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RESUME 

Les facteurs génétiques peuvent apporter des réponses à plusieurs questions que nous 

nous posons sur les traits humains, les maladies et la réaction aux médicaments, entre autres.  

Avec le temps, le développement continu d'outils d'analyse génétique nous a permis 

d'examiner ces facteurs et de trouver des explications pertinentes.  Cette thèse explore 

plusieurs méthodes et outils génétiques, tels que le séquençage pan-exomique et le génotypage 

sur puce, dans un contexte d'analyse familial et populationnel pour étudier ces facteurs 

génétiques qui jouent un rôle dans une maladie rare, la cardiomyopathie dilatée (DCM), et 

dans deux traits complexes soient les globules rouges et les plaquettes. 

DCM est une maladie rare qui est définie par un ventricule gauche dilaté et une 

dysfonction systolique.  Environ 30% des cas de DCM sont héréditaires, et plus de 50 gènes 

ont été associés à un rôle dans la pathogénicité de DCM.  Le dépistage génétique est un outil 

de référence dans la gestion clinique de DCM familiale.  Par contre, pour la majorité des 

patients, les tests génétiques ne parviennent pas à identifier une mutation causale dans un gène 

candidat. 

Les cellules sanguines remplissent une variété de fonctions biologiques, incluant le 

transport de l'oxygène, les fonctions immunologiques, ainsi que la guérison de plaies.  Les 

niveaux de ces cellules et leurs paramètres auxiliaires sont mesurés par un test sanguin, et une 

différence avec les valeurs optimales peut signifier certains troubles.  De plus, ces traits sont 

étudiés méticuleusement dans le contexte des maladies cardiovasculaires (CVD) où différents 

niveaux sont associés avec un risque variable de CVD ou sont des prédicteurs de 

complications de CVD. 
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J'ai examiné la DCM et les traits sanguins avec comme objectif de découvrir des 

nouvelles associations de mutations génétiques.  Pour la DCM, j'ai évalué la pertinence d'un 

séquençage pan-exomique dans un environnement clinique.  Je rapporte plusieurs nouvelles 

mutations dans des gènes candidats (DSP, LMNA, MYH7, MYPN, RBM20, TNNT2) et des 

mutations nonsenses dans deux gènes nouvellement associés (TTN et BAG3), et je démontre 

que les mutations nonsenses influencent la maladie d'une manière différente des autres 

mutations causales.  Je rapporte aussi une mutation dans un nouveau gène, FLNC, qui cause 

une forme rare et distincte de cardiomyopathie.  Pour l'étude des traits complexes, dans le 

grand consortium Blood Cell Consortium (BCX), j'ai utilisé l’exomechip pour disséquer le 

rôle des variantes rares et communes dans les globules rouges et les plaquettes.  J'ai identifié 

16 nouvelles régions génomiques associées avec les globules rouges et 15 avec les plaquettes, 

parmi lesquelles se retrouvent plusieurs variantes de basses fréquences (MAP1A, HNF4A, 

ITGA2B, APOH), et j'ai démontré un chevauchement significatif de régions associées avec 

d'autres traits, incluant les lipides.   

Mes résultats sur la DCM ont mis en évidence le rôle de plusieurs gènes candidats, et 

suggèrent un traitement différent au niveau de la gestion clinique des patients qui portent des 

mutations dans BAG3 et FLNC.  En ce qui concerne les traits sanguins, mes résultats 

contribuent à enrichir le répertoire de régions associées avec ces traits, soulignant l'importance 

de l'utilisation de grands ensembles de données pour détecter les variantes rares ou de basses 

fréquences.  La découverte de gènes dans les maladies rares et les traits complexes contribue à 

la compréhension des mécanismes sous-jacents qui ultimement favorisera de meilleurs 

diagnostics, gestions et traitements de maladies. 
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ABSTRACT 

Genetic factors hold within them the answers to many questions we have on human 

traits, disease, and drug response among others. With time, the continuously advancing genetic 

tools have enabled us to examine those factors and provided and continue to provide 

astonishing answers. This thesis utilizes various methods of genetic tools such as exome 

sequencing and chip-based genotyping data in the context of both family and population-based 

analyses to interrogate the genetic factors that play a role in a rare disease, dilated 

cardiomyopathy (DCM), and in two complex traits, red blood cells and platelets.  

DCM is a rare disease that is defined by a dilated left ventricle and systolic dysfunction. 

It is estimated that 30% of DCM cases are hereditary and more than 50 genes have been linked 

to play a role in the pathogenesis of DCM. Genetic screening of known genes is a gold 

standard tool in the clinical management of familial DCM. However, in the majority of 

probands, genetic testing fails to identify the causal mutation. 

Blood cells play a variety of biological functions including oxygen transport, 

immunological functions, and wound healing. Levels of these cells and their associated indices 

are measured by a blood test, and deviation from optimal values may indicate certain 

disorders. Additionally, these traits are heavily studied in the context of cardiovascular disease 

(CVD) where different levels associate with a variable risk of CVD or are predictors of CVD 

complications or outcomes (for example, a higher level of white blood cells or lower level of 

hemoglobin).  

I examined both DCM and blood cell traits and aimed to discover new mutations and 

variants that are associated with each. For DCM, I evaluated the value of whole exome 
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sequencing in a clinical setting, and I report a number of novel mutations in candidate genes 

(DSP, LMNA, MYH7, MYPN, RBM20, TNNT2) and truncating mutations in two newly 

established genes, TTN and BAG3, and I demonstrate that truncating mutations in the latter 

influence disease differently than other causal mutations. I also report a mutation in a novel 

gene, FLNC that causes a rare and distinct form of cardiomyopathy. In examining complex 

traits, I dissected the role of common and rare variants in red blood cells and platelets within a 

large consortium, the Blood Cell Consortium (BCX) using the ExomeChip, and identified 16 

novel loci associated with red blood cell traits and 15 with platelet traits, some of which 

harbored low-frequency variants (MAP1A, HNF4A, ITGA2B, APOH), and demonstrated a 

substantial overlap with other phenotypes predominantly lipids.  

My results on DCM establish the role of a number of candidate genes in this disorder and 

suggest a different course of clinical management for patients that carry mutations in BAG3 

and FLNC. As for blood cell traits, my results contributed to expanding the repertoire of loci 

associated with red blood cell and platelet traits and illustrate the importance of using large 

datasets to discover low-frequency or rare variants. Gene discovery in rare disease and 

complex traits gives insight into the underlying mechanisms which ultimately contributes to a 

better diagnosis, management, and treatment of disease.  

 

Keywords:        Dilated cardiomyopathy, whole-exome sequencing, family study, blood 

cell traits, exome chip, population study, Blood Cell Consortium (BCX) 
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CHAPTER 1:  INTRODUCTION 

1.1.PREFACE 

Genetic factors not only govern how we look or act but more importantly our 

susceptibility to disease. Ever since it was discovered that disease could be inherited according 

to the rules of Mendel in the early 1900s, genetics has become a compelling area of research 

and the key that holds the answers to the mysteries of human disease. A lot of what we know 

today regarding the causes of disease, prognosis, management, and treatment could be 

attributed to our understanding of genetics. Despite all these discoveries, many questions are 

left unanswered and serve as drivers to more research which has led to tremendous 

collaborations between scientists around the globe.  

The influence of genetics on disease can be broadly divided into two main categories: i) 

monogenic and ii) complex. The first describes a group of diseases that are usually rare and 

inherited following the expected Mendelian ratios of offspring and caused by mutations that 

disrupt the function of a single locus or gene. Complex traits, on the other hand, arise due to 

the modest effect of many variants in multiple genes (polygenic), environmental factors, as 

well as their intricate interplay.   

Hence, genetic factors influence each group differently, and it follows that the methods 

used to analyze each category as well as the interpretation and clinical relevance of the genetic 

findings are extremely distinct. This thesis addresses both categories.  I will discuss the 

genetics of cardiomyopathy as an example of a rare disorder, and blood cell traits as an 

example of complex traits. I will talk about the clinical aspect of each group and the genetic 

approaches used within each to hunt for novel genes.  
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The thesis allows a broad discussion on the methodology, analysis, tools, and the 

challenges that are specific to each type of diseases/traits. It highlights the importance of the 

advances that we have achieved in genetics in both realms of human disease and how they are 

used to improve our knowledge and advance treatment options in the near and far future. 
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1.2.CARDIOMYOPATHY: A RARE DISORDER 

1.2.1. Relevant Clinical Background 

The American Heart Association defines cardiomyopathies as a heterogeneous group of 

heart muscle disorders associated with mechanical and/or electrical dysfunction that exhibit 

ventricular hypertrophy or dilation often leading to progressive heart failure 1. Several 

classifications of cardiomyopathies exist. One broad classification divides cardiomyopathies 

into primary and secondary. Primary cardiomyopathy affects specifically the heart muscle, 

whereas in secondary cardiomyopathy the myocardium is affected as part of a systemic 

disorder, such as muscular dystrophy for instance, where multiple organs are involved 1.  

Cardiomyopathies are further classified into several types based on clinical 

manifestation. The major ones being hypertrophic cardiomyopathy (HCM), dilated 

cardiomyopathy (DCM), arrhythmogenic right ventricular cardiomyopathy (ARVC), 

restrictive cardiomyopathy (RCM, and left ventricular non-compaction cardiomyopathy 

(LVNC). Often these disorders are familial and caused by a mutation in one gene.  

1.2.1.1. Prevalence and Pathophysiology of DCM 

DCM is the second most common type of cardiomyopathy after HCM with estimated 

prevalence of 1 in 2500 2. This estimate though comes from a study conducted between 1975-

1984, where awareness and diagnostic tools were limited and thus it underestimates the actual 

disease prevalence. Hershberger et al. 3 relied on recent observations of DCM cases as well as 

estimates of other forms of cardiomyopathy to derive a new prevalence for DCM which was 

suggested to be 1:250 or 0.4%, i.e. a significant 10 fold increase from the original value.  
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DCM is characterized by left ventricular (LV) dilatation and systolic dysfunction in the 

absence of other causes of systolic impairment such as severe hypertension, coronary artery 

disease or severe valve disease. This enlargement impairs the systolic function of the heart 

which reduces the heart’s ability to sufficiently pump blood to the body (Figure 1.1). DCM 

mainly involves the left ventricle, however, right ventricular dilatation and dysfunction may 

also manifest, but are not necessary for the diagnosis of the disease. DCM is the third cause of 

heart failure and leads to decline in LV contractile function, arrhythmias, conduction system 

abnormalities, and thromboembolism. Additionally, it is the major indication for cardiac 

transplantation. 

Early compensation for systolic dysfunction and decreased cardiac output (cardiac 

output= stroke volume x heart rate) is achieved by increasing the stroke volume, heart rate, or 

both. This compensation is also accompanied by an increase in peripheral vascular tone which 

helps to maintain normal blood pressure. Compensation of low cardiac output is explained by 

the Frank-Starling mechanism which states that myocardial force at end-diastole increases as 

the cardiac muscle length increases. This leads to a greater amount of force as the muscle is 

stretched. However, overstretching leads to reduced myocardial contractility.   

Decreased cardiac output leads to neurohormonal adaptations such as the activation of 

the renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous systems in order 

to maintain organ perfusion. This is accomplished by maintaining systemic pressure by 

vasoconstriction and by restoration of cardiac output. Other factors include vasoconstrictor 

endothelin and the vasodilators atrial natriuretic peptide, brain natriuretic peptide, and nitric 

oxide. Natriuretic peptide levels are elevated in individuals with dilated cardiomyopathy.  
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In the short term, neurohumoral activation is beneficial in patients with HF since it 

contributes to cardiac output restoration and improves tissue perfusion by increasing cardiac 

contractility, vascular resistance and renal sodium retention. However, these compensatory 

mechanisms over the long term, lead to further myocardial dysfunction due to pulmonary and 

peripheral edema, increased afterload,  and pathologic myocardial remodeling. 

The changes in the normal performance of the heart and cardiomyocytes promotes 

ventricular remodeling, a process that leads to changes in the heart’s size (increase in 

myocardial mass) and function in order to improve and maintain the LV performance. 

Although this results in immediate benefit, in the long run, LV remodeling becomes 

maladaptive leading to many changes including cardiomyocyte death and fibrosis or excessive 

deposition of collagen that eventually causes progressive contractile dysfunction. 

 

The changes in the normal performance of the heart and cardiomyocytes promotes 

ventricular remodeling, a process that leads to changes in the heart’s size (increase in 

myocardial mass) and function in order to improve and maintain the LV performance. 

Although this results in immediate benefit, in the long run, LV remodeling becomes 

maladaptive leading to many changes including cardiomyocyte death and fibrosis or excessive 

deposition of collagen that eventually causes progressive contractile dysfunction 4.  

   

1.2.1.2. Clinical Presentation and Diagnosis 

Affected individuals usually present with symptoms and signs of heart failure (e.g. 

syncope, shortness of breath upon exertion), arrhythmias, thromboembolic disease (e.g. 
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stroke), or even sudden cardiac death. Clinical diagnosis is made following cardiac imaging 

tests such as echocardiography and magnetic resonance imaging (MRI). Echocardiography 

allows cardiologists to evaluate the volume and functions of the four chambers of the heart and 

assess pulmonary pressure and other parameters. MRI provides both anatomical and functional 

information.  

Age of presentation of DCM is extremely wide ranging from infancy to late adulthood, 

but most commonly manifests between ages 30-60 3. In fact, the clinical phenotype of DCM is 

extremely variable in terms of age of onset, characteristics and severity, across families and 

among members of the same family. 

 

1.2.1.3. Treatment 

The main goal of HF therapy is to reduce morbidity and mortality by reducing 

symptoms, improving quality of life and decreasing the rate of hospitalization.  Modulation of 

neurohormonal mechanisms is an important therapeutic target. Therefore, pharmacologic 

management is targeted to counteract the deleterious effects of sympathetic nervous system 

activation, and the Renin-Angiotensin-Aldosterone System (RAAS) to ultimately minimize 

cardiac remodeling. Drugs that have been shown to reduce HF-related morbidity and mortality 

include beta adrenergic receptor blockers, angiotensin converting enzyme inhibitors, 

angiotensin receptor blockers and mineralocorticoid receptor antagonists. Diuretics alleviate 

HF symptoms by reducing filling pressures.  
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In addition to pharmacologic treatment, device therapy is considered in certain 

individuals. Biventricular pacing provides electromechanical coordination and improves 

ventricular synchrony in patients with severe systolic dysfunction and conduction delay (e.g. 

left bundle branch block). An implantable cardioverter-defibrillator (ICD) may be used for 

primary or secondary prevention of sudden cardiac death.  Finally, a ventricular assist device 

may be used in patients with end stage HF, either as destination therapy or as a bridge to 

cardiac transplantation. 

 Individuals with severe systolic dysfunction and advanced stages of heart failure are 

considered for cardiac transplantation.  

1.2.1.4. Familial DCM and Family Screening 

It is estimated that 30-35% of all DCM cases are familial 1; 5. The familial nature of 

DCM is established when two or more related family members meet the diagnostic definition 

of idiopathic DCM 6 or when there is a family history of sudden death or conduction system 

disease or skeletal myopathy.  

In familial DCM, the disease is caused by a mutation in a gene that is most commonly 

transmitted in an autosomal dominant fashion. Autosomal recessive, X-linked, and 

mitochondrial forms also exist, albeit less frequent. A detailed family history is indispensable 

in order to establish the “familial” nature of idiopathic DCM. It is recommended that all first- 

degree relatives and family members of individuals with idiopathic DCM undergo clinical and 

image testing to determine the number of affected individuals particularly since they may 

remain asymptomatic for many years. Early diagnosis is essential in order to monitor affected 

individuals, and in some cases intervene clinically, for instance by administration of anti-
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hypertensive drugs or implanting an ICD. The major challenge remains that even 

asymptomatic individuals that get tested may have normal imaging exams but still be carriers 

of the disease-causing mutation. These individuals may suffer from sudden cardiac death as a 

first symptom. Therefore, genetic screening of family members in an attempt to identify the 

causal mutation is as important as clinical testing in these families and provides additional 

vital information for familial disease management and clinical intervention.     

1.2.1.5. DCM and Reduced Penetrance 

Penetrance is defined as the proportion of carriers of a disease mutation that develop the 

disease. It is calculated using the family pedigree. Given that DCM is a late-onset disease, 

unaffected young individuals are often non-informative to such analyses since they may still 

develop the disease at a later time. For that reason, often penetrance is calculated by 

considering individuals at an older age. Familial DCM is described to have reduced 

penetrance, meaning that not all carriers of disease causing mutations show the disease 

phenotype. An evidence of reduced penetrance is shown once an unaffected individual has 

both an affected parent and offspring. The reason for reduced penetrance is not known, but it 

is speculated that it is likely explained by modifier genetics and or/ environmental factors.  

1.2.1.6. Other types of cardiomyopathy  

1.2.1.6.1. HCM  

HCM is the most common form of cardiomyopathy with estimated prevalence of 1:500 1 

, although epidemiological studies may have underestimated its prevalence since some patients 

remain undiagnosed due to incomplete phenotypic expression. HCM is also the most common 
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cause of sudden cardiac death. It is a clinically heterogeneous disorder characterized by left 

ventricular wall thickening (Figure 1.1), without LV dilation or other cardiac disease 5. The 

hypertrophy observed in HCM is idiopathic and is not due to other factors such as 

hypertension or aortic stenosis. Clinical manifestations include diastolic dysfunction, left 

ventricular outflow tract obstruction, ischemia, atrial fibrillation, abnormal vascular responses 

and, in 5% of patients, the disease progresses to systolic impairment leading in some cases to 

heart failure 7.  

The cause of death in HCM patients is mainly attributable to sudden cardiac death, heart 

failure, and embolic stroke. However, thanks to advances in management strategies, disease-

related mortality is comparable to that of the general population and is estimated to be 0.5%, a 

substantial improvement from previous estimates of 1.3-1.4% between 1981 and 2002 8; 9. 

 Management of HCM includes, among others, conventional therapy for diastolic 

dysfunction, atrial fibrillation, ventricular arrhythmias, and heart failure7.  HCM is a genetic 

disorder with an autosomal dominant inheritance. Mutations that cause HCM are mainly in 

sarcomeric genes, and mutations in MYBPC3 and MYH7 alone explain between 70-80% of 

HCM cases 3; 10. The main challenges for HCM genetic discovery, lies in exploring the 

influence of modifier genetics on the disease heterogeneity.  

1.2.1.6.2. ARVC 

Arrhythmogenic right ventricular cardiomyopathy or ARVC is characterized by right 

ventricular degeneration, fatty or fibrofatty tissue replacement, and ventricular arrhythmias 

(Figure 1.1). In early stages of the disease, structural changes are confined to localized regions 

of the right ventricle (RV), which is referred to as the “triangle of dysplasia” which includes 
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the inflow tract, outflow tract, or apex of the RV 11. The disease may progress to the left 

ventricle affecting the posterior lateral wall and evolve into a DCM phenotype leading to 

biventricular heart failure in advanced stages of the disease. A left-dominant type is also 

observed 12.  

ARVC is less common than HCM (1:5000 estimated prevalence) but is an important 

cause of sudden cardiac death, particularly in young athletes 13; 14. In fact, the risk of sudden 

cardiac death increases in ARVC patients upon exertion.  The mechanism of SCD in ARVC is 

cardiac arrest due to sustained ventricular tachycardia or ventricular fibrillation.  

Just like other cardiomyopathies, management of the disease aims to prevent disease 

progression, improve the quality of life, and reduction of mortality. Clinical management thus 

consist of lifestyle changes, pharmacological treatment (e.g. antiarrhythmic agents or beta-

blockers), ablation therapy, ICD implantation, and heart transplantation15. ARVC is a genetic 

cardiomyopathy with mainly an autosomal dominant inheritance pattern. More than 10 genes 

have been implicated in ARVC and desmosome related genes explain a substantial proportion 

of ARVC cases 16.  
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Figure 1.1. Heart morphologies of the most common types of cardiomyopathy 

 

 
 
Figure 1.1. Compared to a normal heart (top), a dilated cardiomyopathy heart has a dilated left ventricle that 

leads to a systolic dysfunction which is measured clinically by the ejection fraction (EF) or the fraction of 

blood that is pumped to the rest of the body at each contraction. In hypertrophic cardiomyopathy, the 

ventricular wall is thickened leading to a decrease in the end-diastolic volume dimension. Arrhythmogenic 

right ventricular cardiomyopathy mainly affects the right ventricle and is characterized by fibro-fatty tissue 

replacement. Figure from 3.  
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1.2.1.6.3. Restrictive Cardiomyopathy (RCM) 

RCM is thought to be the rarest type of cardiomyopathy. RCM causes increased stiffness 

in the myocardium that results in impaired ventricular filling in the presence of normal or 

reduced diastolic and/or systolic volumes and normal ventricular wall thickness 1; 5.  

RCM does not appear to be a distinct type of cardiomyopathy as it results due to a 

functional rather than an anatomical defect and thus occurs in patients with other types of 

cardiomyopathy, mainly end-stage HCM or DCM. Nonetheless, it is thought that RCM is a 

genetic disease that often has an autosomal dominant inheritance. Genetic studies have 

implicated mainly sarcomeric genes with RCM 17; 18; often patients in the studies had other 

types of cardiomyopathy with restrictive physiology 19; 20.     

1.2.1.6.4. Left Ventricular Non-compaction Cardiomyopathy (LVNC) 

It is not clear whether LVNC constitutes a distinct type of cardiomyopathy or is just a 

physiological manifestation shared by different types of cardiomyopathies.  LVNC, first 

described as a “spongy myocardium” 21 is characterized by prominent trabecular meshwork 

and deep recesses in the ventricular wall that takes place in the early stages of embryogenesis 

22. Trabeculae are sheets of cardiomyocytes lined by endocardial cells that form in the 

ventricular cavity in early embryogenesis and increase the surface area for gas exchange. In 

LVNC, the myocardium is thickened and stiff. 

LVNC is classified by the American Heart Association as a primary genetic 

cardiomyopathy 1, whereas the European Society of Cardiology considers it as an unclassified 

cardiomyopathy 5. There are multiple etiologic bases for LVNC: 1) LVNC may occur in 

isolation ; 2) in association with other genetic diseases (cardiomyopathies) or congenital 
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disorders such as Ebstein’s anomaly and other neuromuscular disorders 5 ; 3) may be acquired 

in other physiologic or pathologic conditions; 4) or it can be either permanent or transient. 

Hence, LVNC may originate during embryonic development or can be acquired “later in life”.  

The population prevalence of isolated LVNC is 0.014% 23.  

Clinical management of LVNC depends on the functional phenotype and related 

complications and includes ICD implantation, resynchronization therapy, and ablation 

procedure. LVNC can be familial or sporadic. Genes that have been implicated with this 

physiological cardiomyopathy are involved in several pathways including sarcomeric 

function24, cytoskeletal organization25, and notch signaling pathway22.   

1.2.1.7. Heart Failure  

All different types of cardiomyopathy may lead to heart failure (HF) in advanced stages 

of the disease. HF is a major health burden worldwide. It is a relatively common condition 

with 50,000 new patients diagnosed each year in Canada 26. The five year survival rate is 

estimated to be 50% 27 .  

Despite the improvement in cardiovascular disease management and the therapeutic 

advances, heart failure incidents remain on the rise. The incidence of new cases of HF is 

increasing by 1% per year in individuals > 65 years, and it is thus estimated that the incidence 

of new cases may reach 1 million per year by the year 2050 in the US which is twice the 

current number 28. There is a huge hope that genomics will further our understanding of the 

pathophysiology of heart failure which may aid in identifying individuals at higher risk based 

on the person’s genetic/biomarker profile (disease prediction) and may lead to new drug 

discovery and individualized treatment. 
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1.2.2. DCM as a Genetic Disorder 

Genetic causes of DCM account for 30-35% of cases. More than 50 genes have been 

shown or posited to play a role in DCM (Table 1.1), although less than half are thought to be 

definitively implicated in the disease and the rest are possible candidates. Ongoing and future 

studies will continuously clarify the status of DCM candidates as more well-characterized 

causal mutations in those genes are discovered. The genetic information gleaned so far has 

proven to be effective in disease diagnosis and management 29. Genetic screening identifies a 

likely causal mutation in candidate genes in 30-35% of cases 30.   

DCM genes encode for a wide variety of proteins that constitute the sarcomere, nuclear 

envelope, cytoskeleton, sarcolemma, ion channels, and intercellular junctions among others. 

DCM results when the function of the myocardium is weakened due to the disruption of 

muscle contraction, calcium homeostasis, functioning of the ion channels, or mechanic force 

of the myocardium.   

Many of the genes causal of DCM overlap with other forms of cardiomyopathy and other 

disorders (e.g. channelopathies and neuromuscular disorders) 3 Figure 1.2. Indeed, the 

repertoire of DCM genes (Table 1.1) has expanded over the years with the evolving genetic 

“mapping” technologies that I will describe below.  

1.2.2.1. Genetic Approaches in Monogenic Disease 

1.2.2.1.1. Linkage Analysis 

Most of the genes that were implicated in DCM were the result of linkage studies. 

Traditionally, linkage analysis served as a gene mapping tool that uses recombinant 

technology to map genetic markers or loci. If in a given pedigree, two genetic loci segregate 
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together more often than by random chance, they are said to be linked, in other words they lie 

close on the same chromosome. Linkage can be used to map a certain locus since the distance 

between two loci depends on the frequency of recombination between them.  Hence, instead of 

distances expressed in base pairs, a genetic map gives distances in recombinational units 

(centimorgan, cM). This method can be exploited to locate an unknown disease locus in a 

pedigree by investigating the inheritance patterns of regions of the genome in affected and 

unaffected individuals to determine whether a genetic marker or locus is segregating with the 

disease. When linkage between a marker and disease is established, its extent is regarded as an 

approximation of the physical distance between the marker involved and the causative disease 

locus. Markers with known locations are used to locate the most likely position of the disease 

gene. 

Linkage is tested by the Logarithm of Odds Ratio (LOD) which is the logarithm of the 

ratio of the probability of linkage by the probability of no linkage. Linkage analyses has been 

successful in identifying the genes linked to many Mendelian disorders such as Huntington’s 

disease 31 , cystic fibrosis 32, and familial hypercholesterolemia 33.   

For DCM, the first series of loci implicated in the disease were identified by using 

linkage analysis. The first wave of linkage studies identified regions of the human genome that 

harbored several candidate genes. The very first DCM gene identified by linkage analysis was 

dystrophin, DMD, in families with X-linked DCM 34; 35. The first chromosomal region to be 

linked with autosomal DCM came a year later 36, although the gene was not identified. 

Following these studies, linkage analyses successfully identified more loci linked to DCM 

such as ACTC1 37, LMNA 38, SCN5A 39; 40 and others.  
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Despite the enormous contribution to gene discovery that resulted from linkage analyses, 

there were several caveats and challenges associated with this tool. Firstly, the method is 

successful in large pedigrees which are not always available. Second, if the disease is caused 

by a mutation in one gene only, then LOD scores from different families can be added to one 

another. However, the power of linkage is reduced in the presence of locus heterogeneity. For 

example, if the Mendelian trait can be caused by different genes in different families, then you 

would need more families since the analysis will rely solely upon families with high 

likelihoods of linkage to a particular disease locus.     Third,  the regions identified may span 

several genes, which is the reason why many earlier studies identified a region without being 

able to pinpoint the association to a specific gene. Hence, a fine-mapping step by sequencing 

the coding regions of candidate genes is required, which could be expensive and labor 

intensive, and thus a major limiting factor. For example, TTN, which was first identified in 

2002 as a DCM gene 41, had been a candidate gene since 1999 by a linkage study 42. The study 

had identified a linkage region that included several genes, and TTN was named as a possible 

candidate but further fine-mapping and sequencing of the region were hindered by its 

enormous size. However, thanks to the technological advances and the advent of next 

generation sequencing, the issues associated with linkage analyses could now be addressed.   
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Figure 1.2. Genetic heterogeneity of DCM 

 

 
 
Figure 1.2. The major genes that play a role in the pathogenesis of DCM and their overlap with other 

cardiomyopathies as well as neuromuscular disorders and channelopathies highlighting the heterogeneity of 

DCM. The genes that account for the majority of DCM mutations are TTN and LMNA. ARVC: 

Arrhythmogenic right ventricular cardiomyopathy. Figure from 3. 

 

1.2.2.1.2. Next generation sequencing (NGS) 

Sanger sequencing was the first widely used method for sequencing. Sanger sequences 

are highly accurate, however, they are low throughput since they are restricted to a single 

DNA fragment at a time and a maximum length of 1000 bp.  NGS, on the other hand, allows 

for massively parallel sequencing of the human genome in one experiment. Both targeted, that 
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is sequencing a list of candidate genes (or genomic regions), and whole-genome (or exome) 

sequencing can be achieved by this technology and it has been successful in identifying novel 

genes in both monogenic disease and complex traits.   

1.2.2.1.2.1. Targeted NGS 

 For cardiomyopathy, the major gain of the advent of this technology was that it 

allowed the sequencing of TTN and DMD1, the two largest genes of the human genome which 

are both implicated in cardiomyopathy. Although it was already posited that they play a role in 

DCM, it was not feasible to sequence the whole gene to characterize and estimate the 

prevalence of mutations in those genes in cardiomyopathy patients.  Not only did NGS allow 

the assertion of TTN as a cardiomyopathy gene 43; 44, but it also made it possible to add TTN to 

the available gene panels used in the clinics for screening patients.  

1.2.2.1.2.2. Whole exome sequencing 

Exome sequencing, in particular, targets the whole protein coding region (~ 20,000 

genes) in a single experiment. It constitutes an attractive tool for studying monogenic diseases. 

Previous exome sequencing studies have served as a proof of concept that this strategy is 

successful for the identification of extremely rare or private causal mutations in known 

Mendelian disorders by sequencing the exomes of affected individuals and looking for 

variants segregating with disease and not present in controls or in public databases such as 

dbSNP 45. Subsequent studies have been successful in identifying a number of novel genes for 

various Mendelian diseases and available databases of whole genome and exome sequences 

have become available and include sequencing data of several thousands of individuals which 
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improves data analysis and interpretation (see chapter 6 for a discussion).  For DCM, 5 genes 

were discovered in one year only (BAG3, ACSF3, AARS2, MRPL3, and GATAD1) using 

exome sequencing 46; 47. 

 The price of sequencing one exome has dropped significantly in the past few years and 

currently reached ~ 600$ which makes it a very feasible technology. One of the major 

advantages of this technique is the untargeted approach where one examines the whole exome 

for novel genes without being limited to a hypothesis-driven analysis thereby increasing our 

chance for novel discoveries.  

  Unlike linkage, which yields linkage regions that need to be further fine-mapped to 

find the causal variation, exome sequencing enables analysts to narrow the findings to the 

causal mutation in an unbiased step, given a cautious and meticulous variant prioritization 

strategy (see chapter 6 for a discussion about the caveats of the strategy). It is imperative that 

the number of variants deemed to be likely pathogenic in a family decreases as the number of 

participants increases which facilitate the task of proving pathogenicity. However, it remains 

that a lower number of participants is required for exome sequencing compared to 

conventional linkage analyses which necessitate the availability of very large multiplex 

pedigrees. Another advantage of exome sequencing is that it can explore shared variants 

between affected members in a family as well as in sporadic cases in a population-based study, 

and thus is not limited to family studies.   
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1.2.2.2. Gene groups implicated in DCM 

Genes that play a role in the pathogenesis of DCM display a wide heterogeneity and can 

be classified into several groups (Figure 1.3 and Table 1.1).  I will provide a general 

description of each group and its associated pathways and mechanisms that are thought to lead 

to DCM.  

1.2.2.2.1. Sarcomeric proteins 

The sarcomere is the basic unit of the myofibril found in muscle cells (Figure 1.3). 

Interaction between thin filaments and thick filaments stimulates muscle contraction. 

Contractile force generation and its propagation to neighboring cells is essential for heart 

function. Several sarcomeric genes have been associated with DCM such as ACTC1 (actin), 

MYBPC3, MYH6, MYH7, TNNC1, TNNI3, TNNT2, TPM1, and TTN. Truncating mutations in 

TTN alone account for the majority of DCM cases and is estimated to be around 20% 43; 48. 

TTN is a giant protein that includes > 34,000 amino acids and interacts with both thin and 

thick filaments to participate in sarcomere assembly and force generation. So far, it is believed 

that pathogenic mutations in TTN are nonsense, frameshift, and splice site mutations. Although 

missense variants in TTN are not considered to have an associated medical significance, some 

reports suggested that in certain cases missense variants may be pathogenic 49-51  

1.2.2.2.2. Structural proteins 

Structural proteins provide structural integrity to the sarcolemma (the plasma membrane 

of muscle cells) and ensure that the contractile force is transmitted from the sarcomere to the 

sarcolemma and the extracellular matrix (Figure 1.3). Genes in this group include DES, DMD, 
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CSRP3 , CAV3, and others. DMD was the first gene to be linked to DCM. DMD was first 

linked to Duchene muscular dystrophy which is an X-linked hereditary disease characterized 

by gradual muscle weakness and, often, cardiac disorders. Patients with cardiac disorders often 

develop heart failure at the last stage of the disease. However, mutations in DMD can cause X-

linked DCM without clinical signs of skeletal muscle weakness 35. DMD- associated DCM has 

a severe prognosis and leads to the death of the affected individuals at early age (10-20 years 

of age). Other structural proteins constitute the desmosome, an example of a filamentous 

system that is responsible for the propagation of contractile force from one cell to the other 

which maintains both the mechanical and electrical integrity of the heart and includes DSP, 

DSG2, DSC2, and PKP2. Desmosomal genes are mainly associated with ARVC, but 

mutations in those genes have also been described for DCM 52; 53.  

1.2.2.2.3. Nuclear proteins 

Nuclear proteins play an important role in chromatin organization and transcriptional 

regulation. Genes in this group that have been linked to DCM include LMNA, EMD, and 

TMPO (Figure 1.3 and Table 1.1). LMNA mutations are the most frequent in this group and 

the second most frequent overall after TTN.  They account for 5-8% of familial DCM cases 

and up to 11% of sporadic cases 54. They are inherited mainly in an autosomal dominant 

pattern. LMNA encodes the lamin A/C protein which is located in the nuclear lamina. 

Mutations in LMNA are known to cause Emery-Dreifuss muscular dystrophy (EDMD) which 

is a genetic disorder characterized by progressive skeletal muscle weakness 55; 56. Many 

patients with this disorder also suffer from DCM. Soon after, it became evident that mutations 
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in LMNA could cause DCM without the presence of skeletal muscle weakness 38. LMNA 

associated DCM is usually accompanied with conduction system disease and arrhythmias 57 

1.2.2.2.4. Ion channel proteins 

Calcium homeostasis plays a critical role in muscle contraction. Ca2+ enters the 

cardiomyocytes through voltage-gated channels present on the sarcolemma and triggers 

sarcomere contraction (Figure 1.3). Dysfunction of these ion channels leads to muscular 

contraction deterioration causing DCM and other cardiac problems. Genes in this group 

include SCN5A, KCNQ1, ABCC9, and PLN. SCN5A encodes a sodium channel subunit which 

plays a critical role in the regulation of the heartbeat. Mutations in SCN5A are the most 

frequent and cause a modification in the electrical activity of sodium channels which 

destabilizes the contraction process of the cardiomyocytes. SCN5A mutations are associated 

with early-onset DCM accompanied with conduction abnormalities and atrial fibrillation 40. 

1.2.2.2.5. Other proteins 

Other proteins involved in DCM include transcription factors (TFs) such as TBX5, 

TBX20, NKX2-5, GATA4, FOXD4, and others. These TFs regulate the expression of cardiac 

structural and regulatory proteins necessary for the heart function. Many Z-disk proteins have 

also been implicated in DCM such as ACTN2, LDB3, and MYPN. The proteins encoded by 

these genes ensure the transmission of the contractile force between adjacent sarcomeres 

within the muscle fibers. Other genes are involved in signaling pathways (BRAF), heat shock 

proteins (BAG3, CRYAB), and the cytoskeleton (PLEC, SGCD, VCL).  
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Figure 1.3. Functional groups of genes associated with dilated cardiomyopathy. 

 

 

Figure 1.3. Examples of genes associated with DCM grouped based on where they are located in the 

cardiomyocyte. Proteins located on the nuclear envelope are involved in gene expression or in maintaining the 

structural integrity of the cytoskeleton. Proteins within the sarcomere are responsible for muscle contraction. 

Other proteins form filamentous systems such as desmosomes which connect adjacent cardiomyocytes. Ion 

channels maintain the electrical activity of the heart. Figure from 58 
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Table 1.1. Genes associated with dilated cardiomyopathy (DCM). 

 
Gene Protein Function 

ABCC9 Sulfonylurea receptor 2 Regulates ion transport, essential for 

normal heart function 

ACTC1 Actin, alpha cardiac muscle 1 Muscle contraction 

ACTN2 Alpha-actinin-2 Anchor for myofibrillar actin filaments 

ANKRD1 Ankyrin repeat domain-containing protein 1 (Cardiac 

ankyrin repeat protein) (Cytokine-inducible gene C-

193 protein) (Cytokine-inducible nuclear protein) 

Interacts with sarcomeric proteins: 

myopalladin and titin 

BAG3 BAG family molecular chaperone regulator 3BAG 

family molecular chaperone regulator 3 

Inhibits apoptosis 

CHRM2 Muscarinic cholinergic receptor Modulation of potassium channels 

CRYAB Alpha-crystallin B chain Has chaperone-like activity 

CSRP3 Cysteine and glycine-rich protein 3 Organization of cytosolic structures in 

cardiomyocytes 

CTF1 Cardiotrophin-1 Cytokine activity 

DES Desmin Muscle contraction 

DMD Dystrophin Cytoskeleton integrity; Sarcolemma 

stability  

DNAJC19 DNAJ (Hsp40) homolog Heat shock protein 

DOLK Dolichol kinase Plays a role in the Endoplasmic reticulum 

DSC2 Desmocollin 2 Component of the desmosome 

DSG2 Desmoglein 2 Component of the desmosome 

DSP Desmoplakin Involved in the formation of desmosomal 

complexes 

EMD  Emerin Maintains function of skeletal and cardiac 

muscle 

EYA4 Eyes absent homolog 4 Transcriptional activator 

FBXO32 F-box protein 32/atrogin-1 FoxO family signaling 

FHL2 Four and a half LIM domains protein 2 Extracellular membrane assembly 

FKTN Fukutin Glycosylation of alpha-dystroglycan in 

skeletal muscle 

FOXD4 Forkhead box protein D4 Transcription factor activity 

GATAD1 GATA zinc finger domain-containing protein 1 Regulates gene expression 

ILK Integrin-linked kinase Cellular signaling  

JUP Junction plakoglobin Cytoskeleton integrity 

LAMA4 Laminin subunit alpha-4 Component of the extracellular matrix 

LDB3 LIM domain-binding protein 3 Cytoskeleton assembly 

LMNA Lamin A/C Nuclear stability, chromatin structure and 

gene expression 

MURC Muscle-related coiled-coil protein Involved inmyofibrillar organization 

MYBPC3 Myosin binding protein C, cardiac Component of the A bands in striated 

muscle; muscle contraction 

MYH6 Myosin, heavy chain 6, cardiac muscle, alpha Muscle contraction 

MYH7 Myosin, heavy chain 7, cardiac muscle, beta Muscle contraction 

MYPN Myopalladin Component of the sarcomere 

NEBL Nebulette Assembly of the Z-disk 

NEXN Nexilin (F actin binding protein) Maintenance of Z line and sarcomere 

integrity 

NKX2-5 NK2 homeobox 5 Transcription factor activity 

PGM1 Phosphoglucomutase 1 Breakdown and synthesis of glucose 
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Gene Protein Function 

PKP2 Plakophilin 2 Component of the desmosome 

PLN Phospholamban Key regulator of cardiac diastolic 

function 

PRDM16 PR domain containing 16 Transcriptional regulator 

PSEN1 Presenilin 1 Intracellular signaling 

PSEN2 Presenilin 2 intracellular signaling 

RBM20 RNA-binding protein 20 Regulates splicing of TTN and other 

genes 

SCN5A Sodium channelprotein type 5 subunit alpha Controls Na+ transport 

SDHA Succinate dehydrogenase enzyme Plays a role in mitochondria 

SGCA α-sarcoglycan Component of the sarcoglycan complex, a 

subcomplex of the dystrophin-

glycoprotein complex 

SGCB β-sarcoglycan Component of the sarcoglycan complex, a 

subcomplex of the dystrophin-

glycoprotein complex 

SGCD δ-sarcoglycan Component of the sarcoglycan complex 

SYNE1 Nesprin-1 Cytoskeletal organization 

TAZ Tafazzin expressed at high levels in cardiac and 

skeletal muscle;Some isoforms may be 

involved in cardiolipin (CL) metabolism 

TBX20 T-box 20 Transcription factor activity 

TCAP Telethonin Muscle assembly  

TMPO Thymopoietin Structural organization of the nucleus 

TNNC1 Troponin C, slow skeletal and cardiac muscles Muscle contraction 

TNNI3 Troponin I, cardiac muscle Muscle Contraction 

TNNT2 Troponin T, cardiac muscle Muscle Contraction 

TPM1 Tropomyosin alpha-1 chain Muscle Contraction 

TTN Titin Assembly and functioning of striated 

muscle 

VCL Vinculin Cell-matrix adhesion and cell-cell 

adhesion 

 
Table 1.1. The 59 genes that are implicated or posited to be implicated in DCM and a brief description of their 

function. Figure adapted from the supplementary information of 59. 
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1.3.BLOOD CELL NUMBER, SIZE, OR CONTENT: 

CLASSIC HUMAN COMPLEX TRAIT 

1.3.1. Clinical Background 

The major constituents of blood are the red blood cells, white blood cells, and platelets. 

Red blood cells are involved in oxygen transport to the organs of the body, white blood cells 

play a major role in immunological functions, and platelets are important for blood clotting. 

The focus of this thesis will be on red blood cells and platelets. 

1.3.1.1. Red blood cells 

Red blood cells (RBC)s, or erythrocytes are enucleated biconcave disks that are essential 

for gas exchange and for regulating vascular tone 60. They are the most common cell type in 

blood. RBCs transport O2 from pulmonary capillaries to tissue capillaries, in exchange for 

CO2. The gases are mainly carried by hemoglobin, the major cytoplasmic protein of RBCs. 

The average diameter of an erythrocyte is 8 µm, although due to its biconcave shape and 

membrane flexibility, it can enter capillaries with a diameter < 8 µm 61. As red cells age, their 

membranes lose their flexibility and become rigid.  

1.3.1.1.1. RBCs life cycle  

RBCs are produced from hematopoietic stem cells (HSCs) of the bone marrow 

(Figure 1.4) and undergo a series of maturation steps before the production of a mature RBC, 

or erythrocyte (Figure 1.5). Once HSCs start proliferating and differentiating, many blood 

cells can be produced from each individual stem cell. The different stages of RBC production, 

or erythropoiesis, are progenitor cells, proerythroblasts, erythroblasts, reticulocytes, and 
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eventually erythrocytes. The primary hormone which controls erythropoiesis is the kidney-

derived cytokine, erythropoietin, or EPO which is activated in hypoxic conditions and leads to 

the stimulation of progenitor cells 62. In addition to EPO, other hormones regulate 

erythropoiesis including insulin like stem cell factor (SCF), growth factor 1 (IGF-1), 

glucocorticoids (GCs), and IL-3, and IL-6, as well as a number of important transcription 

factors such as GATA-1, EKLF, SCL and LMO2 63. Through the differentiation steps, the 

cells undergo substantial changes, most importantly, decrease in cell size, enucleation and 

expulsion of other organelles 61. The life cycle of human RBCs is 120 days after which they 

are removed from circulation by macrophages.  

 

Figure 1.4. Hematopoietic stem cell differentiation. 

 

Figure 1.4.  All blood cell types are derived from the hematopoietic stem cells (HSC) through hematopoiesis. 

HSCs are located in the bone marrow. An HSC differentiates into a multipotent stem cell that also 

differentiates into a lymphoid progenitor cell and a myeloid progenitor cell. Both red blood cells and platelets 

are derived from the myeloid progenitor cell. 
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Figure 1.5. Erythropoiesis. 

 

 

Figure 1.5. Erythropoiesis is the process that leads to the production of red blood cells or erythrocytes. In the 

bone marrow, a hemocytoblast differentiates into an erythroblast. In the differentiation stage from erythroblast 

to normoblast hemoglobin accumulation takes place. The normoblast expels its nucleus and organelles and 

becomes a reticulocyte. At this stage, reticulocytes are released into the circulation to eventually give rise to 

erythrocytes. 

 

1.3.1.1.2. RBC levels and related disorders 

Several disorders are associated with RBCs, the most common of which are anemias 

which lead to poor gas exchange. Indicators of anemia include reduced red cell numbers, 

hemoglobin content and hematocrit (percentage of red cells in blood). Other blood indices are 

also used to distinguish the different types of anemia, a more detailed discussion is presented 

below.   

There are several causes of anemia. In addition to nutritional deficiency (iron, Vitamin 

B12, folates), anemia can result due to decreased EPO production (due to renal failure for 

example), when erythropoiesis is impaired or suppressed (eg. aplastic anemia, a rare disorder 

where the bone marrow does not make enough new blood cells), or due to defects in 

hemoglobin synthesis (e.g hypochromic anemia which is characterized by pale erythrocytes 

due to reduced hemoglobin ) 61. Iron deficiency anemias result when iron is not well absorbed 
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or transported. Hemolytic anemias are caused by severe destruction of RBCs (due to infections 

for instance, or mutations in genes such as G6PD).  

On the other hand, overproduction of RBCs due to increased EPO production can cause 

polycythemias or erythrocytosis 64. Immature RBCs can also become oncogenic albeit rarely, 

which results in nucleated RBCs in the circulation, a condition called erythroleukemia 63.  

Hemoglobinopathies are disorders that result due to mutations in globin genes; such as 

thalassaemias which are caused by mutations in the adult α and β globin genes that change the 

cell morphology leading to red cell destruction. Another example is sickle cell (SC) disease, 

where an abnormal β globin protein results in the production of RBCs with a characteristic 

sickle shape 65. These sickle RBCs are hard and inflexible, often forming clumps that stick to 

blood vessels increasing the risk of blocking the blood flow and resulting in various 

complications. Sickle blood cells have a lower life span compared to normal cells (10-12 

days).  

1.3.1.1.3. RBC indices 

In addition to RBC count, there exist other vital RBC indices which are important 

indicators of an individual’s health. The measurements of these indices are obtained by the 

CBC test. These calculations and values are generally determined by hematologic machines 

that analyze the different components of blood. 
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1.3.1.1.3.1. Hemoglobin and Hematocrit 

Hemoglobin is the major protein in red blood cells and the carrier of O2 and CO2. 

Hemoglobin comprises four globin subunits that are connected together, 2α and 2β chains each 

surrounding the molecule heme. At the center of the heme molecule is iron which is essential 

for gaseous transport. Hemoglobin is responsible for the characteristic redness of blood and 

plays a major role in maintaining the shape of red blood cells. Abnormal hemoglobin is what 

gives the sickle shape of RBCs in SC disease. Hematocrit is defined as the ratio of the volume 

of RBCs to the volume of whole blood and is expressed as a percentage. Normal values range 

between 38-48% for hematocrit and between 12-18 gm/dl for hemoglobin depending on age 

and gender. Low levels of hemoglobin or hematocrit indicate anemia that results from 

decreased production, excessive loss, or destruction of red blood cells. High levels, on the 

other hand, can indicate polycythemia (excessive amount of RBCs).  

1.3.1.1.3.2. Mean corpuscular volume (MCV) and Mean corpuscular hemoglobin 

(MCH) 

MCV is the average volume (or size) of a red blood cell and is calculated using the 

hematocrit and red cell count values. Normal range may fall between 80 to 100 femtoliters. 

MCV is always interpreted along with MCH. Both measurements increase and decrease in the 

same conditions. MCH is the amount of hemoglobin in one red blood cell. This is a calculated 

value derived from the measurement of hemoglobin and the red cell count. Optimum values 

are between 28 and 32 micrograms. MCV and MCH are increased in conditions that include, 

folic acid or vitamin B12 deficiency anemia, and hypothyroidism. They are decreased on the 

other hand, in thalassemia and iron deficiency anemia.  
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1.3.1.1.3.3. Mean Corpuscular Hemoglobin Concentration (MCHC) 

MCHC is very related to MCH and refers to the average concentration of hemoglobin in 

a given volume of red cells. The hemoglobin and hematocrit measurements are used to derive 

the value. Normal range is 32% to 36%. In most but not all cases, MCHC increase and 

decrease with MCH and MCV values. 

1.3.1.1.3.4. Red blood cell distribution width (RDW) 

RDW is a measurement of the variability of red cell size and is interpreted along with 

MCV, MCH, and MCHC mainly to distinguish different types of anemia. RDW is derived 

from the RBC distribution curve which is generated automatically by the hematologic 

analyzers. RDW measures the variability of the RBC width and not the actual width of 

individual cells. Normal range is 11% to 14% and indicates that the red cells are mostly the 

same size. Higher numbers indicate greater variation in size meaning that there are small and 

large red blood cells. Since newly made cells (reticulocytes), B12 and folic acid deficient cells 

are larger than iron deficient cells, RDW helps to clarify if an anemia has multiple 

components. Hence, RDW is increased in the presence of B12, folic acid, hemolytic anemia 

(premature destruction of erythrocytes), or sideroblastic anemia (failure to incorporate iron 

into the heme molecule), as well as other liver disease. It is decreased in iron deficiency or 

Vitamin B6 anemia, as well as rheumatoid arthritis.  

1.3.1.2. Platelets  

Platelets play a major role in wound healing and preventing excessive bleeding. They 

also participate in other biological functions such as immunity, inflammation, and tissue 
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regeneration. Platelets are discoid shaped cells and have a diameter of 0.5-3µm and are the 

smallest corpuscular components in the circulation. Platelets circulate in the blood for 10 days 

on average and are then removed by macrophages. Circulating platelets prevent blood loss at 

sites of vessel injury by adhering to the vessel and forming a platelet plug, or thrombus. Upon 

adhesion, platelets become activated and release a number of proteins and molecules which 

contribute to the stabilization of the platelet plug formed at the site of injury. The adhered 

platelets recruit more platelets which is referred to as “platelet aggregation” and form a 

thrombus at the site of injury. 

1.3.1.2.1. Thrombopoeisis 

Thrombopoiesis is the process in which platelets are formed. Platelets derive from 

megakaryocytes which derive from hematopoietic stem cells (Figure 1.4).  Thrombopoiesis is 

regulated primarily by thrombopoietin, which stimulates platelet production, and to a lesser 

extent by inflammatory stimuli such as IL-6. 

1.3.1.2.2. Platelet indices 

Platelet indices are useful to infer certain health conditions. The two major indices 

discussed here are platelet count and mean platelet volume.  

1.3.1.2.2.1. Platelet count 

Platelet count is simply the count of the number of platelets in the circulation. The 

normal range of platelet count in the blood is 150,000 - 450,000/µL blood. Deviation from the 

normal values indicates disorders of platelet number or function. Low platelet count 
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(thrombocytopenia) may indicate certain viral or bacterial infections, autoimmune diseases, 

liver disease, or bone marrow disorders. High platelet count (thrombocytosis) increases the 

risk of thrombotic events. Thrombocytosis can be caused by a bone marrow disease and 

referred to as essential or primary thrombocytosis, or it may be due to an underlying disorder 

(reactive) such as infections.   

1.3.1.2.2.2. Mean Platelet Volume (MPV) 

MPV is a parameter used to measure the size of platelets. Normal values range between 

7 and 11 fl. Size of platelets vary within the same individual, and it has been shown 

reproducibly that larger platelets are metabolically more active and have a higher 

prothrombotic potential 66-68. MPV is a simple way to evaluate platelet activity. In fact, higher 

MPV is associated with increased platelet aggregation and expression of adhesion molecules, 

indicators of platelet activity. Further, MPV is elevated in individuals with CVD risk factors 

such as diabetes mellitus, obesity, hypertension, and smoking, which makes it a heavily 

studied parameter for its potential to predict CVD 69-73. 

1.3.1.2.3. Platelets and Cardiovascular Disease (CVD) 

Several studies have shown that platelets are activated during atherothrombotic events. 

Platelets secrete a large number of components that control coagulation, inflammation, 

thrombosis, and atherosclerosis 74; 75. In addition, antiplatelet drugs are proven to reduce the 

risk of cardiovascular events in patients with established coronary artery disease 76 suggesting 

that platelets play a role in atherothrombosis (Figure 1.6). Thrombus formation may become 

pathologic once platelet activation becomes exaggerated or unnecessary which leads to 
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formation of thrombi in intact tissues that could detach and cause either myocardial infarction 

or stroke 77; 78 

Platelet count has inconsistently been associated with CVD risk where some studies 

suggested that higher platelet count is associated with a higher risk of CVD 79-81 and others 

showing that patients with atherothrombotic events have a lower platelet count82; 83. One 

explanation could be that when an atherothrombotic event occurs, platelets would rush to the 

thrombotic site and thus there is less platelets in circulation 84. On the other hand, MPV studies 

have been more consistent suggesting that MPV is positively associated with thrombotic 

events 80; 82; 85-87. Further studies have shown that MPV could in fact predict the occurrence of 

MI independent of other CVD factors 86; 88. These reports highlight the clinical importance of 

platelet parameters in the context of CVD, although these studies still suffered from the 

influence of other comorbidities and drug therapies as the patient subjects, for the most part, 

were individuals with either some form of cardiovascular disease or at a high risk for it and did 

not represent the general population.  
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Figure 1.6. Platelets mediating hemostasis and thrombosis. 

 

Figure 1.6. A) Platelets are captured at the site of injury (adhesion) from flowing blood. They are activated 

and recruit more platelets that aggregate at the site (aggregation) as well as other cellular components to form a 

thrombus. B) Arterial thrombi at a site of atherosclerosis plaque rupture. A platelet-rich white thrombus is 

formed as well as a red thrombus composed of red blood cells and fibrin. C) A hemostatic plug is formed when 

there is an injury in the vessel wall. The plug forms at the wall of the vessel and does not extend to the lumen. 

A thrombotic plug builds up on an atherosclerotic plaque and extends to the lumen, restricting blood flow. A 

hemostatic plug forms within minutes of injury to stop bleeding, whereas an arterial thrombi can form over a 

long period of time by building up over existing plaque.  Figure adapted from 89  
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1.3.2. Genetic approaches to study complex traits 

1.3.2.1. Linkage and Association studies 

Complex traits are thought to be the result of an interplay between genetic and 

environmental factors. Twin and family studies have provided evidence of genetic heritability 

for those common diseases. For example the heritability of MI is ~ 40-60% 90 and blood cell 

traits is ~ 37-57% 91, whereas the heritability of schizophrenia is estimated to be up to 80% 92. 

Thus uncovering the genetic factors that contribute to complex traits would give a lot of 

insight about the underlying pathophysiology and mechanisms of disease.  

The different approaches that are used to study the genetics of complex traits were 

enabled by the advances in genomic and computational technologies. Linkage and association 

studies are the two primary methods used to locate disease genes.  Linkage studies are best 

suited to assess the co-segregation of disease loci within families and were very successful in 

identifying genes for monogenic diseases as mentioned above. However, linkage is not a 

powerful tool to capture variation of low effect size and hence has had limited success in gene 

discovery for complex traits 93 which are influenced by multiple small effect variants.  

Population-based analyses provide more power to detect small effect variants and are 

more suited to study the genetics of complex traits. Prior to 2007, the majority of association 

studies came as candidate gene studies which attempted to test the association between genetic 

markers and disease susceptibility by sequencing genes that are suspected to be implicated in 

the etiology of a the studied trait. However, owing to the technological advances, it became 

possible to carry out association analyses genome-wide and in an unbiased approach that is not 

limited to candidate genes.  
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1.3.2.2. Genome-wide Association Studies (GWAS)s 

In the mid-1990s, a systemic genome wide approach to association studies was proposed 

94-96 and suggested the creation of a catalogue of human genetic variants to be tested for 

association with disease risk. In 2000, the first draft of the human genome project was 

completed which facilitated the creation of a detailed map of genetic variation throughout the 

human genome. This led to the discovery of millions of SNPs. Many of those are inherited 

together as haplotype blocks through a phenomenon called linkage disequilibrium (LD), or the 

nonrandom association between alleles of different SNPs 97. The HapMap project 98 created a 

comprehensive map of haplotype blocks and LD estimates between SNPs which allows 

researchers to genotype a subset of SNPs and impute or predict the variant genotypes of the 

others. Imputation thus makes it possible to analyze a vast genomic region without the cost of 

genotyping millions of variants.   

These milestones in the genomic era paved the way to efficiently detect the role of 

genetic variation in modulating various phenotypes and disease susceptibilities using genome-

wide association studies (GWAS)s. GWASs relied mainly on the “common disease common 

variant” hypothesis, which postulates that common diseases are influenced by common 

variants. The rationale of this hypothesis is driven by the idea that since those diseases are 

common in the population, then their underlying genetic factors must be common as well. 

While mutations underlying monogenic diseases are extremely rare since they usually cause 

deleterious phenotypes and are thus under purifying selection, on the other end of the 

spectrum, variants that have relatively less impact on reproductive fitness due to their small 

phenotypic effects have reached high frequencies in the populations and have been postulated 

to be responsible for much of the genetic etiology of common diseases 94-96 (Figure 1.7). More 
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than 32,000 variants have been associated with various traits and diseases and can be found in 

the GWAS catalogue (https://www.ebi.ac.uk/gwas/), the majority of which are common and 

have a small individual effect size on disease. The exact identity of the genes driving the 

association of a particular SNP with a trait though, cannot be determined on the basis of GWA 

studies data alone. The most proximal genes are only “best guesses” for the gene containing 

the causal variant until the functional mechanism is revealed.  

  

https://www.ebi.ac.uk/gwas/


39 

 

Figure 1.7. The generally accepted model of disease susceptibility and variant allele frequency 

 

 

Figure 1.7. In this model, allele frequency is inversely related to the effect size. Common variants are 

expected to have a low effect size on disease and rare variants which are subject to strong purifying selection 

would have a stronger effect size on the disease. Allele frequencies that fall in the middle would have an 

intermediate effect size. It is worth mentioning that this is the general expected model based on the CDCV 

hypothesis, but some variants will certainly deviate from the model, for instance, not all rare and low-

frequency variants would have a high or intermediate effect size. Figure from 99 

 

Following from the conclusion that common variants have a low effect size, it is 

necessary to look for other factors of genetic variation. The term “missing heritability” has 

been coined to refer to the genetic factors that may explain the remaining genetic component 

of the phenotypic variance 100. It is generally accepted that the CDCV hypothesis does not give 

the complete picture and that complex traits are generally influenced by a multitude of 

common (MAF > 5%), low-frequency (1% < MAF < 5%), and rare variants (MAF < 1%) (the 

definition of cutoffs varies), with small to strong effect sizes in addition to other intricate 



40 

 

biological processes such as epigenetic modifications, gene-gene and gene-environment 

interactions (see chapter 6 for a discussion). 

1.3.2.3. The birth of the exomechip 

GWAS studies have been successful in identifying a large number of common variants 

associated with blood cells and other complex traits. However, the variants identified for the 

most part have a low effect size and explain a small proportion of any given trait’s phenotypic 

variance. In an attempt to increase the ability of capturing rare variation with higher effect 

size, the exomechip was created. The exomechip array is enriched for rare coding variants 

chosen from existing sequenced genome and exome datasets. It also includes more than 5,000 

GWAS tag SNPs which allows to assess to a certain extent the independent association of 

additional low-frequency coding variants. Using the exomechip has been successful in 

identifying several novel low frequency variants for various traits such as lipid traits 101; 102, 

blood pressure 103; 104, diabetes 105, and height 106. 

 

1.3.3. Genetic Findings of Blood Cell Traits 

I will provide a summary of genetic findings of blood cell traits through the following 

review.  
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1.3.3.1. Lessons and Implications from GWAS Findings of Blood Cell Phenotypes 
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1.3.3.1.1. Abstract  

Genome-wide association studies (GWAS) have identified reproducible genetic 

associations with hundreds of human diseases and traits. The vast majority of these associated 

single nucleotide polymorphisms (SNPs) are non-coding, highlighting the challenge in moving 

from genetic findings to mechanistic and functional insights. Nevertheless, large-scale 

(epi)genomic studies and bioinformatic analyses strongly suggest that GWAS hits are not 

randomly distributed in the genome but rather pinpoint specific biological pathways important 

for disease development or phenotypic variation. In this review, we focus on GWAS 

discoveries for the three main blood cell types: red blood cells, white blood cells and platelets. 

We summarize the knowledge gained from GWAS of these phenotypes and discuss their 

possible clinical implications for common (e.g. anemia) and rare (e.g. myeloproliferative 

neoplasms) human blood-related diseases. Finally, we argue that blood phenotypes are ideal to 

study the genetics of complex human traits because they are fully amenable to experimental 

testing.  

Keywords: GWAS; hemoglobin; hematocrit; red blood cell; erythrocyte; white 

blood cell; leukocyte; platelet; human genetics 
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1.3.3.1.2. Genetics of Red Blood Cells, White Blood Cells and Platelets 

Blood is mostly composed of plasma and blood cells and plays a major role in a variety 

of functions involved in general human homeostasis: it transports oxygen, nutrients and 

hormones to tissues, removes waste, performs immunological functions and contributes tissue 

damage repair through coagulation. The main three blood cell types carry out most of these 

activities: red blood cells (RBC, or erythrocytes) transport oxygen, white blood cells (WBC, or 

leukocytes) coordinate some of the immune responses, and platelets are the bricks that form 

blood clots to prevent excessive bleeding. All of these cell types originate through 

proliferation and differentiation from common precursors (hematopoietic stem cells) 107. 

 

An aberrant number, size or feature of the three main blood cell types characterizes 

multiple human diseases (Table 1.2). In many cases, the triggering factor is of environmental 

origin, often poor nutrition or infections (e.g. malaria, HIV). Germline and somatic mutations 

can also cause severe blood disorders, such as mutations in glucose-6 phosphate 

dehydrogenase (G6PD) which is responsible for chronic hemolytic anemia or mutations in 

oncogenes or tumor suppressor genes that result in leukemia. It is also known that blood cell 

phenotypes vary between healthy individuals, and that some of this inter-individual variation 

is controlled by genetics. In a large study of healthy Sardinians (N=6,148), the heritability 

estimates for RBC, WBC and platelet counts were, respectively, 0.67, 0.38 and 0.53 108. 

Similar heritability estimates were obtained when analyzing phenotype concordance in healthy 

monozygotic and dizygotic twins from the United Kingdom 91. These results indicate that a 
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large fraction of the phenotypic variation in these blood traits is controlled by DNA sequence 

variants segregating in healthy individuals.  

 

Table 1.2.  Main blood cell traits routinely measured in standard complete blood count (CBC). 

 

Trait Description Unit 

Red blood cell (RBC) count Count of RBC per microliter 
Million cells per microliter 

(x106/uL) 

Hemoglobin (HGB) Hemoglobin concentration Gram per deciliter (g/dL) 

Hematocrit (HCT) 
Fraction of blood that contains 

hemoglobin 
Percentage (%) 

Mean corpuscular hemoglobin 

(MCH) 
Amount of hemoglobin per RBC Picogram (pg) 

Mean corpuscular volume (MCV) Average volume of RBC Femtoliter (fL) 

MCH concentration (MCHC) Hemoglobin divided by hematocrit Gram per deciliter (g/dL) 

RBC distribution width (RDW) Distribution of RBC volume Percentage (%) 

White blood cell (WBC) count 
Number of WBC per liter (include 

all main subtypes) 
Billion cells per liter (x109/L) 

Platelet (PLT) count Number of PLT per liter Billion cells per liter (x109/L) 

Mean platelet volume (MPV) Average platelet volume Femtoliter (fL) 
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The clinical importance of this heritable variation in blood cell phenotypes is unclear. 

However, it is interesting that epidemiological studies have detected links between WBC or 

platelet counts and the risk to suffer from cardio- and cerebrovascular diseases 109-111. As for 

most epidemiological observations, however, it is difficult to determine if changes in 

hematological parameters are pathological or reflect consequences of disease manifestation. 

Using Mendelian randomization methodologies, in which inherited genetic variants associated 

with hematological traits are used as instruments to test the causal effect of the traits on 

diseases, may provide an answer to this question 112. Such an approach was successfully used 

to determine that LDL-cholesterol and triglyceride levels, but unlikely HDL-cholesterol levels, 

are causes of coronary artery diseases 113; 114. Understanding how DNA polymorphisms 

modulate blood cell phenotypes in health (and diseases) could provide new opportunities to 

study hematopoiesis, improve their use in medicine as biomarkers and maybe even help in the 

development of new drugs. To this list, we would also add that hematological traits are ideal 

phenotypes to further our understanding of the genetics of human complex diseases and traits 

because experimental systems exist to functionally validate genetic findings. 
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1.3.3.1.3. Genome-Wide Association Studies (GWAS) for Blood Cell Phenotypes 

Before GWAS, little was known about the role of SNPs and other common DNA 

sequence variants on normal variation in blood cell phenotypes. Candidate gene DNA 

sequencing experiments have identified mutations in the globin loci, but also in the 

erythropoietin receptor (EPOR) and hemochromatosis (HFE) genes 115; 116. Genome-wide 

linkage studies also found a few reproducible signals, most notably a linkage peak on 

chromosome 6q23 that encompasses the MYB transcription factor 117; 118. These findings could 

not, however, explain the heritability of these blood cell phenotypes in normal individuals. 

 

As for many other complex human traits and diseases, the capacity to test associations 

with genotypes across the genome by GWAS opened a new world. Prior to the GWAS era, 

genetic association studies often had sample sizes that were too small and were limited to 

testing only known genes 119. With GWAS, it became possible to genotype all genes 

independently of previous knowledge. Blood cell traits are particularly amenable to the 

GWAS approach because they are routinely and accurately measured in large cohorts, and 

initial findings can be tested for replication in other cohorts because it is easy to harmonize 

these phenotypes (Figure 1.8) 120. In general, one of the main challenges for GWAS has been 

to pinpoint functional genes and variants associated with a given trait. Although this remains a 

challenge, blood cell traits are particularly well-suited for genetic and functional follow-up. As 

mentioned earlier, fine-mapping by dense genotyping and DNA re-sequencing is possible 

because the traits are usually available in most cohorts or biobanks, including participants of 

different ethnicities (see below). There is also the possibility to test the functions of new genes 
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in cell culture systems or model organisms because the phenotypes are often cell autonomous 

and the assays already well-developed. Using this approach, investigators showed that SNPs at 

6p21.1 modulate erythrocyte traits through a regulatory effect on the cyclin D3 (CCND3) gene 

121. Large-scale gene silencing and other functional experiments in fruit flies, zebrafish and 

mice were also used to validate several new genes involved in platelet and RBC development 

within loci identified by GWAS 122; 123.  

 

 

All the steps described in (Figure 1.8) now take advantage of powerful bioinformatic 

tools and other resources freely available on the web. For instance, comparative genomics has 

identified DNA bases that are conserved through evolution and therefore more likely to be 

functionally important 124. There are also software that can predict based on conservation and 

physicochemical properties whether a DNA polymorphism that changes an amino acid is 

likely detrimental or not 125; 126. We can also quickly query large gene expression datasets to 

determine if the genes near an associated SNP are expressed in the relevant tissue(s) for the 

phenotypes of interest (as an example, see reference 127). And when genotypes are available, it 

is possible to test in silico if the GWAS SNPs (or SNPs in linkage disequilibrium) control 

gene expression through regulatory mechanisms, that is if the variants are expression 

quantitative trait loci (eQTL) 128. The ENCODE and Roadmap Epigenomics Projects have 

used next-generation DNA sequencing applications, including DNAse I hypersensitive sites 

mapping and chromatin immunoprecipitation with antibodies against several histone tail 

modifications (ChIP-seq), to define regulatory sequences in human cell lines and tissues 129-131. 

Using a complementary approach (FAIRE-seq), Paul et al. identified regions of open 

chromatin in primary human blood cells and showed that SNPs associated with RBC and 
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platelet phenotypes are enriched in these regions 132. All this vast genomic information is 

useful in prioritizing causal genes and variants at GWAS loci, and investigators are developing 

algorithms to facilitate its integration 133; 134. 
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Figure 1.8. Ideal study design to identify SNPs associated with human complex traits and diseases 

using genome-wide association studies (GWAS). 

 

 
 

Figure 1.8. For blood cell phenotypes, GWAS were particularly successful because sample sizes are large, 

phenotypes are easy to measure and are accurate, and well-characterized experimental models already exist. 
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Several GWAS for hematological traits have already been published 122; 123; 135-151. The largest 

studies, carried out in Europeans or individuals of European ancestry, have so far identified at 

genome-wide significance (P-value <5x10-8) 75, 10 and 68 SNPs associated with RBC, WBC 

and platelet traits respectively 122; 123; 150. The lower number of SNPs associated with WBC 

count could be explained by a lower heritability (see above), but also because the sample size 

for the WBC GWAS was smaller (N=11,823) in comparison with the GWAS for RBC 

(N=135,367) and platelet (N=66,867) traits. Despite their large number, these variants only 

explain a small fraction of the heritable variation in these phenotypes (<10%). They are, 

however, not random but clustered near genes involved in relevant biological pathways and 

enriched for regulatory functions by expression quantitative trait loci (eQTL) and epigenomic 

analyses. Most loci are associated with a single blood cell type but by comparing the different 

studies, we found seven loci that are associated with at least two different cell types 

(Table 1.3). These include SH2B3, a gene that encodes the adapter protein LNK that interacts 

with JAK2 and modulates JAK-STAT signaling in hematopoietic cells, and MYB, that encodes 

a transcription factor essential for definitive hematopoiesis. Both SH2B3 and MYB SNPs are 

associated with the three main blood cell types. The other loci presented in Table 1.3 include 

genes associated with a combination of two phenotypes, maybe suggesting different functions 

in different hematopoietic lineages. 
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Table 1.3. Loci identified by GWAS that carry SNPs associated with at least two of the three main 

blood cell types. 

 
Locus Location RBC WBC Platelet References 

TMCC2 1q32.1 Caucasian  Caucasian 122; 123 

ARHGEF3 3p14.3 African American  Caucasian 122; 135; 141; 143 

LRRC16A 6p22.2 African American  African American 136; 142 

HBS1L-

MYB 

6q22-

q23.3 

African American/ 

Caucasian/Japanese 

Caucasian African American/ 

Caucasian 

122; 123; 136; 137; 139; 140; 

142 

IL-6 7p21  Japanese Japanese 152 

RCL1 9p24.1-

p23 

Caucasian  Caucasian / Japanese 122; 123; 137; 139 

SH2B3 12q24 Caucasian Caucasian Caucasian / Japanese 122; 137-140; 143 

 
Table 1.3. For each association, we report the ethnic group in which the genetic associations were found. We 

also listed only one gene per locus, although for many loci, the causal gene is unknown. RBC: red blood cell; 

WBC: white blood cell. 
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1.3.3.1.4. Some Loci Associated with Blood Cell Traits Are Population-Specific 

It is difficult to compare association results for hematological traits across different 

populations because the sample size of the respective GWAS, and thus the statistical power to 

discover associations, is very different. For instance for RBC phenotypes, the largest studies in 

Caucasians and African Americans included, respectively, 135,367 and 16,496 participants 123; 

136. Despite this caveat, many of the loci found in African Americans or Asians were also 

present in Caucasians; this general transferability of results across ethnic groups has been 

observed for other complex human traits 153; 154. For blood cell traits, however, there are 

notable exceptions. A SNP upstream of the Duffy antigen/receptor for chemokines (DARC) 

gene explains a large fraction of the variation in WBC and neutrophil counts, and is 

responsible for benign neutropenia 155. This variant, which is monomorphic in Caucasians, is 

under positive selection in persons of African ancestry because it provides protection against 

Plasmodium vivax malaria infections. Similarly, genetic variation near the α-globin, the β-

globin and the G6PD genes are associated with RBC indices in Africa-derived populations and 

are relatively common in frequency because they provide a selective advantage against malaria 

infections. These observations suggest that as we continue to query the human genome for 

associations with blood cell phenotypes, integrating evidence of natural selection would be a 

powerful approach.      
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1.3.3.1.5. Genetic Modifiers of Disease Severity 

Several human diseases, which afflict a large fraction of the human population, are 

characterized by abnormally low or high counts of the three main blood cell types, or some 

unusual values for their features or contents. Anemia is a decrease of RBC count and 

hemoglobin levels (<11g/dL in women or <13g/dL in men) and is characterized by a wide 

spectrum of symptoms from simple fatigue to heart failure 156. The World Health Organization 

estimates that anemia affects 1.62 billion people in the World 42. The main causes of anemia 

are poor nutrition and iron deficiency, infections (e.g. malaria) and RBC diseases such as the 

hemoglobinopathies. Although the effect size of an individual SNP associated with RBC count 

or hemoglobin levels is not sufficient to cause anemia, a combination of hemoglobin-reducing 

alleles at many SNPs could have an impact on the risk to develop this disorder. Maybe more 

importantly, without causing anemia itself, this genetic score could influence clinical severity 

in at-risk populations (e.g. children with a small number of hemoglobin-increasing alleles that 

live in a region where malaria is endemic). Since anemia is mostly frequent in Africa and 

South-East Asia, it is critical to continue to search for genetic associations with hemoglobin 

levels in these populations 42. 

 

There are many other human diseases that are diagnosed, like anemia, through abnormal 

counts of the main blood cell types (e.g. cancers). One example are myeloproliferative 

neoplasms (MPNs), diseases of the bone marrow characterized by excess cell production 157. 

By far, the main cause of MPNs is a somatic gain-of-function mutation in the kinase gene 

JAK2 (Val617Phe), which activates cell proliferation in the myeloid lineage 158; 159, and 
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changes platelet formation and reactivity 160. It has never been tested whether SNPs associated 

with blood cell counts could modify complication risk in MPN patients with a JAK2 

(Val617Phe) mutation. For instance, MPN patients are at high risk of stroke, but it is unknown 

if such patients that also carry a large number of platelet-increasing alleles are at even higher 

stroke risk. Such analyses, on MPNs but also all other diseases characterized by a blood 

phenotype, are simple and could test the role that SNPs associated with normal variation in 

hematological traits may have on our risk to develop more severe disorders and related 

complications 123.  

1.3.3.1.6. BCL11A Modifies Clinical Severity in Hemoglobinopathies 

In adults, hemoglobin (HbA) is composed of two α- and two β-globin subunits that form 

a tetramer with the heme moiety to transport oxygen from the lungs to the different organs. 

Prior to birth, the β-globin gene is silent and the β-globin subunits are encoded by the γ-globin 

genes to form fetal hemoglobin (HbF). The switch from HbF to HbA production is a 

transcriptionally and epigenetically tightly regulated process 161. For most healthy individuals, 

the switch itself has no clinical impact. However, for β-thalassemia and sickle cell disease 

patients with mutations in the β-globin gene, understanding and modulating the globin switch 

is currently the most promising therapeutic strategy. Conceptually, this is easy to appreciate: if 

the disease-causing mutations are in the β-globin gene, then re-activating γ-globin gene 

expression to form “normal” β-globin subunits would bypass the problem. This approach is 

supported by an extensive literature on the natural history of hemoglobinopathies and 

epidemiological studies 162. For instance, it has been shown that sickle cell disease patients 
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that normally produce more HbF have better survival prognostic and less severe disease 

complications than patients with low HbF levels 163-165.  

 

Although as adults we mostly produce HbA, we continue to make residual levels of HbF. 

Inter-individual variation in HbF levels is highly heritable (h2~0.6-0.9) 108; 166. Genetic 

investigations, including GWAS, have identified common genetic variation at three loci 

(BCL11A, HBS1L-MYB and β-globin) that have strong phenotypic effects and that together 

explain almost half of the heritable variation in HbF levels 167-170. These HbF-associated SNPs 

are also associated with clinical severity in β-hemoglobinopathy patients: transfusion-

dependency in β-thalassemia and painful crises in sickle cell disease 169; 171; 172. This again 

emphasizes the importance of HbF as a strong modifier of severity for these diseases.  

 

BCL11A encodes a transcription factor that had no known function in the globin switch 

before its discovery in two GWAS for HbF levels 167; 169. Since then, we have learned that 

BCL11A is a potent transcriptional repressor of γ-globin gene expression and that its 

inactivation in the erythroid lineage can treat a sickle cell disease mouse model through re-

activation of HbF production 173; 174. More recently, both genetic and molecular fine-mapping 

work has determined that HbF-associated SNPs located in a BCL11A intron disrupt en 

erythroid enhancer that controls BCL11A expression 175. This model was confirmed by 

targeted deletion of the enhancer through genome engineering that blocked BCL11A 

expression and re-activated γ-globin gene expression and HbF production [16]. As genome 

editing methods are rapidly improving, this proof-of-concept experiment suggests a new 

therapeutic strategy in which the BCL11A enhancer would be deleted ex vivo in a 
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hemoglobinopathy patient’s cells to re-activate HbF production, and the cells would then be 

transplanted back to the patient 176. The characterization of BCL11A and its role in HbF 

production serves as a powerful example to illustrate the success of GWAS from new biology 

to potentially innovative therapy. 

1.3.3.1.7. Orphan Blood Cell Diseases 

Although we did not assess the statistical significance of the enrichment, we observed 

that many of the SNPs associated with blood cell traits are located near genes that are mutated 

in severe hematological disorders and inherited in a Mendelian fashion. These include SNPs 

near HK1 (hemolytic anemia), TMPRSS6, HFE and TFR2 (iron deficiency) or TUBB1 

(thrombocytopenia). This observation is similar to the situation of many other complex human 

phenotypes (e.g. lipids, height, diabetes) where GWAS have identified hypomorphic alleles 

near human syndrome genes for related phenotypes. As such, the long list of loci found by 

GWAS provides a framework to investigate human syndromes characterized by aberrant blood 

features, mapped to a chromosome arm by linkage studies, but where the gene culprit has not 

been identified yet.  

 

To investigate this hypothesis, we queried the Online Mendelian Inheritance in Man 

(OMIM) database 177. In a non-exhaustive search, we identified four such orphan diseases 

where the genomic locations overlap with SNPs identified by GWAS (Table 1.4). For three of 

the diseases, GWAS findings suggest a strong candidate gene (IL5, LIPC, NUDT19) for re-

sequencing in affected individuals. As we continue to map these rare blood disorders, cross-

referencing with GWAS hits may provide a strong filter to prioritize genes for genetic testing.  
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Table 1.4. Orphan human syndromes mapped to a chromosomal band and characterized by a blood cell phenotype.  

 
Mendelian genetics : orphan syndromes Genome-wide association studies 

Locus Disease OMIM# Description SNP Position Phenotype 
Candidate-

gene(s) 
Ref. 

5q31 Familial 

eosinophilia 

131400 Characterized by peripheral 

hypereosinophilia with or 

without other organ 

involvement 

rs4143832 chr5:131,862,977 Eosinophil 

count 

IL5 138 

6p21 Macroblobulinemia, 

susceptibility to 

Waldenstrom 

153600 Malignant B-cell neoplasm 

characterized by 

lymphoplasmacytic infiltration 

of the bone marrow and 

hypersecretion of monoclonal 

immunoglobulin M (IgM) 

protein 

rs2517524 chr6:31,025,713 White blood 

cell 

HLA region 150 

15q21 Dyserythropoietic 

anemia, congenital 

type III 

105600 Characterized by 

nonprogressive mild to 

moderate hemolytic anemia, 

macrocytosis in the peripheral 

blood, and giant multinucleated 

erythroblasts in the bone 

marrow 

rs1532085 chr15:58,683,366 Hemoglobin LIPC 123 

19q13 Transient 

erythroblastopenia 

of childhood 

227050 Red blood cell aplasia rs3892630 chr19:33,181484 Mean 

corpuscular 

volume 

NUDT19 123 

 
Table 1.4. Orphan human syndromes mapped to a chromosomal band and characterized by a blood cell phenotype. Only such syndromes that overlap with 

a locus identified by GWAS for the corresponding blood cell trait are included in this table. We generated this list by querying the Online Mendelian 

Inheritance in Man (OMIM) database with the following keywords: anemia, blood, hemoglobin, leukopenia, neutropenia, platelet, thrombocytopenia. 
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1.3.3.1.8. Conclusions  

GWAS have identified hundreds of loci that carry common genetic variants associated 

with RBC, WBC and platelet phenotypes. Many of these genetic associations still need to be 

linked to causal genes and genetic variants, yet because tractable cellular and animal models 

are available, this might be simpler for blood cell traits than it is for most complex human 

phenotypes. By design, GWAS interrogate common DNA variants, leaving untested low-

frequency and rare sequence variation. The development of next-generation DNA sequencing 

platforms and exome genotyping arrays now provides the tools to test the role of this rarer 

genetic variation on blood cell phenotypes. Much criticism has been raised against GWAS 

because identified SNPs have poor predictive value; this is also true for SNPs associated with 

blood cell traits. However, this observation needs to be counter-balanced by the potential gain 

in improving our understanding of human biology in health and disease. GWAS blood cell 

trait loci provide new opportunities to study hematopoiesis, natural selection and the various 

ways common segregating DNA sequence variants can modify disease severity, paving the 

way for the development of more specific therapies. 
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1.4.RESEARCH OBJECTIVES 

Although we have seen significant strides in gene discovery for both DCM and blood 

cell traits, many more genes remain to be identified. For DCM, more than 50 genes have been 

implicated with the disease, however mutations in those genes explain less than half of DCM 

cases. As I discussed above, identifying the genetic cause of DCM facilitates the clinical 

management of affected family members, and also improves our understanding of DCM and 

heart failure. On the other hand, although we know a lot more now about the genetic basis of 

blood-cell traits, its genetic architecture remains largely unknown (so is the case for other 

complex traits). GWAS studies did not provide as much explanation as was originally 

anticipated which warranted more research and different methods to contribute to identifying 

novel factors, particularly low-frequency variants that would partially account for the 

unexplained phenotypic variance.  Moreover, the relationship between blood cell traits and 

CVD remains elusive. Hence, the objectives that I undertook in this thesis can be divided into 

two main components:  

1) Discover novel genes and genetic mutations that cause dilated cardiomyopathy  

2) Discover novel genetic factors that play a role in blood cell traits. 

To achieve these objectives I used a variety of methods and tools that differed 

significantly between the analyses of the Mendelian vs complex traits.  I ran both family-based 

and population-based analyses, and used both sequencing and chip-based genetic data.  
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1.5.THESIS CONTRIBUTIONS TO KNOWLEDGE 

 In chapter 2, I describe an exome sequencing study on French Canadian families 

followed at the MHI genetic clinic. Only 30% of probands with familial DCM get a positive 

result upon genetic screening at the MHI. By using exome sequencing, I show that we can 

improve sensitivity of genetic testing by more than two fold. I also identified a novel mutation 

in the BAG3 gene that was causal of DCM in three families of the same region in Quebec. This 

work was the first to demonstrate that truncating mutations in BAG3 are associated with early 

age of onset, where DCM patients carrying the BAG3 truncating mutations developed the 

disease, on average, ten years earlier than their counterparts who carried causal mutations in 

other genes. This result had direct impact in clinical evaluation and follow-up of patients with 

mutations in this gene at the MHI and in other hospitals. We also identified five novel 

nonsense mutations in the giant gene TTN that segregated with disease and accounted for the 

highest number of families with mutations in the same gene.  

 In chapter 3, I describe a family with an atypical form of cardiomyopathy, one that 

does not conform to the known types of this disorder. I show that a mutation in FLNC, a gene 

that has an established role in myofibrillar myopathy causes a distinct cardiomyopathy 

characterized by fibrosis and sudden cardiac death suggesting that asymptomatic carriers of 

truncating mutations in FLNC may require clinical intervention to prevent SCD-associated 

arrhythmia. 

 In chapter 4, I carried out a large and multi-ethnic study as part of the blood cell 

consortium (BCX). I analyzed seven red blood cell traits in (130k) individuals from five 

ancestries: Europeans, African Americans, South Asians, East Asians, and Hispanics and 
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identified 16 novel genes not previously reported to be associated with red blood cells, 

contributing by that to the repertoire of genes involved in red blood cell biology. The use of an 

African American population in the study allowed the discovery of an association between 

CD36 and red blood cell traits. This work also demonstrated that the identified mutation may 

have a functional role, by showing that there is reduced expression of CD36 in erythroblasts of 

individuals that carry the identified nonsense variant.   

In chapter 5, I describe a large scale analysis study with platelets within BCX. We 

explored genetic associations with platelet count (PLT) and mean platelet volume (MPV) and 

identified 15 novel loci. Among the identified genes, there were 8 genes that play a role in 

platelet reactivity.  
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2.1.ABSTRACT 

Background: Dilated cardiomyopathy (DCM) is a major cause of heart failure that may 

require heart transplantation. Approximately one third of DCM cases are familial. Next-

generation DNA sequencing of large panels of candidate genes (ie, targeted sequencing) or of 

the whole exome can rapidly and economically identify pathogenic mutations in familial 

DCM.  

Methods: We recruited 64 individuals from 26 DCM families followed at the Montreal 

Heart Institute Cardiovascular Genetic Center and sequenced the whole exome of 44 patients 

and 2 controls. Both affected and unaffected family members underwent genotyping for 

segregation analysis. 

Results: We found 2 truncating mutations in BAG3 in 4 DCM families (15%) and 

confirmed segregation with disease status by linkage (log of the odds [LOD] score = 3.8). 

BAG3 nonsense mutations conferred a worse prognosis as evidenced by a younger age of 

clinical onset (37 vs 48 years for carriers and noncarriers respectively; P = 0.037). We also 

found truncating mutations in TTN in 5 families (19%). Finally, we identified potential 

pathogenic mutations for 9 DCM families in 6 candidate genes (DSP, LMNA, MYH7, MYPN, 

RBM20, and TNNT2). We still need to confirm several of these mutations by segregation 

analysis. 

Conclusions: Screening an extended panel of 41 candidate genes allowed us to identify 

probable pathogenic mutations in 69% of families with DCM in our cohort of mostly French-

Canadian patients. We confirmed the prevalence of TTN nonsense mutations in DCM. 
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Furthermore, to our knowledge, we are the first to present an association between nonsense 

mutations in BAG3 and early-onset DCM. 
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2.2.INTRODUCTION 

Dilated cardiomyopathy (DCM) is a major cause of heart failure representing the main 

reason for cardiac transplantation 178. One third of DCM cases are familial 179-181 and the 

recognition of the familial nature of the disease is important for screening family members. 

The genetics of DCM is complex with more than 40 genes involved 3; 182. As recommended in 

clinical practice guidelines, genetic testing is now routinely performed in familial DCM for the 

purpose of screening family members 183; 184. Unfortunately, due to its large genetic 

heterogeneity, the yield of genetic testing targeting a small number of genes is modest (15-

30%) as compared to that of hypertrophic or arrhythmogenic cardiomyopathies (30-70%) 183-

185. 

 

Advances in sequencing technologies made it possible to perform whole-exome 

sequencing (WES), where the protein coding regions of the whole-genome are targeted, at a 

reasonable cost. WES is an unbiased and efficient method to uncover potential pathogenic 

mutations in disease without previous assumptions about candidate genes or pathways and has 

proven to be successful at identifying causal mutations in several genetic disorders45; 186; 187. 

We applied WES on clinically well-characterized individuals with familial DCM in order to 

identify pathogenic mutations in those families. Here, we present our initial focused search for 

pathogenic mutations (missense, nonsense, frameshift and splice site variants) in the 41 known 

DCM candidate genes.  
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2.3.MATERIALS AND METHODS 

Participants 

The project was approved by the ethics committee at the Montreal Heart Institute (MHI) 

and conforms to the principles outlined in the Declaration of Helsinki. Individuals were 

recruited from the MHI Cardiovascular Genetic Center and signed informed consents. 

Inclusion criteria for probands were: left ventricular ejection fraction (LVEF) <45%, left 

ventricular dilatation end-diastolic diameter >117% of predicted value188, and a first degree 

relative with DCM or a familial history of premature sudden cardiac death. Inclusion and 

exclusion criteria are detailed in Supplementary Table 2.1. Family members were recruited 

for segregation analysis; each was classified as affected, unaffected or borderline based on 

published criteria188. With the exception of two individuals who were tested five years prior to 

enrollment, all subjects had an echocardiogram performed within the previous three years. 

Prior to current study, clinical targeted genetic testing was performed in 20 of the 26 probands 

in the MHI molecular laboratory using Sanger sequencing. The DCM panel includes SCN5A, 

LMNA, TNNT2, TNNI3, MYBPC3 and MYH7, in agreement with a published Canadian 

Cardiovascular Society (CCS) position statement on genetic testing184. Staff in the research 

laboratory was blinded to clinical testing results. To compare the sensitivity of WES and 

clinical Sanger sequencing, both families with and without identified mutations in the clinical 

laboratory were included in this study. 
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Whole-exome DNA Sequencing (WES) 

We sequenced the exome of 44 participants using the Illumina HiSeq2000 instrument 

and a paired-ends 2x101 base pairs protocol. We used Illumina’s TruSeqExome Enrichment 

Kit that targets 62 megabases, including exons from 20,794 genes. Details of the WES 

protocol are described the Supplementary Note.  

 

Sanger sequencing 

We confirmed mutations identified by WES using Sanger capillary sequencing. For TTN, 

we only validated novel nonsense mutations. The primer sequences are in Supplementary 

Table S2. We also genotyped by capillary sequencing BAG3 p.Arg309stop in the DNA of 192 

unrelated French Canadians from Gaspesia (Supplementary Note)189. 

 

Linkage analysis 

Seventeen additional affected and unaffected members from two families (#1 and 6) with 

the BAG3 p.Arg309stop nonsense mutations were recruited and genotyped by Sanger 

sequencing to test if the mutation segregates with disease. Within families 1, 6 and 12, we 

carried out linkage analysis in Merlin190 using an autosomal dominant model, a recombination 

fraction θ=0 and a disease prevalence of 0.0004 2). Since the BAG3 p.Arg309stop mutation is 

not present in public databases, we chose a disease allele frequency of 0.01%; lower allele 

frequencies had an insignificant effect on the calculated LOD score. 
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Genome-wide DNA genotyping 

In order to look for relatedness among individuals from families 1, 6 and 12 that carry 

BAG3 p.Arg309stop, we performed genome-wide DNA genotyping using the Illumina 

OmniExpress BeadChip array and calculated pairwise identity-by-descent (IBD) metrics. 

Details are presented in the Supplementary Note. 

Statistical analysis 

We examined whether BAG3 or TTN mutations are associated with an earlier age of 

onset or adverse outcomes defined as cardiovascular mortality, cardiac transplantation or 

ventricular assist device (VAD) implantation. To avoid recruitment biases, we excluded 

patients identified during routine screening for this analysis. Kaplan-Meier curves were 

generated using the survfit function in R191. To test the association between age of onset and 

BAG3 or TTN carrier status, we used the QFAM-total procedure implemented in PLINK that 

uses permutations to take into account family structure192. 



72 

 

2.4.RESULTS  

Study population  

We recruited and sequenced the whole-exome of 44 individuals from 26 DCM families: 

42 DCM patients and 2 unaffected family members that we used as controls. The clinical 

characteristics of the 42 patients are described in Table 2.1. All probands had normal coronary 

angiography, except one (Family 7) who did not undergo angiography due to absence of risk 

factors and autopsy proven DCM in a deceased family member.  

Whole-exome sequencing and variant prioritization 

The summary of the sequencing results is presented in Supplementary Table S3. We 

achieved a mean coverage of 62X, corresponding to 83% of the targeted bases sequenced at 

≥20X. We identified 192,464 DNA sequence variants, including 38,248 not catalogued in 

public databases (dbSNP build 139 and 1000 Genomes Project release 14)193; 194. To identify 

potential pathogenic DCM mutations, we only considered non-synonymous coding (missense, 

nonsense and frameshift) or splice site variants, with a minor allele frequency (MAF) ≤0.001 

in the NHLBI Exome Sequencing Project (ESP) data195. Of these, we initially prioritized 58 

variants that lie in any of the 41 previously reported DCM candidate genes (Supplementary 

Tables S4 and S5)3; 182. In families with more than one recruited affected subject, only 

mutations that segregated in at least another affected individual were further considered. 
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Table 2.1. Clinical characteristics for the 42 dilated cardiomyopathy (DCM) subjects that were whole-

exome sequenced at the Montreal Heart Institute (MHI).   

 
Characteristics Values 

Male sex N (%) 21 (50) 

Current age (years)1 52 ± 14 

Age of onset (years)1 44 ± 12 

French-Canadian descent N (%) 34 (81) 

LVEF (%)1 22 ± 12 

LVEF < 35% N (%) 34 (81) 

LVEDD (millimeters)1 65 ± 10 

History of NYHA class III-IV Heart Failure N (%) 28 (67) 

History of VAD implantation N (%) 5 (12) 

History of cardiac transplantation N (%) 15 (36) 

History of ICD implantation N (%) 28 (67) 

History of ventricular arrhythmia N (%) 7 (17) 

Coronary angiography (number performed/% abnormal) 32/0 

SAECG (number performed/% abnormal) 11/91 

Cardiac MRI (number performed/%abnormal) 18/100 

 
Table 2.1. LVEF: left ventricular ejection fraction; LVEDD: left ventricular end-diastolic diameter; NYHA: 

New York Heart Association; VAD: ventricular assist device; ICD: implantable cardioverter-defibrillator; 

SAECG: Signal Averaged ECG; MRI: magnetic resonance imaging.1Mean ± standard deviation. 

 



74 

 

Truncating variants in BAG3 

 A truncating mutation in BAG3 was identified in three apparently unrelated DCM 

families (Table 2.2). Family 1 is a large French-Canadian family with many affected 

individuals, including cases of sudden cardiac death and four transplant recipients (Figure 2.1 

and Supplementary Table 2.2). The proband was diagnosed with postpartum cardiomyopathy 

at the age of 30 and underwent urgent cardiac transplantation. The subsequent diagnosis of 

clinical DCM in first-degree relatives prompted the diagnosis of familial DCM. Prior to our 

study, the proband underwent negative genetic testing at MHI and also at the Laboratory of 

Molecular Medicine (Harvard) where she was tested for ten genes in 2009. 

  

 We sequenced the exome of eight affected individuals in Family 1. We identified a 

nonsense mutation in BAG3 (p.Arg309stop) (Table 2.2) that segregated in all sequenced 

individuals. We also identified the same mutation in Families 6 and 12 (Figure 2.1, 

Supplementary Note and Supplementary Table 2.2). In the proband of Family 9, we also found 

another novel nonsense BAG3 mutation (p.Ser249stop).  

  

 To confirm the pathogenicity of the BAG3 mutations, we enrolled additional affected 

and unaffected family members from Families 1 and 6. We could not recruit additional 

members from Families 9 and 12. These individuals underwent cardiac imaging if not 

performed within the previous three years and we confirmed by capillary sequencing their 

BAG3 p.Arg309stop carrier status. Genotype and phenotype information appear in Figure 2.1 

and Supplementary Table 2.2. In summary, all genotype negative individuals are unaffected. 

In Family 1, three individuals carry the mutation but are not clearly affected: 1.10 (24 years 
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old) is unaffected but still young, 1.9 (45 years old) had a normal echocardiogram 5 years 

prior to enrolment but was not available for clinical re-evaluation, and 1.16 (67 years old) has 

a mildly depressed LVEF (50%) but no left ventricular dilation and thus does not meet criteria 

for DCM. Interestingly, this last individual has been taking an angiotensin receptor blocker for 

many years for hypertension, which could have halted disease progression 196. In Family 6, 

BAG3 p.Arg309stop was fully penetrant (Figure 2.1). Individual 6.11 has borderline DCM 

with an LV end-diastolic diameter >112% predicted but normal LVEF at the age of 37 years 

old. In summary, p.Arg309stop mutation segregated with disease status with high penetrance 

(95% if we consider individuals ≥40 years old). We carried out linkage analysis with all 

individuals from Families 1, 6 and 12 (N=30) who are ≥40 years old and for whom an 

echocardiogram was performed in the last three years. We calculated a LOD score of 3.8 for 

BAG3 p.Arg309stop, indicating that the probability that this mutation segregates with disease 

status by chance in these families is approximately 1 in 4,000. Note that including individual 

1.10 (young age) and 1.9 (not clinically tested in the last four years) in the analysis yields a 

LOD score of 3.2.  
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Table 2.2. Mutations identified in candidate dilated cardiomyopathy genes in this whole-exome DNA sequencing experiment. 

 

 

Table 2.2. Genomic coordinates are on build UCSC hg19. Segregation was confirmed in nine families. *:gene is not on the DCM panel for clinical testing 

at the Montreal Heart Institute 

 

Gene Position (chr:pos) Variant ID Mutation Annotation 
Amino acid 

change 

Polyphen 

prediction 

Minor allele 

frequency 
ESP/1000G 

MHI 

Families 

Segregation 

confirmed? 

Identified 

by clinical 
testing 

LMNA 1:156,084,983 ss836897369 c.274C>T Missense p.Leu92Phe 
probably 

damaging 
-/- 26 No Yes 

LMNA 1:156,100,500 ss836897320 c.449C>T Missense p.Thr150Ile 
possibly 
damaging 

-/- 14 No Yes 

LMNA 1:156,106,048 rs61094188 c.1201C>T Missense p.Arg401Cys 
probably 

damaging 
-/- 3 Yes No 

LMNA 1:156,106,981 ss836897354 c.1566CG>C frameshift 
p.Asn524Thr 
fs*23 

- -/- 21 Yes Yes 

LMNA 1:156,108,510 rs142000963              c.1840C>T Missense p.Arg614Cys 
probably 

damaging 
0.001/- 19 No Yes 

TNNT2 1:201,333,470 ss836897393 c.415C>T Missense p.Arg139Cys 
probably 

damaging 
-/- 4 No Yes 

TTN 2:179,428,202 ss836897424 c.55462G>T Nonsense p.Gly18488stop - -/- 17 No No* 

TTN 2:179,429,822 - c.53842C>T Nonsense p.Arg17948stop - -/- 8 Yes No* 

TTN 2:179,440,999 ss836897463 c.42665G>A Nonsense p.Trp14222stop - -/- 11 Yes No* 

TTN 2:179,470,369 ss836897473 c.26458G>T Nonsense p.Glu8820stop - -/- 5 No No* 

TTN 2:179,505,980 ss836897490 c.13428T>A Nonsense p.Lys4476stop - -/- 2 Yes No* 

DSP 6:7,571,710 ss836897516 c.1796T>G Missense p.Met599Arg 
probably 

damaging 
-/- 10 No No* 

MYPN 10:69,908,204 ss836897657 c.343C>T Missense p.Arg115Cys 
possibly 
damaging 

-/- 20 No No* 

RBM20 10:112,572,062 ss836897756 c.1907G>A Missense p.Arg636His 
probably 

damaging 
-/- 19 No No* 

BAG3 10:121,432,095 ss836897768 c.746C>A Nonsense p.Ser249stop - -/- 9 No No* 

BAG3 10:121,435,991 ss836897771 c.925C>T Nonsense p.Arg309stop - -/- 

1 Yes No* 

6 Yes No* 

12 Yes No* 

MYH7 14:23,893,327 ss836897779 c.2711G>A Missense p.Arg904His 
probably 

damaging 
-/- 16 Yes Yes 
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Figure 2.1. Pedigree of dilated cardiomyopathy families 1, 6 and 12. 

 

 

 
Figure 2.1. Probands are indicated by an arrow. Shaded and half-shaded symbols signify affected and 

borderline individuals respectively. “+”: a carrier of the BAG3 mutation, p.Arg309stop; “-”: subject is negative 

for the mutation; "?": unknown affection status; SCD: sudden cardiac death; SD: sudden death. An asterisk (*) 

refers to an obligate carrier. 
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To evaluate the clinical importance of the BAG3 p.Arg309stop mutation in our DCM 

patient population, we compared carriers and non-carriers in terms of age of clinical onset and 

severe adverse events: heart transplantation, implantation of a ventricular assist device (VAD), 

or cardiovascular death. Our analyses did not include patients recruited for screening to avoid 

bias and we used permutations to accounts for family structure. Interestingly, carrying the 

BAG3 p.Arg309stop mutation was significantly associated with younger age of clinical onset 

(37 vs. 48, P=0.037; Figure 2.2). The BAG3 p.Arg309stop mutation does not modify the risk 

of severe adverse events in DCM patients (P=0.74) (Figure 2.2). 

 

  This BAG3 p.Arg309stop mutation is absent from public databases193-195, but was 

previously reported in a European DCM pedigree197. Interestingly, Families 1, 6 and 12 are all 

originally from the Gaspésie region in Quebec. A genetic analysis based on identity-by-

descent (IBD) revealed a third degree relatedness between individuals of these three families. 

We also carried out haplotype analyses to determine if BAG3 p.Arg309stop is a founder 

mutation in Quebec. Details are described in the Supplementary Note. 
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Figure 2.2. Kaplan Meier curves of age of onset and severe adverse events of dilated cardiomyopathy (DCM) in carriers and non-carriers of 

BAG3 nonsense mutations. 

 

 

 
Figure 2.2. (A) Age of onset in DCM cases (N=41) including both probands and family members that presented to the hospital with DCM symptoms. 

Individuals diagnosed during screening are excluded. (B) Freedom of severe adverse events designated by heart transplantation, implantation of a 

ventricular assist device (VAD), or cardiovascular death in (N=47). Censored subjects are denoted with a hatch mark. 
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Mutations in other DCM candidate genes  

We found five novel nonsense mutations in TTN in five families (Table 2.1, 

Supplementary Table 2.2 and Supplementary Note). For Families 2, 8 and 11, (Supplementary 

Figure 4.1. Flow chart of the study design.), we confirmed segregation of the TTN nonsense 

mutation in one additional affected or borderline individual, but for Families 5 and 17 we 

could not recruit other members. We did not find DCM probands with frameshift TTN 

mutations. TTN nonsense mutations were not associated with earlier age of onset or adverse 

clinical outcomes (Supplementary Figure 2.1). 

 

Prior to our study, 20 probands underwent clinical testing for mutations in SCN5A, 

LMNA, TNNT2, TNNI3, MYBPC3 and MYH7 at the MHI. Likely pathogenic mutation for six 

probands were identified: in LMNA (Families 14, 19, 21, 26), MYH7 (Family 16) and TNNT2 

(Family 4) (Table 2.2 and Supplementary Table 2.2). These mutations are described in the 

Supplementary Note. Our WES approach captured all six variants identified by clinical 

testing. We also found a missense mutation in LMNA (p.Arg401Cys) in the proband of Family 

3. 

 

Besides BAG3, TTN and the six genes routinely tested at the MHI, we examined 33 

additional DCM genes. We identified missense mutations in MYPN, DSP and RBM20 

(Table 2.2, Supplementary Table 2.2 and Supplementary Note). These mutations are absent 

from ESP and 1000 Genomes Project databases194; 195, although the same RBM20 mutation 

(p.Arg636His) was previously identified in DCM patients198; 199. The proband from Family 19 
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carries both LMNA and RBM20 missense mutations. We still need to confirm by segregation 

the pathogenicity of these mutations.  

 

2.5.DISCUSSION 

Our whole-exome DNA sequencing experiment in 26 DCM families identified rare and 

potentially pathogenic mutations in the following DCM candidate genes: DSP, LMNA, MYH7, 

MYPN, RBM20 and TNNT2 in nine families. The remaining nine families for whom we 

identified a potential pathogenic mutation carry truncating alleles in TTN or BAG3. Our study 

reinforces the role of BAG3 in DCM. Our multiplex pedigrees allowed us to demonstrate that 

BAG3 carries highly penetrant DCM mutations that are associated with a worse prognosis 

characterized by earlier age of onset. Our study adds to the clinical knowledge gleaned so far 

about BAG3. 

 

The role of BAG3 in DCM 

 BAG3 encodes the Bcl-2-associated athanogene 3 protein which is a co-chaperone of 

heat shock proteins that localizes to the Z disk200 and was previously linked to DCM197; 201; 202. 

Knocking-down bag3 translation in a zebrafish model induced a heart failure phenotype201. 

Villard et al. reported the same nonsense mutation in BAG3 (p.Arg309stop) in two related 

DCM patients of European origin197. To our knowledge, no one else has reported this 

mutation, and it remains absent from public databases193-195. Given the fact that Families 1, 6 

and 12 are originally from the Gaspesie region in Quebec, we tested for the widespread 

presence of the BAG3 p.Arg309stop allele in this region. We did not identify any carriers 
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among 192 healthy Gaspesians. Additional genetic analyses in 3,953 French Canadians did not 

identify potential BAG3 p.Arg309stop carriers. The best model to explain this result is that the 

BAG3 p.Arg309stop mutation arose on a BAG3 haplotype that is common in the French-

Canadian population (haplotype frequency is 9%). Although we cannot formerly rule out that 

the European197 and French-Canadian DCM patients that carry the BAG3 p.Arg309stop 

mutation share a common ancestor, the simplest explanation is that BAG3 p.Arg309stop is a 

rare familial DCM mutation that has occurred twice independently. Recently, Campbell et al. 

combined WES and haplotype analysis to determine that a novel missense variant in TNNT2 

observed in two DCM families was likely due to independent mutational events203. In our 

case, we note that the BAG3 p.Arg309stop mutation occurs due to a C > T nucleotide change 

within a CpG site. It has been suggested that DNA methylation at CpG sites can create 

mutation hotspots204.  

 

Truncating mutations in TTN 

TTN encodes a 33,000 amino acids protein that is important for sarcomere assembly and 

contractile forces in striated muscle. Several studies implicated TTN in DCM41; 42; 44; 205 and a 

recent report43 suggested that truncating mutations in TTN are an important genetic cause of 

DCM, a result corroborated by our study. We demonstrate that 19% (5/26) of familial DCM 

cases carry a truncating TTN mutation. In agreement with Herman et al.43, TTN nonsense 

mutations were not associated with earlier age of onset or more severe outcomes in our study 

(Supplementary Figure 2.1). It will be important to validate segregation of the identified 

nonsense TTN mutations in Families 5 and 17 as recent data suggest that not all truncating 

TTN alleles are fully penetrant or even pathogenic44; 206; 207.  
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Families or probands-only? 

WES generates an almost exhaustive catalogue of coding mutations found in a given 

patient.  It is therefore a very attractive approach to identify the cause of rare Mendelian 

diseases, and works particularly well with diseases in which one or few genes are mutated. In 

its simplest form, you sequence a series of unrelated probands and find the one gene in which 

they all carry a private mutation. In the case of DCM, however, the probands-only strategy is 

difficult because >40 genes are implicated (and the list continues to grow). This approach 

worked well for TTN, but the prevalence of truncating mutations in this gene in DCM patients 

is very high (20-25%)43. For all other known DCM genes, the prevalence of mutations is small 

(<5%) and it is difficult to build a convincing statistical argument by simply testing unrelated 

patients. Even more challenging would be the validation of a pathogenic mutation found in a 

single affected individual without family members. Functional studies in cellular or animal 

models could provide hints, yet the extrapolation of phenotypes observed in cells or mice to 

humans is not straightforward. For these reasons, we advocate that careful segregation 

analyses should remain the gold-standard criterion to evaluate the candidacy of new DCM 

genes.  The recruitment of family members is also essential to achieve the main goals of our 

DCM screening program: (1) preventing fatal cardiovascular events and (2) genetic 

counseling.



84 

 

2.6.ACKNOWLEDGEMENTS 

We thank all participants and acknowledge the technical support of the Beaulieu-Saucier 

MHI Pharmacogenomic Center.  

 

Funding Sources 

This work was supported by the Centre of Excellence in Personalized Medicine 

(CEPMed); the “Fonds de Recherche Santé Québec” (FRQS); the “Réseau de Médecine 

Génétique Appliquée” (RMGA) of FRQS; the Canada Research Chair program; the Marvin 

and Philippa Chair in Cardiology; and the MHI Foundation. There are no relationships with 

industry. The funding sources had no involvement in the study design or the interpretation of 

the results. 

 

Disclosures 

None. 



85 

 

2.7.SUPPLEMENTARY INFORMATION 

 

Supplementary Figure 2.1. Kaplan Meier curves of age of onset and clinical outcomes of dilated 

cardiomyopathy (DCM) in carriers and non-carriers of TTN nonsense mutations. 

 

 

 
Supplementary Figure 2.1. (A) Age of onset in DCM cases (N=40) including both probands and family 

members that presented to the hospital with DCM symptoms. (B) Freedom of clinical outcomes designated by 

heart transplantation, implantation of a ventricular assist device (VAD), or death in 45 individuals. Censored 

subjects are denoted with a hatch mark. In both cases, analyses comparing DCM patients with or without 

nonsense mutations were non-significant (P=0.57 and P=0.27 respectively), consistent with a previous 

report43. 
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Supplementary Table 2.1. Inclusion and exclusion criteria for probands with dilated cardiomyopathy 

(DCM). 

 

Inclusion Exclusion 

Ejection fraction of the left ventricle <0.45. Systemic diseases, pericardial diseases, congenital 

heart disease. 

Left ventricular end-diastolic diameter >117% of the 

predicted value corrected for age and body surface area 

which corresponds to 2 standard deviations of the 

predicted normal limit +5%. 

Coronary heart disease. 

At least one affected family member and/or 1st degree 

family history of sudden cardiac death below the age of 

35. 

Systemic arterial hypertension (>160/100 mmHg). 

 History of excess alcohol consumption. 

 Clinical, sustained and rapid supraventricular 

arrhythmias.  

 Evidence of DCM due to infections. 
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Supplementary Table 2.2. Clinical characteristics of all family members for whom a potential pathogenic mutation was identified. 

 

FID ID Ethnicity Affection Status AO Context of diagnosis LVEF 

(%) 
LVEDD 

(mm) Transp/VAD VA Death Mutation 

1 1.1 FC Affected 30 Cardiogenic shock 5 75 Transp. No No BAG3; p.Arg309X 
1 1.2 FC Affected 26 Screening 37 59 NC No No BAG3; p.Arg309X 

1 1.3 FC Affected 42 Heart failure 40 58 NC No No BAG3; p.Arg309X 

1 1.4 FC Affected 17 Cardiogenic shock 15 71 Transp. No No BAG3; p.Arg309X 

1 1.5 FC Affected  38 Heart failure 20 66 NC No No BAG3; p.Arg309X 

1 1.6 FC Affected 35 Heart failure 30 64 NC No No BAG3; p.Arg309X 

1 1.7 FC Affected 45 Heart failure 16 89 Transp. No No BAG3; p.Arg309X 

1 1.8 FC Affected 40 Heart failure 10 78 NC No No BAG3; p.Arg309X 

1 1.9* FC Unknown  NA NA 60 47 NA No No BAG3; p.Arg309X 

1 1.10 FC Not affected  NA NA 65 47 NA No No BAG3; p.Arg309X 

1 1.11 FC Not affected  NA NA 63 46 NA No No negative 

1 1.12 FC Affected 32 Palpitations 36 55 NC No No BAG3; p.Arg309X 

1 1.13 FC Not affected NA NA 62 48 NA No No negative 

1 1.14 FC Not affected NA NA 62 52 NA No No negative 

1 1.15 FC Not affected NA NA NA NA NA No No negative 

1 1.16 FC Not affected NA Screening 50 52 NA No No BAG3; p.Arg309X 

1 1.17 FC Not affected NA NA 68 47 NA No No negative 

2 2.1 FC Affected 48 Heart failure 41 61 NC No No TTN; p.Lys4476X 

2 2.2 FC Affected 41 Heart failure 15 80 Transp. Yes No TTN; p.Lys4476X 

2 2.3 FC Not affected  NA NA 60 47 NA No No TTN; p.Lys4476X 

2 2.4 FC Affected 32 Screening 39 56 NC No No TTN; p.Lys4476X 

2 2.5 FC Not affected NA NA 64 56 NA No No negative 

3 3.1 FC Affected 54 Heart failure 22 64 NC No No LMNA;p.Arg401Cys 

3 3.2 FC Affected 56 Heart failure 35 71 NC No No LMNA;p.Arg401Cys 

4 4.1 FC Affected  63 Palpitations 24 61 NC No No TNNT2; p.Arg139Cys 

5 5.1 FC Affected 39 Heart failure 20  73 NC No No TTN; p.Glu8820X 

6 6.1 FC Affected 33 Heart failure 12 72 Transp.  No No BAG3, p.Arg309X 

6 6.2 FC Affected 23 Screening 47 58 NC No No BAG3, p.Arg309X 

6 6.4 FC Affected 42 Atrial fibrillation 20 66 NC No No BAG3, p.Arg309X 

6 6.5 FC Not affected  NA NA 65 45 NA No No negative 

6 6.6 FC Not affected  NA NA 65 53 NA No No negative 

6 6.7 FC Not affected NA Chest pain 60 54 NA No No negative 

6 6.8 FC Affected 17 Screening 42 59 NC Yes No BAG3, p.Arg309X 

6 6.9 FC Not affected  NA NA 65 45 NA No No negative 

6 6.10 FC Affected 58 Stroke missing missing Transp. Yes No BAG3, p.Arg309X 

6 6.11 FC Borderline  NA NA 65 52 NA No No BAG3, p.Arg309X 

6 6.12 FC Not affected NA NA 65 49 NA No No negative 

8 8.1 FC Affected 23 Heart failure 5 70 Transp. No No TTN; p.Arg17948X 

8 8.2 FC Affected 49 TIA 15 78 Transp.  No No TTN; p.Arg17948X 

9 9.1 European Affected 41 Heart failure 10 80 NC No No BAG3; p.Ser249X 
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10 10.1 FC Affected 25 Stroke 15 68 Transp.  Yes Yes (Immuno-

suppressants non-
compliance) 

DSP;  p.Met599Arg 

11 11.1 FC Affected 50 Heart failure 10 59 NC No No TTN; p.Trp14222X 

11 11.2 FC Borderline 20 Screening 55 41 NC No No TTN; p.Trp14222X 

12 12.1 FC Affected 40 Heart failure 10 76 NC No No BAG3; p.Arg309X 

12 12.2 FC Affected 52 Heart failure 12 70 Transp. No No BAG3; p.Arg309X 

14 14.1 FC Affected 47 Heart failure 25 67 Transp. Yes No LMNA; p.Thr150Ile 

16 16.1 FC Affected 27 Cardiogenic shock 5 91 Transp. No No MYH7; p.Arg904His 

16 16.2 FC Affected 52 Syncope 20 59 NC No No MYH7; p.Arg904His 

16 16.3 FC Not Affected NA Screening 51 50 NA No No negative 

16 16.4 FC Not Affected NA Screening 65 46 NA No No negative 

19 19.1 FC Affected 56 Heart failure 25 61 NC No No LMNA; p.Arg614Cys 
RBM20; p.Arg636His 

20 20.1 FC Affected 55 Heart failure 25 58 NC No No MYPN; p.Arg115Cys 

21 21.1 Other Affected 34 Stroke & AV block 17 61 Transp.  Yes  Yes (Immediate post 

transplant) 

LMNA, p.Asn524Thr fs*23 

21 21.2 Other Affected 42 Stroke & AV block  20 49 NC Yes No LMNA, p.N524T fs*23 

26 26.1 FC Affected 45 Heart failure 20 62 VAD Yes Yes (Brain 

hemorrage) 

LMNA; p.Leu92Phe 

 
Supplementary Table 2.2. FID: Family ID; AO: age of onset; LVEF: left ventricular ejection fraction; LVEDD: left ventricular end-diastolic diameter; 

Transp.: Cardiac Transplantation; VAD: ventricular assist device; VA: ventricular arrhythmia; FC: French Canadian; NC: not candidate; NA: not 

applicable; TIA: transient ischemic attack; AV: Atrio-ventricular ;*: recent data not available. 

 

 

 



89 

 

CHAPTER 3:  A SPLICING MUTATION IN FLNC CAUSES A RARE FORM OF 

CARDIOMYOPATHY.  

 

 

Authors: Nathalie Chami,  Rafik Tadros,  Ken Sin Lo, Melissa Beaudoin, Laura Robb, 

Evelyn Naas, Mario Talajic, Guillaume Lettre.  

 

 

Reference: Nathalie Chami, Rafik Tadros, Ken Sin Lo, Melissa Beaudoin, Laura Robb, 

Evelyn Naas, Mario Talajic, Guillaume Lettre. A splicing mutation in FLNC causes a rare 

form of cardiomyopathy. In preparation 
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3.1. ABSTRACT 

 

Cardiomyopathies are a group of heart muscle disorders. Inherited forms of 

cardiomyopathies are usually caused by one mutation in a variety of genes that play a role in 

multiple mechanisms. Genetic screening of affected members identifies a causal mutation in 

only ~ 30% of cases. We sought to identify the cause of cardiomyopathy in a family that 

presented with a distinct form of cardiomyopathy characterized by a history of sudden cardiac 

death (SCD), fibrosis, arrhythmias, and a variable degree of dilated cardiomyopathy and for 

which genetic screening did not identify a causal mutation.  

 

We performed whole exome sequencing on 11 family members including 4 affected 

individuals. Additionally, we sequenced the exome of a formalin fixed and paraffin embedded 

(FFPE) heart tissue sample of a deceased individual that suffered a SCD.  We identified a 

splicing mutation in exon 44 of the FLNC gene that was carried by all affected individuals. 

Pathological analyses of the heart sample of the deceased individual revealed characteristics of 

left-dominant arrhythmogenic cardiomyopathy and extensive fibrosis.  Our results suggest that 

FLNC plays a role in cardiomyopathy and particularly in an atypical form with severe 

prognosis.



91 

 

3.2.INTRODUCTION 

Cardiomyopathies are a group of disorders that weaken the heart muscle function and 

may lead to heart failure and cardiac transplantation208.  Non ischemic dilated cardiomyopathy 

(DCM) is a type of cardiomyopathy with prevalence =1 in 2700 adults 2, although recent 

estimates suggest that it may be much higher 3. DCM is characterized by left ventricular 

enlargement and systolic dysfunction and is associated with high morbidity and mortality 

rates.  

 

More than 50 genes 58 have been linked to DCM and a number of those have arisen 

recently with the advances in genomic technologies. The advent of next generation sequencing 

(NGS) enabled faster and cheaper DNA sequencing compared to the traditional Sanger 

method. As a result, it is now possible to expand the list of genes that are screened during 

genetic testing for DCM. The cardiomyopathy panel at the Montreal Heart Institute (MHI) 

genetic clinic, for instance, now includes 35 genes compared to the previous panel that 

included only 6 genes.  NGS also made it possible to carry out whole exome sequencing 

(WES) which queries all genes of the human genome in an untargeted approach and thus 

provides a great potential for novel gene discoveries for cardiomyopathies. Despite all these 

promising advances, in the majority of cases, screening probands for cardiomyopathy genes 

does not identify the causal mutation. 

 

As part of an ongoing study at the MHI that aims at identifying novel genetic mutations 

associated with dilated cardiomyopathy59, we recruited a family with an atypical 
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cardiomyopathy characterized by left ventricular fibrosis, arrhythmia and sudden cardiac death 

(SCD). We sequenced the exomes of 5 affected individuals including that of a deceased family 

member who suffered a sudden cardiac death and whose heart was preserved at the MHI, in 

addition to 6 unaffected or asymptomatic family members.                
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3.3. MATERIALS AND METHODS 

Participants 

Members of family 7 were recruited at the MHI Cardiovascular Genetics Center. All 

participants signed an informed consent. The project was approved by the ethics committee at 

the MHI and conforms to the principles outlined in the Declaration of Helsinki. All family 

members underwent phenotyping including a cardiac magnetic resonance (CMR) imaging 

with gadolinium enhancement and/or echocardiography if CMR is not available or contra-

indicated, a standard and signal-averaged electrocardiogram, holter monitoring and exercise 

testing. Electrocardiographic examinations were systematically assessed by a cardiac 

electrophysiologist while all CMR were reviewed by an experienced CMR expert. The family 

was recruited on the basis of atypical cardiomyopathy with left ventricular dilatation and 

systolic dysfunction, malignant arrhythmia and left ventricular fibrosis. Family members were 

classified as affected if they have a clinical DCM as defined by 188 or fibrosis detected on 

CMR (late gadolinium enhancement, LGE) or at post-mortem cardiac examination. Minor 

LGE with an estimated scar mass <5g was considered non-diagnostic because of the non-

specificity of this finding. The proband (III.9) previously underwent diagnostic genetic testing 

in 2008 at the MHI molecular laboratory which consisted of Sanger sequencing of 11 genes 

associated with cardiomyopathy (MYH7, MYBPC3, TNNT2, TNNI3, SCN5A, LMNA, DSP, 

PKP2, DSG2, DSC2, TMEM43). No disease-causing mutation was found. 

Whole exome sequencing 

We sequenced the exomes of 11 living family members at the pharmacogenomics center 

of MHI using the Illumina HiSeq2000 instrument and a paired-ends 2x101 base pairs protocol. 
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We used Illumina’s TruSeqExome Enrichment Kit that targets 62 megabases, including exons 

from 20,794 genes. More information about the sequencing protocol and variant calling is 

published elsewhere 59.    

DNA extraction and sequencing of III.11 

A formalin fixed and paraffin embedded (FFPE) heart tissue was obtained for individual 

III.11. We obtained consent from the subject’s family to extract and sequence DNA from the 

available tissue. DNA was extracted using GeneRead gDNA kit for FFPE samples from 

Qiagen (cat no 180134) according to the protocol version 03/2014). Briefly, a 10uM slice was 

used. Following step 5, 100uL of deparafinization solution was added followed by another 3 

min of incubation at 56°C.  The elution was done in 30uL. The low molecular weight DNA 

was subsequently sent to the Genome center in Montreal to carry out the library preparation 

using NEB Ultra II kit (SeqCap Exome from Roche Nimblegen) using 100ng. The exome 

sequencing was performed on Illumina HiSeq2000 with PE100bp using Illumina TruSeq DNA 

v3.  We carried out the variant calling with the other family members sequenced at the 

pharmacogenomics center of the MHI.  Total number of variants and TS/TV ratios were 

comparable between ID III.11 and the rest of the family members. 

 



95 

 

3.4. RESULTS 

Phenotypic characterization 

The family (Figure 3.1) was referred for cardiovascular genetics evaluation when 

individual III.11 died suddenly while cycling at the age of 32. Past medical history was 

uneventful. Three years prior to the death of III.11, his father (II.6) died at the age of 57 of 

cardiogenic shock. He was diagnosed with DCM at the age of 46 after presenting with a 

syncopal event. At diagnosis, the left ventricle (LV) was dilated (diastolic diameter = 65mm) 

and showed systolic dysfunction (LV ejection fraction, LVEF = 30%). His follow-up was 

characterized by recurrent ventricular tachycardia and progressive heart failure requiring an 

implantable cardioverter defibrillator (ICD) with resynchronization therapy and amiodarone. 

In the few months prior to his death, the patient was recurrently admitted for appropriate ICD 

shocks with deterioration of LV function.  

  

Familial cardiac evaluation was performed in 11 additional family members (Table 3.1 

and Figure 3.1). Four additional individuals were found to be affected and seven were 

unaffected or undiagnostic. III.6 had minor ventricular LGE that was thought to be non-

specific (estimated mass <5g) and is thus said to have non-diagnostic findings. Clinical genetic 

testing of III.9 that was performed at the MHI did not identify any disease-causing variant. 
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Figure 3.1. Pedigree of family 7 

 

 

 
Figure 3.1. The proband is indicated by an arrow. Shaded squares and circles indicate affected individuals. A “+” sign refers to carriers of the FLNC 

mutation. A “-” sign means noncarriers. A “?” denotes unknown affection status. Those without a sign have not been genetically tested. SCD: sudden 

cardiac death. II.6 was considered as an obligate carrier in the segregation analysis. 
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Table 3.1. Clinical characteristics of the evaluated family members 

 

ID Phenotype Age PR QRS QTc SAECG 
Exercise 

testing 

Holter 

PVCs/24h 
ICD 

Clinical 

Arrhythmia 

LVEDV 

(mL/m2) 
 Fibrosis FLNC 

II.1 Affected 63 154 86 404 Abnormal(1/3) None 342 No None 66.3 66 5g + 

II.2 Unaffected 53 162 82 417 Normal 
1 
isolated 

PVC 

NA No None 71.5 63 n - 

II.3 Unaffected 60 138 82 432 Abnormal(1/3) NA 21 No None 50.6 72 2.1g - 

II.4 Unaffected 58 164 100 414 Abnormal(1/3) NA NA No None 6II.5 62 no - 

II.5 Affected 53 178 116 414 Abnormal(3/3) 
Isolated 

PVCs 
148 Primary 

Recurrent 

NSVT 
92 68 yes + 

II.6 Affected 57 156 116 467 NA NA NA Secondary 

Recurrent 

VT 
Atrial 

fibrillation 

65mm 
(TTE) 

30 
(TTE) 

NA (+) 

III.3 Unaffected 26 156 90 402 Abnormal(1/3) None 1 No None 82.4 67 1.2g - 

III.5 Unaffected 23 182 90 391 Abnormal(3/3) NA NA No None 80.6 67 2.4g - 

III.6 
Non-
diagnostic 

22 140 96 399 Abnormal(1/3) None 0 No None 96.6 67 4.5g + 

III.8 Unaffected 28 178 102 409 Abnormal(1/3) None 0 No None 95.4 62 n - 

III.9 Affected 27 128 98 410 Abnormal(1/3) 
Isolated 

PVCs 
379 Primary None 93.3 59 yes + 

III.10 Affected 30 144 92 378 NA NA NA Primary 

Appropriate 

ATP 

(VT at 
230bpm) 

NA 67 yes + 

III.11 Affected 32 NA NA NA NA NA NA No SCD 

Post-mortem: 

Moderate 
biventricular 

dilatation 

Extensive 
epicardial 

fibrosis  

+   

 
Table 3.1. SAECG: signal-averaged ECG; PVC: premature ventricular contraction; ICD: implantable cardioverter defibrillator; LVEDV: left ventricular 

end-diastolic volume; LVEF: left ventricular ejection fraction; NSVT: non-sustained ventricular tachycardia; ATP: anti-tachycardia pacing; VT: ventricular 

tachycardia; SCD: sudden cardiac death; TTE: trans-thoracic echocardiogram NA: non-available 
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Variant prioritization and segregation analysis 

To look for candidate pathogenic mutations, we followed a series of steps. First, we kept 

variants shared between the 5 individuals considered to be clearly affected (II.1,II.5, III.9, 

III.10, III.11) which yielded 27,206 variants. We then kept nonsynonymous coding (missense, 

nonsense and frameshift) or splice site variants, with a minor allele frequency (MAF) ≤ 0.0002 

in the ExAC dataset 209 and 51 remained. To further narrow down the list, we filtered against 

our own cardiomyopathy dataset that includes 78 individuals. Instead of choosing only private 

mutations, we were less conservative since we and others have demonstrated that distinct 

DCM families may share the same mutation59. So we assigned a MAF cutoff of 7% (or 11 

carriers). Nine variants were retained and are listed in Table 3.2. Given that young unaffected 

individuals are less informative for segregation analyses in a late onset disease, we only 

considered older unaffected family members (age > 45) for the segregation analyses. We 

removed variants that were present in ≥ 2 unaffected older individuals (age > 45) and only two 

variants were subsequently considered: a splice variant in exon 45 of FLNC and a missense 

variant (Thr372Ala) in MUC21. The latter is deemed benign by two mutation prediction tools, 

polyphen and SIFT. Further, the gene is not expressed in the heart tissue according to the 

human protein atlas (proteinatlas.org) which also includes the GTEx dataset. Hence, this 

variant does not constitute a candidate mutation and only the FLNC splice mutation was 

finally considered. The FLNC variant was carried by 6 family members, 5 of which are 

affected, and the sixth carrier is 26 years old with undiagnostic status (see methods). The 

variant is also absent from any of the queried databases (1000 genomes, ESP, and ExAC). 
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Pathology analysis of III.11 

Macroscopic examination of a section of the myocardium of individual III.11 

demonstrated cardiomegaly (440g) with moderate predominantly left-sided ventricular 

dilatation and mild cardiomyocyte hypertrophy (Figure 3.2). Extensive interstitial fibrosis with 

fatty infiltration predominantly affecting the left ventricular epicardium was noted Figure 3.2. 

Cardiac histology confirmed the nature of the fibrous and fibro-fatty infiltration of the 

myocardium in the outer third and subepicardium of the left ventricle. Besides secondary 

hypertrophy of the cardiomyocytes, there was no obvious or specific cellular abnormality 

demonstrated on histology, including a reduction in myofibrils or the presence of vacuoles.
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Table 3.2. Variants retained prior to segregation analysis 

 

Position 
ExAC 

MAF 
II.1 II.2 II.3 II.4 II.5 III.3 III.5 III.6 III.8 III.9 III.10 III.11 

amino 

acid 

change 
gene 

7:128496798 – + – – – + – – + – + + + exon 44 FLNC 
1:207850854 0.00002  + + – + – – – + + + + Pro73Arg CR1L 

1:209800293 0.00010 + + + – + – – – + + + + Phe506Ile LAMB3 

1:40533278 – + + + + + – – + – + + + Pro233Ala CAP1 

10:124166131 0.00009 + – – + + – + + + + + + Asn95Ser PLEKHA1 

11:709588 0.00010 – + + + + + – – + + + + Met27Thr EPS8L2 

6:30955066 0.00015 – – – + + – + – + +/+ + + Thr372Ala MUC21 

7:156742787 – + + + + + + + – + + + + Ala119Val NOM1 

7:158555855 0.00002 + + + + + + + – + + + + Ala416Va ESYT2 

 
Table 3.2. The 9 nonsynonymous coding variants with ExAC Minor allele frequency (MAF) < 0.0002 that are shared between all affected members of 

family 7 (II.1, II.5, III.9, III.10, and III.11) and that were retained prior to segregation analysis. Individuals III.6 has an unknown affection status and the 

remaining individuals are unaffected. All variants are missense except the FLNC variants, is a splice site mutation. AC and AF are allele count and allele 

frequency respectively from our DCM sample of 78 individuals. 
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Figure 3.2. Fixed heart specimen from III.11 

 
 
Figure 3.2. A. short axis of the heart showing extensive fibrosis. Yellow arrows indicate the circumferential 

fibrous band in the outer third of the left ventricle. The red arrows indicate the subepicardial fibro-fatty 

infiltration. B. Subepicardium of the left ventricle free wall showing fibro-fatty infiltration. C. Fibrous band 

running in the outer third of the left ventricle free wall.  
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3.5. DISCUSSION 

We present a family with a splicing mutation in FLNC and an atypical form of 

cardiomyopathy characterized by left ventricular dilatation with or without systolic 

dysfunction, arrhythmia, the presence of fibrosis, and a history of SCD with additional overlap 

with left ventricular arrhythmogenic cardiomyopathy (III.11). Hence, the cardiac phenotype 

observed does not conform to a distinct type of cardiomyopathy with a stark phenotypic 

heterogeneity seen among family members.  

 

FLNC: A role in myofibrillar myopathies 

Filamins are a family of muscle proteins that have an actin-binding domain and involved 

in various processes from organization of the cytoskeleton, membrane stabilization, to signal 

transduction and transcription 210; 211. Filamin C is largely produced in skeletal and cardiac 

muscles and interacts with a large number of muscle proteins at the sarcolemma 212; 213.  FLNC 

has long been known to be involved in myofibrillar myopathies214-218 which are often 

accompanied by a manifestation of cardiomyopathies. However, FLNC soon emerged as a 

player in cardiomyopathies in individuals in whom muscular weakness and ailments were not 

necessarily present. Mutations in FLNC were linked to HCM in 2014 219 and more recently 

with restrictive 220 and dilated cardiomyopathy 221. A recent study 222 evaluated the association 

between truncating variants in FLNC and cardiomyopathies in 28 unrelated families. 

Interestingly, they report that truncating variants in FLNC cause an overlapping phenotype of 

dilated and left dominant arrhythmogenic cardiomyopathies with the presence of fibrosis, 

similar to the phenotype we observe in the family presented here. However, the majority of the 

patients described in that study also suffered from systolic dysfunction, a typical characteristic 
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of DCM, which is not the case for family 7. The report by Begay et al 221, also described 

atypical manifestation of DCM in three families that carried splicing mutations in FLNC. The 

same study also demonstrated using a zebrafish model that the splicing variants led to a 

reduction in cardiac FLNC protein with Z-disc and sarcomere disorganization. These reports 

further confirm the role of FLNC in cardiomyopathy and provide strong support for the 

addition of FLNC on cardiomyopathy screening panels.  

The fact that the same mutation causes different characteristics of cardiomyopathy 

within the same family is intriguing. Other mutations have been shown to manifest as two 

distinct cardiomyopathy phenotypes. For example, the same mutation in TNNT2 can manifest 

as HCM in one individual and DCM in another adding yet a second level to the complexity to 

the heterogeneity observed in these disorders 3.   

Affected individuals of family 7 who carried the FLNC mutations also carried two other 

missense variants in genes that interact with actin and play a role in cytoskeletal organization 

(CAP1 and EPS8L2).   We postulate a framework that implicates the segregating FLNC 

mutation as the cause of DCM, due to the nature of the mutation, i.e a splicing unreported 

mutation, in a gene predominantly expressed in cardiac muscle with an established role in 

maintenance of muscle integrity, and in which the other variants may be contributing to the 

distinct phenotypes seen in the affected individuals. Indeed, it would be interesting to explore 

whether other families with FLNC truncating mutations also carry variants in genes involved 

in actin binding and muscle function. Multiplex families would be particularly informative as 

they would allow to evaluate if such variants have any modifier effect on phenotype outcomes 

within and across families. 
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Conclusions 

According to the genetic testing registry, only two labs in the US test for FLNC as part 

of a cardiomyopathy panel (probably due to its known association with hypertrophic 

cardiomyopathy in 2014) (Fulgent Genetics and Invitae) and none in Canada. It is also not 

present on commercial panels (e.g the TruSight cardiomyopathy panel of Illumina). The 

results presented here corroborate other work 221; 222 and support the role of FLNC truncating 

mutations in cardiomyopathy suggesting that it should be a novel addition to existing gene 

panels. A common theme in these reports is the atypical manifestation of cardiomyopathy that 

includes arrhythmia, fibrosis and sudden cardiac death. Studies have shown that fibrosis is 

associated with a poor prognosis in patients with heart failure 223; 224, ventricular arrhythmias 

225; 226, and with a higher likelihood of ICD therapy 227. Therefore, individuals with the atypical 

phenotype described here and with FLNC truncating mutations should be considered for ICD 

implantation for primary prevention of sudden cardiac death.   
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4.1.ABSTRACT 

Red blood cell (RBC) traits are important heritable clinical biomarkers and modifiers of 

disease severity. To identify novel coding genetic variants associated with these traits, we 

conducted meta-analyses of seven RBC phenotypes in 130,273 multi-ethnic individuals from 

studies genotyped on an exome array. Following conditional analyses and replication in 

27,480 independent individuals, we identified 14 new RBC loci. We found low-frequency 

missense variants in MAP1A (rs55707100, minor allele frequency (MAF=3.3%, P=2x10-10 for 

hemoglobin (HGB)) and HNF4A (rs1800961, MAF=2.4%, P<3x10-8 for hematocrit (HCT) 

and HGB). In African Americans, we identified a nonsense variant in CD36 associated with 

higher RBC distribution width (rs3211938, MAF=8.7%, P=7x10-11), and showed that it is 

associated with lower CD36 expression and strong allelic imbalance in ex vivo differentiated 

human erythroblasts. We also identified a rare missense variant in ALAS2 (rs201062903, 

MAF=0.2%) associated with lower mean corpuscular volume and mean corpuscular 

hemoglobin (P<8x10-9). Mendelian mutations in ALAS2 are a cause of sideroblastic anemia 

and erythropoietic protoporphyria. Gene-based testing highlighted three rare missense variants 

in PKLR, a known gene of Mendelian non-spherocytic hemolytic anemia, associated with 

HGB and HCT (SKAT P<8x10-7). The novel rare, low-frequency, and common RBC variants 

showed pleiotropy, being also associated with platelet, white blood cell, and lipid traits. Our 

association results and functional annotation suggest the involvement of new genes in human 

erythropoiesis. We also confirm that rare and low-frequency variants play an important role in 

the architecture of complex human traits, although their phenotypic effect is generally smaller 

than originally anticipated.  
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4.2.INTRODUCTION 

One in four cells in the human body is a mature enucleated red blood cell (RBC), also 

called an erythrocyte. RBC mean lifespan in adults is 100-120 days, requiring constant 

renewal. To that end, we produce on average 2.4 million RBCs per second in the bone 

marrow. This massive, yet well-orchestrated cell proliferation process is necessary to 

accommodate RBCs’ main function, to transport oxygen from the lungs to the peripheral 

organs, and carbon dioxide from the organs to the lungs. Hemoglobin (HGB), the 

metalloprotein that constitutes by far the most abundant biomolecule found in mature RBC, is 

responsible for oxygen transport. In addition to their critical role in the circulatory system, 

RBCs also have secondary, often less appreciated, functions. Within blood vessels, they 

respond to shear stress and produce the vasodilator nitric oxide to regulate vascular tonus228. 

RBCs participate in antimicrobial strategies to fight hemolytic pathogens229 or in the 

inflammatory response, acting as a reservoir for multiple chemokines230. Furthermore, the 

direct involvement of RBC in adhering to the vascular endothelium or supporting thrombin 

generation may help to promote blood coagulation or thrombosis231; 232. 

Given the paramount importance of RBCs in physiology, it is not surprising that 

monitoring their features is common practice in medicine to assess the overall health of 

patients. An excessive number of circulating RBCs (erythrocytosis[MIM: 133100]) can 

suggest a primary bone marrow disease, a myeloproliferative neoplasm such as polycythermia 

vera (MIM: 263300), or chronic hypoxemia due to congenital heart defects. Low HGB 

concentration and hematocrit (HCT) levels (anemia) may indicate inherited HGB or RBC 

structural gene mutations, malnutrition, or kidney diseases. By considering the volume (mean 

corpuscular volume (MCV)), hemoglobin content (mean corpuscular hemoglobin (MCH) and 



108 

 

mean corpuscular hemoglobin concentration (MCHC)), or the distribution width (RDW) of 

RBCs, a physician can distinguish between the different causes of anemia (e.g. microcytic/ 

hypochromic due to iron deficiency233). In addition, epidemiological studies have correlated 

high RDW values with a worse prognosis in heart failure patients234. RDW is also an 

independent predictor of overall mortality in healthy individuals, as well as a predictor of 

mortality in patients with various conditions such as cardiovascular diseases, obesity, 

malignancies, and chronic kidney disease235-239.  

RBC count and indices vary among individuals, and 40-90% of this phenotypic variation 

is heritable108; 117; 240; 241. Identifying the genes and biological pathways that contribute to this 

inter-individual variation in RBC traits could highlight modifiers of severity and/or therapeutic 

options for several hematological diseases. Already, large-scale genome-wide association 

studies (GWAS) have found dozens of single nucleotide polymorphisms (SNPs) associated 

with one or several of these RBC traits123; 242. However, owing to their design, GWAS are 

largely insensitive to rare (minor allele frequency [MAF] <1%) and low-frequency 

(1%≤MAF<5%) genetic variants. Using an exome array, we previously performed an 

association study for HGB and HCT in 31,340 European-ancestry individuals and identified 

rare coding or splice site variants in the erythropoietin and β-globin genes243. Within the 

framework of the Blood-Cell Consortium (BCX)244; 245, we now report a larger genotyping-

based exome survey of seven RBC traits conducted in up to 130,273 individuals, including 

23,896 participants of non-European ancestry. With this experiment, our initial goals were to 

expand the list of rare and low-frequency coding or splice site variants associated with RBC 

traits and to explore whether the exome array can complement the GWAS approach to fine-

map RBC causal genes. 
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4.3.SUBJECTS AND METHODS 

Study participants 

The Blood-Cell Consortium (BCX) aims at identifying novel common and rare variants 

associated with blood-cell traits using an exome array. BCX is comprised of more than 

134,021 participants from 24 discovery cohorts of five ancestries: European, African 

American, Hispanic, East Asian, and South Asian. Detailed description of the participating 

cohorts is provided in Table S1. BCX is interested in the genetics of all main hematological 

measures and is divided into three main working groups: RBC, white blood cell (WBC)244, 

and platelet (PLT)245. For the RBC working group, we analyzed seven traits available in up to 

130,273 individuals: RBC count (x1012/L), HGB (g/dL), HCT (%), MCV (fL), MCH (pg), 

MCHC (g/dL), and RDW (%)(Table S2). The BCX procedures were in accordance with the 

institutional and national ethical standards of the responsible committees and proper informed 

consent was obtained. 

Genotyping and quality-control steps 

Participants from the different studies were genotyped on one of the following exome 

chip genotyping arrays: Illumina ExomeChip v1.0, Illumina ExomeChip v1.1_A, Illumina 

ExomeChip-12 v1.1, Affymetrix Axiom Biobank Plus GSKBB1, Illumina 

HumanOmniExpressExome Chip. Genotypes were then called either 1) with the Illumina 

GenomeStudio GENCALL and subsequently recalled using zCALL; or 2) by the Cohorts for 

Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium  Exome Chip 

effort246 (Table S1).  The same quality-control steps were followed by each participating 

study. We excluded variants with low genotyping success rate (<95%, except for WHI that 
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used a cutoff <90%) (Table S3). Samples with call rate <95% (except for SOLID-TIMI 52 

and STABILITY that used 94.5% and 93.5% cutoffs, respectively) after joint or zCALL 

calling and with outlying heterozygosity rate were also excluded. Other exclusions were 

deviation from Hardy-Weinberg equilibrium (P<1x10-6) and gender mismatch. We performed 

principle component analysis (PCA) or multidimensional scaling (MDS) and excluded sample 

outliers from the resulting plots through visual inspection, using populations from the 1000 

Genomes Project to anchor these analyses. Keeping only autosomal and X chromosome 

variants for the analysis, we aligned all variants on the forward strand and created a uniform 

list of reference alleles using the --force alleles command in PLINK247. Finally, an indexed 

variant call fomat file (VCF) was created by each study and checked for allele alignment and 

any allele or strand flips using the checkVCF package (https://github.com/zhanxw/checkVCF). 

Prior to performing meta-analyses of the association results provided by each participating 

study, we ran the EasyQC protocol248 to check for population allele frequency deviations and 

proper trait transformation in each cohort.  

Phenotype modeling and association analyses  

When possible, we excluded individuals with blood cancer, leukemia, lymphoma, bone 

marrow transplant, congenital or hereditary anemia, HIV, end-stage kidney disease, dialysis, 

splenectomy, and cirrhosis, and those with extreme measurements of RBC traits (Table S1). 

We also excluded individuals that are on erythropoietin treatment or chemotherapy. 

Additionally, we excluded pregnant women and individuals with acute medical illness at the 

time the complete blood count (CBC) was done. For the seven RBC traits, within each study, 

we adjusted for age, age-squared, gender, the first 10 principle components, and, where 

applicable, other study specific covariates such as study center using a linear regression model. 
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Within each study, we then applied inverse normal transformation on the residuals and tested 

the variants for association with the ExomeChip variants using either RVtests (version 

20140416) (http://genome.sph.umich.edu/wiki/RvTests) or RAREMETALWORKER.0.4.9

   (http://genome.sph.umich.edu/wiki/RAREMETALWORKER).  

Discovery meta-analyses 

Score files generated by RVtests or RAREMETALWORKER from each participating 

study were used to carry out meta-analyses of the single variant association results using 

RareMETALS v.5.9249.  All analyses were performed separately in each of European (EA) and 

African-American (AA) ancestries. In the multi-ancestry meta-analyses, we combined 

individuals of European, African-American, Hispanic, East-Asian, and South-Asian ancestries 

(All). We included variants with allele frequency difference between the highest and lowest 

MAF <0.3 for European and African-American ancestries, and <0.6 for the combined ancestry 

meta-analyses. For the gene-based analyses, we used score files and variance-covariance 

matrices from the study-specific association results, and applied the sequence kernel 

association test (SKAT)250 and variable threshold (VT) algorithms251  in RareMETALS 

considering only missense, nonsense and splice site variants with a MAF <1%. Gene-based 

analyses were also stratified by ancestry. Significance thresholds were determined using 

Bonferroni correction assuming ~250,000 independent variants (P<2x10-7 for the single 

variant analyses) and ~17,000 genes tested on the ExomeChip (P<3x10-6 for the gene-based 

tests). 

Conditional analysis and replication 

In order to identify independent signals, we performed conditional analyses. In each 

round of conditional analysis, we conditioned on the most significant single variant in a 1 Mb 

http://genome.sph.umich.edu/wiki/RAREMETALWORKER
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window. These conditional analyses were performed at the meta-analysis level using 

RareMETALS. We repeated this step until there were no new signals identified in each region, 

defined as a P<2x10-7. We then checked for linkage disequilibrium (LD) within the list of 

variants that was retained from the conditional analyses. For variants that were in moderate-to-

strong LD (r2≥0.3), we kept the most significant. We attempted replication of the final list of 

independent variants in eight additional studies that contributed a total of 27,480 individuals 

(N=21,473 for EA and N=6,007 for AA) (Table S4). The division of discovery and replication 

samples was dictated by timing because we collected all groups we were aware of for initial 

discovery and then found others who could participate only much later and hence were used 

for replication. These studies followed similar analytical procedures and steps as those 

followed by the discovery analysis (see above). A joint meta‐analysis of the discovery and the 

replication results was carried out using a fixed-effects model and inverse‐variance weighting 

as implemented in METAL252. We considered as replicated markers those with a nominal 

Preplication<0.05 and an effect on phenotype in the same direction as in the discovery results. 

Allelic imbalance and expression of CD36 

We checked for allelic imbalance of the rs3211938 variant in CD36 as well as the 

expression of the gene in 12 samples of fetal liver erythroblasts obtained from anonymous 

donors. Details on the protocol including RNA extraction and sequencing can be found 

elsewhere253. We calculated the difference in the ratio of reads of the reference allele (T) and 

the alternate allele (G) of rs3211938. Briefly, reads overlapping rs3211938 were counted using 

samtools (v 1.1) mpileup software using genome build hg19. We kept uniquely mapping reads 

using -q 50 argument (mapping quality > 50) and sites with base quality >10. Statistical 

significance of the difference in the ratio of reads between the reference allele and the alternate 
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allele was assessed using a binomial test. For each sample, we summed all reads overlapping 

all heterozygous SNPs and calculated the expected ratio within each SNP allele combination. 

Reads that fall in the top 25th coverage percentile were down-sampled so that the highest 

covered sites do not bias the expected ratio254. For rs3211938, the expected T:G ratio was 

0.507. 

Expression quantitative trait loci (eQTL) analysis 

We cross-referenced our list of novel variants with over 100 separate expression 

quantitative trait loci (eQTL) published datasets. Datasets were collected through publications, 

publically available sources, or private collaborations. A general overview of a subset of  >50 

eQTL studies has been published255, with specific citations for >100 datasets included in the 

current query followed here. A complete list of tissues and studies used can be found in the 

Supplemental Data. We considered SNPs that are themselves expression SNPs (eSNP) when 

they meet a P<0.0001 threshold or when they are in LD (r2>0.3) with the best eSNP 

(P<0.0001). 
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4.4.RESULTS 

Single-variant meta-analyses 

We meta-analyzed ExomeChip results for seven RBC-related phenotypes (RBC count, 

HCT, HGB, MCH, MCHC, MCV, and RDW) available in up to 130,273 individuals from 24 

studies and five ancestries (Tables S1-S3 and Supplementary Figure 4.1). Across these 

different phenotypes, a total of 226 variants reached exome-wide significance (P<2x10-7) in 

the combined ancestry analyses (Figure 4.1and Figure S2). Given that some of these RBC 

traits are correlated (Figure S3), these associated variants highlight 71 different loci (defined 

using a 1 Mb interval). Overall, we observed only modest inflation of the test statistics 

(λGC=1.03-1.05), suggesting little confounding due to technical artifacts, population 

stratification, or cryptic relatedness. 

 

In order to identify independent variants, we performed conditional analyses at the meta-

analysis level adjusting for the effect of the most significant variant in a 1 Mb region in a 

stepwise manner (Subjects and Methods). After this analysis, we obtained a list of 126 

independent variants associated with at least one RBC trait at P<2x10-7 (Table S5). Selecting 

only variants that lie more than 1 Mb away from a known GWAS locus resulted in 23 

independent variants located within 20 novel RBC loci (Table 4.1). We attempted to replicate 

these 126 variants in 8 independent cohorts totaling 27,480 participants (Table S5). Overall, 

we observed a strong replication, with 94 of the 126 variants showing consistent direction of 

effect between the discovery and replication analyses (binomial P=3x10-8, Table S5). Of the 

23 novel variants, we replicated 16 at nominal P<0.05 for at least one RBC trait (binomial 
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P=3x10-16, Table 4.1). Out of these 16 novel and replicated RBC variants, there are five 

missense variants, including two variants with MAF<5% in MAP1A (MIM: 600178) and 

HNF4A (MIM: 600281) and one nonsense variant in CD36. (Table 4.1). Among the 

remaining nine novel and replicated RBC variants, there are five intronic, one synonymous, 

one 5′ UTR, and one intergenic marker (Table 4.1). 

http://omim.org/entry/600178
http://omim.org/entry/600281
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Figure 4.1. Quantile-Quantile (QQ) plots of single variant association results in the all ancestry meta-analyses for the seven red blood cell 

(RBC) traits analyzed 

 

 

 
Figure 4.1. (A) Distribution of the single variant results for all variants tested on the exome array. (B) Only markers with a minor allele frequency <5% are 

shown here. (C) Variants outside of known RBC GWAS regions. Variants that are within 1 Mb from a previously published RBC GWAS locus were 

excluded for this QQ plot. Abbreviations are as follows: HCT, hematocrit; HGB, hemoglobin; RBC, red blood cell count; MCV, mean corpuscular volume; 

MCHC, mean corpuscular hemoglobin concentration; MCH, mean corpuscular hemoglobin; RDW, red blood cell distribution width. 
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Table 4.1. Association results of variants in novel loci associated with red blood cell (RBC) traits. 

 
Marker Info Discovery Replication  Combined 

Trait A1/A2 SNP Annotation Gene N AF (A2) Beta (SE) P-value N AF (A2) Beta (SE) P-value Beta (SE) P-value 

RDW-EA A/G rs10903129* intron TMEM57-RHD 45573 0.544 0.037(0.007) 1.19E-07 18475 0.560 0.023(0.011) 0.0373 0.033(0.006) 2.41E-08 

RDW-All A/G rs10903129* intron TMEM57-RHD 56194 0.568 0.034(0.006) 9.58E-08 24474 0.600 0.021(0.01) 0.0252 0.03(0.005) 1.32E-08 

HCT-All C/T rs4072037* synonymous MUC1 109875 0.554 0.025(0.005) 5.82E-08 25006 0.563 0.038(0.009) 5.96E-05 0.027(0.004) 3.47E-11 

HGB-All T/C rs780094 intron GCKR 130,273 0.626 0.024 (0.004) 7.14E-08 3162 0.626 -0.012(0.026) 0.6410 0.023(0.044) 1.68E-07 

RBC-All C/A rs2230115* missense ZNF142 74488 0.509 0.033(0.006) 9.74E-09 27442 0.477 0.024(0.01) 0.0167 0.031(0.005) 7.11E-10 

HCT-All A/C rs3772219* missense ARHGEF3 109875 0.338 -0.028(0.005) 2.38E-09 25006 0.366 -0.021(0.01) 0.0292 -0.027(0.004) 2.56E-10 

HGB-All A/C rs3772219* missense ARHGEF3 130273 0.336 -0.026(0.004) 3.76E-09 27749 0.367 -0.02(0.009) 0.0331 -0.025(0.004) 4.33E-10 

HCT-EA G/A rs236985* intron AFF1 87444 0.394 0.032(0.005) 3.89E-10 19968 0.405 0.02(0.011) 0.0626 0.03(0.005) 1.14E-10 

RBC-EA G/A rs236985 intron AFF1 60231 0.393 0.034(0.006) 3.50E-08 21435 0.405 0.023(0.011) 0.0273 0.031(0.005) 4.22E-09 

HGB-EA G/T rs442177* intron AFF1 106377 0.595 -0.034(0.005) 3.97E-13 21743 0.586 -0.029(0.01) 0.0052 -0.033(0.004) 8.23E-15 

RDW-EA A/G rs10063647* intron 
LINC01184- 

SLC12A2 
45573 0.463 -0.05(0.007) 1.72E-13 18475 0.480 -0.033(0.011) 0.0018 -0.045(0.006) 2.88E-15 

RDW-All A/G rs10063647* intron 
LINC01184- 

SLC12A2 
56194 0.506 -0.044(0.006) 2.11E-12 24474 0.545 -0.03(0.01) 0.0014 -0.04(0.005) 2.37E-14 

RDW-EA C/T rs10089* utr_5p 
LINC01184- 

SLC12A2 
45573 0.21 0.051(0.008) 8.45E-10 16692 0.215 0.058(0.014) 2.71E-05 0.053(0.007) 1.15E-13 

RDW-All C/T rs10089* utr_5p 
LINC01184- 

SLC12A2 
56194 0.207 0.044(0.008) 4.08E-09 22691 0.208 0.045(0.012) 0.0001 0.044(0.006) 2.73E-12 

HGB-All C/A rs35742417*  missense RREB1 130273 0.174 0.030 (0.005) 1.17E-08 4074 0.207 0.065 (0.028) 0.0190 0.032 (0.005) 1.50E-09 

RDW-AA T/G rs3211938* nonsense CD36 6666 0.087 0.174(0.031) 2.36E-08 5999 0.086 0.139(0.032) 1.83E-05 0.161(0.025) 7.09E-11 

RDW-All T/G rs3211938* nonsense CD36 55510 0.012 0.171(0.029) 5.29E-09 22691 0.023 0.139(0.032) 1.61E-05 0.157(0.022) 5.12E-13 

RDW-EA A/T rs2954029* intergenic TRIB1 45573 0.46 0.036(0.007) 1.53E-07 16692 0.466 0.026(0.011) 0.0210 0.034(0.006) 1.29E-08 

RDW-All A/T rs2954029* intergenic TRIB1 56194 0.439 0.032(0.006) 1.83E-07 22691 0.432 0.021(0.01) 0.0298 0.029(0.005) 2.54E-08 

MCH-All T/C rs2487999 missense OBFC1 66318 0.869 0.047(0.009) 4.12E-08 26749 0.861 0.025(0.013) 0.0601 0.041(0.007) 1.75E-08 

MCH-AA G/A rs1447352 intergenic MTNR1B 8273 0.557 0.089(0.016) 1.85E-08 5038 0.562 -0.022(0.02) 0.2713 0.07(0.014) 1.08E-06 

HGB-EA C/T rs55707100* missense MAP1A 106377 0.033 -0.071(0.013) 1.65E-08 21743 0.0223 -0.099(0.033) 0.0028 -0.075(0.012) 2.31E-10 

MCV-AA A/G rs2667662* intron TELO2 10849 0.725 -0.099(0.015) 1.79E-10 5034 0.724 -0.093(0.022) 3.02E-05 -0.098(0.014) 7.32E-12 

MCV-AA C/A rs2240140* missense SRRM2 8525 0.118 0.134(0.025) 7.08E-08 6002 0.124 0.106(0.027) 0.0001 0.128(0.022) 5.24E-09 

HCT-EA T/C rs8080784 intron BCAS3-TBX2 79344 0.158 -0.039(0.007) 2.62E-08 19968 0.148 0.011(0.014) 0.4349 -0.029(0.006) 3.39E-06 

HGB-EA C/T rs8068318 intron BCAS3-TBX2 106377 0.722 -0.026(0.005) 1.53E-07 21743 0.730 -0.021(0.011) 0.0565 -0.025(0.005) 2.55E-08 
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Marker Info Discovery Replication  Combined 

MCV-EA C/T rs4911241* intron NOL4L 61462 0.241 -0.04(0.007) 1.25E-08 21714 0.252 -0.025(0.012) 0.0302 -0.036(0.006) 2.01E-09 

RDW-EA C/T rs4911241* intron NOL4L 45573 0.242 0.043(0.008) 5.79E-08 18475 0.240 0.049(0.012) 7.44E-05 0.045(0.007) 2.01E-11 

RDW-All C/T rs4911241* intron NOL4L 56194 0.235 0.038(0.007) 1.56E-07 24474 0.222 0.044(0.011) 6.10E-05 0.04(0.006) 4.60E-11 

HCT-EA C/T rs1800961* missense HNF4A 79344 0.024 0.083(0.015) 1.44E-08 19968 0.033 0.082(0.028) 0.0037 0.083(0.013) 1.91E-10 

HGB-EA C/T rs1800961* missense HNF4A 98277 0.032 0.073(0.013) 2.53E-08 21743 0.032 0.062(0.027) 0.0232 0.071(0.012) 1.93E-09 

HCT-All C/T rs1800961* missense HNF4A 100313 0.022 0.077(0.014) 2.31E-08 25006 0.027 0.091(0.028) 0.0010 0.08(0.012) 9.88E-11 

HGB-All C/G rs738409 missense PNPLA3 130273 0.223 0.028(0.005) 2.24E-08 4074 0.218 0.053(0.027) 0.0504 0.029(0.005) 4.81E-09 

MCH-EA G/A rs201062903 missense ALAS2 52758 0.002 -0.324(0.053) 7.32E-10 5855 0.001 -0.291(0.235) 0.215 -0.323(0.052) 5.81E-10 

MCH-All G/A rs201062903 missense ALAS2 65067 0.002 -0.322(0.051) 3.36E-10 10893 0.001 -0.276 (0.224) 0.218 -0.321(0.051) 2.68E-10 

MCV-EA G/A rs201062903 missense ALAS2 60211 0.002 -0.285 (0.049) 7.11E-09 5044 0.001 -0.178 (0.248) 0.472 -0.282 (0.049) 6.11E-09 

 

Table 4.1. Variants in novel loci with P<2x10-7 and that were retained after conditional analyses are presented here. All variants are >1Mb apart from a 

known GWAS signal for RBC traits. Allele frequency and effect size are given for the alternate (A2) allele. Replication was carried in six cohorts for EA 

and two cohorts for AA and was performed in RareMetals; meta-analyses of the discovery and replication cohorts is presented under "Combined" and was 

carried in METAL. Asterisks (∗) indicate variants that replicated with a nominal p < 0.05. Abbreviations are as follows: EA, European American; AA, 

African American; All, combined ancestry (EA + AA + Asians + Hispanics); A1, reference allele; A2, alternate allele; N, sample size; AF, allele frequency; 

SE, standard error; HCT, hematocrit; HGB, hemoglobin; RBC, red blood cell count; MCV, mean corpuscular volume; MCHC, mean corpuscular 

hemoglobin concentration; MCH, mean corpuscular hemoglobin; RDW, red blood cell distribution width. 
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Prioritization of candidate genes and genetic variants 

Our single-variant analyses in EA samples identified one rare missense variant in ALAS2 

(MIM: 301300) associated with MCV and MCH (rs201062903, p.Pro507Leu [c.1559C>T], 

MAF = 0.2%) (Table 4.1). The association with this variant did not replicate, potentially 

because of limited statistical power (the replication sample size for this rare marker was 5,044; 

see also Discussion). ALAS2 encodes 5-aminolevulinate synthase 2, the rate-controlling 

enzyme of erythroid heme synthesis. Additionally, rare mutations in ALAS2 cause X-linked 

sideroblastic anemia (MIM: 300751) and erythropoietic protoporphyria (MIM: 300752). Thus, 

despite the lack of replication, ALAS2 remains an excellent candidate gene to modulate RBC 

traits. The ALAS2 p.Pro507Leu variant, which is not reported in the ClinVar database, maps 

between two amino acids (Tyr506 and Thr508) that are important for catalytic activity and 

known to be mutated in cases of sideroblastic anemia256. 

Two low-frequency missense variants identified in our analyses implicate MAP1A and 

HNF4A for the first time in RBC biology (Table 4.1). MAP1A encodes microtubule-associated 

protein 1A, a gene highly expressed in the nervous system and mostly studied in the context of 

neuronal diseases, although it is expressed in many additional tissues, including hematopoietic 

cells257. Deletion of MAP1A in the mouse causes defects in synaptic plasticity258. This 

observation is interesting given that inactivation of ANK1, another gene that encodes a 

cytoskeleton protein and is expressed in neurons and RBCs, is associated with neurological 

dysfunction in the mouse and spherocytosis and hemolytic anemia in humans (MIM: 182900). 

Our meta-analyses confirmed two known independent ANK1 variants associated with MCHC: 

an intronic SNP (rs4737009, MAF=19.8%, P=1.3x10-8) and a low-frequency missense variant 
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(rs34664882, p.Ala1462Val, MAF=2.9%, P=1.7x10-16) (Table S5; N.P., U.M.S., J.B.-J., and 

M.-H.C., unpublished data). 123.  

 

In the accompanying BCX PLT article245, we report that the same MAP1A rs55707100 

allele (p.Pro2349Leu) associated here with decreased HGB concentration is also associated 

with increased PLT count. Furthermore, recent studies have identified associations between 

rs55707100 and HDL-cholesterol and triglycerides levels259. Adding to the complexity, the 

GTex dataset indicates that rs55707100 is an expression quantitative trait locus (eQTL) for the 

ADAL gene (PeQTL=9x10-11) but not for MAP1A260. ADAL is a poorly characterized adenosine 

deaminase-like protein that is highly expressed in human erythroblasts. However, the eQTL 

association between rs55707100 and ADAL could simply reflect “LD shadowing” from nearby 

markers that are much stronger eQTL variants for ADAL. Indeed, rs3742971 (a common 

variant located in ADAL’s 5′ UTR) is in partial LD with rs55707100 (r2 = 0.18 in 

European populations from the 1000 Genomes Project) and strongly associated with ADAL 

expression levels (peQTL = 6 × 10−49). 

The second low-frequency missense variant associated with HGB and HCT maps within 

the coding sequence of the transcription factor HNF4A (Table 4.1). This marker, rs1800961 

(p.Thr117Ile [c.350C>T]), has previously been associated with HDL-  and total cholesterol, C-

reactive protein, fibrinogen, and coagulation factor VII levels261-264. Mutations in HNF4A 

cause maturity-onset diabetes of the young (MODY [MIM: 125851]) and a common intronic 

SNP in HNF4A (rs4812829) has been associated with type 2 diabetes (MIM: 125853) risk265. 

The missense rs1800961 associated with HGB and HCT is only in weak LD with rs4812829 

(r2 = 0.021 in EA populations from the 1000 Genomes Project). Querying recently released 
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ExomeChip data from Type 2 Diabetes Genetics (Web Resources), we found that rs1800961 is 

also associated with T2D risk in ∼82,000 participants (p = 9.5 × 10−7, odds ratio = 1.16). 

HNF4A is expressed in the kidney and could influence HGB and HCT through the regulation 

of erythropoietin production266. It is also abundantly expressed in the liver, where it could 

indirectly affect HGB and HCT levels through an effect on blood lipid levels (see Discussion). 

HNF4A is detectable at low levels in erythroblasts, and the BLUEPRINT Project has found 

that some HNF4A isoforms may be more highly expressed in this cell type (Figure S4)267.  

 

In AA, we identified a nonsense variant (rs3211938, p.Tyr325Ter [c.975T>G], MAF = 

8.7%, p = 7.1 × 10−11) in CD36 associated with RDW. This variant displays a wide variation in 

allele frequency between AA and EA (MAFEA = 0.01%). The association is slightly improved 

in the ancestry-combined meta-analysis (p = 5.1 × 10−13) because there is also evidence of 

association in Hispanics (MAF = 1.9%, p = 0.022) (Table 4.1). We examined a dataset of ex 

vivo differentiated human erythroblasts to check if this nonsense CD36 variant (rs3211938) 

shows allelic imbalance (AI)253. All samples were homozygous at rs3211938 for the reference 

allele with the exception of one heterozygous sample (FL11). FL11 had the lowest level of 

CD36 expression among the 12 samples tested and demonstrated strong AI where we observe 

705 sequence reads for the reference allele (T) versus 126 for the alternate allele (G) (p = 4.9 × 

10−95; Figure 4.2). To confirm this finding in independent samples, we queried the GTEx 

dataset, which has compiled RNA-sequencing and genotype information from multiple human 

tissues260. GTEx does not include data for human erythroblasts. However, it detected a strong 

eQTL effect of rs3211938 on CD36 expression in whole blood (peQTL = 1.1 × 10−15), with 

carriers of the G-allele expressing less CD36 (Figure S5). Furthermore, GTEx reported 

http://www.sciencedirect.com/science/article/pii/S0002929716301410#sec4
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evidence for moderate AI in multiple tissues for CD36-rs3211938, with the G-allele being 

under-represented among sequence reads (Figure S5). These results strongly support our 

observations in human erythroblasts. 

 

eQTL analysis 

To prioritize additional causal genes at RBC loci that contain non-coding variants, we 

cross-referenced our list of novel variants with over 100 published eQTL datasets (Subjects 

and Methods). Overall, 12 variants were significant eQTLs in a wide variety of tissues (Table 

S6). The most interesting eQTL finding is the association between rs10903129, a common 

marker associated with RDW in our analyses and located within an intron of TMEM57 (MIM: 

610301), and the expression of RHD (MIM: 111680) in whole blood. RHD is located 112 kb 

downstream of TMEM57 and encodes the D antigen of the clinically significant Rhesus (Rh) 

blood group. rs10903129 has also been associated with total cholesterol levels and erythrocyte 

sedimentation rate (ESR) 268; 269. The association with ESR is particularly intriguing given that 

it is considered a non-specific indicator of inflammation. As described above, RDW is also 

abnormal in chronic diseases, such as atherosclerosis and diabetes, which have an important 

inflammation component. 

http://omim.org/entry/610301
http://omim.org/entry/111680
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Figure 4.2. CD36 expression in human erythroblasts. 

 

 
 
Figure 4.2. (A) In a dataset of 12 human fetal liver erythroblasts, all samples were homozygous at rs3211938 for the reference T-allele with the exception 

of one heterozygous sample (FL11). FL11 demonstrated strong allelic imbalance: we observe 705 reads for the reference allele (T) and 126 reads for the 

alternate allele (G)(binomial P=4.9x10-95). (B) FL11 (in green) shows the lowest CD36 expression level when compared to the other 11 samples. 

Abbreviation is as follows: FPKM, fragments per kilobase of transcript per million mapped reads. 
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Gene-based association testing 

Despite our large sample size, statistical power remains limited for rare variants of weak-

to-moderate phenotypic effect. To try to capture these genetic factors, we performed gene-

based testing by aggregating coding and splice site variants with MAF < 1% within each gene 

(Subjects and Methods). The SKAT analyses identified two genes: ALAS2 associated with 

MCH and PKLR (MIM: 609712) associated with HGB and HCT (Table 4.2). The ALAS2 

signal was driven by a single rare missense variant (rs201062903) and was described above. 

PKLR encodes the erythrocyte pyruvate kinase (PK) that catalyzes the last step of glycolysis. 

PK deficiency, usually caused by recessive mutations, is one of the main causes of non-

spherocytic hemolytic anemia (MIM: 266200). In fact, one of the variants identified in our 

meta-analysis (rs116100695, p.Arg486Trp [c.1456T>G], MAF = 0.3%, betaHGB = −0.242 g/dl, 

pHGB = 1.2 × 10−5) is a frequent cause of PK deficiency in Italian and Spanish subjects270; 271. 

This variant was confirmed in the replication cohorts (preplication = 0.039; Table S7). Two 

additional PKLR rare missense variants contribute to the gene-based association statistic with 

HGB and HCT: rs61755431 (p.Arg569Gln [c.1706G>A], MAF = 0.2%, betaHGB = −0.179 

g/dl, pHGB = 0.006) and rs8177988 (p.Val506Ile [c.1516G>A], MAF = 0.6%, betaHGB = 

+0.116 g/dl, pHGB = 0.003). It is noteworthy that the p.Val506Ile substitution is associated 

with increased HGB concentration given that this amino acid maps to a PKLR structural 

domain necessary for protein interaction. 272. This heterogeneity of effect among the PKLR 

missense variants might explain why SKAT’s result is more significant than VT’s for this 

gene (Table 4.2). A third gene, ALPK3, was identified only in the VT analysis for association 

with MCHC (Table 4.2). ALPK3 encodes a kinase previously implicated in cardiomyocyte 

http://omim.org/entry/266200
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differentiation 273. We could not test for replication because of the rarity of ALPK3's coding 

alleles (Table S7). 
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Table 4.2. Gene-based association results 

 
    VT SKAT    

Trait Gene N 
 variants 

analyzed 
P-value P-value Top variant 

Top-variant 

MAF 

Top-variant  

P-value 

HGB-EA PKLR 106,377 15 1.92E-05 7.02E-07 rs116100695 0.003 1.17E-05 

HGB-All PKLR 130,273 15 0.00016 6.57E-07 rs116100695 0.003 1.94E-05 

HCT-All PKLR 109,875 15 3.96E-05 7.95E-07 rs116100695 0.003 2.49E-05 

MCH-EA ALAS2 54,009 11 4.78E-06 5.79E-07 rs201062903 0.002 7.32E-10 

MCHC-All ALPK3 84,841 28 1.95E-06 0.793 rs202037221 3.0x10-5 0.0005 

 
Table 4.2. Gene-based results of the VT and SKAT algorithms for genes associated with RBC traits at p < 3 × 

10−6. We analyzed non-synonymous coding (nonsense, missense) and splice site variants with a minor allele 

frequency (MAF) < 1%. Abbreviations are as follows: EA, European American; All, combined ancestry (EA + 

AA + Asians + Hispanics); n, sample size; HCT, hematocrit; HGB, hemoglobin; MCHC, mean corpuscular 

hemoglobin concentration; MCH, mean corpuscular hemoglobin. 

 

RBC variants and pleiotropic effects  

Besides the overlap within the RBC traits themselves, we identified seven novel RBC 

variants associated with other blood-cell type traits or with lipid levels (Figure 4.3 and 

Table 4.3). To assess whether the genetic associations with RBC traits are independent of 

lipid levels, we performed additional analyses in a subset of BCX participants from three of 

our studies (FHS, MHIBB, and WHI) ranging from ∼10,000 to 23,000 individuals. We 

repeated the association analyses for five RBC loci (TMEM57-RHD rs10903129, AFF1 

rs442177, TRIB1 rs2954029, MAP1A rs55707100, and HNF4A rs1800961) additionally 

adjusting for the respective lipid trait and combined the results across the three studies using 

fixed-effect meta-analysis (Table S8). There was little or no change in the effect size or p 

values associated with the five RBC trait loci upon adjustment for the corresponding lipid trait, 

suggesting that the RBC and lipid associations are independent of one another and thus 

represent true “pleiotropic” genetic effects. 

A correlated response to or role in inflammation might explain why some of the RBC 

variants are also associated with WBC, PLT, or lipid traits. Another plausible explanation for 



127 

 

the concomitant association of several markers with RBC, WBC, and PLT phenotypes could 

be a more general effect of these genes on the proliferation or differentiation of hematopoietic 

progenitor cells. This is most likely the case for JAK2 (MIM: 147796) and SH2B3 

(MIM: 605093), two key regulators of hematopoietic cells (Figure 4.3). In this category, we 

also observed two novel findings, AFF1 (MIM: 159557) and NOL4L, which are associated 

with RBC and WBC phenotypes and have been previously implicated in leukemia 274; 275. 

Finally, we identified a novel missense variant in ARHGEF3 (MIM: 612115) associated with 

HGB and HCT. In addition to its association with PLT traits, ARHGEF3 plays a role in the 

regulation of iron uptake and erythroid cell maturation276.  

http://omim.org/entry/159557
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Table 4.3. Overlap of red blood cell (RBC) markers with other blood cell traits and/or lipids. 

 
SNP Position A1/A2 EAF Annotation Gene Trait Beta P-value 

rs10903129 1:25768937 A/G 0.568 intron  
TMEM57-

RHD 
RDW 0.037 1.19E-07 

      TC268  0.061 5.40E-10 

      PLT  -0.021 7.06E-06 

rs3772219 3:56771251 A/C 0.338 missense ARHGEF3 HCT* -0.028 2.38E-09 

      HGB* -0.026 3.76E-09 

      PLT 0.031 5.93E-10 

rs442177 4:88030261 G/T 0.595 intron AFF1 

HGB -0.034 3.97E-13 

TG262  -0.031 1.00E-18 

BASO  -0.030 1.99E-05 

rs2954029 8:126490972 A/T 0.439 intergenic TRIB1 RDW 0.036 1.53E-07 

      TG262  -0.076 1.00E-107 

rs55707100 15:43820717 C/T 0.033 missense MAP1A HGB -0.071 1.65E-08 

      PLT 0.095 7.03E-14 

      TG101  0.090 1.40E-17 

rs4911241 20:31140165 C/T 0.241 intron NOL4L 

MCV -0.040 1.25E-08 

RDW 0.043 5.79E-08 

BASO -0.051 1.35E-10 

MONO  -0.033 3.57E-05 

rs1800961  20:43042364 C/T 0.032 missense HNF4A HCT 0.083 1.44E-08 

      HGB 0.073 2.53E-08 

      HDL262  -0.127 2.00E-34 

 
Table 4.3. Shown here are significant novel variants from the RBC traits association analyses that overlap 

with other blood-cell traits or with lipids. Results for the white blood cell and platelet traits are from the 

Blood-Cell Consortium, and results for lipids are from the published literature. Results are presented for 

European-ancestry individuals, except in the presence of an asterisk (*), which stands for result from "All" 

ancestry. The allele frequency and direction of the effect (beta) is given for the A2 allele. Abbreviations are as 

follows: A1, reference allele; A2, alternate allele; AF, allele frequency; HCT, hematocrit; HGB, hemoglobin; 

MCV, mean corpuscular volume; RDW, red blood cell distribution width; TC, total cholesterol; PLT, platelet; 

TG, triglycerides; WBC, white blood cells; BASO, basophils; MONO, monocytes; HDL, HDL cholesterol. 
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Figure 4.3. Venn Diagram Summarizing Pleiotropic Effects for Genetic Variants Associated with Red 

Blood Cell Traits. 

 

 

 

 
Figure 4.3. We considered variants only if their association p values with white blood cell (WBC) traits, 

platelet (PLT) traits, or with lipid levels was p < 1 × 10−4. Results for WBC and PLT are from the 

accompanying Blood-Cell Consortium articles244; 245. Results for lipids have previously been published 

(Table 4.3). Genes highlighted in red are novel RBC trait findings.   
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4.5.DISCUSSION 

We present multi-ethnic meta-analyses of seven RBC traits using ExomeChip results of 

130,273 individuals. Our statistical thresholds to declare significance at the discovery stage (p 

< 2 × 10−7 in the single-variant analyses) was adjusted for the approximate number of variants 

genotyped on the ExomeChip (Bonferroni correction for 250,000 variants), but we decided not 

to adjust it for the seven RBC phenotypes tested because of the high correlation between some 

of these traits (Figure S3). Instead, we relied on independent replication to distinguish true 

from probably false positive associations. Despite the limited size of our replication set 

(27,480 individuals), it was encouraging to detect a strong replication of direction of effect for 

known and novel RBC variants, suggesting a low false discovery rate. In total, we identified 

23 novel variants associated with RBC traits in the single-variant analyses and a collection of 

three rare missense variants in PKLR associated with HGB and HCT in the gene-based 

analyses. Out of the 23 novel RBC variants, 16 were replicated at p < 0.05 in the independent 

samples (Table 4.1). To inform our replication criteria, we conducted a power analysis using a 

sample size of 20,000 and considering multiple combinations of allele frequencies and effect 

sizes. Based on allele frequency and effect size, one of our most difficult to replicate variants 

was rs1800961 (MAF = 0.022, Beta = 0.028). However, we still had approximately 56% 

power to detect this association in the replication stage.  

 

We identified a nonsense variant in CD36 associated with RDW in African Americans. 

CD36 is a type B scavenger receptor located on the surface of many cell types, including 

endothelial cells, platelets, monocytes, and erythrocytes. CD36 is a marker of erythroid 
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progenitor differentiation277 and might also be involved in macrophage-mediated clearance of 

red cells278.  Furthermore, CD36 plays a role in many biological pathways such as lipid 

metabolism/transport and atherosclerosis, hemostasis, and inflammation279. The nonsense 

CD36 variant identified in our RDW meta-analysis (rs3211938, Table 4.1) has previously 

been associated with platelet count, HDL-cholesterol and C-reactive protein levels in African 

Americans135; 280, and malaria resistance in Africans281; 282. The CD36 locus shows a signature 

of natural selection in African-ancestry populations283 and the MAF of rs3211938 varies 

widely between continents: in the 1000 Genomes Project, the minor allele is absent from 

European populations but reaches frequency of 24-29% in some African populations284. To 

characterize the molecular mechanism by which rs3211938 may impact RDW, we identified 

one heterozygous sample among a collection of ex vivo differentiated human erythroblasts253. 

In erythroblasts from this donor, we noted a strong allelic imbalance (Figure 4.2). 

Importantly, this result was confirmed in independent samples from the GTex dataset 

(Figure S5). At the molecular level, this CD36 expression phenotype could be explained by 

nonsense-mediated mRNA decay or the regulatory effect of non-coding genetic variants in LD 

with rs3211938. 

 

We observed that many new RBC variants are pleiotropic, being often associated with 

more than one RBC index as well as with WBC, PLT, and lipid traits (Figure 4.3). These 

shared effects could imply that the underlying causal genes at these RBC loci generally 

controlled blood cell proliferation or modulate inflammatory responses. An additional 

explanation for the link between RBC traits and lipid variants might be the cholesterol content 

of RBC membranes. As mentioned earlier, RBC corresponds to a large fraction (∼25%) of the 
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cells found in the human body. Genetic variation that modulates RBC count or volume could 

impact circulating lipid levels. In support of this hypothesis, it has been observed that a 

thalassemia allele is strongly associated with cholesterol levels in the Sardinian population285. 

In total, we found ten loci associated with lipid levels and RBC indices, including four novel 

RBC variants (AFF1, TMEM57-RHD, TRIB1, HNF4A) (Figure 4.3). 

 

In summary, our multi-ethnic meta-analyses have expanded the genetic knowledge of 

erythrocyte biology and identified a number of common, low-frequency, and rare RBC 

variants. Many of the new RBC variants are pleiotropic, affecting other complex traits such as 

WBC, PLT, and blood lipid levels. Although our report demonstrates the utility of the 

ExomeChip for genetic discovery, it also highlights the challenge to attribute gene causality 

based only on association results. This is particularly evident for loci with common variants, 

for which coding and non-coding markers are often statistically equivalent. For instance, we 

found no examples of RBC coding variants that entirely explain RBC GWAS signals among 

the seven loci that had both a sentinel GWAS variant and ExomeChip coding markers. 

Although increasing sample sizes will continue to yield additional RBC loci, it has become 

incredibly clear that only a combination of well-powered genetic studies, transcriptomic and 

epigenomic surveys, and functional experiments (e.g., using genome editing) will ultimately 

pinpoint causal variants and genes that control RBC phenotypes. 
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Supplementary Figure 4.1. Flow chart of the study design. 

 

 
 
Supplementary Figure 4.1. Data was contributed from 24 studies for the discovery phase. We applied QC 

steps to remove low quality variants and samples. We also excluded individuals with extreme phenotypes. 

After the proper adjustments, we applied inverse normal transformation on the residuals. We then performed 

study-specific association analyses using RV test or RareMetalWorker followed by QC of the individual 

association results. We meta-analyzed the association results using RareMetals and performed single variant 

(SV) and gene-based analyses. Additionally, we performed conditional analyses on the SV results, and 

attempted replication of the significant independent markers in the replication phase which comprised 8 

independent studies. Abbreviations are as follows: HW: Hardy Weinberg; PC: principle components; SKAT: 

Sequence Kernel Association Test; VT: Variable threshold test; EA; European ancestry; AA: African 

American ancestry; All: combined ancestry (EA + AA + Asians + Hispanics). 
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Supplementary Table 4.1. Expression quantitative trait loci (eQTL) results for variants associated with red blood cell phenotypes. 

 
POS eSNP  Gene Trait Tissue eSNP.p Transcript r2 BestESNP BestESNP  
1:25768937 rs10903129 TMEM57 RDW-EA/All  Whole blood  2.67E-128 RHD 0.669 rs909832 9.81E-198 
1:155162067 rs4072037 MUC1 HCT-All CD16+ 

neutrophils  
2.30E-05 THBS3 1 rs2066981 2.30E-05 

2:219509618 rs2230115 ZNF142 RBC-All  CD16+ 
neutrophils  

7.26E-17 CYP27A1 1 rs10187066 7.26E-17 

3:56771251 rs3772219 ARHGEF3 HCT/HGB-All Whole blood  3.10E-21 ARHGEF3 0.682 rs2046823 1.16E-27 
3:56771251 rs3772219 ARHGEF3 HCT/HGB-All Peripheral 

blood 

mononuclear 

cells  

4.55E-15 ARHGEF3 SameSNP rs3772219 4.55E-15 

4:88008782 rs236985 AFF1 HCT/RBC-EA  Peripheral 
blood 

mononuclear 

cells  

4.42E-18 AFF1 0.932 rs442177 1.05E-18 

4:88030261 rs442177 AFF1 HGB-EA  Peripheral 
blood 

mononuclear 

cells  

1.05E-18 AFF1 same SNP rs442177 1.05E-18 

5:127371588 rs10063647 LINC01184 RDW-EA/All  Peripheral 

blood 

mononuclear 
cells  

2.78E-16 FLJ33630 0.327 rs2250127 2.03E-40 

5:127371588 rs10063647 LINC01184 RDW-EA/All  CD14+ 

monocytes  
1.48E-12 FLJ33630 0.327 rs3749748 3.24E-38 

5:127522543 rs10089 SLC12A2 RDW-EA/All  Whole blood  2.78E-09 FBN2 0.002 rs764369 9.81E-198 
7:80300449 rs3211938 CD36 RDW-AA/All  Whole blood  6.40E-14 CD36 SameSNP rs3211938 6.40E-14 
10:105659826 rs2487999 OBFC1 MCV-All  Liver  2.05E-14 OBFC1 SameSNP  rs2487999 2.05E-14 
17:59483766 rs8068318 TBX2 HGB-EA  Fibroblasts  4.09E-06 C17ORF82 1 rs2240736 4.09E-06 
17:59483766 rs8068318 TBX2 HGB-EA  Monocytes 

(CD14+)  
9.97E-07 CCDC47 0.527 rs9905140 2.73E-07 

20:31140165 rs4911241 NOL4L MCV/RDW-

EA; RDW-All  
Peripheral 

blood 

mononuclear 
cells  

7.65E-11 ASXL1 0.293 rs6141282 1.85E-22 

20:31140165 rs4911241 NOL4L MCV/RDW-

EA; RDW-All 
Whole blood  4.37E-07 ASXL1 0.293 rs3746612 9.13E-18 

 
Supplementary Table 4.1. eSNP, SNP associated with the gene expression phenotype; eSNP.p, eQTL association P-value; r2, linkage disequilibrium in 

European populations between the eSNP (from the RBC analyses) and the best eSNP for a given gene; Best_eSNP, best reported eSNP for the gene tested; 

Best_eSNP.p, eQTL Pvalue for the best eSNP for the gene tested. 
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CHAPTER 5: PLATELET-RELATED VARIANTS IDENTIFIED BY EXOMECHIP 

META-ANALYSIS IN 157,293 INDIVIDUALS 
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5.1.ABSTRACT 

Platelet production, maintenance, and clearance are tightly controlled processes 

indicative of platelets’ important roles in hemostasis and thrombosis. Platelets are common 

targets for primary and secondary prevention of several conditions and monitored clinically by 

complete blood counts, specifically with measurements of platelet count (PLT) and mean 

platelet volume (MPV). Identifying genetic contributors of PLT and MPV can reveal 

mechanistic insights into platelet biology and their role in disease. Therefore, we formed the 

Blood Cell Consortium (BCX) to perform a large-scale meta-analysis of exome chip 

association results for PLT and MPV in up to 157,293 and 57,617 multi-ethnic individuals, 

respectively. With increased sample size and use of the low-frequency/rare coding variant 

enriched exome chip platform, we sought to identify genetic variants associated with PLT and 

MPV. In addition to confirming 47  known PLT and 20 known MPV associations, we 

identified 32 novel PLT and 18 novel MPV associations across the allele frequency spectrum, 

including rare large effect (FCER1A), low-frequency (IQGAP2, MAP1A, LY75), and common 

(ZMIZ2, SMG6, PEAR1, ARFGAP3/PACSIN2) variants. Several variants associated with 

PLT/MPV (PEAR1, MRVI1, PTGES3) were also associated with platelet reactivity. In 

concurrent BCX analyses, there was overlap of platelet associated variants with red (MAP1A, 

TMPRSS6, ZMIZ2) and white blood cell (PEAR1, ZMIZ2, LY75) traits, suggesting common 

regulatory pathways with shared genetic architecture among these hematopoietic lineages. Our 

large-scale exome chip effort successfully identified numerous novel genes and variants 

associated with platelet traits and further indicate that several complex quantitative 

hematological, lipids, and cardiovascular traits share genetic factors. 
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5.2.INTRODUCTION 

 The number and size of circulating blood cells are determined by multiple genetic and 

environmental factors, and deviations from normal are common manifestations of human 

disease. The three major cell types—red blood cells (RBCs), white blood cells (WBCs), and 

platelets—have distinct biological roles, with platelets serving as important mediators of 

hemostasis and wound healing. Platelet count (PLT) and mean platelet volume (MPV), a 

measure of platelet size, are clinical blood tests that are used to screen for and diagnose 

disease. A number of well-described rare genetic disorders, including Bernard-Soulier 

Syndrome 286, Glanzmann’s Thrombasthenia (MIM: 273800), and Wiskott-Aldrich Syndrome 

(MIM: 301000), as well as common conditions such as acute infection are characterized by 

abnormalities in the number, size, and/or reactivity of circulating blood platelets. MPV has 

also been reported to be an independent risk factor for myocardial infarction in population-

based studies88. Accordingly, anti-platelet medications including aspirin, ADP/PAR receptor 

blockers, and GIIb/IIIa inhibitors that reduce platelet reactivity are common forms of primary 

and secondary prevention for several cardiovascular conditions including stroke and 

myocardial infarction 287; 288. Investigating the biological mechanisms that govern platelet 

number (PLT) and size (MPV) can provide insights into platelet development and clearance, 

and has the potential to enhance our understanding of human diseases.  

  Genome-wide association studies (GWAS) have successfully identified numerous loci 

associated with PLT and MPV122; 142-144; 149; 289-292. To date, the largest GWAS of PLT 

(n=66,867) and MPV (n=30,194) identified 68 distinct associated loci122. Subsequent 

functional experiments of several identified genes, including ARHGEF3 (MIM: 612115), 
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DNM3 (MIM: 611445), JMJD1C (MIM: 604503), and TPM1 (MIM: 191010), demonstrated 

their roles in hematopoiesis and megakaryopoesis293, as well as the potential of human genetic 

association methods to identify genetic factors that functionally contribute to platelet biology 

and dysfunction in disease.  

 

Despite these successes, much of the heritability of these traits remains unexplained 294. 

GWAS studies of PLT and MPV have largely focused on more common (minor allele 

frequency [MAF] > 0.05) genetic variation with many of the associated markers located in 

intronic or intergenic regions. The examination of rare (MAF < 0.01) and low-frequency 

(MAF: 0.01-0.05) genetic variation, particularly that in protein coding regions, has the 

potential to identify causal variants. Indeed, recent studies reaching sample sizes of 31,340 

individuals have identified rare to low-frequency coding variants, associated with PLT in MPL 

(MIM: 159530), CD36 (MIM: 173510), and JAK2 (MIM: 147796), among others 135; 243. 

Studies with larger sample size are needed to further characterize the contribution of rare and 

low-frequency genetic variation to PLT and MPV.  

  

To conduct such a study of platelet related traits, we formed the Blood Cell Consortium 

(BCX) to perform a large scale meta-analysis of exome chip association results of blood cell 

traits. In this report, we describe results from a meta-analysis of exome chip association data in 

up to 157,293 and 57,617 multi-ethnic participants for PLT and MPV, respectively. The 

exome chip is a customized genotyping platform enriched for rare to low-frequency coding as 

well as common variants previously identified in GWAS of complex disorders and traits. With 
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increased sample size and use of the exome chip array, our goal was to identify novel rare, 

low-frequency, and common variant associations with PLT and MPV.  
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5.3.MATERIALS AND METHODS 

Study participants 

The Blood Cell Consortium (BCX) was formed to identify novel genetic variants 

associated with blood cell traits using the exome chip platform. As the BCX is interested in the 

genetics of common hematological measures, our collaborative group is divided into three 

main working groups: RBC, WBC, and platelet244; 295. For the platelet working group, our 

sample is comprised of up to 157,293 participants from 26 discovery and replication cohorts of 

five ancestries: European (EA), African-American (AA), Hispanic, East Asian, and South 

Asian. Detailed descriptions of the participating cohorts are provided in the Tables S1-S4. All 

participants provided informed consent, and all protocols were approved by the participating 

studies’ respective institutional review boards. In the platelet working group, we analyzed two 

traits: PLT (x109/L of whole blood) and MPV (fL) (Table S3).  

Genotyping and Quality Control  

Each participating study used one of the following exome chip genotyping arrays: 

Illumina ExomeChip v1.0, Illumina ExomeChip v1.1_A, Illumina ExomeChip-12 v1.1, 

Illumina ExomeChip-12 v1.2, Affymetrix Axiom Biobank Plus GSKBB1, or Illumina 

HumanOmniExpressExome Chip (Table S2). Genotypes were called either 1) using a 

combination of the Illumina GenomeStudio and zCall software or 2) the exome chip joint 

calling plan developed by the Cohorts for Heart and Aging Research in Genomic 

Epidemiology (CHARGE) Consortium Table S2) 246. Standard quality control criteria were 

applied by each study. Exclusion criteria included: 1) sample call rates, 2) excess 

heterozygosity rate, 3) Hardy-Weinberg equilibrium p-values < 1x10-6, and 4) sex mismatch. 
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Additionally, ancestry was confirmed through principal components or multi-dimensional 

scaling analyses using linkage disequilibrium (LD) pruned markers (r2 < 0.2) with MAF > 1%. 

Scatterplots anchored using the 1000 Genomes Project populations 

(http://www.1000genomes.org/) were visually inspected, and ancestry outliers excluded. We 

only included autosomal and X chromosome variants. All remaining variants (including 

monomorphic variants) were aligned to the forward strand and alleles checked to ensure that 

the correct reference allele was specified. We performed study specific level quality control on 

each trait association results using EasyQC 248. We plotted variant allele frequencies from each 

study against ethnicity specific reference population allele frequencies to identify allele 

frequency deviations and presence of flipped alleles. Following all quality control procedures, 

each study generated an indexed variant call file (VCF) for subsequent analyses that was 

checked for allele alignment using the checkVCF package 

(https://github.com/zhanxw/checkVCF).  

Association analysis 

To assess the association between the blood cell traits and exome chip variants in the 

BCX, we considered blood cell traits measured in standard peripheral complete blood counts. 

When possible, we excluded individuals with blood cancer, leukemia, lymphoma, bone 

marrow transplant, congenital or hereditary anemia, HIV, end-stage kidney disease, dialysis, 

splenectomy, and cirrhosis, and those with extreme measurements of platelet traits. We also 

excluded individuals on erythropoietin treatment as well as those on chemotherapy. 

Additionally, we excluded women that were pregnant and individuals with acute medical 

illness at the time of complete blood count.   
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For platelet traits, we used raw values of PLT (x109/L) and MPV (fL). In each 

participating study, residuals for PLT and MPV were calculated from linear regression models 

adjusted for age, age2, sex, study center (where applicable), and principal components. We 

then transformed residuals using the rank-based inverse normal transformation. To confirm 

proper trait transformation in each cohort, a scatter plot of the median standard error versus 

study specific sample size was visually inspected for deviations using EasyQC248. Autosomal 

and X chromosome variants were then tested for association with each blood cell trait using 

either RvTests (http://genome.sph.umich.edu/wiki/RvTests) or RAREMETALWORKER 

(http://genome.sph.umich.edu/wiki/RAREMETALWORKER). Within individual cohorts, we 

performed analyses in ancestry-stratified groups: EA, AA, Hispanic, East Asian, and South 

Asian. Both statistical packages generate single variant association score summary statistics, 

variance-covariance matrices containing LD relationships between variants within a 1MB 

window, and variant-specific parameters including minor allele frequency, chromosome 

position, strand, genotype call rate, and Hardy-Weinberg equilibrium p-values.  

Discovery association meta-analysis  

We performed ancestry-stratified (EA and AA) and combined all ancestry (All) meta-

analyses of single variant association results using the Cochran-Mantel-Haenszel approach 

implemented in RareMETALS (http://genome.sph.umich.edu/wiki/RareMETALS) 249In the 

multi-ancestry meta-analyses (All), we combined individuals of EA, AA, Hispanic, South 

Asian, and East Asian ancestries. We included variants in the meta-analysis if the genotype 

call rate was ≥ 95%, Hardy-Weinberg equilibrium p-values > 1x10-7, and allele frequency 

difference was <0.30 or <0.60 for ancestry-specific (EA and AA) or combined all ancestry 

(All) analyses, respectively 248. Heterogeneity metrics (I2 and heterogeneity p value) were 

http://genome.sph.umich.edu/wiki/RAREMETALWORKER
http://genome.sph.umich.edu/wiki/RareMETALS
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calculated using METAL252. Using single variant score statistics and variance-covariance 

matrices of LD estimates, we performed two types of gene-based tests: (1) variable threshold 

(VT) burden test with greatest power when all rare variants in a gene are associated with a trait 

251 and (2) and sequence kernel association test (SKAT) 250 with greatest power when rare 

variants in a gene have opposing direction of effects. For all gene-based tests, we only 

considered missense, nonsense, and splice site SNVs with MAF ≤1%. Similar to the single 

variant meta-analyses, gene-based results were generated for each major ancestry group (EA 

and AA) and for the combined multi-ancestry (All) samples.  

Conditional analysis 

To identify independent signals, we performed step-wise conditional analyses 

conditioning on the most significant single variant in a 1MB window in RareMETALS. This 

procedure was repeated until there was no new signal identified in each region, defined as a p-

value corrected for the number of markers tested in each ancestry group. For discovery and 

conditional single variant analyses, the corrected threshold was: AA p<3.03x10-7, EA 

p<2.59x10-7, and All p<2.20x10-7. For gene-based tests, the significance threshold corrected 

for the number of genes tested: AA p<2.91x10-6, EA p<2.90x10-6, and All p<2.94x10-6. In 

regions like chromosome 12q24 with known extended LD structure spanning more than 1MB, 

we performed a step-wise conditional analysis in GCTA to disentangle 7 independent PLT-

associated SNVs (Table S9)296, conditioning on the most significant variant in the region.  

Replication meta-analysis 

We attempted to replicate PLT and MPV associations with independent SNVs that 

reached significance levels in 6 independent cohorts (Figure 1, Table S4). Single variant 

association results of the 6 independent cohorts were combined in RareMETALS. 
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Contributing replication cohorts adhered to identical quality control and association analysis 

procedures described previously for the discovery phase. The results of discovery and 

replication phases were further combined using fixed effects inverse variance weighted meta-

analysis in METAL252. 

Platelet Function Exome Chip Lookup 

 Two BCX cohorts, GeneSTAR and the Framingham Heart Study (FHS), measured 

platelet aggregation in a subset of genotyped participants. Platelet aggregation measures are 

described in detail elsewhere and briefly below (Table S18)297. Both studies isolated platelet-

rich plasma from fasting blood samples and measured platelet aggregation after addition of 

agonists using a four-channel light transmission aggregometer (Bio/Data Corporation). FHS 

(Offspring Exam 5) tested aggregation for periods of 4 minutes after administration of ADP 

(0.05, 0.1, 0.5, 1.0, 3.0, 5.0, 10.0 and 15.0 μM) and 5 minutes after administration of 

epinephrine (0.01, 0.03, 0.05, 0.1, 0.5, 1.0, 3.0, 5.0 and 10.0 μM), as well as lag time(s) to 

aggregation with 190 μg/ml calf skin–derived type I collagen (Bio/Data Corporation). 

Threshold concentrations (EC50) were determined as the minimal concentration of agonist 

required to produce a >50% aggregation. The maximal aggregation response (% aggregation) 

was also determined for each participant at each concentration tested. GeneSTAR recorded 

maximal aggregation (% aggregation) for periods of 5 minutes after ADP (2.0 and 10.0 μM) 

and 5 minutes after epinephrine administration (2.0 and 10.0 μM), as well as lag time(s) to 

aggregation with equine tendon–derived type I collagen (1, 2, 5 and 10 μg/ml). Exome chip 

genotyping, quality control, and association analyses adhered to methods described previously 

for PLT and MPV analysis. We queried independent SNVs associated with PLT (n=79) and/or 
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MPV (n=38) in these platelet aggregation association results and report platelet aggregation 

associations with p<0.001. 

 

 

Further Variant Annotation 

In addition to primary analyses completed in this investigation, we took advantage of 

several existing resources to annotate our associated SNVs. Associated variants were cross-

referenced with CADD scores for exome chip 298. The Global Lipids Genetics Consortium 

(GLGC) and the Myocardial Infarction and Coronary Heart Disease (MICHD) exome-chip 

studies have each performed independent exome chip analysis of lipids traits and coronary 

heart disease (CHD)262; 299. The CHD phenotype reflected a composite endpoint that included 

MI, CHD, coronary artery bypass graft, and hospitalized angina, among others299. Similar to 

the platelet aggregation lookups, we queried our list of PLT and/or MPV associated SNVs 

against their exome chip association results for lipids and CHD. We report lipid and CHD 

associations with p<0.0001. From a curated collection of over 100 separate expression 

quantitative trait loci (QTL) datasets, we conducted a more focused query of whether platelet 

loci were also associated with transcript expression in blood, arterial and adipose related 

tissues. A general overview of a subset of >50 eQTL studies has been published 

(Supplemental Data)255. Separately, we queried transcripts in loci corresponding to novel 

associated variants and/or marginally associated variants showing replication to assess their 

platelet expression levels using the largest platelet RNA-seq dataset to date (n=32 patients 

with MI)300. 
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5.4.RESULTS 

Discovery Meta-Analysis 

In our discovery phase, we performed a meta-analysis of the associations of 246,925 

single nucleotide variants (SNVs) with PLT and MPV in up to 131,857 and 41,529 

individuals, respectively (Figure 5.1, Figures S1-S2, Tables S1-S4). After the initial meta-

analyses, we ran conditional analyses to identify independent loci and found 79 independent 

PLT and 38 independent MPV SNVs (Table 5.1,Table 5.2, Tables S5-S8). One association, 

rs12692566 in LY75-CD302, with PLT in EA did not surpass the initial discovery statistical 

significance threshold but surpassed the threshold when conditioned on nearby rs78446341 (p 

= 2.48 × 10−7). There were no associations unique to the AA ancestry group, which had a 

limited sample size (Tables S10 and S11). Single variant meta-analysis results for each 

ancestry grouping that met our significance thresholds are available in the Supplement (Tables 

S10 and S11). Additionally, full discovery meta-analysis results are available online (Web 

Resources). 

Of these independently associated single variants, 32 PLT and 18 MPV variants were in 

loci not previously reported (Table 5.1 and Table 5.2). Of these 32 PLT loci, 4 had previously 

been identified as MPV loci (Table 5.1), and 10 of the 18 MPV loci had previously been 

identified with PLT (Table 5.2) 122; 143; 243.  

Of the independent loci in our study, 23 SNVs showed association with both PLT and 

MPV (Table 5.3, Figure 5.2). All but one (rs6136489 intergenic to SIRPA (MIM: 602461) 

and LOC727993) had opposite directions of effects for PLT and MPV, indicative of the strong 

inverse statistical correlation between these traits. 

http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
http://www.sciencedirect.com/science/article/pii/S0002929716301392#app3
http://www.sciencedirect.com/science/article/pii/S0002929716301392#app3
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Associated variants ranged in allele frequency and included rare, low-frequency, and 

common SNVs. Most of the previously unreported associations were with common variants 

(PLT n = 25, MPV n = 15), although associations with low-frequency (PLT n = 6, MPV n = 2) 

and rare (PLT n = 1, MPV n = 1) variants were observed. Rare (PLT n = 6, MPV n = 1) SNVs 

associated with PLT and MPV had larger effects compared to common and low-frequency 

SNVs (Tables 1, 2, and S5–S8). A large majority of associated SNVs did not exhibit 

heterogeneous effects; however, one previously unreported association with MRVI1 and a few 

known associated loci (e.g., MYL2/SH2B3/ATXN2, ARHGEF3, WDR66/HPD, and JAK2) did 

show moderate to substantial heterogeneity across discovery studies (Table S23). Gene-based 

tests of missense, nonsense, and splice-site rare variants that found significant results largely 

reflected rare and low-frequency single variant results, with variants in TUBB1 (MIM: 

612901), JAK2, LY75 (MIM: 604524), IQGAP2 (MIM: 605401), and FCER1A (MIM: 

147140) showing associations (Tables S12 and S13).

http://www.sciencedirect.com/science/article/pii/S0002929716301392#tbl1
http://www.sciencedirect.com/science/article/pii/S0002929716301392#tbl2
http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc1
http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
http://omim.org/entry/612901
http://omim.org/entry/604524
http://omim.org/entry/605401
http://omim.org/entry/147140
http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
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Figure 5.1. Study Design and Flow 

 
 
Figure 5.1. Study Design and Flow Individual study level association analyses were performed using 

RareMetalWorker or RVTests. To perform quality control of individual study association results, we used 

EasyQC v8.6 to ensure proper trait transformations, to assess allele frequency discrepancies, and to evaluate 

other metrics. We then combined results in meta-analysis with RareMETALS v5.9 in three groups: African 

ancestry (AA), European ancestry (EA), and combined all five (AA, EA, Hispanic-Latino, East Asian, South 

Asian) ancestries (All). Independent variants identified by conditional analysis in RareMETALS with a p-

value less than the threshold corrected for multiple testing (All: p<2.20x10-7, EA: p<2.59x10-7, AA: 

p<3.03x10-7) were carried forward for replication. Markers showed replication if they had p<0.05 in the same 

direction of effect in the replication analyses. Associated markers were further annotated using various 

resources: (1) concurrent BCX exome chip analyses of RBC and WBC traits, (2) on-going exome chip 

analyses of platelet aggregation, quantitative lipids, and coronary heart disease (CHD) traits, (3) severity 

prediction by CADD, (4) an internal database of reported eQTL results, and (5) platelet RNA-seq data. 
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Table 5.1. Novel associations (n=32) with PLT. 

 
       Discovery Replication Combined Discovery Replication Combined 

Marker rsID Ref/Alt Function AACh. Gene CADD$ n EAF Beta P-value n Beta P-value P-value n EAF Beta P-value n Beta P-value P-value 

1:25674785 rs3091242 C/T intron  TMEM50A 12.7 100605 0.54 -0.026 9.68E-08 19939 -0.017 0.124 3.85E-08 122438 0.50 -0.02 1.03E-05 25436 -0.0084 0.39 1.24E-05 

1:156869047 rs12566888 G/T intron  PEAR1 1.5 108598 0.094 0.040 1.42E-07 19939 0.061 0.00126 1.17E-09 131857 0.16 0.034 2.09E-08 25436 0.047 0.000431 5.71E-11 

1:159275786 rs200731779 C/G missense L114V FCER1A 23.5 101368 1.5E-05 -2.96 2.48E-07 19939 NA NA 2.48E-07 124627 1.2E-05 -2.96 2.48E-07 25436 NA NA 2.48E-07 

2:113841030 rs6734238 A/G intergenic  IL1F10/IL1RN 1.7 86947 0.41 0.022 9.55E-06 19939 0.0075 0.487 1.64E-05 106744 0.41 0.026 7.19E-09 25436 0.015 0.117 3.77E-09 

2:160676427 rs12692566 C/A missense K1321N LY75-CD302 15.8 108598 0.82 -0.029 9.19E-07 19939 -0.042 0.0025 1.23E-08 131857 0.83 -0.026 2.27E-06 25436 -0.05 7.84E-05 3.65E-09 

2:160690656 rs78446341 G/A missense P1247L LY75-CD302 24.1 108598 0.02 0.092 4.16E-09 19939 0.14 5.01E-05 1.98E-12 131857 0.018 0.094 3.06E-10 25436 0.13 9.23E-05 1.97E-13 

3:124377326 rs56106611* T/G missense S2030A KALRN 19.6 100605 0.012 0.11 3.51E-08 19939 0.11 0.00714 8.51E-10 123864 0.01 0.11 8.59E-08 25436 0.11 0.00737 2.14E-09 

3:185529080 rs1470579 A/C intron  IGF2BP2 6.3 108598 0.32 -0.028 1.08E-07 19939 -0.0073 0.562 2.82E-07 131857 0.38 -0.023 6.07E-07 25436 -0.012 0.272 5.15E-07 

4:100045616 rs1126673 C/T ncRNA V393I LOC100507053 6.1 108598 0.69 0.026 6.38E-08 19939 0.019 0.0963 1.81E-08 131857 0.71 0.025 1.87E-08 25436 0.014 0.168 1.12E-08 

5:158603571 rs1473247* T/C intron  RNF145 4.5 108598 0.27 -0.029 3.01E-08 19939 -0.022 0.0832 7.28E-09 131857 0.32 -0.026 1.32E-08 25436 -0.025 0.0185 7.66E-10 

6:31380529 rs2256183 A/G intron  MICA 5.6 108598 0.56 0.03 6.78E-07 19939 -0.022 0.104 2.60E-06 131857 0.59 0.028 2.13E-07 20552 0.011 0.389 3.20E-07 

7:44808091 rs1050331 T/G 3’UTR  ZMIZ2  100605 0.47 0.037 1.32E-15 19939 0.036 0.00058 3.28E-18 122438 0.48 0.035 3.09E-17 25436 0.031 0.00088 1.26E-19 

9:100696203 rs755109 T/C intron  HEMGN 3.3 108598 0.37 0.028 2.87E-09 19939 0.039 0.000684 1.17E-11 131857 0.34 0.028 9.03E-11 25436 0.044 2.18E-05 2.59E-14 

10:94839642 rs2068888 G/A nearGene-3  EXOC6 5.7 108598 0.45 -0.023 2.81E-07 19939 -0.012 0.266 2.47E-07 131857 0.44 -0.022 1.19E-07 25436 -0.012 0.212 8.61E-08 

11:8751889 rs3794153 C/G missense K316N ST5 23.7 107555 0.45 -0.027 7.28E-09 19939 -0.026 0.0153 3.57E-10 125167 0.40 -0.027 2.19E-09 25436 -0.023 0.0247 1.74E-10 

11:61609750 rs174583 C/T intron  FADS2 13.8 100605 0.34 0.031 8.79E-09 19939 0.048 0.000122 1.03E-11 121747 0.34 0.028 4.72E-09 25436 0.042 0.00011 4.42E-12 

11:119060963 rs45535039 T/C 3’UTR  CCDC153  64720 0.28 0.04 4.02E-10 1933 0.071 0.0531 8.48E-11 81768 0.28 0.04 2.5E-12 2546 0.056 0.0856 6.25E-13 

12:6502742 rs11616188  G/A nearGene3  LTBR 3.7 108598 0.42 -0.025 1.26E-08 19939 -0.031 0.00359 1.81E-10 131857 0.37 -0.025 7.57E-09 25436 -0.033 0.00107 4.20E-11 

12:54687232 rs10506328* A/C intron  NFE2 9.4 86947 0.64 0.033 5.63E-11 19939 0.06 5.88E-08 2.01E-16 110206 0.69 0.038 3.79E-15 25436 0.059 2.33E-08 2.73E-21 

12:89745477 rs2279574 C/A missense V114L DUSP6 23.5 108598 0.54 -0.023 2.47E-07 19939 -0.0082 0.442 4.28E-07 131857 0.50 -0.021 1.57E-07 25436 -0.006 0.531 4.04E-07 

12:111785515 rs61745424 G/A missense E1221K CUX2 2.3 108598 0.025 -0.064 2.36E-06 18923 -0.085 0.00679 6.49E-08 131857 0.023 -0.068 1.37E-07 25436 -0.073 0.0143 6.30E-09 

14:53657823 rs2784521 A/G nearGene-5  DDHD1  108598 0.83 0.025 1.62E-05 19939 0.0096 0.486 2.24E-05 131857 0.76 0.028 2.92E-08 25436 0.01 0.363 5.56E-08 

15:43820717 rs55707100 C/T missense P2349L MAP1A 23.4 108598 0.032 0.095 7.03E-14 19939 0.073 0.0387 9.53E-15 131857 0.028 0.092 6.85E-14 25436 0.082 0.0162 3.77E-15 

17:2143460 rs10852932 G/T intron  SMG6 0.8 108598 0.36 -0.024 1.82E-06 19939 -0.042 0.000893 1.42E-08 131857 0.39 -0.025 4.79E-08 25436 -0.036 0.000699 2.15E-10 

17:42463054 rs76066357 G/C missense L147V ITGA2B 6.6 78524 0.014 -0.17 6.92E-16 19939 -0.19 2.88E-05 1.05E-19 96684 0.013 -0.16 1.92E-15 25436 -0.18 6.00E-05 5.78E-19 

17:64210580 rs1801689 A/C missense C325R APOH 23.4 108598 0.036 0.083 6.34E-12 19939 0.13 2.44E-05 1.82E-15 131857 0.032 0.090 8.64E-15 25436 0.12 2.03E-05 1.57E-18 

19:38912764 rs892055 A/G missense I18T RASGRP4 7.7 108598 0.34 0.029 5.3E-10 19939 0.018 0.0987 2.01E-10 131857 0.38 0.025 3.49E-09 25436 0.017 0.0813 9.96E-10 

19:51727962 rs3865444 C/A 5’UTR  CD33 3.8 86947 0.32 -0.026 1.11E-06 19939 -0.034 0.00252 1.27E-08 106744 0.29 -0.026 2.1E-07 25436 -0.032 0.00303 2.59E-09 

20:1923734 rs6136489* T/G intergenic  
SIRPA 

LOC727993 
3.0 108598 0.34 -0.033 8.69E-13 19939 -0.028 0.0124 4.00E-14 131857 0.39 -0.030 1.8E-12 25436 -0.024 0.013 8.78E-14 

22:37462936 rs855791 A/G missense V605D TMPRSS6 23.6 108598 0.56 -0.031 3.96E-11 19939 -0.017 0.13 2.34E-11 131857 0.60 -0.029 2.34E-11 25436 -0.022 0.0352 2.97E-12 

22:43206950 rs1018448 A/C missense S355R ARFGAP3 22.4 108598 0.54 -0.028 4.02E-10 19939 -0.0053 0.618 2.62E-09 131857 0.59 -0.025 1.55E-09 25436 -0.0065 0.515 6.13E-09 

22:44324727 rs738409 C/G missense I148M PNPLA3 3.4 108598 0.23 -0.042 1.49E-14 19939 -0.042 0.00175 1.03E-16 131857 0.22 -0.044 1.33E-18 25436 -0.038 0.00161 9.73E-21 

 
Table 5.1. We show variants in previously unreported loci (n = 32) and retained after conditional analyses in European ancestry (EA) (p < 2.59 × 10−7) and 

all ancestry (All) (p < 2.20 × 10−7) analyses. Associations in African ancestry (AA) had previously been reported in the literature (Table S10). Asterisks (∗) 

indicate variants (20/32) showing evidence of replication (p < 0.05, same direction of effect). If multiple genes/transcripts were annotated to a variant, the 

transcript most expressed in Eicher et al.300 (Table S22) was selected. Full results and annotations are available in Table S5. Abbreviations are as follows: 

PLT, platelet count; MPV, mean platelet volume; REF, reference allele; ALT, alternate allele; EAF, effect allele frequency. 

*Previous association with MPV, $Scaled CADD score. Abbreviations: PLT, platelet count; MPV, mean platelet volume; REF, reference allele; ALT, 

alternate allele; AACh, amino acid change; EAF, effect allele frequency 

 

http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
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Table 5.2. Novel associations (n=18) with MPV. 

 
       European Ancestry (EA) Combined All Ancestry (All) 

       Discovery Replication Combined Discovery Replication Combined 

Marker rsID Ref/Alt Function AAChange Gene CADD$ n EAF Beta P-value n Beta P-value P-value n EAF Beta P-value n Beta P-value P-value 

1:25889632 rs6687605 T/C missense Ser202Thr LDLRAP1 0.009 34021 0.53 0.046 8.27E-12 15519 0.025 0.0374 1.80E-09 41529 0.51 0.046 9.92E-11 16088 0.024 0.0358 3.80E-11 

1:247719769 rs56043070* G/A 

Splice 

donor  GCSAML 18 34021 0.069 0.094 1.3E-09 15519 0.19 4.48E-16 1.12E-21 41529 0.064 0.092 2.25E-10 16088 0.19 3.66E-16 2.42E-22 

1:248039294 rs1339847* G/A missense Val322Ile TRIM58 22.7 30569 0.10 -0.10 1.47E-13 15519 -0.037 0.0544 9.31E-13 37415 0.10 -0.11 2.18E-17 16088 -0.032 0.0977 1.06E-15 

5:75960968 rs34968964* G/C missense Glu436Gln IQGAP2 22 34021 0.0049 0.32 7.65E-09 15519 0.12 0.0918 1.99E-08 41529 0.004 0.32 2.11E-09 16088 0.11 0.106 8.18E-09 

5:75964507 rs34950321* C/T missense Thr447Ile IQGAP2 32 34021 0.018 0.18 7.8E-10 15519 0.14 0.00149 6.03E-12 41529 0.016 0.17 2.61E-09 16088 0.14 0.00159 1.86E-11 

5:75996909 rs34592828* G/A missense Arg1012Gln IQGAP2 26.5 34021 0.037 0.22 1.72E-27 15519 0.16 2.73E-09 1.61E-34 41529 0.032 0.23 1.68E-31 16088 0.16 2.95E-09 2.98E-38 

6:25605091 rs1012899* G/A missense Gly1182Ser LRRC16A 9.9 34021 0.77 0.051 1.4E-07 15519 0.012 0.417 1.24E-06 41529 0.77 0.042 1.32E-06 16088 0.016 0.273 2.50E-06 

6:36393816 rs664370 A/G missense Val32Ala PXT1 10.2 34021 0.30 -0.034 8.03E-05 15519 -0.025 0.0561 1.39E-05 41529 0.35 -0.042 5.77E-08 16088 -0.028 0.0278 7.23E-09 

8:106593207 rs2343596* C/A intron  ZFPM2 2.5 34021 0.31 0.062 2.02E-13 15519 0.012 0.357 3.32E-11 41529 0.38 0.052 1.59E-11 16088 0.012 0.339 4.35E-10 

8:145001031 rs55895668* T/C missense His1327Arg PLEC 21.9 34021 0.43 -0.042 5.94E-07 15519 -0.013 0.350 2.19E-06 41529 0.47 -0.041 1.23E-07 16088 -0.011 0.409 5.97E-07 

11:10673739 rs4909945 T/C missense Ile11Val MRVI1 19.1 34021 0.68 -0.048 1.25E-08 15519 -0.035 0.00841 5.19E-10 41529 0.71 -0.041 3.96E-07 16088 -0.035 0.00742 1.06E-08 

14:55611839 rs11125 A/T missense Gln201His LGALS3 13.9 30569 0.078 -0.091 1.55E-08 15519 -0.037 0.117 2.76E-08 38077 0.07 -0.09 4.22E-09 16088 -0.037 0.117 7.21E-09 

15:65157482 rs2010875* C/T missense Pro290Ser PLEKHO2 0.3 21732 0.14 -0.076 1.33E-07 14581 -0.042 0.0162 2.10E-08 28290 0.15 -0.063 3.01E-07 14581 -0.042 0.0162 2.43E-08 

17:33884804 rs10512472* T/C missense Gln93Arg SLFN14 22.2 34021 0.18 -0.059 1.37E-08 15519 -0.059 0.000196 1.12E-11 41529 0.18 -0.058 3.15E-10 16088 -0.059 0.00012 1.67E-13 

19:45162189 rs35385129 C/A missense Arg391Ser PVR 9.3 34021 0.16 -0.058 6.24E-08 15519 -0.044 0.00736 2.01E-09 41529 0.15 -0.055 3.00E-08 16088 -0.043 0.00713 8.79E-10 

20:1546911 rs2243603 C/G missense Ala252Pro SIRPB1 0.4 34021 0.77 0.044 5.89E-06 938 0.077 0.167 2.62E-06 41529 0.79 0.049 4.58E-08 1507 0.088 0.0778 1.25E-08 

22:43206950 rs1018448 A/C missense Ser355Arg ARFGAP3 22.4 34021 0.55 0.056 1.13E-12 15519 0.051 1.78E-05 1.04E-16 41529 0.60 0.055 1.52E-13 16088 0.05 2.16E-05 1.68E-17 

X:57622607 rs1997715 G/A 3’UTR  ZXDB  34021 0.26 0.048 1.93E-09 938 0.084 0.0583 4.26E-10 41529 0.35 0.04 4.58E-08 1507 0.08 0.0399 8.88E-09 

 
Table 5.2. We show variants in novel MPV loci and retained after conditional analyses in European Ancestry (EA) (p<2.59x10-7) and All Ancestry (All) 

(p<2.20x10-7) analyses. There were no novel associations in African Ancestry (AA). Chromosome positions are human genome build hg19. Bolded 

variants (11/18) showed evidence of replication (p<0.05, same direction of effect). If multiple genes/transcripts were annotated to a variant, the transcript 

more expressed in Eicher et al. 2015 (Table S20) was selected. *Previous association with PLT, $Scaled CADD score. Abbreviations: MPV, mean platelet 

volume; PLT, platelet count; REF, reference allele; ALT, alternate allele; AAChange, amino acid change; EAF, effect allele frequency. 
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Replication and Marginally Associated Variants 

We attempted to replicate our associations in six independent cohorts (PLT n = 25,436, 

MPV n = 16,088) (Figure 5.1, Table S4). Of the loci not previously associated, 20/32 PLT and 

11/18 MPV variants showed evidence of replication with p < 0.05 and the same direction of 

effect (Table 5.1 and Table 5.2). In addition to the significant SNVs in our discovery analysis, 

we carried forward 13 PLT and 10 MPV sub-threshold variants that approached discovery 

significance thresholds with p values ranging from 2.47 × 10−7 to 1.99 × 10−6 (Tables S14 and 

S15). Of these, 7/13 PLT and 4/10 MPV showed associations in same direction of effect with 

p < 0.05 and surpassed significance thresholds when discovery and replication results were 

combined (Tables S14 and S15). 

Intersection with Other Cardiovascular and Blood Traits 

 The BCX also completed analyses of RBC and WBC traits, so we cross-referenced our 

list of PLT- and MPV-associated SNVs with the results of the other blood cell traits244; 295. Of 

our replicated platelet loci previously unreported in the literature, six SNVs in TMPRSS6 

(MIM: 609862), MAP1A (MIM: 600178), PNPLA3 (MIM: 609567), FADS2 (MIM: 606149), 

TMEM50A (MIM: 605348), and ZMIZ2 (MIM: 611196) showed association with RBC-related 

traits (p < 0.0001) (Table 5.4). Similarly, five replicated platelet SNVs previously unreported 

in the literature in PEAR1 (MIM: 610278), CD33 (MIM: 159590), SIRPA, ZMIZ2, and LY75 

showed association with WBC-related traits (p < 0.0001) (Table 5.4). To explore possible 

shared genetic associations of platelet size/number with platelet reactivity, we examined the 

association of PLT/MPV-associated SNVs with platelet reactivity to collagen, epinephrine, 

and ADP in GeneSTAR and FHS. Eight SNVs associated with PLT and/or MPV were also 

associated with platelet reactivity (p < 0.001) (Table 5.5, Tables S16-S17). The most strongly 

http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
http://omim.org/entry/609862
http://omim.org/entry/600178
http://omim.org/entry/609567
http://omim.org/entry/606149
http://omim.org/entry/605348
http://omim.org/entry/611196
http://omim.org/entry/610278
http://omim.org/entry/159590
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associated SNVs were located in genes implicated with platelet reactivity in prior GWASs, 

including PEAR1, MRVI1 (MIM: 604673), JMJD1C, and PIK3CG (MIM: 601232)297. 

However, we did observe new suggestive relationships between platelet reactivity and SNVs 

in PTGES (MIM: 607061), LINC00523, and RASGRP4 (MIM: 607320) (Table 5.5). 

In addition to examining possibly shared genetic associations with blood cell-specific 

traits, we queried our list of associated platelet SNVs against independent Exomechip 

genotyping efforts in lipids and CHD by the GLGC, CARDIoGRAM Exome Consortium, and 

Myocardial Infarction Genetics Consortium Exomechip studies301,299. Numerous platelet-

associated SNVs (n = 37), including those in GCKR (MIM: 600842), FADS1 (MIM: 606148), 

FADS2, MAP1A, APOH (MIM: 138700), and JMJD1C, showed association with one or more 

lipids traits (p < 0.0001) ( Table S20). Far fewer (n = 4; MYL2 [MIM: 160781], SH2B3 [MIM: 

605093], BRAP [MIM: 604986], APOH) showed association with CHD (p < 0.0001) (Table 

S20).  

Annotation of Associated Variants 

 We used various resources to annotate our platelet-associated variants. First, we used 

CADD to predict the putative functional severity of associated variants298. As expected, rare 

and low-frequency coding SNVs were predicted to be more severe than common, non-coding 

variation (Table 5.1, Table 5.2, Tables S5-S6). To assess potential impact on gene expression, 

we queried our list of platelet associated SNVs against a collection of results from existing 

eQTL datasets255. Many (n=67) platelet-associated SNVs were also associated with gene 

expression in blood, arterial, or adipose tissues (Table S21). These included the reported trans-

eQTL rs12485738 in ARHGEF3 with several platelet-related transcript targets (e.g., GP1BA, 

GP6, ITGA2B, MPL, TUBB1, and VWF)302, as well as eQTLs in newly identified PLT/MPV 

http://omim.org/entry/604673
http://omim.org/entry/601232
http://omim.org/entry/607061
http://omim.org/entry/607320
http://omim.org/entry/600842
http://omim.org/entry/606148
http://omim.org/entry/138700
http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
http://omim.org/entry/160781
http://omim.org/entry/605093
http://omim.org/entry/604986
http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
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loci (e.g., rs1018448 with ARFGAP3/PACSIN2, rs1050331 with ZMIZ2, and rs174546 with 

FADS1/FADS2/TMEM258 expression). Using platelet RNA-seq data from 32 subjects with 

MI, we found that almost all of the genes closest to our previously unreported associated 

SNVs or marginal SNVs with evidence of replication were expressed in platelets indicating 

the feasibility of potential functional roles in the relevant target cell type (Table S22).  
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Figure 5.2. Shared PLT and MPV Genetic Associations. 

 

 
 

 

Figure 5.2. 
(A) Comparing PLT and MPV effects sizes (r = −0.84) in European ancestry (EA) analyses of all 

identified SNVs identified (n = 124). Examined SNPs include all those from Table 5.1, Table 5.2, 

S5–S9, S14, and S15. 

(B) 56 independent SNVs showed association to PLT only, and 15 independent SNVs were 

associated with MPV only. 23 independent SNVs were associated with both PLT and MPV. Named 

genes indicate that the association was not previously reported in the literature. 
 

 

http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
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Table 5.3. Variants associated with both PLT and MPV. 

 
rsID Gene PLT  MPV  

rs12566888 PEAR1 ↑ ↓ 

rs1668873 TMCC2 ↑ ↓ 

rs56043070 GCSAML ↓ ↑ 

rs12485738 ARHGEF3 ↑ ↓ 

rs56106611 KALRN ↑ ↓ 

rs34592828 IQGAP2 ↓ ↑ 

rs1012899 LRRC16A ↓ ↑ 

rs342293 PIK3CG ↓ ↑ 

rs2343596 ZFPM2 ↓ ↑ 

rs10761731 JMJD1C ↑ ↓ 

rs11602954 BET1L ↑ ↓ 

rs10506328 NFE2 ↑ ↓ 

rs2958154 PTGES3 ↓ ↑ 

rs7961894 WDR66 ↓ ↑ 

rs1465788 ZFP36L1 ↑ ↓ 

rs2297067 EXOC3L4 ↑ ↓ 

rs2138852 TAOK1 ↓ ↑ 

rs10512472 SLFN14 ↑ ↓ 

rs11082304 CABLES1 ↓ ↑ 

rs6136489* SIRPA/LOC727993 ↓ ↓ 

rs41303899 TUBB1 ↓ ↑ 

rs6070697 TUBB1 ↑ ↓ 

rs1018448 ARFGAP3 ↓ ↑ 

 
Table 5.3. All variants listed here showed association with both PLT and MPV in the opposite direction of 

effect as indicated by the arrows, except for rs6136489 (denoted by asterisk) which showed association with 

decreased PLT and decreased MPV. Abbreviations: PLT, platelet count; MPV, mean platelet volume. 
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Table 5.4. Intersection of platelet associated variants with red blood cell (RBC) and white blood cell (WBC) traits (p<0.0001). 

 
SNP MarkerName Gene PLT Trait Other Blood Cell 

rs855791 22:37462936 TMPRSS6 ↓ MCH, MCV, HGB MCHC, HCT ↑ 

rs855791 22:37462936 TMPRSS6 ↓ RDW ↓ 

rs55707100 15:43820717 MAP1A ↑ HGB, MCH, HCT, MCHC ↓ 

rs174583 11:61609750 FADS2 ↑ RDW ↓ 

rs174583 11:61609750 FADS2 ↑ HGB, RBC, HCT, MCHC ↑ 

rs738409 22:44324727 PNPLA3 ↓ HCT, HGB ↑ 

rs3091242 1:25674785 TMEM50A ↓ RDW ↑ 

rs1050331 7:44808091 ZMIZ2 ↑ MCH, MCV ↓ 

rs1050331 7:44808091 ZMIZ2 ↑ WBC ↑ 

rs6734238a 2:113841030 IL1F10/IL1RN ↑ MCH ↓ 

rs6734238a 2:113841030 IL1F10/IL1RN ↑ WBC, NEU ↑ 

rs12566888 1:156869047 PEAR1 ↑ WBC, NEU, MON ↓ 

rs3865444 19:51727962 CD33 ↓ WBC ↓ 

rs6136489 20:1923734 SIRPA/LOC727993 ↓ WBC, LYM ↓ 

rs2256183a 6:31380529 MICA ↑ BAS ↑ 

rs12692566 2:160676427 LY75-CD302 ↓ WBC ↓ 

 
Table 5.4. We cross-referenced novel variants associated with platelet count (PLT) and/or mean platelet volume (MPV) in RBC and WBC association 

analyses in the Blood Cell Consortium (BCX). Here, we show RBC/WBC associated platelet variants with p<0.0001. Full details of RBC/WBC 

associations are shown in Table S16 and Table S17. Arrows denote direction of effect for the platelet and other blood cell trait(s). Abbreviations: BCX, 

Blood Cell Consortium; RBC, red blood cell; WBC, white blood cell; PLT, platelet count; MCH, mean corpuscular hemoglobin; MCV, mean corpuscular 

volume; HGB, hemoglobin; MCHC, mean corpuscular hemoglobin concentration; HCT, hematocrit; RDW, red blood cell distribution width; PLT, platelet 

count; NEU, neutrophil; MON, monocyte; LYM, lymphocyte; BAS, basophil. a: Marker not replicated in platelet analyses 
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Table 5.5. Overlap of associations of platelet count (PLT) and mean platelet volume (MPV) variants 

with platelet reactivity (p<0.001). 

 
rsID Gene PLT MPV Agonist(s)* Direction of Effects** 

rs12566886 PEAR1 ↑ ↓ Epi, ADP, Collagen ↓↓↓ 

rs10761731 JMJD1C ↑ ↓ Epi, ADP ↑↑ 

rs12355784 JMJD1C ↑ Ns Epi ↑ 

rs342293 PIK3CG ↓ ↑ Epi ↓ 

rs4909945 MRVI1 ns ↓ Epi, ADP ↓↓ 

rs2958154 PTGES3 ↓ ↑ Collagen ↑ 

rs12883126 LINC00523 ↑ Ns Epi ↑ 

rs892055 RASGRP4 ↑ Ns Epi ↓ 

 
Table 5.5. Variants were examined using platelet reactivity phenotypes (Table S16) in GeneSTAR and the 

Framingham Heart Study (FHS). Arrows denote direction of effect for PLT, MPV, and platelet reactivity. 

Multiple arrows refer to direction for respective agonist for platelet reactivity. Detailed association results for 

platelet reactivity are given in Table S17. *Platelet reactivity associations with p<0.001. **Collagen 

measurements reflect lag time to aggregation, so direction of effect has been flipped to denote a negative 

direction of effect as less reactive and positive direction of effect as more reactive. Abbreviations are as 

follows: PLT, platelet count; MPV, mean platelet volume; ns, not significant (p>0.05), Epi, epinephrine. 
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5.5.DISCUSSION 

Here, we present a large-scale meta-analysis of Exomechip association data with two clinical 

platelet measurements, PLT and MPV. By combining Exomechip association results in 

157,293 and 57,617 participants, respectively, we detected numerous associations with rare, 

low-frequency, and common variants. There was substantial overlap of our platelet 

associations with concurrent Exomechip association findings for RBC and WBC traits, 

indicating shared genetic influence on regulatory and functional mechanisms among the three 

different blood cell lineages244; 295. More surprisingly, we observed shared associations of 

platelet and lipids loci. The identification of shared blood cell and lipids associations as well 

as identifying genes with entirely new associations reveals candidates for further examination 

in order to elucidate the mechanisms underlying platelet development and function. 

Using Exomechip to Identify Previously Unreported Genetic Associations 

Using the Exomechip that has an emphasis on rare and infrequent coding variation, we 

found associations with variants that ranged from common to rare in allele frequency. We 

attempted to replicate independent associations, although our replication cohorts were 

underpowered to associations of rare variants. To inform our replication criteria, we conducted 

a power analysis by using a sample size of 20,000 and considering multiple combinations of 

allele frequencies and effect sizes. Based on allele frequency and effect size, our most difficult 

to replicate variant was rs56106611 (MAF = 0.012, Beta = 0.11). However, we still had 

approximately 80% power to detect this association in the replication stage. Despite this, 

replication of extremely rare variants remains a challenge. For example, there were 
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associations with rare coding variants with large effect sizes in FCER1A, MPL, JAK2, SH2B3, 

TUBB1, and IQGAP2135; 243. The overall effect size of these rare variants must be validated in 

independent studies. The PLT-associated and predicted deleterious variant rs200731779 in 

FCER1A (p.Leu114Val) had a large effect (β = −2.96) in discovery analyses, but could not be 

replicated in available samples due to its extremely rare allele frequency (MAF = 1.48 × 10−5 

in EA). The affected amino acid is extracellularly positioned near the interface of two Ig-like 

domains, an area of the protein critical for FC-IgE interaction as shown through its crystal 

structure, biochemical data, and mutagenesis studies303-306. Other variants in FCER1A, a 

subunit of the allergy response IgE receptor and basophil differentiation factor, have 

previously been associated with IgE levels and monocyte counts146; 307.  Increased platelet 

activation has been postulated to contribute to or be a consequence of allergic and 

inflammatory responses308. Our association of rare deleterious variation in FCER1A to reduced 

PLT provides a further link between platelet biology and allergy response. 

Although SNVs in IQGAP2 have previously been associated with PLT, we detected 

independent IQGAP2 low-frequency and rare missense variants associated with increased 

MPV (Table 5.2, Figures S3 and S4)122; 243  Located proximal to thrombin receptor F2R (MIM: 

187930), IQGAP2 functions in the cytoskeletal dynamics in response to thrombin-induced 

platelet aggregation286. We did not observe IQGAP2 associations with platelet aggregation, 

which may be due to the rare/low-frequency nature of the SNVs and the absence of thrombin-

induced aggregation data in the available cohorts. Nonetheless, the associations of rare and 

low-frequency variants in IQGAP2 further strengthen its contribution to platelet biology. In 

addition to IQGAP2, we observed other low-frequency associations, including 

http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc1
http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc1
http://omim.org/entry/187930


161 

 

nonsynonymous coding variants in ITGA2B (MIM: 607759), LY75, MAP1A, and APOH. The 

SNV rs76066357 in ITGA2B, a gene implicated in Glanzmann’s thrombasthenia (MIM: 

273800), was associated with decreased PLT (Table 5.1). Moreover, ITGA2B codes for the 

platelet glycoprotein alpha-IIb, which is part of the target receptor of GIIb/IIIa inhibitors (e.g., 

eptifibatide and abciximab) used in the acute management of acute coronary syndromes. 

Although ClinVar lists rs76066357 as pathogenic (ID: 216944) with limited evidence, 

rs76066357 is a non-rare, predicted benign variant that contributes to population variability in 

PLT in our study as opposed to a severe Mendelian disorder of platelet reactivity.309 Previous 

studies do suggest a potential role for variants in ITGA2B and ITGB3 (MIM: 173470) leading 

to thrombocytopenia as well as abnormalities in platelet reactivity.310  

In addition to rare and low-frequency variant associations, we detected previously 

unreported associations for PLT and MPV at 25 and 15 common loci, respectively. For 

example, a common missense SNV rs1018489 in ARFGAP3 (MIM: 612439) showed 

association with decreased PLT and increased MPV. This variant is an eQTL for both 

ARFGAP3 and neighboring gene PACSIN2 (MIM: 604960) in blood tissues (Table S21, 

Figures S5 and S6). Although the possible role of the androgen receptor (AR) gene target and 

cellular secretory factor ARFGAP3 is unknown in platelets,311-313 PACSIN2 functions in the 

formation of the megakaryocyte demarcation membrane system during platelet production 

through interactions with FlnA314. Genetic variation that influences PACSIN2 expression may 

hinder the formation of the megakaryocyte demarcation membrane system and lead to the 

production of fewer but larger and potentially more reactive platelets. We also observed 

several other novel associations with common variants, including those in SMG6 (MIM: 

http://omim.org/entry/607759
http://omim.org/entry/273800
http://omim.org/entry/173470
http://omim.org/entry/612439
http://omim.org/entry/604960
http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc1
http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc1
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610963), a mediator of embryonic stem cell differentiation through nonsense-mediated decay, 

and LY75, an endocytotic immunity-related receptor highly expressed on dendritic cells where 

it is involved in recognition of apoptotic and necrotic cells. 315-317  

Overlap with Other Platelet and Blood Cell Traits 

There was substantial overlap of variants associated with both PLT and MPV (n = 23) as 

well as a strong negative correlation in effect sizes, consistent with the documented negative 

correlation between the two traits in population studies (Figure 5.2).318Only rs6136489, a 

reported eQTL for SIRPA, showed the same direction of effect for both PLT and MPV. 

SIRPA directly interacts with CD47, and SIRPA/CD47 signaling plays an important role in 

platelet clearance and the etiology of immune thrombocytopenia purpura318-320. Knockout 

Sirpa mice exhibit thrombocytopenia phenotypes, although they have similar MPV to control 

animals320. How genetic variation in SIRPA influences MPV in addition to its demonstrated 

contribution to PLT remains to be characterized. In addition to shared associations of PLT and 

MPV, there was overlap in the parallel Exomechip analyses of platelet reactivity. Largely 

mirroring results from previous GWASs, markers within PEAR1, JMJD1C, PIK3CG, and 

MRVI1 showed the strongest associations with PLT/MPV and platelet reactivity297; 321-323. 

Other PLT/MPV-associated markers in PTGES3, LINC00523, and RASGRP4 showed 

marginal associations. Notably, PTGES3 is linked to prostaglandin synthesis and the RasGRP 

family has been shown to have functional roles in blood cells including in platelet adhesion324. 

The association of platelet reactivity genes, particularly PEAR1 and MRVI1, with PLT/MPV 

further supports a biological relationship between processes that control platelet function, 

megakaryopoiesis, and clearance325; 326. However, these large-scale association analyses are 

http://omim.org/entry/610963
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unable to demonstrate whether these shared associations indicate shared biological 

mechanisms or simply reflect the epidemiological correlations among these traits. 

In addition to platelet traits, there was substantial overlap of genetic associations with 

RBC and WBC traits examined by the BCX244; 295. The shared genetic associations with the 

two other primary blood cell lineages further supports other studies proposing that 

mechanisms that govern platelet size and number also influence RBC and WBC traits327. In 

BCX analyses, rs1050331 in the 3′ UTR of ZMIZ2 was associated with increased PLT, mean 

corpuscular hemoglobin (MCH), and mean corpuscular volume (MCV), as well as with 

decreased WBC count244; 295. rs1050331 is also an eQTL for ZMIZ2 expression in whole blood 

(Table S21)328. There are known sex differences in cell counts, with females consistently 

having higher PLT and mixed results on MPV329; 330. Similar to well-established PLT- and 

MPV-associated transcriptional regulator JMJD1C, ZMIZ2 directly interacts with AR to 

modulate AR-mediated transcription and influences mesodermal development, and thus 

genetic variation in ZMIZ2 could potentially contribute to hormonally mediate differences in 

PLT across genders331-333. Also associated with increased PLT and decreased RBC indices was 

rs55707100 in MAP1A. Though typically examined in a neurological context, MAP1A is 

involved in microtubule assembly, a process important in blood cell development and 

function334. Our observed association of MAP1A and its expression in platelets and RBCs 

suggests that the known role of MAP1A in developmental and cytoskeletal processes in neural 

tissues may extend to blood cells ( Table S22). How these shared genetic factors specifically 

influence the development, maintenance, or clearance of multiple blood cell types remains to 

be determined. 

http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
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Overlap with Non-Blood Cell Traits 

Although the overlap with other blood cell traits may be intuitive, we also observed 

overlap with quantitative lipids traits. In cross-trait lookups, several known PLT/MPV loci 

confirmed in this study (e.g., JMJD1C, GCKR, and SH2B3) showed associations with lipids 

traits, and several known lipids loci showed association to PLT/MPV (e.g., FADS1, FADS2, 

APOH, and TMEM50A). Moreover, SH2B3, which is also expressed in human vascular 

endothelial cells where it modulates inflammation, has been associated with blood pressure 

and the risk of MI138; 335; 336. Our study further suggests that a regulation of platelets could also 

contribute to potential implication of SH2B3 in the development of cardiovascular diseases. 

The associated SNVs in the FADS1/FADS2 locus (rs174546 and rs174583) are eQTLs for 

multiple lipid-related transcripts in blood-related tissues, including TMEM258, FADS1, 

FADS2, and LDLR ( Table S21)328. Intriguingly, expression of TMEM258 has also been 

shown to be a transcriptional regulatory target of cardiovascular disease implicated CDKN2B-

AS1 (MIM: 613149), a region marginally associated with PLT (discovery EA p = 1.00 × 10−6, 

replication EA p = 0.0577, combined EA p = 1.56 × 10−7) (Table S14)301; 337; 338. Our genetic 

association results link the underlying genetic architecture of platelet and lipids traits as 

suggested by previous epidemiological, genetic, and animal studies330; 338-341. However, these 

observed shared genetic associations do not demonstrate whether these reflect direct genetic 

pleiotropy or indirect relationships. Several variants previously implicated in lipids (e.g., 

FADS1, FADS2, SH2B3, TMEM50A, and GCKR) have stronger associations with lipids traits 

relative to our platelet associations, suggesting that their primary effects are on lipids 

http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
http://omim.org/entry/613149
http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
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pathways ( Table S20). Determining the directionality and causality among genetic variants, 

lipids, and platelets remains an important future step in dissecting which genetic variants may 

reveal new insights into platelet biology. 

5.6.CONCLUSIONS 

By performing a large meta-analysis of Exomechip association results, we identified 

rare, low-frequency, and common variants that influence PLT and MPV. Despite our ability to 

detect numerous associations with SNVs across a wide range of allele frequencies, the 

Exomechip interrogated a limited fraction of genomic variation. Sequencing-based studies 

across the genome in large sample sizes will be necessary to fully assess the contribution of 

variants across the allele frequency spectrum, particularly of rare variants in intergenic 

regions. Nonetheless, our results identify several intriguing genes and genetic mechanisms of 

platelet biology. Many of these associations overlapped with related blood cell and lipids 

traits, pointing to common mechanisms underlying their development and maintenance. 

Because blood cells share developmental lineages and several of our platelet-associated genes 

have known developmental or transcriptional regulatory functions, we hypothesize that the 

origins of these shared genetic associations are mainly in blood cell development in the bone 

marrow. How these genes function and interact in RBC, WBC, and platelet development will 

need to be tested in future experiments in both functional and human-based studies. Advances 

in these domains could provide key insights into genes that influence human blood disorders 

and reveal new mechanisms for the development of novel therapeutic applications 

 

http://www.sciencedirect.com/science/article/pii/S0002929716301392#mmc2
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CHAPTER 6: GENERAL DISCUSSION 

6.1.LESSONS FROM OUR EXOME SEQUENCING STUDY 

6.1.1. The BAG3 and FLNC mutations 

In chapters 2 and 3, we identified mutations in BAG3 and FLNC. Both genes have 

important roles in skeletal and cardiac muscle and have been implicated in myofibrillar 

myopathy.  

BAG3 is a co-chaperone of the heat shock proteins (HSP)s and has various roles such 

as apoptosis, autophagy, and cell adhesion. BAG3 has an apoptotic activity which is mediated 

by its role as a co-chaperone. It is suggested that a loss of its anti-apoptotic activity leads to 

degeneration of muscle fibers. Aimura et al, demonstrated in a BAG3 knockout mouse model 

that they displayed apoptotic nuclei in the striated muscles resulting in a severe form of 

skeletal myopathy and cardiomyopathy342 . Another role associated with BAG3 is autophagy 

and the degradation of misfolded proteins. Hindering autophagy initiation may force the cells 

to choose death instead because they would have no mechanism to degrade the oxidized 

proteins. This cell death could then result in deteriorating muscle tissue, like that seen in Bag3 

knockout mice. Moreover, BAG3 has a role in cell-adhesion and cytoskeleton integrity. The 

Arg309X mutation that we identified in chapter 2 is in the PXXP domain which modulates cell 

adhesion. Disruption of cell adhesion may lead to cell detachment from matrix and thus to 

muscle degeneration. 

FLNC belongs to the Filamin family of actin-binding proteins. It is expressed 

predominantly in skeletal and cardiac muscle. In skeletal muscle, the majority of FLNC 

localizes to the Z-disk. In cardiac muscle, FLNC is found in intercalated discs 343. FLNC plays 
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a major role in development and remodelling of the Actin cytoskeleton. It has a highly 

conserved structure with 2 actin-binding sites and 24 immunoglobulin (Ig) repeats. The Ig 

repeats act as an interface of interaction with binding proteins which has been thought to be 

important for the dimerization of FLNC enabling them to bundle or cross-link filaments. It is 

believed that dimerization of FLNC is an important step for its targeting to the cytoskeleton, 

and hence to ensure its function 344.  

The mechanism by which mutations in FLNC result in muscle disease is not understood. 

However, haploinsufficiency has been suggested as one possible mechanism in distal 

myopathy345and in dilated cardiomyopathy221 leading to a decrease in FLNC levels. The splice 

site that we describe in chapter 3 is an acceptor-splice site at exon 45. We did not functionally 

validate the mutation, however, aberrant splicing would lead to truncation of the last Ig 

domains. This may result in the disruption of the FLNC dimerization which may subsequently 

affect the integrity of the cytoskeleton. Truncation of the dimerization domain results in the 

loss of secondary structure of the mutant protein which makes it less stable and more 

susceptible to degradation by proteolytic enzymes 214; 346 

 

6.1.2. The value of genetic findings in monogenic disease 

Genetic studies have provided exciting findings for monogenic disease. As a result, a 

vast array of clinical genetic testing panels is now available for patients with family history of 

heritable cardiovascular conditions including cardiomyopathies and arrhythmias. The 

discovery of causative mutations will reveal more information regarding the mechanisms of 
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these conditions which will have important implications for diagnosis, prognosis, and 

intervention.  

With the recent advances in genetic technologies more genes are being added to panels.  

Further, the overlap of genes that cause different forms of cardiomyopathy led to the creation 

of pan-cardiomyopathy gene panels that include DCM, HCM, and ARVC genes. Other genes 

have also been shown to cause several forms of cardiovascular diseases such as SCN5A which 

is associated with DCM, Brugada syndrome and long QT syndrome. Hence, pan-arrhythmia 

and pan-cardio genetic testing panels are now available and include as many as 100 genes. 

With the costs of DNA sequencing rapidly decreasing, and with the number of novel genes 

identified on the rise, it is likely that the gene panels will soon be replaced with whole exome 

or genome sequencing which will make it possible to consult those results when new 

discoveries emerge.  

  For families, genetic testing provides many advantages. First, members negative for 

the causal mutation do not need to undergo regular screening. Second, the information will be 

useful to clinically intervene in mutation carriers for example through therapeutics or ICD 

implantation before they become symptomatic which may prevent or improve CVD 

mortality347. Lastly, this information will be useful for prenatal counseling and decision 

making.   

6.1.3. Clinical impact of our study 

 Our exome sequencing study was initiated in parallel with many other studies that used 

the same technique to hunt for DCM genes. Despite the fact that we were not the first to report 

the implication of BAG3 with DCM (chapter 2), our study provided unequivocal evidence of 
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that association because we had access to two multiplex pedigrees (the third family was small) 

which provided the power needed to confirm such an association. This is important because 

often, variants are attributed to be causal without sufficient evidence. For that reason, there is a 

debate on whether all DCM associated genes are in fact true candidates (see below), and 

hence, well powered studies, like ours, serve to establish the implication of the reported gene 

with DCM. For the same reason (power), we were able to study the impact of BAG3 truncating 

variants in those families and report for the first time that BAG3 is associated with early-onset 

DCM. The immediate clinical impact of our work was the addition of BAG3 on the MHI’s 

DCM existing panel that comprised at the time 6 genes in compliance with a position 

statement from the Canadian Cardiovascular Society 27. The MHI was not the only hospital 

that originally did not screen for BAG3, other clinics (such as the Laboratory of Molecular 

Medicine (LMM) at  Harvard) that utilize more comprehensive gene panels also did not have 

BAG3 on their list at the time, and it is now added due to the rising evidence of its role in 

DCM.   

Exome sequencing of a family with atypical cardiomyopathy allowed us to find a 

mutation in FLNC (chapter 3). Up until now, FLNC is not considered a DCM gene in the sense 

that it is not present on any screening panel (LMM, MHI) nor on commercial panels (illumina 

cardiomyopathy panel). In parallel to our finding, another study implicated FLNC in atypical 

cardiomyopathy222. In the family we analyzed, the disease presents with overlapping features 

of cardiomyopathy. It has a characteristic of DCM, left ventricular dilatation, but without 

systolic dysfunction (which is the major other requirement for the diagnosis of DCM), and 

pathologically a left dominant arrhythmogenic cardiomyopathy. Three patients of the four that 

we had analyzed also have fibrosis, the most prominent of which was present in the 32 year 
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old deceased individual. Our report provided additional evidence to the notion that FLNC, 

originally thought to be linked to myofibrillar myopathy, plays a role in cardiomyopathy 

independent of any skeletal muscle problems. The clinical impact of our study and the 

others221; 222 that implicate FLNC is highlighting that the truncating mutations in FLNC may 

subject carriers to a higher risk of SCD and may require an ICD implantation as a preventive 

measure. Indeed, one of the family members in our study that had an ICD as a prevention had 

two appropriate shocks, confirming the critical role that such as intervention may have on 

FLNC truncating mutation carriers.  

The vast majority of DCM mutations are missense. In a study conducted by Norton et al, 

the authors examined a list of all the variants that had been identified until then. Out of the 198 

variants, the vast majority were missense, (83%) and 6% were truncating. With the subsequent 

analysis of TTN, more truncating variants in this gene have been described in many families. 

Truncating mutations are considered to be more pathogenic than a missense variant that alters 

one amino acid, however, this is not always true206. Truncating mutations are predominantly 

reported in TTN43; 48. In our two reports, the mutations in BAG3 and FLNC were also 

truncating and we suggest that the impact on disease may be stronger with the first causing an 

earlier onset and the second causing an overlapping phenotype and fibrosis which is associated 

with degeneration of contractile function. Moreover, in both studies, the BAG3 and FLNC 

families had a strong history of SCD.  

A few points to mention in the context of the modifier effect of BAG3 and the possible 

association of FLNC and SCD. 1) Although SCD is a possible outcome of DCM and other 

cardiomyopathies, not all DCM families have a history of SCD.  2) ICD implantation is not 

always considered as this procedure is not free of possible complications. Clinicians follow a 
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thorough assessment of the patient and his/her family history, health condition, and stage of 

disease to weigh the risk and benefit of such a procedure. An ICD is usually considered when 

there is a history of SCD. However, whether and when to implement this procedure also vary 

and the decision to adopt this course of action is very subjective and in many instances 

depends on the physician following the case. 3) We do not expect that all mutations would 

impact the risk of SCD and thus establishing that correlation with specific mutations will help 

to categorize patients and improve clinical management.  

Taking the three points into consideration, if a correlation between specific mutations 

and SCD or age of onset can be reliably established, this will play a significant role in 

orienting clinicians towards the right interventions or treatments and when to implement them. 

If the carrier has a mutation that is correlated with early onset, like we have shown for BAG3, 

then an intervention in a 17 year old asymptomatic carrier may not be too early as would have 

been speculated had this correlation not been established. And if an asymptomatic carrier has a 

truncating mutation in FLNC, then we suggest that an ICD may also be required, although we 

did not have a statistically robust evidence as we had had for BAG3, but we depend on 

observations from our study and the others on FLNC 221; 222 Hence, more studies are warranted 

to reliably establish the correlation between FLNC and SCD. In summary, genetic findings 

would provide a more solid support to any interventional procedure and may harmonize the 

strategies adopted by clinicians.   

 

6.1.4. The utility of whole exome sequencing 
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Targeted NGS identifies pathogenic mutations in known genes. These panels are 

enriched for mutations in the candidate genes, and hence one can only identify a very rare 

variant that segregates with disease in a candidate gene, but may not itself be the causal one. In 

one of our families in chapter 2, the proband had a very rare likely causal mutation in LMNA. 

However, whole exome sequencing revealed another mutation in another gene called RBM20. 

The same mutation was published in a recent paper where they proved its segregation with 

disease in a huge multiplex family 199. RBM20 is on the list of genes targeted in genetic panels 

in only 21 labs compared to LMNA (65 labs) according to the Genetic Testing Registry (GTR) 

(https://www.ncbi.nlm.nih.gov/gtr/). Chances are that the majority of the labs would have 

ranked the LMNA as the pathogenic mutation in this family. The value of exome sequencing is 

that the data would still be available once new findings emerge and thus can be consulted. The 

cardiomyopathy panels will likely not keep up with the pace of research discoveries. Finally, 

with the current cost of NGS, one can carry a whole exome sequencing experiment for a 

similar price as targeted NGS 46.  It is likely that with the decrease of the cost of whole 

genome sequencing (WGS), it will also be an option in the future and will allow for discovery 

of non-coding variation and CNVs, although data interpretation will still be a major hurdle. 

An example where WES was particularly successful is highlighted in the Finding of 

Rare Disease Genes (FORGE) Canada Consortium effort which aims to identify novel genes 

implicated in rare pediatric genetic disorders such as muscular diseases, birth defects and 

intellectual disability348. The consortium has successfully identified more than 67 novel genes 

for a wide range of rare disorders220; 348.    

6.1.5. Exome sequencing caveats 
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6.1.5.1. Coverage 

Exome sequencing targets the exons of the genome and is thus enriched for coding 

exonic variants and does not provide adequate coverage of other types of variations. As such, 

findings for Mendelian disease have mainly been coding variants, but we did not sufficiently 

explore noncoding variation that may affect disease (e.g through epigenetics and gene 

regulation as discussed earlier). These aspects can not be addressed by exome sequencing. In 

addition to SNPs, genetic variation may be due to small insertions or deletions, or CNVs. 

Exome sequencing does not detect insertions and deletions reliably where calling methods 

give variable results. And thus these types of variants remain not fully explored with exome 

sequencing.  

6.1.5.2. Too much data poses interpretation issues 

WES is a very attractive approach for discovery of genes implicated in rare disorders. 

However, despite the exciting prospects of WES, this technology has several limitations. 

Sequencing technologies yield a huge amount of variants. Although some of these will be 

pathogenic or risk alleles, the majority will be benign. Strategies used in order to assign 

pathogenicity to variants include evidence of segregation of the variant within a family, its 

conservation across species and the use of computational prediction tools, as well as filtering 

variants using public sequencing databases such as the 1000 genomes project, ESP, and ExAC 

datasets (see below for discussion). For some families, the filtering process leads to the 

identification of a “likely” pathogenic variant in a known gene. Subsequent segregation 

analysis in other unaffected (preferably older) members of the family is very helpful to 

increase the likelihood that the mutation identified is in fact pathogenic. However, when one 
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does not find pathogenic variants in known genes, it becomes extremely challenging to 

identify the causal mutation (and thus novel genes) in these families.  Usually, several variants 

thought to be “likely pathogenic” are retained by the end of the filtering steps and the 

interpretation of the results becomes very difficult. What makes it even more challenging is 

the fact that often mutations are private to a family, which means catalogues of published 

pathogenic variants such as Clinvar or HGMD that one can consult to prioritize pathogenic 

mutations will not always be useful.  Of course, biological knowledge about the gene in which 

the mutation is present in terms of its function, the pathway it is associated with or its 

interaction with other (possibly heart failure) genes is instrumental in ranking the likelihood of 

variants. Identifying other families that carry other pathogenic mutations in the same gene will 

also support its involvement in disease. The best way to confirm pathogenicity would be to 

test those variants functionally, however, this is not practical in a clinical setting where every 

novel variant segregates in one family or few families.  The next few years will likely witness 

more tweaking of the current technologies and tools to improve the sensitivity of identifying 

novel mutations and genes. Further, expanding current sequencing databases will greatly aid in 

prioritizing variants.  

6.1.6. Other challenges in monogenic disease studies 

Although the genetic approaches have improved our ability to conduct analyses for gene 

discovery, it remains that there are certain challenges that hinder that discovery and that are in 

many instances outside the control of the clinician or analyst. And unlike research that 

involves big numbers of individuals, studies that rely on family pedigrees are affected by 

individual-related issues, which would be negligible in population-based studies.  
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The main challenge is that several people are needed in a pedigree in order to reliably 

implicate a disease gene. This is particularly important when a mutation in a known gene has 

not been found, and we are considering a bigger set of possible novel candidates. The first 

issue is family compliance; this could take several forms such as lack of interest of family 

members that are needed to carry out a segregation analysis, or familial disputes that limit our 

freedom to contact other members to participate, or in many cases, simply the lack of 

availability of members either in small families or families with history of SCD and only one 

affected individual.  

Another important challenge is phenotyping of family members. When a history of DCM 

is known, then imaging and clinical examination of family members will be evaluated 

differently. In other words, any abnormality would be considered as a sign of the disease 

because of the family history, and that same abnormality may have been ignored in another 

individual. This makes it complicated to assign the phenotypic status of such participating 

family members and in many cases, these are left unanalyzed in the genetic study due to an 

“undetermined” affection status which further reduces the number of participating individuals.  

6.1.7. Current databases and variant prioritization  

The compelling results that were achieved using the sequencing technologies have 

prompted various research groups to join forces and aggregate their datasets into public 

databases that serve as a resource for researchers and genetic clinicians and that help to 

overcome the interpretational challenges that accompany the ever so growing genetic data. As 

a result multiethnic databases such as the 1000 genomes, ESP, and ExAC have been created. 

The 1000 genomes aims at providing a catalogue for most of the genetic variants that have a 
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frequency of at least 1% in the populations studied. The dataset now contains genomes of 

more than 2,000 samples. ESP includes exome sequencing data from more than 6,000 

individuals from various projects that include well-phenotyped and diverse populations. 

Recently, the 1000 genomes, ESP and many other contributing projects comprising disease-

specific and population genetic studies were combined to create yet a more comprehensive 

resource, ExAC which includes the exome sequences of more than 60,000 samples. Last 

October, the ExAC dataset has expanded even more and the genome Aggregation 

Database (gnomAD) now includes exome sequences from more than 123,000 samples and 

whole genome sequencing from more than 15,000 samples.  

These datasets made it possible to attain calculations of allele frequencies for the variants 

that were found in the participating individuals and thus became indispensable resources. As 

these databases grow in size, they make it easier to interpret sequencing data. One can look up 

a variant of interest to know its frequency in the general population and also to compare 

frequencies between the different ethnicities (although this is not yet perfect as the sample 

sizes contributed by the various ethnicities largely differ). From the assumption that the 

frequency of Mendelian disease-causing alleles are extremely rare or private mutations, then 

we would expect the disease-causing allele to either be very rare or even absent from these 

datasets (since the dataset is a subset of the general population). Studies have used MAF 

cutoffs to filter out variants in their analyses of sequencing data in order to facilitate the task of 

prioritizing variants in search of the pathogenic ones. There is no official way to decide on an 

MAF cutoff, but usually it is a function of the prevalence of the disease in question, the rarer 

the disease the less frequent the causal mutations is going to be and the lower the MAF 

threshold.  It is important that the cutoff is not too stringent so as not to filter out potentially 
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pathogenic variants nor too loose to avoid the inclusion of false positives. Whiffin et al 

suggested a statistical framework that in addition to disease prevalence uses knowledge of 

previous disease causing variants to determine an MAF cutoff 349 to be applied in exome 

sequencing studies.  

6.1.8. Proving pathogenicity 

Traditionally, to determine pathogenicity of variants causal of DCM, linkage studies 

provided a strong statistical evidence of linkage followed by functional validation. Currently, 

many WES studies on cardiomyopathies rely on bioinformatics methods to assess 

pathogenecity. We take into consideration population frequency, the conservation of the site of 

the variant, the predicted effect on function- by using software such as polyphen and SIFT, 

segregation of the variant (for monogenic diseases), whether the gene is expressed in the heart, 

and its interaction with other genes that play a role in the disease of interest (discussed above).  

The American College of Medical Genetics and Genomics (ACMGG) has recommended 

certain guidelines to establish the pathogenicity of variants using typical types of variant 

evidence (e.g., population data, computational data, functional data, and segregation data).350. 

They classify variants into “pathogenic”, “likely pathogenic”, “benign”, “likely benign”, or 

“uncertain significance”.  The classification depends on the level of evidence that in turn 

ranges from very strong evidence of pathogenicity to very strong evidence that the variant is 

benign.  The criteria to assign the level of pathogenicity are very intricate, where there exist 

many possible scenarios for each variant class and can be consulted here350. For example, a 

variant is considered pathogenic if it satisfies one condition of the “very strong” evidence 

conditions plus one strong evidence condition, if it has two strong evidence conditions, or one 
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strong evidence and 3 moderate evidence conditions and so on. Therefore, a truncating variant 

with evidence of disease segregation is considered pathogenic.  A truncating variant is also 

considered pathogenic in the absence of family data if it has been functionally proven to cause 

the disease. A missense variant is considered pathogenic if it segregates in the family AND if 

it has been functionally proven to cause the disease.   

In a large pedigree, that includes more than two affected people, such as the case in our 

FLNC report, proving pathogenicity will be more reliable that in smaller pedigrees. Multiplex 

pedigrees are ideal because they would allow a LOD score calculation which would be a 

robust evidence of linkage, as is the case with our BAG3 study. However, there is no doubt 

that the most convincing proof of pathogenicity would be to test those variants experimentally. 

Appropriate experimental methods can be selected depending on the class of variant and the 

feasibility and cost of the experiment. Overall, to prove pathogenicity of those variants, the 

main outcomes that one seeks are that the gene is disrupted or that the variant led to the 

disease phenotype in cells derived from the patient or in a well-validated in vivo model such as 

mouse or zebrafish. For both in vitro and in vivo models one needs to show that the 

introduction of the variant, or an engineered vector carrying the variant, into a cell line or 

animal model resulted in the disease phenotype and ideally that the phenotype can be rescued 

by addition of wild-type gene product or specific knockdown on the risk allele of the variant. 

For DCM, the majority of variants thought to be causal of the disease are coding 

variants. However, reports that scrutinized the list of reported DCM variants argue that many 

of those reported as pathogenic are not in fact pathogenic 349; 351. Walsh et al 351considered all 

reported DCM variants in HGMD and cross checked the allele frequencies of those variants in 

the ExAC catalogue, and found that 19.6% of individuals in ExAC carry reported DCM 
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disease-causing variants which exceed the disease prevalence by far.  Hence, not all reported 

variants are causal and giving higher priority to published variants in clinical genetic testing is 

not recommended. As the database continues to expand and as clinical genetic testing moves 

to larger gene panels and whole-exome and genome sequencing, variant interpretation will 

increasingly improve and a better interpretation of disease variants will likely be achieved. 

6.1.9. The hunt for modifier genes 

Even when the causal mutation is identified, the phenotypic heterogeneity observed in 

patients within the same family will be a challenge. Who has a worse prognosis? Who is at 

more risk of sudden cardiac death?  For instance, it is extremely crucial in the management of 

cardiomyopathy to know who is at a higher risk of arrhythmias. Mutations in SCN5A have 

been associated with arrhythmias in family-based and population-based studies 40; 352; 353. 

These studies facilitate the stratification of individuals and in choosing appropriate therapies 

such as implanting an ICD in SCN5A mutations carriers. Future studies may implicate other 

genes that may modify severity or cause a higher risk of sudden cardiac death. The current 

genetic technologies have the potential of identifying variants that may act as modifiers of 

disease, but such studies will require a large number of unrelated individuals and will need to 

be replicated before they can be clinically relevant.  

DCM displays phenotypic heterogeneity, meaning that the manifestation of disease and 

its prognosis differs considerably between patients. DCM also has both 1) genetic 

heterogeneity, meaning that there is not only one gene that causes the disease as is the case for 

other mendelian traits like Huntingon or cystic fibrosis, rather there is a considerable number 

of genes that have been liked to DCM; 2) and allelic heterogeneity since the same mutation 
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may have a different impact on its carriers within the same family. Carriers of the same 

mutation may exhibit very distinct phenotypic characteristics and in certain cases a different 

type of cardiomyopathy3. Hence, in addition to identifying the causal mutation, it is essential 

that we explore whether there are genetic factors that modify the disease characteristics or 

severity. Understanding the sources of this heterogeneity would impact the clinical 

management of the disease.  

The concept of “modifier genetics” in the context of DCM remains largely unexplored. 

Unraveling the genetic factors that would render a DCM patient at a higher risk to have 

arrhythmias or a more severe prognosis would be very valuable for clinicians to make the right 

clinical decisions in managing the affected families. Within the same context, identifying the 

factors that may protect certain carriers from developing the disease (reduced penetrance, see 

introduction) would also be extremely important for the clinical management of DCM and 

would lead to a better understanding of the underlying mechanisms and the pathophysiology 

of this disease. Such discoveries might also guide the development of tailored therapies for 

DCM. In our paper for example, a carrier of the BAG3 mutation had not developed the disease 

at age 67. We do know that she had been taking beta-blocker medication for a while. It is hard 

to believe that this may have halted the disease, but it could be a combination of the 

medication, lifestyle or environmental factors as well as other genetic variants that she may 

carry and her affected relatives do not.  

Tackling the issue of modifier genetics requires extremely large sample sizes of DCM 

patients to have enough power to detect the associated variants. One would gather a large 

sample of DCM probands and conduct an association study. Information about all the relevant 

clinical parameters and complications, as well as sequencing data for both affected and 
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unaffected individuals would be required. Since we are looking at variants that modify the 

disease, and not cause it, then the rationale of using exome date is insufficient here since 

modifiers may be noncoding variants. One would then need to look for variants that are 

present at a significantly higher frequency in individuals with a disease-related characteristic 

or complication, for example arrhythmia, or heart failure, than with individuals without 

(association testing). These variants are likely to be common and if they are true “modifiers”, 

then their effect on the disease would be apparent once the causal mutation is present. It is also 

possible to conduct such analyses using family data, but that would require many multiplex 

pedigrees in order to have sufficient patients with or without the complication or phenotypic 

parameter that we are studying, and that is more difficult to obtain. In addition, individuals 

that are related will also share most of their genetic data, thus unrelated individuals would 

pose less challenges. 

6.2.LESSONS FROM THE EXOMECHIP STUDY 

6.2.1. Pleiotropy in blood cell traits 

Pleiotropy is a phenomenon where a single genetic locus influences multiple traits. As 

shown in our results in chapters 4 and 5, the identified variants are associated with more than 

one blood cell phenotype across all three major cell types, red blood cells, white blood cells 

and platelets, as well as other traits such as lipids, T2D, obesity, etc. Since blood cells are 

involved in a variety of biological processes, it would be plausible that some of the genetic 

loci would have pleiotropic effects on a number of hematological and other related traits. 

Pleiotropy poses challenges in analyzing and interpreting association studies. This overlap 

makes it harder to pinpoint the direct effect of the SNP. In order to disentangle the actual 
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effect of the genetic variation, multivariate association analyses that account for the correlation 

between the traits is required. Such analyses provide additional statistical power to detect 

novel genes contributing to pleiotropic events and may give new insights into the biology of 

the overlapping traits. 

6.2.2. Rare variants and complex traits 

Gene-based tests such as SKAT, or Variable-Threshold (VT) tests allow to combine 

information across variants and evaluate the aggregation of the effects of multiple variants in a 

gene or region.  Using these methods and aggregating the effects or low-frequency variants, 

we identified novel genes implicated in blood cell traits such as PKLR and ITGA2B (chapters 4 

and 5A). Methods such as whole exome sequencing, low-depth WGS, and the exome chip 

have been suggested as genetic tools to capture rare variants. However, they are also 

associated with some limitations. For example, low-depth sequencing has limited accuracy for 

identifying rare variants, whole exome sequencing is limited for the exome and the exome 

chip is limited to targeted regions. In general, all methods will have their advantages and 

disadvantages, and there will probably not be a perfect one, rather a combination of all would 

yield the most results.  

In our exome chip study we were able to identify 12 novel rare and low-frequency 

independent variants for red blood cells (chapter 4) and platelet traits (chapter 5). The exome 

chip has also been successful in enabling the identification of rare variants with other traits 

such as blood pressure 103; 104 and lipid traits 102.  Since the exome chip also includes GWAS 

tag SNPs, then it is possible to run conditional analyses by correcting for the GWAS signal to 

capture the rare variant that may be driving the association in known genes. In chapter 4, we 
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ran conditional analyses correcting for known red blood cells signals and we found a rare 

variant that was independent of the GWAS signal, a rare variant in the ANK1 gene. The same 

result was presented in another study 354. A rare splice variant in HBB (MAF = 0.008%) which 

we published in another work (appendix 2) 243 was also independent of known GWAS signals 

in this locus. But we could not find rare variants that fully explained a GWAS signal. In other 

words, the GWAS signal was not lost when we adjusted for a given rare variant, and both 

SNPs are independently contributing to the phenotype where the variation is not exclusively 

driven by one of the variants. In appendix 2, using the exome chip, we demonstrate that a rare 

missense variant in EPO (MAF=0.5%) associated with red blood cell traits was also 

independent of the strongest GWAS signal. In the same study, using the exome chip allowed 

the identification of a novel gene for WBC count, CXCR2, that has not been discovered in 

GWAS studies and that harbored several rare and low-frequency variants contributing to the 

association. Perhaps the best demonstration of the utility of the exome chip was lately proven 

in the GIANT consortium 106 where 83 rare and low-frequency coding variants (MAF < 5%) 

were reported to be associated with height and having higher effect sizes compared to 

common variants.  The study comprised more than 700k individuals proving that the 

combination of the exome chip with very large sample sizes are invaluable to uncover novel 

rare variation.  

In addition to the exomechip, sequencing studies are thought to capture rare variants.  A 

WES study for blood cell traits successfully identified a rare variant in GFI1B associated with 

lower platelet count and using genome editing and knockdown experiments showed that the 

variant plays a role in suppressing platelet production 355. Following our exome chip studies, a 

GWAS in the UK Biobank and INTERVAL cohorts that included more than 173k individuals 
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identified hundreds of novel rare and low-frequency variants associated with blood cell indices 

356. The success of a GWAS to capture rare variation is heavily due to the availability of whole 

genome sequencing reference panels such as the 1000 genomes 357 , UK10K 358 ,and the 

Haplotype Reference Consortium359 projects that include more rare variants than what was 

originally included in previous GWAS studies, and thus highly improve the quality of 

genotyping and imputation to better capture rare and low-frequency variants in association 

analyses. 

6.2.3. Associated variants lying in Mendelian disease genes 

In chapters 4 and 5, we identified rare and low-frequency variants in several genes that 

cause Mendelian forms of blood disorders such as ALAS2, which is mutated in sideroblastic 

anemia and PKLR implicated in non-spherocytic hemolytic anemia. For platelet traits, we 

found a low-frequency variant associated with decreased platelet count in ITGA2B, a gene 

mutated in the rare disorder, Glanzmann’s thrombasthenia. Previous resequencing studies of 

genes implicated in Mendelian disorders have revealed that rare variants in those genes can 

contribute to various complex traits at a population level.  LDLR mutations for example, can 

cause both, the rare disorder familial hypercholersterolemia (FH) which manifests at a young 

age and a complex form of hypercholerterolemia that manifests in the fourth or fifth decades 

of life.  These results suggest that there exist common pathways between rare disorders and 

complex traits that when perturbed ultimately lead to disease. 

6.2.4. The missing heritability problem 
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The term “missing heritability” has been coined to refer to the genetic factors that may 

explain the remaining genetic component of the phenotypic variance 100. Solving the missing 

heritability has a great impact on human health. The heritability estimates the contribution of 

genetic information to disease. It is believed that for complex traits, the effect or influence 

comes from several hundreds of variants and the accumulation of their effects. Therefore, if 

we do not know the majority of these contributing factors, then we can not take this 

information to the next level, which is the translation of these findings into clinical use. The 

hope is that our knowledge of our genetic information will help us 1) predict disease and 2) 

achieve tailored treatment (refer to the section on “The Goal of Personalized Medicine” for a 

broader discussion). Knowing our genetic risk can help us to predict disorders and thus 

prevent them when possible. For example, people who have a genetic susceptibility to MI will 

be advised to have a specific diet and lifestyle. Solving the missing heritability is key for 

individualized treatment. Without it, our ability to translate even the information that we 

already know is limited. For example, using the current knowledge of breast cancer genetics, 

genetic tests have bene developed that aim to categorize patients into groups based on how 

well they will respond to chemotherapy treatment or how likely will they have cancer 

recurrence. These are created based on our knowledge of a certain number of genes that have 

been validated. The objectives behind these tests is what we want the genetic information to 

achieve however, we can only interpret the results of these tests with great caution because a 

lot is not known yet. In other words, the absence of certain alleles in one individual does not 

mean that he does not carry other risk alleles that we have not identified yet. 

It is thought that the missing heritability lies in low-frequency (1% < MAF < 5%), and 

rare variants (MAF < 1%) (the definition of cutoffs varies), with small to strong effect sizes in 
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addition to other intricate biological processes such as epigenetic modifications, gene-gene 

and gene-environment interactions. However, it is possible to improve our ability to detect the 

“missing heritability” by giving importance to certain aspects of data analysis.  

6.2.4.1. Well defined phenotypes  

Having a phenotype that is not well defined can dilute signals and contribute to the 

missing heritability. A well-defined phenotype makes the distinction between cases and 

controls more pronounced and more easily detectable. Difference in the analyzed phenotypes 

may be due to 1) disease phenotypic heterogeneity or 2) poorly measured phenotypes. For 

complex traits with a wide range of phenotype signatures it is essential to analyze these sub-

groups separately in order to capture the genetic contribution for each. Once these phenotypes 

are combined, this will lead to a decrease in power to identify genetic variation.  

Some phenotypes or traits are not measured in a standard fashion (such as blood 

pressure) in different studies. Thus, one challenge is to implement a uniform procedure when 

data comes from different studies and countries, which is the case of the consortia or meta-

analyses which leads to introduction of noise. It is generally believed that larger sample sizes 

will account for issues in defining and measuring a trait (and the differences between the 

different parties contributing to the study). However, I think it is equally important to seek 

having a clean phenotype as a way to increase power to detect novel findings.  

6.2.4.2. The value of non-European Ethnicities 

Although we know today a lot more about certain ethnicities like East Asians and South 

Asians and intriguing results have been discovered in non-European populations, the 
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overwhelming majority of studies have been performed on Caucasians. In chapter 4, I report a 

novel association between a nonsense variant in CD36 and red blood cell traits in the African 

American population. This result was not significant in the European cohort which highlights 

the gain in knowledge that we could achieve in exploring non-European populations. Some 

variants will have higher allele frequencies in non-European populations compared to 

Europeans which will increase power. The variant may also be monomorphic in European 

populations, but not in other ethnicities in which case any association would only be detected 

in non-European ethnic groups. For example, the G6PD locus association with red blood cells 

is African American-specific. Conversely, rare splice variant, rs33971440, in HBB associated 

with hemoglobin and hematocrit levels is only detected in Europeans.  A GWAS in Latin 

Americans identified novel associations with white blood cell traits 360 not previously seen in 

Europeans. Another advantage of exploring different ethnicities is that the LD patterns differ 

between populations, and hence a genotyped SNP may be in greater LD with a causal variant 

in one population compared to another. To make use of the difference in LD, it is important 

that genotyping chips include genetic variation of diverse ethnic groups not only Europeans. 

Finally, the environmental factors will differ between one population and another. Hence 

certain associations may have a greater effect in one population compared to another due to 

gene-environment or even gene-gene interactions.  

Given the variable allele frequencies and environmental backgrounds, the information 

gleaned from the plethora of genetic findings in Europeans may not apply to other populations. 

There exists a wealth of genetic information that lies in each ethnic population and thus studies 

in diverse populations is extremely crucial for gene discovery and to contribute to explaining 

the missing heritability. 
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6.2.4.3. Gene-Environment interactions 

Other factors that may explain the missing heritability lie in the effects of gene-gene and 

gene-environment interactions. Exploring the effects of gene-environment interactions are 

necessary to better understand the underlying biology and pathophysiology of disease, 

Numerous reports have addressed these types of interactions, however, for the most part, these 

results have not been replicated. Challenges in conducting such analyses are often due to the 

variability in measuring environmental exposures between studies. Further, lifestyle measures 

such as diet and exercise are usually self-reported. Additionally, many of the environmental 

factors of interest are correlated; hence an interaction between a variant and one environmental 

variable may be driven by its correlation with another variable.  Further, more power is 

required to detect interactions compared to genotype phenotype associations. One way to 

overcome the power limitation is to meta-analyze data from several studies. However, meta-

analyses often dichotomize continuous variables to account for between-study heterogeneity 

which leads to a loss of power. In addition, meta-analyses usually consider only one 

interaction at a time which may overestimate the interaction with a particular variable since the 

latter may be correlated with other variables. A possible solution could be to fit more than one 

environmental variable jointly. This however, requires very large sample sizes since there is a 

loss of power once many variables are included in the model. A recent gene-environment 

interaction study made use of the large UK biobank dataset and analyzed more than 100k 

individuals 361. The study found an interaction between the FTO locus and several 

environmental variables including alcohol consumption, diet, physical activity and others by 

using a joint model. Mores studies in this context are required to elucidate the contribution of 
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gene-environmental interactions to disease heritability. It is possible that their overall 

perceived contribution is overestimated.  

6.2.4.4. Rare variants and significance thresholds  

  Analyses of rare variants require very large samples to detect them. However, it is 

possible that we are being stringent in our P-value thresholds and we are losing some true 

positives. For example, in chapter 5, 7/13 PLT variants and 4/10 MPV variants that did not 

pass the significance threshold in the discovery analysis were nonetheless replicated in the 

replication cohorts and surpassed significance thresholds when the discovery and replication 

results were combined. These variants would have been ignored it we strictly relied on the 

significance thresholds. Within this context, it is also difficult to replicate very rare variants. 

For example, in chapter 4, we identified a rare variant in ALAS2 associated with MCH. This 

gene is implicated in sideroblastic anemia and thus we have likely identified a true signal, 

however, the variant did not replicate, most probably because the replication samples in which 

this variant was present was very small. Hence, it is possible that some of the missing 

heritability lies in rare variants that we are overlooking in our analyses. 

6.2.5. Functional experiments in blood cells 

The majority of SNPs identified to be associated with blood cell traits are non-coding 

and may be involved in gene regulation and hence expression. Gene expression can be 

regulated by several factors such as transcriptional regulatory networks, enhancers, 

methylation etc. Polymorphisms in regulatory elements may modify the levels of gene 

transcripts. Consequently, transcript abundance can be measured and considered as a 
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quantitative trait. The use of both whole genome association studies and the measurement of 

global gene expression permits the discovery of expression quantitative trait locus (eQTL)s. 

Once a genetic variant is identified to be associated with a trait, a genome-wide eQTL 

mapping data can be examined to check if the variant is associated with quantitative transcript 

levels. In chapters 4 and 5, we used eQTL databases in order to check whether any of the 

associated variants for red blood cell traits and platelets are expressed in relevant tissues. 

eQTL studies can be used as a general method to help identify a set of target genes. The 

emergence of large-scale genomics projects such as ENCODE, and other efforts, is aiding in 

attaining a better understanding of the non-coding regions of the human genome.  These 

studies have benefitted from next generation sequencing technologies to generate genome-

wide maps of functional elements such as regulatory elements. Such studies help in 

prioritizing variants by studying the overlap with molecular features or interactions. For 

example, a candidate causal variant may overlap with a sequence motif within a known 

binding site for a particular transcription factor, giving clues that the variant may be 

functional362. 

As discussed in chapter 1, hematological traits are amenable to functional experiments 

which is extremely crucial to validate findings from association studies. First, blood and its 

cell types are easily accessible. Hematological measurements are normally available in most 

cohorts or biobanks. Second, blood cell types can be differentiated and new genes can be 

tested in cell culture systems or model organisms. In chapter 4, we were able to functionally 

test the nonsense mutation in CD36 using differentiated erythroblasts and show that there was 

a reduction in the expression of CD36 in heterozygotes of the identified variant. 
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 To validate whether a gene causes a given phenotype, techniques such as CRISPR/Cas9 

or gene knockdown approaches in cellular models or model organisms may be applied. Unlike 

monogenic diseases, complex traits are thought to be caused by many low-effect size variants, 

hence testing the function of those variants requires a framework that integrates all variants 

and test them simultaneously. A GWAS study has demonstrated platelet phenotype of 11 

novel genes by silencing them in model organisms 122. Antisense morpholino silencing of 

ARHGEF3 in zebrafish lead to ablation of both primitive erythropoiesis and thrombocyte 

formation, and a novel role has been ascribed to ARHGEF3 in the regulation of iron uptake 

and erythroid cell maturation 122;https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916502/ - 

voxs12217-bib-0014276. A recent report attempted to study the function of genes associated 

with platelet size and number. To achieve this they selected 24 loci among the 68 loci 

identified by GWAS studies and knocked down their expression in a zebrafish model using 

morpholino oligonucleotides. As a result, they were able to describe the role of 9 genes whose 

role in thrombopoiesis was not previously known 363.   

Advancing technologies to expand and differentiate pluripotent stem cells into blood 

cells (e.g. megakaryocytes/platelets 364,erythroid progenitors/RBC365, macrophages366) for 

clinical and commercial applications enable their use as a model system of hematopoiesis. 

There is potential to produce and bank all blood subtypes which will allow to study the effect 

of variation from the start of differentiation with hematopoietic stem cells towards production 

of mature blood cells.  

6.2.6. The value of identified variants in complex traits 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916502/#voxs12217-bib-0014
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916502/#voxs12217-bib-0014
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GWAS and exomechip studies identified thousands of variants associated with hundreds 

of diseases. Many of these are not themselves causal of disease but they likely tag a causal 

variant. But what is the prognostic value of those variants? Unlike monogenic diseases, the 

variants associated with complex traits will have a low impact on disease susceptibility. 

However, findings have contributed greatly to our understanding of complex disease. For 

instance, they provide new understandings of the underlying biology, or can be useful in 

certain approaches to establish causation pathways between an exposure and an outcome that 

is often unclear in epidemiological studies alone (due to issues such as reverse causation) 

through Mendelian randomization studies.  We also know that some variants interact with 

drug response (e.g clopidogrel) or contributed to the discovery of drug targets such as PCSK9 

367. Hence, although the effect size on disease is low per se, findings for complex traits have 

proven to be extremely useful. Therefore, out of the numerous findings, it is important to 

establish methods to prioritize those that matter and that have biological relevance. There is a 

dire need to design a framework which combines the functional evidence with the statistical 

support and helps in prioritizing variants based on an experimentally proven function.  

Computational methods will also be crucial. Recently, a study combined next generation 

sequencing, bioinformatics, and clinical data to derive a diagnostic workflow. The tool allows 

to prioritize variants based on both pathogenicity and similarity of the patients’ phenotype to 

described diseases. They correctly ranked genes based on the number of pathogenic variants 

86% of the time and predicted disease in a prospective study 368.  

Current knowledge of associated variants made it possible to design genetic risk scores 

and test their ability to predict disease. Genetic risk scores have a main advantage which is that 

they remain stable throughout life and can be helpful in predicting disease at any age. In the 
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context of CVD, risk scores that integrated variants associated with CVD or with CVD risk 

factors have moderately improved disease prediction over traditional risk factors369; 370. To be 

clinically useful, genetic risk scores need to provide significant improvements in disease 

prediction. Recently, statistical and computational methods that allow for prioritizing variants 

or better integration of genetic risk scores into the assessment of clinical risk have been 

suggested 371. It is also possible that with both the discovery of more well-characterized 

variants and the prioritization of known signals, genetic risk scores will be more robust. 

Second, once we know more about the genetic basis of diseases (solving the missing 

heritability) and the biological relevance of those genetic factors elucidated then it will be 

possible to choose variants for risk integration. Machine learning tools will also be useful to 

prioritize candidate genes.   

Associated rare variants would have a better prognostic value and will be easier to link to 

genes since they are predominantly in coding regions. As discussed earlier, they also tend to 

have a larger phenotypic effect. If variants are coding, then their associated mechanism such as 

the disruption of the protein function, would be easier to interpret. Hence, rare variants may be 

considered “actionable” variants with a better potential for scientific and/or clinical value such 

as therapeutic targets 372. 

Given the complex nature of common diseases, statistical and analytical methods need to 

be designed that will ultimately lead to additional variant discovery, classification and 

interpretation.   

6.3.THE GOAL OF PERSONALIZED MEDICINE  
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The advances in genomics have revealed a trove of genetic information that helped 

predicting certain diseases (monogenic) and achieve targeted treatments. It is because of the 

successes of genetic studies and the feasibility of genetic tests – facilitated by advances in 

technologies – that the notion of “personalised medicine” became a goal worth pursuing.  

Examples of personalised medicine have already had significant impact on health. As 

presented in this thesis, the clinical management of monogenic diseases has already benefitted 

greatly from genetic findings. Patients with causal mutations for cardiomyopathy are 

considered for preventative interventions (eg. ICD) and asymptomatic family members are 

genetically screened for mutations.  It is likely that when the picture of modifier genetics 

becomes more lucid, disease classification and hence personalized medicine and treatment will 

also be possible. Screening for BRCA1 and BRCA2 mutations in breast cancer is another 

example of personalized medicine and has a large benefit in terms of mortality reduction. 

Although the prevalence of these mutations is very small, they confer more than 70% lifetime 

risk for breast and ovarian cancer. According to the US Preventive Services Task Force, 

recommendations for genetic testing for BRCA1 and BRCA2 mutations in high risk women in 

the US have been issued since 2005.  

However, for the majority of conditions, we have yet to prove that the additional 

knowledge gained from genetic information, could not otherwise be provided by the 

assessment of risk factors and family history. As for polygenic traits, as mentioned above, the 

prognostic value of the genetic findings is still very limited. In the context of 

pharmacogenomics,  it has been shown that some variants are associated with a different drug 

response. The main strategic challenge is applying those tests in the clinic. Not only do we 

need to prove their clinical utility, but also their cost-effectiveness. Will it be more cost-
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effective to go with the “trial and error” method to decide what a suitable dose of warfarin is 

for patients, or to genotype them? Which tests should be applied in routine practice?  

The Centers for Disease Control and Prevention (CDC) office of public health genomics 

(https://phgkb.cdc.gov/GAPPKB/topicStartPage.do), uses guidelines based on the FDA 

recommendations, the research evidence, and the clinical evidence, to classify genetic testing 

into three categories: tier 1 (supports implementation in practice), tier 2 (clinically valid, but 

more evidence required), tier 3 (not yet recommended)373. This is a very effective way in 

providing guidelines that can be consulted in order to decide on implementing genetic tests. 

These tests are either related to prediction of disease, drug dosage, or drug choice. Currently, 

more than 100 drugs have a pharmacogenomics information label on them reflecting the great 

accomplishments of genetic findings and their integration within genetic testing. For instance, 

a drug in tier 1, cetuximab is ineffective in 40% of colorectal cancer patients 374. Those that 

have a mutation in the KRAS gene will not benefit from the drug. The genetic test will help 

stratify patients based on their genotype and treat them accordingly. Other drugs like 

clopidogrel, for which there is considerable evidence for inter-individual variability in 

response due to a variants in the CYP2C19 gene375, has not been introduced in clinical practice 

yet illustrating an example where clinical evidence exists but the clinical utility has yet to be 

proven.  

In addition to the scientific impediments, there are other educational, social, and strategic 

challenges. On the level of education, there is a clear disparity on genomic medicine education 

among clinicians. There is an overload of data from genomic studies that clinicians and health 

care professionals need to keep up with. Further, surveys demonstrated that even when 

physicians are familiar with genomic medicine, some of them would not use the results of 
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genomic testing to guide their clinical decisions and disease management376. Therefore, 

programs to educate primary care professionals and physicians will be essential to learn more 

about the genomic evidence in order to appreciate the value of genomic medicine.  

We need strategies to manage the social impact of personalized medicine and have a plan 

to answer questions like: Should the government or insurance companies have access to an 

individual’s genetic data? How do we prevent genetic discrimination in the workplace? 

Scientists and lawyers have worked for so long to address these issues, however, they remain 

issues that trouble the minds of individuals. The next few years will have provided a more 

complete picture about the genetic basis of disease and with more findings, the goal of 

personalized medicine will be more attainable.  

 

 

6.4.CONCLUSIONS AND FINAL COMMENTS 

In conclusion, the work presented in this thesis contributed new genetic findings for 

DCM and blood cell traits. For DCM, I identified truncating mutations in BAG3 that 

predispose carriers to early onset DCM and contributed in adding yet another evidence for the 

importance of the inclusion of BAG3 in gene panels. I also identified a truncating mutation in a 

novel gene, FLNC that causes a distinct type of cardiomyopathy with fibrosis, arrhythmias, 

and history of SCD. For blood cell traits, we identified 16 novel genes for red blood cells and 

15 novel for platelet traits in a very large, multiethnic and well powered study. These findings 

have important implications in understanding the biology of blood cell traits and contribute to 

expanding the list of genes involved in these traits.  
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Future directions of genetic studies in both realms of human disease will focus on 

addressing the challenges of each. For monogenic disease, the current technologies will enable 

studies to continue to identify more genes implicated in disease, but also to consider types of 

variants not well captured by exome sequencing studies such as insertions, deletions, CNVs 

etc. More rigorous steps of variant validation are also required in order to limit false positives. 

Collaborations among different research groups are invaluable and will increase power to 

conduct such types of analyses owing to the small number of people with rare diseases. 

Additionally I believe that clinical genetic testing and research studies still need to go hand in 

hand in the search of novel genes. While gene panels are more feasible in a clinical context, I 

believe that families with negative results should always be considered for exome sequencing 

as a part of research study in order to expand the list of causal genes.  Finally, finding modifier 

variants will have a substantial impact on disease classification and individual-level treatment.   

For complex traits, current and future studies will focus on explaining the remaining 

phenotypic variance of disease. The use of the exomechip and of exome sequencing was 

successful in identifying rare variants for some traits but not for others. Strategies to capture 

rare variants in addition to the current ones will also require studies in isolated populations and 

investigating the extremes of the population distribution. Efforts in including diverse ethnic 

groups have already been fruitful and warrant more samples and the inclusion of more ethnic 

groups. Exploring the effect of the environmental factors and their interactions with genetic 

factors will also likely contribute to explaining a portion of the missing heritability. Another 

challenge is to find the value of the thousands of variants that had been identified. The current 

state is that we are overloaded with findings, the majority of which is yet to be proven 

meaningful. The rapidly decreasing cost of genomic technologies will make it easier to 
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address many of our questions. More importantly, the coming years will greatly rely on 

tailored analytical and statistical methods, more computational tools, and functional studies in 

order to complete the puzzle and make sense of the information that we have found to increase 

the prognostic value of genetic findings and hence the evidence of their clinical utility.  

  



200 

 

APPENDIX 1: LARGE-SCALE EXOME-WIDE ASSOCIATION ANALYSIS 

IDENTIFIES LOCI FOR WHITE BLOOD CELL TRAITS AND PLEIOTROPY WITH 

IMMUNE-MEDIATED DISEASES. 
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APPENDIX 2: RARE AND LOW-FREQUENCY CODING VARIANTS IN CXCR2 

AND OTHER GENES ARE ASSOCIATED WITH HEMATOLOGICAL TRAITS 
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