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RESUME

Suivant plusieurs théories économigues comme, par exemple dans la théorie anticipative
de la structure & terme des taux d'intérét, certaines erreurs de prévision, sous une hypothase
d'efficacité ou de rationalité, doivent dtre indépendantes de l'information passée aprés avoir tenu
compte d'un paramétre constant de localisation. Dans Campbell et Dufour (1991, 1983), nous
avons propesé des lesis non paramétiques exacts d'indépendance conditionnelle et de
promenade aléatoire sous 'hypothése restrictive ol le paramétre de localisation est nul (ou
connuj. Dans ce texte, nous étendons ces résultats au cas oG le paramétre ds iocalisation ost
inconnu. Les tests proposés sont fondés sur des méthodes d'inférence simultanée et demeurent
exacls méme en la présence de formes générales de rétroaction, de non-normalité et
d'hétéroscédasticité. De plus, nous présentons deux études de simulation, dont ia premidre est
fondée sur un modéle 3 attentes rationnelles précédemment étudié par Mankiw et Shapiro
{1986) et la seconde sur un modéle de promenade aléatoire. Ces études confirment les
résultats théoriques sur la validité des tests proposés et démontrent que les tesis
non paramétriques ont une puissance comparable ou supérieure (souvent parun écan important
en présence d'observations a I'écant) & celle de tests paramétriques conventionnels. Nous
concluons notre texte en appiiquant les procédures proposées pour tester la théorie anticipative
de la structure A terme des taux d'intérét sur des données canadiennes.

Mots clés : test non paramétrique; test de signe; test de rang; non-normalité;
hétéroscédasticité; orthogonalité: indépendance; promenade aléatoire; racine
unitaire; attentes rationnelles: efficacité des marchés; structure a terme des taux
d'intérét.

ABSTRACT

Often, as for example in the case of the expectations theory of the term structure of
interest rates, an implicit forecast error can be associated with a model which, under the turther
assumption of efficiency or rationality, is hypothesized to be orthogonal to past information once
a centering parameter is accounted for. In Campbeall and Dufour {1991, 1993) finite-sample
nonparametric tests of conditional independence and random walk were proposed under the
restrictive assumption of 2 zero centering (drift) parameter. In this paper, these results are
extended to allow for an unknown drift parameter. The tesis proposed are based on
simultaneous inference methods and remain exactin the presence of general forms of feedback,
non-normality and heteroskedasticity. Funther, in two simulation studies - on a rational
expectations model considersd by Mankiw and Shapiro (1986} where rejection based on
asymptotic tests is likely to be spurious, and the random walk with drift - we confirm the
theoretical results that the nonparametric procedures are reliable, and find that they display
power comparable or superior (often by a wide margin in the presence of outliers) to that of
conventional tests. The paper concludes with an application testing the expectations theory of
the term siructure of interest rates on Canadian data.

Key words : nonparametric test; sign test; rank test; non-normality; heteroskedasticity;
orthogenality; independence; random walk; unit root; rational expectations: market
efficiency; term structure of interest rates.






L Introduction

In Dufour (1981) and Campbell and Dutour (1991, 1993), we developed finite-sample
nonparametric (distribution-free) tests of conditional independence which are applicable in a wide
variety of situations, in particular for assessing the efficiency of forecasts relative to available
information. This study was motivated by results indicating that standard parametric regression
procedures used in such applications may reject much too often, even with fairly large samples, due
to fecdbuck from disturbances that are contemporancously uncorrelated with the regressors but
which affect their future values, One such example was studied by Mankiw and Shapiro (1980),
Bancrjee and Dolado (1987, 1988), Galbraith, Dolado and Banerjee (1987}, and Banerjee, Dolado
and Galbraith (1990).  Another is the random walk model.  The sign and signed rank tests
introduced in Campbell and Dufour (1993) were shown to be exact for a wide class of models
allowing the presence of general forms of feedhack as well as non-normality and heteroskedasticity,
and simulation results indicated that their power is comparable or superior (often by a wide margin)
to that of the usual t-tests, using cither asymptotic or size-corrected critical values for the Mankiw-
Shapiro model and the Dickey-Fulier critical values for the random walk model. These distribution-
free tests, on the other hand, are only applicable when the median of the dependent variable is zero

under the null hypothesis,

In this paper, we extend this nonparametric approach to cover a much wider class of
applications of orthogonality tests where there is an unknown intercept or drift parameter. Often,
as for example in the case of the expectations theory of the term structure of interest rates, an
implicit forecast error can be associated with a model which, under the further assumption of
efficiency or rationality, is hypothesized to be orthogonal to past information once a centering
parameter is accounted for. In the term structure example, this parameter is interpreted as a
liquidity premium; see Shiller et al. (1983), Fama (1984), Mankiw and Summers (1984), Mankiw and
Miron (1986), Kugler (1990}, Taylor (1992), Engsted (1993), and the surveys of Melino (1988) and
Shiller (1990). Similarly, it is often of interest to allow for the presence of a drift in a random walk
model. Standard regression procedures in such situations simply include an intercept term in the
equation o be estimated. By contrast, more involved analysis is required to obtain distribution-free
methods when the aull hypothesis allows for an unknown intercept or drift as nuisance parameter,

The purpose of this paper is to extend earlier results to cover such cases. Our approach is based



on extending to a DOAparametric CoRtext the simultancous inference approach used in Dufour ( 1990)
for a parametric regression model with Guaussian AR(1) disturbances.  Here this work s
accomplished by combining an ¢xact nonparametric confidence set for the drift parameter, which can
he obtained by “inverting” sign or signed rank tests, with "conditional” nonparametric tests linked to
cach point in the confidence sct. The approach then yields finite-sample generalized bounds tests.
For a review of carlier work on distribution-free. methods in time scries. the reader may consull

Dufour, Lepage and Zeidan (1982) and the excelient recent survey by Hallin and Puri (1991).

Section 2 of the paper describes the general stochastic framework which includes as a special
case the type of feedback found in the Mankiw-Shapiro and random watk models, and allows as well
for an intercept (or drift) parameter. In a first step, we assume provisionally that this nuisance
parameter is known. In this context, we introduce the appropriate nonparametric statistics and
derive their finite-sample distributions under the nuil hypothesis of conditional independence given
the past. Then, in Scction 3, we drop the assumption that the intercept parameter is known. For
this case, we proposc a three-stage testing procedure and prove a gencral result giving probability
bounds for the procedure under the null hypothesis. In Section 4, we use Monte Carlo methods to
compare a number of variants of the bounds procedures and investigate the power of the proposcd
nonparametric tests for simple lincar regressions of the Mankiw-Shapiro (19%6) type and for random
walk models, both with intercept term and for various distributional assumptions (normal and non-
normal disturbances, with or without heteroskedasticity). The results confirm that the bounds
nonparametric tests have the correct level, while conventional asymptotic tests can easily reject much
too frequently, and show that the power of the nonparametric procedures are at least comparable
(and dominate often by a wide margin in the presence of outliers) to that of size-corrected
conventional tests. In Section 5, we apply our methods to test the expectations theory of the term
structure of interest rates using Canadian data on three and six-month rates. The nonparametric
results are also contrasted with those found by the standard regression-based approach, We find that

the usual results which reject efficiency of the implicit forecast may be spurious. Section 6 concludes.
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2. Framework

As in Campbell and Dufour (1993), we work within the framework of a general model
involving the random variables Yo wu Yo Xe ooy X, and the corresponding information vectors
defined by I = (X, X, . X, Yu s Y) where t = 0, . n-1, with the convention that I, = (X,).
Our goal is o introduce tesis of the independence of Y, from 1., which are exact under very weak
assumptions concerning the distribution of Y, and the relationship beoween Y, and X,. For one
group of tests, we simphy assume that Y, has median by, for the other, we make the stronger
assumption that the distribution of Y, is symmetric about b, No additional assumption other than
the independence of Y, with respect to the past (represented in what follows by 1) governs the
relationship between Y, and X, More formally, we assume that Yo oo Y, and X, ..., X, have
continuous distributions such that:

Y, is independent of 1, foreacht = 1, . .n; n

PIY, > b = P|Y, < b, fort=1 . n. 2)
These assumptions leave open the possibility of feedback from Y, to current and future values of the
X-variable without specifying the form of feedback: as well, the variables Y, need not be normal nor
identically distributed. In what follows, we shall also consider the stronger assumption:

Y, .. Y, have continuous distributions symmetric about b, 3)

Clearly, the latter assumption implies (2), but the converse is not true,

What distinguishcs these assumptions from thosc in our previous work is the presence of the
parameter b, the median of the variables Y. t=1,..,n. To obtain methods applicable when b,
is unknown, we need first 1o consider the case where this nuisance parameter is known. In so far
as by is known, the techniques of Campbell and Dufour (1993 can readily be modified to yicld exact
nonparametric tests as follows. The basic building blocks of these statistics are the simple products
Z(b) = (Y,~b)XH, t= 1, .., n, where bwill be taken to be b, when the median is known as in this
section, or an estimate when it is unknown as in the next section of the paper. Letu(z) = 1,ifz >
0.and u(z) = 0 for z < 0. We first introduce an analogue of the t-statistic given by the aligned sign
statistic

n

S(b) = S ul(Y,-b)g,_], )



where g = g1} t = 0, ..., n-1, is a sequence of measurable functions of the information vector 1.
The functions g(°) allow one to consider various (possibly nonlincar) transformations of the data,
provided g, depends only on past and current values of X, and Y, (t s 1). The role of such
(ransformations is important in applications, as will be scen in Section S. This point is elaborated

in Campbell and Dufour (1993).

Under the further assumption that cach Y, has a continuous symmetric distribution, i.e. under
{3), it is natural to use ranks as well. We will consider here aligned signed rank statistics with

general form:

L3

SR (b) = Y u(Y,-b)g_JRi(D) 5)
where R;(b) in SR (b) is the rank of IY, - b, ie. Ri(b) = i u(lY, - bf - Y, - b|) the rank
jwi

of IY, - blwhen Iy, - bl, .., IY, - blarc putin ascending order.

Consider first the case where the median b, of the variables Y, t = 1, .., n, is known. The
finite-sample distributions of §,(b,) and SR, {b,) under general conditions is given by the following
proposition. By contrast with the usual definitions of Wilcoxon-type statistics where the absolute
ranks would be based on the products (Y, - b)g,,. it should be noted that in the definition of the
statistics SR (b,) the absolute ranks are defined with respect 10 IY, - bt , ..., IY, - byl which are

mutually independent according to (1).

Proposition 1: Let Y = (Y,, .., Y,)’ and X = (Xg . s Xp1)’ be two nx1 random vectors which
satisfy assumptions (1) and (2). Suppose further that P{Y, = 0] = Ofor t = 1, .., n, and let g =
g(L). t = 0, ..., n-1, be a sequence of measurable functions of 1, such that Plg, = 0] = 0 fort =
0,..,n1. .

(a) Then the sign statistic 5(by) defined by (4) follows a Bi(n, 0.5) distribution, ie. PIS,(by) = x]
= CL{12) forx = 0, 1, ..., n, where C, = nYx!(n-x)!].

(b) H assumption (3) also holds, then the signed rank statistic SR (b,) defined by (5) is distributed

like W‘-EtB‘ ,where B, , .., B, are independent Bernoulli variables such that P|B, = 0] =
tml
PIB,=1]=12,t=1..,n

These distributional results hold under very general conditions. The nature of the

distribution of each Y, is lcft open; there are no assumptions concerning the existence of moments;
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heteroskedasticity of unknown form is permitted; the nature of the feedhuck mcchanism between Y,
and current and future values of Xowo (s 2 0) is nout specified. As long as Y, has median b, and is
independent of the past, the Sign statistic S(by) follows a binomial distribution Bi(n, 0.5). The
Wilcoxon variate W, has been extensively tabled [see, for example, Wilcoxon, Katti and Wilcox
(1970)]. and the normal approximation with E(W,) = n(n+ DA and Var(W,) = n(n+ D{(2n+1)/24
works well even for small values of n; for further discussion, see Lehmann (1975). The powers of
the tests S (b,) and SR (b,), withg, = X and by = 0, relative 10 standard regression-based 1ests have
been investigated by simulation in Campbell and Dufour (1993) for two models with feedback. The
nonparametric tests displaved remarkable power, generally outperforming the t-statistic applied with
correct critical values in the presence of non-normal disturbances and/or heteroskedasticity and
having compurable power with homoskedastic normal disturbances. We now need to deal with the

fact that the centering parameter by s generally unknown.

3. Orthogonality tests with unknown drift paramcter

In this section, we adapt to the nonparametric setup described in the previous scction a
general procedure introduced in Dufour (1990) for a parametric model, in order to obtain ¢xact tests
of the hypothesis that a variable s independent of past information in the presence of the unknown
nuisance parameter b, A straightforward response to the problem of the unknown median in the
spirit of the previous scction is to estimate the parameter using the sample median b, of the
observations Y, t = 1, .., n, and consider the statistics S,(E,,) and SR,(SO). These aligned sign and
signed rank statisties are of independent interest and their power performance will be considered in
the simulation exercises conducted in the next section of this paper. However, we do not have a
finite-sample theory for these statistics in the general framework studicd here, and indeed it appears

quite doubtful that such a theory is even possible for such statistics,

To obtain provably finite-sample procedures, we shall adopt 2 three-stage approach: first, we
find an exact confidence set for the nuisance parameter b, which is valid at least under the null
hypothesis; second, corresponding to each value b in the confidence set, we construct a

nonparametric test based on the methods of the previous section; third, the latter are combined with



the confidence set for by using Bonferroni’s incquality to obtain valid nonparametric tests at the

desired lovel a.

Let J(a,) be a confidence set for b, with level § - a, (where a, < a), which is valid either
on the assumption that Y, has median b, fort = 1, .., nor that Y, is symmetric about b, for cach
t. Different approaches to the construction of J(e,) based on counting procedures will be discussed
below. On any approach, we have Plb, € Ha)] 2 1- a, Foranyb € Ja,), we now consider the
aligned sign and signed rank statistics S,(b) and SR, (b). Under different hypotheses, Proposition 1
established the exact distribution of S(by) and SR (b;). Forany 0 < a < 1, let §,(a) and SR ()

be the critical values of the corresponding right onc-sided tests with nominal level g, i ¢

§‘(a) and §§'(a) are the smallest points (in the extended real numbers l.l) such that

PIS(b) > 5(a)] < a, PISR(b) > SR(a)) < a. (6)
Since S,(by) and SR,(b,) have discrete distributions, it may not be possible 1o make the tail areas in
(6) equal to a. The following proposition establishes probability bounds for the cvents that §,(b)
is significant {or non-significant) at an appropriate level for all b € J(a,) for both one-sided and two-

sided tests, and similarly for SR‘(h).

Proposition 2: Let Y = (Y, .., Y,)’ and X = (X, ..., X,,)' be two nx1 random vectors satisfying
the assumptions (1) and (2) with PlY,= 0} = 0fort=1,..,n and letg =g{d)t=0...n-1

be a sequence of measurable functions of I, such that Plg, = 0] = Ofort =0, .., n- 1. Let also
$,(b), SR(b), § () and SR () be defincd as in (4), (5) and (6). let §(8) =n - §,(1 - 8) and
SR(3) = (n(n + 1)f2) - ‘S—ﬁ‘(l - &) forany 0 s 3 <1, and choose «, &, . a3, and a, in the interval

0,1}suchthat0 s, s @ -a, s & +a, s« < 1.
2 3

(a) M J(a,) is a confidence set for b, such that Plb, € J(a)] 2 1 - «a, , then

Pls,(b) > S(a). Vb€ Ne)sa sose, (7a)
PM - §,(b) > S(a), Vb € Ma)| s« «ay, (7b)
P[Max(Sb), M - S,(0)} > 5,(a,/2). Vb Me)] < @, + ;. (1)



PS,(b) < $(a,). Vb e e <1 -(a,-a) st -a, (7d)
PM - S,(b) < S(a), Vb ¢ Ma)| <1 - (a, - a) . (7e)

PMax(S (b), M - § (b)) < Sa,/2). ¥b eda)] s 1 - (a, - a), (7

where M = p.

(b) I the additional assumption (3) holds and K(a,) is a confidence set for b, such that

Plb, € K{a}] 2 1 - a, . then the incqualitics (7a) to (7f) also hold with S,(b) replaced by

SR(b). 5,() by SR(). 8,() by SR(). J(a,) by K(a,), and M by M* = n(n+1)2 .

Under the maintaincd hypothesis (1)(2) Jor (1)-(3)), the probability bounds established by
the proposition suggest the following bounds test for the hypothesis that Y, is orthogonal to past
information 1,, fort = 1, .. . n. Using the notations adopted in Proposition 2, define

QuS) = Inf{ S(b): b e e}, OSR) = Inf SR(b): b € K(a,)} , (8a)

Qu(S,) = Sup{ S,(h): b ¢ Ha))}, OuSR) = Sup! SR(b): b € K(a,)} . (8b)
From Proposition 2(a), it is clear that

it

PIOS) > Sa)l s @, PIOWS) < $,(a)] <1 -a, (8¢)
where it is easy to see thai the conjunction of the events OL(S‘) > Sr(a:) and QU(S‘) < S‘(a,)
has probability zero, and similarly for Q,(SR,) and Ou(SR,). Conscquently, a reasonable right one-
sided test would reject the hypothesis of conditional independence i1Q(S) > §,(a:) [alternatively,
if O(SR,) > SR (a;)], and would accept it ifOUS,) < §,(ay) [alt, Oy(SR) < SR, (a,)]: otherwise,
we consider the test inconclusive. For example, for e = 0.05 and a, = 0.025, the null is rejected if
S,(b) is significant at level 0.025 [S,(b) > 5,0.025)] for each bina 97.5% confidence interval for b,
and accepted if S‘(b) is never significant at level 0.075 over the confidence interval. According to
the proposition, the probability of a Type I error is bounded from above by «, whereas the

probability of accepting the true hypothesis according to this procedure is bounded from above by

I- 2. Itis clear that one should normally sct @, = « - a, and a = a+ a,.



To obtain a left one-sided test of the model described by the assumptions of Proposition 2,
one can proceed in exactly the same way with §,(b) replaced by M - §,(b) = n - §(b), and SR(b)

by M’ - SR(b}): e.g. the rejection region of the sign test is InfiM - S(b)b € Na )}t > 5,(«;)
and the acceptance region SupiM - S(b). b e Ha )} < S‘(uj). Finally, we obtain a two-sided sign
test with level a by considering

0B,(S) = Inf{Max{S (b), M-S (b)l: b € Ha )}

OB,(S) = Sup{Max{Sx(h), M—Sf(b)}: boeJa)},
and then taking OB,(S) > §‘(u2/2) and OB"(S') < S‘(aJIZ) as the rejection and acceptance

regions espectively. The procedures are similar for the Wilcoxon-type tests.

To address the issue of the power of the procedure proposed above, it is instructive to
consider the following lincar model:

Y, =P+ BX, +te, t=1.,n 9)
where ¢, has the same properties as Y in (1)-(2) [or (1)-(3)] with median 0. Supposc that we wish
10 test the null hypothesis that B, = 0 against the alternative that B, 0. If B, is in fact zero, then
Y, satisfies (1)-(2) for (1)-(3)}, and the bounds testing procedure will have the propertics described
above, in particular, the probability of rejecting the null will be at most as large as a. Now suppose
that B, is not equal 1o zero and let m, = m(X,) be the median of X, If we assume that m{X) is
constant, i. e. m, = m(X) for all {, then J(a,) is a confidence sct for by = B¢ + p.m(X) instead of
B, When g, = X, it follows that the basic building block of the nonparametric statistics introduced
in the previous section can be rewritten: '

Z(b) = (Y, - B)X,, = (B, + BX,, + & - b)X,,

= p,{x,_‘ - m(X)]XM + e X t=1 ..,n.

(AR N

If we assume that X,, and ¢, have symmetric distributions, it is casy to see that Z(b,) will have
median O even if B, » 0, since ¢, is independent of X,, by assumption. Accordingly, 2 sign statistic

hased on Z,(b,) will have virtually no power to detect B, » 0, no matter the size of B,

This problem can be resolved by altering the definition of Z(h,). Let us replace X,, by
X,, - m(X) in Z(b):



|
%

Zb) = (Y, - bYIX,, - m(X)]

= BIX, - LWX)ya X, - m(x).

t [

We see now that the median of Z,(b,) isclearly shifted toward the right or left depending on whether
B, > Oor B, <0 In practice. of course, we will nced 1o replace m(X}) by an estimator .
Further, in order to have g = g{l), M, should only depend on observations up to time t, . g rh,

= med(X,, X, .., X)) the sample median of Xi oy X, This suggests replacing g = X, by
g =X, - Ml t=0. 0.1 (16)

where M, is an estimate of m(X,) thatis a function of I Of course, if X is non-stationary, other

ceatering functions h. may he more appropriate.

It is straightforward 1o apply the above results 1o test the random walk hypothesis in the
presence of a drift. Consider the model in the following form:

YooY =84 BY, +e, t=1,...n (n
The null hypothesis of a random walk is then cquivalent to B, = 0, with B, < 0 under the alternative
of stationarity. Appropriate nenpmnrﬁmric statistics to consider in this context are given by:

S

S,(0) = 3u{(Y- Y, -byg ], (12)
SR‘(h) = Z uI(Y\-Y‘A‘-h)g'_x}R:(b) R (13)

where RI(b) is the rank of Y - Y., - b] among IY,- Y., -bl.t =1 ., nand £ is given by
B =Y - (V). 1=0.,n-1, (149)

with M (Y) equal to the sample median of Y, ,s = 0, .., 1. Once a confidence interval for f, is
determined under the null, the bounds procedures are defined precisely as before. Against the

alternative of stationarity (B, < 0), the mos appropriate test herc is a left one-sided test with

rejection region of the form: S (b) < §l(l -a) forall b e Ja) |or cquivalently, M - § (b) >



gx(“:) forall b € J(a,) ] The power of these procedures applicd in the random walk context will

be assessed in the next section.

It remains to discuss the construction of the confidence set J(a,) for B, which should be valid
at feast under the null hypothesis. 1f Y, is assumed 10 have median B, the order statistics Yy, ..,
Y,,, of the random sample ¥, .., Y, can be used to construct a confidence interval for B, Let B
be a binomial random variable with number of trials n and probability of success equal to 0.5.
Choose k the largest integer such that P{B < k} < /2. Then{Y, ., Youlisa confidence interval
for B, with level 1 - a: sce Hettmansperges (1984, pp. 12 - 15) for details. On the other hand, if the
distributions of the Y,'’s are symmetric, one can obtain a (tighter) confidence interval for f, by
considering the n(n+1)/2 Walsh averages defined by (Y, + Y)2, 1 sisjsm again see
Hettmansperger (1984, pp. 38 -41) for details. One difficulty with using Walsh averages, particularly
in simulations, is the large number of averages that must be computed and then ordered. For n =
200, there are some 20000 Walsh averages to be ordered. In what follows, we only use the method
hased on the binomial distribution to derive the confidence interval for b, even though the

underlying distributions may be symmetric.

4. A simulation study of two cxamples

The specifications of model (9) considered in this section correspond to those studied in
Campbell and Dufour (1993) with the addition of the intercept B, The first example is drawn from
Mankiw and Shapiro (1986). X, is assumed to follow a stationary autoregressive pr(')ccss given by

X, =8 +68X, +e, t=1.,n (15)
where the ¢ are assumed to be mutually independent and each ¢, is independent of X,,j 2 1;the
disturbances ¢, and €, are also assumed to follow a bivariate normal distribution with correlation
coefficient p. The results of the simulations presented in our previous study elaborated the basic
theme of Mankiw and Shapiro who found that the usual t-test considerably over-rejects the null
hypothesis when p and 6, are close to one and asymptotic critical points are used. The purpose of
the simulations presented in this section is to contrast the power of the nonparametric bounds

procedure proposed above with the t-statistic based on standard regression procedures. The

10



e ———— | s

organization of this Monte Carlo study follows that of our ecarlicr work which investigated the
performance of both paramctric and nonparametric procedures under different data generating
mechanisms, including non-normal and heteroskedastic patterns.  Since these processes are
essentially those of our previous work with the addition of an intercept term, we focus here primarily
on issues related to the application of the nonparametric procedures introduced in the previous
section, and direct the interested reader 10 Campbell and Dufour (1993) for a more thorough
presentation of the details of the models studied. The parameter values are 8, =099, p = 09and
By = 6, = 0.0. In this study, sample sizes n = 100, 200 are considered. Finally, there are 1000

replications in cach experiment.

In the application of the bounds procedure, there is an evident tradeoff between the width
of the confidence interval JCe}) and the significance Tevel oy = a-a, of the tests based on clements
of la,}). For n = 200, the following confidence intervals based on counting procedures associated
with the binomial distribution are considered: [Y,,, Youh Y Yool Yo Yo and [Y,
Y i), where Yy, is the k th order statistic, corresponding respectively 1o a, equal 10 0.4% ., 0.9%,
1.3% and 2.8%. It should be noted that there is not a sizable decrease in the width of the
confidence interval as its significance decreases. a reflection of the fact that the tails of the binomial

distribution are relatively thin,

With « fixed at 0.05 and for sample size n = 200, there s a different bounds test
corresponding to cach of these confidence intervals Ha,), where a, is 0.003, 0.009, 0.013 or 0.028.
The construction of the statistics §,(b} and SR (b) for each b ¢ J(a,), with g defined as in (10),
does not vary with a,. According to the bounds procedure denoted SB |alternatively, SRB). the null
is rejected if S(b) Jah., SR (b)] is significant at level o - a, for each bin J(a,); the null is accepted
if no S,(b) lak., SR (b)] is significant a1 level o + a; otherwise, the procedure is considered
inconclusive. The resuls of these procedures for the Mankiw-Shapiro model in the case of normal
disturbances are given in Table 1. Overall, the results suggest that it is better to take a wider
confidence interval for B. in the first step of the bounds procedurc in order to expand the critical
region of the nonparametric statistics used in the second stage. There is a clear gain in power: when
B, is 0.05, there is a 30% increase in power for the procedure based on the sign statistic and a 15%

gain for the Wilcoxon in passing from a procedure based on the narrowest confidence interval to the
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the confidence interval given by &, = 0.009. There docs not appear 10 be any additional gain in
power available from reducing &, even further. Accordingly, in the comparative studies for n = 200
presented in Tables 3 and 4, the results for the westing strategy represented by a, = 0.009 will be
pursued. A similar analysis was conducted to investigate the impact on the power of the
nonparametric procedures obtained by varying a, when n = 100. The results (not reported here)
suggest as well that power is increased somewhat by taking a wide confidence interval for the
unknown intercept parameter {a, = 0.007) but that there appear to be no further gains in power

associated with smaller a,. The resuits of the bounds tests given in Table 2 are obtained for this a,.

In what follows, we also study the performance of the following statistics based on the
sample median by of Y .. Y,

S‘(fao) = ﬁ: u[(Y‘—Eo)gl_I] s (16)

tel

SR(B) = Y u{(Y.-Bn)gM]R:(So) . an

=]
where g, is the usual centering function given by (10) and R; defined in (5). These are simply
aligned sign and signed rank statistics, which give rise to what are termed median-estimate tests in
the account that follows, based on a reasonable point estimate of B, We do not have analytical

results for the distribution of these statistics.

In Tables 2 and 3, the power of the t-test applied with both asymptotic and size-corrected
critical values is compared with median-estimate tcsts and nonparametric bounds proccdures for
sample size n =100 (with « = 0.05 and a, = 0,007) for various types of disturbances. Two types
of size correction are considered. In the first (specific size-correction), we use the empirical critical
values obtained when B, = 0, p = 0.9 and 8, = 0.99. In the second (modcl size-correction), we us¢
the larger critical values associated with the specification p = 8, = 0.9999 with normal disturbances
to emphasize the point that, ultimately, the correct analysis of power must be relative to all potential
specifications of the model, compatible with the null hypothesis (1) - (2) for (1) - (3)]. Even with
these corrections, the power comparisons are biased in favour of the parametric tests because the

(unknown) correct critical values should be greater than the ones used. Each of these size
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COFTections, morever, remains specific to the particular distributions considered and so none yields
a truly distribution-free test. The "size-corrected tests” should not be viewed as alternative tests
[because they are not feasible in practice, especially under the general assumptions (1) - (2)]. but as
theoretical benchmarks to which truly distribution-free tests may be compared. In particular, we
would like to see whether the distribution-free procedures have power not 0o far below these

benchmarks.

First, as expected, it is clear from the results in Tables 2 and 3 that the asymptotic t-tests do
not have the stated level, Interestingly, the level distortion is especially strong for the normal and
lognormal distributions.  Second, it is quite striking that the bounds procedure using Wilcoxon
statistics in the second stage outperforms the model size-corrected t-test in the case of Cauchy
disturbances and is comparable in power for alternatives close 1o the nuil when the disturbances are
1(3). Moreover, the bounds procedure based on the sign statistic is comparable in power 1o the
model size-corrected t-test for Cauchy and lognormal disturbances. A further interesting result is
that the median-estimate 1ests do not over-reject under the null, except in the case of asymmetric
lognormal disturbances where the Wilcoxon statistic should not be applied: here the sign-based test
appears to  have empirical level bounded by 5%. Both these tests. moreover, outperform the
parametric tests in having comparable (better, in the case of the Wilcoxon variant) power to the size-
corrected t-test in the case of normal disturbances, while outperforming by a wide margin the size-
corrected t-tests for both the fat-tailed disturbances. When the sample size is increased 1o n = 200,
the relative performance of the two bounds procedures improves considerably.  Both bounds tests
are considerably more powerful that the specific size-corrected t-test when the disturbances are
Cauchy (as does the sign-based procedure under lognormal disturbances) and are comparable 1o the
model size-corrected t-test under t(3) disturbances. Even when the disturbances are normal, the
Wilcoxon-based bounds procedures performs respectably compared 1o the size-corrected t-test. As
in the previous table, the median-estimate tests dominate the size-corrected parametric test no
matter the type of disturbance with nominal size bounded by 5% in all the appropriate

circumstances.

Four general types of heteroskedasticity are studied in Table 4. In the first, the variance of
the underlying normal disturbances jumnps from 110 16 halfway though the sample; in the two-break
model the variance jumps first from 10 16 at t = 75 and then 1064 at t = 150. In the third variant,

13



the variability of the disturbances grows lincarly through the sample |ic. €, is a N(Q,1) variable
multiplicd by t], while in the last the variablity grows exponentially ¢ is a N(O, 1) variable multiplied
by exp(u2)]. Along with the testing procedures presented in Tables 2 and 3, we consider in this
contexi an attempt due to MacKinnon and White (1985) to correct in a general manner for
heteroskedasticity through the preliminary estimation of a heteroskedastic-consistent covariance
matrix which is then used in a GLS estimation of the model coefficients. A consistent quasi-t
statisties (denoted by wm) can be computed and its performance is compared here with the other
statistics. We consider three types of size-correction in investigating the power of the parametric
tests in the cases of break heteroskedasticity. The first applics the empirical critical points associated
with each specification sudied; the second applics the largest critical points associated with
specifications involving break or lincar heteroskedasticity in either of the specifications of the
Mankiw-Shapiro model considercd in Tables 2 and 3; in the third, the empirical critical points
determined in the case of exponential heteroskedasticity are applied, because they are the targest of
all those considered. Of course, the largest critical value is by definition the one closest to the
(unknown) eritical valuc that would be appropriate in making the test truly robust to

heteroskedasticity of unknown form.

The results of Table 4 repeat the previous themes. The asymptotic tests are unreliable. The
power of the bounds procedure based on the Wilcoxon statistic is comparable to the size-corrected
parametric statistics corrected according 10 the first and second procedures described above.
Moreover, the bounds procedure based on the sign test is at least comparable in power to the wm-
test corrected to account for all possibilities of heteroskedasticity, while the Wilcoxon-based bounds
procedure is superior. It should be emphasized that if the t-test were 1o be corrected in a similar
manner it would have zero power. The Wilcoxon version of the median-cstimate test is superior in
power to the wm-test corrected for the specific model considered, while the sign version is
comparabie in power. Finally, it should be noted that in all the experiments considered here the

empirical level of the median-estimate tests does not exceed the nominal level.

We now turn to a simulation study of the random walk model given by (11). The parametric
tests considered in what follows are based on n( B, - 1) and the t-statistic, both defined using the

OLS estimate of B, = 8- 1in (11). Since these statistics are sensitive to the value of the intercept,



it is usual practice 1o consider as well tests based on nf B - 1) and the t-uatistic now defined using

fil, the OLS estimate of B, in the presence of a trend term. Critical points for the various

parametric tests have been determined by simulation: see Fuller (1976, pp. 371, 373 for the relevant
tables.  As indicated in the previous section, the nonparametric bounds procedure are based on

statistics given by (12) and {13). We will also consider median-based tesis given by

n

$,(b,) = zu{(v,yh,sb)g‘_,], (18)
1£]
SR (B,) = zu{(v,y‘_‘-’a)gl_,]R:(Bu) , (19)
tel
where 5{, is the sample median of Y -Y.t=1 _.n and & is the centering function given by

(14).

To assess the relative merits of the six parametric and nonparametric wsts of the random
walk hypothesis, we follow the same pattern of Monte Carlo simulation used in the analysis of the
Mankiw-Shapiro specification.  The intercept is B, = 2.0 in all cxperiments with the point of
departure Y, = 0.0 under the null and Y, = B/(1-8) under the alternative.  The results are
presented in Tables 5, 6 and 7. With regard to the issue of the appropriate bounds straicgy to
pursue, the results of Table 5 confirm in this setting the wisdom thart it is best 1o choose a wide
confidence interval for B,, so that the significance level for the second stage of the bounds pr()ccdurt:
is not too small. Accordingly, the testing strategy represented by a, = 0.009 is considered in the
following Tables.

The results reported in Table 6 concerning the relative power of the different tests under
various types of disturbances when n = 100 are noteworthy. The nonparametric signed-rank bounds
procedure is comparable in power to the t-test based on the trend model and is strikingly superior
when the disturbances are Cauchy, as is the sign-based bounds procedure in this case. The
Wileoxon bounds procedure performs respectably even when the disturbances are normal. Moreover,

in all cases considered, the median-cstimate test based on signed ranks outperforms the t-test based
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on a regression without drift with size bounded by the nominal level of the test. The strong power
pesformance is repeated in Table 7when n = 200, 11 should be noted that the median-estimate sign
test has power comparable 1o the -1est hased on a regression with trend even when the disturbances

are normal.

5. An application

According to the sirict theory of the term structure of interest rates, differences in yiclds at
different maturities of, say. government bonds can he cxplained in a straightforward way by apents’
expectations concerning future interest rates: long-term rates can be analyzed as the expected return
from 2 series of shorter rates plus a constant risk or liquidity premium. Mankiw and Summers
(1984) tested the expectations theory at the short end of the term structure with the additional
assumption thal expectations are formed rationally with sirikingly negative results. Such findings,
as more general analyses over the full term structure such as Shiller ct. al. {1983), are based on
parametric statistical inference which may not be valid as the relevant regression disturbances are
gencrally not normally distributed.  Our goal in this section is 1o illustrate the nonparametric
approach in this context. In striking contrast to the usual literature, we find for Canadian data that

the expectations theory cannot be rejected when more correct nonparametric procedures are used.

The strict form of the expectations theory states that the relation between the return on three

month and six month bonds is given by
™ =8 0517 4 0587, (20)

3

where 1V and 1 are the yiclds of three- and six-month bonds sold at time tand £, is the market

1.

forecast at time t of 1. It follows according to the theory that the implied forecast error may be

written as

2 H el e 28, @

1f we assume further that cxpectations are formed cfficicntly, then the implied forecast error must

he independent of all information available to the market at time 1, in particular the spread
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1 - 1" Further, this also implics that the forecast errors observed at the monthly frequencies

should be serially independent at lags greater than two.  These implications can be tested by

considering the regression
i3 Ab} i3y ®) 3y ,
L A A A N A €., (22)

where &, = -26 and the e, are serially independent m lags greater than two. We wish 10 test the

null hypothesis that 8, = 0.

The first section of Table 8 presents the results of OLS estimation of (22) bascd on monthly
three- and six-month Canadian government bonds from 1969 to 1989, Since the model applicd 1o
interest rates of these maturitics describes the relationship at three-month intervals, the monthly data
are treated as three sub-samples of observations, S.. S, and S, taken at three-month intervals. The
regression results for this particular data set confirm the general findings of Mankiw and Summers
(1984). The aull hypothesis is rejected for two of the three samples with 8, in all cases less than 0.
It should be noticed, however, that a standard test of disturbance normality rejects the normality

assumption in all three sub-samples.

The second section of Table 8 presents the results of the nonparametric tests. Following the
approach described in the previous sections, we first construct a confidence interval for the intercept
-28, where 8 is the constant liquidity premium. The confidence intervals are roughly identical for
the three samples.  Aligned sign and signed rank statistics are constructed based on different point
estimates of the intercept taken throughout the confidence interval. The test based on the mid-point
corresponds to the median-estimate test. For cach sample, the maximum and minimum values of
these statistics are found. The associated p-values are given in Table 8 In all samples, not only is
the null not rejected, since Q.(8) and Q,(SR) are greater than 0.04; but the null is accepted as well
in all samples, since Qy(S) and Qu(SR) are not less than 0.09 (for iltustrative purposes we are taking

a = 0.05). The median-estimate tests are not significant as well.

The contrast between the parametric and nonparametric results is striking. Where the
parametric results pointed 1o 2 rejection of the expectations theory of the term structure, the

nonparametric analysis confirms the theory. 1t should be emphasized that there is accompanying



evidence (normality tests) that the parametric inference is not appropriate here, while the

nonparametric procedures are valid for such small samples under the framework of the model.

6. Conclusion

The testing procedures presented in this paper have been developed in response to a specife
challenge. In many situations which arise naturally in testing fundamental implications of the
rational expectations hypothesis, standard regression-based testing procedures reject much to0 often
even when the sample size is as large as 200. This paper along with carlicr work in Campbeli and
Dufour {1993) offers an alternative nonparametric approach which does not suffer from this defect
of the parametric tests. Nonparametric tests bhased on signs and signed-ranks arc valid for a wide
class of models involving feedback: these include as specific cases the model studied by Mankiw and
Shapiro (1986), and the random walk model. Qur previous results were suited to models involving
no intercept or drift term. In this paper, we have exiended these results to cover these important
cases as well. To complement the results establishing the validity of our nonparametric procedures,
the results of simulation studics presented here show that the tests bave good power relative to the
paramctric alternatives even in circumstances favorable to the usual regression tests. In cases
involving outliers or heteroskedastic disturbances, nonparametric tests remain valid and can exhibit

considerably greater power.

We do not want to over-emphasize the usefulness of the nonparametric procedures
presented in this paper. The tests are best applicd in situations where the null hypothesis simplifies
the model, as in the null of efficiency in rational expectations models. The procedures cannot be
readily applied to more complicated testing environment. Such extensions are the subject of ungoing
sescarch. But there is no good reason to continue 10 use flawed parametric regression-based tests

in situations where there arc valid nonparametric testing alternatives which have good power.



Appendix

Proof of Proposition 1@ Follows directly from Propositions 1, 2 and 3 of Campbell and Dufour
{(1993).

Proof of Proposition 2: To simplify the notation, write § = S,.S- §.5<5.SR = SR,
SR - §§‘ and SR = SR,
(a) Let A be the event this S(h) > g(az) for all b e J{a ). We wish 1o show that PlAl s a + a,
First, define 1 = {b: b e J(a,) and S(b) « §(a2)}. Then, by standard rules of the probability
calculus, it follows that

Pog €10 = 1 - Plb, ¢ Ja,) or Sb) > S(ay))

21 - Pl ¢ M@l - PISG) > Sta) 2 1 - a, - o, ,

since by definition Plb, ¢ Ha)] 2 1-a, and PS(h) > §(u2)] s a. Observe that P[A] = PIBY,
where B is  the event that S(b) <« §(a2) for some b ¢ Ja). Since

B 2 {S®y) s S(a)) and b, € Ja,)}, we have

P{B]zl’[boel]zl-a,-a_‘z]-a,
with the immediate conscquence that P[A] s a, +a, s a, so that (7a) is established.

The two inequalities (7b) and (7¢) follow by using Proposition 1, which implies thar Sth) ~
Bi(n, 0.5), a symmetric di:anribulion on the integers {0, 1, .., n}, 50 that M - S{b) = n - S(hy) ~
Bi(n, 0.5). The proof of (7b} is then similar to the one of (7a) with S(b) ieplaced by M - S(b), while

the proof of (7c) is obtained on replacing S(b) by Max{S(b}, M - S(b)} and E(n:) by ‘S.(a: 12) in the

same proof.

We now turn to (7d). Let C represent the event that S(b) < S("‘a) for all be Ja,). We
have to show that PIC} s 1- (a, - a),). By the definition of $(a,), we have

P[S(b) < §(a)] = PIS(b,) < n - S(1 “a)] = Pln - S(b) > S(1-a)] < 1-a,.
Now, as in the proof of (7a), we consider the complement of C, i. ¢. the event that S(b) 2 S(“.a) for

some b e Ja,), and fet I = {b: b e J(a,) and S(b) > 8ta,)}. Then we have
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Plb, € T 2 1 - PIS() < S(ey)] - Plbg € Ja))]
-l -m)~-@a, =@, -2, 24
and. since the event C implies b, ¢ 1,
PIC) s Py ¢ [l s 1 - (egy-a) s -a,
and (7d) is established. The incqualities (7¢) and (71) follow on observing that 1 - S(b,} ~ Bi(n, 0.5):
the proofs of (7¢) and (71) are similar to that of (7d) with S(b) replaced by n - S(b) and Max{5(b),
n - $(b)} respectively.

(b) The same argument as in (a) with S(b) replaced with SR(b) and S with SR establishes the

resolt.
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FTable 1
Mankiw-Shapiro Model with Normal Disturbances®
p =098 =099, n =200
Comparisons between Bounds Tests

Testing Strategy Bounds  Tesws
a, a,
] SB SRy
Reject Accept  Reject  Aceept
28 22
0.00 0.1 676 0.4 63.5
0.05 0.2 353 147 29.5
007 172 234 285 187
13 37
0.00 0.1 69.5 0.4 62.9
005 6.6 6.8 16.9 30.5
047 183 271 319 165
09 4y
0.00 0.1 67.4 05 62.1
0.05 80 34.8 17} 29.6
007 201 224 320 164
04 46
0.00 0.0 715 0.5 60.0
005 7.1 377 166 292
097 190 238 302 163

' By = 8, = 00 Probabilities are given in percentages. A nonparametric
confidence interval J(a,) with level -a, is first constructed for Bo The null (B, =
0) is rejected if for all b € J(a,) the nonparametric test based on b is significant at
fevel @, the null is accepted if no such test is significant at level o, = 0.05 + &
otherwise. the procedure isinconclusive. $B refers 10 the sign procedure, SRB 1o the
Wilcoxon. The level of each strategy is bounded by 0.05. See text for further details.
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Table 2
Mankiw-Shapiro Modek Various Types of Disturbances’
p=09.8 =09,0=100
tevel and Power Comparisons

1-test Median-cstimuie Tests Bounds Tests
B,
Asymptotic Sizg-Corrected Size-Correcied 5(b) SR(B,) SB SRB
(specific) {model) ¢
Reject Acoept Reject Aceept
Cauchy
Distribution
000 138 50 34 23 40 0.0 65.6 a8 677
0407 400 299 26.8 042 67.5 298 7.5 369 103
0.10 644 489 431 742 76.7 3758 49 449 60
H3)
Distribution
0.00 189 50 28 16 38 0.0 679 0.3 58.9
0.07 282 14.7 119 251 300 6.7 369 120 322
0.10 0.0 36.3 308 42.7 46.5 137 249 19.7 217
Normal
Distribution
0.00 184 S0 28 26 42 0.2 0.5 10 556
0.07 262 4.0 110 149 23 22 48.6 6.5 362
0.10 435 324 281 260 355 6.3 387 122 248
Lognormal
Disitibution
0.00 19.1 50 27 21 93 0.1 67.6 0.8 53.1
0.07 299 173 136 409 45.8 143 196 208 20.5
0.10 513 376 322 59.7 62.1 24.8 9.3 342 1.2

* B, = 8, = 0.0. Probabilities are given in percentages. Empirical eritical points are used in power calculations for both the size-corrected
1-est; when B = 0, the rejection frequency for the specific size correction is $.0% by construction. The modelcorrection critical values are

obiained when p = 8, = 0.9999 and the disturbances arc normal. The statistics S(b,) and SR(b,) are defined by (4} and {5), with g, giver
by (10). The bounds tests, SB and SRB, are described in Table 1, with e, = 0.7% and a, = 4.3%.
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Table 3
Maakiw-Shapiro Model: Various Types of Disturbsnces
p=09,8 =099, 5=200
Level and Power Comparisons

[RE Median-estimate Tests Bounds Tests
8.
Axymptotic Siw-&_}rrsczed Size -Corrected Sth,) SR(BQ) 5B SRB
{specific) {model)
Reject  Accept Reject Accepr
Cauchy
Distribution
0.00 100 5.0 29 KR 44 0.3 568 0.8 63.0
003 30.8 226 i89 R0 78.4 50.6 37 587 A8
8.05 610 474 isa4 86.8 89.6 62.8 11 69.4 1.9
3)
Distribution
0.00 14.3 S.0 2.1 27 46 0.0 65.9 0.6 065
0.03 19.7 10.2 62 217 26.8 6.9 393 104 KA
0.05 47.4 345 283 455 535 196 19.0 282 212
Normal
Distribution
0.00 144 5.0 23 2.7 46 0.1 67.4 05 62.1
0.03 149 73 s2 128 180 2.5 526 4.7 46.3
0.05 429 308 24.1 294 374 80 3438 174 256
Lognormal
Distribution
0.00 i5.1 50 1.7 28 141 04 66.7 15 544
003 175 9.4 52 39.1 48.1 170 256 26.2 283
0.05 463 328 27.5 676 707 40.4 104 511 120

"B = 8, = 0.0. Probabilities are given in percentages. See Table 2 for details.
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Tabic 4
Mankiw-Shapiro Model: Heterosecdastic Disturbances’
o =09,8, =099,0 =200
Level and Power Comparisons

t-lest m-test Medi i Tests Bounds Tests

8,

s(by) SR(b) SB SRB
Reject  Accept Reject  Accept

Break att = 100

0.00 185 96 30 35 0.0 67.7 05 76
50 S0
39 34
00 0.0
0.05 480 391 319 424 9.8 309 22 334
316 334
366 30.0
00 113

Breaks at't = 75, 150

0.00 187 83 39 4.1 0.1 660 - D9 784
50 50
5.6 33
0.0 00

0.05 477 36.4 304 409 10.5 329 231 361
313 315
313 276
0.0 8.7

Linear

0.00 173 100 35 41 0.0 70.4 08 823
50 50
39 14
0.0 0.1

0.05 46.1 382 321 457 8.7 345 217 356
329 293
298 20.7
00 9.5

Exponential

0.00 360 114 4.9 5.1 0.3 747 28 921
50 5.0

030 849 141 46.0 420 130 217 N 513
6.7 4.9

* B, = 8, = 0.0. In the Break model, the variance of the disturbances jumps from 1 10 16 at 1 = 100:in the two-break
model, the variance jumps first by 16 then by 64 at the indicated points: in the linear [ait, exponential model}, the variance
grows linearly {alt., exponentially] with time. The median-estimate tests are given by {16) and (17); the wm test is described
in the text. For break and linear heteroscedasticity models, the entries under the asymptotic percentage rejections for the
t-test [ait., wm-test where indicated] represent rejections according to different empirical critical values for each statistic
determined by: (i) specific model. (ii) two-break model [linear model withp = 8, = 0.9999]; (iii) exponential model. For
expe ial heteroscedasticity, only asymptotic and specific percentage rejections are reported.
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Tabic §
Random Walk With Drift: Normal Disturbances®
Comparisons between Bounds Tests

n = A0
Tesuny Staregy Bounds  Teans
a, o
8 SB SRB
Rojey Aceept  Reject  Aceept
28 22
100 00 0.0 00 2.3
0.96 02 45 0.6 36.0
0.94 9 327 1o 236
P2 37
LOO 0.0 o0 0.0 13
0.96 24 49.2 8.4 80
0.94 4.7 364 17.2 264
09 4
1.00 0.0 00 0.0 0.3
0.96 33 47.1 87 ELRY
094 6.3 35.2 18.3 274
04 4o
1.00 00 00 00 0.0
0.96 24 447 9.3 87
0.94 53 325 18.2 277

' Model (11)with §, = 2.0 and B, = 8- 1. Probabilities are £nen in pereentages.
A nonparametnic confidence interval Ja,) with level 1-a, is first construcied for Be
The null (6 = 1.0)is rejected if for all b ¢ Jia,) the nonparametric test hased on
b is significant at level a,: the null is accepted if no such test is significam at leve)
&, = 005 + a,; otherwise, the procedure i inconclusive.  SB refers 1o the sign
procedure, SRB 10 the Wilcoxon, The level of each strategy is bounded by 0.05. See
text for further deails,
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Table 6
Random Walk With Drift: Various Types of Disturbances®
1ovel and Power Comparnisons

n = 100
1iest Median-estimaic Tests Bounds Testa
[
Without )}’xxlx S 6»’ SR, SB SRB
Trend Trend
Reject  Aceept Reject  Accept

Cauchy

Distribution
1.00 33 [N 0.5 i4 co 216 0.2 266
0.95 7.3 719 79 782 s 56 50.4 6.6
0.90 206 135 8.2 913 512 08 T4 2.1

13}

Distribution
100 0.1 $2 0.0 00 00 0.0 0.0 i8]
0.98 124 6.2 17.1 28R 1.1 45.32 69 42.1
0.90 338 206 384 52.7 5.2 230 204 220
Normal

Dhstribution
1.00 0.2 sS4 0.0 0.2 0.0 0.0 0.0 0.2
093 122 8.5 9.7 188 0.9 57.5 3.7 46.4
090 37 208 211 372 14 39382 109 330

* Maodel (11) with B = 20 and B, = 6 - 1. Entries for the 1-text and medinn-estimate 1ests are percentage rejections:
the latier statistics are given by (18) and (19).
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Tahle 7
Random Walk With Drift: Various Types of Disturbances®
level and Power Comparisons

n = 200
t-1est Median-estimate Bounds Tests
8 Tesn
\fv’jlhout ,W"h S{f)”} SR(b,) sB SRB
Trend Trend
Reject  Aceepn Reject  Accept

Cauycn

Druaribution
1.0 13 hE 0.1 25 0.1 438 0.6 305
o8 62 22 I N Y B 041 3
(.4¢ 13 FIVA 934 94.8 76.1 0.0 S1.6 08

L]

Dustribution
Lot 0.1 30 0.0 0.3 00 0. [¢XY] 0.7
0.96 200 i34 320 453 68 246 185 248
.94 42.2 252 49.1 oh.4 177 14.4 358 1335
Normal

Dustribution
Loo 0.2 39 0.0 0.1 00 0.0 0.0 0.3
U.96 218 125 157 293 KK] 47.1 8.7 89
0.94 443 245 248 45.0 6.3 382 18.1 217

* Model (11) with B.=20and B, =8 .1, Entries for the 1-test and median-estimate tests are percentage rejections:
the latier statistics are given by (18) and {19}

29



‘Table 8

Term Structure of Interest Rates

P ic and Nong e Bfficiency Resul
Daa Set
S S, S,
OLS Estimatex
& t1-1est) 0.22 {-1.66) 0.09 (-0.75) 001 +0.04)
&, .30 {-0.66) -1.01 (-2.46) -1.52 (-3.56;
Residual 46.4) 113.51 250.24
Normality (lj:)
Nonparametric
Analvsis
Confidence {-0.38, -0.03) {-0.46, -0.05) (-0.38, -0.0%)
Interval (¥95+)
Sign Tests
Median-Estimate A6 58 20
Qs 7 85 99
QuS) 14 46 20
Wilcoxon Tests
Median-Estimate 57 53 .87
Q,(SR) 30 58 98
Qu{SR) 44 Sl R

* Monthly data taken from Statistics Canada.on three- and six-month Canadian Government bonds from 1960 10 1989 i
divided into three sub-samples S,, S, and S, The regression equation is given hy (22). the Jurque-Bera (1987) normality
1est is applied 1o the residuals. ‘The Median-Estimate 1ests are given by (16) and (17). According 10 the nonparametric
bounds procedure, the null is rejected if Q, < 0.04: the null is accepted if Qu 2 0.06.
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