
Université de Montréal

Sequential Modeling, Generative Recurrent Neural Networks, and
Their Applications to Audio

par
Soroush Mehri

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté à la Faculté des arts et des sciences
en vue de l’obtention du grade de Mâıtre ès sciences (M.Sc.)

en informatique

Décembre, 2016

c⃝ Soroush Mehri, 2016.

Résumé

L’apprentissage profond s’est imposé comme étant le cadre de concrétisation
d’une intelligence artificielle spécialisée ; le chemin rêvé de beaucoup vers un futur
où l’IA est omniprésente ou ce qu’on appellerait une intelligence artificielle géné-
rale. Durant ce projet, notre motivation a été l’envie de dompter cette puissante
approche d’apprentissage afin de réaliser une avancée considérable vers la création
d’une “Machine Parlante”.

Cette thèse décrit un modèle statistique paramétrique pour la génération incon-
ditionnelle et de bout en bout de séquences audio dont la parole, des onomatopées
et de la musique. Contrairement aux travaux réalisés dans ce sens dans le domaine
du traitement du signal, les modèles qu’on propose se basent uniquement sur les
échantillons audio bruts sans aucune manipulation ou extraction préalable de ca-
ractéristiques. La dimension générale de notre approche lui permet d’être appliquée
à tout autre domaine - à savoir le traitement naturel du langage - dont les données
requièrent une représentation séquentielle des données.

Les chapitres 1 et 2 sont consacrés aux principes de bases de l’apprentissage
automatique et de l’apprentissage profond. Les chapitres suivants détaillent l’ap-
proche adoptée afin d’atteindre notre but.

Mots clés: intelligence artificielle, apprentissage automatique, réseaux de neu-
rones profonds, apprentissage de représentations, modélisation séquentielle, mo-
dèles génératifs, génération audio

ii

Summary

By far Deep Learning showed to be the most promising venue of achieving
applied Artificial Intelligence which has been the dream of many as the path toward
AI-powered future and eventually the Artificial General Intelligence. In this work
we are interested in harnessing this powerful method to make bigger strides in the
direction of creating a “Talking Machine”.

This thesis is dedicated to presenting a parametric statistical model for gen-
erating unconditional audio sequences including speech, onomatopoeia, and music
in an end-to-end manner. Proposed model does not benefit from any handcrafted
features that are developed over the course of many years in the field of signal
processing rather operates on raw sample audio. As a general framework it can
also potentially be applied in other domains that require modeling sequential data;
e.g. Natural Language Processing.

Chapter 1 and 2 give a brief overview of the background topics including ma-
chine learning and basic building blocks of deep learning algorithms. Following
chapters of this thesis present our endeavor toward the aforementioned goal.

Keywords: artificial intelligence, machine learning, deep neural networks, rep-
resentation learning, sequential modeling, generative models, audio generation

iii

Contents

Résumé . ii

Summary . iii

Contents . iv

List of Figures . vi

List of Tables . viii

List of Abbreviations . ix

Acknowledgments . x

1 Fundamentals of Deep Learning . 1
1.1 Machine Learning . 1

1.1.1 Machine Learning Tasks . 2
1.1.2 Learning Styles . 2
1.1.3 Function Approximation . 3

1.2 Deep Learning and Artificial Neural Networks 4
1.2.1 Modeling Neurons . 4
1.2.2 Feed-Forward Neural Networks 8

1.3 Learning as optimization . 9
1.3.1 Cost Functions . 9
1.3.2 Gradient-based Iterative Optimization 11

2 Sequential Modeling . 18
2.1 Memoryless Models . 19
2.2 Hidden States as Memory . 20

2.2.1 Hidden Markov Models . 20
2.2.2 Recurrent Neural Networks 21

2.3 Training Recurrent Neural Networks 24
2.4 Variants of Recurrent Neural Networks 24

2.4.1 Long Short-Term Memory 25
2.4.2 Gated Recurrent Units . 26

iv

2.4.3 Stacked Recurrent Neural Neural Networks 26
2.4.4 Bidirectional Recurrent Neural Networks 27

3 SampleRNN . 28
3.1 Prologue . 28
3.2 Abstract . 29
3.3 Introduction . 29
3.4 SampleRNN Model . 30

3.4.1 Frame-level Modules . 32
3.4.2 Sample-level Module . 33
3.4.3 Truncated BPTT . 34

3.5 Experiments and Results . 35
3.5.1 WaveNet Re-implementation 37
3.5.2 Human Evaluation . 39
3.5.3 Quantifying Information Retention 41

3.6 Related Work . 42

4 Conclusion . 43

A A model variant . 44

Bibliography . 45

v

List of Figures

1.1 Schematic of a biological neuron . 5
1.2 Simplified neuron model . 5
1.3 An example of an MLP with three intermediate/hidden layers, each

with dimensionality of 4, mapping x = {x1, x2, x3} to y = {y1, y2}
with θ = {W 1,W 2,W 3,W 4,b1,b2,b3,b4} as parameters of this par-
ticular network. 8

1.4 A toy example of a DAG, representing a computation graph that
transforms x = {x1, x2} to ỹ, with sigmoid activation function and
square loss. 12

1.5 Gradient descent algorithm applied to f(x1, x2) = (x2
1 + x2 − 11)2 +

(x1+x2
2− 7)2 for different learning rates. With learning rate set too

low, the convergence time is increasing and there is a lot of wasted
computation. On the other hand, increasing the learning rate might
cause oscillation if not causing unstable computation due to NaN. . 15

2.1 Sequential modeling tasks based on the type of input and output. . 19
2.2 Linear autoregressive model on the left and autoregressive MLP on

the right. 20
2.3 Generative procedure in Hidden Markov Model 21
2.4 “Unrolling” a recurrent neural network in time. 22

3.1 Snapshot of the unrolled model at timestep i with K = 3 tiers. As
a simplification only one RNN and up-sampling ratio r = 4 is used
for all tiers. 31

3.2 Examples from the datasets compared to samples from our models.
In the first 3 rows, 2 seconds of audio are shown. In the bottom
3 rows, 100 milliseconds of audio are shown. Rows 1 and 4 are
ground truth from which one can see how the datasets look different
and have complex structure in low resolution which the frame-level
component of the SampleRNN is designed to capture. Samples also
to some extent mimic the same global structure. At the same time,
zoomed-in samples of our model shows that it can perfectly resemble
the high resolution structure present in the data as well. 38

vi

3.3 Pairwise comparison of 4 best models based on the votes from listen-
ers conducted on samples generated from models trained on Blizzard
dataset. 40

3.4 Pairwise comparison of 3 best models based on the votes from listen-
ers conducted on samples generated from models trained on Music
dataset. 41

vii

List of Tables

3.1 Test NLL in bits for three presented datasets. 37
3.2 Average NLL on Blizzard test set for real-valued models. 37
3.3 Effect of subsequence length on NLL (bits per audio sample) com-

puted on the Blizzard validation set. 37
3.4 Test (validation) set NLL (bits per audio sample) for Blizzard. Vari-

ants of SampleRNN are provided to compare the contribution of each
component in performance. 38

viii

List of Abbreviations

AGI Artificial General Intelligence
AI Artificial Intelligence
ANN Artificial Neural Network
BiRNN Bidirectional Recurrent Neural Network
BP Backpropagation
BPTT Backpropagation Through Time
CE Cross Entropy
DAG Directed Acyclic Graph
DL Deep Learning
DNN Deep Neural Network
FNN Feedforward Neural Network
GD Gradient Descent
GMM Gaussian Mixture Model
HMM Hidden Markov Model
GRU Gated Recurrent Unit
i.i.d Independent and Identically Distributed
LSTM Long Short-Term Memory
MDN Mixture Density Networks
ML Machine Learning
MLE Maximum Likelihood Estimation
MLP Multi-Layer Perceptron
MSE Mean Squired Error
NaN Not a Number
NLL Negative Log-Likelihood
NLP Natural Language Processing
ReLU Rectified Linear Unit
RL Reinforcement Learning
RNN Recurrent Neural Network
SGD Stochastic Gradient Descent
SL Supervised Learning
SVM Support Vector Machine
TBPTT Truncated Backpropagation Through Time
UL Unsupervised Learning

ix

Acknowledgments

First and foremost, I would like to express my deepest appreciation to my family,
friends, colleagues, and advisors. This has been an amazing experience and without
you this thesis would not be possible.

To my mother, father, and brother, you have always supported me throughout
my life by all the means you could. You are amazing.

Dr. Yoshua Bengio, Dr. Aaron Courville, and Dr. Roland Memisevic, I am
truly grateful for your help and guidance. You have always been patient, willing to
assist me, and helping me succeed, even when it was not easy. Specially, I should
thank you for providing such a vibrant academic environment in MILA. Without
any exaggeration, there was not even a single day that I did not learn something
new and valuable.

Thanks to all of my friends and colleagues (in alphabetical order): Adriana
Romero, Akram Erraqabi, Alexandre de Brébisson, Amjad Almahairi, Anirudh
Goyal, Arnaud Bergeron, Bart van Merriënboer, Benjamin Scellier, Çaglar Gulçehre,
César Laurent, Chiheb Trabelsi, David Scott Krueger, DavidWarde-Farley, Dmitriy
Serdyuk, Dzmitry Bahdanau, Faruk Ahmed, Félix Gingras Harvey, Francesco Visin,
Frédéric Bastien, Guillaume Alain, Harm De Vries, Ishaan Gulrajani, Iulian Vlad
Serban, Joao Felipe Santos, Jonathan Lucuix-André, Jose Sotelo, Junyoung Chung,
Kelvin Xu, Kratarth Goel, Kundan Kumar, Kyle Kastner, Kyunghyun Cho, Lau-
rent Dinh, Linda Peinthière, Li Yao, Mathieu Germain, Mehdi Mirza, Mohamed
Ishmael Belghazi, Mohammad Pezeshki, Myriam Côté, Negar Rostamzadeh, Orhan
Firat, Pascal Lamblin, Philemon Brakel, Pierre-Luc Carrier, Rithesh Kumar, Saizheng
Zhang, Samira Shabanian, Shubham Jain, Sina Honari, Vincent Dumoulin, Vincent
Michalski, Ying Zhang, and Zhouhan Lin. Best of luck to you.

Special thanks to MILA staff members, Speech Synthesis team, Nicolas Chapa-
dos for this template, and Akram Erraqabi for translation of the French summary.
Thanks to the rest of my colleagues in MILA, my friends, and those who I might
have forgotten.

I also acknowledge the support of the following agencies for research funding
and computing support that made this work feasible: NSERC, Calcul Québec,
Compute Canada, the Canada Research Chairs, CIFAR, and Ubisoft.

x

1
Fundamentals of Deep
Learning

In this chapter we are scratching the surface of what Machine Learning (ML)

and Deep learning (DL) are and principles of machine learning will be formalized.

Reader’s familiarity with basic calculus, numerical computation, linear algebra,

probability, and information theory is required.

1.1 Machine Learning

Machine learning as a subset of Artificial Intelligence is to algorithmically learn

from data where data is assumed to be observations from a complex probability

distribution or an environment that an agent would interact with. This is, however,

different from other approaches in AI that harness domain-experts to explicitly

build a computer program for the given task. These learning algorithms ideally

would “learn” from many examples or experience in the environment which is quite

similar to how humans learn. Instead of explicitly creating programs for solving a

problem, one can think of machine learning as a tool to create these programs.

Continuing on the drawn example from learning in humans, it should be noted

that there is an important generalization aspect to these learning algorithms. This

ensures us that a learned algorithm or more specifically its learned features, is a fit

hypothesis not only for the current examples but also for the unseen future data.

Generally in machine learning a family of functions or class of hypothesis F is

considered to solve a particular task by the means of finding generalizable patterns

in the dataset D. In this context D is assumed to be a collection of data points

x ∈ RN independently drawn from an unknown identical distribution of interest,

i.e. this is a collection of independent and identically distributed (i.i.d) random

variables. Besides from i.i.d assumption, other priors usually are assumed about

D or F . A learning algorithm provides steps in order to find a function or model

1

f ∈ F parameterized by θ that describes the data distribution the best or performs

the task (quantified by a performance measures) optimally.

1.1.1 Machine Learning Tasks

Following is a limited list of some of the most common tasks that machine

learning showed to be a promising solution.

Classification task is to specify which category among k labels an input be-

longs. A model f : RN → {1 . . . k} is the result of learning algorithm that performs

this task where k is usually much smaller than the N . The primary goal of this task

is to accurately predict the label and not truly discovering the underlying factors.

Examples of this tasks are spam detection, image recognition, face recognition,

speaker identification, and fraud detection.

Regression task expect the system to predict a numeric value for an input

which takes the form of f : RN → R. Regression involves estimating or predicting

a response where as classification is identifying group membership. Predicting the

market value of a house given its specifications is an example of a regression task.

Machine Translation deals with translating a sequence from one language

to another language. In a more broader view this could be seen as a sequence to

sequence mapping where language can be interpreted as complex rules on how to

put tokens in specific orders. This is, however extensively used in natural language

translation, e.g. English to Chinese.

Density Estimation task is again to find a function f : RN → R where

f(x) = pmodel(x) is the probability mass function of the space of x. The task is

slightly more complex here as the model should learn the hidden structure of data

just by seeing a limited set of examples. Having an explicit model of the true prob-

ability distribution ideally would allow us to perform other relevant tasks including

denoising, imputing the missing values, compression, and synthesis. Current mod-

els are not designed to performed well in all of the sub-tasks as they usually require

computing an intractable denominator in p known as partition function.

1.1.2 Learning Styles

A learning algorithm also can be categorized by the style of its interaction with

data or environment. Organizing these algorithms based on their style is useful to

2

define a task and properly construct and use the model and dataset.

Supervised Learning. In this form of learning, each data point in the dataset

is a pair of (input, desired output/label/target) and learning algorithm instruct the

model to learn the mapping function. Classification and regression are examples of

supervised learning tasks.

Unsupervised Learning. There is no explicit target available in the dataset

hence no instruction could be provided. Learning algorithm should find the struc-

ture or prominent features by only accessing to the input space of the dataset.

Clustering, dimensionality reduction, and density estimation are categorized as

unsupervised tasks.

Reinforcement Learning. The machine is trained to make decisions to max-

imize overall reward that could be immediate or delayed from interacting with

environment. This style of learning is mostly based on trial and error. Provided

response from agent’s environment in the form of reward, it will then change its

decision making policy without any form of supervision. An agent can learn by

being set loose in its environment, without the need for specific training data to be

generated and then used to teach the agent. Game playing and control problems

could be addressed by this style of learning.

1.1.3 Function Approximation

So far machine learning was introduced in relation to finding an appropriate

function for a task. Having access to only a finite set of examples from the true

data distribution pdata (known as dataset), one approach would be to learn an

approximate function f defined by its parameters θ. To formalize this discussion,

in case of supervised learning we can assume ỹ = fθ(x) is the approximate function

for the true x→ y generator.

The goal is to find parameters that for all instances of (x, y) from data distri-

bution, predicted target ỹ be as close as possible to the true target y measured by

distance metric d. This can be defined as cost function C as:

C(θ) = E(x,y)∼pdata(x,y)[d(ỹ, y)] =

∫

x

∫

y

d(fθ(x), y)pdata(x, y) dx dy (1.1)

This is known as expected risk or loss (Vapnik, 2013) which is by itself intractable.

3

Using Monte Carlo integration expected loss could be approximated as empirical

loss:

C̃(θ) =
1

n

n
∑

i=1

d(ỹi, yi) (1.2)

where n is the number of data points in dataset, ỹi = fθ(xi) is the approximation

of yi, target variable for i-th data point (xi, yi) in a given dataset.

In following sections we will have a discussion of how to find the best set of

parameters θ̃ = argmin
θ

C̃(θ). As expected loss C is intractable, from this point

when referring to cost or C, the tractable empirical loss C̃ is what we are taking

into account.

1.2 Deep Learning and Artificial Neural

Networks

Deep Learning (DL) is a specific class of tools for addressing machine learning

tasks that utilizes Artificial Neural Networks (ANN or NN), inspired by human

brain – literally the most known powerful computing machine. Neural networks

are loosely formed around processing units found in neuro-science literature in order

to learn abstract hierarchy of representations and features.

1.2.1 Modeling Neurons

Human brain is constructed from single neurons in a complex inter-connected

web known as biological neural networks. A closer look at this network, as in

Fig. 1.1 1, shows each neuron is connected to a much smaller subset of all neurons

by connection between their axon and dendrite terminals. These cells communicate

through a synapse (gap between axon of neuron and dendrite of another) if overall

input signals are passed a cell-specific threshold. This state of a neuron is called

activation which causes further transmission of signal to following cells. Biological

neural units first formalized by McCulloch and Pitts (1943) with linear threshold

1. Source: videolectures.net/deeplearning2015_bottou_neural_networks

4

Figure 1.1 – Schematic of a biological neuron

Figure 1.2 – Simplified neuron model

units. Fig. 1.2 is a simplified model of a biological neuron which is summarized

in Eq. 1.3. φ signifies an activation function (or non-linearity) and accordingly, its

input is named pre-activation.

φ(b+
T
∑

i=1

xiwi) (1.3)

In other word, each neuron performs a dot product with the weights and inputs,

adds the bias and applies the non-linearity. A compact vectorized reformulation of

Eq. 1.3 presented in Eq. 1.4. In this reformulation, we are assuming that inputs

x = {x1, . . . , xT} are passing information to their S fully-connected immediate

neighboring neurons. Calculating pre-activation for all the S neighbors can be

summarized as a vector-matrix multiplication between W and x. Note that b is a

vector of biases b and + operator in this equation is a vector-vector addition.

φ(b+W ′x) (1.4)

5

Some of the choices for activation function φ that operates on pre-activation z

(either element-wise or on a tensor) are as follow:

Step function. This was originally used in Perceptron models that exactly

simulated the threshold of a cell.

Step(z) =

⎧

⎨

⎩

1 z ≥ 0

0 z < 0
(1.5)

Logistic functions. It is a family of functions in the following general form in

“S” shape that includes sigmoid function (Eq. 1.7), hyperbolic tangent (Eq. 1.8),

and hard-sigmoid (Eq. 1.9; an ultra-fast piece-wise linear approximate). This unit is

derived from probabilistic interpretation of machine learning algorithms like logistic

regression.

logistic(z) =
a

1 + e−b(z−z0)
(1.6)

σ(z) =
1

1 + e−z
(1.7)

tanh(z) =
ez − e−z

ez + e−z
= 2σ(2z)− 1 (1.8)

hard−σ(z) = max(0,min(1,
z + 1

2
)) (1.9)

Rectifier. Also known as ramp function, Rectifier Linear Unit (ReLU; Eq. 1.10)

was first introduced by Hahnloser et al. (2000). Previously training deep neural

networks (more on them in future sections) considered to be difficult (see Glorot

and Bengio (2010)), despite them being powerful models. Glorot et al. (2011) first

showed that they facilitate training deep neural networks, making this activation

function and its variants including noisy-ReLU (Nair and Hinton (2010); Eq. 1.11)

and leaky-ReLU (Maas et al. (2013); Eq. 1.12) the new standard for deep learning

algorithms. α in leaky-ReLU is usually set to small values from 0.01 to 0.2 or in

general case of parametric ReLU (He et al., 2015) could be a parameter like any

other parameters in θ that could be learned. Softplus (Dugas et al., 2001) is a

smooth approximate of ReLU with the interesting property that its derivative is

6

the sigmoid function (Eq. 1.7).

ReLU(z) = max(0, z) (1.10)

Noisy−ReLU(z) = max(0, z + ϵ); ϵ ∼ N (0, σ(z)) (1.11)

Leaky−ReLU(z) =

⎧

⎨

⎩

z z ≥ 0

αz z < 0
(1.12)

softplus(z) = ln(1 + ez) (1.13)

One-sided slope of ReLU brings the benefit of mathematical justifications (Montu-

far et al., 2014) alongside with biological plausibility (Hahnloser et al., 2003). Also

having a hard-zero as one linear piece enforces sparse activation throughout the

neural network but with the cost of having “dead” units. Among other benefits are

efficient computation (in compare to logistic functions due to lack of exponentiation

e) and helping the learning procedure that will be discussed in section 1.3.

Softmax. Unlike previous activation functions, softmax function (normalized

exponential function) introduced by Bridle (1990) is operating on a set of pre-

activation values. Considering logistic functions map a value to a bounded value

(e.g. 0 to 1), softmax is generalizing the same idea by mapping S pre-activation

values to S values each bounded between 0 and 1 while keeping their sum equal to

1 (Eq. 1.14).

Softmax(z1, . . . , zS)j =
ezj

S
∑

s=1
ezs

(1.14)

Armed with model of a neuron we can perform simple classification tasks. One

way of doing this is by binary SVM classifier in which a max-margin hinge loss

could be added to the output of the neuron. Logistic regression or binary softmax

classifier is another way which requires interpreting Eq. 1.3 as probability of model

favoring one of the classes. To make sure that the output is a valid probability

distribution we can use φ = σ in Eq. 1.7. Probability of an input x belonging to

class C0 is defined by p(y = C0|x; θ = {w1, . . . , wT , b}). Probability of other class

C1 can be computed by p(y = C1|x; θ) = 1− p(y = C0|x; θ). Setting a threshold of

0.5 can define a decision boundary over the input space for each class.

7

Figure 1.3 – An example of an MLP with three intermediate/hidden layers, each with dimension-
ality of 4, mapping x = {x1, x2, x3} to y = {y1, y2} with θ = {W 1,W 2,W 3,W 4,b1,b2,b3,b4}
as parameters of this particular network.

1.2.2 Feed-Forward Neural Networks

Brain is the best example of a computing machine that efficiently combines its

simple but numerous processing units, i.e. neurons, to solve complex tasks like

reading, decision making and language understanding. Achieving this is possible

by breaking the complex problems into high-level and abstract sub-tasks or repre-

sentation of an input or stimuli.

An approximate of a function using a neural networks is usually done by directed

acyclic graphs (DAGs) that transforms input to consecutive intermediate represen-

tations and finally to the output space. Hence, a function of interest y = f(x; θ)

is represented by f(x; θ) = f 3(f 2(f 1(x; θ1); θ2); θ3) with each f i being an arbitrary

and differentiable function. These chain structures are extensively used in this field.

Feed-forward neural networks, also called multilayer perceptrons (MLPs; see

Fig. 1.3) are the first model of neural architecture that can simulate layers of

representation in brain. By choosing f i functions to be similar to Eq. 1.4 (linear

transformation by multiplication by a weight matrix W , followed by a translation

by bias b, and finally a non-linearity of φ) we can have a simple form of an MLP.

So far we have talked about function approximation as a way of finding or

mimicking the true function in machine learning. It should be pointed out here

that investigating the representational power of MLPs is important to make this

approach successful. Cybenko (1989) and Hornik et al. (1989) showed that family

of MLPs, even with single hidden layer, are theoretically powerful. Multilayer feed-

forward networks are capable of approximating any function to any desired degree

of accuracy regardless of the activation function, dimensionality of input space, and

8

the input space environment. It is noteworthy that flexibility of these models, huge

amount of data, availability of high power computing machines, priors that can

defeat the curse of dimensionality, and efficient inference are the main ingredients

in current rise of deep learning.

Although there are no theoretical constraints for success of MLPs, in practice

these models are not capable of solving all the tasks due to inadequate learning, in-

sufficient number of hidden units or the lack of a deterministic relationship between

input and target. In upcoming sections other architectures will be introduced that

are more suited.

1.3 Learning as optimization

To complete the definition of a learning machine, we should define and discuss

different cost functions and how to procedurally “learn” the parameters in order to

decrease the cost function efficiently.

1.3.1 Cost Functions

Defining an appropriate cost function for a deep learning model plays an impor-

tant role in success of the final system. Output of a cost function (also known as

loss function or objective function) is to summarize in a single number how far the

model is from the true generating function. There are some basic cost functions

that are widely used. Modifying or some times combining these cost functions make

the learning easier by encoding the prior knowledge of the problem in the model

itself.

We are usually interested in a conditional distribution p(y|x; θ) in which case

Maximum Likelihood Estimation is a prominent approach. This is measured by

cross-entropy between model distribution and the data distribution:

C(θ) = −Ex,y∼pdata log pmodel(y|x) (1.15)

Otherwise we could be interested in a conditional statistic of the distribution.

For example, we could train a predictor f(x; θ) to predict the mean of y. This is

9

possible by finding a function such as below:

f ∗(x) = Ey∼pdata(y|x)[y] (1.16)

f ∗ = argmin
f

Ex,y∼pdata ||y − f(x)||2 (1.17)

See Goodfellow et al. (2016) for more examples and detailed explanation. In this

section basic loss functions will be introduced with the goal of minimizing the

dissimilarity between y (the desired target) and ỹ (its approximation).

Square. It is used in regression problems to encourage the output of the model

which is a real-valued number to be close to the true value.

1

2
(ỹ − y)2 (1.18)

Gaussian. When predicting the mean of a Gaussian distribution maximum

likelihood is equivalent to minimizing the mean square error.

p(y|x) = N (y; ỹ, I) (1.19)

Generalization of this cost could be found in Mixture Density Networks (Bishop

(1994); MDNs) that assumes each data point has some probability to be associated

to a mixture of Gaussians (Eq. 1.20). Each component (with its own set of param-

eters) has a contribution (αi) in the final distribution. The network then produces

the parameters (including the contribution weights for each individual component)

for this distribution.

p(y|x) =
k

∑

i=1

αi(x)Ni(y;µi(x),Σi(x)); s.t.

k
∑

i=1

αi = 1 (1.20)

Cross-entropy. For categorical output a Softmax unit can produce the prob-

abilities for each category. This is true for Multinoulli output distributions. Here

we are trying to maximize:

log p(y = Cj; z1, . . . , zS) = log softmax(z1, . . . , zS)j (1.21)

= zj − log
S
∑

s=1

ezs (1.22)

10

In the special case of Bernoulli as the output distributions which only needs one

number to be defined, sigmoid activation function could be used to predict p(y =

1|x).

1.3.2 Gradient-based Iterative Optimization

The cost function quantifies the quality of a set of parameters θ for the task

at hand. The goal of optimization is then to find parameters that minimizes the

loss function. As this is a search problem, most of algorithms in classic AI can be

applied in this context.

For example one naive strategy would be to try random search. Although

simple, this idea will not work in practice at all. Next idea could be to refine initial

parameters so that they can get better over time in the hope of finding the optimal

solution. This is inherently similar to local search algorithms, namely stochastic hill

climbing, where at each point one single step would be taken in a random direction

if the cost function decreases. This is better than random search in parameter

space but still computationally wasteful.

As it turns out in this situation where we only have access to local information

of the cost surface, following the gradient for an infinitesimal step at each point

is the best direction downward. We are also going to ignore the global searching

algorithms that harness Bayesian optimization.

Gradient Descent (GD) is overshadowing all other local iterative optimization

algorithms in deep learning. As the name suggests, this algorithm is entirely depen-

dent on calculating the gradient with regard to every single parameter in θ given

an input x.

Considering a complex computation of a function in a DAG form that transform

the input to the output, it would be ideal to compute the gradient of cost using the

chain rule. The purpose of backpropagation (BP) or backward propagation of errors

is to compute the gradient for all the parameters. In this computation graph for

all the modules one should be able to compute the gradient of the module’s output

with regard to its input and its parameters, if any.

Backpropagation is possible with repeated two phases: forward-pass (propa-

gation/inference) and backward-pass. In the forward-pass when the network is

exposed to an input, the (pre-)activations are computed layer by layer (or in the

11

Figure 1.4 – A toy example of a DAG, representing a computation graph that transforms
x = {x1, x2} to ỹ, with sigmoid activation function and square loss.

case of a DAG, module by module) until it reaches the output layer where the

cost function is computed. Computing the gradients for the output layer neurons

are straightforward as the outputs explicitly appear in the cost function. However,

recursively applying the chain rule and re-using the pre-computed activation values

from forward-pass is used to compute the gradients for intermediate layers. Fol-

lowing section is an example of backpropagation applied to an arbitrary DAG in

Fig. 1.4.

Forward-pass to compute the cost (empirical loss C) given x1 and x2 where

value of the activation functions would be stored for further usage:

z1 = w1x1 + w2x2 (1.23)

z2 = w3σ(z1) + w4x2 (1.24)

ỹ = σ(z2) (1.25)

C =
1

2
(ỹ − y)2 (1.26)

Corresponding gradients for each intermediate module:

∂z1
∂w1

= x1 and
∂z1
∂w2

= x2 (1.27)

∂z2
∂w3

= σ(z1) and
∂z2
∂w4

= x2 and
∂z2
∂z1

= w3σ(z1)(1− σ(z1)) (1.28)

∂ỹ

∂z2
= σ(z2)(1− σ(z2)) (1.29)

∂C

∂ỹ
= ỹ − y (1.30)

This leads us to computing ∇C(θ) with chain rule in backward-pass where

12

θ = {w1, w2, w3, w4}:

∂C

∂z2
=

∂C

∂ỹ

∂ỹ

∂z2
= (ỹ − y)σ(z2)(1− σ(z2)) (1.31)

∂C

∂w3
=

∂C

∂z2

∂z2
∂w3

=
∂C

∂z2
σ(z1) (1.32)

∂C

∂w4
=

∂C

∂z2

∂z2
∂w4

=
∂C

∂z2
x2 (1.33)

∂C

∂z1
=

∂C

∂z2

∂z2
∂z1

=
∂C

∂z2
w3σ(z1)(1− σ(z1)) (1.34)

∂C

∂w2
=

∂C

∂z1

∂z1
w2

=
∂C

∂z1
x2 (1.35)

∂C

∂w1
=

∂C

∂z1

∂z1
w1

=
∂C

∂z1
x1 (1.36)

Notice that in the computation of gradients we are re-using a lot of computation

from forward-pass and gradients from higher modules. This is more efficient than

fully expanding the loss expression and getting the gradients which will be more

apparent when dealing with complex architectures. In addition, the whole process

can be applied to all tensor types and modules as long as the derivation is defined.

The gradient of a function ∇C is a vector in the direction of greatest rate of in-

crease in the value of function and the magnitude measures this rate. Assuming we

have access to the gradient of the cost function, for example from backpropogation

algorithm, the optimization step to update the parameters would be:

θnew ← θold − η∇C(θold) (1.37)

where η is the learning rate that specifies the step size in each update. As a

clarification, it should be pointed out that backpropagation algorithm is simply a

step-by-step procedure to compute the exact symbolic expression for the gradients

in a function and a computational graph in general. It should not be confused by

algorithms that use these gradients, e.g. optimization methods.

Eq. 1.37 is the update rule known as full-batch gradient descent which in prac-

tice works quite well. However, one problem with this method is that it needs to

compute the cost and the gradient for all the data points in the dataset (see Eq. 1.2).

13

To solve this issue, it is more common to use the stochastic approximation of Gra-

dient Decent algorithm known as Stochastic Gradient Descent (SGD; Robbins and

Monro (1951)) – its noisy estimate given a smaller random sample of data points

that are present in the whole dataset. This requires many iterations over different

mini-batches instead of full batch and updating the parameters accordingly which

is more economical.

From section 1.1.3, we approximated the expected loss with empirical loss as

a way of measuring the quality of a function approximator. Empirical loss was

defined for a dataset with n data points as the average distance between predicted

target ỹi and true target yi measured by d (superscript i is the index of a data

point in the dataset):

1

n

n
∑

i=1

d(ỹi, yi) (1.38)

In SGD this loss is approximated once more for mini-batch M , a much smaller

subset of dataset:

CM(θ) =
1

|M |
∑

m∈M

d(ỹm, ym) (1.39)

where |M | is the size of mini-batch and m is the index of data points inside mini-

batch. It should be noted that the expected value of CM and the expected loss are

the same. Now we can re-write the update rule for a given mini-batch M :

θnew ← θold − η∇CM(θold) (1.40)

where

∇CM(θ) =
1

|M |
∑

m∈M

∇d(ỹm, ym) (1.41)

is an unbiased estimator of the gradient and its variance is proportional to the size

of mini-batch, |M |.
Fig. 1.5 2 shows the sensitivity of this algorithm to the choice of learning rate for

a hypothetical optimization scenario. Finding an optimal learning rate can make

2. Source: http://www.benfrederickson.com/numerical-optimization/

14

(a) Low learning rate. (b) Moderate learning rate. (c) High learning rate.

Figure 1.5 – Gradient descent algorithm applied to f(x1, x2) = (x2
1 + x2− 11)2 + (x1 + x2

2− 7)2

for different learning rates. With learning rate set too low, the convergence time is increasing
and there is a lot of wasted computation. On the other hand, increasing the learning rate might
cause oscillation if not causing unstable computation due to NaN.

a difference between a well-trained and an underfitted model. There are more

advanced techniques to mitigate this problem by scheduling the learning rate while

some of these techniques use an approximate of second-order information to adjust

to the curvature of the loss surface.

So far we have discussed the methods that manipulate a global learning rate

for all the parameters. As a next step to improve upon the previous methods, we

are considering optimization methods that adapt the learning rate per-parameter.

AdaGrad. Duchi et al. (2011) originally proposed it as an adaptive learning

rate method. In a nutshell, parameters that get less updates will be updated with

larger values while those parameters that are updated more frequently are getting

smaller updates. This is a good choice when dealing with sparse data.

gt,i = ∇θC(θi) (1.42)

Gt+1,ii ← Gt,ii + g2t,i (1.43)

θt+1,i ← θt,i −
η

√

Gt,ii + ϵ
gt,i (1.44)

ϵ is the smoothing term to avoid division by zero and G is accumulating squares of

the gradients with regard to θi on the diagonal.

RMSprop. AdaGrad’s main weakness is that diagonal of G keeps growing

throughout the training as a result of added positive numbers. This can aggressively

reduce the learning rate and make the learning stop prematurely. RMSprop, as

15

shown below, instead uses a moving average of the squared gradients.

Gt+1,ii ← γGt,ii + (1− γ)g2t,i (1.45)

θt+1,i ← θt,i −
η

√

Gt,ii + ϵ
gt,i (1.46)

Here, γ is decay rate, another hyper-parameter with typical value of 0.99.

Adam. Proposed by Kingma and Ba (2014) is similar to RMSprop but with

added momentum. Besides from keeping track of a exponentially decaying average

of past squared gradients (vt in Eq. 1.47), Adam will keep an exponentially decaying

average of past gradients mt similar to momentum as well. Notice that in this

equation we are using the vectorized notation.

mt ← β1mt−1 + (1− β1)gt (1.47)

vt ← β2vt−1 + (1− β2)g
2
t (1.48)

In the original work, authors observed that when initializing vt and mt with zero

vectors, they are biased toward zero specially when β1 and β2 are close to 1. Fol-

lowing equations is how they have solved this problem:

m̂t ←
mt

1− βt
1

(1.49)

v̂t ←
vt

1− βt
2

(1.50)

Subsequently, the update rule, with suggested default value of β1 = 0.9, β2 = 0.999,

and ϵ = 1e−8, is:

θt+1 ← θt −
η√

v̂t + ϵ
m̂t (1.51)

Orthogonal to the usage of a better optimization methods, one can specifically

alter the approximating function, i.e. neural network, or its parameterization in

order to facilitate training procedure. One that we are interested in is Weight

Normalization (Salimans and Kingma, 2016). The general idea here is to reparam-

eterize every weight matrix W in the network to decouple their norm g and the

16

direction v
||v|| .

W = g
v

||v|| (1.52)

∇gC =
∇WC.v

||v|| (1.53)

∇vC =
g

||v||∇WC − g∇gC

||v||2 v (1.54)

This is a simple but effective idea to obtain faster convergence.

17

2 Sequential Modeling

Data comes in different modalities. Modeling sequential and variable length

data is an interesting and significant task. When modeling sequences we are inter-

ested in mapping an input sequence into an output sequence. Fig. 2.1 1 is broadly

categorizing the tasks based on the input and target of the neural network. In

this figure, rectangles represent vectors and arrows represents mapping functions

between vectors.

One to one. There are no sequential variable involved and a stationary function

processes fixed-sized input to fixed-sized output. Handwritten digit recognition is

an example of this category.

One to many. The output is a sequence, but not the input; for example image

captioning.

Many to one. Activity recognition in video is an instance of a task that

requires a single output given a sequence. Another example as stated in Karpathy

(2015) could be sentiment analysis, i.e. classifying a given sentence.

Many to many. This is possible by swiping the information from one sequence

to a summary vector and generating the new sequence. Neural translation systems

are categorized under this task.

Synced many to many. A one to one correspondence is considered between

each term in the input and the target of the same timestep. Named-entity recogni-

tion along with per-frame labeling of a video clip are applications of this category.

For other applications where there is no specific target sequence, one can try

to predict the next token in the sequence given previous ones. Hence, the target

sequence becomes input sequence but shifted. As we are dealing with temporal

sequences there is a natural order in the data which makes this method a viable

solution. In general, joint distribution for a sequence is formulated by product rule

1. Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

18

Figure 2.1 – Sequential modeling tasks based on the type of input and output.

as follow where x = {x1, . . . , xT} are terms in the sequence:

p(x1, . . . , xT) =
T
∏

t=1

p(xt|x1, . . . , xt−1) (2.1)

Nevertheless, exploiting teaching signals from predicting next term in a sequence

while making use of supervised learning methods, make the distinction between

supervised and unsupervised learning less clear.

2.1 Memoryless Models

To start out with, we will consider models that predict next term given a fixed

context window from past using delay taps. Simplest form of these models are

called linear autoregressive models in which the output variable depends linearly

on the past values. See Fig. 2.2 for a sketch of these models.

A generalized variation of this model is using hidden layers to change the de-

pendency of the output variable from linear to more representative and complex

form of non-linear with regard to input. Simply put, next term would be a func-

tion of few previous terms parameterized by a feed-forward neural network or an

autoregressive MLP.

These models cannot cope with existing long-term dependencies in a sequence

as they ignore the information residing outside of their context window.

19

Figure 2.2 – Linear autoregressive model on the left and autoregressive MLP on the right.

2.2 Hidden States as Memory

If we can incorporate proper internal dynamics to the hidden states, we can

expect the model to remember the relevant information for a long time implicitly

in the hidden states.

2.2.1 Hidden Markov Models

Prerequisite to computing the left-hand side of the Eq. 2.1 is to compute the

conditional probability of p(xt|x1, . . . , xt−1). As an initial attempt we can assume

each observation is independent of all previous ones except for the last one, which

corresponds to first-order Markov chain:

p(xt|x1, . . . , xt−1) = p(xt|xt−1) (2.2)

With such a model estimation of parameters by maximum likelihood is relatively

easy and this translates to having a dataset with each pair of output as a data

point.

While this model has close ties to bigrams, dependencies inside of a sequence

can easily go beyond just previous term. One way to overcome this is to formulate it

as higher-order Markov models, e.g. second-order Markov model or trigram model.

It will soon become apparent that the dataset will become sparse quite fast with

the increase of the order as many counts would be zero in training data.

As an alternative we can assume a generative process where the observations are

the result of stochasticity of some hidden states z. z is now a hidden state variable

that can be a first-order Markov chain by itself that generates a state sequence.

This is the core definition of Hidden Markov Models (HMMs; Fig. 2.3).

20

Figure 2.3 – Generative procedure in Hidden Markov Model

HMMs have discrete hidden states as a one-hot vector, i.e. in each timestep

only one state is active from all H states. The stochasticity of transitions between

states are encoded in a transition matrix A. In the next step of the generative

process, state sequence is converted to observable symbols by the means of emis-

sion probabilities p(xt|zt). In speech recognition in which HMMs are a dominant

solution, the emissions (observation) are modeled using Gausian Mixture Models.

GMM-HMMs are trained to maximize the likelihood of generating the observed

features.

In short, the goal is to capture the joint probability of hidden states and obser-

vations:

p(x1, . . . , xT , z1, . . . , zt) =
T
∏

t=1

p(zt|zt−1)p(xt|zt) (2.3)

p(zt = α|zt−1 = β) = Aαβ (2.4)

With HMMs computing probability of observed sequence (forward-backward

algorithm), inferring most likely hidden state path (Viterbi algorithm), and learning

(Baum-Welch EM algorithm) are possible with efficient algorithms which made

them popular for over two decades.

2.2.2 Recurrent Neural Networks

Although HMMs are being fully studied and optimized, these models suffer from

some fundamental limitations. Having a one-of-H representation for the choice of

21

Figure 2.4 – “Unrolling” a recurrent neural network in time.

hidden state results in remembering only log(H) bits of information from past.

This restricts the model to keep track of more information which is a must-have

for real-world complex applications. A simple example of this limitation is when

generating a sentence where the model has to be consistent and coherent throughout

the sequence. Remembering basic indicators, e.g. context, references, syntax, and

semantic to name a few, requires flexible and powerful representation.

Recurrent Neural Networks (RNNs) have become the de facto tools for modeling

complex sequential data by harnessing distributed hidden states. This allows these

model to have exponential power over HMMs to store information in an efficient

manner.

RNNs are tied closely to the concepts in deep learning. These models have

the same building blocks as feed-forward neural networks (introduced in previous

chapter) but with different structure. We concretely formalized the computation

of an approximate function in a DAG which did not have any recurrent (feedback)

connections. As shown in Fig. 2.4 we can add these connections to process variable

length sequences.

Each recurrent connection is defined by its delay tap d and a node can have

multiple of them. When unrolling (unfolding) the graph in time delay tap indicates

that current node at time t should be connected to the same node at time t + d.

A simple RNN has one recurrent connection with delay tap equal one. An RNN is

called to have skip-connection through time (Bengio, 1991) when has a delay tap

22

greater than one. Not to be confused by Clockwork RNNs (Koutnik et al., 2014)

which partition the hidden states that operate in different time scales.

More formally, a standard recurrent neural network models temporal dynamics

of an input sequence x = {x1, x2, . . . , xT}, by computing the hidden vector sequence

h = {h1, h2, . . . , hT} and output vector sequence y = {y1, y2, . . . , yT} following this

formula for t = 1 to T :

ht = R(Wxhxt +Whhht−1) (2.5)

ỹt = Softmax(Whyht) (2.6)

where R could be an element-wise operator (tanh for example) or any other func-

tion. For the simplicity of notation we pushed the biases bh (in Eq. 2.5) and by (in

Eq. 2.6) inside the weight matrices and added a unit with value 1 to the units in h

vector.

Fig. 2.4 also shows parameter sharing in RNNs; another recurring term in deep

learning literature, seen in Jordan (1986) and Elman (1990). As the name indicates,

parameters are shared in calculation of different nodes of the computation graph.

In this specific example weight matrices Wxh (from x to h), Whh (from h to h), and

Whx (from h to x) are shared over different timesteps which gives this ability to

the network structure to match to length of an arbitrary sequence and extract the

same type of features from inputs in different timesteps.

It is worth noting that although the transformations between x, h, and y are

parameterized by weight matrices, it is easily possible to generalize them to any

differentiable function which is the case usually to use MLPs for input-to-hidden

and hidden-to-output connections and proper activation function (Pascanu et al.,

2013).

In addition, presence of input or output at each timestep is not necessary. De-

sign choices or task constraints could potentially lead us toward one of the afore-

mentioned architectures in Fig. 2.1.

These models are theoretically shown to be Turing-Complete; they are able to

approximate any algorithm given enough time and neurons. Originally Siegelmann

(1999) explicitly simulated a pushdown automaton with two stacks (computation-

ally equivalent to Turing machine) by a RNN. This has an interesting consequence

that there exist certain questions about the behavior of RNNs that are undecidable.

23

2.3 Training Recurrent Neural Networks

When dealing with an output sequence y it is common to define a cost function

per timestep and minimize the sum over all timesteps in Eq. 1.39. For example in

the special case of discrete output and the NLL objective function on a Multinoulli

variable for each timestep given the state of the RNN we can write:

dt(ỹt, yt) = −yt log ỹt (2.7)

d(ỹ, y) =
1

T

T
∑

t=1

dt(ỹt, yt) = −
1

T

T
∑

t=1

yt log ỹt (2.8)

In this case, think of Fig. 2.4 where each yt is an English word from a fixed vocab-

ulary or an specific bin from quantized amplitude of audio sample at each timestep

(section 3.4.2).

By the sum rule of differentiation:

θi ∈ θ :
∂d

∂θi
=

1

T

T
∑

t=1

∂dt
∂θi

(2.9)

Backpropagation Through Time (BPTT) is the name given to this algorithm which

in essence is the same as backpropagation simply applied to an unrolled compu-

tation graph. By the increase in the length of a training sequence, we need to

backpropagate through more layers. This makes the training harder and this is a

common practice to split the long sequences and apply Truncated BPTT.

2.4 Variants of Recurrent Neural Networks

In practice, RNNs are hard to train, specially with gradient descent to model

long-range dependencies (Bengio et al., 1994; Hochreiter et al., 2001; Pascanu et al.,

2013). This is attributed to two main problems: exploding and vanishing gradients.

The first is referred to as large increase in the norm of the gradient during

training which prevents us from training the model by causing numerical instability

and contaminating the whole graph with NaN/Inf. The latter exhibits this opposite

behavior; norm of the gradient exponentially fast decreases to zero which prevents

24

the model to attend to the long-range dependencies in the sequence. Interestingly,

both of which are caused by recursive use of Whh and previous state ht−1 when

computing the gradients.

Exploding gradient can be remedied mostly by gradient norm clipping (Pascanu

et al., 2013) and proper initialization. On the other hand, mitigating vanishing

gradient problem takes more effort. Again, initialization can help alongside with

regularization or using ReLU instead of tanh. The most effective and popular

option is to use gated variants of standard RNN.

2.4.1 Long Short-Term Memory

First proposed by Hochreiter and Schmidhuber (1997) is a popular architecture

to equip RNNs with memory module. An important point to bear in mind is that

these variants are just another choice for R in Eq. 2.5 to combat vanishing gradient

problem by the means of gating mechanism and the dynamic of the rest of the

network will stay untouched. In the following ◦ means element-wise multiplication.

i = σ(W i
xhxt +W i

hhht−1) (2.10)

o = σ(W o
xhxt +W o

hhht−1) (2.11)

f = σ(W f
xhxt +W f

hhht−1) (2.12)

g = tanh(W g
xhxt +W g

hhht−1) (2.13)

ct = ct−1 ◦ f + g ◦ i (2.14)

ht = tanh(ct) ◦ o (2.15)

Again we are hiding the biases (bi, bo, bf , and bg) for simplicity. i, o, and f are

called input, output, and forget gates respectively. g is a candidate hidden state

which is exactly what we have used in the standard RNN so far but with renaming

the parameters. ct is the internal memory of the architecture or memory cells that

is not accessible from outside.

The intuition behind the complicated design of this architecture is that instead

of using multiplication to get the new state it is less prone to vanishing gradient

if we use addition. New state can be computed by adding the information on top

of previous hidden states. But not everything that has been added to the state

is useful or relevant to the task. Forget gate f with value between 0 and 1 is

25

responsible to erase the memory. Wxhxt and Whyht in Eq. 2.5 are also regulated

by input and output gates in order to let the network (by learning) decides when

and how let the information should go through.

2.4.2 Gated Recurrent Units

Gated Recurrent Units (GRUs) are proposed by Chung et al. (2014) as a simpler

alternative to LSTM but with the same goal. Having less parameters due to lack

of output gate, GRU shows competitive results and there is no need to tune for

sensitive initial bias of the forget gate (Greff et al., 2015). Following shows the

calculation of R in GRU:

z = σ(W z
xhxt +W z

hhht−1) (2.16)

r = σ(W z
xhxt +W r

hhht−1) (2.17)

s = tanh(W s
xhxt +W s

hh(ht−1 ◦ r)) (2.18)

ht = (1− z) ◦ s+ z ◦ ht−1 (2.19)

In GRU gates are reduced from 3 to 2, namely r reset and z update gates. There is

no internal memory and when computing the output there is no second activation

function.

2.4.3 Stacked Recurrent Neural Neural Networks

Considering the RNN models that has been introduced so far, a slice of the

model that converts xt to yt is not deep. Stacked RNNs (Graves et al., 2013) or

deep RNNs are simply adding layers of RNNs or their variants on top of each other

so that input of top layer is the output of previous one. To prevent the vanishing

gradient as a result of increase in hierarchical depth one can add skip-connections

from input to the hidden units and from hidden units to output in order to help the

flow of the gradient (Graves, 2013). In NLP and speech recognition tasks stacked

RNNs are the dominant architecture of choice.

26

2.4.4 Bidirectional Recurrent Neural Networks

RNNs are considered “causal” structures that swipe the information from past

to the present (Goodfellow et al., 2016). Bidirectional RNNs (BiRNNs) first intro-

duced by Schuster and Paliwal (1997) and shown to be successful by Graves (2012).

These models allow for access to look-ahead features (from future) that the pre-

diction of targets could be dependent on them. This is basically implemented by

running one RNN in forward direction and one backward (or equivalently, feeding

the data in reverse) and computing the output based on the past (from forward

RNN) and future (from backward RNN) information.

−→
h t = R(

−→
W xhxt +

−→
W hh

−→
h t−1) (2.20)

←−
h t = R(

←−
W xhxt +

←−
W hh

←−
h t−1) (2.21)

ỹt = Softmax(Whyht) = Softmax(Why[
−→
h t;
←−
h t]) (2.22)

Each of the RNN models presented here also could be assumed to be a deep RNN.

BiRNNs are however not useful for generative models as there is no future infor-

mation when generating solely based on past.

27

3 SampleRNN

3.1 Prologue

SampleRNN: An Unconditional End-to-End Neural Audio Genera-

tion Model. Soroush Mehri, Kundan Kumar, Ishaan Gulrajani, Rithesh Kumar,

Shubham Jain, José Sotelo, Aaron Courville, Yoshua Bengio, 5th International

Conference on Learning Representations (ICLR 2017), submitted and under re-

view. 1

Contribution. Inspired by PixelRNN (van den Oord et al., 2016) I worked

on a similar model but with real-valued data when it has been decided to bor-

row the idea of output quantization for Audio Generation task. Ishaan Gulra-

jani greatly contributed to the implementation of first prototype of the idea and

multi-scale hierarchy. I re-implemented the same idea independently as a second

proof of concept, for large scale experiments, and extended use cases where it was

needed for large hyper-parameter search and examining or comparing the models

properly. I also designed different experiments to deconstruct the model and its

components, showed the importance of hierarchy in our model (as was expected

in theory), and conducted human evaluation (qualitative measure) alongside with

some of experiments for quantitative measures. Kundan Kumar was responsible

for WaveNet (Oord et al., 2016) re-implementation (a recent competing model for

the same task) and the rest of the experiments. Kundan Kumar, Rithesh Kumar,

Shubham Jain, and José Sotelo also brought significant insight by working on vari-

ant/hybrid models. My supervisors, Yoshua Bengio and Aaron Courville, were the

leads of the whole project with invaluable support and guidance. First three au-

thors were mostly involved in preparation of the first draft of the paper while the

review and revision process was an extensive collaborative effort.

1. At the time of writing reviews have been favorable with ratings 9, 8, and 8 out of 10.

28

3.2 Abstract

In this paper we propose a novel model for unconditional audio generation based

on generating one audio sample at a time. We show that our model, which profits

from combining memory-less modules, namely autoregressive multilayer percep-

trons, and stateful recurrent neural networks in a hierarchical structure is able to

capture underlying sources of variations in the temporal sequences over very long

time spans, on three datasets of different nature. Human evaluation on the gener-

ated samples indicate that our model is preferred over competing models. We also

show how each component of the model contributes to the exhibited performance.

3.3 Introduction

Audio generation is a challenging task at the core of many problems of interest,

such as text-to-speech synthesis, music synthesis and voice conversion. The par-

ticular difficulty of audio generation is that there is often a very large discrepancy

between the dimensionality of the the raw audio signal and that of the effective

semantic-level signal. Consider the task of speech synthesis, where we are typically

interested in generating utterances corresponding to full sentences. Even at a rel-

atively low sample rate of 16kHz, on average we will have 6,000 samples per word

generated. 2

Traditionally, the high-dimensionality of raw audio signal is dealt with by first

compressing it into spectral or hand-engineered features and defining the genera-

tive model over these features. However, when the generated signal is eventually

decompressed into audio waveforms, the sample quality is often degraded and re-

quires extensive domain-expert corrective measures. This results in complicated

signal processing pipelines that are to adapt to new tasks or domains. Here we

propose a step in the direction of replacing these handcrafted systems.

In this work, we investigate the use of recurrent neural networks (RNNs) to

model the dependencies in audio data. We believe RNNs are well suited as they

2. Statistics based on the average speaking rate of a set of TED talk speakers sixminutes.
dlugan.com/speaking-rate

29

have been designed and are suited solutions for these tasks (see Graves (2013), Karpa-

thy (2015), and Siegelmann (1999)). However, in practice it is a known problem of

these models to not scale well at such a high temporal resolution as is found when

generating acoustic signals one sample at a time, e.g., 16000 times per second. This

is one of the reasons that Oord et al. (2016) profits from other neural modules such

as one presented by Yu and Koltun (2015) to show extremely good performance.

In this paper, an end-to-end unconditional audio synthesis model for raw wave-

forms is presented while keeping all the computations tractable. 3 Since our model

has different modules operating at different clock-rates (which is in contrast to

WaveNet), we have the flexibility in allocating the amount of computational re-

sources in modeling different levels of abstraction. In particular, we can potentially

allocate very limited resource to the module responsible for sample level alignments

operating at the clock-rate equivalent to sample-rate of the audio, while allocating

more resources in modeling dependencies which vary very slowly in audio, for exam-

ple identity of phoneme being spoken. This advantage makes our model arbitrarily

flexible in handling sequential dependencies at multiple levels of abstraction.

Hence, our contribution is threefold:

1. We present a novel method that utilizes RNNs at different scales to model

longer term dependencies in audio waveforms while training on short se-

quences which results in memory efficiency during training.

2. We extensively explore and compare variants of models achieving the above

effect.

3. We study and empirically evaluate the impact of different components of our

model on three audio datasets. Human evaluation also has been conducted

to test these generative models.

3.4 SampleRNN Model

In this paper we propose SampleRNN (shown in Fig. 3.1), a density model for

audio waveforms. SampleRNN models the probability of a sequence of waveform

3. Code github.com/soroushmehr/sampleRNN_ICLR2017 and samples soundcloud.com/
samplernn/sets

30

samples X = {x1, x2, . . . , xT} (a random variable over input data sequences) as the

product of the probabilities of each sample conditioned on all previous samples:

p(X) =
T−1
∏

i=0

p(xi+1|x1, . . . , xi) (3.1)

RNNs are commonly used to model sequential data which can be formulated

as:

ht = RNNCell(ht−1, xi=t) (3.2)

p(xi+1|x1, . . . , xi) = Softmax(MLP (ht)) (3.3)

with RNNCell being one of the known memory cells (Section 3.5). However,

raw audio signals are challenging to model because they contain structure at very

different scales: correlations exist between neighboring samples as well as between

ones thousands of samples apart.

SampleRNN helps to address this challenge by using a hierarchy of modules,

each operating at a different temporal resolution. The lowest module processes

individual samples, and each higher module operates on an increasingly longer

timescale and a lower temporal resolution. Each module conditions the module

below it, with the lowest module outputting sample-level predictions. The entire

hierarchy is trained jointly end-to-end by backpropagation.

Figure 3.1 – Snapshot of the unrolled model at timestep i with K = 3 tiers. As a simplification
only one RNN and up-sampling ratio r = 4 is used for all tiers.

31

3.4.1 Frame-level Modules

Rather than operating on individual samples, the higher-level modules in Sam-

pleRNN operate on non-overlapping frames of FS(k) (“Frame Size”) samples at the

kth level up in the hierarchy at a time (frames denoted by f (k)). Each frame-level

module is a deep RNN which summarizes the history of its inputs into a condition-

ing vector for the next module downward.

The variable number of frames we condition upon up to timestep t − 1 is ex-

pressed by a fixed length hidden state or memory h
(k)
t where t is related to clock

rate at that tier. The RNN makes a memory update at timestep t as a function of

the previous memory h
(k)
t−1 and an input. This input for top tier k = K is simply the

input frame. For intermediate tiers (1 < k < K) this input is a linear combination

of conditioning vector from higher tier and current input frame. See Eqs. 3.4–3.5.

Because different modules operate at different temporal resolutions, we need to

upsample each vector c at the output of a module into a series of r(k) vectors (where

r(k) is the ratio between the temporal resolutions of the modules) before feeding it

into the input of the next module downward (Eq. 3.6). We do this with a set of

r(k) separate linear projections.

Here we are formalizing the frame-level module in tier k. Note that following

equations are exclusive to tier k and timestep t for that specific tier. To increase

the readability, unless necessary superscript (k) is not shown for t, inp(k), W (k)
x ,

h(k), RNNCell(k), W (k)
j , and r(k).

inpt =

⎧

⎨

⎩

Wxf
(k)
t + c

(k+1)
t ; 1 < k < K

f
(k=K)
t ; k = K

(3.4)

ht = RNNCell(ht−1, inpt) (3.5)

c
(k)
(t−1)∗r+j = Wjht; 1 ≤ j ≤ r (3.6)

Our approach of upsampling with r(k) linear projections is exactly equivalent to

upsampling by adding zeros and then applying a linear convolution. This is some-

times called “perforated” upsampling in the context of convolutional neural net-

works (CNNs). It was first demonstrated to work well in Dosovitskiy et al. (2016)

and is a fairly common upsampling technique.

32

3.4.2 Sample-level Module

The lowest module (tier k = 1; Eqs. 3.7–3.9) in the SampleRNN hierarchy

outputs a distribution over a sample xi+1, conditioned on the FS(1) preceding

samples as well as a vector c
(k=2)
i from the next higher module which encodes

information about the sequence prior to that frame. As FS(1) is usually a small

value and correlation in nearby samples are easy to model by a simple memoryless

module, we implement it with a multilayer perceptron (MLP) rather than RNN

which slightly speeds up the training. Assuming ei represents xi after passing

through embedding layer (section 3.4.2), conditional distribution can be achieved

by:

f
(1)
i−1 = flatten([ei−FS(1) , . . . , ei−1]) (3.7)

f
(1)
i = flatten([ei−FS(1)+1, . . . , ei])

inp
(1)
i = W (1)

x f
(1)
i + c

(2)
i (3.8)

p(xi+1|x1, . . . , xi) = Softmax(MLP (inp(1)i)) (3.9)

We use a Softmax because we found that better results were obtained by dis-

cretizing the audio signals and outputting a Multinoulli distribution rather than

using a Gaussian or Gaussian mixture to represent the conditional density of the

original real-valued signal. When processing an audio sequence, the MLP is con-

volved over the sequence, processing each window of FS(1) samples and predicting

the next sample. At generation time, the MLP is run repeatedly to generate one

sample at a time. Table 3.1 shows a considerable gap between the baseline model

RNN and this model, suggesting that the proposed hierarchically structured archi-

tecture of SampleRNN makes a big difference.

Output Quantization

Following van den Oord et al. (2016), the sample-level module models its output

as a q-way discrete distribution over possible quantized values of xi (that is, the

output layer of the MLP is a q-way Softmax).

To demonstrate the importance of a discrete output distribution, we apply

the same architecture on real-valued data by replacing the q-way Softmax with

a Gaussian Mixture Models (GMM) output distribution. Table 3.2 shows that

33

our model outperforms an RNN baseline even when both models use real-valued

outputs. However, samples from the real-valued model are almost indistinguishable

from random noise.

In this work we use linear quantization with q = 256, corresponding to a per-

sample bit depth of 8. Unintuitively, we realized that even linearly decreasing the

bit depth (resolution of each audio sample) from 16 to 8 can ease the optimization

procedure while generated samples still have reasonable quality and are artifact-

free.

In addition, early on we noticed that the model can achieve better performance

and generation quality when we embed the quantized input values before passing

them through the sample-level MLP (see Table 3.4). The embedding steps maps

each of the q discrete values to a real-valued vector embedding. However, real-

valued raw samples are still used as input to the higher modules.

Conditionally Independent Sample Outputs

To demonstrate the importance of a sample-level autoregressive module, we try

replacing it with “Multi-Softmax” (see Table 3.4), where the prediction of each

sample xi depends only on the conditioning vector c from Eq. 3.9. In this configu-

ration, the model outputs an entire frame of FS(1) samples at a time, modeling all

samples in a frame as conditionally independent of each other. We find that this

Multi-Softmax model (which lacks a sample-level autoregressive module) scores sig-

nificantly worse in terms of log-likelihood and fails to generate convincing samples.

This suggests that modeling the joint distribution of the acoustic samples inside

each frame is very important in order to obtain good acoustic generation. We found

this to be true even when the frame size is reduced, with best results always with

a frame size of 1, i.e., generating only one acoustic sample at a time.

3.4.3 Truncated BPTT

Training recurrent neural networks on long sequences can be very computation-

ally expensive. Oord et al. (2016) avoid this problem by using a stack of dilated

convolutions instead of any recurrent connections. However, when they can be

trained efficiently, recurrent networks have been shown to be very powerful and ex-

pressive sequence models. We enable efficient training of our recurrent model using

34

truncated backpropagation through time, splitting each sequence into short subse-

quences and propagating gradients only to the beginning of each subsequence. We

experiment with different subsequence lengths and demonstrate that we are able to

train our networks, which model very long-term dependencies, despite backpropa-

gating through relatively short subsequences.

Table 3.3 shows that by increasing the subsequence length, performance sub-

stantially increases alongside with train-time memory usage and convergence time.

Yet it is noteworthy that our best models have been trained on subsequences of

length 512, which corresponds to 32 milliseconds, a small fraction of the length of a

single a phoneme of human speech while generated samples exhibit longer word-like

structures.

Despite the aforementioned fact, this generative model can mimic the existing

long-term structure of the data which results in more natural and coherent sam-

ples that is preferred by human listeners. (More on this in Sections 3.5.2–3.5.3.)

This is due to the fast updates from TBPTT and specialized frame-level modules

(Section 3.4.1) with top tiers designed to model a lower resolution of signal while

leaving the process of filling the details to lower tiers.

3.5 Experiments and Results

In this section we are introducing three datasets which have been chosen to

evaluate the proposed architecture for modeling raw acoustic sequences. The de-

scription of each dataset and their preprocessing is as follows:

Blizzard which is a dataset presented by Prahallad et al. (2013) for speech

synthesis task, contains 315 hours of a single female voice actor in English;

however, for our experiments we are using only 20.5 hours. The training/-

validation/test split is 86%-7%-7%.

Onomatopoeia 4, a relatively small dataset with 6,738 sequences adding

up to 3.5 hours, is human vocal sounds like grunting, screaming, panting,

heavy breathing, and coughing. Diversity of sound type and the fact that

these sounds were recorded from 51 actors and many categories makes it a

4. Courtesy of Ubisoft

35

challenging task. To add to that, this data is extremely unbalanced. The

training/validation/test split is 92%-4%-4%.

Music dataset is the collection of all 32 Beethoven’s piano sonatas publicly

available on https://archive.org/ amounting to 10 hours of non-vocal

audio. The training/validation/test split is 88%-6%-6%.

See Fig. 3.2 for a visual demonstration of examples from datasets and generated

samples. For all the datasets we are using a 16 kHz sample rate and 16 bit depth.

For the Blizzard and Music datasets, preprocessing simply amounts to chunking the

long audio files into 8 seconds long sequences on which we will perform truncated

backpropagation through time. Each sequence in the Onomatopoeia dataset is few

seconds long, ranging from 1 to 11 seconds. To train the models on this dataset,

zero-padding has been applied to make all the sequences in a mini-batch have the

same length and corresponding cost values (for the predictions over the added 0s)

would be ignored when computing the gradients.

We particularly explored two gated variants of RNNs—Gated Recurrent Units

(GRUs) (Chung et al., 2014) and Long Short TermMemory Units (LSTMs) (Hochre-

iter and Schmidhuber, 1997). For the case of LSTMs, the forget gate bias is initial-

ized with a large positive value of 3, as recommended by Zaremba (2015) and Gers

(2001), which has been shown to be beneficial for learning long-term dependencies.

As for models that take real-valued input, e.g. the RNN-GMM and SampleRNN-

GMM (with 4 components), normalization is applied per audio sample with the

global mean and standard deviation obtained from the train split. For most of

our experiments where the model demands discrete input, binning was applied per

audio sample.

All the models have been trained with teacher forcing and stochastic gradient

decent (mini-batch size 128) to minimize the Negative Log-Likelihood (NLL) in bits

per dimension (per audio sample). Gradients were hard-clipped to remain in [-1, 1]

range. Update rules from the Adam optimizer (Kingma and Ba, 2014) (β1 = 0.9,

β2 = 0.999, and ϵ = 1e−8) with an initial learning rate of 0.001 was used to ad-

just the parameters. For training each model, random search over hyper-parameter

values (Bergstra and Bengio, 2012) was conducted. The initial RNN state of all

the RNN-based models was always learnable. Weight Normalization (Salimans and

Kingma, 2016) has been used for all the linear layers in the model (except for the

embedding layer) to accelerate the training procedure. Size of the embedding layer

36

Table 3.1 – Test NLL in bits for three presented datasets.

Model Blizzard Onomatopoeia Music

RNN (Eq. 3.2) 1.434 2.034 1.410
WaveNet (re-impl.) 1.480 2.285 1.464

SampleRNN (2-tier) 1.392 2.026 1.076
SampleRNN (3-tier) 1.387 1.990 1.159

Table 3.2 – Average NLL on Blizzard test set for real-valued models.

Model Average Test NLL

RNN-GMM -2.415
SampleRNN-GMM (2-tier) -2.782

was 256 and initialized by standard normal distribution. Orthogonal weight ma-

trices used for hidden-to-hidden connections and other weight matrices initialized

similar to He et al. (2015). In final model, we found GRU to work best (slightly

better than LSTM). 1024 was the the number of hidden units for all GRUs (1 layer

per tier for 3-tier and 3 layer for 2-tier model) and MLPs (3 fully connected layers

with ReLU activation with output dimension being 1024 for first two layers and

256 for the final layer before softmax).

3.5.1 WaveNet Re-implementation

We implemented the WaveNet architecture as described in Oord et al. (2016).

Ideally, we would have liked to replicate their model exactly but owing to missing

details of architecture and hyperparameters, as well as limited compute power at

our disposal, we made our own design choices so that the model would fit on a

single GPU while having a receptive field of around 250 milliseconds, while having

a reasonable number of updates per unit time. Although our model is very similar

Table 3.3 – Effect of subsequence length on NLL (bits per audio sample) computed on the
Blizzard validation set.

Subsequence Length 32 64 128 256 512

NLL Validation 1.575 1.468 1.412 1.391 1.364

37

Figure 3.2 – Examples from the datasets compared to samples from our models. In the first 3
rows, 2 seconds of audio are shown. In the bottom 3 rows, 100 milliseconds of audio are shown.
Rows 1 and 4 are ground truth from which one can see how the datasets look different and
have complex structure in low resolution which the frame-level component of the SampleRNN is
designed to capture. Samples also to some extent mimic the same global structure. At the same
time, zoomed-in samples of our model shows that it can perfectly resemble the high resolution
structure present in the data as well.

Table 3.4 – Test (validation) set NLL (bits per audio sample) for Blizzard. Variants of Sam-
pleRNN are provided to compare the contribution of each component in performance.

Model NLL Test (Validation)

SampleRNN (2-tier) 1.392 (1.369)
Without Embedding 1.566 (1.539)

Multi-Softmax 1.685 (1.656)

38

to WaveNet, the design choices, e.g. number of convolution filters in each dilated

convolution layer, length of target sequence to train on simultaneously (one can

train with a single target with all samples in the receptive field as input or with

target sequence length of size T with input of size receptive field + T - 1), batch-

size, etc. might make our implementation different from what the authors have

done in the original WaveNet model. Hence, we note here that although we did our

best at exactly reproducing their results, there would very likely be different choice

of hyper-parameters between our implementation and the one of the authors.

For our WaveNet implementation, we have used 4 dilated convolution blocks

each having 10 dilated convolution layers with dilation 1, 2, 4, 8 up to 512. Hence,

our network has a receptive field of 4092 acoustic samples i.e. the parameters of

multinomial distribution of sample at time step t, p(xi) = fθ(xi−1, xi−2, . . . xi−4092)

where θ is model parameters. We train on target sequence length of 1600 and use

batch size of 8. Each dilated convolution filter has size 2 and the number of output

channels is 64 for each dilated convolutional layer (128 filters in total due to gated

non-linearity). We trained this model using Adam optimizer with a fixed global

learning rate of 0.001 for Blizzard dataset and 0.0001 for Onomatopoeia and Music

datasets. We trained these models for about one week on a GeForce GTX TITAN

X. We dropped the learning rate in the Blizzard experiment to 0.0001 after around

3 days of training.

3.5.2 Human Evaluation

Apart from reporting NLL, we conducted AB preference tests for random sam-

ples from four models trained on the Blizzard dataset. For unconditional generation

of speech which at best sounds like mumbling, this type of test is the one which is

more suited. Competing models were the RNN, SampleRNN (2-tier), SampleRNN

(3-tier), and our implementation of WaveNet. The rest of the models were excluded

as the quality of samples were definitely lower and also to keep the number of pair

comparison tests manageable. We will release the samples that have been used in

this test too.

All the samples were set to have the same volume. Every user is then shown

a set of twenty pairs of samples with one random pair at a time. Each pair had

samples from two different models. The human evaluator is asked to listen to the

39

Figure 3.3 – Pairwise comparison of 4 best models based on the votes from listeners conducted
on samples generated from models trained on Blizzard dataset.

samples and had the option of choosing between the two model or choosing not to

prefer any of them. Hence, we have a quantification of preference between every

pair of models. We used the online tool made publicly available by Jillings et al.

(2015).

Results in Fig. 3.3 clearly points out that SampleRNN (3-tier) is a winner by

a huge margin in terms of preference by human raters, then SampleRNN (2-tier)

and afterward two other models, which matches with the performance comparison

in Table 3.1.

The same evaluation was conducted for Music dataset except for an additional

filtering process of samples. Specific to only this dataset, we observed that a

batch of generated samples from competing models (this time restricted to RNN,

SampleRNN (2-tier), and SampleRNN (3-tier)) were either music-like or random

noise. For all these models we only considered random samples that were not

random noise. Fig. 3.4 is dedicated to result of human evaluation on Music dataset.

40

Figure 3.4 – Pairwise comparison of 3 best models based on the votes from listeners conducted
on samples generated from models trained on Music dataset.

3.5.3 Quantifying Information Retention

For the last experiment we are interested in measuring the memory span of the

model. We trained our model, SampleRNN (3-tier), with best hyper-parameters on

a dataset of 2 speakers reading audio books, one male and one female, respectively,

with mean fundamental frequency of 125.3 and 201.8Hz. Each speaker has roughly

10 hours of audio in the dataset that has been preprocessed similar to Blizzard.

We observed that it learned to stay consistent generating samples from the same

speaker without having any knowledge about the the speaker ID or any other

conditioning information. This effect is more apparent here in comparison to the

unbalanced Onomatopoeia that sometimes mixes two different categories of sounds.

Another experiment was conducted to test the effect of memory and study the

effective memory horizon. We inject 1 second of silence in the middle of sampling

procedure in order to see if it will remember to generate from the same speaker

or not. Initially when sampling we let the model generate 2 seconds of audio as it

normally do. From 2 to 3 seconds instead of feeding back the generated sample at

that timestep a silent token (zero amplitude) would be fed. From 3 to 5 seconds

again we sample normally; feeding back the generated token.

We did classification based on mean fundamental frequency of speakers for the

first and last 2 seconds. In 83% of samples SampleRNN generated from the same

person in two separate segments. This is in contrast to a model with fixed past

window like WaveNet where injecting 16000 silent tokens (3.3 times the receptive

field size) is equivalent to generating from scratch which has 50% chance (assuming

each 2-second segment is coherent and not a mixed sound of two speakers).

41

3.6 Related Work

Our work is related to earlier work on auto-regressive multi-layer neural net-

works, starting with Bengio and Bengio (1999), then NADE (Larochelle and Mur-

ray, 2011) and more recently PixelRNN (van den Oord et al., 2016). Similar to

how they tractably model joint distribution over units of the data (e.g. words in

sentences, pixels in images, etc.) through an auto-regressive decomposition, we

transform the joint distribution of acoustic samples using Eq. 3.1.

The idea of having part of the model running at different clock rates is related

to multi-scale RNNs (Schmidhuber, 1992; El Hihi and Bengio, 1995; Koutnik et al.,

2014; Sordoni et al., 2015; Serban et al., 2016).

Chung et al. (2015) also attempt to model raw audio waveforms which is in

contrast to traditional approaches which use spectral features as in Tokuda et al.

(2013), Bertrand et al. (2008), and Lee et al. (2009).

Our work is closely related to WaveNet (Oord et al., 2016), which is why we

have made the above comparisons, and makes it interesting to compare the effect of

adding higher-level RNN stages working at a low resolution. Similar to this work,

our models generate one acoustic sample at a time conditioned on all previously

generated samples. We also share the preprocessing step of quantizing the acoustics

into bins. Unlike this model, we have different modules in our models running at

different clock-rates. In contrast to WaveNets, we mitigate the problem of long-

term dependency with hierarchical structure and using stateful RNNs, i.e. we will

always propagate hidden states to the next training sequence although the gradient

of the loss will not take into account the samples in previous training sequence.

42

4 Conclusion

In this thesis we propose a novel model that can address unconditional audio

generation in the raw acoustic domain, which typically has been done until recently

with hand-crafted features. We are able to show that a hierarchy of time scales

and frequent updates will help to overcome the problem of modeling extremely

high-resolution temporal data. That allows us, for this particular application, to

learn the data manifold directly from audio samples. We show that this model can

generalize well and generate samples on three datasets that are different in nature.

We also show that the samples generated by this model are preferred by human

raters.

Success in this application, with a general-purpose solution as proposed here,

opens up room for more improvement when specific domain knowledge is applied.

This method, however, proposed with audio generation application in mind, can

easily be adapted to other tasks that require learning the representation of sequen-

tial data with high temporal resolution and long-range complex structure.

43

A A model variant

SampleRNN-WaveNet hybrid model has two modules operating at two different

clock-rate. The slower clock-rate module (frame-level module) sees one frame (each

of which has size FS) at a time while the faster clock-rate component(sample-level

component) sees one acoustic sample at a time i.e. the ratio of clock-rates for these

two modules would be the size of a single frame. Number of sequential steps for

frame-level component would be FS times lower. We repeat the output of each

step of frame-level component FS times so that number of time-steps for output of

both the components match. The output of both these modules are concatenated

for every time-step which is further operated by non-linearities for every time-step

independently before generating the final output.

In our experiments, we kept size of a single frame (FS) to be 128. We tried two

variants of this model: 1. fully convolutional WaveNet and 2. RNN-WaveNet. In

fully convolutional WaveNet, both modules described above are implemented using

dilated convolutions as described in original WaveNet model. In RNN-WaveNet,

we use high capacity RNN in the frame-level module to model the dependency

between frames. The sample-level WaveNet in RNN-WaveNet has receptive field

of size 509 samples from the past.

Although these models are designed with the intention of combining the two

models to harness their best features, preliminary experiments show that this vari-

ant is not meeting our expectations at the moment which directs us to a possible

future work.

44

Bibliography

Bengio, Y. (1991). Artificial neural networks and their application to sequence

recognition.

Bengio, Y. and S. Bengio (1999). Modeling high-dimensional discrete data with

multi-layer neural networks. In NIPS, Volume 99, pp. 400–406.

Bengio, Y., P. Simard, and P. Frasconi (1994). Learning long-term dependencies

with gradient descent is difficult. IEEE transactions on neural networks 5 (2),

157–166.

Bergstra, J. and Y. Bengio (2012). Random search for hyper-parameter optimiza-

tion. Journal of Machine Learning Research 13 (Feb), 281–305.

Bertrand, A., K. Demuynck, V. Stouten, et al. (2008). Unsupervised learning of

auditory filter banks using non-negative matrix factorisation. In 2008 IEEE

International Conference on Acoustics, Speech and Signal Processing, pp. 4713–

4716. IEEE.

Bishop, C. M. (1994). Mixture density networks.

Bridle, J. S. (1990). Training stochastic model recognition algorithms as networks

can lead to maximum mutual information estimation of parameters. pp. 211–217.

Morgan Kaufmann.

Chung, J., C. Gulcehre, K. Cho, and Y. Bengio (2014). Empirical evalua-

tion of gated recurrent neural networks on sequence modeling. arXiv preprint

arXiv:1412.3555 .

Chung, J., K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio (2015).

A recurrent latent variable model for sequential data. In Advances in neural

information processing systems, pp. 2980–2988.

45

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.

Mathematics of control, signals and systems 2 (4), 303–314.

Dosovitskiy, A., J. Springenberg, M. Tatarchenko, and T. Brox (2016). Learning

to generate chairs, tables and cars with convolutional networks.

Duchi, J., E. Hazan, and Y. Singer (2011). Adaptive subgradient methods for

online learning and stochastic optimization. Journal of Machine Learning Re-

search 12 (Jul), 2121–2159.

Dugas, C., Y. Bengio, F. Bélisle, C. Nadeau, and R. Garcia (2001). Incorporating

second-order functional knowledge for better option pricing. Advances in neural

information processing systems , 472–478.

El Hihi, S. and Y. Bengio (1995). Hierarchical recurrent neural networks for long-

term dependencies. In NIPS, Volume 400, pp. 409. Citeseer.

Elman, J. L. (1990). Finding structure in time. Cognitive science 14 (2), 179–211.

Gers, F. (2001). Long short-term memory in recurrent neural networks. Ph. D.

thesis, Universität Hannover.

Glorot, X. and Y. Bengio (2010). Understanding the difficulty of training deep

feedforward neural networks. In Aistats, Volume 9, pp. 249–256.

Glorot, X., A. Bordes, and Y. Bengio (2011). Deep sparse rectifier neural networks.

In Aistats, Volume 15, pp. 275.

Goodfellow, I., Y. Bengio, and A. Courville (2016). Deep learning. Book in prepa-

ration for MIT Press.

Graves, A. (2012). Neural networks. In Supervised Sequence Labelling with Recur-

rent Neural Networks, pp. 15–35. Springer.

Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv

preprint arXiv:1308.0850 .

Graves, A., A.-r. Mohamed, and G. Hinton (2013). Speech recognition with deep

recurrent neural networks. In 2013 IEEE international conference on acoustics,

speech and signal processing, pp. 6645–6649. IEEE.

46

Greff, K., R. K. Srivastava, J. Koutńık, B. R. Steunebrink, and J. Schmidhuber

(2015). Lstm: A search space odyssey. arXiv preprint arXiv:1503.04069 .

Hahnloser, R. H., R. Sarpeshkar, M. A. Mahowald, R. J. Douglas, and H. S. Seung

(2000). Digital selection and analogue amplification coexist in a cortex-inspired

silicon circuit. Nature 405 (6789), 947–951.

Hahnloser, R. H., H. S. Seung, and J.-J. Slotine (2003). Permitted and forbidden

sets in symmetric threshold-linear networks. Neural computation 15 (3), 621–638.

He, K., X. Zhang, S. Ren, and J. Sun (2015). Delving deep into rectifiers: Sur-

passing human-level performance on imagenet classification. In Proceedings of

the IEEE International Conference on Computer Vision, pp. 1026–1034.

Hochreiter, S., Y. Bengio, P. Frasconi, and J. Schmidhuber (2001). Gradient flow

in recurrent nets: the difficulty of learning long-term dependencies.

Hochreiter, S. and J. Schmidhuber (1997). Long short-term memory. Neural com-

putation 9 (8), 1735–1780.

Hornik, K., M. Stinchcombe, and H. White (1989). Multilayer feedforward networks

are universal approximators. Neural networks 2 (5), 359–366.

Jillings, N., D. Moffat, B. De Man, and J. D. Reiss (2015, July). Web Audio

Evaluation Tool: A browser-based listening test environment. In 12th Sound

and Music Computing Conference.

Jordan, M. (1986). Serial order: a parallel distributed processing approach. techni-

cal report, june 1985-march 1986. Technical report, California Univ., San Diego,

La Jolla (USA). Inst. for Cognitive Science.

Karpathy, A. (2015). The unreasonable effectiveness of recurrent neural networks.

Andrej Karpathy blog .

Kingma, D. and J. Ba (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980 .

Koutnik, J., K. Greff, F. Gomez, and J. Schmidhuber (2014). A clockwork rnn.

arXiv preprint arXiv:1402.3511 .

47

Larochelle, H. and I. Murray (2011). The neural autoregressive distribution esti-

mator. In AISTATS, Volume 1, pp. 2.

Lee, H., P. Pham, Y. Largman, and A. Y. Ng (2009). Unsupervised feature learning

for audio classification using convolutional deep belief networks. In Advances in

neural information processing systems, pp. 1096–1104.

Maas, A. L., A. Y. Hannun, and A. Y. Ng (2013). Rectifier nonlinearities improve

neural network acoustic models. In Proc. ICML, Volume 30.

McCulloch, W. S. and W. Pitts (1943). A logical calculus of the ideas immanent

in nervous activity. The bulletin of mathematical biophysics 5 (4), 115–133.

Montufar, G. F., R. Pascanu, K. Cho, and Y. Bengio (2014). On the number

of linear regions of deep neural networks. In Advances in neural information

processing systems, pp. 2924–2932.

Nair, V. and G. E. Hinton (2010). Rectified linear units improve restricted boltz-

mann machines. In Proceedings of the 27th International Conference on Machine

Learning (ICML-10), pp. 807–814.

Oord, A. v. d., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalch-

brenner, A. Senior, and K. Kavukcuoglu (2016). Wavenet: A generative model

for raw audio. arXiv preprint arXiv:1609.03499 .

Pascanu, R., C. Gulcehre, K. Cho, and Y. Bengio (2013). How to construct deep

recurrent neural networks. arXiv preprint arXiv:1312.6026 .

Pascanu, R., T. Mikolov, and Y. Bengio (2013). On the difficulty of training

recurrent neural networks. ICML (3) 28, 1310–1318.

Prahallad, K., A. Vadapalli, N. Elluru, G. Mantena, B. Pulugundla,

P. Bhaskararao, H. Murthy, S. King, V. Karaiskos, and A. Black (2013). The

blizzard challenge 2013–indian language task. In Blizzard Challenge Workshop

2013.

Robbins, H. and S. Monro (1951). A stochastic approximation method. The annals

of mathematical statistics , 400–407.

48

Salimans, T. and D. P. Kingma (2016). Weight normalization: A simple repa-

rameterization to accelerate training of deep neural networks. arXiv preprint

arXiv:1602.07868 .

Schmidhuber, J. (1992). Learning complex, extended sequences using the principle

of history compression. Neural Computation 4 (2), 234–242.

Schuster, M. and K. K. Paliwal (1997). Bidirectional recurrent neural networks.

IEEE Transactions on Signal Processing 45 (11), 2673–2681.

Serban, I. V., A. Sordoni, Y. Bengio, A. Courville, and J. Pineau (2016). Building

end-to-end dialogue systems using generative hierarchical neural network models.

In Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI-

16).

Siegelmann, H. T. (1999). Computation beyond the turing limit. In Neural Net-

works and Analog Computation, pp. 153–164. Springer.

Sordoni, A., Y. Bengio, H. Vahabi, C. Lioma, J. Grue Simonsen, and J.-Y. Nie

(2015). A hierarchical recurrent encoder-decoder for generative context-aware

query suggestion. In Proceedings of the 24th ACM International on Conference

on Information and Knowledge Management, pp. 553–562. ACM.

Tokuda, K., Y. Nankaku, T. Toda, H. Zen, J. Yamagishi, and K. Oura

(2013). Speech synthesis based on hidden markov models. Proceedings of the

IEEE 101 (5), 1234–1252.

van den Oord, A., N. Kalchbrenner, and K. Kavukcuoglu (2016). Pixel recurrent

neural networks. arXiv preprint arXiv:1601.06759 .

Vapnik, V. (2013). The nature of statistical learning theory. Springer Science &

Business Media.

Yu, F. and V. Koltun (2015). Multi-scale context aggregation by dilated convolu-

tions. arXiv preprint arXiv:1511.07122 .

Zaremba, W. (2015). An empirical exploration of recurrent network architectures.

49

