using gender as a proof-of-concept target variable,

there was initial evidence that classifiers only poorly generalize to data drawn from other

site samples (Huf et al., 2014). The inclusion of data from multiple sites during training

improved the classifier performance for data of unseen sites.

In schizophrenia, a study pooling fMRI data from two distinct scanning sites re-

ported similar prediction accuracy levels irrespective of whether test data were drawn

from the dataset used for training or not, thus suggesting good generalizability (Skåtun

et al. 2016). However, this result appears at odds with a recent fMRI study in autism

that showed poorer accuracy for inter-site than intra-site training/test configurations, de-

pending on the ratio of training set used (Abraham et al. 2016). In the case of inter-site

testing, data pooled from 4 sites were used for training the classifier, which was tested on

data from a fifth site. Yet, none of these two studies specifically evaluated whether us-

ing multisite training data could compensate to some extent for the deleterious effect of

inter-site testing, by assuming the actual presence of such an effect. In the present work,

we sought to address this question based on fMRI brain connectivity in schizophrenia.
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Since it is impossible to completely control the variations in mental states in realistic

clinical situations, we further promoted the complexity of the classification problem by

including data obtained in distinct cognitive task conditions across sites. Mass univari-

ate findings have indicated that cognitive state does not further impact on the nature of

functional brain connectivity alterations in schizophrenia (Kaufmann et al. 2017, Orban

et al. 2017b). However, the potential influence of cognitive context on classification

performance in a multivariate analysis should not be rejected.

3.3 Method

3.3.1 Datasets

Brain imaging data from 6 independent studies were obtained through either the

SchizConnect and OpenfMRI data sharing platforms23 or local scanning (Çetin et al.

2014, Gollub et al. 2013, Kogan et al. 2016, Orban et al. 2017b, Poldrack et al. 2016,

Wang et al. 2016). The 6 datasets differed in terms of both scanning site and cognitive

context during fMRI data acquisition (resting-state, emotional memory, Sternberg item

recognition paradigm, N-back, task-switching and oddball tasks). Classification analy-

ses included fMRI data from 382 subjects, 191 patients diagnosed with schizophrenia

and 191 healthy controls. Subjects provided informed consent to participate in their re-

spective studies and ethics approval was obtained at the site of secondary analysis (Cen-

tre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, Canada).

3.3.2 Subjects matching

Sample size differed between sites (N = 84, 82, 70, 62, 50 and 34). Site samples were

obtained after subjects were selected in order to ensure even proportions of schizophrenia

patients and controls within each site (N = 42, 41, 35, 31, 25 and 17 subjects per group)

and to reduce between-group differences with regards to gender ratio (75% vs. 73%

males in controls vs. schizophrenia patients), age distribution (32.3±9.8 vs. 33.4±9.5

2http://schizconnect.org
3https://openfmri.org
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years old) and motion levels (average frame displacement = 0.15±0.05 vs. 0.17±0.06,

see Data preprocessing). Matching of schizophrenia and control subjects was achieved

based on propensity scores, using the Optmatch R library version 0.9-74. The propen-

sity score associated with each participant was defined by the conditional probability of

being in the clinical or control group given the confounding covariates (gender, age and

motion). Propensity scores were then used to balance those covariates in the two groups.

Although we took great care in matching participants with respect to these factors of

no interest, it is very likely that other confounds such as medication in schizophrenia

patients impacted the reported findings.

3.3.3 Data preprocessing

Brain imaging data preprocessing and extraction of functional brain connectomes

were performed with the NeuroImaging Analysis Kit version 0.12.17 (NIAK5). Briefly,

preprocessing included slice timing correction, estimation of rigid-body motion within

the functional runs, nonlinear coregistration of the structural scan in stereotaxic space,

individual coregistration between structural and functional scans, resampling of the func-

tional scans at 3mm isotropic resolution in stereotaxic space, scrubbing of volumes with

excessive motion (frame displacement greater > 0.5 mm), regression of confounds (slow

time drifts, average of conservative white matter and cerebrospinal fluid masks and mo-

tion parameters), and smoothing of functional volumes with a 6 mm isotropic Gaussian

blurring kernel. A detailed description of the preprocessing pipeline can be found at 6.

Individual functional connectomes included 2016 functional connections between 64

brain parcels. The functional brain parcellation was previously obtained by conducting

a bootstrap analysis of stable clusters (BASC, Bellec et al. (2010b)) on an independent

fMRI dataset of 200 healthy young subjects7. In each schizophrenia or control partic-

ipant, the time series of a brain parcel consisted in the average of the voxel signals in

the parcel. Connectivity measures between pairs of parcels were defined by Pearson

4https://cran.r-project.org/web/packages/optmatch/index.html
5http://niak.simexp-lab.org
6http://niak.simexp-lab.org/pipe_preprocessing.html
7https://doi.org/10.6084/m9.figshare.1285615.v1
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product-moment correlation coefficients. Individual connectomes were parcel by parcel

(64 x 64) symmetrical matrices that summarized connectivity levels in the whole brain.

Lower triangular matrices were then vectorized for all subjects in order to form a subject

by connections (382 x 2016) matrix.

3.3.4 Data analysis

Classification analyses were performed with a linear support vector machine (SVM)

algorithm, as implemented in the SciKit-Learn python library version 0.18.1 (Abraham

et al. 2014). The SVM classifier, a supervised classification algorithm, represented

subjects as points in space, mapped so that the subjects of the separate clinical labels

were divided by a clear gap (called a margin) that was as wide as possible. The hy-

perparameter C of the SVM was optimized using nested cross-validation. Each model

used the residuals from a regression of confounding variables (gender, age and mo-

tion parameters) across connections estimated from the subjects selected for training the

model. The evaluation metrics were computed using four main values, namely the num-

ber of true and false positive (TP, FP) as well as true and false negatives (TN, FN).

Sensitivity was defined as TP/(TP+FN), specificity as TN/(TN+FP) and accuracy as

(TP+TN)/(TP+FP+TP+FN). The main analyses evaluated the impact on classification

accuracy of the number of site(s) (1, 2, 3, 4 or 5) included in the training set. We eval-

uated this impact in situations where the test set included only subjects from the same

site(s) used during training (intra-site test with 10-fold cross validation) or, alternatively,

situations where the test set included only subjects from sites not used during training

(inter-site test with “leave-site-out” cross validation). Cross validation ensured that the

subjects used for training were never used in the test phase.

The statistical significance of changes in accuracy levels as a function of the number

of sites used for training and whether data used for testing were drawn from the same

dataset(s) used for training (intra-site vs inter-site) was assessed with binary logistic

regressions using the GLM function in R version 3.2.5. These analyses relied on the

prediction of categorical outcomes (hit/miss data) based on predictor variables (number

of sites used for training, intra-site vs inter-site). Significance threshold in the different
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contrasts was set at p < 0.05.

Complementary analyses were conducted. First, we explored differences in whole

brain connectivity between schizophrenia patients and controls using mass univariate

statistics for the various training site combinations. Similarly for multivariate classifica-

tion analyses, we extracted feature weights separately for all site combinations. We then

examined the level of correspondence across site combinations for both univariate and

multivariate analyses. Second, we aimed at demonstrating the presence of multivariate

site effects on functional brain connectivity. To this end, we determined accuracy levels

for the classification of scanning sites by performing separate SVM analyses for all pairs

of sites, using 10-fold cross validation as in the main analyses.

3.4 Results

3.4.1 Correspondence across site combinations

We first report patterns of functional brain dysconnectivity in schizophrenia pa-

tients based on mass univariate statistics. For the sake of interpretability, the 64 brain

parcels were sorted in relation to 7 large-scale brain networks from the same multi-

scale functional brain atlas (Figure 1a,b). When pooling data from all subjects and sites,

a connectome-wide association analysis revealed widespread decreased connectivity in

schizophrenia patients (Figure 1c), with 769 out of 2016 connections exhibiting a sig-

nificant effect after false discovery rate correction (qFDR < 0.05). Differences between

schizophrenia patients and controls were further examined separately for each unique

combination of 1 to 5 training sites (61 possibilities: 1, 2, 3, 4, 5, 6, 1-2, 1-3, 1-4,

..., 1-2-4-5-6, 1-3-4-5-6, 2-3-4-5-6). Results revealed high variability in the nature of

mass univariate effects across training site combinations, with small correlation between

them when there was no overlap between site combinations (Figure 1c). By contrast,

large correlations were observed when site combinations overlapped. Weight matrices,

which indicate for each connection the importance of that connection in the decision

process, were also extracted for the whole sample as well as each site combination in

multivariate classification analyses (Figure 1d). The correspondence between site com-
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binations mimicked the patterns of correlations seen for univariate analyses, with a large

correlation between weights for site combinations that overlapped but a small correlation

otherwise.

Figure 1: Sorting the 64 brain parcels in relation to 7 large-scale brain networks (a)
allowed to best reveal the structure of whole-brain connectivity in both schizophrenia
patients and controls, here shown when combining data from all sites (b). Results for
univariate analyses (c). The left panel reports mean differences in connectivity between
schizophrenia patients and controls pooled across all sites. The middle panel shows vari-
ations (standard deviation) of between-groups differences across the various site com-
binations. The right panel reports correlations of univariates effects of schizophrenia
between single sites of reference (sites 1 to 6) and various site combinations as a func-
tion of whether site combinations included the sites of reference and the number of sites
included in the combination (mean and standard deviation across the 6 reference sites).
Results for multivariate classification analyses are similarly organized (d). The left panel
provides the normalized weights obtained when pooling all subjects from all sites. The
middle panel indicates how these weights vary across site combinations (standard de-
viation). The right panel provides correlations of weight matrices between single sites
of reference and various site combinations. Abbreviations for networks are as follows:
CER, cerebellum; VIS, visual; LIM, limbic, MOT, motor; SAL, salience; FPN, fronto-
parietal; DMN, default-mode.

3.4.2 Classification findings

Classification of sites was performed with high accuracy (84%), indicating a signif-

icant multivariate impact of scanning site on functional brain connectivity. Training on
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data from a single site led to a poor generalization of diagnosis classification to subjects

drawn from another site, i.e. classification accuracy was much lower in the inter-site than

intra-site configuration when only one site was used for training (p < 0.005). However,

increasing the heterogeneity of the training set by including data from different sites

improved accuracy of the classifier applied to another unknown scanning site and cogni-

tive context (p < 5x10−8) (Figure 2a). This compensatory effect was such that inter-site

classification reached similar accuracy performance to intra-site classification when 5

different sites were used for classifier training (p = 0.56), thus suggesting excellent gen-

eralization in this context. The benefit of using heterogeneous training data when clas-

sifying subjects drawn from the same sites as the training set was much more moderate

than for the inter-site training-test configuration, yet was significant (p < 0.05). Formal

testing of an interaction effect revealed a significant effect (p< 0.05), thus demonstrating

that improved generalization on novel sites following multisite training was not merely

a consequence of increasing sample size.

3.5 Discussion

The present findings highlight a prerequisite for an optimal translation of classifi-

cation tools from the research to clinical realm. Namely, classifier training should be

performed on data that are sufficiently representative of sites and/or mental state varia-

tions in order to generalize well for large-scale clinical use. In particular, the accuracy

scores reported in most of the existing literature should be interpreted with caution, as

they only reflect within-site generalizability and may therefore overestimate the accu-

racy.

Mass univariate analyses evidenced brain dysconnectivity across the entire brain,

with significant effects in over a third of brain connections distributed in various large-

scale brain networks, from cognitive to primary sensory networks. Abnormally de-

creased rather than increased functional connectivity in schizophrenia is largely con-

sistent with previous reports in the literature (Pettersson-Yeo et al. 2011). With close

to 200 schizophrenia patients and 200 controls, our fMRI connectome-wide association
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Figure 2: Histograms show the percentages of classification accuracy (a) as well as sen-
sitivity and specificity (b) as a function of the number of sites (1, 2, 3, 4 or 5) from which
individual connectomes were drawn for training, and whether testing was performed on
subjects drawn from the same site(s) as during training (intra-site test) or not (inter-site
test).
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analysis is one of the largest to be reported to date. The present work and previous simi-

lar studies conducted in schizophrenia (Cheng et al. 2015c, Schilbach et al. 2016, Skåtun

et al. 2016) underscore the utility of pooling data across multiple sites of acquisition in

order to achieve higher sample size and more reliable findings. The marked variability

in dysconnectivity patterns detected in each site separately could induce a deleterious

effect of multisite data pooling on statistical power as compared to data obtained at a

single site. However, there is support to claim that the initial deleterious effect of multi-

site data pooling can be mitigated by the increase in sample size and number of sites in

the context of intra-site mass univariate as well as multivariate analysis (Dansereau et al.

2017). This is in line with our findings suggesting that a similar compensating effect

can be obtained using multisite data aggregation in inter-site multivariate prediction, a

configuration that is most likely to be found in clinical settings.

Multivariate classification analyses indicate that increasing sample size through mul-

tisite data pooling increased diagnosis prediction in schizophrenia, although this effect

was of small amplitude. More critically, an additional benefit of including heteroge-

neous data was that the classifier generalized better to data that were not represented

during training, neither in terms of scanning site nor mental content. This demonstra-

tion is concordant with a previous report that classified gender as a proof-of-concept

application (Huf et al. 2014), and underscores the benefit of pooling multisite data for

the purpose of generalizability and clinical use. The observed gain of almost 10% in

classification accuracy is appreciable. It is nonetheless noteworthy that the highest ac-

curacy of schizophrenia diagnosis classification was below 70%, which precludes the

immediate translation of such machine learning tools in the clinical realm. Beyond the

fact that most classification work has to date investigated within-site generalizability, it

is notable that most studies relied on small samples. This is likely to be accompanied

by a publication bias by which only the most significant findings were published. While

the average classification of schizophrenia diagnosis over 30 published studies is above

80%, it was accordingly shown that studies with a large sample size in fact reported

lower classification accuracy (Arbabshirani et al. 2017). Besides, low classification ac-

curacy is very likely dependent on the ill-definition of clinical labels, as schizophrenia
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is a highly heterogeneous psychiatric disorder (Kapur et al. 2012). The stratification of

patients into more homogeneous neurobiological subtypes, beyond clinical symptoms,

will likely define more precise labels that will lead to improved classification of their di-

agnosis. The characterization of mental illness heterogeneity through the identification

of such different biotypes, in particular based on fMRI brain connectivity, is a topic of

burgeoning research in various psychiatric disorders (Dias et al. 2015, Drysdale et al.

2017, Gates et al. 2014).

It is anticipated that neuroimaging-based classification will ultimately assist psychia-

trists in not only diagnosis but also prognosis and theragnosis in mental illness, including

schizophrenia. The future integration of classifiers into mental health care will require

studies with dramatically increased sample size (Dubois and Adolphs, 2016). Most stud-

ies indeed suffer from insufficient data, possibly resulting in biased accuracy estimation,

under-representation of mental illness heterogeneity and unstable findings (Arbabshirani

et al. 2017). Future work will also need to develop novel algorithms with improved ca-

pabilities and to better define clinical labels. The present work identifies one specific

parameter that will facilitate an optimal translation of supervised machine learning into

clinical practice, namely the need to train classifiers on data that are sufficiently repre-

sentative of heterogeneity with regards to scanning sites and mental contents.
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CHAPTER 4

A BRAIN SIGNATURE HIGHLY PREDICTIVE OF FUTURE PROGRESSION

TO ALZHEIMER’S DEMENTIA

In preparation.

C. Dansereau, A. Tam, A. Badhwar, S. Urchs, P. Orban, P. Rosa-Neto, P. Bellec

4.1 Abstract

Alzheimer’s disease develops slowly over years or even decades before the appari-

tion of clinical symptoms and, eventually, dementia. Many works have aimed at finding

biomarkers able to accurately predict future progression to dementia in individuals with

mild cognitive impairment. Unfortunately, patients diagnosed with Alzheimer’s demen-

tia represent a highly heterogeneous group from the standpoint of the brain pathophysi-

ology. Accurate prediction of progression to dementia more than one year before onset

has therefore proved very challenging. In this work, we propose a new machine learn-

ing technique that identifies a subgroup of patients for which clinical predictions can be

made with high precision, i.e. the vast majority of selected individuals will eventually

progress to dementia. We demonstrate here that it is indeed possible to train a model

to reach high specificity (97%) and precision (90%) when predicting future progression

to dementia up to three years before onset, in the cohort assembled by the Alzheimer’s

disease neuroimaging initiative (ADNI). The model only achieved moderate sensitivity

(47%) because it was designed to target a specific brain signature mixing spatial patterns

of atrophy and functional dysconnectivity. This multimodal, highly predictive brain sig-

nature was extracted from magnetic resonance images only, yet it was systematically

accompanied by deposition of beta amyloid plaques, a hallmark of Alzheimer’s disease.

Our results represent a marked improvement on the current state of the art in terms



of specificity (about 10% increase) and precision (about 16% increase). The signature

was in addition identified on patients suffering from dementia first, demonstrating that

typical patterns of neurodegeneration are already present in prodromal individuals. Our

approach provides a feasible method to select individuals with very high risk of progress-

ing to dementia several years before the onset. We believe this technology has a lot of

potential to enrich the recruitment in clinical trials, and help demonstrate, or invalidate,

the efficacy of new interventions. The method we used is relatively simple, building on

well established machine learning tools, and may prove useful in the future for a wide

range of other applications where the targets for predictions are noisy or heterogeneous,

as is often the case in medicine.

4.2 Introduction

Alzheimer’s disease (AD) is the most common age-related neurodegenerative disor-

der. The typical progression of late-onset, sporadic AD comprises a lengthy preclinical

stage, a prodromal stage of mild cognitive impairment (MCI), and a final stage of demen-

tia. Usually, by the time patients experience the dementia phase, severe and irreversible

neurodegeneration has already occurred. In order to be effective, therapies should likely

be initiated at earlier stages of the disease, when some markers of the disease are appar-

ent but the symptoms have not yet appeared. For this reason, many works have aimed at

finding biomarkers that can predict future progression to AD dementia at the prodromal

or even preclinical stages (Orban et al. 2017c, Rathore et al. 2017). Accurate prediction

beyond two years has however proven to be challenging, likely due to the considerable

pathophysiological heterogeneity underlying existing clinical diagnosis (Rathore et al.

2017). We propose here to address the heterogeneity issue by identifying a subset of

individuals with MCI who share a common brain signature predictive of oncoming AD

dementia with high precision.

A clinical diagnosis of Alzheimer’s dementia is primarily established on the basis of

symptoms. To qualify for dementia, these symptoms need to interfere with a patient’s

ability to function in daily activities. Dementia is considered to be probably due to AD
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when the symptoms appear gradually and the most prominent deficits fall either into an

amnestic (i.e. memory, the most common) or nonamnestic category, i.e. language, visual

or executive. There also needs to be no dominant symptoms suggestive of another type of

neuropathology such as Lewy bodies, fronto-temporal atrophy or vascular abnormalities

(McKhann et al. 2011).

The actual cause of dementia, AD or otherwise, can currently only be confirmed by

a post mortem pathophysiological examination. The hallmarks of AD are the accumu-

lation of beta-amyloid plaques and tau protein neurofibrillary tangles in the brain, as

well as marked atrophy of the medial temporal lobe. The analysis of Beach et al. (2012)

revealed an important mismatch between clinical and histopathological diagnoses: sen-

sitivity ranged from 71% to 87% and specificity ranged from 44% to 71%, depending on

the level of confidence in the clinical and pathophysiological examination. In particular,

30% of patients diagnosed with AD dementia in that study had no or very minimal signs

of AD pathology in their brains. In addition to such incorrect diagnoses, comorbidity of

neurodegenerative diseases was highly prevalent, that is a co-occurrence of two or more

disorders including AD, cerebrovascular disease, Lewy body disease, or frontotemporal

degeneration Jellinger et al. (2014), Rabinovici et al. (2017). Biomarkers of AD can

also be observed in 10% to 30% of cognitively normal (CN) individuals, as well as 40%

of patients diagnosed with non-AD dementia (Beach et al. 2012). Finally, plaques and

tangles are general markers of brain injury that are not unique to AD, e.g. they are seen

in patients with brain traumatic injuries (Marklund et al. 2009). Distinct pathways are

likely involved in AD, and subtypes of AD pathophysiology may emerge in the future

(Au et al. 2015). In summary, the clinical labels of neurodegeneration currently used are

often incorrect (wrong underlying disease), incomplete (missing several interacting dis-

eases) or unspecific (pooling together different pathways with overlapping biomarkers).

To better diagnose AD in vivo, many imaging techniques have been developed to

track the propagation of key markers, both across brain regions and over time. Both

beta-amyloid and tau can be imaged in vivo using Positron Emission Tomography (PET)

(Fodero-Tavoletti et al. 2011, Sperling et al. 2011). Structural magnetic resonance imag-

ing (MRI) provides a non-invasive measure of temporal lobe atrophy, as well as de-
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creases in cortical thickness throughout the brain (Lerch et al. 2005). Large imaging

samples such as the one collected by the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) have established that beta-amyloid and tau starts accumulating years, possibly

decades, before the onset of clinical symptoms, and that atrophy also typically precedes

the onset of clinical symptoms (McConathy and Sheline 2015). Imaging biomarkers are

increasingly used to complement neuropsychological testing to diagnose AD (Dubois

et al. 2007). In recent years, a great amount of work has been devoted to the identifica-

tion of novel or more sensitive imaging based biomarkers of AD and MCI using machine

learning techniques (Rathore et al. 2017). The current state of the art on predictive mod-

els using the ADNI dataset reached 95% accuracy (precision of 96%, specificity of 95%

and sensitivity of 92%) to classify AD vs cognitively normal (CN) (Fan et al. 2008b, Xu

et al. 2015, Zhu et al. 2014, Zu et al. 2016) and 80% accuracy (precision of 80%, speci-

ficity of 75% and sensitivity 85%) to identify patients with MCI who will progress to

AD dementia in the next three years (Cheng et al. 2015a;b, Korolev et al. 2016, Moradi

et al. 2015, Toussaint et al. 2012, Zheng et al. 2015), using mainly anatomical, FDG-

PET or amyloid-PET measures. The prediction accuracy for progression to dementia

however plummeted after 1.5 years, reaching only 75% accuracy over a 18-36 months

time window (Arbabshirani et al. 2017, Korolev et al. 2016).

These accuracy scores however need to be properly interpreted. Korolev et al. (2016),

in particular, took great care of separately reporting the specificity (76%, proportion of

stable MCI being correctly classified), sensitivity (83%, proportion of progressor MCI

being correctly classified), and precision (80%), i.e. the proportion of actual progressors

amongst individuals classified as such. Precision is a key metric for enrichment in a clin-

ical trial, as it dictates how many patients will decline in the absence of treatment. For a

given sensitivity and specificity, the precision does depend on the baseline ratio between

stable and progressor MCI in the sample. Working on a scenario of 30% MCI progres-

sors in the cohort (which matches actual rates seen in clinical populations), Korolev et al.

(2016) would have an expected precision of 60.2%. There is therefore ample margin for

improvements in terms of prognostic precision of future progression to AD dementia

within 3 years. We note that, because there are more MCI stables than progressors at
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baseline, an increase in specificity has higher leverage on precision than sensitivity. For

example, working again on a scenario of 30% MCI progressors in the cohort, with an

equal sensitivity and specificity at 80%, the precision is 63%. An increase of 10% sensi-

tivity will only increase precision by 3%, while an increase of 10% specificity will boost

precision by 14%.

We hypothesized that the precision of imaging-based diagnosis of AD in past studies

was severely limited by the pathophysiological heterogeneity of clinical cohorts. In

this work, we proposed a new machine learning technique that aims at identifying a

subgroup of patients for whom clinical predictions can be made with high precision.

We specifically trained a model to sacrifice sensitivity for high specificity and precision

(Figure 1A). The behaviour of the proposed method is illustrated by a simple simulation

(Figure 1B). The task was to classify two classes using a separation line, represented by

blue dots for controls and red dots for patients. The distribution of both red and blue

subjects was heterogeneous, in the sense that each distribution was a mixture of several

Gaussian classes. Some of these classes were clearly separable, yet others were not,

with blue and red points closely overlapping (maybe because of incorrect, incomplete or

unspecific diagnoses). When a standard classifier is applied on that data, it identifies a

separation line making a tradeoff in sensitivity and specificity across all examples (see

Figure 1B, second column). By perturbing the data, it is possible to identify the “easy

cases”, i.e. the data point that can be correctly and reliably classified: more opaque

points are associated with more reliable predictions and clearly identify the two well-

separated classes at the top in Figure 1B, third column. A separate model is then trained

to identify the “easy cases” red points (see Figure 1B, fourth columns). The resulting

prediction of red labels has limited sensitivity, as the problematic cases are not being

detected at all, but it has near perfect specificity and precision. Note that the example

found in Figure 1B was actually computed with our proposed method. To evaluate how

this method managed to extract AD biomarkers, we first examined the classic problem of

predicting clinical diagnosis in a cohort including CN participants and patients with AD

dementia. We then used the model trained on the CN vs AD classification problem to

make predictions on the subjects with MCI. Our hypothesis was that a brain signature of
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AD dementia would already be present at the prodromal stage, and predictive of future

progression to dementia. To test this hypothesis, we evaluated whether the MCI patients

flagged as AD would develop AD dementia within three years.

Figure 1: Panel A show the identification of easy cases for each class, Panel B predic-
tion of clinical labels in a two-class problem, in the presence of heterogeneous labels
in a subset of the data. First column show the initial classification problem with the
distribution of the two classes. The second column show a basic classifier decision hy-
perplane. Third column show the subject that have been flagged as high hit probability
in hard color and the low hit probabilities with some transparency. Fourth column show
the final decision hyperplane of the red subject with the HPS signature.

4.3 Results

Multimodal imaging markers

We extracted multimodal measures of brain organization, that could be used for au-

tomated AD diagnosis. The measures were derived from the baseline MRI scans of

the Alzheimer’s Disease Neuroimaging Initiative 2 (ADNI2) cohort, which included

anatomo-functional imaging for CN subjects (N=49) as well as patients suffering from

AD dementia (N=24) (available sample size after quality control on 10/2016). We de-

cided to include a range of different measures as a basis for diagnosis, which have previ-

ously been shown to be sensitive markers of AD dementia. These included gray matter

(GM) thickness (Eskildsen et al. 2013, Querbes et al. 2009), GM volume of various brain

structures (Karas et al. 2004), as well as seed-based fMRI connectivity maps generated
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for 20 intrinsic connectivity brain networks (Bellec et al. 2015).

Substantial inter-individual variations were observed in the brain distribution of imag-

ing measures. For example, some subjects showed higher- or lower-than average volu-

metric measures across extensive brain territories, such as the right medial occipital cor-

tex in subject 1 (lower) and subject 73 (higher), see Figure 2A. We investigated whether

such patterns could be found systematically in a subgroup of subjects. For this purpose,

we quantified the similarity of GM volume maps between any given pair of subjects us-

ing a Pearson correlation coefficient (Figure 2B). A cluster analysis revealed the presence

of three subgroups of subjects with homogeneous GM volume maps. These subgroups

were apparent as diagonal squares on the inter-subject similarity matrix with high simi-

larity values, Figure 2B. These squares outline all subject-to-subject similarities within a

specific subgroup. By contrast, low similarity values were observed in elements outside

of these squares, which corresponded to pairs of subjects falling into different subgroups.

A subtype template was generated for each subgroup by averaging maps of individuals

within that subgroup, Figure 2B). In particular, subtypes 2 and 3 of GM volumetric maps

reproduced the pattern in the occipital cortex observed in subjects 1 and 73, respectively.

The separation between clusters was not clear-cut in matrix 2B, suggesting a contin-

uum rather than discrete subtypes. We thus extracted a continuous measure (Pearson’s

correlation) of similarity, called subtype weight, between each individual map and each

subtype map, Figure 2D). The subtyping procedure outlined above was applied indepen-

dently for each type of measure (volumetric, cortical thickness, rs-fMRI) and each brain

network (for rs-fMRI). We concluded by visual inspection to the presence of at least

three subtypes for each modality/network, which we thus selected as a common number

of subtypes across all modalities/networks for subsequent analyses.

Prediction of AD

We established a baseline performance for automatic classification of CN vs AD

subjects using a well established machine learning model, i.e. a linear support vector

machine model (SVM) (Cortes and Vapnik 1995). The model reached 70% precision

(specificity 86%, sensitivity 67%) using tenfold cross-validation and multimodal (fMRI
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Figure 2: Demeaned gray matter volume measures of the right hemisphere. Panel A
shows individual maps and the correlation of every subject with all other subjects in
Panel B. Panel C shows the subtypes templates representing subgroups in the dataset.
Panel D shows the association of each individual map in A with the each subtype tem-
plate in C.

+ sMRI) subtype weights, Figure 3. The performance of the method trained on only

fMRI 38% precision (specificity 47% and sensitivity 67%) and sMRI data only had a

very close performance, with 67% precision (specificity 84%, sensitivity 67%). Note

that, during cross-validation, the training of the model included both the generation of

subtypes and the optimization of the SVM parameters.
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Figure 3: Figure shows the precision, specificity and sensitivity of the three modalities
(fMRI, sMRI and fMRI+sMRI) at each stage (Base: basic classifier and HPS: highly
predictive signature). Significant differences are shown with ∗ for p < 0.05 and ∗∗ for
p < 0.001).

Identifying easy cases

As we outlined in the introduction, the core idea of our approach was to identify a

subset of subjects for which clinical labels are easy to predict, such as the points on the

left in Figure 1A. To identify these “easy cases”, we randomly perturbed the input data

of the SVM model many times through subsampling, and assessed the hit probability

for any given subject to be properly classified. We found that 68% of individuals had

a perfect (100%) hit probability, with a small subset of subjects (18%) exhibiting less

reliable predictions (hit-probability < 90%), Supplementary material S1). We defined

the “easy cases” as the subgroup of individuals reaching perfect hit probability.

Predicting easy cases

The next step of the method was to train a logistic regression (Fan et al. 2008a) to

predict the AD “easy cases” Figure 6B, analogous to the rightmost column of Figure

1B. The full multi-stage process of subtype extraction, hit probability estimation and

logistic regression was cross-validated using a ten-fold scheme in order to generate the
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performance of the prediction of AD “easy cases”. A perfect 100% precision (specificity

100%, sensitivity 36%) was reached for AD “easy cases”, using multimodal structural

and functional features. A significant improvement (in precision and specificity p <

0.001) of the HPS compared to the performance of the method trained on only fMRI data

reached a precision of 60% (specificity 96%, sensitivity 13%) and sMRI data reached a

precision of 88% (specificity 98%, sensitivity 29%), see see Figure 3. Compared to the

reference SVM model, with multimodal features, the precision of our proposed HPS

model was improved by a wide margin (30%, p < 0.001), as well as the specificity

(15%, p < 0.001), at the cost of a marked loss in sensitivity (30%, p < 0.001). See

Supplementary material Table S2 for a list of the performance of each model.

Highly predictive brain signature

The logistic regression model used to predict AD easy cases is based on a set of

coefficients, which give more or less weight to a particular subtype and modality. As

such, the individuals flagged as AD easy cases can be seen as sharing a brain HPS,

composed of combination of subtype maps. The logistic model may in theory ignore a

subtype or an entire modality, by setting the corresponding weights to zero. In practice,

we found that the HPS relied on all three types of measures (functional connectivity,

cortical thickness, and gray matter volume), Figure 4A. To rank the contribution of each

modality in the decision process, we computed the absolute sum of the coefficients for

each measure, relative to the sum of all absolute coefficients (Figure 4B). The thickness

was the most important measure (60%), followed by the volumetric measures (29%),

and finally functional connectivity (11%). The highest contributions came from four

subtypes of thickness: bilateral patterns of cortical atrophy in temporal, sagittal and

frontal areas (one subtype per hemisphere), and bilateral, opposite patterns of increased

thickness (one subtype per hemisphere), Figure 4C. Two lateralized volumetric subtypes

showed gray matter volume loss in the left motor, and right frontal areas as well as

a gray volume increase in the left frontal and limbic regions. Finally, one functional

subtype was very noisy and barely contributed to the model, while the other highlighted

a connectivity subtype connecting the visual network with frontal areas.
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Figure 4: Panel A shows the contribution of each modality to the decision, the ratios
are computed by the sum of the absolute coefficient for each modality. Panel B shows
the coefficients of the high-confidence prediction model for each subtype map. Panel C
shows, on top, the average maps for each modality and on the bottom the subtype maps
used for the high-confidence prediction.

Prediction of progression to dementia

We applied the HPS model to patients with MCI from the ADNI2 cohort, with the

hypothesis that those would likely progress to AD dementia. The imaging sample for

this experiment included the baseline structural and functional scans of all patients with

MCI in the ADNI2 cohort (N = 79). We further stratified the patients with MCI into sta-

ble MCI (sMCI, N = 37), i.e. most recent clinical status is MCI with at least 36 months

follow up, and progressors (pMCI, N = 19), i.e. individuals whose most recent known

clinical status is AD dementia, with progression from MCI to AD dementia occurring

within 37 months. The HPS model selected a subset of 10 subjects. Using the longi-

tudinal follow-up clinical data provided by ADNI2, we found that 9 out of 10 of these
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subjects were pMCI (precision of 90%, specificity of 97%, sensitivity of 47%), com-

pared to 34% pMCI in the whole MCI sample (p < 0.001), Figure 5A. Within the HPS

subgroup, the time to progression from baseline to the first evaluation of AD dementia

appeared uniformly distributed from 5 to 37 months, with 50% subjects progressing af-

ter 24 months (Figure 5C). In addition, 100% of the MCI participants flagged as HPS

were positive for beta amyloid deposition with AV45 testing, compared to a 69% rate in

the whole MCI sample (p < 0.05), Figure 5A. The rate of ApoE4 carriers in the HPS

subsample was 78%, compared to 55% in the whole MCI group (p > 0.05), Figure 5A.

4.4 Discussion

The main goal of this work was to develop an imaging-based AD diagnosis with high

precision and specificity. The proposed HPS approach did reach excellent performance

in these respects, with 100% precision and specificity when distinguishing patients with

AD dementia from CN participants and 90% precision, 98% specificity when predicting

which MCI patients would progress to dementia, up to three years before onset (see

Table S2). These results represent a sizable and significant improvement in precision

and specificity over the state of the art on this task, see Table 1. No data from MCI

patients were used to train the model, which removes the possibility of a bias due to

improper cross validation. The only HPS subject with MCI improperly classified as

a progressor did have a series of 4 notes attached to his visits in the ADNI database,

reporting on a decline in cognitive performance at each visit, and a marked decline at the

last visit. This decline was still not severe enough for a diagnosis of AD dementia. The

subject had no follow up available after 36 months, for unknown reason.

The high specificity of the HPS model came at the cost of a limited sensitivity: 38%

when distinguishing patients with AD dementia from CN participants, and 47% when

predicting which MCI patients would progress to dementia, which is significantly less

than most recent published models, see Table 1. The HPS model is not designed to be

sensitive, as it is trained to recognize a particular, homogenous brain signature present

in only a fraction of the participants. The results of (Beach et al. 2012) suggest that
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Table 1: Supervised classification of MCI progression to AD dementia using the ADNI
database. Progression time was establish if the the subject progresses to AD status in
the next 36 months. Significant improvement of our method compared to each paper
for the adjusted precision (adjusted for a pMCI ratio of 34% comparable to our sample)
and specificity are shown with ∗ for p < 0.05 and ∗∗ for p < 0.001) and conversely
significant decrease in sensitivity of our method compared to each paper.

Author N(sMCI, pMCI)PrecisionPrecision (adjusted)SpecificitySensitivity

Dansereau et al. (This paper)37, 19 90% 90% 97% 47%

Mathotaarachchi et al. (2017) 230, 43 51% 74% 87%* 71%*

Korolev et al. (2016) 120, 139 80% 65%* 76%** 83%*

Moradi et al. (2015) 100, 164 85% 63%* 74%** 87%**

Eskildsen et al. (2013) 134, 149 70% 52%** 68%** 66%

Wee et al. (2013) 111, 89 77% 68%* 84%** 64%

Gaser et al. (2013) 62, 133 90% 70%* 84%** 71%*

Davatzikos et al. (2011) 170, 69 57% 63%* 71%** 95%**

Koikkalainen et al. (2011) 215, 154 66% 58%* 71%** 77%*

Misra et al. (2009) 76, 27 42% 51%** 60%** 80%*
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Figure 5: Statistic on the MCI showing the signature. Panel A shows the percentage of
MCI who progress to AD, the percentage of subjects positive for beta amyloid deposits
using the AV45 marker and the percentage of carriers of one or two copies of the ApoE4
allele for the entire MCI cohort. Panel B shows the same statistics for the selection of
the base classifier while Panel C displays statistics for subjects flagged as HPS. Panel D
shows the clinical status of each HPS subject over time from the baseline scan.

only about half of patients diagnosed with AD dementia have clear AD brain markers

post-mortem. The observed sensitivity of 38%- 47% is thus consistent with the idea that

the HPS model is picking on a typical brain presentation of AD that is already present

at the prodromal stage of the disease. Note that there was no need for patients with

MCI to have as much absolute measures of atrophy as patients with AD dementia to be
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recognized as HPS, as long as these patients presented with a similar spatial distribution

of the atrophy, relative to other brain regions.

The anatomical features selected by the method were in line with recent subtyping

works, e.g. (Hwang et al. 2015), showing predominant atrophy in the temporal lobe,

as well as the temporo-parietal juncture, in particular. The functional maps were more

difficult to interpret, and seemed more noisy. They still made a significant improvement

in the performance of the HPS model. Because of the regularization in the logistic re-

gression used to build the HPS model, features coming from different modalities did

compete to be selected in the model. If redundant features existed, the ones with largest

predictive power were selected by the classifier. This may explain why the selected func-

tional subtypes did not involve the regions showing atrophy in the structural subtypes.

We hypothesized that the HPS inferred from the AD vs CN prediction would also be

useful to predict if a subject at the prodromal stage (MCI) would progress to dementia.

Our results did validate this logic, but alternative strategies may be investigated in the

future, e.g. training a model directly on the progressor vs stable MCI task.

A limitation of the present study was a moderate sample size, with N = 56 patients

suffering from MCI. Although the ADNI is a large database, resting-state fMRI has only

been added to the protocol in the latter stages of the study, ADNI GO and ADNI2. In

addition, fMRI was only acquired on a third of participants, even after it was added to

the protocol. Because of the early role of synaptic dysfunction in AD, and the potential

ability of fMRI to capture such dysfunction, we wanted to build an anatomo-functional

diagnostic tool. But this choice did limit the sample size of our study. In the future,

we are planning to replicate our findings using structural measures only, so we can use

the entirety of ADNI. Even with a larger sample size, another limitation of the ADNI

dataset is that it does not reflect the diversity of cases observed in real-life clinical prac-

tice. Participants were in particular screened to exclude vascular dysfunction, which is

a common comorbidity in AD. Resources with more inclusive enrollment criteria will

become important in the future to better assess the generalizability of a biomarker-based

AD diagnosis.

The most direct application of the HPS model is population enrichment for phar-
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maceutical clinical trials in AD (Mathotaarachchi et al. 2017, Woo et al. 2017). By

recruiting almost exclusively patients who would normally progress to AD dementia,

such enrichment would increase the effect size of the drug while reducing the sample

size needed to demonstrate efficacy and therefore would also reduce the cost of the trial.

The HPS brain signature is not shared among all the AD dementia population (making

it a subtype), but is common enough to represent a substantial portion of participants

of interest (about a third of AD dementia subjects and half of MCI progressors). An

alternative enrichment strategy, more geared towards generalizability, would be to only

exclude subjects that will very likely not progress to AD dementia. The HPS method thus

brings us closer to precision medicine by proposing a middle ground between traditional

clinical cohorts and an entirely individual medicine.

In this manuscript, we focused exclusively on two MRI modalities our rationale was

that MRI is non-invasive and already widely used in patient care in elderly populations.

Beta amyloid and tau PET imaging, by contrast, are more expensive and less available,

while lumbar punctures are invasive. Nevertheless, it will be important in the future

to see if a combination of PET imaging, blood tests looking for specific inflammatory

proteins, cognitive scores, genetic factors, lifestyle factors, or others can help create

multiple HPS that would in effect increase the sensitivity of the model for the early

detection of Alzheimer’s pathology.
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4.6 Materials and methods

Dataset

All functional and structural data were obtained from the Alzheimer’s Disease Neu-

roimaging Initiative 2 (ADNI2) sample, a longitudinal standardized acquisition includ-

ing three populations: cognitively normal subjects, patients with mild cognitive impair-

ment and patients with dementia due to AD. All participants gave their written informed

1www.fnih.org
2https://computecanada.org/
3http://www.clumeq.mcgill.ca/
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consent to participate in the ADNI2 study, which was approved by the local ethics com-

mittee of participating institutions across North America. The consent form included

data sharing with collaborators as well as secondary analysis. The present secondary

analysis of the ADNI2 sample was approved by the local ethics committee at CRIUGM,

University of Montreal, QC, Canada. All resting-state fMRI and structural scans were

acquired on 3T Philips scanners with 8 channels. We performed analyses on the first

usable scan (typically the baseline scan) from ADNI2.

The acquisition parameters were as follows: structural scan 170 slices, voxel size

1x1x1.2 mm3, matrix size 256x256, FOV 256 mm2, TR 6.8 s, TE 3.09 ms, FA 9 degrees.

A functional scan of 7 min, 48 slices, voxel size 3.3x3.3x3.3 mm3, matrix size 64x64,

FOV 212 mm2, TR 3 s, TE 30 ms, FA 80 degrees, No. volumes 140. For detailed

information on the acquisition, see www.adni-info.org.

Extraction of functional features

Each fMRI dataset was corrected for slice timing; a rigid-body motion was then

estimated for each time frame, both within and between runs, as well as between one

fMRI run and the T1 scan for each subject (Collins et al. 1994). The T1 scan was it-

self non-linearly co-registered to the Montreal Neurological Institute (MNI) ICBM152

stereotaxic symmetric template (Fonov et al. 2011), using the CIVET pipeline (Ad-

Dab’bagh et al. 2006a). The rigid-body, fMRI-to-T1 and T1-to-stereotaxic transfor-

mations were all combined to resample the fMRI in MNI space at a 3 mm isotropic

resolution. To minimize artifacts due to excessive motion, all time frames showing a

frame displacement, as defined in Power et al. (2012), greater than 0.5 mm were re-

moved. An average residual frame displacement was also estimated after scrubbing for

further group analyses. A minimum of 50 unscrubbed volumes per run was required

for further analysis (13 subjects were rejected). The following nuisance covariates were

regressed out from fMRI time series: slow time drifts (basis of discrete cosines with

a 0.01 Hz highpass cut-off), average signals in conservative masks of the white mat-

ter and the lateral ventricles as well as the first principal components (accounting for

95% variance) of the six rigid-body motion parameters and their squares (Giove et al.
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2009, Lund et al. 2006). The fMRI volumes were finally spatially smoothed with a 6

mm isotropic Gaussian blurring kernel. Datasets were preprocessed and analyzed using

the NeuroImaging Analysis Kit - NIAK - version 0.12.17 (http://niak.simexp-lab.org),

under CentOS with Octave (http://gnu.octave.org) version 3.6.1 and the MINC toolkit

(http://bic-mni.github.io/) version 0.3.18. Preprocessing of MRI data was executed in

parallel on the Guillimin supercomputer (http://www.calculquebec.ca/en/resources/compute-

servers/guillimin), using the pipeline system for Octave and Matlab - PSOM (Bellec

et al. 2012). Seed-based fMRI connectivity maps were obtained using a functional brain

template of 20 networks covering the entire brain. The Pearson’s correlation between

the average time series of each network and every voxel of the brain was computed to

derive one functional connectivity map per network.

Extraction of structural features

Native individual T1-weighted MRI scans were corrected for non-uniformity arti-

facts with the N3 algorithm (Sled et al. 1998). The corrected volumes were then masked

for brain tissues (Smith 2002) and registered into stereotaxic space (Collins et al. 1994).

The registered, corrected images were segmented into gray matter (GM), white matter

(WM), cerebrospinal fluid (CSF) and background using a neural net classifier (Tohka

et al. 2004). The WM and GM surfaces were extracted using the Constrained Laplacian-

based Automated Segmentation with Proximities algorithm (Kim et al. 2005, MacDon-

ald et al. 2000) and were resampled to a stereotaxic surface template to provide ver-

tex based measures and lobar segmentation (Lyttelton et al. 2007). Cortical thickness

was measured in native space using the linked distance between the two surfaces across

81,924 vertices (Im et al. 2008). Surface-based cortical thickness, as well as regional

volume measures, were obtained using the structural MRI images processed using the

CIVET 1.1.12 pipeline for each hemisphere as described in Ad-Dab’bagh et al. (2006b).

The AAL template was applied on each hemisphere (40 regions per hemisphere) to ex-

tract the regional volumetric measures. The processing pipeline was executed on the

Canadian Brain Imaging Network (CBRAIN) platform, a network of five imaging cen-

ters and eight High-Performance Computers for collaborative sharing and distributed

93



Figure 6: Panel A shows the feature extraction method called subtypes weights, Panel
B framework workflow: stage 1 shows the hit probability computation based on ran-
dom sub-sampling and stage 2 shows the training of dedicated classifier for each “high-
confidence” signature. Panel C shows the nested cross-validation scheme used in this
method.

processing of large MRI databases (Frisoni et al. 2011).

Multimodal imaging subtypes

We extracted subtypes that characterize the interindividual variability within the sam-

ple comprising CN and AD participants (at the time of scanning), independently for each

type of measure (functional maps, cortical thickness maps, and volumetric maps). In or-

der to reduce the impact of some factors of no interest that may influence the clustering

procedure, we regressed out the age, sex, and average post-scrubbing frame displacement

from individual maps, using a mass univariate linear regression model at each voxel. For
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each type of brain measure, we derived a spatial Pearson’s correlation coefficient be-

tween all pairs of individual maps. This defined a subject x subject similarity matrix (of

size 73 x 73), which was entered into a Ward hierarchical clustering procedure, as im-

plemented in SciPy version 0.18.1 (Jones et al. 2001–, Walt et al. 2011). We arbitrarily

selected three subgroups for each type of measure, based on a visual examination of the

similarity matrix. For each type of measure, the average map of each subgroup defined a

subtype. For each individual, we computed the spatial correlation of their map with each

subtype. The resulting weight measures formed a matrix of size (number of subjects) x

(number of subtypes), which was used as the feature space in the predictive models used

throughout the rest of the methods. Note that this entire subtyping procedure, including

regression of confounds, was latter entered in a cross-validation scheme to assess the

performance of the predictive models.

Prediction of AD

The baseline prediction accuracy was obtained by training a SVM model with a

linear kernel, as implemented in Scikit-learn Pedregosa et al. (2011) version 0.18. A

tenfold cross-validation loop was used to estimate the performance of the trained model.

Classes were balanced inversely, proportional to class frequencies in the input data for

the training. A nested cross-validation loop was used (stratified shuffle split (50 splits,

20% test size)) for the grid search of the hyper-parameter C (grid was 10−2 to 101 with

15 steps). Note that the C parameter controlled how many misclassified examples the

model will tolerate by adjusting the margin size. The model was evaluated using fMRI

features only, sMRI features only, and the combination of fMRI and sMRI features.

Identifying easy cases

We randomly selected subsamples of the dataset (retaining 80% of participants in

each subsample) to replicate the SVM training 100 times. For each 80% subsample, a

separate SVM model was trained to predict the clinical labels (CN or AD), see Figure

6B. Note that the optimal C parameter was estimated once using the whole available

95



sample, as described above, and used across all subsamples. This was done to avoid

creating major uncontrolled algorithmic variations. The linear discriminating weights of

the SVM were still optimized independently for each subsample. Predictions of clinical

labels were then made on the remaining 20% of subjects, that were not used for training.

For a given individual, the hit probability was calculated as the frequency of correct

clinical classification across all available SVM replications where the test set included

that individual. Easy cases were defined as individuals with 100

Predicting easy cases

We trained a logistic regression classifier Fan et al. (2008a) to predict the AD easy

cases. The logistic regression was trained using a L1 regularization on the coefficients,

see Figure 6B. Class weight was balanced inversely proportional to class frequencies in

the input data. A stratified shuffle split (100 splits, 20% test size) was used to estimate the

performance of the model for the grid search of the hyper-parameter C (grid was 10−0.2

to 101 with 15 equal steps). In this case, the C parameter controlled the sparseness of the

weights.

Cross-validation

A nested cross-validation was performed for accuracy estimation and parameters op-

timization. The outer loop used to estimate the generalizability of the framework was a

ten-fold cross-validation scheme. Each training fold included the full multi-stage pro-

cess of subtype extraction, SVM prediction of clinical labels, identification of HPS and

prediction of HPS with logistic regression. Sensitivity (true positive rate, TP), specificity

(true negative rate, TN) and precision (T P/(T P+(1−T N))) of the diagnosis were es-

timated across all test folds, in the AD vs CN prediction. Cross-validation nested inside

the outer loop was used to search for the optimal hyper-parameters, Figure 6C.
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Highly predictive signature

The HPS was obtained by considering all subtypes associated with non-zero weights

by the sparse logistic regression model in Figure 6C stage 2. All nonzero weights were

considered as part of the signature and we used the corresponding map associated with

each subtype weight.

Prediction of progression to dementia

The easy cases model was used to identify MCI patients who have a HPS of AD

dementia. The imaging sample for this experiment included the baseline structural and

functional scans of all patients with MCI in the ADNI2 cohort, with at least 36 months

of follow-up (N = 56). We further stratified the patients with MCI into stable MCI

(sMCI, N = 37)), i.e. latest clinical status is MCI, and progressors (pMCI, N = 19), i.e.

individuals whose most recent known clinical status is AD dementia, with progression

from MCI to AD dementia occurring within 36 months. Note that no AV45 imaging data

or genetic data, nor any data from the MCI cohort, were used to build the HPS model.

Statistical test of differences in model performance

We generated a confidence interval on the performance (i.e. precision, specificity

and sensitivity) of a given model using a Monte-Carlo simulation. Taking the observed

sensitivity and specificity, and using similar sample size to our experiment, we replicated

the number of true and false positive detection 100000 times using independent Bernoulli

variables, and derived replications of precision, specificity and sensitivity. By comparing

these replications to the sensitivity, specificity and precision observed in other models,

we estimated a p-value for differences in model performance (Phipson and Smyth 2010).

A p-value smaller than 0.05 was interpreted as evidence of a significant difference in

performance, and 0.001 as a strong evidence. This approach was first used in Figure 3 to

contrast the performance of the HPS model to the baseline (SVM) model, both for AD vs

CN and MCI progressor vs stable, as well as contrasting the performance of multimodal

(fMRI+sMRI) model vs models using only fMRI or sMRI features. The same approach
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was used to contrast our proposed model for MCI progressor vs stable with results from

the literature, in Table 1. Note that, reflecting our hypotheses regarding the behaviour

of the HPS model, the tests were one-sided for increase in specificity and precision, and

one-sided for decrease in sensitivity.

Statistical test of enrichment

The HPS model was used to select a subset of the MCI population. We tested sta-

tistically if this subgroup was enriched for (1) progression to dementia; (2) AV45+, and;

(3) ApoE4+. We implemented for this purpose a Monte-Carlo simulation, where we

selected 100000 random subgroups out of the original MCI sample. By comparing the

proportion of progressors (respectively AV45+ and ApoE4+) in these null replications

to the actual observed values in the HPS subgroup, we estimated a p-value (Phipson and

Smyth 2010) (one sided for increase). A p-value smaller than 0.05 was interpreted as

evidence of a significant enrichment, and 0.001 as a strong evidence.

Public code and data

The code used in this experiment is available on a GitHub repository at the following

URL4. An IPython Notebook is also provided with all of the figure generation scripts.

Scikit-learn Pedregosa et al. (2011) version 0.18 was used for most of the machine

learning algorithms and Nilearn Abraham et al. (2014) version 0.2.6 for visualization

purposes.

ADNI dataset

Data used in the preparation of this article were obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was

launched in 2003 as a public-private partnership, led by Principal Investigator Michael

W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic

4https://github.com/simexp/hpc

98

https://github.com/simexp/hpc


resonance imaging (MRI), positron emission tomography (PET), other biological mark-

ers, and clinical and neuropsychological assessment can be combined to measure the

progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).
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Supplementary Material – A brain signature highly predictive of future progression to

Alzheimer’s dementia

Table S2: Performance of the models. Prec: precision, Spec: specificity, Sens: sensitiv-
ity and N: number of selected subjects.

Modality AlgoContrast Prec (%)Spec (%)Sens (%)N

fMRI BaseCN/AD 38.10 46.94 66.67 42

HPS 60 95.92 12.5 5

sMRI Base 66.67 83.67 66.67 24

HPS 87.50 97.96 29.17 8

fMRI+sMRIBase 69.57 85.71 66.67 23

HPS 100 100 37.50 9

fMRI+sMRIBasesMCI/pMCI73.33 89.19 57.89 15

HPS 90 97.3 47.37 10

Figure S1: Hit-probability distribution obtained from replicating the SVM training 100
times from 80% of the training set.
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CHAPTER 5

DISCUSSION

5.1 Contribution

5.1.1 Multisite

5.1.1.1 Multisite feasibility

In this thesis, I have shown that heterogeneity present in medical imaging negatively

impacts our capacity to discriminate between various clinical statuses and that it is im-

portant to learn to deal with that heterogeneity to have actionable information. We first

devised realistic Monte-Carlo simulations to model the impact of multisite data aggre-

gation on statistical and prediction analysis. We have shown that the negative impact

of multisite aggregation tends to diminish as we increase the sample size compared to a

single site analysis. Those findings showed the viability of data aggregation and pushed

us to investigate an even more ambitious goal: the generalizability of a model on sites

never seen at training.

5.1.1.2 Multisite generalizability

Our second study explored the prediction generalizability of various multisite train-

ing schemes using real clinical effects. We demonstrated that training a model on a more

diverse source of datasets leads to improved generalizability performance when tested

on new sites not seen at training. In line with those findings, we have shown that training

on one site and testing on the same site over estimates the model performance, in line

with works comparing the subject and record levels (Little et al. 2017, Saeb et al. 2016).

Our findings regarding the use of multisite data to improve generalizability is con-

cordant with a previous report that classified gender as a proof-of-concept application

(Huf et al. 2014), and underscores the benefit of pooling multisite data for the purpose

of generalizability and clinical use. Even though the accuracy scores reported in our



study are low compared to what has been shown previously in the literature, the find-

ings are in line with what was found by others (Abraham et al. 2016, Varoquaux et al.

2017). We also have to keep in mind that the goal of our study was not to achieve a state

of the art accuracy but rather to use a suitable dataset that can highlight the changes in

performance from one training configuration with respect to others.

The benefits of multisite studies are twofold. First, the most obvious one, the sample

size does increase at no extra cost when the multisite sample is the result of a data shar-

ing effort. This increase in sample size however comes with an increase in the variance

of the dataset. This variance is problematic since it decreases our ability to detect differ-

ences with small samples. However, it also comes with a second, less obvious benefit,

as multisite heterogeneous samples better reflect the type of variability that one would

encounter in an unseen dataset (a typical configuration in a clinical setup). Consequently

accurately modeling the variability of the data (given enough samples through data ag-

gregation) and teasing out the sources of variance that are not related to the pathology

become highly beneficial for a machine learning model.

5.1.1.3 Importance of data aggregation

Combining the results from my first two articles, it is now obvious that data aggre-

gation not only can be done but will also improve our model’s ability to generalize to

unseen data. I, therefore, would like to stress the importance of data aggregation as a

major ingredient of future discoveries in medical imaging. It is only with a better view

of the true heterogeneity that exists in neuroimaging, that we can hope to train generaliz-

able and reliable models that will change the current “status quo” of medical diagnosis.

This approach happened not long ago in the computer vision field with the advent of

ImageNet (Deng et al. 2009), which completely changed the field and also popularized

the use of deep learning. Initially, a lot of reticence came from the community stat-

ing that simpler problems could not be solved correctly with a few well-curated classes

and therefore an extremely large dataset of a thousand classes, like ImageNet, would

just render that task more difficult. What actually happened was that pre-trained mod-

els with ImageNet performed much better when fine-tuned on a specialized dataset than
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models trained only on the specialized dataset (Everingham et al. 2010). What can be

learned from this experience is that we do not need to have an extremely large dataset of

one particular task or disease to learn a meaningful data reduction scheme that extracts

relevant features. That being said, the quality of the data still needs to be assessed and

controlled using quality assurance metrics. To devise similar experiments in the neu-

roimaging world, we could use multiple populational datasets with rich phenotypic data

and try to predict those phenotypes or use multiple diseases combined together to form

a large dataset. Rahim and colleagues Rahim et al. (2017) have shown that by learning

to predict clinical labels from two different clinical populations, namely Schizophrenia

and AD dementia, they were able to achieve better accuracy on an independent dataset

of AD subjects. This proof of concept could be extended to a much larger database of

diseases in order to expand on that idea.

5.1.1.4 Data sharing

It is now clearer as to what role data aggregation will play in the future of medicine

and research. However, one problem remains regarding accessing and sharing the data

in question. Some legal and ethical difficulties arise regarding that question and have

unfortunately slowed down the data sharing process. Sharing should be performed with

the best data anonymization practices. Nevertheless, there are recurrent concerns about

the misuse of that medical data, for example by an insurance company that could sub-

sequently have a detrimental impact on the population, e.g. refuse coverage or increase

premiums based on the analysis of medical information of a particular subject. This is

not directly related to data sharing, but rather more to scientific discovery and the use of

those discoveries to find an individual’s risk factors or prevalence to develop various dis-

eases. Even though this issue has nothing to do with data sharing, some individuals use

that argument to restrain it. My personal take on this is that it is a legislative problem and

that it would not be as much of a concern given a legal prohibition to use any of that data

to the detriment or to deny service/coverage to an individual. There is also the other issue

of sharing licenses that preclude commercial use of a dataset or any derivative product.

Currently, a lot of medical imaging datasets are released with such restrictive licenses.
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This, I think, is a bit problematic from the perspective where we want to rapidly transfer

and convert new academic findings into a tangible product, like clinical diagnoses and

interventions. We will need to let private corporations use the data to train their model

too or else we incur the risk of seeing those technologies trapped in academic labs.

5.1.2 Highly predictable cases

Regarding the heterogeneity of clinical labels, we have proposed a new method to

automatically identify a subtype signature that can be found in a majority of AD demen-

tia subjects and that is also found in a majority of MCI prior to their progression to AD

dementia. By using this type of approach we have the ability to identify subtypes of

patients that may refine our understanding of the clinical heterogeneity of known clini-

cal labels (e.g. fronto-temporal dementia, AD dementia, Lewy body etc.). The outcome

of this refinement is more precise and accurate models that will be trained to recognize

those specific signatures of refined categories, which will lead to interventions tailored

to those subgroups of individuals.

5.1.2.1 Multiple disease interaction

Another point that could partially explain some of the label heterogeneity is the co-

morbid effect of several major diseases, such as AD, cerebrovascular disease, Lewy

body disease, or a frontotemporal degeneration that are usually responsible for dementia.

These diseases are not exclusive and it is, therefore, possible to have more than one oc-

curring at the same time as explained by Jellinger et al. (2014), Rabinovici et al. (2017).

Older adults are also known to take multiple drugs to treat a variety of illnesses and

symptoms resulting in potential interactions between these drugs and the brain. Some

diseases currently do not have treatment although a lot of the comorbid factors, if un-

tangled from other pathologies, may be treatable. The work that I have done related to

label heterogeneity could be helpful to identify subgroups and find what other comorbid

or protective factors (education level, brain reserve and cognitive reserve) are common

to those subtypes, in the hope that it could draw a clearer map of the variability among
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subjects and the potential treatment pathways.

Obviously, this kind of approach does not fit all applications, as it is most useful in

cases where an action is deemed to be at high-risk or costly and an inaction not so much.

In this type of context maximizing our chance of success is of the utmost importance. A

potential use of this technique is in high-risk applications like finance (stock trading), for

example, where you would like to buy and sell a stock only when it is very likely that the

stock will rise or fall at the next time point and do nothing when you are unsure. Another

application is in Ad Click Prediction (McMahan et al. 2013) where we need to decide

which ad to show to which customer. If you identify a subgroup of subjects that are

at high-risk of buying your product, you would be more inclined to bid more money to

show your ad to those customers. Another example is loan default prediction: a bank will

want to reject a loan automatically if the individual is at high-risk of default. Depending

on what characterizes the non-HPC (e.g. noise or underrepresented subgroup) it may

be possible to make the most of the HPC subjects, given a good denoising procedure or

enough subjects and assuming that the measures are sensitive enough to the effect that

we want to observe.

5.1.2.2 Classical confidence estimate

Finally, one could ask what is the difference between the hit-probability and the

classic confidence estimate given by the model? Actually, the two could be used for

similar objectives. One technical difference is that our hit-probability is calculated in a

non-parametric way from a Monte-Carlo sampling procedure. The confidence estimate,

on the other hand, is obtained from a parametric approximation. Our method has the

advantage of being agnostic to the type of model evaluated (could be linear or non-

linear) and the sampling strategy gives us a measure of the prediction robustness under

data attrition. The confidence estimate gives the confidence level of the model into the

prediction and the hit-probability is the likelihood of a subject to be correctly classified.

The sampling strategy used to compute the hit-probability could also be investigated

further. Currently, the sampling is a random split although we could imagine various

sampling ratios or iteratively removing a group of subjects from the training set that
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have been identified using a clustering strategy.

5.1.3 Other works and contributions

Some of my Ph.D. results have led to my contributions to other projects and those

studies have helped me solidify ideas on some aspects of the heterogeneity challenge.

In Tam et al. (2015) (see appendix I) we have identified several functional regions that

could be used as biomarkers to discriminate between healthy controls and MCI in a

multisite setup, and this highlighted the heterogeneity of the effect of MCI on brain

connectivity across site and scanners. In Badhwar et al. (2017) (see appendix II ) a meta-

analysis on the functional regions reported to be affected by AD dementia in the literature

showed a lot of variability between the reported regions, although some networks were

consistently found like the default-mode network. Finally Orban et. al. in preparation

(see appendix III) shows multiple functional subtypes that can be found independently

across clinical AD datasets, and that these subtypes can be found in asymptomatic older

adults at familial risk of AD.

5.2 Future works

5.2.1 Generative model for data augmentation

In line with our simulation work, we could explore the use of generative adversar-

ial networks (GANs) to perform data augmentation as proposed by Goodfellow et al.

(2014). Data augmentation is the process of creating supplemental examples from a set

of original ones that have undergone some modifications like adding noise or lighting

modification so that the model can learn to become invariant to those source of variance.

The use of GANs or any other generative models would allow us to generate a realis-

tic simulation of various pathology or artifacts. I have also advocated for data sharing

and the use of multisite data initiatives, and I think that the use of GANs could be a

solution to extract relevant information and share them while keeping a certain level of

privacy. This approach was recently applied to blood tests Beaulieu-Jones et al. (2017).

In order to train the discriminator under differential privacy constraint, Beaulieu-Jones
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et al. (2017) added noise to the stochastic gradient descent process as outlined in Abadi

et al. (2016). This type of approach has two advantages. First, it facilitates sharing of

datasets due to the fact that the confidentiality of the training samples is preserved, since

the generated samples no longer represent individual characteristics, while accurately

approximating a group distribution. Second, it provides us with a generative model that

we can use to perform data augmentation.

5.2.2 Direct application of HPC

One of the most interesting direct applications of the HPC work is in population

enrichment for pharmaceutical clinical trials in Alzheimer’s disease (Mathotaarachchi

et al. 2017, Woo et al. 2017). By selecting subjects based on the presence of a specific

signature it will be possible to increase the likelihood of exposing a drug to prodromal

subjects at high-risk of progression to AD dementia. This strategy increases the effect

size of the drug while reducing the sample size needed for a given effect and therefore

reduces the cost a clinical trial. The signature shown in this study is specific enough

to not be shared among all the AD dementia population (making it a subtype) but large

enough to represent a substantial portion of the AD dementia population (more than

half of AD dementia subjects and MCI progressors are positive for the signature). This

method brings us closer to precision-medicine by proposing a middle ground between

clinical group medicine and individual medicine.

5.2.2.1 Extension of the current HPC work

An extension of the HPC work would be to use more complex models (deep neural

network and/or higher order models), in order to be able to model multiple modes of the

distribution. By doing so we would be able to identify several HPC subtypes in one shot.

We have to keep in mind that if the first stage uses a complex model, we need to use

a similar model at the second stage, although the reverse is not true. Unfortunately, by

using more complex models we would lose some interpretability of the models, which

is a nice property of the current framework.
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5.2.2.2 True supervisor

The HPC as it was proposed in my third paper is probably a good framework only

for relatively small samples but will not scale well in its current format for large samples

since we need to load all the data at once in memory to perform the analysis. It would,

therefore, be useful to train that method in an online fashion with batches of data. The

procedure could be reformulated as a two models problem. The first model would try to

learn the task by estimating the targets and the second model (supervisor) would learn

to predict what samples are likely to be correctly classified by the first model. That way

both models could be trained simultaneously. This work is currently in progress and

has shown promising results (on the MNIST dataset) that have not been included in my

thesis.

5.3 Conclusion

The objective of this thesis was to explore the heterogeneity found in medical imag-

ing datasets, and in particular in the context of data aggregation and pathological classi-

fication. My results have shown that data aggregation is not only possible but will also

help in the generalization of the classification model to unseen data. It is therefore very

important to leverage the heterogeneity found in the data to obtain more robust predic-

tion models. I also have shown that label heterogeneity is a real problem that impairs

our ability to make accurate predictions. I have proposed a solution to address this issue

by identifying subgroups that can be reliably predicted with high accuracy. This type of

approach could spur a very broad range of applications in the medical field where we

have rich datasets with a limited number of examples and where ground truth labels are

not well characterized. I also have discussed other potential applications of this approach

and potential extensions of the proposed framework.
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AlzheimerŒş s Disease Neuroimaging Initiative, et al. Predicting conversion from

112

http://dx.doi.org/10.1073/pnas.0911855107
http://dx.doi.org/10.1073/pnas.0911855107


mci to ad with fdg-pet brain images at different prodromal stages. Computers in biol-

ogy and medicine, 58:101–109, 2015.

Vincent Camus, Pierre Payoux, Louisa Barré, Béatrice Desgranges, Thierry Voisin, Clo-

vis Tauber, Renaud La Joie, Mathieu Tafani, Caroline Hommet, Gaël Chételat, et al.

Using pet with 18f-av-45 (florbetapir) to quantify brain amyloid load in a clinical

environment. European journal of nuclear medicine and molecular imaging, 39(4):

621–631, 2012.

Zografos Caramanos, Vladimir S Fonov, Simon J Francis, Sridar Narayanan, G Bruce

Pike, D Louis Collins, and Douglas L Arnold. Gradient distortions in mri: Charac-

terizing and correcting for their effects on siena-generated measures of brain volume

change. NeuroImage, 49(2):1601–1611, 2010.

F. Carbonell, P. Bellec, and A. Shmuel. Quantification of the impact of a confounding

variable on functional connectivity confirms anti-correlated networks in the resting-

state. Neuroimage, 86:343–353, Feb 2014. doi: 10.1016/j.neuroimage.2013.10.013.

URL http://dx.doi.org/10.1016/j.neuroimage.2013.10.013.

Mustafa S Çetin, Fletcher Christensen, Christopher C Abbott, Julia M Stephen, An-

drew R Mayer, José M Cañive, Juan R Bustillo, Godfrey D Pearlson, and Vince D

Calhoun. Thalamus and posterior temporal lobe show greater inter-network connec-

tivity at rest and across sensory paradigms in schizophrenia. Neuroimage, 97:117–126,

2014.

Edward Challis, Peter Hurley, Laura Serra, Marco Bozzali, Seb Oliver, and Mara Cer-

cignani. Gaussian process classification of alzheimer’s disease and mild cognitive

impairment from resting-state fmri. NeuroImage, 112:232–243, 2015.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines.

ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Soft-

ware available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

113

http://dx.doi.org/10.1016/j.neuroimage.2013.10.013
http://www.csie.ntu.edu.tw/~cjlin/libsvm


Gang Chen, B. Douglas Ward, Chunming Xie, Wenjun Li, Zhilin Wu, Jennifer L. Jones,

Malgorzata Franczak, Piero Antuono, and Shi-Jiang Li. Classification of Alzheimer

Disease, Mild Cognitive Impairment, and Normal Cognitive Status with Large-Scale

Network Analysis Based on Resting-State Functional MR Imaging. Radiology, 259

(1):213–221, April 2011. doi: 10.1148/radiol.10100734. URL http://dx.doi.

org/10.1148/radiol.10100734.

Gang Chen, Ziad S Saad, Jennifer C Britton, Daniel S Pine, and Robert W Cox. Linear

mixed-effects modeling approach to fmri group analysis. Neuroimage, 73:176–190,

2013.

Bo Cheng, Mingxia Liu, Heung-Il Suk, Dinggang Shen, Daoqiang Zhang,

AlzheimerâĂŹs Disease Neuroimaging Initiative, et al. Multimodal manifold-

regularized transfer learning for mci conversion prediction. Brain imaging and be-

havior, 9(4):913–926, 2015a.

Bo Cheng, Mingxia Liu, Daoqiang Zhang, Brent C Munsell, and Dinggang Shen. Do-

main transfer learning for mci conversion prediction. IEEE Transactions on Biomed-

ical Engineering, 62(7):1805–1817, 2015b.

Wei Cheng, Lena Palaniyappan, Mingli Li, Keith M Kendrick, Jie Zhang, Qiang Luo,

Zening Liu, Rongjun Yu, Wei Deng, Qiang Wang, Xiaohong Ma, Wanjun Guo, Su-

san Francis, Peter Liddle, Andrew R Mayer, Gunter Schumann, Tao Li, and Jianfeng

Feng. Voxel-based, brain-wide association study of aberrant functional connectivity

in schizophrenia implicates thalamocortical circuitry. Npj Schizophrenia, 1:–, May

2015c. URL http://dx.doi.org/10.1038/npjschz.2015.16.

G. Chetelat, B. Desgranges, V. de la Sayette, F. Viader, F. Eustache, and J-C. Baron. Mild

cognitive impairment: Can fdg-pet predict who is to rapidly convert to alzheimer’s

disease? Neurology, 60(8):1374–1377, Apr 2003.

Z. H. Cho, S. C. Chung, D. W. Lim, and E. K. Wong. Effects of the acoustic noise of

114

http://dx.doi.org/10.1148/radiol.10100734
http://dx.doi.org/10.1148/radiol.10100734
http://dx.doi.org/10.1038/npjschz.2015.16


the gradient systems on fmri: a study on auditory, motor, and visual cortices. Magn

Reson Med, 39(2):331–335, Feb 1998.

Jacob Cohen. A power primer. Psychological bulletin, 112(1):155, 1992.

D. L. Collins, P. Neelin, T. M. Peters, and A. C. Evans. Automatic 3D intersub-

ject registration of MR volumetric data in standardized Talairach space. Journal

of computer assisted tomography, 18(2):192–205, 1994. ISSN 0363-8715. URL

http://view.ncbi.nlm.nih.gov/pubmed/8126267.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learning, 20

(3):273–297, September 1995. ISSN 0885-6125. doi: 10.1007/BF00994018. URL

http://dx.doi.org/10.1007/BF00994018.

Sergi G Costafreda, Akash Khanna, Janaina Mourao-Miranda, and Cynthia H Y

Fu. Neural correlates of sad faces predict clinical remission to cognitive be-

havioural therapy in depression. Neuroreport, 20(7):637–641, May 2009. doi: 10.

1097/WNR.0b013e3283294159. URL http://dx.doi.org/10.1097/WNR.

0b013e3283294159.

Kathryn R Cullen, Dylan G Gee, Bonnie Klimes-Dougan, Vilma Gabbay, Leslie Hul-

vershorn, Bryon A Mueller, Jazmin Camchong, Christopher J Bell, Alaa Houri, San-

jiv Kumra, Kelvin O Lim, F. Xavier Castellanos, and Michael P Milham. A pre-

liminary study of functional connectivity in comorbid adolescent depression. Neu-

rosci Lett, 460(3):227–231, Sep 2009. doi: 10.1016/j.neulet.2009.05.022. URL

http://dx.doi.org/10.1016/j.neulet.2009.05.022.

Marcello D’Amelio and Paolo Maria Rossini. Brain excitability and connectivity of

neuronal assemblies in alzheimer’s disease: from animal models to human findings.

Progress in neurobiology, 99(1):42–60, October 2012. ISSN 1873-5118. URL http:

//view.ncbi.nlm.nih.gov/pubmed/22789698.

J. S. Damoiseaux, S. A. R. B. Rombouts, F. Barkhof, P. Scheltens, C. J. Stam, S. M.

Smith, and C. F. Beckmann. Consistent resting-state networks across healthy subjects.

115

http://view.ncbi.nlm.nih.gov/pubmed/8126267
http://dx.doi.org/10.1007/BF00994018
http://dx.doi.org/10.1097/WNR.0b013e3283294159
http://dx.doi.org/10.1097/WNR.0b013e3283294159
http://dx.doi.org/10.1016/j.neulet.2009.05.022
http://view.ncbi.nlm.nih.gov/pubmed/22789698
http://view.ncbi.nlm.nih.gov/pubmed/22789698


Proceedings of the National Academy of Sciences, 103(37):13848–13853, September

2006. ISSN 1091-6490. doi: 10.1073/pnas.0601417103. URL http://dx.doi.

org/10.1073/pnas.0601417103.

Christian Dansereau, Celine Risterucci, Emilio Merlo Pich, Douglas Arnold, and

Pierre Bellec. A power analysis for multisite studies in resting-state functional

connectivity, with an application to clinical trials in alzheimer’s disease. vol-

ume 9, pages P248 – P249, 2013. doi: http://dx.doi.org/10.1016/j.jalz.2013.05.

489. URL http://www.sciencedirect.com/science/article/pii/

S1552526013011461. Alzheimer’s Association International Conference 2013

Alzheimer’s Association International Conference 2013.

Christian Dansereau, Pierre Bellec, Kangjoo Lee, Francesca Pittau, Jean Gotman, and

Christophe Grova. Detection of abnormal resting-state networks in individual pa-

tients suffering from focal epilepsy: An initial step toward individual connectiv-

ity assessment. Frontiers in Neuroscience, 8(419), 2014. ISSN 1662-453X. doi:

10.3389/fnins.2014.00419. URL http://www.frontiersin.org/brain_

imaging_methods/10.3389/fnins.2014.00419/abstract.

Christian Dansereau, Yassine Benhajali, Celine Risterucci, Emilio Merlo Pich, Pierre

Orban, Douglas Arnold, and Pierre Bellec. Statistical power and prediction accuracy

in multisite resting-state fmri connectivity. NeuroImage, 149:220–232, 2017.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale

Hierarchical Image Database. In CVPR09, 2009.

John Desmond and Gary Glover. Estimating sample size in functional mri (fmri) neu-

roimaging studies: Statistical power analyses. Journal of Neuroscience Methods, 118

(2):115–128, August 2002. ISSN 01650270. URL http://dx.doi.org/10.

1016/s0165-0270(02)00121-8.

Adriana Di Martino, Chao-Gan Yan, Qingyang Li, Erin Denio, Francisco X Castel-

lanos, Kaat Alaerts, Jeffrey S Anderson, Michal Assaf, Susan Y Bookheimer, Mirella

116

http://dx.doi.org/10.1073/pnas.0601417103
http://dx.doi.org/10.1073/pnas.0601417103
http://www.sciencedirect.com/science/article/pii/S1552526013011461
http://www.sciencedirect.com/science/article/pii/S1552526013011461
http://www.frontiersin.org/brain_imaging_methods/10.3389/fnins.2014.00419/abstract
http://www.frontiersin.org/brain_imaging_methods/10.3389/fnins.2014.00419/abstract
http://dx.doi.org/10.1016/s0165-0270(02)00121-8
http://dx.doi.org/10.1016/s0165-0270(02)00121-8


Dapretto, et al. The autism brain imaging data exchange: towards large-scale eval-

uation of the intrinsic brain architecture in autism. Molecular psychiatry, 19(6):659,

2014.

Taciana G Costa Dias, Swathi P Iyer, Samuel D Carpenter, Robert P Cary, Vanessa B

Wilson, Suzanne H Mitchell, Joel T Nigg, and Damien A Fair. Characterizing het-

erogeneity in children with and without adhd based on reward system connectivity.

Developmental cognitive neuroscience, 11:155–174, 2015.

Aoyan Dong, Jon B Toledo, Nicolas Honnorat, Jimit Doshi, Erdem Varol, Aristeidis

Sotiras, David Wolk, John Q Trojanowski, Christos Davatzikos, and AlzheimerâĂŹs

Disease Neuroimaging Initiative. Heterogeneity of neuroanatomical patterns in pro-

dromal alzheimerâĂŹs disease: links to cognition, progression and biomarkers. Brain,

140(3):735–747, 2016.

Andrew T Drysdale, Logan Grosenick, Jonathan Downar, Katharine Dunlop, Farrokh

Mansouri, Yue Meng, Robert N Fetcho, Benjamin Zebley, Desmond J Oathes, Amit

Etkin, et al. Resting-state connectivity biomarkers define neurophysiological subtypes

of depression. Nature medicine, 23(1):28–38, 2017.

Bruno Dubois, Howard H. Feldman, Claudia Jacova, Steven T. Dekosky, Pascale

Barberger-Gateau, Jeffrey Cummings, André Delacourte, Douglas Galasko, Serge

Gauthier, Gregory Jicha, Kenichi Meguro, John O’brien, Florence Pasquier, Philippe

Robert, Martin Rossor, Steven Salloway, Yaakov Stern, Pieter J. Visser, and Philip

Scheltens. Research criteria for the diagnosis of Alzheimer’s disease: revising the

NINCDS-ADRDA criteria. Lancet neurology, 6(8):734–746, August 2007. ISSN

1474-4422. doi: 10.1016/S1474-4422(07)70178-3. URL http://dx.doi.org/

10.1016/S1474-4422(07)70178-3.

Julien Dubois and Ralph Adolphs. Building a science of individual differences from

fmri. Trends in cognitive sciences, 20(6):425–443, 2016.

117

http://dx.doi.org/10.1016/S1474-4422(07)70178-3
http://dx.doi.org/10.1016/S1474-4422(07)70178-3


Joke Durnez, Beatrijs Moerkerke, and Thomas E Nichols. Post-hoc power estimation

for topological inference in fmri. Neuroimage, 84:45–64, 2014.

V. Edward, C. Windischberger, R. Cunnington, M. Erdler, R. Lanzenberger, D. Mayer,

W. Endl, and R. Beisteiner. Quantification of fmri artifact reduction by a novel plaster

cast head holder. Hum Brain Mapp, 11(3):207–213, Nov 2000.

M. R. Elliott, R. W. Bowtell, and P. G. Morris. The effect of scanner sound in visual,

motor, and auditory functional mri. Magn Reson Med, 41(6):1230–1235, Jun 1999.

Simon F. Eskildsen, Pierrick Coupé, Daniel Garc’ıa-Lorenzo, Vladimir Fonov, Jens C.

Pruessner, and D. Louis Collins. Prediction of Alzheimer’s disease in subjects with

mild cognitive impairment from the ADNI cohort using patterns of cortical thinning.

NeuroImage, 65:511–521, January 2013. doi: 10.1016/j.neuroimage.2012.09.058.

URL http://dx.doi.org/10.1016/j.neuroimage.2012.09.058.

M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal

visual object classes (voc) challenge. International Journal of Computer Vision, 88

(2):303–338, June 2010.

Damien A Fair, Joel T Nigg, Swathi Iyer, Deepti Bathula, Kathryn L Mills, Nico U F

Dosenbach, Bradley L Schlaggar, Maarten Mennes, David Gutman, Saroja Bangaru,

Jan K Buitelaar, Daniel P Dickstein, Adriana Di Martino, David N Kennedy, Clare

Kelly, Beatriz Luna, Julie B Schweitzer, Katerina Velanova, Yu-Feng Wang, Stew-

art Mostofsky, F. Xavier Castellanos, and Michael P Milham. Distinct neural signa-

tures detected for adhd subtypes after controlling for micro-movements in resting state

functional connectivity mri data. Front Syst Neurosci, 6:80, 2012. doi: 10.3389/fnsys.

2012.00080. URL http://dx.doi.org/10.3389/fnsys.2012.00080.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Li-

blinear: A library for large linear classification. The Journal of Machine Learning

Research, 9:1871–1874, 2008a.

118

http://dx.doi.org/10.1016/j.neuroimage.2012.09.058
http://dx.doi.org/10.3389/fnsys.2012.00080


Yong Fan, Dinggang Shen, and Christos Davatzikos. Classification of structural images

via high-dimensional image warping, robust feature extraction, and svm. Med Image

Comput Comput Assist Interv, 8(Pt 1):1–8, 2005.

Yong Fan, Nematollah Batmanghelich, Chris M Clark, Christos Davatzikos,
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tive impairment. Brain imaging and behavior, 10(4):1148–1159, 2016.

Xi-Nian Zuo, Ting Xu, Lili Jiang, Zhi Yang, Xiao-Yan Cao, Yong He, Yu-Feng Zang,

F. Xavier Castellanos, and Michael P. Milham. Toward reliable characterization of

functional homogeneity in the human brain: Preprocessing, scan duration, imaging

resolution and computational space. NeuroImage, October 2012. ISSN 10538119. doi:

141

http://dx.doi.org/10.1016/j.schres.2007.05.029
http://dx.doi.org/10.1016/j.schres.2007.11.039
http://dx.doi.org/10.1016/j.schres.2007.11.039


10.1016/j.neuroimage.2012.10.017. URL http://dx.doi.org/10.1016/j.

neuroimage.2012.10.017.

Xi-Nian Zuo, Jeffrey S Anderson, Pierre Bellec, Rasmus M Birn, Bharat B Biswal,

Janusch Blautzik, John C S Breitner, Randy L Buckner, Vince D Calhoun, F Xavier

Castellanos, Antao Chen, Bing Chen, Jiangtao Chen, Xu Chen, Stanley J Colcombe,

William Courtney, R Cameron Craddock, Adriana Di Martino, Hao-Ming Dong, Xi-

aolan Fu, Qiyong Gong, Krzysztof J Gorgolewski, Ying Han, Ye He, Yong He, Erica

Ho, Avram Holmes, Xiao-Hui Hou, Jeremy Huckins, Tianzi Jiang, Yi Jiang, William

Kelley, Clare Kelly, Margaret King, Stephen M LaConte, Janet E Lainhart, Xu Lei,

Hui-Jie Li, Kaiming Li, Kuncheng Li, Qixiang Lin, Dongqiang Liu, Jia Liu, Xun Liu,

Yijun Liu, Guangming Lu, Jie Lu, Beatriz Luna, Jing Luo, Daniel Lurie, Ying Mao,

Daniel S Margulies, Andrew R Mayer, Thomas Meindl, Mary E Meyerand, Weizhi

Nan, Jared A Nielsen, David O’Connor, David Paulsen, Vivek Prabhakaran, Zhigang

Qi, Jiang Qiu, Chunhong Shao, Zarrar Shehzad, Weijun Tang, Arno Villringer, Huil-

ing Wang, Kai Wang, Dongtao Wei, Gao-Xia Wei, Xu-Chu Weng, Xuehai Wu, Ting

Xu, Ning Yang, Zhi Yang, Yu-Feng Zang, Lei Zhang, Qinglin Zhang, Zhe Zhang,

Zhiqiang Zhang, Ke Zhao, Zonglei Zhen, Yuan Zhou, Xing-Ting Zhu, and Michael P

Milham. An open science resource for establishing reliability and reproducibility in

functional connectomics. Sci Data, 1:140049, 9 December 2014.

142

http://dx.doi.org/10.1016/j.neuroimage.2012.10.017
http://dx.doi.org/10.1016/j.neuroimage.2012.10.017


Appendix I

First Appendix



ORIGINAL RESEARCH
published: 24 December 2015
doi: 10.3389/fnagi.2015.00242

Frontiers in Aging Neuroscience | www.frontiersin.org 1 December 2015 | Volume 7 | Article 242

Edited by:

Junfeng Sun,

Shanghai Jiao Tong University, China

Reviewed by:

Donald G. McLaren,

University of Wisconsin-Madison, USA

Rui Li,

Chinese Academy of Sciences, China

*Correspondence:

Angela Tam

angela.tam@mail.mcgill.ca;

Pierre Bellec

pierre.bellec@criugm.qc.ca

†
Data used in preparing this article

were obtained from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI)

database (adni.loni.usc.edu). As such,

the investigators within the ADNI

contributed to the design and

implementation of ADNI and/or

provided data but most of them did

not participate in this analysis or

writing this report. A complete list of

ADNI investigators can be found at:

http://adni.loni.usc.edu/wp-content/

uploads/how_to_apply/ADNI_

Acknowledgement_List.pdf.

Received: 28 August 2015

Accepted: 10 December 2015

Published: 24 December 2015

Citation:

Tam A, Dansereau C, Badhwar A,

Orban P, Belleville S, Chertkow H,

Dagher A, Hanganu A, Monchi O,

Rosa-Neto P, Shmuel A, Wang S,

Breitner J, Bellec P for the Alzheimer’s

Disease Neuroimaging Initiative (2015)

Common Effects of Amnestic Mild

Cognitive Impairment on

Resting-State Connectivity Across

Four Independent Studies.

Front. Aging Neurosci. 7:242.

doi: 10.3389/fnagi.2015.00242

Common Effects of Amnestic Mild
Cognitive Impairment on
Resting-State Connectivity Across
Four Independent Studies
Angela Tam 1, 2, 3*, Christian Dansereau 3, 4, AmanPreet Badhwar 3, 4, Pierre Orban 2, 3,

Sylvie Belleville 3, 4, Howard Chertkow 1, Alain Dagher 1, Alexandru Hanganu 3, 5, 6,

Oury Monchi 3, 4, 5, 6, Pedro Rosa-Neto 1, 2, Amir Shmuel 1, Seqian Wang 1, 2, John Breitner 1, 2

and Pierre Bellec 3, 4* for the Alzheimer’s Disease Neuroimaging Initiative
†

1McGill University, Montreal, QC, Canada, 2Douglas Mental Health University Institute, Research Centre, Montreal, QC,

Canada, 3Centre de Recherche de L’institut Universitaire de Gériatrie de Montréal, Montreal, QC, Canada, 4Université de

Montréal, Montreal, QC, Canada, 5University of Calgary, Calgary, AB, Canada, 6Hotchkiss Brain Institute, Calgary, AB,

Canada

Resting-state functional connectivity is a promising biomarker for Alzheimer’s disease.

However, previous resting-state functional magnetic resonance imaging studies in

Alzheimer’s disease and amnestic mild cognitive impairment (aMCI) have shown limited

reproducibility as they have had small sample sizes and substantial variation in

study protocol. We sought to identify functional brain networks and connections that

could consistently discriminate normal aging from aMCI despite variations in scanner

manufacturer, imaging protocol, and diagnostic procedure. We therefore combined four

datasets collected independently, including 112 healthy controls and 143 patients with

aMCI. We systematically tested multiple brain connections for associations with aMCI

using a weighted average routinely used in meta-analyses. The largest effects involved

the superior medial frontal cortex (including the anterior cingulate), dorsomedial prefrontal

cortex, striatum, and middle temporal lobe. Compared with controls, patients with aMCI

exhibited significantly decreased connectivity between default mode network nodes

and between regions of the cortico-striatal-thalamic loop. Despite the heterogeneity

of methods among the four datasets, we identified common aMCI-related connectivity

changes with small to medium effect sizes and sample size estimates recommending a

minimum of 140 to upwards of 600 total subjects to achieve adequate statistical power

in the context of a multisite study with 5–10 scanning sites and about 10 subjects per

group and per site. If our findings can be replicated and associated with other established

biomarkers of Alzheimer’s disease (e.g., amyloid and tau quantification), then these

functional connections may be promising candidate biomarkers for Alzheimer’s disease.

Keywords: fMRI, mild cognitive impairment, connectome, resting-state, default mode network, meta-analysis



Tam et al. Common rs-fMRI Effects of aMCI

INTRODUCTION

Resting-state connectivity in functional magnetic resonance
imaging (fMRI) captures the spatial coherence of spontaneous
fluctuations in blood oxygenation. Resting-state fMRI is a
promising technique that may be useful as an early biomarker
for Alzheimer’s disease (AD), a neurodegenerative process that
develops over decades before patients suffer from dementia.
The possibility that disturbed resting-state connectivity may
be an early marker for AD is supported by studies of
mild cognitive impairment (MCI), a disorder characterized
by objective cognitive deficits without dementia, i.e., without
impairment in activities of daily living, and more specifically by
studies of amnestic MCI (aMCI), the most common subtype of
MCI characterized by memory deficits (Petersen et al., 2001).
These studies showed altered functional connectivity in MCI
compared with cognitively normal elderly (CN; Sorg et al., 2007;
Bai et al., 2009; Liang et al., 2012; Wu et al., 2014), but they
relied on small sample sizes (n = ∼40) and differed in many
aspects of their protocols, e.g., recruitment and image acquisition
procedures. If resting-state fMRI is to serve as a useful biomarker
of AD, or any pathology, for clinical practice or research, we
must determine if changes in functional connectivity differences
between groups of subjects are robust to such variation in study
protocols. Therefore, we sought to identify brain connections
that showed consistent MCI-related changes across multiple
independent studies. If such connections exist, they may be
used as targets to be examined alongside other established AD
biomarkers (e.g., amyloid and tau measures) in order to validate
resting-state fMRI’s potential as a biomarker for AD.

Resting-state connectivity studies have consistently found
decreased connectivity between nodes within the default mode
network (DMN) in patients with AD or MCI compared with CN
(Sorg et al., 2007; Bai et al., 2009; Zhang et al., 2010; Koch et al.,
2012; Liang et al., 2012). Less consistent are reports of alterations
in the executive attentional, frontoparietal, and anterior temporal
networks (Sorg et al., 2007; Zhang et al., 2010; Gour et al., 2011;
Agosta et al., 2012; Liang et al., 2012; Wu et al., 2014) due
to the literature’s bias toward investigating the DMN. Further
inconsistencies can be found in some studies that have reported
increased connectivity between the middle temporal lobe and
other DMN areas in MCI (Qi et al., 2010), while others have
reported decreased connectivity between these same regions (Bai
et al., 2009) and others have reported no significant differences
between MCI and CN (Koch et al., 2012).

One obvious explanation for such inconsistency may be
these studies’ small sample sizes resulting in low statistical
power (Kelly et al., 2012). Beyond this, however, there are
other methodological differences that may compromise the
comparison of results across independent studies. For example,
the criteria for recruiting subjects with MCI, e.g., Petersen (2004)
vs. NIA-AA recommendations (Albert et al., 2011) may differ
among studies. Different study samples may also reflect different
socio-cultural characteristics of recruiting sites, e.g., ethnicity,
language, diet, socioeconomic status. The fMRI measurements
themselves can also be affected by differences in details of the
image acquisition such as scanner make and model (Friedman

et al., 2006), sequence parameters such as repetition time, flip
angle, or acquisition volume (Friedman and Glover, 2006),
experimental design such as eyes-open/eyes-closed (Yan et al.,
2009) or experiment duration (van Dijk et al., 2010), and
scanning environment such as sound attenuation measures
(Elliott et al., 1999), room temperature (Vanhoutte et al., 2006),
or head-motion restraint techniques (Edward et al., 2000).

To identify robust changes in resting-state connectivity
between aMCI and CN, we implemented a meta-analysis of four
independent resting-state fMRI datasets (ADNI2 and three small
single-site studies) using a weighted average implemented by
Willer et al. (2010). Rather than relying on a priori target regions
or connections, we leveraged the large sample size to perform
a systematic search of brain connections affected by aMCI,
an approach termed a “connectome-wide association study”
(Shehzad et al., 2014). In addition, we relied on functionally-
defined brain parcellations using an automated clustering
procedure and we explored the impact of the number of brain
clusters (called resolution) on observed differences (Bellec et al.,
2015).

METHODS

Participants
We combined data from four independent studies: the
Alzheimer’s Disease Neuroimaging Initiative 2 (ADNI2)
sample, two samples from the Centre de recherche de
l’institut universitaire de gériatrie de Montréal (CRIUGMa
and CRIUGMb), and a sample from the Montreal Neurological
Institute (MNI; Wu et al., 2014). All participants gave their
written informed consent to engage in these studies, which
were approved by the research ethics board of the respective
institutions, and included consent for data sharing with
collaborators as well as secondary analysis. Ethical approval was
also obtained at the site of secondary analysis (CRIUGM).

The ADNI2 data used in the preparation of this article were
obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (adni.loni.usc.edu). ADNI was launched in
2003 by the National Institute on Aging, the National Institute
of Biomedical Imaging and Bioengineering, the Food and
Drug Administration, private pharmaceutical companies and
non-profit organizations, as a $60 million, 5-year public-
private partnership representing efforts of co-investigators from
numerous academic institutions and private corporations. ADNI
was followed by ADNI-GO and ADNI-2 that included newer
techniques. Subjects included in this study were recruited by
ADNI-2 from all 13 sites that acquired resting-state fMRI
on Philips scanners across North America. For up-to-date
information, see www.adni-info.org.

The combined sample included 112 CN and 143 aMCI prior
to quality control. After quality control, 99 CN and 129 aMCI
remained. In the CN group, the mean age was 72.0 (s.d. = 7.0)
years, and 37%weremen.Mean age of the aMCI subjects was 72.3
(s.d. = 7.6) years, and 50% were men. An independent samples
t-test did not reveal any significant difference in age between the
groups (t = 0.759, p = 0.448). A chi-squared test revealed a trend
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toward a significant difference in gender distribution between the
groups (χ2

= 3.627, p = 0.057). Note that both age and gender
were entered as confounding variables in the statistical analysis
below. See Table 1 for sample size and demographic information
from the individual studies after passing quality control (for
information about the original cohorts before quality control, see
Supplementary Table 1).

All subjects underwent cognitive testing (e.g., memory,
language, and executive function; see Table 2 for a list of specific
tests used in each study). Exclusion criteria common to all
studies included: Contraindications to MRI, presence or history
of axis I psychiatric disorders (e.g., depression, bipolar disorder,
schizophrenia), presence or history of neurologic disease with
potential impact on cognition (e.g., Parkinson’s disease), and
presence or history of substance abuse. CN subjects could
not meet criteria for MCI or dementia. Those with aMCI
had memory complaints, objective cognitive loss (based on
neuropsychological testing), but had intact functional abilities
and did not meet criteria for dementia. In ADNI2, the diagnosis
of aMCI was made based on an education adjusted abnormal
score on the Logical Memory II subscale (Delayed Paragraph
Recall, Paragraph A only) from the Wechsler Memory Scale and
a Clinical Dementia Rating (CDR) of 0.5. In both CRIUGMa
and CRIUGMb, the diagnosis of aMCI was made based on
scores equal to or >1.5 standard deviations below the mean
adjusted for age and education on memory tests. At the MNI, the
diagnosis of aMCI relied on the Petersen criteria (2004). At both
CRIUGMb and MNI, aMCI diagnoses were made with input
from a neurologist. See the Supplementary Methods (Datasheet
1 in Supplementary Material) for greater details for each study.

Imaging Data Acquisition
All resting-state fMRI and structural scans were acquired on
3T scanners. We performed analyses on the first usable scan
(typically the baseline scan) from ADNI2 and applied clinical

diagnoses from the same study time point as the first usable scan
for each participant in that dataset. See Table 3 for acquisition
parameters for each sample.

Computational Environment
All experiments were performed using the NeuroImaging
Analysis Kit (NIAK1; Bellec et al., 2011) version 0.12.18, under
CentOS version 6.3 with Octave2 version 3.8.1 and the Minc
toolkit3 version 0.3.18. Analyses were executed in parallel on
the “Guillimin” supercomputer4, using the pipeline system for
Octave and Matlab (Bellec et al., 2012), version 1.0.2. The scripts
used for processing can be found on Github5.

Pre-processing
Each fMRI dataset was corrected for slice timing; a rigid-body
motion was then estimated for each time frame, both within and
between runs, as well as between one fMRI run and the T1 scan
for each subject (Collins and Evans, 1997). The T1 scan was itself
non-linearly co-registered to the Montreal Neurological Institute
(MNI) ICBM152 stereotaxic symmetric template (Fonov et al.,
2011), using the CIVET pipeline (Ad-Dab’bagh et al., 2006). The
rigid-body, fMRI-to-T1 and T1-to-stereotaxic transformations
were all combined to resample the fMRI in MNI space at a
3mm isotropic resolution. To minimize artifacts due to excessive
motion, all time frames showing a displacement >0.5mm were
removed (Power et al., 2012). A minimum of 50 unscrubbed
volumes per run was required for further analysis (13 CN and 14
aMCI were rejected from the original cohort of 112 CN and 143
aMCI). Neither the rate of rejection nor the frame displacement
values (before and after scrubbing) varied significantly among the

1http://simexp.github.io/niak/.
2https://www.gnu.org/software/octave/.
3http://www.bic.mni.mcgill.ca/ServicesSoftware/ServicesSoftwareMincToolKit.
4http://www.calculquebec.ca/en/resources/compute-servers/guillimin.
5https://github.com/SIMEXP/mcinet.

TABLE 1 | Demographic information in all studies after quality control.

ADNI2 CRIUGMa CRIUGMb MNI Combined sample

CN N 49 18 17 15 99

Mean age (s.d.) 74.4 (6.8) 71.2 (8.0) 70.4 (4.6) 67.0 (5.7) 72.0 (7.0)

Number male (%) 21 (43%) 7 (39%) 2 (12%) 7 (47%) 37 (37%)

Mean years of education (s.d.)a 16.9 (2.2) 14.9 (2.3) 15.1 (2.8) 15.0 (3.1) 16.0 (2.6)

MMSE mean (range) 28.7 (25–30) 28.8 (27–30) n/a 29.0 (27–30) n/a

MoCA mean (range) n/a 27.8 (22–30) 28.4 (26–30) n/a n/a

aMCI N 82 8 21 18 129

Mean age (s.d.) 71.2 (7.3) 79.9 (6.1) 74.8 (7.0) 71.2 (8.1) 72.3 (7.6)

Number male (%) 43 (52%) 3 (38%) 12 (57%) 7 (39%) 65 (50%)

Mean years of education (s.d.)a 16.2 (2.6) 13.7 (3.8) 14.8 (4.2) 13.1 (3.1) 15.5 (3.2)

MMSE mean (range) 28.1 (24–30)* 26.1 (22–29)* n/a 26.1 (22–30)* n/a

MoCA mean (range) n/a 23.3 (20–29)* 24.6 (16–29)* n/a n/a

MMSE, Mini-mental state examination; MoCA, Montreal Cognitive Assessment.

*Significant difference between aMCI and CN (within study) for independent samples t-test at p ≤ 0.05.
aMissing values for education for subjects in ADNI2 (1 CN, 1 aMCI), CRIUGMb (2 aMCI), and MNI (3 CN, 6 aMCI).
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TABLE 2 | Neuropsychological tests that were used in each study.

Test ADNI2 CRIUGMa CRIUGMb MNI

Mini-mental state examination (MMSE) x x x

Montreal Cognitive Assessment (MoCA) x x x

Clinical Dementia Rating (CDR) x x

ADAS-Cog x

Everyday Cognition (ECog) x

Trail making x x x x

(Trails A and B) (Trails A and B) (Trails A and B) (DKEFS)

Boston naming test x x x x

Digit span x x x

Color-word interference (DKEFS) x x x

Rey auditory verbal learning test x x x

Verbal fluency x x x (MEC) x (DKEFS)

Clock drawing x x

Visual object and space perception battery x

Brixton spatial anticipation test x

Hooper visual organization test x

Rey complex figure x x x

Aggie figures learning test x

16-Item free and cued recall (RL/RI-16) x

Pyramid and palm trees test x

Weschler memory scale—logical memory subtest x x x

MEC, Montréal évaluation de la communication; DKEFS, Delis–Kaplan Executive Function System.

four samples or between CN and aMCI. The following nuisance
covariates were regressed out from fMRI time series: slow time
drifts (basis of discrete cosines with a 0.01Hz high-pass cut-off),
average signals in conservative masks of the white matter and the
lateral ventricles as well as the first 3–10 principal components
(median numbers for ADNI2, CRIUGMa, CRIUGMb, and MNI
were 9, 6, 7, and 7, respectively, and accounting for 95% variance)
of the six rigid-body motion parameters and their squares (Lund
et al., 2006; Giove et al., 2009). The fMRI volumes were finally
spatially smoothed with a 6mm isotropic Gaussian blurring
kernel. A more detailed description of the pipeline can be found
on the NIAK website6 and Github7.

Bootstrap Analysis of Stable Clusters
(BASC)
We applied a BASC to identify clusters that consistently exhibited
similar spontaneous BOLD fluctuations in individual subjects,
and were spatially stable across subjects. We first applied a
region-growing algorithm to reduce each fMRI dataset into
a time × space array, with 957 regions (Bellec et al., 2006).
BASC replicates a hierarchical Ward clustering 1000 times and
computes the probability that a pair of regions fall in the same
cluster, a measure called stability. The region × region stability
matrix is fed into a clustering procedure to derive consensus
clusters, which are composed of regions with a high average
probability of being assigned to the same cluster across all

6http://niak.simexp-lab.org/pipe_preprocessing.html.
7https://github.com/SIMEXP/mcinet/tree/master/preprocess.

replications. At the individual level, the clustering was applied to
the similarity of regional time series, which was replicated using
a circular block bootstrap. Consensus clustering was applied to
the average individual stability matrix to identify group clusters.
The group clustering was replicated via bootstrapping of subjects
in the group. A consensus clustering was finally applied on the
group stability matrix to generate group consensus clusters.

The cluster procedure was carried out at a specific number
of clusters (called resolution). Using a “multiscale stepwise
selection” (MSTEPS) method (Bellec, 2013), we determined a
subset of resolutions that provided an accurate summary of the
group stability matrices generated over a fine grid of resolutions:
4, 6, 12, 22, 33, 65, 111, and 208.

Derivation of Functional Connectomes
For each resolution K, and each pair of distinct clusters,
the between-clusters connectivity was measured by the Fisher
transform of the Pearson’s correlation between the average time
series of the clusters. The within-cluster connectivity was the
Fisher transform of the average correlation between time series
inside the cluster. An individual connectome was thus a K × K
matrix. See Figures 1A,B for an illustration of a parcellation and
associated connectome.

Statistical Testing
To test for differences between aMCI and CN at a given
resolution, we used a general linear model (GLM) for each
connection between two clusters. The GLM included an
intercept, the age and sex of participants, and the average frame

Frontiers in Aging Neuroscience | www.frontiersin.org 4 December 2015 | Volume 7 | Article 242



Tam et al. Common rs-fMRI Effects of aMCI

TABLE 3 | Structural and functional scan acquisition parameters.

ADNI2a CRIUGMa CRIUGMb MNI

Scanner manufacturer Philips Siemens Siemens Siemens

STRUCTURAL

No. channels 8 32 32 32

No. slices 170 176 176 176

Slice thickness (mm) 1.2 1 1 1

In-plane resolution (mm × mm) 1× 1 1× 1 1 ×1 1× 1

Matrix size 256× 256 240× 256 256× 256 256× 256

FOV (mm2) 256 240/256 256 256

TR (s) 6.8 2.3 2.53 2.3

TE (ms) 3.09 2.91 1.64 2.98

TI (s) n/a 0.9 1.2 0.9

FA (◦) 9 9 7 9

Slice gap 0 0 0 0

Imaging plane Sagittal Sagittal Sagittal Sagittal

NEX 1 1 1 1

FUNCTIONAL

No. runs 1 1 3 3

No. channels 8 32 32 32

No. volumes 140 240 150 160

No. slices 48 33 42 38

Slice thickness (mm) 3.3 4 3.4 3.6

In-plane resolution (mm × mm) 3.3× 3.3 3× 3 3.4× 3.4 3.6× 3.6

Matrix size 64× 64 64× 64 64× 64 64× 64

FOV (mm2) 212 192 218 230

TR (s) 3 2 2.6 2

TE (ms) 30 30 30 30

FA (◦) 80 90 90 90

Slice gap 0 0 0 0

Imaging plane Axial Axial Axial Axial

NEX 1 1 1 1

Total scan time (min:s) 7:00 8:00 19:30 16:00

ahttp://adni.loni.usc.edu/wp-content/uploads/2011/04/ADNI_3T_Philips_2.6.pdf.

displacement of the runs involved in the analysis. The contrast
of interest (aMCI–CN) was represented by a dummy covariate
coding the difference in average connectivity between the two
groups. All covariates except the intercept were corrected to a
zero mean (Figure 1C). The GLM was estimated independently
for each scanning protocol. In addition to distinguishing
between CRIUGMa, CRIUGMb, MNI, and ADNI2, ADNI2 was
subdivided into five sub-studies based on the use of different
Philips scanner models (i.e., Achieva, Gemini, Ingenia, Ingenuity,
and Intera). We dropped all subjects scanned with Ingenuity
(2 CN, 1 aMCI) due to the elimination of all aMCI subjects
within that site by the scrubbing procedure and its small
sample size. We therefore estimated seven independent GLMs
for each protocol (ADNI2-Achieva, ADNI2-Gemini, ADNI2-
Ingenia, ADNI2-Intera, CRIUGMa, CRIUGMb, MNI). The
estimated effects were combined across all protocols through
inverse variance based weighted averaging (Willer et al., 2010;
Figure 1D).

Resolutions containing fewer than 50 clusters have been
suggested to have higher sensitivity based on prior independent

work (Bellec et al., 2015). The GLM was first applied at an a
priori resolution of K = 33, which was the lowest number
of clusters for which the DMN could be clearly decomposed
into subnetworks (Supplementary Figure 1, visit Figshare for 3D
volumes of brain parcellations8 and see Supplementary Table 2
for a list of the 33 clusters and their numerical IDs). The false-
discovery rate (FDR) across connections was controlled at qFDR

≤ 0.1 (Benjamini andHochberg, 1995). In addition to the analysis
at resolution 33, we assessed the impact of that parameter by
replicating the GLM analysis at the seven resolutions selected
by MSTEPS (Supplementary Figure 2). We implemented an
omnibus test (family-wise error rate α≤ 0.05) to assess the overall
presence of significant differences between groups, pooling FDR
results across all resolutions (Bellec et al., 2015). If the omnibus
test across resolutions was not significant, then no test would
be deemed significant. Since this omnibus test was significant,
we used the FDR threshold of q ≤ 0.1 to explore single
resolutions.

RESULTS

Functional Connectivity Differences
Between aMCI and CN
The omnibus test pooling significant differences in connectivity
between aMCI and CN across all resolutions was significant at
α ≤ 0.05 (p ≤ 0.0056). In line with prior observations on
independent datasets (Bellec et al., 2015), resolutions containing
fewer than 50 clusters were associated with a higher rate
of discovery (Figure 2). At resolution 33, significant group
differences between aMCI and CN were seen across the whole
brain (Figure 3A). Four brain clusters were associated with 47%
of all significant changes found across the connectome: the
superior medial frontal cortex (including anterior cingulate),
dorsomedial prefrontal cortex, striatum, and middle temporal
lobe (Figures 3B,C, Supplementary Table 3). Supplementary
Table 3 contains a list of parcels that account for all non-
redundant significant connectivity differences between aMCI
and CN. For example, the first-ranked seed (superior medial
frontal cortex) was associated with 13.4% of connections that
differ between the groups. The second-ranked seed (dorsomedial
prefrontal cortex) was associated with an additional 12.7% of
connectivity differences that did not overlap with or were not
previously accounted for by the first seed. Note that if a given
parcel was associated with a significant effect with another region
that ranked in the table, then that parcel may not be listed in
the table (i.e., this table is not a comprehensive list of parcels
that show significant effects, as a given parcel may involve a
region in the table at a higher rank which already accounted
for its effects). Given that the top four clusters explained nearly
half of the findings, they were further characterized in seed-
based connectivity analyses, which revealed that aMCI showed
decreased connectivity between DMN nodes and between
areas of the cortico-striatal-thalamic loop (Figure 4). More
specifically, in aMCI compared to CN, the superior medial
frontal cortex displayed significantly reduced connectivity with

8http://dx.doi.org/10.6084/m9.figshare.1480461.
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FIGURE 1 | Application of general linear models to connectomes. (A) The brain is functionally parcellated into K (e.g., 50) clusters generated through a

clustering algorithm. (B) The connectome is a K × K matrix measuring functional connectivity between and within clusters. (C) A general linear model is used to test

the association between phenotypes and connectomes, independently at each connection, at the group level. (D) In a multisite situation, independent site-specific

effects are estimated and then pooled through weighted averaging (Willer et al., 2010).

the ventromedial prefrontal cortex, striatum, thalamus, temporal
lobes, hippocampus, inferior parietal lobes, and precuneus
(Figure 4A). aMCI showed reduced connectivity between the
dorsomedial prefrontal cortex with temporal lobe regions, ventral
frontal areas, thalamus, striatum, and the cuneus (Figure 4B).
The striatum in aMCI also exhibited decreased connectivity
with the sensorimotor cortex, thalamus, and frontal and parietal
regions (Figure 4C). Lastly, in aMCI, the middle temporal lobe
displayed significantly decreased connectivity with the posterior

cingulate, precuneus, inferior parietal lobes, hippocampus, and
frontal areas (Figure 4D).

Sample-Specific Effects
The statistical model we used to combine GLM analyses across
sites was based on a weighted average. The possibility thus
existed that an effect would be significant in the pooled analysis
because it was driven by a very strong effect in a single sample,
instead of being consistent across all samples.Whenwe examined
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FIGURE 2 | Plot of the percentage of connections identified as

significant by the statistical comparison between aMCI and CN across

the connectome (qFDR ≤ 0.1), as a function of the resolutions selected

by MSTEPS.

FIGURE 3 | (A) Map of the percentage of connections associated with a given

cluster and identified as significant by the statistical comparison between aMCI

and CN, at a resolution of 33 clusters (qFDR ≤ 0.1). (B) Maximum absolute

difference in average connectivity between aMCI and CN, across all

connections associated with a cluster, at resolution 33. 1F(r) signifies the

difference in Fisher-transformed correlation values between the groups. (C)

Four clusters of interest (superior medial frontal cortex, dorsomedial prefrontal

cortex, striatum, middle temporal lobe) were selected out of 33 for further

characterization.

effects in each sample independently, we detected no findings or
very few significant findings. We then explored the whole brain
connectivity of the top four seed regions (superior medial frontal

cortex, dorsomedial prefrontal cortex, striatum, and middle
temporal lobe) within each sample. The majority of effects found
at each sample did not appear to be consistent or reproducible
across studies as the comparison between aMCI and CN varied
substantially among the seven samples (Figure 5, Supplementary
Figures 3–5). We assessed the extent at which findings among the
seven samples were similar by calculating correlation coefficients
across the spatial maps for the average connectivity values in
CN, the average connectivity values in aMCI, and differences in
connectivity values between aMCI and CN among the samples.
We found that the difference maps, contrasting aMCI and CN,
were weakly correlated on average across studies and protocols
(mean r = 0.06, min r = −0.64, max r = 0.69). The average
connectivity maps among studies in both CN and aMCI were
generally highly correlated with each other (for CN, mean r =

0.68, min r = −0.16, max r = 0.95; for aMCI, mean r = 0.67,
min r =−0.10, max r = 0.97). These results were expected given
the small sample sizes of most independent samples (Kelly et al.,
2012), but still sobering as the majority of the literature on aMCI
and fMRI has used small sample sizes.

However, despite the large observed variations in the spatial
distribution of aMCI vs. CN contrasts, there were still clear
consistent trends across studies and protocols. We indeed
found that aMCI-related connectivity changes that surpassed
the FDR threshold in the pooled analysis showed similar
trends in the vast majority of samples across seeds and
connections, where the independent aMCI samples consistently
exhibited decreased connectivity compared to the CN samples
(Figures 5, 6, Supplementary Figures 3–5). For example, the
pooled analysis revealed that, compared to CN, aMCI exhibited
significantly reduced connectivity between the superior medial
frontal cortex cortex (the region in which connectivity was most
affected by aMCI) and the middle temporal lobes. This change
appeared to be common to the majority of the independent
samples (Figures 5, 6A). For this particular seed, the change in
connectivity was mainly due to regions with positive correlations
in CN having smaller correlation values closer to zero in aMCI
in the individual samples (Figures 5, 6A). For sample-specific
effects in other seeds and connections, please see Supplementary
Figures 3–9.

Effect Sizes and Sample Size Estimates
We measured the effect sizes of the difference between groups
at each significant connection by calculating Cohen’s d, via a
weighted average of the effect sizes per individual sample. We
found small to medium effect sizes, ranging from d = 0.10–0.48,
with an average effect size of d = 0.32. Note that these effect
sizes are potentially inflated since we have focussed on significant
results only. We also calculated the sample sizes required to
achieve 80% power, based on the effect sizes estimated by Cohen’s
d, the assumption of balanced groups, Gaussian distributions,
bilateral tests, and α = 0.05, for each connection. We found that
the estimated sample sizes ranged from 140 to upwards of 600
total subjects, which further suggests that findings from small
samples, similar to the seven samples we included when assessed
independently, are not expected to be reliable. As noted above, as
we used the same sample to estimate the location of effects and
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FIGURE 4 | Effect maps for a selection of four seeds that show effects related to aMCI at resolution 33. Effect maps reveal the spatial distribution of the

changes in functional connectivity for (A) the superior medial frontal cortex, (B) the dorsomedial prefrontal cortex, (C) striatum, and (D) the middle temporal lobe. All

connections shown in the maps of difference in average connectivity between aMCI and CN are significant at qFDR ≤ 0.1. For each panel, the top line maps the

spatial location of the seed region in magenta, the second and third lines show the connectivity (Fisher-transformed correlation values, F(r)) between the designated

seed region and the rest of the brain in CN and aMCI, respectively, and the fourth line shows a difference map between aMCI and CN [difference in Fisher-transformed

correlation values, 1F(r)]. The numbers in parentheses refer to the numerical IDs of the clusters in the 3D parcellation volume, as listed in Supplementary Table 2.

their size, these sample size estimates are possibly optimistic, i.e.,
deflated compared to a replication on an independent sample.
See Figure 6 and Supplementary Figures 6–9 for Cohen’s d and
sample size estimates for each significant connection that was
reported in Figure 4.

Effect of Resolution on the GLM
The percentage of discoveries in significant differences between
aMCI and CN across the connectomes varied markedly as a
function of resolution, as selected by the MSTEPS procedure.
Higher resolutions were associated with fewer discoveries,
especially beyond resolution 65 (Supplementary Figure 10A).

By contrast, the maximal amplitude of differences in average
connectivity associated with a particular cluster did not
decrease substantially, and sometimes increased, when the
resolution increased (Supplementary Figure 10B). The decrease
in percentage of discovery thus likely reflected a cost associated
with an increased number of multiple comparisons in the FDR
procedure, rather than a loss in signal quality. Regarding the
clusters that were selected for our seed-based analyses (the
superior medial frontal cortex, dorsomedial prefrontal cortex,
striatum, and middle temporal lobe), the associated effect maps
(without statistical threshold) were highly consistent across
different resolutions (Supplementary Figures 11, 12), with the
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FIGURE 5 | Comparisons of effects in the superior medial frontal cortex across samples. This figure illustrates functional connectivity changes between aMCI

and CN, average connectivity in CN, and average connectivity in aMCI in each site (ADNI2-Achieva, ADNI2-Gemini, ADNI2-Ingenia, ADNI2-Intera, CRIUGMa,

CRIUGMb, MNI) independently of other sites and when samples are pooled together (all samples). The number in parentheses refers to the numerical ID of the seed in

the 3D parcellation volume, as listed in Supplementary Table 2.

potential exception of very low resolutions where, for example,
a relatively small cluster like the anterior cingulate got merged
with a large distributed cortical network. This also replicated
a prior study on the effect of multiresolution parcellations on
GLM analysis (Bellec et al., 2015). Lastly, signal-to-noise ratio
did not have a significant impact on the results (Supplementary
Figure 13).

DISCUSSION

We report resting-state functional connectivity differences in the
superior medial frontal cortex, dorsomedial prefrontal cortex,
striatum, and middle temporal lobe between aMCI and CN
subjects when multiple studies were combined together. Despite
protocol differences, we found that aMCI exhibited reduced
connectivity within areas of the DMN and cortico-striatal-
thalamic loop compared to CN. Previous studies suggested
these altered patterns of functional connectivity in MCI may
result from the coevolution of multiple AD-associated biological
processes, namely structural degeneration (Pievani et al., 2010;
Coupé et al., 2012), neurofibrillary and amyloid pathologies
(Small et al., 2006), and cerebrovascular dysfunction (Villeneuve
and Jagust, 2015).

The superior medial frontal cortex andmiddle temporal lobes,
both of which are DMN nodes, were among the seed regions
with the greatest amount of aMCI-related connectivity changes
with other brain areas. Decreased connectivity in aMCI patients
was found between these two nodes and other DMN regions,
including the posterior cingulate, precuneus, inferior parietal
lobes, ventromedial prefrontal cortex, and hippocampus. Our
findings support previous studies that used small single-site
samples and reported reduced DMN connectivity in MCI and
AD patients (Sorg et al., 2007; Bai et al., 2009; Agosta et al.,
2012; Koch et al., 2012). Alterations in the DMN may reflect
increased amyloid burden in aMCI patients as it has been shown
that amyloid plaques impair default mode connectivity (Hedden
et al., 2009; Sheline et al., 2010b; Mormino et al., 2011).

We found reduced connectivity within the frontal lobes,
notably between ventral and dorsal areas. Decreased functional
connectivity between the ventral and dorsal frontal regions
could reflect degeneration in gray matter and in white matter
tracts connecting these areas. Longitudinal studies have shown
greater prefrontal cortex atrophy in MCI over time, as well
as in those transitioning to AD, compared to CN (McDonald
et al., 2009; Carmichael et al., 2013). Cortico-cortical white
matter bundles, e.g., superior longitudinal fasciculus, have also
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FIGURE 6 | Mean connectivity between (A) the superior medial frontal cortex and middle temporal lobe, (B) the dorsomedial prefrontal cortex and

middle frontal gyrus, (C) the striatum and pre/postcentral gyrus, and (D) middle temporal lobe and posterior cingulate in CN and aMCI in the

independent samples. Each map displays the seed (pink) and a selected cluster (blue) whose connectivity with the seed significantly differed between CN and aMCI

in the pooled analysis. The box-whisker plots display the mean connectivity (Fisher-transformed correlation values) between the seed and the selected parcel, overlaid

(Continued)
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FIGURE 6 | Continued

over individual data points, in the CN and MCI groups in the ADNI2-Achieva, ADNI2-Gemini, ADNI2-Ingenia, ADNI2-Intera, CRIUGMa, CRIUGMb, and MNI samples.

We also report the Cohen’s d (a weighted average of the effect sizes per sample) followed by a sample size estimate (for 80% power, balanced groups, bilateral tests,

Gaussian distributions, and α = 0.05) in square brackets in the top-right corner of each plot. The numbers in parentheses in the titles refer to the numerical IDs of the

seeds in the 3D parcellation volume, as listed in Supplementary Table 2. For box-whisker plots for all significant clusters with each of these seeds, see Supplementary

Figures 6–9.

been demonstrated to degenerate in patients with MCI and
AD (Pievani et al., 2010). Additionally, functional connectivity
changes may reflect the regional effect of increased amyloid
burden (Sheline et al., 2010b), and PIB-PET work has shown
the frontal lobe to be one of the first regions in which
amyloid accumulates in autosomal dominant AD mutation
carriers (Bateman et al., 2012). Our results may also be due to
neurofibrillary pathology as it typically appears in the prefrontal
cortex during MCI (Bossers et al., 2010). Lastly, cerebral
hypoperfusion in the frontal lobe of MCI (Chao et al., 2009) may
have contributed to our results.

We also observed functional disconnection between the
temporal and frontal lobes in aMCI. Effects in the temporal
lobes were expected given that the temporal lobe is a region
known to suffer from significant AD pathology in preclinical
phases (Guillozet et al., 2003). Structural connectivity may also
explain the functional connectivity changes between the frontal
and temporal regions, since degeneration of white matter tracts
between these areas, e.g., the uncinate fasciculus, occurs with
the progression from MCI to AD and correlates with episodic
memory impairment in MCI (Pievani et al., 2010; Rémy et al.,
2015). Furthermore, examining the integrity of the arcuate
fasciculus, a major language tract that connects the frontal
and temporal lobes (Dick and Tremblay, 2012), might reveal a
biological basis for language impairments such as word-finding
difficulties in MCI and AD, (Nutter-Upham et al., 2008). Brain
areas that subserve language function could be important targets
to investigate given recent evidence that multilingualism, like
other forms of cognitive reserve, may help delay the onset of AD
(Chertkow et al., 2010).

Unexpectedly, we also found significant effects in the
striatum, which showed reduced connectivity in aMCI with the
sensorimotor cortex, frontal and parietal regions, and thalamus.
While not initially expected, these findings may reflect earlier
observations that regions within the cortico-striatal-thalamic
loops are vulnerable to AD pathology. For example, previous
work demonstrated the presence of substantial amyloid burden
in the striatum in both autosomal dominant and sporadic forms
of AD (Braak and Braak, 1990; Villemagne et al., 2009), and the
striatum may be the first region in which amyloid deposition
occurs in autosomal dominant AD (Klunk et al., 2007; Bateman
et al., 2012). Furthermore, significant neurodegeneration is
known to occur with AD in the striatum and thalamus (de
Jong et al., 2008; Madsen et al., 2010), so our results might
reflect the brain’s capacity for functional plasticity in response
to amyloid or neurodegeneration in these regions. Motor cortex
hyperexcitability has also been shown in AD, and this suggests
that inhibitory circuits leading to the motor cortex may be
affected in the disease (Ferreri et al., 2011). Patients with

AD also demonstrate changes in swallowing which have been
associated with altered cortical activity (Humbert et al., 2010).
Our results may support these observations. Additionally, our
findings may represent a biological basis for the cognitive and
motor symptoms of MCI (Aggarwal et al., 2006) since the
striatum and the rest of the basal ganglia have been implicated in
stimulus-response associative learning and memory and motor
skill acquisition and execution (Packard and Knowlton, 2002;
Doyon et al., 2009). Future research should examine the potential
relationship between connectivity in the cortico-striatal-thalamic
loops and motor function in aMCI and AD.

Our findings contrasted with previous, smaller single-site
studies that have variously reported decreased and increased
connectivity. The reports of increased connectivity (Bai et al.,
2009; Qi et al., 2010; Gour et al., 2011) may have reflected
unique attributes of particular protocols or the choices made with
respect to pre-processing steps, for example using global signal
regression (Saad et al., 2012). Given that our sample size estimates
suggest the use of hundreds of subjects to obtain adequate
statistical power, it is not surprising that discrepancies between
our results and previous findings generated from smaller,
likely underpowered, studies exist. Even when we examined
the samples in our study (ADNI2-Achieva, ADNI2-Gemini,
ADNI2-Ingenia, ADNI2-Intera, CRIUGMa, CRIUGMb, MNI)
independently of each other, we found inconsistent effects among
the samples. It is only by combining the studies together in a
meta-analysis that we were able to find some common differences
in functional connectomes between patients with aMCI and CN.
This finding underscores the need for multisite studies with
large sample sizes in order to generate reproducible results, as
previously suggested in the field of autism research (Haar et al.,
2014).

Among our study’s limitations is that it was not possible to
model each of the 13 ADNI2 sites independently because the
sites tended to be small and unbalanced in the numbers of
patients and controls. We therefore chose to model each scanner
model within ADNI2 separately based on the recommendation
of a reviewer. A previous version of the analysis (published as
a preprint9) had not modeled the different scanner models in
ADNI2 and instead treated ADNI2 as a single site. This previous
analysis yielded fewer significant findings, but the results were
still mostly consistent with what is reported here. Our results
suggest that modeling scannermodels may have a positive impact
on fMRI association studies, but further experiments would be
required to confirm that this trend is reproducible. We must
also note that the METAL averaging is only representative of
the specific samples that were averaged, especially using only

9http://dx.doi.org/10.1101/019646.
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Philips and Siemens scanners, and it is unclear how our findings
may replicate in other studies that would employ a different
combination of protocols, say using GE scanners. In particular,
our sample size estimates have to be interpreted with caution.
They may first be under-estimated, because they were not
derived from pre-specified locations, but rather associated with
the connections showing the largest effects in our particular
sample. These sample sizes were also derived from a meta-
analysis combining particular types of studies. We only had 3T
scanners from two manufacturers, Siemens and Philips. For the
Siemens studies, all were from the same model. For the Philips
studies, the scanning protocol was identical at every site, and
only the scanner model varied across scanners. Finally, a fairly
large number of patients and controls (generally more than 10
subjects per group) was scanned for each variant of the scanning
protocol. The sample size estimate may turn out quite differently
for a single site study or on the contrary for a study with a
very large number of sites and with only a few subjects per
site.

Our study is also limited by its cross-sectional nature, which
precludes inference that the functional changes we found would
necessarily predict progression toward Alzheimer’s dementia.
Furthermore, aMCI has many underlying causes aside from AD.
It is possible that some subjects in our cohort had cognitive
impairments due to Lewy Body dementia, for example. However,
all samples in the current study had inclusion criteria that
enriched for subjects that had aMCI likely due to AD and
excluded aMCI subjects with other co-morbidities, such as
depression or Parkinson’s disease. Also, we did not account
for structural atrophy, despite a bias for increased detection in
functional differences due to differences in underlying structure
(Dukart and Bertolino, 2014). However, aMCI-related gray
matter changes likely co-localize to some extent with functional
changes, and the aim of our work was to map out functional
changes rather than study their interaction with atrophy. We
did not account for other variables, such as APOE genotype
(Sheline et al., 2010a), amyloid deposition (Sheline et al., 2010b),
presence of neurofibrillary tangles (Maruyama et al., 2013),
and cerebrovascular mechanisms (Villeneuve and Jagust, 2015).
At least some of these could potentially have explained the
observed aMCI-related functional connectivity changes as part
of an underlying disease mechanism. Large-scale multimodal
studies, incorporating genomics, proteomics, and multimodal
imaging will be needed to identify the interactions between
these and other physiological facets of the pathology. Despite
combining several samples together, we still only achieved
relatively limited power, given that sample size estimates required
at least 140 to over 600 total subjects to consistently identify
effects between groups. Lastly, because of the explorative
approach used in our study, the resulting estimates of effect sizes
may have been inflated and discussion of possible pathological
mechanisms for our findings was speculative. However, our
discoveries may be used as follow-up targets in future work.
Upcoming research should not only attempt to verify our
findings by using these regions and their associated connections
with hypothesis-driven approaches (e.g., seed-based correlation
analyses), but also to extend them to cohorts that include

Alzheimer’s dementia and other clinical populations (e.g., CN
with significant amyloid deposition) and to longitudinal studies
that characterize individuals’ progression to dementia. Finally,
future studies should aim to determine whether our findings
are associated with established biomarkers of AD (e.g., amyloid
and tau quantification) in order to probe the potential of these
functional connections as biomarkers.

Overall, our results supported previous findings of DMN
connectivity changes in AD and MCI (Greicius et al., 2004; Sorg
et al., 2007), given that three of the identified seeds (superior
medial frontal cortex, dorsomedial prefrontal cortex, middle
temporal lobe) are part of this network. It is noteworthy, however,
that our strongest observed effects reported here were not in
the same DMN regions typically described in earlier resting-
state studies of MCI and AD, viz, posterior cingulate/precuneus
(Sheline et al., 2010b; Zhang et al., 2010). Unexpected changes
were also found in the striatum, and this may reflect the
advantages of “mining” the whole-brain connectome to search
for new biomarkers of mild cognitive impairment and possibly
the early progression of the pathophysiologic substrate of
Alzheimer’s disease. If confirmed, our results could suggest the
utility of these regions in resting-state fMRI as a biomarker
endpoint in clinical trials.
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Abstract Introduction: We performed a systematic review andmeta-analysis of the Alzheimer’s disease (AD)
literature to examine consistency of functional connectivity alterations in AD dementia and mild
cognitive impairment, using resting-state functional magnetic resonance imaging.
Methods: Studies were screened using a standardized procedure. Multiresolution statistics were
performed to assess the spatial consistency of findings across studies.
Results: Thirty-four studies were included (1363 participants, average 40 per study). Consistent
alterations in connectivity were found in the default mode, salience, and limbic networks in patients
with AD dementia, mild cognitive impairment, or in both groups.We also identified a strong tendency
in the literature toward specific examination of the default mode network.
Discussion: Convergent evidence across the literature supports the use of resting-state connectivity
as a biomarker of AD. The locations of consistent alterations suggest that highly connected hub
regions in the brain might be an early target of AD.
� 2017 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

Keywords: Resting-state fMRI; Functional connectivity; Alzheimer’s disease; Mild cognitive impairment; Meta-analysis

1. Introduction

Alzheimer’s disease (AD) exists on a continuum
comprising a lengthy preclinical stage, a middle stage of
mild cognitive impairment (MCI), and a final stage of
dementia [1]. Symptoms usually start around the age of 65

years, except in rare patients with early onset (33–60 years)
autosomal dominant AD (ADAD) [2,3]. Drugs currently
available for AD provide limited short-term treatment of
AD symptoms [4]. Trials of disease-modifying therapies
for AD dementia patients have been unsuccessful, likely
because intervention at this stage is too late to affect the
neurodegenerative process. The focus now is on therapeutic
intervention at the MCI and/or preclinical disease stages,
with delay of dementia onset constituting a major clinical
end point for clinical trials [1]. This approach depends on
the identification of biomarkers that can aid early AD diag-
nosis [1,5]. Currently, validated AD biomarkers are (1) low
cerebrospinal fluid (CSF) amyloid-b 42 levels and/or high
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amyloid tracer retention on positron emission tomography
(PET), indicating brain amyloidosis; (2) high CSF tau
levels, indicating neuronal injury; (3) temporoparietal
pattern of reduced 18F-fluorodeoxyglucose uptake on PET,
indicating brain hypometabolism, and (4) patterns of brain
atrophy on structural magnetic resonance imaging (MRI),
indicating neurodegeneration [1,6].

Connectivity in resting-state functional magnetic reso-
nance imaging (rsfMRI) is an emerging AD biomarker that
holds promise for early diagnosis [1,5,7]. RsfMRI
indirectly measures neural processing in the brain using
blood oxygenation and can be used to identify spatially
distributed networks [8]. The National Institute on Aging–
Alzheimer’s Association lists rsfMRI functional connectiv-
ity as a potential biomarker of neuronal injury, at an early
stage of validation [6]. The existing literature is indeed
mostly composed of proof-of-concept cross-sectional com-
parisons of cognitively healthy elderly individuals with
patients suffering from mild (MCI) or severe (dementia)
AD symptoms.

To date, multiple studies have reported intrinsic connec-
tivity network (ICN) disturbances in patients with AD
dementia and MCI, presymptomatic ADAD mutation car-
riers, and cognitively normal individuals carrying the at-
risk APOEε4 allele and/or showing evidence of amyloidosis
[9–12]. Despite such promising findings, the overall effect of
AD on ICNs remains poorly characterized because of
several inconsistencies in the literature, such as different
acquisition protocols, processing methods, and/or
exclusion/inclusion criteria [13]. Our aim was to perform a
systematic review and meta-analysis to examine the consis-
tency of intrinsic connectivity alterations in MCI and late-
onset AD (LOAD) dementia across the literature. We also
reviewed the burgeoning literature on connectivity abnor-
malities in ADAD and the at-risk APOEε4 genotype.

2. Methods

2.1. Literature search

We conducted a systematic review of PubMed articles up
to December 3, 2015 in accordance with the Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses
guidelines [14]. Search terms and combinations used are
provided in Supplementary Table 1. Results were filtered
for duplicates within each of the two main search categories,
that is, AD dementia or MCI patients (Fig. 1). Unique search
results underwent further screening as described subse-
quently.

2.2. Study selection

Search results were subjected to two successive screen-
ings with increasingly stringent criteria. The initial screen
was performed on article abstracts. An article was included
if the abstract indicated that it was a peer-reviewed original
research article written in English and used rsfMRI to study

LOAD and/orMCI in humans. Reviews, letters, case reports,
and studies with subjects in whom MCI was associated with
other diseases were omitted. Following the initial screening,
we applied the following inclusion criteria: (1) used seed-
based or independent component analysis rsfMRI methods;
(2) investigated functional connectivity between patients
(AD dementia or MCI) and age-matched healthy controls
(HC); and (3) reported peak coordinates of significant statis-
tical differences in average connectivity between groups and
the direction of difference.

2.3. Data extraction

One reviewer (A.B.) conducted the searches and screened
for duplicates. Two reviewers (A.B. and A.T.) independently
screened all unique search results for potential inclusion in
the meta-analysis. Only articles passing both reviewers’
approval were considered for final inclusion. For each
“included” article, coordinate data of significant between-
group comparisons, such as AD versus HC, were transcribed
by one reviewer and checked by two others (second reviewer
[A.T.] and F.H.).

2.4. Meta-analysis

We performed complementary network- and voxel-based
quantitative meta-analyses on six main group comparisons:
pooled group with AD dementia and MCI patients termed
ADMCI , HC, ADMCI . HC, MCI , HC, MCI . HC,
AD , HC, and AD . HC. Although the voxel-based
meta-analysis has finer spatial resolution for findings with
high anatomic consistency, we assumed the network-based
approach would have better sensitivity for detecting consis-
tent involvement of anatomically distributed networks. Co-
ordinates from articles using the same cohort were pooled
under the PubMed unique identifier or PMID of the earliest
publication and treated as results from a single study to avoid
counting the cohort multiple times. Henceforth, an individ-
ual article will be referred to as a “study” and a group com-
parison yielding network and/or localization information
(e.g., ADMCI , HC) as a “contrast.”

2.4.1. Network-based statistics
We performed network-based statistics on seed coordi-

nates (seed statistics) to assess whether seed regions were
preferentially selected from within certain networks in the
literature.We also performed network-based statistics on co-
ordinate data of significant contrasts (contrast statistics) to
assess the consistency of network-level findings in the AD
literature. In particular, we performed three types of contrast
statistics: (1) all coordinates irrespective of seed network;
and given the focus on the default mode network (DMN) in
the literature, (2) coordinates associated with seeds inside
the DMN only; and (3) coordinates associated with seeds
outside the DMN, that is, non-DMN seeds. All analyses
were conducted using a multiresolution atlas of group-level
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functional brain parcellations derived from an independent
rsfMRI data set, the Bootstrap Analysis of Stable Clusters–
Cambridge atlas (https://dx.doi.org/10.6084/m9.figshare.
1285615.v1) [15]. This atlas consists of nine functional par-
cellations capturing successively finer levels of spatial detail,
of which we used parcellations at two resolutions: the first
comprised seven commonly used large-scale networks

(R7 atlas) and the second containing 36 networks (R36 atlas).
We used R7 and R36 atlases for contrast statistics and only
the R7 atlas for seed statistics. Because seeds were assigned
indirectly for studies where coordinates were not provided,
indirect assignment could not be performed with sufficient
precision to use the R36 atlas. Assignment of seeds to one
of the R7 networks was based on published coordinates,

Fig. 1. Flowchart of the study selection process. Selection process for AD and MCI studies included in the meta-analyses. Studies using rsfMRI methods dis-

similar to seed-based and ICA methods, such as degree centrality or graph theory, amplitude of low-frequency fluctuations, and regional homogeneity were not

included. Abbreviations: AD, Alzheimer’s disease; EEG, electroencephalogram; ICA, independent component analysis; MCI, mild cognitive impairment;

MEG, magnetoencephalography; rsfMRI, resting-state functional magnetic resonance imaging.
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when available. When only anatomic labels were provided
for seed regions, network assignment was based on (1) the
center of gravity in MNI space or (2) visual approximation
if no further information was available. For independent
component analysis-based studies, network assignment
was based on (1) network coordinates when provided or
(2) visual assignment to one or more of the seven networks
based on the degree of spatial overlap.

We tested the spatial consistency of both seed and peak lo-
cations using the following approach. For each study, we
computed the number of coordinates falling within each
network, after conversion of Talairach space coordinates
into MNI space using the Lancaster transform [16], when
necessary. Coordinates falling outside of the gray matter
mask (ICBM152) were assigned to the closest network. To
remain unbiased to the number of coordinates reported per
study, we computed the ratio of coordinates falling within
each network to the total number of coordinates reported
per study. This ratiowas then averaged across studies. The sig-
nificance of findings was assessed using Monte Carlo permu-
tation tests. Using the total number of coordinates per study,
we generated a random assignment of coordinates to net-
works, taking into consideration the volume of each network.
Coordinate counts per network were normalized as described
previously, followed by an averaging across studies. This
Monte Carlo sampling process was repeated 10,000 times.
Thereafter, we compared the distribution of the average fre-
quency obtained from the random sampling with the fre-
quency obtained from the meta-analysis, resulting in P
value estimates [17]. Multiple comparisons across networks
were accounted for using a false discovery rate (FDR) proced-
ure (qFDR, 0.05) [18]. TheP values less than .05 that did not
survive multiple comparisons were deemed as “trends.”

2.4.2. Voxel-based statistics
Voxel-level statistical analysis was performed using acti-

vation likelihood estimation (ALE), a widely used algorithm
for coordinate-based meta-analysis of neuroimaging studies.
ALE aims at delineating brain regions with above-chance
convergence of reported coordinates across experiments
[19]. Coordinates falling outside the gray matter mask
were removed from the analysis. We used the in-house
ALE algorithm implementation in MATLAB version
8.3.0.532, which treats each of the coordinates in a given
experiment as a three-dimensional gaussian probability dis-
tribution centered at the given coordinate. The probability
distributions acknowledge the spatial uncertainty associated
with each experiment. For any given study, the width of the
spatial uncertainty of its coordinates is determined based
on empirical data on the between-subject and between-
template variances representing the main components of
this uncertainty [19]. Then, the probability distributions of
all coordinates per included study are combined for each
voxel, generating a modeled activation (MA) map. To limit
the effect of multiple coordinates very close to one another
within a given study, we used the “nonadditive” approach,

which calculatesMAmaps by taking themaximumprobabil-
ity across overlapping gaussians [19]. ALE scores were
computed on a voxel-by-voxel basis by taking the union
across these MA maps. To distinguish between “true” and
random convergence between studies (i.e., noise), ALE
scores were compared with a null distribution reflecting a
random spatial association between experiments (10,000
permutations). Nonparametric P values were assessed at a
familywise error-corrected threshold of P, .05 on a cluster
level (cluster-forming threshold: P, .001 at voxel level) and
transformed into t scores for display purposes. Only contrasts
including more than 18 experiments were considered, as rec-
ommended in a recent large-scale simulation study [20].

3. Results

3.1. Search results

The results of the initial search, along with studies sys-
tematically excluded from inclusion in our rsfMRI meta-
analyses are presented in Fig. 1. Thirty-four studies totaling
1363 subjects (post pooling of identical cohorts) met our in-
clusion criteria and were included in the meta-analysis. The
total included 352 MCI, 378 AD dementia (specifically
LOAD), and 633 HC. Diagnostic criteria used per study
for MCI and AD dementia are provided in the
Supplementary Material (Supplementary Table 2 and Sec-
tion 2). The bulk (54%) of the studies had 20 or less subjects
per group. Twenty studies (66.7%) investigated rsfMRI con-
nectivity measures with other domains, cognition beingmost
frequent (n5 11/22 AD studies, n5 9/15 MCI studies), and
few with levels of amyloid burden using Pittsburgh com-
pound B (n 5 3), brain atrophy (n 5 3), and structural con-
nectivity (n5 1). Alterations in functional connectivity were
often (n5 5/9 studies) reported to be significantly correlated
with episodic verbal learning and memory in MCI cohorts.
Table 1 provides additional characteristics of the included
rsfMRI studies, including scanner make, model, and
strength, and seed region and/or ICN investigated. A sum-
mary of commonly used preprocessing steps utilized by
the studies present in our meta-analysis are provided in
Supplementary Table 3.

3.2. Network-based meta-analysis

3.2.1. Seed statistics
Using network-level statistics, we demonstrated that a

disproportionately large number of studies specifically tar-
geted the DMN (Fig. 2) irrespective of the population
(ADMCI, MCI, or AD dementia) being studied.

3.2.2. Contrast statistics
We first examined R7 network-level statistics and all

seeds combined. Aberrant functional brain connectivity
was observed in ADMCI, MCI, and AD, relative to HC
(Fig. 3). In the ADMCI cohort, we found both significant
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Table 1

Characteristics of rsfMRI studies included in the meta-analysis

Study N

AD HC AD

Scanner Method Seed region/ICN investigatedn M F Age SD n M F Age SD ,HC .HC

Wang et al. [63] 28 14 7 7 70.2 6.3 14 7 7 69.6 5.5 x 1.5 T S SB PCC

Zhang et al. [64]a 32 16 6 10 71.6 5.1 16 7 9 71.3 4.9 x x 1.5 T P SB PCC

Zhang et al. [65]a 55 39 18 21 73.4 16 7 9 71.3 4.9 x x 1.5 T P SB PCC

Sheline et al. [66] 83 35 48 x x 3.0 T S SB Precuneus

Zhou et al. [52] 24 12 5 7 63.3 7.7 12 5 7 62.0 x x 1.5/3.0/4.0 T S/GE/B SB and ICA AG (l), pregenual ACC (r)

Gili et al. [67]* 21 11 7 4 71.9 7.9 10 7 3 64.1 10.5 x 3.0 T S SB and ICA PCC, mPFC

Wu et al. [68]b 31 15 6 9 64.0 8.3 16 7 9 65.0 9.2 x 3.0 T S ICA DMN

Li et al. [69]b 31 15 6 9 64.0 8.3 16 7 9 65.0 9.2 x 3.0 T S ICA ATN (d, v)

Damoiseaux et al. [70] 39 21 9 12 64.2 8.7 18 12 6 62.7 10.3 x x 3.0 T GE ICA DMN (a, p, v), SMN

Binnewijzend et al. [71]y 82 39 23 16 67.0 8.0 43 23 20 69.0 7.0 x 1.5 T S ICA DMN, working memory (l, r), visuospatial

attention (d), spatial attention (v), SMN,

auditory language, prVIS, sVIS, basal

ganglia cerebellum

Kenny et al. [72] 32 16 77.3 8.9 16 76.3 8.3 x 3.0 T P SB Hippocampus (l, r), PCC, precuneus, prVIS

Zhu et al. [73]y 22 10 7 3 72.9 7.9 12 5 7 73.8 6.5 x 3.0 T GE SB ICC (l, r)

Balthazar et al. [74] 37 20 73.9 8.2 17 72.3 6.4 x x 3.0 T P ICA DMN (d, v), SN (a, p)

Yao et al. [75]c,y 62 35 12 23 72.4 8.5 27 16 11 69.2 6.5 x 3.0 T GE SB Amygdala (l, r)

Zhou et al. [76]c,y 62 35 12 23 72.4 8.5 27 16 11 69.2 6.5 x x 3.0 T GE SB T

Zhang et al. [77]c,y 62 35 12 23 72.4 8.5 27 16 11 69.2 6.5 x 3.0 T GE SB MrD (l, r)

Gour et al. [29] 28 14 6 8 75.1 2.9 14 4 10 72.8 3.0 x x 3.0 T S SB PCC, perirhinal cortex (l, r), dlPFC (l, r)

Weiler et al. [78] 48 22 6 16 73.4 5.7 26 6 20 70.0 6.6 x x 3.0 T P SB PCC, Wernicke’s (l); Broca’s (l), dlPFC

(l, r), saVC

Balachandar et al. [79] 30 15 9 6 67.3 6.6 15 9 6 64.4 8.9 x x 3.0 T S ICA DMN, thalamic, ECN

Pasquini et al. [80]* 43 21 8 13 72.3 8.6 22 6 16 66.3 9.0 x x 3.0 T P ICA DMN (a, p)

Adriaanse et al. [28] 59 28 17 11 72.0 4.9 31 17 14 72.0 4.3 x 1.5 T S ICA DMN, VIS (med, lat), AN, SMN, ECN,

dorsovisual (l, r)

Yi et al. [81]* 23 11 1 10 64.2 2.4 12 3 9 71.8 1.2 x 3.0 T GE ICA DMN, SN

(Continued )
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Table 1

Characteristics of rsfMRI studies included in the meta-analysis (Continued )

Study N

MCI HC MCI

Scanner Method Seed region/ICN investigatedn M F Age SD n M F Age SD ,HC .HC

Sorg et al. [82] 40 24 13 11 69.3 8.1 16 10 6 68.1 3.8 x 1.5 T S ICA VIS, AN, ATN (v), spatial attention, DMN

Bai et al. [83] 56 30 15 15 72.5 4.4 26 12 14 71.6 5.3 x x 1.5 T GE SB PCC

Gili et al. [67]* 20 10 6 4 71.2 4.1 10 7 3 64.1 10.5 x 3.0 T S SB and ICA PCC, mPFC

Bai et al. [84] 44 26 19 7 71.4 4.3 18 10 8 70.3 4.7 x 1.5 T GE ICA DMN

Xie et al. [85] 56 30 19 11 72.6 4.8 26 14 12 70.3 4.8 x 1.5 T GE SB Postcentral gyrus (l), hippocampus (l),

medialFC (l), middleFC (l), precuneus

(l, r), insula (l, r)

Jin et al. [86] 16 8 5 3 60.6 3.2 8 4 4 60.9 8.3 x x 3.0 T GE ICA DMN

Han et al. [87] 80 40 7 33 86.3 4.5 40 15 25 86.3 4.5 x x 1.5 T GE SB PCC

Liang et al. [88] 32 16 6 10 68.5 7.8 16 6 10 67.2 8.4 x x 3.0 T S SB AG (l, r), supramarginal gyrus (l, r),

intraparietal sulcus (r)

Hahn et al. [89]y 54 28 14 14 69.5 7.1 26 10 16 65.5 7.8 x 3.0 T P ICA DMN (a, p), ATN (d, v), ECN (l, r),

SMN, VIS

Myers et al. [90] 35 23 14 9 69.3 7.4 12 5 9 63.8 5.2 x 3.0 T P ICA DMN (a, p), ATN (l, r, d), SN, prAN

Koch et al. [91] 40 24 14 10 68.2 8.4 16 7 9 64.8 5.4 x 3.0 T P ICA DMN (a, p), ATN (l, r, d), SN, prAN

Pasquini et al. [80]* 44 22 11 11 65.3 8.7 22 6 16 66.3 9.0 x 3.0 T P ICA DMN (a, p)

Das et al. [92] 69 30 14 16 71.6 6.8 39 18 21 70.6 9.0 x 3.0 T S SB Hippocampal subregions

Gardini et al. [93] 42 21 13 8 70.6 4.7 21 7 14 69.8 6.5 x 3.0 T GE SB PCC, mPFC

Yi et al. [81]* 32 20 4 16 71.0 12 3 9 71.8 1.2 x x 3.0 T GE ICA DMN, SN

Abbreviations: a, anterior; ACC, anterior cingulate cortex; AD, Alzheimer’s disease; AG, angular gyrus; AN, auditory network; ATN, attentional network; B, Brucker; d, dorsal; dlPFC, dorsolateral prefrontal

cortex; DMN, default mode network; ECN, executive control network; F, female; GE, General Electrics; HC, healthy control; ICA, independent component analysis; ICC, isthmus of cingulate cortex; ICN,

intrinsic connectivity network; l, left; lat, lateral; M, male; MCI, mild cognitive impairment; med, medial; medialFC, medial frontal cortex; middleFC, middle frontal cortex; mPFC, medial prefrontal cortex;

MrD, marginal division; n, number of subjects; p, posterior; P, Philips; PCC, posterior cingulate cortex; prAN, primary auditory network; prVIS, primary visual network; r, right; rsfMRI, resting-state functional

magnetic resonance imaging; S, Siemens; saVC, secondary associative visual cortex; SB, seed based; SMN, sensorimotor network; SD, standard deviation; sVIS, secondary visual network; T, Tesla; v, ventral.

NOTE. Data provided in “bold” indicate seven studies using shared cohorts. Coordinates from these seven studies were subsequently pooled under four studies (indicated by superscript letters a, b, and c), under

the corresponding earliest publication using the cohort. In column “Method”, when both seed-based and ICA rsfMRI methods were used by a study, the method given in “italics” indicates the method associated

with reported coordinates. For column “Seed region/ICN investigated”, all seed regions and ICNs investigated are listed, irrespective of significant findings.

*Studies reporting significant coordinates for both AD and MCI patients, relative to matched HC.
yStudies investigating both AD dementia and MCI cohorts.
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hypoconnectivity and hyperconnectivity in the DMN. Sig-
nificant hyperconnectivity in the DMN and limbic network
(LIM) was observed in the MCI cohort. There was also sig-
nificant hypoconnectivity in the DMN for the AD group,
which appeared as a trend for the MCI group.

We then refined the spatial localization of effects found
in R7 using the R36 atlas. Significant DMN hypoconnec-
tivity in AD and ADMCI cohorts was detected in the pre-
cuneus (PCu) and posterior cingulate cortex (PCC)
(Fig. 4). A trend for DMN hyperconnectivity was observed
in the PCu for ADMCI and in both the PCu and PCC in
MCI (Fig. 4). The LIM hyperconnectivity was observed
as a trend in the hippocampus and entorhinal cortex in
MCI patients (Fig. 4).

Finally, we investigated the robustness of findings with
respect to the selection of seeds (DMN, non-DMN, or all
combined), using the R7 atlas. Significant network-level
findings derived from all seeds combined, as reported previ-
ously, replicated when using DMN seeds alone (Fig. 3A). In
addition, a trend toward hypoconnectivity in MCI became
significant using DMN seeds only. When focusing on non-
DMN seed studies, no significant effects were observed in
the DMN, as expected. The only significant result was
hyperconnectivity of the salience network (SAL) in
ADMCI, also present as a trend in AD subjects.

3.3. Voxel-based meta-analysis

ALE results demonstrated significant hypoconnectivity
in the PCC and PCu in the ADMCI and AD studies
(Fig. 5, Supplementary Table 4), consistent with our
network-level findings using R7 and R36 atlases. This obser-
vation was made both for all seeds combined and DMN-only
seeds (Fig. 5, Supplementary Table 4).

Unlike the network-level analysis, using ALE we found
diminished connectivity in the primary visual cortex, both
in ADMCI and AD. This was observed for all seeds com-
bined as well as for DMN-only seeds in ADMCI and
DMN-only seeds in AD. Finally, significant hyperconnectiv-
ity was observed in AD in the anterior insula (Fig. 5,
Supplementary Table 4), consistent with the trend in the
LIM observed using the R36 atlas.

4. Discussion

We report on a systematic meta-analysis of rsfMRI brain
connectivity dysfunction in LOAD, using voxel-, region-,
and network-level statistics. Our results demonstrated
consistent connectivity alterations both within and outside
of the DMN.

4.1. Connectivity changes in the DMN

4.1.1. Late-onset AD
Our results revealed a consistent decrease in DMN con-

nectivity in the ADMCI and AD cohorts, particularly in
the PCu and PCC, for all resolutions of meta-analysis.
This finding is in line with previous meta-analyses centered
on the DMN [21,22], and a recent study published after we
completed our analysis [23]. DMN deterioration appears
robust to the choice of analytical approaches, as previous
meta-analyses largely included studies measuring regional
homogeneity and amplitude of low-frequency fluctuation.
Moreover, our results support previous literature reporting
on the vulnerability of the DMN to multiple AD pathophys-
iology [24].

Unlike our robust findings in AD subjects, DMN
hypoconnectivity in MCI could only be demonstrated
using network-level statistics, suggesting a weaker, more
distributed effect in MCI. However, we recently reported
decreased DMN connectivity in a large multisite MCI cohort
with a connectome-wide approach [13]. The modest findings
of our present meta-analysis may be because of a lack of sta-
tistical power from having multiple, small, single-site sam-
ples. Clinical heterogeneity might also have played a role,
that is, only a subset of MCI patients develop AD dementia
[6,25], and there may be pathologic subtypes [26]. We also
demonstrated DMN hyperconnectivity in MCI and ADMCI
using network-level statistics. These changes may reflect
both functional disconnection and compensation in response
to damage at earlier stages of neurodegeneration, as well as
direct or indirect pathologic mechanisms [27]. Moreover,
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there is some uncertainty of the specific nodes that actually
show aberrant connectivity in our network-level analysis.
This may give rise to apparent contradictory results.

4.1.2. Early onset AD
DMN hypoconnectivity of similar magnitude to LOAD

was demonstrated in early onset non–ADAD [28,29],
whereas in ADAD, DMN hypoconnectivity was slightly
more pronounced than that in LOAD [30]. Altered DMN
connectivity was observed in asymptomatic mutation
carriers (PSEN1, PSEN2, or APP) many years before the
age at which they were expected to develop symptoms
[31–33], suggesting that aberrant connectivity may be a
very early biomarker for AD.

4.1.3. Cognitively normal individuals at genetic risk for
LOAD

Altered DMN connectivity has been reported in cogni-
tively normal APOEε4 carriers compared with non-APOEε4
carriers. These alterations were found across all age groups,
that is, elderly [12,34–36], middle-aged [37–39], and young

adults [40,41], and were associated with worse cognition in
middle-aged and elderly carriers [35,37,39]. Studies have
also reported connectivity changes in the DMN in the
absence of Pittsburgh compound B–detectable brain
amyloidosis [12,40,41], further validating the potential of
rsfMRI connectivity as an early marker of synaptic and
neuronal dysfunction in AD.

4.1.4. Cognitively normal elderly at risk for LOAD
Aberrant DMN dysconnectivity, particularly reduced

connectivity between the anterior and posterior DMN, has
been associated with aging and age-related cognitive decline
[33,42]. DMN hypoconnectivity may arise as early as
middle age [43,44], with decreases occurring at differing
rates between sexes [45] most likely due to the differential
effect of sex on AD risk [46]. Reduced DMN integrity has
also been reported in cognitively normal elderly with
abnormal levels of CSF amyloid or tau proteins [47], as
well as PET-detectable cerebral amyloidosis [48]. These re-
sults suggest that some of the effects related to normal aging
in the literature may be driven by preclinical AD. Very few
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studies examined the interactions between age, sex, LOAD,
and rsfMRI connectivity, which is clearly an important
avenue for future work.

4.2. Connectivity changes outside the DMN

Our meta-analysis confirmed that intrinsic connectivity
disruptions in LOAD are not confined to the DMN. We
found increased connectivity in the SAL in ADMCI and
AD. Abnormal SAL connectivity has now been reported in
another LOAD study [49] published after we completed
our meta-analysis and has also been demonstrated in
ADAD [30], APOEε4 carriers [36,37], and the elderly
[50], with connectivity increases highlighted in APOEε4
carriers. With the anterior insula as a key hub, the SAL plays
a pivotal role in network switching between the DMN and
frontoparietal network (FPN), two networks exhibiting
competitive interactions during cognitive information
processing [51]. Association of heightened SAL connectiv-
ity with reduced DMN connectivity in AD suggests that pro-
gressive DMN impairment may be deleterious to SAL
function [52].

We also found increased connectivity in the LIM in
MCI. Heightened LIM connectivity has been reported in

early onset, non-ADAD patients [29], and in individuals
with subjective memory impairment [53]. The effect of
APOEε4 carriage on LIM connectivity, however, lacks
consensus [54–56]. Since LIM hyperconnectivity in
early onset AD patients was shown to correlate
positively with memory performance, it is likely that
increased connectivity in this network contributes to
preserving function in the face of medial temporal lobe
pathology [29].

4.3. Selective vulnerability of multimodal networks in AD

The DMN, SAL, and FPN are multimodal networks
that interconnect cortical regions associated with various
cognitive functions, and they have been demonstrated
computationally to support integrative information pro-
cessing at the cost of being vulnerable to early and
fast spreading of insults [57]. Supporting this theoretical
finding is the recent observation that tau and amyloid-b,
despite their independent patterns of spatial deposition,
overlap with brain tissue loss in hub regions of multi-
modal networks [58]. These multimodal networks are
also metabolically expensive and display higher rates of
cerebral blood flow, aerobic glycolysis, and oxidative
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glucose metabolism [59]. The high-value/high-cost char-
acteristics of the DMN, SAL, and FPN may make
them vulnerable to AD-associated pathogenic processes,
such as metabolic dysfunction/oxidative stress, and accu-
mulation of toxic proteins, such as amyloid-b [59]. The
hypothesis that multimodal networks/regions are particu-
larly susceptible to AD-associated pathophysiological
processes may explain our finding of consistent alter-
ations of these networks.

4.4. Limitations

Our literature search did not identify an abundance of
rsfMRI literature in AD and MCI cohorts, which clearly
expresses the need for additional research. The relatively
low number of experiments that met our inclusion criteria
might have underpowered our voxel-level findings, espe-
cially for the MCI contrasts. In addition, our search
demonstrated that typical studies featured small samples,
and also that analytical methods were quite variable in
the field (a main reason for excluding an article was
due to methodology used). This setting is particularly
amenable to questionable research practices, including

“p-hacking” (testing several methods, reporting only
one). Given the near absence of negative results reporting
in the field, on one hand, and the large size of the
rsfMRI field, on the other hand, there is no question
that some amount of publication bias is also present.
Meta-analytical tools, such as funnel plots, are available
to detect both selective reporting and p-hacking but are
not feasible given current reporting practices in the
rsfMRI community [60].

Another limitation of our study is experimental heteroge-
neity, in terms of population recruitment, scan acquisition
(e.g., scanner make and model, scanning parameters), and
processing choices [13,20,61]. The prominence of the
DMN in our results partly reflects the focus on this
network in the literature, which we quantified using seed
statistics. Hypothesis-driven analyses on the DMN are
attractive for assessing connectivity changes in small sam-
ples; as such analyses will have good statistical power if
the DMN truly carries the larger effects in the brain. Howev-
er, full-brain studies will be required to get a more compre-
hensive view on AD-related changes in rsfMRI network
connectivity using meta-analyses. The current trend toward
large public samples [13,62] is enabling unbiased meta-
analyses, pooling neuroimaging data across many studies
instead of relying on published coordinates. This will
hopefully resolve most of the aforementioned limitations
in the future.

5. Conclusions

Our meta-analysis demonstrated consistent connectivity
alterations in the DMN, SAL, and LIM in the spectrum of
LOAD, supporting the use of resting-state connectivity as
a biomarker of AD.
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RESEARCH IN CONTEXT

1. Systematic review:We conducted a systematic review
of PubMed-indexed resting-state functional magnetic
resonance imaging (rsfMRI) studies in accordance
with the “Preferred Reporting Items for Systematic
Reviews andMeta-Analyses” guidelines.We included
studies that investigated differences in functional
connectivity, relative to controls, between patients
with Alzheimer’s disease (AD) and/or mild cognitive
impairment, and reported coordinates of findings.

2. Interpretation: Typical rsfMRI functional connectivity
studies in AD suffer from low statistical power. Our
meta-analysis quantifies if and where convergent find-
ings have been reported in the literature and strengthens
the evidence for the use of rsfMRI as anAD biomarker.

3. Future directions: A disproportionately large portion
of studies specifically investigated the default mode
network, based on well-grounded hypotheses on
AD pathophysiology. It is unclear if AD truly has
larger effects on default-mode connectivity because
of limited power to examine other networks. Future
research should aim for full-brain investigations us-
ing larger study populations.
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Highlights (4 max, 80 characters) 
 
• Functional brain network subtypes associated with cognitive impairment in AD 
 
• Symptom-related subtypes found in the default-mode, limbic and salience networks  
  
• A limbic subtype was associated with familial risk of AD in healthy older adults  
  
• Limbic subtypes associated with beta amyloid deposition and ApoE4 

 

In Brief (40 words) 
 
Orban et al. characterized the heterogeneity of functional connectivity networks in older 
adults and found network subtypes associated with AD-related clinical symptoms in 
patients, as well as associations with several AD biomarkers and risk factors in 
asymptomatic individuals. 

 

Summary (150 words) 
  
Brain degeneration is heterogeneous across individuals, yet this topic has not yet been 
investigated for functional brain networks, a promising biomarker of Alzheimer’s 
disease. In this study, resting-state functional magnetic resonance imaging was coupled 
with cluster analysis to capture connectivity subtypes in older adults. Subtypes were first 
identified in a mixed sample comprised of healthy controls and patients with mild 
cognitive impairment or Alzheimer’s dementia, and associations with symptoms were 
found in the default-mode, limbic and salience networks. A limbic subtype was then 
found to be over-represented in an independent, asymptomatic cohort at familial risk of 
Alzheimer’s disease. Other limbic subtypes showed associations with known 
biomarkers or risk factors for Alzheimer’s disease such as cerebrospinal fluid Aβ1-42 
levels. Our results demonstrate the heterogeneity of functional brain network 
organization in older adults, and support future investigations in subtypes of functional 
connectivity in the limbic network as early biomarkers of Alzheimer’s degeneration.  
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Introduction 
 
Alzheimer's disease (AD) is a chronic neurodegenerative disorder that gives rise to the 
most common form of dementia, manifesting with severe memory and cognitive 
impairments. However, the clinical expression of AD only becomes apparent decades 
after the development of neuropathological processes, such as the accumulation of 
amyloid beta (Aβ) plaques and tau neurofibrillary tangles in the brain. The long 
preclinical buildup of AD pathology opens the opportunity to prevent, rather than repair, 
neurodegeneration (Dubois et al., 2016; Sperling et al., 2012). Functional brain 
connectivity measured with resting-state functional magnetic resonance imaging (rs-
fMRI) may be able to capture early synaptic dysfunction in AD (Selkoe, 2002; 
Tampellini, 2015) and is thus emerging as a very promising biomarker candidate for the 
diagnosis of AD at the clinical and preclinical stages (Badhwar et al., 2017; Brier et al., 
2014; Jones et al., 2016; Vemuri et al., 2012). However, the current literature has 
largely relied on comparisons between patients and cognitively healthy individuals. 
Such cross-sectional analyses neglect the considerable phenotypic heterogeneity 
present both in patient and control populations. The primary objective of this work was 
to characterize this heterogeneity of functional brain connectivity, and identify network 
subtypes associated with AD at the clinical and preclinical stages.  
  
A prevalent model of AD postulates that symptoms arise as a consequence of 
disruptions in distributed networks, rather than local, circumscribed alteration in neural 
processing (Delbeuck et al., 2003; Seeley et al., 2009). The seminal work of (Greicius et 
al., 2004) in symptomatic AD demonstrated alterations in functional brain connectivity in 
the so-called default-mode network (DMN), whose topography overlaps substantially 
with patterns of end-stage Aβ deposition (Buckner et al., 2005). A recent meta-analysis 
of over 30 publications looking at functional brain connectivity in AD confirmed the DMN 
as a key affected brain component (Badhwar et al., 2017). Connectivity disturbances in 
other large-scale brain networks were also consistently observed in AD, in particular in 
the limbic and salience networks. At a preclinical stage, current evidence includes a 
series of associations with well-studied biomarkers or risk factors of AD, especially in 
the DMN. Rs-fMRI connectivity has been shown to be impacted in cognitively healthy 
elders at risk of AD due to abnormal levels of cerebrospinal fluid (CSF) Aβ1-42 or tau 
proteins (Jiang et al., 2016; Wang et al., 2013), increased cerebral Aβ deposits (Elman 
et al., 2016), and presence of apolipoprotein E ε4 allele - ApoE4 (Sheline et al., 2010), 
the major genetic risk factor in sporadic AD. A familial history of sporadic AD in first-
degree relatives is the second most important risk factor of AD (Tanzi, 2012), and was 
shown to impact on DMN connectivity even in ApoE4 non carriers, thus highlighting 
additional genetic risk factors (Wang et al., 2012).  
 
Despite mounting evidence of rs-fMRI being a sensitive early marker of AD, identifying 
the imprint of AD on functional brain connectivity remains challenging due to the 
heterogeneity present in patients and controls recruited in clinical trials. Post-mortem 
histological examination of AD pathology in brain tissue samples (Hyman et al., 2012) 
often does not align with clinical diagnosis (Beach et al., 2012). Over 50% of patients 
diagnosed with AD dementia in fact do not present Alzheimer’s pathology at a high level 
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of neuropathological confidence. Conversely, close to 40% of patients diagnosed with 
non-AD dementia show minimal signs of AD pathology. It is in addition expected that 
some cognitively healthy persons included in control groups may suffer from preclinical 
AD, with 10% to 30% of them having Aβ deposition in their brain (Chételat et al., 2013), 
and some of them exhibiting high loads of neurofibrillary tangles (Mufson et al., 2016). 
Heterogeneity is also reflected in severity profiles of memory, language, visuospatial 
and executive impairments in AD, allowing stratification of  patients into distinct 
cognitive subtypes (Scheltens et al., 2016). Data-driven analysis of structural MRI in AD 
further showed that symptomatic heterogeneity is at least partly related to different 
modes of atrophy spreading in AD (Dong et al., 2017; Zhang et al., 2016). Separate 
atrophy subtypes were indeed associated with specific cognitive and clinical profiles, 
biomarkers, and longitudinal trajectories. Recently, (Doan et al., 2017) also reported 
various subtypes of dysconnectivity in patients suffering from AD dementia, MCI and 
subjective cognitive impairment (SCI), using diffusion magnetic resonance imaging, and 
reported associations between subtypes and the severity of cognitive impairment. The 
established heterogeneity in structural brain degeneration calls for a data-driven 
identification of functional connectivity subtypes in older adults. 
 
The overarching goal of the present work was to identify one or multiple subtypes of 
functional brain connectivity associated with AD, either at a clinical or preclinical stage, 
using data-driven techniques. We first applied a cluster analysis to identify subgroups of 
subjects with homogeneous subtypes of brain connectivity within a cohort of 130 
subjects, the ADNI2-MTL sample. This mixed sample included patients with dementia of 
the AD type (hereafter referred to as AD subjects, N = 21), patients with mild cognitive 
impairment (MCI subjects, N= 44), and elderly healthy controls (HC subjects, N= 65) 
(Figure 1, Table 1). For each brain network and connectivity subtype, we tested whether 

 
 
Figure 1. Matching between ADMCI patients and HC 
(A) Patients and controls were matched with respect to sample size, gender, age and motion 
levels after scrubbing (residual frame displacement, rFD). (B) Between-site differences on 
such variables are shown irrespective of clinical status. (C) The number of patients and 
controls are perfectly balanced within sites. 
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a particular subtype was associated with the presence of mild or severe symptoms. AD 
and MCI subjects were pooled together into a single ADMCI clinical group for these 
tests as we wished to identify AD-related subtypes largely invariant to disease stage. 
We then investigated the possibility that some subtypes that were positively associated 
with symptoms could already be detected at the preclinical stage in a sample of 231 
cognitively healthy elders with a familial history of AD (FH subjects). We further 
investigated the presence of AD-related subtypes in the same cohort of FH subjects by 
testing their association with known biomarkers or risk factors of AD, namely CSF Aβ1-42 
and Tau levels as well as ApoE4 genotype.  

Results 
  
Subtypes of functional brain networks 
  
To identify subtypes of functional brain networks, we first generated individual functional 
connectivity maps for seven large-scale networks together covering the entire brain 
(Figure 2A-B). These reference networks were obtained from an independent dataset 
and were labeled as cerebellar, limbic, motor, visual, default-mode, fronto-parietal and 
salience networks. For each network, a hierarchical cluster analysis was applied on 130 
individual network maps from the ADNI2-MTL dataset, after regression of phenotypic 
and site confounds, in order to identify subgroups of subjects with homogeneous brain 
maps. Visual inspection suggested the presence of at least three voxelwise connectivity 
subgroups (Figure 2C-D). A brain map averaged across all subjects within a subgroup 
defined a subtype of network connectivity, highlighting specific brain areas that differed 
between that subgroup and the overall population average (Figure 2E). Subtypes maps 
revealed high connectivity with their reference network, yet also exhibited noticeable 
variations. These differences were not only observed in the associated network (within-
network connectivity) but also in other brain areas (between-network connectivity). For 
instance, subtypes of the DMN could be distinguished from one another not only in 
terms of connectivity levels within the precuneus or anterior medial prefrontal cortex, 
two key nodes of the default-mode, but also with regards to connectivity strength in the 
anterior cingulate, associated with the salience network. For each network, we 
generated the spatial correlations between individual connectivity maps and each 
average subtype map, hereafter referred to as weights (Figure 2F). These continuous 
subtype weights revealed that some individual maps were highly correlated with the 
subtypes, while others had only milder correlations, sometimes of similar amplitude for 
different subtypes. The subtype decomposition was therefore a discrete approximation 
of a continuous distribution of individual maps, rather than a set of clear-cut entities. 
 
A comparison of clustering outcomes for the seven networks revealed that 3 subgroups 
of subjects at least could be evidenced in all networks (Figure 3A). As observed for the 
DMN, subtype maps showed distributed variations inside and outside the network of 
reference for all networks. While between-subject correlation values had similar 
amplitudes across networks, the size of the subgroups varied from one network to 
another. We tested the correspondence of subject clustering solutions between 
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networks by computing the adjusted rand index (ARI) for all pairwise comparisons 
(Figure 3B). The near-chance level of this metric (0.04 ± 0.04) demonstrated that 
subjects with similar connectivity maps for a given network did not have particularly 
similar maps for other networks, thus highlighting heterogeneity in functional brain 
connectivity patterns.  
 
 

 

 
 
Figure 2. Extraction of subtypes and weights 
(A) Functional subtypes were identified separately for 7 networks delineated at the whole-
brain level in an independent sample of healthy subjects. The procedure is shown for the 
default-mode network (DMN). (B) Network-based connectivity maps were computed for each 
subject through the correlation of every voxel’s time course of activity with the average signal 
in the reference network. (C) Site, gender, age and motion were regressed out from 
functional connectivity maps across subjects. (D) A hierarchical cluster analysis was 
conducted to identify 3 homogeneous subgroups of subjects with similar connectivity maps. 
(E) Difference subtypes show how the average connectivity maps of each separate subgroup 
of subjects differ from the grand average. (F) Weights consisted in correlations between the 
connectivity maps of every subject with that of each subtype. 
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Brain network subtypes are associated with clinical symptoms 
  
Given the observation that subtypes reflected both continuous and discrete phenomena, 
we adopted a dual statistical evaluation of their association with clinical symptoms in 
ADMCI subjects (Figure 4). In the former case, differences in average subtype weights 
between ADMCI and HC were assessed independently for each subtype of the seven 
reference networks, using a linear regression model. Significant associations were 
found for one limbic, two default-mode and two salience subtypes (q < 0.05 with FDR 
correction over 21 network subtypes), in line with our expectations. An uncorrected 
effect was also seen for an additional limbic subtype (p < 0.05). Effects were of medium 
size (0.09 < Cohen's f2 < 0.25). Of these six subtypes, half of the associations with 
symptoms were positive (i.e. higher average weight load in ADMCI persons) and the 
remainder negative (i.e. lower average weight load in ADMCI patients). Instances of 
positive and negative associations with symptoms were observed in all three 
aforementioned networks.  

 
Figure 3. Correspondence of cluster (subtype) solutions across networks 
(A) For each of the 7 networks (columns) are given the similarity matrix that shows the 
similarity of network connectivity maps between all pairs of subjects (first row), the adjacency 
matrix that reveals homogeneous subgroups of subjects identified by cluster analysis 
(second row), the average network connectivity map for all subjects (third row), and the 
difference subtype connectivity maps obtained by differences between the group average 
and the average connectivity maps for each subgroup of subjects (fourth to sixth rows). (B) 
The adjusted rand index (ARI) reveals the correspondence of subject clustering solutions 
between all pairs of networks. CER, cerebellum; LIM, limbic; MOT, motor; VIS, visual; DMN, 
default-mode; FPN, fronto-parietal; SAL, salience.  
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Figure 4. Functional network 
subtypes associated with clinical 
symptoms 
Significant associations with ADMCI 
were found in the limbic (A), default-
mode (B) and salience (C) networks. 
For each network are shown the group 
average connectivity map and the 
connectivity subtypes that are 
significantly more or less present in 
ADMCI patients than controls 
(difference maps are given). Pie charts 
report the distributions of subjects 
across subtypes in each group. Violin 
plots show the distribution of weights in 
the two groups for each subtype with a 
significant association. ** and * 
respectively denote significance at 
qFDR<0.05 and p<0.05 (uncorrected). 
 

 
A general observation was that 
subtypes positively associated with 
symptoms (PAS) had increased 
within-network connectivity but 
decreased between-network 
connectivity as compared to sample 
averages of networks. The PAS 
limbic subtype was notably defined 
by increased hippocampal 
connectivity (within-network) but 
decreased connectivity in 
dorsomedial prefrontal areas located 
in the DMN (between-network). An 
inverse pattern was seen in subtypes 
negatively associated with symptoms 
(NAS). The NAS limbic subtype had 
decreased connectivity in the 
hippocampus but increased 
connectivity in the insula. Subtypes 
of the default-mode and salience 
network provided mirror pictures of 
PAS and NAS connectivity profiles. 
Decreased connectivity in the 
posterior cingulate and medial 
prefrontal region relative to the 
sample average was NAS for the 
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default-mode network but PAS for the salience network. Similarly, decreased 
connectivity in the insula and anterior cingulate cortex compared to the sample average 
was evidenced to be NAS for the salience network but PAS for the default-mode 
network.  

 
Statistics on discrete effects provided concordant effects at uncorrected thresholds. For 
each network, we evaluated with Chi2 tests whether ADMCI and HC subjects were 
distributed unevenly across subtypes. Unequal distributions were seen for the limbic (p 
< 0.05), default-mode (p = 0.1) and salience (p < 0.05) networks. Effect sizes were in 
the small-to-moderate range, with Cramer's V values of 0.27, 0.19 and 0.24 in the 
limbic, default-mode and salience networks, respectively. 
 
Connectivity maps in FH subjects are reproducibly matched to subtypes from the 
clinical cohort  
 
We assessed the reliability of matching connectivity maps in FH subjects from the 
PREVENT-AD cohort with the subtypes defined in the MTL-ADNI2. We thus generated 
individual functional connectivity maps separately for two runs, in each of the seven 
networks. Weights were computed for individual network maps, indicating their similarity 
with each of the 21 network subtypes previously defined in the MTL-ADNI2 sample 
(Figure 5). Intraclass correlations (ICC) indicated a fair-to-good correspondence of 
subtype weights between runs. Weights of all network subtypes had ICC values > 0.45 
(max = 0.68, mean = 0.56), but for the PAS salience subtype (0.29). The default-mode 
and limbic PAS subtype weights had ICCs of 0.50 and 0.55, respectively.  
  

 
Figure 5. Reliability of subtype 
matching in FH subjects 
(A) Matching of connectivity maps in FH 
subjects with subtypes found in the 
mixed population of ADMCI patients and 
controls is shown for the DMN in two 
separate runs. (B) Test-retest between 
runs was determined with intra-class 
correlation (ICC), showing fair-to-good 
correspondence across networks and 
subtypes. 

 
 
Subtypes are associated with biomarkers of AD in FH subjects  
  
We next examined the possibility that cognitively healthy FH elders already exhibited 
PAS subtypes, and more so than typical healthy elderly individuals. Individual functional 
connectivity maps were averaged for the two separate runs in 231 FH subjects from the 
PREVENT-AD cohort. For each of the three networks found to be associated with 
clinical symptoms, FH subjects were matched to network subtypes defined in the MTL-
ADNI sample based on maximal weights. Distributions of FH subjects across subtypes 
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were not significantly different than those of either ADMCI or HC participants in the 
default-mode and salience networks (Figure 6A). However, proportions of FH subjects 
across limbic subtypes differed significantly from those of typical HC elders (q < 0.05) 
but not from ADMCI patients (p = 0.9). 
          
The idea that connectivity subtypes might reflect a covert pathological AD process in 
cognitively healthy elderly individuals would be reinforced by the observation that such 
connectivity profiles correlate with known biomarkers of AD. We thus further 
investigated the relationship between connectivity subtypes and APOE genotype (N = 
228) as well as CSF levels of Aβ1-42, tTau and pTau (N = 59) (Figure 6C). Surprisingly, 
APOE allele 4 carriers showed less association than non carriers with the limbic PAS 
subtype (q < 0.05), with a small effect size (Cohen's f2 = 0.04). However, findings 
consistent with predictions were observed for CSF Aß42 levels and another limbic 
subtype. Subjects with high levels of CSF Aβ1-42 had limbic connectivity maps that 
resembled more the NAS limbic network (q < 0.05; Cohen's f2 = 0.13). Low levels of 
CSF Aβ1-42 were associated with another limbic subtype that shared some similarities 
with the at-risk limbic subtype, for instance increased hippocampal connectivity (q < 
0.05; Cohen's f2 = 0.1). No associations were found between Tau or pTau CSF levels 
and any subtype of either the limbic, default-mode or salience networks.  

 
 
 
 

 

 
 
Figure 6. Connectivity subtypes in FH subjects 
(A) Pie charts show that FH subjects differ from controls but not ADMCI patients in their 
distribution across subtypes for the limbic network (B). (C) Three distinct limbic network 
subtypes show either positive or negative associations with ApoE4 status or CSF Aβ1-42 
levels. ** denotes significance at qFDR<0.05 . 
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Discussion 
 
Capturing heterogeneity through subtyping  
 
Our subtyping approach was motivated by the lack of specificity and sensitivity of a 
clinical diagnosis of AD dementia against a histopathological diagnosis of AD pathology 
(Beach et al., 2012) and the variability of cognitive and neurobiological alterations in AD 
(Lam et al., 2013; Scheltens et al., 2016). As previously done for structural atrophy 
patterns (Dong et al., 2017; Hwang et al., 2016; Zhang et al., 2016) and white matter 
structural dysconnectivity (Doan et al., 2017), we employed a subtype analysis that 
identified subgroups of subjects sharing similar functional brain connectivity, in a fully 
data-driven way and irrespective of clinical diagnosis. This is an important conceptual 
difference with more traditional cross-sectional comparisons between clinical cohorts, 
which assumes some homogeneity in connectivity within each group, e.g. (Badhwar et 
al., 2017, 2016; Jones et al., 2016; Korolev et al., 2016). Improved characterization of 
the inherent heterogeneity of brain dysconnectivity in AD will ultimately facilitate more 
personalized diagnosis and treatment. This new line of inquiry is made possible by large 
neuroimaging databases such as the ADNI, and will become increasingly important with 
the emergence of populational cohorts with associated neuroimaging repositories, such 
as the UK biobank (Miller et al., 2016).   
 
Association between connectivity subtypes and clinical symptoms 
 
Using rs-fMRI, we identified functional brain connectivity subtypes associated both 
positively and negatively with symptoms. A variety of causal mechanisms may explain 
such associations, which may co-exist. An association may reflect the direct 
progression of AD neurodegeneration in the brain (Jones et al., 2016), the presence of 
comorbidities (Profenno et al., 2010), as well as some form of cognitive reserve, or lack 
thereof (Stern, 2006). The existence of an association in itself is not enough to 
disambiguate between these different interpretations. Associations between connectivity 
subtypes and symptoms were selectively detected in the default-mode, salience and 
limbic networks. These three networks have consistently been reported in the literature 
as altered in patients with AD dementia or MCI, see (Badhwar et al., 2017; Vemuri et 
al., 2012) for reviews. The associated subtype maps pointed at changes both within 
networks, e.g. higher intra-network  connectivity in at-risk DMN subtype, and between 
networks, e.g. decreased inter-network connectivity in at-risk DMN subtypes with 
regions of the salience network. 
 
Translation of connectivity subtypes from clinical to non-clinical individuals 
 
The distribution of connectivity subtypes in a group of cognitively normal FH individuals 
was found to resemble more that seen in a patient group than control individuals. This 
observation was made only for the limbic network, but not the default-mode and 
salience networks. Assuming functional connectivity subtypes partly reflect the 
progression of AD pathology, finding early dysconnectivity in the limbic network is 
consistent with the Braak staging of neurodegeneration (Braak and Braak, 1991) and 
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the increased risk of sporadic AD due to family history (Tanzi, 2012). Conversely, the 
limbic subtype negatively associated with symptoms was under-represented in FH 
individuals, and was shown to positively associate with CSF Aβ1-42 levels. Taken 
together, these associations support the notion that different subtypes of limbic 
connectivity reflect the progression of AD pathophysiology at a preclinical stage. A 
finding that was more difficult to interpret was that ApoE4 carriers had significantly less 
weight on the limbic subtype positively associated with symptoms. With previous 
literature on ApoE4 and resting-state connectivity reporting sometimes contradictory 
findings (Filippini et al., 2009; Sheline et al., 2010), we believe longitudinal data on a 
large cohort would be necessary to clarify the interplay of resting-state connectivity, Aβ 
deposition and ApoE4 status. 
 
Generalization of brain connectivity subtypes across datasets 
 
The translation of connectivity across cohorts raises the question of generalization 
across scanning sites. Research has indeed indicated that multisite scanning generates 
substantial site-specific bias in connectivity measures (Dansereau et al., 2017; Yan et 
al., 2013). In our multisite clinical sample, we took great care to control for confounding 
site effects on brain connectivity subtypes. The identification of network subtype was 
thus invariant to scanning site to a large extent. However, the cohort of individuals at 
risk of AD due to their familial history was entirely scanned at a distinct site. The fact 
that we found associations with known biomarkers or risk factors of AD specifically in 
the limbic network supports that brain connectivity subtypes are fairly robust to site 
effects. Subtype weights also had good test-retest reliability in the preventAD cohort, 
although the subtype maps were generated on ADNI-MTL. Important areas for future 
work will be to identify imaging protocols that further minimize differences in brain 
connectivity subtypes across scanners.  
 
Finer subtypes 
 
The subtypes found to positively associate with symptoms involved groups of patients 
which did not overlap a lot across networks. There is thus some degree of 
independence between subtypes, across networks, possibly reflecting heterogeneity of 
disease spread across patients. Even though we estimated only 3 subtypes per 
network, there are still a very large number of possible combinations of subtypes across 
7 networks. Subtype maps being an average of a subgroup of subjects, a minimum 
number of 20 subjects seems warranted to stabilize the subtype maps. The total sample 
size of our discovery dataset thus constrained the maximal number of subtypes we 
could feasibly investigate. We thus decided to use low numbers of subtypes and 
networks for this first evaluation of the feasibility of functional subtypes in AD, yet higher 
numbers could be explored in a larger sample.   
 
Multi-network and multimodal subtypes  
 
A natural extension of this work would be to integrate subtypes across multiple 
networks, imaging modalities and measures into a single predictor of AD status. 
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Associations with clinical symptoms or AD biomarkers reported here had weak to 
moderate effect sizes, despite reaching statistical significance. Recent state-of-the-art 
model of progression from MCI to dementia indeed merge biomarkers across multiple 
domains, including cognitive evaluations, imaging and plasma markers (Korolev et al., 
2016). High-dimensional imaging biomarkers such as structural and diffusion MRI are 
amenable to subtyping (Doan et al., 2017; Hwang et al., 2016; Zhang et al., 2016). We 
believe that subtyping could be used in the near future to identify a highly accurate 
multimodal predictor of AD, both for diagnosis and prognosis purposes. Resting-fMRI 
will likely contribute to such a multimodal predictor, as it is uniquely sensitive to brain 
function, at least compared to other MRI modalities. Our findings suggest that limbic 
subtypes in particular are promising biomarkers for the purpose of early AD diagnosis.  
 
Conclusions 
 
The present work demonstrates that rs-fMRI can be used to subtype the heterogeneity 
of functional networks in older adults. We found that subtypes have a good test-retest 
reliability and associate with symptoms in patients suffering from MCI or AD dementia. 
We also found that subtypes associate with various biomarkers and risk factors of AD in 
cognitively normal individuals: familial history of AD dementia, beta amyloid deposition, 
ApoE4 status. Our findings support the notion that rs-fMRI subtypes are sensitive to AD 
progression up to the preclinical stage, and may contribute to future efforts towards an 
accurate early diagnosis of AD using multimodal biomarkers.  

 

Experimental procedures 
 
Participants 
  
The MTL-ADNI2 multisite sample aggregated data from 5 different studies: 3 samples 
from the Montreal area (one from the Montreal Neurological Institute, MNI, and two from 
the Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CRIUGMa 
and CRIUMGb), and 2 samples with distinct acquisition protocols from the Alzheimer's 
Disease Neuroimaging Initiative 2 (ADNI2a and ADNI2b) (Table 2). We selected 
subsamples of the MNI, CRIUGMa, CRIUGMb, ADNI2a and ADNI2b datasets such that 
patients and controls groups had identical sample size for each acquisition protocol or 
study, respectively 13, 13, 8, 20 and 11 subjects per group. The combined sample 
included 65 patients diagnosed with either amnestic MCI or AD dementia and 65 
cognitively normal controls. Patients and controls were selected from a larger initial pool 
such that they would be matched for age, gender ratio as well as motion (see rs-fMRI 
preprocessing section). Distributions of age, gender and motion were as follows for 
patients vs. controls: age (mean ± std) = 72.7 ± 7.9 vs. 72.6 ± 7.3 years old, 41/24 vs. 
41/24 females/males, residual frame displacement (mean ± std) = 0.22 ± 0.07 vs. 0.23 ± 
0.08. All subjects gave informed consent to participate in these studies, which were 
approved by the research ethics committees of the institutions involved in data 
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acquisition. Consent was obtained for data sharing and secondary analysis, the later 
being approved by the ethics committee at the CRIUGM.   

         The PREVENT-AD dataset used in the present analysis included 231 cognitively 
healthy older adults with a known family history of AD, as reflected by a diagnosis of AD 
dementia in parent or multiple degree relatives. PREVENT-AD participants were 
younger (mean ± std: 64.1 ± 5.7 years old) than subjects in the MTL-ADNI2 multisite 
sample and were not balanced for gender (172/59 females/males). All subjects had 
given informed consent and the study was approved by the "Research, Ethics and 
Compliance Committee" of McGill University. 
 
Note on the cohorts 
 
The ADNI2 data used in the preparation of this article were obtained from the 
Alzheimer's Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The 
ADNI was launched in 2003 by the National Institute on Aging (NIA), the National 
Institute of Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug 
Administration (FDA), private pharmaceutical companies and non-profit organizations, 
as a $60 million, 5-year public-private partnership representing efforts of many co-
investigators from a broad range of academic institutions and private corporations. A 
central goal of ADNI is to facilitate the discovery of biomarkers of very early AD 
progression, using MRI among other techniques. ADNI was followed by ADNI-GO and 
ADNI-2. In this study, we only included subjects from the two ADNI2 scanners (Achieva 
and Intera) associated with the largest samples. For up-to-date information, see 
www.adni-info.org. 

The PREVENT-AD data were taken from the Pre-symptomatic Evaluation of Novel or 
Experimental Treatments for Alzheimer's Disease (PREVENT-AD) Cohort assembled at 
the Douglas Mental Health University Institute’s Centre for Studies on Prevention of 
Alzheimer’s Disease (StoP-AD) Centre, Montreal, Canada. This cohort was composed 
of cognitively healthy individuals at increased risk of AD dementia because they have / 
had a first-degree relative (parent or sibling) who has / had dementia suggestive of AD.  
This cohort includes volunteers of age 60 or older (55 or older if current age is within 15 
years of affected relative’s estimated age at onset of dementia). One current project 
consists in an observational study where participants are followed longitudinally once a 
year with a battery of tests and imaging modalities. In the present work, we focused on 
baseline data. A subset of test-retest rsfMRI data in 80 PREVENT-AD subjects has 
been shared publicly (Orban et al., 2015).  

Clinical evaluation 
 
All subjects from the MTL-ADNI2 and PREVENT-AD samples underwent 
neuropsychological testing to assess cognitive function, including memory, language 
and executive abilities. However, the neuropsychological tests administered to 
participants varied across sites, as did criteria and clinical scales used for diagnosis of 
either MCI or AD. Briefly, patients with (amnestic) MCI had memory complaints and 
objective cognitive loss, yet showed intact functional abilities and did not meet criteria 
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for a diagnosis of dementia in contrast with AD patients. HC demonstrated intact 
cognitive functions. Details on clinical evaluation for each cohort per site follow.  

In ADNI2, the Mini-Mental State Evaluation (MMSE) and Clinical Dementia Rating 
(CDR) were used to distinguish between HC, MCI and AD subjects. MMSE scores were 
inclusively comprised between 24-30, 24-30 and 20-26 for HC, MCI and AD subjects, 
respectively. MCI patients had a CDR of 0.5 and AD patients a CDR of 0.5 or 1. An 
objective memory loss was evidenced with the Wechsler Memory Scale Logical Memory 
II in MCI, yet other cognitive domains and functional activities were unaffected. In 
addition, there was an absence of dementia, by contrast with AD patients who met the 
National Institute of Neurological and Communicative Disorders and Stroke / 
Alzheimer's Disease and Related Disorders Association (NINCDS/ADRDA) criteria for 
probable AD (McKhann et al., 1984). The MNI sample only included MCI patients, who 
were similarly diagnosed using the MMSE, following Petersen Criteria (Petersen, 2004). 
Subjects in the CRIUGM samples were administered the MMSE as well as the Montreal 
Cognitive Assessment (MoCA) (Nasreddine et al., 2005) and the Mattis Dementia 
Rating Scale (MDRS, Mattis et al., 1988). The diagnosis of MCI was made based on 
scores equal to or >1.5 standard deviations below the mean adjusted for age and 
education on memory tests, with input from a neurologist. A diagnosis of AD was 
determined according to the Diagnostic and Statistical Manual of Mental Disorders (4th 
ed.; American Psychiatric Association, 2000) and NINCDS/ADRDA clinical criteria, with 
input from a neurologist. Participants in the PREVENT-AD were evaluated for any 
cognitive impairment and symptoms suggestive of AD using the Repeatable Battery for 
the Assessment of Neuropsychological Status - RBANS (Randolph et al., 1998), the 
CDR, the MoCA and the AD8 Dementia screening (Galvin et al., 2005). Exclusion 
criteria common to all participants included contraindications to MRI, presence or history 
of axis I psychiatric disorders (e.g., depression, bipolar disorder, schizophrenia), 
presence or history of neurologic disease with potential impact on cognition (e.g., 
Parkinson’s disease), and presence or history of substance abuse.  

  
Genetic and CSF biomarkers in PREVENT-AD subjects 
  
In 228 PREVENT-AD subjects, DNA was isolated from 200 ul of whole blood using a 
QIASymphony apparatus and the DNA Blood Mini QIA Kit (Qiagen, Valencia, CA, USA). 
The standard QIASymphony isolation program was performed as per the 
manufacturer's instructions. APOE single nucleotide polymorphism (SNP) genotyping 
was performed using pyrosequencing (PyroMArk96) and processed with GenomeStudio 
(version 2010.3) using standard methods . 
  
         CSF samples were obtained by lumbar puncture in 59 subjects of the PREVENT-
AD cohort. For each subject, 25 ml of CSF was centrifuged 10 minutes +/- 2000g at 
room temperature and aliquoted in 50 vials of 0.5 ml and frozen at -80C for further 
analysis. Protein levels of Aβ1-42, total tau (tTau) and phosphorylated tau (pTau) were 
determined by enzyme-linked immunosorbent assay (ELISA) from Innotest technology 
(Fujirebio). These measurements were standardized with the European project 
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BIOMARKAPD (Reijs et al., 2015), which intends to harmonize assays that are used to 
measure biological markers in neurodegenerative diseases.          
  
MRI acquisition 
  
The MTL-ADNI2 multisite resting-state dataset included brain imaging data acquired on 
3T MRI scanners. Vendors differed between sites (Siemens Magnetom Tim Trio in MTL 
sites and Phillips Achieva or Intera in ADNI2). Analyses were performed on the first 
usable scan, typically the baseline scan when several scans were available. Functional 
scan acquisition parameters varied from one site to another, notably in run duration 
(ranges: 5min20s-8min), number of volume (range: 140-240 vols), voxel size (range: 3-
4x3-3.6x3.3-4mm3) and repetition time (range: 2-3s). Brain imaging data of the 
PREVENT-AD dataset were collected on a single 3T MRI scanner (Siemens, Magnetom 
Tim Trio). Two consecutive resting-state runs of 150 functional volumes were acquired, 
each run lasting 5min 45s. Spatial and temporal resolutions were as follows: voxel size 
= 4x4x4mm3 and repetition time = 2000ms. Table 2 reports scan acquisition parameters 
for all data.  
  
rs-fMRI preprocessing 
  
Datasets were preprocessed and analyzed using the NeuroImaging Analysis Kit - NIAK 
- version 0.12.17 (http://niak.simexp-lab.org), under CentOS with Octave 
(http://gnu.octave.org) version 3.6.1 and the MINC toolkit (http://bic-mni.github.io/) 
version 0.3.18. Analyses were executed in parallel on the "Guillimin" supercomputer 
(http://www.calculquebec.ca/en/resources/compute-servers/guillimin), using the pipeline 
system for Octave and Matlab - PSOM (Bellec et al., 2012). 
  
         Each fMRI dataset was corrected for differences in timing of slice acquisitions; a 
rigid-body motion was then estimated using Minctracc (Collins and Evans, 1997) for 
each time frame, both within and between runs, as well as between one fMRI run and 
the T1 scan for each subject. The T1 scan was itself non-linearly co-registered to the 
Montreal Neurological Institute (MNI) ICBM152 stereotaxic symmetric template (Fonov 
et al., 2011), using the CIVET pipeline (Ad-Dab’bagh et al., 2006). The rigid-body, fMRI-
to-T1 and T1-to-stereotaxic transformations were all combined to resample the fMRI in 
MNI space at a 3 mm isotropic resolution. To minimize artifacts due to excessive 
motion, all time frames showing a displacement greater than 0.5 mm were removed 
(Power et al., 2012). The following nuisance covariates were regressed out from the 
fMRI time series: slow time drifts (basis of discrete cosines with a 0.01 Hz high-pass 
cut-off), average signals in conservative masks of the white matter and the lateral 
ventricles as well as the first principal components (accounting for 95% variance) of the 
six rigid-body motion parameters and their squares (Giove et al., 2009; Lund et al., 
2006). The fMRI volumes were finally spatially smoothed with a 6 mm isotropic 
Gaussian blurring kernel. A more detailed description of the pipeline can be found on 
the NIAK website (http://niak.simexp-lab.org/pipe_preprocessing.html). 
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Individual voxel-wise connectivity maps based on large-scale network templates 
  
For all 361 subjects included in the analyses, we computed voxel-wise connectivity 
maps associated with each of 7 network templates extracted from a functional brain 
atlas generated on 200 healthy subjects 
(https://doi.org/10.6084/m9.figshare.1285615.v1). The atlas included cerebellar, limbic, 
visual, motor, default-mode, fronto-parietal and salience networks. For each subject and 
each network, a network connectivity map was obtained by computing the Fisher-
transformed Pearson's correlations between the average time course within the network 
template and the time course of every voxel in the brain grey matter. For each network, 
subject by voxel connectivity matrices were defined at the group level,  separately for 
the MTL-ADNI and PREVENT-AD samples. Two general linear models were used to 
regress the following confounds on the group connectivity matrices: age, sex and rFD, 
as well as acquisition protocols / study using dummy variables, i.e. MNI, CRIUGMa, 
CRIUGMb, ADNIa, ADNIb. The inclusion of constant terms in the models effectively 
normalized network connectivity maps to a zero grand mean across all subjects, 
separately for the MTL-ADNI and PREVENT-AD samples. 
  
  
Network subtypes defined by a cluster analysis in MTL-ADNI2 subjects 
  
For each network, a subject by subject similarity matrix summarized the between-
subject correspondence of connectivity maps for all pairs of the 130 subjects in the 
MTL-ADNI multisite sample. A hierarchical cluster analysis was performed to identify 3 
clusters of subjects whose network connectivity maps were similar in terms of spatial 
extent and/or strength. For each cluster, we defined a subtype of functional connectivity 
as the average connectivity map for subjects within this cluster. Subtype weights were 
obtained by calculating the correlation between individual connectivity maps and each 
of the network subtype maps. Weights thus range between -1 and 1, with 1 meaning 
perfect correspondence, 0 lack of correspondence and -1 perfect but inverted 
correspondence.  
  
Statistical tests of association with clinical symptoms in MTL-ADNI2 subjects 
  
We tested the association between subtypes of network connectivity and clinical 
symptoms in the 130 MTL-ADNI2 subjects. To this end, we employed two distinct 
statistical approaches: one approach treated subtypes as discrete units, where each 
subject belongs to one and only one cluster;  a second approach used subtype weights, 
which are continuous measures. Despite these conceptual differences, we expected 
both statistical approaches to provide mostly concordant results. In the first approach, 
Chi2 tests were used to reveal unequal distributions of HC and ADMCI patients across 
the subtype clusters of each network. We report Cramer's V effect sizes for which 
values of 0.1, 0.3 and 0.5 are respectively termed small, medium and large. In our 
second approach, we used a general linear models to test separately the associations 
between the weights of each network subtype and clinical symptoms (HC vs. ADMCI). 
Because confounds (age, sex, rFD, sites) were regressed out prior to conduct this 
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analysis, no factors of interest were entered in the general linear model. We provide 
Cohen's f2 effect sizes for which values of 0.02, 0.15 and 0.35 are termed small, 
medium and large, respectively (Cohen, 1988). In both statistical approaches, results 
were deemed significant if they survived false-discovery rate (FDR) correction at q<0.05 
across networks and subtypes. 
  
Matching of FH subjects to at-risk subtypes 
 
We next aimed to match connectivity maps in 231 cognitively normal FH elders with at-
risk subtypes identified in the MTL-ADNI2 dataset. For each network and each 
PREVENT-AD subject, subtype weights were obtained by correlating his/her 
connectivity map (averaged over 2 runs) with each of the 3 subtype maps identified in 
the clinical sample. Each FH subject was assigned to the subtype for which the weight 
was maximal. We then tested, for each network, the similarity of subject distributions 
across subtypes between FH subjects in the PREVENT-AD cohort vs the distribution of 
ADMCI patients or HC subjects in the MTL-ADNI multisite sample. Chi2 tests were used 
to assess significance of differences in distributions and Cramer’s V values described 
effect sizes.  
 
Test-retest reliability of MTL-ADNI2 subtypes in FH subjects 
 
Intra-class correlation coefficients quantified the reproducibility of weights between the 
two consecutive resting-state runs of the PREVENT-AD cohort. With 7 networks and 3 
subtypes, we thus obtained 21 ICC measures. ICC measures were interpreted as 
follows (Cicchetti, 1994): less than 0.40 = poor, between 0.40 and 0.59 = fair, between 
.60 and 0.74 = good, between 0.75 and 1 = excellent.  
  
Statistical tests of association with AD biomarkers 
  
We finally assessed whether the subtype weights of FH subjects would be associated 
with known biomarkers or risk factors of AD in PREVENT-AD. Namely, we investigated 
the possible association between APOE4 genotype, CSF Aβ1-42 and Tau levels as well 
as spEYO with either at-risk or protective network connectivity subtypes. Associations 
were tested in the framework of general linear models and were considered significant if 
they survived false-discovery rate (FDR) correction at q<0.05 across networks and 
subtypes. Because confounds (age, sex, rFD) were regressed out prior to conduct this 
analysis, no factors of interest were entered in the general linear models. Effect sizes 
are reported with Cohen's f2 measures. 
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Tables 
  
      MTL-ADNI2     PREVENT-AD 

  MNI CRIUGMa CRIUGMb ADNI2a ADNI2b   

              

N controls 13 13 8 20 11 n/a 

Mean age (s.d.) 67 (5.8) 71.2 (4.8) 72.6 (7.8) 75.3 (6.5) 75.9 (8.7) n/a 

Number male (%) 5 (38.5) 4 (30.8) 5 (62.5) 9 (45) 1 (9.1) n/a 

              

              

N ADMCI patients 13 13 8 20 11 n/a 

N MCI patients 13 0 8 13 10 n/a 

N AD dementia 
patients 

0 13 0 7 1 n/a 

Mean age (s.d.) 71.6 (8.4) 75 (7) 79.9 (6.1) 72 (7.9) 67 (5) n/a 

Number male (%) 5 (38.5) 2 (15.4) 3 (37.5) 7 (35) 7 (63.6) n/a 

       

       

       

              

N FH subjects n/a n/a n/a n/a n/a 231 

Mean age (s.d.) n/a n/a n/a n/a n/a 64.1 (5.7) 

Number male (%) n/a n/a n/a n/a n/a 59 (25.5) 

N Aβ1-42 n/a n/a n/a n/a n/a 79 

Mean Aβ1-42 (s.d.) n/a n/a n/a n/a n/a 1079.7 (280.9) 

N ApoE4 n/a n/a n/a n/a n/a 228 

N ApoE4 carriers 
(%) 

n/a n/a n/a n/a n/a 78 (34.2) 

              

Table 1. Demographics  

Basic demographics (sample size, mean age, sex proportions) are given for the HC, ADMCI 

and FH groups. Levels of CSF Aβ1-42 and proportions of ApoE4 carriers are given for FH 

subjects. 
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      MTL-ADNI2     PREVENT-AD 

  MNI CRIUGMa CRIUGMb ADNI2a ADNI2b   

              

Scanner 
manufacturer 

Siemens Siemens Siemens Phillips Phillips Siemens 

              

              

Structural             

N channels 32 32 32 8 8 12 

N slices 176 176 176 170 170 176 

Voxel size (mm3) 1x1x1 1x1x1 1x1x1 1x1x1.2 1x1x1.2 1x1x1 

Matrix size 256x256 256x256 240x256 256x256 256x256 256x256 

FOV (mm2) 256 256 240/256 256 256 256? 

TR (s) 2.3 2.53 2.3 6.8 6.8 2.3 

TE (ms) 2.98 1.64 2.91 3.09 3.09 2.98 

FA (degrees) 9 9 9 9 9 9 

              

              

Functional             

N channels 32 32 32 8 8 12 

N slices 38 33 33 48 48 32 

Voxel size (mm3) 3.6x3.6x3.6 3x3x4 3x3x4 3.3x3.3x3.3 3.3x3.3x3.3 4x4x4 

Matrix size 64x64 64x64 64x64 64x64 64x64 64x64 

FOV (mm2) 230 192 192 212 212 256? 

TR (s) 2 2 2 3 3 2 

TE (ms) 30 30 30 30 30 30 

FA (degrees) 90 90 90 80 80 90 

No. volumes 160 240 240 140 140 150 (x 2) 

Scan duration 
(min:s) 

5:20 8:00 8:00 7:00 7:00 5:45 (x2) 

  
Table 2. MRI acquisition protocols 

Scan parameters are given for structural and functional data across the 5 MTL-ADNI samples 

as well as the PREVENT-AD dataset.  
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