Université de Montréal

A consistent test of independence between

random vectors

par
Guillaume Boglioni Beaulieu

Département de mathématiques et de statistique

Faculté des arts et des sciences

Mémoire présenté a la Faculté des études supérieures
en vue de 'obtention du grade de
Maitre és sciences (M.Sc.)

en statistique

24 novembre 2016

© Guillaume Boglioni Beaulieu, 2016






Université de Montréal

Faculté des études supérieures

Ce mémoire intitulé

A consistent test of independence between

random vectors

présenté par
Guillaume Boglioni Beaulieu

a été évalué par un jury composé des personnes suivantes :

Martin Bilodeau

(président-rapporteur)

Pierre Lafaye de Micheaux

(directeur de recherche)

Benjamin Avanzi

(codirecteur)

Bernard Wong

(codirecteur)

Maciej Augustyniak

(membre du jury)

Mémoire accepté le
20 décembre 2016







SUMMARY

Testing for independence between random vectors is an important question in sta-
tistics. Because there is an infinite number of ways by which a random quantity
X can be dependent of another random quantity Y, it is not a trivial question.
It has been found that classical tests such has Spearman [33],Wilks [40], Kendall
[18] or Puri and Sen [24] are ineffective to detect many forms of dependence.
Recent, significant results on the topic include Székely et al. [35], Gretton et al.
[14] or Heller et al. [15]. However, most of the available tests can only detect de-
pendence between two random quantities. Because pairwise independence does
not guarantee mutual independence, techniques testing the hypothesis of mutual
independence between any number of random quantities are required. In this
research we propose a non-parametric and universally consistent test of indepen-

dence, applicable to any number of random vectors of any size.

Precisely, we extend the procedure described in Heller et al. [15] in two ways.
Firstly, we propose to use the ranks of the observations instead of the observations
themselves. Secondly, we extend their method to test for independence between
any number of random vectors. As the distribution of our test statistic is not
known, a permutation method is used to compute p—values. Then, simulations
are performed to obtain the power of the test. We compare the power of our new
test to that of other tests, namely those in Genest and Rémillard [10], Gretton
et al. [14], Székely et al. [34], Beran et al. [3] and Heller et al. [15]. Examples fea-
turing random variables and random vectors are considered. For many examples
investigated we find that our new test has similar or better power than that of
the other tests. In particular, when the random variables are Cauchy, our new
test outperforms the others. In the case of strictly discrete random vectors, we

present a proof that our test is universally consistent.

Keywords: Independence test, multivariate data, random vectors
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SOMMAIRE

Tester I'indépendance entre plusieurs vecteurs aléatoires est une question impor-
tante en statistique. Puisqu’il y a une infinité de manieres par lesquelles une
quantité aléatoire X peut dépendre d’une autre quantité aléatoire Y, ce n’est pas
une question triviale, et plusieurs tests “classiques” comme Spearman [33], Wilks
[40], Kendall [18] ou Puri and Sen [24] sont inefficaces pour détecter plusieurs
formes de dépendance. De significatifs progres dans ce domaine ont été réalisés
récemment, par exemple dans Székely et al. [34], Gretton et al. [14] ou Heller
et al. [15]. Cela dit, la majorité des tests disponibles détectent I'indépendance
entre deux quantités aléatoires uniquement. L’indépendance par paires ne garan-
tissant pas I'indépendance mutuelle, il est pertinent de développer des méthodes
testant I'hypothese d’indépendance mutuelle entre n’importe quel nombre de vari-
ables. Dans cette recherche nous proposons un test non-paramétrique et toujours

convergent, applicable a un nombre quelconque de vecteurs aléatoires.

Précisément, nous étendons la méthode décrite dans Heller et al. [15] de deux
manieres. Premierement, nous proposons d’appliquer leur test aux rangs des ob-
servations, plutot qu’aux observations elles-mémes. Ensuite, nous étendons leur
méthode pour qu’elle puisse tester 'indépendance entre un nombre quelconque
de vecteurs. La distribution de notre statistique de test étant inconnue, nous
utilisons une méthode de permutations pour calculer sa valeur-p. Des simula-
tions sont menées pour obtenir la puissance du test, que nous comparons a celles
d’autres test décrits dans Genest and Rémillard [10], Gretton et al. [14], Székely
et al. [34], Beran et al. [3] et Heller et al. [15]. Nous investiguons divers exemples
et dans plusieurs de ceux-ci la puissance de notre test est meilleure que celle des
autres tests. En particulier, lorsque les variables aléatoires sont Cauchy notre test
performe bien mieux que les autres. Pour le cas de vecteurs aléatoires strictement

discrets, nous présentons une preuve que notre test est toujours convergent.

Keywords: Test d’indépendance, données multivariées, vecteurs aléatoires
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Chapter 1

INTRODUCTION

1.1. GENERAL BACKGROUND

The concept of independence between events or random variables plays a cru-
cial role in probability and statistics. It is introduced quickly in any basic under-
graduate course of these disciplines. An intuitive formulation of the concept is

stated in Resnick [27] as follows:

Independence is a basic property of events and random variables
in a probability model. Its intuitive appeal stems from the easily
envisioned property that the occurrence or non-occurrence of an
event has no effect on our estimate of the probability that an in-

dependent event will or will not occur.

Another way to phrase this might be to say that two events are independent
when knowledge about one of them gives absolutely no information about the
other. A more formal definition of independent random wvariables will be given
later on, as this research project is primarily interested in answering the question

how do we detect dependence?
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1.2. RESEARCH AIM

The objective of this thesis is to build a statistical procedure to test the hy-
pothesis of mutual independence between a collection of random vectors. We
propose a test that is non-parametric (i.e. distribution free), universally con-
sistent (i.e. with a sample size large enough the test will detect any form of
dependence) and applicable to any number of random vectors of any size. To
do so, our starting point is the procedure proposed in Heller et al. [15] which
is consistent to detect dependence between two random vectors X and Y. To

summarize, the present research offers two contributions.

First, in the bivariate setting (i.e. testing the independence of two random
vectors X and Y) we propose a simple modification of Heller et al. [15] that we
believe is best suited in many situations. Secondly, we extend the methodology

of Heller et al. [15] to test for multivariate independence.

To avoid ambiguity let us state right away that by a ‘multivariate’ indepen-
dence testing we mean detecting dependence between more than two random
variables or vectors. Hence, although others might call testing the independence
between two vectors a multivariate procedure, this is not what we intend when

we use the term multivariate.



1.3. RESEARCH MOTIVATION

To quote Sen and Srivastava [30], “perception of relationships is the corner-
stone of civilization. By understanding how certain phenomena depend on others
we learn to predict the consequences of our actions and to manipulate our envi-
ronment”. This is well-said, and indeed as statisticians we wish to understand the
relations dictating the real-life phenomena that surrounds us. At the very base
of any statistical model there is the notion that information about one or many

variables contains some information about one or many other variables.

Hence we will say, perhaps in a lack of humility, that detecting dependence is
the very basic problem in statistics. Before we can explain the relation between
two variables, say X and Y, we want to confidently answer the more fundamental
question is there a relation between X and Y ? This is because any attempt at

modeling would be a waste of time if they are in fact independent.

Now, this problem is not new. If this is an old problem, and very simple to
write down, why is there so much literature still being produced on the topic?
One answer might be that there is an infinite number of ways by which a ran-
dom quantity X can be dependent of another random quantity Y. We aim at
developing statistical tests valid against any departure from independence (i.e.
universally consistent), but this is not at trivial task. It has been found, see for
instance Székely et al. [34], that classical tests such has Spearman [33], Wilks [40],
Kendall [18] or Puri and Sen [24], although vastly used in practice, are ineffective

to detect many forms of dependence.

1.3.1. An example of non-monotone dependence

To illustrate this, we consider a first example with a dataset taken from the
The World Factbook, a publication from the CIA (Central Intelligence Agency)®.
This dataset contains the 2015 birth rates and mortality rates from 145 coun-
tries with a population over 2 millions. Note these are the ‘crude’ rates, meaning
aggregated at all ages. The scatter plot of birth rate against mortality rate is
displayed on Figure 1.1.

Thttps: / /www.cia.gov/library /publications /the-world-factbook /geos /xx.html
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Fic. 1.1. Birth rate against mortality in 145 countries

We notice quite clearly a pattern between the two variables, a kind of “C”
shape. Because any recognizable pattern between the variables reveals depen-
dence, we would expect a consistent test to find it. However, if we compute
Pearson’s correlation for this dataset we obtain a value of 0.139, and a p-value
(testing the hypothesis that the correlation is zero) of 0.095. Therefore, with the
conventional level of significance of 5% we do not conclude that the coefficient of
correlation is different than zero. The same goes for Spearman’s rho that has a
value of —0.035 (p-value of 0.675) and Kendall’s tau that has a value of —0.032
(p-value of 0.574).

Hence these classical and vastly used methods fail to detect a dependence that
is quite clear at the sight of the scatter plot. This is so because the dependence
displayed here is not linear, nor is it monotone. To detect dependence in such
a context, we need more recent methods. For instance, distance covariance by
Székely et al. [35], or the HHG test by Heller et al. [15] (named after the authors
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Heller, Heller and Gorfine) both result in a p-value < 0.001, hence rejecting in-
dependence. The test we propose in the present research also yields a p-value
< 0.001.

To make this example slightly more complete we make one final comment.
Although we know very little about demography, it would probably be very sim-
plistic to investigate birth rate as a function of mortality only. If we separate the
145 countries in two groups, based on their GDP per capita (one group contain-
ing the 33% poorest countries, and the other containing the remaining richest
countries), we obtain a much clearer picture of the situation, see Figure 1.2. We
can identify two very different trends in those groups. Hence, here the interaction

with a third variable is relevant to understand the relation between birth rate and

mortality.
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Fic. 1.2. Birth rate against mortality in 145 countries for two
categories of GDP per capita



1.3.2. An example of pairwise independence

We wish to detect any form of dependence between variables, even ‘weird’
looking relations like in the previous example. But we also want to detect de-
pendence between an arbitrary number of random variables (or vectors), not
only two. This is because pairwise independence does not guarantee total mu-
tual independence. Therefore, when dealing with more than two random vectors,
a procedure testing only pairwise independence could fail to detect dependence
when in fact there is, even if this procedure is consistent to detect any departure

from independence.

To illustrate this, we present a second motivational example, taken from Ro-
mano and Siegel [28]. Let X, Y and Z; be independent random variables, of
standard normal distribution. If we define Z as follows

Z =2y - sign(X - Y),

it yields that Z also has a standard normal distribution. Now, it can be shown that
X, Y, Z are pairwise independent, but not mutually independent. On an intuitive
level this means that information on X or Y does not bear any information on Z,
and conversely. However, joint information on X and Y gives some information

about Z. For instance:
P[Z>0/X>0,Y >0=1#P[Z>0]=1/2.
Likewise:
PX>0,Y>0,Z7>0=1/4#P[X >0]-P[Y >0]-P[Z>0]=1/8.

To see graphically that the three variables XY, Z are pairwise independent
we generate a sample from the joint distribution of (X,Y, 7). We display the
pairwise scatter plots of the empirical cumulative distribution functions of the
observations, Fn(X), Fn(Y), FN(Z), on Figures 1.3 to 1.5. As expected, they
reveal no pattern. We plot the empirical CDF of the observations, rather than
the observation themselves to facilitate visual examination. This choice will be

explained with more details later on, in section 3.1.

For now, we have that all pairs are independent, and therefore one might be
tempted to conclude that XY and Z are mutually independent. This wrong

assumption might turn out to be quite harmful. For instance, once one assumes
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mutual independence of X,Y and Z, one might furthermore conclude that:
S=X+Y+Z~N(0,3)

Which would be true if X, Y and Z where indeed mutually independent. How-
ever, in our present example, S is far from being N(0,/3). To illustrate this, we
simulated a sample of S = X +Y + Z. Figure 1.6 shows the resulting (empiri-
cal) density of S, plotted against the density of a N(0,/3). They differ markedly.
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To be fair, one could say that a 3D plot of {Fn(X), Fn(Y), Fy(Z)} might
have helped to reveal that X,Y Z are not independent. Such a plot is displayed
in Figure 1.7. Note that points with a positive value of Z are in blue and points

with negative value of Z are in green. Examining this plot we realize that some
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areas contain no points at all. Having the model that generated the data in mind,
this makes sense: if X and Y are both positive or both negative, then it is im-

possible for Z to be negative.

That being said, visual examination has great limitations. More subtle forms
of dependence might be harder to see with the naked eye on a 3D plot. Moreover,
past three dimensions, visualization becomes impossible. Also, in the presence of
large data sets, it might not be feasible nor efficient to plot all pairs or triplets of

variables to find associations between variables.

Hence, we need a systematic way to detect dependence of any form between
an arbitrary number of random variables or vectors. This is precisely the scope

of this research.
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1.4. DEFINITIONS OF INDEPENDENCE

To be a bit more formal, here we state some sufficient criteria for the indepen-
dence of random variables. We consider first the case of two random variables,
say X and Y.

1.4.1. Bivariate case

Probably the most common sufficient criteria to state the independence of

two random variables X and Y is given in the following theorem.

Theorem 1.4.1. X and Y are independent if and only if

forall xz,y € R.

A slightly different criteria, which will turn useful in the context of the present

research is given next.

Theorem 1.4.2. X and Y are independent if and only if
Plo; <X <oy Y <] = Plag S X <o) - Plyn <Y <] (1.4.2)

Jor all xy,79,91,y2 € R.
Another alternative definition taken from Duan [7] is stated next.

Theorem 1.4.3. X and Y are independent if and only if

E[f(X)g(Y)] = E[f(X)IE[g(Y)] (1.4.3)

for all Borel measurable and bounded functions f and g.

The same result holds if the restriction on f and ¢ is that they are bounded

and continuous, see Rényi [25].

1.4.2. Multivariate case

The two first definitions have ‘obvious’ generalizations in the multivariate

case. We can get the first in any probability textbook, so for instance in Resnick
[27], p. 94 we find:



14

Theorem 1.4.4. A finite collection of random wvariables X1, -+, Xy is indepen-

dent if and only if

k

=1

for all x; € R.

Said otherwise, a collection of random variables are independent if and only if
their joint distribution function is the product of the marginal distribution func-
tions. Yet again, we can establish a slightly different result, which is handy in

this research.

Theorem 1.4.5. A finite collection of random wvariables X1, -+ , X} is indepen-

dent if and only if

k

i=1

for all a;,b; € R.

The proof of this result is given in Appendix A.1.
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1.5. OUTLINE

The present research is organized as follows. Chapter 2 reviews some im-
portant methods to detect dependence in the current literature. Starting with
classical results, we move towards more recent, state-of-the art procedures, the
last of those being Heller et al. [15] which is the starting point for our own test.
In chapter 3 we propose a simple modification to the Heller et al. [15] procedure
and we conduct power simulations to see if in the bivariate case this modification
changes the performance of the test. Then in chapter 4 we extend their proce-
dure to test for independence in a multivariate context. Again we present and
discuss power simulations. Chapter 5 summarizes the relevant contributions we

are making, presents some limits of the method as well as possible follow-up work.






Chapter 2

LITERATURE REVIEW

2.1. OVERVIEW

The problem of testing independence between variables is more than a hundred
years old, and consequently the existing literature presents a variety of methods
to address the question. We are interested in methods that apply in a general
context. This means that the test must meet several requirements that we now

explain, in relation to the existing literature.

First, we seek methods that do not make strong assumptions, for example on
the distribution of the random variables in use. Classical rank methods (Spear-
man [33], Kendall [18] or Blomqvist [5]) satisfy this criterion. However, they have

the important flaw that they can only detect certain forms of dependence.

Moreover, we want methods that allow to test the independence between more
than two (ideally any) number of random vectors. Such methods exist, but often
at the cost of distributional assumptions, for instance Wilks [40], extended in
Wald and Brookner [38], assume multivariate normality, while Gieser and Ran-

dles [11], extended in Um and Randles [37], assume elliptical distributions.

The last, and arguably most difficult feature to obtain is that of universal
consistency. It has been given a truly satisfying answer only with recent results
such as Székely et al. [34], Gretton et al. [13] or Heller et al. [15], which however
do not meet the second requirement as they are made to test independence be-
tween pairs of variables. Beran et al. [3] as well as the multivariate version of
the Hilbert-Schmidt Independence Criterion (HSIC) found in Pfister et al. [23]

meet both three of the above-mentioned requirements, and as such will be used
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as benchmarks for the test developed in the present research.

We now give details about some existing methods, starting with ‘classical’ re-

sults, and then moving on to recently proposed universally consistent procedures.
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2.2. CLASSICAL DEPENDENCE MEASURES

2.2.1. Pearson’s correlation

Pearson’s correlation was first introduced by Galton [9], but its current for-
mulation is due to Pearson [22]. Still vastly used today, this index is, as noted
by Lee Rodgers and Nicewander [21], “remarkably unaffected by the passage of

time”. Hence, we start with a review of this crucial statistical tool.

Pearson’s correlation is a standardization of the covariance. Let X and Y be
two random variables with expectations E[X| = pu,, E[Y] = pu,, and variances
VIX] =02, VY] = 0}, their correlation coefficient is given by

COVIX,Y]  E[(X — pux)(Y — py)]

PXYy = = . (221)
ox0y 0x0y

Dividing by oxoy insures that the resulting index will be between —1 and 1.

Roughly speaking, it will be positive if:

e When X > puy, it is likely that Y > py.
e When X < puy, it is likely that Y < py.

It takes the value 0O if and only if the covariance is 0. This requires the
expectation of the product of X and Y to be equal to the product of the individual
expectations,

E[XY] = FE[X|E[Y]. (2.2.2)

On the other hand, independence between the random variables X and Y
means that the joint cumulative distribution function is equal to the product of

the marginal distribution functions
Fxy(z,y) = Fx(z)Fx(x), Va, Vy. (2.2.3)

As already presented in section 1.4. Note that because (2.2.3) has to be true
for every value x and y, independence is a much stronger assertion than non-

correlation. In other words,

independence of X,Y = pxy = 0. (2.2.4)

But the implication in the other direction is false. Indeed, we can build several
examples of dependent random variables that are uncorrelated. We can even have

two deterministically related random variables (knowing one implies knowing the
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other), that still are not correlated, as shown in the following example.

Exemple 2.2.1. Let X be a zero-mean random variable with a symmetric distri-
bution, such as a N(0,0). Let Y = X?, then

=
S

=
I

E[X*]=0;

Following (2.2.2), X and Y are not correlated, even though they are (strongly)
dependent.

This example reminds us that the correlation coefficient characterizes the lin-
ear trend existing between X and Y. This is one important but very specific type
of relation. Correlation is unable to detect any other form of association. In the
example, the relation between X and Y, although deterministic, was of quadratic

form and hence correlation could not detect it.

To motivate this point further more, recall definition 1.4.3. For independence
to hold, E[f(X)g(Y)] must be equal to E[f(X)]E[g(Y)] for any Borel measurable
and bounded functions f and g. Uncorrelatedness is only one of such cases, that

of f(z) = x and g(y) = y, meaning it is a far weaker condition than independence.

Now, say we have collected a sample of (X,Y’) and we want to use it to find
the correlation between X and Y. Most of the time, we will not know from what
distribution this data came from. Therefore, in practice we need the empirical

version of Pearson’s correlation, given by

i=1
o | 2.2.5
Toy (n —1)s.s, ( )

Where ¥ and s, are respectively the mean and standard deviation of the

collected sample from X, that is

1 n

I _
z=— >, 52 = > (zi — )
i=1

n—1i3

Note that what we mentioned earlier about the theoretical correlation still
holds with its empirical counterpart: it will only detect a linear relationship be-

tween two variables.
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One final comment to make is that correlation, even when it is significantly
different than 0, might give limited information about the relation between X
and Y. This is because in the end, it is just an index (one single number) and
as such it cannot hold all the information contained in the sample. To illustrate
this, let us use a famous example known as Anscombe’s quartet, see Anscombe
[1]. In this example, four data sets have the same significantly positive correlation
of 0.816. However, they look vastly different, as shown in Figure 2.1.

Y1

Y3

F1a. 2.1. Four (very) different sets of data with equal correlation

This means that although the correlation coefficient can be interpreted as the
strength of the linear trend between two variables, it is far from delivering the

whole picture.

2.2.2. Spearman’s rho

Moving on, we present a few methods to detect dependence that are based
on ranks. Provided that it is possible to compute ranks (which is not doable for
instance with categorical data), these methods do not require any assumptions
about the distribution of the random variables, and hence meet the first require-

ment listed in section 2.1. Furthermore, they bring something new compared
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to standard correlation because they detect not only linear but also monotone
relations between variables. The first such method is due to Spearman [33]. We

present the empirical version of what is now known as Spearman’s rho.

Let (z1,vy1), -+, (s, yn) be a sample of size n from some bivariate distribution
(X,Y). Let R; be the rank of observation z; among the n observations from X.
For instance, if x; is the smallest X observed, then R; = 1. Eventual ties between
observations are dealt with using the average method (see Section 3.1 for details).
Let S; be the rank of observation y;, defined in the same way. Spearman’s rho,

ps is computed as Pearson’s correlation coefficient of (R;, S;),7 € (1,--- ,n).

Alternatively, if we define a quantity D; as follows:

D; =R; — S;
then, if the n ranks (R;, S;) are all distinct integers, we have the compact formula:
6 é D?

e (2.2.6)

ps =1-—

Spearman’s rho is also an index between —1 et 1. Note that if i D? = 0,
then pg = 1. This happens when, within the sample of (X,Y), an ob;g;vation T
always has the same rank as its counterpart ;. Stated otherwise, if an increase
in X always corresponds to an increase in Y, then ps = 1. Conversely, if the
ranks of x; are precisely the opposite of those of y;, (an increase in X always

corresponds to an decrease in V') then pg = —1.

Let us emphasize the fact that the range of relations detected by pg is not
those of strictly linear form. For instance, let us consider the data showed in
Figure 2.2. Although the relationship between X and Y is not strictly linear (it

is exponential), it is monotone and strictly increasing. Hence, in this case pg = 1.

Consider the four sets of data of Anscombe’s quartet on Figure 2.1. We
compute the associated Spearman’s rho, and corresponding p-values. From left

to right and top to bottom the results are as follows

0.818 (p-value = 0.004)
0.691 (p-value = 0.023)
0.991 (p-value < 0.001)
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0.500 (p-value = 0.117).

Recall that in those examples Pearson’s correlation was always the same
(0.816), however the scores here differ markedly. Interestingly, for the last set

of data the p-value is greater than 5% and we would not reject independence.

2.2.3. Kendall’s tau

Another popular rank measure used to detected monotone forms of depen-
dence between X and Y is due to Kendall [18]. Let (z;,y;) and (zj,y;) be
two pairs of observations taken from a sample of size n from (X,Y’). Such a
pair is said to be concordant if (z; — z;)(y; —y;) > 0. It is said to be dis-
cordant if (x; — x;)(y; — y;) < 0. It is neither concordant nor discordant if

(zi —2)(yi —y;) = 0.

For n data points, there are in total n(n — 1)/2 pairs of points. Let C be
the number of concordant pairs and D be the number of discordant pairs. Then,
Kendall’s tau, 7, is given by:

_ 2(C-D)

T = wn=1) (2.2.7)
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The index 7 is between —1 and 1 and has an interpretation very similar to
that of pg: a value close to 1 means an increasing monotone relation between X
and Y (such as shown in Figure 2.2), while a value close to —1 means a decreasing
monotone relation. For completeness we again give the scores for Kendal’s tau in

the four datasets of Anscombe’s quartet

0.636 (p-value = 0.006)
0.564 (p-value = 0.017)
0.964 (p-value < 0.001)
0.426 (p-value = 0.114).

Note that a relatively recent paper by Taskinen et al. [36] develops gener-
alizations of both Spearman’s rho and Kendall’s tau. This paper provides two
new statistics that allow to test the independence of two random wvectors X and
Y in arbitrary, possibly different dimensions. These statistics have a convenient

limiting x? distribution and are robust to outliers.

2.2.4. Wilks and Puri-Sen statistics

The methods presented so far are not only limited because they detect few
forms of dependence, but also because they are pairwise indexes. If we are in-

terested in detecting dependence between several variables, we can start with a
paper due to Wilks [40].

In this paper, a statistic A is derived as a Neyman-Pearson ratio using the
maximum likelihood principle. Hence this test is often called the likelihood ratio
test (LRT) of independence. It is meant to test the mutual independence of a
set of k sets of random variables with a multivariate normal distribution. Hence,
contrary to the methods presented before, we can now test the independence be-
tween more than two random variables. Furthermore, those random variables can

be sets, meaning they can themselves be in several dimensions.

Note that for the problem of testing the independence between X € RP and
Y € R?, two vectors with multivariate normal distributions, the test statistic W

can be written as:

W = 210g)\ = —TLlOg det([ - 32_2152131_11312>, (228)
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where Sp; is the sample covariance matrix of X, Ss is the sample covariance
matrix of Y, Sjs is the sample covariance matrix of (X,Y’), and Sy is the sam-
ple covariance of (Y, X), which is equal to S,. Under multivariate normality
of X and Y the distribution of W is known as the Wilks Lambda distribution

Alg,n—1—p,p).

Compared to correlation or rank coefficients, this method can now answer a
more complex question, because we can test the independence of more than two
variables. Moreover, those variables, X,Y, Z, - are also allowed to be vectors.
However, we have lost some generality because we have to assume multivariate
normality of our observations. As noted in Puri and Sen [24], for non-normal
distributions the correlation matrix might not exist, or if it exists it “may not
play the fundamental role that it does in the case of the multinormal distributions”
(because then uncorrelation does not imply independence), and hence there is a
need for a less restrictive approach. The class of tests then described in chapter 8
of Puri and Sen [24] are said to be analogues to the original Wilks test (Bakirov
et al. [2]). However, they rely on other sample dispersion matrices rather than
covariance or correlation matrices. Say that 7' = (T;;) is such a sample dispersion
matrix. Then, the test simply replaces the covariances matrices Si1, S22, S12, S22
in 2.2.8 by their analogues in 7'. For instance, 7" could be taken as the matrix of

Spearman’s rho statistics.

2.2.5. Hoeffding’s D

Another classical result, free of any assumption about the distribution of the
random variables, is found in Hoeffding [16]. Wilding and Mudholkar [39] state
that although it is an important result, because it is not straight-forward to use

it is “largely ignored in application”.

The idea behind the test is intuitive: let D(x,y) = Fxy(z,y) — Fx(z)Fy (y).
Then, D(z,y) = 0 V(z,y) if and only if X and Y are independent. Again denote
by R; and S; the respective ranks of x; and y; in a collected sample of size n. Also,
define ¢; as the number of bivariate observations (z;,y;) for which z; < z; and

y; < y;. Then, the quantity [ D*(x,y)dF(x,y) has the non-parametric estimator

Q—2(n—2)R+(n—2)(n—3)S'

Dn==m - 1)(n—2)(n—3)(n—4)
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Where

Q=S (Ri~ (R~ 2)(5: - 1)(5, - 2),

S = Z(CZ - 1)6Z
i=1

The difficulty of using D,, in practice is that its distribution is unknown, and
according to Wilding and Mudholkar [39], “lack of distributional approximations
makes it difficult to obtain p-values except by rough interpolation.” The authors

of this paper then present a method to approximate the null distribution of D,,.

Note at this point we are still in a quest for universal consistency, because, as
stated in Kallenberg and Ledwina [17], “Hoeffding’s test may completely break

down for alternatives that are dependent but have low grade linear correlation.”
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2.3. RECENT DEVELOPMENTS

The results presented before are somehow ‘classical’, and although still vastly
used they present important limitations, as they cannot detect some forms of
dependence, or because they make distributional assumptions. We now present
some more recent results that have the desirable property of being consistent
against every dependence alternative, or at least a wide variety of dependence

alternatives.

2.3.1. Kallenberg and Ledwina [17]

Kallenberg and Ledwina [17] develop a test of independence between two
continuous random variables X and Y. Their test is consistent against a “broad
class” of alternatives, although not all alternatives. Denoting X* = F(X) and
Y* = F(Y), they consider h, the joint cdf of X* and Y*. They call h the grade
representation of X and Y, although a more common name would be ‘copula’
Then their procedure tests Hy : h(x*,y*) = 1, which corresponds to independence,

against H; defined as

Hy: h(z",y") = c(6)exp {Z_: Hjbj(x*)bj(y*)} :

This is the exponential family for the joint distribution of X* and Y*, where the

6; are constants and the b; are the Fourier coefficients:
\/5(2:13 - 1)7
by(z) = V5(62% — 62 4 11),

S
—
—~
&
~
I

Intuitively, we can say that this method tests if there is correlation between
order polynomials (up to some order k) of X* and Y*. This is far more general
than for instance Spearman’s p, which tests the first order correlation of X* and
Y*. The test statistic uses ranks of the observations, say R; = rank(z;) and

S; = rank(y;) from a sample of size N, then

oo () ()

where the selection of the order k£ in T}, is done d la Schwarz’s rule.

2.3.2. Genest and Rémillard [10]

Most tests presented up until now were concerned in detecting dependence

between two random variables. Genest and Rémillard [10] propose a test of
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independence between an arbitrary number of continuous random variables, say
Xi,...,X,. They argue it is ‘widely recognized’ that the dependence structure
of a set of random variables is best characterized by their copula function C' (as
opposed to their joint cdf F'). Recall the copula function is nothing else then the
cdf of the vector (U, - - - U,) where U; = F;(Xj). Hence they develop a test based
on the empirical copula C),, which is constructed from a collected sample of size
n from X, ..., X, that is

where R;; is the rank of the ¢th observation for variable j among the total n

observations, that is

Ryj=3) 1{X; <Xy}, 1<i<n, 1<j<p
=1

Another quantity of interest is the copula process, which is the difference
between the empirical and theoretical copulas, times the square of the sample

size n:

Colug, - yup) = Vn{Cp(uy, - ,upy) — Clug, -+ ,u,)}.

Now, Deheuvels [6] decomposed C, into sub-processes G4, whose index A
indicates a subset of {(1,---p)} with |A| > 1. Genest and Rémillard [10] exploit
the fact that the G4, processes are asymptotically independent and Gaussian
(under Hp) to construct a formal test of independence, as well as a randomness
test (white noise test) in a serial context. One advantage of their approach is
that it yields test statistics of simple form, whose computation only requires the
ranks of the observations, for each of the p variables. In the non-serial setting
(which interests us in the course of this research), we get the following series of

test statistics T,

ZZH

i=1k=1j€A

27L +1 RU(R” — 1) Rkj(Rkj — 1) . HlaX(RZ'j, Rk])
2n(n +1) 2n(n+1) n+1 '

Each of these statistics can be used to conduct ‘individual’ tests of indepen-
dence, to test the independence of any particular subset A of the p variables.
Furthermore, by combining the p-values of those statistics (there are 2 —p — 1
of them), a test of mutual (i.e. total) independence can be performed. An exten-
sive series of simulations were run, and the test turned out to be consistent for
a variety of different alternatives. The power was also compared to that of the
‘classic’ likelihood ratio test (LRT) due to Wilks [40]. The simulations yielded a
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better or similar power for the new test when compared to the LRT, except in
the case of multivariate normality. This was to be expected as the LRT is known

to be optimal in that case.

2.3.3. Distance covariance

An important result in recent statistics is the concept of distance covariance.
This procedure has become increasingly popular and generated a lot of follow-up
work since its first appearance. It takes its origins in Bakirov et al. [2], but was
established in its definitive form in Székely et al. [34] and further extended and
justified in Székely et al. [35].

Distance covariance, noted V?(X,Y) is a measure of the distance between the
joint characteristic function of X € R? and Y € R? and the product of their

marginal characteristic functions:

VAXY) =[xy (ts) = fx () fy(9)]]w

where || - ||, is a norm (in the form of an integral), defined for a carefully chosen

weight function w. That is:
VIXY) = [ [ fx(ts) = fx(O)fy (s) Pult, s)dt ds.

In practice, the empirical version of V?(X,Y) is used, noted V2(X,Y). It is
shown that
lim Vi(X,Y) = V}(X,Y).
To define V2(X,Y), let us again consider a sample of size n collected from (X €
RP)Y € RY), {(z,y:;) : k=1,--- ,n} and define

SRS

n
Z Ak,
k=1

_ 1 & _
Qg = |$k - $l|p7 ag. = — Zakla a.p =
)

_ 1 & o
= 7 Z agl, Akl =ag — . — a.;+ a.
where |-| is the euclidean norm. Define analogue quantities for Y: by = |yx —vilp,

etc. Then, the empirical distance covariance is defined by

VZ(X,Y) n2 Z Ay By
k=1
Similarly, the distance variance V(X)) is defined as

VAX)=ViX,X) = ZA

k:ll
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Finally, the empirical distance-correlation is then

Vi(X,Y)

DVRXOV(Y)

Probably the most important feature of distance-correlation is that R(X,Y") =

0 if and only if X and Y are independent. As such, it means that distance-
correlation characterizes independence and is therefore consistent in every situ-
ation. Tests of independence based on distance-covariance most commonly are
conducted using a permutation procedure. As the test we are building also relies

on such a procedure, this will be explained in details later.

Note that in the above-mentioned papers, such a test of independence is com-
pared empirically with the classical test in Wilks [40], and with two versions of
the tests by Puri and Sen [24] for multivariate independence. It is found that the
new test has superior or similar power then the other tests (depending on the
situation), and that the proposed statistic is sensitive to all types of departures

from independence (nonlinear, nonmonotone, etc.).

2.3.4. BBL test

Another existing test that is universally consistent and applicable to several
random vectors is found in Beran et al. [3]. We refer to it as the BBL test. It
uses an idea similar to that of Székely et al. [34] in that it measures the distance
between the (empirical) distribution functions of the random vectors. However
it uses a different weight function. Not only is this method applicable to detect
dependence between any number of random vectors, but it simultaneously tests
which subsets of vectors are independent. It also provides a visual tool called

dependogram to visualize which subsets of vectors are dependent.

No distribution assumptions are made about the random vectors, and as such
this method can be seen as a follow up to a paper previously published by Bilodeau

and Lafaye de Micheaux [4] that assumed normal margins.

Because this test is consistent against every alternative, and implementation
is available in a R package, it will serve as a benchmark for the test we propose

in the current research.
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2.3.5. Hilbert-Schmidt Independence Criterion

In Gretton et al. [13] and Gretton et al. [14] a universally consistent test of
independence is presented, which we will refer to as the HSIC test. They develop
a theoretical measure of dependence between two random vectors X and Y, which

can be written as:
HSIC(pxyaJT_-a g) = HnyHfT{S

where
e F and G denote sets of functions (called Reproducing Kernel Hilbert
Spaces) containing all continuous bounded real-valued functions of X and
Y, respectively.
o Uy : G — F is called the cross-covariance operator, and is the unique
operator mapping elements of G to elements of F such that for (-,-) an

inner-product:

(f, Cay(g))7 = COV([, g)
for all f € F and all g € G.

e || - ||%g is called the Hilbert-Schmidt norm of an operator.

Importantly, if this theoretical measure ||Cy, |3 is zero, then it means (f, Cyy(9)) 7
and hence COV(f,g) is zero for any f € F and any g € G. But remembering
theorem 1.4.3 this ensures that X and Y are independent. ||Cy,||7;¢ being zero

is then a sufficient condition for independence.

Of course we need an empirical estimate (i.e. a test-statistic) of this theoreti-
cal measure. Such a quantity is developed in Gretton et al. [13], and is proven to
converge to the theoretical measure when the sample size increases. Then Gret-
ton et al. [14] state that the distribution of this test statistic is ‘complex’, and
hence they propose to use a permutation method to calculate its p-value. They
also propose an approximation using the first two moments of the test statistic
and a Gamma distribution. This method is computationally way faster then the

permutation method.

Note there has been a recent generalization of HSIC, which we label mHSIC,
testing the independence between an arbitrary number of random vectors, see
Pfister et al. [23]. We will also use this generalization to compare the power of

our own test.
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2.3.6. Maximal information coefficient

A recent development, although applicable in a less general framework be-
cause valid only for univariate X and Y is found in Reshef et al. [26]. As stated
by the authors, the intuitive idea behind their test is that “if a relationship exists
between two variables, then a grid can be drawn on the scatterplot of the two

variables that partitions the data to encapsulate that relationship”.

Hence, the procedure aims at finding the grid that displays the stronger re-
lation. For a specific a-by-b grid, the criterion used to judge the strength of the

relationship is the mutual information I(,-)

- & Sottes (50

yeY xeX

R

Where p(x,y), p(x), p(y) are the empirical joint and marginal probability dis-
tribution functions induced by the a-by-b grid. All grids, up to a maximal res-
olution which is determined by the size of the sample are explored. For a given
grid defined by the pair of integer (a,b) the maximal mutual information achieved
is normalized, to ensure a fair comparison between grids of different resolutions.
Call this normalized score mg;. MIC' corresponds to the highest score in the

matrix containing all values of mg.

The authors promote their method not only stating that it can capture a “wide
range of interesting associations”, but also stating that their test has the property
of equatability, in that it gives “similar scores to equally noisy relationships of
different types. 7 However, this last statement has been contradicted by some,
including Gorfine et al. [12]. In their comment, they also expose the fact that
for what they call practical sample sizes (30, 50, 100), as opposed to the larger
samples sizes used in their paper (250, 500, 1000), the HHG test in Heller et al.
[15] as well as the distance correlation “hold very large power advantages over
the MIC test”. Another critique comes from Simon and Tibshirani [32]. These
authors wrote that the set of simulations they conducted “suggests that MIC has
serious power deficiencies, and hence when it is used for large-scale exploratory

analysis it will produce too many false positives”.

2.3.7. HHG test

Heller et al. [15] propose a remarkably simple test of independence, which we
will refer to as the HHG test from now on. It has been found by the authors that
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their method is more powerful (sometimes drastically) than distance-covariance
(dCov) in a number of examples. They conclude saying “we expect that the new
test will perform better than dCov when the linear component in the relationship
between X and Y is weak or entirely absent, as well as when the first moments

of X and Y are large or infinite”.

As our own methodology is an extension of theirs, we now conduct a detailed
review of their method. Time spent doing this is not wasted, as it will make
the generalized case we present in section 4.2 more intelligible. First, in section
2.3.7.1 we explain the approach in an intuitive manner, and then in section 2.3.7.2

the test is presented more rigorously.

2.3.7.1. General idea

Consider two random vectors X € RP and Y € R?, where p and ¢ are any
integers. The goal is to test if there is any association between them. Specifically,

we want to test the null hypothesis:
HO :FXY($5y> :Fx(fE)Fy(y> VI'ERP,yGRq.

To motivate intuitively this test, we start with an example where X and Y
are both random variables (p = ¢ = 1). In that case, it is useful to have in mind

the alternative, equivalent definition of Hy given by theorem 1.4.2:

Hy:P[X € A)Y € B|=P[X € 4] -P[Y € B],

VA = [x1,25] with 21,29 € R and 1 < 9
VB = [y1,2] with y1,92 € Rand y; < ys.

We will now explain the test using a real-data example which was introduced
in section 1.3.1. Let X and Y be the 2015 overall mortality and birth rates,
respectively, from a sample of 145 countries having a population larger than 2

millions.

This example serves our purpose because, as noted before, the scatter plot
of observations reveals a pattern between mortality and birth rate, however the
correlation coefficient is low (0.139) and not significantly different than zero (p-
value = 0.095). The same conclusion is drawn if we compute Spearman’s (—0.035,
p-value = 0.675 ) or Kendall’s (—0.032, p-value = 0.574) coefficients instead.
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Fi1c. 2.3. 2015 birth rate against mortality rate in 145 countries

On Figure 2.3 we display this data, but we have placed a red rectangle of
arbitrary size in an arbitrary location on the scatter plot. This rectangle has

vertices (z1,v1), (T2,v1), (1,y2) and (x2,y2), and we use it to motivate the test.

Let A = [x1, 23] and B = [yy, yo]. If Hy is true, then all the following equalities
should be true:
P X € A Y € Bl=P[X € A]-P]Y € B]
P[X € A,Y € BY] =P[X € A] - P[Y € BY]
P[X € A°Y € B] = P[X € A“]-P[Y € B]
P[X € A°Y € B] = P[X € A“] - P]Y € BY].

(2.3.1)

With a collected sample of size N, we can estimate these probabilities by their
empirical counterparts, for instance:

# points € A and € B

P X € A)Y € B| = N

and:
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# points € A # points € B
N N '
Hence, to establish that Hj is false, it would suffice to establish that any of the

empirical versions of the probabilities on the left-side of equations (2.3.1) differ

P[X € A]-P[Y € B| ~

significantly from the empirical probabilities on the right-side of these equations.

A way to test at the same time the four equalities in (2.3.1) is to use the

Pearson 2 test with the null hypothesis:
Hj : “being in A” is independent of “being in B”

This yields a 2 x 2 contingency table. Under Hy we can compute the expected
counts in each of the four cells of this table, and then use the x? statistic to test
if they are significantly different from the observed counts. For the specific choice
of rectangle we displayed on Figure 2.3, tables of observed and expected counts
are given below. We also present an example on how to calculate the expected

counts.

TAB. 2.1. Observed counts O;

yeB y¢B
€A 27 2
r¢ A 44 72

TAB. 2.2. Expected counts E;

yeEB yé¢B
r€e€A 142 14.8
rd A 568 502

n . n

Ey1 =N - P[being inside in "x'] - P[being inside in "y"]

nn nn

points inside in "x points inside in "y
=N

N N
_29: T,
145

Then using those contingency tables we compute the y? statistic that tests

the independence between categories:

4 2
Oi - Ez‘

%
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In this specific example (with this specific choice of rectangle), we would then

reject Hy (quite strongly).

However, it is important to note that another choice of rectangle could have
yielded a different conclusion. Furthermore, not being able to reject Hy with a
specific choice of rectangle does not mean Hj is true. Then, the natural subse-
quent question is: how do we fix the location and size of the rectangle ? In the

words of Heller et al. [15], “we let the data guide us.”

Let us consider an arbitrary pair of data points {(x;,v;:), (x;,y;)} with i # j.
Perhaps in a slight abuse of notation we just call this pair (¢, 7) from now on. We
use this pair of points (7, j) to define a specific rectangle, as show in Figure 2.4.
The point ¢ defines the center of the rectangle, while the relative distance between
7 and 7 is used to define the size of the rectangle. For this particular choice, we
categorize all the remaining N — 2 points (those that are not ¢ nor j) in the 2 x 2
contingency table presented earlier and compute the associated x? test statistic.
Let us call this statistic S(i,j). The core of the method is to do this for all the
possible pairs of points in the sample. Then, we take as our overall test statistic
the sum of all those x? statistics S(i, 5):

N N
T=> > 8(7j)
i=1j=1
i#]

Note that there are N(N — 1) such pairs of points. In the words of Heller
et al. [15], doing this “aggregates the evidence against independence”. Note that
if T is “big” (compared to what it would be under Hy), then it means that for at
least one rectangle the test statistic S(i,j) is “big” (compared to what it would
be under Hy), therefore we have evidence that H, is false. Hence, we reject Hy
for big values of T. Because the distribution of 7' is unknown, a permutation

method is required to compute its p-value, see section 3.2 for details.
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F1G. 2.4. The red rectangle is defined by the two blue points ¢z and j

2.3.7.2. Test of independence

Most of the work is done, but we now present the test in a more formal way,
using the notation in Heller et al. [15]. First note that if X and Y are vectors,
we no longer have zones defined by rectangles. However, the general idea of the

test remains the same.

Again, consider two arbitrary samples points (z;,y;) and (z;,y;) from the
joint distribution of (X,Y’). Then define two radii R,, and R,, as the euclidean
distances dist(-, -) between these points, according respectively to their X and Y

coordinates’:
Ry, = dist(z;, ), Ry, = dist(yi, y;)-

R,, and R,, are called radii because we use them to define a zone, centered
at (x;,v;), in which the other points can be located or not. Consider for instance

some sample point (zy, yx), with k # i and k # j. According to the X coordinate,

IThe article mentions that any other norm could be used instead. In fact, we could even use
different norms for the distances between (x; , z;) and (y; , y;). However, in the present research
we will stick to euclidean distances.
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we categorize this point as being as close or closer to i then j is (hence within
the radii R,,), or further form 4 then j is (outside the radii). We do the same
according to the Y coordinate. Then, for the choice of 7 and 7 we made, we define

the indicator functions:
T{dist(x;, xx) < Ryy}
T{dist(yi, yr) < Ry}

Again we have four categories, and we count the number of observations falling
into each of these categories. For instance, the number of points as close or closer
to i then j is, according to both coordinates X andY is given by:

N
k=1,k4i, k4]

The quantities A12(i,7), Aa1(7,7), A2a(i, j) are defined similarly. The cross-
classification of the N — 2 points (not equal to i or j) is summarized in a table of

the following form:

TaAB. 2.3. Categorization of 1{dist(x;, X) < dist(z;,z;)} and
1{dist(y;, Y) < dist(v;,y;) }

d(yi, ) < dist(yi, ;) dist(ys, -) > d(vi, y;)
diSt({Ei, ) S dlSt<$Z, l’j) All(i,j) Alg(i,j)
dist(z;, -) > dist(z;, z;) Ao1 (3, 7) Aoo(i, 7)

This is the 2 x 2 contingency table that we use to conduct a classic Pearson’s
test of independence. Specifically, this statistic can be written as:
(N = 2){A12(4, ) A2 (i, 5) — A1i(3,5) Aga(4, §) }?

S(i,j) =

where A; (7,7) = A11(7,5) + A12(4,j) and so on. S(-,-) is calculated for every
pair of points in the sample. Then, as stated before, the overall test statistic is
the sum of all the statistics S(-,-). The distribution of this statistic is unknown,
and therefore a permutation method is required to calculate its p-value. This will

be explained in the methodology section.

In summary, for X and Y that are vectors, we cannot visualize easily the
zones centered at (x;,v;) and delimited by the radii R,,, R,,. However, the idea
of the test stays the same: if for some of those zones knowledge about being

inside (or outside) the zone according to the X coordinate gives some knowledge
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about being inside (or outside) the zone according to the Y coordinate, then

independence does not hold.






Chapter 3

HHG ON RANKED DATA

3.1. MOTIVATION

In this section we propose to use the HHG test on ranks of the observed data,
rather than on the data itself. That is, if we have a sample of size N from the
joint distribution of (X,Y), say

(Xlaifl>7 e 7<XN7YN)7

we propose to compute the ranks of X and Y, call them R and S respectively,
yielding

(R1751>7 T 7<RN7SN)7

and then to apply the HHG test on this set of ranks (R, S). To give an example
of what the rank transformation is, say we have the following sample of size five

from a univariate random variable X:

X 4
X5 5
X3]1=16
X4 2
X5 10
Under the rank transformation we obtain
R, 2
Ry 3
Ry| = 1|4
Ry 1
Rs 5

This is a very simple modification to the original procedure in Heller et al.

[15] that we believe improves its power in many situations. Moreover, we believe
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this change makes the test more robust. Here we give some motivation (and vi-
sual examples) for this change in the case where X and Y are random variables,
however this modified version works for random vectors as well, see an example

at the end of this section.

Now, why do we do such a transformation? For starters, note that for contin-
uous random variables X and Y we have

A proof of this statement is given in Appendix A.2. This means that, at
least for continuous random variables, investigating the independence between X
and Y is the same problem as investigating the independence between Fx(X)
and Fy(Y'). Furthermore, and perhaps most importantly, this transformation
puts the observations on the same scale. This is suitable when trying to detect
dependence. Indeed, when plotting X against Y, it is not always straightforward
to identify relationships between variables because elements such as skewness,
spread or extreme values might make it look like there is a relationship when in
fact there is none. Likewise, when variables are not on the same scale, it might
be harder to identify a relation that is present. Of course, with data that we have
collected, we do not know the ‘true’ functions Fx(z) and Fy(y), so instead we
use their empirical counterparts, noted Fy(z) and Fy(y). But those are only the
ranks divided by N, that is:

1 & R;
Fv(w) = 5 2 s =
j=1

So to summarize, if Fx(X) and Fy(Y') are dependent it means X and Y are
dependent. Because F'x(X) and Fy (Y) are unknown we use their empirical coun-
terparts Fy(z) and Fy(y), which are based on the ranks of X and Y. Hence,
what we do in the end is trying to detect dependence between the ranks of our

observations.

Note that for eventual tied values of the random variables X or Y we use
the ‘average’ method to assign ranks. This means we assign to those tied obser-
vations the same rank, with value equal to the average of the ranks we would
have without ties. For instance, the sequence {2, 4, 5, 5, 10} would become
{1,2,3.5,3.5,5} under the rank transformation. Likewise the sequence {2, 2, 5,
5, 10} would become {1.5, 1.5, 3.5, 3.5, 5}.
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We now give an example of what we mean when we say independence (or
dependence) is easiest to see on ranked data. Consider Figure 3.1. It shows the
scatter plot of two perfectly independent random variables, call them X and Y,
both having an Exponential distribution of mean 2. It is difficult to conclude
if there is a relation between the two because of the highly asymmetrical way
the observations are distributed on their support (here roughly 0 to 12). On the
contrary, if we plot the empirical distribution function of the observations Fi(X)
and Fy(Y') against one another we obtain a much clearer picture. Indeed, Figure

3.2 shows no pattern whatsoever.

As another example, consider two independent random variables Z ~ N(2,1/12)
and W ~ Pareto(a = 3,0 = 4). They both have the same mean (2) and variance
(12), however the Normal is light-tailed while the Pareto is heavy-tailed. Hence, if
we look at the scatter plot of W against Z on Figure 3.3, it is not straightforward
to exclude a relation between the two. Again, plotting the empirical cdf yields
a clear picture: on Figure 3.4 we cannot detect any relation between Fy(Z) and
Fn(W).

In one last example, let us consider for a change two dependent random vari-
ables. The first one is called C' and has a Cauchy distribution with scale parameter
3. The second one is called S and is defined as S = sin(C)+N(0, 3). If we take a
look at the scatter plot of S against C' (figure 3.5), it is not very straightforward
to establish there is a relation. This is because the Cauchy distribution generates
very ‘extreme’ values, which distorts the plot: the X axis goes to 200 only be-
cause of a couple of points, which squeezes all the other points, making it hard
to see a pattern. On the contrary, looking at the scatter plot of the ecdf Fi(S5)
vs Fy(C) as displayed in Figure 3.6, we easily detect a pattern, hence rejecting

independence.
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F1a. 3.2. Scatter plot of the ecdf of two independent Exp(1/2)
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Finally, note that if X and Y are vectors, we can still apply the rank trans-
formation to them and then perform the HHG test on the transformed data.
Precisely, for each of the components of X and Y we replace the original values

by their within-component ranks (values from 1 to N).

To give an example, say X has two components, X = (XM, X)) and we

have a sample of size five from X, for instance:

xM x® 4 14
x0 x® 5 6
xM xPl=16 8],
x® x® 2 22
x x® 10 3

R RP 2 4
RrR{Y RP 3 2
RY RP =143
RY R¥ 15
R R® 5 1
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3.2. p-VALUE OF THE TEST

In the original HHG test, as well as in our version using ranks, we do not
know the distribution of the test statistic under Hy. Asymptotically, the S(-,-)
statistics are x?, but they are dependent, hence their sum does not have (or at
least we have not found) a known distribution. We then rely on a permutation

method to compute the p-value of this test statistic.

Suppose we have calculated the test statistic of a sample to be t,s. On a
qualitative level, the bigger t, is, the stronger is the evidence to reject Hj.

Recall the basic definition of the p-value:
pe = P[T > t|Hy).

In words, this is the probability under Hj to obtain a test statistic 7' equal to
or “more extreme” to the value ¢ we indeed observed. Because we do not know
the distribution of T, we can’t compute this probability exactly. However, it is
possible to generate a sample of 7" under Hy, noted 7,3, ... and use it to calculate

an empirical p-value.

Note that if Hy is true and there is no association of any form between X and
Y then the occurrence of a variable has no impact on the occurrence of the others,
and vice-versa. Hence, if we reshuffle all the observations within the sample, it

would make no material impact on 1", our measure of dependence.

In other words, a reshufflied sample imitates a sample generated under Hy,
without changing the marginals of X and Y. Therefore a test statistic calculated
on this reshuffled sample has the distribution of 7" under Hy. This means we can
have a good approximation of p; if we apply the following procedure.

(1) Choose the number of permutations n, (a “big” number such as 1000).

(2) Calculate ¢4, the test statistic based on the original sample.

(3) Generate a sample from the original data by randomly permutating the

rows of Y, where a row represents one sample point.

4) Calculate the test statistic based on this new sample. Call it 7.

6) Count the number of times ¢} > t,,s. Call it m.

(4)

(5) Repeat steps (3) and (4) n, times.
(6)

(7) Calculate the p-value as p; = m/n,.
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3.3. POWER SIMULATIONS

3.3.1. How to estimate the power

We now want to estimate the power of our test:
power = P[reject Hy|Hy is false |.

Of course, such a probability depends on the way Hj is false, i.e. it depends
on the form of the alternative H;. Hence we proceed with simulations. We follow
this procedure:

(1) Choose a dependence structure (i.e. fix Hy).

@)

(3) Apply the test to this data, and record if Hy is rejected.

(4) Repeat this B times, where B is a “big” number such as 10,000.

Generate a set of data under H;.

The power is then given by:

# times H, is rejected
B )
However, when doing simulations, because we fix H;, we know precisely what

power =

are the marginals of the random vectors X and Y. Hence, the test no longer
requires us to use a permutation method to obtain an independent sample under
Hj and use it to calculate the p-value of our statistic 7. Rather, by simulation we
can generate such samples, and then obtain the required quantiles of T' under the
null hypothesis Hy. Then, for each of the B iterations in the above algorithm, we
reject Hy if the calculated test statistic 7" is bigger then this (empirical) quantile.
In other words, for a specific H; we follow the steps:

(1) Generate a sample with independent X and Y having marginals specified

by H;.

(2) Calculate the test statistic 7* based on this sample.

(3) Repeat this M times, where M is a “big” number such as 50,000.

(4) Use the resulting sample t7, - -- ,t}, to calculate the empirical. (1 — «)%-

quantile of Tj:
(A

(5) Then generate B samples under H; and each time, use the following rule

to reject Hy:

reject Hy it T' > t]_,,.
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Note that because this procedure is computationally intensive, coding in pure
R would be too slow and we use instead the R package ‘Rcpp’ by Eddelbuettel
et al. [8] which allows the integration of C coding into R, the execution of C code
being significantly faster than R to perform loops, see Lafaye De Micheaux et al.
20].

3.3.2. Comparison to other tests

Computing the power in many different dependence situations, both univari-
ate (random variables) and multivariate (random vectors) will give us information
about how well the test performs. However, we also want to compare our test to
other existing procedures. Hence, in the next sections 3.3.3 and 3.3.4, we compare
the power of our ranked-version of the test in Heller et al. [15] (labeled BLAW) to
three other independence tests: the original test from Heller et al. [15] (HHG), the
distance covariance test (DCOV) from Székely et al. [34] and the Hilbert-Schmidt
independence criterion (HSIC) from Gretton et al. [14]. Many different depen-
dence structures are investigated. First, in sub section 3.3.3 we explore examples
where X and Y are random variables (both have one component). Next, in sub
section 3.3.4 we explore examples where X and Y are vectors, both of dimension
two: X = (X1, Xy), Y = (Y1, Ys).

For each example, we first state what the dependence structure is, then we
present graphs of the empirical power (in %) against the sample size (usually
from 10 to 100 by leaps of 10). We use a level a = 5% in all examples. All of
the results are based on 50,000 simulations to estimate the (1 — «)%-quantile of
T|Hy, and 10,000 power simulations. Hence M = 50,000 and B = 10,000 in the

notation of section 3.3.1. The discussion of the results is deferred to section 3.4.

3.3.3. Random variables examples

First we consider the first six examples in table 3 from Heller et al. [15],
labeled ‘four independent clouds’ (this is Hy), ‘W-shape’, ‘Diamond’, ‘Parabola’,
‘Two parabolas’, and ‘Circle’. Note that we changed the original examples slightly
because a deterministic sequence was used in the R code that generated them:

seq(-1, 1, length = n)
Making the variables not i.i.d. We used instead:

runif(n, -1,1)
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In addition to those examples, we consider three dependence models where
Y is a function of X (with an additional noise so that the dependence is not

picked-up too easily by the tests):

e Linear dependence: X ~ N(0,1), Y =X + N(0,3)
e Exponential dependence: X ~ U(—3,3), Y =exp(X/3)+ U(-3,3)
e Sine dependence: X ~ U(0,27), Y =sin(X) + N(0,1)

™7 = BLAW
= HHG
« « DCOV
HSIC
(o]
o
20+
(o)
o
<
o |
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Sample size

Fi1G. 3.7. Power in the case of four independent clouds
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FiG. 3.8. Power in the case of the W-shape dependence
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Fi1G. 3.9. Power in the case of the Diamond dependence
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Fi1G. 3.10. Power in the case of the Parabola dependence
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Fi1G. 3.11. Power in the case of the Two Parabolas dependence
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Fi1G. 3.12. Power in the case of the Circle dependence
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Fi1c. 3.13. Power in the case of the Linear dependence
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Fi1G. 3.14. Power in the case of the Exponential dependence
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Fi1G. 3.15. Power in the case of the Sine dependence
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In the next examples, we use copulas to generate dependent data. Copulas
have the advantage that we can change the margins of the random variables,
without changing the strength of the dependence. Hence, we can investigate if
the power of the different methods varies according to the margins. As in Genest
and Rémillard [10] we consider the three following copulas:

e Clayton
e Gumbel
e Normal
And we use three different margins, for a total of nine examples:
e Normal (0, 1)
e Exponential (scale = 1)

e Cauchy (scale = 1)

o
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F1a. 3.16. Power in the case of the Clayton (# = 0.6) copula with
Normal margins
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Fia. 3.17. Power in the case of the Clayton (# = 0.6) copula with
Exponential margins
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F1G. 3.18. Power in the case of the Clayton (6 = 0.6) copula with
Cauchy margins
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F1a. 3.19. Power in the case of the Gumbel (6 = 1.4) copula with
Normal margins
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F1a. 3.20. Power in the case of the Gumbel (§ = 1.4) copula with
Exponential margins
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Fia. 3.21. Power in the case of the Gumbel (6 = 1.4) copula with
Cauchy margins
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F1G. 3.22. Power in the case of the Normal (p = 0.4) copula with
Normal margins
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F1a. 3.23. Power in the case of the Normal (p = 0.4) copula with
Exponential margins
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F1a. 3.24. Power in the case of the Normal (p = 0.4) copula with
Cauchy margins
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3.3.4. Random vectors examples

Here we consider first three examples where X and Y are 5-dimensional vec-
tors. We consider the last two examples in table 3 from Heller et al. [15], as well
as the example from table 4 with g1 = 1,85 = 4. We label those examples the

7 13

“logarithmic”, “epsilon” and “quadratic” dependences. Specifically, the models
are as specified below.

e Logarithmic dependence:
X; ~ N(0,1), Vie{1,2,---5}
Y; =log(X?), Vie{l,2,---5}
e Epsilon dependence:
X; ~ N(0,1), Vie{l1,2,---5}
e; ~ N(0,1), Vie{l,2,---5}
Y, =X, €, Vie{l1,2,---5}
e Quadratic dependence:
X; ~ N(0,1), Vie{l,2,---5}
e; ~ N(0,3), Vie{l,2,---5}
X; +4X? +¢, forie{l,2}
€ for i € {3,4,5}

We add two more examples to those. One is based on our motivational exam-
ple in section 1.3.2, and we call it the “2D pairwise independence” example.

e 2D pairwise independence:
X, and Zy ~ N(0,1)
Yi~ N(0,1), Yy = |Zo] - sign(X - Y3)
Hence X is a random variable and Y is a random vector with two components.
Note this is a rather odd construction: X, Y; and Y5 are all pairwise independent,

but not mutually independent, hence a universally consistent test between X and
(Y71,Y5) should reject Hy in this situation.

The other example, which we call “big noise” is the following.

e Big noise:

X1 ~ N(O,l) and XQ ~ N(0,4)
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Y = X7 + N(0,2)

We call this example ‘big noise’ because here X, is independent of Y and has
a big standard deviation compared to X; (which is dependent of Y'). Hence,
when trying to detect dependence between the vector (Xi, X3) as a whole and

the variable Y, the noise component X, makes the task harder.
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Fic. 3.25. Power in the case of the ‘log” dependence
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Fi1G. 3.26. Power in the case of the ‘epsilon’ dependence

o
Q] e BLAW - - -
= HHG -
e o DCOV /7
o |
0]
o |
(o]
)
=
(o]
o
o |
<t
o |
[aV]
o |
0 20 40 60 80 100
Sample size

Fic. 3.27. Power in the case of the ‘quadratic’ dependence
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Fi1G. 3.28. Power in the case of the ‘pairwise independence’ example
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F1G. 3.29. Power in the case of the ‘big noise’ example
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Next, we consider dependent data via copula structures. Here X and Y are
both of dimension two. Again we consider three copulas (Clayton, Gumbel, Nor-
mal) with three marginals (Normal, Exponential, Cauchy), yielding nine exam-
ples. Note that in the case of the Normal copula, we set the correlations between

all pairs of variables to 0.3.

100

80

Power

0 20 40 60 80 100
Sample size

F1a. 3.30. Power in the case of vectors for the Clayton (0.5) copula
with Normal margins
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F1a. 3.31. Power in the case of vectors for the Clayton (0.5) copula
with Exponential margins
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F1G. 3.32. Power in the case of vectors for the Clayton (0.5) copula
with Cauchy margins
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F1c. 3.33. Power in the case of vectors for the Gumbel (1.3) copula
with Normal margins
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F1G. 3.34. Power in the case of vectors for the Gumbel (1.3) copula
with Exponential margins
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F1a. 3.35. Power in the case of vectors for the Gumbel (1.3) copula
with Cauchy margins
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F1a. 3.36. Power in the case of vectors for the Normal (p = 0.3)
copula with Normal margins
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Fia. 3.37. Power in the case of vectors for the Normal (p = 0.3)
copula with Exponential margins
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F1G. 3.38. Power in the case of vectors for the Normal (p = 0.3)
copula with Cauchy margins
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3.4. DISCUSSION OF POWER RESULTS

As a first global comment, let us say that empirically the test we propose
“works.” Indeed, in all examples when the sample size increases, the power in-
creases, which is what is to be expected. Now we give some specific comments
about the examples presented, comparing the power of our proposed test to the

power of the other tests for which we did simulations.

In the random variables examples taken from Heller et al. [15] (W-shape,
Parabola, Two parabolas, Diamond, Circle), we note that BLAW has a similar or
better power then the other tests four times out of five, being worst then HHG
and HSIC (but still better then DCOV) only in the case of the ‘Diamond’ depen-
dence. In the examples that follow (Linear, Exponential, Sine), all four tests have
relatively similar power, although we note that DCOV is the winner (by a little)
each time, while BLAW is slightly better then HHG each time. In the copula
examples, we get more differences between the powers. We note that BLAW is
better then HHG eight times out of nine (still being quite similar to HHG in the
case of the Gumbel-Exponential example, see Figure 3.20), and is by far the best
out of the four tests whenever the marginals are Cauchy. Note that in the cop-
ula examples, because BLAW uses ranks, its power is unaltered by the choice of
marginals. We argue this is a desirable property for an independence test, as the
strength of the dependence is in no way influenced by the choice of the marginals.
On the contrary, for the three other tests the power is significantly influenced by

the choice of marginals.

In the random vectors examples taken from Heller et al. [15], BLAW is the best
test for the ‘Log’ dependence, although it is worst then HHG in the ‘Epsilon’” and
‘Beta’ examples. Then however, in the ‘pairwise independence’ example BLAW
performs way better then HHG, and in the ‘big noise’ example, while BLAW per-
forms well, all three other tests have almost no power. This is quite interesting,
not to say surprising. It means that when testing the independence between two
vectors X and Y, if for some reason there is a component in one of the vectors
which is not dependent to the other vector and has a ‘big’ variance, it can com-
promise greatly the efficiency of HHG, DCOV and HSIC.

For the examples using copulas, conclusions are essentially the same as in the
random variables examples. BLAW is better then HHG nine times out of nine,

and is drastically better then the three other tests when the marginals are Cauchy.
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Hence we are tempted to conclude that BLAW is more robust to the presence of

‘extreme’ values, as generated for instance when using Cauchy marginals.






Chapter 4

MULTIVARIATE EXTENSION OF HHG

4.1. GENERAL IDEA

As we saw, Heller et al. [15] developed a procedure to test the independence
of two random vectors, X and Y. We now propose to use the same technique, but
our goal is to test the joint independence between d random vectors, call them
XM X@ ... X with d being any positive integer. As in the bivariate case,
we present first an intuitive idea of this generalization, which we formalize in the
following section.

Recall that in the bivariate case, the whole methodology relies on categoriz-
ing the data points in 2 x 2 contingency tables to compute x? statistics. This
was the base of the method. Furthermore, recall that, in the case of X and Y
being random variables (which is easiest to visualize) we placed rectangles on the
scatter plots of the data points. All the sample points could be inside (or out-
side) the rectangles in their X coordinate, and inside (or outside) the rectangles in

their Y coordinate, yielding a 2 x 2 contingency table, for a total of four categories.

Now with d variables, we can do the same thing. Each point can be classified
as inside or outside a d-dimensional zone, according do d different coordinates.
Hence, we can categorize each of the data points in a 27 contingency table. It
might help to visualize this with an example where we have three random vari-
ables X, Y, Z. The rectangles are now boxes and the scatter plot of observations
is now in three dimensions, as shown in Figure 4.1. The points shown on this
graph can be classified as being inside or outside the red box according to three
coordinates (or axis), x,y and z. The concept of the test stays the same: if
there is any choice of box for which knowledge about being inside (or outside)

the box according to one coordinate gives some information about being inside
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(or outside) the box according to another coordinate, then independence between
the variables does not hold. Using a large number of ‘boxes’ defined by the data
points will aggregate the evidence against independence. Past this key concept,

the rest of the procedure is remarkably similar to the bivariate case:

e Each pair of points (7, j) defines a specific box
e Each box is used to calculate a x? statistic, S(4, j)
e We take as our global test statistic the aggregation of all x? statistics:

N N

T=>_> S(ij)
i=1j=1
i#]
The next section presents the method more formally and establishes a formula

for S, which can be implemented in any programming software.
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Fi1a. 4.1. 3-dimensional scatter plot with a box on it
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4.2. TEST OF INDEPENDENCE

Let XM X® ... X be d random vectors of any dimension, with respective
cumulative distribution functions FM(z), F®)(xy),- -, F¥(z,). We want to

test the hypothesis Hy of total independence between the d vectors:
Ho ZFX(l)“,X(d) (xl, te ,xd) = FX(1)(1’1) X X Fx(d) (xd) (4.2.1)

Say we have collected a sample of size N from this distribution. We con-

sider one arbitrary point (:1051), x?), e ,:L‘Ed)) from this sample. This point will

be the center of a zone which we will use to categorize all other points in the
sample We use another arbitrary point (z 5), 52) o ,x§~d) to define d radii

RV = dist(x; 2 m),R = dist(z; @ (2)),~~,R0 = dist(z; ), (@) ). As in the

'L
bivariate case, dlst( ,+) is just the euclidean distance.

Now every other point in the sample (there are N — 2 left) can be categorized
as being as close or closer to ¢ then j is, and according to d different coordinates.
Consider one specific sample point k& (which is not equal to i nor j). For each

of the random vectors v we define a categorical function / ,ﬁ“)

equal to 0 if the
distance between the sample point £ and the point of dependence is smaller or
equal to the radius in the v component, and equal to 1 if this distance is greater.

That is, for Yo € {1,--- ,d}:

Lo [0 il o) < R
1 if dist(z!”, z{")) > Ry

As there are d random vectors, a specific point k can fall into 2¢ different
categories, i.e. for one given coordinate v the point k can be within the zone
defined by the radius Ré”), or outside the zone. As there are d such coordinates
in total, this yields 2 possibilities. Said otherwise, we categorize each point
according to d categories, and for each category there are only two possibilities:
being inside or outside the ‘zone’ Then the results for the whole sample can be

summarized in a 2¢ contingency table, or if you prefer a table with

2X 22X -+ x2=2%

d times

cells.
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Now, denote by E(ti,ts,- - ,tq) the expected number of points to fall in a
specific cell (tq,ts,- -+ ,tq) where t, € {0,1}, v € {1,---d}. Under Hy we have:

E(t17"' 7td) = (N_Z) X P[_[]gl) :t17"' 7]]S-d) :td]
d
= (N-2)x J[TPIR” =),
v=1

Replacing the theoretical probabilities (which in general we do not know) with

the empirical probabilities we get:

k=1
k¢{i,j}
We denote by A(ty,ta, -+ ,tg) the number of sample points observed in cell
(t1,ta,- -+ ,tq). In other words:

N d o

Alty, -+, ta) = > [ 17 =t.).
k=1 wv=1
k¢{i,j}
We then write the classic Pearson’s test statistic S for a d-dimensional con-

tingency table. Letting (¢1,--- ,tq) =t we get:

5y LA — B
7 E(t)
Here we call this statistic S to make the notation less cluttered, but keep in
mind it is calculated for one specific pair of points (i,j) hence we could have
called it S(4, j). The same goes for the quantities A(t), E(t) and E(t). A more

precise yet cluttered notation would be A(i, 7)(t), E(4, j)(t) and E(i, §)(¢).

Also for simplification purposes we let E(t) = e(t)/M%!, with M = N — 2,
and rewrite .S:
A(t) — e(t)/ M)
5 _ 3 AW —elt)/ Mo
7 e(t)/ M
= MY MATA®) — e(t)
~ e(t) Md—1
1

e X gy (AR =20 At + (1))
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2(d—1) 2
:Mi_l;<M e(t)A(t) —2Md1A(t)+e(t)>.

Which finally yields:

S=> W - M (4.2.2)

t

where we used the fact that >, A(t) = M and Y, e(t) = M<?. This is because
A(t) is the number of points in one particular cell ¢, hence summing the A(t) over
all possible cells gives the total number of points categorized, M. The second

identity is less obvious, so a proof is given in Appendix A.3.

Note that the statistic S can be calculated only if e(¢) is non zero for each of
the 2¢ possible ¢. It is set to 0 otherwise. Now, as stated before this gives one
statistic, for one particular choice of two sample points (i, j). As in the bivariate
case, we calculate the statistic S for each of the N(N — 1) pair of points (3, j).

Then finally, our test statistic is the aggregated sum of all S(i, j):

T=>Y > 5(ij). (4.2.3)

i=1j=1
iy

Note that 7" is a sum over N(N — 1) terms because there are N(N — 1) ways

of choosing two points out of N points if the order matters. Indeed, here the

order matters: S(i,j) # S(7,1).

As in the original bivariate version from Heller et al. [15], we don’t know what
is null distribution of this test statistic 7', and hence to calculate it’s p-value we

use a permutation method as described previously in section 3.2.
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4.3. PROOF OF THE STRICTLY DISCRETE CASE

For this multivariate extension of HHG, in the case where all the d random
vectors are strictly discrete, we prove that the proposed test is consistent when-

ever Hy is false. This is of course not the most general case, but still a nice result.

Suppose XM € RP1 ..., X ¢ R are all strictly discrete with a countable
support. Hy is false implies that there exists at least one point (:U(()l), e ,x(()d))

with probability different then 0 such that :

Pr[x® = xél), L XD = xéd)] > Pr[X® = xél)] X oo x Pr[X@ = x(od)].
(4.3.1)

There is also at least one point (:C(()l)*, e ,:c(()d)*) such that:

Pr[x® = xél)*, L XD = x((]d)*] < Pr[x® = :1361)*] X oo x Pr[X@ = :péd)*].
(4.3.2)

Otherwise, we wouldn’t have

S Pr(@W, .. 2@) =1 (4.3.3)
2. ()

Indeed, imagine this was not the case. That is, imagine we start with a valid
distribution that respects Hy. We say valid in the sense that the sum of the
probabilities over each mass point equals one. Now we alter this distribution to
obtain a distribution under Hy, but we do so by changing the probability assigned
to one point and one point only. This yields that, only for this point, (4.3.1) OR
(4.3.2) is true. But then, automatically, this new distribution is not valid, i.e.
(4.3.3) is false. Hence, we must have that under any valid distribution H; at least

one point satisfies (4.3.1) AND at least one point satisfies (4.3.2).
From now on, for a point (Z‘(()l), e ,méd)) satisfying (4.3.1), and we know such

a point exists under H;, we denote:

po = PrIX®) = 4fl) X0 _ 40

g e ey

pr =Pr[X® = 2] x - x Pr[X@ = 3],

Out of the N points from a sample, we expect N-pg to have values (xol yee ey X

Let i and jy be two such points. That is:
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Obviously, in each of the d coordinates the distance between the two points iy and
Jo is 0. In the notation used previously (section 4.2, p. 76), R(()l) == R(()d) = 0.

Hence:

Aty =0, ,tq = 0)(io, jo) = Z 1{dist (2, X{”) <0} x -~ x T{dist(z{”, X;”) < 0}

k¢{lo ]0}
1 d d
- S =X =)
ké{lodo}

Denote A(t, = 0)(ig, jo) the number of sample points as close to iy than jy is

in their vth component:

A(t, = 0)(io, jo) = z 1{dist(z{", X V) < 0}

k¢{107]o}
al (1) (v)
Z {X, =25}
k=1

k¢{io.jo}

By the law of large numbers, the observed frequencies above converge in prob-

ability to the theoretical probabilities:
A(tl - 0, e ,td - 0)(20,]0)

o, Vo3 =m
. A(ty = 0)(i0, Jo) _ W _
]\}1_{1100 T = Pr[ X" = zy"], Yo e (1,...,d).
Now, recall:

ZO,]O Z ZOij ) (ZOa.]O)( )] .
t (@0 Jo)(t)
It is enough to look at the first term of this sum, with ¢ = (¢;, = 0,--- ,t; = 0),

i.e. the term:

. . d A ty=0)(% 7‘ ?
o (i i {A(tl =0, ,ta=0)(io, jo) — H”ZEN(—W*)I( MO)}
1 (i, jo) = [12_, Ato=0)(io.jo) '
(N—2)d-1

Now, because the points g, jo violate independence, with N — oo the ratio

S1(ig, jo) /(N — 2) won’t go to zero. That is, almost surely:

d

) v tu*o)(lO .70) }2
(i

. Sl(i07j0) . 1 {A<t1 =0,---,t )(107]0 N 2yd—1
lim ————== = lim
Nosoco N —2 Nooco N — 2 H A(ty=0)(%0,j0)

(N 2)d 1
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y - ¢ Atv:(] ’L’,’
ﬁ{A(tl = 07 e 7td — 0)<ZO;]O) _ Hv:1 ( _)( OJO) }2

= lim (N—2)d-1
N [15_, A(tv=0)(o.jo)
(N—2)4
i =0, ,ta=0)(40,J ¢ A(ty=0)(io.j
limpy o0 (t1=0, ]\}t_dg 0)(iojo) _ ITaey (]Ef—z)d)( 0,Jo) }2
N 1 ¢ A t'u:O ) ,'
th—)OO Hv:l (]\(7_2)2( 0 ]O)
{Po o2
po

where we used Slutzky’s theorem (Serfling [31], p. 19), to replace the empirical
probabilities in S} (ig, jo) by theoretical probabilities.

Because S (4o, jo)/(N — 2) converges almost surely to a positive constant ¢ =
{po—rg 0}’
po

> 0, we have:

Sl<i0,j0) > (N — 2)0//2 (434)

with probability going to 1 as N — oo.

Now, for any given pair of points (k,!), the probability that both points are

equal to (xé Do, l’[()d)) is p3. Out of the N(N —1) pairs of points from the sample,

we let N§ be the number of pairs such as the pair (i, jo), that is pairs with both

M (@),

points equal to (zy’, -+, x The counting variable Nj can be written as a

sum of (dependent) Bernoulli:

N N
=>Y Bu, By ~ Bernoulli(pg)

k=11=1
kAl
where By, = 1 if both points k and [ equal (:L‘O yoo xéd)), and 0 otherwise.
Hence, E[N}] = N(N — 1)p2. We prove below that for N — oo:
N(N —1)p?
Pr[N; > (2)%] =1 (4.3.5)

Now recall the definition of our global test statistic 7"

N N
T = Z Z S(i, 7).
i=1 j=1
1#]
Because for any two sample points ¢ and j we have S(i,j) > Si(4,7), and

because our test statistic 7" is the sum over all S(i, j) for every possible pairs of
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points, we have the following lower bound for 7"

T> ii&(i,j)-

i=1j=1
i#]
From 4.3.4 and 4.3.5 it follows that, for N — oc:
N N 1 N — 2 ¢
>33 816.0) > SN - - P s

i=1j=1
i#]j

for a positive constant § > 0, with probability 1.

To complete the proof we invoke the same argument as in the last paragraph
of the Appendix in Heller et al. [15]. That is, under the null hypothesis H,
S(i, ) is asymptotically x?, so the expectation of T" under the null is of order of
magnitude N(N — 1). But since for any H; we just established that 7" has order
of magnitude at least N3, it follows that asymptotically T'|H; is always bigger
than T'|Hy, hence Hy is rejected with probability 1.

This completes the proof, although we still need to prove statement (4.3.5).
To do so we need the variance of Nj. Then, because the variance is of magnitude
N3, and the mean of magnitude N2, we will use Chebyshev inequality to establish
the result. Recall:

N N
Ni =33 Bu
k=11=1
k£l

This is a sum of N(N — 1) elements. We look at the covariance of two of those

elements:

There are three possible cases (i.e. yielding different covariances):
(1) If k,1,m,n are all different, then:

COV|[By; Bin) = E[By - Bin] — E[Br| - E[ B
= Pr((z, ) = (21,41) = (T Ym) = (@0, ¥n) = (T0,%0)] — P
= o — 1o =0.
(2) If out of k,l, m,n exactly two are the same, say WLOG k = m:

COV|[By; Bn| = E[Byi - Bin] — E[Bi] - E[ By
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= Pr((zx, yx) = (21, 51) = (@, yn) = (%0,%0)] — 1o
=Py — Po = Po(1 = po)
(3) Two pairs of elements are equal, in other words m = [ and n = k:
COV[By; Bi] = E[By - Bi] — E[By] - E[Byy]
= Pr(ze, k) = (21, u1) = (20, %0)] — 1y
=Py — pp = Pp(1 = p})

We can now calculate the variance of Nj:

N
VAR[N;] = VAR |33 By,

k=11=1
kel
N N
=Y Y VAR[Bu] + Y_ COV[B;,B,] + Y _ COV[B,, By
k=11=1 T#Q ~y#£0
k#l
where 7 and « index the pairs of case 2, and v and 6 index the pairs of case 3.
There are:
e 2[N(N — 1) x 4(N — 2)] terms of case 2
e 2[N(N —1)] terms of case 3
Hence:

VAR[NG] =N(N — 1ps(1 — pp)+
2N(N = DA(N = 2)p3(1 — po)+
2N(N = 1)pg(1 = pp)
=N(N = 1)pg - [(1 = pp) + 8(N = 2)po(L — po) +2(1 — pp)]
Therefore, there is a constant £ > 0 such that VAR[Ng] < ¢N3. We then use
Chebyshev inequality, for any positive ¢:

. . VAR[N;
Pr{ING — EING]| 2 1] < L)
i . VAR[N;]
PW%—EWMg—ﬂg—ﬁil.
Letting t = E[Nj]/2 we have:
VAR[N{]
Pr[N; < E[NJ]/2] € ———1+
I‘[ 0 = [ 0]/ ]— E[NS]2/4
EN?

< :
T PENE(N —1)2/4

This upper bound going to 0 for lim N — oo we have proved the result.
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4.4. POWER SIMULATIONS

As we did for the bivariate version of the test, we now investigate the power of
our multivariate extension of Heller et al. [15]. We test the independence between
three random quantities X,Y and Z. Power simulations are conducted using the

steps described in section 3.3.1.

In the bivariate case we saw that in the majority of examples investigated,
using the ranks of the observations yielded a better power. We want to see if the
same conclusion holds in the multivariate case. Hence here we compute two ver-
sions of the test: the ‘straight-forward’ extension (using the original data) which
we label mHHG, and the multivariate version using ranks of the observations,
which we label mBLAW.

In subsection 4.4.1 we explore examples where X,Y and Z are random vari-
ables (each one having one component). In those cases, we also compare mBLAW
and mHHG to the independence tests found in Beran et al. [3], which we label
BBL, to the multivariate HSIC from Pfister et al. [23] which we label mHSIC,
and finally to the test from Genest and Rémillard [10], which we label GR.

Next, in subsection 4.4.2 we explore examples where X,Y and Z are vectors,
both of dimension two: X = (X1,Xs), Y = (Y1,Y32), Z = (Z1,73). In that
case, we only compare mHHG and mBLAW to mHSIC. This is because GR does
not apply to random vectors. Note that we took awareness very late that a
generalization of GR exists in Kojadinovic and Holmes [19]. Hence we applied
this generalization only on one example, see Figure 4.15. Also note that BBL
applies to vectors, but as it takes significantly more time to compute in the case

of vectors we also only used it in one example, see Figure 4.15.

4.4.1. Random variables examples

The dependence models for the variables X, Y, Z are now presented, and the

graphs of power for each example follow thereafter.

e 3D Pairwise independence:
X,Y and Z, ~ N(0,1)
Z = |Zy| - sign(X -Y)
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Note this is the motivational example from section 1.3.2, but here we are
able to test the mutual independence of the triplet X,Y, Z, unlike in the
example ‘2D pairwsie independence’ where we had to combine Y and Z

has one vector, to test the pairwise independence of X and (Y, 7).

e Cos-Sin dependence:
X and Y ~ N(0, 3)
Z = cos(X) +sin(Y) + N(0,1)
e Cos-Exp dependence:
X and Y ~ N(0,3)
Z = cos(X) +exp(Y/5) + N(0,1)
e 3D linear dependence:
X and Y ~ N(0,1)
Z=X+Y +N(0,3)
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Fi1G. 4.2. Power in the case of 3D pairwise independent Normals
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Fi1G. 4.3. Power in the case of the Cos-Sin dependence
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F1G. 4.4. Power in the case of the Cos-Exp dependence
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Fi1G. 4.5. Power in the case of the 3D linear dependence
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Next, we again present examples where the data is dependent via copula struc-
tures. As in the bivariate examples, three copulas are considered, still Clayton,
Gumbel and Normal, with three different marginals: Normal(0, 1), Exponential
(scale = 1) and Cauchy (scale = 1).

100

80

Power

0 20 40 60 80 100
Sample size

Fia. 4.6. Power in the case of the 3D Clayton copula (0.5) with
Normal margins
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Fic. 4.7. Power in the case of the 3D Clayton copula (0.5) with
Exponential margins
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F1G. 4.8. Power in the case of the 3D Clayton copula (0.5) with
Cauchy margins
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Fia. 4.9. Power in the case of the 3D Gumbel copula (1.2) with
Normal margins
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F1G. 4.10. Power in the case of the 3D Gumbel copula (1.2) with
Exponential margins
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Fic. 4.11. Power in the case of the 3D Gumbel copula (1.2) with
Cauchy margins
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Fic. 4.12. Power in the case of the 3D Normal copula (p,, =
0.0, pz» = 0.1, p, . = 0.5) with Normal margins
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F1G. 4.13. Power in the case of the 3D Normal copula (p,, =

0.0, pz» = 0.1, p, . = 0.5) with Exponential margins
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Fi1G. 4.14. Power in the case of the 3D Normal copula (p,, =

0.0, pz,» = 0.1, p, . = 0.5) with Cauchy margins
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4.4.2. Random vectors examples

Here we consider examples where X, Y and Z are vectors, all in two dimen-
sions: X = (X1, X5), Y = (Y1,Ys) and Z = (73, Z,). The first two examples we
present are derived from the motivational example in section 1.3.2. Note that we
computed, only in the first example, the powers for two additional tests: Beran
et al. [3] (labeled BBL) and Kojadinovic and Holmes [19] (labeled KOJA). Be-
cause BBL is slow to compute on random vectors, for this first example we used
sample sizes N = {10,20,...70} and B = 5000, M = 10000. All other examples
are computed with B = 10000, M = 50000.

e 3D vectors with pairwise independence: case “mixed”

X1, X9, Yy, Y1, 2y, Z1 ~ N(0,1)

Yy = |Yo| - sign(X; - Z)

Zy = |Zo| - sign(Xs - Y1)
We label this example “mixed” because only joint information about X
and Z gives information about Y;. Likewise, joint information about X

and Y gives information about Z,.

e 3D vectors with pairwise independence: case “hidden”
Xy, X2, Y1, Zy, Z1,Z5 ~ N(0,1)
Yo = | Zy| - sign(X; - X3)
We label this example “hidden” because here the dependence is “hidden”

in some sense, harder to find. This is so because Z is completely indepen-
dent of both X and Y, while only Y5 is dependent of X.

Next, and without much surprise, we present example where the dependent
data is generated using three different copulas (Clayton, Gumbel, Normal) and

three marginals (Normal, Exponential, Cauchy).
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Fi1G. 4.15. Power in the case of vectors with pairwise independent
components: case “mixed”
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F1G. 4.16. Power in the case of vectors with pairwise independent
components: case “hidden”
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Fic. 4.17. Power in the case of the 3D Clayton copula (0.3) with
Normal margins for vectors
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F1G. 4.18. Power in the case of vectors for the 3D Clayton copula
(0.3) with Exponential margins
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F1a. 4.19. Power in the case of vectors for the Clayton copula (0.3)
with Cauchy margins

o
© 1 amm= mBLAW
= mHHG
mHSIC
o |
(o]
o |
[{e]
b}
=
(o)
o
o |
Q
o |
Al
o
0 20 40 60 80 100
Sample size

F1a. 4.20. Power in the case of vectors for the Gumbel copula (1.1)
with Normal margins
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Fic. 4.21. Power in the case of vectors for the Gumbel copula (1.1)
with Exponential margins
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F1G. 4.22. Power in the case of vectors for the Gumbel copula (1.1)
with Cauchy margins
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Fi1G. 4.23. Power in the case of vectors for the Normal copula
(Poy = Pu. = 0.1, p, , = 0.3) with Normal margins
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Fi1G. 4.24. Power in the case of vectors for the Normal copula
(Poy = Pu,. = 0.1, p, , = 0.3) with Exponential margins
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Fi1G. 4.25. Power in the case of vectors for the Normal copula
(poy = Pu. = 0.1, p, , = 0.3) with Cauchy margins

99



100

4.5. DISCUSSION OF POWER RESULTS

Here we start by saying that both the tests we call “mHHG” and “mBLAW”
are new, in the sense that mHHG is the extension of Heller et al. [15] presented in
section 4, while mBLAW is that same extension, but using ranked data instead of
the original data. Although we state our preference for mBLAW, we investigated
the power of both tests in comparison to other tests labeled BBL (from Beran
et al. [3]), mHSIC (from Pfister et al. [23]) and GR (from Genest and Rémillard

[10]).

In the random variables examples, we started with the motivational example
from section 1.3.2, where the variables X, Y and Z are pairwise independent
but not mutually independent. mBLAW is outperformed by mHSIC, but is still
significantly better then mHHG, BBL and GR. Next on the ‘Cos-Sin’ example
as well as the ‘Cos-Exp’ example mBLAW is the best test, and GR is the worst.
In the ‘linear’ dependence however GR is best, while mBLAW is second best. In
the copula examples, six times out of nine (for the Clayton and Gumbel copulas)
GR is the best test, with BLAW being the second best. For the Normal copula
and sample sizes bigger then 40, mBLAW is the best test.

Perhaps it is not surprising that GR performs well when data is generated via
copulas, because it uses the empirical copula processes as base for its method-
ology. It is also worthy to note that while for obvious reasons the power of GR
and BLAW is unaltered by the marginals of X, Y and Z, it is also the case for
the BBL test. However, as in the bivariate examples, the power of mHHG and
mHSIC is greatly influenced by the distribution of the marginals. Again, we con-
sider this to be a flaw, as the choice of marginals does not influence the strength

of the dependence.

In the random vectors examples, first we presented two new versions of the
“pairwise independence” motivational example. In the first of such examples,
which we called “case mixed”, see Figure 4.15, mHSIC performs best and mBLAW
is the second best. BBL and KOJA have almost no power, while mHHG has little

power.

In the second of those examples (“case hidden”), see Figure 4.16, note that
we computed the power for sample sizes from 10 to 250. This is because the de-
pendence here is harder to find, with Z being independent of both X and Y. We
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see that mBLAW performs way better then mHHG, and is very similar to mHSIC.

Next in the copula examples, the same conclusions as in the random variables
examples can be drawn: mBLAW is always better than mHHG, and substantially
so when the marginals are Cauchy. It is also always better than mHSIC. Again
we see that the power of mHSIC and mHHG varies a lot when the marginals
change. This is not the case of mBLAW.






Chapter 5

CONCLUSION

5.1. MOTIVATION FOR THIS RESEARCH

How to test for independence is a fundamental question in statistics. The
tools available to answer this question have greatly evolved in the past century.
Since the famous Pearson’s correlation coefficient was established, increasingly
sophisticated tests have been developed. Statisticians working in this field aim
at creating methods as general as possible, with good power to detect any form

of association between any number of random vectors.

Specifically to test the independence between two random quantities, some
tests recently developed have been found to be universally consistent. Perhaps
the most popular among them is the distance covariance test from Székely et al.
[34]. However, if a test aims at being applicable in the most general of contexts,
it is unlikely to be the most powerful in all situations. For instance, Heller et al.
[15] established that their test outperforms distance covariance in many exam-
ples. Likewise, in the present thesis we saw some examples where both HHG and

DCOV were outperformed by HSIC, and vice versa.

Now, as we mentioned before, both the HHG and DCOV tests detect depen-
dence between two random vectors X and Y. This could be seen as a limitation
because pairwise independence between all vectors of a set does not imply mutual
independence of those vectors. That said, few consistent methods are currently
available to test the mutual independence between any number of random vec-
tors. This absence, combined with our belief that HHG had the potential to
be further developed, were the main motivations for this thesis. In the end we
obtained a non-parametric test of independence between an arbitrary number of

random vectors, with arbitrary (possibly different) dimensions.
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5.2. CONTRIBUTIONS

5.2.1. On bivariate ranked data

In this research we extended the methodology from Heller et al. [15] in two
manners. First, we argued that applying their test not on the collected data itself
but on the ranks of the collected data would produce a more robust and powerful
method. The motivation behind this was explained in section 3.1. To recap,
the rank transformation puts all observations on the same scale. This is suitable
because the marginal distribution of a random variable has nothing to do with
its dependence to other variables. Said otherwise, using the rank transformation
strips away the impact of the marginal distributions, to leave only the dependency
structure which is what we seek to detect. The bivariate test in Heller et al. [15]
applied to ranked-data was labeled the “BLAW?” test. We investigated its power
on numerous and varied simulated data sets. We compared it to the power of
three recent, state-of-the-art independence tests, namely the original HHG, the
DCOV and the HSIC tests.

We found that:

e BLAW is consistent to detect all the forms of dependence we investigated.
That is, its power always gets bigger if the sample size N gets bigger.

e BLAW has similar or better power then HHG, DCOV and HSIC in most
examples. To be more precise, only in examples labeled ‘epsilon depen-
dance’, see Figure 3.26 and ‘quadratic dependence’, see Figure 3.27 did
HHG beat BLAW by a notable margin. In the copula examples, both
when X and Y were variables and vectors, BLAW was clearly superior to
HHG.

e Furthermore, in the copula examples we saw that BLAW was the only
test not affected by the choice of marginal distributions. This is a good
property for an independence test.

e In particular, we saw that with Cauchy marginals, HHG, DCOV and HSIC
performed rather poorly. This means that BLAW is more robust than the
other tests in the presence of extreme values.

e In one example in particular labeled ‘big noise’, see Figure 3.29, all tests
except BLAW had negligible power. This was a rather surprising result
to us. Indeed, while Y was strongly dependent of X = (X7, X5) via X;
(but not via X5) the fact that X, had a ‘big’ variance made those tests
practically incapable of detecting the dependence between X and Y.
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To summarize, although using ranks is a very simple modification to the
original test, we believe the results obtained make it a valuable contribution, as

we consistently obtained better power than three state-of-the-art tests.

5.2.2. On multivariate data

Then, we also made the method in Heller et al. [15] more general by extending
it to test the mutual independence between any number of random vectors. We
realized that the key aspect of their method (i.e. the categorization of all sample
points in 2 X 2 contingency tables to perform multiple x? tests of independence)
was perfectly valid in a multivariate context. Indeed, if for two random vectors
we could define zones according to two coordinates, then for d random vectors
we could define zones according to d coordinates. Then, we could classify each
sample point as inside or outside the zones, according two d coordinates. I.e. we
could categorize our points in a 2¢ contingency table. In turn, this table could be
used to calculate a x? statistic just as in the bivariate case. In total, N(N — 1)
such y? statistics were calculated and their sum yielded our global test statistic

T. Formalization of this procedure was done in section 4.2.

We investigated the power of this new test on various examples. Because us-
ing ranks worked well in the bivariate case we tried it in the multivariate case as
well. The direct multivariate extension of HHG was labeled “mHHG”, while the
version using ranks was labeled “mBLAW?”. In examples involving random vari-
ables, we compared mHHG and mBLAW to three other tests, namely mHSIC,

BBL and GR. In random vectors examples we compared them only to mHSIC.

We found that:

e Akin the bivariate case, mBLAW is consistent to detect all the forms of
dependence we investigated. That is, its power always gets bigger if the
sample size N gets bigger.

e In the random variables examples using copulas, GR performed better
than mBLAW six times out of nine, but mBLAW was still the second best
test in each of those six examples, and also perfomed best in the three
remaining copula examples. Then, GR performed rather poorly in the
‘pairwise independence’, ‘Cos-Sin” and ‘Cos-Exp’ examples, see Figures
4.2 to 4.4, while mBLAW did good, being beaten by mHSIC only in the

‘pairwise independence’ case.
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e Akin to the bivariate case, mBLAW was unaffected by the choice of
marginals, unlike mHHG and mHSIC that were strongly affected by the
choice of marginals.

e In the random vectors examples (where the GR test is not applicable) we
saw that in the two ‘pairwise independence’ examples mBLAW did way
better than mHHG. Next, in all the copula examples mBLAW performed
better than the two other tests. In particular, it performed drastically
better in the case of Cauchy margins, again illustrating its robustness in

the presence of extreme values.

To summarize, we extended the HHG test for multivariate independence test-
ing because few tests are consistent to detect mutual dependence between more
than two vectors. Then, through power simulations we realized that, especially

for the version of the test using ranks, this new test is pretty powerful.
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5.3. LIMITATIONS

The main limitation of the proposed test is the computation time which is
high, especially for large samples sizes N. To be more precise, in the multivariate
case if we make the assumption that d (the number of vectors) is a lot smaller
then N (which is a reasonable assumption in most applications), the computation
of the test statistic 7" is done in approximately d x N? operations. Furthermore,
when using a permutation method (with number of permutations n,), the p-value
is calculated by basically redoing the same thing n, times, hence needing a num-
ber of operations of order n, x d x N3. However, this issue could be partially

solved using the arguments presented in the next section 5.4.

Finally, as in any statistical test, the outcome we obtain is binary: we reject
Hy or we do not. This gives a very “black and white” picture of the situation.
In the case Hy is rejected the procedure gives no additional information about
the dependence structure of the data. Of course, modeling is not the scope
of this research. However it is worth mentioning that, upon discovering there is
dependence between some variables, one might want to understand more precisely
how these variables are related, possibly with the objective of explaining some of

them using the others.
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5.4. POSSIBLE FOLLOW-UP WORK

For reasons explained in section 3.1 and in sight of the power simulations
conducted, using ranked-data seems like a good idea. Here we present a further
argument that supports using ranks, at least in the case of XM ... X contin-
uous random variables. Although we did not fully develop this idea in the present

research, it could be brought forward in future work.

It is well known that for X a continuous random variable and F'(-) its cumu-

lative distribution function, we have:
F(X) ~U|0,1]

Therefore, if we apply the test to the empirical distribution functions of our
observations, Fy[XW], Fy[X®)],--- | Fy[X@] (which are functions of the ranks)
rather then on the observations themselves, we now know the distribution of the
marginals: they are asymptotically Uniform (0,1). This has the consequence
that the expected counts E(t) in a particular cell of our contingency tables ¢t =
(t1,ta, -+ ,tq) is now known theoretically, and does not need to be estimated. In

other words, in section 4.2 we used to work with the empirical expected counts
E(t)

. 1 d N .
E(ty, - ,td)zwx [ X =u)

v=1 k=1
kg{ig}
We could now use theoretical expected counts:

E(ti, -+ ta) = N xp(t1, -+, ta)

where p(ty,--- ,tq) is the theoretical probability for a point to fall in category ¢,

under H,.

Now, recall our partial test statistic S(-,-) calculated for two specific points
i,7, denoted S(i, j):
- [A(t) — E(t)]
SON=2 Ty
Unless the two chosen points ¢ and j are exactly equal in one or more of their d
components (which should in principle never happen for continuous random vari-
ables), F(t) will never be 0 and this statistic will always be computable. This is
not the case if we use the empirical E (t). Furthermore, this is now asymptotically

a x2 statistic with 2¢ — 1 degrees of freedom, compared to 2¢ — d — 1 when we
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had to estimate the E(t) empirically.

We believe the addition of these non-zero S(-,-) to the overall statistic T' =
>izj S(i,7), as well as the increased number of degrees of freedom might enhance

the power of the test.

Furthermore, and perhaps most importantly, recall that we do not know the
distribution of the test statistic 7. For small samples sizes N this is not really
a concern because the permutation method works well and does not take too
long to compute. However for large sample sizes N, their might be issues with
computation time. This is because the permutation method we use basically
means that we repeat the same thing a large number of times. Of course, if we
knew the distribution of T'|Hy, then we wouldn’t need the permutation method
and the computation time would decrease drastically. Hence, there is interest in
finding parametrical approximations to the distribution of T'|Hy, or at the least
in finding a good approximation of its high quantiles. But in the original version
of the test, T|Hy actually depends of the marginals of X = X® and Y = X®.
Hence this task might not be feasible. If on the contrary we use ranks, T'|H,
always has the same (asymptotical) distribution. Then there is hope in finding
a good parametrical fit to T|Hy. Alternatively, with simulations we could built
an (empirical) table of the quantiles of T'|H, for a series of N, and extrapolate
the quantiles for in-between values of N. Again, using this table instead of the

permutation method would greatly reduce the computation time of the test.
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Appendix A

PROOFS OF SECONDARY RESULTS

A.1. DEFINITION OF INDEPENDENCE

Theorem 4.2.1 in Resnick [27] states a ‘well known’ fact: random variables
are independent if and only if their joint distribution function is the product of
the marginal distribution functions. We want to prove a slightly different result,

and to do so we get inspiration from the proof of theorem 4.2.1 in Resnick [27].

Theorem A.1.1. A finite collection of random variables X, --- , Xy is indepen-
dent iff

k
P[a1 <Xi<by,-ear < X Sbk] :HP[al < X; sz], Va;, b; € R (All)

i=1
Proof.

(=) This part is easy. If Xj,---, X} are independent it means their induced

sigma-fields o(X7),- -+ ,0(X}) are independent. Since

[CLZ‘ S Xz S bz] - O'(Xi),

all the events [a; < X; < ;],i =1,--- , k are independent, and the result follows
by definition of independent events.
(<) We define the following classes of subsets:

C = {[atr < by}, as,b € R},
which is the class of closed intervals on R.
Cr = {lar < Xi < by], a4, b, € R},

which is the class of events ‘random variable X, is within a closed interval on R’.

Then



A-ii
(i) C; is a m-system (class closed under finite intersection) since
la; < Xy < b](la; < X; < bj] = [a; Aa; < X < b Abj| € Cy.
(ii) o(C) = 0(Xy), since o(C) generates the Borel subsets of R:
0(C)=0([X; € Bl,BeC)=0([X;*(B)],Be€C)
=o((X;1(C)) = X, (0(C))
— X7 (B(R)) = o(X,)
Now, A.1.1 means that the classes {C;} are independent. Then, because these

classes are m-systems, we can use Theorem 4.1.1 in Resnick [27] to establish that
{o(C;) = 0(X}:)} are independent.
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A.2. PROOF THAT X 1Y <« Fx(X) L Fy(Y)

We need the following theorem taken from Rosenthal [29], p. 32:

Theorem A.2.1. Let X and Y be independent random variables. Let f,g: R —
R be Borel-measurable functions. Then the random variables f(X) and g(X) are

independent.
Also, one way to state a function is Borel-measurable is the following.

Definition A.2.1. A function ¢ : R — R is Borel measurable if
Vye R {zeR:¢(x) <y}eb.

With this in mind, we prove each side of the ‘if and only if’ statement that

interests us.

(=) Any cumulative distribution function F'(-) is monotone increasing. Then,
Vy € R the set

{reR: F(z) <y}

Is of the form (—o0, A] € B or of the form (—oo,\) € B for some A\ € R. In
other words, F'(-) is Borel-measurable, so the result is immediate from theorem
A2.1.

(<) Any quantile function F~'(-), or if you prefer the generalized inverse of
F(+), is monotone increasing. Hence it is Borel measurable for the same rea-
son that F(-) is. But since we are restricted to the case of continuous random
variables, F~'(F(t)) = t. This completes the proof.



A-iv
A.3. PROOF THAT Y;e(t) = MY

In section 4.2 we used Y, e(t) = M¢9. Here is the justification. Recall that for
a sample of size N, M = N — 2. Recall also that ¢t = (¢1,...,t4). We had:

d N
et)=11| X 1" =t)
v=1 k=1
kg {i,j}
For simplification, let us denote:
N
SO = t,) = A(t,)
k=1
ke{i.j}
so that:
e(t) = Al (ty) x A%(ty) x ... x A%ty)
or in a slight abuse of notation:
e(t) = A'(t) x A%(t) x ... x A%¢).

Recall that each ¢, can only take two values, ¢, € {0,1}. Because A"(t,) is the
number of points out of M to fall in category t,, with only two possibilities in

total, we always have:
A’(0) + A°(1) = M.
Then:

S e(t) =AY(0) - [; A(H) % ... x Ad(t)] + A1) - lz A(t) % ... % Ad(t)]

t t
= [A%(0) + (M — AY(0))] - lz A%(t) x ... % Ad(t)]
t
=M > AXt) x ... x AYY).
t
And repeating the argument another d — 1 times we get:

e(t) = M°.



Appendix B

TABLES OF EMPIRICAL POWERS

In this section we display the empirical power for all examples tested.

B.1. BIVARIATE VERSION OF THE TEST

B.1.1. Random variables examples

N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10 5.1 0.2 | 5.1 0.2 5.0 0.2 5.1 0.2
20 5.0 0.2 | 50 0.2 4.8 0.2 5.0 0.2
30 5.4 02| 52 0.2 9.3 0.2 5.3 0.2
40 5.9 02| 55 0.2 5.2 0.2 5.1 0.2
50 5.0 0.2 5.0 0.2 4.7 0.2 4.8 0.2
60 5.0 02 1] 51 02 5.1 02 51 02
70 5.1 02 1] 53 02 4.8 02 50 0.2
80 4.8 02| 47 02 4.7 02| 47 0.2
90 5.2 0.2 | 5.1 0.2 5.0 0.2 5.1 0.2
100 4.8 02| 45 0.2 4.8 0.2 4.7 0.2
TAB. B.1. Power in the case of four independent clouds




N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10| 173 04 ] 214 04 ] 101 03| 280 04
20| 594 05659 05| 27.8 04| 648 0.5
30| 8.6 03908 03| 569 05| 8.6 04
40 | 984 0.1 1983 01| 789 04| 950 0.2
50 1 999 00999 00| 935 0.2 988 0.1
60 | 100.0 0.0 [100.0 0.0 | 98.0 0.1 | 99.6 0.1
70 | 100.0 0.0 |100.0 0.0 | 99.6 0.1 | 100.0 0.0
80 | 100.0 0.0 [100.0 0.0 | 99.9 0.0 | 100.0 0.0
90 | 100.0 0.0 {100.0 0.0 | 100.0 0.0 | 100.0 0.0
100 | 100.0 0.0 {100.0 0.0 | 100.0 0.0 | 100.0 0.0
TaAB. B.2. Power in the case the W-shape dependence
N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10 3.4 02 49 02 1.9 0.1 ] 65 0.2
20 6.7 03] 134 0.3 2.6 02| 145 04
30 | 143 04 ] 283 0.5 3.0 02 1] 262 04
40 | 26.1 0.4 | 486 0.5 3.8 0.2 | 40.1 0.5
50 | 404 0.5 | 664 0.5 4.8 0.2 | 545 0.5
60 | 544 0.5 | 80.2 04 6.0 0.2 | 66.8 0.5
70 | 68.1 05| 89.3 0.3 7.4 0.3 | 775 04
80 | 79.2 04| 948 0.2 9.6 0.3 | 8.3 04
90 | 879 03976 02| 122 03| 909 0.3
100 932 03 (991 0.1 164 04| 944 0.2
TaB. B.3. Power in the case of the Diamond dependence
N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10| 178 04| 191 04| 150 04| 208 04
20 | 53.8 05| 508 05| 31.2 05| 476 0.5
30| 845 04791 04| 522 05| 733 04
40 | 96.8 02928 03| 712 05| 8.2 0.3
50 | 995 0.1 | 983 0.1 | 8.4 04| 9.7 0.2
60 | 999 00996 0.1 | 934 02| 986 0.1
70 | 100.0 0.0 1999 00| 979 0.1 | 996 0.1
80 | 100.0 0.0 [100.0 0.0 | 99.4 0.1 | 100.0 0.0
90 | 100.0 0.0 {100.0 0.0 | 99.8 0.0 | 100.0 0.0
100 | 100.0 0.0 {100.0 0.0 | 99.9 0.0 | 100.0 0.0

TAB. B.4. Power in the case of the Parabola dependence



N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10| 286 051|314 05| 11.7 03| 200 04
20 783 04| 749 04| 157 04| 539 05
30 | 988 0.1 (962 02| 204 04| 849 04
40 | 100.0 0.0 | 99.7 0.1 | 269 04| 971 0.2
50 | 100.0 0.0 [100.0 0.0 | 354 0.5 ] 99.7 0.1
60 | 100.0 0.0 [100.0 0.0 | 46.6 0.5 | 100.0 0.0
70 | 100.0 0.0 | 100.0 0.0 | 58.0 0.5 | 100.0 0.0
80 | 100.0 0.0 [100.0 0.0 | 70.0 0.5 |100.0 0.0
90 | 100.0 0.0 [100.0 0.0 | 81.5 0.4 | 100.0 0.0
100 | 100.0 0.0 |100.0 0.0 | 90.1 0.3 | 100.0 0.0
TAB. B.5. Power in the case of the Two Parabolas dependence
N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10 6.9 0.3 ] 88 0.3 2.8 0.2 | 10.6 0.3
20 | 347 0.5 ] 300 0.5 3.4 02 1] 252 04
30 | 798 04| 646 0.5 5.1 0.2 | 48.8 0.5
40 | 977 0.1 | 89.8 0.3 6.6 02| 76.1 04
50 1 999 0.0 | 98.0 0.1 7.5 03| 914 0.3
60 | 1000 0.0 [ 998 00| 107 03| 975 0.2
70 | 100.0 0.0 |100.0 0.0 | 139 0.3 ] 99.6 0.1
80 | 100.0 0.0 [100.0 0.0 | 196 04| 999 0.0
90 | 100.0 0.0 [100.0 0.0 | 24.8 0.4 | 100.0 0.0
100 | 100.0 0.0 |100.0 0.0 | 329 0.5 |100.0 0.0
TAB. B.6. Power in the case of the Circle dependence
N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10 178 04| 172 04| 288 05| 21.1 04
20 | 431 05| 377 05| 554 05| 406 0.5
30 | 649 05 |566 05| 740 04| 582 0.5
40 | 795 04 ] 726 04| 8.3 03| 722 04
50 | 894 03 (8.3 04| 937 02| 827 04
60 | 945 02902 03| 9.9 02893 0.3
70| 975 0.2 951 02| 988 0.1 | 944 0.2
80 | 988 0.1 (971 02| 994 0.1 | 96.2 0.2
90 | 99.2 0.1 984 01| 99.7 0.1 ] 98.0 0.1
100 99.8 0.0 992 0.1 999 0.0] 990 0.1

TAB. B.7. Power in the case of the Linear dependence

B-iii
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N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10 9.3 03] 90 03| 150 04| 100 0.3
20| 166 041|163 04| 257 04| 155 04
30 | 280 04261 04| 375 05219 04
40 | 379 05| 353 05| 476 05| 283 0.5
50 | 493 05 | 455 05| 579 05| 36.1 0.5
60 | 59.9 05| 558 05| 664 05| 420 0.5
70 ] 691 051649 05| 753 041|499 0.5
80 | 76.6 04| 723 04| 8.5 04| 581 0.5
90 | 824 04| 784 04| 8.2 04| 635 0.5
100 879 03| 8.2 04| 89 03] 695 0.5
TaB. B.8. Power in the case of the Exponential dependence

N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10 18.2 04 ] 176 0.4 28.2 0.5 ] 267 04
20 | 450 051393 05| 559 051|519 05
30 | 71.6 051|641 05| 775 04| 733 04
40 | 873 031|803 04| 8.7 03| 8.9 0.3
50 | 949 0.2 ]91.0 03] 958 0.2 939 0.2
60 | 983 011|960 02| 984 0.1 | 974 0.2
70 | 99.2 0.1 ]981 0.1 ] 994 0.1 | 98.8 0.1
80 | 99.8 0.0 993 0.1 ] 99.8 0.0 995 0.1
90 | 100.0 0.0 | 99.8° 0.0 | 100.0 0.0 | 99.8 0.0
100 | 100.0 0.0 | 99.9 0.0 | 100.0 0.0 | 99.9 0.0
TAB. B.9. Power in the case of the Sine dependence

N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10 109 03106 03] 181 04| 121 0.3
20 | 237 04198 04| 324 05| 198 04
30 | 358 051|304 05| 452 05| 285 0.5
40 | 48.7 05| 408 05| 556 05| 360 0.5
50 | 99.0 05496 05| 66,5 0.5 | 43.7 0.5
60 | 694 05590 05| 747 04| 514 05
70 | 752 04657 05| 8.3 04578 0.5
80 | 81.3 04| 721 04| 8.5 04| 634 05
90 | 870 03| 7.0 04| 9.2 03| 714 05
100 90.1 03| 8.0 04| 928 03| 754 04
TAB. B.10. Power in the case of the Clayton (0.6) copula with
Normal margins




N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10| 114 03] 102 03| 101 03] 11.5 0.3
20 232 04173 04| 165 04 ] 191 04
30 | 364 05252 04| 245 04| 273 04
40 | 476 05 | 333 05| 315 05| 341 05
50 | 59.5 0.5 | 422 05| 392 05| 415 0.5
60 | 679 05| 507 05| 476 05| 50.0 0.5
0| 766 04591 05| 5.2 05| 573 0.5
80| 8.0 04659 05| 619 05| 625 0.5
90 | 86.3 0.3 | 720 04| 678 05| 694 0.5
100 905 03|79 04| 728 04| 741 04
TAB. B.11. Power in the case of the Clayton (0.6) copula with
Exponential margins

N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10 1.7 03] 99 03] 99 03] 11.1 03
20 23.0 04 ] 13.8 0.3 13.4 0.3 | 140 0.3
30| 355 05199 04| 157 04| 176 04
40 48.6 0.5 ] 265 04 18.2 04 1] 214 04
50 | 594 0.5 320 05| 207 041 260 04
60 | 680 051|359 05| 208 04| 298 0.5
70 | 7.8 04 ] 41.0 05| 228 04| 33.2 0.5
80 | 81.5 041|473 05| 239 04| 383 0.5
90 | 86.1 0.3 | 524 05| 260 04| 42.7 0.5
100 90.7 03| 56.6 05| 275 04| 464 0.5
TaB. B.12. Power in the case of the Clayton (0.6) copula with
Cauchy margins

N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10 148 04 ] 141 03] 240 04| 159 04
20 318 051|273 04| 407 05| 271 04
30 | 496 0.5 | 424 05| 577 0.5 | 387 0.5
40 | 64.8 05| 56.0 05| 708 0.5 | 50.1 0.5
50 | 759 04 | 66.8 05| 8.6 0.4 ] 60.0 0.5
60 | 8.1 04|74 04| 877 03] 693 0.5
70 89.0 03827 04| 920 03] 764 04
80 | 928 03 | 875 03| 947 02| 8l5 04
90 | 958 02917 03| 99 02| 8.9 0.3
100 975 02| 946 02| 984 0.1 | 90.3 0.3
TAB. B.13. Power in the case of the Gumbel (1.4) copula with
Normal margins
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N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10 14.7 04 ] 165 04 ] 257 04| 183 04
20 | 319 05 | 347 05| 447 05| 326 0.5
30| 494 05| 515 05| 595 0.5 | 435 0.5
40 | 640 05660 05| 729 04| 541 0.5
50 | 755 04 ] 763 04| 81.3 04 ] 647 0.5
60 | 8.0 04|81 04| 8.5 03|79 04
70 ] 8.1 03 |8.0 03| 922 03| 789 04
80| 932 03932 03| 9.0 02| 8.1 04
90 | 956 02]9.5 02| 95 02| 8.6 0.3
100 973 02973 02| 90 01| 912 03
TAB. B.14. Power in the case of the Gumbel (1.4) copula with
Exponential margins

N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10 145 04 (123 03| 11.3 03| 139 0.3
20 32.5 0.5 ] 215 04 149 04 ] 21.0 04
30| 499 05310 05| 174 04| 274 04
40 | 642 05398 05| 21.0 04| 345 0.5
20 74.8 0.4 | 49.0 0.5 228 04 ] 411 0.5
60 | 831 041|559 05| 247 04| 482 0.5
70| 89.7 03 ]633 05| 265 04 ] 549 0.5
80 | 932 03689 05| 274 04| 60.6 0.5
90 | 96.0 02| 758 04| 304 05| 66.8 0.5
100 972 021|799 04| 335 05| 702 0.5
TaB. B.15. Power in the case of the Gumbel (1.4) copula with
Cauchy margins

N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10| 116 03] 104 03| 201 04| 130 0.3
20| 246 04195 04| 358 05| 20.7 04
30 | 374 05288 05| 50.0 0.5 | 288 0.5
40 | 511 051|396 05| 624 05 | 37.7 0.5
50 | 62.0 05| 486 05| 728 04| 452 0.5
60 | 71.1 05| 573 05| 811 04| 541 05
70| 788 04]652 05| 8.8 03] 618 0.5
80 | 8.1 04|77 05| 91.3 03| 673 05
90 | 895 03| 783 04| 944 02| 736 04
100 925 03 |80 04| 962 02| 775 04
TAB. B.16. Power in the case of the Normal copula (p = 0.4) with
Normal margins




N [BLAW (sd) [HHG (sd) [DCOV (sd) [HSIC (sd)
10| 112 03| 118 03| 188 04| 146 04
20 | 245 04 | 227 04| 326 05| 245 04
30 | 384 05339 05| 452 05| 337 05
40 | 517 05| 463 05| 568 05| 444 05
50 | 620 051|550 05| 67.0 05| 514 0.5
60 | 704 05631 05| 743 04| 576 0.5
70| 789 04| 715 05| 8.2 04| 664 0.5
80 | 848 04| 790 04| 874 03| 727 04
90 | 886 03|82 04| 903 03| 7.6 04
100| 92.7 03|82 03| 934 02| 830 04

TAB. B.17. Power in the case of the Normal copula (p = 0.4) with

Exponential margins

N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10 117 03] 88 03] 90 03] 99 03
20| 246 04| 129 0.3 112 03 | 13.7 0.3
30 | 382 05168 04| 128 03| 171 04
40 | 502 05212 04| 135 03] 199 04
50 | 625 05| 272 04| 148 04| 250 04
60 | 709 051|301 05| 150 04| 28.0 04
701 791 04139 05| 166 04 ] 329 0.5
80 | 844 04 | 400 0.5 17.1 04 | 36.3 0.5
90 | 894 03 | 446 05| 172 04 | 418 0.5
100 923 03| 500 05| 185 04 | 445 0.5

TAB. B.18. Power in the case of the Normal copula (p = 0.4) with
Cauchy margins
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B.1.2. Random vectors examples

N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10 17.9 04 | 114 0.3 5.9 0.2 | 133 0.3
20 | 52.7 0.5 | 323 05 9.9 03] 339 0.5
30 | 8.5 04594 05| 154 04| 60.6 05
40 97.4 0.2 | 81.2 04 25.8 04 | 834 04
50 | 99.8 0.0 936 02| 386 05| 958 0.2
60 | 100.0 0.0 | 989 0.1 | 53.0 0.5 99.2 0.1
70 | 100.0 0.0 | 99.7 0.1 | 67.8 0.5 |100.0 0.0
80 | 100.0 0.0 |100.0 0.0 | 79.3 0.4 |100.0 0.0
90 | 100.0 0.0 |100.0 0.0 | 88.9 0.3 |100.0 0.0
100 | 100.0 0.0 | 100.0 0.0 | 96.0 0.2 | 100.0 0.0
TaB. B.19. Power in the case of vectors for the ‘log” dependence

N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10 8.7 03216 04| 139 03] 220 04
20 | 189 04 | 557 05| 188 04| 36.2 0.5
30| 314 05| 784 04| 226 04| 484 0.5
40 | 456 05905 03| 263 04| 584 0.5
50 | 60.1 051969 02| 298 05| 689 0.5
60 | 716 05| 987 01| 326 05| 74 04
70 | 8.0 04996 01| 357 05| 846 04
80 | 8.3 031]1999 00| 382 05|86 0.3
90 | 93.1 0.3 [100.0 0.0 | 428 0.5 | 936 0.2
100 955 0.2 [100.0 0.0 | 463 0.5 | 95.8 0.2
TaB. B.20. Power in the case of vectors for the ‘epsilon’ dependence

N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10 6.6 02| 174 04| 150 04| 205 04
20 | 100 03] 448 05| 229 04| 376 0.5
30 | 158 041|687 05| 302 05| 530 05
40 | 23.8 04| 8.2 04| 399 05| 677 05
50 | 316 05 ]934 02| 485 05| 804 04
60 | 422 051|973 02| 569 05| 8.7 0.3
70 | 514 05987 0.1 | 654 05| 938 0.2
80 | 622 05]996 0.1 | 725 04| 971 0.2
90 | 685 051]999 00| 783 04| 988 0.1
100 775 04999 00| 8.6 04| 99.3 0.1
TaB. B.21. Power in the case of vectors for the ‘quadratic’ dependence




N [BLAW (sd) [HHG (sd) [DCOV (sd) [HSIC (sd)
10| 61 02| 67 03| 73 03] 112 03
20 | 128 03| 112 03| 11.7 03] 220 04
30 | 247 041|161 04| 175 04 | 403 05
40 | 42.0 05| 214 04| 253 04| 600 0.5
50 | 641 05| 27.0 04| 359 05| 798 04
60 | 853 04362 05| 494 05| 925 03
70 | 953 02| 444 05| 630 05| 97.7 0.2
80 | 992 0.1 |544 05| 752 04| 993 0.1
90 | 999 00| 637 05| 8.3 03| 99.9 00
100 100.0 0.0 | 727 04| 929 0.3 |100.0 0.0

TAB. B.22. Power in the case of the

pairwise independence example

N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10 7.4 03| 55 0.2 5.6 02| 53 0.2
20 | 122 03| 53 0.2 6.1 02| 54 02
40 | 242 04 ] 62 02 6.8 03] 6.0 0.2
60 39.0 05| 6.2 0.2 6.1 0.2 6.2 0.2
80 | 56.2 05| 7.0 0.3 6.8 03] 68 0.3
100 694 05| 7.7 0.3 7.4 03] 74 03
120 80.2 04| 7.8 0.3 7.3 03] 71 0.3
150 90.1 03| 87 0.3 8.6 03] 79 03
200 975 0.2 | 104 0.3 9.1 03] 91 03
250 99.7 0.1 | 119 03] 11.2 03| 94 0.3
TAB. B.23. Power in the case of the ‘big noise’ dependence
N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10 13.5 0.3 | 13.2 0.3 20.4 04 ] 164 04
20| 344 051(330 05| 396 05| 324 0.5
30 | 548 051|497 05| 55.7 05| 46.0 0.5
40 | 71.0 05639 05| 702 05| 582 05
50 | 81.8 041|765 04| 8.5 04| 704 0.5
60 | 89.0 03| 8.5 04| 876 03| 786 04
70 | 937 0.2 ]904 03| 928 03] 853 0.4
80 | 97.0 021|942 02 ] 9.4 02| 906 0.3
90 | 983 0.1 ] 967 02| 976 02| 932 0.3
100 99.0 0.1 ] 980 0.1 ] 985 0.1 96.1 0.2

TAB. B.24. Power in the case of vectors for the Clayton (0.5) cop-

ula with Normal margins
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N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10 135 03] 91 0.3 9.8 03] 11.9 0.3
20 344 05| 171 04 172 04 | 236 04
30| 548 05| 253 04| 269 04| 335 0.5
40 | 71.0 05| 341 05| 369 05| 434 0.5
50 | 81.8 04| 435 05| 470 0.5 ] 52.8 0.5
60 | 89.0 03] 525 05| 572 05| 613 0.5
70 937 02604 05| 650 0.5 | 688 0.5
80| 970 02674 05| 742 04| 768 04
90 | 983 01| 736 04| 792 04| 8.6 04
100 990 01| 796 04| 848 04| 84 04
TAB. B.25. Power in the case of vectors for the Clayton (0.5) cop-
ula with Exponential margins

N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10 13.5 0.3 | 10.5 0.3 104 0.3 | 125 0.3
20 34.4 0.5 ] 184 04 13.7 03] 199 04
30 54.8 0.5 | 25.8 04 15.1 04 1] 262 04
40 71.0 0.5 ] 33.3 0.5 17.5 04 | 334 0.5
50 81.8 0.4 | 404 0.5 19.5 04 | 393 0.5
60 89.0 0.3 | 47.8 0.5 22.1 04| 475 0.5
70 93.7 0.2 | 53.0 0.5 23.0 0.4 | 529 0.5
80 97.0 0.2 | 58.6 0.5 23.6 0.4 | 59.0 0.5
90 | 983 0.1 | 640 05| 252 04| 640 0.5
100 99.0 0.1 ]695 05| 264 04| 69.6 0.5
TAB. B.26. Power in the case of vectors for the Clayton (0.5) cop-
ula with Cauchy margins

N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10 | 175 04| 174 04| 248 04 ] 214 04
20| 434 05380 05| 451 05| 40.1 0.5
30 | 646 05| 561 05| 633 05| 554 05
40 | 798 04 | 718 04| 773 04| 693 05
50 | 89.2 03| 822 04| 8.7 03] 79 04
60 | 942 02|87 03] 924 03| 87.0 0.3
0] 973 02]931 03] 9.0 021923 0.3
80 | 987 0.1 965 02| 980 0.1 954 0.2
90 | 994 0.1 | 980 0.1 ] 99.0 0.1 | 972 0.2
100 99.8 0.0 | 988 0.1 | 995 0.1 | 985 0.1
TAB. B.27. Power in the case of vectors for the Gumbel (1.3) cop-
ula with Normal margins




N [BLAW (sd) [HHG (sd) [DCOV (sd) [HSIC (sd)
10| 175 04| 186 04| 251 04| 229 04
20 | 434 05365 05| 421 05| 375 0.5
30 | 646 05534 05| 57.8 05| 508 0.5
40 | 798 04| 675 05| 702 05620 05
50 | 892 03| 772 04| 798 04| 7.3 0.5
60 | 942 02| 846 04| 8.8 03| 791 04
70| 973 02896 03| 914 03| 848 04
80 | 987 01934 02| 950 02896 03
90 | 994 01957 02| 97.0 02| 931 03
00| 99.8 0.0 | 971 02| 980 01| 948 0.2

TAB. B.28. Power in the case of vectors for the Gumbel (1.3) cop-
ula with Exponential margins

N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10 1v5 04| 119 03] 107 03| 141 0.3
20| 434 05211 04| 133 03] 226 04
30 | 646 05 (296 05| 147 04| 31.1 0.5
40| 79.8 04 ]380 05| 178 04| 387 0.5
50 | 89.2 03 |449 05| 193 04| 453 0.5
60 | 942 0.2 | 528 05| 208 04 ] 534 0.5
70| 973 02 (590 05| 224 04 ] 60.3 0.5
80 | 987 0.1 | 652 05| 239 04 ] 675 0.5
90 | 994 0.1 | 71.0 05| 248 04| 724 04
100 998 0.0 | 752 04| 252 04| 772 04

TAB. B.29. Power in the case of vectors for the Gumbel (1.3) cop-

ula with Cauchy margins

N [BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10 [ 121 03| 110 03] 182 04| 141 03
20 | 274 04 | 227 04| 346 05| 262 04
30 | 461 05 | 361 05| 512 05| 384 05
40 | 624 051|495 05| 669 05| 515 0.5
50 | 733 04602 05| 775 04| 611 05
60 | 826 04 | 710 05| 8.5 04| 705 05
70| 880 03| 774 04| 900 03| 7.9 04
80 | 927 031|838 04| 940 02836 04
90 | 957 02893 03| 965 02|85 0.3
100 972 02921 03] 979 0.1 | 912 03

TAB. B.30. Power in the case of vectors for the Normal (p = 0.3)

copula with Normal margins
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N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10 12.1 0.3 | 13.8 0.3 183 04| 178 04
20 274 041269 04 306 05| 311 0.5
30 | 461 05| 403 05| 449 05| 436 0.5
40 | 624 05| 529 05| 581 0.5 | 549 0.5
50 | 733 04643 05| 692 05 ] 651 0.5
60 | 8.6 04| 730 04| 783 04| 733 04
70 ] 8.0 03|72 04| 838 04| 789 04
80| 927 03 | 8.0 04| 89.6 03| 844 04
90 | 95.7 02|88 03] 931 03| 8.7 0.3
100 972 02932 03] 94 02| 919 03
TAB. B.31. Power in the case of vectors for the Normal (p = 0.3)
copula with Exponential margins

N | BLAW (sd) | HHG (sd) | DCOV (sd) | HSIC (sd)
10 121 03|82 03| 79 03] 99 03
20| 274 04| 114 0.3 9.7 03] 132 0.3
30 46.1 0.5 1] 159 04 114 03 | 184 04
40 624 0.5 | 189 04 11.8 03 | 216 04
20 73.3 041229 04 124 03 | 25.1 04
60 | 826 04268 04| 122 03| 305 0.5
70| 8.0 03]284 05| 131 03] 329 0.5
80 | 927 031|330 05| 138 03| 37.7 0.5
90 | 957 02| 361 05| 146 04| 421 0.5
100 972 0.2 | 408 05| 145 04| 462 0.5
TAB. B.32. Power in the case of vectors for the Normal (p = 0.3)
copula with Cauchy margins




B.2. MULTIVARIATE VERSION OF THE TEST

B.2.1. Random variables examples
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N | mBLAW (sd) | mHHG (sd) | BBL (sd) | mHSIC (sd) | GR (sd)
10 7.1 0.3 6.6 021 49 02 16.6 04179 03
20 13.0 0.3 107 03 | 5.1 0.2 34.8 0.5 143 04
30 23.7 0.4 170 04 | 46 0.2 60.3 0.5 1220 04
40 39.8 0.5 269 04 1] 60 0.2 80.8 04 1304 0.5
50 08.8 05| 375 05 ]10.0 0.3 93.3 0.2 1386 0.5
60 77.9 04| 51.7 05205 04 98.2 0.1 [48.2 0.5
70 90.6 0.3 ] 63.1 0.5 1]33.0 0.5 99.6 0.1 |55.6 0.5
80 97.1 0.2 7.8 04 1500 0.5 ] 100.0 0.0 [63.2 0.5
90 99.5 0.1 8.4 041|644 05 1000 0.0 |71.5 0.5
100 99.9 0.0} 922 03 786 04| 1000 0.0 |77.1 04

TaB. B.33. Power in the case of the 3D pairwise independent Normals

N | mBLAW (sd) | mHHG (sd) | BBL (sd) | mHSIC (sd) | GR (sd)
10 6.9 0.3 7.2 03] 64 0.2 8.5 03173 03
20 11.3 0.3 116 03 91 0.3 138 03|88 0.3
30 16.9 04| 166 04 |11.7 0.3 19.1 04196 03
40 26.1 04| 254 04166 04 ] 268 04 |11.6 0.3
50 36.8 05| 347 05 (212 04 ] 340 05 |135 0.3
60 48.0 05| 444 05 (250 04 ] 424 05 |145 04
70 59.1 0.5 552 0.5 (306 0.5 509 0.5 | 175 0.4
80 69.2 05| 647 0.5 |344 0.5 58.6 0.5 1204 0.4
90 78.0 04| 73.0 04 (390 0.5 66.6 0.5 | 227 0.4
100 84.8 04| 80.1 04 ]452 0.5 728 04 254 04
TAB. B.34. Power in the case of the 3D Cos-Sin dependence
N | mBLAW (sd) | mHHG (sd) | BBL (sd) | mHSIC (sd) | GR (sd)
10 12.5 0.3 116 03 121 0.3 11.8 0.3 |15.0 04
20 27.9 04| 248 04 234 04 ] 225 04 1216 04
30 47.6 0.5 | 414 0.5 | 350 0.5 344 05 298 0.5
40 65.8 05| 584 05 [49.1 05| 473 0.5 [382 0.5
50 80.4 04| 724 04 ]60.8 0.5 61.1 0.5 (472 0.5
60 89.8 03| 831 041699 0.5 71.4 0.5 553 0.5
70 95.0 02 903 03 ]79.1 04 ] 805 0.4 1621 0.5
80 97.6 02 ] 946 0.2 | 848 04| 87.2 0.3 |68.5 0.5
90 99.0 0.1 972 02 (894 0.3 923 03 |79 04
100 99.6 0.1 987 0.1 1]924 0.3 95.5 0.2 180.1 04

TAB. B.35. Power in the case of the 3D Cos-Exp dependence



B-xiv

N | mBLAW (sd) | mHHG (sd) | BBL (sd) | mHSIC (sd) | GR (sd)
10 8.8 0.3 7.9 03| 84 0.3 8.1 0.3 1191 04
20 16.0 04| 130 03 |153 0.4 13.0 0.3 1293 0.5
30 24.5 04 ] 186 04 |21.2 04 176 0.4 [40.1 0.5
40 34.5 0.5 ] 248 04 (290 0.5 227 04 508 0.5
50 45.7 05| 330 051|376 0.5 285 0.5 (599 0.5
60 55.2 0.5 ] 40.2 0.5 [439 0.5 33.3 0.5 675 0.5
70 63.8 0.5 ] 469 0.5 | 506 0.5 399 05 |738 04
80 71.0 0.5 ] 532 05 |57.7 05| 458 0.5 787 04
90 77.9 04 ] 606 05635 0.5 51.5. 0.5 839 04
100 83.5 04 ] 66.5 05700 0.5 58.0 0.5 |87.7 0.3
TaB. B.36. Power in the case of the 3D linear dependence
N | mBLAW (sd) | mHHG (sd) | BBL (sd) | mHSIC (sd) | GR (sd)
10 13.9 03] 13.0 03122 0.3 116 0.3 [34.2 0.5
20 30.2 05 ] 264 04216 04 192 04 [521 0.5
30 47.9 0.5 | 40.7 0.5 ]30.1 0.5 26.7 04 |66.7 0.5
40 62.1 0.5 ] 533 05 ]41.0 0.5 36.0 05 |77.7 04
50 74.5 04 ] 648 05500 05| 446 0.5 8.5 04
60 82.5 04 1] 739 04 ]591 05 52.7 0.5 ]90.1 0.3
70 88.9 0.3 ] 814 04669 05| 604 05[943 0.2
80 93.2 0.3 ] 8.5 03 |741 04| 68.1 0.5 196.7 0.2
90 95.4 02 1] 9.6 03 |787 04| 734 041|977 02
100 97.4 021 939 02 (8.6 04| 795 04 ]98.6 0.1
TAB. B.37. Power in the case of the 3D Clayton copula (0.5) with
Normal margins
N | mBLAW (sd) | mHHG (sd) | BBL (sd) | mHSIC (sd) | GR (sd)
10 13.9 0.3 | 10.8 0.3 |12.2 0.3 125 0.3 [34.2 0.5
20 30.2 05 ] 208 04 (216 04| 206 041|521 05
30 47.9 0.5 ] 322 051301 05 30.4 0.5 ]66.7 0.5
40 62.1 0.5 | 442 05 [41.0 0.5 | 40.7 05 |77.7 04
50 74.5 04| 543 05 [50.0 05| 487 0.5 855 04
60 82.5 04 1] 643 05 (591 0.5 579 0.5 ]90.1 0.3
70 88.9 03] 730 04669 05| 650 05 [94.3 0.2
80 93.2 03] 796 04741 04| 723 04 (967 0.2
90 95.4 02 ] 846 04 |787 04| 775 041977 02
100 97.4 021 8.2 0386 04| 819 04 ]986 0.1

TAB. B.38. Power in the case of the 3D Clayton copula (0.5) with

Exponential margins
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N | mBLAW (sd) | mHHG (sd) | BBL (sd) | mHSIC (sd) | GR (sd)
10 13.9 0.3 11.5 0.3 | 122 0.3 9.9 0.3 |34.2 0.5
20 30.2 0.5 19.6 041216 04 12.7 0.3 [52.1 0.5
30 47.9 0.5 276 04 ]30.1 0.5 15.6 0.4 166.7 0.5
40 62.1 0.5 34.9 0.5 | 41.0 0.5 18.9 04 |77.7 04
20 74.5 04 | 427 0.5 | 50.0 0.5 224 0.4 8.5 04
60 82.5 04| 49.1 05 (591 05| 269 04]90.1 0.3
70 88.9 0.3 56.2 0.5 1669 0.5 30.9 0.5 1943 0.2
80 93.2 03| 61.8 05 |741 04 36.0 0.5 196.7 0.2
90 95.4 02| 669 05 |787 04 38.7 0.5 [97.7 0.2
100 97.4 0.2 72.6 0.4 |836 04 44.4 0.5 [98.6 0.1
TAB. B.39. Power in the case of the 3D Clayton copula (0.5) with
Cauchy margins
N | mBLAW (sd) | mHHG (sd) | BBL (sd) | mHSIC (sd) | GR (sd)
10 11.6 03] 109 03|96 0.3 9.7 0.3 1239 04
20 23.3 0.4 19.8 04 ] 156 04 13.6 0.3 351 0.5
30 34.6 0.5 29.2 051210 04 18.0 0.4 1470 0.5
40 46.4 05| 393 05283 0.5 22.8 0.4 [56.7 0.5
50 o7.4 0.5 | 485 0.5 |34.6 0.5 28.8 0.5 [66.7 0.5
60 65.6 0.5 56.8 0.5 | 40.9 0.5 34.2 0.5 728 04
70 74.1 04 1] 650 0.5 |482 0.5 39.4 0.5 (791 04
80 79.0 04 ] 70.1 0.5 ]524 0.5 45.1 0.5 |83.7 04
90 84.4 04| 76.0 04 ]590 05| 51.3 0.5 |87.7 0.3
100 | 87.8 03| 8.9 04635 05| 550 05 |90.1 0.3
TAB. B.40. Power in the case of the 3D Gumbel copula (1.2) with
Normal margins
N | mBLAW (sd) | mHHG (sd) | BBL (sd) | mHSIC (sd) | GR (sd)
10 11.6 0.3 14.3 04 96 0.3 11.6 0.3 239 04
20 23.3 0.4 27.2 04 | 156 04 16.4 0.4 [35.1 0.5
30 34.6 05| 39.0 05 |21.0 04 21.0 0.4 1470 0.5
40 46.4 05| 50.1 05]283 05| 265 04 |56.7 0.5
50 57.4 05| 605 05346 05| 324 05 |66.7 0.5
60 65.6 0.5 ] 68.1 0.5 1409 0.5 37.9 0.5 728 04
70 74.1 0.4 75.7 0.4 | 482 0.5 43.5 0.5 791 04
80 79.0 04| 80.7 04524 0.5 49.3 0.5 837 04
90 84.4 04| 8.3 041590 0.5 54.6 0.5 | 87.7 0.3
100 87.8 03] 8.5 03635 05 59.3 0.5 190.1 0.3

TAB. B.41. Power in the case of the 3D Gumbel copula (1.2) with

Exponential margins
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N | mBLAW (sd) | mHHG (sd) | BBL (sd) | mHSIC (sd) | GR (sd)
10 11.6 03] 100 03| 96 03 8.6 03 (239 04
20 23.3 04| 161 04| 156 04| 100 03 ]351 0.5
30 34.6 05| 216 04210 04| 11.2 03 470 0.5
40 46.4 05| 271 04283 05| 131 0.3 |56.7 0.5
50 57.4 05| 332 05346 05| 149 04 ]66.7 0.5
60 65.6 05| 388 05409 05| 176 04 |728 04
70 74.1 04| 448 05 482 05| 193 041|791 04
80 79.0 04| 486 05524 05| 216 04 |87 04
90 84.4 04| 531 05590 05| 243 04 |87.7 0.3
100 | 878 03] 575 05635 05| 253 04 ]90.1 0.3
TAB. B.42. Power in the case of the 3D Gumbel copula (1.2) with
Cauchy margins
N | mBLAW (sd) | mHHG (sd) | BBL (sd) | mHSIC (sd) | GR (sd)
10 11.5 03| 103 03124 0.3 9.9 03 (1193 04
20 24.0 04| 199 04229 04| 176 04 (302 0.5
30 39.9 05| 315 05371 05| 252 04 427 05
40 55.1 05| 439 05531 05| 334 05 ]533 0.5
50 67.9 05| 559 05642 05| 439 05 (642 0.5
60 79.4 04| 660 05749 04| 519 05 |71.8 04
70 87.3 03] 76.0 04 8.3 04| 615 05 |80.0 04
80 91.7 03| 8.8 04877 03| 688 05 |842 04
90 94.6 02| 8.5 03909 03| 744 04|81 0.3
100 | 973 02| 91.3 03 ]9.0 02| 8.2 04 ]923 0.3
TAB. B.43. Power in the case of the 3D Normal copula (p,, =
0.0, pz,» = 0.1, p, . = 0.5) with Normal margins
N | mBLAW (sd) | mHHG (sd) | BBL (sd) | mHSIC (sd) | GR (sd)
10 11.5 03| 115 03124 03| 11.0 031|193 04
20 24.0 04| 227 04229 04| 182 04 (302 05
30 39.9 05| 362 05371 05| 274 04 427 05
40 55.1 05| 498 05531 05| 352 05 (533 05
50 67.9 05| 622 05642 05| 460 05 642 0.5
60 79.4 04| 728 04 749 04| 542 05 |71.8 04
70 87.3 03] 8.1 0483 04| 630 05 |80.0 04
80 91.7 03] 8.5 0.3 |87.7 03| 702 05 |842 04
90 94.6 02| 908 03909 03| 748 04 |81 0.3
100 | 973 02| 942 02 9.0 02| 88 041]923 0.3

TAB. B.44. Power in the case of the 3D Normal copula (p,, =
0.0, pz» = 0.1, p, . = 0.5) with Exponential margins
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N [mBLAW (sd) [mHHG (sd) [BBL (sd) [mHSIC (sd) [ GR (sd)
10| 115 03] 89 03124 03] 73 03193 04
20| 240 04| 142 03229 04| 103 03302 05
30 | 399 05| 200 04371 05| 120 0.3 427 0.5
40 | 551 05| 270 04 [531 05| 148 04 |533 0.5
50 | 679 05| 338 05 |642 05| 181 04 |642 0.5
60 | 794 04| 404 05 |749 04| 211 04 |71.8 04
70| 873 03| 478 05 823 04| 249 04 [80.0 04
80 | 917 03| 539 05 |87.7 03| 285 05 (842 04
90 | 946 02| 600 05909 03| 311 05|81 0.3
100/ 973 02| 653 05950 02| 355 05 [923 0.3

TAB. B.45. Power in the case of the 3D Normal copula (p,, =

0.0, pz. = 0.1, p, , = 0.5) with Cauchy margins
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B.2.2. Random vectors examples

N | mBLAW (sd) | mHHG (sd) | mHSIC (sd) | BBL (sd) | KOJA (sd)
10 4.9 0.3 5.2 0.3 10.3 0.4 1] 0.0 0.0 1.1 0.1
20 10.8 0.4 7.8 0.4 20.6 0.6 | 44 0.3 0.6 0.1
30 17.5 0.5 10.6 0.4 314 0.7 1 45 0.3 0.4 0.1
40 27.7 0.6 13.0 0.5 45.2 0.7 1 59 03 1.5 0.2
50 39.0 0.7 15.3 0.5 60.7 0.7 | 5.0 0.3 2.5 0.2
60 52.2 0.7 21.0 0.6 76.1 0.6 | 48 0.3 4.6 0.3
70 63.9 0.7 24.5 0.6 85.2 0.5 53 0.3 7.3 0.4

TAB. B.46. Power in the case of vectors with pairwise independent
components, case mixed

TAB. B.47. Power in the case of vectors with pairwise independent

N [mBLAW (sd) | mHHG (sd) | mHSIC (sd)
10 52 02] 54 02] 69 03
20| 79 03| 73 03| 101 03
40| 158 04| 101 03| 180 04
60 | 269 04| 134 03| 286 0.5
80| 438 05| 178 04| 422 05
100 616 05| 227 04| 591 05
150 931 03] 382 05| 88 0.3
200 998 00| 558 05| 99.0 0.1
250| 1000 00| 73.6 04 | 100.0 0.0

components, case hidden

TAB. B.48. Power in the case of vectors for the Clayton (0.3) cop-

N | mBLAW (sd) | mHHG (sd) | mHSIC (sd)
10 11.0 0.3 12.3 0.3 12.3 0.3
20 26.0 0.4 26.4 0.4 21.0 0.4
30 44.2 0.5 41.4 0.5 29.7 0.5
40 60.3 05| 5.5 05| 406 0.5
50 72.9 04| 69.0 0.5 51.2 0.5
60 82.9 04| 783 04 60.4 0.5
70 88.6 03| 848 04 68.4 0.5
80 93.1 03| 894 0.3 75.9 0.4
90 95.9 0.2 ] 935 0.2 81.7 0.4
100 97.6 0.2 ] 96.1 0.2 86.3 0.3

ula with Normal margins



N | mBLAW (sd) | mHHG (sd) | mHSIC (sd)
10 11.0 0.3 8.6 0.3 10.7 0.3
20 26.0 0.4 13.0 0.3 16.5 0.4
30 44.2 0.5 18.1 0.4 23.4 0.4
40 60.3 0.5 24.9 0.4 30.1 0.5
20 72.9 04| 314 05 38.1 0.5
60 82.9 04 ] 384 05| 446 05
70 88.6 0.3 ] 459 0.5 01.9 0.5
80 93.1 0.3 | 52.3 0.5 08.8 0.5
90 95.9 0.2 58.9 0.5 64.0 0.5
100 97.6 0.2 64.8 0.5 69.1 0.5

TAB. B.49. Power in the case of vectors for the Clayton (0.3) cop-
ula with Exponential margins

N | mBLAW (sd) | mHHG (sd) | mHSIC (sd)
10 11.0 03] 105 0.3 10.0 0.3
20 26.0 0.4 16.9 0.4 12.8 0.3
30 44.2 0.5 22.7 0.4 15.9 0.4
40 60.3 0.5 30.1 0.5 19.5 0.4
50 72.9 0.4 ] 359 0.5 22.6 0.4
60 82.9 0.4 41.9 0.5 27.5 0.4
70 88.6 0.3 | 47.3 0.5 30.6 0.5
80 93.1 0.3 | 5H1.2 0.5 34.7 0.5
90 95.9 02 ] 576 0.5 383 0.5
100 97.6 02 ] 628 05| 430 05

TAB. B.50. Power in the case of vectors for the Clayton (0.3) cop-

ula with Cauchy margins

N | mBLAW (sd) | mHHG (sd) | mHSIC (sd)
10 8.9 0.3 8.5 0.3 8.5 0.3
20 16.7 0.4 15.5 0.4 11.2 0.3
30 26.4 0.4 23.7 0.4 15.1 0.4
40 36.1 0.5 294 0.5 18.4 0.4
50 45.5 0.5 36.1 0.5 23.3 0.4
60 04.1 0.5 | 42.6 0.5 26.6 0.4
70 60.2 0.5 | 48.6 0.5 31.5 0.5
80 67.6 0.5 55.0 0.5 35.5 0.5
90 73.0 0.4 ] 59.5 0.5 40.4 0.5
100 77.8 0.4 | 64.6 0.5 45.0 0.5

TAB. B.51. Power in the case of vectors for the Gumbel (1.1) cop-

ula with Normal margins
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N | mBLAW (sd) | mHHG (sd) | mHSIC (sd)
10 8.9 0.3 10.5 0.3 9.2 0.3
20 16.7 0.4 19.0 0.4 10.8 0.3
30 26.4 0.4 26.1 0.4 13.1 0.3
40 36.1 05| 329 0.5 15.8 0.4
20 45.5 05| 394 05 18.8 0.4
60 04.1 0.5 | 452 0.5 21.5 0.4
70 60.2 0.5 50.7 0.5 24.2 0.4
80 67.6 0.5 56.4 0.5 26.3 0.4
90 73.0 04| 59.7 05 30.5 0.5
100 77.8 04 ] 65.1 0.5 33.9 0.5
TAB. B.52. Power in the case of vectors for the Gumbel (1.1) cop-
ula with Exponential margins

N | mBLAW (sd) | mHHG (sd) | mHSIC (sd)
10 8.9 03] 75 03 7.4 0.3
20 16.7 0.4 10.2 0.3 7.3 0.3
30 26.4 0.4 13.5 0.3 8.8 0.3
40 36.1 0.5 148 04 8.6 0.3
50 45.5 0.5 18.2 0.4 9.8 0.3
60 04.1 0.5 18.7 0.4 10.2 0.3
70 60.2 0.5 21.8 0.4 11.3 0.3
80 67.6 0.5 23.8 04 12.1 0.3
90 73.0 04| 263 04 13.6 0.3
100 | 77.8 04| 281 04| 137 03
TAB. B.53. Power in the case of vectors for the Gumbel (1.1) cop-
ula with Cauchy margins

N | mBLAW (sd) | mHHG (sd) | mHSIC (sd)
10 9.0 0.3 9.3 0.3 11.3 0.3
20 21.0 04| 19.7 04| 20.2 0.4
30 38.7 05| 326 05| 334 05
40 53.1 0.5 449 05| 437 0.5
50 67.5 0.5 580 0.5 | 555 0.5
60 79.4 04| 694 05| 676 0.5
70 86.8 03| 772 04| 77 04
80 92.1 03| 8.3 04| 835 0.4
90 96.0 02| 90.1 03| 8.0 0.3
100 97.5 02 933 02 ] 925 0.3
TaB. B.54. Power in the case of vectors for the Normal copula
(Puy = Pz = 0.1, p, . = 0.3) with Normal margins




N | mBLAW (sd) | mHHG (sd) | mHSIC (sd)
10 9.0 0.3 12.3 0.3 13.9 0.3
20 21.0 0.4 24.6 0.4 24.3 0.4
30 38.7 0.5 38.2 0.5 374 0.5
40 53.1 0.5 50.8 0.5 48.3 0.5
20 67.5 0.5 63.0 0.5 27.9 0.5
60 79.4 04 736 04| 688 0.5
70 86.8 03] 79 04| 760 04
80 92.1 0.3 | 86.3 0.3 82.8 0.4
90 96.0 0.2 91.5 0.3 87.8 0.3
100 97.5 0.2 94.3 0.2 91.1 0.3

TaB. B.55. Power in the case of vectors for the Normal copula

(pzy = Pu = 0.1, p, . = 0.3) with Exponential margins

N | mBLAW (sd) | mHHG (sd) | mHSIC (sd)
10 9.0 0.3 7.7 0.3 8.0 0.3
20 21.0 0.4 11.2 0.3 9.8 0.3
30 38.7 0.5 144 04 11.9 0.3
40 53.1 0.5 18.3 0.4 13.2 0.3
50 67.5 0.5 22.2 0.4 16.9 0.4
60 79.4 0.4 26.8 0.4 18.8 0.4
70 86.8 0.3 30.6 0.5 21.5 0.4
80 92.1 0.3 354 0.5 24.6 0.4
90 96.0 0.2 38.8 0.5 28.0 0.4
100 97.5 0.2 | 442 0.5 30.6 0.5

TaB. B.56. Power in the case of vectors for the Normal copula

(poy = Pu» = 0.1, p, . = 0.3) with Cauchy margins
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Appendix C

CODE

C.1. RCPP cobpE

To compute the test statistic T" in the multivariate case, we use the following
RCPP functions.

/* Author: Guillaume Boglioni Beaulieu
Description: RCPP functions to calculate the test
statistic and its p—value
"sample_mat’ is a function to obtain a copy of a matrix
with randomly permutated rows
"rcpp__dist 7 computes all pairs of distances between the
vectors (rows) of a matrix. It is the equivalent of
the R function ’dist’
‘'comp T RCPP’ computes the test statistic T and its
assossiated p—value
Works for: three (3) random variables AND three random
vectors (possibly of different sizes)
Last update: 10/31/2016 x*/

/* Function to create a copy of a matrix where the rows
have been randomly permutated x/

/* The only argument is the original matrixs/

// [[Repp::depends(RcppArmadillo) ||

#include <RcppArmadilloExtensions/sample.h>

using namespace Repp ;
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//

[[Repp:: export |]

NumericMatrix sample_mat( NumericMatrix X) {

/*
}

int 1i;
int N = X.nrow(); /% Sample sizex/
int v = X.ncol(); /+ Dimension of an observation x/

NumericMatrix sample mat (N, v);

IntegerVector N_seq = seq_len(N) — 1; /x Sequence of
integers from 0 to N—1 %/

IntegerVector N _perm = RcppArmadillo::sample(N_seq, N,
FALSE); /+# Permutation of the integers sequence x/

/* Each row of sample mat is randomly selected from the
rows of X x/

for (i = 0; i < N; i+4) {
sample_ mat (i, ) = X(N_perm[i], );

}

return sample mat;

return Repp::wrap(sub_X); */

Function to calculate the distances between all pairs
of vectors (rows) in a matrix x/

It is the equivalent of the R function dist () %/

The only argument is the original matrixx/

«*% Found here: http://stackoverflow.com/questions
/36829700 /rcpp—my—distance —matrix—program—is —slower —

than—the—function—in—package *x //

#include <RcppArmadillo.h>

//

[[Repp :: export ||

NumericMatrix rcpp_ dist (NumericMatrix X) {

int outrows = X.nrow (), i = 0, j = 0;
double d;

NumericMatrix out (outrows ,outrows) ;



/%
/*
/*
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for (i = 0; i < outrows — 1; i++){
NumericVector vl = X.row(i);
for (j =1 + 1; j < outrows ; j ++){
d = sqrt (sum(pow(vl-X.row(j), 2.0)));
out (j,i)=d;
out (i,j)=d;

return out;

Main function that computes the test statistic T and
its assossiated p—value x/
Takes 5 arguments: x/

X7, Y, ’Z7: the three matrices of observations x/

'n_perm’ the number of permutations on which is
based the p—value x/

"t _star’ the critical value for T. H 0 will be
rejected if T > t_star. x/
Only if t_star = 0.0, the permutation method is used.
*/
Returns two results: x/

T, the test statistic =/

if t _star = 0, the p—value based on the
permutations. Else, an integer (1 for rejection, 0 for

acceptance of HO) x/

#include <RcppArmadillo.h>

//

[[Repp:: export ||

NumericVector comp T RCPP(NumericMatrix X, NumericMatrix Y

, NumericMatrix Z, int n_perm, double t_ star = 0.0) {
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/* Declare variablesx/

NumericVector results(2); /% Final output containg the
test statistic and p—valuex/

int m, i, j, k; /% Count integers for the For loops x/

double count = 0.0; /+* Count of the number of times
the test statistic based on a permutation sample is
bigger than the original test statisticx*/

int N =X.nrow(), vx = X.ncol(), vy = Y.ncol(), vz = 7Z
.ncol(); /x Sample size and size of vectors X, Y, Z
*/

NumericMatrix dx(N, N), dy(N, N), dz(N, N); /x
Matrices of distances between each point */

double T = 0.0; /% Test statisticx/

double S = 0.0; /+ Permutated test statistic x/

double S_ij; /% Component of the test statistic (based
on the pair of point (i,j))x*/

double R_x0, R _y0, R _z0; /+ Radii: distances between (
x0, y0, z0) and (xj, yj, zj) */

double A 111, A 112, A 121, A 122, A 211, A 212, A 221
, A_222; /% Components of the test statisticx/
double Ai_ 1, Ai_ 2, Aj 1, Aj 2, Ak 1, Ak 2;

for (m= 0; m < n_perm +1 ; mt++) { /* Most outer loop:
Done for the original sample and n_perm permutation
samplesx/
NumericMatrix sub_X(N, vx)
NumericMatrix sub_Y (N, vy);
NumericMatrix sub_Z(N, vz)
S=20.0; /+« Initialize tes

—+ <.

statistic to 0 x/
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/* The very first time, we don’t want a permutation
sample, but the real sample to calculate the real
test statistic , Tx/

if m=0) {

sub X = X;
sub Y =Y,
sub Z = 7;

}

/+* Every other time, we want a random permutation of
the sample x/
else {
sub_ X = sample_mat (X) ;
sub_Y = sample_mat(Y);
sub_7Z = sample mat (Z) ;

/+*Compute the matrices of distances =/
dx = rcpp_ dist (sub_X);
dy = rcepp_dist(sub_Y);
dz = rcpp_dist(sub_Z7Z);

/* To calculate the test statistic, we compute S(i,])
for every pair of points x/
/* Hence, we have a double loop on i and j, with the
restriction that i is different from j =/
for (i = 0; i < N; i+4) {
for (j = 0; j <N; j+4) {
it (1 =1j)

{continue;} /*x We skip cases where i =— j x/

/+* Reinitialize variablesx/

A 111 = 0.0;
A 112 = 0.0;
A 121 = 0.0;

A 122 = 0.0;
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A 211 = 0.0;
A 212 = 0.0;
A 221 = 0.0;
A 222 = 0.0;
Ai 1 =
Al 2 =
Aj 1 =
Aj 2 =
Ak 1 =
Ak 2 =

o O O O o o o

R 20 = dz(i,j);

/% Categorizing each data point that is not i or j

in the 2 x 2 x 2 contingency tablex/

/* There are N—2 points not equal to i or jx/

for ( k=0; k <N; kt+ ) {
it (k=1) || (k=1))

{continue;} /+ Skip cases where k = i OR jx/

if ((dx(i,k) <= R_x0) && (dy (i
(dz(i k) <= R_20)) {A_1114+;}
else if ((dx(i,k) <= R x0) && (dy (i
(dz(i,k) > R_z0)) {A_112++;}
else if ((dx(i,k) <= R_x0) && (dy(i
(dz(i k) <= R_20)) {A_1214+;}
else if ((dx(i,k) <= R x0) && (dy (i
(dz(i,k) > R 20)) {A 122443}
else if ((dx(i,k) > R x0) && (dy(i
(dz(i,k) <= R_2z0)) {A_211++;}

R_y0) &

R_y0) &

R _y0) &&

R_y0) &&

R _y0) &&
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else if ((dx(i,k) > R_x0) && (dy(i,k) <= R_y0) &&
(dz(i.k) > R 20)) {A 2124+

else if ((dx(i,k) > R x0) && (dy(i,k) > R _y0) &
(dz(i,k) <= R_z0)) {A_221++;}

else {A_222++;}

} /% End k loop x*/
/* Calculate the totalsx/
Ai 1T =A 111 + A 112 + A 121 + A 122;

Ai_ 2 = A 211 + A_212 + A_221 + A_222;

Aj 1 =A 111 + A 112 + A 211 + A 212;
Aj 2 =A 121 + A 122 + A 221 + A 222;

Ak 1 = A 111 + A_121 + A_211 + A 221,
Ak 2 = A 112 + A 122 + A_212 + A 222;

/* Calculate S(i,j) */

if (Ai1=0 || Ai 2=0 |] Aj 1 =0 || Aj 2=
0 || Ak 1=0 |] Ak 2 =0 ) {
S ij = 0.0;
}
else {

S_ij = (N=2) % (N-2) x

((A_111 = A_111) /(double) (Ai_1 % Aj_1 *x Ak 1
) +

(A_112 % A_112)/(double) (Ai 1 % Aj 1 % Ak 2
) +

(A_121 = A_121)/(double) (Ai 1 % Aj 2 % Ak 1
) +

(A 122 = A 122)/(double) (Ai 1 % Aj 2 % Ak 2
) +
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(A 211 = A 211)/(double)(Ai 2 % Aj 1 % Ak 1

) +
(A_212 = A 212) /(double) (Ai_2 % Aj 1 % Ak 2
) +
(A 221 %= A 221)/(double)(Ai 2 % Aj 2 % Ak 1
) +
(A_222 « A 222) /(double) (Ai 2 = Aj 2 % Ak 2
)) = (N=2);
}
/* The test statistic is the sum over all S(i,j)
*/
S =95+ S_ij;

} /+* End j loop x/
} /+* End i loop x/

if (m=0) {

T =8S; /+ For the very first iteration of the most
outer loop, the quantity S is our real test
statistic Tx/

if (t_star != 0.0){ /* If a critical value has

been provided, we use it to see wheter or not
H 0 is rejected. In this case, the fonction
will return 1 for a rejection and 0 otherwise
of

if (T >= t_star){
results (1) = 1; /* Reject H_ 0 */

¥

else{
results (1) = 0; /* Do not reject H 0 %/



}
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else { /x For all other iterations, we check if S >=
T and if it’s the case add to the counter x/
if (T<=198) {

count = count + 1;

} /+* End of m loop x/
/* What to return x/
results (0) = T;

if (t_star = 0.0){ /% If no critical values have been
provided , we return the p—value based on the
permutated trials x/
results (1) = (double)count / (double)n_perm;

/* return Recpp::wrap(S); (double)count / (double)
n_perm s/

return(results);

// End Cfunc
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C.2. R CcODE

To conduct the power simulations we used R code. However, note that for
the multivariate examples the R function ‘power’ below calls the RCPP function

‘comp_ T RCPP’ described previously in section C.1.

# Author: Guillaume Boglioni Beaulieu

# Description: This program contains a function ’'power’ to
compute power simulations for several independence
tests

# In the 2D case (testing indep. between X and Y) the
following tests of independence are implemented:

# — Original "Heller et al.’ test (HHG)

# — ’"Heller et al.’ using ranks of the observations (

BLAW)
— Distance—Covariance test (DCOV)
— Hilbert—Smith independence criterion test (HSIC)

# In the 3D case (testing indep. between X, Y and Z) the

following tests of independence are implemented:

F* I

# — HHG extended to 3D (mHHG)

# — HHG extended to 3D using ranks of the observations
(mBLAW)

# — Multidimentional HSIC (mHSIC)

# — Beran—Bilodeau—Lafaye (2007) test (BBL)

# — Genest—Remillard test (GR) (usable in 3D but only
for random variables (1D each))

# Notes:

# # Both 2D and 3D with are implemented within the
same function ’'power’, see detailed description below

# — For the 2D version, since we use Heller 's test on

ranks , no RCPP code is called. Instead we directly use
the package "HHG’

# — Function ’'power’ outputs (and saves) three things:
results in Latex syntax, results in R tables and
graphs (pdf) of the results

# Last update: 11/17/2016
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# Load required librairies

library (HHG) # Package containing HHG test

library (energy) # Package containing distance—covariance
test

library (dHSIC) # Package containing distance—covariance
test

library (copula) # Package to generate data using copulas

library (IndependenceTests) # Package for Lafaye—Bilodeau—
Beran test

library (Repp) # RCPP material

library (ReppArmadillo) # RCPP material

# Generate tables in Latex
library (xtable)
options(xtable. floating = FALSE)

options(xtable.timestamp = "")

#Use function ’dependogram’ of package IndependenceTests (
there is a funciton with the same name in package ’
copula )

dependogram <— IndependenceTests :: dependogram

# Set path to where results and graphs should be saved
# Paths are different wheter I run on my PC or on the DMS
machines
if (. Platform$OS.type = "unix") {
setwd (" /home/boglionibe /Memoire")
data.direct <— "/home/boglionibe/Memoire/
Results_copulas /'
graphs. direct <— "/home/boglionibe/Memoire/
Graphs_ copulas /'
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} else {
setwd ("C:/ Seafile /Boglioni /RCPP_ test")
data.direct <— "C:/Seafile/Boglioni/Thesis/
Results_copulas /"
graphs.direct <— "C:/Seafile/Boglioni/Thesis/
Graphs_copulas /'

# Source the location of RCPP code (need in the 3D cases)
sourceCpp ("RCPP_test.cpp", verbose = TRUE)

# Function ’'power’ returns the empirical power of the
indepedence tests based on 'B’ simulations (with their
standard deviation)

# Empirical quantiles are used to make the decision on
rejecting or not rejecting H 0

# Those empirical quantiles are based on M’ simulations
under H 0

# Arguments of function ’'power’

# nbr.rv Number of random variables (or vectors)
on which the independence tests are applied (2 or 3).

# N A vector containing all sample sizes

for which the simulations are to be done

# B: Number of trials for the computation of
power

# M Number of trials to approximate the
distribtuion of T|H_0

# alpha: Level of the test

#  dep.type: Structure of dependence (i.e. a

specific H 1)

# indep: TRUE to generate independent X and Y (
this is wused, for instance, to check that the level of
the test is alpha)
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# cop . para: Parameter of the copula structure, if a
copula structure is used to generate data

# marginal : Marginals of X, Y and Z, if a copula
structure is used to generate data

# v.dim: Dimension of the vectors X, Y and Z, if
a copula structure is used (hence X, Y, Z always have
the same dimension in the copulat examples)

# data.direct : Directory where the power results are
to be saved

# graphs.direct: Directory where the graphs are to be
saved

# table.caption: Caption for the produced Latex table

# data .name: Name of the data.frame containing the

power results

# legend . pos: Position of the legend on the produced
graphs ("topleft', ...)

# Outputs of function ’power ’:

# — Table of results in Latex syntax (in the R console)

# — data.frame of results (saved in the specified

directory)
# — graph of results (saved in the specified director)

power <— function (nbr.rv = 2,
= c(10, 20, 30, 40, 50, 60, 70, 80,
90, 100),
B = 10000,
M = 50000,
alpha = 0.05,
dep.type,
indep = FALSE,
cop.param = 1,
v.dim = 1,

marginal = gnorm,
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data.direct = 'C:/Seafile/Boglioni/
Thesis/Results /7,

graphs. direct = ’C:/Seafile/Boglioni/
Thesis/Graphs/’,

table.caption ,

data .name,

legend .pos = “topleft 7){

# Number of samples sizes for which we run the
simulation , 10 by default for sample sizes N = 10,
20,..., 100

Nbr.runs <— length (N)

# Initialize a matrix to contain all results (one row
for each N)
data <— NULL

# Beginning of outer loop. Everything is re—done for
each sample size, so Nbr.runs times in total
for(k in 1: Nbr.runs){

# Initialize to zero the number of times H 0 is
rejected (i.e. a ’success’), for each test
# Initialize the vector to contain the sample of T|H 0

, for each test

# Different tests are considered in the bivariate (nbr

.rv = 2) and trivariate (nbr.rv = 3) cases

(

n.success .BLAW <—
n.success .HHG <—
n.success .DOOV <—
n.success .HSIC <—

o O O O

T0.BLAW <— vector(length = M)
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T0.HHG <— vector(length = M)
T0.DCOV <— vector (length = M)
T0.HSIC <— vector (length = M)
}
else{
n.success .mBLAW <— 0
.success . mHHG <— 0
.success . mHSIC <— 0
.success .BBL <= 0
.success .GR <=0

5 B B B

T0.mBLAW <— vector (length = M)
TO0.mHHG <— vector(length = M)
TO0.mHSIC <— vector(length = M)
T0.BBL <— vector(length = M)
T0.GR <— vector(length = M)

# Initialize to NULL the Vector to contain power
restults (for one specific N)
results <— NULL

# Beginning of ’For’ loop: M’ iterations to have a
sample of T|H_ 0, B’ iterations to estimate the

power
for (i in 1: M+ B)) {
# Generate data according to the specified
dependence structure (independent data for the
first M’ iterations)

JHHE 9D CASES #

# 4 independent clouds
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if (dep.type = ’indep.clouds ’){
X <— matrix(sample( c¢(—1,1), size = N[k]|, replace
= TRUE ) + rnorm(N[k]) /3, nrow = N[k|, ncol=1)
Y <— matrix(sample( c¢(—1,1), size = N[k], replace
= TRUE ) + rnorm(N[k]) /3, nrow = N[k|, ncol=1)
}
# W-shape
if (dep.type = ’w.shape’){
xu <— runif (N[k], =1, 1)
X <— matrix(xu + runif(N[k]) /3, nrow = N[k], ncol

:1)

# Y under the null
if ((i <=M) || (indep == TRUE)){
yu <— runif (N[k], —1, 1)
Y <— matrix (4%( ( yu"2 — 1/2 )72 + runif(N[k]) /N
[k]), nrow = N[k], ncol=1)
}

else{
# Y under H 1 (to obtain T)
Y <— matrix(4*( ( xu"2 — 1/2 )72 + runif(N[k])/N
[k]), nrow = N[k|, ncol=1)

# Diamond
if (dep.type = ’diamond’) {

theta <— —pi/4
rr <— rbind( c(cos(theta), —sin(theta) ),
c( sin(theta), cos(theta) ) )

x1 <— runif(N[k], -1, 1)
yl <— runif (N[k], -1, 1 )
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tmp.dep <— cbind( x1, yl ) %% rr
X <— matrix (tmp.dep[,1], nrow = N[k], ncol=1)

# We genreate Y under the null
if ((i <=M) || (indep == TRUE)){
x2 <— runif(N[k], -1, 1)
y2 <— runif(N[k], =1, 1 )
tmp.ind <— cbind( x2, y2 ) %% rr
Y <— matrix (tmp.ind[,2], nrow = N[k], ncol=1)

}

else{
# We generate Y under H 1 to obtain T

Y <— matrix (tmp.dep[,2], nrow = N[k], ncol=1)

}
}
# Parabola
if (dep.type = ’parabola’){
X <— matrix(runif (N[k], —1, 1), nrow = N[k], ncol

:1)

# We genreate Y under the null
if((i <=M) || (indep == TRUE)){
yu <— runif(N[k], -1, 1)
Y <— matrix ((yu"2 + runif(N[k]))/2, nrow = N[k],
ncol=1)

}

else{
# We generate Y under H 1 to obtain T

Y <— matrix ((X™2 + runif (N[k]))/2, nrow = N[k],

ncol=1)

# 2 — Parabolas
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if (dep.type = ’two.parabolas ’) {
X <— matrix(runif (N[k], —1, 1), nrow = N[k], ncol

# We generate Y under the null
if ((i <=M) || (indep = TRUE)){

yu <— runif(N[k], -1, 1)

Y <— matrix ((yu"2 + runif(N[k])/2 )=*( sample( ¢
(—1,1), size=N[k], replace = TRUE ) ), nrow =
N[k], ncol=1)

}
else{

# We generate Y under H 1 to obtain T

Y <— matrix ((X™2 + runif (N[k]) /2 )x( sample( ¢
(—1,1), size=N[k], replace = TRUE ) ), nrow =
N[k], ncol=1)

}

}

# Circle

if (dep.type = ’circle 7){
xu <— runif(N[k], -1, 1)

X <— matrix(sin( xusxpi ) + rnorm( N[k] )/8, nrow =
N[k], ncol=1)

# We generate Y under the null
if ((i <=M) || (indep == TRUE)){
yu <— runif (N[k], —1, 1)
Y <— matrix(cos( yuxpi ) + rnorm( N[k] )/8, nrow
= N[k], ncol=1)
}
else{
# We generate Y under H 1 to obtain T
Y <— matrix(cos( xuxpi ) + rnorm( N[k]| )/8, nrow
= N[k], ncol=1)
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1
}
# Linear
if (dep.type = ’linear ) {
X <— matrix(runif (N[k]), nrow = N[k], ncol=1)

# We generate Y under the null
if ((i <=M) || (indep = TRUE)){
yu <— runif (N[k])
Y <— matrix(yu + rnorm(N[k], 0, 0.5), nrow = N[k
], ncol=1)
¥
else{
# We genreate X,Y,Z under H 1 to obtain T
Y <— matrix (X + rnorm (N[k], 0, 0.5), nrow = N[k

|, ncol=1)
¥
}
# Exponential
if (dep.type = ’exponential 7) {
X <— matrix(runif (N[k], —3, 3), nrow = N[k]|, ncol

:1)

# We generate Y under the null
if ((i <=M) || (indep == TRUE)){

yu <— runif(N[k], =3, 3)
Y <— matrix(exp(yu/3) + runif(N[k], -3, 3), nrow
= N[k], ncol=1)
}
else{
# We genreate X,Y,Z under H 1 to obtain T
Y <— matrix(exp(X/3) + runif(N[k], —3, 3), nrow

= N[k], ncol=1)
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# Sine
if (dep.type = ’sine ") {
X <— matrix(runif (N[k], 0, 2xpi), nrow = N[k],
ncol=1)

# We generate Y under the null
if ((i <=M) || (indep = TRUE)){
yu <— runif(N[k], 0, 2x%pi)
Y <— matrix(sin(yu) + rnorm(N[k]), nrow = N[k],
ncol=1)

}

else{
# We genreate X,Y,Z under H 1 to obtain T

Y <— matrix(sin(X) + rnorm (N[k]), nrow = N[k],

ncol=1)

# Polynomial
if (dep.type = ’polynomial ") {
X <— matrix (rnorm (2xN[k]) , nrow = N[k], ncol
=2)
epsilon <— matrix (rnorm (2«N[k], 0, 6), nrow = N[k
|, ncol=2)

# We generate Y under the null
if ((i <=M) || (indep = TRUE)){
xu <— matrix (rnorm (2xN[k]) , nrow = N[k]|, ncol=2)
Y <— matrix(xu + 4sxu”2 + epsilon, nrow = N[k],
ncol=2)

}
else{
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# We genreate X,Y,Z under H 1 to obtain T
Y <— matrix(X + 4%xX"2 + epsilon, nrow = N[k],

ncol=1)

if (dep.type =— ’2d.pairwise.indep ’){
X <— matrix(rnorm (N[k]), nrow = N[k], ncol=1)
W <— matrix(rnorm (N[k]), nrow = N[k]|, ncol=1)
Z0 <— matrix (rnorm (N[k]), nrow = N[k], ncol=1)

# We genreate X,Y,Z under the null
if ((i <=M) || (indep == TRUE)){

Y <— matrix (cbind (W, Z0), nrow = N[k], ncol=2)
¥
elseq

# We generate Y under H 1 to obtain T

Z <— abs(Z0) x sign (X * W)

Y <— matrix(cbind (W, Z), nrow = N[k], ncol=2)
}

#Generated via COPULAS
if (dep.type = ’'2d.clayton ’){

# We generate X,Y under the null
if ((i <=M) || (indep == TRUE)){
data.cop.x <— rCopula(N[k], archmCopula("clayton

, param = cop.param, dim = 2xv.dim, use.

indepC = "TRUE"))
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data.cop.y <— rCopula(N[k], archmCopula("clayton
", param = cop.param, dim = 2xv.dim, use.
indepC = "TRUE"))
X <— matrix(marginal (data.cop.x[, seq(l:v.dim)])
, nrow = N[k], ncol = v.dim)
Y <— matrix (marginal (data.cop.y|[, v.dim 4+ seq(1:

v.dim)]), nrow = N[k], ncol = v.dim)

}
else{
# We generate X,Y under H 1 to obtain T

data.cop <— rCopula(N[k], archmCopula("clayton",
param = cop.param, dim = 2xv.dim, use.indepC
= "TRUE"))
X <— matrix(marginal (data.cop[, seq(l:v.dim)])
nrow = N[k], ncol = v.dim)
Y <— matrix(marginal (data.cop[, v.dim + seq(1l:v.

dim)]), nrow = N[k], ncol = v.dim)

)

if (dep.type = ’2d.gumbel ”) {

# We generate X,Y under the null
if ((i <=M) || (indep = TRUE)){
data.cop.x <— rCopula(N[k], archmCopula ("gumbel
", param = cop.param, dim = 2xv.dim, use.
indepC = "TRUE") )
data.cop.y <— rCopula(N[k], archmCopula ("gumbel
", param = cop.param, dim = 2xv.dim, use.
indepC = "TRUE") )
X <— matrix(marginal (data.cop.x[, seq(l:v.dim)])
, nrow = N[k], ncol = v.dim)
Y <— matrix(marginal (data.cop.y[, v.dim + seq(1:

v.dim)]), nrow = N[k], ncol = v.dim)
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¥
else{
# We generate X,Y under H 1 to obtain T

data.cop <— rCopula(N[k], archmCopula("gumbel",

param = cop.param, dim = 2*v.dim, use.indepC
— IIT\R:[_JEH) )
X <— matrix(marginal (data.cop|[, seq(1l:v.dim)])

Y

(
nrow = N[k], ncol = v.dim)
Y <— matrix(marginal (data.cop[, v.dim + seq(1l:v.

dim)]), nrow = N[k|, ncol = v.dim)

if (dep.type = ’'2d.normal ’){

# We generate X,Y under the null
if((i <=M) || (indep == TRUE)){
data.cop.x <— rCopula(N[k], normalCopula(param =

cop.param, dim = 2%v.dim, dispstr = "un"))
data.cop.y <— rCopula(N[k], normalCopula(param =
cop.param, dim = 2xv.dim, dispstr = "un"))

X <— matrix(marginal (data.cop.x[, seq(l:v.dim)])
, ntow = N[k], ncol = v.dim)
Y <— matrix(marginal (data.cop.y[, v.dim + seq(1:

v.dim)]), nrow = N[k]|, ncol = v.dim)

elseq
# We generate X,Y under H 1 to obtain T

data.cop <— rCopula(N[k], normalCopula(param =
cop.param, dim = 2xv.dim, dispstr = "un"))
X <— matrix(marginal (data.cop|[, seq(l:v.dim)])

, nrow = N[k], ncol = v.dim)
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Y <— matrix(marginal (data.cop[, v.dim + seq(1l:v.

dim)]), nrow = N[k]|, ncol = v.dim)

# X and Y in 5 dimensions with, Y = log(X™2) for
each dimension

if (dep.type =— ’2d.log’){
X <— matrix (rnorm (5*N[k]) , nrow = N[k])

# We generate Y under the null

if ((i <=M) || (indep = TRUE)){
xu <— matrix (rnorm (5xN[k]), nrow = N[k])
Y <— matrix(log(xu~2), nrow = N[k])

}

else{
# We generate Y under H 1 to obtain T

Y <— matrix(log(X"2), nrow = N[k])
}

# Y = epsilon x X
if (dep.type = ’2d.epsilon 7){
X <— matrix (rnorm (5*N[k]) , nrow = N[k])

# We generate Y under the null
if ((i <=M) || (indep = TRUE)){
xu <— matrix (rnorm (5x%N[k]) , nrow = N[k])

)

nrow = N

Y <— matrix(xu * matrix(rnorm (5xN[k]) ,

[k]), nrow = N[k])
}

else{
# We generate Y under H 1 to obtain T
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Y <— matrix(X * matrix(rnorm(5x%N[k]), nrow = N
[k]) . nrow = N[k])

#Y =B 1«X + B 2«X"2

if (dep.type = ’2d.beta’){
X <— matrix (rnorm (5*N[k]) , nrow = N[k])
epsilon <— matrix (rnorm (5%N[k], 0, 3), nrow = N[k

1)

# We generate Y under the null
if((i <=M) || (indep = TRUE)){

xu <— matrix (rnorm (2xN[k]) , nrow = N[k])

Y <— matrix(cbind(xu[,1] + 4xxu[,1]72 +
epsilon[,1], xu[,2] + 4*xu[,2]72 + epsilon
[,2], epsilon|, 2 + seq(1:3)]), nrow = N[k])

}
elseq{

# We generate Y under H 1 to obtain T

Y <— matrix(cbind (X[,1] 4+ 4%X[,1]72 +epsilon
[,1], X[,2] + 4%X[,2]72 + epsilon[,2],
epsilon[, 2 + seq(1:3)]), nrow = N[k])

}
}
if (dep.type = ’'2d.big.noise ’){
X <— matrix (cbind (rnorm (N[k]), rnorm (N[k],

0, 4)), nrow = N[k])
epsilon <— matrix (rnorm (N[k], 0, 2), nrow = N[k])

# We generate Y under the null
if((i <=M) || (indep == TRUE)){
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xu <— matrix(cbind (rnorm (N[k]), rnorm (N[k], 0,
4)), nrow = N[k])
Y <— matrix(xu[,1]72 + epsilon, nrow = N[k])
}
else{
# We generate Y under H 1 to obtain T
Y <— matrix(X[,1]72 4 epsilon, nrow = N[k])

### 3D CASES ###

# 3 pairwise independent N(0, 1) (still jointly

dependent)
if (dep.type = ’3d.pairwise.indep ’){
X <— matrix (rnorm (N[k]) , nrow = N[k]|, ncol=1)
Y <— matrix(rnorm (N[k]), nrow = N[k], ncol=1)

# We genreate X,Y,Z under the null
if ((i <=M) || (indep == TRUE)){
Z <— matrix (rnorm (N[k]) , nrow = N[k], ncol=1)
}
else{
# We generate X,Y,Z under H 1 to obtain T
Z <— matrix (abs(rnorm (N[k])) * sign (XxY), nrow =
N[k], ncol=1)

if (dep.type = ’3d.cos.sin’){
X <— matrix(rnorm (N[k], 0, 3 ), nrow = N[k]|, ncol
=1)
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Y <— matrix(rnorm (N[k], 0, 3), nrow = N[k]|, ncol
=1)

# We genreate X,Y,Z under the null
if ((i <=M) || (indep == TRUE)){
U <— rnorm (N[k], 0, 3)
V <— rnorm (N[k], 0, 3)
Z <— matrix(cos(U) + sin(V) + rnorm(N[k]), nrow
= N[k], ncol=1)
}
else{
# We generate X,Y,Z under H 1 to obtain T
Z <— matrix(cos(X) + sin(Y) 4+ rnorm(N[k]), nrow
= N[k], ncol=1)

if (dep.type = ’3d.cos.exp’){
X <— matrix(rnorm (N[k], 0, 3 ), nrow = N[k], ncol
=1)
Y <— matrix (rnorm (N[k], 0, 3), nrow = N[k], ncol
=1)

# We genreate X,Y,Z under the null
if((i <=M) || (indep = TRUE)){
U <— rnorm (N[k]|, 0, 3)
V <— rnorm (N[k], 0, 3)
Z <— matrix(cos(U) + exp(V/5) + rnorm (N[k]) ,
nrow = N[k], ncol=1)

}

else{
# We generate X,Y,Z under H 1 to obtain T
Z <— matrix(cos(X) + exp(Y/5) + rnorm (N[k]) ,

nrow = N[k], ncol=1)
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if (dep.type = ’3d.linear ") {
[k]), nrow = N[k|, ncol=1)
[k]), nrow = N[k]|, ncol=1)

X <— matrix (rnorm (N
Y <— matrix (rnorm (N
# We genreate X,Y,Z under the null
if ((i <=M) || (indep = TRUE)){

U <— rnorm (N[k])

V <— rnorm (N[k])

Z <— matrix (U + V + rnorm (N[k], 0, 3), nrow = NJ

k], ncol=1)

}
else{

# We generate X,Y,Z under H 1 to obtain T
Z <— matrix (X + Y + rnorm (N[k], 0, 3), nrow = NJ
k], ncol=1)

if (dep.type = ’3d.vect.pairwise.indep ’){
X <— matrix (rnorm (2xN[k]) , nrow = N[k]|, ncol=2)
Z <— matrix (rnorm (2xN[k]), nrow = N[k]|, ncol=2)

# We genreate X,Y,Z under the null
if ((i <=M) || (indep == TRUE)){
Y <— matrix (rnorm (2«N[k]), nrow = N[k], ncol=2)

}
else{

# We generate X,Y,Z under H 1 to obtain T
Y <— matrix (cbind (abs(rnorm (N[k]) )*xsign (X[,1]*X
[,2]), rmnorm(N[k])), nrow = N[k]|, ncol=2)
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if (dep.type = ’'3d.vect.pairwise.indep.v2’){
X <— matrix (rnorm (2xN[k]) , nrow = N[k], ncol=2)

# We genreate X,Y,Z under the null
if ((i <=M) || (indep = TRUE)){
Y <— matrix (rnorm (2«N[k]) , nrow = N[k], ncol=2)
Z <— matrix (rnorm (2xN[k]), nrow = N[k], ncol=2)
}
else{
# We generate X,Y,Z under H 1 to obtain T
Y1l <— rnorm (N[k])
Z1 <— rnorm (N[k])
Y2 <— abs(rnorm (N[k]) )xsign (X[ ,1]*Z1)
72 <— abs(rnorm (N[k]) )xsign (X[,2]*Y1)
Y <— matrix(cbind (Y1,Y2), nrow = N[k], ncol=2)
Z <— matrix(cbind (Z1,72), nrow = N[k]|, ncol=2)

#Generated via COPULAS
if (dep.type = ’'3d.clayton ”){

# We generate X,Y,Z under the null
if((i <=M) || (indep == TRUE)){
data.cop.x <— rCopula(N[k], archmCopula('clayton
", param = cop.param, dim = 3xv.dim, use.
indepC = "TRUE") )
data.cop.y <— rCopula(N[k], archmCopula('clayton

, param = cop.param, dim = 3xv.dim, use.

indepC = "TRUE"))
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data.cop.z <— rCopula(N[k], archmCopula("clayton
", param = cop.param, dim = 3xv.dim, use.
indepC = "TRUE"))

X <— matrix(marginal (data.cop.x[, seq(l:v.dim)])

, nrow = N[k], ncol = v.dim)

Y <— matrix (marginal (data.cop.y|[, v.dim 4+ seq(1:
v.dim)]) , nrow = N[k], ncol = v.dim)

Z <— matrix(marginal (data.cop.z[, 2xv.dim + seq
(1:v.dim)]), nrow = N[k], ncol = v.dim)

}

else{
# We generate X,Y,Z under H 1 to obtain T

data.cop <— rCopula(N[k], archmCopula("clayton",

param = cop.param, dim = 3xv.dim, use.indepC
— HFIVR:[JE"))
X <— matrix(marginal (data.cop[, seq(l:v.dim)])
, ntow = N[k], ncol = v.dim)

Y <— matrix (marginal (data.cop|[, v.dim + seq(1l:v.

dim)]) , nrow = N[k], ncol = v.dim)
Z <— matrix(marginal (data.cop[, 2xv.dim + seq(1:
v.dim)]), nrow = N[k], ncol = v.dim)
}
}
if (dep.type = ’3d.gumbel’) {

# We generate X,Y,Z under the null
if ((i <=M) || (indep = TRUE)){
data.cop.x <— rCopula(N[k], archmCopula ("gumbel
", param = cop.param, dim = 3xv.dim, use.

indepC = "TRUE"))
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data.cop.y <— rCopula(N[k], archmCopula ("gumbel
", param = cop.param, dim = 3xv.dim, use.
indepC = "TRUE"))

data.cop.z <— rCopula(N[k], archmCopula ("gumbel
", param = cop.param, dim = 3xv.dim, use.
indepC = "TRUE") )

X <— matrix (marginal (data.cop.x|[, seq(l:v.dim)])

, nrow = N[k], ncol = v.dim)

Y <— matrix(marginal (data.cop.y[, v.dim + seq(1:
v.dim)]) , nrow = N[k], ncol = v.dim)

Z <— matrix(marginal (data.cop.z[, 2xv.dim + seq
(l:v.dim)]), nrow = N[k], ncol = v.dim)

}
else{

# We generate X,Y,Z under H 1 to obtain T

data.cop <— rCopula(N[k], archmCopula("gumbel"
param = cop.param, dim = 3%xv.dim, use.indepC
~ "TRUE"))

X <— matrix(marginal (data.cop|[, seq(1l:v.dim)])

, ntow = N[k], ncol = v.dim)

Y <— matrix(marginal (data.cop[, v.dim + seq(1l:v.
dim)]) , nrow = N[k]|, ncol = v.dim)

Z <— matrix(marginal (data.cop[, 2xv.dim + seq(1:

v.dim)]), nrow = N[k], ncol = v.dim)

if (dep.type = ’'3d.normal ’){

# We generate X,Y,Z under the null
if((i <=M) || (indep == TRUE)){
data.cop.x <— rCopula(N[k], normalCopula(param =

cop.param, dim = 3%v.dim, dispstr = "un"))
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data.cop.y <— rCopula(N[k], normalCopula(param =
cop.param, dim = 3xv.dim, dispstr = "un'))
data.cop.z <— rCopula(N[k], normalCopula(param =
cop.param, dim = 3*v.dim, dispstr = "un'))
X <— matrix(marginal (data.cop.x[, seq(l:v.dim)])
, ntow = N[k], ncol = v.dim)
Y <— matrix (marginal (data.cop.y|[, v.dim + seq(1:
v.dim)]) , nrow = N[k]|, ncol = v.dim)
Z <— matrix(marginal (data.cop.z[, 2xv.dim + seq
(1:v.dim)]), nrow = N[k], ncol = v.dim)
}
elseq{

# We generate X,Y,Z under H 1 to obtain T
data.cop <— rCopula(N[k], normalCopula(param =
cop.param, dim = 3*v.dim, dispstr = "un'))

X <— matrix(marginal (data.cop[, seq(l:v.dim)])
, ntow = N[k], ncol = v.dim)
Y <— matrix (marginal (data.cop|[, v.dim + seq(1l:v.
dim)]) , nrow = N[k], ncol = v.dim)
Z <— matrix(marginal (data.cop[, 2xv.dim + seq(1:

v.dim)]), nrow = N[k], ncol = v.dim)

# Compute ranks of X and Y (and Z if applicable)

# Size of X (number of components of the random

vector X, hence 1 if X is a random variable)

p <— ncol(X)
# Size of Y
q <— ncol(Y)

# Initialize the matrices containg the ranks of X

and Y

X.rank <— NULL
Y.rank <— NULL
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# Per column ranks of X
for (j in 1:p){
X.rank <— cbind (X.rank, rank(X[,j]))
}
# Per column ranks of Y
for (j in 1:q){
Y.rank <— cbind(Y.rank, rank(Y[,j]))

}

# Samething for Z, if there is a Z
if (nbr.rv = 3){
r <— ncol(Z)
Z.rank <— NULL
for (j in 1:r){
Z.rank <— cbind (Z.rank, rank(Z[,j]))

# Compute distances between each elements of X and Y
, as well as X.rank and Y.rank (only for 2D cases
)
# This is necessary to run the HHG test via the HHG
package
if (nbr.rv = 2){
Dx = as.matrix(dist ((X), diag = TRUE, upper = TRUE
))
Dy = as.matrix(dist ((Y), diag = TRUE, upper = TRUE
))
Dx.rank = as.matrix(dist ((X.rank), diag = TRUE,
upper = TRUE))
Dy.rank = as.matrix(dist ((Y.rank), diag = TRUE,
upper = TRUE) )
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# For the first M iterations, TO is calculated and
we store its value
# This is done for each test (diffenrent tests in
the 2D and 3D cases)
if (i <=M){
if (nbr.rv = 2){
T0.BLAW[i]| <— hhg.test (Dx.rank, Dy.rank, nr.perm
= 0)$sum. chisq
TO.HHG[i] <— hhg.test(Dx, Dy, nr.perm = 0)3$sum.
chisq
T0O.DOOV[i] <— dcov.test (X, Y, R = 0)$estimate
T0.HSIC[i] <— dhsic (X, Y)$dHSIC
}
else{
TO.mBIAW[i] <— comp T RCPP(X.rank, Y.rank, Z.
rank, 0, 0)[1]
TO.mHAG[i] <— comp T RCPP(X, Y, Z, 0, 0)[1]
TO.mHSIC[i] <— dhsic.test(list (X, Y, Z), B = 0)

$statistic
if (v.dim = 1){
TO.GR[ i | <— indepTest (cbind (X, Y, Z), d =

indepTestSim (n = N[k], p=3, m= 3, N= 6,
verbose = FALSE) ) $global.statistic

TO.BBL[i] <— dependogram (cbind (X, Y, Z), B =
0, vecd.ou.p = c¢(v.dim, v.dim, v.dim),
display = FALSE, graphics=FALSE)$Rn

}
} # End case i <=M

#Calculate the (1—alpha)—quantile of TO
if(i =M+ 1){
if (nbr.rv = 2){
quant .BLAW <— quantile (TO.BLAW, 1 — alpha)
quant .HHG <— quantile (TO.HHG, 1 — alpha)
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quant .DOOV <— quantile (T0.DCOV, 1 — alpha)
quant . HSIC <— quantile (T0.HSIC, 1 — alpha)

}

else{
quant .mBIAW <— quantile (TO.mBLAW, 1 — alpha)
quant . mHHG <— quantile (T0O.mHHG, 1 — alpha)

quant .mHSIC <— quantile (TO.mHSIC, 1 — alpha)
if (v.dim = 1){
quant .GR <— quantile (T0.GR, 1 — alpha)
quant .BBL  <— quantile (T0.BBL, 1 — alpha)

}

} # End case i =M+ 1

#For the remaining B iterations , we compute T for
each test and count the number of times HO is
rejected in each case

if(i >>=M+ 1){
if (nbr.rv = 2){

T.BLAW <— hhg. test (Dx.rank, Dy.rank, nr.perm =
0)$sum. chisq

T.HHG <— hhg.test (Dx, Dy, nr.perm = 0)3$sum.
chisq

T.DOOV <— dcov.test (X, Y, R = 0)$estimate

T.HSIC <— dhsic (X, Y)$dHSIC

if (T.BLAW > quant .BLAW) {
n.success .BLAW = n.success .BLAW + 1
}
if (T.HHG > quant.HHG) {
n.success .HHG = n.success .HHG + 1
}
if (T.DAOV > quant.DCOV) {
n.success .DCOV = n.success .DCOV 4+ 1
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if (T.HSIC > quant.HSIC) {
n.success.HSIC = n.success.HSIC + 1

}
} #End case nbr.rv = 2

else{

if (v.dim = 1){
T.GR <— indepTest (cbind (X, Y, Z), d =
indepTestSim (n = N[k], p=3, m= 3, N= 6,
verbose = FALSE) ) $global.statistic
T.BBL <— dependogram (cbind (X, Y, Z), B = 0,
veed.ou.p = ¢(v.dim, v.dim, v.dim), display
= FALSE, graphics=FALSE)$Rn

if (T.BBL > quant.BBL) {

n.success .BBL = n.success .BBL + 1
¥
if (T.GR > quant.GR) {

n.success .GR = n.success .GR + 1

¥
¥
if (comp T RCPP(X.rank, Y.rank, Z.rank, 0, quant.
mBLAW) [2] = 1) {
n.success . mBLAW = n.success .mBLAW + 1
}
if (comp T RCPP(X, Y, Z, 0, quant.mHHG) [2] = 1)
{
n.success . mHHG = n.success .mHHG + 1
}

T.mHSIC <— dhsic.test(list (X, Y, Z), B = 0)
$statistic
if (T.mHSIC > quant.mHSIC) {
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n.success .mHSIC = n.success.mHSIC + 1

} # End case nbr.rv = 3

} # End case i >>=M+ 1

} # End for loop in i (done MHB times)

#Calculate the power based on the n.sim simulations
if (nbr.rv = 2){

power .BLAW <— n.success .BLAW / B

power HHG <— n.success HHG / B

power .DCOV <— n.success .DCOV / B

power . HSIC <— n.success .HSIC / B

# For one sample size, place the power results in a
vector
results <— c(round(N[k], 0),
round (100xpower .BLAW, 1) |
round (100xsqrt (power .BLAW x (1—power
BLAW) /B), 1),
round (100xpower .HHG, 1),
round (100xsqrt (power .HHG % (1—power.
HHG) /B) , 1),
round (100xpower .DCOV, 1),
round (100xsqrt (power .DOOV x (1—power
DCOV) /B) , 1),
round (100xpower . HSIC, 1),
round (100« sqrt (power . HSIC % (1—power
.HSIC)/B), 1)

else {
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power mBLAW <—
power mHHG <—
power .mHSIC <—

.success .mBLAW /
.success .mHHG /
.success .mHSIC /
.success .BBL  /
.success .GR /

power .BBL  <—

oUW W W™

B B B B B

power .GR <—

# For one sample size, place the power results in a
vector
if (v.dim = 1){
results <— c(round(N[k], 0),
round (100« power .mBLAW, 1) ,
round (100« sqrt (power .mBLAW x (1—power
1mBLAW) /B), 1),
round (100*power .mHHG, 1),
round (100*xsqrt (power .mHHG x (1—power.
wHHG) /B) , 1) ,
round (100« power .BBL, 1),
round (100*xsqrt (power .BBL * (1—power.
BBL)/B), 1),
round (100 power .mHSIC, 1),
round (100*xsqrt (power .mHSIC x (1—power
.mHSIC) /B), 1),
round (100xpower .GR, 1),
round (100xsqrt (power .GR x (1—power.GR

)/B), 1)

}
else {

results <— c(round(N[k], 0),
round (100 power .mBLAW, 1) ,
round (100 sqrt (power .mBLAW x (1—power
1mBLAW) /B), 1),
round (100« power .mHHG, 1),
round (100*xsqrt (power .mHHG x (1—power.
mHHG) /B) , 1),
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round (100xpower .mHSIC, 1),
round (100 sqrt (power .mHSIC * (1—power
.mHSIC)/B), 1)

} # Case nbr.rv ==3

# Bind those results to the previous results (from
other sample sizes)

# A data.frame is required to produce nice tables
directly exportable in Latex using the ’xtable’
package

data <— rbind.data.frame(data, results , row.names =

NULL)
} # End of For loop in k (done for each sample size)

# Name the columns
if (nbr.rv = 2){
colnames(data) <— c('N", "BLAW", "(sd)"', "HHG'", "(sd)
", 'DOOV", "(sd)", "HSIC", "(sd)")
} else if(nbr.rv = 3 & v.dim = 1){
colnames(data) <— c('N", "mBLAW", "(sd)"', "'mHHG"', "(
sd)", "BBL", "(sd)", "mHSIC", "(sd)", "GR", "(sd)
")
b elsef
colnames(data) <— c('N", "mBLAW", "(sd)", "'mHHG', "(

Sd)"7 llmHSIC"’ Il(sd)ﬂ)

# Save data
saveRDS(data, file = paste(data.direct , data.name, ".Rda

" sep = "))
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# Produce and save a graph of the Power vs Sample size
if (nbr.rv = 2){
pdf(paste(graphs.direct , data.name, ".pdf', sep = ""),
width = 10, height = 10)
par(mar = ¢(5, 5, 3, 3))
plot (data$N, data$BLAW, xlim=c (0, max(N)), ylim=c (0,
100), type = ’17, Ity = 1, lwd = 10, col="red",

xlab="Sample size", ylab="Power", cex.lab = 2, cex.
axis = 2)

lines (data$N, data$HHG, Ilwd = 10, 1ty = 2, col="blue
Il)

lines (data$N, data$DCOV, lwd = 10, 1ty = 3, col='
darkgreen")
lines (data$N, data$HSIC, lwd = 10, 1ty = 4, col='
orange")
legend (legend .pos, NULL, ncol=1, legend=c ('BLAW"  "HHG
", "DOOV", "HSIC"), col=c("red","blue", "darkgreen
", lorange'), lty = c(1, 2, 3, 4), lwd = 10, cex =
2)
}
else{
pdf(paste(graphs.direct , data.name, ".pdf', sep = ""),
width = 10, height = 10)
par(mar = c¢(5, 5, 3, 3))
plot (data$N , data$mBLAW, xlim=c (0, max(N)), ylim=c (0,
100), type = ’17, Ity = 1, lwd = 10, col="red",

xlab="Sample size", ylab="Power"', cex.lab = 2, cex.
axis = 2)

lines (data$N , dataSmHHG, Iwd = 10, 1ty = 2, col="blue
")

lines (data$N, data$3mHSIC, lwd = 10, 1ty = 4, col='
orange")

if (v.dim = 1){
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lines (data$N, data$BBL, lwd = 10, lty = 3, col="
darkgreen ")

lines (data$N, data$GR, lwd = 10, Ity = 6, col="
purple")

legend (legend.pos, NULL, ncol=1, legend=c ("mBLAW
"'mHHG", "BBL', '"mHSIC", "GR"), col=c("red","
blue', "darkgreen', 'orange', "purple'), lty =
c(1, 2, 3, 4, 6), lwd = 10, cex = 2)

}
else {
legend (legend .pos, NULL, ncol=1, legend=c ("mBLAW
" 'mHHG", "mHSIC"), col=c('red","blue", '
orange"'), lty = c¢(1, 2, 4), lwd = 10, cex = 2)
}
}
dev. off ()

# Produce a table in the Latex syntax (and print it in
the R console)

table <— xtable(data, caption = c(table.caption))

digits(table) <— xdigits(table)

if (nbr.rv = 3 & v.dim = 1){

align (table) <— c¢("c¢","c|","¢","¢c|","c¢","c|","c","¢
" "e" e, e" " e")
¥
else if (nbr.rv = 3 && v.dim > 1){
align (table) <— c¢("c¢","c|","c¢","¢c|","c¢","¢c|","c","c")
}
else {
align (table) <— c¢("c¢","c|","¢","¢c|","c¢","c|","c","¢
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print (table, file = paste(data.direct, data.name, ".txt
", sep = ""), type="latex", include.rownames = FALSE,
floating = TRUE, latex.environments = "center")

} # End of function



