
Université de Montréal

Speech Synthesis Using Recurrent Neural Networks

par José Manuel Rodŕıguez Sotelo

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté à la Faculté des arts et des sciences
en vue de l’obtention du grade de Mâıtre ès sciences (M.Sc.)

en informatique

Décembre, 2016

c© José Manuel Rodŕıguez Sotelo, 2016.

Résumé

Les réseaux neuronaux récurrents sont des outils efficaces pour modeler les
données à structure séquentielle. Dans ce mémoire, nous décrivons comment les
utiliser pour la synthèse vocale.

Nous commençons avec une introduction à l’apprentissage automatique et aux
réseaux neuronaux dans le chapitre 1.

Dans le chapitre 2, nous développons un gradient algorithmique stochastique
automatique ayant pour effet de réduire le poids des recherches extensives hyper-
paramétrées pour l’optimisateur. L’algorithme proposé exploite un estimateur de
courbure du coût de la fonction de moindre variance, et utilise celui-ci pour obtenir
un taux d’apprentissage adaptatif qui soit automatiquement calibré pour chaque
paramètre.

Dans le chapitre 3, nous proposons un modèle innovateur pour la génération
audio inconditionnelle, basée sur la génération d’un seul échantillon audio à la fois.
Nous montrons que notre modèle, qui prend avantage de la combination de mo-
dules sans mémoire (notamment les perceptrons autorégressifs à plusieurs couches
et les réseaux de neurones récurrents dans une structure hiérarchique), est capable
de capturer les sources de variation sous-jacentes dans les séquences temporelles,
et ce, sur de très longs laps de temps, sur trois ensembles de données de nature
différente. Les résultats de l’évaluation humaine à l’écoute des échantillons générés
semblent indiquer que notre modèle est préféré à d’autres modèles de compéti-
teurs. Nous montrons aussi comment chaque composante du modèle contribue à
ces performances.

Dans le chapitre 4, nous présentons un modèle d’encodeur-décodeur focalisé sur
la synthèse vocale. Notre modèle apprend à produire les caractéristiques acoustiques
à partir d’une séquence de phonèmes ou de lettres. L’encodeur se constitue d’un
réseau neuronal récurrent bidirectionnel acceptant des entrées sous forme de texte
ou de phonèmes. Le décodeur se constitue, pour sa part, d’un réseau neuronal
récurrent avec attention produisant les caractéristiques acoustiques. Par ailleurs,
nous adaptons ce modèle, afin qu’il puisse réaliser la synthèse vocale de plusieurs
individus, et nous la testons en anglais et en espagnol.

Finalement, nous effectuons une réflection sur les résultats obtenus dans ce mé-
moire, afin de proposer de nouvelles pistes de recherche.

Mots clés: réseaux de neurones, apprentissage automatique, apprentissage
de représentations profondes, apprentissage de représentations, synthèse vocale,

ii

traitement du signal, optimisation

iii

Summary

Recurrent neural networks are useful tools to model data with sequential struc-
ture. In this work, we describe how to use them for speech synthesis.

We start with an introduction to machine learning and neural networks in Chap-
ter 1.

In Chapter 2, we develop an automatic stochastic gradient algorithm which
reduces the burden of extensive hyper-parameter search for the optimizer. Our
proposed algorithm exploits a lower variance estimator of curvature of the cost
function and uses it to obtain an automatically tuned adaptive learning rate for
each parameter.

In Chapter 3, we propose a novel model for unconditional audio generation
based on generating one audio sample at a time. We show that our model, which
profits from combining memory-less modules, namely autoregressive multilayer per-
ceptrons, and stateful recurrent neural networks in a hierarchical structure is able
to capture underlying sources of variation in the temporal sequences over very long
time spans, on three datasets of different nature. Human evaluation on the gener-
ated samples indicate that our model is preferred over competing models. We also
show how each component of the model contributes to the exhibited performance.

In Chapter 4, we present Char2Wav, an end-to-end model for speech synthesis.
Char2Wav has two components: a reader and a neural vocoder. The reader is
an encoder-decoder model with attention. The encoder is a bidirectional recurrent
neural network (RNN) that accepts text or phonemes as inputs, while the decoder is
a recurrent neural network with attention that produces vocoder acoustic features.
Neural vocoder refers to a conditional extension of SampleRNN which generates raw
waveform samples from intermediate representations. We show results in English
and Spanish. Unlike traditional models for speech synthesis, Char2Wav learns to
produce audio directly from text.

Finally, we reflect on the results obtained in this work and propose future di-
rections of research in the area.

Keywords: neural networks, machine learning, deep learning, representation
learning, speech synthesis, signal processing, optimization

iv

Contents

Résumé . ii

Summary . iv

Contents . v

List of Figures . vii

List of Tables . ix

List of Abbreviations . x

1 Introduction . 1
1.1 Machine Learning . 2
1.2 Generative Models . 2
1.3 Optimization . 3
1.4 Neural Networks . 5
1.5 Recurrent Neural Networks . 5
1.6 Speech synthesis . 7

2 Adasecant . 9
2.1 Abstract . 10
2.2 Introduction . 10
2.3 Directional Secant Approximation 11
2.4 Relationship to the Diagonal Approximation to the Hessian 13
2.5 Variance Reduction for Robust Stochastic Gradient Descent 13
2.6 Blockwise Gradient Normalization 15
2.7 Adaptive Step-size in Stochastic Case 15
2.8 Algorithmic Details . 16

2.8.1 Approximate Variability . 16
2.8.2 Outlier Gradient Detection 17
2.8.3 Variance Reduction . 17

2.9 Improving Convergence . 17
2.10 Experiments . 18

2.10.1 Ablation Study . 19

v

2.10.2 PTB Character-level LM . 21
2.10.3 MNIST with Maxout Networks 21

2.11 Conclusion . 22
2.12 Appendix . 22

2.12.1 Derivation of Equation 2.18 22
2.12.2 Further Experimental Details 23
2.12.3 More decomposition experiments 23

3 SampleRNN . 32
3.1 Abstract . 33
3.2 Introduction . 33
3.3 SampleRNN Model . 35

3.3.1 Frame-level Modules . 35
3.3.2 Sample-level Module . 37
3.3.3 Truncated BPTT . 39

3.4 Experiments and Results . 40
3.4.1 WaveNet Re-implementation 43
3.4.2 Human Evaluation . 44
3.4.3 Quantifying Information Retention 44

3.5 Related Work . 46
3.6 Discussion and Conclusion . 47
3.7 Appendix A . 47

3.7.1 A model variant: SampleRNN-WaveNet Hybrid 47

4 Speech synthesis . 49
4.1 Abstract . 50
4.2 Introduction . 50
4.3 Char2Wav . 51

4.3.1 Attention-based Recurrent Sequence Generator 52
4.3.2 Reader . 52
4.3.3 Neural Vocoder . 53

4.4 Related Work . 55
4.4.1 Speech Synthesis . 55
4.4.2 Attention Models . 55

4.5 Training Details . 56
4.5.1 Training the Neural Vocoder 56

4.6 Results . 57
4.6.1 Listening Tests . 57

4.7 Conclusions . 61

5 Conclusion . 63

vi

List of Figures

1.1 Generative models. Figure from ?. 3
1.2 Deep recurrent neural network. The dashed lines represent sampling

from a distribution. Figure from ?. 6

2.1 Baseline comparison against Adam. AdaSecant performs as well as
Adam with a carefully tuned learning rate. 24

2.2 Deactivating one component at a time. BN provides a small but
constant advantage in performance. OD is important for the algo-
rithm. Deactivating it makes training more noisy and unstable and
gives worse results. Deactivating VR also makes training unstable. . 25

2.3 Learning curves for the very well-tuned Adam vs AdaSecant algo-
rithm without any hyperparameter tuning. AdaSecant performs very
close to the very well-tuned Adam on PTB character-level language
modeling task. This shows us the robustness of the algorithm to its
hyperparameters. 26

2.4 Comparison of different stochastic gradient algorithms on MNIST
with Maxout Networks. Both a) and b) are trained with dropout
and maximum column norm constraint regularization on the weights.
Networks are initialized with weights sampled from a Gaussian dis-
tribution with 0 mean and standard deviation of 0.05. In both exper-
iments, the proposed algorithm, Adasecant, seems to be converging
faster and arrives to a better minima in training set. We trained
both networks for 350 epochs over the training set. 26

2.5 In this plot, we compared AdaSecant trained by using minibatch
size of 100 and 500 with adadelta using minibatches of size 100. We
performed these experiments on MNIST with 2-layer maxout MLP
using dropout. 27

2.6 No variance reduction comparison. 28
2.7 No Adagrad comparison. 29
2.8 No block normalization comparison. 30
2.9 No outlier detection comparison. 31

3.1 Snapshot of the unrolled model at timestep i with K = 3 tiers. As
a simplification only one RNN and up-sampling ratio r = 4 is used
for all tiers. 36

vii

3.2 Examples from the datasets compared to samples from our models.
In the first 3 rows, 2 seconds of audio are shown. In the bottom
3 rows, 100 milliseconds of audio are shown. Rows 1 and 4 are
ground truth from which one can see how the datasets look different
and have complex structure in low resolution which the frame-level
component of the SampleRNN is designed to capture. Samples also
to some extent mimic the same global structure. At the same time,
zoomed-in samples of our model shows that it can perfectly resemble
the high resolution structure present in the data as well. 42

3.3 Pairwise comparison of 4 best models based on the votes from listen-
ers conducted on samples generated from models trained on Blizzard
dataset. 45

3.4 Pairwise comparison of 3 best models based on the votes from listen-
ers conducted on samples generated from models trained on Music
dataset. 46

4.1 Char2Wav: An end-to-end speech synthesis model. 54
4.2 Sample from the model conditioned on English phonemes. The

model was trained on the VCTK dataset. 58
4.3 Sample from the model conditioned on English text. The model was

trained on the VCTK dataset. 59
4.4 Sample from the model conditioned on Spanish text. The model was

trained on the DIMEX-100 dataset (?). 60
4.5 Results of the preference test. Area on the graph corresponds to the

proportion of participants that preferred the listed model. 61
4.6 Results of the intelligibility test. Word error rates are reported for

the outputs of Char2Wav, original speech processed by the WORLD
vocoder, and reader with vocoder output. 61

viii

List of Tables

2.1 Summary of results for the handwriting experiment. We report the
best validation log-loss that we found for each model using early
stopping. We also report the corresponding train log-loss. In all
cases, the log-loss is computed per data point. 20

3.1 Test NLL in bits for three presented datasets. 41
3.2 Average NLL on Blizzard test set for real-valued models. 41
3.3 Effect of subsequence length on NLL (bits per audio sample) com-

puted on the Blizzard validation set. 42
3.4 Test (validation) set NLL (bits per audio sample) for Blizzard. Vari-

ants of SampleRNN are provided to compare the contribution of each
component in performance. 43

ix

List of Abbreviations

AE Auto-Encoder
GD Gradient Descent
GRU Gated Recurrent Unit
GMM Gaussian Mixture Model
HMM Hidden Markov Model
KLD Kullback-Liebler Divergence
LSTM Long-Short Term Memory
MLE Maximum Likelihood Estimation
MLP Multi-Layer Perceptron
MSE Mean Squared Error
NLL Negative Log-Likelihood
RNN Recurrent Neural Network
SGD Stochastic Gradient Descent
SP Signal Processing
SS Speech Synthesis
VAE Variational Auto-Encoder

x

1 Introduction

To conclude what does learning really mean would definitely make your favorite

philosopher happy. Our concept of learning contains different processes that make

the definition unclear. Some of the possible definitions of learning are: acquire

knowledge of something by experience or by study, add something the memory, or

modify the behavior based on experience.

The ability to learn is the single most important quality that makes us thrive in

our environment. It is the ability that allows us to adapt our behavior to respond

to threats and to get skills that allow our survival. Learning is such an important

part of our lives that without it we could not communicate, we could not make

complex tools, we could not transfer our knowledge to new generations, etc. In a

few words, if we were not able to learn new things, we would be extinct.

Learning is so rooted in our brains that we do not even need to think about it

for it to happen. Usually, when you learn a new skill, you do not think about how

to learn it. In part because of this, we do not have a clear understanding of how

learning works inside our brains. Hence, it is challenging to provide this amazing

skill to the devices that we create. By giving machines the ability to learn, we hope

that, eventually, they will be able to solve the problems that we have not found

the solution of.

This is a thesis about machine learning. In particular, we tackle the problem

of applying modern machine learning techniques to speech synthesis (SS). Speech

synthesis, also known as Text-to-Speech (TTS), consists on finding the mapping

from text to audio signal. In the traditional approach, developing a new SS system

requires specialized linguistic knowledge and handcrafted features. In this work,

we develop a new algorithm that uses deep learning to make this process much

simpler. In summary, this thesis proposes a new solution to an old problem: speech

synthesis.

1

1.1 Machine Learning

Machine learning tries to provide the ability to learn to computers. In machine

learning, we usually do not know how to describe the solution to a problem. Instead,

we give our models the ability to learn the solution to the problem by themselves.

The motivation for this is simple: If we are able to teach the computers how to

solve problems by themselves, they will be able to solve unsolved problems.

The idea that computers can learn to solve problems by themselves is old.

As ? describe, during the first years of the field of Artificial Intelligence (1952 -

1969), it was believed that in a few years computers would become better than

humans to perform complex tasks. However, this optimism was over because of the

limit in computational resources of the time. Even more, confidence in the field

plummeted. People started doubting that computers would be able to learn how to

solve difficult problems. Regardless of the limitations in the computational power

of the time, these years were fruitful in ideas about learning. Ideas from other

fields, like psychology, were adopted. Therefore, some of the techniques developed

in the field come from models to understand human or animal behavior.

Recently, there has been an explosion in the computational power and the data

available. These two factors have transformed the field.

1.2 Generative Models

Every adult human has an incredible amount of information about the world

that we live in. We understand that the world has 3 dimensions. We understand

that we interact with objects that continuously move. We know how to navigate our

world, how to communicate with other humans. We learn from historic recordings

what happened in our past. We have created tools, like the Internet, that allows

us to learn about the present.

Most of this huge amount of information is easily accessible in the Internet or

in the physical World. However, it is no trivial to develop models and algorithms

that can analyze and understand this treasure trove of data. Generative models

are one of the most promising approaches towards this goal (?).

2

find the parameters θ of a neural network that minimize a cost function J(θ). The

function J(θ) usually includes a measure of performance in the desired task as well

as additional regularization terms.

J(θ) = E(x,y)∼p̂dataL(f(x; θ), y) (1.1)

where L is a per-example cost function, f(x; θ) is the predicted output when the

input is x, and p̂data the empirical distribution.

In contrast with the field of optimization, in machine learning the goal in and

of itself is not to minimize the cost function. Instead, the goal is to have a good

performance on unobserved examples. That is, our goal is to optimize:

J∗(θ) = E(x,y)∼pdataL(f(x; θ), y) (1.2)

where pdata is the data generating distribution. Since we do not know pdata in

most real world applications, we work with a training set of examples. This makes

machine learning different.

Overfitting is a measure of the difference between the goals of optimization

and machine learning. Since we work with only a training set of examples, if we use

high capacity models and powerful optimization algorithms we can simply memo-

rize the training set. Because of this, machine learning makes us of regularization

techniques like early stopping. Furthermore, the most effective modern optimiza-

tion algorithms are based on gradient descent. Since many useful loss functions do

not have useful derivatives, we often rely on surrogate loss functions which act as

a proxy.

In Chapter 2, we develop an automatic stochastic gradient algorithm which

reduces the burden of extensive hyper-parameter search for the optimizer. Our

proposed algorithm exploits a lower variance estimator of curvature of the cost

function and uses it to obtain an automatically tuned adaptive learning rate for

each parameter.

4

1.4 Neural Networks

Deep learning is a subset of Machine Learning that focuses on Neural Networks.

An artificial neuron is a simple model of how a neuron in the brain works. In

the brain, neurons respond to electric impulses sent by neighboring neurons. In

the same way, a neural network is a model that connects many single neurons.

Furthermore, deep learning got its name from the fact that we usually organize

the neurons in layers and we transform the input layer-by-layer. This is equivalent

to composing together many different functions. In particular, we model neural

networks using the following equations:

h0 = x (1.3)

hi = gi(w
T
i h

i−1 + bi) ∀i ∈ 1, ..., N (1.4)

where x is the input, N is the number of layers, and gi is the activation function of

the i-th layer. This model is called a feed-forward neural network or deep neural

network (DNN). Where N is the depth of the network.

1.5 Recurrent Neural Networks

Recurrent neural networks (RNN) have been proved to be a powerful tool to

model sequences like text (?), handwriting (?) and more. In the traditional gen-

erative model, a RNN is trained to model a sequence by predicting one step at a

time and predicting what comes next. The RNN is trained to use past information

to estimate the parameters of a distribution of the next step of the sequence. At

testing time, the next step is sampled from this distribution and is taken as truth

for the following computations as in Figure 1.2

P (y) = P (y1)
T
∏

t=2

P (yt|y1, ..., yt−1) (1.5)

= P (y1)
T
∏

t=2

P (yt|ht) (1.6)

hi
t = g(Whhh

i
t−1 +Wihh

i−1
t) (1.7)

5

Figure 1.2 – Deep recurrent neural network. The dashed lines represent sampling from a
distribution. Figure from ?.

And we train the network to minimize the negative loglikelihood L(y).

L(y) = −
T
∑

t=1

logP (yt|ht) (1.8)

Furthermore, we can condition the sequence generation with additional infor-

mation X. In general, X can be anything. For instance, X in image captioning

X is an image. In speech recognition X is an audio sequence. In handwriting

synthesis and speech synthesis X is a text sequence. Encoder-decoder models (??)

were developed to tackle problems where X is a sequence. Therefore, these kinds

of models are well-suited for speech synthesis.

A weakness of encoder-decoder models is that they encode all the information

about X in a fixed size vector. ? solve this issue using an attention mecha-

nism. Since then, attention mechanisms have been widely adopted in the deep and

have recently shown great performance on a variety of tasks including handwriting

synthesis (?), machine translation (?), image caption generation (?) and speech

recognition (??).

6

1.6 Speech synthesis

Audio generation is a challenging task at the core of many problems of interest,

such as text-to-speech synthesis, music synthesis and voice conversion. The par-

ticular difficulty of audio generation is that there is often a very large discrepancy

between the dimensionality of the the raw audio signal and that of the effective

semantic-level signal. Consider the task of speech synthesis, where we are typically

interested in generating utterances corresponding to full sentences. Even at a rel-

atively low sample rate of 16kHz, on average we will have 6,000 samples per word

generated. 1

Speech Synthesis consists on the mapping from text to audio signal. It has

two main goals, intelligibility and naturalness. Traditionally, speech synthesis

has been solved by dividing the problem in two stages. The first stage, known

as the frontend, transforms the text into linguistic features. These linguistic

features usually include phone, syllable, word, phrase and utterance-level features

(?) (e.g. phone identities, syllable stress, the number of syllables in a word, and

position of the current syllable in a phrase) with additional frame position and

phone duration features (??). These features are obtained by forced alignment

at the training stage. The second stage, known as the backend, takes as input

the linguistic features generated by the frontend and produces the corresponding

sound.

There are two popular approaches to tackle the backend problem: concatena-

tive synthesis and parametric synthesis. In concatenative synthesis, the audio is

cut into pieces that are labeled with their phoneme or other linguistic information.

At generation time, we find appropriate speech units in the database. Finally, we

use signal processing techniques to paste the chunks together. In parametric speech

synthesis (?), we extract vocoder parameters from speech signals. Then, we train

a generative model that will output these parameters given the desired linguistic

features. A maximum likelihood parameter estimation algorithm is used to gener-

ate the parameters. Finally, the waveform is constructed using the vocoder. The

conventional approach to statistical parametric speech synthesis uses tree-clustered

context-dependent hidden Markov models (HMMs) to model the probability den-

1. Statistics based on the average speaking rate of a set of TED talk speakers http://

sixminutes.dlugan.com/speaking-rate/

7

sities of vocoder parameters. For a more detailed review of traditional models of

speech synthesis, we recommend (?).

Recently, there have been advances by using neural networks to model vocoder

parameters. ? propose using (feed-forward) Deep Neural Networks to model the

acoustic parameters of the vocoder. ? present a lightweight model for mobile

devices using Recurrent Neural Networks (RNN). ?? present a comprehensive

review of the progress made by using neural networks for acoustic modeling.

Traditionally, the high-dimensionality of raw audio signal is dealt with by first

compressing it into spectral or hand-engineered features and defining the genera-

tive model over these features. However, when the generated signal is eventually

decompressed into audio waveforms, the sample quality is often degraded and re-

quires extensive domain-expert corrective measures. This results in complicated

signal processing pipelines that are to adapt to new tasks or domains. Further-

more, there have been a few recent attempts to take away the vocoder and model

the raw waveform directly (???).

In Chapter 3, we propose a novel model for unconditional audio generation based

on generating one audio sample at a time: SampleRNN. We show that our model,

which profits from combining memory-less modules, namely autoregressive multi-

layer perceptrons, and stateful recurrent neural networks in a hierarchical structure

is able to capture underlying sources of variation in the temporal sequences over

very long time spans, on three datasets of different nature. Human evaluation on

the generated samples indicate that our model is preferred over competing mod-

els. We also show how each component of the model contributes to the exhibited

performance.

Furthermore, in Chapter 4, we present Char2Wav, an end-to-end model for

speech synthesis. Char2Wav has two components: a reader and a neural vocoder.

The reader is an encoder-decoder model with attention. The encoder is a bidi-

rectional recurrent neural network (RNN) that accepts text or phonemes as in-

puts, while the decoder is a recurrent neural network with attention that produces

vocoder acoustic features. Neural vocoder refers to a conditional extension of Sam-

pleRNN which generates raw waveform samples from intermediate representations.

8

2 Adasecant

A Robust Adaptive Stochastic Gradient Method for Deep Learning.

Caglar Gulcehre*, Jose Sotelo*, Marcin Moczulski, Yoshua Bengio. 1

Personal Contribution. My main contribution to the project was the ablation

study. I joined this project after the algorithm had already been theoretically devel-

oped. The algorithm was developed by Caglar and Marcin supervised by Yoshua.

They presented a preliminary v ersion of this paper in the NIPS Workshop in

Optimization, 2015. I joined the team to update the paper with the comments

received in the workshop. For this, I coded the handwriting synthesis experiment

and performed the ablation study and the comparison with Adasecant. Further-

more, I rewrote most of the Results section. Finally, I did minor edits of the other

sections. This chapter was accepted in the IJCNN, 2017.

Affiliations

Caglar Gulcehre*, MILA, Département d’Informatique et de Recherche Opéra-

tionnelle, Université de Montréal

Jose Sotelo*, MILA, Département d’Informatique et de Recherche Opérationnelle,

Université de Montréal

Marcin Moczulski, University of Oxford

Yoshua Bengio, MILA, Département d’Informatique et de Recherche Opéra-

tionnelle, Université de Montréal, CIFAR Senior Fellow

Funding We thank the computational resources provided by Compute Canada

and Calcul Québec. This work has been partially supported by NSERC, CIFAR,

and Canada Research Chairs, Project TIN2013-41751, grant 2014-SGR-221.

1. * denotes equal contribution.

9

2.1 Abstract

Stochastic gradient algorithms are the main focus of large-scale optimization

problems and led to important successes in the recent advancement of the deep

learning algorithms. The convergence of SGD depends on the careful choice of

learning rate and the amount of the noise in stochastic estimates of the gradients. In

this paper, we propose an adaptive learning rate algorithm, which utilizes stochastic

curvature information of the loss function for automatically tuning the learning

rates. The information about the element-wise curvature of the loss function is

estimated from the local statistics of the stochastic first order gradients. We further

propose a new variance reduction technique to speed up the convergence. In our

experiments with deep neural networks, we obtained better performance compared

to the popular stochastic gradient algorithms. 2

2.2 Introduction

We develop an automatic stochastic gradient algorithm which reduces the bur-

den of extensive hyper-parameter search for the optimizer. Our proposed algorithm

exploits a lower variance estimator of curvature of the cost function and uses it to

obtain an automatically tuned adaptive learning rate for each parameter.

In deep learning and numerical optimization literature, several papers suggest

using a diagonal approximation of the Hessian (second derivative matrix of the

cost function with respect to parameters), in order to estimate optimal learning

rates for stochastic gradient descent over high dimensional parameter spaces ???.

A fundamental advantage of using such approximation is that inverting such ap-

proximation can be a trivial and cheap operation. However generally, for neural

networks, the inverse of the diagonal Hessian is usually a bad approximation of the

diagonal of the inverse of Hessian. For example, obtaining a diagonal approxima-

tion of the Hessian are the Gauss-Newton matrix ? or by finite differences ?. Such

estimations may however be very sensitive to the noise coming from the Monte-

Carlo estimates of the gradients. ? suggested a reliable way to estimate the local

2. This paper is an extension/update of our previous paper ?.

10

curvature in the stochastic setting by keeping track of the variance and average of

the gradients.

We propose a different approach: instead of using a diagonal estimate of the

Hessian, to estimate curvature along the direction of the gradient and we apply

a new variance reduction technique to compute it reliably. By using root mean

square statistics, the variance of gradients are reduced adaptively with a simple

transformation. We keep track of the estimation of curvature using a technique

similar to that proposed by ?, which uses the variability of the expected loss.

Standard adaptive learning rate algorithms only scale the gradients, but regular

Newton-like second order methods, can perform more complicate transformations,

e.g. rotating the gradient vector. Newton and quasi-newton methods can also

be invariant to affine transformations in the parameter space. The AdaSecant

algorithm is basically a stochastic rank-1 quasi-Newton method. But in comparison

with other adaptive learning algorithms, instead of just scaling the gradient of each

parameter, AdaSecant can also perform an affine transformation on them.

2.3 Directional Secant Approximation

Directional Newton is a method proposed for solving equations with multiple

variables?. The advantage of the directional Newton method compared to Newton’s

method is that, it does not require a matrix inversion and still maintains a quadratic

rate of convergence.

In this paper, we develop a second-order directional Newton method for non-

linear optimization. Step-size tk of update ∆k for step k can be written as if it was

a diagonal matrix:

∆k = −tk ⊙∇θf(θ
k), (2.1)

= − diag(tk)∇θf(θ
k), (2.2)

= − diag(dk)(diag(Hdk))−1∇θf(θ
k). (2.3)

where θk is the parameter vector at update k, f is the objective function and dk is

a unit vector of direction that the optimization algorithm should follow. Denoting

11

by hi = ∇θ

∂f(θk)
∂θi

the ith row of the Hessian matrix H and by ∇θi
f(θk) the ith

element of the gradient vector at update k, a reformulation of Equation 2.1 for

each diagonal element of the step-size diag(tk) is:

∆k
i = −t

k
i∇θi

f(θk), (2.4)

= −dki
∇θi

f(θk)

hk
i d

k
. (2.5)

so effectively

tki =
dki

hk
i d

k
. (2.6)

We can approximate the per-parameter learning rate tki following ?:

tki =
dki

hk
i d

k
, (2.7)

= lim
|∆k

i
|→0

∆k
i

∇θi
f(θk +∆k)−∇θi

f(θk)
, for every i. (2.8)

Please note that alternatively one might use the R-op to compute the Hessian-

vector product for the denominator in Equation 2.7 (?).

To choose a good direction dk in the stochastic setting, we use block-normalized

gradient vector that the parameters of each layer is considered as a block and for

each weight matrix Wi
k and bias vector bi

k for θ = {Wi
k,b

i
k}i=1···k at each layer i

and update k, dk =
[

dk
W0

k

dk
b0
k

· · ·dk
bl

k

]

for a neural network with l layers.

The update step is defined as ∆k
i = tki d

k
i . The per-parameter learning rate tki

can be estimated with the finite difference approximation,

tki ≈
∆k

i

∇θi
f(θk +∆k)−∇θi

f(θk)
, (2.9)

since, in the vicinity of the quadratic local minima,

∇θf(θ
k +∆k)−∇θf(θ

k) ≈ Hk∆k, (2.10)

We can therefore recover tk as

tk = diag(∆k)(diag(Hk∆k))−1. (2.11)

12

The directional secant method basically scales the gradient of each parameter with

the curvature along the direction of the gradient vector and it is numerically stable.

2.4 Relationship to the Diagonal

Approximation to the Hessian

Our secant approximation of the gradients are also very closely tied to diagonal

approximation of the Hessian matrix. Considering that ith diagonal entry of the

Hessian matrix can be denoted as, Hii =
∂2f(θ)

∂θ2
i

. By using the finite differences, it

is possible to approximate this with as in Equation 2.12,ıı

Hii = lim
|∆|→0

∇θi
f(θ +∆)−∇θi

f(θ)

∆i

, (2.12)

Assuming that the diagonal of the Hessian is denoted with A matrix, we can

see the equivalence:

A ≈ diag(∇θf(θ +∆)−∇θf(θ)) diag(∆)−1. (2.13)

The Equation 2.13 can be easily computed in a stochastic setting from the consec-

utive minibatches.

2.5 Variance Reduction for Robust Stochastic

Gradient Descent

Variance reduction techniques for stochastic gradient estimators have been well-

studied in the machine learning literature. Both ? and ? proposed new ways of

dealing with this problem. In this paper, we proposed a new variance reduction

technique for stochastic gradient descent that relies only on basic statistics related

to the gradient. Let gi refer to the ith element of the gradient vector g with respect

to the parameters θ and E[·] be an expectation taken over minibatches and different

trajectories of parameters.

13

We propose to apply the following transformation to reduce the variance of the

stochastic gradients:

g̃i =
gi + γiE[gi]

1 + γi
, (2.14)

where γi is strictly a positive real number. Let us note that:

E[g̃i] = E[gi] and Var(g̃i) =
1

(1 + γi)2
Var(gi). (2.15)

The variance is reduced by a factor of (1 + γi)
2 compared to Var(gi).

In practice we do not have access to E[gi], therefore a biased estimator gi based

on past values of gi will be used instead. We can rewrite the g̃i as:

g̃i =
1

1 + γi
gi + (1−

1

1 + γi
)E[gi], (2.16)

After substitution βi =
1

1+γi
, we will have:

g̃i = βigi + (1− βi)E[gi]. (2.17)

By adapting γi or βi, it is possible to control the influence of high variance, unbiased

gi and low variance, biased gi on g̃i. Denoting by g′ the stochastic gradient obtained

on the next minibatch, the γi that well balances those two influences is the one that

keeps the g̃i as close as possible to the true gradient E[g′i] with g′i being the only

sample of E[g′i] available. We try to find a regularized βi, in order to obtain a

smoother estimate of it and this yields us a more stable estimate of βi. λ is the

regularization coefficient for β.

argmin
βi

E[||g̃i − g′i||
2
2] + λ(βi)

2. (2.18)

It can be shown that this a convex problem in βi with a closed-form solution (details

in appendix) and we can obtain the γi from it:

γi =
E[(gi − g′i)(gi − E[gi])]

E[(gi − E[gi])(gi′ − E[gi]))] + λ
, (2.19)

As a result, to estimate γ for each dimension, we keep track of a estimation of
E[(gi−g′

i
)(gi−E[gi])]

E[(gi−E[gi])(g′i−E[gi]))]+λ
during training. The necessary and sufficient condition here,

14

for the variance reduction is to keep γ positive, to achieve a positive estimate of γ

we used the root mean square statistics for the expectations.

2.6 Blockwise Gradient Normalization

It is very well-known that the repeated application of the non-linearities can

cause the gradients to vanish ??. Thus, in order to tackle this problem, we nor-

malize the gradients coming into each block-layer to have norm 1. Assuming the

normalized gradient can be denoted with g̃, it can be computed as, g̃ = g

||E[g]||2
.

We estimate, E[g] via moving averages.

Blockwise gradient normalization of the gradient adds noise to the gradients,

but in practice we did not observe any negative impact of it. We conjecture that

this is due to the angle between the stochastic gradient and the block-normalized

gradient still being less than 90 degrees.

2.7 Adaptive Step-size in Stochastic Case

In the stochastic gradient case, the step-size of the directional secant can be

computed by using an expectation over the minibatches:

Ek[ti] = Ek[
∆k

i

∇θi
f(θk +∆k)−∇θi

f(θk)
]. (2.20)

The Ek[·] that is used to compute the secant update, is taken over the minibatches

at the past values of the parameters.

Computing the expectation in Equation2.20 was numerically unstable in stochas-

tic setting. We decided to use a more stable second order Taylor approximation

of Equation 2.20 around (
√

Ek[(αk
i)

2],
√

Ek[(∆k
i)

2]), with αk
i = ∇θi

f(θk + ∆k) −

∇θi
f(θk). Assuming

√

Ek[(αk
i)

2] ≈ Ek[α
k
i] and

√

Ek[(∆k
i)

2] ≈ Ek[∆
k
i] we obtain

15

always non-negative approximation of Ek[ti]:

Ek[ti] ≈

√

Ek[(∆k
i)

2]
√

Ek[(αk
i)

2]
−

Cov(αk
i ,∆

k
i)

Ek[(αk
i)

2]
. (2.21)

In our experiments, we used a simpler approximation, which in practice worked as

well as formulations in Equation2.21:

Ek[ti] ≈

√

Ek[(∆k
i)

2]
√

Ek[(αk
i)

2]
−

Ek[α
k
i∆

k
i]

Ek[(αk
i)

2]
. (2.22)

2.8 Algorithmic Details

2.8.1 Approximate Variability

To compute the moving averages as also adopted by ?, we used an algorithm

to dynamically decide the time constant based on the step size being taken. As

a result algorithm that we used will give bigger weights to the updates that have

large step-size and smaller weights to the updates that have smaller step-size.

By assuming that ∆̄i[k] ≈ E[∆i]k, the moving average update rule for ∆̄i[k] can

be written as,

∆̄2
i [k] = (1 − τ−1

i [k])∆̄2
i [k − 1] + τ−1

i [k](tki g̃
k
i), (2.23)

and,

∆̄i[k] =
√

∆̄2
i [k]. (2.24)

This rule for each update assigns a different weight to each element of the gradient

vector . At each iteration a scalar multiplication with τ−1
i is performed and τi is

adapted using the following equation:

τi[k] = (1 −
E[∆i]

2
k−1

E[(∆i)2]k−1

)τi[k − 1] + 1 . (2.25)

16

2.8.2 Outlier Gradient Detection

Our algorithm is very similar to ?, but instead of incrementing τi[t + 1] when

an outlier is detected, the time-constant is reset to 2.2. Note that when τi[t+ 1] ≈

2, this assigns approximately the same amount of weight to the current and the

average of previous observations. This mechanism made learning more stable,

because without it outlier gradients saturate τi to a large value.

2.8.3 Variance Reduction

The correction parameters γi (Equation2.19) allows for a fine-grained variance

reduction for each parameter independently. The noise in the stochastic gradient

methods can have advantages both in terms of generalization and optimization.

It introduces an exploration and exploitation trade-off, which can be controlled by

upper bounding the values of γi with a value ρi, so that thresholded γ′
i = min(ρi, γi).

We block-wise normalized the gradients of each weight matrix and bias vectors

in g to compute the g̃ as described in Section 2.3. That makes AdaSecant scale-

invariant, thus more robust to the scale of the inputs and the number of the layers

of the network. We observed empirically that it was easier to train very deep neural

networks with block normalized gradient descent. In our experiments, we fixed λ

to 1e− 5.

2.9 Improving Convergence

Classical convergence results for SGD are based on the conditions:

∑

i

(η(i))2 <∞ and
∑

i

η(i) =∞ (2.26)

such that the learning rate η(i) should decrease ?. Due to the noise in the estimation

of adaptive step-sizes for AdaSecant, the convergence would not be guaranteed. To

ensure it, we developed a new variant of Adagrad ? with thresholding, such that

each scaling factor is lower bounded by 1. Assuming aki is the accumulated norm

17

of all past gradients for ith parameter at update k, it is thresholded from below

ensuring that the algorithm will converge:

aki =

√

√

√

√

k
∑

j=0

(gji)
2, (2.27)

and

ρki = maximum(1, aki), (2.28)

giving

∆k
i =

1

ρi
ηki g̃

k
i . (2.29)

In the initial stages of training, accumulated norm of the per-parameter gradients

can be less than 1. If the accumulated per-parameter norm of a gradient is less than

1, Adagrad will augment the learning-rate determined by AdaSecant for that up-

date, i.e.
ηk
i

ρk
i

> ηki where ηki = Ek[t
k
i] is the per-parameter learning rate determined

by AdaSecant. This behavior tends to create unstabilities during the training with

AdaSecant. Our modification of the Adagrad algorithm is to ensure that, it will re-

duce the learning rate determined by the AdaSecant algorithm at each update, i.e.
ηk
i

ρk
i

≤ ηki and the learning rate will be bounded. At the beginning of the training,

parameters of a neural network can get 0-valued gradients, e.g. in the existence of

dropout and ReLU units. However this phenomena can cause the per-parameter

learning rate scaled by Adagrad to be unbounded.

In Algorithm 1, we provide a simple pseudo-code of the AdaSecant algorithm.

2.10 Experiments

We have run experiments on character-level PTB with GRU units, on MNIST

with Maxout Networks ? and on handwriting synthesis using the IAM-OnDB

dataset ?. We compare AdaSecant with popular stochastic gradient learning algo-

rithms: Adagrad, RMSProp ?, Adadelta ?, Adam ? and SGD+momentum (with

linearly decaying learning rate). AdaSecant performs as well or better as carefully

tuned algorithms for all these different tasks.

18

Algorithm 1: AdaSecant: minibatch-AdaSecant for adaptive learning rates
with variance reduction
repeat

draw n samples, compute the gradients g(j) where g(j) ∈ Rn for each
minibatch j, g(j) is computed as, 1

n

∑n

k=1∇
(k)
θ
f(θ)

estimate E[g] via moving averages.
block-wise normalize gradients of each weight matrix and bias vector
for parameter i ∈ {1, . . . , n} do

compute the correction term by using, γk
i =

E[(gi−g′
i
)(gi−E[gi])]k

E[(gi−E[gi])(g′i−E[gi]))]k

compute corrected gradients g̃i =
gi+γiE[gi]

1+γi

if |g
(j)
i − E[gi]| > 2

√

E[(gi)2]− (E[gi])2 or
∣

∣

∣
α
(j)
i − E[αi]

∣

∣

∣
>

2
√

E[(αi)2]− (E[αi])2 then

reset the memory size for outliers τi ← 2.2
end

update moving averages according to Equation 2.23

estimate learning rate η
(j)
i ←

√

Ek[(∆
(k)
i)2]

√

Ek[(αk
i)

2]
−

Ek[α
k
i∆

k
i]

Ek[(αk
i)

2]

update memory size as in Equation 2.25

update parameter θ
j
i ← θ

j−1
i − η

(j)
i · g̃

(j)
i

end

until stopping criterion is met ;

2.10.1 Ablation Study

In this section, we decompose the different parts of the algorithm to measure

the effect they have in the performance. For this comparison, we trained a model to

learn handwriting synthesis on IAM-OnDB dataset. Our model follows closely the

architecture introduced in ? with two modifications. First, we use one recurrent

layer of size 400 instead of three. Second, we use GRU ? units instead of LSTM ?

units. Also, we use a different symbol for each of the 87 different characters in the

dataset. The code for this experiment is available online. 3

We tested different configurations that included taking away the use of Vari-

ance Reduction (VR), Adagrad (AG), Block Normalization (BN), and Outlier De-

3. https://github.com/sotelo/scribe

19

Model Train Log-Loss Valid Log-Loss

Adam with 3e-4 learning rate -1.827 -1.743
Adam with 1e-4 learning rate -1.780 -1.713
Adam with 5e-4 learning rate -1.892 -1.773

AdaSecant -1.881 -1.744
AdaSecant, no VR -1.876 -1.743
AdaSecant, no AG -1.867 -1.738
AdaSecant, no BN -1.857 -1.784
AdaSecant, no OD -1.780 -1.726

AdaSecant, no VR, no AG -1.848 -1.744
AdaSecant, no VR, no BN -1.844 -1.777
AdaSecant, no VR, no OD -1.479 -1.442
AdaSecant, no AG, no BN -1.878 -1.786
AdaSecant, no AG, no OD -1.723 -1.674
AdaSecant, no BN, no OD -1.814 -1.764

AdaSecant, no AG, no BN, no OD -1.611 -1.573
AdaSecant, no VR, no BN, no OD -1.531 -1.491
AdaSecant, no VR, no AG, no OD unstable unstable
AdaSecant, no VR, no AG, no BN -1.862 1.75

Table 2.1 – Summary of results for the handwriting experiment. We report the best validation
log-loss that we found for each model using early stopping. We also report the corresponding
train log-loss. In all cases, the log-loss is computed per data point.

20

tection (OD). Also, we compared against ADAM ? with different learning rates in

Figure 2.1. There, we observe that adasecant performs as well as Adam with a

carefully tuned learning rate.

In Figure 2.2, we disable each of the four components of the algorithm. We

find that BN provides a small, but constant advantage in performance. OD is also

important for the algorithm. Disabling OD makes training more noisy and unstable

and gives worse results. Disabling VR also makes training unstable. AG has the

least effect in the performance of the algorithm. Furthermore, disabling more than

one component makes training even more unstable in the majority of scenarios. A

summary of the results is available in Table 2.1. In all cases, we use early stopping

on the validation log-loss. Furthermore, we present the train log-loss corresponding

to the best validation loss as well. Let us note that the log-loss is computed per

data point.

2.10.2 PTB Character-level LM

We have run experiments with GRU-RNN? on PTB dataset for character-level

language modeling over the subset defined in ?. On this task, we use 400 GRU units

with minibatch size of 20. We train the model over the sequences of length 150.

For AdaSecant, we have not run any hyperparmeter search, but for Adam we run

a hyperparameter search for the learning rate and gradient clipping. The learning

rates are sampled from log-uniform distribution between 1e−1 and 6e−5. Gradient

clipping threshold is sampled uniformly between 1.2 to 20. We have evaluated 20

different pairs of randomly-sampled learning rates and gradient clipping thresholds.

The rest of the hyper-parameters are fixed to their default values. We use the

model with the best validation error for Adam. For AdaSecant algorithm, we fix

all the hyperparameters to their default values. The learning curves for the both

algorithms are shown in Figure 2.3.

2.10.3 MNIST with Maxout Networks

The results are summarized in Figure 2.4 and we show that AdaSecant con-

verges as fast or faster than other techniques, including the use of hand-tuned

global learning rate and momentum for SGD, RMSprop, and Adagrad. In our

experiments with AdaSecant algorithm, adaptive momentum term γk
i was clipped

21

at 1.8. In 2-layer Maxout network experiments for SGD-momentum experiments,

we used the best hyper-parameters reported by ?, for RMSProp and Adagrad,

we crossvalidated learning rate for 15 different learning rates sampled uniformly

from the log-space. We crossvalidated 30 different pairs of momentum and learn-

ing rate for SGD+momentum, for RMSProp and Adagrad, we crossvalidated 15

different learning rates sampled them from log-space uniformly for deep maxout

experiments.

2.11 Conclusion

We described a new stochastic gradient algorithm with adaptive learning rates

that is fairly insensitive to the tuning of the hyper-parameters and doesn’t re-

quire tuning of learning rates. Furthermore, the variance reduction technique we

proposed improves the convergence when the stochastic gradients have high vari-

ance. Our algorithm performs as well or better than other popular, carefully-tuned

stochastic gradient algorithms. We also present a comprehensive ablation study

where we show the effects and importance of each of the elements of our algorithm.

As future work, we should try to find theoretical convergence properties of the

algorithm to understand it better analytically.

2.12 Appendix

2.12.1 Derivation of Equation 2.18

∂E[(βigi + (1− βi)E[gi]− g′i)
2]

∂βi

+ λβ2
i = 0

E[(βigi + (1− βi)E[gi]− g′i)

∂(βigi + (1− βi)E[gi]− g′i)

∂βi

] + λβi = 0

22

E[(βigi + (1− βi)E[gi]− g′i)(gi − E[gi])] + λβi = 0

E[(βigi(gi − E[gi]) + (1− βi)E[gi](gi − E[gi])

− g′i(gi − E[gi])] + λβi = 0

βi =
E[(gi − E[gi])(g

′
i − E[gi])]

E[(gi − E[gi])(gi − E[gi])] + λ

=
E[(gi − E[gi])(g

′
i − E[gi])]

Var(gi) + λ

2.12.2 Further Experimental Details

In Figure 2.5, we analyzed the effect of using different minibatch sizes for AdaSe-

cant and compared its convergence with Adadelta in wall-clock time. For mini-

batch size 100 AdaSecant was able to reach the almost same training negative

log-likelihood as Adadelta after the same amount of time, but its convergence took

much longer. With minibatches of size 500 AdaSecant was able to converge faster

in wallclock time to a better local minima.

2.12.3 More decomposition experiments

We have run experiments with the different combinations of the components of

the algorithm. We show those results on handwriting synthesis with IAM-OnDB

dataset. The results can be observed from Figure 2.6, Figure 2.7, Figure 2.8, and

Figure 2.9 deactivating the components leads to a more unstable training curve in

the majority of scenarios.

23

0 10000 20000 30000 40000 50000 60000
2.0

1.5

1.0

0.5

0.0

0.5

T
ra

in
 L

o
g
-l

o
ss

adam with lr = 1e-4

adam with lr = 5e-4

adam with lr = 3e-4

adasecant

0 10000 20000 30000 40000 50000 60000
1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

V
a
lid

Lo

g
-l

o
ss

adam with lr = 1e-4

adam with lr = 5e-4

adam with lr = 3e-4

adasecant

Figure 2.1 – Baseline comparison against Adam. AdaSecant performs as well as Adam with a
carefully tuned learning rate.

24

0 10000 20000 30000 40000 50000 60000
2.0

1.8

1.6

1.4

1.2

1.0

0.8

T
ra

in
 L

o
g
-l

o
ss

no variance reduction (VR)

no adagrad (AG)

no outlier detection (OD)

no normalization (BN)

adasecant

0 10000 20000 30000 40000 50000 60000
1.8

1.6

1.4

1.2

1.0

0.8

0.6

V
a
lid

Lo

g
-l

o
ss

no variance reduction (VR)

no adagrad (AG)

no outlier detection (OD)

no normalization (BN)

adasecant

Figure 2.2 – Deactivating one component at a time. BN provides a small but constant advantage
in performance. OD is important for the algorithm. Deactivating it makes training more noisy
and unstable and gives worse results. Deactivating VR also makes training unstable.

25

0 20 40 60 80 100 120 140
x400 updates

100

200

300

400

500

600

C
os

t

Validation learning curve of Adasecant.
Validation learning curve of Adam.
Train learning curve of Adasecant.
Train learning curve of Adam.

Figure 2.3 – Learning curves for the very well-tuned Adam vs AdaSecant algorithm without
any hyperparameter tuning. AdaSecant performs very close to the very well-tuned Adam on
PTB character-level language modeling task. This shows us the robustness of the algorithm to
its hyperparameters.

0 50 100 150 200 250 300 350

Epochs

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

T
ra

in
 n

ll
(l

o
g
-s

ca
le

)

Adagrad
SGD+momentum
Adasecant
Rmsprop

0 50 100 150 200 250 300 350

Epochs

0.0

0.5

1.0

1.5

2.0

2.5

T
ra

in
in

g
 n

ll Adagrad
Adasecant
SGD+momentum
Rmsprop
Adadelta

Figure 2.4 – Comparison of different stochastic gradient algorithms on MNIST with Maxout
Networks. Both a) and b) are trained with dropout and maximum column norm constraint
regularization on the weights. Networks are initialized with weights sampled from a Gaussian
distribution with 0 mean and standard deviation of 0.05. In both experiments, the proposed
algorithm, Adasecant, seems to be converging faster and arrives to a better minima in training
set. We trained both networks for 350 epochs over the training set.

26

0 500 1000 1500 2000 2500 3000

Time elapsed for epochs in secs.

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

n
ll

in
 l
o
g
 s

ca
le

.

Adadelta minibatch size: 100
Adasecant minibatch size: 100
Adasecant minibatch size: 500

Figure 2.5 – In this plot, we compared AdaSecant trained by using minibatch size of 100 and
500 with adadelta using minibatches of size 100. We performed these experiments on MNIST
with 2-layer maxout MLP using dropout.

27

0 10000 20000 30000 40000 50000 60000
2.0

1.8

1.6

1.4

1.2

1.0

0.8

T
ra

in
 L

o
g
-l

o
ss

no variance reduction (VR)

no VR, no OD

no VR, no BN

no VR, no AG

adasecant

0 10000 20000 30000 40000 50000 60000
1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

V
a
lid

Lo

g
-l

o
ss

no variance reduction (VR)

no VR, no OD

no VR, no BN

no VR, no AG

adasecant

Figure 2.6 – No variance reduction comparison.

28

0 10000 20000 30000 40000 50000 60000
2.0

1.8

1.6

1.4

1.2

1.0

0.8

T
ra

in
 L

o
g
-l

o
ss

no adagrad (AG)

no AG, no OD

no AG, no BN

no VR, no AG

adasecant

0 10000 20000 30000 40000 50000 60000
1.8

1.6

1.4

1.2

1.0

0.8

0.6

V
a
lid

Lo

g
-l

o
ss

no adagrad (AG)

no AG, no OD

no AG, no BN

no VR, no AG

adasecant

Figure 2.7 – No Adagrad comparison.

29

0 10000 20000 30000 40000 50000 60000
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

T
ra

in
 L

o
g
-l

o
ss

no BN, no OD

no AG, no BN

no VR, no BN

no normalization (BN)

adasecant

0 10000 20000 30000 40000 50000 60000
2.0

1.5

1.0

0.5

0.0

0.5

1.0

V
a
lid

Lo

g
-l

o
ss

no BN, no OD

no AG, no BN

no VR, no BN

no normalization (BN)

adasecant

Figure 2.8 – No block normalization comparison.

30

0 10000 20000 30000 40000 50000 60000
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

T
ra

in
 L

o
g
-l

o
ss

no AG, no OD

no outlier detection (OD)

no VR, no OD

no BN, no OD

adasecant

0 10000 20000 30000 40000 50000 60000
2.0

1.5

1.0

0.5

0.0

0.5

1.0

V
a
lid

Lo

g
-l

o
ss

no AG, no OD

no outlier detection (OD)

no VR, no OD

no BN, no OD

adasecant

Figure 2.9 – No outlier detection comparison.

31

3 SampleRNN

SampleRNN: An Unconditional End-to-End Neural Audio Genera-

tion Model. Soroush Mehri, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar,

Shubham Jain, Jose Sotelo, Aaron Courville, Yoshua Bengio.

Personal Contribution. My main contribution to the project was helping with

the analysis of the results. Also, I wrote the code for a conditional version of

the SampleRNN model but unfortunately because of the deadline this work was

not included in the paper. The model was initially by Ishaan. After, in the

Speech Synthesis group, Soroush, Aaron, Yoshua and I discussed this model ex-

tensively. Soroush and Kundan rewrote the code and performed and extensive

hyper-parameter search. I ran a few experiments reproducing Ishaan’s first results.

Later, Soroush wrote most of the paper. I helped analyzing the results and pro-

ducing some of the figures in the paper as well as with minor editing of the other

sections. This chapter was accepted in the ICLR, 2017.

Affiliations

Soroush Mehri, MILA, Département d’Informatique et de Recherche Opéra-

tionnelle, Université de Montréal

Kundan Kumar, Computer Science and Engineering, IIT Kanpur

Ishaan Gulrajani, MILA, Département d’Informatique et de Recherche Opéra-

tionnelle, Université de Montréal

Rithesh Kumar, Department of Computer Science and Engineering, Sri Siva-

subramaniya Nadar College Of Engineering

Shubham Jain, Department of Computer Science and Engineering, IIT Kanpur

Jose Sotelo, MILA, Département d’Informatique et de Recherche Opérationnelle,

Université de Montréal

Aaron Courville, MILA, Département d’Informatique et de Recherche Opéra-

tionnelle, Université de Montréal, CIFAR Fellow

Yoshua Bengio, MILA, Département d’Informatique et de Recherche Opéra-

tionnelle, Université de Montréal, CIFAR Senior Fellow

32

Funding We acknowledge the support of the following agencies for research

funding and computing support: NSERC, Calcul Québec, Compute Canada, the

Canada Research Chairs and CIFAR. This work was a collaboration with Ubisoft.

3.1 Abstract

In this paper we propose a novel model for unconditional audio generation based

on generating one audio sample at a time. We show that our model, which profits

from combining memory-less modules, namely autoregressive multilayer percep-

trons, and stateful recurrent neural networks in a hierarchical structure is able to

capture underlying sources of variations in the temporal sequences over very long

time spans, on three datasets of different nature. Human evaluation on the gener-

ated samples indicate that our model is preferred over competing models. We also

show how each component of the model contributes to the exhibited performance.

3.2 Introduction

Audio generation is a challenging task at the core of many problems of interest,

such as text-to-speech synthesis, music synthesis and voice conversion. The par-

ticular difficulty of audio generation is that there is often a very large discrepancy

between the dimensionality of the the raw audio signal and that of the effective

semantic-level signal. Consider the task of speech synthesis, where we are typically

interested in generating utterances corresponding to full sentences. Even at a rel-

atively low sample rate of 16kHz, on average we will have 6,000 samples per word

generated. 1

Traditionally, the high-dimensionality of raw audio signal is dealt with by first

compressing it into spectral or hand-engineered features and defining the genera-

tive model over these features. However, when the generated signal is eventually

decompressed into audio waveforms, the sample quality is often degraded and re-

quires extensive domain-expert corrective measures. This results in complicated

1. Statistics based on the average speaking rate of a set of TED talk speakers http://

sixminutes.dlugan.com/speaking-rate/

33

signal processing pipelines that are to adapt to new tasks or domains. Here we

propose a step in the direction of replacing these handcrafted systems.

In this work, we investigate the use of recurrent neural networks (RNNs) to

model the dependencies in audio data. However, a known problem of these models

is that they do not scale well at such a high temporal resolution as is found when

generating acoustic signals one sample at a time, e.g., 16000 times per second. This

is one of the reasons that ? profits from other neural modules such as one presented

by ? to show extremely good performance.

In this paper, an end-to-end unconditional audio synthesis model for raw wave-

forms is presented while keeping all the computations tractable. 2 Since our model

has different modules operating at different clock-rates (which is in contrast to

WaveNet), we have the flexibility in allocating the amount of computational re-

sources in modeling different levels of abstraction. In particular, we can potentially

allocate very limited resource to the module responsible for sample-level alignments

operating at the clock-rate equivalent to sample-rate of the audio, while allocating

more resources in modeling dependencies which vary very slowly in audio, for ex-

ample, the identity of phonemes being spoken. This advantage makes our model

arbitrarily flexible in handling sequential dependencies at multiple levels of abstrac-

tion.

Our contribution is threefold:

1. We present a novel method that utilizes RNNs at different scales to model

longer term dependencies in audio waveforms while training on short se-

quences which results in memory efficiency during training.

2. We extensively explore and compare variants of models achieving the above

effect.

3. We study and empirically evaluate the impact of different components of our

model on three audio datasets. Human evaluation also has been conducted

to test these generative models.

2. Code https://github.com/soroushmehr/sampleRNN_ICLR2017 and samples https://

soundcloud.com/samplernn/sets

34

3.3 SampleRNN Model

In this paper we propose SampleRNN (shown in Fig. 3.1), a density model for

audio waveforms. SampleRNN models the probability of a sequence of waveform

samples X = {x1, x2, . . . , xT} (a random variable over input data sequences) as the

product of the probabilities of each sample conditioned on all previous samples:

p(X) =
T−1
∏

i=0

p(xi+1|x1, . . . , xi) (3.1)

RNNs are commonly used to model sequential data which can be formulated

as:

ht = H(ht−1, xi=t) (3.2)

p(xi+1|x1, . . . , xi) = Softmax(MLP (ht)) (3.3)

with H being one of the known memory cells, Gated Recurrent Units (GRUs) (?),

Long Short TermMemory Units (LSTMs) (?), or their deep variations (Section 3.4).

However, raw audio signals are challenging to model because they contain structure

at very different scales: correlations exist between neighboring samples as well as

between ones thousands of samples apart.

SampleRNN helps to address this challenge by using a hierarchy of modules,

each operating at a different temporal resolution. The lowest module processes

individual samples, and each higher module operates on an increasingly longer

timescale and a lower temporal resolution. Each module conditions the module

below it, with the lowest module outputting sample-level predictions. The entire

hierarchy is trained jointly end-to-end by backpropagation.

3.3.1 Frame-level Modules

Rather than operating on individual samples, the higher-level modules in Sam-

pleRNN operate on non-overlapping frames of FS(k) (“Frame Size”) samples at the

kth level up in the hierarchy at a time (frames denoted by f (k)). Each frame-level

module is a deep RNN which summarizes the history of its inputs into a condition-

ing vector for the next module downward.

35

h(k), H(k), W
(k)
j , and r(k).

inpt =







Wxf
(k)
t + c

(k+1)
t ; 1 < k < K

f
(k=K)
t ; k = K

(3.4)

ht = H(ht−1, inpt) (3.5)

c
(k)
(t−1)∗r+j

= Wjht; 1 ≤ j ≤ r (3.6)

Our approach of upsampling with r(k) linear projections is exactly equivalent to

upsampling by adding zeros and then applying a linear convolution. This is some-

times called “perforated” upsampling in the context of convolutional neural net-

works (CNNs). It was first demonstrated to work well in ? and is a fairly common

upsampling technique.

3.3.2 Sample-level Module

The lowest module (tier k = 1; Eqs. 3.7–3.9) in the SampleRNN hierarchy out-

puts a distribution over a sample xi+1, conditioned on the FS(1) preceding samples

as well as a vector c
(k=2)
i from the next higher module which encodes information

about the sequence prior to that frame. As FS(1) is usually a small value and cor-

relations in nearby samples are easy to model by a simple memoryless module, we

implement it with a multilayer perceptron (MLP) rather than RNN which slightly

speeds up the training. Assuming ei represents xi after passing through embedding

layer (section 3.3.2), conditional distribution in Eq. 3.1 can be achieved by following

and for further clarity two consecutive sample-level frames are shown. In addition,

Wx in Eq. 3.8 is simply used to linearly combine a frame and conditioning vector

from above.

f
(1)
i−1 = flatten([ei−FS(1) , . . . , ei−1]) (3.7)

f
(1)
i = flatten([ei−FS(1)+1, . . . , ei])

inp
(1)
i = W (1)

x f
(1)
i + c

(2)
i (3.8)

p(xi+1|x1, . . . , xi) = Softmax(MLP (inp
(1)
i)) (3.9)

We use a Softmax because we found that better results were obtained by dis-

cretizing the audio signals (also see ?) and outputting a Multinoulli distribution

37

rather than using a Gaussian or Gaussian mixture to represent the conditional

density of the original real-valued signal. When processing an audio sequence, the

MLP is convolved over the sequence, processing each window of FS(1) samples and

predicting the next sample. At generation time, the MLP is run repeatedly to

generate one sample at a time. Table 3.1 shows a considerable gap between the

baseline model RNN and this model, suggesting that the proposed hierarchically

structured architecture of SampleRNN makes a big difference.

Output Quantization

The sample-level module models its output as a q-way discrete distribution over

possible quantized values of xi (that is, the output layer of the MLP is a q-way

Softmax).

To demonstrate the importance of a discrete output distribution, we apply

the same architecture on real-valued data by replacing the q-way Softmax with

a Gaussian Mixture Models (GMM) output distribution. Table 3.2 shows that

our model outperforms an RNN baseline even when both models use real-valued

outputs. However, samples from the real-valued model are almost indistinguishable

from random noise.

In this work we use linear quantization with q = 256, corresponding to a per-

sample bit depth of 8. Unintuitively, we realized that even linearly decreasing the

bit depth (resolution of each audio sample) from 16 to 8 can ease the optimization

procedure while generated samples still have reasonable quality and are artifact-

free.

In addition, early on we noticed that the model can achieve better performance

and generation quality when we embed the quantized input values before passing

them through the sample-level MLP (see Table 3.4). The embedding steps maps

each of the q discrete values to a real-valued vector embedding. However, real-

valued raw samples are still used as input to the higher modules.

Conditionally Independent Sample Outputs

To demonstrate the importance of a sample-level autoregressive module, we try

replacing it with “Multi-Softmax” (see Table 3.4), where the prediction of each

sample xi depends only on the conditioning vector c from Eq. 3.9. In this configu-

38

ration, the model outputs an entire frame of FS(1) samples at a time, modeling all

samples in a frame as conditionally independent of each other. We find that this

Multi-Softmax model (which lacks a sample-level autoregressive module) scores sig-

nificantly worse in terms of log-likelihood and fails to generate convincing samples.

This suggests that modeling the joint distribution of the acoustic samples inside

each frame is very important in order to obtain good acoustic generation. We found

this to be true even when the frame size is reduced, with best results always with

a frame size of 1, i.e., generating only one acoustic sample at a time.

3.3.3 Truncated BPTT

Training recurrent neural networks on long sequences can be very computa-

tionally expensive. ? avoid this problem by using a stack of dilated convolutions

instead of any recurrent connections. However, when they can be trained effi-

ciently, recurrent networks have been shown to be very powerful and expressive

sequence models. We enable efficient training of our recurrent model using trun-

cated backpropagation through time, splitting each sequence into short subsequences

and propagating gradients only to the beginning of each subsequence. We experi-

ment with different subsequence lengths and demonstrate that we are able to train

our networks, which model very long-term dependencies, despite backpropagating

through relatively short subsequences.

Table 3.3 shows that by increasing the subsequence length, performance sub-

stantially increases alongside with train-time memory usage and convergence time.

Yet it is noteworthy that our best models have been trained on subsequences of

length 512, which corresponds to 32 milliseconds, a small fraction of the length of a

single a phoneme of human speech while generated samples exhibit longer word-like

structures.

Despite the aforementioned fact, this generative model can mimic the existing

long-term structure of the data which results in more natural and coherent sam-

ples that is preferred by human listeners. (More on this in Sections 3.4.2–3.4.3.)

This is due to the fast updates from TBPTT and specialized frame-level modules

(Section 3.3.1) with top tiers designed to model a lower resolution of signal while

leaving the process of filling the details to lower tiers.

39

3.4 Experiments and Results

In this section we are introducing three datasets which have been chosen to

evaluate the proposed architecture for modeling raw acoustic sequences. The de-

scription of each dataset and their preprocessing is as follows:

Blizzard which is a dataset presented by ? for speech synthesis task, con-

tains 315 hours of a single female voice actor in English; however, for our

experiments we are using only 20.5 hours. The training/validation/test split

is 86%-7%-7%.

Onomatopoeia 3, a relatively small dataset with 6,738 sequences adding

up to 3.5 hours, is human vocal sounds like grunting, screaming, panting,

heavy breathing, and coughing. Diversity of sound type and the fact that

these sounds were recorded from 51 actors and many categories makes it a

challenging task. To add to that, this data is extremely unbalanced. The

training/validation/test split is 92%-4%-4%.

Music dataset is the collection of all 32 Beethoven’s piano sonatas publicly

available on https://archive.org/ amounting to 10 hours of non-vocal

audio. The training/validation/test split is 88%-6%-6%.

See Fig. 3.2 for a visual demonstration of examples from datasets and generated

samples. For all the datasets we are using a 16 kHz sample rate and 16 bit depth.

For the Blizzard and Music datasets, preprocessing simply amounts to chunking the

long audio files into 8 seconds long sequences on which we will perform truncated

backpropagation through time. Each sequence in the Onomatopoeia dataset is few

seconds long, ranging from 1 to 11 seconds. To train the models on this dataset,

zero-padding has been applied to make all the sequences in a mini-batch have the

same length and corresponding cost values (for the predictions over the added 0s)

would be ignored when computing the gradients.

We particularly explored two gated variants of RNNs—GRUs and LSTMs. For

the case of LSTMs, the forget gate bias is initialized with a large positive value of

3, as recommended by ? and ?, which has been shown to be beneficial for learning

long-term dependencies.

As for models that take real-valued input, e.g. the RNN-GMM and SampleRNN-

GMM (with 4 components), normalization is applied per audio sample with the

3. Courtesy of Ubisoft

40

Table 3.1 – Test NLL in bits for three presented datasets.

Model Blizzard Onomatopoeia Music

RNN (Eq. 3.2) 1.434 2.034 1.410
WaveNet (re-impl.) 1.480 2.285 1.464

SampleRNN (2-tier) 1.392 2.026 1.076
SampleRNN (3-tier) 1.387 1.990 1.159

Table 3.2 – Average NLL on Blizzard test set for real-valued models.

Model Average Test NLL

RNN-GMM -2.415
SampleRNN-GMM (2-tier) -2.782

global mean and standard deviation obtained from the train split. For most of

our experiments where the model demands discrete input, binning was applied per

audio sample.

All the models have been trained with teacher forcing and stochastic gradient

decent (mini-batch size 128) to minimize the Negative Log-Likelihood (NLL) in

bits per dimension (per audio sample). Gradients were hard-clipped to remain

in [-1, 1] range. Update rules from the Adam optimizer (?) (β1 = 0.9, β2 =

0.999, and ǫ = 1e−8) with an initial learning rate of 0.001 was used to adjust

the parameters. For training each model, random search over hyper-parameter

values (?) was conducted. The initial RNN state of all the RNN-based models

was always learnable. Weight Normalization (?) has been used for all the linear

layers in the model (except for the embedding layer) to accelerate the training

procedure. Size of the embedding layer was 256 and initialized by standard normal

distribution. Orthogonal weight matrices used for hidden-to-hidden connections

and other weight matrices initialized similar to ?. In final model, we found GRU to

work best (slightly better than LSTM). 1024 was the the number of hidden units

for all GRUs (1 layer per tier for 3-tier and 3 layer for 2-tier model) and MLPs (3

fully connected layers with ReLU activation with output dimension being 1024 for

first two layers and 256 for the final layer before softmax). Also FS(1) = FS(2) = 2

and FS(3) = 8 were found to result in lowest NLL.

41

R
e
a
l
d
a
ta

Blizzard Onomatopoeia Music
S
a
m

p
le

R
N

N
(2

-t
ie

r)
S
a
m

p
le

R
N

N
(3

-t
ie

r)
R

e
a
l
d
a
ta

S
a
m

p
le

R
N

N
(2

-t
ie

r)
S
a
m

p
le

R
N

N
(3

-t
ie

r)

Figure 3.2 – Examples from the datasets compared to samples from our models. In the first 3
rows, 2 seconds of audio are shown. In the bottom 3 rows, 100 milliseconds of audio are shown.
Rows 1 and 4 are ground truth from which one can see how the datasets look different and
have complex structure in low resolution which the frame-level component of the SampleRNN is
designed to capture. Samples also to some extent mimic the same global structure. At the same
time, zoomed-in samples of our model shows that it can perfectly resemble the high resolution
structure present in the data as well.

Table 3.3 – Effect of subsequence length on NLL (bits per audio sample) computed on the
Blizzard validation set.

Subsequence Length 32 64 128 256 512

NLL Validation 1.575 1.468 1.412 1.391 1.364

42

Table 3.4 – Test (validation) set NLL (bits per audio sample) for Blizzard. Variants of Sam-
pleRNN are provided to compare the contribution of each component in performance.

Model NLL Test (Validation)

SampleRNN (2-tier) 1.392 (1.369)
Without Embedding 1.566 (1.539)

Multi-Softmax 1.685 (1.656)

3.4.1 WaveNet Re-implementation

We implemented the WaveNet architecture as described in ?. Ideally, we would

have liked to replicate their model exactly but owing to missing details of architec-

ture and hyperparameters, as well as limited compute power at our disposal, we

made our own design choices so that the model would fit on a single GPU while

having a receptive field of around 250 milliseconds and a reasonable number of

updates per unit time. Although our model is very similar to WaveNet, the design

choices, e.g. number of convolution filters in each dilated convolution layer, length

of target sequence to train on simultaneously (one can train with a single target

with all samples in the receptive field as input or with target sequence length of

size T with input of size receptive field + T - 1), batch-size, etc. might make our

implementation different from what the authors have done in the original WaveNet

model. Hence, we note here that although we did our best at exactly reproduc-

ing their results, there would very likely be different choice of hyper-parameters

between our implementation and the one of the authors.

For our WaveNet implementation, we have used 4 dilated convolution blocks

each having 10 dilated convolution layers with dilation 1, 2, 4, 8 up to 512. Hence,

our network has a receptive field of 4092 acoustic samples i.e. the parameters of

multinomial distribution of sample at time step t, p(xi) = fθ(xi−1, xi−2, . . . xi−4092)

where θ is model parameters. We train on target sequence length of 1600 and use

batch size of 8. Each dilated convolution filter has size 2 and the number of output

channels is 64 for each dilated convolutional layer (128 filters in total due to gated

non-linearity). We trained this model using Adam optimizer with a fixed global

learning rate of 0.001 for Blizzard dataset and 0.0001 for Onomatopoeia and Music

datasets. We trained these models for about one week on a GeForce GTX TITAN

X. We dropped the learning rate in the Blizzard experiment to 0.0001 after around

43

3 days of training.

3.4.2 Human Evaluation

Apart from reporting NLL, we conducted AB preference tests for random sam-

ples from four models trained on the Blizzard dataset. For unconditional generation

of speech which at best sounds like mumbling, this type of test is the one which is

more suited. Competing models were the RNN, SampleRNN (2-tier), SampleRNN

(3-tier), and our implementation of WaveNet. The rest of the models were excluded

as the quality of samples were definitely lower and also to keep the number of pair

comparison tests manageable. We will release the samples that have been used in

this test too.

All the samples were set to have the same volume. Every user is then shown

a set of twenty pairs of samples with one random pair at a time. Each pair had

samples from two different models. The human evaluator is asked to listen to the

samples and had the option of choosing between the two model or choosing not to

prefer any of them. Hence, we have a quantification of preference between every

pair of models. We used the online tool made publicly available by ?.

Results in Fig. 3.3 clearly points out that SampleRNN (3-tier) is a winner by

a huge margin in terms of preference by human raters, then SampleRNN (2-tier)

and afterward two other models, which matches with the performance comparison

in Table 3.1.

The same evaluation was conducted for Music dataset except for an additional

filtering process of samples. Specific to only this dataset, we observed that a

batch of generated samples from competing models (this time restricted to RNN,

SampleRNN (2-tier), and SampleRNN (3-tier)) were either music-like or random

noise. For all these models we only considered random samples that were not

random noise. Fig. 3.4 is dedicated to result of human evaluation on Music dataset.

3.4.3 Quantifying Information Retention

For the last experiment we are interested in measuring the memory span of the

model. We trained our model, SampleRNN (3-tier), with best hyper-parameters

on a dataset of 2 speakers reading audio books, one male and one female, respec-

44

79.0 18.0 3.0
0

20

40

60

80

100

P
re

fe
re

n
ce

 p
e
rc

e
n
ta

g
e 2-tier

RNN

No-Pref.

84.2 8.9 6.9
0

20

40

60

80

100

3-tier

RNN No-Pref.

22.4 63.3 14.3
0

20

40

60

80

100

WaveN.

RNN

No-Pref.

84.8 10.1 5.1
0

20

40

60

80

100

P
re

fe
re

n
ce

 p
e
rc

e
n
ta

g
e

3-tier

2-tier
No-Pref.

60.2 32.0 7.8
0

20

40

60

80

100

2-tier

WaveN.

No-Pref.

89.0 7.0 4.0
0

20

40

60

80

100
3-tier

WaveN. No-Pref.

Figure 3.3 – Pairwise comparison of 4 best models based on the votes from listeners conducted
on samples generated from models trained on Blizzard dataset.

tively, with mean fundamental frequency of 125.3 and 201.8Hz. Each speaker has

roughly 10 hours of audio in the dataset that has been preprocessed similar to

Blizzard. We observed that it learned to stay consistent generating samples from

the same speaker without having any knowledge about the speaker ID or any other

conditioning information. This effect is more apparent here in comparison to the

unbalanced Onomatopoeia that sometimes mixes two different categories of sounds.

Another experiment was conducted to test the effect of memory and study the

effective memory horizon. We inject 1 second of silence in the middle of sampling

procedure in order to see if it will remember to generate from the same speaker

or not. Initially when sampling we let the model generate 2 seconds of audio as it

normally do. From 2 to 3 seconds instead of feeding back the generated sample at

that timestep a silent token (zero amplitude) would be fed. From 3 to 5 seconds

again we sample normally; feeding back the generated token.

We did classification based on mean fundamental frequency of speakers for the

first and last 2 seconds. In 83% of samples SampleRNN generated from the same

person in two separate segments. This is in contrast to a model with fixed past

window like WaveNet where injecting 16000 silent tokens (3.3 times the receptive

45

85.1 2.3 12.6
0

20

40

60

80

100

2-tier

RNN
No-Pref.

83.5 4.7 11.8
0

20

40

60

80

100

3-tier

RNN
No-Pref.

32.6 57.0 10.5
0

20

40

60

80

100

P
re

fe
re

n
ce

 p
e
rc

e
n
ta

g
e

3-tier

2-tier

No-Pref.

Figure 3.4 – Pairwise comparison of 3 best models based on the votes from listeners conducted
on samples generated from models trained on Music dataset.

field size) is equivalent to generating from scratch which has 50% chance (assuming

each 2-second segment is coherent and not a mixed sound of two speakers).

3.5 Related Work

Our work is related to earlier work on auto-regressive multi-layer neural net-

works, starting with ?, then NADE (?) and more recently PixelRNN (?). Similar

to how they tractably model joint distribution over units of the data (e.g. words

in sentences, pixels in images, etc.) through an auto-regressive decomposition, we

transform the joint distribution of acoustic samples using Eq. 3.1.

The idea of having part of the model running at different clock rates is related

to multi-scale RNNs (?????).

? also attempt to model raw audio waveforms which is in contrast to traditional

approaches which use spectral features as in ?, ?, and ?.

Our work is closely related to WaveNet (?), which is why we have made the

above comparisons, and makes it interesting to compare the effect of adding higher-

level RNN stages working at a low resolution. Similar to this work, our models

generate one acoustic sample at a time conditioned on all previously generated

samples. We also share the preprocessing step of quantizing the acoustics into

bins. Unlike this model, we have different modules in our models running at dif-

ferent clock-rates. In contrast to WaveNets, we mitigate the problem of long-term

dependency with hierarchical structure and using stateful RNNs, i.e. we will always

propagate hidden states to the next training sequence although the gradient of the

loss will not take into account the samples in previous training sequence.

46

3.6 Discussion and Conclusion

We propose a novel model that can address unconditional audio generation in

the raw acoustic domain, which typically has been done until recently with hand-

crafted features. We are able to show that a hierarchy of time scales and frequent

updates will help to overcome the problem of modeling extremely high-resolution

temporal data. That allows us, for this particular application, to learn the data

manifold directly from audio samples. We show that this model can generalize well

and generate samples on three datasets that are different in nature. We also show

that the samples generated by this model are preferred by human raters.

Success in this application, with a general-purpose solution as proposed here,

opens up room for more improvement when specific domain knowledge is applied.

This method, however, proposed with audio generation application in mind, can

easily be adapted to other tasks that require learning the representation of sequen-

tial data with high temporal resolution and long-range complex structure.

Acknowledgments

The authors would like to thank João Felipe Santos and Kyle Kastner for in-

sightful comments and discussion. We would like to thank the ? 4 and MILA staff.

We acknowledge the support of the following agencies for research funding and

computing support: NSERC, Calcul Québec, Compute Canada, the Canada Re-

search Chairs and CIFAR. Jose Sotelo also thanks the Consejo Nacional de Ciencia

y Tecnoloǵıa (CONACyT) as well as the Secretaŕıa de Educación Pública (SEP)

for their support. This work was a collaboration with Ubisoft.

3.7 Appendix A

3.7.1 A model variant: SampleRNN-WaveNet Hybrid

SampleRNN-WaveNet model has two modules operating at two different clock-

rate. The slower clock-rate module (frame-level module) sees one frame (each of

which has size FS) at a time while the faster clock-rate component(sample-level

4. http://deeplearning.net/software/theano/

47

component) sees one acoustic sample at a time i.e. the ratio of clock-rates for these

two modules would be the size of a single frame. Number of sequential steps for

frame-level component would be FS times lower. We repeat the output of each

step of frame-level component FS times so that number of time-steps for output of

both the components match. The output of both these modules are concatenated

for every time-step which is further operated by non-linearities for every time-step

independently before generating the final output.

In our experiments, we kept size of a single frame (FS) to be 128. We tried two

variants of this model: 1. fully convolutional WaveNet and 2. RNN-WaveNet. In

fully convolutional WaveNet, both modules described above are implemented using

dilated convolutions as described in original WaveNet model. In RNN-WaveNet,

we use high capacity RNN in the frame-level module to model the dependency

between frames. The sample-level WaveNet in RNN-WaveNet has receptive field

of size 509 samples from the past.

Although these models are designed with the intention of combining the two

models to harness their best features, preliminary experiments show that this vari-

ant is not meeting our expectations at the moment which directs us to a possible

future work.

48

4 Speech synthesis

Char2Wav: End-to-End Speech Synthesis. Jose Sotelo, Soroush Mehri,

Kundan Kumar, João Felipe Santos, Kyle Kastner, Aaron Courville, Yoshua Ben-

gio.

Personal Contribution. I was the main contributor to this project. The idea

of using a recurrent neural network with attention for doing speech synthesis was

probably first developed by Alex Graves. Implementing this idea was one of the

main goals of the speech synthesis group and was discussed many times by its

members. I was able to implement this idea supervised by Aaron and Yoshua.

Furthermore, the reader was integrated with the neural vocoder.

A shorter version of this chapter was accepted in the ICLR Workshop, 2017.

Affiliations

Jose Sotelo, MILA, Département d’Informatique et de Recherche Opérationnelle,

Université de Montréal

Soroush Mehri, MILA, Département d’Informatique et de Recherche Opéra-

tionnelle, Université de Montréal

Kundan Kumar, Computer Science and Engineering, IIT Kanpur

João Felipe Santos, INRS-EMT

Kyle Kastner, MILA, Département d’Informatique et de Recherche Opéra-

tionnelle, Université de Montréal

Aaron Courville, MILA, Département d’Informatique et de Recherche Opéra-

tionnelle, Université de Montréal

Yoshua Bengio, MILA, Département d’Informatique et de Recherche Opéra-

tionnelle, Université de Montréal, CIFAR Senior Fellow

Funding We acknowledge the support of the following agencies for research

funding and computing support: NSERC, Calcul Québec, Compute Canada, the

Canada Research Chairs and CIFAR. João Felipe Santos and Jose Sotelo thank

the Fonds de Recherche du Québec - Nature et Technologies (FQRNT) for their

support. Jose Sotelo also thanks the Consejo Nacional de Ciencia y Tecnoloǵıa

49

(CONACyT) as well as the Secretaŕıa de Educación Pública (SEP) for their sup-

port.

4.1 Abstract

We present Char2Wav, an end-to-end model for speech synthesis. Char2Wav

has two components: a reader and a neural vocoder. The reader is an encoder-

decoder model with attention. The encoder is a bidirectional recurrent neural

network (RNN) that accepts text or phonemes as inputs, while the decoder is a

recurrent neural network with attention that produces vocoder acoustic features.

Neural vocoder refers to a conditional extension of SampleRNN which generates raw

waveform samples from intermediate representations. We show results in English

and Spanish. Unlike traditional models for speech synthesis, Char2Wav learns to

produce audio directly from text. This work is a proof of concept showing that

speech synthesis is made possible directly from characters.

4.2 Introduction

In speech synthesis the main task consists in mapping text to an audio signal.

There are two primary goals in speech synthesis: intelligibility and naturalness.

Intelligibility refers to the clarity of the synthesized audio, or in other words, how

well can the original message be extracted by a listener. Naturalness refers to

the information that is not directly captured by intelligibility, such as overall ease

of listening, global stylistic consistency, regional or language level nuances among

others.

With traditional speech synthesis approaches, this task has been accomplished

by dividing the problem into two stages. The first stage, known as the frontend,

transforms the text into linguistic features. These linguistic features usually in-

clude phoneme, syllable, word, phrase and utterance-level features (???). The

second stage, known as the backend, takes the linguistic features generated by the

frontend as input and produces the corresponding sound. WaveNet (?) is a high

50

quality approach to a “neural backend”. For a more detailed review of traditional

models for speech synthesis, we recommend consulting ?.

Defining good linguistic features is often time-consuming and language specific.

Our procedure eliminates the need for these linguistic features, hence taking away

a major bottleneck in creating synthesizers for new languages. We use a powerful

model to learn this information directly from the data.

The main contribution of this work is that we show that raw speech synthesis

directly from the sequence of characters is possible. We take advantage of a clever

audio representation used in traditional parametric speech synthesis to initialize

our model. Our approach requires no linguistic features.

4.3 Char2Wav

In traditional parametric speech synthesis, one starts with a text, originally

encoded as a sequence of characters, which is then converted to a sequence of

phonemes (and possibly other prosodic information to encode emphasis, stress,

and intonation). This sequence of phonemes is then converted into a sequence of

acoustic features for a vocoder that encodes how each short frame (normally in the

range of 10 to 50 milliseconds) should sound. The vocoder synthesis process finally

converts that sequence into a digital audio signal. On all those different levels,

the sequences have very different timescales and lengths making direct end-to-end

hard.

In Char2Wav, we leverage vocoder features as an intermediate representation

and split the training procedure into two stages. First, we pretrain the reader to

map from a sequence of characters to the vocoder representation. Then, we train

a neural vocoder to map from the vocoder representation generated by the reader

to audio samples while keeping the reader parameters fixed. Finally, we fine-tune

both models end-to-end.

While the approach presented here is specific to speech signals, it can be applied

to other domains with huge gaps between the timescales or sequence lengths of the

inputs and outputs to the model are present. For example, in a high-resolution

image synthesis model, one could imagine training a reader to go from an image

caption to a representation that encodes which objects are in the scene and their

51

layout, and the other part of the model could convert that representation to a

sequence of pixels.

4.3.1 Attention-based Recurrent Sequence Generator

We adopt the notation of ?. An attention-based recurrent sequence generator

(ARSG) is a recurrent neural network that generates a sequence Y = (y1, . . . , yT)

conditioned on an input sequence X. X is preprocessed by an encoder that out-

puts a sequence h = (h1, . . . , hL). In this work, the output Y is a sequence of

acoustic features and X is the text, formatted as a character or phoneme sequence.

Furthermore, the encoder is a bidirectional recurrent network.

At the i-th step the ARSG focuses on h and generates yi:

αi = Attend(si−1, αi−1, h) (4.1)

gi =
L
∑

j=1

αi,jhj (4.2)

yi ∼ Generate(si−1, gi) (4.3)

si = RNN(si−1, gi, yi) (4.4)

where si−1 is the (i − 1)-th state of the generator recurrent neural network and

αi ∈ R
L are the attention weights or alignment.

4.3.2 Reader

We use the location-based attention mechanism developed by ?. We have αi =

Attend(si−1, αi−1) and given a length L conditioning sequence h, we have:

φ(i, l) =
K
∑

k=1

ρki exp(−β
k
i (κ

k
i − l)2) (4.5)

αi =
L
∑

l=1

φ(i, l) (4.6)

where κi, βi, and ρi represent the location, width and importance of the window

respectively and K corresponds to the number of Gaussians to use in the attention

mechanism.

52

Finally, to complete the specification of the Attend function we have:

(ρ̂i, β̂i, κ̂i) = Wsi−1 (4.7)

ρ̃i = exp(ρ̂i) (4.8)

βi = exp(β̂i) (4.9)

κi = κi−1 + exp(κ̂i) (4.10)

We made two changes to the attention mechanism that makes the conditioning

attention training more stable. First, we normalize the window mixture (ρi) with:

ρki =
ρ̃ki

∑K

k=1 ρ̃
k
i

(4.11)

Second, we add a constant v to Equation 4.10:

κi = κi−1 + v exp(κ̂i) (4.12)

v helps control the speed at which the model sees the text. This is important in a

context of speech synthesis since the length of the sequences are of different orders

of magnitude. In our experiments, v ranged from 0.02 to 0.08, derived from the

average length between text and vocoder features over the training set.

For all the models that we trained, we embedded the text or phoneme sequence

into a vector of size 128. After that, the encoder was a 1-layer bidirectional RNN

using Gated Recurrent Units (GRU) (?) with 128 hidden units in each direction.

Finally, the generator was a 3-layer GRU RNN with 1024 hidden units.

4.3.3 Neural Vocoder

Speech generation using a vocoder is limited by the reconstruction quality of

that specific vocoder. To enable high quality output, we replace the vocoder with

a learned parametric neural module. We use SampleRNN (?) as an enhanced

function approximator for this purpose.

SampleRNN has recently been proposed to model extremely long-term depen-

dencies in sequential data such as audio signals. The hierarchical structure in

SampleRNN is designed to capture dynamics of a sequence at different time scales.

53

h e l l o

Encoder

Bidir. RNN

Reader

RNN with

attention

Vocoder

features

Neural

vocoder

SampleRNN

Audio

waveform

Text

Decoder

…

…

…

Figure 4.1 – Char2Wav: An end-to-end speech synthesis model.

This is necessary to capture long range correlations between distant audio timesteps

(e.g. word-level correlations in speech signals) as well as nearby audio timesteps.

We use a conditional version of the same model with K = 3 tiers to learn the

mapping from a sequence of vocoder features to the corresponding audio samples.

Each vocoder feature frame vt is added as an extra input for computation of the

corresponding state in the top tier that is combined linearly with the input frame

to that tier f
(k=3)
t :

inp
(k=3)
t = Wff

(k=3)
t +Wvvt (4.13)

Following the notation in the original work, k represents the tier number and

inp(k=3) is the input to the tier three. Hence, this module, which is the one operating

54

at the slowest time-scale, has information about past audio samples along with the

vocoder frame from the reader.

Each tier is a single layer GRU-RNN. The dimensions of the GRU and multilayer

perceptrons are both 1024. The frame sizes for each tier are FS(1) = FS(2) = 10

and FS(3) = 80. The outputs of this module are discrete values in 8-bit mu-law

encoding, rather than 8-bit linear PCM.

4.4 Related Work

4.4.1 Speech Synthesis

There have been several advances made from using neural networks for para-

metric speech synthesis. ? suggest using (feed-forward) Deep Neural Networks

(DNN) to model the acoustic parameters of the vocoder. ? present a lightweight

model for mobile devices using RNNs. ?? present a comprehensive review of the

progress made by using neural networks for acoustic modeling. Furthermore, there

have been a few recent attempts to take away the vocoder and model the raw

waveform directly (????).

4.4.2 Attention Models

Attention based models have been previously used in machine translation (??),

speech recognition (??), and computer vision ? among other applications. Our

work has been heavily influenced by the work of Alex Graves (??). In a guest

lecture Graves presented a speech synthesis model using an attention mechanism,

an extension of his previous work on handwriting generation. Unfortunately, the

speech extension was never published, so we cannot directly compare our approach

to his work. However, his results were a key inspiration to us, and we hope that

this work can be useful as a starting point for further developments in end-to-end

speech synthesis.

55

4.5 Training Details

First, we pretrained the reader using WORLD vocoder features (??) as tar-

gets. We tried using mean squared error (MSE) as well as a Gaussian mixture

model (GMM) likelihood as the cost function. We found that GMM achieved sim-

ilar quality results but took longer to train. Therefore, we used MSE in all our

experiments.

Since we use MSE, our reader is a deterministic function of the text and the

speaker id. Equivalently, this corresponds to selecting the mean in a Gaussian

model with fixed variance. This property of the reader allowed us to get vocoder

frame predictions for all text examples in our training set which we stored and

used to pre-train the sampleRNN module. This procedure allowed us to make the

overall training procedure more efficient. Finally, we fine-tuned the whole model

end-to-end. Our code is available online. 1

We found this method to be extremely robust, with multiple experiments in

different languages using nearly all the same hyperparameters, other than the at-

tention step v. However, we did not perform a comprehensive hyperparameter

search and an exhaustive search over various settings may further improve results.

4.5.1 Training the Neural Vocoder

Simply training the neural vocoder on full-length sequences is difficult in prac-

tice due to the fact that unfolding the SampleRNN module to the length of long

sequences, with thousands of time steps, is inefficient. Hence, we have used the

same training procedure detailed in the original work, i.e., stateful RNNs trained

with truncated backpropagation through time on shorter subsequences.

We benefit from training this module at progressively more complex stages,

in a process that resembles curriculum learning (?). We start with subsequences

of 400 audio samples (corresponding to 5 vocoder feature frames), using vocoder

features generated by the reader as inputs. Gaussian noise is then added to these

conditioning features, with the hope that the module learns a contractive mapping

to compensate for some of the errors from the reader and better generalize to unseen

data. Additive Gaussian noise with variances of 0.3, 0.6, and 1.0 were progressively

used, with the variance being increased every time learning was stalled. For the

1. http://github.com/sotelo/parrot

56

next stage, we increase the subsequence length from 400 to 2000, and finally to 4000

audio samples, while keeping the noise level fixed at 1. Doing so allows the network

to take into account the dynamics necessary for longer audio contexts. This module

did not have access to any other conditioning information, e.g. speaker ID.

4.6 Results

First, we provide samples from our model. 2. In Figures 4.2, 4.3 and 4.4 we

show samples generated by our model and their corresponding alignments to the

conditioning information.

4.6.1 Listening Tests

In order to evaluate the outputs of our model, we performed a listening test

consisting of two tasks. First, participants were asked to listen to pairs of samples

from the same sentence generated by Char2Wav and reader with vocoder output.

Twenty pairs of sentences were presented in randomized order, and participants

were required to choose which sentence of each pair they considered more natural.

They could also indicate they had no preference between both sentences in a pair.

In this task, participants were allowed to listen to the stimuli as many times as they

wished. Twenty two native Mexican Spanish speakers completed this task. The

results for this task are presented in Figure 4.5. As we can see, speech generated by

Char2Wav is still considered less natural than speech generated by the reader with

vocoder output approach; however, in 38% of the cases, listeners either preferred

the output of Char2Wav (21%) or had no preference (17%) between it and the

output of the reader with vocoder output.

The second task aimed at measuring speech intelligibility. Three lists of ten sen-

tences each, containing stimuli generated by either Char2Wav, reader with vocoder

output, or natural speech processed by the WORLD vocoder, were presented at a

random order. After listening to a sentence a single time, participants were asked

to transcribe it to the best of their knowledge. Afterwards, we stripped both the

2. http://josesotelo.com/speechsynthesis

57

Reader with
vocoder output

Char2Wav

No pref.

Figure 4.5 – Results of the preference test. Area on the graph corresponds to the proportion of
participants that preferred the listed model.

Char2Wav Vocoded speech Reader with
vocoder output

0

20

40

60

80

100

W
E

R

Figure 4.6 – Results of the intelligibility test. Word error rates are reported for the outputs of
Char2Wav, original speech processed by the WORLD vocoder, and reader with vocoder output.

4.7 Conclusions

We show that end-to-end speech synthesis is feasible and present Char2Wav, a

model that learns to produce speech signals directly from a sequence of phonemes

61

or characters. The model is able to generate speech consistent with a given speaker

identity. Furthermore, we showed that it is possible to interpolate between two

speakers in the embedding space and generate voices with qualities not present in

the original data.

Our approach is stronger for languages where spelling and pronunciation are

closely related. For English text, where many character combinations have multiple

valid pronunciations, we observe occasional failures in the generated samples. Fur-

ther work is necessary to determine useful approaches for mapping text to speech

in languages with less standard pronunciation rules. We expect that a stronger

encoder will be able to ameliorate this issue. In particular, the text encoder devel-

oped by ? appears to be a good compromise between using characters or words.

In addition, the training sets we used are smaller than the datasets used for speech

recognition. Increasing the size of the data would probably improve the results

considerably.

62

5 Conclusion

In this chapter we reflect on the results obtained in this work and propose future

directions of research in the area.

In Chapter 2, we developed an automatic stochastic gradient algorithm which

reduces the burden of extensive hyper-parameter search for the optimizer. Our pro-

posed algorithm exploits a lower variance estimator of curvature of the cost function

and uses it to automatically tune adaptive learning rates for each parameter.

In Chapter 3, we proposed a novel model for unconditional audio generation

based on generating one audio sample at a time. We showed that our model,

which profits from combining memory-less modules, namely autoregressive multi-

layer perceptrons, and stateful recurrent neural networks in a hierarchical structure

is able to capture underlying sources of variation in the temporal sequences over

very long time spans, on three datasets of different nature. Human evaluation on

the generated samples indicate that our model is preferred over competing models.

We also showed how each component of the model contributes to the exhibited

performance.

In Chapter 4, we presented Char2Wav, an end-to-end model for speech syn-

thesis. Char2Wav has two components: a reader and a neural vocoder. The

reader is an encoder-decoder model with attention. The encoder is a bidirectional

recurrent neural network (RNN) that accepts text or phonemes as inputs, while the

decoder is a recurrent neural network with attention that produces vocoder acous-

tic features. Neural vocoder refers to a conditional extension of SampleRNN which

generates raw waveform samples from intermediate representations. We showed

results in English and Spanish.

Furthermore, we recognize that end-to-end speech synthesis is an area that

needs further development. There are still two directions that we need to explore

further that will improve our results. First, the approach we described in this work

is weak for languages where writing and pronunciation are not closely related. We

expect that a better encoder will help. In particular, the text encoder developed

63

by ? might ameliorate this issue. In addition, the training sets we used are smaller

than the datasets used for speech recognition. Increasing the size of the data would

probably improve this issue as well. Second, we need to improve the quality of the

Neural Vocoder presented in Chapter 4. Similar approaches have showed state of

the art results in speech synthesis. Therefore, we believe that we can achieve even

better results by experimenting further with this part of the model.

64

