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RESUME

Dans cette étude, nous proposons des modales a facteurs semi-paramétriques pour
taux d'intér8t. Nous construisons les facteurs comme des fonctions linéaires de variables
clés nominales et réelles. L'estimateur de dérivée moyenne, proposé par Hardle et
Stoker (1989) et Powaell, Stock et Stoker (1989) nous permet d'estimer ces facteurs
comme fonctions linéaires sans connaitre leurs relations avec les taux d'intérét. Une fois
les facteurs identifiés, nous estimons dans une deuxiéme étape cette demiére relation
par méthodes non paramétriques.

Mots clés : taux dintérét, structure par terme, modéles A& facteurs, méthodes
semi-paramétriques, estimateur de dérivée moyenne

ABSTRACT

Understanding the dynamics of interest rates and the term structure has important
implications for issues as diverse as real economic aclivity, monetary policy, pricing of
interest rate derivative securities and public debt financing. Our paper foliows a
longstanding tradition of using factor models of interest rates but proposes a semi-
parametric procedure 10 model interest rates. In a semi-parametric approach, one
typically parameterizes the object of interest while leaving unspecified the rest of the
model. We construct factors as linear functionals of key economic time series involving
unknown parameters, but treat the response of interest rates to the factors in a
nonparametric way. The Average Derivative Estimator, which is a semi-parametric
procedure proposed by Hardle and Stoker (1989) and Powell, Stock and Stoker (1989),
allows us to proceed in two steps; namely, we first identify factors without assuming
knowledge of the response function of interest rates o the factors. Once the factors are
identified, we proceed with estimating the response function using nonparametric
methods. We can view our semi-parametric approach as a prelude to a full-blown
parametric formulation for a factor term structure model. indeed, our empirical results
suggest a shont-term rate specification which deviates from standard parametric models
often considered in the literature.

Key words : interest rates, term structure, factor models, semi-parametric models,
average derivative estimator






1. Introduction

Understanding the dynamics of interest rates and the term structure has impor-
tant implications for issues as diverse as real economic activity, monetary policy,
pricing of interest rate derivative securities and public debt financing. It is there-
fore not surprising that the study of interest rates occupies a prominent place in
theoretical and empirical finance as well as macroeconomics. The continuous flow
of research papers suggesting new ways to capture the complexity of the dynamics
in the conditional mean and variance of interest rates reveals that the literature
is still in search of an adequate theoretical and empirical set of models.! In re-
sponse to this situation a number of recent papers have surfaced abandoning the
traditional parametric models and proposing a non-parametric approach to study
interest rates and the term structure. Examples of such work include Ait-Sahalia
(1993), Bekdache and Baum (1994) and Gouriéroux and Scaillet (1994).

This paper proposes a semi-parametric procedure to model interest rates. In
a semi-parametric approach one typically parameterizes the object of interest
while leaving unspecified the rest of the model. The paper follows a longstanding
tradition of using factor models of interest rates. We construct factors as linear
functionals of key economic time series involving unknown parameters, but treat
the response of interest rates to the factors in a nonparametric way. The Average
Derivative Estimator, which is a semi-parametric procedure proposed by Hardle
and Stoker (1989) and Powell, Stock and Stoker (1989), allows us to proceed
in two steps, namely we first identify factors (also called indices as explained in
Section 2) without assuming knowledge of the response function of interest rates
to the factors. Once the factors are identified, we proceed with estimating the
response function using non-parametric methods.

There is a certain appeal to this two step procedure. While estimation of
a set of factors is not uncommon in parametric models following, for instance,
the classical paper by Cox, Ingersoll and Ross (1985) and many others, the as-
sumptions of linearity and normality are relaxed in our semi-parametric setting.
Bansal and Viswanathan (1993) proposed a nonlinear APT which involves the

1t is impossible to reference the multitude of papers on the subject. Although
there is no comprehensive recent survey of the finance and macroeconomics liter-
ature together one can rely on Chan, Karolyi, Longstaff and Sanders (1992) for
a discussion of the continuous time models and their empirical support. Shiller
1(11990) on the other hand provides an excellent review of the macroeconomics
iterature.




pricing of assets through a nonlinear pricing kernel. In their procedure the factors
and response functions are estimated simultaneously where the response function
is estimated via polynomial series expansions or neural networks. While their
analysis is similar in some ways to ours, each has advantages but can also be
criticized for certain shortcomings. On the one hand, estimation of a nonlinear
APT model involves a large number of parameters, and many moment conditions
must be imposed to achieve identification. Moreover, even when the pricing ker-
nel is estimated, one does not yet have a prediction model for the interest rate.
Indeed, the pricing kernel in the nonlinear APT only reflects the marginal rates
of substitution rather than provides a prediction formula for the interest rate.
On the other hand, their procedure is more apt to handle no-arbitrage condi-
tions, involving non- negativity constraints on the pricing kernel. Imposing such
conditions in our procedure is more difficult, which is the reason why we refrain
from modeling the term structure and focus exclusively on the dynamics of the
interest rate series. We can view our semi-parametric approach as a prelude to
a fullblown parametric formulation for a factor term structure model. Indeed,
our empirical results suggest a short term rate specification which deviates from
standard parametric models often considered in the literature.

Following Chan et al.(1992) we start from a discretization of a standard contin-
uous time diffusion factor model . However, we do not consider various parametric
specifications for the drift and volatility functions. In section 2 we describe the
details of the model specification and estimation and discuss the comparison be-
tween parametric, nonparametric and semi-parametric procedures. Using three
interest rate series, a one-month T-bill, a five-year government bond and a ten-
year one, we estimate the semi parametric factor models. The results are reported
in section 3. Conclusions appear in section 4.

2. Econometric Specification and Estimation

The semi-parametric analysis of interest rates consists of i) using the average
derivatives of interest rates with respect to a set of economically relevant variables
to form factors, and ii) expressing interest rates as additive but not necessarily
linear functions of these factors. The first subsection motivates the use of semi-
parametric factor models. Then we briefly review the average derivative estimator
and the general additive model. Implementation issues are deferred to the last
part of the section. It should be clarified at the outset that what is often referred



to as “factor models” in the finance literature is sometimes referred to as “index
models” in the semi-parametric and other literatures, and we will on occasions
use the two terms interchangeably.

2.1. Interest Rate Models: Parametric, Non-parametric and Semi-parame

It is quite common to use parametric factor models for interest rates and their
term structure. Vasicek (1977), Courtadon (1982), and Cax, Ingersoll and Ross
(1985) (henceforth CIR) presented various single factor continuous time models
for the short term rate r, (as well as the entire term structure) with the dynamics
presented by a stochastic differential equation:

dry = p(z; B)dt + o(z,; B)dW, (2.1)

where W, is a standard Brownian Motion, z, is a state variable process and the
functions p(z; ) and 0(2; B) are respectively the drift and diffusion functions
parameterized by the vector 5. Most interest rate models assume a linear mean-
reverting drift such as p(z; 8) = 3, (B2 = 1¢) where 2z, = r,. In this case the spot
rate tends to its unconditional mean 5 at arate §,. The volatility functions differ
more widely, though often a constant elasticity of variance (CEV) specification
is adopted, i.e. 0%(z;8) = 02 where Bs = 0 for Vasicek’s model, 85 = 2 in
the model proposed by Courtadon and finally 83 = 1 for CIR. Chan, Karolyi,
Longstaff and Sanders (1992), henceforth CKLS, provide an extensive empirical
study of such models for the short rate. In more recent work several multifactor
extensions appeared in the literature aiming at modeling the entire term structure
based on a selected set of maturities.2 Following CKLS, and others, let us consider
an Euler discretization of (2.1), namely:

Ary=ri—ry g = p(z; 8) + o(z; B)e: (2.2)

where ¢, is i.i.d. N(0,1). Hence the conditional mean and variance for the interest
rate process are respectively:

E(Ari|z) = p(z; 8) (2.3)

*Examples include Chen and Scott 1992), Chen &nd Scott (1993), Duffie and
Kan (1993), Frachot and Lesne (1993), Heath, Jarrow and Morton (1992), Pearson
and Sun (1994), Pennachi (1991), Stambaugh (1988), among others.




V(Arz) = o(z; B)- (2.4)

As noted earlier standard interest rate models differ with regard to the choice
of the functions u and o as well as the choice of factors z,. We will try to be
agnostic about this by using a semi-parametric approach to modeling the factors
2,, and adopting functions of flexible form for both the conditional mean and the
conditional variance.

To appreciate the use of semi-parametric models, we first need to discuss the
strength and limitations of parametric and non-parametric models. Suppose we
are interested in the relationship between y (the response variable, like Ar;) and
z (a set of k dimensional predictor variables, like the factors 2;). In parametric
analysis, we would consider a model such as®

% = G(Z,B) + we. (2.5)

We would then make distributional assumptions (such as normality) about u,, pick
a convenient form for the link function G(-), like the functions 4 and o mentioned
above, and then proceed with least squares, method of moments, or maximum
likelihood estimation. For obvious reasons, the linear functional G(-) is by far the
most popular since the model y = £ + u is easy to estimate. Moreover, the one
to one relationship between y and z provides a convenient interpretation of 3 as
“change in y per unit change in z”. While this classical linear regression model
is adequate for a variety of applications, there are many cases where y and z are
related in some unknown and non-linear way and the normality of u, breaks down.
A case in point is financial time series which often exhibit non-linearity in both
their conditional mean and variance.

At the other end of the spectrum are non-parametric models which assume
only that the relationship between y and z obeys some smoothness and regularity
conditions. As such, these models impose no assumptions about the form of
the link function G(-) or on the distributional properties of u,. It is an extreme
approach to letting the data speak for the relationship between y and z. An
especially attractive feature of non-parametric regressions is that when z consists
of & small number of variables, useful insights can be often gained just by graphing

3We use a generic function G(-) here which in principle may stand for the con-
ditional mean or conditional variance. The remainder of this section will focus
mostly on the conditional mean, however. The necessary changes for the condi-
tional variance are straightforward.



the function that relates y to z. Examples of non-parametric models include kernel
regressions, general additive models, and polynomial or Fourier series expansions.
Hardle (1990) provides a discussion of these models.

While non-parametric models are useful in many contexts, as tools of eco-
nomic analyses, they have some drawbacks. The first is that statistical flexibility
is achieved at the cost of not being able to incorporate economic theory in the
empirical analysis. For example, it would be difficult to impose or test for con-
stant returns to scale if we estimate a production function by kernel regressions.
Likewise, it would be difficult to impose no-arbitrage conditions on the interest
rate model. Second, when the dimension of z is large, graphical analysis provides
little intuition. Third, and perhaps more important from a practical point of view,
is that the number of observations needed for the data to speak for the underly-
ing relationship between y and z increases with the dimension of z. Given the
sample size and the dimension of z typically encountered in economic analyses,
there is rarely enough data to obtain satisfactory statistical precision in the non-
parametric estimates. This problem is known as the ”curse of dimensionality” in
the statistics literature.

In between the parametric and non-parametric paradigms is a less extreme
modeling strategy, semi-parametric models, whereby structural assumptions can
be imposed on some but not all the parameters of interest. Index models belong
to the semi-parametric paradigm. The simplest index model consists of a single
index, z'0, and is of the form

y=m(z)+u=G@'f) +u,
E(ulz) = Ely - G(«/B)la] = 0. (2.6)

Several features of this model are noteworthy. First, no assumption is made on
the distribution of u. As long as E(ulz) = 0, E(y|z) is completely summarized
by the function é(), which can take on any smooth form provided it can be
estimated non-parametrically. Second, while the contribution of z to the index
is linear, as measured by 3, the model permits a non-linear relationship between
y and z through the non-linear link function G(«'B). Third, since the index z'f
is one dimensional, graphical tools can still be used to analyze the relationship
between G(-) and #’8. Additional insight can also be gained with a plot of G(-)
and 7’8, which is the marginal response function.

To interpret 8 in é(z’ﬂ) when z is k dimensional, consider changing z, to
I + A.’tl. Then AE(ny) = BE(ylz)/aa:lA:nl = dG/d(z’ﬂ)ﬂ;Az; = G'ﬂ]A.‘L‘].

5



The coefficient 3 is proportional to the pointwise derivatives of y, with the pro-
portionality factor being G, which varies with the value of z. The effects of
changing other components of z are similarly summarized by the corresponding
3 coefficient. Note, however, that the G(-) estimated on 'S will not be invariant
to common scale changes on the 3's. Thus, it is the relative, not the absolute,
magnitude of # that matters. This suggests normalizing § by the mean effect
such that .

§=E(m') = E(G')8 (2.7)

and redefine G to G, imposing the normalization that E(G') = 1. The normal-
ization implies that the average impact of a change in the index on the mean of
y is 1. The result is the model

E(ylz) = m(z) = G(z'6). (2.8)

The normalized model allows us to measure & in units of “y-changes” / “z-changes”,
units comparable to coefficients in a classical linear model. Furthermore, y and
2’6 are, on average, related in a one-to-one manner. Viewed in this light, the
interpretation of 6 as the “average derivative” of y on z is immediate.

2.2. The Single Index Model and the Average Derivative Estimator

Usefulness of the single index model rests on the ability to estimate the average
derivatives non-parametrically and without suffering from the curse of dimen-
sionality. Ichimura (1993) developed a semi-parametric least squares estimator
of 6 that is VN consistent and asymptotically normal under regularity condi-
tions, but the estimator requires optimizing & non-linear objective function that
is not necessarily concave or unimodal. An alternative is to estimate § by what
is appropriately known as the " average derivative estimator”. The estimator is
also \/I_VP consistent and asymptotically normal under regularity conditions but
does not require solving iterative non-linear optimization problems. The estima-
tor relies on kernel density and regression estimators, and takes as starting point
E(y|z) = m(z) = G(£6). A natural estimator of the average derivatives is the
“direct” average derivative estimator:

b=N"? 2,":,1 m’(xi)ih (2'9)



where 1; = 1[f(z;) > §] is an indicator function that drops the observation when
the estimated density, f(z), is smaller than some value b, a procedure that is
sometimes referred to as “trimming”.

Alternative average derivative estimators have been proposed by Hardle and
Stoker (1989) and Powell, Stock and Stocker (1989) with the same asymptotic
properties as the direct average derivative estimator. The estimator we use is the
“indirect slope estimator” defined as

d=S;'s), (2.10)

where S, = N7 T U(z)1i(z - 2), U(z) = %‘;—')1 is the score. The estimator is
motivated by the fact that E(m') = E(ly) upon integration by parts, and that
(07 [0z) = Iy = E(I) = cov(l, x). Thus,

d=E(m) = [E (‘Z—Z)J B E(m). (2.11)

The indirect slope estimator is then constructed from the sample moments of the
appropriate quantities of (2.10). The advantage of the indirect slope estimator
over the direct average derivative estimator is that the smoothing required on both
the numerator and denominator of d reduces the smoothing bias that arise in finite
samples. See Stoker (1993). Some intuition on this estimator can be gained by
noting that it is an instrumental variable estimator using the scores as instruments.
The scores reduce to the matrix z if the true relationship between y and z is indeed
linear, in which case, d reduces to the least squares estimator. Further details on
this estimator are provided in the Appendix. Given the estimates of the average
derivatives, an index z = /d can be formed.

2.3. The Generalized Additive Model

It is simple to extend the single index model to multiple indices. To anticipate
what is to follow in the empirical section, we want to explain interest rates move-
ments with factors that are based on industrial output, money growth, and infla-
tion. Use of these variables can be motivated by many macroeconomic paradigms
(e.g. the IS-LM model). More specifically, we envision a factor model consisting
of two basic indices; one comprising of nominal variables and one comprising of
just real economic variables. Partitioning the matrix z into z; and T,, we have

7



two indexes z; = z}6; and z = z)6,. Given that we have in mind such an explicit
economic structure, we do not therefore expect a single function G(z1,22) to pro-
vide a satisfactory link to both indices. This leads us to consider a more general
model such as o
Oy) = e+ ¢i(z) +e (2.12)
=1
where z; is our i** index. The above model is the Alternating Conditional Expec-
tations (ACE) model of Brieman and Friedman (1985) and aims to maximize the
correlation between 6(y) and ¢(z). For example, in an analysis of excess returns
by Foresi and Perachi (1995) 6 (y) is the log-odds ratio. A shortcoming of the ACE
is that it can produce anormalous results if € and ¢;(z:) fail the independence and
normality assumptions, an issue of concern given the application in question.
The model we will use is the Generalized Additive Model (GAM) introduced
by Hastie and Tibshirani (1990). It is a restrictive ACE model with 8(y) = ¥
since it is of the form

y=a+ %d&(a) +e€ (2.13)
i=1

The general additive model with indices formed from the average derivatives is
in many ways similar to the Projection Pursuit Regression (PPR) of Friedman
and Stuetzle (1981). In PPR models, the predictor variables z;,i = 1. ..k are
“projected” onto the direction vectors a;,j = 1...mo to get lengths a'z, and
optimization is carried out in “pursuit” of good direction vectors. More formally,
the objective of PPR is to minimize Ely — T Bmdi(aiz)]? over all possible
values of G;, ¢;, and a;. The direction vectors have interpretations analogous to
the average derivatives, but a PPR chooses 3 simultaneously with ¢, whereas the
multiple index model does this in two steps. Computationally, the index model is
simpler to estimate since it does not require any non-linear optimization. From our
point of view, the index approach allows us to focus on combinations of variables
that provide meaningful interpretation to interest rate d ics. For example,
we would discard an index which is a linear combination of housing starts and the
exchange rate since the index has little economic meaning. One can therefore say
that our index model is a PPR with restrictions based upon economic reasoning.

If mo = 1, one can apply non-parametric regression techniques such as kernels
and splines to estimate ¢(z;) since it is the only component function in the GAM.
It is worth noting here that even though 2 is a generated regressor it achieves



pointwise consistency at rate N%/% as though & is known.*

The estimation of a GAM is slightly more involved in higher dimensions. A
method commonly used to estimate ¢; when Mo > 1 is the “backfitting algo-
rithm” discussed in Hastie and Tibshiranj (1990), where ¢ is obtained by a spline
smoother. This is implemented in software such as Splus.® A drawback of this
approach, from our point of view, is that it is difficult to give economic interpre-
tation to resulting spline regressions. We therefore estimate é by a polynomial
regressions. Polynomial regressions provide non-parametric approximations to the
true regression functions, as controlled by the order of the polynomials, but can
be estimated by least squares method.

A polynomial regression of order p for each of the two index takes the form:

p . p 3
Yi =g + ZQ;,’Z; + Za,,-z; + €. (214)

f=1 £=1

Evidently, ¢,(z)) is approximated by ¥%_, a;;2}. This has the distinct advantage
over a spline approximation to ¢;(z) in that the marginal effect of z; on y can be
calculated immediately. More importantly, if z; = 26, and z, = zh6; are index
veriables based on a set of variables z, 8y/8z; can be calculated as Thaa(aa i) +
¥ 1(@:26};), where 6,; = 8z,/8z; are the weights of Z; in index z; as determined
by the estimates of the average derivatives. A similar interpretation holds for 6,;.
It is worth emphasizing that while z is linear Zj, Y is non-linear in z; and z,,
which in turn implies that y is also non-linear in z;.

2.4. Estimation Issues

Estimation of General Additive index models for interest rates and spreads raises
several issues not previously analyzed in the literature. In our applications, y is
changes in interest rates and z are economic time series. While the theory on the
average derivative estimator just described was developed under the assumptions
that = and y are stationary and that u is i.i.d., some of the variables involved
in the analysis of interest rates are non-stationary, while others exhibit a strong
degree of serial correlation.
*See Theorem 10.4.2 of Hardle (1990).

5The alternative "easy” method is to use LOESS (locally weighted regression
smoothing) of Cleveland (1979) which seems to give results similar to splines.




The problem of non-stationarity is overcome by differencing the non-stationary
variables to achieve stationarity. If the noise component of the differenced variable
is i.i.d., then consistency of the average derivative estimator follows from the
proof of Hardle and Stocker (1989). In cases when the i.i.d. assumption fails, we
appeal to results for consistency of density and kernel estimators for a mixing
observations (see Robinson (1983) and Singh and Ullah (1985)). As discussed
in Chen and Tsay (1993), estimation of general additive autoregressive models is
still asymptotically valid when time se ies data are used, although some additional
care must be taken to avoid spurious fitting of additive autoregressive models in
finite samples.

The average derivative estimator can be shown to be valid even when the data
are serially correlated as consistent estimation of the densities is not affected by
the presence of serial correlation. However, in such a case, we need an estimate
of the covariance matrix of the average derivative regression residuals, denoted
7., that takes into account the fact that u is not i.i.d.. Thus, in our analysis,
S;.r, defined in the Appendix, is the heteroskedastic-autocorrelation consistent
variance covariance matrix using the Parzen window with automatic selection of
the bandwidth as discussed in Andrews (1991). Since the r,; are prewhitened and
recolored by a first order VAR, it amounts to using the procedure proposed by
Andrews and Monahan (1992).

We also need to take into consideration the possibility that E(u|z) may not be
zero since the variables underlying the factors (or index) are likely to be contem-
poraneously correlated with shocks to interest rates. To circumvent this problem,
we use lags of z in the estimation of the average derivatives. This can be seen as
an instrumental variables implementation of the average derivative estimator.

The final issue concerns the choice of bandwidth in estimating the average
derivatives. We standardize all the variables to have & mean of zero and a unit
variance. The same bandwidth h can be used to evaluate the multidimensional
kernel function because it is invariant to the scale of the variables:

6The problem arises because a bad fit on (£-1) hes a direct impact on the
dependent variable in the next step of the backfitting algorithm. For this reason,
we make no attempt to fit additive autoregressive models in this analysis.
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K(‘Uq [N uk) = f[lc(‘lh) (215)

=1

where k() = #exp(—u? /2).

The bandwidth is obtained as the plug-in value based on equation (4.14) of Powell
and Stocker (1992). For the sample size and number of regressors used in the
analysis, we settle for a bandwidth of 0.7.

3. Empirical Results

We construct multiple index models for the first difference of three interest rates:
a one-month T-bill, a five-year government bond and a ten-year one. The data
are monthly yields from 1964 to 1990 and are taken from McCulloch (1990), for
the 1964 to 1983 part of the sample, and Kwon (1992), who extended the data
set from 1983 to 1990. Hence the sample contains 384 monthly observations for
the three different interest rate series.

Since interest rates provide the link between the real and the financial side of
the economy we expect interest rates to be affected by real and monetary factors.
This being the case, our goal is to model the first differences of interest rates as
a function of two indices: one comprising of real economic variables, and another
comprising of nominal ones. The estimation of average derivatives involves seven
veriables (all lagged one period): money growth, the first difference of the (log)
exchange rate between the U.S. and the U.K., the rate of inflation, changes in
industrial production, changes in housing starts, changes in retail sales and finally
changes in finished goods inventories. All the series are seasonally adjusted and
were retrieved from Citibase. Hence, they are standard series used in US empirical
macroeconomic studies. The nominal index factor is constructed using the first
three series, while the real factor is based on a combination of the last four.

We present in Table 1 the estimates for the three interest rates. We report the
ADE parameter estimates with two types of ¢ statistics. These are based on two
sets of standard errors estimates, the first are valid under i.i.d. while the second
involves a heteroskedasticity and autocorrelation consistent estimation procedure
as described in section 2.4. As a matter of comparison we also report the OLS

11



estimates and their ¢ statistics for the index parameter estimates. The results
in Table 1 show that the effect of money growth is positive, as expected, but is
not well determined for two of the three maturities. Its impact is largest, and
statistically most significant, for the five-year rate. The foreign exchange variable
has a significant effect both on the short-term and long-term maturities. It is
interesting to note that its largest effect is also on the five-year bond while its
impact is much smaller for the one-month and ten-year interest rate changes.
The last component of the nominal factor appearing in the model is the rate of
inflation. Its impact is highly significant for all maturities and roughly flat across
the one-month and five-year bonds. Interestingly, the estimate is quantitatively
and statistically less important in the equation for the five-year rate, in contrast
to the estimates for money growth and the exchange rate.

The next four parameter estimates form the real index factor. The first three
variables underlying the real index series all have a positive impact. The impact
of retail sales changes on the short rate appears not to be significant, however.
Housing starts and changes in inventories on the other hand seem to have a sig-
nificant short term impact which becomes less significant at the longer maturities.
The impact of inventory changes is negative on interest rate changes, as expected.
However, the effect of inventories on the short-term rate is insignificant. These
estimates reveal the interesting fact that real economic variables found to have
explanatory power for the short term rate do not necessarily have explanatory
power for the longer term maturities and vice versa. Indeed, the real and nominal
variables used here are more capable of explaining the longer term maturities.
While the search is not exhaustive, experimentation with other explanatory vari-
ables lead to the same general conclusion that the average derivatives are better
determined in the equations for the longer term maturities than the short term
rate.

12



Table 1: Average Derivative and OLS estimates of one-mont|

ten-year interest rate model factor indexes

h, five-year and

One-month Five-year Ten-year
ADE OLS ADE OLS ADE OLS
Money .00669 .01285 .00703 00978 00562 .00598
(1.093) [1.079] (1.408) | (1.521) [2818) (1.780) | (1.224) [1.246] (1.340)
Exch. 00175 .00311 .00254 .00223 .00161 .00122
(1470) [1.315] (2039) | (2.673) [2.466] (2.432) | (1.987) [1.963] (1.640)
Infl. 02857 .00230 .01799 01207 01813 01220
(3129) [3602] (.228) | (2.987) [3.044] (1.992) | (3.820) [3.700] (2.480)
Ind. Pr. .00854 01381 .00389 00451 .00359 .00389
(2.660) [2497) (3358) | (1.706) [1.549] (1.823) | (1.899) [1.693] (1.936)
Hous. st. .00068 .00081 .00035 .00020 .00028 .00006
(2:266) [2060] (1.984) | (1.750) [1.521)  (.807) | (1.555) [1.400]  (.285)
Sales .00158 .00199 .00467 .00300 .00350 .00256
(827) [814) (817) | (3.288) [3.554] (2.050) | (2.941) [2.041] (2.154)
Invent. -.00815 -.03183 -.02424 -.01727 -.02885 -.01597
(-486) -518] (-1.502) | (-1.990) [-2.005] (-1.354) | (2.779) [2.896] (-1.543)

Notes: t statistics are in parenthesis. The st
tives corrected for heteroskedastici

procedure.

andard errors for the average deriva-
ty using the Andrews and Monahan (1992)

So far we have not commented on the differences between the ADE and OLS
parameter estimates. The ADE estimates should be identical to the OLS estimates
if the true model is linear and the assumption of normality holds. For the nominal
variables, the OLS estimates are larger for money growth and generally smaller
for the exchange rate compared to the ADE estimates. The ADE estimates for
inflation are much larger than the OLS estimates. More importantly, they are
statistically better determined than the OLS estimates. For the real variables, we
also observe some noticeable differences. The ADE estimates are generally better
determined. In the case of inventory changes, while the OLS estimates fail to find
any statistically significant effects, the ADE estimates are significant for the two
longer term rates.

Using the average derivatives as weights, we then construct a real index as
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a function of changes in industrial production, retail sales, housing starts, and
inventories. Likewise we construct a nominal index using the ADE weights on
the changes in money supply, the exchange rate and the inflation rate. A total
of six indexes are thus constructed, as there are three different maturities of
interest rates being modelled. In Figure 1 we plot the six index series. We note
a remarkable similarity in the time series patterns of the three nominal and the
three real series. A closer look reveals though that the real index for the one-
month rate has some notable differences, particularly around the oil price shock
of 1974 and the mid-eighties.

[Insert Figure 1 somewhere here]

Let use return now to equation (1) in section 2.1. The typical continuous time
interest factor diffusion models require the specification of a drift and volatility
function. The Euler discretizations in equations (3) and (4) made this more
explicit and workable in the current setting. So far we have identified a pair
of factors without requiring the specification of the functional forms in (3) and
(4). The next step of the analysis is to use polynomial regressions of order p
estimated by OLS as in equation (14) to approximate the functionals for the
conditional mean and conditional variance, which are of unknown form. The
empirical results appear in Table 2. There are two parts to Table 2. The top part
reports the polynomials for the conditional means. The residuals of the latter
are squared and used in the next set of polynomial regressions for the conditional
variance. Those estimates appear in the bottom part of Table 2. The conditional
mean and variance regressions for each of the three interest rates reported in Table
2 involve the same real and nominal factors.

According to the results appearing in Table 2 we observe that we need a
polynomial of degree 2, respectively 3, in the real and nominal index for the
conditional mean regressions for all three interest rates. Note that the coefficient
for the second order term of the nominal index is not significant, but the third
order term is statistically well determined especially the longer the maturity of
the bond. In contrast, thequa.dratictmnfortherealmdmisbetmdetermined
the shorter the maturity. Evidently, the two indexes affect the various interest
rates in non-linear, albeit different ways.
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Table 2: Polynomial regressions of nominal and real indexes - Conditional
Mean and Conditional Variance Models for one-month, five-year
and ten-year interest rates

Conditional Mean
One-month Five-year Ten-year
real nominal real nominal real nominal
Degree 0 .00727 - .0109 - .01202 -
(.184) - (.458) - (.623) -
1 3.4803 1.3242 1.4959 .9960 1.1539. .4940
(4.877) (1.863) (3.479) (2.3204) (3.3149) (1.421)
2 -1.9366 .0176 -.8490 .0648 -.7817 -.0995
(-2.727) (.0248) -(1.982) (.1512) (-2.253) (-.286)
3 - -1.258 - -1.2775 - -1.1216
- (-1.774) - (-2.9833) - (-3.231)
Conditional Variance
One-month Five-year Ten-year
real nominal real nominal real nominal
Degree 0 .4928 - .1799 - .1180 -
(6.971) - (8.704) - (9.766) -
1 -4.7343 -2.8155 -.5636 -.2439 -.2085 -.2199
(-3.710) (-2.206) | (-1.508) (-.653) (-1.367) (-1.008)
2 2.5869 - - .8708 - 5114
(2.032) - - (2.336) - (2.348)

Notes: ¢ statistics in parenthesis.
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[Insert Figure 2 somewhere here]

For the conditional variance models the specifications of the degrees of the
polynomials are more diverse across the different rates. The short term rate ev-
idently requires a functional form that is different from the longer term rates.
The real index has weak explanatory power for the conditional variance of the
longer term rates but has a well-determined and non-linear effect on the condi-
tional variance of the short term rate. For the two long term rates, movements in
the conditional variance are in large part picked up by the quadratic term of the
nominal index.

To visualize better the results we plotted the implied response functions for
the conditional mean in Figure 2. We find rather interesting nonlinear shapes
both for the nominal indexes (appearing on the left) and the real ones. The
latter has an increasing response function which levels off. For the nominal index
the response functions are decreasing at very low levels of the index, are upward
sloping for most part, but again slope downward for extreme large values of the
nominal index. Of course the curvature at the extreme ends is not supported by
the bulk of the data, nevertheless the tilted S-shape covers a large part of the
support of the data indicated by the ticks on the vertical axes in Figure 2.

[Insert Figure 3 somewhere here]

The plots of the response functions of the conditional variance appears in Fig-
ure 3, which has the same structure as Figure 2. Contrary to the mean regressions
we observe a very different shape for the short rate in comparison to the long rates.
Clearly the volatility of short rates responds negatively to the real and nominal
indexes. But for the long rates we observe that high values of the nominal index
have an increasing effect on the volatility. These results are economically signifi-
cant and reflect the different responses of the interest rates through the interest
rate term structure to the economic factors. At the beginning of section 2 it was
noted that most parametric specifications, such as those considered by CKLS, are
assumed to be linear mean-reverting in the drift and linear in the variance. The
results in Figure 2 show quite clearly that for empirically constructed factors we
do not find a simple set of functions corresponding to what typical parametric
specifications assume.
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Finally, we need to make observations about the ACF (autocorrelation func-
tions) of the residuals of the mean polynomial regressions. These appear in Fig-
ure 4. We plotted side-by-side the ACF of the residuals of the three interest rate
models as well as the ACF of the squared residuals. The latter is the dependent
variables in the conditional variance models.

[Insert Figure 4 somewhere here]

There is something quite remarkable about the ACF’s of the residuals. In-
deed, they are uncorrelated, that is all temporal linear dependence was removed
despite the fact that no lagged interest rate was put into the polynomial regres-
sions. Hence the residuals were whitened by a combination of the nonlinearity
and the factors. We conclude with Figure 5, which displays the time series plot
of the squared residuals of the conditional mean regression. It clearly shows the
volatility clustering effect so often encountered in financial series. Again, we note
a remarkable difference between the short rate and the other rates. Moreover,
we clearly observe a significant change in volatility since October 1979 when the
Federal Reserve changed its operating rules. In fact we learn from Figure 5 that
the volatility in the one-month T-bill seems to have returned to its pre-October
1979 level. In contrast, both the five-year and ten-year rate volatilities appear
to have adopted very different volatility patterns. Such persistent changes are a
contributing factor to the complexity and nonlinearity found in modelling interest
rate dynamics.

4. Conclusions

In this paper we proposed to use the average derivative estimator framework ap-
plicable to factor index interest rate models. The appeal of this framework is that
it does not require much a priori knowledge of the factors and their responses. The
drawback is that in this framework it is difficult to impose arbitrage type condi-
tions across the term structure or other a priori economic restrictions. The ADE
estimates, the constructed indexes and the emerging empirical response functions
are a lead to more structural factor models. The response functions we fitted
for the conditional mean of the different maturities seem to suggest some clear
similarities, though for volatility there were important differences in the response
functions across maturities. However, the response functions we fitted were not
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in line with many of the drift and volatility functions that have been suggested in
parametric factor models, such as linear drift and volatility functions mentioned
in the beginning of section 2.1. In that regard the approach in this paper serves
its purpose, it shows that many parametric models suggested so far must be sig-
nificantly misspecified unless their factors differ from the indexes we recovered
empirically. The latter is plausible, yet quite unlikely. In the introduction of
the paper it was noted that many papers have been written on the subject of
interest rate movements but with rather limited success so far. Our paper pro-
vides some guidance on what parametric models should try to mimic and aim for
improvement through arbitrage and other structural restrictions.
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Appendix

In this Appendix we provide some details of the Average Derivative estimators
discussed in section 2.3. First we start with the “direct” Average Derivative
estimator. As noted in section 2.3 the estimator relies on kernel density and
regression estimators, and takes as starting point E(y|z) = m(z) = G(«'6). Using
a kernel regression estimator to estimate m(z) with bandwidth h, we can write
the non-parametric regression with as k regressor as

§(z) _ NR* T2 K((zi — ;) /h)y;
fl@)  1NR*T3, K((z - x;)/h) °

m(z) =

It follows that

m'(@) = £ _ )i,

(=)

where i(.r) = [f-’(%l is the score. The “direct” average derivative estimator is given
by A
§=N"! E:{il ﬁl’(x.')l,',

where 1; = 1[f(z;) > b] is a indicator function that drops the observation when
the estimated density is smaller than some value b, a procedure that is sometimes
referred to as trimming.

The VN consistency of the direct average derivative estimator is an interesting
result in its own right given that the pointwise derivatives, m’, have been shown to
achieve consistency at a rate slower than V'N. The accelerated rate of convergence
of the average derivative estimator comes from the fact that the estimator is
essentially constructed from a sum of m’ over N » and hence a double sum (over
N) of terms involving f'(z). A consequence of the double sum is that the window
for smoothing f'(z;) and J'(z;) (i # j) overlaps. An analysis of the sample
variation of & suggests this overlapping requires asymptotic “undersmoothing”
which in turn speeds up the rate of convergence to rate vN. Formal conditions
for VN asymptotic normality of & can be found in Stoker (1991).

The variance of (d — d) further simplifies to that of the classical linear model
" under the additional assumption about normality of z and u. More generally, the
variance-covariance matrix of (d — d) is computed from

%= -§) - (zi—2)d
a 2 . - - N - 1 [ Z24~% 21—z 3
rui = @)1 + N-'h *j;[h K (352 - K (B2 ) i(z))] yon)

Q=53'8,.,.5:.

19



BIBLIOGRAPHY

(1] Ait-Sahalia, Y. (1993), “Nonparametric Pricing of Interest Rate Derivative
Securities”, Discussion Paper, Graduate School of Business, University of
Chicago.

[2] Andrews, D. W. K. (1991), “Heteroskedastic and Autocorrelation Consistent
Matrix Estimation”, Econometrica 59, 817-854.

[3] Andrews, D. W. K. and Monahan, J. (1992), “An Improved Heteroskedas-

ticity and Autocorrelation Consistent Covariance Matrix Estimator”, Econo-
metrica 60, 953-966.

[4] Bansal, R. and Viswanathan, S. (1993), “No-arbitrage and and arbitrage
pricing: A new approach”, Journal of Finance 48, 1231-1262.

(5] Becker, R., Chambers., J. and Wilks, A. (1988), The New S Language,
Wadsworth, Belmont, C. A.

(6] Bekdache, B. and Baum, C. (1994), “Comparing Alternative Models of the
Term Structure of Interest”, Discussion Paper 271, Department of Economics,
Boston College.

[7] Brieman, L. and Friedman, J. (1985), “Estimating Optimal Transformations
for Multiple Regression and Correlation”, Journal of American Statistical
Association 80, 580-619.

{8] Chean, K. C,, Karolyi, G. A., Longsteff, F. A. and Sanders, A. B. (1992),
“An Empirical Comparison of Alternative Models of the Short-Term Interest
Rate”, Journal of Finance XLVII, 1209-1227.

[9] Chen, R. and Teay, T. (1993), “Nonlinear Additive ARX Models”, Journal
of American Statistical Association 88, 955-967.

{10} Chen, R. R. and Scott, L. (1992), “Pricing Interest Rate Opﬁons in a Two-
Factor Cox-Ingersoll-Ross Model of the Term Structure”, Review of Financial
Studies 5, 613-636.

(11} Chen, R. R. and Scott, L. (1993), “Multi-Factor Cox-Ingersoll-Ross Models
of the Term Structure: Estimates and Tests from a State-Spate Model using
o Kalman Filter”, Discussion Paper, Rutgers University and University of
Georgia.

[12] Cleveland, W. (1979), “Robust Locally-Weighted Regression and Smoothing
Scatterplots”, Journal of American Statistical Association 74, 829-36.

20



(13] Courtadon, G. (1982), “The Pricing of Options on Default-Free Bonds” , Jour-
nal of Financial and Quantitative Analysis XVII, 75-100.

[14] Cox, J., Ingersoll, J. and Ross, 8. (1985), “A Theory of the Term Structure
of Interest Rates”, Econometrica 53, 385—408.

[15] Duffie, D. and Ken, R. (1993), “A Yield-Factor Model of Interest Rates”,
Discussion Paper, Graduate School of Business Stanford University.

[16] Foresi, S. and F. Perachi (1995), “The Conditional Distribution of Excess
Returns: an Empirical Analysis”, Journal of American Statistical Association
90, 451-466.

[17) Frachot, A. and Lesne, J. (1993), “Econometrics of Linear Factor Models of
Interest Rates”, Banque de France.

(18] Friedman, J. and Stuetzle, W. (1981), “Projection Pursuit Regression”, Jour-
nal of the American Statistical Association 76, 817-823.

[19] Gouriéroux, C. and Scaillet, O. (1994), “Estimation of the Term Structure
from Bond Data”, Discussion Paper 9415, CREST, Paris.

[20] Hardle, W. (1990), Applied Non-Parametric Regression, Vol. Econometric
Society Monograph 19, Cambridge University Press, Cambridge.

[21] Hardle, W. and Stoker, T. ( 1989), “Investigating Smooth Multiple Regression
by the Method of Average Derivatives”, Journal of the American Statistical
Association 84, 986-995.

[22] Hastie, T. J. and Tibshireni, R. J. (1990), Generalized Additive Models,
Chapman and Hall, London.

(23] Heath, D., Jarrow, R. and Morton, A. (1992), “Bond Pricing and the Term
Structure of Interest Rates”, Econometrica 60, 77-106.

(24] Hubbard, R. and Kashyap, A. (1992), “Internal Net Worth and the Invest-
ment Process: An Application to U.S. Agriculture”, Journal of Political Econ-
omy 100, 506-534.

[25] Ichimura, H. (1993), “Semiparametric Least Squares (SLS) and Weighted
SLS Estimation of Single-Index Models”, Journal of Econometrics 88, 71-
120.

(26] Kwon, H.-C. (1992), “The Time Variant Term Premium of Interest Rates”,
Ohio State University, Economics Department, Ph.D. dissertation.

21



[27] McCulloch, J. H. (1990), “U.S. Term Structure Data”, 1946-87, Handbook
of Monetary Economics 1, 672-715.

[28] Pearson, N. and Sun, T.-S. (1994), “Exploiting the Conditional Density in
Estimating the Term Structure: An Application to the Cox, Ingersoll and
Ross Model”, Journal of Finance 49, 1279-1304.

[29] Pennachi, G. (1991), “Identifying the Dynamics of Real Interest Rates and
Inflation: Evidence Using Survey Data”, Review of Financial Studies 4, 53-
86.

(30] Powell, J. and Stoker, T. (1992), “Optimal Bandwidth Choice For Density
Weighted Averages”, mimeo, M.LT.

[31] Powell, J., Stock, J. H. and Stoker, T. (1989), “Semiparametric Estimation
of Index Coefficients”, Economeetrica 57, 1403-1430.

[32] Robinson, P. (1983), “Nonparametric Estimators for Time Series”, Journal
of Time Series Analysis 4, 185-207.

[33] Singh, R. and Ullah, A. (1985), “Nonparametric Time Series Estimation
of Joint DGP, Conditional DGP and Vector Autoregression”, Econometric
Theory 1, 27-51.

[34] Shiller, R.J. (1990), “The Term Structure of Interest Rates”, in B.M. Fried-
man and F.H. Heln (ed.) “Handbook of Monetary Economics”, (North Hol-
land, Amsterdam), chapter 13.

[35] Stambaugh, R. (1988), “The Information in Forward Rates: Implications for
Models of the Term Structure”, Journal of Financial Economics 21, 41-70.

[36] Stoker, T. (1991), Lectures on Semiparametric Econometrics, Core Lecture
Series, Core Foundation, Louvain-La-Neuve.

[37) Stoker, T. (1993), “Smoothing Bias in the Measurement of Marginal Effects”,
Journal of the American Statistical Association 88, 855-863.

[38] Vasicek, O. (1977), “An Equilibrium Characterization of the Term Struc-
ture”, Journal of Financial Economics 5, 177-188.

22



i
H
i
i

o2

o2 [T}

a4

2 L1} o2

o4

43 42 A1 08 at

-
€ T 7% T LY ] Jon, 88 Jon, 87 o, 71 Jon. 78 0. 79 8 Jon 8
Tiws 8 morws. Tome m monre
-
°
-
Jan, & don. TV Jan, 7% a8 Jon. 8 Jon, 8 Jan, 67 Jn 71 Jon. 75 Jan. TR . 83 Jon, 08
Tine s morn Time i1 morwrs.
~
°
L
o & -7 Jan, 78 .70 .83 o . o, & Jan 7% Jan. 79 . R . n
Tone in e Time » morens

Figure 1: Nominal and Real Index Series




potyidresit. 3
10

poiyidrentt, 3

pomicreni®a. B

o0

08

©3 02 01 00 0O

05 04

<3 02 a1 00

04

Figure 2: Implied Response Functions in Conditional Mean

24

AL 2AL
L] 0
aromnelt
-
°
-
S
.
°
2
e
bl
)
-
@ anm
2 1 °
dromnat
-
o
-
]
L3
3
8
-
L
LA, oo . Aimix
<2 1 [ al oz 3 4 -t .
L L e




90 v0 ¥0 08 o vo o
 ‘vm——————d

O ¢t o1 0 o0
2 “yepbiod

S0 ¥0 €0 Yo 1o o0
& wevpucmiipd

]

L1 00 oe 00
{1 ‘omphiped

we 2o 00 m> wo
s ‘Oumepbtod

Figure 3: Implied Response Functions in Conditional Variance

25



ACF
02 00 Of 04 o8 08 10

"

ACF
00 02 04 08 OB

10

ACF

00 92 04 08 08

Series : resim

Series : resim2

2
:
H
%
s : T 3 |‘.|1|ill| w1l fod
T1 T |}.| g N 0 O I O
10 1* » » ] 1] 10 1% k] -
g L
Series : resSy Saries : resSy2
q
3
LH
‘ s | | [ i)
T Inll‘ lli : 3 111 DRI O AN N 1 N N O S O B
10 "w 0 E ] o L ] 0 " E 3
g
Series : resi0y Series : res10y2
2
H
3
4
: llll + | II‘
1 ) 1 P 0 A O O BTN IO 1 S A
1.1 L
© " o ) ° ] 0 " » s
Leg L

Figure 4: Autocorrelation Functions Condition Mean and Variance Regression

Residuals

26




9 ¢t 4 8 5 0w oK

3

il

quared residuaie:one month

Jdon, 67 Jon, T Jan, 75 Jan. 79 om0 Jon, 08
Time in morwns
squared residuaisfive years
Jon, 67 Jan, 71 Jan, 78 don. 79 Jan, B o, 08
Tome i o
squsred residuaie:ten years
Jon. 67 Jom, 71 o 78 Jon, 79 Jon, 83 Jan. 89
Time o oo

Figure 5: Squared Residuals of Mean Regression Models

27







Université de Montréal
Département de sciences économiques
Centre de documentation
C.P. 6128, succursale Centre-ville
Montréal (Québec)

H3C 3)7

Cahiers de recherche (Discussion papers)
1995 2 aujourd’hui (1995 to date)

Si vous désirez obtenir un exemplaire, vous n'avez qu'a faire parvenir votre demande et votre
paiement (5 $ I'unité) a I'adresse ci-haut mentionnée. | To obtain a copy (8 5 each), please
send your request and prepayment 1o the above-mentioned address.

9501 :
9502 :
9503 :
9504 :
9505 :
9506 :
9507 :

9509 :
9510 :
9511 :
9512 ;
9513 :
9514 :
9515 :

Boyer, Marcel et Jean-Jacques Laffont, "Environmental Risks and Bank Liability",
janvier 1995, 46 pages.

Margolis, David. N., "Firm Heterogeneity and Worker Self-Selection Bias Estimated
Returns to Seniority”, décembre 1994, 29 pages.

Abowd, John M., Francis Kramarz et David N. Margolis, "High-Wage Workers and
High-Wage Firms”, janvier 1995, 73 pages

Cardia, Emanuela et Steve Ambler, "Indexation Lags and Heterodox Stabilization
Programs”, janvier 1995, 29 pages.

Garcia, René et Huntley Schaller, "Are the Effects of Monetary Policy Asymmetric?”,
février 1995, 42 pages.

Parent, Daniel, "Survol des contributions théoriques et empiriques lides au capital
humain®, février 1995, 70 pages.

Parent, Daniel, *Wages and Mobility : The Impact of Employer-Provided Training”,
février 1995, 34 pages.

Parent, Daniel, "Industry-Specific Capital and the Wage Profile : Evidence from the
NLSY and the PSID", février 1995, 21 pages.

Parent, Daniel, "Marching, Human Capital, and the Covariance Structure of Earnings”,
février 1995, 54 pages.

Garcia, René, "Asymptotic Null Distribution of the Likelihood Ratio Test in Markov
Switching Models”, mars 1995, 50 pages. )
Garcia, René, Annamaria Lusardi et Serena Ng, "Excess Sensitivity and Asymmetries
in Consumption : An Empirical Investigation”, mars 1995, 26 pages.

Sprumont, Yves, "An Axiomatization of the Pazner-Schmeidler Rules in Large Fair
Division Problems”, mars 1995, 26 pages.

Ghysels, Eric, Lynda Khalaf et Cosmé Vodounou, "Simulation Based Inference in
Moving Average Models", mars 1995, 10 pages.

Ng, Serena, "Looking for Evidence of Speculative Stockholding in Commodity
Markets®, mars 1995, 25 pages.

Ng, Serena et Huntley Schaller, "The Risky Spread, Investment, and Monetary Policy
Transmission : Evidence on the Role of Asymmetric Information”, mars 1995,
26 pages.



9516 :
9517 :
9518 :
9519 :
9520 :

9521 :
9522 .

9523 :
9524 .
9525 :
9526 :

9527 :
9528 :

9529 :
9530 :
9531 :
9532 :
9533 :
9534 :
9535 :
9536 :
9537 :

9538 :

Ng, Serena, "Testing for Homogeneity in Demand Systems when the Regressors are
Non-Stationary", mars 1995, 26 pages.

Ghysels, Eric, Clive W.J. Granger et Pierre L. Siklos, "Is Seasonal Adjustment a Linear
or Nonlinear Data Filtering Process?”, mars 1995, 34 pages.

Ghysels, Eric, Alastair Hall et Hahn S. Lee, "On Periodic Structures and Testing for
Seasonal Unit Roots”, mars 1995, 45 pages.

Sprumont, Yves, "On the Game-Theoretic Structure of Public-Good Economies”, mars
1995, 21 pages.

Charles, Sandra, Frangois Vaillancourt et Nicolas Marceau, "The Impact of
Decentralization on Growth and Democracy : A Note", mars 1995, 13 pages.
Sprumont, Yves, "Balanced Egalitarian Redistribution of Income”, mars 1995, 17 pages.
Bronsard, Camille, Lise Salvas-Bronsard et Alain Trognon, "On the Residual Dynamics
Implied by the Rational Expectations Hypothesis”, mars 1995, 18 pages.

Campbell, Bryan et Eric Ghysels, "An Empirical Analysis of the Canadian Budget
Process”, mars 1995, 30 pages.

Ghysels, Eric, Alain Guay et ‘Alastair Hall, "Predictive Tests for Structural Change with
Unknown Breakpoint”, avril 1995, 29 pages.

Ghysels, Eric, "On Stable Factor Structures in the Pricing of Risk”, avril 1995,
37 pages.

Kollmann, Robert, "Mark Up Fluctuations in U.S. Manufacturing and Trade : Empirical
Evidence Based on A Model of Optimal Storage”, avril 1995, 18 pages.
Laberge-Nadeau, Claire, Georges Dionne, Urs Maag, Denise Desjardins, Charles
Vanasse et J.-M. Ekoé, "Medical Conditions and the Severity of Commercial Motor
Vehicle (CMV) Drivers’ Road Accidents”, mai 1995, 26 pages.

Dionne, Georges, Manuel Artis et Montserrat Guillén, "On the Repayment of Personal
Loans Under Asymmetrical Information : A Count Data Model Approach”, mai 1995,
32 pages.

Ruge-Murcia, Francisco J., "Government Expenditure and the Dynamics of High
Inflation”, juin 1995, 45 pages.

Pesaran, M. Hashem et Francisco J. Ruge-Murcia, "A Discrete-Time Version of Target
Zone Models with Jumps”, juin 1995, 50 pages.

Dionne, Georges et N. Fombaron, "Non-Convexities and Efficiency of Equilibria in
Insurance Markets with Asymmetric Information™, juin 1995, 22 pages.

Bronsard, C., P. Michel et L. Salvas-Bronsard, "Singular Demand Systems as an
Instrument of Scientific Discovery”, juillet 1995, 17 pages.

Dionne, G. et C. Fluet, "Incentives in Multi-Period Regulation and Procurement : A
Graphical Analysis”, juillet 1995, 46 pages.

Ng, Serena et Piemre Perron, *Estimation and Inference in Nearly Unbalanced, Nearly
Cointegrated Systems”, aofit 1995, 38 pages.

Ng, Serena et Pierre Perron, "The Exact Error in Estimating the Spectral Density at the
Origin", aofit 1995, 33 pages.

Ghysels, Eric, Christian Gouriéroux et Joanna Jasiak, "Market Time and Asset Price
Movements : Theory and Estimation”, septembre 1995, 61 pages.

Dionne, Georges, Robert Gagné et Charles Vanasse, "Inferring Technological
Parameters from Incomplete Panel Data”, septembre 1995, 40 pages.

Dufour, Jean-Marie et Eric Renault, *Short-Run and Long-Run Causality in Time
Series : Theory", septembre 1995, 40 pages.



9539 :

9540 :
9541 :

9542 :

9549 :
9550 :

9551 :

9552 :
9553 :
9554 ;
9555 :
9556 :
9557 :
9558 :

9559 :

Dufour, Jean-Marie, "Some Impossibility Theorems in Econometrics with Applications
to Instrumental Variables, Dynamic Models and Cointegration”, septembre 1995,
42 pages.

Mercenier, Jean et Philippe Michel, "Temporal Aggregation in a Muldi-Sector Economy
with Endogenous Growth”, septembre 1995, 17 pages.

Loranger, Jean-Guy, "Neoliberalism and the Overwhelming Influence of Financial
Markets : a Comparative Analysis between NAFTA Countries and Other G-7
Countries”, septembre 1995, 34 pages.

Proulx, Pierre-Paul, "La décentralisation : facteur de développement ou d’éclatement
du Québec®, aodt 1995, 26 pages.

Arcand, Jean-Louis, Ghazi Boulila et Christian Tritten, “Intergenerational Contracts,
Remittances, and Growth”, octobre 1995, 57 pages.

Kichian, Maral, René Garcia et Eric Ghysels, "On the Dynamic Specification of
International Asset Pricing Models”, octobre 1995, 29 pages.

Arcand, Jean-Louis, "Land Owmership, Working Capital, and Agricultural Output :
Egypt, 1913-1958", octobre 1995, 93 pages.

Arcand, Jean-Louis et Marcel G. Dagenais, "The Empirics of Economic Growth in a
Cross Section of Countries : Do Errors in Variables Really Not Matter?", octobre 1995,
65 pages.

Dufour, Jean-Marie et Jan F. Kiviet, "Exact Inference Methods for First-Order
Autoregressive Distributed Lag Models", octobre 1995, 52 pages.

Dufour, Jean-Marie et Jan F. Kiviet, "Exact Tests for Structural Change in First-Order
Dynamic Models", octobre 1995, 39 pages.

Kiviet, Jan F. et Jean-Marie Dufour, "Exact Tests in Single Equation Autoregressive
Distributed Lag Models®, octobre 1995, 38 pages.

Briys, Eric et Pascale Viala, "Optimal Insurance Design under Background Risk”,
octobre 1995, 14 pages.

Ng, Serena et Joris Pinkse, "Nonparametric Two-Step Estimation of Unknown
Regression Functions when the Regressors and the Regression Error Are not
Independent”, octobre 1995, 22 pages.

Bai, Jushan et Pierre Perron, "Estimating and Testing Lincar Models with Muldple
Structural Changes”, octobre 1995, 58 pages. ;

de Lemos Grandmont, Renato, "Mexico's Financial Liberalization and Reform, A
Critical Overview", octobre 1995, 66 pages.

de Lemos Grandmont, Renato, *Multivariate Cointegration in the Presence of Structural
Breaks : The Case of Money Demand in Mexico”, octobre 1995, 69 pages.

Boyer, Marcel, Philippe Mahenc et Michel Moreaux, "Entry Blockading Locations®,
octobre 1995, 37 pages. ,

Boyer, Marcel et Michel Moreaux, "Capacity Commitment versus Flexibility : The
Technological Choice Nexus in a Strategic Context”, octobre 1995, 37 pages.

Boyer, Marcel et Jean-Jacques Laffont, "Environmental Protection, Producer Insolvency
and Lender Liability", octobre 1995, 38 pages.
Monmnrqnenc,Chudc,SophieMahmedjianaRxhdHoule,'TuDewminanuof
University Dropouts : a Sequential Decision Model with Selectivity Bias®, décembre
1995, 17 pages. ‘
Margoﬁs.DavidN..‘CohmEffecsdemwSenioﬁtyinanoe'.déwnm
1995, 29 pages.



9560 :

9610 :
9611 :

9612 :

Dionne, Georges et Christian Gollier, "A Model of Comparative Statics for Changes
in Stochastic Returns with Dependent Risky Assets”, décembre 1995, 14 pages.
Deaton, Angus et Screna Ng, »Parametric and Nonparametric Approaches to Price and
Tax Reform", janvier 1996, 28 pages.

Lévy-Garboua, Louis et Claude Montmarquette, "Cognition in Seemingly riskless
Choices and Judgments”, janvier 1996, 29 pages.

Gonzalo, Jesus et Serena Ng, "A Systematic Framework for Analyzing the Dynamic
Effects of Permanent and Transitory Shocks”, mars 1996, 42 pages.

Boyer, Marcel et Jean-Jacques Laffont, "Toward a Political Theory of Environmental
Policy", avril 1996, 42 pages.

Ai, Chunrong, Jean-Louis Arcand et Frangois Ethier, "Moral Hazard and Marshallian
Inefficiency: Evidence from Tunisia”, avril 1996, 38 pages.

Mercenier, Jean et Ering Yeldan, "How Prescribed Policy can Mislead when Data arc
Defective: A Follow-up to Srinivasan (1994) Using General Equilibrium”, avril 1996,
29 pages.

Fortin, Nicole M. et Thomas Lemieux, "Rank Regressions, Wage Distri butions, and the
Gender GAP”, avril 1996, 45 pages.

Fortin, Nicole M. et Thomas Lemieux, Labor Market Institutions and Gender
Differences in Wage Inequality®, avril 1996, 13 pages.

S. Hosken, Daniel et David N. Margolis, *The Efficiency of Collective Bargaining in
Public Schools”, mai 1996, 54 pages.

Dionne, Georges et Tahar Mounsif, "Investment Under Demand Uncertainty : the
Newsboy Problem Revisited”, mai 1996, 18 pages.

Perron, Pierre et Serena Ng, "An Autoregressive Spectral Density Estimator at
Frequency Zero for Nonstationarity Tests", juin 1996, 44 pages.

Ghysels, Eric et Serena Ng, A Semi-Parametric Factor Model for Interest Rates”,
juillet 1996, 29 pages.

iv



