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RESUME

Nous proposons plusieurs tests de racines unitaires pour des structures périodiques. Les
tests sont de types Wald et multiplicateur de Lagrange ainsi Que du type Dickey-Fuller. Leur
distribution asymptotique ne dépend que de la fréquence periodique. Une étude de Monte Carlo
est présentée et démontre les avantages d'utiliser ces nouveaux tests par rapport aux tests
usuels. Des données trimestrielles d'inventaires sont utilisées po.r fins d'illustration empirique.

Mots clés : stationnarité, saisonnalité, tests de racines unitaires.

ABSTRACT

Periodic ARMA models have gained considerable interest in recent years to model
seasonal time series. We derive a number of tests for an I(1) versus 1{0) characterization for
periodic structures. A LM and Wald test for the unit root hypothesis in periodic models are
proposed. The nonstandard asymptotic distribution only depends on the periodicity of the model.
Critical values for quarterly and monthly models are presented. A periodic Dickey-Fuller-type
test is also proposed. The tests have better power properties than standard tests for the unit
root hypothesis such as Dickey-Fuller tests which ignore the possibility of periodic parametric
variations. Power and size properties are studied via simulations. The paper concludes with
an empirical example involving quarterly finished goods inventory data.

Key words : stationarity, Sseasonality, unit root test.






1. INTRODUCTION

Many time series variables are observed at regular intervals throughout the year,
and their dynamic properties reflect their seasonal frequency, Consequently,
considerable interest has been focused on developing models which can capture this
type of behavior. Therc have been two main approaches taken in the literature, The
first, and most common, is the use of "seasonal" time series models; e.g., see Box and
Jenkins (1976), chapter 9; Granger and Newbold (1986), chapter 3. In this approach,
the lag structures of the auloregressive and moving average polynomials reflect the
scasonal frequency, but the patamelers are assumed constant over time. The second
approach is 1o fit "periodic” time series models. In this approach, the paramelers are a
deterministic perivdic function whose period is the seasonal frequency. Although
originaily proposed over three decades ago by Gladyshev (1961), periodic models have
only attracted attention relatively recently. |

Most of the analysis of either seasonal or periodic time series models is within
the ARMA framework. However, before an appropriate model can be estimated, it is
important to characterize the nonstationary properties of the series. This is most often
done by testing whether time series contain a unit rool at either the zero and/or
seasonal frequency against a suitable alternative. Nearly all of these tests have been
developed in the context of seasonal time series.2  Whereas the issue of unit root
testing has received very little attention in the context of periocc time series models.
Of course, one could apply the tests cited above which ignore the periodic structure of
the time series. However, intuition suggests that this would at best lead to
inefliciencies and at worst could result in bias.

e

1 See, for example, Jones and Brelsford (1967), Pagano (1978), Tiao and Grupe (1980),
Todd (1983), Andél (1983), Cipra (1985), Vechia (1985), Andéi (1987), Osbom (1988), Osbom
and  Smith (1989), Hausen and Sargent (1990), Todd (1990), Liitkepohl (1991a,b) and
Sakai (1991). Empiricat applications involving economic time series appear in Osbomn (1988),
Osbont and Smith (1989), Franses (1991), Ghysels and Hall ( 1992), among others, A class of
nonlincar periodic Markoy switching regime models and their empirical evidence are also
discussed in Ghysels (1991a, b, 1992).

2 See, for instance, Hasza and Fuller (1982), Dickey, Hasza and Futler (1984), Hylleberg, Engle,
Granger and Yoo (1990), Engle, Granger, Hylleberg and -lee (1993), Ghysels, Lee and
Nol: (1993), among others,



In this paper, we¢ develop a number of tests which allow a researcher 1o
determine whether a periodic time series model pussesses a unil rool. The approach is
pased on estimating autoregressive time series models, but the specifics of the test
depend on the type of wend included in the model. We examine three €ases (1) when
no deterministic lexms are included; {2) when 2 periodic intercept is included and
(3) when a periodic linear time wrend is included. The tests are based on ihe Wald and
Lagrange Multiptier principles, and we derive their limiting distributions for an
arbitrary scasonal frequency, say, S, We tabulate the tail percentiles of these
distributions for the cases where S equals 4 and 12, which are of most interest because
they corfespond 10 quarterly and monthly data. In some cascs, one may be prepared 10
assume that the long-1un behavior of the series is aperiodic and thai the periodicity is
confined to the short-run dynamics. For these situations, we propose a modification of
the Augmented Dickey -Fuiler statistic {Dickey and Fuller {1979} which takes account
of this periodic struclure. We refer to this statistic as the *Periodic ADF" test, and
show that it converges to the distribution tabulated by Dickey and Fuller.

The paper is outlined as follows. 1n section 2, we discuss the relationship
between periodic time series models and time invariant ARMA models. This provides
ihe motivation for our analysis. In section 3, we derive the limiling distribution of the
Wald and Lagrange Multiptier tests. In section 4, we introduce the periodic ADF test
and demonstrate that it converges 0 the Dickey-Fuller distribution. The resulis from a
simulation study are reporied in section 5, which indicates that our tests have good
finite sample properties. We also describe the results from an gmpirical application 10
quarterly series on finished goods inventories in two industrics.  These examples
illustrate the value of explicitly modeling any periodic structure. Finally, section 6
contains some concluding remarks. All proofs are relegated to a mathematical
appendix.

2. PERIODIC STRUCTURES AND NONSTATIONARITY
Let us first focus on the simple periodic AR(p) model without intercept, namely

Y=Yyt % B‘j z +u 2.0

=1 3o

st, 2=y, " Yy while Dﬁ:l iftmod S =8,

S N]
where o, = 3 Do, 9& = SEID&

g=1
sz = 0 otherwise, and 8, is 1.i.d. N(O, 02).




Equation (2.1) s very similar to the standard Dickey-Fuller (henceforth
denoted DF) setup, except that the autoregressive paramelters may take diflerent values
in cach of the S periods. The hypothesis of interest is whether in fact o = 1 for all t.

More formally, the null and alternative hypotheses are :

Ho:as=l s=1,.,8 2.2)
H AL as #1  for al least some s (2.3)

1If HO is true, then the process is said o be integrated of order 1, denoted (1), and

the first difference of the scries has a stationary periodic auloregressive representation.
A first important observation 10 make is that under the alternative H I the process may

still satisfy the conditions for periodic integration. Indeed, testing for I(1) in periodic
models is quite distinet from testing for periodic integration. The latter concemns the
null hypothesis whether :

ut. i?] o =1 (2.4)
0 - s :

s=1

against the alternative :

rr, 3
H': e <1 2.5
s

5=}

Under this null hypothesis, annual differencing yields a covariance stationary
representation, Clearly, a process which is both periodic and I(1) must also be
periodically integrated, but the converse is not true. Therefore, if one rejects HO, then

one can investigate whether the process is periodically integrated using, for instance,
the test recently proposed by Boswijk and Franses ( 1992).

Given the popularity of the ADF test, it is natural to wonder about its properiies
when the data are generated by an integrated but periodic process. Or, put differently :
do we really need another test and why? To test the hypothesis of a zero frequency
unit root in seasonal time series, one can apply the DF statistics under quite general
circumstances.  Seasonal time series processes may, for instance, be characterized by
unit roots on the unit circle at some or all of the seasonal frequencies. Despite the
presence of unit roots at frequencies other than at zero, Ghysels, Lee and Noh ( 1993)



show that DF statistics can be used provided that some precaution is waken regarding
the AR lag augmeniation 10 compute the test statistics. Morcover, DF statistics can
also be used when the seasonal process is of the periodic type 28 described by
equation (2.1) of {2.2). Yo clarily this, we rely on some fundamental resulis regarding
the relationship beiween periodic processes and time-invariant processes presented in
Tiao and Grupe (1980), also eleganily presenicd and gencralized by Hansen and
Sargent (1990). In particular, let Hy hold. Then, using the siandard technigues of

stacking T=SxN observations into N skip-sampled annual vectors of length S, one
exhausts all pussible  parameter variations and obtains  1he time - invariant

representation
= V4t @6)
where Z =(zp ZP')' with zp = (2 7 y and u_ have the same
-1 LT LTS L ~aS -t ¢ Teped -T
structure, while :
1 0}t 0., . esl 5o
v . .
y=| . : Clandy={1 0 O Q@
4] -V, i 0.. .0 0 10

If we let Qu denote the covariance mairix of u. then one can derive a time-

¥

. 0 . p .
invariant representation for the vector process (2] from (2.6) via:

S =51 AUS Dy 11 - ey @ 11 - ye T 1 Oy Sy

(2.8)

by applying the so-called Tiao-Grupe formula {see Tiao and Grupe (1980) and Hansen
and Sargent (1990)}. Consequently, the implied time -invariant fepreseatation for (z!},

obtained by "unstacking” the p-dimensional vector gI:, will be

&Lz, = &L, (2.9)




. T .
with &L) = E GJ.L’ and §L)= } cSJ.L’ where r2 1 and ¢ 2 8. However, in contrast to
j=1

j:l j=
(2.1) under Ho’ the lime-invariant representation in (2.9) involves MA terms and

possibly longer AR expansions as well. Similar arguments apply if the alternative
holds, provided H)\P is satisfied; see Tiao and Grupe (1980). Therefore, one can test

for a unit root in z using a DF statistic by allowing the order of the AR approximation

1o increase with the sample size [sce Said and Dickey (1984)]. However, it is clear that
we may experience a considerable loss in the finite sample power of the tests due to the
long AR augmentations needed to whiten the innovation serics. Intuition suggests that
we can considerably reduce the complexity of a time-invariant parameterization of
scasonal processes by explicitly modelling the periodic variation. This, in turn, is
anticipated to yield a significant increase in the power of unit root tests.

Finally, it is important 0 note, at this point, that the tests introduced in the next

section are two-sided, unlike the DF statistic for I(1) which is one-sided. Here again,
we exploit the particular properties of periodic processes under H A Indeed, for any

given s, the parameter variation in O may casily take on values greater than one and,

in fact, most empirical evidence yields such values in combination, of course, wilh
seasons having o less than one.

3. TESTING FOR A UNIT ROOT IN PERIODIC TIME SERIES

Consider again the process (yl) generated by (2.1) under Hu in (2.2), ie.,

P
Y=Yy, +j§19‘j Zytu t=12,..T 3.0
LEY 7Yy

and assume the following :

Assumption 3.1 :

(i) t=n(S-l)+s,n=1,2,‘..,N;s=1,2,...,8;



S
(ii) @ = 3 D_ 0., where D_is the dummy variable which equals 1 if
y ooy ¥ st

modS(1) = s and zero otherwise;

(i) {ut} is a sequence of independent normal random variables with mean

zero and variance mz.

Under these conditions, z, follows a periodic autoregressive medel of order p.

For expositional brevity, we assume that the autoregressive order is the same for each
period and our analysis is easily modified o allow this order to be period-dependent.
1t will be required to impose certain conditions on the autoregressive parameters, but
these will be presented later. I is worth noting at the oulset that the normality
assumpiion is made for convenience and our analysis can be conducted under much
weaker conditions {see Phillips and Durlauf (1986)].

We start by considering the case where inference about a unil root is based on
the following regression model :

Y, =&Yt Ei% 2, + U, 3.2)

S
where & = szi D a. Let

- ' v 2 ‘2
W= (o, Qg [ QS, Wy s w3

A
where QS = (le’ s Bsp), s=1,..,5and ¥, ¥ denote the unrestricted and restricted

maximum-likelihood estimators respectively implied by the normality assumption.
The Wald test statistic for our nuil hypothesis is

A et
R FLLE. (¥) R
W=t - | |—gwar—| Jisusl® 33



A
where o is the unrestricted MLE of a= [a ey O l, tis a (Sx 1) vector of ones,
LLF {-) is the sample log-likelihood function and { }I SIS denotes the submatrix

consisting of the elements in both the first S rows and first S columns of the matrix in
the braces. The Lagrange Multiplier statistic is

ILLF (¥) 32LLFT(’~P) ILLE_(¥)
M = Ja TP TP 1S, 18 da | G4)

Let us assume that we have a sample of N years, each containing S observations.
Hence, the sample size is T = S x N and the log likelihood function is consequently

T S
P | 2 -
LLF.I.(‘!’) =¢ - jqzx {ln W+ sz,l DS' (yl g f)sj LU ) /w l} (3.5)
where ¢ is a constant. Therefore, the unrestricted MLE's are
T -1
e, 8y = [(El Ds‘ X, Xl} Z D x, Yo 3.6)
P31 - X, %)
0)=£l()’“as)’u'j= GSJZU)/T '
and the restricted MLE's are & = 1
T -1 T
Bs =|I Dsl TR 1 Ds! X % G3)
1=} =1
-y T b 2
=1 (@z-3Y 8 2z )¥r 3.9
o o1 9t

fors=1, .., S where X = (y‘_l, x“) and X, = (ZM’ R A

If we et ‘l’ be the true value of ¥, then, under both H and HA, il is

tasily shown that appropriately normalized Hessian 82LLF (‘P )/9‘}‘3‘}‘ converges in



probability to a block diagonal matrix with the first block referring to the second
derivative with respect 10 (al. v B Gi. . Bé) and the second block referring to the

second derivative with respect 10 W Taking advantage of this fact, we consider the
following versions of the Wald and Lagrange Multiplier statistics

-1
s A 2 M T N

W= PR CAY) 10 HZ DX, xl] ] (3.10)
s=1 t=1 1

s [[¥ 212 (T .
LM!S=SEI Ele\yt»x“x la lEleixlxl " G1h

where i}‘ =2 - E Bq Z and {- )“ is the 1-1 element of the matrix in curly brackets.
j=

1

To derive the limiling distributions of these statistics under H()’ it is necessary 10
"

obtain the limiting distributions of such functions of the data as N'ip o Yot B
=1

This is most easily achieved by rewriting the periodic univariate equation in (3.1) as a

constant  parameter S X 1 system. Define Yn = {ySn, Yot ’yS(n-l)H] ,

Zﬂ = [zS“, Zgny e ZS(n-l)H]' U“ = an' Ugo g e uS(n—lM} and P equal to the

smallest integer greater than or equal to p/S. It is shown in the Appendix that 3.1)
implies that Yn is generated by a cointegrated system of rank S - 1. This

representation is central to our analysis, and we assume it satisfies certain conditions
which place restrictions on {Osj). These are detailed in Assumption A.2 which is also

stated in the Appendix. Using Theorem 2.1 from Phillips and Durlauf (1986), it
follows that

an 1§
N1 U2QB(D (3.12)

i=]

where Bs(r) is a $x 1 standard Brownian notion, Q = diag{w, @, ... , ) and "3

denotes weak convergence of the underlying probability measures. It is convenient 1o
introduce the following notation



S
Gy = '21 B, (3.13)
1=

where Bg;(‘) is the i element of Bs(r). Equations (A.3)-(A.4) in the Appendix, (3.12)

and Lemma 3.1 from Phillips and Durlauf (1986) can be used o characterize the
limiting distribution of WlS and LM Is These distributions are given in the following

theorem.

Theorem 3.1 : If the data are generaled by (3.1), and Assumptions 3.1 and A.1 hold.
S i 1
e {1 . . . 2 2
Then : () W ¢ » ¥g () LM, 2 ¥, where ¥, o _gl [({ G(r)dBSj(r)] / (!) G(r)“dr.

Proof : See Appendix.

The distribution in Theorem 3.1 depends only on S, and its percentiles are
tabulated in Table 5.1 for the quarterly case and in Table 5.2 for the monthly one.
Both tables appear in section 5.

We now consider the extension of our analysis to cover the case where an
intercept or an intercept and a linear time trend are included in the regression model.
Consider the case where either one of the following models is estimated

Y=oy, + H, +j§l G[j ZH' +u (3.14)

P .
YTy, u+ B‘(n - N/2) +j§1 Ou. Z U, (3.15)

S S
wherepy = I D p,B=3 D B, and the remaining parameters and variables are
g T 2 e Fs

the same as above. Before proceeding, it is worth commenting on the nature of the
linear trend term. It is more convenient for our asymptotic analysis if we include the
linear trend (n - N/2) rather than the more usual (1 ~ T/2) trend.  Both trends combined
with the periodic intercepts are capable of capturing the same behavior: the only
difference is in the interpretation of the parameters. To see this, note that if the trend
in period s is v+ A (t - T/2), then from Assumption 3.1(i), this can be written as



10

v+ ys(t -T2 =V + ys(Sn -j-SN2)=p + ﬂs(n - N/I2)
for p = vs—j'ys,ﬁs--Sysmxdj:S _s+ls=12..8

Using identical arguments as before, it is casily shown that the unrestricted and
restricled MLEs of the regression parameiers are just the unrestricted and restricted
Jeast squares estimators from the appropriate model. Similarly, the unrestricted and
restricted MLEs of a)z are the unrestricled “and restricted residual sum of squares
divided by T. For notational convenience, we again use 30 and § to denote the
unrestricted and restricted MLE, respectively, of any parameter ¢, and use the coniext
to specify the model from which the estimators are calculated. We also define
Ky = (yH, i, xh)' and Xy = (yH, 1,n - N2, x“)'.

Armed with these definitions, we can now present Wald and Lagrange Multipiier
statistics for testing Hy @ 0= 1 for all s based on the regressions in (3.14) and (3.15).

For the intercept model, equation (3.14), the Wald test statistic is

S A , A [l ‘ -1
W= I (e - yie il Ds‘(xm x50 (3.16)
s=1 t=1 11

*

and the LM statistic is

s IT 2 T -1
- - e .
LM'ZS =1 {2 Dst (yH “‘)1 / {{Z Ds! (xm xm) \ 3.17)
s=1 =1 t=1 L
where § =2, - i - é‘ st 2y

For the time trend model, equation (3.15), the wald and Lagrange Multiplier
tests are then :

. -1
S A 242 T
W= ):l(as- Wiw ui‘Ds‘xm xB‘l } (3.18)
1,1



" ‘ -1
s [1 i\
_ ~1 =2 .
LM, = I [2 Dy, ul] 1 & H«Ex Dy x,, xm} J (3.19)
Ll

I)

where U=z - M- Bs(n - N2)- % Glj Zl~j' The limiting distributions of these
=1

statistics are given in the next theorem.

Theorem 3.2 : If the data are generaled by (3.1) and Assumptions 3.1 and A.l hold,
then (i) W2S E) \Fzs; (it) LM28 3 ‘st; (iii) W3s 3 ‘1’38; (iv) LM3S ) ‘Pas; where

s [1 1 o, 1 7
Yyu=1 (1 G0 dBm) - [ Gy ar By 6o’ ar- |l Gmar| | |
j=t [0 Mg 2 0 0

[ k%)

while W, = £ AYD with
38 '

J

i 1 1
A= 6st(l ) ({ r G(r)dr - 4st(l)(f) Ginydr - 12[st(1 ) - ({ st(r)dr} X

1 i 1
I'rGmdr - (112) § Gy + G(dB, (r);
0 0 0 Si

2 2
i 1 1 1 1
D =(1/12) [f Grdr - 12 [I xG(r)d:} +12 { Gaydr | 1Goydr - 4[[ G(r)dr] }
0 0 0 0 0

Proof : See Appendix.

These distributions again only depend on 8, and their percentiles are presented in
Tables 5.1 and 5.2 for the quarterly and monthly case respectively.

Our analysis has focused on the case where Y, contains no drift, but can easily be

extended to allow for the presence of a drift term. Dickey and Fuller (1979) derived
and tabulated the distibution of two tests for a unit root in the aperiodic analogue
to (4.11) (i.e., with Ho=u 8 =8 ﬁs = f) when ¥, is generated by (3.1) with _0s = @.

They demonstrate that their tests converge to the same distributions if Y, is generated



12

by an ARIMA {p, 1, 0) process plus drift.  One of these tests is the regression
t-statistic for & = 1. Now, LM3S and WSS are functions of regression {-statistics {see

equation (A.26) in the Appendix]. Therefore, similar arguments to Dickey and Fuller's
imply that LMas and W, converge o Yo i g is added to the right-hand side

of (3.1).
4. A PERIODIC ADF TEST

In section 2, it was observed that a periodic AR model possesses a constant
parameter ARMA representation. Therefore, one could use the ADF statistic to test for
a unit rool in this class of series by using a constant AR approximation whose order
increases al a cerlain rale with the sample size; see Said and Dickey (1984).
Intuitively, one would anticipate (hat this lest would exhibit low finite sample power
because it ignores the periodic structure, and this is corroborated by the sinulation
evidence teported in the next section. One potential method of improving the ADF
test's performance is 10 modify the regression equation from which it is based to allow
the coefficients on the lagged first differences lo be periodic. We refer 10 this new
version as the "Pericdic ADF 1est”. In this section, we demonstrate that the Periodic
ADF 1est converges to the appropriate Dickey-Fuller distribution. Qur simulation
results indicate that ihis modification to the ADF test can considerably improve its
power. However, it is important 10 note that both the original and Periodic ADF tesis
are calculated under the assumption that coelfficients on lagged v, the intercept and time
wend are constant across periods. This restriction may be inappropriate and cause a
loss in power felative 1o the Wald and LM statistics described in the previous section.

For simplicity, we focus our attention on the case where we estimate the model
Y=oyt Elatj Z,+ Y @.n

and discuss the extension of our analysis lo the intercept and time trend models at the
end of the section. Let (@8 ... 08 E% ,E)é) be the maximum likelihood

. . P 2 4
estima Y= ‘o
stimators of (o, Q‘, » B 0 s wy) and define X by p D e xH} for

D = diagD, ., D) 1t is easily shown that



. -1
_ . T
la, Gl, 62. . asl = [;);lxl x‘} ‘Elx‘ Y, 4.2)

Now, consider the statistic

-1

"

T=(a- 1)/6“2 x(x;} J (43)
1

=1

Rogly=2_al 5 - -
where 0" =8" § gt =T Zuandu:y—ay -EFZ.. Notice that T is
N s t t t t-1 4 -

s=] t=1 =}
the regression t-statistic for o = I from the OLS estimation of (3.17) ignoring the
periodicity in the variances, In the following theorem, proven in the Appendix,

we preseal the limiting distribution of 7 under H0 ra= .

Theorem 4.1 : Under the conditions of Theorem 3.1, ?:)? where % is the random
variable tabulated in Fuller (1976), Table 8.52, p. 373.

Proof : See Appendix.

As noted above, our analysis is easily extended to the casc where an intercept or
an intercept and a time trend are included in the model. Suppose it is desired to base
inference about a unit root on the maximum likelihood estimators of a in the foliowing
models :

P

Y=oyt +j£l 69. Z 5+, (4.4)

i)
Y=oyt +Ba-T2)+ ‘El 8(1. z i+ (4.5)

3

-

Define the Periodic ADF test (henceforth denoted P-ADF) to be the regression
t-statistic for ¢ = 1, Using similar arguments 1o Theorem 4.1, it can be shown that the

A A
Periodic ADF tests based on (4.4) and (4.5) converge in distribution to ‘c” and 7,

respectively.  The percentiles of these distributions are given in Fuller (1976),
Table 8.5.2, p. 373,



5. SIMULATIONS OF SIZE AND POWER PROPERTIES

The critical values of the Wis and LMis statistics are reported in Table 5.1 (for

S = 4) and Table 5.2 (for S = 12), the former covering S = 4 and the latter S = 12. The
percenliles were computed for six sample sizes, namely, 10, 20, 30 and 40 years of
data, either guarterly or monthly. In all cases, 10,000 replications were used.
Computations were done with MATLAB Version 3.5j using the normal random
generator.

In the remainder of the section, we reporl simulation evidence on the finite
sample behavior of the tests for the case where S = 4.

Data were generated from the following model :
S
Y= s?:l Doyt Gh

where v is 1id. N(O, 1) and D st is the seasonal indicator function defined in
equation (2.1). The choice of {as} was determined as follows @ &, = &, 0, = 6la,

o, =a, a4=61a. Hence, lwo parameters, o and g, governed the periodic

(and nonperiodic) structure of the DGP. We examined four cases of particular interest,
namely :

Casel: a=1,60=12 as=le; (5.2.h
Case I1: =08, 08=13 Notintegrated but periodically integrated; (5.2.10)

Case Il ; a = 1.0, 8=0.82 Neither integrated nor periodically
integrated, (s.2.111)

Case IV : o = 0.8, 6 = 0.95 » Similar to Case 111 but combination
of Land IV. (5.2.1Y)

Notice that Case 1 corresponds to out null hypothesis that the process is 1(1). Case U
implies that the process is periodically integraied but not 1(1). Cases 1l and IV
represent genuine periodic stationary alternatives, although, the former has unit root
behavior in two out of four periods since a=10.



¢ uonIan, gy LIy Smsn suonesndar gop'np P pAnduIod a1am SAN[EA fROnLD [y

LEEP'S  8L6OY 169V 918 (5167 6707 188L°1 LTSt 069T°1 VE660 L8690 W8Y0 60170  op
v80S'S  9Z6I'v  86lIsE 10987 v ££80C 8908°1 17421 £8ST'1 8200°1 TI0L0  SZ6v'0 ooseo 0¢
(9909 LOIFY  ST69E  VELET  0S8Y'T L6ZI'T  oregt 87961 6H0E1 65201 1869°C  ¢L8v'0 66170 174
10160 LEWW'S 81wy L[ewpe (7087 8L8ET  99T0T  TooLl LOOY'Y 9L60°t 8SYL0 E6L50  O1EC0 o1
vmzq pue V£ M
Ty 6L50t  LoISZ 10561 9651 FIEET 6¥111 6VI60  88vL0 809’0  R1LE0 PISTO 61010 op
SHTY  SS60C  625S°CT 20661 12897 616¢°1 LOSTT SIVE0  $8SL0 90860  zs8ED 999T0  ZEIe 0
8TYSP  0E9TE 19897 9107  zego'l 911 To061°1 8886°0 STELO 91090 EMSED €190 SII o 174
0SE9°S  8698°¢ LBET'E 19667 TvZ61 6651 967¢'l T00I'T  6EL8°0  $§990  sperp $68C0  OIZIO 01

v

15

W pue oy

0665°€  986vT  91%0T  o15T 8L8T'1 6vL0'1 £688°0  LLZLO 62850 STPP0  OM8T0  6T61°0 81800 oy
2055 OpIST €T #9197 0611 9160'T SP06'0  pLYLO 11090 08¥p'0  Le620 01610 08L0°0 0€
SeLLe 1£79°C £591°T 6991 Lvel 911t PEL60 109L°0 6090 0190 96T0 95610 €6L0°0 (¢4
8EEY L9167 1¥5€C 86SL°1 SITY'1 6vLIT 0ZL6'0  L86LO L2E9°0 LYL¥ O 120£°0 120T0 99800 01

s1ek jo
qump
35 pue ¥1 m
66 $6 06 08 oL 09 oS (14 [¢:% oz 1 S I
se[muanag

v =§ ose) Apawrend) - ¢ ‘7 1 = 1 sonsneis Sy pue Sa
uonnquIsq onoidwAsy SanfeA [eanud : 1°G ojqeL




16

fg'¢ noIIoA GVTLLYIN Suisn suoneondas 00001 W paadmod ajam SON[EA [EINLD Y

L196T we0'T 0098°1 L509°1 viey't 9LLTE 81’1 26701 91160 1€6L°0 £919°0 68€5°0 £ELEO 64
pieLy opLlT $L061 £2E9°1 porY'1 el sTot't £680°1 60£6°0 $308°0 £559°0 L6VSO 0S8E0 0t
£F96'T 8tET SOH0T L9ELT 95¢s°1 189¢°1 81ETT £e01't 88L60 P80 3189°0 LSO ¥sie'0 14
T089°¢ 8LL8T rdv 4 EPE0T A3 B (4101 LOBY'T 061¢'1 oLt 6€00°1 LEOBO S¥$9°0 (19344 o

N—mEA puE kaf

ssovT  vrL6l T6vl't 66¢°1 oLze! LTer't 7080°1 1L96°0 8980 E9PL0  OLOSO €E050  90MED or
§79%6°7  0150T $S08°1 £876°1 [1298 ELITT L1 8860 1LL80 6vSLO  PSOP0  6p050 S0 0t
€197 01TIe 65981 vE8STT oLyt 8651 LLE] vE20'1 21060 68LL0  OLZ90  T9TSO 68¥£°0 0
osTIE VBT £L31T PLOL'T 88t 88141 €8LT1 L3401 §600°T 1080 P90 LOLSO LO6E0 o1

N—de paw m—ma

vE9TT VSl 0£79'1 oTLET LEITT 8980'1 piS60 Y8R0 LZ8LO  OLLSO cops0  LISYO  6vE0  OF
16€€T  TLS®L 3,301 958¢°1 8ETTL [4{11 01 9£66°0 10680 SL8LO  LLLSD OS50 785y°0  BEIE0 OF
Wy W61 orLet (AL A 66v7'1 8Lt 1900°1 L0060 6O6L0  T689°0  WLYSO  LSSVO ss0£0 0T
01€9'C  $0SOT  6I6LT £visy et A 6290'1 vev60 98680  TLILO  6¥LSTO oLLYO  SETE0 o1
SIBIk JO
JOqUIRN

NSE puv NZ?

66 $6 06 08 0L w s or 0t 0T 01 $ i
senuadad

Z1 = § o€ ATPUOW - £°C = 1 sonsmeis St pee S
uonnquIsy dnewWASY SInfBA [EORUD : T'6 JMEL




i
§
H
§
i
i

Three classes of test statistics are included in our study. The first class consists
of statistics designed to test for I(1) in periodic time series. For brevily, we only report
results for W24, LM24 and the periodic ADF test based on (4.4), denoted P - ADFz.

The (irst two tests are calculated with p=0Oand [; P - ADF2 is calculated with p = 1
and 2. Recall that the P -~ ADF test restricts o = o and s0 (4.4) does not correspond

o (5.1) under Cases H-1V. Therefore, the regression model in (4.4) is only an
approximation 1o the dala-generation process in these cases and so the tests' behavior
may be sensitive to the choice of p- The second class consists of statistics designed to
test for periodic integration. For brevity, we focus on just one statistic, namely, the
likelihood ratio test proposed by Boswijk and Franses (1992). This statistic is
calculated as :

4
I

s=1

LRPI = T[sign[ - l” ln(RSSo/RSSl)

where RSSO is the residual sum of squares from estimating (3.14) subject to the

4
nonlinear restriction that § a = 1; RSSl is the unrestricted residual sum of squares
s=1

and (&s} are the unrestricted parameter estimators. Boswijk and Frances show that
LRP] converges 10 the Dickey-Fuller distribution denoted ’%ll in Table 8.5.1 of Fuller

(1976). The last class consists of the Augmenied Dickey-Fuller statistic, which is
designed 1o test for I(1) in aperiodic series. The discussion in section 2 indicates that
this test is still valid when the data are generated by a periodic process, but it is
anticipated to be inefficient. This test is based on the regression of ¥y, on an intercept

Y.y and (yl_i “Yeiop i=12 ., p). We report results for the cases where p is set

equal to 4 and 8.

All experiments were based on 2,000 replications and involved sample sizes
covering 10, 20, 30 and 40 years of data. A combination of RATS Version 4.01 and
MATLAB Version 3.5] were used to conduct the simulations. The results are reported
in Table 5.3.



Table 5

i8

.3 : Size and Power of Tests for Unit Roots in Periodic Time Scries

la(p = 4) xa(p =8) W?A(p =) Wu(p =1) P—ADFz(p =1} P—ADFz(p =2) LRN

Casel:e=10,8=10

T=40 0.067 0.049 0.055 0.048 0.039 0.041 0.065

T=80 0.065 0.051 0.057 0.047 0.041 0.044 0.061

T=120 0.059 0.052 0.056 0.049 0.047 0.047 0.059

T =160 0.053 0.054 0.051 0.048 0.049 0.049 0.055
Casell: x=038,6=10

T =40 0.071 0.053 0.063 0.078 0.046 0.128 0.185

T =80 0.094 0.078 0.121 0.111 0.067 0.292 . 0.179

T=120 0.156 0.117 0.154 0.179 0.111 0.498 0.149

T =160 0.201 0.165 0.143 0.228 0.168 0.651 0.049
Case 1l : = 1.0,0=08

T=40 0.146 0.126 0.993 0.991 0.003 0.065 0.001

T =80 0.624 0.210 1.000 1.000 0.0600 0.823 0.000

T=120 0.727 0.510 1.000 1.000 0.000 0.897 0.000

T = 160 0.80% 0.715 1.000 1.000 0.000 0.928 0.000
Case IV:0=08,8=095

T =40 0.098 0.063 0.151 0.111 0.068 0.118 0.107

T=80 0.190 0.116 0.413 0.291 0.180 0.332 0.272

T =120 0.382 0.253 0.687 0.483 0.362 0.586 0.498

T =160 0.582 0.404 0.877 0.678 0.550 0.802 0.742
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It is most convenient to first compare the ADF test with the Wald, LM and
P-ADF tesis. None of these tests exhibit any significant size distortions3 and, in most
cases, there are clearly gains in power from explicitly modeling the periodic structure.
The one exception is the F’—Ali)F2 test with p = 1, which does not perform well. This

can be explained as follows. Recall that the P~ADF test is calculated under the
assumption that &g = a. Therefore, in Cases 11-1V, for which this restriction is invalid,

the AR polynomial in (4.4) is approximating a =1 Ds((ozs - o) Y.y Our results

suggest that p = 1 in (4.4) does not yield a good approximation (o the omitied lerm a,.

Now, consider the LRm test for periodic integration. This test exhibits no size

distortions in Case I, but substantial size distortions in Case 11, In other words, the test
for periodic integration is close to its nominal size when the process is periodic and
I(1), but not when the process is only periodically integraied.4 Morcover, the DGP of
Case 1 reveals that with ¢r = 1 and 0 = 0.8, i.e., unit root like behavior in two out of

four quarters but no periodic integration since a0, = ({).8)2, the LRH test does

nol appear 10 have power. The fourth and last case shows a betier performance,
however.

The simulation resulis therefore indicate that acknowledging the presence of
periodicity may greatly improve the power of tests in comparison to the more standard
lesis one can apply for investigating unit root behavior.

6. AN EMPIRICAL EXAMPLE AND CONCLUDING REMARKS

In this section, we illustrate the use of the test statistics for a set of series
exhibiting strong seasonal patierns and at the same time having no clearly established

3. One shoud expect, though, that designing a DGP with MA  components entailing a
near-cancellation effect on the auloregressive unit root would produce serious size distortions.
The issue of ncar-cancellations and size distortions has been widely discussed; see, for instasice,
Schwert (1989) for the zero frequency case and Ghysels, Lee and Noh (1993 for the seasonal
case.

4 Testing for periodic integration can be viewed as testing for common wrends i a skip-sampled
vector sysiem [see, ¢.g, Franses {99D]. it has been noted that a combination of selatively
large systems and smail samples, when testing for common tremds, may resull in severe size
distortions, sec, ¢.g., Reimers (19913, As perivdic systems are typically large, particularly with
S = 12 but even with § = 4 . it seems that our findings agree with the Monte Carlo evidence
regarding cointegration tests.
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unit root behavior. Finished goods inventories of two-digit SIC industrics were
selected on that basis. The unadjusted serics are seasonal, yet not so easy to fit with
standard fixed parameter tlime series models, and standard unit root tests yield
ambivalent results regarding their long-run behavior.5  We concentrated on iwo
industries : SIC 20 (Food), SIC 30 (Rubber), using quarterly dala covering the
1967:2-1989:2 period.

We first examine whether the data series exhibit periodic features in the
N
univariate autoregressive representation. The point estimates and standard errors of o

are reporied in Table 6.1. In addition, we report the results from lesting whether
eu, = e}. in (3.14) using the Wald statistic proposed by Ghysels and Hall (1992). It can

be shown that this statistic is asymptotically distributed xgp if elj = ej for all j under
both HO and HA in (2.2)-(2.3).6 The p-values of this Wald test are reported in

Table 6.1 and provide rather strong evidence of periodic autoregressive behavior for
both series. Moreover, the parameter estimates and their standard errors also suggest
significantly different coefficients across the four quarters.

Let us now tur our attention to the question whether we can entertain the unit
root hypothesis for both series. For that, we rely on the tests described in section 5,
namely, the standard unit root tests as well as those exploiting periodic features. It may
be worth noting that the DGP of Cases [l and IV are most relevant to gauge our
empirical study judging on the basis of the poinl estimates appearing in Table 6.1
Indeed, both series do not seem Lo be periodically integrated, since the product of the
four coefficients &s is quite below one. The unit root test results are reported in

Table 6.2. In both cases, we cannot reject the null hypothesis of a unit root via standard
ADF tests. Whereas both versions of the Wald test reject the unit root in each of the
series and the P- ADF test rejects the unit root for the Rubber industry (SIC 30). This
pattern of rejections and nonrejections is broadly consistent with the simulation results
for Cases 111 and LV reported in the previous section.

See, for instance, Ghysels (1987) and lali (1993) for a discussion of unit root and seasonal
properties of inventory data.

Clearly, we cantiot test a =o because the distribution theory depends on whether llO n2.2)
or H A in (2.3) is correct.
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Table 6.1 : Evidence of Periodicity in Autoregressive Models of
Finished Goods Inventorics

SIC 20 SIC 30
p=1 p=2 p=1 p=2
Regression Model @ y = ay U+ g 8.2 +u leq. (3.14)}
t -1 TRy e YT
a 0.798 0.800 0.887 0873
(0.142) (0.143) (0.054) {0.060)
a, 1.402 1.391 0.870 0.809
(0.154) (©.161) (0.047) (0.059)
&3 0.672 0.814 0.786 0.773
{0.130) (0.168) (0.040) (0.056)
a 0.803 0.792 1071 1.067
©.127) 0.152) (0.059) (0.057)
4 4
na 0.603 0717 0.650 0.583
s=1
Test o =e, 0.000 0.000 0.031 0.014

Samples : Quarterly data 1967:2 - 1988:4. Standard errors are reported between parcnthesis.

Table 6.2 : Empirical Evidence on Unit Roots in Finished Goods Inventories,
SIC 20 and SIC 30

| ap=9150=12) P-ADF(p=1) P-ADF(p=2) | Wane =00 Wy (=1

SIC 20* ~2406 -1.642 ~1.564 -0.750 4.887 3.998
SIC 3¢ -2.898 -2.632 -4.701 -3.761 5.011 4.881

Note © Critical value for Uas 13 and P-ADF tests © -3 41 {5 %) for the W“v statistic (T = 20), 2.96 (5 %).
a o T
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There are several directions in which one can extend the theoretical results of our
For instance, the theoretical developments can be used to formulate tests for

paper.
{ alternatives which exhibit seasonal parameter

unit roots at scasonal frequencies agains
variation, as discussed in Ghysels, Hall and Lee (1993).
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APPENDIX

Al We first present a representation for Yn which is central to our analysis,

From Liitkepohl (1991a), P-397-398, it follows that there exist S x S matrices
(Oi} such that :

P
+162Z . +AU  a=1.,N (A1)

Z =HCY
" e

1

where H, C' are 8 x (S - 1) matrices whose nonzero glements are given by Hij = -1 for
i=2,..,8j=i-~ l;Ci).=~1 fori:2,3,..,,S;j=i.Cij=§ fori=1,2,..,8-1;
i=i+1, and A is the S x S matrix whose nonzero elements are given by Aij =1 for

igi.

Observe that Zn appears on both the left- and right-hand sides of (A1),

Therefore, we rearrange (A.1) 1o give

Z =H*CY  +
n n-i

k]

Oz, +ArU, (A2)

i=1

where H* = (] - 6:)0)'! H, @i‘ ={ - @0)'1 'E)i and A*=(] - (5)0)'1 A. Moreover
from (3.1), it follows that only the nonzero elements in 90 lic above the lcading
diagonal and so (1 - GO) is an upper triangular matrix with ones along the leading
diagonal. Therefore, (1 - (90)'l always exists and is also an upper-triangular matrix.

Equation (A.2) is a cointegrated system of rank S - 1. This representation is central to
our analysis, and we assume that it satisfies the following assumption.

Assumption A.1 : 1t is assumed that (A.2) implics TL)Z, = A U, where TT1{L) is a PY

order polynomial in the lag operator L which satisfics {THm)] #0forms< 1.



P2

This assumption ensurcs that Z, has a well-defined infinite order moving
average representation in A* Un. denoted Z“=¢(L) A*U [sce  Liitkepohl
(1991a), p. 171 Then from Johansen's (1991a) Theorem 4.1, it follows that Yn has the

following representation :

Y, =Y, +D A* 2 Y, + F(L) A*U - Ugh (A3)

i=l
where D=C' (H“ R(HC! )"H“ with C H" (S x 1) vectors which are orthogonal 10
C'. H* respectively; R(D=Ig+ H*C - ©%(1); exL)= 2 oy 1} and FL)=

(L) -emy/ - L). Now, by construction, we have H: =~ GO) H.L.
H*= 1,0,....0,C =

Therefore,

DA*=g"s HlA:g‘l ' (A.4)

where g is the scalar HY' R(HC,.

A2 PROOF OF THEOREM 3.1

We first present the formula for the score function and the hessian. From (3.5), it
follows that the score function consists of the following elements of the form

JLLE.(¥)
——3———'— 2 D Vet l(‘*‘)lw (A.5)
ALEW) T
~ LD,z o (A$)
JLLF.(¥) T
- T -1 k) - o)/ 20 (AT
W t=1
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')
where u¥) = A ;El 60, 2

From (A.5)-(A.7), it follows that the only nonzero terms in the hessian are of the
following form :

JZLLFT(‘P) T y

=-3 D ¥y Juw (A8)

()az =1 st -1
s

c?zLLFT(‘P) T s
CIN El Dy 7,2,/ (A9)
PLLEY) 1 ) ;
W: —(E} Ds{ Yoy ZH. /o (A.10)

PLLE (W) 71 .
~—5—=-L Dy u(¥ e (A1)
do Jw =1 LT
5

JzLLFT(‘P) T .
7=-1D 2z (¥ (A.12)
(?ﬂsj dw* = W
PLLEH) 1 2 .
55— =-1L D_[u(V) w® - 05 1 ) (A.13)
(awz)z =1 st

irs i) fine = dis 2 \ i
We first prove (i). Define HN -dug(hm, th TY%) where th is the (Sx 1)
vector with all its elements equal to N, and h2N is the Spx 1 vector with all its

elements equal 1o N2,
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Using similar arguments 10 Fuller (1976), Theorem 8.5.1, p. 374 {or sce Pantula

and Hall (1990), Lemma 1], it can be shown that

M, 0O 0
L PEd !
HN WHN =10 M2 0 +0p(l) (A.14)
0o 0 M3

T T
=N? =N} . 05t
where M, =N le (Foy h M= N El (Fox, xp) M, =0.50" and

o 2 -2
F‘-dmg(w D“,..,,w DS‘)‘

Similarly, if we lct HlN = diag(hm). it can be shown that

A
HlN[a— ‘]':MIHIN vl+0p(1) (A.15)
I R )
where v = t)ilD“y"1 u‘lw,..‘,‘E‘Ds‘y‘_‘ u /W
Combining (3.3), (A.14) and (A.15), we have
w1 |2 RN 6
= D 3 Al
s ;:l & WY /¢ ’él Dy ¥y, /@ + oD ( )’

We now derive the limiting distribution of the numerator and denominator
ofwls. From (AJ3)-(A.4), (3.12) and Phillips and Durlauf (1986), Lemma 3.1, it

follows that
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N i i
NY LY Ut o B B "=yl [ Gy aB oy (A1)
a-1 “n 5 S s
a=l 0 0
and
2 ¥ 2 a1t 1”2 2 3,4,
NTL Y Y wg?wQ B mBe. a0 W=gte w | Gl dn (A18)
n-1 -1 s N
a=1 ] ]
Now,
S 2 w2 Y n
NTID v uref=ie N Ty uo (A.19)
=] f=i X
i
E 2, 9 12,2 N 2]
NI D Vo J @ ={Q"N* T vy vy ave (A.20)
=1 st -} nel a1 ol ;
i

forj=8-s+1.

From (A.17)-(A.20}, it follows ihat

T
5
o

=1

T 1 2 1
Dy v/ /% Dy /ats |G dB ) Temrar a2
PRI - PN o Sj o :

forj=8-s+1.

The result then follows from (A.16) and {(A21). To prove (i), it is only
necessary 1o observe from (3.11) and (A.16) that LM!S = Wzs + op(l}.



A.3 PROOF OF THEOREM 3.2

We prove (i) first. Part (i) follows directly from noting W2S = LMZS + op(l).
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The result then follows immediately.

We prove that (iii) and (v) follow directly from W3S = LM33 + op( 1) : First, note
that
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From (A.3), (A.4) and Park and Phillips (1988), Lemma 2.1, we have
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Therefore, combining (A.1T)-(A.20), (A.23)-(A.25), (.A.26)—(A.33), we obtain

the desired result.

A4 PROOF OF THEOREM 4.1

Define H,y, 1o be the (pS + 1) x (pS + 1) matrix Hyy = diag(T, N2, . N'%)

and rewrite T as
o T -1
T=(a - D/ oy ) X1X1H3N .
=1
11
Using similar arguments to the proof of Theorem 3.1, it can be shown that
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i ; N }172 R
T3 [ B(NdB(1)/ h B dr] =t
; i !
] 10 ]






9201

9202 :
9203 :
9204 :
9205 :
9206 :
9207 :

9208 :

9209 :

9210 :

9211 :

9212 :

9213 :

9214

9215

9216

Université de Montréal
Département de sciences économiques

Cahiers de recherche (Discussion Papers)
1992 a aujourd’hui (1992 to date)

Dionne, Georges and Robert Gagné, "Measuring Technical Change and
Productivity Growth with Varying Output Qualities and Incomplete Panel Data”,
32 pages.

Beaudry, Paul and Michel Poitevin, "The Commitment Value of Contracts Under
Dynamic Renegotiation”, 30 pages.

Dionne, Georges et Christian Gollier, "Simple Increases in Risk and their
Comparative Statics for Portfolio Management", 22 pages.

Fortin, Nicole M., "Allocation Inflexibilities, Female Labor Supply and Housing
Assets Accumulation : Are Women Working to Pay the Mortgage?”, 42 pages.
Beaudry, Paul, Marcel Boyer et Michel Poitevin, "Le rle du collatéral dans le
report des investissements en présence d’asyméiries d’information”, 20 pages.
Brenner, Reuven, Marcel G. Dagenais et Claude Montmarquette, "The Declining
Saving Rate : An Overlooked Explanation”, 34 pages.

Tremblay, Rodrigue, "L’impact fiscal statique et dynamique de P’accession du
Québec au statut de pays souverain”, 33 pages.

Mercenier, Jean, “Completing the European Intemal Market : A General
Equilibrium Evaluation Under Alternative Market Structure Assumptions”, 38
pages.

Martin, Fernand and Sonia Granzer, "Notes of Methods of Assessing the Value
of the Damages to Forests Caused by Air Pollution", 21 pages.

Dionne, Georges et Robert Gagné, "Rendements d’échelle, progrés technique et
croissance de la productivité dans les industries québécoise et ontarienne de
transport par camion, 1981-1988", 28 pages.

Sprumont, Yves, "Continuous Strategyproof Mechanisms for Sharing Private
Goods”, 30 pages.

Tremblay, Rodrigue, “L’émergence d’un bloc €conomique et commercial nord-
américain : la compétitivité de I’économie canadienne et la politique du taux de
change", 37 pages.

Hollander, Abraham, “Restricting Intra-industry Quota Transfers in Agriculture:
Who Gains, Who Loses?”, 10 pages.

Mandel, Benediki, Marc Gaudry and Werner Rothengatter, "Linear or Nonlinear
Utility Functions in Logit Models? The Impact of German High Speed Rail
Demand Forecasts”, 17 pages.

Ghysels, Eric, "Christmas, Spring and the Dawning of Economic Recovery”, 26
pages.

Canova, Fabio et Eric Ghysels, "Changes in Seasonal Patterns : Are They
Cyclical”, 38 pages.



9217 :

9218 :

9219 :

9220 :

9221 :
9222 :
9223 :

9224

9225 :
9226 :
9227 :
9228 :
9229 :
9230 :
9231 :
9232 :

9233 :
9234

9235

9236 :

i

Campbell, Bryan et Eric Ghysels, "Is the Outcome of the Federal Budget Process
Unbiaised and Efficient? A Nonparametric Assessment”, 34 pages.
Boismenu, Gérard, Nicolas Gravel et Jean-Guy Loranger, "Régime
&’accumulation et approche de la régulation : un modele a équations
simultanées", 27 pages.

Dionne, Georges and Pascale Viala, "Optimal Design of Financial Contracts and
Moral Hazard", 60 pages.

Desruelle, Dominique, Gérard Gaudet et Yves Richelle, "Complementarity,
Coordination and Compatibility : An Analysis of the Economics of Systems”, 52
pages. .

Desruelle, Dominique et Yves Richelle, “The Investment Dynamics of a
Duopoly: The Relative Importance of a Head Start”, 34 pages.

Mercenier, Jean, "Can 1992’ Reduce Unemployment in Europe? On Welfare
and Employment Effects of Europe’s Move to a Single Market", 36 pages.
Dufour, Jean-Marie, Eric Ghysels et Alastair Hall, "Generalized Predictive Tests
and Structural Change Analysis in Econometrics”, 46 pages.

Dufour, Jean-Marie et Marc Hallin, "Improved Eaton Bounds for Linear
Combinations of Bounded Random Variables, with Statistical Applications”, 25
pages.

Crampes, Claude et Abraham Hollander, "How Many Karats is Gold : Welfare
Effects of Easing a Denomination Standard, 20 pages. ‘
Bonomo, Marco et René Garcia, “Indexation, Staggering and Disinflation”, 32
pages.

Dudley, Leonard et Jacques Robert, "A Non-Cooperative Model of Alliances and
Warfare", 26 pages.

Arcand, Jean-Louis, "Structural Adjustment and the Organization of Agricultural
Credit in Egypt", 29 pages.

Arcand, Jean-Louis, "Supply Response and Marketing Board Policy : The Case
of Egyptian Cotton", 38 pages.

Cadot, Olivier et Dominique Desruelle, "R & D : Who Does the R, Who Does
the D?", 18 pages.

Kollmann, Robert, "Incomplete Asset Markets and International Business
Cycles", 36 pages.

Kollmann, Robert, "Consumptions, Real Exchange Rates and the Structure of
International Asset Markets”, 33 pages.

Arcand, Jean-Louis, "Growth and Social Custom", 37 pages.

Desruelle, Dominique, "Infant Industries and Imperfect Capital Markets : The
Case Against Tariff Protection”, 30 pages.

Mercenier, Jean et Nicolas Schmitt, *Sunk Costs, Free-Entry Equilibrium and
Trade Liberalization in Applied General Equilibrium : Implications for 'Europe
1992742 pages.

Boudjellaba, Hafida, Jean-Marie Dufour et Roch Roy, "Simplified Conditions for
Non-Causality between Vectors in Multivariate Arma Models”, 24 pages.



9237

9301

9302 :
9303 :

9304 -
9305 :
9306

9307 :

9308 :

9309 :
9310 :

9311

9312
9313 .
9314
9315 .
5316 :
9317
9318 .

9319 :

1
Ghysels, Eric, Hahn §, Lee et Pierre L. Siklos, "Cn the (Mis)specification of
Seasonality and its Consequences : An Empirical Investigation with U.S, Data",
45 pages.
Mercenier, Jean, "Nonuniqueness of Solutions in Applied General-Equilibrium
Models with Scale Economies and Imperfect Competition : A Theoretical
Curiosum?”, 26 pages.
Lemieux, Thomas, "Unions and Wage Inequality in Canada and in the United
States", 66 pages.
Lemieux, Thomas, "Estimating the Effects of Unions on Wage Inequality in a
Two-Sector Model with Comparative Advantage and Non-Random Selection",
54 pages.
Harchaoui, Tarek H, "Time-Varying Risks and Retumns : Evidence from Mining
Industries Data”, 20 pages.
Lévy-Garboua, Louis et Claude Montmarquette, "Une étude économétrique de
la demande de théatre sur données individuelles”, 40 pages.
Montmarquere, Claude, Rachel Houle et Sophie Mahseredjian, "The
Determinants of University Dropouts : A Longitudinal Analysis”, 17 pages.
Gaudry, Marc, Benedikt Mande! et Wemner Rothengatter, "A Disaggregate Box-
Cox Logit Mode Choice Model of Intercity Passenger Travel in Germany”, 17
pages.
Fortin, Nicole M., "Borrowing  Constraints and Female Labor Supply
Nonparametric and Parametric Evidence of the Impact of Mortgage Lending
Rules”, 38 pages.
Dionne, Georges, Robert Gagné, Frangois Gagnon et Charles Vanasse, "Debt,
Moral Hazard and Airline Safety : an Empirical Evidence”, 34 pages.
Dionne, Georges, Anne Gibbens et Pierre St-Michel, "An Economic Analysis of
Insurance Fraug", 40 pages.
Gaudry, Marc, “"Asymmetric Shape and Variable Tail Thickness in Multinomial
Probabilistic Responses 1o Significant Transport Service Level Changes", 26
pages.
Laferriere, Richard et Marc Gaudry, "Testing the Linear Inverse Power
Transformation Logit Mode Choice Model", 29 pages.
Kollmann, Robert, "Fiscal Policy, Technology Shocks and the US Trade Balance
Deficit", 38 pages.
Ghysels, Eric, "A Time Series Model With Periodic  Stochastic Regime
Switching", 54 pages.
Allard, Marie, Camille Bronsard et Lise Salvas-Bronsard, "Ck-Conjugate
Expectations and Duality”, 22 pages.
Dudley, Leonard et Claude Montmarguette, "Government Size and Economic
Convergence", 28 pages.
Bronsard, Camille, "L histoire de ’économie mathématique racontée 2 Juliette",
17 pages.
Tremblay, Rodrigue, "The Quest for Competitiveness and Export-Led Growth”,
16 pages.
Proulx, Pierre-Paul, "L’AL’ENA", 12 pages.



9320 :
9321

9322
9323 :
9324 :

9325

v
Proulx, Pierre-Paul, "Le Québec dans PALENA", 28 pages.
Dionne, Georges, Denise Desjardins, Claire Laberge-Nadeau et Urs Magg,
"Medical Conditions, Risk Exposure and Truck Drivers” Accidents : an Analysis
with Count Data Regression Models, 20 pages.
A paraitre.
Dufour, Jean-Marie et David Tessier, "On the Relationship Between Impulse
Response Analysis, Innovation Accounting and Granger Causality”, 12 pages.
Dufour, Jean-Marie et Eric Renault, "Causalités 2 court et 2 long terme dans les
modeles VAR et ARIMA multivariés”, 68 pages.
Ghysels, Eric et Alastair Hall, "On Periodic Time Series and Testing the Unit
Root Hypothesis”, 36 pages.



