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SUMMARY

Testing for independence between random vectors is an important question in sta-

tistics. Because there is an infinite number of ways by which a random quantity

X can be dependent of another random quantity Y , it is not a trivial question.

It has been found that classical tests such has Spearman [33],Wilks [40], Kendall

[18] or Puri and Sen [24] are ineffective to detect many forms of dependence.

Recent, significant results on the topic include Székely et al. [35], Gretton et al.

[14] or Heller et al. [15]. However, most of the available tests can only detect de-

pendence between two random quantities. Because pairwise independence does

not guarantee mutual independence, techniques testing the hypothesis of mutual

independence between any number of random quantities are required. In this

research we propose a non-parametric and universally consistent test of indepen-

dence, applicable to any number of random vectors of any size.

Precisely, we extend the procedure described in Heller et al. [15] in two ways.

Firstly, we propose to use the ranks of the observations instead of the observations

themselves. Secondly, we extend their method to test for independence between

any number of random vectors. As the distribution of our test statistic is not

known, a permutation method is used to compute p−values. Then, simulations

are performed to obtain the power of the test. We compare the power of our new

test to that of other tests, namely those in Genest and Rémillard [10], Gretton

et al. [14], Székely et al. [34], Beran et al. [3] and Heller et al. [15]. Examples fea-

turing random variables and random vectors are considered. For many examples

investigated we find that our new test has similar or better power than that of

the other tests. In particular, when the random variables are Cauchy, our new

test outperforms the others. In the case of strictly discrete random vectors, we

present a proof that our test is universally consistent.

Keywords: Independence test, multivariate data, random vectors
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SOMMAIRE

Tester l’indépendance entre plusieurs vecteurs aléatoires est une question impor-

tante en statistique. Puisqu’il y a une infinité de manières par lesquelles une

quantité aléatoire X peut dépendre d’une autre quantité aléatoire Y , ce n’est pas

une question triviale, et plusieurs tests “classiques” comme Spearman [33], Wilks

[40], Kendall [18] ou Puri and Sen [24] sont inefficaces pour détecter plusieurs

formes de dépendance. De significatifs progrès dans ce domaine ont été réalisés

récemment, par exemple dans Székely et al. [34], Gretton et al. [14] ou Heller

et al. [15]. Cela dit, la majorité des tests disponibles détectent l’indépendance

entre deux quantités aléatoires uniquement. L’indépendance par paires ne garan-

tissant pas l’indépendance mutuelle, il est pertinent de développer des méthodes

testant l’hypothèse d’indépendance mutuelle entre n’importe quel nombre de vari-

ables. Dans cette recherche nous proposons un test non-paramétrique et toujours

convergent, applicable à un nombre quelconque de vecteurs aléatoires.

Précisément, nous étendons la méthode décrite dans Heller et al. [15] de deux

manières. Premièrement, nous proposons d’appliquer leur test aux rangs des ob-

servations, plutôt qu’aux observations elles-mêmes. Ensuite, nous étendons leur

méthode pour qu’elle puisse tester l’indépendance entre un nombre quelconque

de vecteurs. La distribution de notre statistique de test étant inconnue, nous

utilisons une méthode de permutations pour calculer sa valeur-p. Des simula-

tions sont menées pour obtenir la puissance du test, que nous comparons à celles

d’autres test décrits dans Genest and Rémillard [10], Gretton et al. [14], Székely

et al. [34], Beran et al. [3] et Heller et al. [15]. Nous investiguons divers exemples

et dans plusieurs de ceux-ci la puissance de notre test est meilleure que celle des

autres tests. En particulier, lorsque les variables aléatoires sont Cauchy notre test

performe bien mieux que les autres. Pour le cas de vecteurs aléatoires strictement

discrets, nous présentons une preuve que notre test est toujours convergent.

Keywords: Test d’indépendance, données multivariées, vecteurs aléatoires
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Chapter 1

INTRODUCTION

1.1. General background

The concept of independence between events or random variables plays a cru-

cial role in probability and statistics. It is introduced quickly in any basic under-

graduate course of these disciplines. An intuitive formulation of the concept is

stated in Resnick [27] as follows:

Independence is a basic property of events and random variables

in a probability model. Its intuitive appeal stems from the easily

envisioned property that the occurrence or non-occurrence of an

event has no effect on our estimate of the probability that an in-

dependent event will or will not occur.

Another way to phrase this might be to say that two events are independent

when knowledge about one of them gives absolutely no information about the

other. A more formal definition of independent random variables will be given

later on, as this research project is primarily interested in answering the question

how do we detect dependence?
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1.2. Research aim

The objective of this thesis is to build a statistical procedure to test the hy-

pothesis of mutual independence between a collection of random vectors. We

propose a test that is non-parametric (i.e. distribution free), universally con-

sistent (i.e. with a sample size large enough the test will detect any form of

dependence) and applicable to any number of random vectors of any size. To

do so, our starting point is the procedure proposed in Heller et al. [15] which

is consistent to detect dependence between two random vectors X and Y . To

summarize, the present research offers two contributions.

First, in the bivariate setting (i.e. testing the independence of two random

vectors X and Y ) we propose a simple modification of Heller et al. [15] that we

believe is best suited in many situations. Secondly, we extend the methodology

of Heller et al. [15] to test for multivariate independence.

To avoid ambiguity let us state right away that by a ‘multivariate’ indepen-

dence testing we mean detecting dependence between more than two random

variables or vectors. Hence, although others might call testing the independence

between two vectors a multivariate procedure, this is not what we intend when

we use the term multivariate.
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1.3. Research motivation

To quote Sen and Srivastava [30], “perception of relationships is the corner-

stone of civilization. By understanding how certain phenomena depend on others

we learn to predict the consequences of our actions and to manipulate our envi-

ronment”. This is well-said, and indeed as statisticians we wish to understand the

relations dictating the real-life phenomena that surrounds us. At the very base

of any statistical model there is the notion that information about one or many

variables contains some information about one or many other variables.

Hence we will say, perhaps in a lack of humility, that detecting dependence is

the very basic problem in statistics. Before we can explain the relation between

two variables, say X and Y , we want to confidently answer the more fundamental

question is there a relation between X and Y ? This is because any attempt at

modeling would be a waste of time if they are in fact independent.

Now, this problem is not new. If this is an old problem, and very simple to

write down, why is there so much literature still being produced on the topic?

One answer might be that there is an infinite number of ways by which a ran-

dom quantity X can be dependent of another random quantity Y . We aim at

developing statistical tests valid against any departure from independence (i.e.

universally consistent), but this is not at trivial task. It has been found, see for

instance Székely et al. [34], that classical tests such has Spearman [33], Wilks [40],

Kendall [18] or Puri and Sen [24], although vastly used in practice, are ineffective

to detect many forms of dependence.

1.3.1. An example of non-monotone dependence

To illustrate this, we consider a first example with a dataset taken from the

The World Factbook, a publication from the CIA (Central Intelligence Agency)1.

This dataset contains the 2015 birth rates and mortality rates from 145 coun-

tries with a population over 2 millions. Note these are the ‘crude’ rates, meaning

aggregated at all ages. The scatter plot of birth rate against mortality rate is

displayed on Figure 1.1.

1https://www.cia.gov/library/publications/the-world-factbook/geos/xx.html
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Fig. 1.1. Birth rate against mortality in 145 countries

We notice quite clearly a pattern between the two variables, a kind of “C”

shape. Because any recognizable pattern between the variables reveals depen-

dence, we would expect a consistent test to find it. However, if we compute

Pearson’s correlation for this dataset we obtain a value of 0.139, and a p-value

(testing the hypothesis that the correlation is zero) of 0.095. Therefore, with the

conventional level of significance of 5% we do not conclude that the coefficient of

correlation is different than zero. The same goes for Spearman’s rho that has a

value of −0.035 (p-value of 0.675) and Kendall’s tau that has a value of −0.032

(p-value of 0.574).

Hence these classical and vastly used methods fail to detect a dependence that

is quite clear at the sight of the scatter plot. This is so because the dependence

displayed here is not linear, nor is it monotone. To detect dependence in such

a context, we need more recent methods. For instance, distance covariance by

Székely et al. [35], or the HHG test by Heller et al. [15] (named after the authors
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Heller, Heller and Gorfine) both result in a p-value < 0.001, hence rejecting in-

dependence. The test we propose in the present research also yields a p-value

< 0.001.

To make this example slightly more complete we make one final comment.

Although we know very little about demography, it would probably be very sim-

plistic to investigate birth rate as a function of mortality only. If we separate the

145 countries in two groups, based on their GDP per capita (one group contain-

ing the 33% poorest countries, and the other containing the remaining richest

countries), we obtain a much clearer picture of the situation, see Figure 1.2. We

can identify two very different trends in those groups. Hence, here the interaction

with a third variable is relevant to understand the relation between birth rate and

mortality.
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capita.gdp =< 5400 capita.gdp > 5400

Fig. 1.2. Birth rate against mortality in 145 countries for two
categories of GDP per capita
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1.3.2. An example of pairwise independence

We wish to detect any form of dependence between variables, even ‘weird’

looking relations like in the previous example. But we also want to detect de-

pendence between an arbitrary number of random variables (or vectors), not

only two. This is because pairwise independence does not guarantee total mu-

tual independence. Therefore, when dealing with more than two random vectors,

a procedure testing only pairwise independence could fail to detect dependence

when in fact there is, even if this procedure is consistent to detect any departure

from independence.

To illustrate this, we present a second motivational example, taken from Ro-

mano and Siegel [28]. Let X, Y and Z0 be independent random variables, of

standard normal distribution. If we define Z as follows

Z = |Z0| · sign(X · Y ),

it yields that Z also has a standard normal distribution. Now, it can be shown that

X, Y, Z are pairwise independent, but not mutually independent. On an intuitive

level this means that information on X or Y does not bear any information on Z,

and conversely. However, joint information on X and Y gives some information

about Z. For instance:

P[Z > 0|X > 0, Y > 0] = 1 6= P[Z > 0] = 1/2.

Likewise:

P[X > 0, Y > 0, Z > 0] = 1/4 6= P[X > 0] · P[Y > 0] · P[Z > 0] = 1/8.

To see graphically that the three variables X, Y, Z are pairwise independent

we generate a sample from the joint distribution of (X, Y, Z). We display the

pairwise scatter plots of the empirical cumulative distribution functions of the

observations, FN(X), FN(Y ), FN(Z), on Figures 1.3 to 1.5. As expected, they

reveal no pattern. We plot the empirical CDF of the observations, rather than

the observation themselves to facilitate visual examination. This choice will be

explained with more details later on, in section 3.1.

For now, we have that all pairs are independent, and therefore one might be

tempted to conclude that X, Y and Z are mutually independent. This wrong

assumption might turn out to be quite harmful. For instance, once one assumes
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Fig. 1.4. Scatter plot of FN(Z) vs FN(X)

mutual independence of X, Y and Z, one might furthermore conclude that:

S = X + Y + Z ∼ N(0,
√

3)

Which would be true if X, Y and Z where indeed mutually independent. How-

ever, in our present example, S is far from being N(0,
√

3). To illustrate this, we

simulated a sample of S = X + Y + Z. Figure 1.6 shows the resulting (empiri-

cal) density of S, plotted against the density of a N(0,
√

3). They differ markedly.
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3)

To be fair, one could say that a 3D plot of {FN(X), FN(Y ), FN(Z)} might

have helped to reveal that X, Y Z are not independent. Such a plot is displayed

in Figure 1.7. Note that points with a positive value of Z are in blue and points

with negative value of Z are in green. Examining this plot we realize that some
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areas contain no points at all. Having the model that generated the data in mind,

this makes sense: if X and Y are both positive or both negative, then it is im-

possible for Z to be negative.

That being said, visual examination has great limitations. More subtle forms

of dependence might be harder to see with the naked eye on a 3D plot. Moreover,

past three dimensions, visualization becomes impossible. Also, in the presence of

large data sets, it might not be feasible nor efficient to plot all pairs or triplets of

variables to find associations between variables.

Hence, we need a systematic way to detect dependence of any form between

an arbitrary number of random variables or vectors. This is precisely the scope

of this research.
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1.4. Definitions of independence

To be a bit more formal, here we state some sufficient criteria for the indepen-

dence of random variables. We consider first the case of two random variables,

say X and Y .

1.4.1. Bivariate case

Probably the most common sufficient criteria to state the independence of

two random variables X and Y is given in the following theorem.

Theorem 1.4.1. X and Y are independent if and only if

FXY (x, y) = FX(x)FY (y) (1.4.1)

for all x, y ∈ R.

A slightly different criteria, which will turn useful in the context of the present

research is given next.

Theorem 1.4.2. X and Y are independent if and only if

P [x1 ≤ X ≤ x2; y1 ≤ Y ≤ y2] = P [x1 ≤ X ≤ x2] · P [y1 ≤ Y ≤ y2] (1.4.2)

for all x1, x2, y1, y2 ∈ R.

Another alternative definition taken from Duan [7] is stated next.

Theorem 1.4.3. X and Y are independent if and only if

E[f(X)g(Y )] = E[f(X)]E[g(Y )] (1.4.3)

for all Borel measurable and bounded functions f and g.

The same result holds if the restriction on f and g is that they are bounded

and continuous, see Rényi [25].

1.4.2. Multivariate case

The two first definitions have ‘obvious’ generalizations in the multivariate

case. We can get the first in any probability textbook, so for instance in Resnick

[27], p. 94 we find:
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Theorem 1.4.4. A finite collection of random variables X1, · · · , Xk is indepen-

dent if and only if

P [X1 ≤ x1, · · · , Xk ≤ xk] =
k∏

i=1

P [Xi ≤ xi] (1.4.4)

for all xi ∈ R.

Said otherwise, a collection of random variables are independent if and only if

their joint distribution function is the product of the marginal distribution func-

tions. Yet again, we can establish a slightly different result, which is handy in

this research.

Theorem 1.4.5. A finite collection of random variables X1, · · · , Xk is indepen-

dent if and only if

P [a1 ≤ X1 ≤ b1, · · · , ak ≤ Xk ≤ bk] =
k∏

i=1

P [ai ≤ Xi ≤ bi] (1.4.5)

for all ai, bi ∈ R.

The proof of this result is given in Appendix A.1.
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1.5. Outline

The present research is organized as follows. Chapter 2 reviews some im-

portant methods to detect dependence in the current literature. Starting with

classical results, we move towards more recent, state-of-the art procedures, the

last of those being Heller et al. [15] which is the starting point for our own test.

In chapter 3 we propose a simple modification to the Heller et al. [15] procedure

and we conduct power simulations to see if in the bivariate case this modification

changes the performance of the test. Then in chapter 4 we extend their proce-

dure to test for independence in a multivariate context. Again we present and

discuss power simulations. Chapter 5 summarizes the relevant contributions we

are making, presents some limits of the method as well as possible follow-up work.





Chapter 2

LITERATURE REVIEW

2.1. Overview

The problem of testing independence between variables is more than a hundred

years old, and consequently the existing literature presents a variety of methods

to address the question. We are interested in methods that apply in a general

context. This means that the test must meet several requirements that we now

explain, in relation to the existing literature.

First, we seek methods that do not make strong assumptions, for example on

the distribution of the random variables in use. Classical rank methods (Spear-

man [33], Kendall [18] or Blomqvist [5]) satisfy this criterion. However, they have

the important flaw that they can only detect certain forms of dependence.

Moreover, we want methods that allow to test the independence between more

than two (ideally any) number of random vectors. Such methods exist, but often

at the cost of distributional assumptions, for instance Wilks [40], extended in

Wald and Brookner [38], assume multivariate normality, while Gieser and Ran-

dles [11], extended in Um and Randles [37], assume elliptical distributions.

The last, and arguably most difficult feature to obtain is that of universal

consistency. It has been given a truly satisfying answer only with recent results

such as Székely et al. [34], Gretton et al. [13] or Heller et al. [15], which however

do not meet the second requirement as they are made to test independence be-

tween pairs of variables. Beran et al. [3] as well as the multivariate version of

the Hilbert-Schmidt Independence Criterion (HSIC) found in Pfister et al. [23]

meet both three of the above-mentioned requirements, and as such will be used
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as benchmarks for the test developed in the present research.

We now give details about some existing methods, starting with ‘classical’ re-

sults, and then moving on to recently proposed universally consistent procedures.
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2.2. Classical dependence measures

2.2.1. Pearson’s correlation

Pearson’s correlation was first introduced by Galton [9], but its current for-

mulation is due to Pearson [22]. Still vastly used today, this index is, as noted

by Lee Rodgers and Nicewander [21], “remarkably unaffected by the passage of

time”. Hence, we start with a review of this crucial statistical tool.

Pearson’s correlation is a standardization of the covariance. Let X and Y be

two random variables with expectations E[X] = µx, E[Y ] = µy, and variances

V [X] = σ2
x, V [Y ] = σ2

y their correlation coefficient is given by

ρX,Y =
COV[X, Y ]

σXσY

=
E[(X − µX)(Y − µY )]

σXσY

. (2.2.1)

Dividing by σXσY insures that the resulting index will be between −1 and 1.

Roughly speaking, it will be positive if:

• When X > µX , it is likely that Y > µY .

• When X < µX , it is likely that Y < µY .

It takes the value 0 if and only if the covariance is 0. This requires the

expectation of the product of X and Y to be equal to the product of the individual

expectations,

E[XY ] = E[X]E[Y ]. (2.2.2)

On the other hand, independence between the random variables X and Y

means that the joint cumulative distribution function is equal to the product of

the marginal distribution functions

FX,Y (x, y) = FX(x)FX(x), ∀x, ∀y. (2.2.3)

As already presented in section 1.4. Note that because (2.2.3) has to be true

for every value x and y, independence is a much stronger assertion than non-

correlation. In other words,

independence of X, Y =⇒ ρX,Y = 0. (2.2.4)

But the implication in the other direction is false. Indeed, we can build several

examples of dependent random variables that are uncorrelated. We can even have

two deterministically related random variables (knowing one implies knowing the
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other), that still are not correlated, as shown in the following example.

Exemple 2.2.1. Let X be a zero-mean random variable with a symmetric distri-

bution, such as a N(0, σ). Let Y = X2, then

E[XY ] = E[X3] = 0 ;

E[X]E[Y ] = E[X]E[X2] = 0.

Following (2.2.2), X and Y are not correlated, even though they are (strongly)

dependent.

This example reminds us that the correlation coefficient characterizes the lin-

ear trend existing between X and Y . This is one important but very specific type

of relation. Correlation is unable to detect any other form of association. In the

example, the relation between X and Y , although deterministic, was of quadratic

form and hence correlation could not detect it.

To motivate this point further more, recall definition 1.4.3. For independence

to hold, E[f(X)g(Y )] must be equal to E[f(X)]E[g(Y )] for any Borel measurable

and bounded functions f and g. Uncorrelatedness is only one of such cases, that

of f(x) = x and g(y) = y, meaning it is a far weaker condition than independence.

Now, say we have collected a sample of (X, Y ) and we want to use it to find

the correlation between X and Y . Most of the time, we will not know from what

distribution this data came from. Therefore, in practice we need the empirical

version of Pearson’s correlation, given by

rx,y =

n∑

i=1
(xi − x̄)(yi − ȳ)

(n − 1)sxsy

. (2.2.5)

Where x̄ and sx are respectively the mean and standard deviation of the

collected sample from X, that is

x̄ =
1
n

n∑

i=1

xi, s2
x =

1
n − 1

n∑

i=1

(xi − x̄)2.

Note that what we mentioned earlier about the theoretical correlation still

holds with its empirical counterpart: it will only detect a linear relationship be-

tween two variables.
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One final comment to make is that correlation, even when it is significantly

different than 0, might give limited information about the relation between X

and Y . This is because in the end, it is just an index (one single number) and

as such it cannot hold all the information contained in the sample. To illustrate

this, let us use a famous example known as Anscombe’s quartet, see Anscombe

[1]. In this example, four data sets have the same significantly positive correlation

of 0.816. However, they look vastly different, as shown in Figure 2.1.
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Fig. 2.1. Four (very) different sets of data with equal correlation

This means that although the correlation coefficient can be interpreted as the

strength of the linear trend between two variables, it is far from delivering the

whole picture.

2.2.2. Spearman’s rho

Moving on, we present a few methods to detect dependence that are based

on ranks. Provided that it is possible to compute ranks (which is not doable for

instance with categorical data), these methods do not require any assumptions

about the distribution of the random variables, and hence meet the first require-

ment listed in section 2.1. Furthermore, they bring something new compared
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to standard correlation because they detect not only linear but also monotone

relations between variables. The first such method is due to Spearman [33]. We

present the empirical version of what is now known as Spearman’s rho.

Let (x1, y1), · · · , (xn, yn) be a sample of size n from some bivariate distribution

(X, Y ). Let Ri be the rank of observation xi among the n observations from X.

For instance, if xi is the smallest X observed, then Ri = 1. Eventual ties between

observations are dealt with using the average method (see Section 3.1 for details).

Let Si be the rank of observation yi, defined in the same way. Spearman’s rho,

ρS is computed as Pearson’s correlation coefficient of (Ri, Si), i ∈ (1, · · · , n).

Alternatively, if we define a quantity Di as follows:

Di = Ri − Si

then, if the n ranks (Ri, Si) are all distinct integers, we have the compact formula:

ρS = 1 −
6

n∑

i=1
D2

i

n(n2 − 1)
. (2.2.6)

Spearman’s rho is also an index between −1 et 1. Note that if
n∑

i=1
D2

i = 0,

then ρS = 1. This happens when, within the sample of (X, Y ), an observation xi

always has the same rank as its counterpart yi. Stated otherwise, if an increase

in X always corresponds to an increase in Y , then ρS = 1. Conversely, if the

ranks of xi are precisely the opposite of those of yi, (an increase in X always

corresponds to an decrease in Y ) then ρS = −1.

Let us emphasize the fact that the range of relations detected by ρS is not

those of strictly linear form. For instance, let us consider the data showed in

Figure 2.2. Although the relationship between X and Y is not strictly linear (it

is exponential), it is monotone and strictly increasing. Hence, in this case ρS = 1.

Consider the four sets of data of Anscombe’s quartet on Figure 2.1. We

compute the associated Spearman’s rho, and corresponding p-values. From left

to right and top to bottom the results are as follows

0.818 (p-value = 0.004)

0.691 (p-value = 0.023)

0.991 (p-value < 0.001)
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Fig. 2.2. A strictly monotone relation yields ρS = τ = 1

0.500 (p-value = 0.117).

Recall that in those examples Pearson’s correlation was always the same

(0.816), however the scores here differ markedly. Interestingly, for the last set

of data the p-value is greater than 5% and we would not reject independence.

2.2.3. Kendall’s tau

Another popular rank measure used to detected monotone forms of depen-

dence between X and Y is due to Kendall [18]. Let (xi, yi) and (xj, yj) be

two pairs of observations taken from a sample of size n from (X, Y ). Such a

pair is said to be concordant if (xi − xj)(yi − yj) > 0. It is said to be dis-

cordant if (xi − xj)(yi − yj) < 0. It is neither concordant nor discordant if

(xi − xj)(yi − yj) = 0.

For n data points, there are in total n(n − 1)/2 pairs of points. Let C be

the number of concordant pairs and D be the number of discordant pairs. Then,

Kendall’s tau, τ , is given by:

τ =
2(C − D)
n(n − 1)

. (2.2.7)
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The index τ is between −1 and 1 and has an interpretation very similar to

that of ρS: a value close to 1 means an increasing monotone relation between X

and Y (such as shown in Figure 2.2), while a value close to −1 means a decreasing

monotone relation. For completeness we again give the scores for Kendal’s tau in

the four datasets of Anscombe’s quartet

0.636 (p-value = 0.006)

0.564 (p-value = 0.017)

0.964 (p-value < 0.001)

0.426 (p-value = 0.114).

Note that a relatively recent paper by Taskinen et al. [36] develops gener-

alizations of both Spearman’s rho and Kendall’s tau. This paper provides two

new statistics that allow to test the independence of two random vectors X and

Y in arbitrary, possibly different dimensions. These statistics have a convenient

limiting χ2 distribution and are robust to outliers.

2.2.4. Wilks and Puri-Sen statistics

The methods presented so far are not only limited because they detect few

forms of dependence, but also because they are pairwise indexes. If we are in-

terested in detecting dependence between several variables, we can start with a

paper due to Wilks [40].

In this paper, a statistic λ is derived as a Neyman-Pearson ratio using the

maximum likelihood principle. Hence this test is often called the likelihood ratio

test (LRT) of independence. It is meant to test the mutual independence of a

set of k sets of random variables with a multivariate normal distribution. Hence,

contrary to the methods presented before, we can now test the independence be-

tween more than two random variables. Furthermore, those random variables can

be sets, meaning they can themselves be in several dimensions.

Note that for the problem of testing the independence between X ∈ R
p and

Y ∈ R
q, two vectors with multivariate normal distributions, the test statistic W

can be written as:

W = 2 log λ = −n log det(I − S−1
22 S21S

−1
11 S12), (2.2.8)
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where S11 is the sample covariance matrix of X, S22 is the sample covariance

matrix of Y , S12 is the sample covariance matrix of (X, Y ), and S21 is the sam-

ple covariance of (Y, X), which is equal to ST
12. Under multivariate normality

of X and Y the distribution of W is known as the Wilks Lambda distribution

Λ(q, n − 1 − p, p).

Compared to correlation or rank coefficients, this method can now answer a

more complex question, because we can test the independence of more than two

variables. Moreover, those variables, X, Y, Z, · · · are also allowed to be vectors.

However, we have lost some generality because we have to assume multivariate

normality of our observations. As noted in Puri and Sen [24], for non-normal

distributions the correlation matrix might not exist, or if it exists it “may not

play the fundamental role that it does in the case of the multinormal distributions”

(because then uncorrelation does not imply independence), and hence there is a

need for a less restrictive approach. The class of tests then described in chapter 8

of Puri and Sen [24] are said to be analogues to the original Wilks test (Bakirov

et al. [2]). However, they rely on other sample dispersion matrices rather than

covariance or correlation matrices. Say that T = (Tij) is such a sample dispersion

matrix. Then, the test simply replaces the covariances matrices S11, S22, S12, S22

in 2.2.8 by their analogues in T . For instance, T could be taken as the matrix of

Spearman’s rho statistics.

2.2.5. Hoeffding’s D

Another classical result, free of any assumption about the distribution of the

random variables, is found in Hoeffding [16]. Wilding and Mudholkar [39] state

that although it is an important result, because it is not straight-forward to use

it is “largely ignored in application”.

The idea behind the test is intuitive: let D(x, y) = FX,Y (x, y) − FX(x)FY (y).

Then, D(x, y) = 0 ∀(x, y) if and only if X and Y are independent. Again denote

by Ri and Si the respective ranks of xi and yi in a collected sample of size n. Also,

define ci as the number of bivariate observations (xj, yj) for which xj ≤ xi and

yj ≤ yi. Then, the quantity
∫

D2(x, y)dF (x, y) has the non-parametric estimator

Dn =
Q − 2(n − 2)R + (n − 2)(n − 3)S

n(n − 1)(n − 2)(n − 3)(n − 4)
.
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Where

Q =
n∑

i=1

(Ri − 1)(Ri − 2)(Si − 1)(Si − 2),

R =
n∑

i=1

(Ri − 2)(Si − 2)ci,

S =
n∑

i=1

(ci − 1)ci.

The difficulty of using Dn in practice is that its distribution is unknown, and

according to Wilding and Mudholkar [39], “lack of distributional approximations

makes it difficult to obtain p-values except by rough interpolation.” The authors

of this paper then present a method to approximate the null distribution of Dn.

Note at this point we are still in a quest for universal consistency, because, as

stated in Kallenberg and Ledwina [17], “Hoeffding’s test may completely break

down for alternatives that are dependent but have low grade linear correlation.”
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2.3. Recent developments

The results presented before are somehow ‘classical’, and although still vastly

used they present important limitations, as they cannot detect some forms of

dependence, or because they make distributional assumptions. We now present

some more recent results that have the desirable property of being consistent

against every dependence alternative, or at least a wide variety of dependence

alternatives.

2.3.1. Kallenberg and Ledwina [17]

Kallenberg and Ledwina [17] develop a test of independence between two

continuous random variables X and Y . Their test is consistent against a “broad

class” of alternatives, although not all alternatives. Denoting X∗ = F (X) and

Y ∗ = F (Y ), they consider h, the joint cdf of X∗ and Y ∗. They call h the grade

representation of X and Y , although a more common name would be ‘copula’.

Then their procedure tests H0 : h(x∗, y∗) = 1, which corresponds to independence,

against H1 defined as

H1 : h(x∗, y∗) = c(θ)exp







k∑

j=1

θjbj(x∗)bj(y∗)






.

This is the exponential family for the joint distribution of X∗ and Y ∗, where the

θj are constants and the bj are the Fourier coefficients:

b1(x) =
√

3(2x − 1),

b2(x) =
√

5(6x2 − 6x + 11),

etc.

Intuitively, we can say that this method tests if there is correlation between

order polynomials (up to some order k) of X∗ and Y ∗. This is far more general

than for instance Spearman’s ρ, which tests the first order correlation of X∗ and

Y ∗. The test statistic uses ranks of the observations, say Ri = rank(xi) and

Si = rank(yi) from a sample of size N , then

Tk =
k∑

j=1

{

1√
N

N∑

i=1

bj

(

Ri − 1
2

N

)

bj

(

Si − 1
2

N

)}

where the selection of the order k in Tk is done à la Schwarz’s rule.

2.3.2. Genest and Rémillard [10]

Most tests presented up until now were concerned in detecting dependence

between two random variables. Genest and Rémillard [10] propose a test of
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independence between an arbitrary number of continuous random variables, say

X1, ..., Xp. They argue it is ‘widely recognized’ that the dependence structure

of a set of random variables is best characterized by their copula function C (as

opposed to their joint cdf F ). Recall the copula function is nothing else then the

cdf of the vector (U1, · · · Up) where Uj = Fj(Xj). Hence they develop a test based

on the empirical copula Cn, which is constructed from a collected sample of size

n from X1, ..., Xp, that is

Cn(u1, · · · , up) =
1
n

n∑

i=1

p
∏

j=1

1

{
Rij

n + 1
≤ uj

}

.

where Rij is the rank of the ith observation for variable j among the total n

observations, that is

Rij =
n∑

l=1

1 {Xlj ≤ Xij} , 1 ≤ i ≤ n, 1 ≤ j ≤ p.

Another quantity of interest is the copula process, which is the difference

between the empirical and theoretical copulas, times the square of the sample

size n:

Cn(u1, · · · , up) =
√

n{Cn(u1, · · · , up) − C(u1, · · · , up)}.

Now, Deheuvels [6] decomposed Cn into sub-processes GA,n whose index A

indicates a subset of {(1, · · · p)} with |A| > 1. Genest and Rémillard [10] exploit

the fact that the GA,n processes are asymptotically independent and Gaussian

(under H0) to construct a formal test of independence, as well as a randomness

test (white noise test) in a serial context. One advantage of their approach is

that it yields test statistics of simple form, whose computation only requires the

ranks of the observations, for each of the p variables. In the non-serial setting

(which interests us in the course of this research), we get the following series of

test statistics TA,n

TA,n =
1
n

n∑

i=1

n∑

k=1

n∏

j∈A

{

2n + 1
6n

+
Rij(Rij − 1)
2n(n + 1)

+
Rkj(Rkj − 1)

2n(n + 1)
− max(Rij, Rkj)

n + 1

}

.

Each of these statistics can be used to conduct ‘individual’ tests of indepen-

dence, to test the independence of any particular subset A of the p variables.

Furthermore, by combining the p-values of those statistics (there are 2p − p − 1

of them), a test of mutual (i.e. total) independence can be performed. An exten-

sive series of simulations were run, and the test turned out to be consistent for

a variety of different alternatives. The power was also compared to that of the

‘classic’ likelihood ratio test (LRT) due to Wilks [40]. The simulations yielded a



29

better or similar power for the new test when compared to the LRT, except in

the case of multivariate normality. This was to be expected as the LRT is known

to be optimal in that case.

2.3.3. Distance covariance

An important result in recent statistics is the concept of distance covariance.

This procedure has become increasingly popular and generated a lot of follow-up

work since its first appearance. It takes its origins in Bakirov et al. [2], but was

established in its definitive form in Székely et al. [34] and further extended and

justified in Székely et al. [35].

Distance covariance, noted V2(X, Y ) is a measure of the distance between the

joint characteristic function of X ∈ R
p and Y ∈ R

q and the product of their

marginal characteristic functions:

V2(X, Y ) = ||fX,Y (t, s) − fX(t)fY (s)||w

where || · ||w is a norm (in the form of an integral), defined for a carefully chosen

weight function w. That is:

V2(X, Y ) =
∫

Rp+q
|fX,Y (t, s) − fX(t)fY (s)|2w(t, s)dt ds.

In practice, the empirical version of V2(X, Y ) is used, noted V2
n(X, Y ). It is

shown that

lim
n→∞

V2
n(X, Y ) = V2(X, Y ).

To define V2
n(X, Y ), let us again consider a sample of size n collected from (X ∈

R
p, Y ∈ R

q), {(xi, yi) : k = 1, · · · , n} and define

akl = |xk − xl|p, āk· =
1
n

n∑

l=1

akl, ā·l =
1
n

n∑

k=1

akl,

ā·· =
1
n2

n∑

k,l=1

akl, Akl = akl − āk· − ā·l + ā··

where | · | is the euclidean norm. Define analogue quantities for Y : bkl = |yk −yl|p,

etc. Then, the empirical distance covariance is defined by

V2
n(X, Y ) =

1
n2

n∑

k,l=1

AklBkl.

Similarly, the distance variance V2
n(X) is defined as

V2
n(X) = V2

n(X, X) =
1
n2

n∑

k,l=1

A2
kl.
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Finally, the empirical distance-correlation is then

Rn =
V2

n(X, Y )
√

V2
n(X)V2

n(Y )
.

Probably the most important feature of distance-correlation is that R(X, Y ) =

0 if and only if X and Y are independent. As such, it means that distance-

correlation characterizes independence and is therefore consistent in every situ-

ation. Tests of independence based on distance-covariance most commonly are

conducted using a permutation procedure. As the test we are building also relies

on such a procedure, this will be explained in details later.

Note that in the above-mentioned papers, such a test of independence is com-

pared empirically with the classical test in Wilks [40], and with two versions of

the tests by Puri and Sen [24] for multivariate independence. It is found that the

new test has superior or similar power then the other tests (depending on the

situation), and that the proposed statistic is sensitive to all types of departures

from independence (nonlinear, nonmonotone, etc.).

2.3.4. BBL test

Another existing test that is universally consistent and applicable to several

random vectors is found in Beran et al. [3]. We refer to it as the BBL test. It

uses an idea similar to that of Székely et al. [34] in that it measures the distance

between the (empirical) distribution functions of the random vectors. However

it uses a different weight function. Not only is this method applicable to detect

dependence between any number of random vectors, but it simultaneously tests

which subsets of vectors are independent. It also provides a visual tool called

dependogram to visualize which subsets of vectors are dependent.

No distribution assumptions are made about the random vectors, and as such

this method can be seen as a follow up to a paper previously published by Bilodeau

and Lafaye de Micheaux [4] that assumed normal margins.

Because this test is consistent against every alternative, and implementation

is available in a R package, it will serve as a benchmark for the test we propose

in the current research.
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2.3.5. Hilbert-Schmidt Independence Criterion

In Gretton et al. [13] and Gretton et al. [14] a universally consistent test of

independence is presented, which we will refer to as the HSIC test. They develop

a theoretical measure of dependence between two random vectors X and Y , which

can be written as:

HSIC(pxy, F , G) := ||Cxy||2HS

where

• F and G denote sets of functions (called Reproducing Kernel Hilbert

Spaces) containing all continuous bounded real-valued functions of X and

Y , respectively.

• Cxy : G → F is called the cross-covariance operator, and is the unique

operator mapping elements of G to elements of F such that for 〈·, ·〉 an

inner-product:

〈f, Cxy(g)〉F = COV(f, g)

for all f ∈ F and all g ∈ G.

• || · ||2HS is called the Hilbert-Schmidt norm of an operator.

Importantly, if this theoretical measure ||Cxy||2HS is zero, then it means 〈f, Cxy(g)〉F

and hence COV(f, g) is zero for any f ∈ F and any g ∈ G. But remembering

theorem 1.4.3 this ensures that X and Y are independent. ||Cxy||2HS being zero

is then a sufficient condition for independence.

Of course we need an empirical estimate (i.e. a test-statistic) of this theoreti-

cal measure. Such a quantity is developed in Gretton et al. [13], and is proven to

converge to the theoretical measure when the sample size increases. Then Gret-

ton et al. [14] state that the distribution of this test statistic is ‘complex’, and

hence they propose to use a permutation method to calculate its p-value. They

also propose an approximation using the first two moments of the test statistic

and a Gamma distribution. This method is computationally way faster then the

permutation method.

Note there has been a recent generalization of HSIC, which we label mHSIC,

testing the independence between an arbitrary number of random vectors, see

Pfister et al. [23]. We will also use this generalization to compare the power of

our own test.
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2.3.6. Maximal information coefficient

A recent development, although applicable in a less general framework be-

cause valid only for univariate X and Y is found in Reshef et al. [26]. As stated

by the authors, the intuitive idea behind their test is that “if a relationship exists

between two variables, then a grid can be drawn on the scatterplot of the two

variables that partitions the data to encapsulate that relationship”.

Hence, the procedure aims at finding the grid that displays the stronger re-

lation. For a specific a-by-b grid, the criterion used to judge the strength of the

relationship is the mutual information I(·, ·)

I(X, Y ) =
∑

y∈Y

∑

x∈X

p(x, y) log

(

p(x, y)
p(x)p(y)

)

.

Where p(x, y), p(x), p(y) are the empirical joint and marginal probability dis-

tribution functions induced by the a-by-b grid. All grids, up to a maximal res-

olution which is determined by the size of the sample are explored. For a given

grid defined by the pair of integer (a, b) the maximal mutual information achieved

is normalized, to ensure a fair comparison between grids of different resolutions.

Call this normalized score ma,b. MIC corresponds to the highest score in the

matrix containing all values of ma,b.

The authors promote their method not only stating that it can capture a “wide

range of interesting associations”, but also stating that their test has the property

of equatability, in that it gives “similar scores to equally noisy relationships of

different types. ” However, this last statement has been contradicted by some,

including Gorfine et al. [12]. In their comment, they also expose the fact that

for what they call practical sample sizes (30, 50, 100), as opposed to the larger

samples sizes used in their paper (250, 500, 1000), the HHG test in Heller et al.

[15] as well as the distance correlation “hold very large power advantages over

the MIC test”. Another critique comes from Simon and Tibshirani [32]. These

authors wrote that the set of simulations they conducted “suggests that MIC has

serious power deficiencies, and hence when it is used for large-scale exploratory

analysis it will produce too many false positives”.

2.3.7. HHG test

Heller et al. [15] propose a remarkably simple test of independence, which we

will refer to as the HHG test from now on. It has been found by the authors that
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their method is more powerful (sometimes drastically) than distance-covariance

(dCov) in a number of examples. They conclude saying “we expect that the new

test will perform better than dCov when the linear component in the relationship

between X and Y is weak or entirely absent, as well as when the first moments

of X and Y are large or infinite”.

As our own methodology is an extension of theirs, we now conduct a detailed

review of their method. Time spent doing this is not wasted, as it will make

the generalized case we present in section 4.2 more intelligible. First, in section

2.3.7.1 we explain the approach in an intuitive manner, and then in section 2.3.7.2

the test is presented more rigorously.

2.3.7.1. General idea

Consider two random vectors X ∈ R
p and Y ∈ R

q, where p and q are any

integers. The goal is to test if there is any association between them. Specifically,

we want to test the null hypothesis:

H0 : FXY (x, y) = FX(x)FY (y) ∀x ∈ R
p, y ∈ R

q.

To motivate intuitively this test, we start with an example where X and Y

are both random variables (p = q = 1). In that case, it is useful to have in mind

the alternative, equivalent definition of H0 given by theorem 1.4.2:

H0 : P[X ∈ A, Y ∈ B] = P[X ∈ A] · P[Y ∈ B],

∀A = [x1, x2] with x1, x2 ∈ R and x1 ≤ x2

∀B = [y1, y2] with y1, y2 ∈ R and y1 ≤ y2.

We will now explain the test using a real-data example which was introduced

in section 1.3.1. Let X and Y be the 2015 overall mortality and birth rates,

respectively, from a sample of 145 countries having a population larger than 2

millions.

This example serves our purpose because, as noted before, the scatter plot

of observations reveals a pattern between mortality and birth rate, however the

correlation coefficient is low (0.139) and not significantly different than zero (p-

value = 0.095). The same conclusion is drawn if we compute Spearman’s (−0.035,

p-value = 0.675 ) or Kendall’s (−0.032, p-value = 0.574) coefficients instead.
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Fig. 2.3. 2015 birth rate against mortality rate in 145 countries

On Figure 2.3 we display this data, but we have placed a red rectangle of

arbitrary size in an arbitrary location on the scatter plot. This rectangle has

vertices (x1, y1), (x2, y1), (x1, y2) and (x2, y2), and we use it to motivate the test.

Let A = [x1, x2] and B = [y1, y2]. If H0 is true, then all the following equalities

should be true:

P[X ∈ A, Y ∈ B] = P[X ∈ A] · P[Y ∈ B]

P[X ∈ A, Y ∈ BC ] = P[X ∈ A] · P[Y ∈ BC ]

P[X ∈ AC , Y ∈ B] = P[X ∈ AC ] · P[Y ∈ B]

P[X ∈ AC , Y ∈ BC ] = P[X ∈ AC ] · P[Y ∈ BC ].

(2.3.1)

With a collected sample of size N , we can estimate these probabilities by their

empirical counterparts, for instance:

P[X ∈ A, Y ∈ B] ≈ # points ∈ A and ∈ B

N

and:
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P[X ∈ A] · P[Y ∈ B] ≈ # points ∈ A

N
· # points ∈ B

N
.

Hence, to establish that H0 is false, it would suffice to establish that any of the

empirical versions of the probabilities on the left-side of equations (2.3.1) differ

significantly from the empirical probabilities on the right-side of these equations.

A way to test at the same time the four equalities in (2.3.1) is to use the

Pearson χ2 test with the null hypothesis:

H0 : “being in A” is independent of “being in B”

This yields a 2×2 contingency table. Under H0 we can compute the expected

counts in each of the four cells of this table, and then use the χ2 statistic to test

if they are significantly different from the observed counts. For the specific choice

of rectangle we displayed on Figure 2.3, tables of observed and expected counts

are given below. We also present an example on how to calculate the expected

counts.

Tab. 2.1. Observed counts Oi

y ∈ B y /∈ B
x ∈ A 27 2
x /∈ A 44 72

Tab. 2.2. Expected counts Ei

y ∈ B y /∈ B
x ∈ A 14.2 14.8
x /∈ A 56.8 59.2

E11 =N · P[being inside in "x"] · P[being inside in "y"]

=N · # points inside in "x"
N

· # points inside in "y"
N

=
29 · 71

145
= 14.2

Then using those contingency tables we compute the χ2 statistic that tests

the independence between categories:

χ2 =
4∑

i

[Oi − Ei]2

Ei

= 28.26 > χ2
1,0.05
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In this specific example (with this specific choice of rectangle), we would then

reject H0 (quite strongly).

However, it is important to note that another choice of rectangle could have

yielded a different conclusion. Furthermore, not being able to reject H0 with a

specific choice of rectangle does not mean H0 is true. Then, the natural subse-

quent question is: how do we fix the location and size of the rectangle ? In the

words of Heller et al. [15], “we let the data guide us.”

Let us consider an arbitrary pair of data points {(xi, yi), (xj, yj)} with i 6= j.

Perhaps in a slight abuse of notation we just call this pair (i, j) from now on. We

use this pair of points (i, j) to define a specific rectangle, as show in Figure 2.4.

The point i defines the center of the rectangle, while the relative distance between

i and j is used to define the size of the rectangle. For this particular choice, we

categorize all the remaining N − 2 points (those that are not i nor j) in the 2 × 2

contingency table presented earlier and compute the associated χ2 test statistic.

Let us call this statistic S(i, j). The core of the method is to do this for all the

possible pairs of points in the sample. Then, we take as our overall test statistic

the sum of all those χ2 statistics S(i, j):

T =
N∑

i=1

N∑

j=1
i6=j

S(i, j)

Note that there are N(N − 1) such pairs of points. In the words of Heller

et al. [15], doing this “aggregates the evidence against independence”. Note that

if T is “big” (compared to what it would be under H0), then it means that for at

least one rectangle the test statistic S(i, j) is “big” (compared to what it would

be under H0), therefore we have evidence that H0 is false. Hence, we reject H0

for big values of T . Because the distribution of T is unknown, a permutation

method is required to compute its p-value, see section 3.2 for details.



37

2 4 6 8 10 12 14

1
0

2
0

3
0

4
0

Mortality

B
ir

th
 r

a
te

j

i

Fig. 2.4. The red rectangle is defined by the two blue points i and j

2.3.7.2. Test of independence

Most of the work is done, but we now present the test in a more formal way,

using the notation in Heller et al. [15]. First note that if X and Y are vectors,

we no longer have zones defined by rectangles. However, the general idea of the

test remains the same.

Again, consider two arbitrary samples points (xi, yi) and (xj, yj) from the

joint distribution of (X, Y ). Then define two radii Rx0 and Ry0 as the euclidean

distances dist(·, ·) between these points, according respectively to their X and Y

coordinates1:

Rx0 = dist(xi, xj), Ry0 = dist(yi, yj).

Rx0 and Ry0 are called radii because we use them to define a zone, centered

at (xi, yi), in which the other points can be located or not. Consider for instance

some sample point (xk, yk), with k 6= i and k 6= j. According to the X coordinate,

1The article mentions that any other norm could be used instead. In fact, we could even use
different norms for the distances between (xi , xj) and (yi , yj). However, in the present research
we will stick to euclidean distances.
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we categorize this point as being as close or closer to i then j is (hence within

the radii Rx0), or further form i then j is (outside the radii). We do the same

according to the Y coordinate. Then, for the choice of i and j we made, we define

the indicator functions:

1{dist(xi, xk) ≤ Rx0}
1{dist(yi, yk) ≤ Ry0}.

Again we have four categories, and we count the number of observations falling

into each of these categories. For instance, the number of points as close or closer

to i then j is, according to both coordinates X and Y is given by:

A11(i, j) =
N∑

k=1,k 6=i,k 6=j

1{dist(xi, xk) ≤ Rx0} · 1{dist(yi, yk) ≤ Ry0}.

The quantities A12(i, j), A21(i, j), A22(i, j) are defined similarly. The cross-

classification of the N − 2 points (not equal to i or j) is summarized in a table of

the following form:

Tab. 2.3. Categorization of 1{dist(xi, X) ≤ dist(xi, xj)} and
1{dist(yi, Y ) ≤ dist(yi, yj) }

d(yi, ·) ≤ dist(yi, yj) dist(yi, ·) > d(yi, yj)
dist(xi, ·) ≤ dist(xi, xj) A11(i, j) A12(i, j)
dist(xi, ·) > dist(xi, xj) A21(i, j) A22(i, j)

This is the 2 × 2 contingency table that we use to conduct a classic Pearson’s

test of independence. Specifically, this statistic can be written as:

S(i, j) =
(N − 2){A12(i, j)A21(i, j) − A11(i, j)A22(i, j)}2

A1.(i, j)A2.(i, j)A.1(i, j)A.2(i, j)

where A1.(i, j) = A11(i, j) + A12(i, j) and so on. S(·, ·) is calculated for every

pair of points in the sample. Then, as stated before, the overall test statistic is

the sum of all the statistics S(·, ·). The distribution of this statistic is unknown,

and therefore a permutation method is required to calculate its p-value. This will

be explained in the methodology section.

In summary, for X and Y that are vectors, we cannot visualize easily the

zones centered at (xi, yi) and delimited by the radii Rx0 , Ry0 . However, the idea

of the test stays the same: if for some of those zones knowledge about being

inside (or outside) the zone according to the X coordinate gives some knowledge
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about being inside (or outside) the zone according to the Y coordinate, then

independence does not hold.





Chapter 3

HHG ON RANKED DATA

3.1. Motivation

In this section we propose to use the HHG test on ranks of the observed data,

rather than on the data itself. That is, if we have a sample of size N from the

joint distribution of (X, Y ), say

(X1, Y1), · · · , (XN , YN),

we propose to compute the ranks of X and Y , call them R and S respectively,

yielding

(R1, S1), · · · , (RN , SN),

and then to apply the HHG test on this set of ranks (R, S). To give an example

of what the rank transformation is, say we have the following sample of size five

from a univariate random variable X:












X1

X2

X3

X4

X5













=













4

5

6

2

10













.

Under the rank transformation we obtain:












R1

R2

R3

R4

R5













=













2

3

4

1

5













.

This is a very simple modification to the original procedure in Heller et al.

[15] that we believe improves its power in many situations. Moreover, we believe
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this change makes the test more robust. Here we give some motivation (and vi-

sual examples) for this change in the case where X and Y are random variables,

however this modified version works for random vectors as well, see an example

at the end of this section.

Now, why do we do such a transformation? For starters, note that for contin-

uous random variables X and Y we have

X ⊥ Y ⇐⇒ FX(X) ⊥ FY (Y ).

A proof of this statement is given in Appendix A.2. This means that, at

least for continuous random variables, investigating the independence between X

and Y is the same problem as investigating the independence between FX(X)

and FY (Y ). Furthermore, and perhaps most importantly, this transformation

puts the observations on the same scale. This is suitable when trying to detect

dependence. Indeed, when plotting X against Y , it is not always straightforward

to identify relationships between variables because elements such as skewness,

spread or extreme values might make it look like there is a relationship when in

fact there is none. Likewise, when variables are not on the same scale, it might

be harder to identify a relation that is present. Of course, with data that we have

collected, we do not know the ‘true’ functions FX(x) and FY (y), so instead we

use their empirical counterparts, noted FN(x) and FN(y). But those are only the

ranks divided by N , that is:

FN(xi) =
1
N

N∑

j=1

1xj≤xi
=

Ri

N
.

So to summarize, if FX(X) and FY (Y ) are dependent it means X and Y are

dependent. Because FX(X) and FY (Y ) are unknown we use their empirical coun-

terparts FN(x) and FN(y), which are based on the ranks of X and Y . Hence,

what we do in the end is trying to detect dependence between the ranks of our

observations.

Note that for eventual tied values of the random variables X or Y we use

the ‘average’ method to assign ranks. This means we assign to those tied obser-

vations the same rank, with value equal to the average of the ranks we would

have without ties. For instance, the sequence {2, 4, 5, 5, 10} would become

{1, 2, 3.5, 3.5, 5} under the rank transformation. Likewise the sequence {2, 2, 5,

5, 10} would become {1.5, 1.5, 3.5, 3.5, 5}.
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We now give an example of what we mean when we say independence (or

dependence) is easiest to see on ranked data. Consider Figure 3.1. It shows the

scatter plot of two perfectly independent random variables, call them X and Y ,

both having an Exponential distribution of mean 2. It is difficult to conclude

if there is a relation between the two because of the highly asymmetrical way

the observations are distributed on their support (here roughly 0 to 12). On the

contrary, if we plot the empirical distribution function of the observations FN(X)

and FN(Y ) against one another we obtain a much clearer picture. Indeed, Figure

3.2 shows no pattern whatsoever.

As another example, consider two independent random variables Z ∼ N(2,
√

12)

and W ∼ Pareto(α = 3, θ = 4). They both have the same mean (2) and variance

(12), however the Normal is light-tailed while the Pareto is heavy-tailed. Hence, if

we look at the scatter plot of W against Z on Figure 3.3, it is not straightforward

to exclude a relation between the two. Again, plotting the empirical cdf yields

a clear picture: on Figure 3.4 we cannot detect any relation between FN(Z) and

FN(W ).

In one last example, let us consider for a change two dependent random vari-

ables. The first one is called C and has a Cauchy distribution with scale parameter

3. The second one is called S and is defined as S = sin(C)+N(0, 1
2
). If we take a

look at the scatter plot of S against C (figure 3.5), it is not very straightforward

to establish there is a relation. This is because the Cauchy distribution generates

very ‘extreme’ values, which distorts the plot: the X axis goes to 200 only be-

cause of a couple of points, which squeezes all the other points, making it hard

to see a pattern. On the contrary, looking at the scatter plot of the ecdf FN(S)

vs FN(C) as displayed in Figure 3.6, we easily detect a pattern, hence rejecting

independence.
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Finally, note that if X and Y are vectors, we can still apply the rank trans-

formation to them and then perform the HHG test on the transformed data.

Precisely, for each of the components of X and Y we replace the original values

by their within-component ranks (values from 1 to N).

To give an example, say X has two components, X = (X(1), X(2)), and we

have a sample of size five from X, for instance:
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then under the rank transformation we obtain:
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3.2. p-value of the test

In the original HHG test, as well as in our version using ranks, we do not

know the distribution of the test statistic under H0. Asymptotically, the S(·, ·)
statistics are χ2, but they are dependent, hence their sum does not have (or at

least we have not found) a known distribution. We then rely on a permutation

method to compute the p-value of this test statistic.

Suppose we have calculated the test statistic of a sample to be tobs. On a

qualitative level, the bigger tobs is, the stronger is the evidence to reject H0.

Recall the basic definition of the p-value:

pt = P [T ≥ t|H0].

In words, this is the probability under H0 to obtain a test statistic T equal to

or “more extreme” to the value t we indeed observed. Because we do not know

the distribution of T , we can’t compute this probability exactly. However, it is

possible to generate a sample of T under H0, noted t∗
1, t∗

2, ... and use it to calculate

an empirical p-value.

Note that if H0 is true and there is no association of any form between X and

Y then the occurrence of a variable has no impact on the occurrence of the others,

and vice-versa. Hence, if we reshuffle all the observations within the sample, it

would make no material impact on T , our measure of dependence.

In other words, a reshuffled sample imitates a sample generated under H0,

without changing the marginals of X and Y . Therefore a test statistic calculated

on this reshuffled sample has the distribution of T under H0. This means we can

have a good approximation of pt if we apply the following procedure.

(1) Choose the number of permutations np (a “big” number such as 1000).

(2) Calculate tobs, the test statistic based on the original sample.

(3) Generate a sample from the original data by randomly permutating the

rows of Y , where a row represents one sample point.

(4) Calculate the test statistic based on this new sample. Call it t∗
1.

(5) Repeat steps (3) and (4) np times.

(6) Count the number of times t∗
i ≥ tobs. Call it m.

(7) Calculate the p-value as pt = m/np.
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3.3. Power simulations

3.3.1. How to estimate the power

We now want to estimate the power of our test:

power = P[reject H0|H0 is false ].

Of course, such a probability depends on the way H0 is false, i.e. it depends

on the form of the alternative H1. Hence we proceed with simulations. We follow

this procedure:

(1) Choose a dependence structure (i.e. fix H1).

(2) Generate a set of data under H1.

(3) Apply the test to this data, and record if H0 is rejected.

(4) Repeat this B times, where B is a “big” number such as 10,000.

The power is then given by:

power =
# times H0 is rejected

B
.

However, when doing simulations, because we fix H1, we know precisely what

are the marginals of the random vectors X and Y . Hence, the test no longer

requires us to use a permutation method to obtain an independent sample under

H0 and use it to calculate the p-value of our statistic T . Rather, by simulation we

can generate such samples, and then obtain the required quantiles of T under the

null hypothesis H0. Then, for each of the B iterations in the above algorithm, we

reject H0 if the calculated test statistic T is bigger then this (empirical) quantile.

In other words, for a specific H1 we follow the steps:

(1) Generate a sample with independent X and Y having marginals specified

by H1.

(2) Calculate the test statistic T ∗ based on this sample.

(3) Repeat this M times, where M is a “big” number such as 50,000.

(4) Use the resulting sample t∗
1, · · · , t∗

M to calculate the empirical. (1 − α)%-

quantile of T0:

t∗
1−α.

(5) Then generate B samples under H1 and each time, use the following rule

to reject H0:

reject H0 if T ≥ t∗
1−α.
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Note that because this procedure is computationally intensive, coding in pure

R would be too slow and we use instead the R package ‘Rcpp’ by Eddelbuettel

et al. [8] which allows the integration of C coding into R, the execution of C code

being significantly faster than R to perform loops, see Lafaye De Micheaux et al.

[20].

3.3.2. Comparison to other tests

Computing the power in many different dependence situations, both univari-

ate (random variables) and multivariate (random vectors) will give us information

about how well the test performs. However, we also want to compare our test to

other existing procedures. Hence, in the next sections 3.3.3 and 3.3.4, we compare

the power of our ranked-version of the test in Heller et al. [15] (labeled BLAW) to

three other independence tests: the original test from Heller et al. [15] (HHG), the

distance covariance test (DCOV) from Székely et al. [34] and the Hilbert-Schmidt

independence criterion (HSIC) from Gretton et al. [14]. Many different depen-

dence structures are investigated. First, in sub section 3.3.3 we explore examples

where X and Y are random variables (both have one component). Next, in sub

section 3.3.4 we explore examples where X and Y are vectors, both of dimension

two: X = (X1, X2), Y = (Y1, Y2).

For each example, we first state what the dependence structure is, then we

present graphs of the empirical power (in %) against the sample size (usually

from 10 to 100 by leaps of 10). We use a level α = 5% in all examples. All of

the results are based on 50,000 simulations to estimate the (1 − α)%-quantile of

T |H0, and 10,000 power simulations. Hence M = 50, 000 and B = 10, 000 in the

notation of section 3.3.1. The discussion of the results is deferred to section 3.4.

3.3.3. Random variables examples

First we consider the first six examples in table 3 from Heller et al. [15],

labeled ‘four independent clouds’ (this is H0), ‘W-shape’, ‘Diamond’, ‘Parabola’,

‘Two parabolas’, and ‘Circle’. Note that we changed the original examples slightly

because a deterministic sequence was used in the R code that generated them:

seq(-1, 1, length = n)

Making the variables not i.i.d. We used instead:

runif(n, -1,1)
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In addition to those examples, we consider three dependence models where

Y is a function of X (with an additional noise so that the dependence is not

picked-up too easily by the tests):

• Linear dependence: X ∼ N(0, 1), Y = X + N(0, 1
2
)

• Exponential dependence: X ∼ U(−3, 3), Y = exp(X/3) + U(−3, 3)

• Sine dependence: X ∼ U(0, 2π), Y = sin(X) + N(0, 1)
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Fig. 3.7. Power in the case of four independent clouds
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Fig. 3.8. Power in the case of the W-shape dependence
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Fig. 3.9. Power in the case of the Diamond dependence
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Fig. 3.10. Power in the case of the Parabola dependence
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Fig. 3.11. Power in the case of the Two Parabolas dependence
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Fig. 3.12. Power in the case of the Circle dependence
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Fig. 3.13. Power in the case of the Linear dependence
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Fig. 3.14. Power in the case of the Exponential dependence
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Fig. 3.15. Power in the case of the Sine dependence
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In the next examples, we use copulas to generate dependent data. Copulas

have the advantage that we can change the margins of the random variables,

without changing the strength of the dependence. Hence, we can investigate if

the power of the different methods varies according to the margins. As in Genest

and Rémillard [10] we consider the three following copulas:

• Clayton

• Gumbel

• Normal

And we use three different margins, for a total of nine examples:

• Normal (0, 1)

• Exponential (scale = 1)

• Cauchy (scale = 1)
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Fig. 3.16. Power in the case of the Clayton (θ = 0.6) copula with
Normal margins
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Fig. 3.17. Power in the case of the Clayton (θ = 0.6) copula with
Exponential margins

0 20 40 60 80 100

0
2

0
4

0
6

0
8

0
1

0
0

Sample size

P
o
w

e
r

BLAW

HHG

DCOV

HSIC

Fig. 3.18. Power in the case of the Clayton (θ = 0.6) copula with
Cauchy margins
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Fig. 3.19. Power in the case of the Gumbel (θ = 1.4) copula with
Normal margins
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Fig. 3.20. Power in the case of the Gumbel (θ = 1.4) copula with
Exponential margins
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Fig. 3.21. Power in the case of the Gumbel (θ = 1.4) copula with
Cauchy margins
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Fig. 3.22. Power in the case of the Normal (ρ = 0.4) copula with
Normal margins
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Fig. 3.23. Power in the case of the Normal (ρ = 0.4) copula with
Exponential margins
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Fig. 3.24. Power in the case of the Normal (ρ = 0.4) copula with
Cauchy margins
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3.3.4. Random vectors examples

Here we consider first three examples where X and Y are 5-dimensional vec-

tors. We consider the last two examples in table 3 from Heller et al. [15], as well

as the example from table 4 with β1 = 1, β2 = 4. We label those examples the

“logarithmic”, “epsilon” and “quadratic” dependences. Specifically, the models

are as specified below.

• Logarithmic dependence:

Xi ∼ N(0, 1), ∀i ∈ {1, 2, · · · 5}
Yi = log(X2

i ), ∀i ∈ {1, 2, · · · 5}

• Epsilon dependence:

Xi ∼ N(0, 1), ∀i ∈ {1, 2, · · · 5}
ǫi ∼ N(0, 1), ∀i ∈ {1, 2, · · · 5}
Yi = Xi · ǫi, ∀i ∈ {1, 2, · · · 5}

• Quadratic dependence:

Xi ∼ N(0, 1), ∀i ∈ {1, 2, · · · 5}
ǫi ∼ N(0, 3), ∀i ∈ {1, 2, · · · 5}

Yi =







Xi + 4X2
i + ǫi, for i ∈ {1, 2}

ǫi, for i ∈ {3, 4, 5}

We add two more examples to those. One is based on our motivational exam-

ple in section 1.3.2, and we call it the “2D pairwise independence” example.

• 2D pairwise independence:

X, and Z0 ∼ N(0, 1)

Y1 ∼ N(0, 1), Y2 = |Z0| · sign(X · Y1)

Hence X is a random variable and Y is a random vector with two components.

Note this is a rather odd construction: X, Y1 and Y2 are all pairwise independent,

but not mutually independent, hence a universally consistent test between X and

(Y1, Y2) should reject H0 in this situation.

The other example, which we call “big noise” is the following.

• Big noise:

X1 ∼ N(0, 1) and X2 ∼ N(0, 4)
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Y = X2
1 + N(0, 2)

We call this example ‘big noise’ because here X2 is independent of Y and has

a big standard deviation compared to X1 (which is dependent of Y ). Hence,

when trying to detect dependence between the vector (X1, X2) as a whole and

the variable Y , the noise component X2 makes the task harder.
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Fig. 3.25. Power in the case of the ‘log’ dependence
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Fig. 3.26. Power in the case of the ‘epsilon’ dependence
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Fig. 3.27. Power in the case of the ‘quadratic’ dependence
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Fig. 3.28. Power in the case of the ‘pairwise independence’ example
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Fig. 3.29. Power in the case of the ‘big noise’ example
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Next, we consider dependent data via copula structures. Here X and Y are

both of dimension two. Again we consider three copulas (Clayton, Gumbel, Nor-

mal) with three marginals (Normal, Exponential, Cauchy), yielding nine exam-

ples. Note that in the case of the Normal copula, we set the correlations between

all pairs of variables to 0.3.
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Fig. 3.30. Power in the case of vectors for the Clayton (0.5) copula
with Normal margins
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Fig. 3.31. Power in the case of vectors for the Clayton (0.5) copula
with Exponential margins
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Fig. 3.32. Power in the case of vectors for the Clayton (0.5) copula
with Cauchy margins
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Fig. 3.33. Power in the case of vectors for the Gumbel (1.3) copula
with Normal margins
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Fig. 3.34. Power in the case of vectors for the Gumbel (1.3) copula
with Exponential margins
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Fig. 3.35. Power in the case of vectors for the Gumbel (1.3) copula
with Cauchy margins
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Fig. 3.36. Power in the case of vectors for the Normal (ρ = 0.3)
copula with Normal margins
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Fig. 3.37. Power in the case of vectors for the Normal (ρ = 0.3)
copula with Exponential margins
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Fig. 3.38. Power in the case of vectors for the Normal (ρ = 0.3)
copula with Cauchy margins
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3.4. Discussion of power results

As a first global comment, let us say that empirically the test we propose

“works.” Indeed, in all examples when the sample size increases, the power in-

creases, which is what is to be expected. Now we give some specific comments

about the examples presented, comparing the power of our proposed test to the

power of the other tests for which we did simulations.

In the random variables examples taken from Heller et al. [15] (W-shape,

Parabola, Two parabolas, Diamond, Circle), we note that BLAW has a similar or

better power then the other tests four times out of five, being worst then HHG

and HSIC (but still better then DCOV) only in the case of the ‘Diamond’ depen-

dence. In the examples that follow (Linear, Exponential, Sine), all four tests have

relatively similar power, although we note that DCOV is the winner (by a little)

each time, while BLAW is slightly better then HHG each time. In the copula

examples, we get more differences between the powers. We note that BLAW is

better then HHG eight times out of nine (still being quite similar to HHG in the

case of the Gumbel-Exponential example, see Figure 3.20), and is by far the best

out of the four tests whenever the marginals are Cauchy. Note that in the cop-

ula examples, because BLAW uses ranks, its power is unaltered by the choice of

marginals. We argue this is a desirable property for an independence test, as the

strength of the dependence is in no way influenced by the choice of the marginals.

On the contrary, for the three other tests the power is significantly influenced by

the choice of marginals.

In the random vectors examples taken from Heller et al. [15], BLAW is the best

test for the ‘Log’ dependence, although it is worst then HHG in the ‘Epsilon’ and

‘Beta’ examples. Then however, in the ‘pairwise independence’ example BLAW

performs way better then HHG, and in the ‘big noise’ example, while BLAW per-

forms well, all three other tests have almost no power. This is quite interesting,

not to say surprising. It means that when testing the independence between two

vectors X and Y , if for some reason there is a component in one of the vectors

which is not dependent to the other vector and has a ‘big’ variance, it can com-

promise greatly the efficiency of HHG, DCOV and HSIC.

For the examples using copulas, conclusions are essentially the same as in the

random variables examples. BLAW is better then HHG nine times out of nine,

and is drastically better then the three other tests when the marginals are Cauchy.
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Hence we are tempted to conclude that BLAW is more robust to the presence of

‘extreme’ values, as generated for instance when using Cauchy marginals.





Chapter 4

MULTIVARIATE EXTENSION OF HHG

4.1. General idea

As we saw, Heller et al. [15] developed a procedure to test the independence

of two random vectors, X and Y . We now propose to use the same technique, but

our goal is to test the joint independence between d random vectors, call them

X(1), X(2), · · · , X(d), with d being any positive integer. As in the bivariate case,

we present first an intuitive idea of this generalization, which we formalize in the

following section.

Recall that in the bivariate case, the whole methodology relies on categoriz-

ing the data points in 2 × 2 contingency tables to compute χ2 statistics. This

was the base of the method. Furthermore, recall that, in the case of X and Y

being random variables (which is easiest to visualize) we placed rectangles on the

scatter plots of the data points. All the sample points could be inside (or out-

side) the rectangles in their X coordinate, and inside (or outside) the rectangles in

their Y coordinate, yielding a 2×2 contingency table, for a total of four categories.

Now with d variables, we can do the same thing. Each point can be classified

as inside or outside a d-dimensional zone, according do d different coordinates.

Hence, we can categorize each of the data points in a 2d contingency table. It

might help to visualize this with an example where we have three random vari-

ables X, Y, Z. The rectangles are now boxes and the scatter plot of observations

is now in three dimensions, as shown in Figure 4.1. The points shown on this

graph can be classified as being inside or outside the red box according to three

coordinates (or axis), x, y and z. The concept of the test stays the same: if

there is any choice of box for which knowledge about being inside (or outside)

the box according to one coordinate gives some information about being inside
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(or outside) the box according to another coordinate, then independence between

the variables does not hold. Using a large number of ‘boxes’ defined by the data

points will aggregate the evidence against independence. Past this key concept,

the rest of the procedure is remarkably similar to the bivariate case:

• Each pair of points (i, j) defines a specific box

• Each box is used to calculate a χ2 statistic, S(i, j)

• We take as our global test statistic the aggregation of all χ2 statistics:

T =
N∑

i=1

N∑

j=1
i6=j

S(i, j)

The next section presents the method more formally and establishes a formula

for S, which can be implemented in any programming software.
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Fig. 4.1. 3-dimensional scatter plot with a box on it
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4.2. Test of independence

Let X(1), X(2), · · · , X(d) be d random vectors of any dimension, with respective

cumulative distribution functions F (1)(x1), F (2)(x2), · · · , F (d)(xd). We want to

test the hypothesis H0 of total independence between the d vectors:

H0 :FX(1)···X(d)(x1, · · · , xd) = FX(1)(x1) × · · · × FX(d)(xd) (4.2.1)

Say we have collected a sample of size N from this distribution. We con-

sider one arbitrary point (x(1)
i , x

(2)
i , · · · , x

(d)
i ) from this sample. This point will

be the center of a zone which we will use to categorize all other points in the

sample. We use another arbitrary point (x(1)
j , x

(2)
j , · · · , x

(d)
j ) to define d radii

R
(1)
0 = dist(x(1)

i , x
(1)
j ), R

(2)
0 = dist(x(2)

i , x
(2)
j ), · · · , R

(d)
0 = dist(x(d)

i , x
(d)
j ). As in the

bivariate case, dist(·, ·) is just the euclidean distance.

Now every other point in the sample (there are N − 2 left) can be categorized

as being as close or closer to i then j is, and according to d different coordinates.

Consider one specific sample point k (which is not equal to i nor j). For each

of the random vectors v we define a categorical function I
(v)
k equal to 0 if the

distance between the sample point k and the point of dependence is smaller or

equal to the radius in the vth component, and equal to 1 if this distance is greater.

That is, for ∀v ∈ {1, · · · , d}:

I
(v)
k =







0 if dist(x(v)
i , x

(v)
k ) ≤ R

(v)
0

1 if dist(x(v)
i , x

(v)
k ) > R

(v)
0

.

As there are d random vectors, a specific point k can fall into 2d different

categories, i.e. for one given coordinate v the point k can be within the zone

defined by the radius R
(v)
0 , or outside the zone. As there are d such coordinates

in total, this yields 2d possibilities. Said otherwise, we categorize each point

according to d categories, and for each category there are only two possibilities:

being inside or outside the ‘zone’. Then the results for the whole sample can be

summarized in a 2d contingency table, or if you prefer a table with

2 × 2 × · · · × 2
︸ ︷︷ ︸

d times

= 2d

cells.
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Now, denote by E(t1, t2, · · · , td) the expected number of points to fall in a

specific cell (t1, t2, · · · , td) where tv ∈ {0, 1}, v ∈ {1, · · · d}. Under H0 we have:

E(t1, · · · , td) = (N − 2) × P[I(1)
k = t1, · · · , I

(d)
k = td]

= (N − 2) ×
d∏

v=1

P[I(v)
k = tv].

Replacing the theoretical probabilities (which in general we do not know) with

the empirical probabilities we get:

Ê(t1, · · · , td) = (N − 2) ×
d∏

v=1

N∑

k=1
k /∈{i,j}

1(I(v)
k = tv)

N − 2

=
1

(N − 2)d−1
×

d∏

v=1







N∑

k=1
k /∈{i,j}

1(I(v)
k = tv)







.

We denote by A(t1, t2, · · · , td) the number of sample points observed in cell

(t1, t2, · · · , td). In other words:

A(t1, · · · , td) =
N∑

k=1
k /∈{i,j}

d∏

v=1

1(I(v)
k = tv).

We then write the classic Pearson’s test statistic S for a d-dimensional con-

tingency table. Letting (t1, · · · , td) = t we get:

S =
∑

t

[A(t) − Ê(t)]2

Ê(t)
.

Here we call this statistic S to make the notation less cluttered, but keep in

mind it is calculated for one specific pair of points (i, j) hence we could have

called it S(i, j). The same goes for the quantities A(t), E(t) and Ê(t). A more

precise yet cluttered notation would be A(i, j)(t), E(i, j)(t) and Ê(i, j)(t).

Also for simplification purposes we let Ê(t) = e(t)/Md−1, with M = N − 2,

and rewrite S:

S =
∑

t

[A(t) − e(t)/Md−1]2

e(t)/Md−1

=
∑

t

Md−1

e(t)
·
(

Md−1A(t) − e(t)
Md−1

)2

=
1

Md−1

∑

t

1
e(t)

·
(

M2(d−1)A(t)2 − 2Md−1A(t)e(t) + e(t)2
)
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=
1

Md−1

∑

t

(

M2(d−1)A(t)2

e(t)
− 2Md−1A(t) + e(t)

)

.

Which finally yields:

S =
∑

t

M2A(t)2

e(t)
− M (4.2.2)

where we used the fact that
∑

t A(t) = M and
∑

t e(t) = Md. This is because

A(t) is the number of points in one particular cell t, hence summing the A(t) over

all possible cells gives the total number of points categorized, M . The second

identity is less obvious, so a proof is given in Appendix A.3.

Note that the statistic S can be calculated only if e(t) is non zero for each of

the 2d possible t. It is set to 0 otherwise. Now, as stated before this gives one

statistic, for one particular choice of two sample points (i, j). As in the bivariate

case, we calculate the statistic S for each of the N(N − 1) pair of points (i, j).

Then finally, our test statistic is the aggregated sum of all S(i, j):

T =
N∑

i=1

N∑

j=1
i6=j

S(i, j). (4.2.3)

Note that T is a sum over N(N − 1) terms because there are N(N − 1) ways

of choosing two points out of N points if the order matters. Indeed, here the

order matters: S(i, j) 6= S(j, i).

As in the original bivariate version from Heller et al. [15], we don’t know what

is null distribution of this test statistic T , and hence to calculate it’s p-value we

use a permutation method as described previously in section 3.2.
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4.3. Proof of the strictly discrete case

For this multivariate extension of HHG, in the case where all the d random

vectors are strictly discrete, we prove that the proposed test is consistent when-

ever H0 is false. This is of course not the most general case, but still a nice result.

Suppose X(1) ∈ R
p1 , . . . , X(d) ∈ R

pd are all strictly discrete with a countable

support. H0 is false implies that there exists at least one point (x(1)
0 , · · · , x

(d)
0 )

with probability different then 0 such that :

Pr[X(1) = x
(1)
0 , . . . , X(d) = x

(d)
0 ] > Pr[X(1) = x

(1)
0 ] × · · · × Pr[X(d) = x

(d)
0 ].

(4.3.1)

There is also at least one point (x(1)∗
0 , · · · , x

(d)∗
0 ) such that:

Pr[X(1) = x
(1)∗
0 , . . . , X(d) = x

(d)∗
0 ] < Pr[X(1) = x

(1)∗
0 ] × · · · × Pr[X(d) = x

(d)∗
0 ].

(4.3.2)

Otherwise, we wouldn’t have
∑

x(1),...,x(d)

Pr(x(1), . . . , x(d)) = 1. (4.3.3)

Indeed, imagine this was not the case. That is, imagine we start with a valid

distribution that respects H0. We say valid in the sense that the sum of the

probabilities over each mass point equals one. Now we alter this distribution to

obtain a distribution under H1, but we do so by changing the probability assigned

to one point and one point only. This yields that, only for this point, (4.3.1) OR

(4.3.2) is true. But then, automatically, this new distribution is not valid, i.e.

(4.3.3) is false. Hence, we must have that under any valid distribution H1 at least

one point satisfies (4.3.1) AND at least one point satisfies (4.3.2).

From now on, for a point (x(1)
0 , · · · , x

(d)
0 ) satisfying (4.3.1), and we know such

a point exists under H1, we denote:

p0 = Pr[X(1) = x
(1)
0 , . . . , X(d) = x

(d)
0 ]

p⊥
0 = Pr[X(1) = x

(1)
0 ] × · · · × Pr[X(d) = x

(d)
0 ].

Out of the N points from a sample, we expect N ·p0 to have values (x(1)
0 , . . . , x

(d)
0 ).

Let i0 and j0 be two such points. That is:

(x(1)
i0

, . . . , x
(d)
i0

) = (x(1)
j0

, . . . , x
(d)
j0

) = (x(1)
0 , . . . , x

(d)
0 )
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Obviously, in each of the d coordinates the distance between the two points i0 and

j0 is 0. In the notation used previously (section 4.2, p. 76), R
(1)
0 = · · · = R

(d)
0 = 0.

Hence:

A(t1 = 0, · · · , td = 0)(i0, j0) =
N∑

k=1
k /∈{i0,j0}

1{dist(x(1)
i0

, X
(1)
k ) ≤ 0} × · · · × 1{dist(x(d)

i0
, X

(d)
k ) ≤ 0}

=
N∑

k=1
k /∈{i0,j0}

1{X
(1)
k = x

(1)
0 , . . . , X

(d)
k = x

(d)
0 }

Denote A(tv = 0)(i0, j0) the number of sample points as close to i0 than j0 is

in their vth component:

A(tv = 0)(i0, j0) =
N∑

k=1
k /∈{i0,j0}

1{dist(x(1)
i0

, X
(1)
k ) ≤ 0}

=
N∑

k=1
k /∈{i0,j0}

1{X
(1)
k = x

(v)
0 }

By the law of large numbers, the observed frequencies above converge in prob-

ability to the theoretical probabilities:

lim
N→∞

A(t1 = 0, . . . , td = 0)(i0, j0)
N − 2

= p0,

lim
N→∞

A(tv = 0)(i0, j0)
N − 2

= Pr[X(v) = x
(v)
0 ], ∀v ∈ (1, . . . , d).

Now, recall:

S(i0, j0) =
∑

t

[A(i0, j0)(t) − Ê(i0, j0)(t)]2

Ê(i0, j0)(t)
.

It is enough to look at the first term of this sum, with t = (t1 = 0, · · · , td = 0),

i.e. the term:

S1(i0, j0) =

{

A(t1 = 0, · · · , td = 0)(i0, j0) −
∏d

v=1
A(tv=0)(i0,j0)

(N−2)d−1

}2

∏d

v=1
A(tv=0)(i0,j0)

(N−2)d−1

.

Now, because the points i0, j0 violate independence, with N → ∞ the ratio

S1(i0, j0)/(N − 2) won’t go to zero. That is, almost surely:

lim
N→∞

S1(i0, j0)
N − 2

= lim
N→∞

1
N − 2

{A(t1 = 0, · · · , td = 0)(i0, j0) −
∏d

v=1
A(tv=0)(i0,j0)

(N−2)d−1 }2

∏d

v=1
A(tv=0)(i0,j0)

(N−2)d−1
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= lim
N→∞

1
(N−2)2 {A(t1 = 0, · · · , td = 0)(i0, j0) −

∏d

v=1
A(tv=0)(i0,j0)

(N−2)d−1 }2

∏d

v=1
A(tv=0)(i0,j0)

(N−2)d

=
limN→∞{A(t1=0,··· ,td=0)(i0,j0)

N−2
−
∏d

v=1
A(tv=0)(i0,j0)

(N−2)d }2

limN→∞

∏d

v=1
A(tv=0)(i0,j0)

(N−2)d

=
{p0 − p⊥

0 }2

p⊥
0

where we used Slutzky’s theorem (Serfling [31], p. 19), to replace the empirical

probabilities in S1(i0, j0) by theoretical probabilities.

Because S1(i0, j0)/(N − 2) converges almost surely to a positive constant c′ =
{p0−p⊥

0 }2

p⊥

0
> 0, we have:

S1(i0, j0) > (N − 2)c′/2 (4.3.4)

with probability going to 1 as N → ∞.

Now, for any given pair of points (k, l), the probability that both points are

equal to (x(1)
0 , · · · , x

(d)
0 ) is p2

0. Out of the N(N −1) pairs of points from the sample,

we let N∗
0 be the number of pairs such as the pair (i0, j0), that is pairs with both

points equal to (x(1)
0 , · · · , x

(d)
0 ). The counting variable N∗

0 can be written as a

sum of (dependent) Bernoulli:

N∗
0 =

N∑

k=1

N∑

l=1
k 6=l

Bkl, Bkl ∼ Bernoulli(p2
0)

where Bkl = 1 if both points k and l equal (x(1)
0 , · · · , x

(d)
0 ), and 0 otherwise.

Hence, E[N∗
0 ] = N(N − 1)p2

0. We prove below that for N → ∞:

Pr[N∗
0 >

N(N − 1)p2
0

2
] = 1. (4.3.5)

Now recall the definition of our global test statistic T :

T =
N∑

i=1

N∑

j=1
i6=j

S(i, j).

Because for any two sample points i and j we have S(i, j) ≥ S1(i, j), and

because our test statistic T is the sum over all S(i, j) for every possible pairs of
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points, we have the following lower bound for T :

T ≥
N∑

i=1

N∑

j=1
i6=j

S1(i, j).

From 4.3.4 and 4.3.5 it follows that, for N → ∞:

T ≥
N∑

i=1

N∑

j=1
i6=j

S1(i, j) >
1
2

N(N − 1)p2
0 · (N − 2)c′

2
≥ δN3

for a positive constant δ > 0, with probability 1.

To complete the proof we invoke the same argument as in the last paragraph

of the Appendix in Heller et al. [15]. That is, under the null hypothesis H0,

S(i, j) is asymptotically χ2, so the expectation of T under the null is of order of

magnitude N(N − 1). But since for any H1 we just established that T has order

of magnitude at least N3, it follows that asymptotically T |H1 is always bigger

than T |H0, hence H0 is rejected with probability 1.

This completes the proof, although we still need to prove statement (4.3.5).

To do so we need the variance of N∗
0 . Then, because the variance is of magnitude

N3, and the mean of magnitude N2, we will use Chebyshev inequality to establish

the result. Recall:

N∗
0 =

N∑

k=1

N∑

l=1
k 6=l

Bkl.

This is a sum of N(N − 1) elements. We look at the covariance of two of those

elements:

COV[Bkl; Bmn].

There are three possible cases (i.e. yielding different covariances):

(1) If k, l, m, n are all different, then:

COV[Bkl; Bmn] = E[Bkl · Bmn] − E[Bkl] · E[Bmn]

= Pr[(xk, yk) = (xl, yl) = (xm, ym) = (xn, yn) = (x0, y0)] − p4
0

= p4
0 − p4

0 = 0.

(2) If out of k, l, m, n exactly two are the same, say WLOG k = m:

COV[Bkl; Bkn] = E[Bkl · Bkn] − E[Bkl] · E[Bkn]
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= Pr[(xk, yk) = (xl, yl) = (xn, yn) = (x0, y0)] − p4
0

= p3
0 − p4

0 = p3
0(1 − p0)

(3) Two pairs of elements are equal, in other words m = l and n = k:

COV[Bkl; Blk] = E[Bkl · Blk] − E[Bkl] · E[Blk]

= Pr[(xk, yk) = (xl, yl) = (x0, y0)] − p4
0

= p2
0 − p4

0 = p2
0(1 − p2

0)

We can now calculate the variance of N∗
0 :

VAR[N∗
0 ] = VAR







N∑

k=1

N∑

l=1
k 6=l

Bkl







=
N∑

k=1

N∑

l=1
k 6=l

VAR[Bkl] +
∑

τ 6=α

COV[Bτ , Bα] +
∑

γ 6=θ

COV[Bγ, Bθ]

where τ and α index the pairs of case 2, and γ and θ index the pairs of case 3.

There are:

• 2 [N(N − 1) × 4(N − 2)] terms of case 2

• 2 [N(N − 1)] terms of case 3

Hence:

VAR[N∗
0 ] =N(N − 1)p2

0(1 − p2
0)+

2N(N − 1)4(N − 2)p3
0(1 − p0)+

2N(N − 1)p2
0(1 − p2

0)

=N(N − 1)p2
0 · [(1 − p2

0) + 8(N − 2)p0(1 − p0) + 2(1 − p2
0)].

Therefore, there is a constant ξ > 0 such that VAR[N∗
0 ] ≤ ξN3. We then use

Chebyshev inequality, for any positive t:

Pr[|N∗
0 − E[N∗

0 ]| ≥ t] ≤ VAR[N∗
0 ]

t2

Pr[N∗
0 − E[N∗

0 ] ≤ −t] ≤ VAR[N∗
0 ]

t2
.

Letting t = E[N∗
0 ]/2 we have:

Pr[N∗
0 ≤ E[N∗

0 ]/2] ≤ VAR[N∗
0 ]

E[N∗
0 ]2/4

≤ ξN3

p2
0N

2(N − 1)2/4
.

This upper bound going to 0 for lim N → ∞ we have proved the result.
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4.4. Power simulations

As we did for the bivariate version of the test, we now investigate the power of

our multivariate extension of Heller et al. [15]. We test the independence between

three random quantities X, Y and Z. Power simulations are conducted using the

steps described in section 3.3.1.

In the bivariate case we saw that in the majority of examples investigated,

using the ranks of the observations yielded a better power. We want to see if the

same conclusion holds in the multivariate case. Hence here we compute two ver-

sions of the test: the ‘straight-forward’ extension (using the original data) which

we label mHHG, and the multivariate version using ranks of the observations,

which we label mBLAW.

In subsection 4.4.1 we explore examples where X, Y and Z are random vari-

ables (each one having one component). In those cases, we also compare mBLAW

and mHHG to the independence tests found in Beran et al. [3], which we label

BBL, to the multivariate HSIC from Pfister et al. [23] which we label mHSIC,

and finally to the test from Genest and Rémillard [10], which we label GR.

Next, in subsection 4.4.2 we explore examples where X, Y and Z are vectors,

both of dimension two: X = (X1, X2), Y = (Y1, Y2), Z = (Z1, Z2). In that

case, we only compare mHHG and mBLAW to mHSIC. This is because GR does

not apply to random vectors. Note that we took awareness very late that a

generalization of GR exists in Kojadinovic and Holmes [19]. Hence we applied

this generalization only on one example, see Figure 4.15. Also note that BBL

applies to vectors, but as it takes significantly more time to compute in the case

of vectors we also only used it in one example, see Figure 4.15.

4.4.1. Random variables examples

The dependence models for the variables X, Y , Z are now presented, and the

graphs of power for each example follow thereafter.

• 3D Pairwise independence:

X, Y and Z0 ∼ N(0, 1)

Z = |Z0| · sign(X · Y )
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Note this is the motivational example from section 1.3.2, but here we are

able to test the mutual independence of the triplet X, Y, Z, unlike in the

example ‘2D pairwsie independence’ where we had to combine Y and Z

has one vector, to test the pairwise independence of X and (Y, Z).

• Cos-Sin dependence:

X and Y ∼ N(0, 3)

Z = cos(X) + sin(Y ) + N(0, 1)

• Cos-Exp dependence:

X and Y ∼ N(0, 3)

Z = cos(X) + exp(Y/5) + N(0, 1)

• 3D linear dependence:

X and Y ∼ N(0, 1)

Z = X + Y + N(0, 3)
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Fig. 4.2. Power in the case of 3D pairwise independent Normals
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Fig. 4.3. Power in the case of the Cos-Sin dependence
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Fig. 4.4. Power in the case of the Cos-Exp dependence
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Fig. 4.5. Power in the case of the 3D linear dependence
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Next, we again present examples where the data is dependent via copula struc-

tures. As in the bivariate examples, three copulas are considered, still Clayton,

Gumbel and Normal, with three different marginals: Normal(0, 1), Exponential

(scale = 1) and Cauchy (scale = 1).
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Fig. 4.6. Power in the case of the 3D Clayton copula (0.5) with
Normal margins
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Fig. 4.7. Power in the case of the 3D Clayton copula (0.5) with
Exponential margins
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Fig. 4.8. Power in the case of the 3D Clayton copula (0.5) with
Cauchy margins
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Fig. 4.9. Power in the case of the 3D Gumbel copula (1.2) with
Normal margins
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Fig. 4.10. Power in the case of the 3D Gumbel copula (1.2) with
Exponential margins
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Fig. 4.11. Power in the case of the 3D Gumbel copula (1.2) with
Cauchy margins
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Fig. 4.12. Power in the case of the 3D Normal copula (ρx,y =
0.0, ρx,z = 0.1, ρy,z = 0.5) with Normal margins
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Fig. 4.13. Power in the case of the 3D Normal copula (ρx,y =
0.0, ρx,z = 0.1, ρy,z = 0.5) with Exponential margins
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Fig. 4.14. Power in the case of the 3D Normal copula (ρx,y =
0.0, ρx,z = 0.1, ρy,z = 0.5) with Cauchy margins
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4.4.2. Random vectors examples

Here we consider examples where X, Y and Z are vectors, all in two dimen-

sions: X = (X1, X2), Y = (Y1, Y2) and Z = (Z1, Z2). The first two examples we

present are derived from the motivational example in section 1.3.2. Note that we

computed, only in the first example, the powers for two additional tests: Beran

et al. [3] (labeled BBL) and Kojadinovic and Holmes [19] (labeled KOJA). Be-

cause BBL is slow to compute on random vectors, for this first example we used

sample sizes N = {10, 20, . . . 70} and B = 5000, M = 10000. All other examples

are computed with B = 10000, M = 50000.

• 3D vectors with pairwise independence: case “mixed”

X1, X2, Y0, Y1, Z0, Z1 ∼ N(0, 1)

Y2 = |Y0| · sign(X1 · Z1)

Z2 = |Z0| · sign(X2 · Y1)

We label this example “mixed” because only joint information about X

and Z gives information about Y1. Likewise, joint information about X

and Y gives information about Z2.

• 3D vectors with pairwise independence: case “hidden”

X1, X2, Y1, Z0, Z1, Z2 ∼ N(0, 1)

Y2 = |Z0| · sign(X1 · X2)

We label this example “hidden” because here the dependence is “hidden”

in some sense, harder to find. This is so because Z is completely indepen-

dent of both X and Y , while only Y2 is dependent of X.

Next, and without much surprise, we present example where the dependent

data is generated using three different copulas (Clayton, Gumbel, Normal) and

three marginals (Normal, Exponential, Cauchy).
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Fig. 4.15. Power in the case of vectors with pairwise independent
components: case “mixed”
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Fig. 4.16. Power in the case of vectors with pairwise independent
components: case “hidden”
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Fig. 4.17. Power in the case of the 3D Clayton copula (0.3) with
Normal margins for vectors
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Fig. 4.18. Power in the case of vectors for the 3D Clayton copula
(0.3) with Exponential margins
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Fig. 4.19. Power in the case of vectors for the Clayton copula (0.3)
with Cauchy margins
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Fig. 4.20. Power in the case of vectors for the Gumbel copula (1.1)
with Normal margins
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Fig. 4.21. Power in the case of vectors for the Gumbel copula (1.1)
with Exponential margins
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Fig. 4.22. Power in the case of vectors for the Gumbel copula (1.1)
with Cauchy margins
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Fig. 4.23. Power in the case of vectors for the Normal copula
(ρx,y = ρx,z = 0.1, ρy,z = 0.3) with Normal margins
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Fig. 4.24. Power in the case of vectors for the Normal copula
(ρx,y = ρx,z = 0.1, ρy,z = 0.3) with Exponential margins
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Fig. 4.25. Power in the case of vectors for the Normal copula
(ρx,y = ρx,z = 0.1, ρy,z = 0.3) with Cauchy margins
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4.5. Discussion of power results

Here we start by saying that both the tests we call “mHHG” and “mBLAW”

are new, in the sense that mHHG is the extension of Heller et al. [15] presented in

section 4, while mBLAW is that same extension, but using ranked data instead of

the original data. Although we state our preference for mBLAW, we investigated

the power of both tests in comparison to other tests labeled BBL (from Beran

et al. [3]), mHSIC (from Pfister et al. [23]) and GR (from Genest and Rémillard

[10]).

In the random variables examples, we started with the motivational example

from section 1.3.2, where the variables X, Y and Z are pairwise independent

but not mutually independent. mBLAW is outperformed by mHSIC, but is still

significantly better then mHHG, BBL and GR. Next on the ‘Cos-Sin’ example

as well as the ‘Cos-Exp’ example mBLAW is the best test, and GR is the worst.

In the ‘linear’ dependence however GR is best, while mBLAW is second best. In

the copula examples, six times out of nine (for the Clayton and Gumbel copulas)

GR is the best test, with BLAW being the second best. For the Normal copula

and sample sizes bigger then 40, mBLAW is the best test.

Perhaps it is not surprising that GR performs well when data is generated via

copulas, because it uses the empirical copula processes as base for its method-

ology. It is also worthy to note that while for obvious reasons the power of GR

and BLAW is unaltered by the marginals of X, Y and Z, it is also the case for

the BBL test. However, as in the bivariate examples, the power of mHHG and

mHSIC is greatly influenced by the distribution of the marginals. Again, we con-

sider this to be a flaw, as the choice of marginals does not influence the strength

of the dependence.

In the random vectors examples, first we presented two new versions of the

“pairwise independence” motivational example. In the first of such examples,

which we called “case mixed”, see Figure 4.15, mHSIC performs best and mBLAW

is the second best. BBL and KOJA have almost no power, while mHHG has little

power.

In the second of those examples (“case hidden”), see Figure 4.16, note that

we computed the power for sample sizes from 10 to 250. This is because the de-

pendence here is harder to find, with Z being independent of both X and Y . We
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see that mBLAW performs way better then mHHG, and is very similar to mHSIC.

Next in the copula examples, the same conclusions as in the random variables

examples can be drawn: mBLAW is always better than mHHG, and substantially

so when the marginals are Cauchy. It is also always better than mHSIC. Again

we see that the power of mHSIC and mHHG varies a lot when the marginals

change. This is not the case of mBLAW.





Chapter 5

CONCLUSION

5.1. Motivation for this research

How to test for independence is a fundamental question in statistics. The

tools available to answer this question have greatly evolved in the past century.

Since the famous Pearson’s correlation coefficient was established, increasingly

sophisticated tests have been developed. Statisticians working in this field aim

at creating methods as general as possible, with good power to detect any form

of association between any number of random vectors.

Specifically to test the independence between two random quantities, some

tests recently developed have been found to be universally consistent. Perhaps

the most popular among them is the distance covariance test from Székely et al.

[34]. However, if a test aims at being applicable in the most general of contexts,

it is unlikely to be the most powerful in all situations. For instance, Heller et al.

[15] established that their test outperforms distance covariance in many exam-

ples. Likewise, in the present thesis we saw some examples where both HHG and

DCOV were outperformed by HSIC, and vice versa.

Now, as we mentioned before, both the HHG and DCOV tests detect depen-

dence between two random vectors X and Y . This could be seen as a limitation

because pairwise independence between all vectors of a set does not imply mutual

independence of those vectors. That said, few consistent methods are currently

available to test the mutual independence between any number of random vec-

tors. This absence, combined with our belief that HHG had the potential to

be further developed, were the main motivations for this thesis. In the end we

obtained a non-parametric test of independence between an arbitrary number of

random vectors, with arbitrary (possibly different) dimensions.
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5.2. Contributions

5.2.1. On bivariate ranked data

In this research we extended the methodology from Heller et al. [15] in two

manners. First, we argued that applying their test not on the collected data itself

but on the ranks of the collected data would produce a more robust and powerful

method. The motivation behind this was explained in section 3.1. To recap,

the rank transformation puts all observations on the same scale. This is suitable

because the marginal distribution of a random variable has nothing to do with

its dependence to other variables. Said otherwise, using the rank transformation

strips away the impact of the marginal distributions, to leave only the dependency

structure which is what we seek to detect. The bivariate test in Heller et al. [15]

applied to ranked-data was labeled the “BLAW” test. We investigated its power

on numerous and varied simulated data sets. We compared it to the power of

three recent, state-of-the-art independence tests, namely the original HHG, the

DCOV and the HSIC tests.

We found that:

• BLAW is consistent to detect all the forms of dependence we investigated.

That is, its power always gets bigger if the sample size N gets bigger.

• BLAW has similar or better power then HHG, DCOV and HSIC in most

examples. To be more precise, only in examples labeled ‘epsilon depen-

dance’, see Figure 3.26 and ‘quadratic dependence’, see Figure 3.27 did

HHG beat BLAW by a notable margin. In the copula examples, both

when X and Y were variables and vectors, BLAW was clearly superior to

HHG.

• Furthermore, in the copula examples we saw that BLAW was the only

test not affected by the choice of marginal distributions. This is a good

property for an independence test.

• In particular, we saw that with Cauchy marginals, HHG, DCOV and HSIC

performed rather poorly. This means that BLAW is more robust than the

other tests in the presence of extreme values.

• In one example in particular labeled ‘big noise’, see Figure 3.29, all tests

except BLAW had negligible power. This was a rather surprising result

to us. Indeed, while Y was strongly dependent of X = (X1, X2) via X1

(but not via X2) the fact that X2 had a ‘big’ variance made those tests

practically incapable of detecting the dependence between X and Y .
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To summarize, although using ranks is a very simple modification to the

original test, we believe the results obtained make it a valuable contribution, as

we consistently obtained better power than three state-of-the-art tests.

5.2.2. On multivariate data

Then, we also made the method in Heller et al. [15] more general by extending

it to test the mutual independence between any number of random vectors. We

realized that the key aspect of their method (i.e. the categorization of all sample

points in 2 × 2 contingency tables to perform multiple χ2 tests of independence)

was perfectly valid in a multivariate context. Indeed, if for two random vectors

we could define zones according to two coordinates, then for d random vectors

we could define zones according to d coordinates. Then, we could classify each

sample point as inside or outside the zones, according two d coordinates. I.e. we

could categorize our points in a 2d contingency table. In turn, this table could be

used to calculate a χ2 statistic just as in the bivariate case. In total, N(N − 1)

such χ2 statistics were calculated and their sum yielded our global test statistic

T . Formalization of this procedure was done in section 4.2.

We investigated the power of this new test on various examples. Because us-

ing ranks worked well in the bivariate case we tried it in the multivariate case as

well. The direct multivariate extension of HHG was labeled “mHHG”, while the

version using ranks was labeled “mBLAW”. In examples involving random vari-

ables, we compared mHHG and mBLAW to three other tests, namely mHSIC,

BBL and GR. In random vectors examples we compared them only to mHSIC.

We found that:

• Akin the bivariate case, mBLAW is consistent to detect all the forms of

dependence we investigated. That is, its power always gets bigger if the

sample size N gets bigger.

• In the random variables examples using copulas, GR performed better

than mBLAW six times out of nine, but mBLAW was still the second best

test in each of those six examples, and also perfomed best in the three

remaining copula examples. Then, GR performed rather poorly in the

‘pairwise independence’, ‘Cos-Sin’ and ‘Cos-Exp’ examples, see Figures

4.2 to 4.4, while mBLAW did good, being beaten by mHSIC only in the

‘pairwise independence’ case.
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• Akin to the bivariate case, mBLAW was unaffected by the choice of

marginals, unlike mHHG and mHSIC that were strongly affected by the

choice of marginals.

• In the random vectors examples (where the GR test is not applicable) we

saw that in the two ‘pairwise independence’ examples mBLAW did way

better than mHHG. Next, in all the copula examples mBLAW performed

better than the two other tests. In particular, it performed drastically

better in the case of Cauchy margins, again illustrating its robustness in

the presence of extreme values.

To summarize, we extended the HHG test for multivariate independence test-

ing because few tests are consistent to detect mutual dependence between more

than two vectors. Then, through power simulations we realized that, especially

for the version of the test using ranks, this new test is pretty powerful.
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5.3. Limitations

The main limitation of the proposed test is the computation time which is

high, especially for large samples sizes N . To be more precise, in the multivariate

case if we make the assumption that d (the number of vectors) is a lot smaller

then N (which is a reasonable assumption in most applications), the computation

of the test statistic T is done in approximately d × N3 operations. Furthermore,

when using a permutation method (with number of permutations np), the p-value

is calculated by basically redoing the same thing np times, hence needing a num-

ber of operations of order np × d × N3. However, this issue could be partially

solved using the arguments presented in the next section 5.4.

Finally, as in any statistical test, the outcome we obtain is binary: we reject

H0 or we do not. This gives a very “black and white” picture of the situation.

In the case H0 is rejected the procedure gives no additional information about

the dependence structure of the data. Of course, modeling is not the scope

of this research. However it is worth mentioning that, upon discovering there is

dependence between some variables, one might want to understand more precisely

how these variables are related, possibly with the objective of explaining some of

them using the others.
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5.4. Possible follow-up work

For reasons explained in section 3.1 and in sight of the power simulations

conducted, using ranked-data seems like a good idea. Here we present a further

argument that supports using ranks, at least in the case of X(1), · · · , X(d) contin-

uous random variables. Although we did not fully develop this idea in the present

research, it could be brought forward in future work.

It is well known that for X a continuous random variable and F (·) its cumu-

lative distribution function, we have:

F (X) ∼ U [0, 1]

Therefore, if we apply the test to the empirical distribution functions of our

observations, FN [X(1)], FN [X(2)], · · · , FN [X(d)] (which are functions of the ranks)

rather then on the observations themselves, we now know the distribution of the

marginals: they are asymptotically Uniform (0, 1). This has the consequence

that the expected counts E(t) in a particular cell of our contingency tables t =

(t1, t2, · · · , td) is now known theoretically, and does not need to be estimated. In

other words, in section 4.2 we used to work with the empirical expected counts

Ê(t) :

Ê(t1, · · · , td) =
1

(N − 2)d−1
×

d∏

v=1







N∑

k=1
k /∈{i,j}

1(I(v)
k = tv)







.

We could now use theoretical expected counts:

E(t1, · · · , td) = N × p(t1, · · · , td)

where p(t1, · · · , td) is the theoretical probability for a point to fall in category t,

under H0.

Now, recall our partial test statistic S(·, ·) calculated for two specific points

i, j, denoted S(i, j):

S(i, j) =
∑

t

[A(t) − E(t)]2

E(t)
.

Unless the two chosen points i and j are exactly equal in one or more of their d

components (which should in principle never happen for continuous random vari-

ables), E(t) will never be 0 and this statistic will always be computable. This is

not the case if we use the empirical Ê(t). Furthermore, this is now asymptotically

a χ2 statistic with 2d − 1 degrees of freedom, compared to 2d − d − 1 when we
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had to estimate the E(t) empirically.

We believe the addition of these non-zero S(·, ·) to the overall statistic T =
∑

i6=j S(i, j), as well as the increased number of degrees of freedom might enhance

the power of the test.

Furthermore, and perhaps most importantly, recall that we do not know the

distribution of the test statistic T . For small samples sizes N this is not really

a concern because the permutation method works well and does not take too

long to compute. However for large sample sizes N , their might be issues with

computation time. This is because the permutation method we use basically

means that we repeat the same thing a large number of times. Of course, if we

knew the distribution of T |H0, then we wouldn’t need the permutation method

and the computation time would decrease drastically. Hence, there is interest in

finding parametrical approximations to the distribution of T |H0, or at the least

in finding a good approximation of its high quantiles. But in the original version

of the test, T |H0 actually depends of the marginals of X = X(1) and Y = X(2).

Hence this task might not be feasible. If on the contrary we use ranks, T |H0

always has the same (asymptotical) distribution. Then there is hope in finding

a good parametrical fit to T |H0. Alternatively, with simulations we could built

an (empirical) table of the quantiles of T |H0 for a series of N , and extrapolate

the quantiles for in-between values of N . Again, using this table instead of the

permutation method would greatly reduce the computation time of the test.
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Appendix A

PROOFS OF SECONDARY RESULTS

A.1. Definition of independence

Theorem 4.2.1 in Resnick [27] states a ‘well known’ fact: random variables

are independent if and only if their joint distribution function is the product of

the marginal distribution functions. We want to prove a slightly different result,

and to do so we get inspiration from the proof of theorem 4.2.1 in Resnick [27].

Theorem A.1.1. A finite collection of random variables X1, · · · , Xk is indepen-

dent iff

P [a1 ≤ X1 ≤ b1, · · · , ak ≤ Xk ≤ bk] =
k∏

i=1

P [ai ≤ Xi ≤ bi], ∀ai, bi ∈ R (A.1.1)

Proof.

(⇒) This part is easy. If X1, · · · , Xk are independent it means their induced

sigma-fields σ(X1), · · · , σ(Xk) are independent. Since

[ai ≤ Xi ≤ bi] ∈ σ(Xi),

all the events [ai ≤ Xi ≤ bi], i = 1, · · · , k are independent, and the result follows

by definition of independent events.

(⇐) We define the following classes of subsets:

C = {[at ≤ bt], at, bt ∈ R},

which is the class of closed intervals on R.

Ct = {[at ≤ Xt ≤ bt], at, bt ∈ R},

which is the class of events ‘random variable Xt is within a closed interval on R’.

Then



A-ii

(i) Ct is a π-system (class closed under finite intersection) since

[ai ≤ Xt ≤ bi]
⋂

[aj ≤ Xt ≤ bj] = [ai ∧ aj ≤ Xt ≤ bi ∧ bj] ∈ Ct.

(ii) σ(Ct) = σ(Xt), since σ(C) generates the Borel subsets of R:

σ(Ct) = σ([Xt ∈ B], B ∈ C) = σ([X−1
t (B)], B ∈ C)

= σ((X−1
t (C)) = X−1

t (σ(C))

= X−1
t (B(R)) = σ(Xt)

Now, A.1.1 means that the classes {Ct} are independent. Then, because these

classes are π-systems, we can use Theorem 4.1.1 in Resnick [27] to establish that

{σ(Ct) = σ(Xt)} are independent.
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A.2. Proof that X ⊥ Y ⇐⇒ FX(X) ⊥ FY (Y )

We need the following theorem taken from Rosenthal [29], p. 32:

Theorem A.2.1. Let X and Y be independent random variables. Let f, g : R →
R be Borel-measurable functions. Then the random variables f(X) and g(X) are

independent.

Also, one way to state a function is Borel-measurable is the following.

Definition A.2.1. A function φ : R → R is Borel measurable if

∀y ∈ R {x ∈ R : φ(x) ≤ y} ∈ B.

With this in mind, we prove each side of the ‘if and only if’ statement that

interests us.

(⇒) Any cumulative distribution function F (·) is monotone increasing. Then,

∀y ∈ R the set

{x ∈ R : F (x) ≤ y}

Is of the form (−∞, λ] ∈ B or of the form (−∞, λ) ∈ B for some λ ∈ R. In

other words, F (·) is Borel-measurable, so the result is immediate from theorem

A.2.1.

(⇐) Any quantile function F −1(·), or if you prefer the generalized inverse of

F (·), is monotone increasing. Hence it is Borel measurable for the same rea-

son that F (·) is. But since we are restricted to the case of continuous random

variables, F −1(F (t)) = t. This completes the proof.
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A.3. Proof that
∑

t e(t) = Md

In section 4.2 we used
∑

t e(t) = Md. Here is the justification. Recall that for

a sample of size N , M = N − 2. Recall also that t = (t1, . . . , td). We had:

e(t) =
d∏

v=1







N∑

k=1
k /∈{i,j}

1(I(v)
k = tv)







.

For simplification, let us denote:

N∑

k=1
k /∈{i,j}

1(I(v)
k = tv) ≡ Av(tv)

so that:

e(t) = A1(t1) × A2(t2) × . . . × Ad(td)

or in a slight abuse of notation:

e(t) = A1(t) × A2(t) × . . . × Ad(t).

Recall that each tv can only take two values, tv ∈ {0, 1}. Because Av(tv) is the

number of points out of M to fall in category tv, with only two possibilities in

total, we always have:

Av(0) + Av(1) = M.

Then:
∑

t

e(t) =A1(0) ·
[
∑

t

A2(t) × . . . × Ad(t)

]

+ A1(1) ·
[
∑

t

A2(t) × . . . × Ad(t)

]

=
[

A1(0) + (M − A1(0))
]

·
[
∑

t

A2(t) × . . . × Ad(t)

]

=M ·
∑

t

A2(t) × . . . × Ad(t).

And repeating the argument another d − 1 times we get:

e(t) = Md.



Appendix B

TABLES OF EMPIRICAL POWERS

In this section we display the empirical power for all examples tested.

B.1. Bivariate version of the test

B.1.1. Random variables examples

N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 5.1 0.2 5.1 0.2 5.0 0.2 5.1 0.2
20 5.0 0.2 5.0 0.2 4.8 0.2 5.0 0.2
30 5.4 0.2 5.2 0.2 5.3 0.2 5.3 0.2
40 5.5 0.2 5.5 0.2 5.2 0.2 5.1 0.2
50 5.0 0.2 5.0 0.2 4.7 0.2 4.8 0.2
60 5.0 0.2 5.1 0.2 5.1 0.2 5.1 0.2
70 5.1 0.2 5.3 0.2 4.8 0.2 5.0 0.2
80 4.8 0.2 4.7 0.2 4.7 0.2 4.7 0.2
90 5.2 0.2 5.1 0.2 5.0 0.2 5.1 0.2
100 4.8 0.2 4.5 0.2 4.8 0.2 4.7 0.2
Tab. B.1. Power in the case of four independent clouds



B-ii

N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 17.3 0.4 21.4 0.4 10.1 0.3 28.0 0.4
20 59.4 0.5 65.9 0.5 27.8 0.4 64.8 0.5
30 89.6 0.3 90.8 0.3 56.9 0.5 85.6 0.4
40 98.4 0.1 98.3 0.1 78.9 0.4 95.0 0.2
50 99.9 0.0 99.9 0.0 93.5 0.2 98.8 0.1
60 100.0 0.0 100.0 0.0 98.0 0.1 99.6 0.1
70 100.0 0.0 100.0 0.0 99.6 0.1 100.0 0.0
80 100.0 0.0 100.0 0.0 99.9 0.0 100.0 0.0
90 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0
100 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

Tab. B.2. Power in the case the W-shape dependence

N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 3.4 0.2 4.9 0.2 1.9 0.1 6.5 0.2
20 6.7 0.3 13.4 0.3 2.6 0.2 14.5 0.4
30 14.3 0.4 28.3 0.5 3.0 0.2 26.2 0.4
40 26.1 0.4 48.6 0.5 3.8 0.2 40.1 0.5
50 40.4 0.5 66.4 0.5 4.8 0.2 54.5 0.5
60 54.4 0.5 80.2 0.4 6.0 0.2 66.8 0.5
70 68.1 0.5 89.3 0.3 7.4 0.3 77.5 0.4
80 79.2 0.4 94.8 0.2 9.6 0.3 85.3 0.4
90 87.9 0.3 97.6 0.2 12.2 0.3 90.9 0.3
100 93.2 0.3 99.1 0.1 16.4 0.4 94.4 0.2
Tab. B.3. Power in the case of the Diamond dependence

N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 17.8 0.4 19.1 0.4 15.0 0.4 20.8 0.4
20 53.8 0.5 50.8 0.5 31.2 0.5 47.6 0.5
30 84.5 0.4 79.1 0.4 52.2 0.5 73.3 0.4
40 96.8 0.2 92.8 0.3 71.2 0.5 88.2 0.3
50 99.5 0.1 98.3 0.1 85.4 0.4 95.7 0.2
60 99.9 0.0 99.6 0.1 93.4 0.2 98.6 0.1
70 100.0 0.0 99.9 0.0 97.9 0.1 99.6 0.1
80 100.0 0.0 100.0 0.0 99.4 0.1 100.0 0.0
90 100.0 0.0 100.0 0.0 99.8 0.0 100.0 0.0
100 100.0 0.0 100.0 0.0 99.9 0.0 100.0 0.0
Tab. B.4. Power in the case of the Parabola dependence
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N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 28.6 0.5 31.4 0.5 11.7 0.3 20.0 0.4
20 78.3 0.4 74.9 0.4 15.7 0.4 53.9 0.5
30 98.8 0.1 96.2 0.2 20.4 0.4 84.9 0.4
40 100.0 0.0 99.7 0.1 26.9 0.4 97.1 0.2
50 100.0 0.0 100.0 0.0 35.4 0.5 99.7 0.1
60 100.0 0.0 100.0 0.0 46.6 0.5 100.0 0.0
70 100.0 0.0 100.0 0.0 58.0 0.5 100.0 0.0
80 100.0 0.0 100.0 0.0 70.0 0.5 100.0 0.0
90 100.0 0.0 100.0 0.0 81.5 0.4 100.0 0.0
100 100.0 0.0 100.0 0.0 90.1 0.3 100.0 0.0

Tab. B.5. Power in the case of the Two Parabolas dependence

N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 6.9 0.3 8.8 0.3 2.8 0.2 10.6 0.3
20 34.7 0.5 30.0 0.5 3.4 0.2 25.2 0.4
30 79.8 0.4 64.6 0.5 5.1 0.2 48.8 0.5
40 97.7 0.1 89.8 0.3 6.6 0.2 76.1 0.4
50 99.9 0.0 98.0 0.1 7.5 0.3 91.4 0.3
60 100.0 0.0 99.8 0.0 10.7 0.3 97.5 0.2
70 100.0 0.0 100.0 0.0 13.9 0.3 99.6 0.1
80 100.0 0.0 100.0 0.0 19.6 0.4 99.9 0.0
90 100.0 0.0 100.0 0.0 24.8 0.4 100.0 0.0
100 100.0 0.0 100.0 0.0 32.9 0.5 100.0 0.0

Tab. B.6. Power in the case of the Circle dependence

N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 17.8 0.4 17.2 0.4 28.8 0.5 21.1 0.4
20 43.1 0.5 37.7 0.5 55.4 0.5 40.6 0.5
30 64.9 0.5 56.6 0.5 74.0 0.4 58.2 0.5
40 79.5 0.4 72.6 0.4 86.3 0.3 72.2 0.4
50 89.4 0.3 83.3 0.4 93.7 0.2 82.7 0.4
60 94.5 0.2 90.2 0.3 96.9 0.2 89.3 0.3
70 97.5 0.2 95.1 0.2 98.8 0.1 94.4 0.2
80 98.8 0.1 97.1 0.2 99.4 0.1 96.2 0.2
90 99.2 0.1 98.4 0.1 99.7 0.1 98.0 0.1
100 99.8 0.0 99.2 0.1 99.9 0.0 99.0 0.1

Tab. B.7. Power in the case of the Linear dependence
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N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 9.3 0.3 9.0 0.3 15.0 0.4 10.0 0.3
20 16.6 0.4 16.3 0.4 25.7 0.4 15.5 0.4
30 28.0 0.4 26.1 0.4 37.5 0.5 21.9 0.4
40 37.9 0.5 35.3 0.5 47.6 0.5 28.3 0.5
50 49.3 0.5 45.5 0.5 57.9 0.5 36.1 0.5
60 59.9 0.5 55.8 0.5 66.4 0.5 42.0 0.5
70 69.1 0.5 64.9 0.5 75.3 0.4 49.9 0.5
80 76.6 0.4 72.3 0.4 80.5 0.4 58.1 0.5
90 82.4 0.4 78.4 0.4 85.2 0.4 63.5 0.5
100 87.9 0.3 84.2 0.4 88.9 0.3 69.5 0.5

Tab. B.8. Power in the case of the Exponential dependence

N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 18.2 0.4 17.6 0.4 28.2 0.5 26.7 0.4
20 45.0 0.5 39.3 0.5 55.9 0.5 51.9 0.5
30 71.6 0.5 64.1 0.5 77.5 0.4 73.3 0.4
40 87.3 0.3 80.3 0.4 89.7 0.3 85.9 0.3
50 94.9 0.2 91.0 0.3 95.8 0.2 93.9 0.2
60 98.3 0.1 96.0 0.2 98.4 0.1 97.4 0.2
70 99.2 0.1 98.1 0.1 99.4 0.1 98.8 0.1
80 99.8 0.0 99.3 0.1 99.8 0.0 99.5 0.1
90 100.0 0.0 99.8 0.0 100.0 0.0 99.8 0.0
100 100.0 0.0 99.9 0.0 100.0 0.0 99.9 0.0

Tab. B.9. Power in the case of the Sine dependence

N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 10.9 0.3 10.6 0.3 18.1 0.4 12.1 0.3
20 23.7 0.4 19.8 0.4 32.4 0.5 19.8 0.4
30 35.8 0.5 30.4 0.5 45.2 0.5 28.5 0.5
40 48.7 0.5 40.8 0.5 55.6 0.5 36.0 0.5
50 59.0 0.5 49.6 0.5 66.5 0.5 43.7 0.5
60 69.4 0.5 59.0 0.5 74.7 0.4 51.4 0.5
70 75.2 0.4 65.7 0.5 80.3 0.4 57.8 0.5
80 81.3 0.4 72.1 0.4 85.5 0.4 63.4 0.5
90 87.0 0.3 79.0 0.4 90.2 0.3 71.4 0.5
100 90.1 0.3 83.0 0.4 92.8 0.3 75.4 0.4

Tab. B.10. Power in the case of the Clayton (0.6) copula with
Normal margins
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N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 11.4 0.3 10.2 0.3 10.1 0.3 11.5 0.3
20 23.2 0.4 17.3 0.4 16.5 0.4 19.1 0.4
30 36.4 0.5 25.2 0.4 24.5 0.4 27.3 0.4
40 47.6 0.5 33.3 0.5 31.5 0.5 34.1 0.5
50 59.5 0.5 42.2 0.5 39.2 0.5 41.5 0.5
60 67.9 0.5 50.7 0.5 47.6 0.5 50.0 0.5
70 76.6 0.4 59.1 0.5 55.2 0.5 57.3 0.5
80 82.0 0.4 65.9 0.5 61.9 0.5 62.5 0.5
90 86.3 0.3 72.0 0.4 67.8 0.5 69.4 0.5
100 90.5 0.3 76.9 0.4 72.8 0.4 74.1 0.4

Tab. B.11. Power in the case of the Clayton (0.6) copula with
Exponential margins

N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 11.7 0.3 9.9 0.3 9.9 0.3 11.1 0.3
20 23.0 0.4 13.8 0.3 13.4 0.3 14.0 0.3
30 35.5 0.5 19.9 0.4 15.7 0.4 17.6 0.4
40 48.6 0.5 26.5 0.4 18.2 0.4 21.4 0.4
50 59.4 0.5 32.0 0.5 20.7 0.4 26.0 0.4
60 68.0 0.5 35.9 0.5 20.8 0.4 29.8 0.5
70 75.8 0.4 41.0 0.5 22.8 0.4 33.2 0.5
80 81.5 0.4 47.3 0.5 23.9 0.4 38.3 0.5
90 86.1 0.3 52.4 0.5 26.0 0.4 42.7 0.5
100 90.7 0.3 56.6 0.5 27.5 0.4 46.4 0.5

Tab. B.12. Power in the case of the Clayton (0.6) copula with
Cauchy margins

N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 14.8 0.4 14.1 0.3 24.0 0.4 15.9 0.4
20 31.8 0.5 27.3 0.4 40.7 0.5 27.1 0.4
30 49.6 0.5 42.4 0.5 57.7 0.5 38.7 0.5
40 64.8 0.5 56.0 0.5 70.8 0.5 50.1 0.5
50 75.9 0.4 66.8 0.5 80.6 0.4 60.0 0.5
60 84.1 0.4 76.4 0.4 87.7 0.3 69.3 0.5
70 89.0 0.3 82.7 0.4 92.0 0.3 76.4 0.4
80 92.8 0.3 87.5 0.3 94.7 0.2 81.5 0.4
90 95.8 0.2 91.7 0.3 96.9 0.2 86.9 0.3
100 97.5 0.2 94.6 0.2 98.4 0.1 90.3 0.3

Tab. B.13. Power in the case of the Gumbel (1.4) copula with
Normal margins
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N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 14.7 0.4 16.5 0.4 25.7 0.4 18.3 0.4
20 31.9 0.5 34.7 0.5 44.7 0.5 32.6 0.5
30 49.4 0.5 51.5 0.5 59.5 0.5 43.5 0.5
40 64.0 0.5 66.0 0.5 72.9 0.4 54.1 0.5
50 75.5 0.4 76.3 0.4 81.3 0.4 64.7 0.5
60 83.0 0.4 83.1 0.4 87.5 0.3 71.9 0.4
70 89.1 0.3 89.0 0.3 92.2 0.3 78.9 0.4
80 93.2 0.3 93.2 0.3 95.0 0.2 84.1 0.4
90 95.6 0.2 95.5 0.2 96.5 0.2 88.6 0.3
100 97.3 0.2 97.3 0.2 98.0 0.1 91.2 0.3

Tab. B.14. Power in the case of the Gumbel (1.4) copula with
Exponential margins

N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 14.5 0.4 12.3 0.3 11.3 0.3 13.9 0.3
20 32.5 0.5 21.5 0.4 14.9 0.4 21.0 0.4
30 49.9 0.5 31.0 0.5 17.4 0.4 27.4 0.4
40 64.2 0.5 39.8 0.5 21.0 0.4 34.5 0.5
50 74.8 0.4 49.0 0.5 22.8 0.4 41.1 0.5
60 83.1 0.4 55.9 0.5 24.7 0.4 48.2 0.5
70 89.7 0.3 63.3 0.5 26.5 0.4 54.9 0.5
80 93.2 0.3 68.9 0.5 27.4 0.4 60.6 0.5
90 96.0 0.2 75.8 0.4 30.4 0.5 66.8 0.5
100 97.2 0.2 79.9 0.4 33.5 0.5 70.2 0.5

Tab. B.15. Power in the case of the Gumbel (1.4) copula with
Cauchy margins

N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 11.6 0.3 10.4 0.3 20.1 0.4 13.0 0.3
20 24.6 0.4 19.5 0.4 35.8 0.5 20.7 0.4
30 37.4 0.5 28.8 0.5 50.0 0.5 28.8 0.5
40 51.1 0.5 39.6 0.5 62.4 0.5 37.7 0.5
50 62.0 0.5 48.6 0.5 72.8 0.4 45.2 0.5
60 71.1 0.5 57.3 0.5 81.1 0.4 54.1 0.5
70 78.8 0.4 65.2 0.5 86.8 0.3 61.8 0.5
80 85.1 0.4 71.7 0.5 91.3 0.3 67.3 0.5
90 89.5 0.3 78.3 0.4 94.4 0.2 73.6 0.4
100 92.5 0.3 83.0 0.4 96.2 0.2 77.5 0.4

Tab. B.16. Power in the case of the Normal copula (ρ = 0.4) with
Normal margins
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N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 11.2 0.3 11.8 0.3 18.8 0.4 14.6 0.4
20 24.5 0.4 22.7 0.4 32.6 0.5 24.5 0.4
30 38.4 0.5 33.9 0.5 45.2 0.5 33.7 0.5
40 51.7 0.5 46.3 0.5 56.8 0.5 44.4 0.5
50 62.0 0.5 55.0 0.5 67.0 0.5 51.4 0.5
60 70.4 0.5 63.1 0.5 74.3 0.4 57.6 0.5
70 78.9 0.4 71.5 0.5 82.2 0.4 66.4 0.5
80 84.8 0.4 79.0 0.4 87.4 0.3 72.7 0.4
90 88.6 0.3 83.2 0.4 90.3 0.3 76.6 0.4
100 92.7 0.3 88.2 0.3 93.4 0.2 83.0 0.4

Tab. B.17. Power in the case of the Normal copula (ρ = 0.4) with
Exponential margins

N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 11.7 0.3 8.8 0.3 9.0 0.3 9.9 0.3
20 24.6 0.4 12.9 0.3 11.2 0.3 13.7 0.3
30 38.2 0.5 16.8 0.4 12.8 0.3 17.1 0.4
40 50.2 0.5 21.2 0.4 13.5 0.3 19.9 0.4
50 62.5 0.5 27.2 0.4 14.8 0.4 25.0 0.4
60 70.9 0.5 30.1 0.5 15.0 0.4 28.0 0.4
70 79.1 0.4 35.9 0.5 16.6 0.4 32.9 0.5
80 84.4 0.4 40.0 0.5 17.1 0.4 36.3 0.5
90 89.4 0.3 44.6 0.5 17.2 0.4 41.8 0.5
100 92.3 0.3 50.0 0.5 18.5 0.4 44.5 0.5

Tab. B.18. Power in the case of the Normal copula (ρ = 0.4) with
Cauchy margins
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B.1.2. Random vectors examples

N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 17.9 0.4 11.4 0.3 5.9 0.2 13.3 0.3
20 52.7 0.5 32.3 0.5 9.9 0.3 33.9 0.5
30 85.5 0.4 59.4 0.5 15.4 0.4 60.6 0.5
40 97.4 0.2 81.2 0.4 25.8 0.4 83.4 0.4
50 99.8 0.0 93.6 0.2 38.6 0.5 95.8 0.2
60 100.0 0.0 98.9 0.1 53.0 0.5 99.2 0.1
70 100.0 0.0 99.7 0.1 67.8 0.5 100.0 0.0
80 100.0 0.0 100.0 0.0 79.3 0.4 100.0 0.0
90 100.0 0.0 100.0 0.0 88.9 0.3 100.0 0.0
100 100.0 0.0 100.0 0.0 96.0 0.2 100.0 0.0

Tab. B.19. Power in the case of vectors for the ‘log’ dependence

N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 8.7 0.3 21.6 0.4 13.9 0.3 22.0 0.4
20 18.9 0.4 55.7 0.5 18.8 0.4 36.2 0.5
30 31.4 0.5 78.4 0.4 22.6 0.4 48.4 0.5
40 45.6 0.5 90.5 0.3 26.3 0.4 58.4 0.5
50 60.1 0.5 96.9 0.2 29.8 0.5 68.9 0.5
60 71.6 0.5 98.7 0.1 32.6 0.5 77.4 0.4
70 81.0 0.4 99.6 0.1 35.7 0.5 84.6 0.4
80 88.3 0.3 99.9 0.0 38.2 0.5 89.6 0.3
90 93.1 0.3 100.0 0.0 42.8 0.5 93.6 0.2
100 95.5 0.2 100.0 0.0 46.3 0.5 95.8 0.2

Tab. B.20. Power in the case of vectors for the ‘epsilon’ dependence

N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 6.6 0.2 17.4 0.4 15.0 0.4 20.5 0.4
20 10.0 0.3 44.8 0.5 22.9 0.4 37.6 0.5
30 15.8 0.4 68.7 0.5 30.2 0.5 53.0 0.5
40 23.8 0.4 85.2 0.4 39.9 0.5 67.7 0.5
50 31.6 0.5 93.4 0.2 48.5 0.5 80.4 0.4
60 42.2 0.5 97.3 0.2 56.9 0.5 88.7 0.3
70 51.4 0.5 98.7 0.1 65.4 0.5 93.8 0.2
80 62.2 0.5 99.6 0.1 72.5 0.4 97.1 0.2
90 68.5 0.5 99.9 0.0 78.3 0.4 98.8 0.1
100 77.5 0.4 99.9 0.0 84.6 0.4 99.3 0.1

Tab. B.21. Power in the case of vectors for the ‘quadratic’ dependence
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N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 6.1 0.2 6.7 0.3 7.3 0.3 11.2 0.3
20 12.8 0.3 11.2 0.3 11.7 0.3 22.0 0.4
30 24.7 0.4 16.1 0.4 17.5 0.4 40.3 0.5
40 42.0 0.5 21.4 0.4 25.3 0.4 60.0 0.5
50 64.1 0.5 27.0 0.4 35.9 0.5 79.8 0.4
60 85.3 0.4 36.2 0.5 49.4 0.5 92.5 0.3
70 95.3 0.2 44.4 0.5 63.0 0.5 97.7 0.2
80 99.2 0.1 54.4 0.5 75.2 0.4 99.3 0.1
90 99.9 0.0 63.7 0.5 86.3 0.3 99.9 0.0
100 100.0 0.0 72.7 0.4 92.9 0.3 100.0 0.0

Tab. B.22. Power in the case of the pairwise independence example

N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 7.4 0.3 5.5 0.2 5.6 0.2 5.3 0.2
20 12.2 0.3 5.3 0.2 6.1 0.2 5.4 0.2
40 24.2 0.4 6.2 0.2 6.8 0.3 6.0 0.2
60 39.0 0.5 6.2 0.2 6.1 0.2 6.2 0.2
80 56.2 0.5 7.0 0.3 6.8 0.3 6.8 0.3
100 69.4 0.5 7.7 0.3 7.4 0.3 7.4 0.3
120 80.2 0.4 7.8 0.3 7.3 0.3 7.1 0.3
150 90.1 0.3 8.7 0.3 8.6 0.3 7.9 0.3
200 97.5 0.2 10.4 0.3 9.1 0.3 9.1 0.3
250 99.7 0.1 11.9 0.3 11.2 0.3 9.4 0.3
Tab. B.23. Power in the case of the ‘big noise’ dependence

N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 13.5 0.3 13.2 0.3 20.4 0.4 16.4 0.4
20 34.4 0.5 33.0 0.5 39.6 0.5 32.4 0.5
30 54.8 0.5 49.7 0.5 55.7 0.5 46.0 0.5
40 71.0 0.5 63.9 0.5 70.2 0.5 58.2 0.5
50 81.8 0.4 76.5 0.4 80.5 0.4 70.4 0.5
60 89.0 0.3 84.5 0.4 87.6 0.3 78.6 0.4
70 93.7 0.2 90.4 0.3 92.8 0.3 85.3 0.4
80 97.0 0.2 94.2 0.2 96.4 0.2 90.6 0.3
90 98.3 0.1 96.7 0.2 97.6 0.2 93.2 0.3
100 99.0 0.1 98.0 0.1 98.5 0.1 96.1 0.2

Tab. B.24. Power in the case of vectors for the Clayton (0.5) cop-
ula with Normal margins
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N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 13.5 0.3 9.1 0.3 9.8 0.3 11.9 0.3
20 34.4 0.5 17.1 0.4 17.2 0.4 23.6 0.4
30 54.8 0.5 25.3 0.4 26.9 0.4 33.5 0.5
40 71.0 0.5 34.1 0.5 36.9 0.5 43.4 0.5
50 81.8 0.4 43.5 0.5 47.0 0.5 52.8 0.5
60 89.0 0.3 52.5 0.5 57.2 0.5 61.3 0.5
70 93.7 0.2 60.4 0.5 65.0 0.5 68.8 0.5
80 97.0 0.2 67.4 0.5 74.2 0.4 76.8 0.4
90 98.3 0.1 73.6 0.4 79.2 0.4 80.6 0.4
100 99.0 0.1 79.6 0.4 84.8 0.4 85.4 0.4

Tab. B.25. Power in the case of vectors for the Clayton (0.5) cop-
ula with Exponential margins

N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 13.5 0.3 10.5 0.3 10.4 0.3 12.5 0.3
20 34.4 0.5 18.4 0.4 13.7 0.3 19.9 0.4
30 54.8 0.5 25.8 0.4 15.1 0.4 26.2 0.4
40 71.0 0.5 33.3 0.5 17.5 0.4 33.4 0.5
50 81.8 0.4 40.4 0.5 19.5 0.4 39.3 0.5
60 89.0 0.3 47.8 0.5 22.1 0.4 47.5 0.5
70 93.7 0.2 53.0 0.5 23.0 0.4 52.9 0.5
80 97.0 0.2 58.6 0.5 23.6 0.4 59.0 0.5
90 98.3 0.1 64.0 0.5 25.2 0.4 64.0 0.5
100 99.0 0.1 69.5 0.5 26.4 0.4 69.6 0.5

Tab. B.26. Power in the case of vectors for the Clayton (0.5) cop-
ula with Cauchy margins

N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 17.5 0.4 17.4 0.4 24.8 0.4 21.4 0.4
20 43.4 0.5 38.0 0.5 45.1 0.5 40.1 0.5
30 64.6 0.5 56.1 0.5 63.3 0.5 55.4 0.5
40 79.8 0.4 71.8 0.4 77.3 0.4 69.3 0.5
50 89.2 0.3 82.2 0.4 86.7 0.3 79.9 0.4
60 94.2 0.2 88.7 0.3 92.4 0.3 87.0 0.3
70 97.3 0.2 93.1 0.3 96.0 0.2 92.3 0.3
80 98.7 0.1 96.5 0.2 98.0 0.1 95.4 0.2
90 99.4 0.1 98.0 0.1 99.0 0.1 97.2 0.2
100 99.8 0.0 98.8 0.1 99.5 0.1 98.5 0.1

Tab. B.27. Power in the case of vectors for the Gumbel (1.3) cop-
ula with Normal margins
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N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 17.5 0.4 18.6 0.4 25.1 0.4 22.9 0.4
20 43.4 0.5 36.5 0.5 42.1 0.5 37.5 0.5
30 64.6 0.5 53.4 0.5 57.8 0.5 50.8 0.5
40 79.8 0.4 67.5 0.5 70.2 0.5 62.0 0.5
50 89.2 0.3 77.2 0.4 79.8 0.4 71.3 0.5
60 94.2 0.2 84.6 0.4 86.8 0.3 79.1 0.4
70 97.3 0.2 89.6 0.3 91.4 0.3 84.8 0.4
80 98.7 0.1 93.4 0.2 95.0 0.2 89.6 0.3
90 99.4 0.1 95.7 0.2 97.0 0.2 93.1 0.3
100 99.8 0.0 97.1 0.2 98.0 0.1 94.8 0.2

Tab. B.28. Power in the case of vectors for the Gumbel (1.3) cop-
ula with Exponential margins

N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 17.5 0.4 11.9 0.3 10.7 0.3 14.1 0.3
20 43.4 0.5 21.1 0.4 13.3 0.3 22.6 0.4
30 64.6 0.5 29.6 0.5 14.7 0.4 31.1 0.5
40 79.8 0.4 38.0 0.5 17.8 0.4 38.7 0.5
50 89.2 0.3 44.9 0.5 19.3 0.4 45.3 0.5
60 94.2 0.2 52.8 0.5 20.8 0.4 53.4 0.5
70 97.3 0.2 59.0 0.5 22.4 0.4 60.3 0.5
80 98.7 0.1 65.2 0.5 23.9 0.4 67.5 0.5
90 99.4 0.1 71.0 0.5 24.8 0.4 72.4 0.4
100 99.8 0.0 75.2 0.4 25.2 0.4 77.2 0.4

Tab. B.29. Power in the case of vectors for the Gumbel (1.3) cop-
ula with Cauchy margins

N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 12.1 0.3 11.0 0.3 18.2 0.4 14.1 0.3
20 27.4 0.4 22.7 0.4 34.6 0.5 26.2 0.4
30 46.1 0.5 36.1 0.5 51.2 0.5 38.4 0.5
40 62.4 0.5 49.5 0.5 66.9 0.5 51.5 0.5
50 73.3 0.4 60.2 0.5 77.5 0.4 61.1 0.5
60 82.6 0.4 71.0 0.5 85.5 0.4 70.5 0.5
70 88.0 0.3 77.4 0.4 90.0 0.3 76.9 0.4
80 92.7 0.3 83.8 0.4 94.0 0.2 83.6 0.4
90 95.7 0.2 89.3 0.3 96.5 0.2 88.5 0.3
100 97.2 0.2 92.1 0.3 97.9 0.1 91.2 0.3

Tab. B.30. Power in the case of vectors for the Normal (ρ = 0.3)
copula with Normal margins
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N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 12.1 0.3 13.8 0.3 18.3 0.4 17.8 0.4
20 27.4 0.4 26.9 0.4 30.6 0.5 31.1 0.5
30 46.1 0.5 40.3 0.5 44.9 0.5 43.6 0.5
40 62.4 0.5 52.9 0.5 58.1 0.5 54.9 0.5
50 73.3 0.4 64.3 0.5 69.2 0.5 65.1 0.5
60 82.6 0.4 73.0 0.4 78.3 0.4 73.3 0.4
70 88.0 0.3 79.2 0.4 83.8 0.4 78.9 0.4
80 92.7 0.3 85.0 0.4 89.6 0.3 84.4 0.4
90 95.7 0.2 89.8 0.3 93.1 0.3 88.7 0.3
100 97.2 0.2 93.2 0.3 95.4 0.2 91.9 0.3

Tab. B.31. Power in the case of vectors for the Normal (ρ = 0.3)
copula with Exponential margins

N BLAW (sd) HHG (sd) DCOV (sd) HSIC (sd)
10 12.1 0.3 8.2 0.3 7.9 0.3 9.9 0.3
20 27.4 0.4 11.4 0.3 9.7 0.3 13.2 0.3
30 46.1 0.5 15.9 0.4 11.4 0.3 18.4 0.4
40 62.4 0.5 18.9 0.4 11.8 0.3 21.6 0.4
50 73.3 0.4 22.9 0.4 12.4 0.3 25.1 0.4
60 82.6 0.4 26.8 0.4 12.2 0.3 30.5 0.5
70 88.0 0.3 28.4 0.5 13.1 0.3 32.9 0.5
80 92.7 0.3 33.0 0.5 13.8 0.3 37.7 0.5
90 95.7 0.2 36.1 0.5 14.6 0.4 42.1 0.5
100 97.2 0.2 40.8 0.5 14.5 0.4 46.2 0.5

Tab. B.32. Power in the case of vectors for the Normal (ρ = 0.3)
copula with Cauchy margins
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B.2. Multivariate version of the test

B.2.1. Random variables examples

N mBLAW (sd) mHHG (sd) BBL (sd) mHSIC (sd) GR (sd)
10 7.1 0.3 6.6 0.2 4.9 0.2 16.6 0.4 7.9 0.3
20 13.0 0.3 10.7 0.3 5.1 0.2 34.8 0.5 14.3 0.4
30 23.7 0.4 17.0 0.4 4.6 0.2 60.3 0.5 22.0 0.4
40 39.8 0.5 25.9 0.4 6.0 0.2 80.8 0.4 30.4 0.5
50 58.8 0.5 37.5 0.5 10.0 0.3 93.3 0.2 38.6 0.5
60 77.9 0.4 51.7 0.5 20.5 0.4 98.2 0.1 48.2 0.5
70 90.6 0.3 63.1 0.5 33.0 0.5 99.6 0.1 55.6 0.5
80 97.1 0.2 75.8 0.4 50.0 0.5 100.0 0.0 63.2 0.5
90 99.5 0.1 85.4 0.4 64.4 0.5 100.0 0.0 71.5 0.5
100 99.9 0.0 92.2 0.3 78.6 0.4 100.0 0.0 77.1 0.4

Tab. B.33. Power in the case of the 3D pairwise independent Normals

N mBLAW (sd) mHHG (sd) BBL (sd) mHSIC (sd) GR (sd)
10 6.9 0.3 7.2 0.3 6.4 0.2 8.5 0.3 7.3 0.3
20 11.3 0.3 11.6 0.3 9.1 0.3 13.8 0.3 8.8 0.3
30 16.9 0.4 16.6 0.4 11.7 0.3 19.1 0.4 9.6 0.3
40 26.1 0.4 25.4 0.4 16.6 0.4 26.8 0.4 11.6 0.3
50 36.8 0.5 34.7 0.5 21.2 0.4 34.0 0.5 13.5 0.3
60 48.0 0.5 44.4 0.5 25.0 0.4 42.4 0.5 14.5 0.4
70 59.1 0.5 55.2 0.5 30.6 0.5 50.9 0.5 17.5 0.4
80 69.2 0.5 64.7 0.5 34.4 0.5 58.6 0.5 20.4 0.4
90 78.0 0.4 73.0 0.4 39.0 0.5 66.6 0.5 22.7 0.4
100 84.8 0.4 80.1 0.4 45.2 0.5 72.8 0.4 25.4 0.4

Tab. B.34. Power in the case of the 3D Cos-Sin dependence

N mBLAW (sd) mHHG (sd) BBL (sd) mHSIC (sd) GR (sd)
10 12.5 0.3 11.6 0.3 12.1 0.3 11.8 0.3 15.0 0.4
20 27.9 0.4 24.8 0.4 23.4 0.4 22.5 0.4 21.6 0.4
30 47.6 0.5 41.4 0.5 35.0 0.5 34.4 0.5 29.8 0.5
40 65.8 0.5 58.4 0.5 49.1 0.5 47.3 0.5 38.2 0.5
50 80.4 0.4 72.4 0.4 60.8 0.5 61.1 0.5 47.2 0.5
60 89.8 0.3 83.1 0.4 69.9 0.5 71.4 0.5 55.3 0.5
70 95.0 0.2 90.3 0.3 79.1 0.4 80.5 0.4 62.1 0.5
80 97.6 0.2 94.6 0.2 84.8 0.4 87.2 0.3 68.5 0.5
90 99.0 0.1 97.2 0.2 89.4 0.3 92.3 0.3 75.9 0.4
100 99.6 0.1 98.7 0.1 92.4 0.3 95.5 0.2 80.1 0.4

Tab. B.35. Power in the case of the 3D Cos-Exp dependence
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N mBLAW (sd) mHHG (sd) BBL (sd) mHSIC (sd) GR (sd)
10 8.8 0.3 7.9 0.3 8.4 0.3 8.1 0.3 19.1 0.4
20 16.0 0.4 13.0 0.3 15.3 0.4 13.0 0.3 29.3 0.5
30 24.5 0.4 18.6 0.4 21.2 0.4 17.6 0.4 40.1 0.5
40 34.5 0.5 24.8 0.4 29.0 0.5 22.7 0.4 50.8 0.5
50 45.7 0.5 33.0 0.5 37.6 0.5 28.5 0.5 59.9 0.5
60 55.2 0.5 40.2 0.5 43.9 0.5 33.3 0.5 67.5 0.5
70 63.8 0.5 46.9 0.5 50.6 0.5 39.9 0.5 73.8 0.4
80 71.0 0.5 53.2 0.5 57.7 0.5 45.8 0.5 78.7 0.4
90 77.9 0.4 60.6 0.5 63.5 0.5 51.5 0.5 83.9 0.4
100 83.5 0.4 66.5 0.5 70.0 0.5 58.0 0.5 87.7 0.3

Tab. B.36. Power in the case of the 3D linear dependence

N mBLAW (sd) mHHG (sd) BBL (sd) mHSIC (sd) GR (sd)
10 13.9 0.3 13.0 0.3 12.2 0.3 11.6 0.3 34.2 0.5
20 30.2 0.5 26.4 0.4 21.6 0.4 19.2 0.4 52.1 0.5
30 47.9 0.5 40.7 0.5 30.1 0.5 26.7 0.4 66.7 0.5
40 62.1 0.5 53.3 0.5 41.0 0.5 36.0 0.5 77.7 0.4
50 74.5 0.4 64.8 0.5 50.0 0.5 44.6 0.5 85.5 0.4
60 82.5 0.4 73.9 0.4 59.1 0.5 52.7 0.5 90.1 0.3
70 88.9 0.3 81.4 0.4 66.9 0.5 60.4 0.5 94.3 0.2
80 93.2 0.3 86.5 0.3 74.1 0.4 68.1 0.5 96.7 0.2
90 95.4 0.2 90.6 0.3 78.7 0.4 73.4 0.4 97.7 0.2
100 97.4 0.2 93.9 0.2 83.6 0.4 79.5 0.4 98.6 0.1

Tab. B.37. Power in the case of the 3D Clayton copula (0.5) with
Normal margins

N mBLAW (sd) mHHG (sd) BBL (sd) mHSIC (sd) GR (sd)
10 13.9 0.3 10.8 0.3 12.2 0.3 12.5 0.3 34.2 0.5
20 30.2 0.5 20.8 0.4 21.6 0.4 20.6 0.4 52.1 0.5
30 47.9 0.5 32.2 0.5 30.1 0.5 30.4 0.5 66.7 0.5
40 62.1 0.5 44.2 0.5 41.0 0.5 40.7 0.5 77.7 0.4
50 74.5 0.4 54.3 0.5 50.0 0.5 48.7 0.5 85.5 0.4
60 82.5 0.4 64.3 0.5 59.1 0.5 57.9 0.5 90.1 0.3
70 88.9 0.3 73.0 0.4 66.9 0.5 65.0 0.5 94.3 0.2
80 93.2 0.3 79.6 0.4 74.1 0.4 72.3 0.4 96.7 0.2
90 95.4 0.2 84.6 0.4 78.7 0.4 77.5 0.4 97.7 0.2
100 97.4 0.2 89.2 0.3 83.6 0.4 81.9 0.4 98.6 0.1

Tab. B.38. Power in the case of the 3D Clayton copula (0.5) with
Exponential margins
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N mBLAW (sd) mHHG (sd) BBL (sd) mHSIC (sd) GR (sd)
10 13.9 0.3 11.5 0.3 12.2 0.3 9.9 0.3 34.2 0.5
20 30.2 0.5 19.6 0.4 21.6 0.4 12.7 0.3 52.1 0.5
30 47.9 0.5 27.6 0.4 30.1 0.5 15.6 0.4 66.7 0.5
40 62.1 0.5 34.9 0.5 41.0 0.5 18.9 0.4 77.7 0.4
50 74.5 0.4 42.7 0.5 50.0 0.5 22.4 0.4 85.5 0.4
60 82.5 0.4 49.1 0.5 59.1 0.5 26.9 0.4 90.1 0.3
70 88.9 0.3 56.2 0.5 66.9 0.5 30.9 0.5 94.3 0.2
80 93.2 0.3 61.8 0.5 74.1 0.4 36.0 0.5 96.7 0.2
90 95.4 0.2 66.9 0.5 78.7 0.4 38.7 0.5 97.7 0.2
100 97.4 0.2 72.6 0.4 83.6 0.4 44.4 0.5 98.6 0.1

Tab. B.39. Power in the case of the 3D Clayton copula (0.5) with
Cauchy margins

N mBLAW (sd) mHHG (sd) BBL (sd) mHSIC (sd) GR (sd)
10 11.6 0.3 10.9 0.3 9.6 0.3 9.7 0.3 23.9 0.4
20 23.3 0.4 19.8 0.4 15.6 0.4 13.6 0.3 35.1 0.5
30 34.6 0.5 29.2 0.5 21.0 0.4 18.0 0.4 47.0 0.5
40 46.4 0.5 39.3 0.5 28.3 0.5 22.8 0.4 56.7 0.5
50 57.4 0.5 48.5 0.5 34.6 0.5 28.8 0.5 66.7 0.5
60 65.6 0.5 56.8 0.5 40.9 0.5 34.2 0.5 72.8 0.4
70 74.1 0.4 65.0 0.5 48.2 0.5 39.4 0.5 79.1 0.4
80 79.0 0.4 70.1 0.5 52.4 0.5 45.1 0.5 83.7 0.4
90 84.4 0.4 76.0 0.4 59.0 0.5 51.3 0.5 87.7 0.3
100 87.8 0.3 80.9 0.4 63.5 0.5 55.0 0.5 90.1 0.3

Tab. B.40. Power in the case of the 3D Gumbel copula (1.2) with
Normal margins

N mBLAW (sd) mHHG (sd) BBL (sd) mHSIC (sd) GR (sd)
10 11.6 0.3 14.3 0.4 9.6 0.3 11.6 0.3 23.9 0.4
20 23.3 0.4 27.2 0.4 15.6 0.4 16.4 0.4 35.1 0.5
30 34.6 0.5 39.0 0.5 21.0 0.4 21.0 0.4 47.0 0.5
40 46.4 0.5 50.1 0.5 28.3 0.5 26.5 0.4 56.7 0.5
50 57.4 0.5 60.5 0.5 34.6 0.5 32.4 0.5 66.7 0.5
60 65.6 0.5 68.1 0.5 40.9 0.5 37.9 0.5 72.8 0.4
70 74.1 0.4 75.7 0.4 48.2 0.5 43.5 0.5 79.1 0.4
80 79.0 0.4 80.7 0.4 52.4 0.5 49.3 0.5 83.7 0.4
90 84.4 0.4 85.3 0.4 59.0 0.5 54.6 0.5 87.7 0.3
100 87.8 0.3 88.5 0.3 63.5 0.5 59.3 0.5 90.1 0.3

Tab. B.41. Power in the case of the 3D Gumbel copula (1.2) with
Exponential margins
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N mBLAW (sd) mHHG (sd) BBL (sd) mHSIC (sd) GR (sd)
10 11.6 0.3 10.0 0.3 9.6 0.3 8.6 0.3 23.9 0.4
20 23.3 0.4 16.1 0.4 15.6 0.4 10.0 0.3 35.1 0.5
30 34.6 0.5 21.6 0.4 21.0 0.4 11.2 0.3 47.0 0.5
40 46.4 0.5 27.1 0.4 28.3 0.5 13.1 0.3 56.7 0.5
50 57.4 0.5 33.2 0.5 34.6 0.5 14.9 0.4 66.7 0.5
60 65.6 0.5 38.8 0.5 40.9 0.5 17.6 0.4 72.8 0.4
70 74.1 0.4 44.8 0.5 48.2 0.5 19.3 0.4 79.1 0.4
80 79.0 0.4 48.6 0.5 52.4 0.5 21.6 0.4 83.7 0.4
90 84.4 0.4 53.1 0.5 59.0 0.5 24.3 0.4 87.7 0.3
100 87.8 0.3 57.5 0.5 63.5 0.5 25.3 0.4 90.1 0.3

Tab. B.42. Power in the case of the 3D Gumbel copula (1.2) with
Cauchy margins

N mBLAW (sd) mHHG (sd) BBL (sd) mHSIC (sd) GR (sd)
10 11.5 0.3 10.3 0.3 12.4 0.3 9.9 0.3 19.3 0.4
20 24.0 0.4 19.9 0.4 22.9 0.4 17.6 0.4 30.2 0.5
30 39.9 0.5 31.5 0.5 37.1 0.5 25.2 0.4 42.7 0.5
40 55.1 0.5 43.9 0.5 53.1 0.5 33.4 0.5 53.3 0.5
50 67.9 0.5 55.9 0.5 64.2 0.5 43.9 0.5 64.2 0.5
60 79.4 0.4 66.0 0.5 74.9 0.4 51.9 0.5 71.8 0.4
70 87.3 0.3 76.0 0.4 82.3 0.4 61.5 0.5 80.0 0.4
80 91.7 0.3 81.8 0.4 87.7 0.3 68.8 0.5 84.2 0.4
90 94.6 0.2 86.5 0.3 90.9 0.3 74.4 0.4 88.1 0.3
100 97.3 0.2 91.3 0.3 95.0 0.2 81.2 0.4 92.3 0.3

Tab. B.43. Power in the case of the 3D Normal copula (ρx,y =
0.0, ρx,z = 0.1, ρy,z = 0.5) with Normal margins

N mBLAW (sd) mHHG (sd) BBL (sd) mHSIC (sd) GR (sd)
10 11.5 0.3 11.5 0.3 12.4 0.3 11.0 0.3 19.3 0.4
20 24.0 0.4 22.7 0.4 22.9 0.4 18.2 0.4 30.2 0.5
30 39.9 0.5 36.2 0.5 37.1 0.5 27.4 0.4 42.7 0.5
40 55.1 0.5 49.8 0.5 53.1 0.5 35.2 0.5 53.3 0.5
50 67.9 0.5 62.2 0.5 64.2 0.5 46.0 0.5 64.2 0.5
60 79.4 0.4 72.8 0.4 74.9 0.4 54.2 0.5 71.8 0.4
70 87.3 0.3 81.1 0.4 82.3 0.4 63.0 0.5 80.0 0.4
80 91.7 0.3 86.5 0.3 87.7 0.3 70.2 0.5 84.2 0.4
90 94.6 0.2 90.8 0.3 90.9 0.3 74.8 0.4 88.1 0.3
100 97.3 0.2 94.2 0.2 95.0 0.2 81.8 0.4 92.3 0.3

Tab. B.44. Power in the case of the 3D Normal copula (ρx,y =
0.0, ρx,z = 0.1, ρy,z = 0.5) with Exponential margins
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N mBLAW (sd) mHHG (sd) BBL (sd) mHSIC (sd) GR (sd)
10 11.5 0.3 8.9 0.3 12.4 0.3 7.3 0.3 19.3 0.4
20 24.0 0.4 14.2 0.3 22.9 0.4 10.3 0.3 30.2 0.5
30 39.9 0.5 20.0 0.4 37.1 0.5 12.0 0.3 42.7 0.5
40 55.1 0.5 27.0 0.4 53.1 0.5 14.8 0.4 53.3 0.5
50 67.9 0.5 33.8 0.5 64.2 0.5 18.1 0.4 64.2 0.5
60 79.4 0.4 40.4 0.5 74.9 0.4 21.1 0.4 71.8 0.4
70 87.3 0.3 47.8 0.5 82.3 0.4 24.9 0.4 80.0 0.4
80 91.7 0.3 53.9 0.5 87.7 0.3 28.5 0.5 84.2 0.4
90 94.6 0.2 60.0 0.5 90.9 0.3 31.1 0.5 88.1 0.3
100 97.3 0.2 65.3 0.5 95.0 0.2 35.5 0.5 92.3 0.3

Tab. B.45. Power in the case of the 3D Normal copula (ρx,y =
0.0, ρx,z = 0.1, ρy,z = 0.5) with Cauchy margins



B-xviii

B.2.2. Random vectors examples

N mBLAW (sd) mHHG (sd) mHSIC (sd) BBL (sd) KOJA (sd)
10 4.9 0.3 5.2 0.3 10.3 0.4 0.0 0.0 1.1 0.1
20 10.8 0.4 7.8 0.4 20.6 0.6 4.4 0.3 0.6 0.1
30 17.5 0.5 10.6 0.4 31.4 0.7 4.5 0.3 0.4 0.1
40 27.7 0.6 13.0 0.5 45.2 0.7 5.9 0.3 1.5 0.2
50 39.0 0.7 15.3 0.5 60.7 0.7 5.0 0.3 2.5 0.2
60 52.2 0.7 21.0 0.6 76.1 0.6 4.8 0.3 4.6 0.3
70 63.9 0.7 24.5 0.6 85.2 0.5 5.3 0.3 7.3 0.4

Tab. B.46. Power in the case of vectors with pairwise independent
components, case mixed

N mBLAW (sd) mHHG (sd) mHSIC (sd)
10 5.2 0.2 5.4 0.2 6.9 0.3
20 7.9 0.3 7.3 0.3 10.1 0.3
40 15.8 0.4 10.1 0.3 18.0 0.4
60 26.9 0.4 13.4 0.3 28.6 0.5
80 43.8 0.5 17.8 0.4 42.2 0.5
100 61.6 0.5 22.7 0.4 59.1 0.5
150 93.1 0.3 38.2 0.5 88.8 0.3
200 99.8 0.0 55.8 0.5 99.0 0.1
250 100.0 0.0 73.6 0.4 100.0 0.0

Tab. B.47. Power in the case of vectors with pairwise independent
components, case hidden

N mBLAW (sd) mHHG (sd) mHSIC (sd)
10 11.0 0.3 12.3 0.3 12.3 0.3
20 26.0 0.4 26.4 0.4 21.0 0.4
30 44.2 0.5 41.4 0.5 29.7 0.5
40 60.3 0.5 56.5 0.5 40.6 0.5
50 72.9 0.4 69.0 0.5 51.2 0.5
60 82.9 0.4 78.3 0.4 60.4 0.5
70 88.6 0.3 84.8 0.4 68.4 0.5
80 93.1 0.3 89.4 0.3 75.9 0.4
90 95.9 0.2 93.5 0.2 81.7 0.4
100 97.6 0.2 96.1 0.2 86.3 0.3

Tab. B.48. Power in the case of vectors for the Clayton (0.3) cop-
ula with Normal margins
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N mBLAW (sd) mHHG (sd) mHSIC (sd)
10 11.0 0.3 8.6 0.3 10.7 0.3
20 26.0 0.4 13.0 0.3 16.5 0.4
30 44.2 0.5 18.1 0.4 23.4 0.4
40 60.3 0.5 24.9 0.4 30.1 0.5
50 72.9 0.4 31.4 0.5 38.1 0.5
60 82.9 0.4 38.4 0.5 44.6 0.5
70 88.6 0.3 45.9 0.5 51.9 0.5
80 93.1 0.3 52.3 0.5 58.8 0.5
90 95.9 0.2 58.9 0.5 64.0 0.5
100 97.6 0.2 64.8 0.5 69.1 0.5

Tab. B.49. Power in the case of vectors for the Clayton (0.3) cop-
ula with Exponential margins

N mBLAW (sd) mHHG (sd) mHSIC (sd)
10 11.0 0.3 10.5 0.3 10.0 0.3
20 26.0 0.4 16.9 0.4 12.8 0.3
30 44.2 0.5 22.7 0.4 15.9 0.4
40 60.3 0.5 30.1 0.5 19.5 0.4
50 72.9 0.4 35.9 0.5 22.6 0.4
60 82.9 0.4 41.9 0.5 27.5 0.4
70 88.6 0.3 47.3 0.5 30.6 0.5
80 93.1 0.3 51.2 0.5 34.7 0.5
90 95.9 0.2 57.6 0.5 38.3 0.5
100 97.6 0.2 62.8 0.5 43.0 0.5

Tab. B.50. Power in the case of vectors for the Clayton (0.3) cop-
ula with Cauchy margins

N mBLAW (sd) mHHG (sd) mHSIC (sd)
10 8.9 0.3 8.5 0.3 8.5 0.3
20 16.7 0.4 15.5 0.4 11.2 0.3
30 26.4 0.4 23.7 0.4 15.1 0.4
40 36.1 0.5 29.4 0.5 18.4 0.4
50 45.5 0.5 36.1 0.5 23.3 0.4
60 54.1 0.5 42.6 0.5 26.6 0.4
70 60.2 0.5 48.6 0.5 31.5 0.5
80 67.6 0.5 55.0 0.5 35.5 0.5
90 73.0 0.4 59.5 0.5 40.4 0.5
100 77.8 0.4 64.6 0.5 45.0 0.5

Tab. B.51. Power in the case of vectors for the Gumbel (1.1) cop-
ula with Normal margins



B-xx

N mBLAW (sd) mHHG (sd) mHSIC (sd)
10 8.9 0.3 10.5 0.3 9.2 0.3
20 16.7 0.4 19.0 0.4 10.8 0.3
30 26.4 0.4 26.1 0.4 13.1 0.3
40 36.1 0.5 32.9 0.5 15.8 0.4
50 45.5 0.5 39.4 0.5 18.8 0.4
60 54.1 0.5 45.2 0.5 21.5 0.4
70 60.2 0.5 50.7 0.5 24.2 0.4
80 67.6 0.5 56.4 0.5 26.3 0.4
90 73.0 0.4 59.7 0.5 30.5 0.5
100 77.8 0.4 65.1 0.5 33.9 0.5

Tab. B.52. Power in the case of vectors for the Gumbel (1.1) cop-
ula with Exponential margins

N mBLAW (sd) mHHG (sd) mHSIC (sd)
10 8.9 0.3 7.5 0.3 7.4 0.3
20 16.7 0.4 10.2 0.3 7.3 0.3
30 26.4 0.4 13.5 0.3 8.8 0.3
40 36.1 0.5 14.8 0.4 8.6 0.3
50 45.5 0.5 18.2 0.4 9.8 0.3
60 54.1 0.5 18.7 0.4 10.2 0.3
70 60.2 0.5 21.8 0.4 11.3 0.3
80 67.6 0.5 23.8 0.4 12.1 0.3
90 73.0 0.4 26.3 0.4 13.6 0.3
100 77.8 0.4 28.1 0.4 13.7 0.3

Tab. B.53. Power in the case of vectors for the Gumbel (1.1) cop-
ula with Cauchy margins

N mBLAW (sd) mHHG (sd) mHSIC (sd)
10 9.0 0.3 9.3 0.3 11.3 0.3
20 21.0 0.4 19.7 0.4 20.2 0.4
30 38.7 0.5 32.6 0.5 33.4 0.5
40 53.1 0.5 44.9 0.5 43.7 0.5
50 67.5 0.5 58.0 0.5 55.5 0.5
60 79.4 0.4 69.4 0.5 67.6 0.5
70 86.8 0.3 77.2 0.4 75.7 0.4
80 92.1 0.3 84.3 0.4 83.5 0.4
90 96.0 0.2 90.1 0.3 89.0 0.3
100 97.5 0.2 93.3 0.2 92.5 0.3

Tab. B.54. Power in the case of vectors for the Normal copula
(ρx,y = ρx,z = 0.1, ρy,z = 0.3) with Normal margins
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N mBLAW (sd) mHHG (sd) mHSIC (sd)
10 9.0 0.3 12.3 0.3 13.9 0.3
20 21.0 0.4 24.6 0.4 24.3 0.4
30 38.7 0.5 38.2 0.5 37.4 0.5
40 53.1 0.5 50.8 0.5 48.3 0.5
50 67.5 0.5 63.0 0.5 57.9 0.5
60 79.4 0.4 73.6 0.4 68.8 0.5
70 86.8 0.3 79.9 0.4 76.0 0.4
80 92.1 0.3 86.3 0.3 82.8 0.4
90 96.0 0.2 91.5 0.3 87.8 0.3
100 97.5 0.2 94.3 0.2 91.1 0.3

Tab. B.55. Power in the case of vectors for the Normal copula
(ρx,y = ρx,z = 0.1, ρy,z = 0.3) with Exponential margins

N mBLAW (sd) mHHG (sd) mHSIC (sd)
10 9.0 0.3 7.7 0.3 8.0 0.3
20 21.0 0.4 11.2 0.3 9.8 0.3
30 38.7 0.5 14.4 0.4 11.9 0.3
40 53.1 0.5 18.3 0.4 13.2 0.3
50 67.5 0.5 22.2 0.4 16.9 0.4
60 79.4 0.4 26.8 0.4 18.8 0.4
70 86.8 0.3 30.6 0.5 21.5 0.4
80 92.1 0.3 35.4 0.5 24.6 0.4
90 96.0 0.2 38.8 0.5 28.0 0.4
100 97.5 0.2 44.2 0.5 30.6 0.5

Tab. B.56. Power in the case of vectors for the Normal copula
(ρx,y = ρx,z = 0.1, ρy,z = 0.3) with Cauchy margins





Appendix C

CODE

C.1. RCPP code

To compute the test statistic T in the multivariate case, we use the following

RCPP functions.

/∗ Author : Guillaume Bog l i on i Beaul ieu

Desc r ip t i on : RCPP func t i on s to c a l c u l a t e the t e s t

s t a t i s t i c and i t s p−value

’ sample_mat ’ i s a func t i on to obta in a copy o f a matrix

with randomly permutated rows

’ rcpp_dist ’ computes a l l p a i r s o f d i s t a n c e s between the

ve c t o r s ( rows ) o f a matrix . I t i s the equ iva l en t o f

the R func t i on ’ d i s t ’

’comp_T_RCPP’ computes the t e s t s t a t i s t i c T and i t s

a s s o s s i a t e d p−value

Works f o r : th ree (3 ) random v a r i a b l e s AND three random

vec to r s ( p o s s i b l y o f d i f f e r e n t s i z e s )

Last update : 10/31/2016 ∗/

/∗ Function to c r e a t e a copy o f a matrix where the rows

have been randomly permutated ∗/

/∗ The only argument i s the o r i g i n a l matrix ∗/

// [ [ Rcpp : : depends ( RcppArmadillo ) ] ]

#inc lude <RcppArmadil loExtensions / sample . h>

us ing namespace Rcpp ;
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// [ [ Rcpp : : export ] ]

NumericMatrix sample_mat ( NumericMatrix X) {

i n t i ;

i n t N = X. nrow ( ) ; /∗ Sample s i z e ∗/

i n t v = X. nco l ( ) ; /∗ Dimension o f an obse rvat i on ∗/

NumericMatrix sample_mat (N, v ) ;

In tege rVecto r N_seq = seq_len (N) − 1 ; /∗ Sequence o f

i n t e g e r s from 0 to N−1 ∗/

Intege rVecto r N_perm = RcppArmadillo : : sample (N_seq , N,

FALSE) ; /∗ Permutation o f the i n t e g e r s sequence ∗/

/∗ Each row o f sample_mat i s randomly s e l e c t e d from the

rows o f X ∗/

f o r ( i = 0 ; i < N; i++) {

sample_mat ( i , _) = X(N_perm [ i ] ,_) ;

}

re turn sample_mat ;

/∗ r e turn Rcpp : : wrap (sub_X) ; ∗/

}

/∗ Function to c a l c u l a t e the d i s t a n c e s between a l l p a i r s

o f v e c t o r s ( rows ) in a matrix ∗/

/∗ I t i s the equ iva l en t o f the R func t i on d i s t ( ) ∗/

/∗ The only argument i s the o r i g i n a l matrix ∗/

// ∗∗ Found here : http :// s tackove r f l ow . com/ que s t i on s

/36829700/ rcpp−my−di s tance −matrix−program−i s −s lower−
than−the−funct ion −in−package ∗∗ //

#inc lude <RcppArmadillo . h>

// [ [ Rcpp : : export ] ]

NumericMatrix rcpp_dist ( NumericMatrix X) {

i n t outrows = X. nrow ( ) , i = 0 , j = 0 ;

double d ;

NumericMatrix out ( outrows , outrows ) ;
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f o r ( i = 0 ; i < outrows − 1 ; i++){

NumericVector v1 = X. row ( i ) ;

f o r ( j = i + 1 ; j < outrows ; j ++){

d = sq r t (sum(pow( v1−X. row ( j ) , 2 . 0 ) ) ) ;

out ( j , i )=d ;

out ( i , j )=d ;

}

}

re turn out ;

}

/∗ Main func t i on that computes the t e s t s t a t i s t i c T and

i t s a s s o s s i a t e d p−value ∗/

/∗ Takes 5 arguments : ∗/

/∗ ’X’ , ’Y’ , ’Z ’ : the three matr i ce s o f ob s e rva t i on s ∗/

/∗ ’n_perm ’ the number o f permutat ions on which i s

based the p−value ∗/

/∗ ’ t_star ’ the c r i t i c a l va lue f o r T. H_0 w i l l be

r e j e c t e d i f T > t_star . ∗/

/∗ Only i f t_star == 0 . 0 , the permutation method i s used .

∗/

/∗ Returns two r e s u l t s : ∗/

/∗ T, the t e s t s t a t i s t i c ∗/

/∗ i f t_star == 0 , the p−value based on the

permutat ions . Else , an i n t e g e r (1 f o r r e j e c t i o n , 0 f o r

acceptance o f H0) ∗/

#inc lude <RcppArmadillo . h>

// [ [ Rcpp : : export ] ]

NumericVector comp_T_RCPP( NumericMatrix X, NumericMatrix Y

, NumericMatrix Z , i n t n_perm , double t_star = 0 . 0 ) {
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/∗ Declare v a r i a b l e s ∗/

NumericVector r e s u l t s (2 ) ; /∗ Fina l output conta ing the

t e s t s t a t i s t i c and p−value ∗/

i n t m, i , j , k ; /∗ Count i n t e g e r s f o r the For loops ∗/

double count = 0 . 0 ; /∗ Count o f the number o f t imes

the t e s t s t a t i s t i c based on a permutation sample i s

b i gge r than the o r i g i n a l t e s t s t a t i s t i c ∗/

i n t N = X. nrow ( ) , vx = X. nco l ( ) , vy = Y. nco l ( ) , vz = Z

. nco l ( ) ; /∗ Sample s i z e and s i z e o f v e c t o r s X, Y, Z

∗/

NumericMatrix dx (N, N) , dy (N, N) , dz (N, N) ; /∗
Matr ices o f d i s t a n c e s between each po int ∗/

double T = 0 . 0 ; /∗ Test s t a t i s t i c ∗/

double S = 0 . 0 ; /∗ Permutated t e s t s t a t i s t i c ∗/

double S_ij ; /∗ Component o f the t e s t s t a t i s t i c ( based

on the pa i r o f po int ( i , j ) ) ∗/

double R_x0, R_y0, R_z0 ; /∗ Radi i : d i s t a n c e s between (

x0 , y0 , z0 ) and ( xj , yj , z j ) ∗/

double A_111 , A_112 , A_121 , A_122 , A_211 , A_212 , A_221

, A_222 ; /∗ Components o f the t e s t s t a t i s t i c ∗/

double Ai_1 , Ai_2 , Aj_1 , Aj_2 , Ak_1, Ak_2 ;

f o r (m = 0 ; m < n_perm +1 ; m++) { /∗ Most outer loop :

Done f o r the o r i g i n a l sample and n_perm permutation

samples ∗/

NumericMatrix sub_X(N, vx ) ;

NumericMatrix sub_Y(N, vy ) ;

NumericMatrix sub_Z(N, vz ) ;

S = 0 . 0 ; /∗ I n i t i a l i z e t e s t s t a t i s t i c to 0 ∗/
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/∗ The very f i r s t time , we don ’ t want a permutation

sample , but the r e a l sample to c a l c u l a t e the r e a l

t e s t s t a t i s t i c , T∗/

i f (m == 0) {

sub_X = X;

sub_Y = Y;

sub_Z = Z ;

}

/∗ Every other time , we want a random permutation o f

the sample ∗/

e l s e {

sub_X = sample_mat (X) ;

sub_Y = sample_mat (Y) ;

sub_Z = sample_mat (Z) ;

}

/∗Compute the matr i ce s o f d i s t a n c e s ∗/

dx = rcpp_dist (sub_X) ;

dy = rcpp_dist (sub_Y) ;

dz = rcpp_dist ( sub_Z) ;

/∗ To c a l c u l a t e the t e s t s t a t i s t i c , we compute S( i , j )

f o r every pa i r o f po in t s ∗/

/∗ Hence , we have a double loop on i and j , with the

r e s t r i c t i o n that i i s d i f f e r e n t from j ∗/

f o r ( i = 0 ; i < N; i++) {

f o r ( j = 0 ; j < N; j++) {

i f ( i == j )

{ cont inue ; } /∗ We sk ip ca s e s where i == j ∗/

/∗ R e i n i t i a l i z e v a r i a b l e s ∗/

A_111 = 0 . 0 ;

A_112 = 0 . 0 ;

A_121 = 0 . 0 ;

A_122 = 0 . 0 ;
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A_211 = 0 . 0 ;

A_212 = 0 . 0 ;

A_221 = 0 . 0 ;

A_222 = 0 . 0 ;

Ai_1 = 0 . 0 ;

Ai_2 = 0 . 0 ;

Aj_1 = 0 . 0 ;

Aj_2 = 0 . 0 ;

Ak_1 = 0 . 0 ;

Ak_2 = 0 . 0 ;

S_ij = 0 . 0 ;

R_x0 = dx ( i , j ) ;

R_y0 = dy ( i , j ) ;

R_z0 = dz ( i , j ) ;

/∗ Categor i z ing each data po int that i s not i or j

in the 2 x 2 x 2 cont ingency tab l e ∗/

/∗ There are N−2 po in t s not equal to i or j ∗/

f o r ( k = 0 ; k < N; k++ ) {

i f ( ( k == i ) | | ( k == j ) )

{ cont inue ; } /∗ Skip ca s e s where k = i OR j ∗/

i f ( ( dx ( i , k ) <= R_x0) && ( dy ( i , k ) <= R_y0) &&

( dz ( i , k ) <= R_z0) ) {A_111++;}

e l s e i f ( ( dx ( i , k ) <= R_x0) && ( dy ( i , k ) <= R_y0) &&

( dz ( i , k ) > R_z0) ) {A_112++;}

e l s e i f ( ( dx ( i , k ) <= R_x0) && ( dy ( i , k ) > R_y0) &&

( dz ( i , k ) <= R_z0) ) {A_121++;}

e l s e i f ( ( dx ( i , k ) <= R_x0) && ( dy ( i , k ) > R_y0) &&

( dz ( i , k ) > R_z0) ) {A_122++;}

e l s e i f ( ( dx ( i , k ) > R_x0) && ( dy ( i , k ) <= R_y0) &&

( dz ( i , k ) <= R_z0) ) {A_211++;}
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e l s e i f ( ( dx ( i , k ) > R_x0) && ( dy ( i , k ) <= R_y0) &&

( dz ( i , k ) > R_z0) ) {A_212++;}

e l s e i f ( ( dx ( i , k ) > R_x0) && ( dy ( i , k ) > R_y0) &&

( dz ( i , k ) <= R_z0) ) {A_221++;}

e l s e {A_222++;}

} /∗ End k loop ∗/

/∗ Calcu la te the t o t a l s ∗/

Ai_1 = A_111 + A_112 + A_121 + A_122 ;

Ai_2 = A_211 + A_212 + A_221 + A_222 ;

Aj_1 = A_111 + A_112 + A_211 + A_212 ;

Aj_2 = A_121 + A_122 + A_221 + A_222 ;

Ak_1 = A_111 + A_121 + A_211 + A_221 ;

Ak_2 = A_112 + A_122 + A_212 + A_222 ;

/∗ Calcu la te S( i , j ) ∗/

i f (Ai_1 == 0 | | Ai_2 == 0 | | Aj_1 == 0 | | Aj_2 ==

0 | | Ak_1 == 0 | | Ak_2 == 0 ) {

S_ij = 0 . 0 ;

}

e l s e {

S_ij = (N−2) ∗ (N−2) ∗
( (A_111 ∗ A_111) /( double ) (Ai_1 ∗ Aj_1 ∗ Ak_1

) +

(A_112 ∗ A_112) /( double ) (Ai_1 ∗ Aj_1 ∗ Ak_2

) +

(A_121 ∗ A_121) /( double ) (Ai_1 ∗ Aj_2 ∗ Ak_1

) +

(A_122 ∗ A_122) /( double ) (Ai_1 ∗ Aj_2 ∗ Ak_2

) +
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(A_211 ∗ A_211) /( double ) (Ai_2 ∗ Aj_1 ∗ Ak_1

) +

(A_212 ∗ A_212) /( double ) (Ai_2 ∗ Aj_1 ∗ Ak_2

) +

(A_221 ∗ A_221) /( double ) (Ai_2 ∗ Aj_2 ∗ Ak_1

) +

(A_222 ∗ A_222) /( double ) (Ai_2 ∗ Aj_2 ∗ Ak_2

) ) − (N−2) ;

}

/∗ The t e s t s t a t i s t i c i s the sum over a l l S ( i , j )

∗/

S = S + S_ij ;

} /∗ End j loop ∗/

} /∗ End i loop ∗/

i f (m == 0) {

T = S ; /∗ For the very f i r s t i t e r a t i o n o f the most

outer loop , the quant i ty S i s our r e a l t e s t

s t a t i s t i c T∗/

i f ( t_star != 0 . 0 ) { /∗ I f a c r i t i c a l va lue has

been provided , we use i t to s ee wheter or not

H_0 i s r e j e c t e d . In t h i s case , the f on c t i on

w i l l r e turn 1 f o r a r e j e c t i o n and 0 otherw i se

∗/

i f (T >= t_star ) {

r e s u l t s (1 ) = 1 ; /∗ Reject H_0 ∗/

}

e l s e {

r e s u l t s (1 ) = 0 ; /∗ Do not r e j e c t H_0 ∗/

}

}



C-ix

}

e l s e { /∗ For a l l other i t e r a t i o n s , we check i f S >=

T and i f i t ’ s the case add to the counter ∗/

i f (T <= S) {

count = count + 1 ;

}

}

} /∗ End o f m loop ∗/

/∗ What to re turn ∗/

r e s u l t s (0 ) = T;

i f ( t_star == 0 . 0 ) { /∗ I f no c r i t i c a l va lue s have been

provided , we re turn the p−value based on the

permutated t r i a l s ∗/

r e s u l t s (1 ) = ( double ) count / ( double )n_perm ;

}

/∗ r e turn Rcpp : : wrap (S) ; ( double ) count / ( double )

n_perm ∗/

re turn ( r e s u l t s ) ;

} // End Cfunc
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C.2. R code

To conduct the power simulations we used R code. However, note that for

the multivariate examples the R function ‘power’ below calls the RCPP function

‘comp_T_RCPP’ described previously in section C.1.

# Author : Guillaume Bog l i on i Beaul ieu

# Desc r ip t i on : This program conta in s a func t i on ’ power ’ to

compute power s imu la t i on s f o r s e v e r a l independence

t e s t s

# In the 2D case ( t e s t i n g indep . between X and Y) the

f o l l o w i n g t e s t s o f independence are implemented :

# − Or ig ina l ’ H e l l e r e t a l . ’ t e s t (HHG)

# − ’ H e l l e r e t a l . ’ us ing ranks o f the ob s e rva t i on s (

BLAW)

# − Distance−Covariance t e s t (DCOV)

# − Hi lber t −Smith independence c r i t e r i o n t e s t (HSIC)

# In the 3D case ( t e s t i n g indep . between X, Y and Z) the

f o l l o w i n g t e s t s o f independence are implemented :

# − HHG extended to 3D (mHHG)

# − HHG extended to 3D us ing ranks o f the obs e rva t i on s

(mBLAW)

# − Mult id iment iona l HSIC (mHSIC)

# − Beran−Bilodeau−Lafaye (2007) t e s t (BBL)

# − Genest−Remil lard t e s t (GR) ( usab le in 3D but only

f o r random v a r i a b l e s (1D each ) )

# Notes :

# # Both 2D and 3D with are implemented with in the

same func t i on ’ power ’ , s e e d e t a i l e d d e s c r i p t i o n below

# − For the 2D vers ion , s i n c e we use He l l e r ’ s t e s t on

ranks , no RCPP code i s c a l l e d . Ins tead we d i r e c t l y use

the package ’HHG’

# − Function ’ power ’ outputs ( and saves ) three th ing s :

r e s u l t s in Latex syntax , r e s u l t s in R t a b l e s and

graphs ( pdf ) o f the r e s u l t s

# Last update : 11/17/2016
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# Load requ i r ed l i b r a i r i e s

l i b r a r y (HHG) # Package conta in ing HHG t e s t

l i b r a r y ( energy ) # Package conta in ing d i s tance −covar i ance

t e s t

l i b r a r y (dHSIC) # Package conta in ing d i s tance −covar i ance

t e s t

l i b r a r y ( copula ) # Package to generate data us ing copulas

l i b r a r y ( IndependenceTests ) # Package f o r Lafaye−Bilodeau−
Beran t e s t

l i b r a r y (Rcpp) # RCPP mate r i a l

l i b r a r y ( RcppArmadillo ) # RCPP mate r i a l

# Generate t a b l e s in Latex

l i b r a r y ( xtab l e )

opt ions ( xtab l e . f l o a t i n g = FALSE)

opt ions ( xtab l e . timestamp = " " )

#Use func t i on ’ dependogram ’ o f package IndependenceTests (

the re i s a func i t on with the same name in package ’

copula ’ )

dependogram <− IndependenceTests : : dependogram

# Set path to where r e s u l t s and graphs should be saved

# Paths are d i f f e r e n t wheter I run on my PC or on the DMS

machines

i f ( . Platform$OS . type == " unix " ) {

setwd ( "/ home/ bog l i on i b e /Memoire " )

data . d i r e c t <− "/home/ bog l i on i b e /Memoire/

Results_copulas /"

graphs . d i r e c t <− "/home/ bog l i on i b e /Memoire/

Graphs_copulas /"
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} e l s e {

setwd ( "C: / S e a f i l e / Bog l i on i /RCPP_test " )

data . d i r e c t <− "C: / S e a f i l e / Bog l i on i / Thes i s /

Results_copulas /"

graphs . d i r e c t <− "C: / S e a f i l e / Bog l i on i / Thes i s /

Graphs_copulas /"

}

# Source the l o c a t i o n o f RCPP code ( need in the 3D ca s e s )

sourceCpp ( " RCPP_test . cpp " , verbose = TRUE)

# Function ’ power ’ r e tu rn s the emp i r i c a l power o f the

indepedence t e s t s based on ’B’ s imu la t i on s ( with t h e i r

standard dev i a t i on )

# Empir ica l q u a n t i l e s are used to make the d e c i s i o n on

r e j e c t i n g or not r e j e c t i n g H_0

# Those emp i r i c a l q u a n t i l e s are based on ’M’ s imu la t i on s

under H_0

# Arguments o f func t i on ’ power ’

# nbr . rv Number o f random v a r i a b l e s ( or v e c t o r s )

on which the independence t e s t s are app l i ed (2 or 3) .

# N: A vecto r conta in ing a l l sample s i z e s

f o r which the s imu la t i on s are to be done

# B: Number o f t r i a l s f o r the computation o f

power

# M: Number o f t r i a l s to approximate the

d i s t r i b t u i o n o f T|H_0

# alpha : Leve l o f the t e s t

# dep . type : S t ruc ture o f dependence ( i . e . a

s p e c i f i c H_1)

# indep : TRUE to generate independent X and Y (

t h i s i s used , f o r ins tance , to check that the l e v e l o f

the t e s t i s alpha )
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# cop . para : Parameter o f the copula s t ruc ture , i f a

copula s t r u c t u r e i s used to generate data

# marginal : Marginals o f X, Y and Z , i f a copula

s t r u c t u r e i s used to generate data

# v . dim : Dimension o f the ve c t o r s X, Y and Z , i f

a copula s t r u c t u r e i s used ( hence X, Y, Z always have

the same dimension in the copu lat examples )

# data . d i r e c t : D i r ec tory where the power r e s u l t s are

to be saved

# graphs . d i r e c t : D i r ec to ry where the graphs are to be

saved

# tab l e . capt ion : Caption f o r the produced Latex tab l e

# data . name : Name o f the data . frame conta in ing the

power r e s u l t s

# legend . pos : Po s i t i on o f the legend on the produced

graphs ( " t o p l e f t " , . . . )

# Outputs o f func t i on ’ power ’ :

# − Table o f r e s u l t s in Latex syntax ( in the R conso l e )

# − data . frame o f r e s u l t s ( saved in the s p e c i f i e d

d i r e c t o r y )

# − graph o f r e s u l t s ( saved in the s p e c i f i e d d i r e c t o r )

power <− f unc t i on ( nbr . rv = 2 ,

N = c (10 , 20 , 30 , 40 , 50 , 60 , 70 , 80 ,

90 , 100) ,

B = 10000 ,

M = 50000 ,

alpha = 0 .05 ,

dep . type ,

indep = FALSE,

cop . param = 1 ,

v . dim = 1 ,

marginal = qnorm ,
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data . d i r e c t = ’C: / S e a f i l e / Bog l i on i /

Thes i s / Resu l t s / ’ ,

graphs . d i r e c t = ’C: / S e a f i l e / Bog l i on i /

Thes i s /Graphs / ’ ,

t ab l e . caption ,

data . name ,

legend . pos = ’ t o p l e f t ’ ) {

# Number o f samples s i z e s f o r which we run the

s imulat ion , 10 by d e f a u l t f o r sample s i z e s N = 10 ,

2 0 , . . . , 100

Nbr . runs <− l ength (N)

# I n i t i a l i z e a matrix to conta in a l l r e s u l t s ( one row

f o r each N)

data <− NULL

# Beginning o f outer loop . Everything i s re−done f o r

each sample s i z e , so Nbr . runs t imes in t o t a l

f o r ( k in 1 : Nbr . runs ) {

# I n i t i a l i z e to zero the number o f t imes H_0 i s

r e j e c t e d ( i . e . a ’ succes s ’ ) , f o r each t e s t

# I n i t i a l i z e the vec to r to conta in the sample o f T|H_0

, f o r each t e s t

# D i f f e r e n t t e s t s are cons ide r ed in the b i v a r i a t e ( nbr

. rv = 2) and t r i v a r i a t e ( nbr . rv = 3) ca s e s

i f ( nbr . rv == 2) {

n . su c c e s s .BLAW <− 0

n . su c c e s s .HHG <− 0

n . su c c e s s .DCOV <− 0

n . su c c e s s . HSIC <− 0

T0 .BLAW <− vec to r ( l ength = M)



C-xv

T0 .HHG <− vec to r ( l ength = M)

T0 .DCOV <− vec to r ( l ength = M)

T0 . HSIC <− vec to r ( l ength = M)

}

e l s e {

n . su c c e s s .mBLAW <− 0

n . su c c e s s .mHHG <− 0

n . su c c e s s .mHSIC <− 0

n . su c c e s s .BBL <− 0

n . su c c e s s .GR <− 0

T0 .mBLAW <− vec to r ( l ength = M)

T0 .mHHG <− vec to r ( l ength = M)

T0 .mHSIC <− vec to r ( l ength = M)

T0 .BBL <− vec to r ( l ength = M)

T0 .GR <− vec to r ( l ength = M)

}

# I n i t i a l i z e to NULL the Vector to conta in power

r e s t u l t s ( f o r one s p e c i f i c N)

r e s u l t s <− NULL

# Beginning o f ’ For ’ loop : ’M’ i t e r a t i o n s to have a

sample o f T|H_0, ’B’ i t e r a t i o n s to es t imate the

power

f o r ( i in 1 : (M + B) ) {

# Generate data accord ing to the s p e c i f i e d

dependence s t r u c t u r e ( independent data f o r the

f i r s t ’M’ i t e r a t i o n s )

### 2D CASES ###

# 4 independent c louds
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i f ( dep . type == ’ indep . c louds ’ ) {

X <− matrix ( sample ( c ( −1 ,1) , s i z e = N[ k ] , r ep l a c e

= TRUE ) + rnorm (N[ k ] ) /3 , nrow = N[ k ] , nco l =1)

Y <− matrix ( sample ( c ( −1 ,1) , s i z e = N[ k ] , r ep l a c e

= TRUE ) + rnorm (N[ k ] ) /3 , nrow = N[ k ] , nco l =1)

}

# W−shape

i f ( dep . type == ’w. shape ’ ) {

xu <− r u n i f (N[ k ] , −1, 1)

X <− matrix ( xu + r u n i f (N[ k ] ) /3 , nrow = N[ k ] , nco l

=1)

# Y under the n u l l

i f ( ( i <= M) | | ( indep == TRUE) ) {

yu <− r u n i f (N[ k ] , −1, 1)

Y <− matrix (4∗ ( ( yu^2 − 1/2 ) ^2 + r u n i f (N[ k ] ) /N

[ k ] ) , nrow = N[ k ] , nco l =1)

}

e l s e {

# Y under H_1 ( to obta in T)

Y <− matrix (4∗ ( ( xu^2 − 1/2 ) ^2 + r u n i f (N[ k ] ) /N

[ k ] ) , nrow = N[ k ] , nco l =1)

}

}

# Diamond

i f ( dep . type == ’ diamond ’ ) {

theta <− −pi /4

r r <− rbind ( c ( cos ( theta ) , −s i n ( theta ) ) ,

c ( s i n ( theta ) , cos ( theta ) ) )

x1 <− r u n i f (N[ k ] , −1, 1 )

y1 <− r u n i f (N[ k ] , −1, 1 )
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tmp . dep <− cbind ( x1 , y1 ) %∗% rr

X <− matrix (tmp . dep [ , 1 ] , nrow = N[ k ] , nco l =1)

# We genreate Y under the n u l l

i f ( ( i <= M) | | ( indep == TRUE) ) {

x2 <− r u n i f (N[ k ] , −1, 1 )

y2 <− r u n i f (N[ k ] , −1, 1 )

tmp . ind <− cbind ( x2 , y2 ) %∗% rr

Y <− matrix (tmp . ind [ , 2 ] , nrow = N[ k ] , nco l =1)

}

e l s e {

# We generate Y under H_1 to obta in T

Y <− matrix (tmp . dep [ , 2 ] , nrow = N[ k ] , nco l =1)

}

}

# Parabola

i f ( dep . type == ’ parabola ’ ) {

X <− matrix ( r u n i f (N[ k ] , −1, 1) , nrow = N[ k ] , nco l

=1)

# We genreate Y under the n u l l

i f ( ( i <= M) | | ( indep == TRUE) ) {

yu <− r u n i f (N[ k ] , −1, 1)

Y <− matrix ( ( yu^2 + r u n i f (N[ k ] ) ) /2 , nrow = N[ k ] ,

nco l =1)

}

e l s e {

# We generate Y under H_1 to obta in T

Y <− matrix ( (X^2 + r u n i f (N[ k ] ) ) /2 , nrow = N[ k ] ,

nco l =1)

}

}

# 2 − Parabolas
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i f ( dep . type == ’ two . parabolas ’ ) {

X <− matrix ( r u n i f (N[ k ] , −1, 1) , nrow = N[ k ] , nco l

=1)

# We generate Y under the n u l l

i f ( ( i <= M) | | ( indep == TRUE) ) {

yu <− r u n i f (N[ k ] , −1, 1)

Y <− matrix ( ( yu^2 + r u n i f (N[ k ] ) /2 ) ∗( sample ( c

( −1 ,1) , s i z e=N[ k ] , r ep l a c e = TRUE ) ) , nrow =

N[ k ] , nco l =1)

}

e l s e {

# We generate Y under H_1 to obta in T

Y <− matrix ( (X^2 + r u n i f (N[ k ] ) /2 ) ∗( sample ( c

( −1 ,1) , s i z e=N[ k ] , r ep l a c e = TRUE ) ) , nrow =

N[ k ] , nco l =1)

}

}

# C i r c l e

i f ( dep . type == ’ c i r c l e ’ ) {

xu <− r u n i f (N[ k ] , −1, 1)

X <− matrix ( s i n ( xu∗ pi ) + rnorm ( N[ k ] ) /8 , nrow =

N[ k ] , nco l =1)

# We generate Y under the n u l l

i f ( ( i <= M) | | ( indep == TRUE) ) {

yu <− r u n i f (N[ k ] , −1, 1)

Y <− matrix ( cos ( yu∗ pi ) + rnorm ( N[ k ] ) /8 , nrow

= N[ k ] , nco l =1)

}

e l s e {

# We generate Y under H_1 to obta in T

Y <− matrix ( cos ( xu∗ pi ) + rnorm ( N[ k ] ) /8 , nrow

= N[ k ] , nco l =1)
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}

}

# Linear

i f ( dep . type == ’ l i n e a r ’ ) {

X <− matrix ( r u n i f (N[ k ] ) , nrow = N[ k ] , nco l =1)

# We generate Y under the n u l l

i f ( ( i <= M) | | ( indep == TRUE) ) {

yu <− r u n i f (N[ k ] )

Y <− matrix ( yu + rnorm (N[ k ] , 0 , 0 . 5 ) , nrow = N[ k

] , nco l =1)

}

e l s e {

# We genreate X,Y, Z under H_1 to obta in T

Y <− matrix (X + rnorm (N[ k ] , 0 , 0 . 5 ) , nrow = N[ k

] , nco l =1)

}

}

# Exponent ia l

i f ( dep . type == ’ exponent ia l ’ ) {

X <− matrix ( r u n i f (N[ k ] , −3, 3) , nrow = N[ k ] , nco l

=1)

# We generate Y under the n u l l

i f ( ( i <= M) | | ( indep == TRUE) ) {

yu <− r u n i f (N[ k ] , −3, 3)

Y <− matrix ( exp ( yu/3) + r u n i f (N[ k ] , −3, 3) , nrow

= N[ k ] , nco l =1)

}

e l s e {

# We genreate X,Y, Z under H_1 to obta in T

Y <− matrix ( exp (X/3) + r u n i f (N[ k ] , −3, 3) , nrow

= N[ k ] , nco l =1)
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}

}

# Sine

i f ( dep . type == ’ s ine ’ ) {

X <− matrix ( r u n i f (N[ k ] , 0 , 2∗ pi ) , nrow = N[ k ] ,

nco l =1)

# We generate Y under the n u l l

i f ( ( i <= M) | | ( indep == TRUE) ) {

yu <− r u n i f (N[ k ] , 0 , 2∗ pi )

Y <− matrix ( s i n ( yu ) + rnorm (N[ k ] ) , nrow = N[ k ] ,

nco l =1)

}

e l s e {

# We genreate X,Y, Z under H_1 to obta in T

Y <− matrix ( s i n (X) + rnorm (N[ k ] ) , nrow = N[ k ] ,

nco l =1)

}

}

# Polynomial

i f ( dep . type == ’ polynomial ’ ) {

X <− matrix ( rnorm (2∗N[ k ] ) , nrow = N[ k ] , nco l

=2)

e p s i l o n <− matrix ( rnorm (2∗N[ k ] , 0 , 6) , nrow = N[ k

] , nco l =2)

# We generate Y under the n u l l

i f ( ( i <= M) | | ( indep == TRUE) ) {

xu <− matrix ( rnorm (2∗N[ k ] ) , nrow = N[ k ] , nco l =2)

Y <− matrix ( xu + 4∗xu^2 + eps i l on , nrow = N[ k ] ,

nco l =2)

}

e l s e {
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# We genreate X,Y, Z under H_1 to obta in T

Y <− matrix (X + 4∗X^2 + eps i l on , nrow = N[ k ] ,

nco l =1)

}

}

i f ( dep . type == ’2d . pa i rw i s e . indep ’ ) {

X <− matrix ( rnorm (N[ k ] ) , nrow = N[ k ] , nco l =1)

W <− matrix ( rnorm (N[ k ] ) , nrow = N[ k ] , nco l =1)

Z0 <− matrix ( rnorm (N[ k ] ) , nrow = N[ k ] , nco l =1)

# We genreate X,Y, Z under the n u l l

i f ( ( i <= M) | | ( indep == TRUE) ) {

Y <− matrix ( cbind (W, Z0) , nrow = N[ k ] , nco l =2)

}

e l s e {

# We generate Y under H_1 to obta in T

Z <− abs (Z0 ) ∗ s i gn (X ∗ W)

Y <− matrix ( cbind (W, Z) , nrow = N[ k ] , nco l =2)

}

}

#Generated v ia COPULAS

i f ( dep . type == ’2d . c layton ’ ) {

# We generate X,Y under the n u l l

i f ( ( i <= M) | | ( indep == TRUE) ) {

data . cop . x <− rCopula (N[ k ] , archmCopula ( " c layton

" , param = cop . param , dim = 2∗v . dim , use .

indepC = "TRUE" ) )



C-xxii

data . cop . y <− rCopula (N[ k ] , archmCopula ( " c layton

" , param = cop . param , dim = 2∗v . dim , use .

indepC = "TRUE" ) )

X <− matrix ( marginal ( data . cop . x [ , seq ( 1 : v . dim) ] )

, nrow = N[ k ] , nco l = v . dim)

Y <− matrix ( marginal ( data . cop . y [ , v . dim + seq ( 1 :

v . dim) ] ) , nrow = N[ k ] , nco l = v . dim)

}

e l s e {

# We generate X,Y under H_1 to obta in T

data . cop <− rCopula (N[ k ] , archmCopula ( " c layton " ,

param = cop . param , dim = 2∗v . dim , use . indepC

= "TRUE" ) )

X <− matrix ( marginal ( data . cop [ , seq ( 1 : v . dim) ] )

, nrow = N[ k ] , nco l = v . dim)

Y <− matrix ( marginal ( data . cop [ , v . dim + seq ( 1 : v .

dim) ] ) , nrow = N[ k ] , nco l = v . dim)

}

}

i f ( dep . type == ’2d . gumbel ’ ) {

# We generate X,Y under the n u l l

i f ( ( i <= M) | | ( indep == TRUE) ) {

data . cop . x <− rCopula (N[ k ] , archmCopula ( " gumbel

" , param = cop . param , dim = 2∗v . dim , use .

indepC = "TRUE" ) )

data . cop . y <− rCopula (N[ k ] , archmCopula ( " gumbel

" , param = cop . param , dim = 2∗v . dim , use .

indepC = "TRUE" ) )

X <− matrix ( marginal ( data . cop . x [ , seq ( 1 : v . dim) ] )

, nrow = N[ k ] , nco l = v . dim)

Y <− matrix ( marginal ( data . cop . y [ , v . dim + seq ( 1 :

v . dim) ] ) , nrow = N[ k ] , nco l = v . dim)
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}

e l s e {

# We generate X,Y under H_1 to obta in T

data . cop <− rCopula (N[ k ] , archmCopula ( " gumbel " ,

param = cop . param , dim = 2∗v . dim , use . indepC

= "TRUE" ) )

X <− matrix ( marginal ( data . cop [ , seq ( 1 : v . dim) ] )

, nrow = N[ k ] , nco l = v . dim)

Y <− matrix ( marginal ( data . cop [ , v . dim + seq ( 1 : v .

dim) ] ) , nrow = N[ k ] , nco l = v . dim)

}

}

i f ( dep . type == ’2d . normal ’ ) {

# We generate X,Y under the n u l l

i f ( ( i <= M) | | ( indep == TRUE) ) {

data . cop . x <− rCopula (N[ k ] , normalCopula (param =

cop . param , dim = 2∗v . dim , d i s p s t r = " un " ) )

data . cop . y <− rCopula (N[ k ] , normalCopula (param =

cop . param , dim = 2∗v . dim , d i s p s t r = " un " ) )

X <− matrix ( marginal ( data . cop . x [ , seq ( 1 : v . dim) ] )

, nrow = N[ k ] , nco l = v . dim)

Y <− matrix ( marginal ( data . cop . y [ , v . dim + seq ( 1 :

v . dim) ] ) , nrow = N[ k ] , nco l = v . dim)

}

e l s e {

# We generate X,Y under H_1 to obta in T

data . cop <− rCopula (N[ k ] , normalCopula (param =

cop . param , dim = 2∗v . dim , d i s p s t r = " un " ) )

X <− matrix ( marginal ( data . cop [ , seq ( 1 : v . dim) ] )

, nrow = N[ k ] , nco l = v . dim)
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Y <− matrix ( marginal ( data . cop [ , v . dim + seq ( 1 : v .

dim) ] ) , nrow = N[ k ] , nco l = v . dim)

}

}

# X and Y in 5 dimensions with , Y = log (X^2) f o r

each dimension

i f ( dep . type == ’2d . log ’ ) {

X <− matrix ( rnorm (5∗N[ k ] ) , nrow = N[ k ] )

# We generate Y under the n u l l

i f ( ( i <= M) | | ( indep == TRUE) ) {

xu <− matrix ( rnorm (5∗N[ k ] ) , nrow = N[ k ] )

Y <− matrix ( l og ( xu^2) , nrow = N[ k ] )

}

e l s e {

# We generate Y under H_1 to obta in T

Y <− matrix ( l og (X^2) , nrow = N[ k ] )

}

}

# Y = e p s i l o n ∗ X

i f ( dep . type == ’2d . ep s i l on ’ ) {

X <− matrix ( rnorm (5∗N[ k ] ) , nrow = N[ k ] )

# We generate Y under the n u l l

i f ( ( i <= M) | | ( indep == TRUE) ) {

xu <− matrix ( rnorm (5∗N[ k ] ) , nrow = N[ k ] )

Y <− matrix ( xu ∗ matrix ( rnorm (5∗N[ k ] ) , nrow = N

[ k ] ) , nrow = N[ k ] )

}

e l s e {

# We generate Y under H_1 to obta in T
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Y <− matrix (X ∗ matrix ( rnorm (5∗N[ k ] ) , nrow = N

[ k ] ) , nrow = N[ k ] )

}

}

# Y = B_1∗X + B_2∗X^2

i f ( dep . type == ’2d . beta ’ ) {

X <− matrix ( rnorm (5∗N[ k ] ) , nrow = N[ k ] )

e p s i l o n <− matrix ( rnorm (5∗N[ k ] , 0 , 3) , nrow = N[ k

] )

# We generate Y under the n u l l

i f ( ( i <= M) | | ( indep == TRUE) ) {

xu <− matrix ( rnorm (2∗N[ k ] ) , nrow = N[ k ] )

Y <− matrix ( cbind ( xu [ , 1 ] + 4∗xu [ , 1 ] ^ 2 +

e p s i l o n [ , 1 ] , xu [ , 2 ] + 4∗xu [ , 2 ] ^ 2 + e p s i l o n

[ , 2 ] , e p s i l o n [ , 2 + seq ( 1 : 3 ) ] ) , nrow = N[ k ] )

}

e l s e {

# We generate Y under H_1 to obta in T

Y <− matrix ( cbind (X[ , 1 ] + 4∗X[ , 1 ] ^ 2 +e p s i l o n

[ , 1 ] , X[ , 2 ] + 4∗X[ , 2 ] ^ 2 + e p s i l o n [ , 2 ] ,

e p s i l o n [ , 2 + seq ( 1 : 3 ) ] ) , nrow = N[ k ] )

}

}

i f ( dep . type == ’2d . b ig . no i se ’ ) {

X <− matrix ( cbind ( rnorm (N[ k ] ) , rnorm (N[ k ] ,

0 , 4) ) , nrow = N[ k ] )

e p s i l o n <− matrix ( rnorm (N[ k ] , 0 , 2) , nrow = N[ k ] )

# We generate Y under the n u l l

i f ( ( i <= M) | | ( indep == TRUE) ) {
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xu <− matrix ( cbind ( rnorm (N[ k ] ) , rnorm (N[ k ] , 0 ,

4) ) , nrow = N[ k ] )

Y <− matrix ( xu [ , 1 ] ^ 2 + eps i l on , nrow = N[ k ] )

}

e l s e {

# We generate Y under H_1 to obta in T

Y <− matrix (X[ , 1 ] ^ 2 + eps i l on , nrow = N[ k ] )

}

}

### 3D CASES ###

# 3 pa i rw i s e independent N(0 , 1) ( s t i l l j o i n t l y

dependent )

i f ( dep . type == ’3d . pa i rw i s e . indep ’ ) {

X <− matrix ( rnorm (N[ k ] ) , nrow = N[ k ] , nco l =1)

Y <− matrix ( rnorm (N[ k ] ) , nrow = N[ k ] , nco l =1)

# We genreate X,Y, Z under the n u l l

i f ( ( i <= M) | | ( indep == TRUE) ) {

Z <− matrix ( rnorm (N[ k ] ) , nrow = N[ k ] , nco l =1)

}

e l s e {

# We generate X,Y, Z under H_1 to obta in T

Z <− matrix ( abs ( rnorm (N[ k ] ) ) ∗ s i gn (X∗Y) , nrow =

N[ k ] , nco l =1)

}

}

i f ( dep . type == ’3d . cos . s in ’ ) {

X <− matrix ( rnorm (N[ k ] , 0 , 3 ) , nrow = N[ k ] , nco l

=1)



C-xxvii

Y <− matrix ( rnorm (N[ k ] , 0 , 3) , nrow = N[ k ] , nco l

=1)

# We genreate X,Y, Z under the n u l l

i f ( ( i <= M) | | ( indep == TRUE) ) {

U <− rnorm (N[ k ] , 0 , 3)

V <− rnorm (N[ k ] , 0 , 3)

Z <− matrix ( cos (U) + s i n (V) + rnorm (N[ k ] ) , nrow

= N[ k ] , nco l =1)

}

e l s e {

# We generate X,Y, Z under H_1 to obta in T

Z <− matrix ( cos (X) + s i n (Y) + rnorm (N[ k ] ) , nrow

= N[ k ] , nco l =1)

}

}

i f ( dep . type == ’3d . cos . exp ’ ) {

X <− matrix ( rnorm (N[ k ] , 0 , 3 ) , nrow = N[ k ] , nco l

=1)

Y <− matrix ( rnorm (N[ k ] , 0 , 3) , nrow = N[ k ] , nco l

=1)

# We genreate X,Y, Z under the n u l l

i f ( ( i <= M) | | ( indep == TRUE) ) {

U <− rnorm (N[ k ] , 0 , 3)

V <− rnorm (N[ k ] , 0 , 3)

Z <− matrix ( cos (U) + exp (V/5) + rnorm (N[ k ] ) ,

nrow = N[ k ] , nco l =1)

}

e l s e {

# We generate X,Y, Z under H_1 to obta in T

Z <− matrix ( cos (X) + exp (Y/5) + rnorm (N[ k ] ) ,

nrow = N[ k ] , nco l =1)

}
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}

i f ( dep . type == ’3d . l i n e a r ’ ) {

X <− matrix ( rnorm (N[ k ] ) , nrow = N[ k ] , nco l =1)

Y <− matrix ( rnorm (N[ k ] ) , nrow = N[ k ] , nco l =1)

# We genreate X,Y, Z under the n u l l

i f ( ( i <= M) | | ( indep == TRUE) ) {

U <− rnorm (N[ k ] )

V <− rnorm (N[ k ] )

Z <− matrix (U + V + rnorm (N[ k ] , 0 , 3) , nrow = N[

k ] , nco l =1)

}

e l s e {

# We generate X,Y, Z under H_1 to obta in T

Z <− matrix (X + Y + rnorm (N[ k ] , 0 , 3) , nrow = N[

k ] , nco l =1)

}

}

i f ( dep . type == ’3d . vect . pa i rw i s e . indep ’ ) {

X <− matrix ( rnorm (2∗N[ k ] ) , nrow = N[ k ] , nco l =2)

Z <− matrix ( rnorm (2∗N[ k ] ) , nrow = N[ k ] , nco l =2)

# We genreate X,Y, Z under the n u l l

i f ( ( i <= M) | | ( indep == TRUE) ) {

Y <− matrix ( rnorm (2∗N[ k ] ) , nrow = N[ k ] , nco l =2)

}

e l s e {

# We generate X,Y, Z under H_1 to obta in T

Y <− matrix ( cbind ( abs ( rnorm (N[ k ] ) ) ∗ s i gn (X[ , 1 ] ∗X

[ , 2 ] ) , rnorm (N[ k ] ) ) , nrow = N[ k ] , nco l =2)

}

}
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i f ( dep . type == ’3d . vect . pa i rw i s e . indep . v2 ’ ) {

X <− matrix ( rnorm (2∗N[ k ] ) , nrow = N[ k ] , nco l =2)

# We genreate X,Y, Z under the n u l l

i f ( ( i <= M) | | ( indep == TRUE) ) {

Y <− matrix ( rnorm (2∗N[ k ] ) , nrow = N[ k ] , nco l =2)

Z <− matrix ( rnorm (2∗N[ k ] ) , nrow = N[ k ] , nco l =2)

}

e l s e {

# We generate X,Y, Z under H_1 to obta in T

Y1 <− rnorm (N[ k ] )

Z1 <− rnorm (N[ k ] )

Y2 <− abs ( rnorm (N[ k ] ) ) ∗ s i gn (X[ , 1 ] ∗ Z1)

Z2 <− abs ( rnorm (N[ k ] ) ) ∗ s i gn (X[ , 2 ] ∗ Y1)

Y <− matrix ( cbind (Y1 , Y2) , nrow = N[ k ] , nco l =2)

Z <− matrix ( cbind (Z1 , Z2 ) , nrow = N[ k ] , nco l =2)

}

}

#Generated v ia COPULAS

i f ( dep . type == ’3d . c layton ’ ) {

# We generate X,Y, Z under the n u l l

i f ( ( i <= M) | | ( indep == TRUE) ) {

data . cop . x <− rCopula (N[ k ] , archmCopula ( " c layton

" , param = cop . param , dim = 3∗v . dim , use .

indepC = "TRUE" ) )

data . cop . y <− rCopula (N[ k ] , archmCopula ( " c layton

" , param = cop . param , dim = 3∗v . dim , use .

indepC = "TRUE" ) )
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data . cop . z <− rCopula (N[ k ] , archmCopula ( " c layton

" , param = cop . param , dim = 3∗v . dim , use .

indepC = "TRUE" ) )

X <− matrix ( marginal ( data . cop . x [ , seq ( 1 : v . dim) ] )

, nrow = N[ k ] , nco l = v . dim)

Y <− matrix ( marginal ( data . cop . y [ , v . dim + seq ( 1 :

v . dim) ] ) , nrow = N[ k ] , nco l = v . dim)

Z <− matrix ( marginal ( data . cop . z [ , 2∗v . dim + seq

( 1 : v . dim) ] ) , nrow = N[ k ] , nco l = v . dim)

}

e l s e {

# We generate X,Y, Z under H_1 to obta in T

data . cop <− rCopula (N[ k ] , archmCopula ( " c layton " ,

param = cop . param , dim = 3∗v . dim , use . indepC

= "TRUE" ) )

X <− matrix ( marginal ( data . cop [ , seq ( 1 : v . dim) ] )

, nrow = N[ k ] , nco l = v . dim)

Y <− matrix ( marginal ( data . cop [ , v . dim + seq ( 1 : v .

dim) ] ) , nrow = N[ k ] , nco l = v . dim)

Z <− matrix ( marginal ( data . cop [ , 2∗v . dim + seq ( 1 :

v . dim) ] ) , nrow = N[ k ] , nco l = v . dim)

}

}

i f ( dep . type == ’3d . gumbel ’ ) {

# We generate X,Y, Z under the n u l l

i f ( ( i <= M) | | ( indep == TRUE) ) {

data . cop . x <− rCopula (N[ k ] , archmCopula ( " gumbel

" , param = cop . param , dim = 3∗v . dim , use .

indepC = "TRUE" ) )
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data . cop . y <− rCopula (N[ k ] , archmCopula ( " gumbel

" , param = cop . param , dim = 3∗v . dim , use .

indepC = "TRUE" ) )

data . cop . z <− rCopula (N[ k ] , archmCopula ( " gumbel

" , param = cop . param , dim = 3∗v . dim , use .

indepC = "TRUE" ) )

X <− matrix ( marginal ( data . cop . x [ , seq ( 1 : v . dim) ] )

, nrow = N[ k ] , nco l = v . dim)

Y <− matrix ( marginal ( data . cop . y [ , v . dim + seq ( 1 :

v . dim) ] ) , nrow = N[ k ] , nco l = v . dim)

Z <− matrix ( marginal ( data . cop . z [ , 2∗v . dim + seq

( 1 : v . dim) ] ) , nrow = N[ k ] , nco l = v . dim)

}

e l s e {

# We generate X,Y, Z under H_1 to obta in T

data . cop <− rCopula (N[ k ] , archmCopula ( " gumbel " ,

param = cop . param , dim = 3∗v . dim , use . indepC

= "TRUE" ) )

X <− matrix ( marginal ( data . cop [ , seq ( 1 : v . dim) ] )

, nrow = N[ k ] , nco l = v . dim)

Y <− matrix ( marginal ( data . cop [ , v . dim + seq ( 1 : v .

dim) ] ) , nrow = N[ k ] , nco l = v . dim)

Z <− matrix ( marginal ( data . cop [ , 2∗v . dim + seq ( 1 :

v . dim) ] ) , nrow = N[ k ] , nco l = v . dim)

}

}

i f ( dep . type == ’3d . normal ’ ) {

# We generate X,Y, Z under the n u l l

i f ( ( i <= M) | | ( indep == TRUE) ) {

data . cop . x <− rCopula (N[ k ] , normalCopula (param =

cop . param , dim = 3∗v . dim , d i s p s t r = " un " ) )
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data . cop . y <− rCopula (N[ k ] , normalCopula (param =

cop . param , dim = 3∗v . dim , d i s p s t r = " un " ) )

data . cop . z <− rCopula (N[ k ] , normalCopula (param =

cop . param , dim = 3∗v . dim , d i s p s t r = " un " ) )

X <− matrix ( marginal ( data . cop . x [ , seq ( 1 : v . dim) ] )

, nrow = N[ k ] , nco l = v . dim)

Y <− matrix ( marginal ( data . cop . y [ , v . dim + seq ( 1 :

v . dim) ] ) , nrow = N[ k ] , nco l = v . dim)

Z <− matrix ( marginal ( data . cop . z [ , 2∗v . dim + seq

( 1 : v . dim) ] ) , nrow = N[ k ] , nco l = v . dim)

}

e l s e {

# We generate X,Y, Z under H_1 to obta in T

data . cop <− rCopula (N[ k ] , normalCopula (param =

cop . param , dim = 3∗v . dim , d i s p s t r = " un " ) )

X <− matrix ( marginal ( data . cop [ , seq ( 1 : v . dim) ] )

, nrow = N[ k ] , nco l = v . dim)

Y <− matrix ( marginal ( data . cop [ , v . dim + seq ( 1 : v .

dim) ] ) , nrow = N[ k ] , nco l = v . dim)

Z <− matrix ( marginal ( data . cop [ , 2∗v . dim + seq ( 1 :

v . dim) ] ) , nrow = N[ k ] , nco l = v . dim)

}

}

# Compute ranks o f X and Y ( and Z i f a p p l i c a b l e )

# S i z e o f X ( number o f components o f the random

vecto r X, hence 1 i f X i s a random v a r i a b l e )

p <− nco l (X)

# S i z e o f Y

q <− nco l (Y)

# I n i t i a l i z e the matr i ce s conta ing the ranks o f X

and Y

X. rank <− NULL

Y. rank <− NULL
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# Per column ranks o f X

f o r ( j in 1 : p) {

X. rank <− cbind (X. rank , rank (X[ , j ] ) )

}

# Per column ranks o f Y

f o r ( j in 1 : q ) {

Y. rank <− cbind (Y. rank , rank (Y[ , j ] ) )

}

# Samething f o r Z , i f the r e i s a Z

i f ( nbr . rv == 3) {

r <− nco l (Z)

Z . rank <− NULL

f o r ( j in 1 : r ) {

Z . rank <− cbind (Z . rank , rank (Z [ , j ] ) )

}

}

# Compute d i s t a n c e s between each elements o f X and Y

, as we l l as X. rank and Y. rank ( only f o r 2D ca s e s

)

# This i s nece s sa ry to run the HHG t e s t v ia the HHG

package

i f ( nbr . rv == 2) {

Dx = as . matrix ( d i s t ( (X) , d iag = TRUE, upper = TRUE

) )

Dy = as . matrix ( d i s t ( (Y) , d iag = TRUE, upper = TRUE

) )

Dx . rank = as . matrix ( d i s t ( (X. rank ) , d iag = TRUE,

upper = TRUE) )

Dy . rank = as . matrix ( d i s t ( (Y. rank ) , d iag = TRUE,

upper = TRUE) )

}
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# For the f i r s t M i t e r a t i o n s , T0 i s c a l c u l a t e d and

we s t o r e i t s va lue

# This i s done f o r each t e s t ( d i f f e n r e n t t e s t s in

the 2D and 3D cas e s )

i f ( i <= M) {

i f ( nbr . rv == 2) {

T0 .BLAW[ i ] <− hhg . t e s t (Dx . rank , Dy . rank , nr . perm

= 0)$sum . ch i sq

T0 .HHG[ i ] <− hhg . t e s t (Dx, Dy, nr . perm = 0)$sum .

ch i sq

T0 .DCOV[ i ] <− dcov . t e s t (X, Y, R = 0) $est imate

T0 . HSIC [ i ] <− dhs i c (X, Y)$dHSIC

}

e l s e {

T0 .mBLAW[ i ] <− comp_T_RCPP(X. rank , Y. rank , Z .

rank , 0 , 0) [ 1 ]

T0 .mHHG[ i ] <− comp_T_RCPP(X, Y, Z , 0 , 0) [ 1 ]

T0 .mHSIC[ i ] <− dhs i c . t e s t ( l i s t (X, Y, Z) , B = 0)

$ s t a t i s t i c

i f ( v . dim == 1) {

T0 .GR[ i ] <− indepTest ( cbind (X, Y, Z) , d =

indepTestSim (n = N[ k ] , p = 3 , m = 3 , N = 6 ,

verbose = FALSE) ) $g l oba l . s t a t i s t i c

T0 .BBL[ i ] <− dependogram ( cbind (X, Y, Z) , B =

0 , vecd . ou . p = c (v . dim , v . dim , v . dim) ,

d i sp l ay = FALSE, g raph i c s=FALSE)$Rn

}

}

} # End case i <= M

#Calcu la te the (1−alpha )−quan t i l e o f T0

i f ( i == M + 1) {

i f ( nbr . rv == 2) {

quant .BLAW <− quan t i l e (T0 .BLAW, 1 − alpha )

quant .HHG <− quan t i l e (T0 .HHG, 1 − alpha )



C-xxxv

quant .DCOV <− quan t i l e (T0 .DCOV, 1 − alpha )

quant . HSIC <− quan t i l e (T0 . HSIC , 1 − alpha )

}

e l s e {

quant .mBLAW <− quan t i l e (T0 .mBLAW, 1 − alpha )

quant .mHHG <− quan t i l e (T0 .mHHG, 1 − alpha )

quant .mHSIC <− quan t i l e (T0 .mHSIC, 1 − alpha )

i f ( v . dim == 1) {

quant .GR <− quan t i l e (T0 .GR, 1 − alpha )

quant .BBL <− quan t i l e (T0 .BBL, 1 − alpha )

}

}

} # End case i == M + 1

#For the remaining B i t e r a t i o n s , we compute T f o r

each t e s t and count the number o f t imes H0 i s

r e j e c t e d in each case

i f ( i >= M + 1) {

i f ( nbr . rv == 2) {

T.BLAW <− hhg . t e s t (Dx . rank , Dy . rank , nr . perm =

0)$sum . ch i sq

T.HHG <− hhg . t e s t (Dx, Dy, nr . perm = 0)$sum .

ch i sq

T.DCOV <− dcov . t e s t (X, Y, R = 0) $est imate

T. HSIC <− dhs i c (X, Y)$dHSIC

i f (T.BLAW > quant .BLAW) {

n . su c c e s s .BLAW = n . suc c e s s .BLAW + 1

}

i f (T.HHG > quant .HHG) {

n . su c c e s s .HHG = n . su c c e s s .HHG + 1

}

i f (T.DCOV > quant .DCOV) {

n . su c c e s s .DCOV = n . su c c e s s .DCOV + 1

}
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i f (T. HSIC > quant . HSIC) {

n . su c c e s s . HSIC = n . su c c e s s . HSIC + 1

}

} #End case nbr . rv == 2

e l s e {

i f ( v . dim == 1) {

T.GR <− indepTest ( cbind (X, Y, Z) , d =

indepTestSim (n = N[ k ] , p = 3 , m = 3 , N = 6 ,

verbose = FALSE) ) $g l oba l . s t a t i s t i c

T.BBL <− dependogram ( cbind (X, Y, Z) , B = 0 ,

vecd . ou . p = c (v . dim , v . dim , v . dim) , d i sp l ay

= FALSE, g raph i c s=FALSE)$Rn

i f (T.BBL > quant .BBL) {

n . su c c e s s .BBL = n . su c c e s s .BBL + 1

}

i f (T.GR > quant .GR) {

n . su c c e s s .GR = n . su c c e s s .GR + 1

}

}

i f (comp_T_RCPP(X. rank , Y. rank , Z . rank , 0 , quant .

mBLAW) [ 2 ] == 1) {

n . su c c e s s .mBLAW = n . suc c e s s .mBLAW + 1

}

i f (comp_T_RCPP(X, Y, Z , 0 , quant .mHHG) [ 2 ] == 1)

{

n . su c c e s s .mHHG = n . su c c e s s .mHHG + 1

}

T.mHSIC <− dhs i c . t e s t ( l i s t (X, Y, Z) , B = 0)

$ s t a t i s t i c

i f (T.mHSIC > quant .mHSIC) {
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n . s u c c e s s .mHSIC = n . su c c e s s .mHSIC + 1

}

} # End case nbr . rv == 3

} # End case i >= M + 1

} # End f o r loop in i ( done M+B times )

#Calcu la te the power based on the n . sim s imu la t i on s

i f ( nbr . rv == 2) {

power .BLAW <− n . su c c e s s .BLAW / B

power .HHG <− n . su c c e s s .HHG / B

power .DCOV <− n . su c c e s s .DCOV / B

power . HSIC <− n . su c c e s s . HSIC / B

# For one sample s i z e , p lace the power r e s u l t s in a

vec to r

r e s u l t s <− c ( round (N[ k ] , 0) ,

round (100∗ power .BLAW, 1 ) ,

round (100∗ s q r t ( power .BLAW ∗ (1−power

.BLAW) /B) , 1) ,

round (100∗ power .HHG, 1) ,

round (100∗ s q r t ( power .HHG ∗ (1−power .

HHG) /B) , 1) ,

round (100∗ power .DCOV, 1) ,

round (100∗ s q r t ( power .DCOV ∗ (1−power

.DCOV) /B) , 1) ,

round (100∗ power . HSIC , 1) ,

round (100∗ s q r t ( power . HSIC ∗ (1−power

. HSIC) /B) , 1)

)

}

e l s e {
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power .mBLAW <− n . su c c e s s .mBLAW / B

power .mHHG <− n . su c c e s s .mHHG / B

power .mHSIC <− n . su c c e s s .mHSIC / B

power .BBL <− n . su c c e s s .BBL / B

power .GR <− n . su c c e s s .GR / B

# For one sample s i z e , p lace the power r e s u l t s in a

vec to r

i f ( v . dim == 1) {

r e s u l t s <− c ( round (N[ k ] , 0) ,

round (100∗ power .mBLAW, 1 ) ,

round (100∗ s q r t ( power .mBLAW ∗ (1−power

.mBLAW) /B) , 1) ,

round (100∗ power .mHHG, 1) ,

round (100∗ s q r t ( power .mHHG ∗ (1−power .

mHHG) /B) , 1) ,

round (100∗ power .BBL, 1) ,

round (100∗ s q r t ( power .BBL ∗ (1−power .

BBL) /B) , 1) ,

round (100∗ power .mHSIC, 1) ,

round (100∗ s q r t ( power .mHSIC ∗ (1−power

.mHSIC) /B) , 1) ,

round (100∗ power .GR, 1) ,

round (100∗ s q r t ( power .GR ∗ (1−power .GR

) /B) , 1)

)

}

e l s e {

r e s u l t s <− c ( round (N[ k ] , 0) ,

round (100∗ power .mBLAW, 1 ) ,

round (100∗ s q r t ( power .mBLAW ∗ (1−power

.mBLAW) /B) , 1) ,

round (100∗ power .mHHG, 1) ,

round (100∗ s q r t ( power .mHHG ∗ (1−power .

mHHG) /B) , 1) ,
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round (100∗ power .mHSIC, 1) ,

round (100∗ s q r t ( power .mHSIC ∗ (1−power

.mHSIC) /B) , 1)

)

}

} # Case nbr . rv ==3

# Bind those r e s u l t s to the prev ious r e s u l t s ( from

other sample s i z e s )

# A data . frame i s r equ i r ed to produce n i c e t a b l e s

d i r e c t l y expor tab l e in Latex us ing the ’ xtable ’

package

data <− rbind . data . frame ( data , r e s u l t s , row . names =

NULL)

} # End o f For loop in k ( done f o r each sample s i z e )

# Name the columns

i f ( nbr . rv == 2) {

colnames ( data ) <− c ( "N" , "BLAW" , " ( sd ) " , "HHG" , " ( sd )

" , "DCOV" , " ( sd ) " , "HSIC" , " ( sd ) " )

} e l s e i f ( nbr . rv == 3 && v . dim == 1) {

colnames ( data ) <− c ( "N" , "mBLAW" , " ( sd ) " , "mHHG" , " (

sd ) " , "BBL" , " ( sd ) " , "mHSIC" , " ( sd ) " , "GR" , " ( sd )

" )

} e l s e {

colnames ( data ) <− c ( "N" , "mBLAW" , " ( sd ) " , "mHHG" , " (

sd ) " , "mHSIC" , " ( sd ) " )

}

# Save data

saveRDS( data , f i l e = paste ( data . d i r e c t , data . name , " . Rda

" , sep = " " ) )
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# Produce and save a graph o f the Power vs Sample s i z e

i f ( nbr . rv == 2) {

pdf ( paste ( graphs . d i r e c t , data . name , " . pdf " , sep = " " ) ,

width = 10 , he ight = 10)

par (mar = c (5 , 5 , 3 , 3) )

p l o t ( data$N , data$BLAW, xlim=c (0 , max(N) ) , yl im=c (0 ,

100) , type = ’ l ’ , l t y = 1 , lwd = 10 , c o l ="red " ,

x lab="Sample s i z e " , y lab="Power " , cex . lab = 2 , cex .

ax i s = 2)

l i n e s ( data$N , data$HHG , lwd = 10 , l t y = 2 , c o l ="blue

" )

l i n e s ( data$N , data$DCOV , lwd = 10 , l t y = 3 , c o l ="

darkgreen " )

l i n e s ( data$N , data$HSIC , lwd = 10 , l t y = 4 , c o l ="

orange " )

legend ( legend . pos , NULL, nco l =1, legend=c ( "BLAW" , "HHG

" , "DCOV" , "HSIC " ) , c o l=c ( " red " , " b lue " , " darkgreen

" , " orange " ) , l t y = c (1 , 2 , 3 , 4) , lwd = 10 , cex =

2)

}

e l s e {

pdf ( paste ( graphs . d i r e c t , data . name , " . pdf " , sep = " " ) ,

width = 10 , he ight = 10)

par (mar = c (5 , 5 , 3 , 3) )

p l o t ( data$N , data$mBLAW, xlim=c (0 , max(N) ) , yl im=c (0 ,

100) , type = ’ l ’ , l t y = 1 , lwd = 10 , c o l ="red " ,

x lab="Sample s i z e " , y lab="Power " , cex . lab = 2 , cex .

ax i s = 2)

l i n e s ( data$N , data$mHHG, lwd = 10 , l t y = 2 , c o l ="blue

" )

l i n e s ( data$N , data$mHSIC , lwd = 10 , l t y = 4 , c o l ="

orange " )

i f ( v . dim == 1) {
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l i n e s ( data$N , data$BBL , lwd = 10 , l t y = 3 , c o l ="

darkgreen " )

l i n e s ( data$N , data$GR , lwd = 10 , l t y = 6 , c o l ="

purple " )

l egend ( legend . pos , NULL, nco l =1, legend=c ( "mBLAW

" , "mHHG" , "BBL" , "mHSIC" , "GR" ) , c o l=c ( " red " , "

b lue " , " darkgreen " , " orange " , " purp le " ) , l t y =

c (1 , 2 , 3 , 4 , 6) , lwd = 10 , cex = 2)

}

e l s e {

legend ( legend . pos , NULL, nco l =1, legend=c ( "mBLAW

" , "mHHG" , "mHSIC" ) , c o l=c ( " red " , " b lue " , "

orange " ) , l t y = c (1 , 2 , 4) , lwd = 10 , cex = 2)

}

}

dev . o f f ( )

# Produce a tab l e in the Latex syntax ( and pr in t i t in

the R conso l e )

t ab l e <− xtab l e ( data , capt ion = c ( tab l e . capt ion ) )

d i g i t s ( t ab l e ) <− x d i g i t s ( t ab l e )

i f ( nbr . rv == 3 && v . dim == 1) {

a l i g n ( t ab l e ) <− c ( " c " , " c | " , " c " , " c | " , " c " , " c | " , " c " , " c

| " , " c " , " c | " , " c " , " c " )

}

e l s e i f ( nbr . rv == 3 && v . dim > 1) {

a l i g n ( t ab l e ) <− c ( " c " , " c | " , " c " , " c | " , " c " , " c | " , " c " , " c " )

}

e l s e {

a l i g n ( t ab l e ) <− c ( " c " , " c | " , " c " , " c | " , " c " , " c | " , " c " , " c

| " , " c " , " c " )

}



C-xlii

p r i n t ( tab le , f i l e = paste ( data . d i r e c t , data . name , " . txt

" , sep = " " ) , type=" l a t ex " , i n c lude . rownames = FALSE,

f l o a t i n g = TRUE, l a t e x . environments = " cente r " )

} # End o f func t i on


