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Abstract

A collective choice rule selects a set of alternatives for each collective choice

problem. Suppose that the alternative x is in the set selected by a collective choice

rule for some collective choice problem. Now suppose that x rises above another

selected alternative y in some individual’s preferences. If the collective choice rule

is “positively responsive”, x remains selected but y is no longer selected. If the set

of alternatives contains two members, an anonymous and neutral collective choice

rule is positively responsive if and only if it is majority rule (May 1952). If the set of

alternatives contains three or more members, a large set of collective choice rules

satisfy these three conditions. We show, however, that in this case only the rule that

assigns to every problem its strict Condorcet winner satisfies the three conditions

plus Nash’s version of “independence of irrelevant alternatives” for the domain of

problems that have strict Condorcet winners. Further, no rule satisfies the four con-

ditions for the domain of all preference relations.

∗Horan: Department of Economics, Université de Montréal, and CIREQ. Osborne: Department of
Economics, University of Toronto. Sanver: Université Paris-Dauphine, PSL Research University, CNRS,
UMR [7243], LAMSADE, 75016 Paris, France. We thank Salvador Barberà, Jean-Pierre Benoît, Felix Brandt,
Markus Brill, Donald E. Campbell, Christopher Dobronyi, John Duggan, Justin Kruger, Hervé Moulin,
Matías Núñez, and Maurice Salles for discussions and comments. Horan’s work was partly supported by
FRQSC. Sanver’s work was partly supported by the projects ANR-14-CE24-0007-01 “CoCoRICo-CoDec”
and IDEX ANR-10-IDEX-0001-02 PSL* “MIFID”.



of alternatives. But what if we restrict to a limited set of preference profiles? Is a natu-

ral generalization of majority rule characterized by May’s conditions plus an additional

reasonable condition?

We show that the answer is affirmative. The condition we add is a set-valued version

of the independence condition used by Nash (1950, condition 7 on p. 159) in the con-

text of his bargaining model, which we call Nash independence.6 This condition says

that removing unchosen alternatives does not affect the set of alternatives selected. We

show that for the domain of collective choice problems that have a strict Condorcet win-

ner,7 May’s conditions plus Nash independence characterize the collective choice rule

that selects the strict Condorcet winner (Theorem 2). We show also that when prefer-

ences are unrestricted, no collective choice rule satisfies these conditions if there are at

least three individuals and three alternatives (Theorem 3), and if the only restriction on

preferences is that no individual is indifferent between any two alternatives, no collec-

tive choice rule satisfies these conditions if there are either at least three individuals and

four alternatives or at least four individuals and at least three alternatives (Theorem 4).

A strict Condorcet winner is an appealing outcome if it exists, and the conditions

of anonymity, neutrality, positive responsiveness, and Nash independence also are ap-

pealing. We interpret Theorem 2 to increase the appeal of both the collective choice

rule that selects the strict Condorcet winner and the four conditions. It shows that the

combination of the conditions is “just right” for collective choice problems with a strict

Condorcet winner: this combination implies the collective choice rule that selects the

strict Condorcet winner. If no collective choice rule were to satisfy the conditions on this

domain, the combination of conditions would be too strong, and our subsequent results

that no collective choice rule satisfies it on a larger domain would be less significant. If

collective choice rules other than the one that selects the strict Condorcet winner were

to satisfy the combination of conditions on the domain of collective choice problems

with a strict Condorcet winner, then the combination of conditions would be too weak.

6The condition is known by several other names, including “strong superset property”. See Brandt
and Harrenstein (2011) (who call the condition “bα”) for an analysis of the condition and account of its
previous use. It neither implies nor is implied by the related “Chernoff condition”; see the discussion
following Definition 10.

7An alternative a such that for every other alternative b a strict majority of individuals prefer a to b .
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The key condition in our results is an adaptation of May’s “positive responsiveness”

to an environment with many alternatives. Suppose that the alternatives a and b are

both selected, in a “tie”, for some problem, and some individual ranks b above a . Now

suppose that the individual’s preferences change to rank a above b . Our condition re-

quires that a remains one of the selected alternatives, b is no longer selected, and no

alternative that was not selected originally is now selected. This condition captures the

spirit of May’s condition: a change in the relative ranking of two alternatives by a sin-

gle individual breaks a tie between the alternatives. More loosely, the condition ensures

that every individual’s preferences matter. A stronger condition is sometimes given the

same name: if a is among the alternatives selected, and then a ’s ranking relative to some

other alternative improves in some individual’s preferences, a becomes the unique al-

ternative selected.8 That is, a ’s rising in some individual’s preferences relative to any

other alternative disqualifies all other alternatives. Our condition requires that a ’s rising

in some individual’s preferences disqualifies only alternatives that it surpasses as it rises.

2. Model

Throughout we fix a finite set N of individuals and a finite set A of all possible alter-

natives, and assume that both N and A contain at least two elements. In any given

instance, the set of individuals has to choose an alternative from some subset of A, and

each individual has preferences over this subset (the set of “available” alternatives). For

reasons we discuss after the following definition, it is convenient, however, to allow the

preferences specified by a “collective choice problem” to rank alternatives outside the

set of available alternatives. As usual, we define a preference relation on a set X to be a

complete and transitive binary relation on X .

Definition 1 (Collective choice problem). A collective choice problem is a pair (X ,¼),

where X is a subset of A with at least two members and¼ is a profile (¼i )i∈N of preference

relations over some set Y with X ⊆ Y ⊆ A.

We use �i to denote strict preference: x �i y if and only if x ¼i y and not y ¼i x .

8See, for example, Barberà (1977, Definition 7, p. 1579) or Blair et al. (1976, p. 370).
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The reason we allow the preference profile in a collective choice problem (X ,¼) to

rank alternatives outside X is that we frequently consider a collective choice problem

that is derived from another problem by shrinking the set of alternatives. Our definition

allows us to write the problem derived from (X ,¼) by shrinking the set of available al-

ternatives to Z ⊂ X as (Z ,¼) rather than (Z ,¼|Z ). (Throughout we use ⊂ to denote strict

inclusion and ⊆ to denote weak inclusion.)

For every collective choice problem, we would like to identify an alternative that

the individuals collectively “like best”. However, for some problems we cannot select

a single such alternative without discriminating among individuals or alternatives. For

example, for the collective choice problem with two individuals and two available al-

ternatives, x and y , in which one individual prefers x to y and the other prefers y to x ,

we need to declare x and y “tied” if we want to refrain from discriminating between the

individuals and between the alternatives.9 Thus we define a collective choice rule to be

a function that associates with every collective choice problem (X ,¼) a subset of X .

Definition 2 (Collective choice rule). A collective choice rule is a function F that asso-

ciates with every collective choice problem (X ,¼) a nonempty subset F (X ,¼) of X with

the property that F (X ,¼) = F (X ,¼′)whenever ¼ and ¼′ agree on X .

Our definition of a collective choice problem allows the individuals’ preferences to

rank alternatives that are not available, but the property of F in Definition 2 requires

that the set of alternatives assigned by a collective choice rule depends only on the in-

dividuals’ preferences over available alternatives. This restriction is important for our

results on the nonexistence of a collective rule satisfying our conditions.

An alternative that plays a prominent role in the collective choice rules we discuss is

the Condorcet winner, defined as follows.

Definition 3 (Condorcet winner). For the collective choice problem (X ,¼), an alterna-

tive x ∈ X is

• a Condorcet winner if for each alternative y ∈ X \ {x }, the number of individuals

i ∈N for whom x �i y is at least the number for whom y �i x

9More generally, declaring “ties” is necessary whenever the number of alternatives is the sum of the
divisors of the number of individuals different from 1 (Moulin 1988, Exercise 9.9(b), p. 253).
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• a strict Condorcet winner if for each alternative y ∈ X \ {x } the number of individ-

uals i ∈N for whom x �i y exceeds the number for whom y �i x .

A collective choice problem may have more than one Condorcet winner. For exam-

ple, if every individual is indifferent between all alternatives, then every alternative is a

Condorcet winner. But every problem has at most one strict Condorcet winner. Some

problems have no Condorcet winner: suppose that N = {1,2,3} and consider the prob-

lem (X ,¼) for which X = {x , y , z } and x �1 y �1 z , y �2 z �2 x , and z �3 x �3 y . However,

every problem (X ,¼) for which X contains two alternatives has a Condorcet winner (al-

though not necessarily a strict one).

We take the standard axiomatic approach to finding collective choice rules that se-

lect alternatives that reflect well the individuals’ preferences. That is, we look for rules

that satisfy a list of apparently desirable properties for all members of certain sets of

collective choice problems. We refer to such sets as “domains”. One domain is the set

of all possible collective choice problems. The other domains we consider restrict the

individuals’ preferences. For example, one domain we consider is the set of all collective

choice problems in which no individual is indifferent between any two alternatives.10

Definition 4 (Domain). A domain is a (set-valued) functionD that associates with every

set X ⊆ A of available alternatives with two or more members a set D(X ) of preference

profiles over X .

The first two properties that we impose on a collective choice rule are that it treats

the individuals equally and the alternatives equally. For any profile ¼ of preference rela-

tions we say that the profile ¼′ of preference relations is a permutation of ¼ if there is a

one-to-one function π : N →N such that ¼′i =¼π(i ) for all i ∈N .

Definition 5 (Anonymous collective choice rule). For any domainD, a collective choice

rule F is anonymous onD if for every collective choice problem (X ,¼)with¼ ∈D(X ) and

every permutation ¼′ of ¼with ¼′ ∈ D(X ),

F (X ,¼) = F (X ,¼′).

10That is, each individual’s preference relation is a “linear order”.
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For any profile ¼ of preference relations and any one-to-one function σ : X → X , we

say that the profile ¼σ of preference relations is the σ-transformation of ¼ if for each

i ∈N we have x ¼i y if and only if σ(x )¼σi σ(y ).

Definition 6 (Neutral collective choice rule). For any domainD, a collective choice rule

F is neutral on D if for every collective choice problem (X ,¼) with ¼ ∈ D(X ) and every

one-to-one function σ : X → X ,

F (X ,¼σ) =σ(F (X ,¼))

whenever ¼σ ∈D(X ), where ¼σ is theσ-transformation of ¼.

May’s (1952) condition of “positive responsiveness”, a variant of Arrow’s “positive as-

sociation of social and individual values” (1963, p. 25), is a key component of his char-

acterization of majority rule. A generalization of this condition to an environment with

many alternatives plays a key role also in our analysis. Many generalizations of the con-

dition are possible. Suppose that the alternatives x and y (among possibly others) are

both selected by a collective choice rule, in a “tie”. The spirit of May’s condition is that

an improvement in one individual’s ranking of one of these alternatives relative to the

other breaks the tie. Specifically, if one individual’s preferences change from ranking x

below y to ranking x above y , then the collective choice rule should still select x but no

longer select y .

Precisely, our condition requires that if x is one of the alternatives selected by a col-

lective choice rule for some collective choice problem and, for some other alternative

y , one individual’s preferences change either (i) from ranking x below y to ranking x at

least as high as y , or (ii) from ranking x at most as high as y to ranking x above y then

(a) x remains a selected alternative, (b) y is not selected for the new problem, and (c) no

alternative that was not selected originally is selected for the new problem.11

Definition 7 (Positively responsive collective choice rule). For any domain D, the col-

lective choice rule F is positively responsive on D if for every collective choice problem

11In a different context, Núñez and Valletta (2015, p. 284) formulate a similar condition.
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(X ,¼) with ¼ ∈ D(X ), if x ∈ F (X ,¼) and a preference profile ¼′ for which, for some indi-

vidual j ∈N ,

• ¼′i =¼i for every i ∈N \ {j }

• w ¼′j z if and only if w ¼j z for every w ∈ X \ {x } and z ∈ X \ {x }

• either y ¼j x and x �′j y for some y ∈ X , or y �j x and x ¼′j y for some y ∈ X (or

both)

is in D(X ), then

• x ∈ F (X ,¼′)

• y 6∈ F (X ,¼′)

• F (X ,¼′)⊆ F (X ,¼).

As we noted in the introduction, this condition is weaker than a condition some-

times given the same name that requires that if an alternative rises in some individual’s

preferences, then it becomes the unique selected alternative, whether or not it has risen

above other alternatives that were was selected originally. An example of a collective

choice rule that satisfies our condition but not the stronger condition is a variant of

“Black’s rule” that selects the set of Condorcet winners if this set is nonempty and the

set of alternatives with the lowest Borda count12 otherwise.13 (This rule does not satisfy

the stronger version of positive responsiveness because the set of Condorcet winners

for a problem with two individuals, one who prefers x to z to y and the other of whom

prefers y to x to z , is {x , y }, and this set remains the same if the first individual’s prefer-

ences change to prefer x to y to z .)

Note that this definition is equivalent to one in which the modified profile ¼′ raises

some alternative x in the preferences of several individuals, not just one. (That condi-

tion can be obtained by repeatedly applying ours.)

12The Borda count of an alternative is the sum of its ranks in the individuals’ preferences.
13The rule Black (1958, p. 66) suggests differs in that it selects the strict Condorcet winner if one ex-

ists, rather than the set of all Condorcet winners, and the set of alternatives with the lowest Borda count
otherwise.
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May (1952) shows that if the set A of all possible alternatives has two members, the

only anonymous, neutral, and positively responsive collective choice rule is majority

rule, which selects the alternative favored by a majority of individuals, or both alterna-

tives in the case of a tie.

Definition 8 (Majority rule). If the set A of all possible alternatives has two members,

majority rule is the collective choice rule that associates with every collective choice

problem its set of Condorcet winners.

May establishes his result for the domain consisting of all preference profiles, but

it holds also for the domain consisting of all preference profiles without indifference.14

Before stating his result, we give names to these domains and define them precisely.

Definition 9 (DomainsU and S ). For the domainU , for every set X ⊆ A the setU (X )

consists of all preference profiles over X . For the domain S , for every set X ⊆ A the

set S (X ) consists of all preference profiles over X for which no individual is indifferent

between any two members of X .

Theorem 1 (May). Let the domain D be either U or S . If the set A of all possible alter-

natives has two members then the only collective choice rule that is anonymous, neutral,

and positively responsive onD is majority rule.

Note that an implication of this result is that for any collective choice rule F that is

anonymous, neutral, and positively responsive on eitherU orS , for any set X ⊆ A with

two members F (X ,¼) is the set of Condorcet winners of (X ,¼).

For problems with three or more alternatives, many collective choice rules are anony-

mous, neutral, and positively responsive. For example, consider scoring rules, defined

as follows. For each j = 1, . . . , k , where k is the number of members of X , let α(j ) be

a number, with α(1) ≥ α(2) ≥ · · · ≥ α(k ). For each individual i ∈ N and each x ∈ X ,

denote by ρi (x ) the rank of x according to ¼i . The scoring rule with weights α(1), . . . ,

α(k ) selects the set of alternatives x that maximize
∑

i∈N α(ρi (x )). Any scoring rule with

α(1)>α(2)> · · ·>α(k ) is anonymous, neutral, and positively responsive.

14See, for example, Moulin (1988, Exercise 11.2, p. 313).
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Every scoring rule, however, has an undesirable feature: for some set of individuals

and some preference profile ¼ over {x , y , z } for these individuals, the rule selects x for

the collective choice problem ({x , y , z },¼) and y for the problem ({x , y },¼).15 That is, the

alternative selected depends on the presence of an alternative that is not selected.

The condition that we add to May’s list rules out such behavior. It says that remov-

ing unchosen alternatives does not affect the set of alternatives selected. This condi-

tion is an adaptation to collective choice rules of a condition for point-valued solu-

tions used by Nash (1950, condition 7 on p. 159) that is called “independence of irrel-

evant alternatives” in the literature on axiomatic models of bargaining.16 We call it Nash

independence.17

Definition 10 (Nash independence). For any domain D, the collective choice rule F is

Nash independent on D if for every collective choice problem (X ,¼) with ¼ ∈ D(X ) and

every set X ′ ⊂ X for which ¼|X ′ ∈ D(X ′),

F (X ,¼)⊆ X ′ implies F (X ′,¼) = F (X ,¼).

The “Chernoff condition” (Chernoff 1954, Postulate 4, p. 429)18 is another possible

adaptation of Nash’s condition to collective choice rules. This condition says that if the

set of alternatives selected from X includes y (among possibly other alternatives), then

y is among the alternatives selected from any subset of X that contains y (but not nec-

essarily other alternatives that were selected from X ). The condition neither implies nor

is implied by Nash independence.19 We argue that Nash independence, which treats the

15For example, there are seven individuals and z � x � y for three of them, x � y � z for two of them,
x � z � y for one of them, and y � z � x for the remaining individual. (Fishburn 1984 gives this example.)

16Nash himself did not call the condition “independence of irrelevant alternatives”. Note that it differs
from the axiom with the same name used by Arrow (1963, p. 27).

17Chernoff (1954, p. 430) calls it Postulate 5∗; some authors refer to it as “Aizerman”, after its appearance
in Aizerman and Malishevski (1981, p. 1033) (who call it “Independence of rejecting the outcast variants”).

18Called “property α” by Sen (1969, p. 384).
19The Chernoff condition, unlike Nash independence, requires that if the alternative y is selected from

X then it is selected also from subsets of X that contain y but not other alternatives that the rule selects
from X . Nash independence requires that if Y is the set selected from X , then Y is exactly the set selected
from any subset of X that contains Y , whereas the Chernoff condition allows the set selected from such a
subset to include additional alternatives.
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selected set as a unit, is appropriate in our model, where the collective choice rule is

set-valued. If the set of alternatives selected from X is contained in Y ⊂ X then it should

be selected from Y ; the fact that a member of the set of alternatives selected from X is a

member of Y is not convincing evidence that this alternative should be a member of the

set selected from Y .

If there are two individuals and any number of alternatives, the collective choice

rule that selects the set of Condorcet winners (which in this case coincides with the set

of Pareto efficient alternatives) satisfies all four of our conditions (anonymity, neutrality,

and positive responsiveness, and Nash independence).

If the numbers of individuals and alternatives are both at least three, collective choice

rules that satisfy Nash independence and any two of our other conditions (anonymity,

neutrality, and positive responsiveness) are also easy to find.

Anonymity, neutrality, and Nash independence The collective choice rule that assigns

the set X of all alternatives to the problem (X ,¼) is anonymous, neutral, and Nash

independent on any domain. Two other rules that satisfy these properties are the

rule that assigns to every problem the set of Pareto efficient alternatives and the

one that assigns the top cycle set.20

Anonymity, positive responsiveness, and Nash independence For any given complete,

irreflexive, and transitive binary relation on A, the rule that selects the set of max-

imal elements according to the relation is anonymous, positively responsive, and

Nash independent on any domain. (We refer to such rules as constant rules.)

Neutrality, positive responsiveness, and Nash independence The rule that selects the

favorite alternatives of individual 1, breaking ties according to the preferences of

individual 2, and further breaking any ties according to the preferences of individ-

ual 3, and so on (“serial dictatorship”), is neutral, positively responsive, and Nash

independent on any domain.

20The smallest (nonempty) set with respect to set inclusion such that every alternative in the set is
preferred by a majority of individuals to every alternative outside the set.
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We now show that, for an arbitrary number of individuals, only the collective choice

rule that selects the strict Condorcet winner satisfies all four conditions on the domain

of collective choice problems that have strict Condorcet winners. We show also that on

the domain of all preference profiles, no rule satisfies all four conditions.

3. Results

3.1 Condorcet winners

For a collective choice problem that has a strict Condorcet winner, selecting that alter-

native is attractive. We now establish that our four conditions imply the selection of

the strict Condorcet winner on the domain for which such an alternative exists and no

individual is indifferent between any two alternatives.

Definition 11 (DomainC ). For the domainC , for every set X ⊆ A the setC (X ) consists

of the set of preference profiles ¼ over X for which no individual is indifferent between

any two alternatives and (X ,¼) has a strict Condorcet winner.

Theorem 2. A collective choice rule F is anonymous, neutral, positively responsive, and

Nash independent on C if and only if for every X ⊆ A and preference profile ¼ ∈ C (X ),

F (X ,¼) contains a single alternative, the strict Condorcet winner of (X ,¼).

Proof. A collective choice rule F that selects the strict Condorcet winner of each collec-

tive choice problem (X ,¼)with ¼ ∈C (X ) satisfies the four properties on C .

Now let X ⊆ A and ¼ ∈ C (X ), and let c ∈ X be the strict Condorcet winner for the

collective choice problem (X ,¼). Let F be a collective choice rule that is anonymous,

neutral, positively responsive, and Nash independent on C and suppose, contrary to

our claim, that F (X ,¼) contains an alternative different from c .

Step 1. F (X ,¼) contains at least two alternatives different from c .

Proof. If F (X ,¼) = {x , c } or F (X ,¼) = {x } for some x ∈ X \{c } then by Nash independence

we have F ({x , c },¼) = F (X ,¼). Given that c is the strict Condorcet winner of (X ,¼), it is
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the strict Condorcet winner of ({x , c },¼), so that by May’s theorem F ({x , c },¼) = {c }, a

contradiction. C

Step 2. Let x1, . . . ,xk be the distinct alternatives in F (X ,¼) in addition, possibly, to c . Then

for each individual i there exist x j and xl in {x1, . . . ,xk } such that x j �i c �i xl .

Proof. By Step 1, k ≥ 2. Suppose, contrary to the claim, that for some individual i ei-

ther c �i xl for all l ∈ {1, . . . , k } or xl �i c for all l ∈ {1, . . . , k }. Assume, without loss of

generality, that xl �i xk for all l ∈ {1, . . . , k − 1}. Derive the preference profile ¼′ from

¼ by raising xk in i ’s preferences as in the definition of positive responsiveness, with

xk �′i x j for j = 1, . . . , k − 1 and, if c �i xl for all l ∈ {1, . . . , k }, c �′i xk . Then by positive

responsiveness we have x j 6∈ F (X ,¼′) for j = 1, . . . , k − 1, so that either F (X ,¼′) = {xk } or

F (X ,¼′) = {xk , c }. But the ranking of c relative to every other alternative is the same in ¼

as it is in¼′, so c is the strict Condorcet winner of (X ,¼′), contradicting Step 1 applied to

¼′. C

Step 3. F (X ,¼) contains at least three alternatives different from c .

Proof. By Step 1, F (X ,¼) contains at least two alternatives different from c . If it contains

exactly two such alternatives, say x and y , then by Step 2 we have either x �i c �i y or

y �i c �i x for every individual i , in which case c is not the strict Condorcet winner of

(X ,¼). C

Now let x1, . . . , xk be the alternatives in F (X ,¼) in addition, possibly, to c , and de-

note by x ∈ {x1, . . . , xk } the alternative that individual 1 ranks lowest among those in

{x1, . . . , xk } that she prefers to c . (Such an alternative exists by Step 2.) Derive ¼′ from ¼

by raising x to the top of 1’s ranking (without changing the ordering of the other alterna-

tives or changing any other individual’s preferences). Then c is a Condorcet winner for

(X ,¼′) (the ranking of c relative to every other alternative is the same in ¼ and¼′), so that

¼′ ∈ C (X ). Thus by positive responsiveness, x ∈ F (X ,¼′) and the only other alternatives

that can belong to F (X ,¼′) are c and the alternatives in {x1, . . . ,xk }worse for individual 1

than c . Denote the alternatives in {x1, . . . ,xk } that belong to F (X ,¼′) by {y1, . . . , yr }. By

Step 3, r ≥ 2. Denote the alternative in F (X ,¼′) that individual 1 least prefers by y .
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Now further modify individual 1’s preferences: derive ¼′′ from¼′ by raising y so that

it is the best alternative for individual 1 among those worse than c . Then as before, ¼′′ ∈

C (X ). So by positive responsiveness we have y ∈ F (X ,¼′′) and the only other alternatives

that can belong to F (X ,¼′′) are x and c , contradicting Step 3.

3.2 Nonexistence for large domains

Theorem 2 shows that for the domain C of problems that have a strict Condorcet win-

ner, the only collective choice rule that is anonymous, neutral, positively responsive,

and Nash independent is the one that selects the strict Condorcet winner. We now ar-

gue that while collective choice rules satisfying the four conditions exist for some larger

domains, no rule satisfies them for the domain of all preference profiles (Section 3.2.1)

or for the domain of all profiles in which no individual is indifferent between any two

alternatives (Section 3.2.2).

Let D be a domain for which for each set X ⊆ A, D(X ) consists of C (X ) plus ex-

actly one profile ¼ for which (X ,¼) does not have a strict Condorcet winner. Consider

the collective choice rule that assigns the strict Condorcet winner to each problem that

has such a winner, and the set of all alternatives to any problem without a strict Con-

dorcet winner. This rule is clearly anonymous, neutral, and Nash independent.21 It is

also positively responsive, by the following argument. The rule specifies a tie only for

problems without a strict Condorcet winner. If the preference profile for such a problem

is changed by raising alternative x in some individual’s preferences in such a way that

a profile within the domain is generated, then the collective choice problem associated

with this new profile has a strict Condorcet winner. Raising x in one individual’s pref-

erences cannot make some other alternative a strict Condorcet winner, so it must make

x a strict Condorcet winner and hence the unique alternative chosen by the collective

21Note that the rule does not satisfy the Chernoff condition. For a problem without a strict Condorcet
winner, let x and y be alternatives such that a majority of individuals prefer x to y . Then the Chernoff
condition requires that for the problem in which the set of alternatives is {x , y } both x and y are chosen,
violating May’s theorem. We view this argument as an illustration of the inappropriateness of the Chernoff
condition when the collective choice rule is set-valued. For a problem (X ,¼) without a strict Condorcet
winner, the rule we define selects X as a unit and does not have implications for the set of alternatives
chosen from subsets of X .
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choice rule. (We do not know the characteristics of the largest domain for which a col-

lective choice rule satisfying the four conditions exists.)

We now show the nonexistence of a collective choice rule that is anonymous, neutral,

positively responsive, and Nash independent. We first establish a key component of our

arguments: if a collective choice problem has no Condorcet winner then any anony-

mous, neutral, positively responsive, and Nash independent collective choice rule as-

signs to the problem a set consisting of at least two alternatives.

Lemma 1. Let D be eitherU or S and suppose that the collective choice problem (X ,¼),

with ¼ ∈ D(X ), has no strict Condorcet winner. If the collective choice rule F is anony-

mous, neutral, positively responsive, and Nash independent on D then F (X ,¼) is not a

singleton.

Proof. Suppose F (X ,¼) = {x } for some x ∈ X . The fact that x is not a strict Con-

dorcet winner means that for some alternative y ∈ X \ {x } the number of individu-

als i for whom y �i x is at least the number for whom x �i y , so that y is a Con-

dorcet winner of ({x , y },¼). Thus May’s theorem implies that y ∈ F ({x , y },¼). But

F (X ,¼) = {x } ⊂ {x , y } ⊆ X , so by Nash independence, F ({x , y },¼) = F (X ,¼) = {x }, a

contradiction.

3.2.1 Domain of all preference profiles

If there are at least three individuals and three alternatives, no collective choice rule is

anonymous, neutral, positively responsive, and Nash independent on the domainU of

all preference profiles.

Theorem 3. If both the set A of all possible alternatives and the set N of individuals have

at least three members, no collective choice rule is anonymous, neutral, positively respon-

sive, and Nash independent onU .

Proof. Let F be a collective choice rule that is anonymous, neutral, positively respon-

sive, and Nash independent onU .

Denote the number of members of N by n . Choose a subset X ∗ of A with three mem-

bers, x , y , and z . Let ¼∗ be the preference profile in which the preference orderings of
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individuals 1, 2, and 3 are

x �∗1 y �∗1 z

z �∗2 x �∗2 y

y �∗3 z ∼∗3 x

(notice that individual 3 is indifferent between x and z ) and every other individual i is

indifferent between all three alternatives:

x ∼∗i y ∼∗i z for i = 4, . . . , n .

The problem (X ∗,¼∗) has no strict Condorcet winner: only individual 1 prefers x to z ,

only individual 2 prefers z to x , and only individual 3 prefers y to x . Thus by Lemma 1,

F (X ∗,¼∗) contains at least two alternatives, so that if z 6∈ F (X ∗,¼∗) then F (X ∗,¼∗) = {x , y }.

Let ¼∗∗ be the preference profile that differs from ¼∗ only in that y is raised to be indif-

ferent with x , so that y ∼∗∗1 x �∗∗1 z . Then F (X ∗,¼∗∗) = {y } by positive responsiveness, so

that F ({x , y },¼∗∗) = {y } by Nash independence, contradicting May’s theorem because x

and y are both Condorcet winners of ({x , y },¼∗∗). Thus z ∈ F (X ∗,¼∗).

Now let ¼′ be the preference profile that differs from ¼∗ only in individual 3’s prefer-

ence relation, in which y is indifferent to z rather than being preferred to it:

y ∼′3 z �′3 x .

Then by positive responsiveness, F (X ∗,¼′) = {z }. Thus F ({y , z },¼′) = {z } by Nash inde-

pendence, contradicting May’s theorem because y and z are both Condorcet winners of

({y , z },¼′).

3.2.2 Domain of strict preference profiles

For the domain S of preference profiles in which no individual is indifferent between

any two alternatives, no collective choice rule is anonymous, neutral, positively re-

sponsive, and Nash independent if both the number of alternatives and the number
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of individuals are at least three and one of them is at least four. (This result implies

Theorem 3 except when there are exactly three alternatives and three individuals.)

Theorem 4. If both the set A of all possible alternatives and the set N of individuals have

at least three members and at least one of these sets has at least four members, no collective

choice rule is anonymous, neutral, positively responsive, and Nash independent onS .

Proof. Let F be a collective choice rule that is anonymous, neutral, positively respon-

sive, and Nash independent on S .

Denote by n the number of individuals (members of N ) and first suppose that n ≥ 4.

Choose a subset X ∗ of A with three members and let X ∗ = {x , y , z }. Define the preference

relations ¼1, ¼2, and ¼3 by

x �1 y �1 z

y �2 z �2 x

z �3 x �3 y

and denote by ¼∗ the preference profile that consists of the first n members of the in-

finite sequence of preference relations consisting of repetitions of the triple (¼1,¼2,¼3).

(Expressing n as 3s + t for integers s and t with t ∈ {0,1,2},¼∗ consists of s +1 copies of

¼j for j ≤ t and s copies of ¼j for j ≥ t +1.)

We first argue that z 6∈ F (X ∗,¼∗). Suppose to the contrary that z ∈ F (X ∗,¼∗). Let ¼′

be the preference profile that differs from ¼∗ only in individual 1’s preference relation,

in which z becomes the top-ranked alternative:

z �′1 x �′1 y .

Then F (X ∗,¼′) = {z } by positive responsiveness and hence F ({y , z },¼′) = {z } by Nash

independence. Now, for the preference relations ¼1 and¼2 the alternative y is preferred

to z , so y is a Condorcet winner of the problem ({y , z },¼′). (For n = 4, individuals 1 and 3

prefer z to y and individuals 2 and 4 prefer y to z ; for n ≥ 5, more individuals prefer y to

z than z to y .) Thus y ∈ F ({y , z },¼′) by May’s theorem, contradicting F ({y , z },¼′) = {z }.
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Now, the problem (X ∗,¼∗) has no strict Condorcet winner. (More individuals prefer

x to y than y to x , more prefer y to z than z to y , and at least as many prefer z to x

as x to z .) So given z 6∈ F (X ∗,¼∗), Lemma 1 implies that F (X ∗,¼∗) = {x , y }, and hence

F ({x , y },¼∗) = {x , y } by Nash independence. But x is the strict Condorcet winner for

({x , y },¼∗), so F ({x , y },¼∗) = {x } by May’s theorem, a contradiction.

Now suppose that n = 3 and the number of alternatives is at least four. Choose a

subset X ∗ of A with four members and let X ∗ = {w ,x , y , z }. Define the preference profile

¼ by

z �1 w �1 x �1 y

x �2 y �2 z �2 w

y �3 w �3 x �3 z .

Suppose that z ∈ F (X ∗,¼). Let¼′ be the preference profile that differs from ¼ only in

individual 3’s preference relation, in which z becomes the second-ranked alternative:

y �′3 z �′3 w �′3 x .

Then z ∈ F (X ∗,¼′) by positive responsiveness and hence z ∈ F ({y , z },¼′) by Nash inde-

pendence, contradicting May’s theorem because y is the unique Condorcet winner for

({y , z },¼′). Thus F (X ∗,¼)⊆ {w ,x , y }.

Suppose that y 6∈ F (X ∗,¼). Then Lemma 1 implies that F (X ∗,¼) = {w ,x }, and hence

F ({w ,x },¼) = {w ,x } by Nash independence, contradicting May’s theorem because w is

the strict Condorcet winner for ({w ,x },¼). The same argument applies to the alterna-

tives w and x , so we conclude that F (X ∗,¼) = {w ,x , y }.

Now let ¼′′ be the preference profile that differs from ¼ only in individual 3’s prefer-

ence relation, in which w becomes the top-ranked alternative:

w �′′3 y �′′3 x �′′3 z .

Then F (X ∗,¼′′) ⊆ {w ,x } by positive responsiveness, so F ({w ,x },¼′′) = {w ,x } by Nash

17



independence and Lemma 1, contradicting May’s theorem because w is the unique

Condorcet winner for ({w ,x },¼′′).

Remark For a society with three individuals and three alternatives, a collective choice

rule that is anonymous, neutral, positively responsive, and Nash independent onS does

exist: the rule that assigns the top cycle set (see footnote 20) to each problem. As we

remarked on p. 10, this rule is anonymous, neutral, and Nash independent on every do-

main. It is positively responsive by the following argument. If the top cycle set contains

a single alternative, this alternative is a strict Condorcet winner, and remains a strict

Condorcet winner if it improves in some individual’s preferences. Otherwise, the top

cycle set contains all three alternatives and no alternative is a strict Condorcet winner;

if an alternative improves in some individual’s preferences then it becomes the strict

Condorcet winner.

Remark The proof of Theorem 3 shows that the result holds for a weaker combina-

tion of conditions. Specifically, replace anonymity and neutrality with the condition

that the rule coincides with majority rule for sets of alternatives with two members; re-

quire positive responsiveness only for changes in preferences that raise x to the top of

a ranking (a condition we refer to as weak positive responsiveness); and weaken Nash

independence to require only F (X ′,¼)⊆ F (X ,¼) ) (a condition we refer to as weak Nash

independence22). Theorem 4 holds also for this set of conditions except in the case of

five individuals and three alternatives; details are included in the Appendix.

4. Related work

Two lines of work are related to our characterization of the collective choice rule that

selects the strict Condorcet winner (Theorem 2).

Like us, Alemante et al. (2016) extend May’s result to three or more alternatives. A

22The condition is called ε+ by Bordes (1983, p. 125), Aizerman by Moulin (1985, p. 154), and δ∗ by Deb
(2011, p. 340).
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key difference is that they restrict the choice rule to be single-valued.23 In our view, this

restriction is not appealing; it leads to difficulty even in the simplest collective choice

problems, with two individuals and two alternatives where one individual prefers a to b

and the other prefers b to a . Another difference is that their version of positive respon-

siveness (called “monotonicity”, p. 768) requires the raised alternative to remain chosen

and the resulting preference profile to remain in the domain. By contrast, our condi-

tion imposes the weaker requirement that the raised alternative remains chosen if the

resulting profile remains in the domain.

Dasgupta and Maskin (2008) (who extend work by Maskin 1995) take a different ap-

proach to highlight the appeal of “simple majority” rule. They show that among collec-

tive choice rules, this rule satisfies a set of appealing conditions on the largest domain.

Two significant differences between our conditions and theirs are that they require a

collective choice rule to be “almost always” single-valued, and they impose the Cher-

noff condition.24 As we have discussed, we have concerns about the independent ap-

peal of single-valuedness; also we believe that Nash independence is more compelling

for collective choice rules than the Chernoff condition.

Less closely related to our work is Goodin and List (2006). Departing from most work

in the field, they restrict attention to collective choice rules that depend only on the in-

dividuals’ favorite alternatives. With this restriction, they show that only plurality rule25

satisfies (natural adaptations of) May’s conditions. In our view, a significant limitation of

their approach is that information about favorite alternatives is not always rich enough

to capture the intuitive notion of “collective preference” for a preference profile.26

Our results on the nonexistence of collective choice rules satisfying our conditions

on large domains, Theorems 3 and 4, are part of the huge literature initiated by Arrow

23Campbell and Kelly (2003, 2015, 2016) also consider single-valued rules, but the axioms they use to
characterize the rule that selects the strict Condorcet winner are unrelated to May’s.

24Dasgupta and Maskin call this condition “independence of irrelevant alternatives” (though it is for-
mally distinct from Arrow’s condition of the same name). We discuss the differences between the Chernoff
condition and Nash independence in the paragraph following Definition 10.

25Plurality rule selects the alternatives that are most preferred by the largest number of individuals.
26Suppose, for example, that a is the favorite alternative of slightly less than a third of the individuals

and second-best for every other individual. If the favorite of these individuals is equally split between
b and c , then a (which is the strict Condorcet winner) appears to better reflect the collective preference
than b or c .
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(1951). One of our key conditions, positive responsiveness, is a variant of the condition

“positive association of social and individual values” discussed by Arrow (1963, pp. 25–

26) but not used in his classic result about aggregating individual preferences into a tran-

sitive collective preference (Theorem 2, p. 97).

The first authors to impose such a requirement were Mas-Colell and Sonnenschein

(1972). Their Theorem 2 shows that Arrow’s result continues to hold when the require-

ment on the collective preference is weakened to quasi-transitivity (that is, the strict

preference relation is transitive) as long as the preference aggregation rule satisfies a

version of positive responsiveness (p. 186).

A quasi-transitive preference relation induces a Nash independent choice rule, so

Mas-Colell and Sonnenschein’s result has implications for collective choice rules. How-

ever, a comparison with our results is not straightforward. On the one hand, Arrow’s

conditions are more permissive than May’s for sets with two alternatives. On the other

hand, quasi-transitive preferences impose rationality requirements beyond Nash inde-

pendence, including the Chernoff condition and Sen’s property γ.27

Blair et al. (1976) shift the focus from preference aggregation to collective choice.

Broadly, their results establish incompatibility between “normative” binary conditions

(for choice from sets of two alternatives) and “rationality” conditions (linking choices

from larger sets to binary sets). For binary sets, their Theorem 6 imposes Arrow’s con-

ditions28 and the strong version of positive responsiveness described at the end of the

introduction. It shows that these conditions are incompatible even with the weak ratio-

nality requirement in the Chernoff condition.

The subsequent literature extends Blair et al. in various ways, but generally main-

tains some version of the Chernoff condition (see, e.g., the results presented in Deb’s

survey, 2011). A notable exception is Duggan (2017), who instead imposes weak Nash

independence and Sen’s property γ. His Theorem 12 shows that these rationality con-

ditions are incompatible with normative conditions that are even weaker than those

27Property γ requires that an alternative chosen from the collective choice problems (X ,¼) and (Y ,¼)
must be chosen from (X ∪Y ,¼) (Sen 1971, p. 314).

28They impose a stronger version of Arrow’s non-dictatorship condition that also rules out “weak” dic-
tatorship.
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considered by Blair et al. (with the main difference being a less demanding responsive-

ness requirement). Despite the obvious relationship to our work, the same difficulties

(discussed in connection with Mas-Colell and Sonnenschein’s work) arise in comparing

this result with ours: Duggan simultaneously imposes weaker restrictions on choices

from binary sets and stronger rationality restrictions on choice from larger sets.29

In this sense, the closest comparison with our work is Bordes (1983), who restricts

his analysis to collective choice rules that coincide with majority rule on binary sets. His

Theorem 2 shows that, within this restricted class of rules, the “uncovered set”30 rules

satisfy some particularly appealing properties—including the rationality properties of

weak Nash independence and Sen’s γ as well as weak versions of the Pareto condition

and our positive responsiveness condition (which imposes only the first condition of

Definition 7, namely that x ∈ F (X ′,¼)when x is raised).

As we discuss after the proof of Theorem 3, our argument shows that no collective

choice rule that coincides with majority rule on binary sets satisfies weak Nash inde-

pendence and a weakening of positive responsiveness in which the second condition

requires y /∈ F (X ′,¼) only if x is raised to the top of an individual’s preference ordering.

In light of Bordes’ result, this raises questions about the implications of imposing a pos-

itive responsiveness condition between this version and Bordes’ weaker requirement.

Intuitively, the collective choice rules that satisfy each of our two main conditions,

positive responsiveness and Nash independence, differ in character. The only overlap

seems to be the constant rules or dictatorial rules. This raises the question of whether

our Theorems 3 and 4 can be generalized by weakening neutrality to Pareto efficiency

and anonymity to non-dictatorship. In recent work, Brandt, Brill, and Harrenstein es-

tablish such a result for the domain S of strict preferences when the collective choice

rule satisfies the strong version of positive responsiveness described at the end of the

introduction.31

29As discussed, Nash independence can be weakened to weak Nash independence in our results.
30To define one such rule, say that x beats y if a strict majority of individuals prefer x to y , and x thor-

oughly beats y if x beats y , any alternative beaten by y is beaten by x , and any alternative that beats x also
beats y . The rule that selects, for each choice problem, the alternatives that are not thoroughly beaten
defines a restrictive version of the uncovered set (usually attributed to McKelvey—see Duggan 2013).

31We are grateful to the authors for making available to us a draft of their paper.
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Appendix

The proof of Lemma 1 uses anonymity, neutrality, and positive responsiveness only

through May’s theorem, so that Lemma 1 remains true if anonymity and neutrality are

replaced by the condition that the rule coincides with majority rule for sets of alterna-

tives with two members and positive responsiveness is replaced by weak positive re-

sponsiveness. The proof also uses only weak Nash independence.

The following result shows that Theorem 4 holds under weaker conditions than the

ones we state.

Theorem 5. Denote the number of alternatives by k and the number of individuals by n.

If k ≥ 3, n ≥ 4, and (k , n ) 6= (3,5), then no collective choice rule coincides with majority

rule for sets of alternatives with two members and satisfies weak positive responsiveness

and weak Nash independence.

Proof. The argument in the proof of Theorem 4 goes through until the third sentence

of the fourth paragraph (beginning “So given”). The rest of this paragraph should be

replaced with the following argument. So given z 6∈ F (X ∗,¼), Lemma 1 implies that

F (X ∗,¼∗) = {x , y }. Let ¼∗∗ denote the preference profile that differs from ¼∗ only in that

y is raised to the top of ¼1. By weak positive responsiveness, F (X ∗,¼∗∗) = {y }, so that

F ({x , y },¼∗∗) = {y } by weak Nash independence. But if n 6= 5, x is the strict Condorcet

winner for ({x , y },¼∗∗), so F ({x , y },¼∗∗) = {x } by the condition that the rule coincides

with majority rule for sets of alternatives with two members. This contradiction estab-

lishes the result for k ≥ 3 and n ≥ 4 with n 6= 5.

For k ≥ 4 and n = 5, consider the following profile ¼∗:

x �1 y �1 z �1 w

y �2 z �2 w �2 x

z �3 w �3 x �3 y

w �4 x �4 y �4 z

x �5 y �5 z �5 w .
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Suppose that y ∈ F ({x , y , z , w },¼∗). Let ¼∗∗ denote the preference profile that differs

from ¼∗ only in that y is raised to the top of ¼3. By weak positive responsiveness and

weak Nash independence, F ({x , y },¼∗∗) = {y }, violating the condition that the rule coin-

cides with majority rule in this case since x is the strict Condorcet winner for ({x , y },¼∗∗).

Similar arguments rule out z ∈ F ({x , y , z , w },¼∗) and w ∈ F ({x , y , z , w },¼∗). Thus,

F ({x , y , z , w },¼∗) = {x }, which violates Lemma 1 since ({x , y , z , w },¼∗) has no strict Con-

dorcet winner.
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