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RESUME

L'hypothése qu'une variable est indépendante de [information disponible & une date
donnée, par exemple, le propre passé de la variable et les valeurs réalisées d'autres variables
observables, est une implication fréquente de la théorie économique. Toutefois les tests
paramétriques usueis d’orthogonalité basés sur des régressions peuvent facilement ne pas avoir
le niveau affiché sl y a rétroaction des innovations sur les valeurs futures des régresseurs.
Dans ce texte, nous développons des tests non paramétriques d'orthogonalité basés sur les
signes et les rangs signés, dont on peut montrer qu'ils sont valides pour une grande classe de
modéles avec rétroaction. Ces tests sont aussi robustes par rapport & divers problémes de non-
normalité et d'hétéroscédasticité. De Plus, en étudiant par simulation deux modeéles de
régression avec rétroaction (un modéle d'attentes rationnelles, précédemment considéré par
Mankiw et Shapiro, et un modele de promenade aléatoire), nous trouvons que les tests
non paramétriques ont une excellente puissance. Nous concluons I'article en appliquant nos
résultats & des données d'attentes sur les taux d'intérét précédemment étudiées par B.
Friedman.

Mots clés : tests non paramétriques; test d'orthogonalité; test de promenade aléatoire; test de
signes; test de rangs signés; attentes rationnelles; rétroaction; non-normalité;
hétéroscédasticité; taux d'intérat.

ABSTRACT

The hypothesis that a variable is independent of past information, such as its own past
and past realizations of other observable variables, is a frequent implication of economic theory.
Yet, standard regression-based tests of orthogonality may not have the correct size if there is
feedback from innovations to future values of the regressors. In this paper, we develop
nonparamteric tests of orthogonality based on signs and signed ranks which are proved to reject
at their nominal levels over a wide class of models admitting feedback. The tests are robust to
problems of non-normality and heteroskedasticity. Further, in simulation studies of two
specifications of feedback --a rational expectations model considered by Mankiw and Shapiro,
and the random walk model-- we find that the nonparametric tests display remarkable power.
The paper concludes with an application which assesses the efficiency of survey data on interest
rate expectations previously studied by B. Friedman.

Key words : nonparametric tests; orthogonality test; random walk test; sign test; signed rank

test; rational expectations; feedback: non-normality; heteroskedasticity; interest
rates.
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L Introduction

The hypothesis that markets are efficient implies the testable proposition that forecast errors
made by the market are independent of any information available to the market when the forecast
was made. This orthogonality property of efficient markets or, more generally, of fational
expectations is an instance of the wider statistical issue of determining whether two time series are
stochastically independent given they are independent of other past values of the same variables,
Yet standard regression testing procedures which attempt to evaluate conditional independence may

reject too often, even with fairly large samples.

We have two apparently dissimilar examples in mind. The first is a simple linear regression
with predetermined variables considered by Mankiw and Shapiro (1986, referred to as MS in whar
follows) who found by Monte Carlo techniques that the true level of the t-test may be considerably
larger than its nominal level even for fairly large samples. Even though asymptotic inference based
on a normal distribution for the t-statistic is correct in their specification, the finite-sample
distribution of the t-statistic differs considerably from its asymptotic distribution. The issue has been
treated further by Banerjee and Dolado (1987, 1988), Galbraith, Dolado and Banerjee (1987),
Banerjee, Dolado and Galbraith (1990), as well as by Mankiw and Shapiro (1985). The second
example is the random walk model without drift which has necessitated even more radical
readjustment, since the t-statistic associated with the OLS estimate does not have the usual
asymptotic normal distribution. These two examples are illustrative of a class of models which
involve feedback: future values of the regressors are affected by disturbances which are

contemporaneously uncorrelated with the Tegressors.

In this paper, we introduce nonparametric analogues of the t-test, based on sign and signed
rank statistics, that are applicable to a specific class of feedback models including both the MS model
and the random walk without drift. The sign tests are provably exact for this class of models,
irrespective of the nature of feedback, even if the disturbances are non-normal or heteroskedastic;
similar results are obtained for a class of linear signed rank statistics (e.g. Wilcoxon-type statistics).
Modifications of these results are obtained as well for cases involving discrete random variables,

possibly with a mass at zero. Most importantly, simulations indicate that the nonparametric tests



considered have good power relative to the t-test, using either the asymptotic or size-corrected
critical values for the MS model or the Dickey-Fuller critical values as can be found in Fuller (1976)
for the random walk model. The results of this paper involve a considerable generalization of those
in Campbell and Dufour (1991), where various nonparametric Statistics are introduced to deal with
a variant of the MS model. In particular, the nature of the allowed feedback is considerably more

general and exact distributional results are established for a class of Wilcoxon-type statistics.

The paper is organized as follows. In section 2, we introduce the relevant test statistics in
the general feedback context and derive distributional results for various sign and signed-rank
statistics. In section 3, two specific cases illustrating such feedback are introduced, and we present
Monte Carlo resuits on the level and power of the proposed tests applied to these two cases. A
relevant application is presented in Section 4: the orthogonality of forecast errors are tested using

the same survey data considered by Friedman (1980). Section 5 offers some concluding remarks.

2. Nonparametric statistics in the feedback context

In many tests of orthogonality between two random variables, the null hypothesis asserts that
a variable Y, is independent of its own past a5 well as past realizations of a second variate X,. Our
goal is to introduce tests of this assertion which are exact under very weak assurptions concerning
the distribution of Y, and the relationship between Y, and X, For one group of tests, we simply
assume that Y, has median zero; for the other, we suppose that the distribution of Y, is symmetric
about zero. No additional assumption other than the independence of Y, with respect to the past
(denoted in what follows by ) governs the relationship between Y, and X, In more precise
language, we work within the framework of the following general specification involving the random
variables Y, .., Yo Xoo o+ Ko and the corresponding information vectors L= X X X Yo
s YY), wheret =0, .. n-1, with the convention I, = Xyt

Y, is independent of L, , foreacht =1, ..,0n; (1)

P{Y, > 0] = P[Y, < 0}, fort=1,.,n. 2)
Assumption (1) states that Y, is independent of the past vaiues of Y, and X, while Assumption {2)

means that Y, ..., Y, have median zero. These assumptions leave open the possibility of feedback
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from Y, to current and future values of the X-variable without specifying the form of feedback, The
variables Y, and X, may have discrete distributions (which includes the possibility of non-zero
probability mass at zero); as well, the variables Y, need not be normal nor identically distributed.
In what follows, we shall also consider the additional assumption that Y,, ..., Y, have distributions
symmetric about zero:

Y., ., Y, have continuous distributions symmetric about zero, 3)
Clearly, the latter assumption implies (2), but the converse is not true.

In order to motivate the nonparametric statistics introduced in this paper, it is useful to
consider the following linear model:

Y. =8X,+e, t=1.,n ©)
where ¢, has the same properties as Y, in (1) and (2). Suppose we wish to test the null hypothesis
that § = 0. It seems reasonable to focus on nonparametric analogues of Student’s t-statistic, which
in this environment are derived from

ﬁ Zn: Y(X(nl 2
T = =t = ZV‘ s %)
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where B = T YX /5_: X, 8 =3y, - px ) /(n—-l) and V, = Y,XM/ a{z x{l]
=] tul taf Tul
Nonparametric procedures abstract from the specific values of V. to consider simply its sign and
possibly the rank of its absolute value among V.|, .., [V,|. In such a context the denominator

12
A{E Xf_,} plays no role and we are led to consider the simple products Z =YX, as the basic
t=i

building block in the definition of various nonparametric statistics, More generally, to test B =8,
in the context of (4), we would start with Z = (Y, - B,X.)X,, as the basic product. In particular,
if X, is identified with Y., in (4), we can develop in this way tests of the random walk hypothesis
without drift (p = 1).

A natural nonparametric analogue of the statistic T is thus the sign statistic given by
S, = }:u(YtX(_l) , (6)

tul



where u(z) = 1,ifz >0, and u(z) = 0forz s 0. In this paper, we shail in fact study a more general
sign statistic of the form

S = ‘E;U(Y‘&.‘) , )
where g = gL t =0, ., a-1, is a sequence of measurable functions of the information vector L.
Clearly S, is 2 special case of S, obtained by taking g = X. The functions g{-) allow one to
consider various (possibly nonlinear) transformations of the data, provided g depends only on past
and current values of X, and Y, (x s t). The role of such transformations will be elaborated
further below.

The statistic S, is an integer-valued random variable assuming values berween 0 and n.
Under the quite general conditions described by (1) and (2), the following proposition establishes
the exact distribution of S, when Y, and g, have no probability mass at zero. This result represents
a considerable generalization of the main theorem of Campbell and Dufour (1991). The proofs of
all the propositions given in this section can be found in the Appendix. We denote by Bi(n, p) the

binomial distribution with number of trials n and probability of success p.

Proposition 1: LetY = (Y. ...Y) and X = (X, .. X))’ be two nxl random vectors
which satisfy assumptions (1) and (2). Suppose further that P[Y, =0] =0, fort= 1, .., n, and
letg = g(l), t =0 0y n-1, be a sequence of measurable functions of L such that Plg, = 0] = 0 for

t=0,..,n-1. Thenthe statistic S, defined by (7) follows a Bi(n, 0.3) distribution, ie. P[S, = x] = C, (172"

forx =0, 1, ..,n where C, = al/[x!(n-x)!]}.

This distributional result obviously also holds for S,. It must be stressed that S, and, more
generally, S, have well-known distributions under very general conditions. The assumption
P{Y, =0]="Pg=0]= 0 simply means that the variables Y, and g have no mass at zero, which
of course will hold when they have continuous distributions.  Otherwise, the nature of the
distribution of each Y, is left open; there are no assumptions concerning the existence of moments;
heteroskedasticity of unknown form is permitted; the nature of the feedback mechanism between Y,

and current and future values of X,,, (s 2 0) is not specified. As long as Y, has median 0 and is



independent of the past, the sign statistics S, and S, are all binomial with mean n/2 and variance n/4.

Under the further assumption that each Y, has a continuous distribution symmetric around
zero, i.e. under (3), it is natural to introduce ranks as well. In this paper, we consider two basic types
of signed rank statistics:

W, = Y uYg )R;, (8)
1=
SR, = Y u(Yg )R; . 9
ta]
where R;, in W, is the rank of Z,| = Yg.l,ie R} = E u(lZ, | - |Z41) the rank of z,

i=t

when 2,1, ..., 1Z,] are put in ascending order, while R; in SR, denotes the rank of 1Y,
among [Y |, .., IY,]. We also call W, and SR, the statistics obtained by taking g, = X, in (8) and
9):
W, = Y u(YX_)R;, (10)
ta]
SR, = ¥~ u(Y.X _)R;. (11)

1=l

The statistics W, and W, defined above are standard signed rank analogues of the statistics
S, and S,: the statistics are computed by weighting the sign of each positive product Y.X,, (or Yg,)
by the rank of its absolute value. The possibility of feedback makes it impossible to establish in

general that W, and W, are distributed as a Wilcoxon signed rank variate, ie. as W=Zn: tB, where
By, ..., B, are independent random variables such that P[B, = 0] = P[B,=1] =05 t:c.)lrt =1 ..,
n (independent uniform Bernoulli variables on {0, 1}). A counter-example can be found in
Campbell (1990). However, simulation studies indicate that W, and W, reject at their nominal levels
for the two specifications of (4) considered in this paper and, consequently, these statistics are
included in the empirical studies of power in the next section. Without feedback, it is easy to
establish the following proposition, which slightly extends a standard result of the theory of linear
signed rank tests.

Proposition 2: LetY=(Y,..,Y)andX = (Xo -, X,,)" be independent nx! random
vectors such that (1) and (3) hold. Let & =gX)ht=0,.,n1bea sequence of measurable



functions of the vector X such that P{g = 0] = 0. Then the statistic W, defined in (8) is distributed
like WsE tB,, where B, ... B, are independent uniform Bernoulli variables on {0, 1}.

1.}

Note that g, in Proposition 2 can be a function of all the variables Xo, .. » X, but does not
depend on Y. When g, = X, the result applies to S,. By contrast, exact distributional results can
be established for SR, and SR, without the additional assumption that the vectors Y and X are
independent. In the definitions of these Wilcoxon-type statistics, the absolute ranks are defined with
respect to Yy, ooy Y, which are mutually independent according to (1). Itis this feature which is

crucial in establishing the following proposition.

Proposition 3: LetY = (Yy o, ¥ and X = (Xg - » Xop)' bE tWO nx1 random vectors
such that (1) and (3) hold. Let also g =gl t=0, ... n-1, be a sequence of measurable
functions of L = (X - » Xo Yo s Y)* such that Pg = 0]=0fort=90 .., o1, let [Y| =
AN A) 8 and define the sign variables s, = u(Yg,) for t=1 .., 0 Then the following
two properties hold:

(a) the signs s, ..., S, are mutually independent and, provided [Y,| # O fort = 1,..,m

Pls, = 0] Y]] = Pls = 1]1¥]] =05, fort=1,..,0n;

(b) the statistic SR, defined by (9) is distributed like W = 2 tB, where B, ..., B, are independent

taf

uniform Bernoulli variables on {0, 1}.

Again it is clear that the result of Proposition 3 also holds for SR, by taking g = X. For
a general discussion of the variable W, see Lehmann (1975). The distribution of W has been
extensively tabulated [see, for example, Wilcoxon, Katti and Wilcox (1970)] and the normal
approximation with E(W) = n(n+1)/4 and Var(W ) = n(n+1)(2n+1)/24 works well even for small
values of n. Proposition 3(a) also provides the basic property for establishing the distributions of

more general linear signed rank statistics analogous to SR, ie. statistics of the form
E u(Yg,.)a,(Ry) where a,(9) is a "score” function. The distribution of such statistics, however,
tul

are not well tabulated and studying the choice of the score function is beyond the scope of the

present paper. For further discussion of linear signed rank statistics, see Hajek and Sidak (1967),
Dufour (1981), and Dufour and Hallin (1992a, 1992b).



Up to this point we have assumed that Y, and X, {or more generally g had no probability
mass at zero. In the following proposition, we relax totally or partially these assumptions.

Proposition 4: LetY = (v, .., Y,) and X = (Xp s X20)" be two nxl random vectors
such that (1) and (2) hold, let &=gd)t=0,. 0l bea sequence of measurable functions of
L= ., X, Y, .., Y)', and set g =g+ 3(g) , where 8(x) = 1 ifx = 0, and 8(x) = 0 if x
* 0. Let also S, and SR, be defined as in (7) and (9), set

a

S, = Lu(YE). SR = YuYE)R:,

1= twl
8(Y) = [3(Y), .., 3(Y,)]" and let n* = p - 2 3(Y) , the number of non-zero Y,s. Then the
twi

following properties hold:

(a) 0« S, s S.0x SR, < S;ll » and the conditional distribution of §‘ given 3(Y) is Bi(n', 0.5);

z
(b) ifPg = Ol =0fort=g, .., n-1, we have S = §‘ and SR, = S.R‘ with probability 1, and the
conditional distribution of §‘ given 8(Y) is Bi(n', 0.5);

(c) if assumption (3) holds, S-R. is distributed like W = Z tB, where B,, ..., B, are independent

uniform Bernoulli variables on {0, 1}.

Part (b) of Proposition 4 shows that, provided g, ..., 2., have no probability mass at zero,
tests based on S, can be performed conditionally on the non-zero Y/’s, i e. after dropping the zero
Y., products. For the more general case where g, ... , & may have a mass at zero, the
distribution of S, appears difficult to determine. Proposition 4(a), however, shows that a simple

alternative consists in replacing S, by the closely related statistic §', to which the result of part (b)
applies. When Pl =0l =0fort = 0, .., n-1, the two statistics coincide with probability 1.

Similarly under assumption (3), we can use the statistic S—R. instead of SR,; by Proposition 4(c),

Sil. follows the usual Wilcoxon distribution. We do not study here the distribution of SR, when Y,

- Y, have masses at zero, because in such a situation it is 2 more complicated linear signed rank
statistic. For a further discussion of such statistics, see again Dufour and Hallin (1992a, 1992b).



Given that the exact distribution of both a sign statistic and a class of signed rank statistics
is known under quite general conditions, the issue of power becomes erucial in determining the

usefulness of these nonparametric tests. For example, in model (4) we have:

YX,_, = BXi v eX

Foha' ™ B
The sign and Wilcoxon tests based on Z, = Y.X,, test in effect whether the random variable Z, is
centered at zero, more precisely whether Z, has median zero. Under the null hypothesis (B = 0),

the median is determined by the behavior of eX,, which is zero under assumption (2). When B »
0, the median of Z, is displaced from zero by the expression pX’, and, as f gets larger, it is

expected that the displacement is more severe and the test more powerful. This intuition is

confirmed by the empirical studies in the following section.

There remain two points which are relevant to the application of these nonparametric tests.
First, the assumption in (1) that the disturbances are mutually independent cannot be relaxed
without compromising the distributional results established in this section. But the approach can be
modified to deal with certain patterns of dependence such as MA(q) disturbances. For example, if
Y, represented a two-period forecast error, it is entirely consistent with the efficiency hypothesis
associated with rational forecasting that Y, behave as an MA(1) process. [n this instance, the
independence required to use the nonparametric procedures can be recaptured by splitting the
sample into two with alternate points assigned to different subsamples. At least two simple testing
strategies are then available. In the first, a nonparametric test with level a/2 is applied to each
subsample and the null hypothesis is rejected if one of the tests is significant; by Bonferroni
inequality, this yields a test whose level does not exceed . In the second strategy, a single test with
level a is applied to a2 randomly chosen subsample; this procedure is not conservative but involves
dropping half the sample. Both procedures can be adapted to deal with MA(q) disturbances or,

more generally, to situations where Y, is g-dependent.

Second, in many applications, it is more appropriate to consider the following variant of

model (4):
Y, = B(Xu - Ba) F €0 @y
where y, is a centering parameter for X, such as the mean, the median or the trend of X, for
example, if X, is stationary, p. = ¢ may represent the mean of X, If Y, represent forecast errors

which are centered at zero and X isa macroeconomic variable which assumes only positive values,

8



it is clear that the fionparametric statistics S, W, and SR, introduced above will have no power
whatever the value of B. In this context, the rejection of the null is associated with comovements
of Y, around zero and X.. around its mean. However, as the proofs of Propositions 1, 2 and 4
reveal, y, should be estimated using only information available at time ¢ if the exact distribution of
the nonparametric statistic is to be preserved.  The functions g(L) then represent any such
estimation attempt based on partial information; various ways of centering the X, variable are
considered in the application presented in Section 4. For given functions &(1), the sign statistic is
defined in (7) and the signed rank statistics W, and SR, are given in equations (8) and (9).

3. A simulation study of two examples

Two specifications of model (4) are pow introduced to contrast the behavior of
nonparametric statistics with standard regression procedures. In Mankiw and Shapiro (1986), X is
assumed to follow a stationary autoregressive process given by

Xt=e<,+6‘Xt_l+e,, t=1,.,n, (12)
where the e, are assumed to be mutually independent and each € is independent of X J 2 1; the
disturbances € and e are aiso assumed to follow a bivariate normal distribution with correlation
coefficient p. It follows that e, in (4) is related to X, through e, and hence to future Xu(>1
by the autoregressive process. Since the disturbance vector (€5 ., €,)" is not independent of the
explanatory variable vector (Xor ., X)) the t-test associated with the least squares estimate of
8 in model (4) can only be justified in large samples. Mankiw and Shapiro (1986) investigated the
finite-sample properties of the usual t-test in a Monte Carlo study and found that it over-rejects the

since the exact finite-sample distribution of S, and SR, are given by Propositions 1 and 3, the
reliability of the associated sign and Wilcoxon tests under the null is not an issue.

To investigate empirically the relative behavior of the nonparametric versus the asymptotic
regression-based procedures in the MS specification, data were generated from model (4), with the

X process specified as (12), by serting &=pe +wyl-p° , 8 =0 and X, = w, ‘/1—95 R

where e, and W, are independent with the same distribution either N(O, 1), ¢(3), Cauchy or lognormal;



the asymmetric lognormal disturbances are centered at their median. Experiments illustrating the
impact of heteroskedasticity involve modifications of standard normal disturbances as described in
Table 3. Five tests are usually considered: the non-centered T-test, the centered t-test and the three
nonparametric 1ests based on S, W, and SR, as defined in equations (6), (10) and (11). Asvmptotic
59 critical values are used in applying the parametric tests; in situations where the t-test over-rejects,
it is also applied using size-corrected critical points which are determined empirically. Because the
sign and Wilcoxon statistics have discrete distributions, it is not possible (without randomization) to
obtain tests whose level is precisely 5%: here, the levels of the sign test are 4.33%, 6.49%, 3.52%,
4.00% for sample sizes n = 25, 50, 100, 200 respectively; for n = 25, 50, the levels of the Wilcoxon
tests arc 4.82% and 4.94%, while the normal approximation is used for the larger sample sizes. Each

experiment comprises 2000 replications.

Table 1 presents simulation results based on normal disturbances for the specification given
by p = 08 and 8, = 0.99 for various sample sizes. The results confirm the MS finding that
asymptotic regression-based tests are unreliable when p and 8, are close to one: the t-test rejects
at over twice its nominal level for sample sizes as large as 200. It is curious that the T-test appears
to reject at its nominal level except perhaps when the sample size is small, and it should also be
noted that the test based on W, rejects at its nominal level. But the striking message of Table 1 is
that not much power relative to the T-test is lost in applying the sign test with small sample sizes or
either of the Wilcoxon tests for any sample size. Overall, the t-test applied using corrected critical

points is a poor last.

Two general types of heteroskedasticity, again restricted to (p, 8,) = (0.8,0.99), with sample
size n = 100, are considered in Table 2. In the first, the variance of the underlying normal
disturbances jumps from 1 to 16 the break occurs at one of three possible points (t = 25, 50, 75).
In the second, the variability of the disturbances grows exponentially through the sample [i.e. € is
a N(0, 1) variable multiplied by exp(t)}. Along with the four statistics considered throughout the
study, we consider in this context an attempt due to MacKinnon and White (1985) to correct ina
general manner for heteroskedasticity through the preliminary estimation of a heteroskedastic-
consistent covariance matrix which is then used in a GLS estimation of the model coefficients.
Consistent quasi-T and quasi-t statistics (WM and wm, respectively) can be computed and their

performance is compared here with the other statistics.

10
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The results of Table 2 are interesting indeed. Both types of heteroscedasticity compromise
the reliability of the four parametric tests, including the MacKinnon-White procedures; again the W,
test rejects at its nominal fevel in all the specifications considered, Accordingly, the power
performance of the parametric tests should be assessed using the (empirically) correct critical points.
Itis apparent that in the context of break heteroskedasticity these corrected tests are outperformed
by all the nonparametric tests, Under the extreme form of exponential heteroscedasticity, the
parametric tests over-reject considerably and the corresponding size-corrected tests show no power
whatsoever. By contrast the nonparametric tests behave quite well even under this extreme
specification. ’

Table 3 presents results for homoskedastic non-normat disturbances which again show the
nonparametric tests in a favorable light. The power of these tests improves when the disturbances
are fat-tailed. With Cauchy disturbances, the sign and the Wilcoxon tests both outperform the
parametric tests by a wide margin. Under lognormal disturbances, the sign test performs best; notice
here that the signed rank tests appear to over-reject (asymmetric disturbances),

The second specification of model (4) identifics the X and Y processes to obtain the
autoregressive model:

Y, =8Y, +¢, t=1,.,n, (13)
where the vector (en .., ¢,)" is independent of Y, We wish to test Hy: 8 = 1 (random walk
without drift) against the one-sided alternative that the process is stationary (8 < 1). Here, under
H,, the disturbances have permanent effect, and the t-statistic associated with the usual regression
estimate of 8 does not have the usual asymptotic normal distribution. To test § = 1, it will be
convenient to consider the following equivalent form of (13):

Y.-Y, = BY, +e, t=1.,n a3y
where B =0-1. The null hypothesis is then cquivalent to B = 0, with B < O under the altcrnative.
Clearly, under the null hypothesis and provided Y, and (e,, ..., &)’ have continuous distributions,
the assumptions of Propositions 1 and 3 are satisfied when Y, is replaced by Y.-Y,and X, by Y,
This suggests considering the following statistics for testing the random walk hypothesis:

Sew = }.: u.:(Y‘—Y._‘)Y,_‘] R SR, = ?_.-,7“{”*"'--') Y‘_,]R; . (14)

1=l

11



where R; is the rank of |Y-Y,, | among 1Y, - Yubht=1.,n The critical regions against
the one-sided alternative of stationarity have the form Spw < ¢(«) and SRy, < c{a), where the
critical values are determined by the distributions given in Propositions 1 and 3 respectively. Asin

the MS specification, we also consider a second Wilcoxon statistic based on the ranks R, associated

with l(Yi" M)Yt-l I:

wl!'l -2-; U{(Y‘ - Y'-I)th] R; * (15)

On the assumption that the ¢, are i.i.d. normal and that Y, = 0, the appropriate parametric tests to
consider in this context are based on a(8 - 1) [the P-test in Tables 4, 5 and 6] and the T-statistic
both defined using the OLS estimate of 8 in (13). Since these statistics are sensitive to the value

of the point of departure, it is usual practice to consider tests based on n(8 - 1) [the p-test] and the

t-statistic both defined using 8, the OLS estimate of 8 in the presence of an intercept term. The
correct critical points for the various parametric tests have been determined by simulation; see Fuller
(1976, pp. 371, 373) for the relevant tables. It should be noted that the theoretical results of the
previous section establish the robustness of Spy and SRy to the point of departure Y,.

To assess the relative merits of the seven parametric and nonparametric tests of the random
walk null, we follow the same pattern of Monte Carlo simulation used in the analysis of the MS
specification. The results are presented in Tables 4, 5 and 6. For the experiments with normal and
heteroskedastic errors, Y, was assumed to be standard normal under the null and, under the
alternative, to be drawn from a normal distribution with the appropriate variance determined by the
alternative. For the analysi§ with non-normal errors, Y, is taken to be zero under both the null and
the alternative; for such cases, n+1 observations were generated using model (13), and the
summations in (14) and (15) run from t = 2to t = n+1 (because the first sign variable is always
ze10).

The power of the nonparametric statistics as revealed in Table 4 is striking. Sy uniformly

outperforms both the centered parametric tests which are usually applied in the context of
independent homoskedastic normal disturbances. For larger samples the signed rank statistic with

12



of heteroskedastic disturbances (Table 5}, the parametric tests perform irregularly. For example,
when the variance suddenly jumps at a point in the sample, the t-test may either be conservative if

conservative; again the sign test exhibits remarkable power.

4. An application

B. Friedman ( 198U) studied interest rate expectations based on survey data published by The
Goldsmith-Nagan Bond and Money Market Letter, a publication with a wide circulation among
money market professionals. Late in the concluding month of each quarter, a selected group of its
subscribers were asked to forecast the values of ten interest rates on the last business day of the two
following quarters. The means of the different forecasts were subsequently published along with the
names of the participants in the survey. In his study based on data from 1969 to 1977, Friedman
focused on six rates of the most highly traded assets; here we consider three: U.S, Treasury Bills (3-
month), Utility Bonds and Municipal Bonds. We follow Friedman in considering one aspect of the

concerning, to use his examples, the unemployment rate, the growth rates of the consumer price
index (CPI), industrial production and M1, and the federal deficit (in levels). Our goal in this

13



The nonparametric statistics considered in this section have the form:
1 a

S =Pl -OX] SR = D ulE X R W= P ul(-XIR: . (16)

(233 (1 (L]

forj=1...4 Here 1 is the forecast of 1, determined in the previous period. X denotes a

centered value of X, where the centering (or detrending) is based only on information available at
time t; see the end of Section 2 for a discussion of the motiva ion for using such variables. In this
application, we use one of two general centering methods: (1) the distance relative to a cumuiative

moving average of the mean, and (2) the distance from a recursively estimated linear time trend.
Specifically to obtain X° , the unemployment rate and the growth rates of the CP}, industrial

production and M1 were centered using the first method. The fifth macroeconomic variable
considered by Friedman was the Federal Deficit (in levels) and, given its evident non-stationarity,
it is more appropriate to center this variable using the second method. All the variables are taken
from the Main Economic Indicators of the OECD data base for a sample beginning in 1962. Each
of the nonparametric statistics is then computed forj=1,...4 p-values (for two-sided tests) are
reported in Table 7. The results of a joint nonparametric test are also reported: here the nul! of
efficiency is rejected if the smallest p-value (amongj =1, .-, 4) is less than 0.0125. This procedure
yields a test whose level does not exceed 0.05. Table 7 presents analogous regression-based results:
we consider the t-statistic calculated from a one-variable regression (with constant) corresponding
to the nonparametric tests introduced in (16) for each j=1 .,4 [i. e. the equation

r,-H=a v PR, + W], as well as the results of the appropriate F-test in a linear regression
with four lags [i. e, the F-test of the hypothesis B, = B = g, =P, =0in the regression
4
@ -0 =a+ LBX+el
=t

Table 7 indicates there is core agreement between the parametric and nonparametric
approaches. In sixteen of the twenty single-variable cases considered, neither the nonparametric nor
parametric tests of the efficiency of the Treasury Bills forecasts is significant and, in the other four
cases, the evidence is mixed. The joint efficiency tests are not significant for all five macroeconomic
variables under both approaches. In sum, there is little evidence that the information contained in
the five variables is not efficiently used in the Treasury Bills forecasts. By contrast, the interest rate

forecasts for Utility Bonds do not appear to be as efficient: both the nonparametric and parametric

14



results reject the efficiency hypothesis regarding specified lags of the Federal Deficit, as well as the
joint efficiency hypothesis for this variable. However, there is interesting divergence between the
two approaches applied to the Utility Bonds forecasts, which are found to be inefficient with regard
to the information contained in the Unemployment Rate only by the parametric tests and inefficient
with regard to M1 ‘only by the nonparametric tests. Such divergence is somewhat less dramatic in
the analysis of the efficiency of the Municipal Bonds forecasts which are found to be inefficient
according to the parametric and nonparametric approaches with regard to information contained in
both Industrial Production and the Federal Deficit. It is noteworthy that in contrast to the
nonparametric results the t-test is significant for two of the lags of the Unemployment Rate in the
single-equation efficiency tests and in one lag of the CPL These may represent examples of spurious
rejection as underscored by Mankiw and Shapiro (1986). Whatever the uitimate interpretation of
these results, the important point is that the nonparametric results are more credible than the
regression-based alternatives.

5. Concluding remarks

It is a testable implication of expectations models which imply that some observed variable
is a rational forecast of another unobserved variable that the forecast error is independent of
information available to the forecaster. Generally, this information is not strictly exogenous, and the
issue of finite-sampie bias associated with the usual regression procedures arises. The sign and
signed rank procedures introduced in this paper are exact in such situations and are robust to
problems of heteroskedasticity and non-normality. Moreover, as revealed in two simulation studies,
the power of the aonparametric tests can be considerably superior to that of the parametric t-tests,
particularly in the presence of heteroskedasticity or non-normal disturbances,

The general feedback model considered in this paper does not contain an intercept term.
In the presence of such a term a, the methods used in this paper could readily be modified if « were
known. Various methods of dealing with such situations are discussed in Campbell ( 1990). In
particular, it is possible to adapt the procedures of Dufour (1990) to obtain exact nonpararmetric tests
in the presence of the unknown nuisance parameter «. These results will be presented in a
forthcoming paper.
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Appendix
Proof of Proposition 1: Lets, = u(Y.g,) and consider the characteristic function of S, :

$ 0 = Elexp(irS)] = E[ﬂ exp(i‘cst)],
t=l

where t e Rand i = ¢-1. Conditional on the vector I, = (X Xy s X Yoo oo Y, the

variables §;, .. » So.» a1 2T€ fixed. We can thus write

-

1
o = E{q exp(its) E[explits,) | 1.-1]} :

When computing E[exp(itsﬂ) | 1,_‘] , we can assume without Joss of generality that g,, # 0 (an event
with probability 1). Then, from (1), (2) and the assumption that Y, has no probability mass at 0, we
have P[s, = 0|[,] = Ps, = 1|1.]= 0.5 almost everywhere. It follows that

-1
$, () = O+ exp(it)]E [n exp(its‘)} .
1

-

Applying the same argument to H e:q:(its,)l forj = 1, .., n1,we find
el

$,0 = {51 +explD}*®,
which is the charateristic function of the binomial distribution with number of trials n and probability
of success 0.5. Thus S, follows a Bi(n, 0.5) distribution. a

Proof of Proposition 2: LetZ, =Yg, t=1..,0 Without loss of generality, we can only
consider the case where g » 0 fort = 1, ..., n (an event with probability 1). Conditional on |g}
= (lgoh ~ » 18al)» the variables Z,, , t = 1, .. , B, arc mutually independent with
P{Z, > o}lgl] =PlZ, < 0] lgl] = 0.5; further, the rank vector R; = (R, .. » R;, ), which

is a function of |g|, is a fixed permutation of the integers 1, 2, ..., 0. Conditional on |gl, W, is

L3

thus distributed like W = 2 tB,. Since the distribution does not depend on lg|, the result also

taf

holds unconditionally. a



Proof of Proposition 3: (a) Letz = (z, .., 2,) € R* and §| - E zs, fort=1, .., n The

gl
conditional charateristic function of the random vector s = (s, ..., 5,) given |Y| can be written:

#.@) = Elexp(iz's) | |Y]) = Efexp(iS,) | Y1} = EfextfiGS, , + 2,8)] Y1)
= E(exp(is,_,)qexp(iz,s_) L 1Y) Ixl}.

When computing E{cxp(iz_s.) | L IY‘] » We can assume that g, » 0 (an event with probability
1). Further, by (1), (3) and the assumption that Y, has no mass at zero,

Qexp(iz‘s.) | Lps IY.” = E[exp(iz.s.) | I‘_,] = (0.5)[1 + exp(iz.)) .
8o that

$(2) = 91 + exp(iz,)] B{exp(ié__,)] ¥} .

Applying the same argument to E(exp(ign_,) | IY[} forj =1, .., n-1, we find
[ ]
*(2) = oI+ exp(iz)]
tul

which is the characteristic function we obtain when Sis -+ 8, are mutually independent with uniform
Bernoulli distributions over {0, 1}. Thus 81 w4 8, are mutually independent conditional on |Y],

with P[s, = 0 [¥]] = p[s, = [ I¥]]=05, fort=1,. n

(b) With probability 1, we haye Y #Ofort = L, .., n. Conditional on Y| such that Y, »0
fort=1, .., n, the rank vector (R;, ..., R.) is a fixed permutation of the integers (1, ..., n)’.
Hence, using part (a) of the proposition, SR, is distributed like W = ¥ tB, conditional on Y]

taf
Since this distribution does not depend on |Y), this result also holds unconditionally, [m}

Proof of Proposition 4: It will be convenient to prove (b) first.
(b) Since g, and &' differ only when & = 0 (an event with probablity zero by assumption), it is clear

that S, - §‘ and SR, = S‘R‘ with probablity 1. By assumption (2), we have

p[Y,>o,a(Y.)}=p[Y,<o,am)]= 0,if 8(Y) = 1
= 0.5, otherwise,

fort =1, .. n Set P, = P[Y. <0] b(Y()] »t=1..,n Then, by assumption (1), we have when
8.+ » 0 (an event with probability 1):



P = P[grY, > 0| L 30D] = Placa¥, < 0| Lye 800
for t = 1, ..., n. Consider now the charateristic function of S, conditional on 8(Y): forzeR,

¢,[213M] = E[explizs) | 3CN)]

= a{ﬁ explizs)E[expzs,) | L.» 8CY))] ‘ am}

t=1

u-1
=[0-p)+ p_exp(iz)]E{ ‘ exp(izs,) ‘ am} .

where i = \/—1 , hence

$z1830] = ﬁ[(l - p) + pexp(iz)]

t=

= (@51 + explD]™ .
where n' is the number of non-zero Y/s. Since this is the characteristic function of a Bi(n’, 0.5)

variable, we can conclude that the conditional distribution of S, given 3(Y) is Bi(n", 0.5).

(a) Since g = g wheng, »0 and § = 1 wheng, = 0,we have u(Yg,) s w(YE.) for all t, hence

05, = TulVe) < LuYED =5,

el tof

0 < SR, = 3 u(Y,g Ry < 3. u(Y,§. )R = SR, -
t=l

t=1

Further §' satisfies all the assumptions of part (a), 50 that its conditional distribution given 3(Y) is

Bi(n", 0.5).

(c) Since g’ » 0 for all t, the distribution of S'il. follows from Proposition 3(b). [}
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Table 1
Mankiw-Shapiro Model: Normal Disturbances*
p=08,8, =099

Various Sample Sizes
B, t-test T-test S, SR, W,
Asymptotic Size-
Corrected®

n =25
0.00 196 50 7.1 38 53 4.6
0.04 11.8 3.0 253 193 261 24.6
0.07 95 22 433 360 434 415

n =50
0.00 18.7 5.0 6.2 39 44 49
0.02 12.3 3.1 16.7 119 1838 17.2
0.07 11.4 4.1 578 481 573 57.1

n = 100
0.00 14.7 50 50 42 4.4 4.7
0.02 7.8 2.7 254 181 262 255
0.04 12.4 5.6 52.1 409 512 50.9

n = 200
0.00 11.9 5.0 5.5 43 4.9 47
0.01 7.1 32 16.2 121 179 16.6
0.02 11.7 6.1 39.1 271 371 370

* Entries represent percentage rejections. The statistics Se. W, and SR, are defined in equations
(6), (10) and (11).

* Empirical critical points are used in power calculations. For B = 0, the rejection frequency for
the size-corrected t-test is 5.0% by construction.
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Table 2
Mankiw-Shapiro Model: Heteroskedastic Disturbances®
p =08,6, =099,n =100

B8, t-test T-test wm-test WM-test S SR, W,
Break at t = 25°
0.00 125 7.8 112 6.0 37 5.4 53
0.04 134 37.0 12.5 324 282 363 355
6.5 32.7 6.1 30.7
0.07 36.2 63.0 35.1 59.7 546 605 62.0
250 58.9 247 583
Break at t = 50
0.00 152 10.4 8.8 57 4.0 4.8 4.5
0.04 20.1 352 13.7 26.5 317 371 36.3
8.1 28.1 93 248
0.07 383 59.3 30.6 52.1 559 617 63.4
24.6 514 25.6 49.7
Break at t = 75
0.00 247 139 8.9 58 43 4.9 4.8
0.04 25.8 357 9.3 21.2 345 409 419
7.8 21.7 6.2 19.8
0.07 36.1 59.3 202 46.3 594 664 67.5
182 4.0 15.0 4.4
Exponential
0.00 89.2 89.4 123 122 32 44 45
0.50 89.1 89.2 12.9 129 19.6 187 185
6.0 6.1 5.9 5.6
0.70 89.2 89.5 13.6 135 35.7 324 321
6.3 6.4 5.8 5.7

* Entries represent percentage rejections; empirical critical points are used in the power calculations
for the second entry in a cell. The statistics wm and WM are defined in the text.

s In the Break model, the variance of the disturbances jumps from 1 t0 16 at the indicated point; in
the exponential model, the variance grows exponentially with tme [i. e, & is a N0, 1) variable
multiplied by exp(t)]-
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Table 3
Mankiw-Shapiro Model: Non-normal Disturbances®
p=08,8 =09, 0 =100

B, t-test T-test S, SR, w,
Asymptotic  Size-
Corrected
Y3)

Distribution
0.00 15.7 5.0 5.5 34 4.4 49
0.02 8.7 29 245 279 334 357
0.07 358 24.6 76.6 753 804 83.6

Cauchy

Distribution
0.00 14.2 5.0 54 37 5.7 55
0.005 15.8 7.0 113 515 497 561
0.02 20.8 12,9 318 885 879 914

Lognormal

Distribution
0.00 139 5.0 70.1 33 274 226
0.02 10.1 43 4.0 479 426 446
0.04 17.8 10.7 46.6 767 715 76.1

* Entries represent percentage rejections.
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Table 4

Random Walk Without Drift: Normal Disturbances’

P-test  T-test p-test t-test Saw SRuw Waw

8

a =50
1.0 55 37 4.1 5.1 6.7 6.1 7.3
97 70 12.1 7.0 6.6 113 10.6 139
95 124 18.0 95 79 15.8 14.6 200

n = 100
1.0 52 33 5.0 53 4.7 6.1 6.9
97 154 213 102 82 14.5 16.9 235
95 30.6 36.9 16.7 12.7 21.0 28.1 375

n = 250
10 5.3 5.4 46 47 4.6 5.1 6.4
99 120 18.0 9.1 7.1 11.5 16.1 205
98 306 380 18.1 12.7 203 27.8 37.0

* Entries represent percentage rejections. The statistics Sgw, SRpw and Wey are defined in equations

$.5.2 in Fuller (1976).

(14) and (15). The critical values for the four parametric

24
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Table 5

Random Walk Without Drifi: Heteroskedastic Disturbances’

n = 100

;] P-test T-test p-test t-test Saw SRpw Wy,

Break att = 25

1.0 8.6 8.1 45 23 43 52 6.7

97 21.0 214 10.7 6.0 13.8 14.1 18.0
14.0 140 117 121

95 353 359 18.0 104 19.3 23.2 29.6
24.2 24.8 19.1 20.1

Break att = 50

1.0 114 105 7.1 4.6 55 58 77

97 26.0 25.6 148 94 134 151 18.2
11.0 120 11.2 102

95 40.7 39.7 225 14.1 19.6 229 283
217 21.0 17.1 16.1

Break att = 75

1.0 136 124 105 6.6 45 4.8 6.5

97 30.1 28.6 20.9 133 13.6 15.5 195
13.7 14.6 98 10.0

95 46.1 42.8 29.5 19.8 19.4 235 28.6
236 24.1 159 14.7

Exponential

10 54.9 51.2 53.9 484 49 4.8 5.0

.8 54.3 50.9 535 - 482 11.1 10.8 11.0
57 5.6 57 5.6

7 557 520 549 49.8 16.4 15.0 15.2
57 6.0 56 6.1

* Entries Tepresent percentage rejections; em
for the second entry in a cell. [
to 16 at the indicated point; the variance
is a N0, 1) variable multiplied by exp(t)

)
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Table 6
Random Walk Without Drift: Non-normal Disturbances’

n = 100
P-test T-test p-test t-test Spw SRew  Wiw
3}
#(3)

Disturbances
1.0 4.2 4.1 48 5.7 41 5.2 5.8
98 103 105 7.8 5.7 17.4 17.7 24.6
9 15.3 159 9.5 6.5 243 245 36.2

Cauchy

Disturbances
1.0 32 31 5.7 7.6 48 5.6 59
99 47 50 5.6 6.4 69.3 66.2 74.7
98 6.7 72 5.7 48 850 84.7 922

Lognormal

Disturbances

1.0 0.0 0.0 0.0 0.1 438 0.0 0.0
99 0.0 0.0 0.0 59 477 438 135
98 0.0 0.0 20 9.0 782 244 502

* Entries represent percentage rejections. In the Break model, the variance of the disturbances

jumps from 1 to 16 at the indicated point; the variance grows exponentially with time in the
Exponential model.
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Tabie 7

Goldsmith-Nagan Interest Rate Forecasts
Nonparametric Orthogonality Results: 1-Period Forecast Brrors

Treasury Bills Utility Bonds Municipal Bonds
Leg S SR W S SR, W, S, SR, W, i
joint F-test Fetest F-test
Unemployment Rate
 Mean® i=1 099 210 123 218 585 918 681 165 362 465 285 340
j=2 200 245 175 189 856 999 607 058 585 491 149 111
ji=3 362 465 267 189 999 622 666 015 856 629 084 0327
j= 585 821 459 375 856 579 869 028" 8999 727 096 0237
Joint 099 210 123 400 585 579 607 .031° 362 465 084 134
CPI Growth Rate
Mean i=1 362 213 258 385 585 999 636 369 362 943 758 211

. .

i=2 999 902 934 315 099 051 044" 030 585 079 074 001
i=3 999 766 902 829 099 031" 053 071 585 094 135 068
j=4 585 329 365 322 999 334 537 751 999 614 696 244
Joint 362 213 258 129 099 031 044 108 362 079 014 031"

Industrial Production

(Growth Rate)
Mean J=1 855 781 523 98 200 061 092 .149 099 006" 015 104
i=2 999 829 711 298 362 067 025" 004" 043" 009" 002" 003"
j= 585 355 323 133 362 853 918 818 585 267 303 736
P=4 362 304 144 024 0437 232 144 207 856 .837 934 619
Joint 362 304 144 068 043 061 025 025" 043 006" 002" 048
M1 Growth Rate
Mean j= 855 992 967 339 585 789 696 .699 099 399 113 S0t
j= 099 092 038" 141 043" 036 005" 074 099 136 0257 329
j= 999 593 773 562 362 484 355 981 999 975 934 816
j= 2000053 113 042" 016" 003" 010" o7 200 .159 241 61
Joint 099 053 038 107 016 003" 010" 224 099 136 025 843
Federal Deficit
Regression =1 200 241 181 369 362 294 294 215 200 217 144 430

=2 099 249 175 098 099 036" 056 017" 016" 014" 013" 080
=3 043" 060 074 129 016" 007" 014" 007" 005 002" o002 018"
=4 361 478 4712 674 200 0317 048" 076 016" 002" 001" 056

.

Joint 043 060 074 120 016 007" 048 026" 005" 002" 001 104

S N e s

Notes: The sample covers 1969:4 1o 1977:1 (n = 30). The statistics S, SR, and W, are given in equation (16) for j = | 1o
4. Exact p-values (two-sided tests) are calculated for the sign statistics; the normal approximation is used for SR and W,
p-values less than or equal to 0.05 are starred. A joint nonparametric test is significant if the smallest p-value (among j
= L., 4) is less than or equal to 0.0125. We also report the corresponding p-vajues of the t-statistics (t) for the
explanatory variable in a regression (with intercept) of the forecast error on the indicated iag of the centered
macroeconomic variable considered, as well as the p-value of the standard F-test for the joint sigmificance of the
explanatory variables associated with the appropriate regression (with intercept).

*The macroeconomic variables are centered recursively acoording to the indicated procedure: Mean corresponds 1o method
(1) in the text; Regression, to method 2).
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