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Résumé

Nous traitons de modéles génératifs construits avec des réseaux de neurones dans le contexte de la
modélisation d’images. De nos jours, trois types de modéles sont particuliérement prédominants: les
modeles & variables latentes, tel que 'auto-encodeur variationnel (VAE), les modeéles autorégressifs,
tel que le réseau de neurones récurrent pixel (PixelRNN), et les modéles génératifs antagonistes
(GANS), qui sont des modéles & transformation de bruit entrainés a 'aide d’un adversaire. Cette
thése traite de chacun de ces modéles.

Le premier chapitre couvre la base des modéles génératifs, ainsi que les réseaux de neurones pro-
fonds, qui constituent la technologie principalement utilisée a I’heure actuelle pour I'implémentation
de modéles statistiques puissants.

Dans le deuxiéme chapitre, nous implémentons un auto-encodeur variationnel avec un décodeur
auto-régressif. Cela permet de se libérer de I’hypothése d’indépendance des dimensions de sortie du
décodeur variationnel, en modélisant une distribution jointe tragable a la place, et de doter le modéle
auto-régressif d’un code latent. De plus, notre implémentation a un cotit computationnel significa-
tivement réduit, si on le compare & un modéle purement auto-régressif ayant les mémes hypothéses
de modélisation et la méme performance. Nous décrivons l'espace latent de fagon hiérarchique, et
montrons de maniére qualitative la décomposition sémantique des causes latente induites par ce
design. Finalement, nous présentons des résultats obtenus avec des jeux de données standards et
démontrant que la performance de notre implémentation est fortement compétitive.

Dans le troisiéme chapitre, nous présentons une procédure d’entrainement améliorée pour une
variante récente de modéles génératifs antagoniste. Le «Wasserstein GAN» minimise la distance,
mesurée avec la métrique de Wasserstein, entre la distribution réelle et celle générée par le modéle,
ce qui le rend plus facile a entrainer qu'un GAN avec un objectif minimax. Cependant, en fonc-
tion des parameétres, il présente toujours des cas d’échecs avec certain modes d’entrainement. Nous
avons découvert que le coupable est le coupage des poids, et nous le remplagons par une pénalité
sur la norme des gradients. Ceci améliore et stabilise ’entrainement, et ce sur différents types du
paramétres (incluant des modéles de langue sur des données discrétes), et permet de générer des
échantillons de haute qualités sur CIFAR-10 et LSUN bedrooms.

Finalement, dans le quatriéme chapitre, nous considérons 1'usage de modéles génératifs modernes
comme modéles de normalité dans un cadre de détection hors-distribution «zero-shot». Nous avons
évalué certains des modéles précédemment présentés dans la thése, et avons trouvé que les VAEs
sont les plus prometteurs, bien que leurs performances laissent encore un large place 4 ’amélioration.
Cette partie de la thése constitue un travail en cours.

Nous concluons en répétant I'importance des modéles génératifs dans le développement de I'intelligence
artificielle et mentionnons quelques défis futurs.

Mots clés Apprentissage automatique, réseaux de neurones, apprentissage de représentations pro-
fondes, modéles génératifs



Abstract

We discuss modern generative modelling of natural images based on neural networks. Three vari-
eties of such models are particularly predominant at the time of writing: latent variable models such
as variational autoencoders (VAE), autoregressive models such as pizel recurrent neural networks
(PixelRNN), and generative adversarial networks (GAN), which are noise-transformation models
trained with an adversary. This thesis touches on all three kinds.

The first chapter covers background on generative models, along with relevant discussions about
deep neural networks, which are currently the dominant technology for implementing powerful sta-
tistical models.

In the second chapter, we implement variational autoencoders with autoregressive decoders. This
removes the strong assumption of output dimensions being conditionally independent in variational
autoencoders, instead tractably modelling a joint distribution, while also endowing autoregressive
models with a latent code. Additionally, this model has significantly reduced computational cost
compared to that of a purely autoregressive model with similar modelling assumptions and per-
formance. We express the latent space as a hierarchy, and qualitatively demonstrate the semantic
decomposition of latent causes induced by this design. Finally, we present results on standard
datasets that demonstrate strongly competitive performance.

In the third chapter, we present an improved training procedure for a recent variant on genera-
tive adversarial networks. Wasserstein GANs minimize the Earth-Mover’s distance between the
real and generated distributions and have been shown to be much easier to train than with the
standard minimax objective of GANs. However, they still exhibit some failure modes in training for
some settings. We identify weight clipping as a culprit and replace it with a penalty on the gradient
norm. This improves training further, and we demonstrate stability on a wide variety of settings
(including language models over discrete data), and samples of high quality on the CIFAR-10 and
LSUN bedrooms datasets.

Finally, in the fourth chapter, we present work in development, where we consider the use of
modern generative models as normality models in a zero-shot out-of-distribution detection setting.
We evaluate some of the models we have discussed previously in the thesis, and find that VAEs are

the most promising, although their overall performance leaves a lot of room for improvement.

We conclude by reiterating the significance of generative modelling in the development of artifi-
cial intelligence, and mention some of the challenges ahead.

Keywords Machine learning, neural networks, deep learning, generative models.
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Chapter 1

Introduction

1.1 Generative models

A generative model can be considered an imaginative machine. Given access to a set of samples from
an unknown target distribution, a generative model provides a mechanism for producing samples
from the distribution learned by the model. We would like the samples to be:

e similar, in the sense of sharing structure, and not trivial memorizations of observed data,

e plausible, in the sense of not breaking the rules of the world as implicit in the observations; for
example, a bird with metal wings is implausible (assuming that the model has never observed
such an occurence), and

e representative, in the sense of accurately reflecting the distribution implicit in the observed
data; for example, capturing a subset of the distribution and dropping the rest would not be
representative.

There is an enormous amount of implicit world-knowledge that surrounds us, which we have imbibed
without directly interacting with everything in a way that gives us precise feedback about their
nature. Learning how to group observations by similarities of patterns and structures, without access
to any particular semantic categorization of the observations or interactive feedback, is referred to
as unsupervised learning. We would like computers to be able to learn about their environment
in an equally powerful fashion, if not more, and a very key step towards this goal would be the
ability to construct meaningful representations of the environment by simply observing the world.
Evolution has endowed us with advantages, such as the structure of the eye and neurons, and
learning principles followed in the brain, that make it easier for us to learn in a largely unsupervised
manner. Similarly, we provide our computational models with specialized forms, and instill in them
procedures that govern the nature of learning in their mechanism.

1.2 Why is generative modelling useful?

Models that generate meaningful samples from a learned distribution about observed data, without
having trivially memorized the observations or generating minor perturbations, hold in them an
implicit understanding of their observations. This understanding can be tapped into for exploring
semantic dimensions in the space of learned representations, and for inferring deeper structure and
hidden causal factors of the data. Higher level representations would encode compact “concepts”
which can be a ground for reasoning and making decisions. Another potential use for such a model
could be detecting events that are unexpected or out-of-distribution. We might also use generative
models for learning conditional distributions where we add some semantic/task-specific information
as an extra input (an example of such a task would be generating an image conditioned upon a
text description of it). Being able to generate plausible data also means we can simulate possible



scenarios in a stochastic environment, conditioned on an initial state and actions, which would en-
able us to perform exhaustive planning in complicated situations and environments, before taking
costly or potentially adverse actions.

Some specific examples of applications are the following:

e data imputation: A model that can learn a probability distribution over observations can
be used to fill in missing portions of input data, by sampling from that distribution after
conditioning upon the visible input. This has been used, for example, to in-paint an image,
or denoise it, or enhance the resolution [92, 43, 33].

e semi-supervised classification: Labelled data is typically more expensive to acquire. How-
ever, unlabelled data is usually cheaply available and easy to mine, which can be used to
construct better decision boundaries than would have been possible using the labelled data
alone. One approach for this is by constructing generative models, considering the label as a
latent variable in the model, as shown in [39].

e data compression: Data compression typically involves an encoder/decoder setup. Genera-
tive models can be used in the decoder to achieve far higher compression rates than traditional
compression schemes (in a setup where conceptual rather than exact reconstruction is the end
goal), as demonstrated in Santurkar, Budden, and Shavit [75]. Better compression makes
communication more efficient.

e translation across domains: Conditional generative models have been used for tasks in-
volving translation across domains. For example, Oord et al. [58] demonstrate application
of generative modelling for performing text-to-speech synthesis, and Reed et al. [65] perform
text-to-image synthesis.

e representation learning: Generative models with latent variables designed to learn encod-
ings that are disentangled across dimensions have been shown to capture useful representation
spaces that lend themselves well to downstream tasks such as zero-shot inference (which entails
inferring attributes of previously unseen objects), as in [28].

In addition to these, generative models have been used in other diverse areas such as astronomy [66|
and drug discovery [25]. The ability to generate content has obvious uses in creative fields, such as
generating stylistic images, dangerous stunts in movies, and other digital artistic creations [21].

1.3 Categorization of generative models

In this section we shall discuss two categorizations of generative models: one, based on their struc-
ture, and another, from a probabilistic viewpoint.

1.3.1 Fully observed, latent variable, and noise-transformation models

A broad classification of modern generative models based on the random variables constituting the
model would place them into three categories: fully observed models, latent variable models, and
noise-transformation models [52].

Fully observed models Data is directly modelled by interactions among random variables, such
that every random variable is observed, and no unobserved random variable is introduced into the
model. These models are typically specified by a number of conditional distributions (such as con-
ditioning sets of pixels upon other sets in a natural image). We can formulate such models by a



directed graph, by conditioning some random variables on others, in which case learning simply
consists of counting statistics. However, we would need to assign an ordering of the variables for
which there might not always be an obvious choice. For example, in a natural image, usually we
cannot tell which pixel is a “primary cause” of the entire image. An undirected graph formulation
(commonly called a Markov Random Field) removes the ordering requirement, but learning in such
models requires computing intractable normalizing constants, and sampling is slow (either sequen-
tial, or requires iterative steps of applying a transition operator).

Latent variable models Given a data distribution, there might be very complex interdependencies
between the dimensions. Modelling all of these interdependencies is costly, and makes training much
harder in a high dimensional data space, since every dimension has to keep every other dimension
happy. A simple way to make this easier is to assume there is a (low-dimensional) latent variable z
that induces global structure on the samples, thus freeing us from modelling complex interactions
among the observed random variables in order to capture high level structure, since the observed
random variables are conditionally independent given the latent variables. For example, to generate
a natural image, the latent variable might encode hidden “causes” behind the image such as the
object categories, their positions and orientations, etc., and then a generator only needs to decode
this high level information into a set of pixels that visually represents it. The variable z is referred
to as latent because we never see these variables in the training data, only the observed random
variables & are seen. To deduce our model’s latent z corresponding to an observed & we need to
perform inference. If we assume that the model is parameterized by 8, we would like to train the
model such that on average, the samples produced by the model by sampling from a prior over z,
p(2z), would match the data distribution. Formally, we would like to maximize

(o) = [ plalz:O)p(z)d= (11)
which is referred to as the maximum likelihood training principle for latent variable models.

An advantage provided by latent variable models is that we can use the inferred latent variables
corresponding to a given observation for downstream tasks such as representation learning or com-
pression (see section 1.2).

Noise-transformation models In this case, we learn to transform noise (from some simple noise
distribution such as uniform or Gaussian) into a sample in data space through a function g param-
eterized by 0:

z~N(,I),z = gg(z). (1.2)

The key difference with latent variable models is that, by design, the noise distribution is not in-
tended to model latent factors ' (although the learned parametric mapping might induce some
notion of causal factors of variation, which may be revealed through visualizations such as interpo-
lations between samples). The distribution being modelled can be expressed, at least in theory, by
following the change of variables rule (assuming invertibility):
dg |1
x) = p(z)|det —’ , 1.3
p(@) = p(z)| det 5 (1:3)
and this distribution may not be accessible if g is not invertible. Sampling from such models is very
straightforward, but optimization and evaluation is typically challenging mostly due to not being
able to maintain invertibility.

! Another point of difference with latent variable models is that computing the data likelihood typically does not
involve marginalizing over a set of latent variables.



In the next section, we shall look at a categorization of generative models from a probabilistic
viewpoint, in terms of whether they have an explicit specification of a modelled density or not.

1.3.2 Explicit vs. implicit models

Diggle and Gratton [18] discuss the categorization of statistical models into being implicit or pre-
scribed (which we shall refer to as ezplicit).

An explicit statistical model of an observed set of random variables & implies a parametric specifi-
cation of the distribution of & with parameters 8, which leads to the definition of a log-likelihood
function £ expressed as

£(x|8) = log po(x), (1.4)

where pg is a class of distributions parameterized by 6. Inference problems of interest are estimation
of the parameters 8, and goodness-of-fit tests for the distribution function p. Explicit statistical
models are a natural choice for density modelling.

An implicit statistical model is one where a stochastic data generating process defines the model.
This is typically a transformation model, meaning that the process involves sampling a random
variable from a distribution easy to sample from, z ~ p(z), which is then transformed into a sample
in the domain of interest through a deterministic mapping go(2) : 2 € R — « € R", where 0 are
the parameters of the function g. Implicit statistical models are a more natural choice when we
want to simulate data from a mechanistic understanding of a system that gives rise to observations.

Log-likelihood in implicit models As noted by Mohamed and Lakshminarayanan [53], in gen-
eral, implicit models have a unique log-likelihood function associated with them, pg(z), which can
be written as the derivative of the cumulative distribution function via the transformed density to

p(z), 5
po@) = o [ ptegie (1.5
go(z)<z

which we can recover, at least in theory, if the function g is invertible (so we can find the regions
where gg(z) < x), or if d = n with finite and easily found roots of the determinant of the Jacobian
(so that the inverse function theorem can be used). A log-likelihood would not exist in cases where
a valid probability density is not admitted. This can happen, for example, when n > d so that
all of gg(z) lies on a lower d—dimensional manifold in R™. As discussed by Arjovsky and Bottou
[2], in this case, the random variable & has non-zero probability on a lower dimensional manifold
in R™, which is a measure zero set, and the Radon-Nikodym theorem implies that this precludes a
valid probability density (wrt the Lebesgue measure on the whole space), hence also a log-likelihood
function.

1.4 Evaluation

To test how well an explicit model fits the data, the simplest evaluation measure is the log-likelihood
on a held out test set. As discussed above, an implicit model usually does not make a tractable
log-likelihood accessible to us, and so we typically have to devise ways to evaluate the model. Since
the model involves a mechanism for generating samples easily, we can use kernel density estima-
tion [62] for approximting a generating distribution, and look up likelihood of the test set under
this distribution. However, this method loses accuracy in higher dimensions, as discussed in Theis,
Oord, and Bethge [82].



Moreover, as Theis, Oord, and Bethge [82] also point out, log-likelihood measures do not appear to
correspond well to visual sample quality for modern generative models, which is the most common
way for evaluating models for natural images. Surrogates for this assessment have been developed,
the most popular being the Inception Score [73], which rewards a model for producing samples that
a classifier predicts confident class labels for, and penalizes the model if there is less variance in the
predicted classes across a set of samples.

It is not clear if there exists one best way to evaluate or even one best optimization objective
for generative models. The best answer might be that it is goal-oriented, and we would need to
define specific criteria and metrics tailored to the intended application in a downstream task. For
example, if the purpose is to generate samples from a (conditional) distribution to perform image
super-resolution (where the goal is to enhance the resolution of an input image), we would like
our samples to look as visually appealing and close to real world images as possible, whether or
not the model gives us calibrated likelihoods. If we want a model that we shall use to measure
the likelihood of test data under a learned distribution, we are only concerned with meaningful
likelihood numbers, and are willing to sacrifice on visual quality of samples. As another example,
if we want to create a latent variable model for the purpose of using the inferred latent variables
for some other task, optimizing for log-likelihood does not guarantee usefulness of the latent vari-
ables, since p(x,z) = p(x)p(z|x), and optimizing for the marginal likelihood p(x) says nothing
about usefulness of the posterior p(z|x), and a powerful model might well choose to ignore the la-
tent space completely, with a strong reconstruction model p(x|z) and matching exactly a prior on z.

In the following sections, we shall provide background information about the models that we are
concerned with. In particular, we will review the three classes of generative models for natural im-
ages that are currently most prevalent: the variational autoencoder, pixel-recurrent/convolutional
neural networks, and generative adversarial networks. Of these, variational autoencoders and pixel
recurrent neural networks are explicit statistical models, while generative adversarial networks are
implicit models. Variational autoencoders are latent variable models that provide us with a lower
bound to the log-likelihood, while pixel recurrent neural networks are fully observed models with a
tractable exact log-likelihood, and generative adversarial networks are noise-transformation models
which do not make a log-likelihood accessible to us.

1.5 Variational autoencoder

The variational autoencoder, introduced concurrently by Kingma and Welling [37] and Rezende,
Mohamed, and Wierstra [68], is a powerful latent variable model that is trained by optimizing a
lower bound to the intractable marginal data likelihood p(x).

We shall first briefly review wariational inference, which is the fundamental principle behind the
model, and then discuss how this is done with the help of deep neural networks, which are currently
the most powerful computational tools for modelling conditional distributions.

1.5.1 Training latent variable models with variational inference

Recall from Equation 1.1 that given a latent variable model with latent variables z and observed
variables @, we are interested in maximizing the marginal likelihood of the data under our model
po(x) = [ pe(x|z)p(z)dz, where our model is parameterized by 8. Simple forms of p, which might
allow us to calculate this integral in closed form, are not powerful enough for modelling complex



distributions. Hence, it’s usually the case that the integral is intractable, and sampling-based ap-
proximations typically don’t provide good estimates because an extremely high number of samples
would be required in order to capture points in the high dimensional latent space that explain the
observed data well. A solution would be to use an importance sampling scheme that makes use of
an inference mechanism that is more informative about the latent z given an observed x. Since
we cannot model an exact inference mechanism (due to the latent variables never being observed),
we shall perform approximate inference to model the conditional distribution of the latent variable
given the observed variable g4 (z|x), where ¢ is parameterized by ¢. The distribution gg is known
as the variational posterior, and ¢ are called the variational parameters. The terminology carries
over from variational calculus which involves optimizing over a family of functions. ?

We can think of g4 as a proposal distribution for computing the integral by importance sampling
as follows:

po(x) = /pg(m]z)pg(z)dz (1.6)

= x|z 7p9(z) zlx)dz
= [ lale) 22 g el (17)

Taking logarithms on both sides and applying Jensen’s inequality to the integral: *

logp(z) = 10g/Q¢(ZIw)po(wIZ)mdz (1.8)
> /qu(zlw) log (m(@@(%) dz (1.9)
= /q¢(z\w) logpe(wIZ)dz—/%(z!w)log mdz (1.10)
R [logpo(x|2)] — K L[qg(2]) || pe(2)] - (1.11)

penalty term
reconstruction term

variational lower bound

where K L(-,-) is the Kullback-Leibler (KL) divergence, and is defined between two distributions p
and q as KL(p,q) = E, [logp — logq].

This lower bound can be optimized wrt the parameters @ and ¢, and consists of two components:
the first is the reconstruction error that measures how well samples from the current approximate
posterior g4(z|x) explain the observed x, and the second term is a penalty term that encourages
the approximate posterior to match the prior on the latent variables, and can be thought of as a
regularizer for the approximate posterior.

Alternatively, we could have arrived at the same variational bound (also called the evidence lower
bound, or ELBO) by following a different route of derivation, where we start out by trying to min-
imize the KL divergence between the approximate posterior and the true posterior, which is more
aligned with the spirit of variational inference.

2This terminology doesn’t strictly apply here for us, since we typically do not optimize over functional forms of ¢,
but only over the parameters after “fixing” the functional form.

3Recall that Jensen’s inequality states that for a concave function g, g(E,[f(z)]) > E,[g(f(2))] and that log is a
concave function.



Variational inference typically calls for a mean-field inference mechanism, which means that ev-
ery datapoint is given its own set of variational parameters. This justifies the choice of a simpler
family of functions for the approximate posterior, but the reader should keep in mind that we shall
eventually use expressive computational models for our approximate posteriors. A simplified ver-
sion is amortized inference, which shares parameters across datapoints. This is useful because every
subsequent update to the model parameters can use an improved approximation to the posterior,
and learning can be faster. For learning ¢ and 6, one can either optimize over each of these al-
ternately, or perform joint optimization. Stochastic optimization involves learning parameters over
minibatches of data as opposed to a pass over the entire set of data per update.

Variational autoencoders learn through stochastic optimization by performing amortized variational
inference using a deep neural inference network coupled with a deep neural generator network. In
the following section we provide some background about deep neural networks and how they are
trained before resuming our discussion about how these tools are used to implement variational
autoencoders.

1.5.2 Deep neural networks

Deep neural networks are the most powerful technology currently available for performing tasks that
require a complex mapping of a high dimensional input signal, such as images/audio/video/text to
an output signal, such as classification of objects in an image, actions performed in a video, semantic
information from a piece of text, or speech recognition from audio clips. They are also currently
the best tool for generative models, and produce compelling samples of images and sound [55, 60].

A deep neural network is essentially a parameterized function that decomposes into a hierarchi-
cal structure by design, and is trained end-to-end to learn a desired mapping, such as the tasks
described above. End-to-end training implies that the optimization process operates on all param-
eters lying on the path from input to output. A stochastic optimization procedure called stochastic
gradient descent [69] (SGD) is used over a training set, which is a collection of examples of true
mappings. Hyperparameters for the model, such as design choices and optimization controls, are
tuned using a held-out wvalidation set. Final evaluation takes place upon an unseen test set. For deep
networks, since the model possesses a hierarchical structure, applying SGD relies on application of
the chain rule as we move down from the output layer to to lower layers, and this technique is called
backpropagation . In the following paragraphs, we shall describe a basic neural network architec-
ture, the feedforward neural network, and a specific variety that has been shown to be exceptionally
well-suited for handling image signals efficiently, the convolutional neural network.

Feedforward neural network An L-layer feedforward network is a parameterized function fg

that decomposes into L component functions that together compose f in order to learn a mapping
from an input space X € R% to an output space Y € R™:

L L—
Jo@) = fo, (fo, " (S, (@).0), (1.12)
where the functions féj) typically take the form
fgi) =o(W;hi—1 + b;), (1.13)

where o is a non-linear activation function, W; is a matrix of weights, b; is a bias vector, and h;_1
is the activation vector from the previous layer (which is the result of applying the composition of

4See http://people.idsia.ch/~juergen/who-invented-backpropagation.html.
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output layer

hidden layer

input layer

Figure 1.1: A feedforward network with one hidden layer; the computation of the hidden layer
activations can be expressed as a matrix multiplication of a weight matrix with the input layer units,
and similarly the output layer activations is a matrix multiplication of a different weight matrix with
the hidden layer activations. Diagram taken from http://deeplearning.net/tutorial/mlp.html.

functions from ) to fO-1).

For classification problems, the final layer usually outputs a vector the size of the number of classes
and applies a softmaz function to produce a vector of probabilities corresponding to the likelihood
of the current input belonging to each of the possible classes:

ex J
oy = 1) = = plh) (1.14)

i eXP(hiL)’

where m is the total number of classes, and typically the last layer does not apply a non-linearity. °
The non-linearity ¢ in the previous layers is usually one of sigmoid, tanh, Rectified Linear Unit
(ReLU), Leaky ReL U, with the most commonly used non-linearity nowadays being ReL.U. These
functions are defined below:

1
i id = —————= 1.1
sigmoid(z) p—— (1.15)
tanh(z) = exp(z) — exp(=) g (1.16)
exp(x) + exp(—1)
ReLU(z) = =z if z >0, and 0 otherwise; (1.17)
LeakyReLU(z) = =z if x >0, and az otherwise (o < 1). (1.18)

Convolutional neural network For data that posseses an intrinsic topology, imposing a corre-
sponding structural prior on the weights W makes sense. For example, images obey a 2-D spatial
topology, and sequential data typically share patterns across a temporal axis. This is the motivation
behind convolutional neural networks (CNNs) |41]. The parameters of a convolutional layer consist
of a set of kernels which is essentially a collection of small square matrices. These kernels are (dis-
cretely) convolved with the input to the layer and passed through a non-linearity, producing a set
of feature maps (see Figure 1.2). Discrete convolution essentially implies flipping the kernel (or not,
according to user choice), performing an elementwise multiplication of the kernel with the input
values lying under it and summing these products to compute the output at the center position;
and by sliding the kernel over all positions of the inputs and performing the same operation, the
entire output is computed.

A convolutional neural network will typically maintain the spatial dimensions (height and width) of
the input, and vary the number of channels (which is three at the input due to the three color chan-
nels, or one for grayscale images). Currently, the most widely adopted technique to downsample

SWithout any non-linearities at all, the overall mapping would be effectively linear and little would be gained.
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(a) A depiction of a classical convolutional network structure; nowadays, the sub-sampling layers are collapsed
into the convolution layers by using strided convolutions (details in text).
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(b) A feature map is created by summing convolutions
with a filter across input channels.

Figure 1.2: Convolutional neural networks perform 2-D convolution of the input with kernels to
share features across positions in the image. Diagrams taken from http://deeplearning.net/
tutorial/lenet.html.

or upsample across the layers is a variant called strided convolution. Downsampling can be useful
for scaling down to more compact “semantic spaces”, and upsampling is desired in a convolutional
generator network, for example. Discrete convolution of an image with a kernel involves the kernel
sliding over the image one pixel at a time. Strided convolutions differ in how many pixels they shift
by at every step — if they shift by two pixels instead of one, the resulting feature map will have
spatial dimensions which are half that of the input. In this manner, strided convolutions can be
used to downsample. For upsampling, the corresponding variant is fractionally strided convolutions
(also called transposed convolutions, and previously deconvolutions [95]): one can think of a 2-D
discrete convolution as a matrix multiplication of the image unrolled into a vector with a sparse
matrix whose sets of rows consist of cyclic shifts of the rows of the kernel, and this result can be
reshaped into feature maps of the correct height and width. For a strided convolution of stride 2,
the cyclic shifts would be two steps at a time. From this it is easy to see that to scale up the spatial
dimensions by 2 instead of scaling down, we can simply transpose the sparse matrix. This matrix
would still have cyclic shifts corresponding to some kernel, but now the output shape has spatial
dimensions that are double that of the input shape, which corresponds to the output and input

shapes of the strided version ©.

Note that all of the above discussion generalizes to N-D convolutions; for instance, for 3-D (video
data) we would have a cuboid kernel, and so on.

5There is a tutorial discussing this in more detail at http://deeplearning.net/software/theano/tutorial/
conv_arithmetic.html.



Optimization (gradient descent/backpropagation) Let’s say we are trying to fit a param-
eterized function fg to a learn a mapping fg : X — Y given a dataset {(z(),y™M), ... (z(V) y(N))}
such that (2, y®) € (X,)). Let’s also assume we have defined a scalar loss function { that
quantifies how much we lose if our learned function’s prediction fg(x) does not match the ground
truth y, and we shall also assume that this loss function is differentiable in 8. Then we can learn a
fit by performing the following update iteratively:

N
1 . )
6 611 — Ve Z;ﬁ(fot_w”), y), (1.19)

where « is a hyperparameter controlling the stepsize of every update. This update rule is called
gradient descent [26]. Note that to perform each update step, a pass through the entire dataset
is required. Stochastic gradient descent [69] speeds up this process by performing an update after
processing one example at a time, and this can be generalized to a minibatch of randomly selected
examples for each update. A stochastic or minibatch gradient computation of this kind is an ap-
proximation to the true gradient, and this also adds noise/jitter to every update which can be useful
when optimizing on unfriendly loss surfaces.

For the case of neural networks, fg is a composition of L functions (Equation 1.12), so to com-
pute gradients for the parameters in the [-th layer 8;, we would need to use the chain rule to express
the gradient of the loss wrt the parameters 6; in terms of the gradients of the loss wrt the activations
in the layers [ +1 to L (hy11---hp). Let’s say we have a composition of 2 functions such that

hl = féi) (:B),

. 2

9= fo ()
and a specified loss function ¢(g,y). To update the parameters in the first layer 6; we shall need
the gradient of the scalar loss wrt 61. Using the chain rule from calculus [44, 45|, we shall have

ohy

T
Vglﬁ('g,y) = ((%) vh1£('g7y)) (120)

Applying this rule recursively we can compute gradients for parameters in every preceeding layer
by propagating the gradients of the losses wrt activations in the succeeding layers. This process is
called backpropagation [87, 71|, and forms the basis of training neural networks.

Modern neural networks use variants of SGD that use adaptive step sizes and statistics about
past gradient steps to induce momentum-like dynamics to the optimization procedure [83, 35].

Regularization Deep neural networks are highly expressive and can overfit easily: this means
the predictions will learn to map the given inputs to the given outputs very well, but will not
perform well when presented with new unseen examples. Another way of looking at it is that the
function will have a low bias (since a complex function has fewer simplifying assumptions), but
learn very different functions (all of which learn the training set well) if trained on different sets,
leading to a high variance in predictions on unseen data. To overcome this issue of learning overly
complicated fits to data that do not generalize well, we use regularization techniques to discourage
overfitting. Some of the prevalent techniques are penalizing the weights in the network from taking
large values (intuitively, large weights can create more distorted functions which can discover more
complex fits to data while small and sparse weights would create “simpler” functions that are less
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likely to overfit), dropout |78] (this technique zeros out weights randomly during training with the
intuition of reducing co-adaptation of activations across layers; this process can also be interpreted
as model averaging across weaker models, where the weakness is induced by setting a fraction of the
weights to zero randomly), other tricks such as early stopping of training, pruning network weights,
learning a lower capacity network, etc.

Batch normalization A technique that has been very useful in making training easier for neural
networks is batch normalization [32]. As neural networks train, the distributions of the hidden acti-
vations at each layer keep changing (a problem refered to as internal covariate shift). Hypothesizing
that reducing this shift would help optimization and generalization, Ioffe and Szegedy [32]| propose
to standardize the activations (prior to applying the non-linearity) using the sample mean and vari-
ance computed over the current minibatch. Doing this reduces the representation power of each
layer, so additional parameters are learned for each layer that scale and shift the activations. © At
test time, mean and variance parameters over the entire training set are used. In a sense, batch nor-
malization adds an extra learnable dimension to training hierarchical models — that of learning the
scale at each layer so that successive representations that build upon this lower layer are more useful.

Residual networks A recent architectural innovation that has enabled a significant jump in perfor-
mance for deep learning is residual networks |27|, which allow stable learning with high performance
from networks with much deeper layers than previously trainable. This architecture won the top
position in a number of competitions including image classification, object detection, and semantic
segmentation tasks. ® The key idea is to add a shortcut connection from the input to the current
layer to a subsequent layer, which is an identity transform and is summed with the output of the
current layer. This means that every layer learns a residual mapping and the network is free to
learn a zero residue if newer layers are not beneficial. The underlying hypothesis is that it’s easier
to learn small residual mappings that can accumulate over many such mappings than learn it end-
to-end through an equally deep “traditional” convolutional neural network. Additionally, gradients
can propagate without vanishing due to the shortcut path.

1.5.3 VAE: Using deep neural networks for variational inference

Recall that variational autoencoders perform amortized variational inference, learning both model
and variational parameters jointly via stochastic gradient descent. The variational posterior and the
generative model are represented by deep convolutional neural networks, operating as the inference
and generation machines, and both the variational and model parameters are learned jointly by
stochastic gradient descent. A key variance reduction technique that is used is stochastic backprop-
agation which we describe below.

Stochastic backpropagation For computing gradients wrt parameters in models with contin-
uous latent variables, the naive method Vg Eg, () [f(z)] = Egy(2) [f(z)V%(z) log g (z)] when
approximated with Monte-Carlo samples ? is a high variance gradient estimator [61]. Stochastic
backpropagation reparameterizes a random variable (in this case, z) as a function of scale and shift
parameters over a base distribution, and performs gradient-based learning wrt these parameters
over Monte-Carlo samples drawn from the base distribution. This gradient estimator provides un-
biased, low-variance gradients. As an example, if g4(z) is a Normal distribution with mean and

variance parameters ¢ = {u, o}, then the reparameterization will use the N (0, I') base distribution

"The shifting parameter can be absorbed into the bias term and so either may be dropped.

8See description in https://github.com/KaimingHe/deep-residual-networks.

9 Monte-Carlo sampling is used to refer to repeated sampling of a stochastic process, and most often used (in this
thesis) to approximate expectations with sums over the samples.
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to express the random variable z as z = p+ o © €;€ ~ N (0, I). Gradients of the expectation over
qe wrt the parameters ¢ can be computed thus:

\V4 E = E \V4 1.21
o By lferooal=_ B sfntaoe), (1.21)

where ¢ € ¢.

Variational autoencoder Neural networks are used to model the approximate inference and
generator functions. The generator network, parameterized by 6, models a multivariate Gaus-
sian in the case of real data, and Bernoulli for binary data. The inference network, parameter-
ized by ¢, is defined as a multivariate Gaussian with a diagonal covariance matrix gg(z|x) =
N(z; p(x; @), diag(o(x; ¢p))). The prior is chosen as the centered, isotropic Gaussian, pg(z) =
N(0,I). The parameters 8 and ¢ are learned by optimizing the variational lower bound we de-
rived in the previous section, replacing the expectations over g4 with the reparameterization trick
discussed above. The KL penalty term can be exactly computed between a Gaussian posterior and
a Gaussian prior. The Monte-Carlo estimate for the lower bound is then given by:

J L
10,612) = 43 (1 st - .05 - (2 05) + -3tz
=1

j=1
(1.22)

where z) = p(x; @) + o(x;¢) © € and € ~ N(0,I). J is the number of dimensions in the latent
space, and L is the number of samples drawn per datapoint « (and in practice L = 1 works well
enough).

For training via stochastic optimization, instead of the entire training set X, minibatches are cre-
ated with M randomly sampled datapoints, XM = {w(’)}f\il, and these are used to approximate
the bound per update:

06, ¢: X) ~ % S 06, ¢;2), (1.23)
2 (e XM
and now stochastic gradients may be computed for this loss function over the generator and inference
parameters, and the entire model can be trained end-to-end using backpropagtion. Note that the
gradients are actually doubly stochastic, because we approximate the gradient of the bound with
minibatches, and also use a Monte-Carlo sampling in the expression for the bound.

1.6 PixelRNNs and Pixel CNNs

In this section, we shall present a powerful class of implicit, fully-observed models. But first, we
present background material on recurrent neural networks and a specific variant, the long short-term
memory.

1.6.1 Recurrent neural networks (RNNs)

A simple RNN that outputs a prediction y® at each time step, taking in an input «(*) would update
the hidden state h(® sequentially at every time step, by passing a sum of linear transformations of
the previous hidden state A=) and the input ) (along with bias terms) through a non-linearity,
finally producing a prediction y®) by throwing a softmax (for a multi-class output) on top. In
summary,

h®) = tanh(Wh*D 4+ Uz +b), (1.24)
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Figure 1.3: Memory cell in an LSTM. Diagram taken from http://deeplearning.net/tutorial/
lstm.html.

y® = softmax(Vh® + ¢), (1.25)

where W, U, and V are the the weight matrices corresponding to the hidden-to-hidden, input-to-
hidden, and hidden-to-output connections respectively.

There are other variants, but this is the simplest and most representative. Depending on the
specific task at hand (classifying an entire sequence, generating an entire sequence from a single in-
put, reconstructing a sequence), one can come up with specific architectures that are variants of this.

Training an RNN takes place by unrolling the recurrent network, summing the losses at every time
step, and computing the gradient of this total loss wrt the parameters of the network {W U, b,V , ¢}
of the simple model described above. This process is referred to as Back-Propagation-Through-Time

(BPTT) [88].

A number of tricks are typically used for training RNNs, some of which are as follows.

e teacher forcing: When the prediction at intermediate time steps depends on predictions at pre-
vious time steps, we feed the actual ground truth from previous predictions into the predictor
for the current time step at training time.

e truncated backpropagation: We unroll the network for only a short number of steps backward
in time, and not all the way to the start.

e gradient clipping: We clip the gradients to have bounded norm, which helps avoid gradient
divergence.

e clever initialization: We can initialize weights to be a scaled identity matrix, or even restrict
the parameter space so that the (hidden-to-hidden) weight matrices are orthogonal (or unitary
as in Arjovsky, Shah, and Bengio [1]) so that gradients don’t diverge over long sequences.

1.6.2 Long short-term memory (LSTM)

LSTMs [30] are a variant of RNNs, where in addition to the hidden state h{), we also have a cell
state ¢) that is maintained via an internal recurrence (or self-loop), and the intended purpose of
this node is to maintain memory of events over a long term. This cell state is updated at every time
step by “erasing” values in selected positions in the cell state by elementwise multiplication with a
forget gate @, and summing new elements, ¢) with an “importance” scaled by an input gate )
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(see Figure 1.3). An output gate o®) acts as a gating mechanism for computing the hidden state as
a function of the cell state. The computation of these vectors is as follows:

F9 = (Wi [hD, 2]+ b)),
i® = o(Wi. [ 2®] + b)),
o) = oW, h* Y ] +b,),
éM = tanh(W.. "D 2®] +b,).

The update equations for the cell state and hidden state are summarized below:

M = 0@t 445050 (1.30)
h® = o® @ tanh(c®). (1.31)

Variants on the above computations exist, such as the Gated Recurrent Unit (GRU) [14, 15], which
uses a single gate and its complement for both forgetting and updating, and a single state that acts
as a hidden state that is designed to hold both short term as well as long term memory.

LSTMs are currently the best performing recurrent models when it comes to sequences, and the
term is almost synonymous with RNNs nowadays.

1.6.3 PixelRNN and PixelCNN

One can tractably model a joint distribution over a set of n random variables, @ = {z1,--- ,z,},
by using the chain rule of probability and decomposing the joint as a product of conditional distri-
butions:

p(x, -, 2n) = p(a)p(za|e)p(es|ae, x1) - - p(Tn|Tn_1 - 1) (1.32)

Oord, Kalchbrenner, and Kavukcuoglu [57] introduced PixelRNN, where they use LSTM network
layers to model the conditional distributions of every pixel conditioned on the previous ones. The
ordinal notion of “previous” is based on an assigned ordering of pixels, which in this case is rows
of pixels from top to bottom, with pixels in each row ordered left to right. In addition, another
important modification is the modelling of pixels as discrete multinomial distributions rather than
continuous valued random variables. This was observed to be an easier output distribution to opti-
mize over than a continuous mixture of densities, as was the standard practice. Training is parallel
since the ground truth pixel values can be used at training time (teacher forcing), but generation is
sequential because the distribution for each pixel is conditioned on previous pixel predictions. The
work introduced three architectural variants: Row LSTM, Diagonal BiLSTM, and PizelCNN, which
are briefly described next.

Row LSTMs This variant uses convolutions to compute features for every pixel in the image.
The convolutions are masked (so that the contribution of pixels to the right of, and including the
center is zero) in order to maintain the chain of dependency from left to right. The LSTM itself
predicts an entire row of pixels at every time step, which maintains the chain of dependency from
top to bottom. Together, for modelling the output distribution of every pixel, the hidden state
from the previous LSTM step carries over (partial) information from all the previous rows, while
the current (masked) row convolution provides (partial) information about the pixels in the current
row predicted so far. (The information is partial because it’s dependent on the receptive field of
the convolutions.) The update equations for the i-th row of pixels in the image are as follows:

(0@, @ @) 0] = activation( K™ « B0 4 K « £(0), (1.33)
) = £ gl 4 0 sl (1.34)
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Figure 1.4: Receptive fields for Pixel CNN (left), Row LSTM (center), and Diagonal BILSTM (right).
The arrows denote local context for a position. Walking backwards along a directed path gives us
the global context. Reproduced with permission from Oord, Kalchbrenner, and Kavukcuoglu [57].
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Figure 1.5: In the Diagonal BiLSTM, skewing the image results in being able to apply efficient
2 x 1 columnwise convolutions which conditions upon pixels to the top and right of the center pixel.
Reproduced with permission from Oord, Kalchbrenner, and Kavukcuoglu [57].

R = 0@ ® tanh(c®), (1.35)

where * is a convolution operator, @ is the Hadamard operator; activation is the sigmoid function
for the output, forget, and input gates, and tanh for the cell state; KP" is the 1-D convolution ker-
nel for the hidden-to-hidden component, and K*" is the 1-D masked kernel for the input-to-hidden
component. These two components, when summed, are of size (4 x #channels x height x width),
and capture a context to the left of the center pixel (of size ‘Mg&) and a triangular shaped
context from the above rows as induced by the receptive field of the kernel K.

Diagonal BiLSTM This variant solves the problem of not having the full context to condition
the predictive distribution of the pixel upon, which the Row LSTM suffers from. The trick is to
perform 2 x 1 convolutions along diagonals so that every pixel prediction is conditioned upon the
pixel on top and the one to the left. Maintaining this receptive field throughout gives every pixel a
receptive field that covers all of the pixels to the left and top (dark blue nodes in Figure 1.4). For a
full context we also need the nodes labeled light blue, so another component works on a horizontally
flipped version of the image and performs the same operation. In order to not use the pixels to the
right of the center pixel, this flipped version is shifted one row down. The other trick to perform
the diagonal convolution efficiently and in parallel is to skew the image so that diagonals in the
image correspond to columns in the skewed image: now column-wise convolutions on the skewed
image correspond to diagonal convolutions on the original image (see Figure 1.5). The hidden states
computed by the two LSTMs (corresponding to the skewed and the flipped-shifted-skewed images)
are summed to achieve the full context for a pixel. The LSTMs use the same computations as
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in Equation 1.35 with the following differences: the LSTM states are now predictive of image diag-
onals at every step instead of rows, K" is a 2 x 1 convolution kernel operating column-wise (since
a larger size does not give us any more useful context), K* is a convolution kernel of size 1 x 1
that uses information at the center location in higher layers of the LSTM, except the first, where it
contributes zero information since we don’t want to condition on the variable we are modelling.

Pixel CNIN Modelling full contexts with recurrent network layers is computationally expensive,
so the Pixel CNN simplifies this requirement by modelling a context covered by the receptive field
of a convolutional neural network, with the modification that the convolutional filters are masked
to zero out any contribution from pixels to the right and bottom of the center pixel. The context
available is the region corresponding to roughly half the filter size as shown in Figure 1.4. Stacking
convolutional layers increases this receptive field by half the filter size per layer.

Some other implementation details:

e All convolutional filters used have two types: A and B. Filters of type A do not allow contri-
bution from the center pixel, so these are used in the first layers; filters of type B allow it, and
are used in subsequent higher layers (since this actually conditions on the center prediction
in the previous layer and not the pixel value we are modelling). Additionally, for 3-channel
colour images, the pixel values for the Blue and Green channels are allowed to use the networks
predictions for the Red and (Red, Blue) values respectively by mask B.

e Multiple levels of LSTM layers are used for PixelRNN, skip connections are used between
layers, and residual blocks are used for the multilayer PixelCNN (the number of layers should
ideally be enough to span a receptive field the size of the image).

Gated PixelCNN and blind spot fix In follow up work Oord et al. [59] improve upon the
Pixel CNN by making a few changes to the architecture:

e The convolution layers of Pixel CNN are modified to include a gating mechanism, which is
expected to put the capacity of the network on par with a better performing LSTM-based
PixelRNN. The way this is done is by splitting up the feature maps into two parts and using
a sigmoid transform of one half to act as a multiplicative gating unit for a tanh transform of
the other half.

e A CNN with masked filters as used by the basic PixelCNN described above has a receptive field
with a growing blind spot owing to the cumulative effect of the masking as one reconstructs
the receptive field induced by the masked filters over the previous rows. To provide the full
context, a modification was proposed that splits up the conditional model for a pixel into two
components - one uses a set of filters that have their entire lower half masked thus inducing
a full receptive field over all the previous rows, and the other component is a masked 1-
D convolution ¢ la Row LSTM, which operates on the current row to encode conditioning
information about the pixels in the current row so far. These two components are combined
to produce final predictive conditional distributions over the pixels.

This work also extends this class of density estimators into conditional generation models — it is
shown that by adding conditioning information through a linear transform of a one-hot class-label
vector, we can generate samples of specific classes.

1.7 Generative adversarial networks

Goodfellow et al. [23] introduced a generative model that trains a generator network G by pitting a
discriminator network D against it. The discriminator network is trained to discriminate between
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samples from the true data distribution P, (x) and those from the generator distribution P4(x). The
generator network is trained to produce samples that would fool the discriminator into thinking that
its samples come from P, (x).

Formally, the minimax objective is written as follows:

i E [log(D E [log(1 — D(x
minmax B, [log(D(@))]+ E, [log( (@))], (1.36)
D and G are typically convolutional neural networks for modelling natural images. P, is the
generator distribution implicitly defined by deterministically transforming a sample z from a simpler
distribution p(z) through the highly non-linear function G.

z~p(z); ¢=G(2). (1.37)

At the start of training the discrimininator is able to tell with high confidence if samples come from
the generator distribution which leads the sigmoid classifier to saturate and produce very small
gradients; this is multiplied by 1/(1 — D(G(z))), and this term is close to 1, so the overall gradient
stays close to zero. Goodfellow et al. [23] fix this with a heuristic: they change the objective for the
generator to a maximization problem rather than a minimization so that the pre-multiplier is now
1/D(G(z)), and this enhances the small gradient when D(G(z)) goes to zero. The new objective is

max E, [log(D(@))] + E, loz(1 - D(@))],

i (1.38)
max E [log(D(x))].

z~Py

Jensen-Shannon divergence The Jensen-Shannon divergence (JSD) is a symmetric divergence
between two distributions p and ¢ and is expressed as the average of the K L divergence between p
and I’Qﬂ and that between ¢ and p—;”’:

JSD(p,q) = §<KL<p 1229 + KL ) p;%). (1.39)

Goodfellow et al. [23] show that in the presence of an optimal discriminator, i.e. one that models
Py(x)/(Pr(x) + Py(x)), the cost function can be seen as equivalently minimizing a Jensen-Shannon
divergence between real and generated data.

1.7.1 Training GANs

GAN training is generally unstable, and there are a number of heuristics that are known to help.
Some of the following are particularly useful, recommended by Chintala et al. [13]:

e Normalize inputs to lie between [-1, 1|, and use a tanh at the last layer of the generator.
e Use a unit normal distribution to sample p(z).
e The DCGAN architecture from Radford, Metz, and Chintala [64] is reliable.

e Sparse gradients contribute to instability, so it’s advisable to use Leaky ReLLUs and substitute
max pooling layers with strided convolutions/transposed convolutions.

e The Adam optimizer [35] usually works best, and a recommended setting for a DCGAN-like
architecture is o = 2e-4, 81 = 0.5, B2 = 0.999.
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e Adding noise to inputs for the discriminator helps (this is discussed in more detail in the
following section).

In addition, Salimans et al. [73] propose additional strategies for training GANs, specifically:

e feature matching, which asks the generator to match statistics of real data features at an
intermediate layer to those of the corresponding layer in the discriminator,

e minibatch discrimination, which lets the discriminator use side-information from the other
samples in a minibatch to classify the samples as real or generated (with an effect similar to
that of batch normalization) and this encourages the generator to be diverse, thus reducing
mode collapse,

e historical averaging, which discourages parameter drift away from a historical average of past
values,

e one-sided label smoothing, which replaces the labels for real data with a soft target (0.9 instead
of 1), and

e virtual batch normalization, which normalizes a minibatch using statistics from a separate
reference minibatch (but this is an expensive technique because it requires an additional
forward propagation on the reference batch).

Although these heuristics exist, training GANs (in the formulation described so far) is still known
to be painful. A particular problem is that of mode collapse, where the generator learns that there
are specific “sub-distributions” it can produce samples from that are more likely to fool the discri-
mininator. It then concentrates its probability density in these regions, completely dropping the
other modes of the distribution it’s modelling.

Wasserstein GAN (WGAN) from Arjovsky, Chintala, and Bottou [3] is a recent development that
goes a long way toward identifying some of the issues with GAN training and stabilizing it.

1.7.2 Wasserstein GAN

Arjovsky and Bottou [2] study the problem of instability with GAN training. They show that for
two distributions that have disjoint supports or lie on low dimensional manifolds, a perfect dis-
criminator exists that has a zero gradient (almost everywhere) with respect to its input. There is
evidence [54] that structured high dimensional data is indeed concentrated on a low dimensional
manifold, and Arjovsky and Bottou [2] show that the generator distribution also lies on a low di-
mensional manifold, so a perfect discrimininator (under which the JSD minimization interpretation
holds) would actually not provide a good training signal for a generator. In addition, it is shown
that the —log D(G(z)) version of the cost function which avoids vanishing gradients leads to highly
unstable gradient updates (in the sense of possessing a high variance). Adding continuous noise to
P, and P, would extend the distributions to having overlapping supports, and now the JSD would
not reach its optimum, but might be deceptively smaller due to the overlap. A training setup of an-
nealing the noise while still training the discriminator until optimality is pointed out as a possibility,
although the choice of variance and annealing schedule are still potentially finicky. Additionally, it
is pointed out that while the JSD between P, and the noisy P, is always maxed out irregardless of
annealing (since P, always lies on a low-dimensional manifold), the Wasserstein distance between
P, and the noisy P, is shown to have the desirable property of going smoothly to 0 as the noise is
annealed, which hints at this being a more desirable choice of distance. In follow-up work, Arjovsky,
Chintala, and Bottou [3] present a simple GAN training alternative, based on approximating the
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Wasserstein distance. Next, we briefly describe this distance, and the Kantorovich-Rubinsten dual-
ity which forms the foundation for WGANSs.

Wasserstein /Earth-Mover’s distance The Wasserstein distance, also refered to as the Farth-
Mower’s Distance (EM distance) can be intuitively thought of as the minimum amount of effort
required to move mass distributed according to one distribution to match another distribution
(where the effort to move some mass is directly proportional to both the amount of mass to be
moved and distance it needs to be moved).

Formally, for two distributions P, and Py, and II, the set of all joint distributions such that the
marginal distributions of v € II(P,,P,) are P, and P4, and a choice of distance metric in the
transport space d(-,-), the Wasserstein distance is expressed as

1/p
W,(P,.,IP,) =  inf E |d(z,y)? (p>1). 1.40
o(BrBy) = inf (<m,y>~ﬂ (2.9) ]) (v>1) (1.40)

This definition can be understood intuitively by seeing that the total mass leaving point & must be
P, (x), and the total mass entering point y must equal P4(y), which is why the marginal condition
must be satisfied. The total effort spent is then [ fy v(x, y)d(x,y)dydex which is exactly the
definition above for p = 1, which is what we shall henceforth use, along with the Euclidean norm
as the distance measure (and this is the version that shall be implied when we say EM distance or
W):

W(Pr, Py) veHl(%f,]Pg) (w’ng [ |z -yl ] (1.41)
Arjovsky, Chintala, and Bottou [3| show that compared to other prevalent distances (such as the
Kullback-Leibler, reverse Kullback-Leibler, and Jensen-Shannon divergence, or the Total Variation
distance) the EM distance is continuous and differentiable almost everywhere (under mild assump-
tions), which makes it a better choice for a loss function corresponding to a distance between
distributions that lie in low-dimensional manifolds. It is also shown that a small EM distance cor-
responds to a small difference in distributions, and that any distribution P, that converges under
the other divergences and distances '” also converges under the EM distance.

Kantorovich-Rubinstein duality Unfortunately, the EM distance is highly intractable; from
its expression in Equation 1.40 it can be seen that the infinimum operates over a pretty large set of
joint distributions coupled with computing an expected distance over every one of these distribu-
tions. Fortunately, the Kantorovich-Rubinstein duality [84] presents a dual formulation for the EM
distance:

W(P,,Py) = sup ( E [Dx)] - E [D(a:)]), (1.42)

IID||L<1 \ =~Pr z~Py

where the condition under the supremum indicates that it is over all 1-Lipschitz functions D : X —
R. A function D : X — Y is K-Lipschitz if

dy(D(CCl),D(CUQ)) S de(all,wg), (1.43)
for distance functions dx and dy defined on the spaces X and Y.

If we instead optimize over all K-Lipschitz functions, we would be optimizing K times the EM
distance, which would also lead us to the same optima (albeit losing comparability of the distance

10This means that given a sequence of {Pf]}te N, the sequence converges to a specific distribution, Pg°.
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across different function classes unless K is known). We shall consider a parameterized function D,
which we shall think of as a critic to a generator. '' If the generator G is parameterized by 8, we
shall solve the following problem to find the optimal critic:

puax | B [D(@)] - E_[D(Go(2)]]. (1.44)

where Dy is the set of all K-Lipschitz functions. The generator can then be trained by computing
the gradient of the distance wrt the parameters 9,

VoW (P, By) =— E [VeD(Go(2))]. (1.45)

z~p(z)

In order to use these two (alternating) update rules for a GAN where D and G are neural networks,
we first need to impose the K-Lipschitz constraint on the set of functions D: this can be done
most simply by restricting the parameter space of D to a specified interval, say, [—c,c|. Since the
(differentiable) function D has bounded and closed support, clipping the parameters would lead D
to be bounded, and the bound would depend only on the clipping value and architecture '?. Since
D(x) and x are both bounded, so is dy (D(x1), D(22)) which implies D is K-Lipschitz for some K,
as per the definition in Equation 1.43.

Advantages WGAN training is shown to be more stable than traditional GAN training. One
can train a critic to convergence and there is no need to balance generator/discriminator updates;
it has a loss function that appears to correlate well with sample quality and convergence of the gen-
erator; there is improved robustness in the sense that a range of architecture choices do not affect
training or sample quality adversely; and there is qualitative evidence of reduced mode-collapse.

1.8 Brief summary of work presented in this thesis

In this thesis we will present three contributions involving generative models for natural images.

PixelVAE: Combining VAEs with PixelCNNs Recall that PixelCNN is a fully observed,
explicit model, tractably modelling a joint distribution over the output. It is observed to produce
samples with more precise local structure but which are somewhat lacking in global structure. Ad-
ditionally, PixelCNN does not provide a latent representation that could potentially be of use in
downstream tasks. Also recall that the VAE is a powerful latent variable model, assuming con-
ditional independence among output dimensions. Unfortunately, VAEs are known to suffer from
samples with poor local structure (but decent global structure) due to maximum likelihood train-
ing leading to a “blurring” effect due to hedging bets. In chapter 2, we show that a VAE with a
Pixel CNN decoder produces samples that have good local as well as global structure. The overall
model is less costly than a pure Pixel CNN, since we free the decoder from having to model global
structure. Finally, we extend the model to a multi-level latent space and qualitatively demonstrate
the decomposition of the latent representation into a hierarchy of semantic features.

Improved WGAN training Recall that Wasserstein GANs require the critic function to be
constrained such that it is K-Lipschitz for some K, and Arjovsky, Chintala, and Bottou [3] im-
plement this constraint by clipping the parameters of the neural network critic. In this work, we

NThe term critic is used instead of discriminatorbecause it gives us an unconstrained real number corresponding
to the difference in distributions, as opposed to a sigmoid output corresponding to a classification into real/fake.

12For example, the number of layers dictates how many times and how the parameters get to interact with each
other.
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show that this leads to underuse of capacity, exploding and vanishing gradients in deeper networks,
and optimization difficulties with specific architectures. In chapter 3, we present an alternative
to encourage the Lipschitz property, based on penalizing a norm on the critic gradient wrt the
input, and find that this variant performs better than parameter clipping and also enables stable
training of a wide range of architectures, additionally working on character-level language models
(in a discrete data space) without use of any heuristics that traditional GANs require to perform
well on language generation.

Exploring the use of generative models as normality models of data Finally, in chap-
ter 4, we explore the potential use of generative models as models of normality given a training
distribution. This would allow us to perform tasks such as out-of-distribution detection, which
would find application in quite a few areas that involve detecting novel and unexpected instances,
and one motivating example for us is Al safety '3, since we would like our Al systems to know
when they encounter a situation that is less likely under the data distribution they’ve been train-
ing on. Upon detecting such an instance successfully, they can raise a flag and ask for help, or
stop acting, or whichever course of action is deemed safest by design. We evaluate performance
of the VAE, Pixel CNN, PixelVAE under a framework in which the model is trained on all but a
subset of data (corresponding to a class label) and we compare likelihoods for in-distribution and
out-of-distribution test data. We also evaluate DCGAN, by using the discriminator prediction for
real /fake data as a surrogate for likelihood.

13We would like Al systems deployed in the real world to behave safely with regard to human interests.
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Prologue to the first article

Title: PizelVAE: A latent variable model for natural images.
Authors: Ishaan Gulrajani, Kundan Kumar, Faruk Ahmed, Adrien Ali Taiga, Francesco Visin,
David Vazquez, Aaron Courville.

Abstract Natural image modeling is a landmark challenge of unsupervised learning. Variational
Autoencoders (VAFEs) learn a useful latent representation and model global structure well but have
difficulty capturing small details. PixelCNN models details very well, but lacks a latent code and is
difficult to scale for capturing large structures. We present PixelVAE, a VAE model with an autore-
gressive decoder based on PixelCNN. Our model requires very few expensive autoregressive layers
compared to PizelCNN and learns latent codes that are more compressed than a standard VAE while
still capturing most non-trivial structure. Finally, we extend our model to a hierarchy of latent vari-
ables at different scales. Our model achieves state-of-the-art performance on binarized MNIST, com-
petitive performance on 64 x 64 ImageNet, and high-quality samples on the LSUN bedrooms dataset.

This article was accepted for publication at the International Conference of Learning Represen-
tations, 2017.

The project was led by Ishaan Gulrajani, who wrote most of the code-base that the rest of us
built upon. My personal contributions were:

e helping experiment with regularizers, optimizers, architecture sizes, normalizers, activation
functions, and general hyper-parameters for stabilizing the base model in development phase,

e performing exploratory visualizations with latent codes for MNIST and LSUN bedrooms,

e helping with running some of the experiments with larger images (64 x 64 bedrooms and
Imagenet-64),

e implementing and experimenting with sampling at different levels of the latent space. Also
implementing an efficient sampler for PixelCNN in TensorFlow for sampling larger images
(following discussions with Kundan Kumar and Ishaan Gulrajani, who jointly developed the
precise idea for the implementation),

e contributing significantly to the writing and presentation of the paper.
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Chapter 2

PixelVAE: A latent variable model for

natural images

2.1 Introduction

Building high-quality generative models of natural images has been a long standing challenge. Al-
though recent work has made significant progress [37, 57, 59|, we are still far from generating
convincing, high-resolution natural images.

Many recent approaches to this problem are based on an efficient method for performing amor-
tized, approximate inference in continuous stochastic latent variables: the variational autoencoder
(VAE) from Kingma and Welling [37] jointly trains a top-down “decoder” generative neural net-
work with a bottom-up “encoder” inference network. VAEs for images typically use rigid decoders
that model the output pixels as conditionally independent given the latent variables. The resulting
model learns a useful latent representation of the data and effectively models global structure in
images, but has difficulty capturing small-scale features such as textures and sharp edges due to
the conditional independence of the output pixels, which significantly hurts both log-likelihood and
quality of generated samples compared to other models.

PixelCNNs [57, 59] are another state-of-the-art image model. Unlike VAEs, PixelCNNs model
image densities autoregressively, pixel-by-pixel. This allows it to capture fine details in images, as
features such as edges can be precisely aligned. By leveraging carefully constructed masked con-
volutions [59], PixelCNNs can be trained efficiently in parallel on GPUs. Nonetheless, Pixel CNN
models are still very computationally expensive. Unlike typical convolutional architectures they do
not apply downsampling between layers, which means that each layer is computationally expensive
and that the depth of a Pixel CUNN must grow linearly with the size of the images in order for it to
capture dependencies between far-away pixels. Pixel CNNs also do not explicitly learn a latent rep-
resentation of the data, which can be useful for downstream tasks such as semi-supervised learning.

Our contributions are as follows:

e We present PixelVAE, a latent variable model which combines the largely complementary
advantages of VAEs and PixelCNNs by using PixelCNN-based masked convolutions in the
conditional output distribution of a VAE.

o We extend Pixel VAE to a hierarchical model with multiple stochastic layers and autoregressive
decoders at each layer. This lets us autoregressively model not only the output pixels but also
higher-level latent feature maps.

e On MNIST, we show that PixelVAE: (1) establishes a new state-of-the-art likelihood, (2)
performs comparably to PixelCNN using far fewer computationally expensive autoregressive
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Figure 2.1: Samples from hierarchical PixelVAE on the LSUN bedrooms dataset.

layers, (3) learns more compressed latent codes than a standard VAE while still accounting
for most non-trivial structure, and (4) learns a latent code which separates digits better than
a standard VAE.

e We evaluate hierarchical PixelVAE on two challenging natural image datasets (64 x 64 Im-
ageNet and LSUN bedrooms). On 64 x 64 ImageNet, we report likelihood competitive with
the state of the art at significantly less computational cost. On LSUN bedrooms, we generate
high-quality samples and show that hierarchical Pixel VAE learns to model different properties
of the scene with each of its multiple layers.

2.2 Related work

There have been many recent advancements in generative modelling of images. We briefly discuss
some of these below, especially those that are related to our approach.

The wariational autoencoder (VAE) [37] is a framework to train neural networks for generation
and approximate inference jointly by optimizing a variational bound on the data log-likelihood.
The use of normalizing flows [67] improves the flexibility of the VAE approximate posterior. Based
on this, [36] develop an efficient formulation of an autoregressive approximate posterior model using
MADE [22]. In our work, we avoid the need for such flexible inference models by using autoregres-
sive priors.

The idea of using autoregressive conditional likelihoods in VAEs has been explored in the con-
text of language modelling in 7], however in that work the use of latent variables fails to improve
likelihood over a purely autoregressive model.

Simultaneously to our work, Chen et al. [12] present a VAE model for images with an an au-
toregressive output distribution. In constrast to Chen et al. [12], who focus on models with a single
layer of latent variables, we also investigate models with a hierarchy of latent variables (and cor-
responding autoregressive priors) and show that they enable us to scale our model to challenging
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Figure 2.2: Our proposed model, Pixel VAE, makes use of PixelCNN to model an autoregressive
decoder for a VAE. VAEs, which assume (conditional) independence among pixels, are known
to suffer from blurry samples, while PixelCNN, modelling the joint distribution, produces sharp
samples, but lack a latent representation that might be more useful for downstream tasks. PixelVAE
combines the best of both worlds, providing a meaningful latent representation, while producing
sharp samples.

natural image datasets.

Another promising recent approach is generative adversarial networks (GANs) [23]|, which pit a
generator network and a discriminator network against each other. Recent work has improved
training stability [64, 73] and incorporated inference networks into the GAN framework [20, 19].
GANSs generate more compelling samples compared to our work, but exhibit unstable training dy-
namics and are known to ignore modes of the data distribution [20]. Further, it is difficult to
accurately estimate the data likelihood in GANs.

2.3 PixelVAE model

Like a VAE, our model jointly trains an “encode” inference network, which maps an image « to a
posterior distribution over latent variables z, and a “decode” generative network, which models a
distribution over z conditioned on z. The encoder and decoder networks are composed of a series
of convolutional layers, respectively with strided convolutions for downsampling in the encoder and
transposed convolutions for upsampling in the decoder.

As opposed to most VAE decoders that model each dimension of the output independently (for
example, by modelling the output as a Gaussian with diagonal covariance), we use a conditional
PixelCNN in the decoder. Our decoder models @ as the product of each dimension «; conditioned
on all previous dimensions and the latent variable z:

plx|z) = Hp(aci|ac1, ey X1, 2)
i

We first transform z through a series of convolutional layers into feature maps with the same spatial
resolution as the output image and then concatenate the resulting feature maps with the image.
The resulting concatenated feature maps are then further processed by several Pixel CNN masked
convolutional layers and a final Pixel CNN 256-way softmax output.
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Figure 2.3: We generate top-down through a hierarchical latent space decomposition. Latent vari-
ables are inferred by composing successive deterministic functions to compute the parameters of the
stochastic units. Dotted lines denote contributions to the cost.

Unlike typical PixelCNN implementations, we use very few PixelCNN layers in our decoder, re-
lying on the latent variables to model the structure of the input at scales larger than the combined
receptive field of our Pixel CNN layers. As a result of this, our architecture captures global structure
at a much lower computational cost than a standard Pixel CNN implementation.

2.3.1 Hierarchical architecture

The performance of VAEs can be improved by stacking them to form a hierarchy of stochastic
latent variables: in the simplest configuration, the VAE at each level models a distribution over
the latent variables at the level below, with generation proceeding downward and inference upward
through each level (as in Fig. 2.3). In convolutional architectures, the intermediate latent variables
are typically organized into feature maps whose spatial resolution decreases toward higher levels.

Our model can be extended in the same way. At each level, the generator is a conditional Pix-
elCNN over the latent features in the level below. This lets us autoregressively model not only
the output distribution over pixels but also the prior over each set of latent feature maps. The
higher-level PixelCNN decoders use diagonal Gaussian output layers instead of 256-way softmax,
and model the dimensions within each spatial location (i.e. across feature maps) independently.
This is done for simplicity, but is not a limitation of our model.

The output distributions over the latent variables for the generative and inference networks de-
compose as follows (see Fig. 2.3).

plz1,+ -, z1) = plzL)p(zL-1|zL) - - - p(z1]|22)

q(z1,-, zol®) = q(z1]@) - - q(zL|®)

We optimize the negative of the evidence lower bound (sum of data negative log-likelihood and
KL-divergence of the posterior over latents with the prior).

—L(x,q,p) =— E  logp(x|z1) + Dxr(q(z1, - zr|®) || p(21,- -+, 21))

z1~q(z1|x)

x
=— E logp(x|z1) + / Hq zjlx) Zlog o |Zz| +1)dzl...dzL
2 2

z1~q(z1|x)
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Zi,Zi+1

=— E logp(xlz)+ Y E [Drr(a(zilz) || p(zilzit1))]

z1~q(z1|z) 3 Firi~a(zivle)

Note that when specifying an autoregressive prior over each latent level z;, we can leverage masked
convolutions [59] and samples drawn independently from the approximate posterior q(z;|x) (i.e.
from the inference network) to train efficiently in parallel on GPUs.

2.4 Experiments

2.4.1 MNIST

We evaluate our model on the binarized MNIST dataset [90, 42] and report results in Table 2.1. We
also experiment with a variant of our model in which each PixelCNN layer is directly conditioned
on a linear transformation of latent variable, z (rather than transforming z first through several
upsampling convolutional layers) (as in Oord et al. [59] and find that this further improves perfor-
mance, achieving an NLL upper bound comparable with the current state of the art. We estimate
the marginal likelihood of our MNIST model using the importance sampling technique in [8], which
computes a lower bound on the likelihood whose tightness increases with the number of importance
samples per datapoint. We use N = 5000 samples per datapoint (higher values don’t appear to
significantly affect the likelihood estimate) and achieve state-of-the-art likelihood.

Model NLL Test
DRAW [24] < 80.97

Discrete VAE [70] = 81.01

IAF VAE [36] ~ 79.88
PixelCNN [57] = 81.30
PixelRNN [57] = 79.20

VLAE [12] = 79.03
Convolutional VAE < 87.41
PixelVAE < 80.64

Gated PixelCNN (our implementation) = 80.10

Gated PixelVAE ~ 79.48 (< 80.02)
Gated PixelVAE without upsampling  ~ 78.96 (< 79.58)

Table 2.1: We compare performance of different models on binarized MNIST. Pizel CNN is the model
described in Oord, Kalchbrenner, and Kavukcuoglu [57]. Our corresponding latent variable model
is Pizel VAE. Gated Pixel CNN and Gated Pizel VAE use the gated activation function in Oord et al.
[59]. In Gated PizelVAE without upsampling, a linear transformation of latent variable conditions
the (gated) activation in every PixelCNN layer instead of using upsampling layers.
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Figure 2.4: (a) Comparison of the negative loglikelihood upper bound of PixelVAE and exact NLL
for PixelCNN as a function of the number of PixelCNN layers used. (b) Cost break down into
K L-divergence and reconstruction cost.

Number of PixelCNN layers

The masked convolutional layers in Pixel CNN are computationally expensive because they operate
at the full resolution of the image and in order to cover the full receptive field of the image, Pixel CNN
typically needs a large number of them. One advantage of our architecture is that we can achieve
strong performance with very few PixelCNN layers, which makes training and sampling from our
model significantly faster than PixelCNN. To demonstrate this, we compare the performance of our
model to PixelCNN as a function of the number of PixelCNN layers (Fig. 2.4a). We find that with
fewer than 10 autoregressive layers, our Pixel VAE model performs much better than PixelCNN.
This is expected, since with few layers, the effective receptive field of the Pixel CNN output units is
not large enough to capture long-range dependencies in the data.

We also observe that adding the first Pixel CNN layer has a dramatic impact on the NLL bound of
PixelVAE. This is not surprising since the PixelCNN layer helps model local characteristics (with
much greater expressiveness) which are complementary to the global characteristics which a VAE
with a factorized output distribution models.

Latent variable information content

Because the autoregressive conditional likelihood function of PixelVAE is expressive enough to
model some properties of the image distribution, it isn’t forced to account for those properties
through its latent variables as a standard VAE is. As a result, we can expect PixelVAE to learn
latent representations which are invariant to textures, precise positions, and other attributes which
are more efficiently modelled by the autoregressive decoder. To empirically validate this, we train
Pixel VAE models with different numbers of autoregressive layers (and hence, decoder receptive field
sizes) and plot the breakdown of the NLL bound for each of these models into the reconstruction
term log p(x|z) and the KL divergence term Dy (q(z|x) || p(z)) (Fig. 2.4b). The KL divergence
term can be interpreted as a measure of the information content in the posterior distribution ¢(z|x)
(in the sense that in expectation, samples from ¢(z|x) require K L(q || p) fewer bits to code under a
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VAE PixelVAE

Figure 2.5: Visualization of the MNIST test set in the latent space of (a) convolutional VAE and
(b) PixelVAE with two latent dimensions. Pixel VAE separates classes more completely than VAE.

code optimized for ¢ than under one optimized for p [9]) and hence, models with smaller KL terms
encode less information in their latent variables.

We observe a sharp drop in the KL divergence term when we use a single autoregressive layer
compared to no autoregressive layers, indicating that the latent variables have been freed from hav-
ing to encode small-scale details in the images. Since the addition of a single PixelCNN layer allows
the decoder to model interactions between pixels which are at most 2 pixels away from each other
(our masked convolution filter size is 5 x 5), we can also say that most of the non-trivial, global
structure in the images is still encoded in the latent variables.

Figure 2.6: We visually inspect the variation in image features captured by the different levels of
decoding in our model. For the two-level latent variable model trained on 64 x 64 LSUN bedrooms,
we vary only the top-level sampling noise (top) while holding the other levels constant, vary only
the middle-level noise (middle), and vary only the bottom (pixel-level) noise (bottom). From a
visual inspection, we observe an alignment of model behaviour with model design: it seems that
the top-level latent variables learn to model room structure and overall geometry, the middle-level
latents model colour and texture features, and the pixel-level distribution models low-level image
characteristics such as texture, colour, shading.
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Latent representations

On MNIST, given a sufficiently high-dimensional latent space, VAEs have already been shown to
learn representations in which digits are well-separated |77]. However, this task becomes more chal-
lenging as the capacity of the latent space is decreased. PixelVAE’s flexible output distribution
should allow it to learn a latent representation which is invariant to small details and thus better
model global factors of variation given limited capacity.

To test this, we train a PixelVAE with a two-dimensional latent space, and an equivalent VAE.
We visualize the distribution of test set images in latent space and observe that Pixel VAE’s latent
representation separates digits significantly better than VAE (Figure 2.5). To quantify this dif-
ference, we train a K-nearest neighbors classifier in the latent space of each model and find that
PixelVAE significantly outperforms VAE, achieving a test error of 7.2% compared to VAE’s 22.9%.
We also note that unlike VAE, Pixel VAE learns a representation in which digit identity is largely
disentangled from other latent causes.

2.4.2 LSUN bedrooms

To evaluate our model’s performance with more data and complicated image distributions, we per-
form experiments on the LSUN bedrooms dataset [93]. We use the same preprocessing as in Radford,
Metz, and Chintala [64] to remove duplicate images in the dataset. For quantitative experiments
we use a 32 x 32 downsampled version of the dataset, and for qualitative demonstration, we present
samples from a model trained on the 64 x 64 version.

We train a two-level Pixel VAE with latent variables at 1 x 1 and 8 x 8 spatial resolutions. We
find that this outperforms both a two-level convolutional VAE with diagonal Gaussian output and
a single-level Pixel VAE in terms of loglikelihood and sample quality. We also try replacing the
PixelCNN layers at the higher level with a diagonal Gaussian decoder and find that this hurts log-
likelihood, which suggests that multi-scale Pixel VAE uses those layers effectively to autoregressively
model latent features.

Features modeled at each layer

To see which features are modeled by each of the multiple layers, we draw multiple samples while
varying the sampling noise at only a specific layer (either at the pixel-wise output or one of the
latent layers) and visually inspect the resulting images (Fig. 2.6). When we vary only the pixel-
level sampling (holding z; and 2y fixed), samples are almost indistinguishable and differ only in
precise positioning and shading details, suggesting that the model uses the pixel-level autoregressive
distribution to model only these features. Samples where only the noise in the middle-level (8 x 8)
latent variables is varied have different objects and colours, but appear to have similar basic room
geometry and composition. Finally, samples with varied top-level latent variables have diverse room
geometry.

2.4.3 64 x 64 ImageNet

64 x 64 ImageNet generative modelling was introduced in Oord, Kalchbrenner, and Kavukcuoglu
[57] and involves density estimation of a difficult, highly varied image distribution. We trained a
heirarchical Pixel VAE model (with a similar architecture to the model in section 2.4.2) on 64 x
64 ImageNet and report validation set likelihood in Table 2.2. Our model achieves a likelihood
competitive with Oord, Kalchbrenner, and Kavukcuoglu [57] and Oord et al. [59], despite being
substantially less computationally complex. A visual inspection of ImageNet samples from our
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Figure 2.7: Samples from hierarchical Pixel VAE on the 64x64 ImageNet dataset.

model (Fig. 2.7) also reveals them to be significantly more globally coherent than samples from
PixelRNN.

Model NLL Validation (Train) FLOPs |
Convolutional DRAW < 4.10 (4.04) —
Real NVP = 4.01 (3.93) —
PixelRNN = 3.63 (3.57) 154 x 10?
Gated Pixel CONN = 3.57 (3.48) 134 x 10°
Hierarchical Pixel VAE < 3.62 (3.55) 63 x 109 |

Table 2.2: Model performance on 64 x 64 ImageNet. We achieve competitive NLL at a fraction of
the computational complexity of other leading models.

2.5 Conclusions

In this paper, we introduced a VAE model for natural images with an autoregressive decoder that
achieves strong performance across a number of datasets. We explored properties of our model,
showing that it can generate more compressed latent representations than a standard VAE and
that it can use fewer autoregressive layers than Pixel CNN. We established a new state-of-the-art on
binarized MNIST in terms of loglikelihood, we achieved strongly competitive loglikelihood on 64 x 64
ImageNet, and demonstrated that our model generates high-quality samples on LSUN bedrooms.

The ability of PixelVAE to learn compressed representations in its latent variables by ignoring
the small-scale structure in images is potentially very useful for downstream tasks. It would be
interesting to further explore our model’s capabilities for semi-supervised classification and repre-
sentation learning in future work.
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Prologue to the second article

Title: Improved training of Wasserstein GANs.
Authors: Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courville.

Abstract Generative adversarial networks (GANs) are powerful generative models, but suffer from
training instability. The recently proposed Wasserstein GAN (WGAN) makes progress toward stable
training of GANs, but can still generate low-quality samples or fail to converge in some settings.
We find that these problems are often due to the use of weight clipping in WGAN to enforce a Lips-
chitz constraint on the critic, which can lead to pathological behavior. We propose an alternative to
clipping weights: penalize the norm of gradient of the critic with respect to its input. Our proposed
method performs better than standard WGAN and enables stable training of a wide variety of GAN
architectures with almost no hyperparameter tuning, including 101-layer ResNets and language mod-
els over discrete data. We also achieve high quality generations on CIFAR-10 and LSUN bedrooms.
Code for our models is available at https: // github. com/ igul222/ improved_ wgan_ training.

A short version of this article was accepted at the ICML 2017 workshop on Learning in Implicit
Generative Models, and the extended version has been accepted at the Neural Information Process-
ing Systems conference (2017) as a Poster.

The idea was Ishaan Gulrajani’s who also led the project and wrote the majority of the code-base.
My personal contributions were:

e performing the experiments that study the limitations of weight clipping, specifically those
that demonstrate the sensitivity of gradient norm magnitudes on the clipping parameter, and
the saturation of weights with clipping,

e experimenting with hyper-parameter tuning and architectural variants,

e running experiments with CIFAR-10, and comparing convergence plots with baselines (WGAN-
clipping and DC-GAN),

e initial experiments with loss curves in the context of overfitting in GANs,

e contributing to the writing and presentation of the paper.
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Chapter 3

Improved training of Wasserstein GANSs

3.1 Introduction

Generative adversarial networks (GANs) [23]| are a powerful class of generative models that cast
generative modelling as a game between two networks: a generator network produces synthetic data
given some noise source and a discriminator network discriminates between the generator’s output
and true data. GANs can produce very visually appealing samples, but are often hard to train, and
much of the recent work on the subject [73, 51, 3, 63] has been devoted to finding ways of stabilizing
training. Despite this, consistently stable training of GANs remains an open problem.

In particular, [2] provides an analysis of the convergence properties of the value function being
optimized by GANs. Their proposed alternative, named Wasserstein GAN (WGAN) [3], leverages
the Wasserstein distance to produce a value function which has better theoretical properties than
the original. WGAN requires that the discriminator (called the critic in that work) must lie within
the space of 1-Lipschitz functions, which the authors enforce through weight clipping.

Our contributions are as follows:
1. On toy datasets, we show how critic weight clipping can lead to pathological behaviour,

2. We propose WGAN with gradient penalty, which does not suffer from the same issues,

3. We demonstrate stable training of many difficult GAN architectures with default settings,
performance improvements over weight clipping, high-quality generations on CIFAR-10 and
LSUN bedrooms, and a character-level GAN language model with a very simple architecture.

3.2 Background

3.2.1 Generative adversarial networks

The GAN training strategy is to define a game between two competing networks. The generator
network maps a source of noise to the input space. The discriminator network receives either a
generated sample or a true data sample and must distinguish between the two. The generator is
trained to fool the discriminator.

Formally, the game between the generator G and the discriminator D is the minimax objective:

mGin mgxw§Pr[log(D(w))} + iiEpg[log(l — D(x))], (3.1)

where PP, is the data distribution and P, is the model distribution implicitly defined by z =
G(z), z ~ p(z) (the input z to the generator is sampled from some simple noise distribution,
such as the uniform distribution or a spherical Gaussian distribution).
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If the discriminator is trained to optimality before each generator parameter update, then min-
imizing the value function amounts to minimizing the Jensen-Shannon divergence between the data
and model distributions on x 23], but doing so often leads to vanishing gradients as the discrim-
inator saturates. In practice, |23] advocates that the generator be instead trained to maximize
Eg~p,[log(D(x))], which goes some way to circumvent this difficulty. However, even this modified
loss function can misbehave in the presence of a good discriminator |2].

3.2.2 Wasserstein GANSs

Arjovsky, Chintala, and Bottou [3] argue that the divergences which GANs typically minimize are
potentially not continuous with respect to the generator’s parameters, leading to training difficulty.
They propose to instead use the Earth-Mover (also called Wasserstein-1) distance W (q, p), which is
informally defined as the minimum cost of transporting mass in order to transform the distribution
q into the distribution p (where the cost is mass times transport distance). Under mild assumptions,
W (q,p) is continuous everywhere and differentiable almost everywhere.

The WGAN value function is constructed using the Kantorovich-Rubinstein duality [84] to obtain

minmax E |D(x)|— E |D(x
inpax B [D@)] - K [D@)] (3.2
where D is the set of 1-Lipschitz functions and PPy is once again the model distribution implicitly
defined by & = G(z), z ~ p(z). In that case, under an optimal discriminator (called a critic in the
paper, since it’s not trained to classify), minimizing the value function with respect to the generator
parameters minimizes W (P,,[Py).

The WGAN value function results in a critic function whose gradient with respect to its input
is better behaved than its GAN counterpart, making optimization of the generator easier. Addi-
tionally, WGAN has the desirable property that its value function correlates with sample quality,
which is not the case for GANs.

To enforce the Lipschitz constraint on the critic, [3] propose to clip the weights of the critic to
lie within a compact space [—c, ¢|. The set of functions satisfying this constraint is a subset of the
k-Lipschitz functions for some k which depends on ¢ and the critic architecture. In the following
sections, we demonstrate some of the issues with this approach and propose an alternative.

3.2.3 Properties of the optimal WGAN critic

In order to understand why weight clipping is problematic in a WGAN critic, as well as to motivate
our approach, we highlight some properties of the optimal critic in the WGAN framework. We more
formally state and prove these in the Appendix.

If the optimal critic under the Kantorovich-Rubinstein dual D* is differentiable, and x is a point
from our generator distribution P,, then there is a point y sampled from the true distribution P,
such that the gradient of D* at all points x; = (1 — t)z + ty on a straight line between z and y

points directly towards y, meaning VD*(x;) = ”57;2“

This implies that the optimal critic has gradient norm 1 almost everywhere under P, and Pg.
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(a) Value surfaces of WGAN critics trained to optimality on toy datasets using (top) weight clipping and
(bottom) gradient penalty. Critics trained with weight clipping fail to capture higher moments of the data
distribution. The ‘generator’ is held fixed at the real data plus Gaussian noise.
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(b) (left) Gradient norms of deep WGAN critics during training on toy datasets either explode or vanish
when using weight clipping, but not when using a gradient penalty. (right) Weight clipping (top) pushes
weights towards two values (the extremes of the clipping range), unlike gradient penalty (bottom).

Figure 3.1: Gradient penalty in WGANs does not exhibit undesired behaviour like weight clipping.

3.3 Difficulties with weight constraints

We find that weight clipping in WGAN leads to optimization difficulties, and that even when op-
timization succeeds the resulting critic can have a pathological value surface. We explain these
problems below and demonstrate their effects; however we do not claim that each one always occurs
in practice, nor that they are the only such mechanisms.

Our experiments use the specific form of weight constraint from Arjovsky, Chintala, and Bottou [3]
(hard clipping of the magnitude of each weight), but we also tried other weight constraints (L2 norm
clipping, weight normalization), as well as soft constraints (L1 and L2 weight decay) and found that

they exhibit similar problems.

To some extent these problems can be mitigated with batch normalization in the critic, which
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[3] use in all of their experiments. However even with batch normalization, we observe that very
deep WGAN critics often get stuck in a bad regime and fail to learn.

3.3.1 Capacity underuse

Implementing a k-Lipshitz constraint via weight clipping biases the critic towards much simpler
functions. As stated previously, the optimal critic under the WGAN loss function has unit gradient
norm almost everywhere; under a weight-clipping constraint, most neural network architectures can
only attain their maximum gradient norm of £ when they learn extremely simple functions.

To demonstrate this, we train WGAN critics with weight clipping to optimality on several toy
distributions, holding the generator distribution P, fixed at the real distribution plus unit-variance
Gaussian noise. We plot value surfaces of the critics in Figure 3.1a. We omit batch normalization in
the critic. In each case, the critic trained with weight clipping ignores higher moments of the data
distribution and instead models very simple approximations to the optimal functions. In contrast,
our approach does not suffer from this behaviour.

3.3.2 Exploding and vanishing gradients

We observe that the WGAN optimization process is difficult because of interactions between the
weight constraint and the cost function, which inevitably result in either vanishing or exploding
gradients, depending on the value of the clipping threshold c.

To demonstrate this, we train WGAN on the Swiss Roll toy dataset, varying the clipping thresh-
old ¢ in [1071, 1072, 1073], and plot the norm of the gradient of the critic loss with respect to
successive layers of activations. Both generator and critic are 12-layer ReLU MLPs without batch
normalization. Figure 3.1b shows that for each of these values, the gradient either grows or decays
exponentially as we move farther back in the network. We find our method results in more stable
gradients that neither vanish nor explode, allowing training of more complicated networks.

3.4 Gradient penalty

We now propose an alternative way to enforce the Lipschitz constraint. A differentiable function is
1-Lipschtiz if and only if it has gradients with norm at most 1 everywhere, so we consider directly
constraining the gradient norm of the critic’s output with respect to its input.

To circumvent tractability issues, we enforce a soft version of the constraint with a penalty on
the gradient norm for random samples & ~ Pz. Our new objective is
- . 2
L= E [D@]- E [D(@)]+) E [(IVsD@)] - 1.

iN]P’g x~P,

(3.3)

Original critic loss Our gradient penalty

Sampling distribution We implicitly define Pz sampling uniformly along straight lines between
pairs of points sampled from the data distribution P, and the generator distribution P,. This is
motivated by the fact that the graph of the optimal critic consists of straight lines connecting points
from P, and P, (see subsection 3.2.3). Given that enforcing the unit gradient norm constraint every-
where is intractable, enforcing it only along these straight lines seems sufficient and experimentally
results in good performance.

Penalty coefficient All experiments in this paper use A\ = 10, which we found to work well
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Algorithm 1 WGAN with gradient penalty. We use default values of A = 10, neigic = 5, @ =
0.0001, 51 =0, B2 = 0.9.

Require: The gradient penalty coefficient A, the number of critic iterations per generator iteration
Neritic, the batch size m, Adam hyperparameters «, 81, B2.

Require: initial critic parameters wy, initial generator parameters 6.

1: while 8 has not converged do

2 for t =1, ..., neitic do

3 fori=1,....,m do

4: Sample real data  ~ P,, latent variable z ~ p(z), a random number e ~ U[0, 1].

: x + Gog (Z)

6

7

8

9

T—ex+(1—ex
L) « Dy(&) — Dy(@) + M| Va D (£) 2 — 1)2
end for
: w + Adam(V, = >, LD w, a, B, Ba)
10: end for
11: Sample a batch of latent variables {2}, ~ p(2).
12 0+ Adam(VeL Y7, —Dy,(Go(2)),0 ,a, B, B2)
13: end while

across a variety of architectures and datasets ranging from toy tasks to large ImageNet CNNs.

No critic batch normalization Most prior GAN implementations [64, 73, 3] use batch normaliza-
tion in both the generator and the discriminator to help stabilize training, but batch normalization
changes the form of the discriminator’s problem from mapping a single input to a single output to
mapping from an entire batch of inputs to a batch of outputs [73]. Our penalized training objective
is no longer valid in this setting, since we penalize the norm of the critic’s gradient with respect to
each input independently, and not the entire batch. To resolve this, we simply omit batch normal-
ization in the critic in our models, finding that they perform well without it.

Our method works with normalization schemes which don’t introduce correlations between exam-
ples. In particular, we recommend layer normalization [5] as a replacement for batch normalization.

Two-sided penalty We encourage the norm of the gradient to go towards 1 (two-sided penalty)
instead of just staying below 1 (one-sided penalty). In practice, we found this to converge slightly
faster and to better optima. Empirically, this seems not to constrain the critic too much, likely
because the optimal WGAN critic has gradients with norm 1 almost everywhere under P, and PP,
and in portions of the region in between (see subsection 3.2.3).

3.5 Experiments

3.5.1 Architecture robustness

To demonstrate the stability of our method’s training process, we train a wide variety of GAN
architectures on the LSUN bedrooms dataset [93]. In addition to the baseline DCGAN architecture
from [64], we choose six architectures which we think are difficult to train:

1. no BN and a constant number of filters in the generator, as in [3],
2. 4-layer 512-dim ReLU MLP generator, as in [3],

3. no normalization in either the discriminator or generator
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Figure 3.2: Difficult GAN architectures trained with different methods. Only WGAN with gradient
penalty succeeds in training every architecture with a single choice of default settings.
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Figure 3.3: CIFAR-10 Inception score over generator iterations (left) or wall-clock time (right) for
four models: WGAN with weight clipping, WGAN with gradient penalty and RMSProp (to control
for the optimizer), WGAN with gradient penalty and Adam, and DCGAN. Even with the same
learning rate, gradient penalty significantly outperforms weight clipping. DCGAN converges faster,
but WGAN with gradient penalty achieves similar scores with improved stability.

4. gated multiplicative nonlinearities, as in [59],
5. tanh nonlinearities, and
6. 101-layer ResNet generator and discriminator.

Although we do not claim it is impossible without our method, to the best of our knowledge this
is the first time very deep residual networks were successfully trained in a GAN setting. For each
architecture, we train models using four different GAN procedures: WGAN with gradient penalty,
WGAN with weight clipping, DCGAN [64], and Least-Squares GAN [19]. For each objective, we
used the default set of optimizer hyperparameters recommended in that work (except LSGAN,
where we searched over learning rates).

For WGAN with gradient penalty, we replace any batch normalization in the discriminator with
layer normalization (see section 3.4). We train each model for 200K iterations and present samples
in Figure 3.2. WGAN with gradient penalty is the only method which successfully trains every
architecture with a single set of default hyperparameters. For every other training method, some
of these architectures are unstable or suffer from mode collapse.

3.5.2 Improved performance over weight clipping

One advantage of our method over weight clipping is improved training speed and sample quality.
To demonstrate this, we train WGANs with weight clipping and our gradient penalty on CIFAR-
10 [40] and plot Inception scores [73] over the course of training (see Figure 3.3). For WGAN
with gradient penalty, we train one model with the same optimizer (RMSProp) and learning rate
as WGAN with weight clipping, and another model with Adam and a higher learning rate. Even
with the same optimizer, our method converges faster and to a better final score than using weight
clipping. Using Adam further improves performance. We also plot the performance of DCGAN [64]
and observe that although our method converges more slowly (in terms of wall-clock time) than
DCGAN, its performance is more stable at convergence.
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Method Score Method Score

ALI [20] (in [86]) 5.34 + .05 SteinGAN [85] 6.35
BEGAN |6] 5.62 DCGAN (with labels, in [85]) 6.58
DCGAN [64] (in [31]) 6.16 + .07 Improved GAN |[73] 8.09 + .07
Improved GAN (-L+HA) [73]  6.86 £+ .06 AC-GAN [56] 8.25 + .07
EGAN-Ent-VI [16] 7.07+ .10 SGAN-no-joint [31] 8.37+ .08
DFM |[86] 7.72+ .13 WGAN-GP ResNet (ours) 8.42 £+ .10
WGAN-GP ResNet (ours) 7.86+.07 SGAN [31] 8.59 + .12
Unsupervised Inception scores Supervised Inception scores

Figure 3.4: Inception scores on CIFAR-10. Among unsupervised models, our model achieves state-
of-the-art performance. With the addition of label information (following [56]) and no other tuning,
our model outperforms all other supervised architectures except SGAN.

3.5.3 Sample quality on CIFAR-10 and LSUN bedrooms

For equivalent architectures, our method achieves comparable sample quality to the standard GAN
objective. However the increased stability allows us to improve sample quality by exploring a wider
range of architectures. To demonstrate this, we find an architecture which establishes a new state
of the art Inception score on unsupervised CIFAR-10 (Figure 3.4). When we add label information
(using the procedure in [56]), the same architecture outperforms all other published models except

for SGAN.

We also train a deep ResNet on 128 x 128 LSUN bedrooms and show samples in Figure 3.6. We
believe these samples are at least competitive with the best reported so far on any resolution for
this dataset.

3.5.4 Character-level language modelling

Using GANs to model language is challenging, largely because text is a sequence of discrete to-
kens and discrete output units in the generator are difficult to backpropagate through. Most past
attempts have addressed this with the REINFORCE gradient estimator [89] or continuous approxi-
mations to discrete sampling [34, 48|, but have seen limited success without resorting to pretraining
or joint training with a typical supervised maximum-likelihood objective [94, 46, 91, 10, 47]. [29]
also propose a discrete GAN training method but do not evaluate on language modelling.

In contrast, using our method we train a GAN which generates discrete outputs without resort-
ing to complicated “backprop through discrete variable” methods, maximum-likelihood training, or
fine-tuned architectures. We train a character-level GAN language model on the Google Billion
Word dataset [11]. Our generator is a simple CNN which deterministically transforms a latent vec-
tor into a sequence of 32 one-hot character vectors through 1D convolutions. We apply a softmax
nonlinearity at the output, but use no sampling step: during training, the softmax output is passed
directly into the critic (which likewise, is a simple 1D CNN). When decoding samples, we just take
the argmax of each output vector.

We present samples from the model in Table 3.1. To our knowledge this is the first reported result
of a general language model trained entirely adversarially without a supervised maximum-likelihood
loss. Our model makes frequent spelling errors (likely because it has to output each character inde-
pendently) but nonetheless manages to learn quite a lot about the statistics of language. Although
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Figure 3.5: (left) CIFAR-10 samples generated by our unsupervised model. (right) Conditional
CIFAR-10 samples, from adding AC-GAN conditioning to our unconditional model. Samples from
the same class are displayed in the same column.

WGAN with gradient penalty (1D CNN)
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Table 3.1: Samples from a WGAN character-level language model trained with our method on
sentences from the Billion Word dataset, truncated to 32 characters. The model learns to directly
output one-hot character embeddings from a latent vector without any discrete sampling step. In
our experiments, the standard GAN objective with the same architecture collapsed to give very poor
samples. With additional heuristics (such as pretraining) or very careful finetuning the standard
GAN objective is known to avoid complete failure, but is acknowledged to fail out-of-the-box on
discrete output spaces.
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Figure 3.6: Samples of 128 x 128 LSUN bedrooms. We believe these samples are at least comparable
to the best published results so far.
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Figure 3.7: (a) The negative critic loss of our model on LSUN bedrooms converges toward a min-
imum as the network trains. (b) WGAN training and validation losses on a random 1000-digit
subset of MNIST show overfitting when using either our method (left) or weight clipping (right).
In particular, with our method, the critic overfits faster than the generator, causing the training
loss to increase gradually over time even as the validation loss drops.

we do not claim that doing so is impossible, we were unable to produce comparable results with the
standard GAN objective and a simple architecture.

The difference in performance between WGAN and other GANs can be explained by a simple
fact. Consider the simplex A,, = {p € R" : p; > 0,>_,p;i = 1}, and the set of vertices on the
simplex (or one-hot vectors) V,, = {p € R" : p; € {0,1},> ", ps =1} C A,,. If we have a vocabulary
of size n and we have a distribution P, over sequences of size T', we have that P, is a distribution
on VI =V, x -+ xV,. Since VI is a subset of AL, we can also treat P, as a distribution on AL
(by assigning zero probability mass to all points not in V,1').

Now the interesting part is this: [P, is discrete (or supported on a finite number of elements, namely
V.I') on AT, but P, can easily be a continuous distribution over AZ. The KL divergences between
two such distributions are infinite, and so the JS divergence is saturated. In practice, this means
a discriminator will quickly learn to reject all samples that don’t lie on V;! (sequences of one-hot
vectors), and the gradients passed to the generator are meaningless. However, it is easily seen that
the conditions of Theorem 1 and Corollary 1 of [3] are satisfied even on this non-standard learning
scenario with X = AZ. This means that W(P,,P,) is still well defined, continuous everywhere and
differentiable almost everywhere, and we can optimize it just like in any other continuous variable
setting. The way this manifests is that in WGANs, the Lipschitz constraint forces the critic to
provide a linear gradient from all AT towards towards the real points in VI

3.5.5 Meaningful loss curves and detecting overfitting

An important benefit of weight-clipped WGANSs is that their loss correlates with sample quality
and converges towards a minimum. To show that our method preserves this property, we train a
WGAN with gradient penalty on the LSUN bedrooms dataset [93] and plot the negative of the
critic’s loss in Figure 3.7a. We see that the loss converges as the generator minimizes W ([P, Py).

GANSs, like all models trained on limited data, will eventually overfit, but the lack of a meaningful
loss metric has made overfitting hard to detect in the past. To explore the loss curve’s behaviour
when the network overfits, we train large unregularized WGANs on a random 1000-image subset
of MNIST and plot the negative critic loss on both the training and validation sets in Figure 3.7b.
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In both WGAN and WGAN-GP, the two losses diverge, suggesting that the critic overfits and pro-
vides an inaccurate estimate of W(IP,,P,), at which point all bets are off regarding correlation with
sample quality. However in WGAN with gradient penalty, the training loss gradually increases even
while the validation loss drops.

Wu et al. [90] also measure overfitting in GANs by estimating the generator’s log-likelihood. Com-
pared to that work, our method detects overfitting in the critic (rather than the generator), is faster
and easier to implement, and measures the same loss that the network minimizes.

3.6 Conclusion

In this work, we demonstrated problems with weight clipping in WGAN and introduced an alter-
native in the form of a penalty term in the critic loss which does not exhibit the same problems.
Using our method, we demonstrated strong modelling performance and stability across a variety of
architectures.

Now that we have a more stable algorithm for training GANSs, we hope our work opens the path for
stronger modelling performance on large-scale image datasets and language. Another interesting
direction is adapting our penalty term to the standard GAN objective function, where it might
stabilize training by encouraging the discriminator to learn smoother decision boundaries.
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Prologue to the third article

Title: Fvaluating generative models as models of normality.
Authors: Faruk Ahmed, Aaron Courville.

Abstract We explore the potential of generative models as models of normality for images. We
evaluate them in the context of zero-shot out-of-distribution detection, motivated by the potential
problem of distributional change faced by Al systems deployed in the real world. We evaluate per-
formance of VAE, PizelCNN, PizelVAE in a setup where the model is trained on all but a subset
of data (corresponding to a class label) for MNIST and CIFAR-10, and compare likelihoods for in-
distribution and out-of-distribution test data. We also evaluate DCGAN, by using the discriminator
prediction for real/fake data as a surrogate measure of normality.

This is work in progress, and has not been submitted to any venue as of the time of writing.
The initial idea for the held-out training setup was Aaron Courville’s. I explored the idea fur-

ther, established the experimental setup with context, performed all experiments, and wrote the
following chapter.
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Chapter 4

Evaluating generative models as models
of normality

4.1 Introduction

In this chapter, we are motivated by the issue of distributional change [1]. A system which has
been trained on data sampled from a specific distribution, might encounter situations in the real
world where the data comes from a distribution that is different from the training distribution.
In such circumstances it is very likely that the system will take a misguided action. Additionally,
AT classification systems are known to provide incorrect predictions with high confidence [79, 1],
which could potentially be unsafe for humans when these systems are operating in our midst. As
a contrived example, a self-driving car that has never observed a wheelchair in the training data
might confuse one for a vehicle and take potentially dangerous decisions about how to adapt its
velocity. For a lot of such practical Al systems, it might not be possible to train them on highly
inclusive data with detailed annotations (or extraneous information not directly pertaining to the
task at hand). The nature of error could also be something more unexpected, other than a simple
class-confusion as in the example. With this in mind, we shall operate under the assumption that
all we have access to is the raw data, and no meta-information such as object annotations.

Our setting is zero-shot out-of-distribution detection: the system is given access to examples from
a particular distribution of interest during training. At test time, it will encounter examples that
are unfamiliar given what we have exposed the model to. The system is required to identify these
novel instances as such, with reference to the learned distribution of the data presented during
training. Additionally, we shall not assume access to any meta-information about the examples,
such as labels of objects present in them. This is a difficult problem because the model is not told
in advance what to look for — only to learn features for given data with a surrogate goal in mind,
for example optimizing for good reconstruction from the feature representation in an autoencoder
setting, or maximizing the marginal likelihood in a latent variable model. Without specific pressure
which would emphasize particularly discriminative features of the given data, the model can well
learn very general characteristics that are mostly shared with certain out-of-distribution examples
that might be encountered in the wild.

Normality model ! and detection module A normality model is a model that captures the
essence of what constitutes “normal” data and can be used to identify samples that are deemed
abnormal, or out-of-distribution. One approach to this task, borrowed from anomaly detection
techniques, can be to learn a normality model, and couple this with a detection module. The detec-
tion module can query the normality model for degrees of normality of an input data point, and use

'The term is borrowed from the anomaly detection literature, particularly in work on security systems, and is not
to be confused with normality testing, which tests if data fits a Gaussian distribution well.
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the model response to classify the input as being in-distribution or out-of-distribution. The nor-
mality models in this framework are typically density estimates, or unsupervised clustering models
that form clusters of feature representations and report distances to these clusters, or other alter-
native unary classification systems [80]. The detection module performs the final step of predicting
a normal/abnormal label for a test example, by thresholding estimates of normality for example, or
using some other transformations on the output of the normality module.

Objective We have seen in this thesis that modern generative models based on deep neural networks
perform very well for generating images (with the highest likelihood scores and sample quality), so it
seems reasonable to expect that they would be useful for out-of-distribution detection if appointed
as normality models. In this chapter, we explore this possibility.

4.2 Experimental setup

We shall train candidate generative models on two simple image datasets, and then inspect if
the models assign higher numbers denoting “belonging” for samples from the training distribution
than for samples from a different distribution. For a generative model that has learned a good
approximation to the training distribution, out-of-distribution samples should ideally be assigned
lower scores.

4.2.1 Datasets

We shall report results of experiments on two datasets — MNIST [42] and CIFAR-10 [40]. For both
datasets, we shall do the following for testing a generative model: we shall train ten versions of the
model, each time leaving out images corresponding to one of the image categories (digits in the case
of MNIST, object classes in the case of CIFAR-10); then we shall compute the most straightforward
normality measure as reported by the trained generative model (for example, in the case of explicit
models, this is log-likelihood) on two sets of the test set images, one with the nine classes that were
trained on, and the other with the held-out class. We shall then quantify the relative ranking of
normality scores for the out-of-distribution vs. the in-distribution test data.

4.2.2 Models

The explicit models (refer to subsection 1.3.2) we shall evaluate are VAE, PixelCNN, and Pixel-
VAE. It is easy to implement these as normality models since they provide us with log-likelihoods
(or lower bound estimates to log-likelihoods). We shall also evaluate a GAN model, specifically the
popular DCGAN, because although it is an implicit model with a highly non-trivial log-likelihood
estimate, we can use the discriminator’s decision as a surrogate. However, this is certainly not an
obvious choice: since the discriminator is trained to differentiate real from generated data, little can
be assumed about the precise nature of this decision boundary in the context of generalizing to an
in-distribution vs. out-of-distribution classification task.

MNIST architectures We binarize the digits, since most modern generative models evaluate
on the binarized version, which is easier to train using cross-entropy. We do not use the stan-
dard binarized version from Salakhutdinov and Murray [72] because labels are not provided for
that release, but dynamically binarize the digits of the original version at run-time. For the VAE
implementation, we use a convolutional encoder and decoder with 8 layers each and 3 x 3 filters
(following Simonyan and Zisserman [76]). The PixelCNN and PixelVAE architectures are the ones
discussed in chapter 2. For the DCGAN, we do not binarize the digits, and follow the architecture
in [64], except we also implement batch-normalization in the generator, following current practice,
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but omit it in the discriminator in order to prevent batch statistics from providing an indirect signal
about the distribution. Even if we use population statistics, it’s not clear which distribution to use
as the population — the real data or the generated data, since training was done with batch statistics
from both distributions.

CIFAR-10 architectures A plain convolutional VAE implementation is known to perform very
poorly for CIFAR images, so we make use of a specific variant called inverse autoregressive flow
(IAF) which produces less blurry samples.

Rezende and Mohamed [67] introduced the idea of normalizing flows, which transforms a draw
from a simple distribution into a draw from a complex one by successive invertible transformations.
Kingma et al. [38] implement a particular normalizing flow as a chain of inverses of autoregressive
Gaussian invertible transforms 2 which is used to express the approximate posterior in a VAE. This
equips the VAE with a more flexible posterior than a diagonal Gaussian, and we use this IAF-VAE
in our experiments with CIFAR-10.

A PixelCNN implementation did not work well for CIFAR-10 in our experiments (in terms of
inspected sample quality), so we used an improved version for the CIFAR-10 experiments: Pizel-
CNN++ [74], in which a few improvements are made to PixelCNN, such as using a logistic mixture
model on the pixel space, predicting all channels of a pixel at once (with a simpler factorization
over the channels of the center pixel), and a few other architectural changes.

PixelVAE and DCGAN produce reasonable samples for the standard architectures.

4.2.3 Evaluation

For a binary classification task, when the two classes are imbalanced at evaluation time, accuracy
is not a very good metric for a classifier’s performance, since accuracy can be misleadingly high by
simply labeling everything the majority class. In such cases, using performance measures that take
into account how often the classifier is correct when it assigns a positive label, and how often it
correctly identifies the positive class ® are more useful and informative. These two quantites are
expressed as precision and recall. Specifically,

precision = .t?ue positives — (4.1)

true positives + false positives
true positives

recall = — - (4.2)
true positives + false negatives

A precision-recall (PR) curve is defined as a set of precision-recall points
PR curve £ {recall(t), precision(t), —oo < t < oo}, (4.3)

where t is a threshold parameter. We shall consider our normality module as producing output
values such that larger output values are associated with positive examples (so we would need to
negate log-likelihood numbers). For a given threshold ¢, if the output of the normality module is
greater than t, it shall be labeled positive.

2Using the inverses of the invertible transforms instead of the forward path comes with computational benefits:
now the dimensions of the complex posterior can be computed in parallel, and the mapping is equally powerful in
terms of the amount of “complexity” it induces upon the simple base distribution.

3We shall assume that the less frequent class (in our case, the out-of-distribution population) is labeled positive,
and is of interest; and that the two distributions corresponding to the positve and negative class are conditionally
independent given the class.
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OO0OD digit Skew  VAE PixCNN PixelVAE DC-GAN

0 9.8 40.20 31.31 40.89 44.16
1 11.35 5.98 5.98 6.08 6.00
2 10.32  65.37 42.60 56.12 14.40
3 10.1  36.86 36.31 38.33 12.92
4 9.82 34.49 19.74 19.09 7.38
5 8.92  38.56 26.29 28.12 9.75
6 9.58 38.13 23.76 33.16 9.68
7 10.28  10.13 8.33 11.75 7.17
8 9.74 57.64 50.57 54.85 12.87
9 10.09 11.09 12.49 11.50 8.23
mean 10 33.85 25.74 29.99 13.25
median 9.96 37.50 25.03 30.64 9.71

Table 4.1: Out-of-distribution detection on MNIST for every out-of-distribution population defined
as the digit left out during training. Digits 1 and 7 are consistently harder to detect, possibly
because both consist primarily of a downward stroke and are easy to confuse.

For our out-of-distribution detection problems, we shall report the area under the PR curve (AUPR):
this is constructed by varying the threshold ¢ over a range spanning the data, and creating a set of
finite points for the PR curve. These points are interpolated to produce a continuous curve (which
is an approximation to the true curve), and the area under this curve is estimated to compute our
quantity of interest.

We shall also refer to the skew, which is the ratio of positive examples to negative examples, and
this can serve as a sanity-check baseline, since this is the rate at which we would approximately
perform if we randomly guessed labels.

An alternative measure is Receiver Operator Characteristic (ROC), which is similar, but penal-
izes false positives. Since we assume distributional change is a rare event and would prefer false
positives to false negatives in the context of safe AI systems, we use Precision-Recall measures.
Moreover, it has also been shown that ROC curves are misleadingly optimistic compared to PR
curves for highly skewed datasets [17], and additionally, it is shown that an algorithm that opti-
mizes the area under the ROC curve is not guaranteed to optimize the area under the PR curve.

Evaluation We are evaluating our models as candidates for normality models. The explicit models
(VAE, PixelVAE, PixelCNN variants) produce likelihoods, or estimates of likelihoods, which are
the most straightfoward measure of normality for such models. For the GAN, we shall use the
discriminator output as a surrogate for a measure of normality. Since we are not concerned with
the detection module, we shall not tune thresholds, and at evaluation time this is accounted for by
AUPR’s varying threshold.
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OOD category skew IAF PixCNN++ PixelVAE DC-GAN

airplane 10 5.19 30.39 6.95 10.46
automobile 10 28.83 8.40 14.11 12.00
bird 10 7.48 11.46 9.83 11.38
cat 10 8.57 9.79 9.23 10.47
deer 10  24.60 7.41 11.48 8.37
dog 10 9.71 9.00 8.63 11.32
frog 10 60.30 6.74 17.21 12.73
horse 10 18.78 7.88 10.64 10.57
ship 10 5.36 15.63 6.88 13.14
truck 10 21.96 8.36 11.45 12.50
mean 10 19.08 11.51 10.64 11.29
median 10 14.24 8.70 10.24 11.35

Table 4.2: Out-of-distribution detection on CIFAR-10 for every out-of-distribution population de-
fined as the object category left out during training. airplane, ship, and bird typically share strong
global coherence (an elongated object, sometimes with wing-like structures, typically on a blue back-
ground) and are observed to be easily confused for both the VAE and PixelVAE, but PixelCNN
appears to be relatively stronger at detecting the difference. We hypothesize this is because Pixel-
CNN is stronger at modelling local precise local details. Interestingly, PixelCNN fails most strongly
for frog, and we suspect this is because the majority of frog images in CIFAR-10 are close-ups, which
are locally blurry and thus easily confused with global properties of other categories.

4.3 Results
4.3.1 MNIST with held out digits

In Table 4.1 we report AUPR percentages (a perfect detection would have scores of 100) for com-
paring normality scores of test set in-distribution vs. out-of-distribution images under the models
we are evaluating. Every row corresponds to an out-of-distribution detection experiment where
training is done on the training set of MNIST digits but holding out one of the digits, and the
out-of-distribution population at test time is defined to be the set of test set images with the held-
out-digit. There is considerable variation among the AUPR scores of the different experiments,
indicating that certain digits are significantly easier to confuse than others. On average, it would
appear the VAE performs the best.

4.3.2 CIFAR-10 with held out classes

In Table 4.2 we show AUPR percentages for CIFAR-10, holding out object categories similarly as
before. We replace the simple convolutional VAE with an TAF model with two levels of autore-
gressive inverse transforms 4, and replace PixelCNN with PixelCNN+ -+, which gives better sample
quality. We observe that on average, VAEs are once again the top-performing model, followed by
PixelCNN (though PixelCNN actually performs worst according to the median score). The other
models are fairly close to baseline performance and the high variance across out-of-distribution ex-
periments means the results are not very interpretable, except perhaps as observations about how
internal representations of different models are more/less confused by images with specific objects.

4We ran the IAF models for 50 epochs only because it’s slower to run, but we visually verified decent sample
quality and ~ 3.5 average bits/dim log-likelihood bounds for every experiment.
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4.4 Conclusion

This is a hard setup: most often the samples from the distribution with the held-out-class will share
a lot of common low-level and even high-level features with the in-distribution training samples; in
the absence of labels, the models are given no information about specific discriminative features to
look for which would aid detection of novel instances. For images with unseen objects that have
similar local features and share similar global coherence with familiar objects (such as a bird and
an aeroplane flying in the sky), it is easy for a model with incomplete knowledge about the world to
assign a high likelihood to the out-of-distribution example, especially when we are training powerful
models on smaller quantities of data.

However, we believe this is a setup that approaches more closely a realistic evaluation of nor-
mality models as motivated by the problem of distributional change, in the context of Al safety.
Additionally, we also recommend the setup as a possible testing ground for evaluating generative
models, with the caveat that this is very goal-oriented. If we wish to implement a generative model
where our only concern is that of generating realistic samples, perhaps leaning toward the more
“creative” side of imaginative behaviour, we should not care about performance on tasks such as
these. If we intend to use them as density models, out-of-distribution detectors, or in applications
that stipulate strictly plausible samples °, this form of evaluation might be relevant. It would help
quantify a generative model’s propensity to “over-generalize” with potentially undesired outcomes.
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Chapter 5

Conclusion

Unlabelled data is typically much more readily available and in significantly larger quantities than
labelled data, and can potentially convey an enormous amount of implicit information. In this
thesis, we have observed that generative models are powerful tools for learning highly complex dis-
tributions over high-dimensional data in an unsupervised manner, so they are well-suited to exploit
these vast quantities of unlabelled data. As we discussed in chapter 1, with the ability to produce
meaningful samples, generative models carry in them an implicit understanding of the world, and
being able to learn and represent knowledge in an unsupervised way is a core component of efficient
machine intelligence.

In chapter 2, we introduced a latent variable model with an autoregressive decoder. We quali-
tatively demonstrated the ability of this model to learn a semantically hierarchical latent space. We
also showed that this latent space learns more global features, and with greater compression com-
pared to a standard VAE. This indicates potential usefulness in downstream representation learning
tasks, which will be explored in future work.

In chapter 3, we investigated some of the problems arising from weight clipping in WGANs. We
presented an alternative by introducing a penalty term in the critic loss, which led to clear benefits
in modelling performance, training stability, and promising results with modelling discrete data.
With this contribution, we can now focus efforts upon scaling up image modelling to higher resolu-
tions, and exploring the use of GANs in discrete output spaces.

In chapter 4, we talked about the possibility of Al systems behaving in ways that are misaligned
with human interests, when they are deployed in the real world. For example, a robot trained to
clear the floor of trash might throw away a valuable object that was accidentally dropped. One way
to reduce such undesired behaviour would be letting our AI systems know when they face novel
situations. We have approached a possible direction for detecting novel instances using generative
models, but without particularly promising results. With the current models that we have, perhaps
modelling the density of the training distribution is not enough; we might need to explicitly model
surprise at novelty. This might call for some supervision in training, where we shall provide a reward
signal for surprise.

A line of future work, building upon the work presented in this thesis, would be focussing on
the current challenge of generating video. For this task, apart from modelling spatial structure,
we shall need to represent temporal structure as well. Recurrent neural networks lend themselves
naturally to the task, but have been hard to train. In the spirit of our work presented in chapter 2,
a hierarchical decomposition across the temporal axis might be useful, and will be considered for
future work. Exploring the use of improved training techniques, such as the one presented in chap-
ter 3, is also a possible direction.
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Another line of future work follows from the idea that a generative model capable of capturing
greater detail is one that can potentially incorporate a more precise understanding of the world.
This motivates scaling up generative modelling to images of higher resolution, which comes with
the need for increased modelling capacity as well as efficient sampling mechanisms. We hypothesize
that the current inadequacy of generative models to serve as accurate models of normality might
be resolved with being able to efficiently model images of greater precision.

Artificial intelligence is well on the way to pervade most, if not all, aspects of human life. Gener-
ative models, in particular, can augment our artistic and creative endeavours, in addition to other
applications, some of which we have discussed. Research and development in the near future are ex-
pected to enhance the presence of machine intelligence in our lives, and powerful generative models
would help augment the machines in our lives with cogent reasoning skills and creativity.
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Appendix A

Appendix for PixelVAE: A latent
variable model for natural images

A.0.1 LSUN bedrooms and 64x64 ImageNet reconstructions

Figure A.1: Reconstructions for (a) LSUN Bedrooms and (b) 64x64 ImageNet. Left-most columns
are images from the test set, and the following 5 columns are top-down generations from the highest
level of latent variables. We see that the reconstructions capture high-level semantic properties of
the original images while varying in most of the details. We also visualized similar reconstructions
by generations from the lower level of latent variables, and in this case the reconstructions were
visually indistinguishable from the original images.
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A.0.2 MNIST samples
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Figure A.2: Samples from a Pixel VAE with a receptive field of 7 pixels (left), a PixelCNN with an
11-pixel receptive field (middle; roughly the same computational complexity as the Pixel VAE), and

a PixelCNN with a 7-pixel receptive field (right).

A.0.3 MNIST reconstructions
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Figure A.3: Reconstructions from the MNIST test set. Alternate columns are original (left) and

reconstructed images (right).
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A.0.4 More samples for hierarchical latent space visualizations
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Figure A.4: More examples for visualizations of the variation in image features captured at different
levels of stochasticity. Holding the other levels constant, we vary only the top-level sampling noise
(top), only the middle-level noise (middle), and only the bottom (pixel-level) noise (bottom).

A.0.5 Model architecture
MNIST

For our quantitative MNIST experiments, the architectures of our encoder and decoder are as
follows. Unless otherwise specified, all convolutional layers use ReLLU nonlinearity. We also make
an open-source implementation of this model available at https://github.com/igul222/PixelVAE.
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Encoder =z — (p,0)
Kernel size | Stride | Output channels
Convolution | 3x3 1 32
Convolution | 3x3 2 32
Convolution | 3x3 1 32
Convolution | 3x3 2 64
Pad 7x7 feature maps to 8x8
Convolution | 3x3 1 64
Convolution | 3x3 2 64
Convolution | 3x3 1 64
Convolution | 3x3 1 64
Convolution | 3x3 1 64
Flatten
Linear - ‘ - ‘ 2xlatent dimensionality
Decoder z — =
Kernel size | Stride | Output channels
Linear - - 4x4x64
Reshape to (64, 4, 4)
Convolution 3x3 1 64
Convolution 3x3 1 64
Transposed convolution 3x3 2 64
Convolution 3x3 1 64
Crop 8x8 feature maps to 7x7
Transposed convolution 3x3 2 32
Convolution 3x3 1 32
Transposed convolution 3x3 2 32
Convolution 3x3 1 32
Pixel CNN gated residual block <7 1 32
PixelCNN gated residual block(s) | [ 5x5 | XN | 1 32
Pixel CNN gated convolution 1x1 1 32
Pixel CNN gated convolution 1x1 1 32
Convolution 1x1 1 1

LSUN bedrooms and 64x64 ImageNet
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The LSUN and ImageNet models use the same architecture: all encoders and decoders are residual
networks; we use pre-activation residual blocks with two 3 x 3 convolutional layers each and ELU
nonlinearity. Some residual blocks perform downsampling, using a 2 x 2 stride in the second con-
volutional layer, or upsampling, using subpixel convolution in the first convolutional layer. Weight
normalization is used in masked convolutional layers; in all other layers, batch normalization is
used. We optimize using Adam with learning rate le-3. Training proceeds for 400K iterations using
batch size 48.

For further architectural details, please refer to our open-source implementation at https:
//github.com/igul222/PixelVAE.




Bottom-level Encoder x — hy

Output channels

Embedding

Convolution

Residual block
Residual block
Residual block
Residual block
Residual block
Residual block
Residual block

Kernel size | Resample

- - 48
1x1 - 192
[3x3 ] x 2 |- 192
[3x3] x 2 | Down x2 | 256
[3x3 ] x 2 |- 256
[3x3 ] x 2 | Down x2 | 512
[3x3 ] x 2 |- 512
[3x3] x 2 |- 512
[3x3 ] x 2 |- 512

Bottom-level Decoder z; — x

Kernel size | Resample | Output channels

Convolution 1x1 1 512
Residual block [3x3] x 2 |- 512
Residual block [3x3] x 2 |- 512
Residual block [3x3 ]| x 2 |- 512
Residual block [3x3] x 2 | Up x2 256
Residual block [3x3 ]| x 2 |- 256
Residual block [3x3] x 2 | Up x2 192
Residual block [3x3 ]| x 2 |- 192
Embedding - - 48

Pixel CNN gated residual block | [ 3x3 ]| x 2 | - 384
PixelCNN gated residual block | [ 3x3 ]| x 2 | - 384
PixelCNN gated residual block | [ 3x3 ]| x 2 | - 384

Top-level Encoder hy — ho

Output channels

Residual block
Residual block
Residual block
Residual block
Residual block
Residual block
Residual block
Residual block

Kernel size | Resample

[3x3] x 2 |- 512
[3x3] x 2 |- 512
[3x3 ] x 2 | Down x2 | 512
[3x3 ] x 2 |- 512
[3x3] x 2 |- 512
[3x3 ] x 2 | Down x2 | 512
[3x3] x 2 |- 512
[3x3 ] x 2 |- 512
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Top-level Decoder z9 — 2z

Kernel size | Resample | Output channels
Linear - - 4x4x%x512
Reshape to (512, 4, 4)
Residual block [3x3] x 2 |- 512
Residual block [3x3 ]| x 2 |- 512
Residual block [3x3] x 2 | Up x2 512
Residual block [3x3] x 2 |- 512
Residual block [3x3 ] x 2 |- 512
Residual block [3x3] x 2 | Up x2 512
Residual block [3x3 ]| x 2 |- 512
Residual block [3x3] x 2 |- 512
PixelCNN convolution 5x5 - 512
PixelCNN gated residual block | [ 3x3 ]| x 2 | - 512
PixelCNN gated residual block | [ 3x3 ]| x 2 | - 512
PixelCNN gated residual block | [ 3x3 ]| x 2 | - 512
Convolution 1x1 - 256
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Appendix B

Appendix for Improved training of
Wasserstein GANSs

B.1 Proof about the optimal WGAN critic

Lemma 1. Let P, and Py be two distributions in X, a compact metric space. Then, there is a
1-Lipschitz function f* which is the optimal solution of

pmax B FWI- E /)]

Let w be the optimal coupling between P, and Py, defined as the minimizer of:

W(P,,P,) = inf E -
(B.B)= _inf E(le =]

Where II(IP,., Py) is the set of joint distributions mw(x,y) whose marginals are P, and Py, respectively.
Then, if f* is differentiable !, w(x = y) = 0% and x4y = to + (1 — t)y with 0 <t < 1,

* Yy Tt
Pooyer |V f(x) = ——| =1
(=) f ) |y — 2|

This, in particular, implies the norms of the gradients are 1.

Proof. Since X is a compact space, by Theorem 5.10 of [84], part (iii), we know that there is an
optimal f*. By Theorem 5.10 of [84], part (ii) we know that if 7 is an optimal coupling,

Playynr () = f7 (@) = [ly —zll] = 1

Let (x,y) be such that f*(y) — f*(z) = ||y — z||. We can safely assume that x # y as well,
since this happens under 7 with probability 1. Let ¥ (t) = f*(x¢) — f*(x). We claim that ¥(t) =
[l — | = tl|ly — x|
Let t,t' € [0,1], then

[h(t) — ()] = I1f*(2e) — f*(zv)]]
< |lzt — |
= [t —t'[[|z -y

'We can actually assume much less, and talk only about directional derivatives on the direction of the line; which
we show in the proof always exist. This would imply that in every point where f* is differentiable (and thus we can
take gradients in a neural network setting) the statement holds.

2This assumption is in order to exclude the case when the matching point of sample z is z itself. It is satisfied in
the case that P, and P, have supports that intersect in a set of measure 0, such as when they are supported by two
low dimensional manifolds that don’t perfectly align [2].
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Therefore, 1 is ||x — y||-Lipschitz. This in turn implies

P(1) = P(0) = (1) = (t) + 9 (t) — ¥(0)
< (X =Bz =yl + () —¥(0)
< (I =t)llz =yl + tlle -yl
= [lz =yl
However, 9(1) — 1(0)

In particular, ¥ (t) — (0
and we finish our claim.

f*(y) = f*(x) = ||y — z|| so the inequalities have to actually be equalities.
) =tz —yll, and $(0) = f*(x) — f*(z) = 0. Therefore, (1) = [z -y

Let
v — Y — Tt
[y — ]
_ oy (-t —ty)
ly = (1 =)z —ty)]|
-t
(1 =8)lly — ||
ly — ||

Now we know that f*(z;) — f*(z) = ¥(t) = t||lz — yl|, so f*(x¢) = f*(x) + t||]x — y||. Then, we have
the partial derivative

9 .. (et ) = [ (x)

50 ) (@) = lim

ov h
7 (e 4ty —2)+ v - 2)) - f1(@)
= lim
h—0 h
. I* <$t+|yﬁz|> *f*(xt)
= jm h
@ () =yl = (@) + e - i)
= lim
h—0 h
=i

If f* is differentiable at ¢, we know that ||V f*(z;)|| < 1 since it is a 1-Lipschitz function. Therefore,
by simple Pythagoras and using that v is a unit vector

1< |Vf ()]
= (0, V[ (20))* + |V f*(2e) — (v, Vf*(a2))v]|

0 0
= %f*(xt)\z + IV () - v%f*(%t)ll2
=1+ [V f* (@) —v]?

<1

The fact that both extremes of the inequality coincide means that it was all an equality and 1 = 1+
|V f*(x) =] so |V f*(2¢) —v| = 0 and therefore V f*(z;) = v. This shows that V f*(z;) = £=2t

ly—a¢]l*
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To conclude, we showed that if (z,y) have the property that f*(y) — f*(x) = |ly — ||, then
Vi*(x) = ﬁ Since this happens with probability 1 under 7, we know that

Yy— T

Pryoyor |V (1) = 2— 2t | =
e VI =y

and we finished the proof. O
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B.2 Hyperparameters used for stability experiments
e WGAN with gradient penalty: Adam (« = .0001, 51 = .5, 82 = .9)
e WGAN with weight clipping: RMSProp (a0 = .00005)
e DCGAN: Adam (o = .0002, 31 = .5)

e LSGAN: RMSProp (a = .0001) |chosen by search over a = .001,.0002, .0001]

B.3 CIFAR-10 ResNet architecture

The generator and critic are residual networks; we use pre-activation residual blocks with two 3 x 3
convolutional layers each and ReL.U nonlinearity. Some residual blocks perform downsampling (in
the critic) using mean pooling after the second convolution, or nearest-neighbor upsampling (in the
generator) before the second convolution. We use batch normalization in the generator but not
the critic. We optimize using Adam with learning rate 2 x 10~4, decayed linearly to 0 over 100K
generator iterations, and batch size 64.

For further architectural details, please refer to our open-source implementation.

Generator G(z)

Kernel size | Resample | Output shape
z - - 128
Linear - - 128 x 4 x 4
Residual block | [ 3x3] x 2 | Up 128 x 8 x 8
Residual block | [ 3x3] x 2 | Up 128 x 16 x 16
Residual block | [ 3x3] x 2 | Up 128 x 32 x 32
Conv, tanh 3%x3 - 3 x 32 x 32

Critic D(x)

Kernel size | Resample | Output shape
Residual block [ 3x3 ] x 2 | Down 128 x 16 x 16
Residual block [ 3x3] x 2 | Down 128 x 8 x 8
Residual block [3x3] x 2 |- 128 x 8 x 8
Residual block [3x3] x 2 |- 128 x 8 x 8
ReLU, mean pool | - - 128
Linear - - 1
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B.4 More LSUN samples

- |

_ v o 7','

Method: DCGAN Method: DCGAN
G: DCGAN, D: DCGAN G: No BN and const. filter count

Method: DCGAN Method: DCGAN
G: 4-layer 512-dim ReLU MLP No normalization in either G or D

66



| tﬁ. | =57 ;
Method: DCGAN Method: DCGAN
Gated multiplicative nonlinearities tanh nonlinearities

Method: DCGAN Method: LSGAN
101-layer ResNet G and D G: DCGAN, D: DCGAN

Method: LSGAN
G: No BN and const. filter count G: 4-layer 512-dim ReLLU MLP
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Method: LSGAN Method: LSGAN
No normalization in either G or D Gated multiplicative nonlinearities

Method: LSGAN
101-layer ResNet G and D

Method: WGAN with clipping Method: WGAN with clipping
G: DCGAN, D: DCGAN G: No BN and const. filter count
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Method: WGAN with clipping Method: WGAN with clipping
G: 4-layer 512-dim ReLU MLP No normalization in either G or D

— g X

Method: WGAN with clipping
Gated multiplicative nonlinearities

Method: WGAN with clipping Method: WGAN-GP (ours)
101-layer ResNet G and D G: DCGAN, D: DCGAN
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Method: WGAN-GP (ours) (ours)
G: No BN and const. filter count G: 4-layer 512-dim ReLLU MLP

el % 4 L_,'— hi N S 1 - T e
Method: WGAN-GP (ours) Method: WGAN-GP (ours)
No normalization in either G or D Gated multiplicative nonlinearities

Method: WGAN-GP (ours) Method: WGAN-GP (ours)
tanh nonlinearities 101-layer ResNet G and D
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