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RESUME

Nous proposons des tests et régions de confiance exacts applicables & des modales
autorégressifs d’ordre un avec régresseurs exogénes et perturbations i.i.d. Pour des hypothéses
lindaires générales sur les coefficients de régression, nous obtenons des procédures d'inférence
dont le niveau est connu. Les tests proposés sont a-semblables (i.e., la probabilité de rejet est
la méme sous tous les processus générateurs compatibles avec I'hypothése nulle) ou sont
basés sur des bomes qui ne dépendent pas de paramétres de nuisance. Par conséquent, les
régions de confiance correspondantes sont soit a-semblables {i.e., la probabilité de couverture
est constants), soit conservatrices. Nous développons aussi des tests et régions de confiance
pour des transformations non linéaires des parameétres du modéle, tels que des multiplicateurs
de long terme et des délais moyens. Nous établissons aussi la validité asymptotique des
méthodes exactes proposées sous des conditions de régularité usuelles et illustrons leur utilité
par des applications & un modéle de tendance pour la vélocité de la monnaie aux E.-U. ainsi
qu'un modéle de demande de monnaie au Canada.

Mots clés : autorégression, test & bornes, inférence exacte, restrictions linéaires, multiplicateur
de long terme, délai moyen, test de Monte Carlo, randomisation, test a-semblable

ABSTRACT

Methods are proposed to build exact tests and confidence sets in the linear first-order
autoregressive distributed lag model with Li.d. disturbances. For general linear hypotheses
concerning the regression coefficients, inference procedures are obtained which have known
level. The tests proposed are either similar (i.e., they have constant rejection probability for all
data generating processes consistent with the null hypothesis) or involve bounding distributions
which are free of nuisance parameters. Correspondingly, the confidence sets are either similar
with known size (i.e., they have constant coverage probability} or conservative. We also develop
exact tests and confidence sets for various nonlinear transformations of the model parameters,
such as long-run multipliers and mean lags. The asymptotic validity of the finite sample
inference methods proposed is also established under usual regularity conditions, and their
practical usefuiness is illustrated with applications to a dynamic trend mode! of money velocity
and to a mode! of Canadian money demand.

Key words : autoregression, bounds test, exactinference, linear restrictions, fong-run multiplier,
mean Jag, Monte Cario test, randomization, similar test
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1. Introduction

Since most economic relationships are determined by temporal factors
wuch attention has been paid in econometric theory over the last half century
to the specification end analysis of dynamic models. A very early reference
in the statistical literature is Yule (1926), and many studies followed; see
Hendry et al. (1984) for an overview. A serious problem in dynamic models and
econometrics generally is that statistical procedures which yield
finite-sample inference in simple static linear models have an indeterminate
distribution in more gemeral and realistic models, because of the presence of
unknown nuisance parameters, Rothenberg (1984) discusses procedures to
approximate the unknown exact finite sample distributions of estimators and
test statistics. When a dynanmic relationship can be modelled in the form of
the well-known normal classical linear model with finite distributed lags, no
serious small sample problems are met. However, 1if the appropriate model has
infinite distributed lags and has to be parametrized in the popular form of
an autoregressive distributed lag model, then the nuisance parameter problenm
arises. Since invariance of standard inference techniques with respect to
nuisance parameters is often regained asymptotically as the sample size
increases, it is common Practice to employ asymptotic approximations in
dynamic models. However, by simply relying on asymptotic results when
analyzing a finite (and often rather small) sample, one just accepts to
commit approximation errors of a largely unknown nature and magnitude. This
objectionable practice 1s due to the fact that hardly any operational exact
inference procedures are available for dynamic models to date.

In the literature some solutions to the nuisance parameter problem have
been suggested for particular simple dynamic models. These solutions often
involve the derivation of bounds which do not depend on nuisance parameters,
resulting in bounds tests and conservative confidence sets; see Dufour
(1990), Hillier and King (1987), Kiviet (1980, 1991), Kramer, Kiviet and
Breitung (1991), Vinod (1976), Vinod and Ullah (1981, Ch.4) and Zinde-Walsh
and Ullah (1987). For very special cases also alternative inference
procedures have been developed which are invariant with respect to nuisance
parameters and allow exact inference; see Hillier (1987) and Kiviet and
Phillips (1990, 1992). Here we combine these two approaches to develop exact
inference techniques for a much more general and popular class of dynamic
models,

The very special case where the lags are characterized by the presence
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of one common factor (see Sargan, 1980) and where all the explanatory
variables are fixed, has recently been exanmined in Dufour (1990). This linear

regression model with AR(1) errors can be stated as:

(1.1) Y = xéﬂ +u o, t=1,...,T,
u = p + £ ¢~ LIN(O 02)
t t-1 t’ t '

where Ve is the dependent variable (at time t), X, is a kx1 vector of fixed
(or strongly exogenous) Tregressors, p is a kx1 vector of fixed coefficients,
and u, is a random disturbance; the parameters B, ¢ and 02 are unknown.
Various sssumptions regarding the range of the serial correlation coefficient
(p) and the distribution of the i{nitial disturbance term (ul) are considered.
In Dufour (1990) the literature on exact inference procedures for hypotheses
on p and g 1is reviewed and several shortcomings of these earlier procedures
are discussed. Then an slternative method to obtain exact tests and
confidence sets in model (1.1) is proposed which proves to be more effective.
After showing how an exact confidence set for p can be constructed from an
exact autocorrelation test, the latter is first used to obtain a simultaneous
confidence set for p and any relevant linear transformation of B. A
corresponding exact similar test easily follows. By a projection method exact
bounding confidence sets are then constructed for linear transformations of g
only, and so an exact bounds-type test procedure for those functions of B
follows. This procedure avolds the problems of previous bounds methods which
did not exploit exact inference on p. See Kiviet {(1991) for a recent
application of the latter approach, and Kramer, Kiviet and Breitung (1991)
for an illustration of one of its major drawbacks.

It is well-known that model (1.1), which forms one of the simplest
dynamic alternatives to a fully static model (where p = 0 and X, does not
contain any lagged explanatory variables), has serious shortcomings when the
relationship is genuinely dynamic; see Hendry and Mizon (1978). 'In this paper

we develop exact inference procedures for the coefficients of the model
(1.2) Ve = A Yeo1 + x;ﬂ +e t=1,...,T,
2
£ - 1ID(0,07)

¢ and B are as in (1.1). Note that we do not make special

where
re Yoo *or fr
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assumptions on the domain of A or the distribution of Yo- The exact inference
procedures to be developed are based on teat statistics whose distributions,
under the null hypothesis, do not depend on the nuisance parameters (A, B or
¢) or the distribution of Yo hence Yo may either be fixed or randonm.
Rormality of the disturbances is not required for these invariance properties
to hold. However, the actual distribution function has to be known for the
calculation of exact significance points and for the construction of exact
confidence sets, and this is often relatively easy under normality. The class
of models (1.2) does not only represent relevant simple dynamic econometric
relationships of the sutoregressive-distributed lag form; it also covers the
simple Dickey-Fuller type models for inference on unit roots in the presence
of an intercept, drift, polynomial trends, seasonal dummies and any
interactions. We shall 1llustrate the exact procedures in both types of
dynamic models.

The basic building block that is exploited in Dufour (1990) to obtain
exact inference for any subvector of f in model (1.1) is an exact confidence
interval for the parameter #. In the same way an exact confidence interval
for the coefficient A enables exact inference in the more general dynanic
model (1.2). Exact inference on A can be obtained by applying least-squares
to an augmented regression model, as set out in Kiviet and Phillips (1990,
1992), where in fact two different procedures are proposed. Here we shall
develop a closely related third procedure for producing exact inference on A
from an augmented regression model. The latter procedure has a neat
likelihood-ratio interpretation, Therefore, from that point of wview, it
appears more attractive than the relatively ad-hoc procedures developed
earlier. Next we shall show how this type of approach also yields an exact
similar test for any Joint hypothesis on the value of A and some subvector of
£ as well as corresponding joint confidence sets. However, we also employ the
two-stage procedure proposed in Dufour (1990) to obtain joint confidence
sets, since it is found (in a third stage) that this easily yields exact
inference for any vector linear transformation (or subvector) of #. In this
approach an exact confidence interval for A 1is combined with the
corresponding family of *conditional® confidence sets for the relevant linear
transform of B, and then in the third stage, a test on just the 8 vector
follows by applying a union-intersection method. Such a test takes the form
of a "generalized bounds test”, which is based on two test statistics with
nested critical regions: the smaller critical region yields a conservative

test and the larger one gives a liberal test, while the difference between
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the two reglons may be viewed as an "inconclusive” reglon.

The exact critical values or p-values of the test statistics mentioned
above are obtainable from Monte Carlo experiments on particular pivotal
statistics, which are determined by the observed data, the parameters
specified by the null hypothesis, and also by the adopted type of
distribution function of the disturbances. They are not determined by any
unknown parameters. These simulated p- or critical values can, in principle,
be calculated to any required degree of precision and thus yield exact
inference. However, the number of required simulation replications may get
extremely large. Therefore, we propose another method for producing
simulation based genuinely exact tests and confidence sets from a finite
number of replications which proves to be operational.

Apart from inference on linear transformations of the coefficients of
model (1.2), practitioners are usually interested in inference on particular
nonlinear transformations of the coefficients, such as long-run multipliers,
(interim) iwmpact multipliers, and mean and median lags. Exact procedures for
testing nonlinear hypotheses in the static linear model are examined in
pufour (1989). We show here that analogous procedures can be applied in the
dynamic model (1.2) in such a way that exact inferemce on any nonlinear
hypothesis can be obtained.

A drawback of the exact inference techniques may seem to be that they
require relatively stronger (distributional) assumptions, in contrast with
the usual approach which capitalizes on asymptotic arguments. However, we
will show that the exact techniques are also valid asymptotically under usual
weaker assumptions, such as weakly exogenous regressors and reasonably
regular non-normal disturbances. Thus, having an equivalent asymptotic
justification, the main advantage of the techniques proposed here is that
they are also exact for a reference case, and hence are probably more
accurate in many other situations. The feasibility of the exact inference
techniques will be {1lustrated in a number of empirical examples, where the
exact results are set against the usual asymptotic approximations.

The structure of this paper 1is as follows. In Section 2, we discuss
various ways to produce exact {nference on the value of A (the coefficlent of
the lagged dependent variable) by putting the test problem into a form such
that the likelihood-ratio-type test statistic does not depend on nuisance
parameters. Then, in Section 3, we extend this approach im various ways and
develop procedures for exact {nference on both the value of X and linear

cransformations of § (the coefficlents of the exogenous regressors). These
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results are used iIn Section 4 for the derivation of exact inference on
hypotheses which do not involve A and only restrict the components of B, as
well as restrictions involving both A and elements of B. In Section 5, we
develop exact tests for nonlinear transformations of the coefficients such as
long-run pultipliers. In Section 6, we prove the asymptotic validity of the
procedures. Section 7 {llustrates the practical usefulness of the exact
inference techniques by applying them to a dynamic trend model of money

velocity in the U.S. and to a model of Canadian money demand. Section 8

concludes.

2, Exact Inference on A

Due to its notation, model (1.2) has the appearance of a simple partial
adjustment model. However, the dynamic relationship between the explanatory
variables and the dependent wvariable may involve dynamics of a more

sophisticated nature. The underlying relationship could in fact be

J L3
- TP -
(2.1) Ye )‘yt—l + _,?1 ;?o éjizt-i o, t=1,...,T

where the regressors are the one-period lagged dependent variable and finite
(hence L) £ L < @ ) distributed lags of J linearly independent fixed or

strongly exogenous explanatory variables zu), } = 1,...,J. For regressors
2 such as the constant or the linear trend Ly = 0 . Particular
coefficients 6j1 may be zero, but éj L # 0 . All non-zero coefficients

6j1 can be stacked in a kxl1 coefficient vector B, and the corresponding
values of the regressor wariables zéf; can be collected in a corresponding

kx1 wvector xt such that (2.1) can be written as (1.2) or as

(2.2) y—Ay_1+Xﬁ+(,

where X = (xl,...,x,r]’ is 2 T x k matrix, y - (yl,...,y,r)’ oY,

(yo, . ,yT_l)’ , and g = (zl. - ,tT)' .
For our finite sample results we make use of the following assumption.
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ASSUMPTION A: The Txk matrix X and the T™*] vector & &re independent, the
value ¥, is independent of ¢, and rank(X) = k with probability 1. The
coefficients A and p are constant but unknown, with g € Rk and X € D‘\
where ﬂx - (A =5 AL L4 N < =),

ASSUMPTION B: The distribution of the vector ¢/0 (given X and ya) is known,

where ¢ is an unknown positive constant.

The assumption that X and ¢ are independent (strong exogenelity) entalls
that X can be treated as fixed for inference purposes, i{.e. all inferences
can be made conditionally on X, which we shall do from now on. Assumption B
means that the distribution of ¢ is known up to a scale factor. often we will
simply suppose that the elements of ¢ are 1.i.d. normally distributed with
mean zero, but it will be straightforward to use other distributions,
provided they are known up to a scale factor. This also includes cases vhere
the elements of ¢ show heteroscedasticity and/or serial correlation of a
given form, but below we shall not pay special attention to these cases and
assume that the model has already been transformed in such a way that the
application of maximum-1ikelihood (conditional on X and yo) is equivalent
with ordinary least-squares.

When dealing with asymptotic results we will make different (in some
respects weaker and in other respects more specific) assumptions. Several of
the invariance results given below hold without Assumption B.

From (2.2), one easily obtains

(2.3) 3_1 - yot(x) + C(A)XB + C(M)e
where
1] "o 0]
b 1 0 .
a? A 10
() = |- Cocy = | A
AT |27 . . a1 0]




So, apart from dependence on Yor X, B and X, the elements of y., are a
weighted sum of present and previcus elements of the disturbance vector €.
This ell complicates the distribution of the least-squares estimators of the

coefficients of (2.2) considerably. These estimators are
& " -1, , -1,
(2.4) - (y,IM[XJy_,) YO MX]y =2+ (y_IM{XIy_J) vy, M[X]e ,

vhere M[X] = I - X(X'X) 1%’ and

25 B-ano -y )

-+ e - (x'X)‘1x'y_l(y’_lu[xqu)'ly'_lu(xu )
Testing H(Ao): A - Ao by the standard t-ratio, which we denote by
tA(AO), and using the tabulated critical values, does not provide an exact
test, even when £ has a standard normal distribution. This will be shown in a
more general context in Section 3.1 below.

Since dependence and invariance, especially under the null, are primary
issues 1in this study, the notation of exact critical wvalues of test
statistics (indicated by a "™ *) {is deliberately chosen such that it is made
clear what 1is tested, by which test statistic, and what the determining
factors of these critical values are. Hence, the right-hand and left-hand
critical values of the exact level a = oy + o test tA(AO) are denoted by
ZA(aR;AO,X,yO,ﬂ,a) and ZA(1~aL;AO,X.y0,ﬂ,o) respectively. These are such
that under Assumptions A and B (for e 20, ay 20and 0< a + ap =a< 1):

Pl (o) < Ty (0gidg Xyg.B.0) | A= 2] =1 - a
and
P[t, (A < Zx(l""ﬁ"o'x'yo-ﬂ"’) f A= Al =

These critical values are different from the Student-! critical values
I(aR;T~k-1) - -I(l-aR;T-k-l). Hence, even under normality the standard
classical least-squares based inference procedures, i.e. ¢- and %- tests, do
not yield exact results in model (2.1); this is due to the (weakly exogenous)
stochastic nature of the regressor Y.,
Of course practitioners can take the inexactness of standard tests for

granted and, although a finite sample is analyzed, rely simply on asymptotic
theory assuming that particular regularity conditions are fulfilled and
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asymptotic properties do reasonably well hold for the actual finite sample
under study. Here, however, we want to show how such speculations and
sometimes quite inaccurate approximations [see Nankervis and Savin (1985,
1987)] can be avoided by devising exact inference on A and/or a subset of B
in model (2.1) under Assumptions A and B.

2.1 Various Similar Tests on A

In Kiviet and Phillips (1990, 1992) two procedures are developed for
testing the null hypothesis A - Ao exactly in model (2.2). The null
distributions of these test statistics are free of the nuisance parameters B
and o; moreover, they are invariant with respect to the value and the
(stochastic) nature of Yo However, the null distribution of these tests does
depend on both Ao and X, so it is not feasible to produce general tables of
exact critical values, but it is possible to compute the relevant p-values
(or ecritical values) by using numerical or simulation methods. Exact
confidence sets for X may also be constructed by ninverting" these test
procedures. These two particular exact tests of A = AO are based on
straightforward least-squares results in a regression model which corresponds

to (2.2) augmented by a8 number of redundant strongly exogenous regressors:

(2.6) y =y, + XOQB + € s

where the matrix X(A has full column rank and is constructed such that

)
the linear space span?xed by its columns contains the space spanned by the
columns of the matrix Z(3g) = [x§¢(xo)§C(Ao)x] . When Z(}3) has full column
rank, we can take X(Ao) - Z(AO) ; otherwise X(AO) can be obtained from Z(AO)
by deleting appropriate columns from Z(AO). Extending a model by including
particular redundant regressors in order to achieve invariance of tests has
also been suggested in Dufour and Dagenais (1985) and pufour and King
(1991,p.125) with respect to inference problems in model (1.1).

The least-squares estimator of A in (2.6) is
-1
2.7 Q(AO) - (Y'_}“[x(’\o)lyd) y’_lﬂlx(ko)ly ,

where
MIXO)] = T - X0 (K X0g 1 XA
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The two statistics proposed in Kiviet and Phillips (1990, 1992) for testing
A - AO are

*
(2.8) €0y - ﬁ(xo) - %
and the {-ratio

* * » 1/2
2.9 H0y) = e (g 7 VROHNM

where V[ﬂ(ko)] is the estimated variance of Q(AO):

1 by - 30gy_1ruxopity - 2oy,
T-1-rank[X(3;)] Y MIXOQ Y,

(2.10) G[ﬁ(xo)l -

We also suggest here alternative similar test statistics for A = AO ,
which are based on applying the likelihood ratio principle to (2.6) while
acting as if normality holds. For the moment we only derive and investigate
such tests informally. In the next section, we shall formulate and prove a
proposition concerning similar tests on hypotheses involving both A and
linear transformations of B of which the present procedures are special
cases.

Regression (2.6) can be obtained by rewriting model (2.2) as
(2.11) y- X[Yq < Yorlrg) - C(a,)X8] + l[yot(ko) +CQAIXB] + X + ¢,
vhich is a special case (for A, = A) of the model

Y = AL - ygeQg) - CONIBL + AL lyge(Ag) + CONDXE] + X8 + ¢
or

(212)  y=ay +3x8+ At ) + CONXB,, + €,
vhere Aew ™ (A*-A)yo and Bog ™ (A,-2)8 . Clearly, we can test
H*(AO): A - Ao

by testing the extended restricted model
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(2.120) 3 = AgY., *+ X8 ¥ A8 (hg) # COQPMuy + €

where B, A, and B, are taken as free parameters, against (2.12).
For any Dxm matrix Z let SSO(ZlAO) and $5,(Z) be the following residual

sums of squares:

(2.13)  s5,(z[xg) = n:n (7 - Ay, - W@ - Ay, - 20
(2.14)  S5,(2) =win (y - 20 - 28) .
¢

Then the likelihood ratio (LR) statistic for testing H*(AO) [1.e. (2.12a)]
against (2.12) is a simple monotonic transformation of the statistic

8S5[X(2g) 2] _ (7"‘03'-,)'““‘“0”(}'“‘o’-;)

2.15)  £0p =
88, (WA ] y V(A Ty

vhere V(AO) - [yq§X(AO}] , with X(AO) as defined below (2.6). It is easily
verified that

(T -1 - rank(XOP D £ - 11 = (017

which shows clearly that the statistics defined in (2.8) and (2.9) can be
interpreted as tests of A= AO in the context of the extenﬁed model (2.12).
Further, as we shall show below, the null distribution of ZA(AO) , like that
of t:(ko) , does not depend on §, ¢ or ¥,.

1t is clear, however, that these tests do not take into account all the
restrictions entailed by A = AO on (2.12). Model (2.12) reduces to model
(2.2) with A = Ao only when the following restrictions are imposed on
(2.12):

o)t A= 2g s Ay =0 Puu = 0

This suggests one to consider the LR statistic for testing H**(Ao) in the

context of model (2.12), which is a monotonic transformation of
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sso[xlxo} - (y'koy_x)"u[x} (7‘)‘034)

(2.16) z;‘*(xo) -
55, [W(3g)] ¥ HUQ ) 1y

Exploiting the partitioning of the matrix W().O) , & decomposed expression
for M[W(AO)] can be obtained by use of the following Lemma, which is also
known as the Frisch- -Waugh theorem (see, Couriéroux and Monfort, 1989, Vol.2,
p.478). The proofs of the lemmas and propositions are given in the Appendix.

LEMMA 1: Let the partitioned matrix € = [AiB] have full column rank and
let M[C] = I - P[C] , where P[C] = C(C'C)'IC’ denotes the orthogonal
projection matrix on C . Then M[C] = M[B] - P[M[B]A] .

Applying this Lemma, the denominator of (2.15) and (2.16) can be written

as
(2.17) 55 INQAQ)T = y MW ]y = e MW(A,) e

(e M{xuony )2
-t M[X(Ao)}s - —

MEQY Ty

Under H**('\O) , we have ssO(xlxol = ¢"M[X]e , whereas it follows from (2.3)
that N[X(AO)]Y’1 - M[X(;\o)]c(,\o): under A = A9 + so that

e’ M[X]e

Kk
(2.18) £ () =
> o (' HIXO1CO ) )2

:'M[X(AO)]: -
t'C(Ao)’H[X(AO]C(AO)c

under H**(a\o). The distribution of 2100) under H (;\0) is analogous with
t'M[X(A Jle 1in the numerator. Clearly, the scale factor 4 cancels in (2.18)
and the expression for the null distribution of EA(AO) and for 2 (AO) only
involve /o, AO and X. Hence, like for ¢ (AO) and for t ()« ), t:he statistics
2 (A )} and 2‘\ (Ao) are pivotal under the null. Their null distributions can
be assessed by simulation, provided the distribution of £/0 1is entirely
specified [e.g., when Eyvena€y are i.1.d. N(O,az)]. Note that the .@:*(AO)
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procedure is & generalization of the test denoted 03 and presented in Dickey
and Fuller (1981, p.1059) for the special case vhere )‘0 =1 and X = ¢(1).

2.2 Exact Confidence Sets for X

Let us now consider the canstruc:ion of confidence aets for A. We focus
first on sets derived from the t (Ao) test procedure. The c (l ) test, vhose
null distribution can be obtained by the Imhof (1961) procedure (see Kiviet
and Phillips, 1990), can be used in the same way. We reject A - AO when the
t:(xo) test statistic is either too small or too large. So let I:(c;AO,X)
be the point such that

(2.19)  GulTy@ig X3 X =1 - @
where
(2.20) G lx|3,.X] = PO S x | 3g.X)

{s the cumulative distribution function of t:(lo) when A = )‘O (for a given
Tegressor matrix X). It is easy to see that G‘*(xho,x] is continuous in Xx.
1f we chqgsgaLandaasuchthac a-cL+cR (0<a<l, o 20, ap 20),
then the set )

@21 & (e - { 2o €D, ¢ Dilapidg D) S 50 S Ty (L-aging.X) } :

is a confidence set for A with 1eve1 1-a, 1.e. P[) € GA(aL'aR)] 2 1l-a , with
the equality holding when t (A has a continuocus distribution.
Correspondingly, the set

%*
(2.22) Bx(aL,aR) - { A € D e £ Gt*(‘,\("o”'\o'm £ l-ap } .

contains ? (a,.0p ) and must also have level l-a, with B, (a;.ap )y =8 3 (apsap)
when Gy, [ xlA is scrictly monotonic in x for all A, € D,. $o, by
checking if e < Gt*[t (AO)‘AO,X) < 1- -ap we can decide whether a given .\0
belongs to G (aL,aR) Note that the distribution of the random wvariable
Gu[‘:“o”"o'xl is uniform over the interval {0,1] when t (AO) has a
continucus distribution.

Even if «a

L " @

R the set ﬁx(aL,aR) is generally not a symmetric
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interval around a least-squares estimate of A, as is the case for standard

confidence intervals based on t-ratio’s. Also, one cannot simply state that

L

an interval (Ao . 0] is a tight (l-a -aR) level confidence interval for A

if
* L * * R * LR
£00) = e agx) L) = T aging.x) ,

*
because nothing guarantees that the function Gt*[tA(AO)IAO,X] is a
monotonic function of AO'
* ke
Confidence sets based on the xA(AO) and £A (Ao) tests are somewhat
less complicated to describe. For example, if we define the critical value
*
EA(Q'AO’X) such that

. .
(2.23) Gz*[fA(a;AO,X)]AO,X} -1-a,
vhere

(2.28) 6y [x]20.X] = PI£1OA) < x | Ag.X]

*
is the cumulative distribution function of ZA(AO) when X = AO (for a given

regressor matrix X), then the set
* * *
(2.25) €, (a) = { €D fA(AO) < Ex(a;xo,x) }
A €D, : £ 1
"1 %0 €D, GO [.X1 S 1 - a

1s a confidence set for A with level 1- -a. Confidence sets based on 2 (Ao)
are built in the same way.

In practice the explicit assessment of the critical wvalue for each
iteration of AO can be avoided by constructing the set from the second
formulation in (2.25) as follows. Generating in a Monte Carlo simulation N
independent realizations of the f:()o) statistic under A = 10 , which can be

written as

(MXO) 1CG )0

(2.26) 21(;0) - {1 .
(£SO MIXOG) IEMA ) €) (e XA ) ] )
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the frequency of the occurrence of !:()«0) < ﬁ;(xo) gives an estimate of
cz*(ﬁ:uo)jxo,xl , where 2:(30) is the test test statistic compu:.ed from the
observed data. If this exceeds 1l-a then l\o is not in the ﬁx(a) set. By
searching over DA the full set (2.25) canm be established to a certain degree
of precision, depending on the number of Monte Carlo replications N and the
intricacy of the (grid-)search over the A domain. As it happens the number of
replications has in fact to be extremely high. Using a normal approximation,
the standard deviation of the cz*(.'e:(xo)lxo,x] estimate in the
neighbourhood of 1 -a |is [c(l-a)/N]m , and keeping this below 1% of a
thus requires N > 16°(1-a)/a ; 1.e. at o = 0.05 this requires N = 190,000
and that seems prohibitively large.

To avoid this difficulty, we shall use instead "randomized" or *Monte
Carlo® versions of the tests based on 2:()\0) and 2:*(A0) which yield
genuinely exact and much cheaper procedures. Such tests were originally
suggested by Dwass (1957), Barnard (1963) and Birnbaum ¢1974). They are based

on a general property stated in the following lemma.

LEMMA 2: Let ZJ., Jj - 1,...,N, be independent and identically distributed
(i.i.d.) real random variables with continuous distribution, and let R.(N) be
the rank of Zj when Zl,....ZN are ranked in nondecreasing order (J =

1,...,N), i.e.,

(2.27)

N
RJ(N) - 131 U(Zj - Zi) f

where U(x) =1 if x20, and U(x) = 0 if x<0. Then, for j = 1,...,N,

(2.28) P[,RJ(N)/N 2x] -1 , if x50
- (1 + I[N(1-x)])/N , if 0<xs1
-0 , if x> 1,

where I[x] is the largest integer less than or equal to x.

This lemma can be used in the following way. Let Zl be the value of a
test statistic computed from an observed sample, and 22, .. .,ZN 1.1.d. random

variables with the same distribution as Zl under a null hypothesis of
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interest. For example, to test A = Ao , we may take Z1 - Q:(Ao) - 2:1(A0)
the observed test statistic 2:00), and 7, - 2’;300) v 3 o= 2,....H,
independent replications of the variable defined in (2.26). Clearly 22,...,2N
can easily be generated by Monte Carlo methods. Then for 0 < a <1 and by
choosing cN(a) to be & positive real number such that I[(l-cN(a))N] +1%
Ba , we can conclude from Lemma 2 that the critical region

(2.29) Rl(N)/N 2 cN(a)

has size not larger than a, provided 21 has a continuous distribution [which
*
is the case for £A(A0) whenever the vector ¢ has a continuous distribution],

In particular, for

(2.30)  ey(a) =1 - Hgil +§ ,

we have
(2.31) a - (1/N) < P[R, (N)/N 2 ey} < a

with P(RI(N)/N 2 cN(a)] = a when Na is a positive integer. Thus by using a
sufficiently large number of replications (N), we can make the size of the
eritical region RI(N)/N 2 cN(a) as close as we wish to a, and equal to a
(also for relatively small values of N) by setting Na to be an integer. Note
also that the critical region defined by (2.29)-(2.30) is equivalent to

N+1-R (N)
(2.32)  pg = L "¢ Il
N

so that Py can be interpreted as a "randomized” or "Monte Carlo™ p-value for
testing the null hypothesis.
It is straightforward to obtain & confidence set for A from such a Monte

Carlo test., If we generate N-1 1.1.d4. replications n 2),..‘,ﬂ(N) of the

vector n = ¢/o0 and compute the corresponding values 2,\j()‘0) vy =-2,....N,
*

of EA(AO) in (2.26), the following confidence set has level l-a for A:

(2.33) G:(a) = (2 €D, RLAD/N € ¢ (a) )

* *
where Rl(N,AO) is the rank of the observed test statistic QA(AO) - 2A1(A0)
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among 2; (Ao) , }J=1,....,N, and cN(a) {s defined by (2.30). Note that the
same disturbance vectors "(2)""’”(N) are used for all values AO.

For finite N this confidence set is not equivalent with (2.25), nor are
the corresponding test procedures. In the simulation test an extra random
element has been brought in which yields genuine exactness for finite values
of N. Given the fact that we cannot assess the null distribution of (2.26)
analytically, the simulation test procedure is the only really exact way to
proceed. There 1is typically & power loss assoclated with the simulation.
However, as N = «, the Monte Carle procedure becomes equivalent to the
corresponding non-randemized procedure under weak regularity conditions; for
further discussion, see Birnbaum (1974), Dwass (1957), Edgington (1980),
Foutz (1980) and Jockel (1986). For other applications of Monte Carlo tests
in a time series context, see pufour and Hallin (1987) and Theil and
Shonkweiler (1986).

Since it is mot clear which one of the various tests for X = A, given
sbove is the most powerful in a particular model, it is tempting (and perhaps
sensible) to construct exact confidence intervals for A based on varlous
procedures, and to compare their width and location before a choice is made.
However, this will affect the significance level and so leaves room for
further study of the relative pover and interdependence of these similar

tests.

3. Exact Inference on A and 8

The above results will be used now in order to enable exact inference on
A and g simultaneously. Let R be a known rxk matrix with rank(R) = r . Since
R may be void we have 0 sSr s k. Let

3.1 7= R8,

hence v is an rxl vector of linearly independent linear transformations of B.
We now construct exact tests for the null hypothesis A =~ AO 1= and
corresponding joint confidence intervals for (A,y) with exact size 1-a. In
Section 2 we already considered the case ¥ = 0. In Section 4 we shall develop
exact inference procedures on 7y only, and also for the case where we have

just one restriction involving both A and some elements of B.
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To keep the notation relatively simple, we reparametrize the model and
transform the regressors. Let R be a (k-r)xk matrix, such that Q = [R"{R"}’
is non-singular, and let Q8 = (v ,¥ )" : of course, R and ¥ - Eﬁ are not

unique. Model (2.2) can be rewritten now as
(3.2) y-Ay_l-rX(Q)'lQﬁ-f:—;\y_1+21+'2':y+t,

vhere [ZiZ] = XQ‘1 is of order Txk and has full column rank.

3.1 A Comprehensive Procedure

First we consider testing H(Ao,vo), i.e. using a non-extended model, and
show that the usual procedure yields a non-similar test. We base our test
statistic again on the LR principle, and act — in order to obtain the test
statistic — as if we have normally distributed disturbances, whereas in fact
the true distribution of the similar test statistics will be established by
simulation (instead of relying on the asymptotic null distribution of LR
statistics under regularity). Proceeding in the standard way and conditioning
upon y,, the IR statistic is T.ln(SSolflAo,vo]/ssl[w]) » where SSg Z[AO,yo

is the restricted sum of squared residuals

(3.3) SSOIZQXO.VOI =y - Ay - 2y MDY - Ao, - Z7g)
and Ssl[W] is the unrestricted sum of squared residuals defined by
(3.4) 55,[W] = yM(W)y = ¢'M(W)e , W= [y’lfx]

Note that M{yqﬁX] - M{yq?XQ-ll . R
Ve examine the monotonic transformation of the LR statistic
SolZ]ag.7,]
SSI(W}

(3.5 £ 01 -

Under H(X 0*7y) we have S (Z}AO,VO = £'M(Z)e . Using Lemma 1, (3.4) can be

written as
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(:'u{xly_l)2
(3.6)  S8;[V) - e’M(De = ’HIX]e - —yIypy T

Note that, under the null hypothesis, the statistic ‘ex.y("o*’o) is not
pivotal, i.e. its distribution depends on unknown nuisance parameters. This
is easily seen when both the numerator SSO(EIAO,70] and the denominator
SSl[V] are divided by 02 and it is recognized that the test statistic
consists of a number of (inner) products of three stochastic wvectors. The
vectors M(Z)c/o and M[X]e/o are pivotal, but H{xljd/a is not pivotal, which

is seen as follows. Using (2.3), we have

(3.7) Y, =Ygt M) + C(A)Zy + C(MZY + C(A)e

and hence, under H(Ao,vo), we find

(3.8)  y Jo=yo(xg)/o+ CA)Z1p/0 + CANZV/o + COGe/o

vhere o and 7 are unknown. Premultiplication by M[X] does not lead to
simplification, leaving only the fourth term of (3.8) pivotal; in the first
two the factor l/¢ causes problems, and in the third it is /0.

To get a pivotal statistic for testing X = Ao y T = Vg ve operate in a
comparable way as we did in (2.11). Ve rewrite model (3.2) as

(3.9) ¥ = Aly, - Yorg) - COIZTy - CRQIZT]

+ AlygeQAg) + CAg)Z1g + cuo)i&} +Zy+ 27+

and next consider a more general model by relaxing some of the coefficient

restrictions in (3.9). Consider

y = My, - ¥gr(Rg) - CQpIZ7g - C(Ay)Z7]
+ 20,0y (3g) + COQGIZYg + CONTY) + 2y + Ty + ¢

or
(3.10)  y = Ay 42yt Iy Au00 4 $ e [COZYG] + CONZAy + €

vhich specializes to model (3.2) if A, = (A -Ny, =0, X . = A,-A =0 and
*%k * 270 ** *

Yow = (AmX)7 = 0.
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Below we consider testing

"**(*0'70)’ A=dp 0 T=U . A=0, A, =0, Yer = 0
in model (3.10) with the criterion

SSo[Z1%:79]  (-AgY,-21g) M@ (3-3gy_ -2y,

[

ek
BID £7 Ogg) -
200N s Wy Y HIVOG, 7)1y

vhere V7)) - [ y_1§252§t(AO)EC(Ao)Zvoéc(Ao)i ] - [Y_I§Z§Z(AO,7°)] -
[yqiz(lo,yo)] . Ve also consider testing

HeQgimg): A =2g, 71=17,
in model (3.10) by

$S1Z00,79) [X4.7,]

*
(3.12) £ O, -
A7 700

} (7-207.,-275) MIZOg, 1) 1 (=207 _ - 27)

Y MVOG, 1) 1y

As we shall see it is the case that if r > 0 and Yo is supposed to be
fixed, we can also obtain similar inference from an extended regression with

one redundant regressor less. Therefore we also consider testing

Hf*(A0'7o)’ A=Ay, 7= Yoo A =0, Yy ~O0
and

Hf(AO"'O): A - '\O [ A ’10
in

(3.13) y=Ay +Zy+Iy+ A lyge A + CAPZY] + COPDZr,, + ¢,

which also is a generalization of (3.9), by
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ssomxo.vo} (y-2g¥_,"27)° M) (y- TS SRS Y]

?*
(3.14) 2 (g 19) ™
21000 " s g1 y it g1y

vhere W' (A5,7p) = [ 7.,iZiZHyys O)#C(Z7p1iCAQT ] = v, iziZ 0g1p] -
y,,iz' (g, 7p)1, and by

gt
8512' (Ag179) | 291701

t
58, (W (g 79

t -
(3.15) £ O

y uw’u 01017

respectively. Note that for r = 0 (s test on A only) the statistics (2.13),
(3.12) and (3.15) are equivalent, and so are (2.16), (3.11) and (3.14).
The procedures for testing joint restrictions on A and § based on the

sbove statistics are based on the following proposition.

PROPOSITION l Suppose chac model (3.2) and Assumption A hold. Then the
? t

statistics (Ao,-yo) y (Xo,-yo) . (Ao,-yo) and 2 (Ao,'yo) given

in (3.11), (3 12), (3.14) a.nd (3.15) respeccively can be written as follows

when A-Ao and 1=

n M[Z]n N MIZ(x,, 7,010
(3.16) .‘f’;*_’oo.vo) - e, 3'; -,“o"’o) -——
! 5110,2(10.10)] ! Slln.z(kono)]
, ] » "'t
n M[Z]n nH[Z' (X, 7,)]n
a1 N opr) - £ 0g1y) - _________?_o__a___
! 5,n.2°(Ag07p)] ! 5,[n.2z (gr1p)]
where n = ¢/o and
o iaIC ()

(3.18) 5;(n,4) = n M[Aln -
y,'co\o)'M(A}c(Ao)n

for A =2Z(A or 4=2'(),7,) as defined in (3.11) and (3.14).

0.10)



- 21 -

The main usefulness of Proposition 1 comes from the fact that the null
distribution of the test statistics considered do not involve the nuisance
parameters ¥ and o, provided an appropriate assumption is put on the
distribution of ¢/0. The null distributions of 1 (Ao,10) and 2 (Ao,yo)
only depend on the known quantities AO' 1o R, and the regressor matrix X, as
vell as on the distribution of ¢/o; those of 27 (Ao,vo) and Z;.T(Ao,yo) also
depend on Yo-

For the moment let us concentrate on applying the 2 (Ao.vo) statistic;
the others work similarly. If 2 (a Ao,vo,x R) is the poinc such that

* *
(3.19) p[ £y Por1) > By (@ 10 XR) | A=Ay, v - 10] -a,
an exact confidence set for (A,7) with size l-a is then given by the set

L *
(.20 & (a) - { (Gor7g) & £ 1Qgi7p) S 2 _(@idg,75.X,R) } .

The exact critical values denoted by 2 (a Ao,yo,x R) can in principle be
obtained to any reasonable degree of precision from Monte Carlo experiments.
Exact Monte Carlo tests and confidence sets can also be obtained by using the
simulation argument given in Lemma 2.

For normally distributed disturbances €, it is also interesting to note
that a liberal critical value for statistic 2 (Ao,vo) can be found without
performing any simulations at all as follows From (A.l1) we obtain the
inequality ssl[W(Ao,yo)] < ¢ M[Z(Ao,yo)]: . Hence, under H*(Ao,yo),

S50{Z(xg,70) |37, eH[ZOG, 700 1e
2

(3.21) 21'1<A0.10> -

§5,[W(A;,7y)] £ M2, 1) ]e
. MZOg.7p) Je = e M[Z(Ag, 1) e
-1+
IIM[Z(Xoyvo)]t
rank{Z{),,7.)] - rank{Z(x ,v.)]
-1+ 9’0o S
T - rank[Z(A0,7o ]

Here F -~ ?(yl,u ) , i.e. F is Fisher distributed with degrees of freedom vy
- rank[Z(AO,70 ] - rank[Z(A0,70)] = r and v, = T - rank[Z(A0,7o)] 2
T-2k+r-2. Thus
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- Yy * Y1
(3.22) P[’ex,q("o"o) 21+ -;; 3(a.v1,v2)] 2 P[F 21+ ;-2- 9(u,v1.v2)] -a,

where s(a;vl,uz) denotes the a level critical value of the Fisher

distribution with Yy and v, degrees of freedom respectively. Therefore, if we
*

find QA,1(A°,1°) S (v /vF@ivy,vy) o we can infer that the test

statistic 1s certainly not significant at level a. Such 1liberal critical

values can also be derived for the other three tests proposed in this

subsection.

3.2 A Two-Stage Procedure

Above we developed direct procedures for joint inference on A and any
linear transformation of §. Such inference can also be obtained from a
two-stage procedure, i.e. an exact simultaneous confidence set for (X,y) can
be constructed by combining an exact confidence set for A [see (2.22), (2.25)
or (2.33)], denoted (neutrally) now by l':’x(a), with the corresponding family
of "conditional" confidence sets for 7v; see Dufour (1990). The duality
between tests and confidence sets then again leads to an exact test for any
joint null hypothesis on X and 7. We proceed as follows.

First assume that the true value of X is given. An exact similar test
for v = 7 is then obtained easily (without extending the model) by the

statistic

§501Z]2,7,] -2y _,~21)" MIZ) (3-2y_;-2%)
(3.23)  £,00) = - .
ssl[z],\} (y-2y_,) M[X] (y-2y.,)

vhich reduces to

' M{Z]¢
(3.24) zyp("o) TH[X]¢E
under ¥ = Y, - Given Assumption B, it can yield a similar test, and its
critical values will be denoted by 21 A(c:;X,R), i.e. zle(a;X,R) is the
smallest point such that P{!_ﬂx(vc) > zv‘k(a;x,l‘()] < a ; these do not depend

on 7g or ). Then the set
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(3.25) g?l*(a) - { % ¢ .’27“(10) < Evp(a;x.x) }

is an exact confidence set for 7 (given 1), HNote that the {monotonically

transformed) statistic
T-k
(3.26)  %,1,009) = I 12,07 - 1)

produces equivalent inference. When £fo - N[O,IT] , ,1{A(10) follows {(under
the null hypothesis) a Fisher distribution with (r,T-k) degrees of freedon.
So, under normality, 21ll(a;x,a) -1+ r(T-k)'lﬁ(a;r,T-k)

We now suppose that A is unknown. Let

(3.27) 0<a= o +a, < 1 with 0cg a, < 1 1=-1,2)

A size 1-01 confidence set QA(al) for A can be constructed following one of
the procedures set out in Section 2.2. Now consider the set

(3.28) gk,y(al'a2) - { (Ao,yo) : AO € @A(al) and Yo € €7]A0(02) } .

Note the difference between the set GVJA(u) of (3.25), which has size l-a,

and
(2.29) l‘a’mo(uz) - { Yot 9,'“0(*0,70) < ETIXO(QZ:X'R) } .

The latter set is a "conditional® confidence set for v; it is conditional on
Ao and has level a,. The critical value in (3.25) is obtained from 27’A(70)
under the assumption (Ao,vo) = (X,7) . Hence, it is simply a quantile of
(3.24) and does not depend on nuisance parameters nor on Ao and 79 Its
invariance is very convenient when (3.29) has to be assessed for various AO
values, which - as we shall see — is required when these conditional sets are
used to construct unconditional inference for (A,v) or v only.

Now we examine the level of EA,1(°1’°2) given in (3.28). Upon wusing

Bonferroni’s inequality, we find
(3.30) P[ {(X,7) € QA,7(01,Q2) ] - P[ A€ gA(al) and 7y € EViA(a2) }

21 - P[ A e Ek(al) ] - P[ 7€ 57¥A(a2) ] -1 - a - a, = 1-a,
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Hence 8},1("1"’2) is a conservative 1 - a level confidence set and, of
course, this implies =2 conservative test. This test is of minor interest
since we have already obtained an exact test of size (precisely) a in the
foregoing subsection. The two-stage joint confidence set, however, provides a
basis for making inference on individual elements of g and cross-restrictions

between X and B.

4. Inference on g only snd cross-restrictions between ) and 8

Below we shall "marginalize® the conservative two-stage joint confidence
set 6),1(a1'°2) defined in (3.28) with respect to A, by exploiting the exact
interval Ek(ul) in such a way that exact inference on 7 only, hence on a
linear transform of B, results. First bounding confidence sets for 7 = Rf
will be constructed and then an exact generalized bounds test for the
hypothesis ¥ = 7, easily follows.

We define the r dimensional random sets

U .
(4.1) l'a”(al,az) - { 1 ¢ 3 )‘0 € El\(al) such that (Ao,vo) € B‘,\,’(al,az) }
and
L .
4.2) Gv("l'“z) - { T ¢ Vi, € €, (a) <A0.10) € EA,,Y(al.rx?_) } ,

U L
with the convention Gv(al,az) - 61(01"12) - @ when GA(cxl) = @ , where @ is
the empty set. The sets (4.1) and (4.2) are nested, i.e. @ & 61(01,012) [«

GS(B , and they can be used as bounding confidence sets as follows.

192)

PROPOSITION 2: Suppose that model (3.2) holds jointly with the Assumptions A

and B. Let g.\(nl) be a confidence set for A such that P[X € G’\(al)] 2 l—al .

If0<€a, <1 ,0<a,+ta wag<€l-a, and a,=a+t < 1 , then for the
1 1 2 1 2 1

random sets defined in (4.1) and (4.2) we have EL(al.a’z) [« ﬁl;(al,az) and

U -,
Ply € r;’;(al.a'zn < l-a S Pl1€E (0] -
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From the above results, conservative and liberal tests for y = Yy can

be derived. We define
L .

(4.3) 21(10) - Inf { £7IA0(1°) : AO € Ek(al) }
U .

(4.4) 27(10) - Sup { £TIA°(10) H AO € El(al) } .

U U .
Note that 1 € gy(a1'°2) is equivalent with 21(70) < Ele(az,x,a) . With
respect to the true 7 this implies for the statistic £7(10) that

U . U
(4.5) p[ 27(10) > Zle(oz,x,g) ] - p[ v e €y(a1,a2) ] £a,

when 7 - - Similarly, the event 2 (70) > 2 'A(az,x WR) implies
7 ¢ ﬁ (al,az) , hence

(4.6) [1 (1) > 2 “(az.x ,R) ] < P[ y e &k L (@1,a5) ] <a,

vhen 9 = 19 - Because & 2 ay implies 27] (az;x Ry 22 |A(a§;X'R) , the
generalized bounds principle can be applied, yielding the test:

L .
(4.7) reject 7 = 7, when 27(70) > 211A(a2,X,R) ,
U , .
accept when 21(10) < 2111(°2’X'R) s

whereas the test is inconclusive otherwise.

In practice, simulation procedutes have to be used first to obtain a € (al)
interval, and then 2 (70) and 2 (10) have to be assessed. Under normality of
¢ the 2 critical values can easily be obtained from tabulated critical
F- values In general, however, this test procedure should be brought fully
into the simulation context of Lemma 2 and then the decision rules of (é 7)
1nvolve the assessment of the p-values of the rank statistics based on 2 (70)
and 2 (10) These p-values are to be compared with a, and 02 respectively

As far as linear restrictions on ) and 8 are concerned, the only
situation for which we haven't yet obtained an exact inference procedure is
the case where the restrictions involve both A and elements of B, but do not
explicitly (or implicitly) specify A = A_.. We consider the one restriction

0
case:
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(4.8) Ho(no): 2+ xiﬁ =Ky s

where xy is a kxl vector and %, & scalar; %0 and %y both known. This can be

handled as follows. Let

(4.9) y - niﬂ ' Kw A+ y=2+ xiﬁ .

Hence, both v and x are scalar unknown parameters here. We define the set
(4.10) E‘(n) - { L 3 (A0,10) € ﬁx.v(a) such that Ky = Ao + 7, } ,

where GA 1(a) can be obtained as in (3.20). Obviously,

(4.11) B[ (A,7) €8, ,'(a) J=1-asP[sef(a) ],

and the test of (4.8), which can also be expressed as Ho(xo): ko= Ky
corresponds to the confidence set (4.10). It is performed by simply rejecting
Ho(no) when 50 ¢ 6‘(0). and it has level a (though usually not size a). Ve
shall not pay separate attention to the case where we have varlous
restrictions, including at least one of the form (4.8), since this, like all

other forms of linear restrictions, are covered by the general results in the

next section.

5. Tests for Non-Regular Hypotheses

Ve now generalize the foregoing results on linear restrictions and
consider cases where two arbitrary hypotheses on the regressor coefficients

are compared, viz.

A r+l
(5.1) hyO,1) =0 & O7) €TECR ™, To#2
and
(5.2) hi(A,8) =0 = (A,5) €8 c R, 0, =2 .

These cover special cases such as nonlinear restrictions, inequality
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restrictions and non-nested hypotheses,

When XA is known, the model y - Ay_l = ¥(A) = X8 + ¢ satisfies the
assumptions of the standard linear regression model, except that €/0 may be
non-normal. Dufour (1989) deals with exact solutions to inference problems on
non-regular hypotheses in that model under normality. We shall stick to our
more general Assumptions A and B and extend these results to dynamic models.

Let

denote the residual sum of squares for arbitrary coefficient values (AO.Bb)’,
vhere (Ao,ﬂb)' e R with Ao € DA . We first consider the case where the
true value of A is known, and define:

(5.4) $S5(0) = Inf{ S(.8y) : By € R and ho(A,REy) = 0 }
and

(5.3) SSl(A) - Inf{ S(A,ﬁo) : ﬁo € R and hl(A,ﬁO) -0 } .

The LR type test for the tweo hypotheses can be written (after a monotonic
transformation, and still assuming A to be known) as:

SSO(A)
(5.6) £ (Tp,0,) = .
rjat o™ ss, (0
Ve also define:
5.7) _EO(A,yo) - Inf{ S(A,ﬂo) : ﬁo € R* and Rﬁo -7 € Rr" }

for some given value Yo and
(5.8) SS(2) = Inf{ S(0.8) : By € R“} .
Note that the statistic (3.23) for testing v = 7o TNow can be expressed as

S (X, v,)
0> 7
(5.9) £ () - 29
1o SS(H)
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In the proposition below it is shown that the critical value 21IA(°;X'R) of
test statistic (5.9) is a conservative critical value for testing the

non-regular hypotheses (5.1) and (5.2) by the statistic ’r]x(’o’“1’°

PROPOSITION 3: Suppose that model (3.2) holds jointly with the Assumptions A
and B. Then, if (A,7") € Po , we have

Pl 2r|,\(r0'“1) > Iﬂx(a;x,x) ]Sa.

It is also possible to obtain 1liberal eritical values. These are,
however, of less interest. Proposition 3 concerns the unrealistic case where
A is known. We shall show now how we can exploit an exact confidence interval
ﬁx(a) in order to obtain unconditional inference on the hypotheses (5.1) and
(5.2). We define:

L »
(5.10)  £.(Tq.0,) = Inf{ zrg,\o“o"‘l) 1 Ay € By (ay) } ,

U .
(5.11)  £.(Ty.0) = Sup{ zr“o(ro,nl) : Ag € By(ey) } .

PROPOSITION 4: Under the assumptions of Proposition 3, let Ex(ul) be a
confidence set for \ such that P[) € ﬁx(al)] 21 - a; - If 0<% ay <1,

0 < a, +a, = a<1l- o, and a} -a + a) then for the statistics defined

in (5.10) and (5.11) we have under (A,7") € Po

L . Y
E-LIES ENCEINELE I IRES ENCE RN

From this proposition we find the following generalized bounds test

procedure:

fys L .
(5.12) reject (X,7")’ €T, when £r(ro,nl) > 27“(‘:2,:{,3) ,
4 ’ U 7’ .
accept (A,v') € PO when ZP(PO.QI) < 211A(a2'x'R) '

whereas the test is {nconclusive otherwise.
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Rather than obtaining a test for A7) € ro from the above procedure,
which is inspired by the two- -Stage approach of Section 3.2, we can also make
use of the comprehensive Procedures of Section 3.1. We shall illustrate this
for a particular example.

In the context of our dynamic model (1.2), which originates from the
underlying relationship (2.1), nonlinear transformations of the regression

coefficients which are particularly relevant are expressions such as:

L(J)
s-o ji/(l A) , 1 e. the total multiplier for regressor
y 3 =1,...,J;
1- i , the standardized interim multiplier after
i time periods;
A/(1-2) , the mean lag;
ln(;)
Max{ -1, 0} , the median lag,
In(x)

Note that the above nonlinear characterizations of particular aspects of the
dynamic adjustment process are only meaningful if D < (-1,+1)

We shall focus now on the problem of producing exact inference on the
parameter ¢ = v/(1 - A) , where again 7 =~ RS ; hence, ® may represent a
vector of total or long-run multipliers. From the confidence set § (a) for
(,7) given in (3.20) we construct another set, viz.

(5.13) Ew(a) - { 9 ¢ 3 (A0,10) € 5A.1(°) such that @y = 70/(1 - Ao) } .
Note that this set is not necessarily bounded. It is clear that

(5.14) Plope Gw(a) }21 -a,

and that an exact test of ¢ = wa corresponds to this confidence set, In

case we start off from the two- -stage confidence set E (al,a ) of (3.28) we

can obtain the set, which corresponds to test procedure (5 12):
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(5.15) Ew(al,az) - { %t P " 10/(1 - 10) and
21“0(‘10.)0) s va(a'z;x.n) for some A, € Gl(al) }

6. Pointwise Asymptotic Validity

The procedures proposed above are exact under the Assumptions A and B,
ij.e. when X may be treated as fixed and ¢ has a distribution which is
completely known up to & scale factor. In this section, we show that these
procedures also yield »asymptotically valid" tests under considerably weaker
distributional assumptions on X and ¢, which allow both stationary and
non-stationary regressors. More precisely, we wish to show that proceeding as
if Assumptions A and B hold jeintly with a specific distributional assumption
on ¢/o (e.g., £/0 = N[O,ITI) yields tests whose probability of type 1 error
converges to the nominal level of the test as T + » under any parameter
configuration compatible with the null hypothesis (pointwise asymptotic
validity).

All our results up to now have been established for a given sample size
T. To formulate asymptotic properties, we need to consider a sequence of
models indexed by T so that it will be useful to rewrite model (3.2) in the

form
(6.1) y(T) = Ay (T) + Z(T)y + 2y + e(T)
where y(I) =y - (yl,‘..,yT)’ S GO R SO 2(T) =2 , ZT) = Z =and

€(T) = & . All the tests proposed in Sections 2 and 3.1 are based on

considering a regression of the form
6.2) 310070 = WT(D + GOIT Qg7 *+ &M
- Ay (T) + Q{2 7)8 * «(T)
w!:tere y,r().o,'yo) - y(T) - Aoy_l(T) - Z:('l‘)—y0 . The matrix QT(AO,'VO)
(QT(AQJO)?&T(AOJO)] is a full column rank T X m matrix and (.l.r(,\o.vo)

has m columns (0 S ® S m). Note that either QT(AO,'fO) or QT(AO,TO) may
be void.
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The null hypothesis of interest is
(6.3) HO: Ay =0, 9, =0
which is tested with the LR-type statistic

- SOT(AO’TO)

(6.4) T
57 79)
where
Sortla-70) = ¥r Qg 7)" MITL g 79) I3y (A9, 75)
and

S1100:79) = Yp(Ag.70) My (D 1QL 0, 70 17,005, 70)

or equivalently by the Fisher-type statistic

(6.5)

Sor(Ror7g) = S3n(A.,7,)
g - [ T-m-1 ] 0T "0' "0 1770 ‘0 - T-m-1 (2 -1,

w+1 SlT(Ao,yo) m+l
where m = B - m (for the case m - 0 we define QT(A ,70)] -1 ) For
example, the statistic f (AO) of (2 15) is obtained by taking QT(Ao,yo) -
ET(AO,yo) - X(AO) and statistic 2 (Ao) of (2. 16) is obtained by taking
QT(AO,70) - X(AO) and QT(AO,vo) - X . Similarly, & (A ,10) of (3.10) can
be obtained by taking QT(A0,70) - [Zi 2 L(A Yic(a )270 C(AO)Z} (assuming
that this has full column rank, otherwise redundant columns should be
omitted) and QT(AO,vo) - Z . Similarly all the other £-type statistics
introduced in the foregoing sections are special cases of (6.4) with
particular QT(AO,yo) and 6T(Ao,70) matrices.

Applying Lemma 1, the statistic 9T under the null hypothesis has the

form:

A(T) - A, (T) + A(T)
(6.6) ¥ = KD 1
Ay(T) - A (T)

where K(T) = (T - m - 1)/[(a + 1)T] ,

O7 A M = D U@ 1)) L AT = () HIQ (4,79 1e(T)
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L6 (1) KQp g 1) Jog )€ (/e

€(T)’ Gy (0g)" HIQp (3.7 163 €T /e

and ¢ can be any positive number. We shall now examine the asymptotic
distribution of 5.1. under the following “generic" assumptions (where =

refers to weak convergence as T»= ).

ASSUMPTION C: In model (2.2), the matrix X = X(T) has rank k with
probability one, and the coefficients A and B are constant but unknown, with
ﬁeRk and AeﬁxcR . Furthermore for A-Ao s T =T where Aoei)A
and v is defined in (3.2), the matrix [y-l(T) QT(AO,-VO)] , as defined in
(6.2) has full column rank with probability one for T 2 To > m and the
sequence ({QT()\O,'yo), e(T)] ., T2 To) belongs to a class Zo of stochastic
processes such that for each process in 20 the following properties hold:
) plinm 3 €(T)'£(T) = Z>0,

T

where 02 is a positive constant which is the same for all

processes in Zo;

(ii) there exists a sequence of non-singular m X m matrices DT and a

sequence of positive constants ¢y such that:

() ep =z =

["é@ %o]
(b) plim DiQn(r,,70)" Qp(Ag:1g)Pp = Zoq = i: Tas
o PrirtorTe? Frter o T %o Za
where EQQ is the same for all processes in Zo. ‘EQQ‘ 0,

and T-» is a m x m nonsingular matrix;

QQ
(c) D:_,QT(AO.VO)'c(T) - q;
1 . ,
—;; DTQT(AO.‘VO) CT(AO)t(T) - gy

e(T)’ CT(AO)t(T)
Sr =93
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t(T)’CT(Ao)'CT(Ao)c(T)

2 el q4 ?

T

where 9 950 4y and 9, are random vectors such that ) and

c,

q 3/9 4 have  absolutely continuous (non  degenerate)
distributions on R® and R respectively, and the distribution of
(q_'l R qf;'/q“)’ 1s the same for all processes in Zo.

In the above assumption, the sequence (ct, D) and the joint
distribution of (q'z, 4. qA)’ may depend on AO and 7y as well as on each
particular process in Zo. The limiting constant o, the matrix Z.. and the
distribution of (qi . qg/qa)' may also depend on (Ao,yo) but should be
the same for all processes in Zo. The latter invariance 1s the crucial
property which will assure the invariance of the limiting null distribution
of 9‘,1,.

Note that none of the Assumptions A, B or € do exclude non-normal
disturbances. In contrast with A, however, Assumption C allows stochastic and
weakly exogenous regressors (although at the cost of introducing additional
assumptions on the asymptotic behaviour of the model). Before we investigate
the test statistic 3,1., we shall discuss a few of the particulars of
assumption ¢.

The scaling factor ¢p and the matrix DT are typlcally of the form

s -5 -8
=M ° and b -atag[ m L ..., () ' ].

where 61 >0, e.g. 61 = 0.5 or ¢5i = 1 , depending on the degree of

nonstationarity of the variables involved, For example, for '\0 = 0, we have

T

e(T)’ CT(AO)S(T) - sgzcttt-l

T

. . 2
£(T)7Cr(A)* CLA ) e(T) = R

so that Cp = T2 should be an appropriate scaling factor which will assure
T T
-1/2 -1 2
the convergence of T ;gzct::t-l and T t.‘-‘:ztt (under quite general

regularity conditions on the disturbances :t).

For Ao = 1 , we have
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T-1
- -1 ,
T 1t(T)’CT(l)t(T) - T "e(T)" (0 , £ 0 & 48y 0 e sgltt )

T T
1 -1/2 2 -1 2
=2 [(T tglct) - T chtt ] :

This has an asymptotic distribution under standard conditions, while

-1 ¢

e Ty Gy(1) D] = B T, (Fep”

- 2[(T-1) 4 (T-2) + ... + 1] = o(t?) ,

which suggests that the appropriate scaling factor is cp - T .
For the case Ao >1, let w(Ao) - [wl(Ao), Ve ,wT(ko)]' - CT(AO):(T) .
We have wl(ko) = 0 and

t-1

t-1-4

v O = 5,097 g T 2, ....,T,
hence
2 2%} 241 2 2.t 2
B v, 02 = o F,007 = f1L - G/ - A]

T
. , 2 2,27 C 3242
E{e’C(Ay) C(Ao)c] E Z, [wt(ko)] a (Ao) /11 AO] .
In this case, one would typically take ¢, = lAO]T. Similar arguments can be
applied to the determination of the matrix DT'
Under Assumption C, we can establish the following result on the

asymptotic null distribution of 31.

Proposition 35: Under Assumption C, the statistic 5T in (6.6) has an
asymptotic distribution as T 5 @ which is the same for all processes in the

class ZO defined in C.

An important special case of the latter proposition 1s the one where Z
includes cases (among others) where e(TY/a =~ N[O,IT] and X(T) is
independent of €(T). Then the inferences drawn using the latter assumptions
remain valid asymptotically under the more general assumptions represented by

the class Z.
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7. Illustrations

For an application and illustration of the exact procedures in the
context of pure univariate time-series analysis we used annual data published
by Balke and Gordon (1986, pp. 781-786) on nominal GNP and M2 in the US. We
analyze the natural logarithun of GNP/M2, 1i.e. the velocity of M2 (indicated
by vt) over the period 1959-1983. Estimation by OLS yields:

TD o ve= g 4B/ wav v, t=1,..., 1T

= 0.135 - 0.005 (t/T) + 0.723 Vea * ?t ,
(0.037)  (0.020) (0.090)

T=35; s =0.0286 ; R2 = 0.739 ; DF - -3,078 .

Estimated (asymptotic) standard errors are presented between parentheses; s
is the degrees of freedonm corrected estimator of o and DF is the t-ratic
Dickey-Fuller statistic for testing the unit root hypothesis A =1

Asymptotic tests for higher order (up to fourth) serial correlation, for
structural change and for non-normality of the disturbances have large
p-values and hence do not indicate severe misspecification. This is also the

case for the more restricted model:

~>

+

(7.2) ve = 0.138 + 0.710 Ve-l e

(0.034)  (0.074)
T=35; s=-0.0281; R2=0.739 ; DF = -3.919 .

For producing exact inference we chose DA - [-1, +1) and used 999
replications for the simulation tests,

When assuming normality of the disturbances in specification (7.1) we
found, upon using the 2:* statistic, an exact 95% confidence set for A given
by ﬁ:tfo.OS) - [0.64, 1.00]. The statistic £} ylelds a much wider region,
viz. gA(O.OS) - [0.28, 1.00), Hence, we see that the corresponding unit root
hypothesis tests (which are both in fact equivalent to particular
Dickey-Fuller type tests) do not reject A = 1 . However, when we use our
comprehensive procedures, and test in (7.1) the joint null hypothesis A = 1
and ;97 = 0 (we indicate the intercept coefficient by ﬁ‘ and the trend
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coefficient by ﬂ'). we find for both the statistics Zxﬂ)(xo,yo) and
21(:'_')().0,10) p-values of 0.042, and hence, the pure random walk with drift
model is rejected at level 5%. Again the tests that do not include the zexo
restrictions on the redundant regressors under the null seem less powerful;
they both yield a p-value of 0.136 (note that conditioning on ¥, has
apparently no effect here). If we do "a test on the regression®, viz. A = 0
and p, - 0, all four tests mentioned in Proposition 1 yield p-values of 0.000
. The same joint hypotheses can also be tested by a two-stage procedure. The
random walk with drift hypothesis is rejected at 10% level, since the p-value
of the conditional test statistic (3.23) is 0.043 . Zero restrictions onm all
coefficients apart from the intercept are rejected right-avay as A=0 is
not in the confidence set E:*(0.0S).

Exploiting the £;* interval we find (conservative) 90% confidence
intervals [0.004, 0.190] and [-0.078, 0.040] for ﬁ‘ and ﬂ’ respectively. Upon
testing the significance of the trend coefficient we obtain a p-value for
2};(10) of 0.994, so a zero value of the trend coefficient should certainly
not be rejected (as ve already learned from the confidence set), but we also
find a p-value for 23(10) of 0.043 . As this is smaller than 0.15 this means
that the bounds-test with level 10% (al - 0,05 = az) js inconclusive. So,
acceptance of a zero trend coefficient (which seems more or less self-evident
following naive asymptotic reasoning) is in fact not strongly sustained by
the 35 data observations either.

Upon applying the exact procedures under normality to the parsimonious
parametrization (7.2) we obtained now [0.64, 0.99] for the 2:*(10) based 95%
confidence interval. Hence, we see that the unit root hypothesis is rejected
now at the 5% level. This 8:*(0.05) jnterval ylelds a 90% conservative
confidence set [-0.001, 0.178] for the intercept, and hence the intercept is
not significant at the 10% level.

Just for curiosity (and not primarily for its empirical relevance for
these data), we also analyzed these data under the assumption of non-normal
disturbances. We considered two cases viz. 1.1.d. disturbances that are
distributed as (x: - 1) , hence skew with zero mean, and t1 or Cauchy
distributed disturbances, i.e. symmetric but with no finite moments. For the
skew disturbances we found for (7.2) the interval E’;*(O.GS) - [0.64, 0.96]
and the intercept is now significantly positive, since 22(10) has a p-value
of 0.004 , thus the bounds test rejects. The Cauchy disturbances yield
8:*(0.05) - [0.61, 1.00] in (7.2) and the p-values of 2‘7’(—10) and 2’;(10) for
the intercept are 0.380 and 0.001 respectively, so the bounds test is
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inconclusive; the conservative confidence set for the intercept is
[-0.004, 0.191).

To 1illustrate the 1inference techniques in a simple structural
econometric model, we build on an empirical study on narrow money demand in
Canada by Marothia and Phillips (1982), henceforth MP. They perform various
regressions in order to identify the key explanatory variables for money
demand and supply functions by using both single and simultaneous equation
estimation techniques. In the case of the demand equation OLS, 2SLS, 3SLS and
IV give wvirtually the same results, viz. that real cash balance (mt) is
determined only by real income (yt), the short-term interest rate (rt),
lagged real cash balance (mt-l) and an intercept. MP's study is based on logs
of quarterly data from 1970(1) until 1979(1V). During this period Canada had
a flexible exchange rate regime. All data, except interest rates, are
seasonally adjusted. The effects of long-term interest rates and wealth are
found to be insignificant. The similarity of the various estimates 4is
interpreted here as indicating that simultaneity is not a major issue for
this particular equation. Of course, strong-exogeneity (especially of yt) is
highly unlikely here, but under Assumption C we can deal with that.

We adopt the final preferred specification of Mp and obtain the
following OLS results (due to data revisions our findings differ slightly
from the results published by MP):

(7.3) o - ﬁl + ﬂz Yo * ﬂ3 r, + A mt'l + €

= 0.430 +0.083y - 0.058r +0.913m_, + (A

1
(0.304) (0.039) (0.010) (0.055)

T=39; §=00136; R%~0.950 .

No obvious statistical evidence is found regarding structural breaks in
relationship (7.3), and tests for (higher order) serial correlation and
non-normality of the disturbances are insignificant. The main conclusions of
MP on Canadian narrow money demand concern the estimated values of the
long-run elasticities with Yespect to income and interest; equation (7.3)
yields the plausible estimates 0.95 and -0.67 respectively.

Before we present our exact inference results, we first examine standard
(asymptotic) inference on the unknown coefficient values such as typically

provided in current practice (the intercept is indicated as 51; 52 and ﬂ3 are
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the y and T coefficients respectively). Table 1 presents the confidence
intervals for the individual coefficients obtained at a nominal confidence
coefficient of 95 and 90% respectively. Such intervals can either be based on
critical values of the standard Normal or the Student distribution. The
former intervals follow directly from classic results on likelihood ratio’s.
In the latter case the estimated standard exror of the disturbance and
coefficient estimate should include a degrees of freedom correction. It 1is
generally believed that using the degrees of freedom correction and the
(slightly larger) Student critical values reduces the approximation errors
committed in finite samples. In Table 1, the latter wider intervals are
{ndicated by "asymptotic-t®, and the (uncorrected) pure asymptotic intervals

are indicated by "asymptotic-N".
<< TABLE 1 here >>

We should mention that the intervals for A, although obtained By the
standard OLS recipe, are not genuinely asymptotic intervals, since the normal
asymptotic distribution for the underlying test statistic is only valid for
IA‘ <1 ; testing A = AO for .\0 > 1 require different asymptotic null
distributions.

Table 2 presents exact confidence intervals for the individual
coefficients. Ek(al) intervals are obtained from two different test
statistics using the procedure described in Lemma 2. We now used N = 2000
(but N = 1000 gave virtually the same results) and assumed normality of the
disturbances. In the upper part of the table we present results where
A€ 2))‘ w [-2, +2]. Note that these exact intervals can be obtained for any
region D'\. hence there are no objections from a statistical point of view
against the values equal or greater than unity here. We see that the two
intervals presented for ) are both much wider than the asymptotic intervals.
Apparently the information in the data or the capabilities of the tests are
very weak with respect to rejecting exorbitant (from an economic point of
view) A values. The test £:*, which restricts the coefficients of the
redundant variables under the null, seems the more effective one for these
data. A falr comparison with the asymptotic intervals would require the
assessment of the actual confidence coefficient of the latter type of
intervals, which is impossible, due to the dependence on unknown nuisance

parameter values.
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<< TABLE 2 here >>

The intervals for the B's have been obtained by employing (4.1) for
a - 0.05 = @, , exploiting the exact interval E:*(0.0S). Quite remarkably,
the exact intervals in Table 1. The intervals for ﬂz indicate that, according
to these exact procedures, the income coefficlent 1s not significantly
different from zero at the 10% level. As it seems, in this relationship and
for these data, an estimated coefficient of A greater than unity can easily
be accommodated by a negative income effect. From the lower part of Table 2,
which presents results on the exact inference procedures obtained under the a
priori restriction |[A] € 1, we still find that the income coefficient is
not significantly positive.

The test procedures of Section 3 can easily be used to produce exact
versions of ®“the test of the overall relation”. Table 3 contains exact
p-values on this, and on a few other hypotheses. In the first row of this
Table, joint significance of the explanatory variables is found by all four
comprehensive tests and also by the two-stage procedure. In the second row,
vwe test the three values for the coefficients found by MP; these are not
rejected, The exact test procedure can also be used to test the (structural)
MP specification against the pure time-series simple random walk with drift
specification, which involves the restrictions: A = 1 and ﬂz - ﬁs = 0. This
particular unit-root hypothesis cannot be tested by standard Dickey-Fuller
procedures; the third row. of Table 3 indicates that all our tests yield
strong rejection at the 1X level, so the explanatory variables suggested by
economic theory produce a statistically highly significant improvement over
the pure descriptive unit-root model.

<< TABLE 3 here >>

The comprehensive procedures of Section 3.1 require to restrict A under
the null. The two-stage procedure, however, also enables to test the less
restrictive hypotheses of the bottom two lines in Table 3. Building on the
confidence interval €:*(0.05), procedure (4.7) ylelds a zero p-value for the
hypothesis ﬂ2 - 33 = 0 . Hence, it is rejected at level g = (0.05 + az)
for any a, > 0 . For the hypothesis ﬁz + ﬂ3 = 0 this procedure ylelds an
insignificant 2: value. However, the test of this hypothesis is inconclusive
since 23 has a zero p-value, which is below ué - 2a1 +a, > 10%.

Tests on long-run elasticities are sensible only when we restrict the
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domain of A, 1f we choose Dx - {0, 1), then the confidence set will be
unbounded. Bounded sets can be obtained from (5.13) or (5.15) 4if we choose

D, - [0, »U) with a2 <1, which is not pursued here.

8. conclusions

By exploiting techniques to annihilate nuisance parameters from test
statistics and by using these in combination with generalized bounds test
procedures we are able to produce exact inference techniques on virtually any
form of hypothesis on the coefficients of a first-order autoregressive
distributed lag model. The resulting procedures are computer intensive, but
nevertheless operational. As usual, genuine exactness is only obtained under
specific conditions. In the present case the conditions are of similar nature
as those for exactness of t- and F-tests in the static linear regression
model. These conditions are: strongly-exogenous Yegressors and 1.i.d.
normally distributed disturbances. In fact, the requirements for exactness of
the techniques presented here for the first-order dynamic regression model
are weaker, since we can deal straightaway with any (up to a scale factor
known) form of distribution of the disturbances.

Our inference procedures can also be justified on basis of asymptotic
arguments which are of the same type as those underlying the standard
non-exact procedures. Therefore, &and due to their 1local exactness, the
accuracy of the techniques suggested here seems less vulnerable in general.
After all, they are exact for a reference case, and the standard procedures
are only approximate in any finite sample.

The non-similarity of the classical inference techniques in finite
samples precludes the assessment of their actual significance and power in
practical empirical situations, and a proper comparisom of the efficiency and
effectivity of the two approaches is therefore hard to establish. This seems
feasible in controlled simulation experiments only, and shall be pursued in
future research. Most probably, the classic procedures outperform the exact
techniques on & local asymptotic power eriterion, since the latter loose
extra degrees of freedom. This aspect may prove to be even more important
when the present procedures are generalized for the higher-orxder dynamics
case, which requires extra redundant regressors. However, even if that really

is the case, then this does not necessarily disqualify the exact procedures
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for use in finite samples. If one attaches great importance to controlling
significance levels, and is willing to cope with the computational burden,
then the exact procedures are clearly preferable, tince»for that matter, they

have no competitors.
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APPENDIX

PROOF of Lemma 1: Making use of results for the inverse of the partitioned
matrix ¢€°C and evaluating C(C‘C).IC' one finds the relationship P(C) =

P(B) + P[M(B)A] , from which the Lemma immediately follows.
]

PROOF of Lemma 2: To simplify the notation set RJ - Rj(N) v 3= 1,... N
Since the random wvariables 21'“"1:: are 1.1.d. with a continuous
distribution, the rank vector (Rl,...,RN)’ is with probability 1 a
permutation of the integers (1,2,...,H), and each permuation has the same
probability 1/N!; see Hdjek and $id4k (1967, section 2.3). Consequently,

1
P[Rj - 1] = 7 i=1,2,...,N,
and
PR s -2 o gxgr,
from which we see that
p[nj/NSxJ-Mg‘—l, 1f ez,
- ﬁ%ﬂ , otherwise ,

where Z+ is the set of the positive integers. Since, for any real number z,

I[N-z] = N -2z, if z is an integer ,
-N-I(z) -1, othervise ,

we then have, for 0 < x< 1 y

P(Rj/nzx]-l-rmj/u<x}-§——‘—y—:§ﬂ—+—l, if wez

-8 ;(xN] . otherwise ,

hence

P[Rj/Nzx]--I—fﬁ-(-l-‘—N—"LLﬂ, 1If 0<x<1,

-1, if x =0,

from which we get (2.28).
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PROOF of Proposition 1: Upon dividing numerator and denominator of the
various test statistics by 02 it is obvious that, under A = Ao and 1 = 7y
the numerators are pivotal quadratic forms in ¢/a. Applying Lemma 1 the

unrestricted sum of squared residuals of (3.10) can be expressed as

(A1) 55,[W0G1p) ] = ¢ MIVGG, T
(e M[ZO0g 1) 1Y)
- :’H[Z(Ao,vo)}: - 0’0 1 .
Y MIZQG 7)Y,

Exploiting the special composition of Z(A0,10) , we find from (3.8) that
under (A = Ao y 1™ 10) ,

MIZ(g,1g)17_,/0 = 20, 70) 160G /7

and so both 2 (Ao,vo) and 2 (A0,10) yield similar test statistics.
Along similat lines it 1s found that §S {W?(Ao,yo)]/a is pivotal if Yo

is fixed, since
uizt g1 1y /e = Bz Qg1 160g)e/e
where Zt(xo,70) depends on Yo- So, 1if Yo is fixed both 2;,1(A0’70) and

13
2A,1(A0‘10) give similar test statistics too.
n

. U
PROOF of Proposition 2: Since (A,y) € gx,v(al‘QZ) implies 7 € 67(a1,a2) ,
we find

U
P[ v € 57(01,02) ] 2 P[ (A7) € GA,7(01,02) ] >1-a.
Now define the set
L
Ev(al,az) - { 1ot 3 % € €, (e;) such that (g1 € GA’V(al,az)} ,
if Gx(al) v g,

r
- R, if Gk(al) -g .

This is the complement of gt(al,uz) in the space of all admissible values of



A-3
hence Ply ¢ QL(u a,)] =1 - Plyve EL(a a,)] . Ve also define
7 7% o v IENN

e“ MCREN -{ (Agi7p) : Ag € &, (a)) and Ogi1p) € B, lay.ap) }
Then
P[ 0.7 € 3;‘;(31&2) } - p[ AeB(a) and ve 37“(02) ]

21~01-(1-02)-a2-cl

where & “(az) is defined by (3.25). Note that (2,7) € E’“ (al,az) implies
v € E (al.az) , 80 that

P[ v € E.I;(al,az) ] [ (A7) € 8( )(al,az) ] -a .
Combining the above, we find
P'yEﬁL(a a,) | €1 -a, +a
7172 2 1-

Consequently, one finds a 1liberal confidence set for v by replacing a, by
a’2 -a + a , giving
Plye8 a0 | s1-a
LR R ’
Since 02 Sasg a‘2 , we have €A'1(al,a2) 2 G‘\’_y(al,a’z) , hence

L , L U
Ev(al,az) < 31(01,02) c G_’(al,nz) .

PROOF of Proposition 3: From the definitions (5.5) and (5.8), it
straightforwardly follows that §§ (A) 2 85(0) . If (A BFR) € I‘O then the
infimum §35 (A) is obtained over (A,'ro)’ € l‘o where Yo =1~ RB , whereas
Ss (A) is obtained over all Ty = Rﬁo € R obeying (1, 10)' € I‘O , hence
SSO(A) 2 SSO()«) . Thus, under the null hypothesis we have SSO()«)/SSI(J\) <
SSO(,\)/SS(A) » and so for any real x

$54(3) 55,(0)
P[ .Er“(l‘o,ﬂl) >x] - P > x S P > x
ssl(x) S8 (1)




A-b

- P[ lle(vo) > % ]

from which the conservative critical value easily follows.

| ]
PROOF of Proposition 4: When X € C,(a;) we have ghery.0p < 211300 -
and thus, for any real x,
of b .0y >x | =Bl £h(rg.0) >x and X € Cylay)
rTo'™ r{To 2
+p| .0 >x and A€ C(ay)
r{To 2
< P[ !rlx(ro'“1) >x%x and X € CA(al) ] + P[ N3 CA(al) ]
< P[ 2o 8 > % ] va .
Hence,
o[ e .0 >2 ,(a,XR) | Se,+a; =@
Tt y|a (% 2t .
U
Similarly, A € CA(al) implies zr(ro,nl) 2 zrlx(FO'ﬂl) , and
o[ L0 >x | 2| £aryap >x and A€ Clay)
rTooMy rTorfy Aoy
> P[ £,(Tg.0y) > % and A € C,(a;) ]
21 - P{ 21, (To:0p) € x] ; P[ A & C,(a)) ]
>1 - p[ NCNERE x] -ay -
Hence,
U . , -
p{ zr(ro,nl) > Em(az,x,a) ] 20, -0 o
»n

PROOF of Proposition 5: The proof is based on looking at the asymptotic
behaviour of the variables Al(T)’ AZ(T) and A3(T) in (6.6). We have

Al(T) - ' M(Q)e = 7€ - c’QDT(DiQ’QDT)-lD&Q’c



A5

Ay (T) = M@ = e’ - zfﬁnT(n§f°anT)'1D%"'c

where we gset ¢ = e(T) , Q= QT(AO,vo) and Q = 6T(A0,10) . Using Assumption
C, we then see that

plim 1 A (T) = 02 >0
T "2
T-sc0

, -1 o -1 - a
A(T) - Ay(T) = 9 qu 9 -9 ZQQ Q9
where El is the m X 1 vector such that 9 - (ai . Ei)'

If m=n, e, Q=0Q, then 31 =0, vhile for 0Sm<m, 51 has
& continuous distribution, Similarly

1, 1, . P '1‘3
ool MQC (A e = o {eCpg)e - erQD (D70 Qp) "DIQ ¢} = q,

1, N
c—2 £ CT(AO) “(Q)CT(AO)‘ hand q4
T
so that
A, (T) == 2
3 93/9, -
Consequently
3, + (a¥/ay)
1 33
3,1, ——p "“""'—2—-————— - F ’

-4

where ¥ hasg a continucus distribution which is the same for all

processes in
ZO'



Table 1 Asymptotic confidence inte

of the Canadian money demand equation (7.3)

rvals for the {ndividual coefficients

nominal confidence 95%

nominal confidence 90%

coefficient
asymptotic-N asymptotic-t asymptotic-N asymptotic-t
by { 0.81, 1.02] [ 0.80, 1.03} [ 6.83, 1.00} | 0.82, 1.01]
pl {-0.99, 0.13}) {-1.05, 0.19] {-0.90, 0.04] [-0.94, 0.08]
B,y { 0.01, 0.16] [ 0.00, 0.16] { 0.02, 0.14) [ 0.02, 0.15]
[-0.08,-0.04} {-0.08,-0.04} [-0.07,-0.04]} [-0.07,-0.04}




Table 2 Exact confidence intervals for the individual coefficients

of the Canadian money demand equation {7.3)

I& coefficient actual confidence interval inverted test
level statistics
['2'*2]
Y 95¢ [0.573, 1.363) se:
95% [0.716, 1.169) z:*
ok
8, > 90% [-1.365, 0.645] £ and £
sk L
A, > 90% [-0.117, 0.246] £ ana £k
ke L
Ay > 90% [-0.084,-0.029] £ ana £
[-1,+1)
\ 95% [0.573, 1] .e:
95% [0.716, 1) z:*
L2
> 90% -1.365, 0.292 ) ae
B [ ] , an Y
s, > 90% [-0.017, 0.246] .2:* and 2:
By > 90x [-0.084,-0.036] 2:* and :ff;
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Table 3 Exact p-values for various joint hypotheses on the coefficients

of the Canadian money demand equation (7.3): DA - [-1, +1]
employed test statistic(s)
null hypothesis T
4
v over
* doke t 1%
g, 5, fy Hay g0
A=0, ﬁ2 - ﬁ3 -0 ) 0.000 0.000 0.000 0.000 0.000
A= 0.86, ﬂz - 0.12, 53 - -0.05 | 0.253 0.392 0.253 0.392 0.268
A=-1, 52 - ﬂ3 -0 0.003 0.000 0.003 0.000 0.000
ﬁz - ﬁ3 -0 } mememes not applicable------ 0.000
pz + ﬁs -0 b e not applicable------ 0.985
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