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Résumé 
L’hypertension est associée au remodelage vasculaire dû à l’hyperprolifération et 

l’hypertrophie des cellules musculaires lisses vasculaires (CMLVs). Nous avons 

démontré par le passé l’implication de l’expression élevée des protéines Gqα et PLCβ1 

dans les CMLVs de rats spontanément hypertendus (RSH) âgés de 16 semaines. Le C-

ANP4-23 est un agoniste du récepteur au peptide natriurétique de type C (NPR-C) qui 

possède la capacité d’inhiber la synthèse de protéines en réponse aux peptides 

vasoactifs dans les CMLVs. Cette étude a eu pour but d’examiner si le C-ANP4-23 

pouvait atténuer l’hypertrophie dans un modèle de rat souffrant d’hypertrophie cardiaque 

et d’explorer les mécanismes responsables de cette inhibition. Pour ce faire, des CMLVs 

aortiques de RSH âgés de 16 semaines ont été utilisées. Le taux de synthèse de 

protéines, un marqueur d’hypertrophie, a été déterminé par l’incorporation de 

(3H)leucine et l’expression des protéines a été déterminée par la technique 

d’immunobuvardage de type Western.  Le volume cellulaire a été estimé par imagerie 

confocale tridimensionnelle. Le taux de synthèse de protéines et le volume cellulaire 

étaient considérablement accrus dans les CMLVs des RSH comparativement aux rats 

WKY et ont été largement atténués par le traitement au C-ANP4-23. De plus, le traitement 

au C-ANP4-23 a normalisé l’expression élevée du récepteur AT1 et des protéines Gqα et 

PLCβ1, des niveaux intracellulaires d’anions superoxide (O2
-), de l’activité de la NADPH 

(de l’anglais nicotinamide adenine dinucleotide phosphate) oxydase, ainsi que 

l’expression des protéines Nox4 et de p47phox dans les CMLVs des RSH. En outre, le C-

ANP4-23 a réduit l’activation des récepteurs à L’EGF (de l’anglais epidermal growth 

factor), au PDGF (de l’anglais platelet-derived growth factor), et à l’IGF-1 (de l’anglais 

insulin-like growth factor 1). Le C-ANP4-23 a également atténué la phosphorylation des 

ERK1/2 (de l’anglais extracellular regulated kinase1/2), AKT et c-Src. Ces résultats 

indiquent que l’activation du NPR-C par C-ANP4-23 a atténué l’hypertrophie des CMLVs 

par sa capacité à diminuer la surexpression du récepteur AT1, l’expression élevée des 

protéines Gqα/PLCβ1, le stress oxydatif accru, l’activation augmentée des facteurs de 

croissance et l’augmentation de la phosphorylation des voies de signalisation 

MAPK/AKT. Ainsi, ces travaux suggèrent que le C-ANP4-23 peut être utilisé comme 
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agent thérapeutique pour le traitement des complications vasculaires associées à 

l’hypertension et à l’athérosclérose. 

Mots-clés : hypertension, RSH, CMLV, NPR-C, stress oxydatif, récepteurs des 

facteurs de croissance, c-Src, AKT, MAPK, protéines Gqα.   
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Abstract 
Hypertension is associated with vascular remodelling due to hyperproliferation 

and hypertrophy of vascular smooth muscle cells (VSMCs). We earlier showed the 

implication of enhanced expression of Gqα and PLCβ1 proteins in VSMCs from 16-

week-old spontaneously hypertensive rats (SHR). The present study was undertaken to 

investigate whether C-ANP4-23, a natriuretic peptide receptor-C (NPR-C) agonist that has 

been shown to inhibit vasoactive peptide-induced enhanced protein synthesis in 

VSMCs, could attenuate VSMC hypertrophy in rat models of cardiac hypertrophy and to 

explore the underlying mechanisms contributing to this inhibition. For these studies, 

aortic VSMCs from 16-week-old SHR were used.  The protein synthesis, a marker of 

hypertrophy, was determined by (3H)leucine incorporation and the expression of proteins 

was determined by Western blotting. Cell volume was determined by three-dimensional 

confocal imaging. The protein synthesis was significantly enhanced in VSMC from SHR 

as compared to WKY and C-ANP4-23 treatment attenuated the enhanced protein 

synthesis to WKY control levels. In addition, the enhanced expression of the AT1 

receptor as well as Gqα and PLCβ1 proteins, enhanced levels of superoxide anion (O2
-), 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, as well as the 

increased expressions of NADPH oxidase 4 (Nox4) and p47phox exhibited by VSMC from 

SHR were all attenuated by C-ANP4-23 treatment. Furthermore, C-ANP4-23 also 

attenuated the enhanced activation of epidermal growth factor receptor (EGF-R), 

platelet-derived growth factor receptor (PDGF-R), insulin-like growth factor 1 receptor 

(IGF-1R) and the enhanced phosphorylation of extracellular signal-regulated kinases 1/2 

(ERK1/2), AKT and c-Src. These results indicate that C-ANP4-23, via the activation of 

NPR-C, attenuates VSMC hypertrophy through its ability to decrease the overexpression 

of the AT1 receptor and Gqα/PLCβ1 proteins, the enhanced oxidative stress, the 

increased activation of growth factors and the enhanced phosphorylation of the 

MAPK/AKT signalling pathway. Thus, it can be suggested that C-ANP4-23, an activator of 

NPR-C, may be used as a therapeutic agent for the treatment of vascular complications 

associated with hypertension and atherosclerosis.  
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1.1 The cardiovascular system 
The cardiovascular system consisting of the heart and blood vessels circulates 

approximately 5 liters of blood throughout the body. Through this process, the system 

delivers oxygen, hormones and nutrients to the body and subsequently eliminates 

cellular waste products and carbon dioxide. Via the circulation of white blood cells, the 

cardiovascular system provides protection by removing cellular debris and combatting 

pathogens. Moreover, red blood cells and platelets generate scabs to block wounds as 

well as prevent foreign pathogens from entering the body, and fluids from exiting. 

Circulating antibodies provide an immune protection, while another function of the 

cardiovascular system is to maintain homeostasis. The system is comprised of two main 

circulatory loops: the pulmonary circulation loop and the systemic circulation loop. In the 

pulmonary circulation loop, deoxygenated blood is carried from the right side of the heart 

to the lungs, where it is oxygenated and returned to the left side. The systemic 

circulation then takes over, pumping highly oxygenated blood to the tissues and 

removing waste products. The systemic circulation terminates with the delivery of 

deoxygenated blood back to the right side of the heart. The arteries play the principal 

role carrying blood away from the heart (Boron & Boulpaep, 2003).  

1.1.1 Vascular System 
The vascular structure plays an integral role in blood pressure homeostasis. The 

wall of an artery consists of three distinct layers; from innermost to the outermost, we 

find the tunica intima, tunica media and tunica adventitia (Figure 1). The tunica intima 

secretes many vasoactive substances which control the diameter of the vessels. These 

include: endothelin-1 (ET-1), nitric oxide (NO) and C-type natriuretic peptide (CNP). The 

tunica media consists mainly of smooth muscle cells which allow for the vasoconstriction 

and vasodilation of blood vessels. The tunica adventitia consists of elastic fibers as well 

as collagen fibers which help anchor the structure to its surroundings. The walls of the 

aorta and other large diameter arteries contain a high amount of elastic tissue, primarily 

located in the internal and external elastic laminas. These stretch during systole and 

recoil during diastole. Arterioles, on the other hand, consist of a high percentage of 

smooth muscle, which constrict through the innervation by noradrenergic nerve fibers. 

Arterioles are the major site of resistance to blood flow, with minute changes in their 
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diameter causing significant changes in total peripheral resistance (Berne & Levy, 2001; 

Tortora & Derrickson, 2009).  

 

 
Figure 1: The structure of the arterial and venous vascular wall. (Shaw, ter Haar, Rivens, Giussani, & Lees, 2014) 

 

1.2 Blood Pressure 
Blood pressure is the lateral force exerted by blood on the walls of blood vessels 

and is expressed as the systolic over the diastolic pressure. The systolic pressure is the 

maximum pressure exerted by circulating blood during contraction of the heart. The 

normal range in adults is 100-140 mmHg while the mean is 120 mmHg. The diastolic 

pressure, on the other hand, is the minimum pressure measured during relaxation and 

ventricular filling. The normal adult range is 60-90 mmHg with a mean of 80 mmHg. The 

pulse pressure is the difference between the systolic and diastolic pressure. The mean 

arterial pressure is the mean pressure exerted in the arterial compartment during a 

cardiac cycle and is calculated as the diastolic pressure plus 1/3 of pulse pressure.   

1.2.1 Blood Pressure Regulation 
Normal blood pressure is maintained through the regulation of several factors: 

cardiac output, peripheral resistance, blood volume, viscosity of blood and the elasticity 

of blood vessels. Cardiac output is defined as the volume of blood pumped out per 

ventricle per minute. Normal cardiac output is approximately 5L/ventricle. Cardiac output 

affects the systolic pressure. Peripheral resistance is the resistance offered by the wall 
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of the blood vessel on the blood flowing through. It is maximal in the arterioles; hence 

the arterioles are known as the seat of maximum peripheral resistance. Peripheral 

resistance affects the mean arterial pressure. Poiseuille’s law indicates that the 

resistance (R) is directly related to the length of the blood vessel (L) and the blood 

viscosity (η) and is inversely related to radius (r) to the power of 4: 

R = 8 x η x L 

        Π x r4 

When the volume of blood increases, a greater venous return is facilitated. This, in turn, 

increases the cardiac output and hence, the systolic pressure. The viscosity of blood 

affects the peripheral resistance, which affects the diastolic pressure while the elasticity 

of blood vessels has an inverse relationship with blood pressure. Considering all of the 

above factors, the final determinants of blood pressure are cardiac output and peripheral 

resistance.  

1.2.1.1 Blood Pressure Regulation: Short Term Mechanisms 
Short term mechanisms try to regulate blood pressure within a few seconds of 

fluctuations, whereas other mechanisms begin acting after a few minutes to a few hours.  

The vasomotor center alters the smooth muscle activity of blood vessels by 

activating the sympathetic nervous system originating in the reticular formation of the 

brain stem. The vasomotor center transmits continuous impulses to the lateral horn of 

the spinal cord through the reticulospinal tract thus exerting a constant stimulatory 

influence on the arteriolar smooth muscle and maintaining peripheral resistance. When 

the activity of the lateral horn is depressed, the loss of sympathetic influence on 

arteriolar smooth muscle will lead to a fall in blood pressure. Activation of the vasomotor 

center is regulated by baroreceptors, chemoreceptors and the CNS ischemic response 

(Boron & Boulpaep, 2003). 

Baroreceptors are stretch receptors located in the walls of the heart and blood 

vessels, with the carotid sinus and aortic arch receptors monitoring arterial circulation. 

Baroreceptors are stimulated by the distention of the vessels in which they are located.  

The glossopharyngeal and vagus nerves transmit the afferent fibers from the carotid 

sinus and aortic arch respectively. Increased baroreceptor discharge will inhibit 

vasoconstriction and excite the vagal innervation of the heart, resulting in a decrease in 
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blood volume, bradycardia and a decrease in cardiac output. Below 60 mmHg, there will 

not be any stimulation of the baroreceptors, and above 180 mmHg stimulation will not 

increase any further. Hence, with a resting mean arterial pressure of 94 mmHg in a 

normal individual, there will be constant impulses transmitted from the baroreceptors. If 

there is a sustained increase in blood pressure for a prolonged duration, the 

baroreceptors become adapted to the new pressure, and thus fail to restore blood 

pressure to normal values (Guyton, 1961).  

Chemoreceptors, present in the carotid and aortic bodies, exert their main effect 

on the respiratory system, however they also play a minor role in blood pressure 

regulation. Chemoreceptors are stimulated by a decrease in O2
-, and an increase in H+ 

and pCO2. The cardiovascular response to chemoreceptor stimulation is the stimulation 

of the vasomotor and respiratory centers, as well as an inhibition of the cardioinhibitory 

center, resulting in peripheral vasoconstriction and bradycardia.   

In the CNS ischemic response, a drop in blood pressure below 40 mmHg will 

result in a severe decrease in blood flow (ischemia) to the brain. This will decrease the 

pCO2, which directly stimulates the vasomotor center. The subsequent increase in 

activity of the sympathetic nervous system will act on the vascular smooth muscle and 

cardiac muscle to restore both systolic and diastolic blood pressures. This mechanism 

last only a few minutes and is a last resort mechanism to restore blood pressure and 

blood flow to the brain.  

1.2.1.2 Blood Pressure Regulation: Long Term Mechanisms 
Long term mechanisms control blood pressure by regulating blood flow through 

the renal system. These include: the fluid shift mechanism, the renin angiotensin-

aldosterone system and anti-diuretic hormone. In the fluid shift mechanism, a decrease 

in blood pressure leads to the constriction of the precapillary sphincter thereby reducing 

blood flow. The hydrostatic pressure in the capillaries will be less than the colloidal 

osmotic pressure, resulting in an inward driving force, shifting fluids to the intravascular 

compartment. Blood volume, and hence venous return, will increase, resulting in an 

increase in cardiac output.  

The renal system brings about appropriate alterations in the volume of urine 

formed thus altering blood volume and blood pressure. The renal system acts indirectly 
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through the renin-angiotensin system. Renin is secreted from the juxta glomerular 

apparatus and is stimulated by sympathetic stimulation, decreased blood flow through 

the kidneys as well as altered levels of sodium in the distal convoluted tubule. Renin 

acts on angiotensinogen and converts it to angiotensin I. Angiotensin I is acted upon by 

the angiotensin converting enzyme (ACE) to form angiotensin II. Angiotensin II aids in 

the restoration of blood pressure by acting on vascular smooth muscle to bring about 

vasoconstriction and thus increase peripheral resistance. It stimulates the secretion of 

aldosterone from the adrenal cortex thereby increasing blood flow and cardiac output. It 

stimulates the activity of the thirst center to increase blood volume. Finally, it elevates 

the release of anti-diuretic hormone (ADH), which increases blood volume. All of these 

mechanisms result in a rise in blood pressure. In cases of increased blood pressure, 

pressure diuresis and pressure natriuresis will aid in restoring it back to normal levels 

(Guyton, 1961).  

1.3 The Role of Vasoactive Peptides in the Regulation of Blood Pressure 
Vasoactive peptides are molecules which are capable of altering the diameter of 

blood vessels by either acting as vasodilators (ex. NO and prostacyclin) or as 

vasoconstrictors (ex. Ang II and ET-1). Hypertension is characterized by an increase in 

the concentration of vasoconstrictors, resulting in alterations in the vascular milieu, 

extending from small arteries to large conducting vessels. This increase in the local 

and/or systemic concentration of vasoconstrictors ultimately leads to an elevation in 

peripheral vascular resistance and thereby hypertension. 

1.3.1 G Protein-Coupled Receptors 
G protein-coupled receptors (GPCRs) are 7 passage transmembrane receptors 

belonging to the largest family of membrane-bound proteins. GPCRs are activated by 

glycoproteins, amino acids, phospholipids and peptides, among others. Once activated, 

GPCRs go on to activate various G proteins thus transmitting information from the 

extracellular to the intracellular milieu. GPCR’s consist of an extracellular glycosylated 

N-terminus containing the ligand-binding domain and disulfide bridges which serve to 

stabilize the structure. This is followed by seven transmembrane α-helices connected by 

three intracellular loops (IL-1 to IL-3) and three extracellular loops (EL-1 to EL-3), and 

lastly an intracellular C-terminus (Figure 2). Upon the binding of a ligand, the N-terminal 
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tail undergoes a conformational change which leads to its interaction with the 

extracellular loops and transmembrane domains. A change in the relative orientation of 

the transmembrane helices allows for the residues of the intracellular helices and 

transmembrane domains to be available for G-protein coupling (Gilman, 1987). 

 

  
Figure 2: Structure of a G Protein-Coupled Receptor. Representation of amino acids and signalling domains in the 
rat AT1a receptor. (Berk & Corson, 1997)  

 

1.3.2 Renin-Angiotensin System 
 Renin is synthesized by the myoepithelial cells of the afferent arteriole in the renal 

glomerulus and is the starting point of the renin-angiotensin system (Hackenthal, Paul, 

Ganten, & Taugner, 1990). Renin causes the cleavage of angiotensinogen, a substrate 

that is synthesized by the liver, into angiotensin I. Present in the pulmonary endothelium, 

ACE then converts angiotensin I into angiotensin II, the principal component of the renin-

angiotensin system (Dorer, Kahn, Lentz, Levine, & Skeggs, 1972; Ng & Vane, 1967). 

Angiotensin II is a peptide implicated in hypertension, whose physiological effects are 

relayed through GPCRs.  

1.3.2.1 Angiotensin II Receptors 
Ang II exerts its effects through multiple signalling pathways via Ang II receptors 

(Berk 1997), namely AT1 and AT2 (Timmermans et al., 1993). The AT1 receptor is 
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predominantly found in the cardiovascular system and is responsible for transmitting the 

majority of the effects of Ang II. Goa and Wagstaff demonstrated in 1996 that treatment 

with Losartan, a selective antagonist of the AT1 receptor, reduced hypertensive effects 

(Goa & Wagstaff, 1996). Studies on the role of the lesser known AT2 receptor indicate 

that it inhibits the effects of the AT1 receptor under physiological conditions (Ciuffo, 

Alvarez, & Fuentes, 1998; T. Yamada et al., 1998).  

1.3.2.1.1 Angiotensin II AT1 Receptor 
The AT1 receptor, having 7 transmembrane-spanning domains, is a  G protein-

coupled receptor linked to Gqα and Giα (Figure 3).  Through Gqα, the AT1 receptor 

activates phospholipase C (Lassegue, Alexander, Clark, Akers, & Griendling, 1993; 

Ullian & Linas, 1990). Through Giα, the AT1 receptor is coupled to adenylate cylase 

inhibition (Anand-Srivastava, 1993a) as well as the activation of voltage-gated L-type 

and T-type calcium channels (Chiu, Roscoe, McCall, & Timmermans, 1991; Lu et al., 

1996; Maturana, Burnay, Capponi, Vallotton, & Rossier, 1999). In 2001, Touyz and 

colleagues demonstrated that Ang II-induced activation of c-Src in hypertensive patients 

resulted in vascular smooth muscle cell growth (Touyz et al., 2001). c-Src exerts its 

effects on several downstream molecules, such as MAPK, PLC, JAK, PI3K and 

NAD(P)H oxidase (Touyz & Schiffrin, 2000). Through a different pathway, Ang II results 

in the activation of MAPK, ERK1/2, p38 kinase and JNK. Furthermore, Saito and Berk 

observed that the AT1 receptor activation resulted in the transactivation of epidermal 

growth factor (EGF), platelet-derived growth factor (PDGF) and insulin-like growth factor 

(IGF) (Saito & Berk, 2001). Evidence from more recent studies have indicated that the 

Ang II-mediated transactivation of the EGF receptor, through MAPK, plays a role in 

vascular smooth muscle cell hypertrophy and proliferation (Atef & Anand-Srivastava, 

2016). Taken as a whole, activation of the AT1 receptor via Ang II contributes to the 

generation of hypertension and the complications that results from it.  
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Figure 3: ANG II signalling mechanisms associated with Gqα and Giα proteins. Through Gqα, the AT1 receptor 
activates the phospholipase C signalling pathway, while through Giα, the AT1 receptor is coupled to adenylate cylase 
inhibition. Adapted from a lecture by Madhu B. Anand-Srivastava, PSL6090, 2015. 

1.3.2.1.2 Angiotensin II AT2 Receptor 
Like AT1, the AT2 receptor has 7 transmembrane-spanning domains and is 

largely expressed in the late gestational period of fetal development and quickly 

diminishes after birth. The AT2 receptor has been shown to play an important role in 

vasculogenesis by mediating the decline in vascular DNA synthesis occurring during the 

late stage of fetal development (H. Yamada et al., 1999). The implication of the AT2 

receptor in vascular complications have produced controversial findings. A study on 

transgenic AT2 knockout mice (AT2KO) found them to be more susceptible to 

developing neointimal vascular inflammation as compared to control rats (Akishita et al., 

2000). Conversely, the re-expression of the AT2 receptor was noted in pathological 
conditions characterized by inflammation (Ruiz-Ortega et al., 2003).  
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1.3.3 The Endothelin System 
Endothelin is a vasoactive peptide that is synthesized primarily by the 

endothelium. The four types of endothelin, ET-1, ET-2, ET-3 and ET-4, each consist of 

21 amino acids containing 2 disulfide bridges (Cys1-Cys15 and Cys3-Cys11) 

(Rautureau & Schiffrin, 2012). Structurally, ET-1 and ET-2 are 90% homologous 

(Rautureau & Schiffrin, 2012). Each type of endothelin is coded by a single gene which 

gives rise to a precursor, prepro-endothelin, which is approximately 200 amino acids 

long. Following its cleavage, it forms pro-endothelin which is further cleaved by furine 

and other types of convertases to give rise to peptides which are 38 to 39 amino acids in 

length. At the vascular level, ET-1 is the most abundant. It is secreted by endothelin 

conversion enzymes and interacts in an autocrine and paracrine manner with the 

surrounding cells (Wagner et al., 1992). Playing a major role in blood pressure 

regulation, ET-1 mainly exerts its effects through 3 types of receptors: ETA, ETB1 and 

ETB2.  The biosynthesis of ET-1 is regulated by several factors such as the shearing 

forces that stimulates NO release and which negatively influences ET-1 synthesis by the 

endothelium (Boulanger et al., 1992; Malek & Izumo, 1992). Vasoactive agonists such 

as Ang II, thrombin, leptin and adrenaline all positively affect the biosynthesis of ET-1 

(Quehenberger et al., 2002) as well as ROS (Kahler et al., 2000). Pulmonary tissue 

constitutes an important site for ET-1 production indicating is important role in the 

development of pulmonary hypertension (Dupuis, Goresky, & Fournier, 1996; Wagner et 

al., 1992).  

In several animal models of hypertension such as DOCA-salt, Goldblatt (1K1C) 

and the spontaneously hypertensive rat (SHR), an elevated systemic level of ET-1 is 

found (Kassab, Novak, Miller, Kirchner, & Granger, 1997; Schiffrin, 1995). An elevation 

in the concentration of ET-1 results in a hypertrophic vascular remodelling at the level of 

the arterioles by increasing peripheral vascular resistance (Intengan & Schiffrin, 2000). 

The elevation in the systemic concentration of ET-1 has also been linked to renal 

dysfunction (Hirai et al., 2004). 

1.3.3.1 Endothelin-1 Receptor 
 ET-1 receptors are G protein-coupled 7 transmembrane-containing protein 

structures. VSMCs contain two types of endothelin receptors: ETA and ETB (Azuma et 
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al., 1995; Davie et al., 2002; Russell & Davenport, 1995; Sato & Amemiya, 1995). In the 

arteries, the vasoconstrictive effect of ET-1 is largely mediated by ETA (Moreland, Cilea, 

& Moreland, 1992). The ETB receptor is largely expressed in endothelial cells and plays 

an important role in NO synthesis as well as other endothelium-dependent 

vasorelaxants such as prostacyclin (PGI2) and endothelium-derived hyperpolarizing 

factor (EDHF), acting in a calcium-dependent manner (Triggle et al., 2012). The ETB 

receptor is also largely responsible for the clearance of ET-1, which has a half-life of 

approximately one minute (Gasic, Wagner, Vierhapper, Nowotny, & Waldhausl, 1992). 

Furthermore, ETB stimulates NO production in non-endothelial cells in the thick 

ascending loop of Henle and results in natriuretic effects following sodium and chloride 

inhibition. Moreover, the ETB receptor plays an important role in sodium and fluid 

homeostasis in the kidneys. This last role demonstrates the physiologic effects of 

endothelin in blood pressure regulation at the renal level (Ahn et al., 2004; Plato, 

Pollock, & Garvin, 2000).  

1.4 Transmembrane Signalling: Mechanisms 

1.4.1 Guanine Nucleotide-Binding Proteins 
Guanine nucleotide-binding proteins, abbreviated as G proteins, are 

heterotrimeric, membrane-bound proteins that are coupled to GPCRs. There are four 

distinct families of G proteins: Gi/o, Gq/11, Gs and G12/13 (Kehrl, 1998). In its inactive 

state, G proteins are composed of three subunits: α, β and γ. The subunits as well as the 

GPCR are all linked through the N-terminal of the α subunit and the C-terminal of the γ 

subunit. The α subunit possesses GTPase activity which is regulated by the hydrolysis 

of guanosine triphosphate (GTP) to guanosine diphosphate (GDP) (Neer, 1995; 

Offermanns, Iida-Klein, Segre, & Simon, 1996) (Figure 4). The exchange of GDP for 

GTP activates the G protein and generates a cascade of signalling mechanisms through 

the use of second messengers such as inositol triphosphate, diacylglycerol and calcium 

(Birnbaumer, 1992; Neer, 1995).  



	 12	

 
Figure 4: Activation of G proteins. Binding of an agonist to the G protein-coupled receptor causes a dissociation of 
the α subunit from the βγ subunit following the enchange of GDP for GTP. Adapted from a lecture by Madhu B. 
Anand-Srivastava, PSL6090, 2015. 

These second messengers transmit the signal to membrane-bound and 

intracellular targets such as adenylate cyclase (AC), ionic channels and the endoplasmic 

reticulum (ER) (Meij, 1996). In addition to the traditional G protein, there are also smaller 

G proteins, called small GTPases which are monomeric in structure and include proteins 

such as Ras and Raf. 

1.4.2 The Adenylate Cyclase System 

1.4.2.1 The Adenylate Cyclase System and Cyclic Adenosine Monophosphate 
AC is a ubiquitous enzyme made up of two transmembrane subunits. Its activity is 

regulated by the inhibitory G protein, Gi, and the stimulatory G protein, Gs. Activation of 

AC leads to the formation of cyclic adenosine monophosphate (cAMP) from a single 

molecule of ATP. In turn, cAMP possesses the ability to regulate its own activity through 

the activation of phosphodiesterases which signals its destruction (Furge, Winter, 

Meyers, & Furge, 2008). Functions of cAMP include the modulation of vascular tone as 

well as the regulation of vascular smooth muscle cell (VSMC) proliferation (Gusan & 

Anand-Srivastava, 2013). The antiproliferative effect of cAMP appears to be linked to 

EGFR-MAPK signalling pathway inhibition. Coupled to Gi, this pathway is generally 

stimulated by agonists such as EGF or through its transactivation by vasoactive peptides 

(Y. Li & Anand-Srivastava, 2002; D. Wu, Katz, & Simon, 1993), and its inhibition results 
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in the downregulation of transcription factors implicated in cell proliferation, such as c-

Myc. Vasoactive peptides such as Ang II and ET-1 inhibit AC activity following the 

dissociation of the α subunit of Gi. Thus, an increase in the activity of the RAS or 

endothelin system, as noted under hypertensive conditions, is associated with a 

reduction in cAMP production at the vascular level. In the SHR rat, the basal activity of 

AC is reduced, and is associated with a decrease in sensitivity to its agonists (Anand-

Srivastava, 1988). Moreover, an alteration in the expression of the G protein in the 

DOCA-Salt Hypertensive Rat was shown to be linked to a reduction in AC sensitivity 

(Anand-Srivastava, de Champlain, & Thibault, 1993b; Anand-Srivastava, Picard, & 

Thibault, 1991). In the L-NAME rat model of hypertension characterized by a 

pathological reduction in NO bioavailability, an alteration in Gi expression was also 

demonstrated (Di Fusco & Anand-Srivastava, 2000). 

1.4.2.2 Giα 

 The inhibitory group of G proteins consists of 5 members: Giα1, Giα2, Giα3, 

GoαA and GoαB (Kehrl, 1998). These multimeric protein complexes are characterized 

by a sensitivity to pertussis toxin (Kehrl, 1998; Y. Li & Anand-Srivastava, 2002). 

Activation of the Gi protein results in the inhibition of adenylate cyclase and a 

subsequent reduction in the intracellular concentration of cAMP (Gilman, 1995). 

Numerous studies have demonstrated the important role of the Gi protein in the 

pathogenesis of hypertension in several animal models (Anand-Srivastava, 1993c, 2010; 

Anand-Srivastava et al., 1993b; Hashim & Anand-Srivastava, 2004). A reduction in the 

bioavailability of cAMP has been shown to be associated with a hyperproliferation of 

VSMCs (Gusan & Anand-Srivastava, 2013) as well as endothelial dysfunction (Shah & 

Singh, 2006).  

1.4.3 The Phosphoinositide System 

1.4.3.1 Gqα 

The Gqα family of G proteins are multimeric protein structures which consists of 

four members: Gqα, G11α, G14α and G15/16α (Gilman, 1987). These proteins are 

characterized by their insensitivity towards pertussis toxin (Exton, 1996; Strathmann & 

Simon, 1990). The Gqα signalling pathway, also known as the phosphatidylinositol 
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signalling pathway, is composed of three elements: a receptor, a GTP-linked regulatory 

protein (known as a G protein), and an effector protein. Activation of Gqα results in the 

activation of phospholipase Cβ (PLCβ) (Alberts, 2002). PLCβ in turn hydrolyzes 

phosphatidylinositol bisphosphate (PI(4,5)P2) into 2 second messengers, namely inositol 

1,4,5-triphosphate (IP3) and diacylglycerol (DAG). IP3 diffuses across the cytosol to join 

with its receptor in the endoplasmic reticulum which results in intracellular calcium 

release (Irvine, 1990). DAG, on the other hand, remains in the plasma membrane where 

it plays two different signalling roles. First, it can be hydrolyzed to release arachidonic 

acid (AA) which acts as a second messenger, or it can synthesize other small lipid 

messengers such as eicosanoids. Secondly, DAG can activate serine-threonine kinases, 

such as protein kinase C (PKC). Once PKC is activated, it can phosphorylate 

downstream target proteins (Alberts, 2002). 

1.4.3.2 Phospholipase Cβ: Structure and Function 
PLC is a calcium-dependent phosphoinositide enzyme. Thirteen isoforms of PLC 

exist in mammals which are divided into six families; β, γ (Patterson, van Rossum, 

Nikolaidis, Gill, & Snyder, 2005), δ, ε (Bunney & Katan, 2006), ζ (Swann, Saunders, 

Rogers, & Lai, 2006) and η (Zhou, Wing, Sondek, & Harden, 2005). Each family is 

comprised of multiple isoforms which are differentiated based on their structural 

organization, their regulation, their activation, as well as  their distribution in tissues (Drin 

& Scarlata, 2007). Four types of PLCβ exist: PLCβ-1, PLCβ-2, PLCβ-3 and PLCβ-4 

(Jalili et al., 1999), with their molecular weights varying between 120 and 155 kDa 

(Rhee, 2001). While all members of the Gqα family activate PLCβ, they do not activate 

PLCγ, PLCδ or PLCε (Smrcka & Sternweis, 1993; Taylor & Richardson, 1991). PLCβ-1 

is expressed primarily in the heart (Schnabel, Gas, Nohr, Camps, & Bohm, 1996), while 

PLCβ-2 is found in smooth muscle, neuronal tissue as well as the liver (LaBelle & 

Polyak, 1996). PLCβ-3 is found in all tissues (Meij, 1996), while PLCβ-4 is expressed in 

the retina (C. W. Lee, Lee, Lee, Park, & Rhee, 1994) and in specific regions of the brain 

(Roustan et al., 1995).  

Structurally, PLCβ contains two highly conserved regions, X and Y, which forms 

the catalytic subunit (Rhee & Bae, 1997; Rhee, Suh, Ryu, & Lee, 1989). It also 
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possesses an EF region which links with Ca+2 ions. There are also two phospholipid 

membrane regions: the N-terminal PH domain and the C2 domain (Suh et al., 2008). 

PLCβ distinguishes itself from the rest of the PLC family by the presence of a long C-

terminal segment which constitutes approximately 450 residues and which contains 

multiple factors which are crucial for Gqα interaction as well as for membrane linking 

and nuclear localization (Drin & Scarlata, 2007; Rebecchi & Pentyala, 2000).  

1.4.3.2.1 Activation of PLCβ by the Gαq Subunit 

The Gqα family of proteins activates PLCβ in the following order of affinity: 

β1≥β3>β-2 (Jhon et al., 1993; Smrcka & Sternweis, 1993). The Gqα subunit interacts 

with the COOH terminal of PLCβ which contains the C2 domain located between 

residues 663-802 followed by a residue sequence 803-1216. Studies on deletion effects 

have pointed to residue 845 as being crucial for the association and stimulation by Gqα 

(Park, Jhon, Lee, Lee, & Rhee, 1993; D. Wu et al., 1993). Moreover, basic residues 

localized in residue sequences 663-802 and 1055-1075 are equally important for Gqα-

mediated stimulation of PLCβ (Kim, Park, & Rhee, 1996).  

1.4.3.2.2 Activation of PLCβ by the Gβγ Complex 

All members of the PLCβ family, with the exception of PLCβ-4 are activated by 

the βγ dimer (Camps et al., 1992; Park et al., 1993; Smrcka & Sternweis, 1993). Studies 

have shown that while both PLCβ-1 and PLCβ-3 interact with the βγ complex, it interacts 

with PLCβ-2 with the greatest affinity (Runnels & Scarlata, 1999). Therefore, both the α 

subunit as well as the βγ dimer contribute towards the activation of PLCβ at the cellular 

level (Rhee, 2001). 

1.4.4 Diacylglycerol and Protein Kinase C: Structure and Function 
PLCβ hydrolyzes PIP2 to form IP3 and DAG. DAG is a simple lipid made up of a 

molecule of glycerol linked to a fatty acid chain at the Sn2 position, via an ester linkage, 

and to a second fatty acid chain at the Sn position, through an ester or ether alkenyl 

linkage (Cook, Briscoe, & Wakelam, 1991). A diverse array of DAG second messengers 

can be formed based on fatty chain profile which can be polyunsaturated, di-

unsaturated, monounsaturated or saturated (Hodgkin et al., 1998; Wakelam, 1998). 

Saturated DAG is generally a weak activator of protein kinase C (PKC). Di-unsaturated 



	 16	

forms are more active, while polyunsaturated as well as DAG 1-stearolyl-2-

arachidononyl are potent activators of PKC (Marignani, Epand, & Sebaldt, 1996; 

Schachter, Lester, & Alkon, 1996).  

DAG interact with different proteins through their C1 domain. This domain 

consists of a conserved sequence of 50 amino acids with the motif HX11-12CX2CX12-

14CX2CX4HX2CX6-7C (Yang, Ng, & Bikle, 2003). Two different type of C1 domains exist: 

typical and atypical (Hurley & Grobler, 1997). Among the proteins that contain the C1 

domain, we find diacylglycerol kinase, DGK, an inhibitor of DAG, and PKC, an important 

agonist of DAG.  

1.4.4.1 Formation of Diacylglycerol 
DAG is principally generated through the hydrolysis of inositol bisphosphates by 

PLCβ, PLCγ, PLCε and PLCδ (Brose, Betz, & Wegmeyer, 2004). DAG can also be 

produced through the hydrolysis of phosphatidylcholine (PC) and by phospholipase D 

(PLD) (Timmers, Schrauwen, & de Vogel, 2008). In the case of insulin resistance, DAG 

is formed through the esterification of two long-chain acetyl-CoAs on glycerol-3-

phosphate (Timmers et al., 2008). Through diacylglycerol acetyltransferase (DGAT), 

DAG can be transformed into triacylglycerol (TAG) (Carrasco & Merida, 2007). The 

hydrolysis of TAG by lipases results in an increase in the levels of DAG (Timmers et al., 

2008).  

1.4.4.2 Protein Kinase C 
The major effector of DAG is protein kinase C. PKC belongs to a family of 

serine/threonine kinases which constitutes more than 12 different isoforms (Budhiraja & 

Singh, 2008). These isoforms are divided into three categories: conventional, new and 

atypical (Budhiraja & Singh, 2008). The different PKC isoforms each consist of a 

polypeptide chain containing an N-terminal regulatory region and a C-terminal catalytic 

region, both of which contain a conserved (C1-C4) and a variable (V1-V5) region 

(Budhiraja & Singh, 2008). The C1 site in the regulatory region contains two cysteine-

rich domains which link with DAG, phosphatidylserine and a phorbol ester (Salamanca & 

Khalil, 2005). In certain isoforms of PKC, the C2 site is rich in acid residues, and links 

with calcium (Salamanca & Khalil, 2005). The C3 site links with ATP and is the principal 
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target of PKC inhibitors (Budhiraja & Singh, 2008), while the C4 site recognizes the PKC 

substrates. The catalytic domain is found on sites C3 and C4.   

The conventional PKCs (α, β1, β2, γ) possess four conserved regions (C1-C4) 

and five variable regions (V1-V5) (Salamanca & Khalil, 2005). They are calcium 

dependent and are activated by phospholipids as well as by DAG (Budhiraja & Singh, 

2008). New PKCs (δ, ε, η, θ) do not contain a C2 region (Salamanca & Khalil, 2005). 

They are stimulated by phospholipids and DAG, but are calcium independent. Atypical 

PKCs (ν, µ, 1/λ, ζ) possess a cysteine-rich zinc finger motif (Salamanca & Khalil, 2005). 

They are not activated by DAG, phorbol esther or calcium, but are dependent on 

phosphatidylserine (Salamanca & Khalil, 2005).  

PKC has several biological targets. One of its targets is the phosphorylation of 

Giα causing the dissociation of the iα subunit from adenylate cyclase (Kanashiro & 

Khalil, 1998). PKC also targets plasma membrane-localized channels and pumps. In 

2004, Baman et al. observed that PKC inhibited calcium-sensitive potassium channel 

(BKc) activity in lung VSMCs (Barman, Zhu, & White, 2004). Moreover, PKC 

phosphorylates cytoskeleton proteins and contractile myofilaments in VSMCs. PKC 

phosphorylates vinculin, a protein localized to focal adhesion plaques, which controls 

cellular structure and adhesion (Salamanca & Khalil, 2005). PKC also phosphorylates 

CPI-17, which in turn inhibits myosin light chain (MLC) phosphatase which increases the 

phosphorylation of MLC and elevates the force of VSMC contraction (Woodsome, Eto, 

Everett, Brautigan, & Kitazawa, 2001).  

1.4.5 IP3 and Calcium 
Aside from DAG, the hydrolysis of PIP2 by PLC also produces IP3. Activation of 

IP3 causes the release of calcium from intracellular stores by a specific class of calcium 

channels called IP3 receptors (IP3R) which are located in the sarcoplasmic or 

endoplasmic reticulum (Berridge, 1989). IP3 is transformed into inositol through three 

successive dephosphorylations which converts it into inositol 1-4-biphosphate (IP2), 

inositol 4-phosphate (IP1) and finally into free myo-inositol which is then incorporated 

into the new inositol phospholipid (Voet & Voet, 1998). IP1 phosphatase, the enzyme 

that catalyzes this last step, is inhibited by lithium (Li+) (Allison & Stewart, 1971). Free 
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inositol interacts with CTP-DAG to form phosphatidyl inositol (PI) which is 

phosphorylated into PIP2 by two phosphorylations (Voet & Voet, 1998).  

Intracellular calcium release is often followed by a sustained period of 

extracellular calcium entry (Putney & McKay, 1999). In VSMCs, there are two principal 

types of calcium channels which are implicated in intracellular calcium entry following 

the activation of PLC: store-operated channels (SOC) and receptor operated channels 

(ROC) (Villereal, 2006; Y. Wang, Deng, Hewavitharana, Soboloff, & Gill, 2008).  

Store-operated channels are ionic channels located in the plasma membrane 

(Albert, Saleh, Peppiatt-Wildman, & Large, 2007; Hoth & Penner, 1992). They are 

activated by a reduction in calcium concentration in the endoplasmic reticulum and not 

by a reduction in cytosolic calcium concentration (Parekh & Putney, 2005).  In several 

types of cells, including VSMCs, store-operated channels generate a rectifier current 

called the “Ca+2 release activated Ca+2 current” (ICRAC) (Parekh, Fleig, & Penner, 1997; 

Parekh & Putney, 2005; Venkatachalam, van Rossum, Patterson, Ma, & Gill, 2002). Two 

proteins have been cited as being crucial for the proper functioning of SOC: Orai, which 

forms the pore of the SOC (Albert et al., 2007) and Stim1 (Liou et al., 2005; Roos et al., 

2005; Y. Wang et al., 2008) an endoplasmic reticulum protein which functions as a 

calcium sensor (Liou et al., 2005). The reduction in the calcium concentration in the 

lumen of the endoplasmic reticulum results in the translocation of Stim1 towards regions 

of the endoplasmic reticulum which are in proximity to the plasma membrane (Y. Wang 

et al., 2008; Yeromin et al., 2006). This transfer allows for the interaction with Orai which 

causes the opening of the SOC and entry of calcium into the endoplasmic reticulum (Y. 

Wang et al., 2008; Yeromin et al., 2006).  

The ROC are activated following a stimulation of the GPCR coupled to PLC which 

is independent of intracellular calcium depletion. The transient receptor potential (TRP) 

class of ionic channels is divided into two groups: those which are activated by DAG, 

TRPC3, TRPC6 and TRPC7, and those which are activated by DAG, TRPC1, TRPC4 

and TRPC5 (Dietrich et al., 2005; Freichel, Philipp, Cavalie, & Flockerzi, 2004; 

Venkatachalam et al., 2002; R. Wang, Liu, Sauve, & Anand-Srivastava, 1998). TRP6 is 

strongly expressed in VSMCs (Inoue et al., 2001; Jung et al., 2003) and plays a role in 

receptor-mediated calcium signalling (Inoue et al., 2001; Soboloff et al., 2005). Soboloff 
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and colleagues utilized siRNA against TRP6 to demonstrate that TRP6-induced increase 

in intracellular calcium was due to a receptor coupled to PLC, and not due to the 

exhaustion of calcium reserves (Soboloff et al., 2005). However, other studies have 

demonstrated that TRPCs could also be activated through depleted calcium reserves. 

For example, TRPC1 is able to form a complex with TRPC5. This complex produces a 

current with a conductance that is similar to that of SOCs in VSMCs (Golovina et al., 

2001; Trepakova et al., 2001).  

The increase in intracellular calcium regulates a number of processes. In VSMCs 

and cardiomyocytes, it allows for the contraction of cells (Iino, Kasai, & Yamazawa, 

1994). The contraction of VSMCs occurs due to the action of myosin light chain kinase 

which is only active when it associates with the Ca+2-calmoduline complex (Voet & Voet, 

1998). In endothelial cells, calcium modulates the synthesis and release of the 

vasoactive and growth factors such as ET-1, Ang II and nitric oxide (Busse & 

Lamontagne, 1991; Inagami et al., 1995). Thus, calcium serves as an important second 

messenger which transmits signals from the extracellular milieu to the interior.  

1.4.6 Growth Factors: Receptors 
Growth factor receptors consist of a ligand-binding extracellular N-terminal 

domain, an intracellular C-terminal domain responsible for receptor tyrosine kinase 

(RTK) activity and an intermediary domain formed by a transmembrane helix. Through 

RTKs, a phosphate group is transferred from ATP to the tyrosine residue of a protein. 

The activation of these receptors results in a dimerization, followed by the 

autophosphorylation of the tyrosine residues. This allows for the activation of certain 

enzymes and adaptor proteins belonging to the SH2 domain, such as Src (Albert, 2004). 

RTK’s are implicated in the regulation of several biological processes including growth, 

differentiation, motility and apoptosis. An increase in the expression or activity of RTKs 

results in several pathological complications including cancer and cardiovascular 

disease.  

1.4.6.1 Epidermal Growth Factor Receptor (EGF-R) 
Epidermal growth factor receptor belongs to a family of ErB1 receptors which 

possess receptor tyrosine kinase activity (Prigent & Lemoine, 1992). The epidermal 

growth factor family is comprised of EGF, TGF-α and HB-EGF. EGF-R activation is 
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implicated in several biological processes such as proliferation, growth and cellular 

survival. In VSMCs, a defective EGF-R can result in spontaneous cell death, a reduced 

ERK1/2 sensitivity to GPCR and oxidative stress activity and plays an important role in 

the homeostasis of VSMCs (Schreier et al., 2011). Activation of EGF-R also forms an 

essential step in vasoconstriction (Griol-Charhbili et al., 2011) and vascular remodeling 

(Takayanagi et al., 2015).  

Activation of the AT1 receptor coupled to Gqα in VSMCs is associated with the 

transactivation of EGF-R, which is a calcium dependent process. This is followed by the 

recruitment of the protein complex Grb2/Shc/Sos leading to the phosphorylation of N70 

S6 kinase, a PI3k-Akt dependent signalling mechanism (Eguchi et al., 1999a), as well as 

p42/44MAPKs (Iwasaki & Ikeda, 1999) which results in enhanced proliferation and 

protein synthesis (Bahrami et al., 2014).  

1.4.6.2  Insulin-Like Growth Factor Receptor (IGF-R) 
Insulin-like growth factor receptor is a transmembrane receptor with tyrosine 

kinase activity. Its structure consists of two heterodimers α and β which are highly 

expressed in VSMCs (Arnqvist, Bornfeldt, Chen, & Lindstrom, 1995). Elevated 

concentrations of insulin triggers important biological phenomenons in VSMCs through 

the activation of IGF-R (Johansson & Arnqvist, 2006). IGF-R, in addition to being directly 

activated by its ligand, is also transactivated by second messengers such as ROS 

(Touyz et al., 2003), Ca+2 (Tu et al., 2010) and c-Src (Oligny-Longpre et al., 2012). This 

indicates IGF-R’s implication as an important mediator of vascular remodeling. 

Moreover, Wu et al. demonstrated that mechanical stress induced an elevation in the 

expression of early growth response (Egr-1), which has been shown to be involved in 

the activation of IGF-R (X. Wu et al., 2010). This also serves to explain the involvement 

of IGF-R in the formation of the neointima (X. Wu et al., 2010). Furthermore, mechanical 

stretching forces have been shown to result in an increase in the rate of IGF-R mRNA 

and protein expression. This suggests that IGF-R plays a pivotal role in the molecular 

mechanisms relating to vascular remodeling (Song et al., 2007).  

1.4.6.3 Platelet-Derived Growth Factor Receptor (PDGF-R) 
Platelet-derived growth factor receptors are membrane-bound heterodimer 

glycoproteins consisting of two chains, α and β, and an Ig-like extracellular domain. 
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There are two types of receptors for PDGF: PDGF-Rα and PDGF-Rβ (Andrae, Gallini, & 

Betsholtz, 2008). PDGF-Rα is activated by PDGF-A, PDGF-B and PDGF-C while 

PDGF-Rβ is activated by PDGF-AB and PDGF-BB (Andrae et al., 2008). Activation of 

PDGF-R results in a proliferation-inducing response in VSMCs and other types of cells 

(Kohler & Lipton, 1974). PDGF-R plays an important role in vascular remodeling through 

its transactivation, which is induced by factors such as Ang II (Touyz, 2005), mechanical 

shearing forces, and ET-1 (Gomez Sandoval & Anand-Srivastava, 2011). The activation, 

or transactivation of PDGF-R results in vascular remodeling through the MAPK/AKT 

signalling pathways (Andrae et al., 2008). Activation of PDGF-R can also result in the 

transactivation of EGF-R, a result of the ADAM17-independent mechanism (Mendelson, 

Swendeman, Saftig, & Blobel, 2010).  

1.4.7 c-Src Pathway 
Proto-oncogene tyrosine-protein kinase Src, known simply as c-Src, is an 

important member of the non-receptor tyrosine kinase protein family. Encoded by the 

SRC gene, includes an SH2 domain, an SH3 domain, and a tyrosine kinase domain. In 

humans, the C-terminal Tyr530 is phosphorylated and interacts with the SH2 and SH3 

domains. This diminishes the access of the substrates to the kinase domain. Activation 

of c-Src is completed when the phosphotyrosine portion of the C-terminal is suppressed 

and the phosphorylation of Tyr419 occurs (Yeatman, 2004).  

 c-Src plays a role in numerous cellular functions including hypertrophy, 

proliferation, migration and cell survival by interacting with signalling cascades including 

PLC, MAPK, AKT and growth factor receptors (Bolen, Rowley, Spana, & Tsygankov, 

1992; Leu & Maa, 2003; Prenzel, Zwick, Leserer, & Ullrich, 2000; Scaltriti & Baselga, 

2006; Touyz et al., 2003). Through the use of PP1, a c-Src inhibitor, it was demonstrated 

that thrombin-induced COX-2 promoter activity, a regulator of cardiac hypertrophy, was 

attenuated (Chien, Lin, Hsiao, & Yang, 2015). Furthermore, in 2016, Peng and 

colleagues demonstrated that Ang-II-induced EGF-R activation was mediated by c-Src 

phosphorylation and may play an important role in Ang II-induced cardiac hypertrophy 

(Peng et al., 2016). 
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1.4.8 MAP Kinase Signalling 
Mitogen-activated protein kinases (MAPKs) are a highly conserved family of 

serine/threonine proteins which are activated by mitogenic factors. MAP kinases are 

divided into 3 pathways: extracellular signal-regulated kinase 1 and 2 (ERK1/2) with 

isoform p42 and p44, c-Jun N-terminal kinases 1-3 (JNK1-3) and the p38 pathway 

(Cargnello & Roux, 2011). These pathways are involved in hypertrophy, proliferation, 

differentiation, stress response, motility, apoptosis and survival (Force & Bonventre, 

1998). When an agonist attaches to the ERK1/2 receptor, it results in a phosphorylation 

cascade. Initiation of the receptor first activates Ras. Ras then goes on to phosphorylate 

Raf which in turn activates MEK. MEK finally activates ERK1/2, which activates a variety 

of transcription factors as well as protein kinases and phospholipids. Several stimuli, 

including vasoactive peptides (Ang II, ET-1), growth factors (EGF), and cytokines can 

activate ERK1/2 signalling cascades, and under pathological conditions, an increase in 

the concentrations of these stimuli can result in downstream complications. Moreover, 

Hashim and colleagues observed that the enhanced proliferation induced by Ang II is 

inhibited by the MEK1 antagonist, PD98059, in A10 cells (Hashim, Li, & Anand-

Srivastava, 2006). Elevated phosphorylation of ERK1/2 is seen in VSMCs from SHR as 

compared to WKY rats, where the production of endogenous Ang II is greater (Lappas, 

Daou, & Anand-Srivastava, 2005). Thus, the ERK1/2 signalling pathway plays a critical 

role in Ang II-mediated signalling. 

1.4.9 Phosphoinositide 3-Kinase Pathway 
Activated by Ang II, the PI3K pathway constitutes a family of lipid kinases which 

are implicated in growth, proliferation, differentiation and cellular mobility. There are 3 

classes of PI3K, namely class I, class II and class III, which are based on their primary 

structure, regulation and in vitro substrate. Found predominantly in the vascular system, 

class I consists of heterodimeric proteins which are composed of a catalytic subunit 

(p110) and a regulatory subunit (p85 and p101) (Leevers, Vanhaesebroeck, & 

Waterfield, 1999). This class is activated by receptor tyrosine kinases as well as by 

GPCRs. PI3Ks catalyze the formation of phosphatidylinositol (3,4,5)-trisphosphate which 

results in the activation of various protein kinases, including AKT (Oudit et al., 2004). 

Pharmacological inhibitors targeting PI3K have allowed for the observation of an 
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increase in intracellular calcium in VSMCs (Seki, Yokoshiki, Sunagawa, Nakamura, & 

Sperelakis, 1999). Furthermore, deletion of the p110γ subunit in transgenic rat models 

demonstrated a protective mechanism against Ang II-induced hypertension in vivo 

(Vecchione et al., 2005). Taken together, these studies highlight the importance of PI3K 

in the transduction of Ang II-mediated signalling.  

1.4.10 AKT Signalling Pathway 
AKT, otherwise known as protein kinase B, has been identified as an important 

target for PI3K in Ang II-mediated signalling in VSMCs (Takahashi, Ohba, & Kaneko, 

2015). It has been shown that AKT is responsible for the activation of calcium channels 

leading to intracellular calcium release induced by Ang II (Seki et al., 1999). AKT also 

regulates protein synthesis by activating p70 S6-kinase (p70S6K) (Eguchi et al., 1999b). 

Moreover, AKT regulates c-Myc and Bcl-2 expression as well as inhibits caspases, 

thereby inhibiting apoptosis and stimulating VSMC survival (Coffer, Jin, & Woodgett, 

1998). Taken together, these studies indicate that an imbalance between the mitogenic 

and apoptotic effects of AKT could contribute to the progression of hypertension.  

1.4.11 Reactive Oxygen Species and Oxidative Stress 
Reactive oxygen species (ROS) are a family of molecules comprised of oxygen 

and its derivatives. ROS are formed through a process of oxidation-reduction. Oxidation 

is defined as the loss of electrons of a molecule, while reduction is characterized by the 

gain of electrons by a molecule.  The reduction of oxygen in the presence of a free 

electron (e-) results in the formation of superoxide anion (O2
-), hydrogen peroxide (H2O2) 

and hydroxyl radical (OH-) (Touyz & Schiffrin, 2004), molecules which possess oxidizing 

properties. The harmful effects of ROS are mitigated through antioxidants which 

possess defense mechanisms which eliminate ROS when they are produced (Fridovich, 

1997; Griendling & Ushio-Fukai, 2000). Oxidative stress is the result of an imbalance 

between the production of ROS and its elimination (Droge, 2002). 

Evidence points to the fact that ROS creates toxic effects against cellular 

metabolism as well as in regulation and signalling (Chiarugi & Cirri, 2003; Griendling & 

Ushio-Fukai, 2000; Reth, 2002; Sauer, Wartenberg, & Hescheler, 2001). Under 

physiological conditions and at modest concentrations, ROS regulates VSMC 

contraction, relaxation, as well as growth (Cosentino, Sill, & Katusic, 1994; Rao & Berk, 
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1992; Touyz & Schiffrin, 1999). Under pathological conditions, an increase in ROS 

results in an increase in growth, contractility, apoptosis of VSMCs, as well as the 

migration of monocytes, lipid peroxidation, inflammation, deposition of proteins in the 

extracellular matrix and controls endothelial dysfunction. All of the processes mentioned 

contribute to the vascular damage observed in cardiovascular diseases (Rao & Berk, 

1992).  

1.4.11.1 ROS Metabolism 
ROS are free radicals which possess a free electron in its outer orbit. The major 

free radicals are O2
-, OH-, NO and lipid radicals (Touyz & Schiffrin, 2004). H2O2, 

peroxynitrite, and hypochloric acid are not free radicals, but contain the same oxidizing 

properties (Ardanaz & Pagano, 2006). O2
- is the principal reactive oxygen species as its 

production causes the formation of other ROS (Griendling, 2004; Touyz, Wu, He, 

Salomon, & Schiffrin, 2002). O2
- is formed by the reduction of a molecule of oxygen. It is 

a highly reactive molecule with a relatively low stability and a short half-life (McCord & 

Fridovich, 1969). O2
- is water soluble and impermeable to the membrane, but can cross 

the cellular membrane through anion channels (Schafer et al., 2001). O2
- acts as an 

oxidizing agent and undergoes reduction through a dismutation reaction into H2O2. O2
- 

can also act as a reducing agent and donates its electron to NO to form ONOO- (Darley-

Usmar, Wiseman, & Halliwell, 1995; Fridovich, 1997). As compared to O2
-, H2O2 is a 

more stable molecule. It is lipid soluble, can freely traverse the cell membrane and has a 

longer half-life (Touyz & Schiffrin, 2004). Following is formation, H2O2 is converted into 

H2O (Rhee, 1999). H2O2 can also be reduced, resulting in a molecule of hydroxyl ion 

(OH-) (Fridovich, 1997). (OH-) is extremely reactive, and contrary to H2O2 and O2
-, which 

react far from their site of formation, it induces its effects in proximity to the location of its 

synthesis (Touyz & Schiffrin, 2004).  

1.4.11.2 ROS: Sources of Cellular Production at the Vascular Level 
At the vascular level, ROS are produced in endothelial cells, adventitial cells and 

VSMCs (Channon & Guzik, 2002; Rajagopalan, Meng, Ramasamy, Harrison, & Galis, 

1996; Sorescu & Griendling, 2002; Yamawaki, Lehoux, & Berk, 2003). ROS are 

important for proper cellular functioning, affecting gene expression, proliferation, 

migration and cell death (Brandes & Kreuzer, 2005). At the vascular level, several 
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enzymatic systems contribute to ROS formation: nicotinamide adenine dinucleotide 

phosphate (NAD(P)H) oxidase, xanthine oxidase, the mitochondrial respiratory chain 

and endothelial NO synthase (eNOS) (Brandes & Kreuzer, 2005). Studies have 

demonstrated that an initial formation of ROS by NAD(P)H oxidase initiates ROS 

production by the other enzymes mentioned (Landmesser et al., 2003).  

1.4.11.3 NAD(P)H Oxidase 
NAD(P)H oxidase is an enzyme which contains several subunits. It catalyzes the 

production of O2
- by donating an electron according to the following equation (Azumi et 

al., 1999; Griendling & Ushio-Fukai, 2000; Lassegue & Clempus, 2003): 

 

NAD(P)H + 2O2                      NAD(P)+ + 2O2
- 

 

NAD(P)H was initially studied in phagocytes (neutrophils, granulocytes, 

monocytes and macrophages), and was initially believed to only serve a role in the 

defense of an organism.  

1.4.11.3.1 NAD(P)H Oxidase Structure 
The NAD(P)H oxidase enzyme consists of two membrane subunits, p22phox and 

gp91phox (phox for phagocyte oxidase), also referred to as NOX, the cytoplasmic 

subunits p47phox, p67phox, p40phox and Rac, a G protein (Babior, 2002; Vignais, 2002) 

(Figure 5). P22phox and gp91phox are located in the membrane and form a heterodimer 

called cytochrome b558 (also called flavocytochrome b558) (Touyz & Schiffrin, 2004). 

Gp91phox has six transmembrane domains containing two hemes and is the site of 

attachment for NAD(P)H oxidase (Brandes & Kreuzer, 2005). Cytochrome b558 contains 

the electron transport apparatus, and serves as the physical conduit for the transfer of 

electrons across the membrane (Cross & Segal, 2004).  
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Figure 5: Simplified structure of vascular NADPH oxidase. Shown are the two membrane subunits, p22phox and    
gp91phox (phox for phagocyte oxidase), also referred to as NOX, the cytoplasmic subunits p47phox, p67phox, p40phox and 
Rac, a G protein (Ray & Shah, 2005) 

 

1.4.11.3.2 NAD(P)H Oxidase: Vascular Characteristics 
At the cardiovascular level, NAD(P)H oxidase’s implication in the production of 

ROS has been studied at length. NAD(P)H oxidase is the principal source of superoxide 

anion (Berry et al., 2000; Channon & Guzik, 2002; Lassegue & Clempus, 2003). 

NAD(P)H oxidase at the vascular level has several characteristics that distinguishes 

itself from that found in phagocytes (Hohler, Holzapfel, & Kummer, 2000). The activity of 

vascular NAD(P)H oxidase can be increased following a stimulation by an agonist such 

as Ang II (Rueckschloss, Quinn, Holtz, & Morawietz, 2002). Moreover, vascular 

NAD(P)H oxidase produces O2
- intracellularly, while that in phagocytes produces O2

- 

extracellularly (Lassegue & Clempus, 2003; Y. Li & Anand-Srivastava, 2002). The 

production of superoxide anion by vascular NAD(P)H oxidase participates in cellular 

signalling, as compared to the defensive role played by O2
- produced in phagocytes. 

This explains the relatively low concentrations of NAD(P)H oxidase found in tissues 

(Szasz, Thakali, Fink, & Watts, 2007).  

NAD(P)H oxidase is found in all levels of blood vessels: the intima (Muzaffar, 

Jeremy, Angelini, Stuart-Smith, & Shukla, 2003), the media (Berry et al., 2000; Touyz et 

al., 2002), and the adventitia (Rey, Li, Carretero, Garvin, & Pagano, 2002). It is equally 

found in VSMCs, endothelial cells and fibroblasts (Griendling, Minieri, Ollerenshaw, & 
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Alexander, 1994; Seshiah et al., 2002; Touyz et al., 2002). All the of the phagocyte 

NAD(P)H oxidase subunits are expressed in varying degrees at the vascular level. For 

the adventitial and endothelial cells, the following subunits are found: p47phox, p67phox, 

p22phox and gp91phox (Lassegue & Clempus, 2003; Rey et al., 2002; Touyz et al., 2003). 

At the level of VSMCs, only p47phox and p22phox are expressed in a consistent manner 

(Lassegue & Clempus, 2003). Recent studies have demonstrated the existence of new 

homologs of gp91phox, which form a family called Nox (for NAD(P)H oxidase) (Ago et al., 

2004; Hilenski, Clempus, Quinn, Lambeth, & Griendling, 2004; Suh et al., 2008). The 

Nox family consists of seven members: Nox1, Nox2, Nox3, Nox4, Nox5, Duox1 and 

Duox2 (Griendling, 2004). Nox1, Nox4 and Nox5 are found at the vascular level (Cheng, 

Cao, Xu, van Meir, & Lambeth, 2001). Nox1 is expressed in low concentrations in the 

VSMCs of conducting vessels, fibroblasts and endothelial cells (Griendling, 2004). Nox4 

is highly expressed in all vascular cells, especially cerebral arteries (Miller, Drummond, 

Schmidt, & Sobey, 2005). Nox5 is expressed in humans, but not in rats (Lyle & 

Griendling, 2006).  

1.4.11.3.3 NAD(P)H Oxidase: Activation by G Protein Coupled Receptors 
A large number of GPCR ligands activate NAD(P)H oxidase: Ang II (Seshiah et 

al., 2002), ET-1 (H. H. Chen et al., 2006), catecholamines, histamine (Hu et al., 2002), 

serotonin (A. Y. Lee & Chung, 1999) and prostaglandins (Katsuyama, Fan, & Yabe-

Nishimura, 2002).  

Ang II was the first to be identified which possesses the ability to enhance 

NAD(P)H oxidase activity in VSMCs (Griendling et al., 1994). A number of studies aimed 

at observing in vivo functioning of NAD(P)H oxidase have used Ang II as a stimulus for 

the generation of vascular O2
- (Laursen et al., 1997). Ang II activates NAD(P)H oxidase 

through the AT1 receptor. The AT2 receptor, on the other hand, inhibits NAD(P)H 

oxidase activity (Sohn et al., 2000). Seshiah and colleagues proposed a biphasic model 

for the formation of superoxide anion where PKC is responsible for the initial activation 

of NAD(P)H oxidase (Seshiah et al., 2002). It was observed that PKC phosphorylates 

p47phox and initiates the assembly of NAD(P)H oxidase in VSMCs (Heitzer et al., 1999). 

Long term activation of NAD(P)H oxidese is relayed through c-Src, the transactivation of 

epidermal growth factor receptor (EGF-R) and subsequently, the activation of PI3-K 
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which drives the activation of Rac and results in a sustained formation of ROS (Seshiah 

et al., 2002) (Figure 6). Moreover, Ang II  can enhance the expression of NAD(P)H 

oxidase subunits such as Nox 1, p22phox, gp91phox, p67phox and p47phox in VSMCs, 

fibroblasts and endothelial cells (Landmesser et al., 2002; Laufs et al., 2004; Seshiah et 

al., 2002).  

 
Figure 6: Activation of NAPDH Oxidase by ANG II and EGFR. The stimulation of the AT1 receptor (AT1-R) by 
angiotensin II (Ang II) leads to the generation of reactive oxygen species (ROS) through protein kinase C (PKC) 
activation. PKC phosphorylates the p47phox subunit, thus activating NADPH oxidase, leading to the production of 
superoxide (O2

-) intracellularly, which is converted to H2O2 by superoxide dismutase (SOD). H2O2 activates c-Src, 
leading to epidermal growth factor receptor (EGFR) transactivation. The EGFR is upstream of PI3-kinase and Rac. 
PI3-kinase produces phosphatidylinositol 3,4,5-trisphosphate (PIP3), which in turn activates the guanine nucleotide 
exchange factor (GEF), Sos, for the G-protein Rac. Adapted from (Lyle & Griendling, 2006) 

ET-1 is also an important and powerful stimulator of superoxide anion production 

(Wedgwood, Dettman, & Black, 2001). In vivo studies have demonstrated that ET-1 

activates NAD(P)H oxidase (Amiri et al., 2004; Duerrschmidt, Wippich, Goettsch, 

Broemme, & Morawietz, 2000) and that the subsequent ROS production may play an 

important role in mineralocorticoid-induced hypertension (L. Li et al., 2003). It was also 

demonstrated in 2005 that apocynine, an NAD(P)H oxidase antagonist, inhibited O2
- 

production induced by ET-1 in VSMCs. In 2005, Laplante and colleagues provided 

evidence implicating ET-1 in maintaining a sustained phase of NAD(P)H oxidase 
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activation following the initial activation by Ang II (Laplante, Wu, Moreau, & de 

Champlain, 2005). Through the use of BQ123, an ETa receptor antagonist, it was shown 

that the initial activation of NAD(P)H oxidase remained unaffected, however the increase 

in O2
- and the sustained activation of NAD(P)H oxidase was attenuated (Laplante et al., 

2005).  

1.4.11.4 ROS: Elimination 
ROS elimination occurs through different molecules, which at relatively low 

concentrations, possess the ability to inhibit oxidation (Droge, 2002). Vitamin E (α-

tocopherol), Vitamin C (ascorbic acid) and β-carotene (provitamin A) are all antioxidants 

noted for their elimination ability (Tribble, Barcellos-Hoff, Chu, & Gong, 1999), and are 

found in fruits and vegetables (Price & Fowkes, 1997). ROS are also eliminated by 

enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPX) and 

catalase (Droge, 2002).  

1.4.11.5 ROS: Physiological Roles 
Other than its toxic effects on cells, ROS also play a positive role in biological 

processes (Ushio-Fukai & Alexander, 2004). In minute concentrations, superoxide anion 

and hydrogen peroxide activate soluble guanylate cyclase which causes the 

vasorelaxation of VSMCs (Mittal & Murad, 1977). Furthermore, ROS regulates cellular 

adhesion, such as the adherence of leukocytes to endothelial cells (Sellak, Franzini, 

Hakim, & Pasquier, 1994), an effect which is abolished by catalase, and not by 

superoxide dismutase, thus suggesting that hydrogen peroxide is the effective agent 

(Sellak et al., 1994). Moreover, ROS-induced neutrophil adherence is inhibited by a 

scavenger of the hydroxyl radical. This results suggest that cellular attachment is 

mediated by the hydroxyl radical formed by hydrogen peroxide (Droge, 2002).  

1.5 Hypertension 
Hypertension is a highly prevalent disorder, and its complications, including heart 

disease, kidney disease and stroke, are a major public health problem. Hypertension is 

characterized by a persistent elevation in arterial blood pressure at or above 140/90 

mmHg for most adults. Despite decades of scrutiny, the precise pathogenesis of 

essential hypertension has been difficult to delineate (Joffres, Hamet, MacLean, L'Italien 

G, & Fodor, 2001). 
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Two types of hypertension exist: primary (essential) hypertension and secondary 

hypertension. Primary hypertension, as seen in 90-95% of cases, is idiopathic in nature. 

The remaining 5-10% is classified as secondary hypertension due to an identifiable 

cause, such as narrowing of the aorta, chronic kidney disease or an endocrine disorder.  

1.5.1 Risk Factors 
The development of hypertension involves several risk factors. Age is one of the 

major risk factors for heart disease; as we age, the risk of developing high blood 

pressure increases. Race is another factor to consider, with hypertension being more 

common among African Americans and often developing at an earlier age than in 

Caucasians. Obesity plays a role in hypertension as increased weight requires an 

elevated volume of circulating blood to provide adequate oxygen and nutrients to the 

tissues. Lifestyle habits can also pose a significant impact on the development of 

hypertension. A sedentary lifestyle, alcohol and tobacco abuse, excess sodium intake, 

insufficient dietary potassium or vitamin D intake as well as elevated stress can all serve 

to potentiate hypertension (Ruppert & Maisch, 2003).  

1.5.2 Consequences 
Hypertension is referred to as the “silent killer”, as it often progresses 

asymptomatically while damaging the heart, arteries and other organs. Eventually, it can 

result in life-threatening complications. In the heart, hypertension can result in the 

formation of minute tears in the artery walls, resulting in the generation of scar tissue. 

The roughened vasculature attracts cholesterol, fats, platelets and plaque which 

hardens the arteries and limits the amount of blood that reaches the organs. Remnants 

of the deposits may break off causing blood clots that may eventually lead to heart 

attack or stroke. Furthermore, angina may develop from a decreased blood supply to the 

heart. In the kidneys, damage to the arteries can result in its inability to filter toxins and 

regulate fluids, hormones, salts and acids. Ultimately, the kidney’s ability to aid the body 

in regulating its own blood pressure will be affected. An extreme and rapid rise in blood 

pressure (180 mmHg or higher during systole or 110 mmHg or higher during diastole) 

can result in a hypertensive crisis characterized by headache, shortness of breath, 

nosebleed and/or severe anxiety and requires immediate medical intervention.  



	 31	

1.5.3 Treatment 
Depending on the diagnosis, treatment plans to control blood pressure will vary. 

Proper lifestyle habits can help in controlling hypertension. These include a heathy diet, 

regular physical activity, maintaining a healthy body weight, limiting alcohol consumption 

and managing stress levels.  

Blood pressure medications function in different ways to halt or mitigate the 

processes that result in elevated blood pressure. Diuretics rid excess sodium from the 

body, thereby reducing fluid levels. Beta blockers function to lower the heart rate and 

force of contraction resulting in a lower quantity of blood that is pumped through the 

blood vessels. Calcium channel blockers prevent calcium from entering cardiomyocytes, 

allowing for the relaxation of blood vessels. ACE inhibitors block the conversion of 

angiotensin I to angiotensin II, thus preventing angiotensin II-induced narrowing of blood 

vessels. Likewise, angiotensin II receptor blockers (ARBs) block the action of 

angiotensin II, resulting in a decrease in blood vessel contraction and an increase in 

sodium secretion (Lilly & Rader, 2007). Despite all of the treatments available however, 

managing hypertension remains to be a difficult task. As a result, the use of animal 

models has provided researchers with new methods to further their understanding of this 

elusive disease.  

1.5.4 SHR: A model of hypertension  
Spontaneously hypertensive rats (SHR) manifest a genetic predisposition and 

therefore allow for the study of hypertension, including its causes, mechanisms and 

pathology, as well as possible therapeutic approaches. Since central neurohormonal 

mechanisms are the dominant trigger in SHR, they provide a model of hypertension 

where the effects of both aging and hypertension in different developmental stages can 

be assessed. The onset of hypertension in SHR occurs around the fifth week and 

increases with age (Okamoto & Aoki, 1963). The increased media to lumen ratio 

observed in humans suffering from hypertension are equally observed in SHR 

(Heagerty, Aalkjaer, Bund, Korsgaard, & Mulvany, 1993). Moreover, the vascular 

remodelling seen in humans with high blood pressure is conserved in the SHR model 

(Intengan & Schiffrin, 2000). Therefore, SHR allows researchers to deepen their 

understanding of the multi-faceted mechanisms of vascular remodeling.  



	 32	

1.6 Cardiovascular Complications Linked to Hypertension 

1.6.1 Hypertension and Vascular Remodeling: Molecular Mechanisms 
Vascular remodeling is a compensatory mechanism following mechanical and 

biochemical stresses applied to the vessel walls. This compensatory response 

comprises VSMC proliferation, hypertrophy and migration (Erami, Zhang, Ho, French, & 

Faber, 2002; Rzucidlo, Martin, & Powell, 2007). In essence, VSMCs demonstrate a 

certain level of plasticity which translates into a shift from a largely contractile profile to 

that of a secretory one (Chistiakov, Ashwell, Orekhov, & Bobryshev, 2015). This 

dedifferentiation occurs during different pathological states, such as hypertension and 

atherosclerosis (Rzucidlo et al., 2007). In the arteries, the majority of vascular smooth 

muscle cells are found in the tunica media and are responsible for the maintenance of 

vascular tone (Ammit & Panettieri, 2001). Under physiological conditions, VSMCs 

maintain a proliferative and contractile profile characterized by an abundance of proteins 

implicated in the generation of contraction, such as alpha-SMA (alpha-actin), SM22α 

and calponine (Owens, 1995; Owens, Kumar, & Wamhoff, 2004). An elevated intramural 

pressure due to arterial hypertension is associated with an increase in VSMC 

hypertrophy, proliferation as well as extracellular matrix deposition (Negoro et al., 1995; 

Skalak & Price, 1996), allowing for the maintenance of a stable circumference and 

compensating for the increase in intraluminal pressure (Hayashi & Naiki, 2009). 

Vasoactive peptides such as Ang II and ET-1 (Hsieh et al., 2015), as well as growth 

factors receptors such as EGFR and PDGFR all contribute to VSMC hypertrophy and 

proliferation (Stouffer & Owens, 1994; Suwanabol et al., 2012) (Figure 7), and are 

important components of vascular remodeling. 
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Figure 7: Signalling mechanisms associated with hypertension. Vasoactive peptides (Ang II and ET-1) and 
growth factor receptors (EGFR and PDGFR) contribute to VSMC hypertrophy and proliferation through the activation 
of Gqα and Giα signalling pathways. Adapted from a lecture by Madhu B. Anand-Srivastava, PSL6090, 2015. 

1.6.1.1 VSMC Proliferation 
Cellular proliferation can be defined as an increase in the frequency of cell 

division and is sometimes associated with hyperplasia and polyploidy. VSMC 

proliferation is a major component of vascular remodeling, namely, the increase in 

thickness of the vessel wall and the generation of atherogenic anomalies. In a state of 

chronic hypertension, proliferation and DNA synthesis in VSMCs are increased and 

favors neointimal hyperplasia. Several vasoactive peptides such as Ang II, ET-1 (Gomez 

Sandoval, Levesque, Li, & Anand-Srivastava, 2013) and catecholamines (Parenti, 

Brogelli, Donnini, Ziche, & Ledda, 2001) exert hyperproliferative and pro-migratory 

effects (Barman & Marrero, 2005). Moreover, an increase in the activity of the 

adrenergic nervous system plays an important role in vascular remodeling as it induces 

the synthesis of PDGF-A, which has an implication in the enhanced growth of VSMCs 

(Fukuda et al., 1997).  
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1.6.1.2 VSMC Hypertrophy 
Cell hypertrophy is the result of an increase in the mass (rate of protein synthesis) 

and/or size of a cell. The increase in mass corresponds with an increase in protein 

synthesis. Chronic hypertension is associated with an elevation in Ang II. This 

vasoactive stimulates protein synthesis through several prohypertrophic mechanisms, 

most importantly the AT1-mediated Gqα signalling pathway (Atef & Anand-Srivastava, 

2014; Griffin et al., 1991; Ohtsu et al., 2008).  

1.6.1.2.1 VSMC Hypertrophy: Implication of Gqα 

Studies on mutations of Gqα and G11α in mice have highlighted their importance 

in cardiovascular growth and development (Offermanns et al., 1998). In essence, mice 

that had undergone a double knockout mutation all suffered from cardiomyocyte 

hypoplasia and died in the embryonic stage (Offermanns et al., 1998). On the other 

hand, mice which had one of the two alleles intact died soon after birth due to cardiac 

malformations.  Under pathological conditions, the Gqα signalling pathway is associated 

with adult-onset myocardial hypertrophy, cardiac insufficiency (Adams & Brown, 2001) 

and vascular smooth muscle cell hypertrophy (Ohtsu et al., 2008). In 1997, D’Angelo et 

al. observed that transgenic mice overexpressing Gqα went on to develop cardiac 

hypertrophy (D'Angelo et al., 1997). Furthermore, inhibition of Gqα signalling reduced 

VSMC hypertrophy from the aorta of hypertensive rats (Harris, Cohn, Pesant, Zhou, & 

Eckhart, 2007). Taken together, these studies indicate that the factors which induce 

cardiac and VSMC hypertrophy (Ang II, ET-1, norepinephrine) act via Gqα signalling 

(Harris et al., 2007; Ohtsu et al., 2008; Sadoshima & Izumo, 1993; Simpson, McGrath, & 

Savion, 1982) (Figure 8).  

1.6.1.2.2 VSMC Hypertrophy: Implication of ROS 
Oxidative stress has been shown to be elevated in genetic models of 

hypertension. VSMCs from SHR have been shown to exhibit enhanced levels of 

oxidative stress due to the overexpression of NADPH oxidase subunits Nox1/Nox2/Nox4  

and p47phox as well as the overproduction of O2
- (Gusan & Anand-Srivastava, 2013; 

Saha, Li, & Anand-Srivastava, 2008a). Studies have further demonstrated the 

correlation between ROS and enhanced protein synthesis in VSMCs (Rice et al., 2008; 

Weber et al., 2005). Moreover, the correlation between oxidative stress in the increased 
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expression of Gqα and PLCβ1 proteins in aortic VSMCs and A10 VSMCs exposed to 

high glucose has been demonstrated (Descorbeth & Anand-Srivastava, 2010). Oxidative 

stress has been shown to contribute to the enhanced expression of Gqα and PLCβ1 

proteins and VSMC hypertrophy in SHR through the transactivation of growth factor 

receptors EGF-R, PDGF-R and IGF-R (Figure 8), as the enhanced phosphorylation of 

these receptors were attenuated by both NAC and DPI (Atef & Anand-Srivastava, 2016).

  
Figure 8: Signalling pathways implicated in hypertrophy. Ang II binds to the AT1-R, stimulating Gq activation of 
PLC and subsequent increases in intracellular Ca2+ and activation of NADPH oxidases. These signals function to 
activate the epidermal growth factor receptor (EGFR). Depicted on the left, Ang II results in the stimulation of PLC and 
Ca2+ release, which stimulates the association of Shc, Grb2, and Sos at the EGFR. This complex activates Raf-1 and 
Ras, leading to ERK activation. ERK in turn phosphorylates PHAS-1 and Thr70. PHAS-1 activation causes the 
subsequent release of eukaryotic initiation factor-4e (eiF4E) and translation initiation, which results in hypertrophy. In 
the ROS-sensitive pathway depicted on the right, Ang II stimulates c-Src through the activation of NADPH oxidase. c-
Src and Pyk2 form a complex that binds to and phosphorylates the EGFR and c-Abl, creating binding sites for 
p130cas and PI3-kinase. PI3-K activation, AKT and p38MAPK translocate to the membrane, and MAPKAPK-2 is 
recruited and phosphorylates Akt on Ser473 leading to full Akt activation and subsequent phosphorylation of PHAS-1 
at Ser65. Adapted from  (Lyle & Griendling, 2006) 
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1.6.1.2.3 VSMC Hypertrophy: Pressure Forces 
Increased pressure forces serve as the trigger for the progression of VSMC 

hypertrophy. At the levels of the large, high-flow arteries, vascular hypertrophy is mainly 

caused by hypertrophy of the tunica media. In 1989, Baumbach and Heistad 

demonstrated an association between the changes observed in resistance arteries and 

vascular hypertension (Baumbach & Heistad, 1989). These changes were characterized 

by a reduction in the diameter of the vascular lumen and an increase in the media to 

lumen ratio without changing the volume of the tunica media (Short, 1966).  

The mechanical forces applied to the vascular wall is comprised of the arterial 

pressure which reduces the circumference, shearing stress caused by blood flow and 

axial stress due to elongation (Hayashi & Naiki, 2009). During a chronic hypertensive 

state, a reduction in the compliance of large conducting arteries (ex. aorta) is observed 

(Mourad, Girerd, Boutouyrie, Safar, & Laurent, 1998). Furthermore, we find an increase 

in vascular hypertrophy as well as a thickening of the arterial wall (Girerd et al., 1994a; 

Girerd et al., 1994b). A decrease in vascular compliance under hypertensive conditions 

has been shown to play a vital role in the pulsatile elevation in blood pressure (Roman et 

al., 1992).  

1.6.1.3 Cardiac Hypertrophy: Molecular Mechanisms 
Cardiac hypertrophy constitutes a major risk factor for cardiovascular morbidity 

(Savage, Levy, Dannenberg, Garrison, & Castelli, 1990). It is the result of structural, 

morphologic and functional modifications to the left ventricle. Cardiac remodeling is a 

compensatory mechanism in response to physiological (ex growth, high intensity sports) 

and pathological (hypertension, diabetes) stressors (Lips, deWindt, van Kraaij, & 

Doevendans, 2003; Swynghedauw, 1999). Cardiac hypertrophy due to physiological 

stressors can be characterized by an eccentric vascular structure without fibrosis and a 

balanced rate of angiogenesis. In pathological situations, it shifts to a concentric type of 

remodelling which is initially compensatory but changes to a decompensatory state 

under a state of chronic hypertension (Vasan & Levy, 1996). Cardiac hypertrophy can be 

attributed to hemodynamic, neuro-hormonal and genetic factors. In a chronic 

hypertensive state, an increase in afterload largely contributes to the increase in 

mechanical stress applied to the walls of the heart. Congenital anomalies may also 
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result in secondary cardiac hypertrophy (Dorn & Hahn, 2004). Moreover, vasoactive 

peptides such as Ang II, ET-1, thrombin, noradrenaline, growth factors and cytokines are 

biochemical factors which can induce cardiac hypertrophy (Esposito et al., 2001). 

Hemodynamic shear stress, however, remains to be stimulus that initiates the 

hypertrophic response, which is then potentiated through the synergistic action of 

neurochemical factors. This response is characterized initially by a re-expression of ANP 

and BNP which are neonatal genes involved in fetal heart growth (T. Horio et al., 2000). 

Furthermore, receptors coupled to Gqα play a pivotal role in the development and 

maintenance of cardiac hypertrophy (Akhter et al., 1998; Esposito et al., 2001). The Gqα 

signalling pathway has been shown to be crucial in the growth and proliferation of 

developing embryonic cardiomyocytes (Offermanns et al., 1998) and in the physiological 

and pathological responses of the heart (D'Angelo et al., 1997; Mende, Kagen, Meister, 

& Neer, 1999). 

1.7 Natriuretic Peptides 
In 1980, de Bold and colleagues demonstrated that heart muscle cells secreted 

ANP (de Bold, Borenstein, Veress, & Sonnenberg, 1981) thereby showing, for the first 

time, that the heart has an endocrine function; modulating blood pressure, blood volume 

as well as cardiovascular growth. de Bold’s discovery paved the way for new 

cardiovascular research resulting in numerous therapeutic and diagnostic applications 

pertaining to heart failure. Natriuretic peptides are produced in the human heart as well 

as that of other mammals (Levin, Gardner, & Samson, 1998; Yandle, 1994). They 

consist of 3 families: atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and 

C-type natriuretic peptide (CNP) (Brenner, Ballermann, Gunning, & Zeidel, 1990). BNP 

and CNP function as oppressors of the vasopressin, endothelin and the renin-

angiotensin systems. ANP regulates a diverse array of biological functions including 

blood pressure, progesterone secretion, as well as vasopressin, endothelin and renin 

release (Anand-Srivastava & Trachte, 1993d). Natriuretic peptides consist of a loop 

structure containing a conserved 17 amino acid sequence: CFGXXXDRIXXXXGLGC. 

The two cysteine residues create a disulfide bond that forms the loop which is vital for 

receptor recognition (Misono, Fukumi, Grammer, & Inagami, 1984). Natriuretic peptides 

are released in a continuous manner. In response to stimuli such as vasoactive 
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peptides, the rate of secretion increases, which results in an increase in blood pressure 

(Focaccio et al., 1993; Mantymaa, Leppaluoto, & Ruskoaho, 1990; Veress, Milojevic, 

Yip, Flynn, & Sonnenberg, 1988). Natriuretic peptides are metabolized by its 

internalization by natriuretic peptide receptor type C (NPR-C), as well as through 

proteolysis by endopeptidases (Potter, Yoder, Flora, Antos, & Dickey, 2009).  

1.7.1 Natriuretic Peptide Receptors 
Natriuretic peptides exert their effect through three types of natriuretic peptide 

receptors (Figure 9), which are divided into two categories; the first containing NPR-A 

and NPR-B which possess guanylate cyclase activity and the second containing NPR-C, 

which does not. All contain an extracellular ligand domain of approximately 450 amino 

acids in length and a transmembrane domain. NPR-A has an affinity for ANP and BNP 

while NPR-B is more selective towards CNP. Activation of these two receptors 

stimulates the activity of guanylate cyclase which rapidly increases the production of 

cyclic guanosine monophosphate (cGMP), resulting in downstream biological effects. 

cGMP causes the inhibition of PLC resulting in the reduction of IP3 leading to lowered 

levels of intracellular calcium and reduced muscle contraction (Rapoport et al., 1986).  

 
Figure 9: Natriuretic peptide receptors. All contain an extracellular ligand domain of approximately 450 amino acids 
in length and a transmembrane domain. NPR-A and NPR-B possess guanylate cyclase activity, wheras NPR-C does 
not. (Potter, Abbey-Hosch, & Dickey, 2006) 
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1.7.2 Natriuretic Peptide Receptor C 
NPR-C has an affinity for all three types of natriuretic peptides in addition to its 

strong affinity for C-ANP4-23 (des(Gln18, Ser19, Gly20, Leu21, Gly22) ANP4-23-NH2) (C-ANP4-

23), a ring-deleted analog of ANP (Maack et al., 1987). While the extracellular domain 

shares a 30% homology with NPR-A and NPR-B (van den Akker, 2001), it does not 

possess guanylate cyclase activity and its intracellular domain is but 37 aa long. It 

possesses a 23 aa transmembrane domain as well as a 440 aa extracellular domain 

(Fuller et al., 1988). NPR-C exists in two forms; a 66 kDa monomer and a 133 kDa 

dimer (Leitman et al., 1986a). Studies on the interaction between CNP and BNP with 

NPR-C suggested that two different subtypes existed, both being coupled to adenylate 

cyclase inhibition (Savoie, de Champlain, & Anand-Srivastava, 1995; Trachte, Kanwal, 

Elmquist, & Ziegler, 1995). Recent studies have proved the existence of 67 kDa and 77 

kDa subtypes. The 77 kDa subtype has been implicated as a clearance receptor 

(Woodard, Zhao, Rosado, & Brown, 2004) while possessing a weak affinity for CNP, 

contrary to that of the 67 kDa subtype (H. H. Chen & Burnett, 1998). The 67 kDa 

subtype is coupled to adenylate cyclase inhibition through the intermediary protein Giα, 

or through the activation of PLC (Anand-Srivastava, Sairam, & Cantin, 1990; Anand-

Srivastava, Srivastava, & Cantin, 1987).  

1.7.2.1 Distribution of NPR-C 
NPR-C is distributed throughout numerous cells and tissues, notably vascular 

smooth muscle cells, as well as platelets, glomeruli, the adrenal gland, the cerebral 

cortex and the Purkinje fibers of the cardiovascular system (Anand-Srivastava, 2005). 

More recent studies have noted its distribution in ganglion cells of the retina (Xu, Tian, 

Zhong, & Yang, 2010) as well as in the retinal cholinergic and dopaminergic cells in rats 

(Abdelalim & Tooyama, 2010). As compared to NPR-A and NPR-B, the density of NPR-

C in tissues is of major importance. For example, in endothelial cells, it constitutes a 

94% distribution as compared to other receptors (Leitman & Murad, 1986b).  

1.7.2.2 NPR-C Signalling 
Through their study on effect of ANP on the activity of adenylate cyclase in 

auricular and ventricular cardiac myocytes in the hearts of newborn rats, Anand-

Srivastava and colleagues were able to demonstrate that NPR-C was more than just a 
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clearance receptor. They found that ANP inhibited the activity of adenylate cyclase in a 

dose-dependent manner and furthermore, it inhibited the agonistic effects of 

isoproterenol and forskolin (Anand-Srivastava & Cantin, 1986). Next, it was shown that 

the inhibitory protein Giα was involved in ANP-mediated inhibition of AC through the use 

of pertussis toxin that normally catalyzes the ADP ribosylation of Gi, thereby preventing 

the exchange of GTP for GDP, and thus inhibiting AC. In 1987, Anand-Srivastava and 

colleagues further solidified the hypothesis that NPR-C is coupled to adenylate cyclase 

inhibition through Giα by showing that pertussis toxin inhibited AC through ANP in a 

dose dependent manner (Anand-Srivastava et al., 1987). Through the use of C-ANP4-23, 

a selective agonist of NPR-C, Maack and colleagues further proved this receptor’s 

implication in AC inhibition (Maack et al., 1987). An analysis of the NPR-C cytoplasmic 

domain identified the Giα activation sequences (Murthy & Makhlouf, 1999; Pagano & 

Anand-Srivastava, 2001). Pagano and colleagues would go on to identify four distinct 

regions of the NPR-C cytoplasmic domain which shared similarities with Giα activation 

sequences found in insulin growth factor receptors (Pagano & Anand-Srivastava, 2001). 

The peptide fragments were then synthesized and demonstrated that only completely 

intact sequences inhibited AC, proving that the cytoplasmic region of NPR-C contained 

functional Giα activation sequences resulting in AC inhibition. Murad and colleagues 

demonstrated for the first time that NPR-C activated the isoform of PLC through the 

activation of a G protein (Y. Hirata & Sugimoto, 1989a). It was shown that ANP 

increased the formation of inositol triphosphate as well as the activity of GTPases in 

bovine aortic smooth muscle cells. Having already proven that NPR-C is coupled to Giα, 

it was suggested that NPR-C is coupled to the PLC signalling pathway through the Giα 

protein. In 1999, Murthy and Makhlouf  examined the effect of different peptides 

corresponding to the Giα activation sequences of the NPR-C cytoplasmic domain to the 

activation of PLC-B in the vascular smooth muscle of tenia coli. These peptides were 

shown to inhibit the formation of IP3, indicating the link to PLC-ß (Murthy & Makhlouf, 

1999). It had been previously shown by Hirata and colleagues that a peptide analog, 

ANP103-123, stimulated phosphatidyl inositol turnover in the presence of guanine 

nucleotides bovine aortic smooth muscle cells (M. Hirata, Chang, & Murad, 1989b). In 

2001, Abdel-Latif suggested that cAMP and cGMP regulated phosphatidyl inositol (PI) 
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turnover (Abdel-Latif, 2001). Mouawad and colleagues went on to hypothesise that 

NPR-C activated the PLC signalling pathway through the regulation of cAMP levels 

(Mouawad, Li, & Anand-Srivastava, 2004). They demonstrated that C-ANP4-23 stimulated 

the activity of PLC in a dose-dependent and time-dependent manner and that treatment 

by pertussis toxin completely abolished the stimulation of PLC, thereby demonstrating, 

for the first time, that NPR-C activated PLC signalling by decreasing cAMP levels 

(Mouawad et al., 2004). Li and colleagues demonstrated that natriuretic peptide receptor 

C stimulation resulted in decreased cAMP levels which was associated with an increase 

in phosphatidylinositol turnover suggesting that the effect on the phosphoinositide 

system was a secondary event mediated through the adenylate cyclase/cAMP system 

coupled to NPR-C. These mechanisms suggested a cross talk between the adenylate 

cyclase and phosphoinosotide signalling pathways (Figure 10).  

 
Figure 10: NPR-C signalling and the interaction between c-AMP and phospholipase C. NPR-C receptor-
mediated inhibition of adenylyl cyclase and resultant decreased levels of cANP may be responsible for NPR-C-
mediated stimulation of PI turnover.  

 Consequently, these cell signalling events induce a prolonged prohypertrophic 

response in VSMCs. 
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 NPR-C has also been implicated in the modulation of other signalling 

mechanisms such as the activation of endothelial NOS (eNOS) via Giα1 and Giα2 in 

gastrointestinal smooth muscle cells (Costa, Elesgaray, Balaszczuk, & Arranz, 2006; 

Murthy, Teng, Jin, & Makhlouf, 1998; Zeng et al., 2000). The same NPR-C agonist has 

been shown to inhibit ET-3-induced platelet-derived growth factor and MAP kinase 

activity in astrocytes (Prins et al., 1996b).   

1.7.2.3 Physiological Roles of NPR-C 
The NPR-C plays an important role in bone formation as demonstrated by 

skeletal deformities in NPR-C-/- mice. Anand-Srivastava and colleagues demonstrated 

that C-ANP4-23- mediated activation of NPR-C inhibited the secretion of progesterone in 

Leydig tumour cells (Anand-Srivastava et al., 1990). Additional studies have also 

demonstrated that NPR-C activation inhibited astroglial proliferation in rats (Levin & 

Frank, 1991; Nussenzveig, Lewicki, & Maack, 1990), as well as VSMC and endothelial 

cell proliferation (Cahill & Hassid, 1991). Kanwal and colleagues showed that NPR-C 

activation by a 15 aa juxtamembrane cytosolic fragment diminished dopamine influx in 

pheochromocytoma (PCC) (Kanwal, Lowe, & Trachte, 1999). Other studies suggested 

that ANP served to inhibit adrenaline release in deferent channels in rabbits as well as in 

pheochromocytomal cells treated with nerve growth factor (NGF) (Drewett, Trachte, & 

Marchand, 1989a; Drewett, Ziegler, Marchand, & Trachte, 1989b). Taken together, 

these studies suggested that NPR-C served as a neuromodulatory regulator of 

natriuretic peptides. In the gastrointestinal system, NPR-C plays a role in bile secretion 

by the liver. It was proven by Sabbatini and colleagues that the inhibitory effect of CNP 

on bile secretion was linked to NPR-C activation (Sabbatini et al., 2003). The utilization 

of C-ANP4-23 reduced bile secretion to the same degree as its application combined with 

CNP, thus indicating the importance of NPR-C in the liver.  

1.7.2.4 Regulation of NPR-C in Pathological Conditions 
Increased plasma levels of ANP can positively or negatively regulate NPR-C in 

pathological conditions (Anand-Srivastava & Trachte, 1993d). In the aorta of stroke-

prone SHR (SHR-SP) which are predisposed to vascular injuries, NPR-C mRNA is 

downregulated. This downregulation is reversed when SHR-SP are treated with TCV-

116, an AT1 receptor antagonist (Yoshimoto et al., 1996). This study suggests that the 
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downregulation of NPR-C mRNA is modulated by molecular mechanisms involving Ang 

II, which binds to the AT1 receptor. A similar downregulation is observed in the aortas of 

hypertensive DOCA-Salt rats (Naruse, Yoshimoto, Tanabe, & Naruse, 1998). Moreover, 

NPR-C is downregulated in the renal cortex and lungs of DOCA-Salt rats when the level 

of ANP is increased (Liu & Yoshimi, 1995). These last studies suggest that, at the 

vascular level, an increase in ANP can lead to the downregulation of the NPR-C 

receptor. Anand-Srivastava demonstrated that NPR-C/AC/Gi were all downregulated in 

A10 VSMCs (Anand-Srivastava, 2000). Furthermore, C-ANP4-23, in the presence of Ang 

II, upregulated NPR-C/AC/Gi, suggesting that NPR-C activation antagonised the 

physiological effects of Ang II on blood pressure (Anand-Srivastava, 2000).  

In 2004, Hobbs and colleagues would go on to show that NPR-C activation by C-

ANP4-23 and CNP lowered coronary perfusion and significantly reduced the rate of 

infarctions in Langendorff isolated hearts (Hobbs, Foster, Prescott, Scotland, & 

Ahluwalia, 2004). The same group, in 2007, investigated the effects of NPR-C 

antagonists on the vasodilatory capabilities of CNP in rat mesenteric arteries. The 

antagonist, M372049, inhibited, in a dose dependent manner, the vasorelaxant effects of 

CNP (Villar et al., 2007). These studies would indicate that NPR-C modulation plays a 

major role in blood pressure regulation. 

1.7.2.5 NPR-C and Vascular Remodeling 
In 1996, Prins and colleagues demonstrated that ANP, as well as C-ANP4-23, 

played an anti-mitogenic role in astrocytes (Prins, Biesiada, & Levin, 1996a). They 

subsequently showed that ANP and C-ANP4-23 inhibited MAPK phosphorylation induced 

by mitogenic agents ET-3, PDGF, and phorbol 12-myristate 13-acetate (PMA) (Prins et 

al., 1996b). They further proved that MAPK signalling inhibition was due to the inhibition 

of MEK. These studies suggested that the mitogenic action of ANP, as well as C-ANP4-

23, was strongly linked to NPR-C. ANP also possesses anti-proliferative properties in 

tissues such as endothelial cells, cardiac fibroblasts and vascular smooth muscle cells 

(Cao, Wu, & Gardner, 1995; Suhasini, Li, Lohmann, Boss, & Pilz, 1998). Furthermore, 

several studies have proved that ANP could inhibit hypertrophy in cardiomyocytes 

(Calderone, Thaik, Takahashi, Chang, & Colucci, 1998; F. Horio et al., 2001). Li and 

colleagues demonstrated that the activation of NPR-C attenuated vasoactive peptide-
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induced VSMC hypertrophy in A10 cells (Y. Li, Hashim, & Anand-Srivastava, 2006). 

Leucine incorporation studies, which measures the level of protein synthesis, would 

demonstrate that NPR-C activation by C-ANP4-23 inhibited elevated protein synthesis 

induced by vasoactive peptides. Enhanced protein synthesis was attenuated by the 

addition of PD-98059, wortmannin, and peptide 1. Furthermore, peptide 1 attenuated the 

enhanced expression of Gqα as well as the increased vasoactive peptide-induced 

phosphorylation of ERK1/2 and AKT. This study proved that NPR-C activation 

attenuated vasoactive peptide-induced enhanced protein synthesis, as well as the 

enhanced expression of Gqα and increased phosphorylation of the MAPK/P13K/AKT 

signalling pathways.  
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Hypothesis and Objectives 
Vascular remodelling is characterized by hyperproliferation and hypertrophy of 

vascular smooth muscle cells. The Gqα protein, a major G protein activated by the Ang 

II AT1 receptor, has been well established in its involvement in the development and 

progression of VSMC hypertrophy. Studies have shown that the enhanced level of the 

vasoactive endogenous peptide Ang II contributes to the elevated expression of Gqα 

and PLCβ1 proteins and enhanced protein synthesis in VSMCs from SHR through the 

activation of the MAP kinase/PI3K signalling pathways. We have recently shown that 

VSMCs from 16 week-old SHR exhibit enhanced expression of Gqα and PLCβ1 proteins 

and contribute to VSMC hypertrophy. In this regard, silencing Gqα and PLCβ1 by Gqα 

and PLCβ1 siRNA resulted in the inhibition of protein synthesis. Moreover, oxidative 

stress has been shown to contribute to the enhanced expression of Gqα and PLCβ1 

proteins and VSMC hypertrophy in SHR through the activation of c-Src which activates 

growth factor receptors and MAP kinase signalling.   

Natriuretic peptides comprise a family of three peptide hormones which regulate a 

variety of physiological functions including blood pressure through its interaction with 

natriuretic peptide receptors. C-ANP4-23 a synthetic, ring-deleted analog of ANP has 

been shown to interact specifically with NPR-C. We have earlier demonstrated that C-

ANP4-23, an agonist of NPR-C, with Gi activator sequences inhibited vasoactive peptide-

induced VSMC hypertrophy in A10 cells through the Gqα/MAPK/PI3K/AKT signalling 

pathway. Furthermore, we have demonstrated that in vivo treatment of C-ANP4-23 on 

SHR attenuated the development of high blood pressure as compared to WKY rats, 

through the inhibition of oxidative stress and growth factor expression. Moreover, the 

hyperproliferation of VSMCs from SHR was shown to be reduced by in vivo and in vitro 

treatment with C-ANP4-23.    

The present study was undertaken to elucidate whether C-ANP4-23 could also 

attenuate the inherent hypertrophy observed in VSMCs from SHR rats as well as to 

explore the different signalling molecules implicated. It is our hypothesis that the 

hypertrophy observed in SHR is attributed to AT1 receptor overexpression which leads 

to the elevation in oxidative stress. This, in turn, leads to an increase in the 

phosphorylation of c-Src which enhances the activation of growth factor receptors EGF-
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R, PDGF-R and IGF-1R which augments the phosphorylation of ERK1/2 and AKT. This 

results in an increase in Gqα and PLCβ1 expression (Figure 11).   

 
Figure 11: Schematic diagram demonstrating the proposed mechanism for VSMC hypertrophy in SHR. 
Vasoactive peptides (AngII, ET-1)-induced enhanced AT1-R expression results in an increase in oxidative stress. This 
augments c-Src phosphorylation which results in the elevated expressions of growth factor receptors. This results in 
an increase in phosphorylation of MAPK and AKT signalling pathways which augments Gqα and PLCβ1 expression, 
resulting in the enhancement in protein synthesis. 
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Abstract 
Hypertension is associated with vascular remodelling due to hyperproliferation 

and hypertrophy of vascular smooth muscle cells (VSMCs). We earlier showed the 

implication of enhanced expression of Gqα and PLCβ1 proteins in VSMCs from 16-

week-old spontaneously hypertensive rats (SHR). The present study was undertaken to 

investigate whether C-ANP4-23, a natriuretic peptide receptor-C (NPR-C) agonist that has 

been shown to inhibit vasoactive peptide-induced enhanced protein synthesis in 

VSMCs, could attenuate VSMC hypertrophy in rat models of cardiac hypertrophy and to 

explore the underlying mechanisms contributing to this inhibition. For these studies, 

aortic VSMCs from 16-week-old SHR were used.  The protein synthesis, a marker of 

hypertrophy, was determined by (3H)leucine incorporation and the expression of proteins 

was determined by Western blotting. Cell volume was determined by three-dimensional 

confocal imaging. The protein synthesis was significantly enhanced in VSMC from SHR 

as compared to WKY and C-ANP4-23 treatment attenuated the enhanced protein 

synthesis to WKY control levels. In addition, the enhanced expression of the AT1 

receptor as well as Gqα and PLCβ1 proteins, enhanced levels of superoxide anion (O2
-), 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, as well as the 

increased expressions of NADPH oxidase 4 (Nox4) and p47phox exhibited by VSMC from 

SHR were all attenuated by C-ANP4-23 treatment. Furthermore, C-ANP4-23 also 

attenuated the enhanced activation of epidermal growth factor receptor (EGF-R), 

platelet-derived growth factor receptor (PDGF-R), insulin-like growth factor 1 receptor 

(IGF-1R) and the enhanced phosphorylation of extracellular signal-regulated kinases 1/2 

(ERK1/2), AKT and c-Src. These results indicate that C-ANP4-23, via the activation of 

NPR-C, attenuates VSMC hypertrophy through its ability to decrease the overexpression 

of the AT1 receptor and Gqα/PLCβ1 proteins, the enhanced oxidative stress, the 

increased activation of growth factors and the enhanced phosphorylation of the 

MAPK/AKT signalling pathway. Thus, it can be suggested that C-ANP4-23, an activator of 

NPR-C, may be used as a therapeutic agent for the treatment of vascular complications 

associated with hypertension and atherosclerosis.  
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Introduction 
Hypertrophy and proliferation of vascular smooth muscle cells have been shown 

as important contributors of vascular remodelling and are important hallmarks of 

vascular disease such as atherosclerosis, restenosis and hypertension. Angiotensin II 

(Ang II) is one of the pathophysiological factors that promote VSMC hypertrophy through 

the activation of several signalling pathways including MAP kinase, PI3Kinase, 

phosphatidyl inositide, and tyrosine kinase (Atef & Anand-Srivastava, 2014; Y. Li et al., 

2006). Ang II upon interaction with AT1 receptor, a G protein-coupled receptor (GPCR), 

stimulates phospholipase C-β (PLC-β), which hydrolyzes inositol bisphosphate (PIP2) 

and produces inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] (IP3) and diacylglycerol (DAG) 

(Hubbard & Hepler, 2006) and activates protein kinase C (PKC) (Berridge, 1987; 
Smrcka, Hepler, Brown, & Sternweis, 1991).  

The implication of Gqα and associated signalling has been shown in Ang II-

induced VSMC hypertrophy (Y. Li et al., 2006). In addition, vasoactive peptides including 

Ang II, ET-1 and arginine-vasopressin (AVP) were reported to induce A10 VSMC 

hypertrophy through the activation of Gqα/MAP kinase/PI3K pathways (Y. Li et al., 2006). 

We recently showed that VSMCs from 16 week-old spontaneously hypertensive rats 

(SHR) exhibit enhanced expression of Gqα, PLCβ1 and PKCδ  proteins that  contribute 

to VSMC hypertrophy (Atef & Anand-Srivastava, 2014).   

Natriuretic peptides (NPs) comprise a family of three peptide hormones: atrial 

natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide 

(CNP) (Brenner et al., 1990; Sudoh, Kangawa, Minamino, & Matsuo, 1988), produced in 

mammalian hearts including humans. ANP regulates a variety of physiological functions 

including: blood pressure, renin release, vasopressin release, progesterone secretion, 

and endothelin release. It does so by interacting with natriuretic peptide receptors 

(NPRs) on the plasma membrane to modulate the levels of cAMP or cGMP or the 
activity of ion channels.  

Three subtypes of NPRs have been identified: NPR-A (Chinkers et al., 1989), 

NPR-B (Chang et al., 1989; Schulz et al., 1989) and NPR-C (Anand-Srivastava et al., 

1987). NPR-A and NPR-B are membrane guanylyl cyclase receptors, whereas NPR-C 
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does not possess guanylyl cyclase activity. NPR-C exists in two forms, with molecular 

masses of 67 and 77 kDa. The 77-kDa protein is implicated in ligand internalization as a 

clearance receptor (Woodard, Li, & Rosado, 2004), whereas the 67-kDa protein is 

coupled to adenylyl cyclase inhibition through the inhibitory guanine nucleotide 

regulatory protein Gi (Anand-Srivastava et al., 1990; Anand-Srivastava et al., 1987), or 

through the activation of phospholipase C (PLC) (M. Hirata et al., 1989b).  

 

ANP has been shown to act as an autocrine/paracrine modulator of cardiac 

hypertrophy and remodelling (T. Horio et al., 2000; Kishimoto, Rossi, & Garbers, 2001; 

Oliver et al., 1997). We have earlier demonstrated that C-ANP4-23 (des(Gln18, Ser19, 

Gly20, Leu21, Gly22)ANP4-23-NH2) (C-ANP4-23), an agonist that interacts specifically with 

NPR-C and small peptide fragments of cytoplasmic domain of NPR-C with Gi activator 

sequences inhibited vasoactive peptide-induced VSMC hypertrophy through 

Gqα/MAPK/P13K/AKT signalling pathways (Y. Li et al., 2006). In addition, we also 

showed that in vivo treatment  of SHR with C-ANP4-23 attenuated the development of 

high blood pressure through the inhibition of nitroxidative stress (Y. Li, Sarkar, Brochu, & 

Anand-Srivastava, 2014). Furthermore, the hyperproliferation of VSMCs from SHR was 

also shown to be attenuated by in vivo and in vitro treatment with C-ANP4-23 (El 

Andalousi, Li, & Anand-Srivastava, 2013). However, whether C-ANP4-23 could also 

attenuate VSMC hypertrophy in rat models of cardiac hypertrophy remains obscure. The 

present study was therefore undertaken to examine the effect of C-ANP4-23 on VSMC 

hypertrophy in SHR and to explore the implication of different signalling molecules 

including oxidative stress, c-Src, growth factor receptors, MAP kinase/PI3kinase and 

Gqα/PLCβ1 proteins in this process. 
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Materials and Methods 
Materials 
A ring-deleted analog of ANP; C-ANP4-23, was purchased from Bachem (Torrance, CA). 

Leucine, L-(4,5-3H(N)) was purchased from Perkin Elmer (Boston, MA). Gqα inhibitor 

YM-254890 was purchased from Sigma-Aldrich Chemical (St-Louis, Missouri, USA). 

Monoclonal Gqα antibody (10), monoclonal PLC-β1 antibody (D-8), monoclonal AT1 

receptor antibody (B-10), monoclonal (phospho)-ERK1/2 (phosphospecific-tyrosine204) 

antibody, polyclonal ERK1/2 antibody (C-14), polyclonal EGFR antibody, polyclonal IGF-

1R antibody, polyclonal (phospho)-c-Src antibody (phosphospecific-tyrosine-419), 

polyclonal PDGFR antibody, polyclonal (phospho)-IGF-1R antibody (phosphospecific-

tyrosine1165/1166), polyclonal (phosphor-specific-Ser473) AKT antibody, total AKT 

antibody, monoclonal dynein IC1/2 antibody (74-1), horseradish peroxidase-conjugated 

anti-mouse, anti-rabbit, anti-goat immunoglobulin and Western blotting reagents were 

purchased from Santa Cruz Biotech (Santa Cruz, CA, USA). Polyclonal (phospho)-

EGFR antibody (phospho-specific-tyrosine-1173) and polyclonal (phospho)-PDGFR 

(phospho-specific-tyrosine 857) were purchased from Calbiochem. Polyclonal Nox4 

antibody and polyclonal p47phox antibody were purchased from EMD Millipore 

(Etobicoke, Ontario, Canada). 

 
Animal Treatment 
14 week-old spontaneously hypertensive rats (SHR) and age-matched normotensive 

Wistar-kyoto (WKY) rats were purchased from Charles River Laboratories Canada (St-

Constant, Quebec, Canada). Animals were maintained at room temperature with free 

access to water and regular rat chow in 12h light-dark cycles. Rats were left for 1-2 days 

for adaptation. Blood pressure (BP) (anesthesia-free CODA non-invasive tail-cuff 

method) and heart rate (HR) were monitored twice per week for two weeks. At 16 weeks 

of age, BP and body weight (BW) were measured and rats were euthanized by carbon 

dioxide (CO2). The hearts and aortae were dissected out. After taking the heart weight, 

tissues were immediately frozen in liquid nitrogen and stored at -80oC. The aortae were 

immediately dissected for aortic vascular smooth cells (VSMCs) primary culture. All 

animal procedures used in the present study were approved by the Comité de 
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Déontologie de L’Experimentation sur les Animeaux (CDEA) of the University of 

Montreal (#99050). The investigation conforms to the Guide for the Care and Use of 

Laboratory Animals published by the US National Institutes of Health (Guide, NRC 

2011).   

 
Cell Culture and Incubation 

Aortic VSMCs from 16 week-old SHR and age-matched WKY rats were cultured 

as described previously (Anand-Srivastava, Franks, Cantin, & Genest, 1982). As 

reported earlier (Sandoval, Li, & Anand-Srivastava, 2011), these cells were found to 

contain high levels of smooth-muscle-specific actin. The cells were plated in 75-cm2 

flasks and incubated at 37oC in 95% air and 5% CO2 humidified atmosphere in 

Dulbecco’s modified Eagle’s medium (DMEM) (with glucose, L-glutamine, and sodium 

bicarbonate) containing 1% antibiotics (containing penicillin, streptomycin, and 

amphoterecin B) and 10% heat inactivated fetal bovine serum (FBS). The cells were 

passaged upon reaching confluence with 0.5% trypsin containing 0.2% EDTA and 

utilized between passages 2 and 8. Confluent cells were starved by incubation for 24 

hours in DMEM without FBS at 37oC to achieve cell quiescence. VSMCs from SHR and 

WKY rats were incubated for 24 hours in the absence or presence of 1 µM C-ANP4-23. 

After incubation, the cells were washed twice with ice-cold phosphate-buffered saline 

(PBS) and lysed in a 200 μl buffer containing 25 mM Tris-HCL (pH 7.5), 25 mM NaCl, 1 

mM sodium orthovanadate, 10 mM sodium fluoride, 10 mM sodium pyrophosphate, 2 

mM EDTA, 1 mM phenylmethylsulfonyl fluoride, 10 μg/ml aprotinin, 1% Triton X-100, 

0.1% sodium dodecyl sulphate, and 0.5 μg/ml leupeptin on ice. The cell lysates were 

centrifuged at 12,000 g for 15 min at 4oC, and the supernatants were used for Western 

blot analysis. Cell viability was checked by the trypan blue exclusion technique and 

indicated that >90~95 % cells were viable. 

  

Western blotting 

The levels of protein expression and phosphorylation were determined by Western 

blotting as described previously (Atef & Anand-Srivastava, 2014). Equal amounts of 

protein (30 µg) were subjected to 10% SDS-PAGE and transferred to a nitrocellulose 
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membrane with a semi-dry transblot apparatus (Bio-Rad Laboratories, Mississauga, 

Ontario) at 15 V for 45 min (Gqα, c-Src, ERK1/2 and AKT) or a liquid transfer apparatus 

(Bio-Rad Laboratories, Mississauga, Ontario) at 100 V for 1h (PLCβ1, EGF-R, IGF-1R 

and PDGF-R). Membranes were blocked for 1 hour at room temperature with 5% dry 

milk and incubated overnight with specific antibodies against different proteins: (10) 

against Gqα, (D-8) against PLC-β1, (E-4) against (phospho)-ERK1/2 (phosphospecific-

tyrosine204) antibody, (C-14) against ERK ½, phospho-specific Tyr1173 against p-EGFR, 

1005 against EGFR, phospho-specific Tyr857 against pPDGFR, 958 against PDGFR, 

phospho-specific-tyrosine1165/1166 against pIGF-1R, C-20 against IGF-1R, phospho-

specific-tyrosine-419 against p-c-Src and 74-1 against dynein in TBS containing 0.1% 

Tween-20 overnight at 4oC. Dynein was used as a loading control. The antibody-antigen 

complexes were detected by second antibody horseradish peroxidase-conjugated goat 

anti-mouse, donkey anti-goat and goat anti-rabbit, for 1h at room temperature. The blots 

were then washed three times with TBS-T before being visualized with enhanced 

chemiluminescence (ECL) (Sigma Aldrich, St. Louis, USA). Quantitative analysis of the 

proteins was performed by densitometric scanning of the autoradiographs using the 

enhanced laser densitometer (LKB Ultroscan XL, Pharmacia, Dorval, Qc, Canada) and 

quantified using the gel-scan XL evaluation software (version 2.1) from Pharmacia.  
 
Determination of protein synthesis 
VSMCs 16-wk-old SHR and age-matched WKY rats were grown to confluence in 12-well 

culture plates. Protein synthesis (cell hypertrophy) was evaluated by [3H]leucine 

incorporation into cells as described previously (Y. Li et al., 2006). Confluent cells were 

serum deprived for 24 h to induce cell quiescence and were incubated in the absence or 

presence of C-ANP4-23 (1 μM), YM-254890 (5 μM) for 24 h. [3H]leucine (2 μCi/well) was 

added at the same time as antagonists and inhibitors and further incubated for 24 h 

before the cells were harvested. The cells were rinsed twice with ice-cold 1× PBS and 

incubated with 5% TCA for 1 h at 4°C. After being washed twice with ice-cold 1× PBS, 

the cells were incubated with 0.4 N sodium hydroxide solution for 30 min at room 

temperature, and radioactivity was determined by liquid scintillation counter. 

 
Cell volume measurement 
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VSMCs from 16-wk-old SHRs and age-matched WKY rats were grown to 50% 

confluence in cell imaging dish (35 x 10 mm). Cells were serum deprived for 24h to 

induce cell quiescence and were incubated for 16h in the absence or presence of C-

ANP4-23 (1 µM). The cells were then washed twice and fixed with 10% formalin for 1 h in 

40°C and further incubated for 45 min at room temperature with whole cell stains 

reagent using Thermo Scientific Cellomics Whole Cell Stains (green). The volume of 

VSMCs was evaluated by three-dimensional live cell microscopy imaging using Zeiss 

LSM-T-PMT 700 (Zen 2012), Objective Plan-Apochromat 63x/1.40 Oil differential 

interference contrast (DIC), and 40x/1.40 Oil DIC. The three-dimensional microscopy 

datasets interpretation was performed with the software Imaris (Bitplane).  

 
Determination of Superoxide anion production and NADPH oxidase activity 
Basal superoxide anion production and NADPH oxidase activity in the VSMCs were 

measured using the lucigenin-enhanced chemiluminescence method (Sigma Aldrich, St. 

Louis, USA) with low concentration (5µmol/l) of lucigenin as previously described 

(Lappas et al., 2005). VSMCs from control and C-ANP4-23-treated SHR and WKY rats 

were washed in oxygenated Kreb-Hepes buffer and placed in scintillation vials 

containing lucigenin solution. The emitted luminescence was measured with a liquid 

scintillation counter (Wallac 1409: Turku, Finland) for 5 min. The average luminescence 

value was estimated, the background value subtracted and the result was divided by the 

total wet weight of tissue in each sample. The NADPH oxidase activity in the samples 

was assessed by adding 10-4mol/l NADH (Sigma Chemical Co.) in the vials before 

counting. Basal superoxide-induced luminescence was then subtracted from the 

luminescence value induced by NADH.  

 
Statistical Analysis 
The number of independent experiments is reported. Each experiment was conducted at 

least 4 times using separate cell population. All data are expressed as the mean ± SEM. 

Comparisons between groups were made with one-way analysis of variance (ANOVA) 

followed by Dunnett tests using GraphPad Prism5 software. Results were considered 

significant at a value of P < 0.05.  
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Results 

Effect of C-ANP4-23 treatment on the enhanced level of protein synthesis and cell 
volume of VSMCs from SHR and age-matched WKY rats 

 We earlier showed that C-ANP4-23 attenuated vasoactive peptide-induced 

enhanced protein synthesis (a marker of hypertrophy) in A10 VSMCs (Y. Li et al., 2006). 

To investigate if C-ANP4-23 could also attenuate VSMC hypertrophy in animal model of 

hypertrophy, the effect of C-ANP4-23 on protein synthesis was examined in VSMCs from 

SHR and WKY rats (Fig. 1A).  As reported earlier (Y. Li et al., 2006), the protein 

synthesis as determined by leucine incorporation in VSMCs from SHR was enhanced by 

about 80% as compared to WKY rats and C-ANP4-23 treatment attenuated it to control 

levels. On the other hand, C-ANP4-23 treatment did not have any significant effect on 

protein synthesis in WKY rats.  

We also determined the effect of C-ANP4-23 on cell volume, another marker of 

VSMC hypertrophy (Fig. 1B). The cell volume was enhanced by about 100% in VSMCs 

from SHR as compared to WKY rats, and this enhanced cell volume was attenuated by 

C-ANP4-23 treatment by about 90%.  In addition, C-ANP4-23 treatment also decreased 

basal cell volume in WKY rats by about 50%.  

 
Effect of C-ANP4-23 treatment on enhanced levels of Gqα and PLCβ1 proteins in 
VSMCs from SHR and age-matched WKY rats 

A role of enhanced expression of Gqα and PLCβ1 proteins in hypertrophy of 

VSMCs from SHR has been recently shown (Atef & Anand-Srivastava, 2014). To 

investigate if C-ANP4-23-induced attenuation of VSMC hypertrophy in SHR is also due to 

the inhibition of enhanced  expression of Gqα and PLCβ1 proteins, we examined the 

effect of  C-ANP4-23 treatment on the expression  of  Gqα and PLCβ1 proteins in VSMCs 

from SHR and WKY rats (Fig. 2). As reported earlier (Atef & Anand-Srivastava, 2014), 

the levels of Gqα (Fig. 2A) and PLCβ1 (Fig. 2B) were enhanced by about 80% and 70% 

respectively and  C-ANP4-23 treatment, reduced these levels by about 75% and 80% 

respectively.  

To further confirm the requirement of Gqα in C-ANP4-23-induced attenuation of 

VSMC hypertrophy in SHR, we inhibited Gqα by pretreating the cells with GqI, an 
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inhibitor of Gqα, and then examined the effect of inhibition of Gqα on C-ANP4-23-induced 

attenuation of VSMC hypertrophy in SHR and WKY rats. Results shown in Fig. 3 

indicate that GqI as well as C-ANP4-23 alone attenuated the enhanced protein synthesis 

in VSMCs from SHR to almost control levels. However, when Gqα was inhibited by 

pretreatment of cells with specific inhibitor of Gqα (GqI) C-ANP4-23-induced inhibition of 

enhanced protein synthesis was attenuated by about 60% suggesting the implication of 

Gqα in C-ANP4-23-induced attenuation of VSMC hypertrophy. 

 
Effect of C-ANP4-23 treatment on the enhanced expression of AT1 receptor in 
VSMCs from SHR and age-matched WKY rats 

Angiotensin II (Ang II) has been shown to induce VSMC hypertrophy (Atef & 

Anand-Srivastava, 2014). In addition, we recently showed that the enhanced levels of 

endogenous angiotensin II (Ang II) through the activation of AT1 receptors contributed to 

the enhanced expression of Gqα and PLCβ1 proteins as well as VSMC hypertrophy in 

SHR (Atef & Anand-Srivastava, 2014). Therefore, it was of interest to examine if C-

ANP4-23 treatment inhibits the enhanced levels of AT1 receptor which then contributes to 

the attenuation of VSMC hypertrophy. To test this, we examined the effect of C-ANP4-23 

treatment on the expression of AT1 receptor in VSMCs from SHR and WKY rats (Fig. 4). 

The expression of AT1 receptor is significantly augmented by about 80% in VSMCs from 

SHR as compared to WKY rats and was attenuated to below WKY control level by C-

ANP4-23 treatment.  In addition, C-ANP4-23 also decreased the expression of AT1 

receptor in WKY rats by about 30%.  

 
Effect of C-ANP4-23 treatment on enhanced NADPH oxidase activity and 
superoxide anion production in VSMCs from SHR and age-matched WKY rats 

 The enhanced oxidative stress has been shown to contribute to VSMC 

hypertrophy and enhanced expression of Gqα/PLCβ1 proteins in SHR (Atef & Anand-

Srivastava, 2016).  To investigate if C-ANP4-23-evoked attenuation of VSMC hypertrophy 

is attributed to its ability to decrease the enhanced oxidative stress, we examined the 

effect of C-ANP4-23 on the levels of O2
- and NADPH oxidase activity in VSMCs from SHR 

and WKY rats. Results shown in Fig. 5, demonstrate that the levels of O2
¯ (Fig. 5A) and 
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NADPH oxidase activity (Fig. 5B) that were enhanced by approximately 100% and 450% 

respectively in VSMCs from SHR as compared to WKY rats were completely attenuated 

to control WKY levels by C-ANP4-23 treatment. In addition, C-ANP4-23 treatment reduced 

the levels of O2
-
  and NADPH oxidase activity by about 50% and 25% respectively in 

WKY rats.  

 
Effect of C-ANP4-23 treatment on the enhanced levels of NADPH oxidase subunits 
Nox4 and p47phox in VSMCs from SHR and age-matched WKY rats 

To further explore whether C-ANP4-23-induced attenuation of oxidative stress was 

associated with the decreased expression of the NADPH oxidase subunits, we 

examined the effect of C-ANP4-23 treatment on the expression of Nox4 and p47phox 

proteins, critical subunits involved in NADPH oxidase activation in VSMCs from SHR 

and WKY rats. Results shown in Fig. 6 indicate that the levels of Nox 4 (Fig. 6A) and 

p47phox (Fig. 6B) that were enhanced by 70% and 120% respectively in VSMCs from 

SHR as compared to WKY rats and were attenuated to almost control levels by C-ANP4-

23 treatment whereas the levels of these proteins were not significantly affected in WKY 

rats by this treatment.  

 
Effect of C-ANP4-23 treatment on enhanced c-Src activation in VSMCs from SHR 
and age-matched WKY rats 

The implication of non-receptor tyrosine kinase c-Src in VSMC hypertrophy and 

augmented expression of Gqα/PLCβ1 proteins in SHR has previously been shown (Atef 

& Anand-Srivastava, 2016). To investigate if C-ANP4-23 mediated anti-hypertrophic effect 

is through its ability to attenuate the enhanced activity of c-Src, the effect of C-ANP4-23 

treatment on c-Src activation was examined in VSMCs from SHR and age-matched 

WKY rats (Fig. 7). As reported earlier (Atef & Anand-Srivastava, 2016) the 

phosphorylation of Tyr418 on c-Src was increased by almost 70% in VSMCs from SHR 

as compared to WKY rats and C-ANP4-23 treatment attenuated this enhanced 

phosphorylation to control levels. On the other hand, this treatment did not have any 

significant effect on c-Src phosphorylation in WKY rats.    
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Effect of C-ANP4-23 treatment on enhanced phosphorylation of growth factor 
receptors in VSMCs from SHR and age-matched WKY rats 

The role of growth factor receptor transactivation in enhanced protein synthesis  

in SHR  has been demonstrated (Atef & Anand-Srivastava, 2016). Therefore, it was of 

interest to explore whether C-ANP4-23 treatment attenuates VSMC hypertrophy through 

the inhibition of enhanced activation of growth factor receptors. To test this, we 

examined the effect of C-ANP4-23 treatment on the phosphorylation of EGF-R, IGF-1R, 

and PDGF-R. Results shown in Fig. 8 indicate that the levels of phosphorylated EGF-R 

(Fig. 8A), IGF-1R (Fig. 8B) and PDGF-R (Fig. 8C) were enhanced by approximately 

85%, 95% and 95% respectively in VSMCs from SHR as compared to WKY rats and this 

enhanced phosphorylation was attenuated by about 90%, 95% and 90% respectively by 

C-ANP4-23 treatment. On the other hand, C-ANP4-23 treatment did not have any 

significant effect on the phosphorylation of these receptors in WKY rats. 

 
Effect of C-ANP4-23 treatment on enhanced phosphorylation of ERK1/2 and AKT in 
VSMCs from SHR and age-matched WKY rats 

Since MAP kinase and AKT have been implicated in VSMC hypertrophy from 

SHR  (Atef & Anand-Srivastava, 2014), it was of interest to investigate if C-ANP4-23-

evoked attenuation of VSMC hypertrophy is attributed to its ability to inhibit the 

enhanced activation of ERK1/2  and AKT. To test this, the effect of C-ANP4-23 treatment 

on the levels of phosphorylated ERK1/2 (Fig. 9A) and AKT (Fig. 9B) were examined in 

VSMCs from SHR and WKY rats.  The phosphorylation levels of ERK1/2 and AKT were 

enhanced by about 120% and 85% respectively in VSMCs from SHR as compared to 

WKY rats and were significantly abolished by C-ANP4-23 treatment. However, this 

treatment did not affect the phosphorylation of ERK1/2 and AKT in VSMCs from WKY 

rats.  

 
  



	 61	

Discussion 
We earlier showed that VSMCs from 16 week old SHR exhibit enhanced 

expression of Gqα and PLCβ1 proteins that contribute to VSMC hypertrophy (Atef & 

Anand-Srivastava, 2014, 2016). We also showed that C-ANP4-23, an agonist of NPR-C, 

as well as other small peptide fragments of the cytoplasmic domain of NPR-C, 

attenuated the vasoactive peptide-induced hypertrophy of A10 VSMCs through 

Gqα/MAPK/P13K/AKT signalling pathways (Y. Li et al., 2006). However, in the present 

study, we report for the first time that of C-ANP4-23 treatment attenuates hypertrophy of 

VSMCs from 16 week-old SHR, a model of cardiac hypertrophy  through the inhibition of 

enhanced expression of AT1, Gqα/ PLCβ1 proteins and ROS and ROS-mediated c-Src 

signalling pathways. 

 The Gqα protein and associated signalling pathway activated by several 

hormones such as angiotensin II, endothelin, phenylephrine has also been implicated in 

the development and progression of cardiac hypertrophy and heart failure (Akhter et al., 

1997; Bogoyevitch et al., 1996; Dorn, Tepe, Wu, Yatani, & Liggett, 2000; Hein et al., 

1997; Milano et al., 1994). The implication of Gqα and MAP kinase/PI3Kinase signalling 

in vascular hypertrophy induced by vasoactive peptides in A10 VSMCs has also been 

shown (Y. Li et al., 2006). Furthermore, Gqα and the associated signalling pathway, 

including the activation of IP3-Ca+2 and DAG-PKC, has been implicated in the 

development and progression of VSMC hypertrophy (Ohtsu et al., 2008). We recently 

showed the role of enhanced expression of Gqα and PLCβ1 in VSMC hypertrophy in 

SHR (Atef & Anand-Srivastava, 2014, 2016). We now show that C-ANP4-23, an NPR-C 

agonist attenuates the enhanced expression of Gqα and PLCβ1 proteins as well as 

hypertrophy of VSMCs from SHR and suggest that C-ANP4-23 –evoked inhibition of 

enhanced protein synthesis is attributed to its ability to attenuate the enhanced levels of 

Gqα and PLCβ1 proteins. The implication of Gqα in C-ANP4-23-induced attenuation of 

VSMC hypertrophy in SHR is further substantiated by our study showing that inhibition 

of Gqα by a specific inhibitor GqI (Keys, Greene, Koch, & Eckhart, 2002) blocked the 

ability of C-ANP4-23 to completely attenuate the enhanced protein synthesis in these 

cells. These results are in accordance with the study of Harris et. al who have also 

shown that  inhibition of Gqα signalling by GqI reduced VSMC hypertrophy in the aortas 
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of hypertensive rats (Harris et al., 2007). In addition, the activation of NPR-C by C-

ANP4–23 and resultant decreased levels of intracellular cAMP (Anand-Srivastava et al., 

1990; Anand-Srivastava et al., 1987) may not be the underlying mechanism contributing 

to the antihypertrophic effect of C-ANP4–23,  because the intracellular cAMP levels are 

shown to be decreased in VSMCs from SHR as compared to WKY rats (Gusan & 

Anand-Srivastava, 2013) and may be responsible for the hypertrophy of these cells. This 

notion is further supported by the fact that elevating the intracellular levels of cAMP by 8-

Br-cAMP attenuated the hypertrophy of VSMCs from SHR (unpublished observation). 

 Furthermore, enhanced levels of  endogenous ANG II AT1 and  endothelin-1 

ETA  were shown to contribute to the  enhanced expression of Gqα and PLCβ1 and 

VSMC hypertrophy in SHR  because AT1 and ETA receptor antagonists losartan and 

BQ123  attenuated the enhanced expression of Gqα, PLCβ1  as well as increased 

protein synthesis (Atef & Anand-Srivastava, 2014). In addition, Nakashima et. al have 

also reported the role of AngII-induced Gq signalling in vascular hypertrophy 

(Nakashima et al., 2008). In the present study, we show that C-ANP4-23 attenuated the 

enhanced expression of AT1 receptor in VSMCs from SHR to below control levels and 

suggest that C-ANP4-23-evoked antihypertrophic effect may also be attributed to its ability 

to decrease the levels of AT1 receptor.  

Oxidative stress has been shown to play an integral role in the development of 

cardiovascular disease, including hypertension (Atef & Anand-Srivastava, 2016; Gomez 

Sandoval & Anand-Srivastava, 2011; Griendling & Alexander, 1997; Lappas et al., 

2005). The implication of ROS in cardiomyocyte and VSMC hypertrophy has been 

demonstrated in several studies (Korsgaard, Aalkjaer, Heagerty, Izzard, & Mulvany, 

1993; Rice et al., 2008; Weber et al., 2005). We earlier showed the  role of enhanced 

oxidative stress  in the overexpression of Gqα and PLCβ1 proteins in VSMCs from SHR 

(Atef & Anand-Srivastava, 2016). Our results showing that C-ANP4-23 treatment of 

VSMCs from SHR attenuated the enhanced levels of O2
- production, NADPH oxidase 

activity as well as the increased levels of NADPH oxidase subunits p47phox and Nox4 are 

consistent with our earlier study showing that in vivo treatment of SHR with C-ANP4-23 

attenuated the enhanced levels of O2¯, NADPH oxidase activity, and the enhanced 

expression of NOX4, p47phox in aorta, heart as well as in kidney (Y. Li et al., 2014) and 
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suggest that C-ANP4-23-induced inhibition of oxidative stress may also play a role in the 

antihypertrophic effect of C-ANP4-23.  

The role of growth factor receptors in VSMC hypertrophy has been demonstrated 

by several studies (Beaucage & Moreau, 2004; Bouallegue, Simo Cheyou, Anand-

Srivastava, & Srivastava, 2013; Bouallegue, Vardatsikos, & Srivastava, 2009). We 

earlier showed the implication of growth factor receptor activation in enhanced 

expression of Gqα and PLCβ1 proteins and VSMC hypertrophy in SHR (Gomez 

Sandoval & Anand-Srivastava, 2011; Y. Li, Levesque, & Anand-Srivastava, 2010; 

Sandoval et al., 2011).  In the present study, we demonstrate for the first time that 

treatment of VSMCs from SHR with C-ANP4-23 attenuated the enhanced phosphorylation 

of EGF-R, PDGF-R and IGF-1R and suggest that the antihypertrophic effect of C-ANP4-

23 may also be attributed to its ability to attenuate the enhanced activation of growth 

factor receptors.  

We earlier showed the role of c-Src in the increased expression of Gqα and 

PLCβ1 proteins and enhanced protein synthesis in VSMCs from SHR (Atef & Anand-

Srivastava, 2016). The implication of c-Src in high glucose-induced overexpression of 

Gqα and PLCβ1 in A10 VSMCs has also been reported (Descorbeth & Anand-

Srivastava, 2010). Furthermore, c-Src has also been shown as the intervening molecule 

between oxidative stress and growth factor receptor transactivation because N-

acetylcysteine, a scavenger of O2
- inhibited the enhanced phosphorylation of c-Src 

(Gomez Sandoval & Anand-Srivastava, 2011; Y. Li et al., 2010), and c-Src inhibitor PP2,  

inhibited the enhanced phosphorylation of PDGF-R and IGF-1R in VSMCs from SHR 

(Gomez Sandoval & Anand-Srivastava, 2011). In the present study, we showed that C-

ANP4-23 also attenuated the enhanced activation/phosphorylation of c-Src to control 

levels and suggest that C-ANP4-23-induced inhibition of c-Src activation contributes to the 

attenuation of downstream signalling molecules resulting in the attenuation of 

hypertrophy of VSMCs from SHR. 

The implication of MAPK signalling in Gqα-induced cardiac hypertrophy has been 

shown (Minamino et al., 2002). In addition, the role of MAP kinase signalling in 

enhanced expression of Gqα and PLCβ1 proteins and VSMC hypertrophy induced by 

vasoactive peptides (Y. Li et al., 2006) and in SHR (Atef & Anand-Srivastava, 2014) is 
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also well documented. In the present study, we demonstrate that C-ANP4-23 treatment of 

VSMCs from SHR attenuates the enhanced phosphorylation of ERK1/2 as well as of 

AKT suggesting that the antihypertrophic effect of C-ANP4-23 may be mediated through 

the inhibition of the enhanced activity of the MAP kinase and PI3kinase signalling 

pathways. These results are in concordance with a previous study demonstrating that C-

ANP4-23 and small fragments of the cytoplasmic domain of NPR-C attenuated vasoactive 

peptide-induced hypertrophy of A10 VSMCs via MAPK signalling pathway (Y. Li et al., 

2006).    

In conclusion, we have shown that NPR-C activation by C-ANP4-23 attenuates the 

enhanced expression of Gqα and PLCβ1 proteins, hypertrophy, AT1 receptor 

expression, oxidative stress, c-Src activation, activation of growth factor receptors such 

as EGF-R, IGF-1R and PDGF-R, and MAPK signalling, all the signalling pathways that 

were shown to be implicated in the enhanced expression of Gqα and PLCβ1 proteins in 

VSMCs from SHR. Thus, it may be suggested that C-ANP4-23-induced attenuation of the 

increased expression of Gqα and PLCβ1 proteins and hypertrophy of VSMCs from SHR 

may be attributed to its ability to inhibit the enhanced expression of AT1 receptor, 

enhanced oxidative stress and downstream signalling pathways. Furthermore. C-ANP4-

23 may have a protective effect against oxidative stress-induced vascular complications 

of hypertension and could be used as a potential therapeutic agent in the treatment of 

vascular complications associated with hypertension and other cardiovascular diseases.  
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Figures and Legends  
 
Figure 1: Effect of C- ANP4-23 treatment on enhanced protein synthesis and cell 
volume in aortic VSMCs from 16-wk-old SHR and age-matched WKY rats. (A) 
VSMCs from SHR and WKY rats were incubated in the absence (control) or presence of 

C-ANP4–23 for 24 h. [3H] Leucine incorporation was determined as described in 

“Materials and Methods”. Results are expressed as a % of WKY CTL, taken as 100%. 

Values are means ± SEM of 3 separate experiments. ***P < 0.001 vs WKY CTL, ###P < 

0.001 vs SHR CTL. (B) VSMCs from SHR and age-matched WKY rats were grown to 

50% confluence in petri dishes. Cells were serum deprived for 24 h to induce cell 

quiescence and were incubated for 24 h in the absence (control) or presence of C-

ANP4–23. The cells were then washed twice and fixed with 10% formalin for 1 h in 4°C 

and further incubated 45 min in the room temperature with whole cell stains reagent 

using Thermo Scientific Cellomics Whole Cell Stains (green). The volume of VSMCs 

was evaluated by 3-dimensional live cell microscopy imaging with inverse point scanning 

confocal microscope with 2 PMT channels: Objective Plan-Apochromat 63×/1.40 Oil 

differential interference contrast (DIC) and 40×/1.40 Oil DIC. Three-dimensional 

microscopy datasets interpretation was performed with the software Imaris (Bitplane). 

Values are means ± SEM of 3 separate experiments using different cell cultures.  The 

results are expressed as the average of cell volume of 15 different cells. **P < 0.01, ***P 

< 0.001 vs. WKY CTL; ###P < 0.001 vs. SHR CTL. 

 

Figure 2: Effect of C-ANP4-23 treatment on the enhanced expression of Gqα and 
PLCβ1 in aortic VSMCs from 16-wk-old SHR and age-matched WKY rats. VSMCs 

from SHR and age-matched WKY rats were treated in the absence (control) or presence 

of C-ANP4–23 for 24 h. The cell lysates were prepared and subjected to Western blotting 

using specific antibodies against Gqα (A) and PLCβ1 (B) as described in “Materials and 

Methods”. Dynein was used as the loading control. The proteins were quantified by 

densitometric scanning.  The results are expressed as percentage of WKY control, taken 

as 100%. Values are means ± SEM of 3 separate experiments using different cell 

cultures. *P < 0.05, ***P < 0.001 vs WKY CTL; ###P < 0.001 vs SHR CTL. 
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Figure 3: Effect of the inhibition of Gqα on enhanced protein synthesis in aortic 
VSMCs from 16-wk-old SHR and age-matched WKY rats. Confluent VSMCs from 16-

wk-old SHR and age-matched WKY rats were incubated in the absence or presence of 

YM-254890 (5 µM) for 24h. [3H]leucine incorporation was measured as described in 

“Materials and Methods”. The results are expressed as a percentage of WKY control, 

taken as 100%. Values are means ± SEM of 3 separate experiments using different cell 

cultures. ***P < 0.001 vs WKY CTL; ##P < 0.01, ###P < 0.001 vs SHR CTL.   

 
Figure 4: Effect of C-ANP4-23 treatment on enhanced AT1 receptor expression in 
aortic VSMCs from 16-wk-old SHR and age-matched WKY rats. VSMCs from SHR 

and WKY rats were incubated in the absence (control) or presence of C-ANP4–23 for 24 

h. The cell lysates were prepared and subjected to Western blotting using specific 

antibodies against AT1 receptor as described in “Materials and Methods”. Dynein was 

used as the loading control. The proteins were quantified by densitometric scanning. 

The results are expressed as percentage of control, taken as 100%. Values are means ± 

SEM of 3 separate experiments using different cell cultures. *P < 0.05, ***P < 0.001 vs. 

WKY CTL; ###P < 0.001 vs. SHR CTL. 

 
Figure 5: Effect of C-ANP4-23 treatment on enhanced O2

– production and NADPH 
oxidase activity in aortic VSMCs from 16-wk-old SHR and age-matched WKY rats. 

VSMCs from 16 week-old SHR and WKY rats were incubated in the absence (control) or 

presence of C-ANP4–23 for 24 h, and O2¯ production (A) and NADPH activity (B) were 

determined as described in “Materials and Methods”. The results are presented as 

means ± SEM of 3 separate experiments using different cell cultures. *P < 0.05, ** P < 

0.01, ***P < 0.001 vs WKY CTL; ### P < 0.001 vs SHR CTL. 

 

Figure 6: Effect of C-ANP4-23 treatment on the enhanced expression of NADPH 
oxidase subunits p47phox and Nox4 in aortic VSMCs from 16-wk-old SHR and age-
matched WKY rats. VSMCs were treated for 24 h in the absence (control) or presence 

of C-ANP4–23. The cell lysates were prepared and subjected to Western blotting using 
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specific antibodies against Nox4 (A) and p47phox (B) as described in “Materials and 

Methods”. Dynein was used as the loading control. The proteins were quantified by 

densitometric scanning. The results are expressed as percentage of WKY control, taken 

as 100%. Values are means ± SEM of 3 separate experiments using different cell 

cultures. **P < 0.01, ***P < 0.001 vs WKY CTL; ##P < 0.01, ###P < 0.001 vs SHR CTL. 

 

Figure 7: Effect of C-ANP4-23 treatment on the enhanced phosphorylation of c-Src 
in aortic VSMCs from 16-wk-old SHR and age-matched WKY rats. VSMCs were 

treated for 24 h in the absence (control) or presence of C-ANP4–23. The cell lysates were 

prepared and subjected to Western blotting using specific antibodies against phospho-c-

Src and c-Src as described in “Materials and Methods”. The proteins were quantified by 

densitometric scanning. The results are expressed as a percentage of WKY control, 

taken as 100%. Values are means ± SEM of 3 separate experiments using different cell 

cultures. ***P < 0.001 vs WKY CTL; ###P < 0.001 vs SHR CTL. 

 

Figure 8: Effect of C-ANP4-23 treatment on the enhanced expression of epidermal 
growth factor receptor (EGF-R) (A), insulin growth factor receptor (IGF-1R) (B) and 
platelet derived growth factor receptor (PDGF-R) (C) in aortic VSMCs from 16-wk-
old SHR and age-matched WKY rats. VSMCs were treated for 24 h in the absence 

(control) or presence of C-ANP4–23. The cell lysates were prepared and subjected to 

Western blotting using specific antibodies against pEGF-R/EGF-R (A), pIGF-1R/IGF-1R 

(B) and pPDGF-R/PDGF-R (C) as described in “Materials and Methods”. The proteins 

were quantified by densitometric scanning. The results are expressed as a percentage 

of WKY control, taken as 100%. Values are means ± SEM of 3 separate experiments 

using different cell cultures. ***P < 0.001 vs WKY CTL; ##P < 0.01, ###P < 0.001 vs SHR 

CTL. 

 

Figure 9: Effect of C-ANP4-23 treatment on the enhanced phosphorylation of 
ERK1/2 (A) and AKT (B) in aortic VSMCs from 16-wk-old SHR and age-matched 
WKY rats. VSMCs were treated for 24 h in the absence (control) or presence of C-

ANP4–23. The cell lysates were prepared and subjected to Western blotting using specific 
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antibodies against pERK1/2/ERK1/2 (A) and pAKT/AKT (B) as described in “Materials 

and Methods”. The proteins were quantified by densitometric scanning. The results are 

expressed as a percentage of WKY control, taken as 100%. Values are means ± SEM of 

3 separate experiments using different cell cultures. ***P < 0.001 vs WKY CTL; ##P < 

0.01 ###P < 0.001 vs SHR CTL. 
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Discussion 
The vascular remodeling seen in hypertension is in large part attributed to the 

hypertrophy of vascular smooth muscle cells. SHR rats have been shown to exhibit 

VSMC hypertrophy (Atef & Anand-Srivastava, 2014). Hypertrophy of VSMCs has been 

associated with elevated Gqα and PLCβ1 protein expression through the Ang II AT1 

receptor, as well  as the enhanced phosphorylation of the MAPK signalling pathway. It 

has further been demonstrated that enhanced oxidative stress and the resulting 

activation of c-Src and growth factor receptors may act as an upstream signalling 

mechanism in the development of VSMC hypertrophy (Atef & Anand-Srivastava, 2014, 

2016; Y. Li et al., 2006). It was therefore of interest to explore this signalling mechanism 

and its components as potential targets for the development of new therapies in the 

treatment of cardiovascular disease.  

The natriuretic peptide receptor type C represents 95% of all natriuretic peptide 

receptors and recognizes all natriuretic peptides, including C-ANP4-23(des(Gln18, Ser19, 

Gly20, Leu21, Gly22) ANP4-23-NH2), a synthetic ring-deleted analog of ANP (Y. Li et al., 

2006; Mouawad et al., 2004). NPR-C was initially implicated in ligand internalization as a 

clearance receptor, however it was later identified to be coupled to adenylate cyclase 

inhibition through the inhibitory guanine nucleotide regulatory protein, Gi (Anand-

Srivastava et al., 1990; Anand-Srivastava et al., 1987), or to activation of PLC (M. Hirata 

et al., 1989b). C-ANP4-23, which was shown to specifically activate NPR-C, and not NPR-

A or NPR-B (Brown & Chen, 1995; Koller et al., 1991), demonstrated a decrease in 

cAMP levels which resulted in the activation of phosphatidyl inositol turnover signalling. 

This suggested a cross-talk between NPR-C-mediated adenylate cyclase inhibition and 

PLC signalling pathways (Arejian, Li, & Anand-Srivastava, 2009). It has been 

demonstrated that C-ANP4-23 and small peptide fragments of cytoplasmic domain of 

NPR-C with Gi activator sequences inhibited vasoactive peptide-induced vascular 

hypertrophy through Gqα/MAPK/P13K/AKT signalling pathways in VSMCs (Y. Li et al., 

2006). Moreover, in vivo C-ANP4-23 has been reported to attenuate high blood pressure 

through decreasing the enhanced oxidative stress and growth factor expression in aorta 

from SHR as compared to WKY rats (Y. Li et al., 2014). 
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As a result of these findings, our present study was undertaken to explore 

whether C-ANP4-23 treatment could attenuate VSMC hypertrophy in rat models of cardiac 

hypertrophy and to explore the underlying mechanisms contributing to this inhibition, 

including its ability to decrease the overexpression of the AT1 receptor, the elevated 

expression of Gqα and PLCβ1 proteins, the enhanced oxidative stress, elevated c-Src 

protein levels, the increased activation of growth factor receptors and the enhanced 

phosphorylation of MAPK/AKT signalling pathways. 

The Gqα protein has been well established in its involvement in the development 

and progression of VSMC hypertrophy. Research on transgenic mice expressing a Gqα 

protein inhibitor (GqI) at the level of VSMCs elucidated, for the first time, the role of the 

Gqα signalling pathway in vasoactive peptide-induced hypertension and cardiac 

hypertrophy (Keys et al., 2002). In 2008, Ohtsu and colleagues demonstrated that the 

stimulation of VSMCs with ANG II resulted in an increase in cell volume and not cell 

number. The use of a Gqα inhibitor completely blocked these hypertrophic responses, 

while demonstrating an inhibition of EGFR transactivation. Furthermore, a G protein-

independent AT1 agonist failed to stimulate hypertrophic responses (Ohtsu et al., 2008). 

It has been previously identified that the Gqα protein expression is enhanced in VSMCs 

from 16-wk-old and not 12-wk-old SHR (Atef & Anand-Srivastava, 2014). Our results 

demonstrate, for the first time, that C-ANP4-23 treatment attenuates Gqα overexpression 

in VSMCs from 16-wk-old SHR. These results are in concordance with another study 

indicating that C-ANP4-23 and other small peptide fragments of the cytoplasmic domain 

of NPR-C inhibited VSMC hypertrophy via Gqα and MAPK signalling pathways in A10 

cells (Hashim et al., 2006). Moreover, C-ANP4-23 treatment decreased basal Gqα levels 

in WKY rats.  Our results further demonstrate that C-ANP4-23 treatment attenuated the 

elevated expression of PLCβ1 in VSMCs from SHR. The isoform, PLCβ1, as well as 

Gqα, have been previously identified to play a critical role in the signalling mechanisms 

induced by Ang II in VSMCs (Schelling, Nkemere, Konieczkowski, Martin, & Dubyak, 

1997). In another study done on cardiomyocytes, it was elucidated that the 

overexpression of the isoform PLCβ1 was associated with cellular hypertrophy (Filtz, 

Grubb, McLeod-Dryden, Luo, & Woodcock, 2009). This same study confirmed the vital 

role of PLCβ1 in the prohypertrophic response initialized by Gqα.  
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Under hypertensive conditions, arteries exhibit vascular hypertrophy due to the 

activation of the renin angiotensin system (Morishita et al., 1994a; Morishita, Higaki, 

Miyazaki, & Ogihara, 1992). Synthesized locally in vascular tissue, and independent of 

additional factors, Ang II has been well documented in its ability to induce VSMC 

hypertrophy in an autocrine and paracrine manner through various signalling 

mechanisms associated with the AT1 receptor (Berk, 2001; Berk & Rao, 1993; Berk et 

al., 1989; Gibbons, Pratt, & Dzau, 1992). In VSMCs, the AT1 receptor plays a major role 

in Gqα signalling (Ohtsu et al., 2008). The AT1 receptor has been implicated in VSMC 

hypertrophy, through the MAPK pathway. It was demonstrated that through the AT1 

inhibitor losartan, the overexpression of Gqα and PLCβ1, the increased phosphorylation 

of p42/44MAPKs and the elevated rate of protein synthesis were all attenuated in 

VSMCs from SHR (Atef & Anand-Srivastava, 2014). Our results demonstrate that the 

expression of AT1 receptor is significantly augmented in VSMCs from SHR as compared 

to WKY rats and was restored to below WKY control level by C-ANP4-23 treatment.  In 

addition, C-ANP4-23 also decreased the expression of AT1 receptor in WKY rats. El 

Mabrouk and collaborators demonstrated the importance of the AT1 receptor in 

mediating protein synthesis in VSMCs from SHR and WKY rats treated with Ang II (El 

Mabrouk, Touyz, & Schiffrin, 2001). It is therefore our theory that the attenuation of 

protein synthesis through NPR-C activation in VSMCs from SHR is mediated through 

the downregulation of the Ang II AT1 receptor.  

VSMCs from SHR are characterized by an elevation in the production of 

superoxide anion and an overexpression of NADPH oxidase subunits (Gusan & Anand-

Srivastava, 2013; Saha, Li, Lappas, & Anand-Srivastava, 2008b). The role of oxidative 

stress on the overexpression of Gqα and PLCβ1 in VSMCs from aorta of STZ diabetic 

rats treated with glucose has been shown (Descorbeth & Anand-Srivastava, 2010). ROS 

has been implicated in the development of VSMC hypertrophy induced by vasoactive 

agonists such as Ang II (Weber et al., 2005). In 2016, Atef and colleagues demonstrated 

oxidative stress to be implicated in the overexpression of Gqα and PLCβ1 as well as in 

the development of hypertrophy in VSMCs from SHR (Atef & Anand-Srivastava, 2016). 

In this study, we have demonstrated that the enhanced oxidative stress observed in 

SHR was attenuated following C-ANP4-23 treatment. More specifically, our results 
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indicate that following C-ANP4-23 treatment, the enhanced superoxide anion production 

and NADPH oxidase activity were reduced back to control levels. The basal levels of 

superoxide anion production and NADPH oxidase activity in WKY rats were also 

decreased following C-ANP4-23 treatment. Furthermore, the NADPH oxidase subunits 

Nox4 and p47phox, which were enhanced in SHR, were also reduced to almost control 

levels following C-ANP4-23 administration. In 2004, the important role of DPI and NAC, 

known for their ability to inhibit oxidative stress, in the inhibition of protein synthesis 

induced by catecholamines in VSMCs was elucidated (Bleeke, Zhang, Madamanchi, 

Patterson, & Faber, 2004). Daou and collaborators demonstrated significant effects of 

DPI on the attenuation of the rate of protein synthesis induced by ET-1 in VSMCs (Daou 

& Srivastava, 2004). Atef and colleagues demonstrated that through the use of NAC and 

DPI, the overexpression of Gqα and PLCβ1 as well as the enhanced protein synthesis 

were attenuated in VSMCs from SHR. It is therefore our theory that the attenuation of 

protein synthesis observed through the activation of NPR-C is mediated through its 

ability to reduce the enhanced levels of oxidative stress.  

We have previously demonstrated the implication of oxidative stress in the 

transactivation of growth factor receptors in VSMCs from SHR (Mbong & Anand-

Srivastava, 2012). EGF-R has been documented as playing a key role in the 

development and progression of cell hypertrophy in diseases such as cancer (Fischer, 

Hart, Gschwind, & Ullrich, 2003). Through the use of siRNA specific for EGF-R, 

Kagiyama and colleagues demonstrated a decrease in the Gqα and PLCB1 expression 

as well as an attenuation of the elevated levels of protein synthesis observed in VSMCs 

from SHR (Kagiyama et al., 2002; Kagiyama, Qian, Kagiyama, & Phillips, 2003). The 

transactivation of growth factor receptors has been implicated in the molecular 

mechanisms through which ROS elevates the expression of Gqα and PLCβ1 in VSMCs 

from SHR as the use of inhibitors NAC and DPI attenuated the hyperphosphorylation of 

EGF-R, PDGF-R and IGF-1R as well as the enhanced protein levels of EGF-R and IGF-

1R. Moreover, inhibitors of EGF-R (AG1478), IGF-1R (AG1028) and PDGF-R (AG1295) 

significantly reduced the overexpression of Gqα and PLCβ1 proteins as well as the 

enhanced level of protein synthesis in VSMCs from SHR (Atef & Anand-Srivastava, 

2016).  Studies have also provided evidence that c-Src transactivates growth factor 
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receptors in VSMCs from SHR (Gomez Sandoval & Anand-Srivastava, 2011; Y. Li et al., 

2010; Sandoval et al., 2011). Pharmacological inhibition of c-Src has not only been 

shown to significantly attenuate the overexpression of Gqα and PLCβ1 proteins but also 

the level of protein expression and phosphorylation of growth factor receptors EGF-R, 

IGF-1R and PGDF-R (Atef & Anand-Srivastava, 2016). Our results demonstrate that 

NPR-C activation by C-ANP4-23 decreases the activation of EGF-R, PDGF-R and IGF-1R 

in VSMCs from SHR thus indicating the role of growth factor receptors in the 

antihypertrophic effects of C-ANP4-23.  Our results also indicate that C-ANP4-23 treatment 

significantly decreased the enhanced phosphorylation of c-Src seen in SHR suggesting 

that the antihypertrophic effect of C-ANP4-23 could be mediated through c-Src activation.  

The implication of MAPK and PI3/AKT signalling in physiological and pathological 

hypertrophy has been well documented (Abdelhamid & El-Kadi, 2015; G. Chen et al., 

2014; Minamino et al., 2002; Pillai, Sundaresan, & Gupta, 2014). Furthermore, the role 

of MAPK signalling in enhanced VSMC hypertrophy from SHR has been demonstrated 

(Atef & Anand-Srivastava, 2014). We have already shown an elevation in ERK1/2 

phosphorylation in VSMCs from SHR as compared to WKY (Lappas et al., 2005). Our 

results indicate that C-ANP4-23 treatment of VSMCs from SHR attenuates the enhanced 

phosphorylation of MAPK and AKT signalling pathways. These results are in 

concordance with a previous study demonstrating the effect of C-ANP4-23 in attenuating 

Gqα and PLCβ1 expression as well as hypertrophy via the MAPK and AKT signalling 

pathways, in A10 smooth muscle cells (Hashim et al., 2006). We therefore postulate that 

the antihypertrophic effects of C-ANP4-23 are mediated through the inhibition of the 

MAPK and AKT signalling pathways.   
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Conclusions 
 Our work during this masters has permitted us to explore certain aspects of the 

molecular mechanisms involved in the vascular smooth muscle cell hypertrophy 

observed in spontaneously hypertensive rats, an animal model of essential 

hypertension. Our results indicate that the rate of protein synthesis in VSMCs from SHR 

is significantly enhanced as compared to WKY rats and that C-ANP4-23 treatment 

resulted in the attenuation of these levels. The levels of AT1 expression, as well as Gqα 

and PLCβ1 were enhanced in VSMCs from SHR as compared to WKY and were 

attenuated following C-ANP4-23 treatment. The rate of NADPH oxidase activity and O2
- 

production, as well as the expressions of NADPH oxidase subunits NOX4 and p47phox 

were elevated in VSMCs from SHR rats and these levels were decreased following 

treatment with C-ANP4-23. Furthermore, in VSMCs from SHR, the phosphorylation rates 

of c-Src, EGF-R, PDGF-R and IGF-1R as well as that of ERK1/2 and AKT were all 

elevated as compared to WKY and were significantly reduced following C-ANP4-23 

treatment. 

 In conclusion, we have demonstrated for the first time that treatment of SHR rats 

with C-ANP4-23, an agonist of NPR-C, results in the attenuation of VSMC hypertrophy 

(figure 11). The hypothesis put forward is that the resulting decrease in hypertrophy is 

attributed to a decrease in AT1 receptor expression which leads to the reduction in 

oxidative stress. This, in turn, leads to a decrease in the phosphorylation of c-Src which 

attenuates the activation of growth factor receptors EGF-R, PDGF-R and IGF-1R which 

reduces the phosphorylation of ERK1/2 and AKT. This results in the reduction of Gqα 

and PLCβ1 expression.   
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Figure 12: Schematic diagram demonstrating the proposed mechanism for the anti-hypertrophic effect of an 
NPR-C agonist in VSMCs from SHR. Vasoactive peptides (AngII, ET-1)-induced enhanced AT1-R expression is 
reduced which results in a decrease in oxidative stress. This attenuates c-Src overexpression which diminishes the 
elevated expressions of growth factor receptors. This results in a decrease in phosphorylation of MAPK and AKT 
signalling pathways which reduces Gqα and PLCβ1 overexpression, resulting in an attenuation of protein synthesis.  
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Future Work 

Our study elucidates the antihypertrophic effects of NPR-C activation in VSMCs 

from SHR. We demonstrated the role of the AT1 receptor, oxidative stress, c-Src and 

growth factor receptor activation, ERK1/2 and AKT phosphorylation and Gqα and PLCβ1 

expression in VSMC hypertrophy. We further demonstrated C-ANP4-23’s ability to 

attenuate the overexpression of these signalling molecules. Our future studies will aim to 

explore the in vivo effects of C-ANP4-23 treatment on the regulation of hypertension in 

SHR and other animal models of hypertension. This would further confirm the correlation 

between C-ANP4-23 treatment and its effects on vascular remodeling and would help to 

establish C-ANP4-23 as a potential therapeutic agent in the treatment of hypertension and 

the complications which result from it.  

The implication of EGF-R in enhanced protein synthesis has been demonstrated. 

EGF-R levels have been shown to be significantly increased in SHR and an inhibition of 

EGF-R activation has been shown to considerably reduce the level of protein synthesis 

(Atef & Anand-Srivastava, 2016). Thus it can be concluded that EGF-R plays an 

important role in vascular remodeling. It would be of interest, therefore, to explore the in 

vivo effects of an EGF-R inhibitor on the development of hypertension in SHR.  

We further wish to study the role of Ca2+ in protein synthesis as studies have 

demonstrated the implication of enhanced oxidative stress in the increase of Ca2+ in 

VSMCs (Lounsbury, Hu, & Ziegelstein, 2000). Furthermore, elevations in intracellular 

Ca2+ levels have been shown to modulate the phosphorylation and dephosphorylation of 

proteins and regulate signal transduction mechanisms (Ermak & Davies, 2002). The role 

of C-ANP4-23 treatment on intracellular calcium levels would be of interest to examine.    

This study has brought to light the proof that NPR-C activation possesses an 

antihypertrophic effect. It is our aim that these results will help to establish the 

therapeutic role of NPR-C agonists in the treatment of hypertension. The potential for 

the antihypertrophic properties of NPR-C activation may also extend to other diseases 

which utilize the same signalling components which responded positively to C-ANP4-23 

treatment.  
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