
Université de Montréal

SLA Violation Prediction: A Machine Learning Perspective

par Reyhane Askari Hemmat

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté à la Faculté des arts et des sciences
en vue de l’obtention du grade de Mâıtre ès sciences (M.Sc.)

en informatique

Octobre, 2016

c© Reyhane Askari Hemmat, 2016.

Résumé
Le cloud computing réduit les coûts de maintenance des services et permet aux

utilisateurs d’accéder à la demande aux services sans devoir être impliqués dans
des détails techniques d’implémentation. Le lien entre un fournisseur de services
cloud et un client est régi par une Validation du Niveau Service (VNS) qui définit
pour chaque service le niveau et le coût associé. La VNS contient habituellement
des paramètres spécifiques et un niveau minimum de qualité pour chaque élément
du service qui est négocié entre les deux parties.

Cependant, une ou plusieurs des conditions convenues dans une VNS pourraient
être violées en raison de plusieurs problèmes tels que des problèmes techniques occa-
sionnels. Du point de vue d’apprentissage automatique, le problème de la prédiction
de violation de la VNS équivaut à un problème de classification binaire.

Nous avons exploré deux modèles de classification en apprentissage automatique
lors de cette thèse. Il s’agit des modèles de classification de Bayes näıve et de Forêts
Aléatoires afin de prédire des violations futures d’une certaine tâche utilisant ses
traits caractéristiques. Comparativement aux travaux précédents sur la prédiction
d’une violation de la VNS, nos modèles ont été entrâınés sur des ensembles de
données réels introduisant ainsi de nouveaux défis. Nous avons validé le tout en
utilisant Google Cloud Cluster trace comme avec l’ensemble de données.

Les violations de la VNS étant des évènements rares (∼ 2.2%), leur classification
automatique reste une tâche difficile. Un modèle de classification aura en effet une
forte tendance à prédire la classe dominante au détriment des classes rares. Pour
répondre à ce problème, il existe plusieurs méthodes de ré-échantillonages telles
que Random Over-Sampling, Under-Sampling, SMOTH, NearMiss, One-sided Se-
lection, Neighborhood Cleaning Rule. Il est donc possible de les combiner afin de
ré-équilibrer le jeu de données.

Mots clés: Cloud Computing, Validation du Niveau Service, Apprentissage
Automatique, Classification Déséquilibrée, Forêts Aléatoires, Classification de Bayes
Näıve

ii

Summary
Cloud computing reduces the maintenance costs of services and allows users

to access on demand services without being involved in technical implementation
details. The relationship between a cloud provider and a customer is governed
with a Service Level Agreement (SLA) that is established to define the level of the
service and its associated costs. SLA usually contains specific parameters and a
minimum level of quality for each element of the service that is negotiated between
a cloud provider and a customer.

However, one or more than one of the agreed terms in an SLA might be violated
due to several issues such as occasional technical problems. Violations do happen
in real world. In terms of availability, Amazon Elastic Cloud faced an outage in
2011 when it crashed and many large customers such as Reddit and Quora were
down for more than one day. As SLA violation prediction benefits both user and
cloud provider, in recent years, cloud researchers have started investigating models
that are capable of prediction future violations. From a Machine Learning point of
view, the problem of SLA violation prediction amounts to a binary classification
problem.

In this thesis, we explore two Machine Learning classification models: Naive
Bayes and Random Forest to predict future violations using features of a submitted
task. Unlike previous works on SLA violation prediction or avoidance, our models
are trained on a real world dataset which introduces new challenges. We validate
our models using Google Cloud Cluster trace as the dataset.

Since SLA violations are rare events in real world (∼ 2.2%), the classification
task becomes more challenging because the classifier will always have the tendency
to predict the dominant class. In order to overcome this issue, we use several
re-sampling methods such as Random Over-Sampling, Under-Sampling, SMOTH,
NearMiss, One-sided Selection, Neighborhood Cleaning Rule and an ensemble of
them to re-balance the dataset.

Keywords: Cloud Computing, Service Level Agreements, Machine Learning,
Unbalanced Classification, Random Forest, Naive Bayes

iii

Contents

Résumé . ii

Summary . iii

Contents . iv

List of Figures . vii

List of Tables . x

List of Abbreviations . xi

Acknowledgments . xii

1 Introduction . 1
1.1 Motivation and Statement of the Problem 1
1.2 Contributions . 3
1.3 Organization of this Thesis . 4

2 Cloud Computing . 5
2.1 Cloud Architecture and Layered Model 6

2.1.1 Hardware Layer . 7
2.1.2 Infrastructure Layer . 7
2.1.3 Platform Layer . 7
2.1.4 Application Layer . 7

2.2 Cloud Deployment Models . 8
2.2.1 Public Cloud . 8
2.2.2 Private Cloud . 8
2.2.3 Community Cloud . 8
2.2.4 Hybrid Cloud . 9

2.3 Cloud Computing Characteristics 9
2.3.1 On Demand Self-service . 9
2.3.2 Broad Network Access . 10
2.3.3 Resource Pooling . 10
2.3.4 Rapid Elasticity . 10

iv

2.3.5 Measured Service . 11
2.3.6 Service Oriented . 11
2.3.7 Multi-tenancy . 11
2.3.8 Geographic Distribution . 12

2.4 Related Technologies . 12
2.4.1 Grid Computing . 12
2.4.2 Utility Computing . 13
2.4.3 Autonomic Computing . 13

2.5 Service Model . 13
2.5.1 Infrastructure as a Service (IaaS) 14
2.5.2 Platform as a Service (PaaS) 14
2.5.3 Software as a Service (SaaS) 15

2.6 Quality of Service in Cloud Computing 15
2.6.1 Service Level Agreements 16
2.6.2 SLA Management Life Cycle 18

3 Prediction Models . 21
3.1 Terminology . 21
3.2 Supervised Machine Learning: Concepts and Definitions 22

3.2.1 Learning . 23
3.2.2 Classification . 23
3.2.3 Regression . 23

3.3 Generalization . 24
3.3.1 Bias-Variance Trade off . 24
3.3.2 Overfitting Problem . 25
3.3.3 Regularization . 27
3.3.4 Cross Validation . 27

3.4 Performance Evaluation . 28
3.4.1 Confusion Matrix . 29
3.4.2 Accuracy . 29
3.4.3 Precision and Recall . 30
3.4.4 Fβ Score . 30
3.4.5 Receiver Operating Characteristics (ROC) curves 30

4 Related Works . 32
4.1 Load Prediction . 32
4.2 Resource Scheduling . 33
4.3 SLA Violation Prediction . 34

5 Methodology . 35
5.1 Dataset . 36

5.1.1 Data Analysis . 38

v

5.2 Tackling Unbalanced Data . 40
5.2.1 Algorithm-based Approach 41
5.2.2 Data-based Approach . 41

5.3 Ensemble Methods . 42
5.3.1 Bagging . 42
5.3.2 Boosting . 43

5.4 Data Resampling . 43
5.4.1 Over Sampling Techniques 43
5.4.2 Under Sampling Techniques 44
5.4.3 Combination of Over Sampling and Under Sampling Tech-

niques . 45
5.5 Classification Models . 46

5.5.1 Naive Bayes Classifier . 46
5.5.2 Naive Bayes Implementation 47
5.5.3 Decision Tree Classifier . 49
5.5.4 An Ensemble of Decision Tree Classifier: Random Forest . . 49
5.5.5 Random Forest Implementation 50

6 Results and Discussion . 52
6.1 Environments and Toolkits . 52

6.1.1 Python . 52
6.1.2 Scikit-Learn . 53
6.1.3 Imbalanced-learn . 53
6.1.4 T-SNE (t-Distributed Stochastic Neighbor Embedding) . . . 53

6.2 Results . 53
6.2.1 Classification with Under-Sampling 54
6.2.2 Classification with Over-Sampling 54
6.2.3 Classification with Combination of Under-Sampling and Over-

Sampling . 55
6.3 Discussion . 56

7 Conclusion . 63

Bibliography . 64

vi

List of Figures

2.1 A depiction of a cloud system. 5
2.2 Cloud architecture and layered model: Hardware, Infrastructure,

Platform and Application layers. 6
2.3 Hybrid Cloud uses the infrastructure of two or more of the Public,

Private or Community clouds. 9
2.4 Cloud Service Model: Three well-know cloud service model are IaaS,

PaaS and SaaS providers. 14
2.5 SLA Life Cycle. 19

3.1 Dart chart: A graphical illustration of bias-variance trade-off. Con-
sider a classification problem as throwing darts at a dart-board. If
darts land in very different parts of the board, the model has “high
variance”. If their mean is close to the center of the board, the model
has “low bias”. Similarly, “low variance” and “high bias” can be de-
fined. The above four dart boards corresponds to these situations
(Moore and McCabe, 1989). 25

3.2 Left: the model is underfitted or equivalently has high bias. The
reason is that we are trying to approximate a second order polyno-
mial function using a linear function. Right: the model is overfitted
because a high order polynomial function is used. Although the er-
ror on the training set is close to zero, the model has a high variance.
Middle: the model is just fitted. The Figure is adopted from Bishop
(2006). 26

3.3 Test and training error as the function of model complexity. Figure
is adopted from Murphy (2012). 28

3.4 Left: A confusion matrix; The table contains information about ac-
tual and predicted targets of a binary classifier. Right: A graphical
illustration of the confusion matrix; Red and Green are indicating
the real classes while the dotted line corresponds to the threshold of
a classifier. The right side of the dotted line is labeled as positive
and the left side is labeled as negative. 29

vii

3.5 In an ROC curve, the best ideal model would go straight up to
left-upper corner and then straight to the right-upper corner. An
untrained model with no discrimination is the diagonal one. Usually
all classifiers are somewhere between the ideal one and the one with
no power. 31

5.1 Google’s cluster trace dataset ERD (Entity Relationship Diagram).
The dataset contains the above five different tables. This ERD is
used to define and find violated tasks based on the definition in
Section 5.1.1 . 37

5.2 The state transition diagram of a task on Google Cluster machines
(Reiss et al., 2011). 38

5.3 The Figure shows 500 snapshots of the requested, available, assigned
and used memory of the cluster. 40

5.4 In a single model, the complete dataset is given to the model in
one iteration. In bagging, the dataset is divided into several sets
randomly sampled with replacement from the original dataset. The
sets are then fed to the model in parallel. In boosting, random
sampling with replacement over weighted data is used. The data is
sequentially given to a set of weak learners. 42

5.5 Bayesian network representation of the naive Bayes classifier. Ac-
cording the the graph representation, conditioned on the class Ck,
xi’s are independent of each other. 47

5.6 A graphical illustration of a Decision Tree: Classification starts from
the top node towards leaves by testing the Outlook. After moving
to one of the left or the right subtrees, a test on Humidity or Wind
determines the class label (Mitchell et al., 1997). 49

5.7 In a random forest, k different decision trees are trained using k
different subsets of the dataset. During test time, a sample input
point is fed to all trees and predictions P1..k are generated. A voting
is then applied on all predictions to make a single final prediction. . 51

6.1 A hierarchical depiction of different sampling methods and the mod-
els used for each. The number associated with each methods indi-
cates the F1 score. Other methods∗: Since the data is highly un-
balanced, the other models mostly overfit and learn to always pre-
dict the most dominant class. These models include Naive Bayes,
Naive Bayes One-Sided Selection, Naive Bayes Neighborhood Clean-
ing Rule, Naive Bayes Random over sampling, Naive Bayes SMOTE
and its variants. 58

viii

6.2 ROC curves of different sampling methods imposed on the random
forest algorithm. ROC curves represent the performance of binary
classifiers over different cut-off points of the algorithm. The area un-
der the curve is considered as a single number presenting the trade-off
between sensitivity (true positive rate) and specificity (true negative
rate). 59

6.3 A 2D t-SNE visualization of different under sampling methods. (a):
No Resampling, (b): Random Under-Sampling, (c): One-Sided Se-
lection, (d): Neighborhood Cleaning Rule, (e): Near-Miss 1, (f):
Near-Miss 2, (g): Near-Miss 3. 60

6.4 A 2D t-SNE visualization of different over sampling methods. (a):
No Resampling, (b): Random Over-Sampling, (c): SMOTE Bor-
derline 1 and 2, (d): SMOTE. Note that the similarity between (b)
and (a) is because Random Over-Sampling, duplicates the existing
points randomly. 61

6.5 A 2D t-SNE visualization of different combined sampling methods.
(a): No Resampling, (b): SMOTE Tomek Links, (b): SMOTE ENN 61

6.6 The average contribution of each feature based on the best trained
random forest algorithm. The average is taken over all test examples. 62

ix

List of Tables

2.1 Components of a Web Service Level Agreement (Buyya et al., 2010). 17
2.2 An example of infrastructure SLA (Buyya et al., 2010). 17
2.3 An example of application SLA (Buyya et al., 2010). 18

5.1 The description and type of features used as the input for the clas-
sification model. 39

5.2 Two sample examples (datapoints) from the dataset for each class:
violated and un-violated. 39

6.1 Full results of Naive Bayes (NB) and Random Forest (RF) classi-
fication algorithms with Under-Sampling techniques. Results are
achieved using 3-fold cross validation. 55

6.2 The results of Random Forest (RF) classification algorithm with
Over-Sampling methods. Results are achieved using 3-fold cross val-
idation. 55

6.3 The results of Naive Bayes (NB) and Random Forest RF) classi-
fication algorithms with combination of Over-Sampling and under-
Sampling techniques. Results are achieved using 3-fold cross valida-
tion. 55

x

List of Abbreviations
AWS Amazon Web Services
BaaS Backend as a Service
DaaS Data as a Service
ERD Entity Relationship Diagram
IaaS Infrastructure as a Service
MSE Mean Square Error
NCR Neighborhood Cleaning Rule
NIST National Institute of Standards and Technology
NaaS Network as a Service
PGA Parallel Genetic Algorithm
PaaS Platform as a Service
QoS Quality of Service
ROC Receiver Operating Characteristics
SECaaS Security as a Service
SLA Service-Level Agreement
SLO Service Level Objectives
SMOTE Synthetic Minority Over-sampling Technique
STaaS Storage as a Service
SaaS Software as a Service
T-SNE T-Distributed Stochastic Neighbor Embedding
VM Virtual Machines
WS Web Server
WSLA Web Service Level Agreement

xi

Acknowledgments

For the ancestors who paved the path before me, upon whose shoulders I stand.

This is dedicated to my parents Ataollah and Zahra and to my brothers Mohammad

Ali and Mohammad Hossein.

I would like to express my deepest gratitude to my supervisor Prof. Abdel-

hakim Hafid for his unwavering support, collegiality, and mentorship throughout

this thesis.

I must also acknowledge great help and support from my friend Mohammad

Pezeshki.

xii

1 Introduction

1.1 Motivation and Statement of the Problem

Cloud computing provides a convenient way to access different IT resources

such as servers, storage, databases and a wide range of application services over

the Internet. The main appeal of cloud computing is that users do not get involved

in details of service management, hardware maintenance, or software licenses.

In recent years, cloud computing is becoming the most cost-effective and reliable

way of building and deploying different IT services. The superiority of cloud com-

puting comes from the fact that it provides extensive computing and storage ser-

vices on scalable and dynamic environment. According to Wang et al. (2010), cloud

computing has five unique characteristics among other computing paradigms; (1)

User-centric interfaces: cloud computing is accessed using simple and user-friendly

environments, (2) On-demand service provisioning: based on user requirements of

a service, different amounts of resources can be allocated, (3) QoS guaranteed offer:

cloud computing guarantees a minimum level of Quality of Service (QoS), based of

a Service Level Agreement (SLA), (4) Autonomous System: system management

including both hardware and software are all done autonomously without involv-

ing users, and (5) Scalability and flexibility: cloud computing allows upscaling or

downscaling IT resources easily.

Among the above-mentioned cloud characteristics, in this thesis we particularly,

focus on the Quality of Service and Service Level agreements in cloud computing.

“Quality of service represents the set of those quantitative and qualitative charac-

teristics of a distributed multimedia system necessary to achieve the required func-

tionality of an application” (Vogel et al., 1995). In order to guarantee a minimum

level of QoS, a careful management of IT resources is essential. However, due to

systems’ complexities, the task of managing resources in an efficient way is a chal-

lenging problem. Management of resources and handling variable volumes of user

1

requirements are a part of SLA between users and cloud providers.

QoS management involves helping users to find the required characteristics of

the demanded service and adaptation of IT resources in such a way to respect SLA

and to optimize the system performance and efficiency. Generally speaking, the

problem of resource adaptation including resource reallocation in a complex system

with an enormous number of tasks is an NP-hard problem (Darmann et al., 2010).

Consequently, it is inevitable that QoS agreed in SLA not be always respected. In

the case that the effective QoS does not comply with the minimum QoS agreed in

SLA, QoS manager issues an instance of SLA violation.

QoS manager allocates different amounts of resources (CPU, memory, or stor-

age) and also determines the agreements in SLA based on four sources of informa-

tion: (1) The requested IT resources for each user task, (2) The available resources

of the computing system, (3) Information about the minimum QoS agreed in SLA,

and (4) The historical information about the system’s load. QoS manager, usually

using a heuristic method, decides how to prevent SLA violation. For example, in

the application of video streaming such as YouTube, QoS manager may delay the

video by a few seconds in order to buffer and prevent interruption in the middle of

video. On the other hand, in some other applications such as video conference of

Google Hangouts, in which significant delay is not acceptable, QoS manager may

reduce the resolution of video or the sound quality to prevent any violation of the

service. Therefore, it is desirable to be able to predict when an SLA violation may

occur beforehand.

SLA violation prediction benefits both cloud providers and customers. From a

cloud provider’s point of view, SLA violation results in paying penalties in terms of

both money and reputation. By predicting violations ahead of time, providers can

reallocate the requests and resources to prevent future violations. All the process of

resource allocation is done behind the scene; thus, from a customer point of view,

better resource allocation results in a trustworthy provider. Moreover, customers

would like to receive the service on demand and without any interruptions. Thus,

a system in which a cloud provider or a third party could provide the prediction of

SLA violations for the customer can be very insightful.

It is worth mentioning that violations do happen in the real world. As an

example, Amazon Elastic Cloud faced an outage in 2011 when it crashed and many

2

large customers such as Reddit and Quora were down for more than one day 1.

1.2 Contributions

In this thesis, we propose to use Machine Learning in order to predict SLA

violations. Violation prediction can be seen as a classification problem in the

terminology of Machine Learning. A classifier predicts whether a coming request

will be violated or not. Each request is presented to the model using five different

features: the priority of the task, the requested amount of disk space, the requested

amount of CPU, the requested amount of memory, and also scheduling class which

indicates latency-sensitivity of the task. We explore Random Forest and Naive

Bayes classifiers. For the Naive Bayes we also explore two assumptions over the

features vector: Bernoulli and Gaussian distributions.

Previous research mostly relies on heuristic methods for prediction of violations.

Although Machine Learning has been used in different areas of QoS management,

the experiments are done mostly in very restricted setting which is not necessarily

scalable to real world data. However, this research takes a systematic machine

learning approach applied on real-world data that provides an insightful set of ex-

periments. We use 20k records of Google Cloud Cluster trace dataset containing

∼ 97.8% unviolated and ∼ 2.2% violated examples. Thus, the dataset is highly

unbalanced and the classification task becomes more challenging because the clas-

sifier will always have the tendency to predict the dominant class. This problem

usually biases the classifier to always predict no violation which is not desirable.

We address this issue by using multiple classifiers aggregated and averaged in order

to achieve a single reliable result. Specifically, in terms of algorithm, we use ran-

dom forest classification model and in terms of data, we use different re-sampling

methods.

We show that our proposed model achieves a remarkable performance of 99.88%

accuracy 2 in prediction of violations. In addition, by analyzing the model and vi-

sualization of different re-sampling methods, we provide insightful and actionable

1. Amazon Elastic Compute Cloud (Amazon EC2). Available at https://aws.amazon.com/

ec2/

2. Full table of results including other metrics is presented in Section 6.2

3

https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/

information on how to overcome the skewness of the dataset and train unbiased clas-

sification models. It is also worth mentioning that we extract human-interpretable

results from the model which suggests that requested memory is the most corre-

lated feature with violation occurrence. Finding the importance of each feature

can then help the provider to implement a management system that can improve

the performance of its cloud services.

1.3 Organization of this Thesis

In Chapter 2, we introduce fundamentals of Cloud Computing, its architecture,

cloud’s service model and deployment models. We will also give a brief definition

of Service Level Agreement and Quality of Service. In Chapters 3, we give a

description of the terminologies and basic concepts in machine learning. We define

different machine learning models such as classification and regression. We also

present how the performance of a model is measured in machine learning.

In Chapter 4, we present an overview of existing contributions on SLA violation

prediction; in particular, we present the limitations of these contributions and how

our proposed model aims to overcome them. Chapter 5 presents the proposed

method that is used to predict SLA violation. Chapter 6 presents the details of the

evaluation and the implementation of our proposal. Finally, Chapter 7 concludes

the thesis and presents future work.

4

2 Cloud Computing

Cloud computing is a new paradigm for providing various hosting services over

the internet. It has recently become so prevalent that it is hard to picture using

many services and applications without cloud computing. There has been many

driving forces that has led to the popularity and advancement of cloud computing.

Computing power and storage have had rapid development and the hardware cost

has been decreased. The emergence of exponentially growing data, the necessity of

a new business model and technology led to the concept of cloud computing. See

Figure 2.1 for a graphical illustration of a cloud system.

Figure 2.1 – A depiction of a cloud system.

Cloud computing reduces the maintenance costs of the service and also allows

users to access on demand services without being involved in technical implemen-

tation details. Business owners do not need to plan ahead for provisioning and

enterprises can start small and increase the resources as they grow.

According to the National Institute of Standards and Technology (NIST) (Mell

and Grance, 2011), the definition of cloud computing is: Cloud computing is a model

for enabling convenient, on-demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage, applications, and services)

5

that can be rapidly provisioned and released with minimal management effort or

service provider interaction.

In this chapter, we present the architecture of cloud and its service and deploy-

ment models. Then cloud computing’s characteristics are presented and related

technologies such as grid computing, utility computing and autonomic computing

are briefly discussed. Finally, we will introduce the concept of Quality of Service

and Service Level Agreements in cloud.

2.1 Cloud Architecture and Layered Model

To better understand cloud computing, we need to first describe the architecture

of cloud. Cloud architecture is usually defined in a layered model. Modular and

layered structures such as OSI model and cloud layered architecture simplify the

separation and definition of different parts of the system and reduce management

overheard.

The architecture of cloud consists of four layers (Zhang et al., 2010): Hardware,

Infrastructure, Platform and Application. We briefly discuss these layers in the

following sections.

Figure 2.2 – Cloud architecture and layered model: Hardware, Infrastructure, Platform and
Application layers.

6

2.1.1 Hardware Layer

This layer mostly includes the physical hardware that actually runs the cloud.

It is usually a networked collection of data centers connected through switches and

routers. Inside data centers are racks of servers, storage arrays, cooling infrastruc-

ture, power converters and backup generators (Zhang et al., 2010). Fault tolerance

in this layer is managed via redundancy of several inexpensive physical hardware.

2.1.2 Infrastructure Layer

This layer is the foundation of Cloud Computing. It provides the virtualization

technology that makes cloud flexible and scalable. Virtual machines (VMs) are

deployed on hardware with different operating systems. A virtual machine creates

logic structures that seem to operate just like the physical machine. Virtual ma-

chines are created and deleted at will which enables users to have dynamic resource

allocation and maximum resource utilization.

2.1.3 Platform Layer

This layer includes operating systems and web platforms on top of the infras-

tructure layer. It provides a container for application development or APIs for

cloud application development without the need to manage the hardware, virtual

machines or operating systems. The cloud platform acts as a container where web

applications with storage and database can be created.

2.1.4 Application Layer

The application layer is the most visible layer to end-users. Applications are

accessed by users though a web portal. Cloud applications do not require the user

to handle software upgrades and patches. Applications at this level are fast at

processing real time data and are highly scalable.

7

2.2 Cloud Deployment Models

According to the NIST (Mell and Grance, 2011) definition of cloud, there are

four cloud deployment models known as public, private, community and hybrid

clouds. These four deployment models specify who is the customer of the services

that are provided by these clouds.

2.2.1 Public Cloud

The services provided in a public cloud are open to use for general public, mean-

ing customers that are external to the provider’s organization. The services can be

free or in a pay as you go manner. The service can be sold, managed and operated

by end-users, businesses or organizations. Public cloud service providers usually

own and operate the infrastructure at their data center and access is generally,

provided via the Internet.

2.2.2 Private Cloud

Private clouds are owned or leased by one large or mid size organization. They

can be hosted externally or internally. The services are not in a pay as you go

manner because the hardware, storage, network and the whole infrastructure is

dedicated to the organization.

Security is a key aspect in private clouds (Mell and Grance, 2011). The usage

of dedicated hardware, storage and network can ensure higher levels of security.

2.2.3 Community Cloud

Community clouds have shared infrastructures for a specific community that

share a common goal (security, compliance, jurisdiction, etc.). They can be man-

aged internally or by a third party and are hosted either internally or externally.

Compared to a private cloud the costs can be shared in a community cloud and the

services are provided in a pay as you go manner. On the other hand, compared to

public cloud, a higher level of security that is more compatible with organizations

is provided.

8

2.2.4 Hybrid Cloud

In hybrid clouds, the infrastructure is composed of two or more other cloud

models (private, public or community) that will be separated from each other but

bounded with a standard technology. They provide multiple benefits of different

deployment models. Organizations can use a hybrid of public and private clouds

to store sensitive information in a private cloud connected to an application that

is deployed in a public cloud.

Public Cloud
Community

Cloud

Private Cloud

Hybrid Cloud

Figure 2.3 – Hybrid Cloud uses the infrastructure of two or more of the Public, Private or
Community clouds.

2.3 Cloud Computing Characteristics

According to NIST definition of cloud computing, a cloud system has five essen-

tial characteristics; on demand self-service, broad network access, resource pooling,

rapid elasticity and measured service (Mell and Grance, 2011). There are also sev-

eral common characteristics in cloud systems; service oriented, multi-tenancy and

geographic distribution, to name a few. We briefly discuss each of these character-

istics.

2.3.1 On Demand Self-service

On demand self service or automation is a property that enables customers

to perform all actions needed to acquire or release a service without any human

interaction and in a pay as you go manner. The transition usually takes place

9

immediately, although depending on the architecture and the resource availability

of the provider it may be delayed (Zhang et al., 2010).

A customer does not need to have huge investment in a service from the start

and can scale the required service up to a significant level without any disruption

on host operations. Moreover, the traditional provisioning model for resources was

based on the peak demand of the service whereas in a cloud system, resources

are acquired on-demand which can considerably lower the costs. The customer is

charged only for the resources used under a subscription-based billing method.

2.3.2 Broad Network Access

A cloud system should be accessible over a network. This characteristic is called

Broad Network Access. Computing capabilities in a cloud system are available

from a wide range of locations over the network and accessed through standard

mechanisms.

Comparing to the mainframe era when resources were scarce and costly, nowa-

days, broad network access of cloud systems has become possible (Williams, 2012).

The reason is that the network bandwidth and access has increased and also the

cost associated with networks has decreased.

2.3.3 Resource Pooling

In a cloud system, providers offer a pool of computing, network, storage and

services to various costumers. Providers have the flexibility of dynamically assign-

ing the pooled resources and services to multiple customers. The customers will

share resources adjacent to other customers (Zhang et al., 2010). This character-

istic allows providers to manage their resources by maximizing resource utilization

and minimizing the operating costs, power consumption and cooling. This leads to

offering resources with considerable lower prices.

2.3.4 Rapid Elasticity

An elastic system can adapt to workload changes by provisioning and depro-

visioning the resources in an autonomic way. Rapid elasticity is the ability of

10

fast provision and deprovision of resources such that available resources match the

current requested resources as much as possible.

In a cloud system, provision of resources can be so quick that the resources can

appear unlimited to the customer and provision can be performed in any quantity

at any time.

2.3.5 Measured Service

In a cloud system, resource usage is automatically monitored, controlled and

reported by using metering capabilities with some level of abstraction. The mea-

surement tools provide both the provider and the customer an account of what has

been used. This allows transparency between the provider and the customer.

2.3.6 Service Oriented

Cloud systems operate with a service-driven model. In such systems, service

management and preferably autonomous service management are key aspects. Each

provider offers the resources under an agreement called Service Level Agreement

(SLA) (Casalicchio and Silvestri, 2013). SLA can be negotiated between a provider

and a customer and is an essential part of cloud systems to ensure maximum

availability of services for customers. With a violation of SLA, the provider has to

pay penalties, thus SLA assurance is a critical objective for every provider.

2.3.7 Multi-tenancy

Multi-tenancy is a property that allows a system to serve a single instance of a

resource or application for multiple customers which are called tenants in this case

(Krebs et al., 2012). This system requires secure physical and logical separation of

resources which are controlled by one tenant in a shared environment. It is worth

mentioning, that per-tenant reporting and quota management are key aspects in a

multi-tenant system (Krebs et al., 2012).

The layered structure of cloud allows adding new features to the system by

changing the entire infrastructure once for all customers whereas in a dedicated

hardware per customer environment, changes need to be done per device (AlJahdali

et al., 2014).

11

2.3.8 Geographic Distribution

As mentioned previously, one of the main characteristics of cloud systems is

broad network access. Hence, to achieve higher performance, localization can be

used. Many of cloud providers have data centers distributed around the world in

order to gain the maximum service utility (Attiya and Welch, 2004).

2.4 Related Technologies

Several technologies share close characteristics with cloud computing. We will

briefly describe Grid Computing, Utility Computing and Autonomic Computing

and discuss their common characteristics with Cloud Computing.

2.4.1 Grid Computing

According to Foster et al. (2008), grid computing is a resource provisioning

model where computing resources are distributed. Usually large number of servers

(nodes) are connected to each other through a network to form a grid. Large

and computing-intensive workloads are sent to grid which are then shared between

nodes in a paralleled manner. Thus, it requires software that can divide the compu-

tation task into pieces. This rises the concern of software management or handling

failure of a node.

Scalability and multi-tenancy are the shared features between cloud and grid

computing. However, in cloud computing the resources are allocated and de-

allocated on demand and at a more granular level by using virtualization (Foster

et al., 2008). Virtualization amounts to running multiple operating systems and ap-

plication on a single physical server. Cloud and grid computing both offer SLAs to

provide resources for a guaranteed uptime. Storage computing in a grid is designed

for data-intensive tasks. It is not financially preferred for storing small objects,

but cloud computing can be implemented in non-grid environments (Foster et al.,

2008).

12

2.4.2 Utility Computing

According to Rappa (2004), Utility Computing is “the on-demand delivery of

infrastructure, applications, and business processes in a security-rich, shared, scal-

able, and standards based computer environment over the Internet for a fee”.

Utility computing is mostly used in cases where the peak of usage is rare. By

using virtualization, it tries to minimize the operating costs while maximizing the

actual usage of resources. Thus, the main leverage of utility computing is the

economics (Degabriele and Pym, 2007).

Utility computing can be considered as the backbone of cloud computing but

cloud computing provides more features and flexibility (Kaur and Singh, 2015).

Cloud computing can be used internally in an organization. It also has unlimited

scalability, utility based pricing, network access and on-demand self service.

2.4.3 Autonomic Computing

Autonomic computing is the self-managing feature of distributed computing.

In autonomic computing, the control of the system, application and resources are

done without human interaction thus removing the burden of management. The

system adapts to unpredictable changes and hides the system’s complexity from

the users (Kephart and Chess, 2003).

Autonomic computing reduces maintenance costs by hiding the system com-

plexity. The autonomic feature is also included in cloud computing but with a

different purpose. Autonomic resource allocation and SLA monitoring are two fea-

tures of cloud computing but they aim to reduce the cost and maximize the resource

utilization rather than reducing the complexity (Zhang et al., 2010).

2.5 Service Model

The service model architecture of cloud computing suggests that the resources

provisioned in cloud be provided as services in an on-demand fashion. These ser-

vices are usually grouped into three categories; Infrastructure as a Service (IaaS),

Platform as a Service (PaaS), Software as a Service (SaaS). Each layer can be used

as a service provider for the upper layer (Mell and Grance, 2011).

13

There are also other less popular service models for cloud such as; Network as

a Service (NaaS), Storage as a Service (STaas), Security as a Service (SECaaS),

Data as a Service (DaaS), Backend as a Service (BaaS) and etc. or the generally

as called in Banerjee et al. (2011), Everything as a Service that are provided by

cloud providers at different layers.

Cloud Infrastructure

IaaS
Virtual Machines, servers,

storage, network, load balancer

Cloud Infrastructure

IaaS
PaaS

Database, web server,
development tools

Cloud Infrastructure

IaaS
PaaS
SaaS

Email, Games, Social
Networks,Online office

Cloud Clients

Figure 2.4 – Cloud Service Model: Three well-know cloud service model are IaaS, PaaS and
SaaS providers.

2.5.1 Infrastructure as a Service (IaaS)

In the IaaS model, the infrastructure provider leases disk, CPU, memory, hard-

ware, network and other infrastructure components to an end-user or other cloud

providers. An IaaS provider handles tasks including backup, maintenance and re-

siliency planning. Also, the administrative tasks are automated. The user has

the ability to dynamically scale using virtualization technology but has no control

over operating systems and applications that are running on the server (Mell and

Grance, 2011). Famous IaaS providers are Amazon Web Services (AWS), Windows

Azure, Google Compute Engine and Rackspace Open Cloud.

2.5.2 Platform as a Service (PaaS)

In the PaaS model, the platform provider can rent resources from an infras-

tructure provider or use its own infrastructure to deliver hardware and software

14

tools that are usually used for application development (Mell and Grance, 2011).

Thus, the platform is used by end-users or software providers for deployment of

software applications without the cost and complexity of acquiring and managing

the underlying hardware and software layers. A user in PaaS can upgrade operating

system features but has no control over the underlying cloud infrastructure such

as operating systems, disk, CPU, memory, hardware and network. Famous PaaS

providers are Appear IQ, Mendix, Amazon Web Services (AWS) Elastic Beanstalk,

Google App Engine and Heroku.

2.5.3 Software as a Service (SaaS)

In the SaaS model, the software provider uses a platform or an infrastructure

provider or uses its own infrastructure to deliver a software to end-users. SaaS

removes the burden of maintenance, installation, acquisition, provisioning and li-

censing of software (Mell and Grance, 2011). Organizations or individuals do not

need to install the software on their data centers or on their computers. Instead,

the software is available through a web browser or an API. The user has no control

over the underlying infrastructure that is running the software such as operating

systems, disk, CPU, memory, hardware, network. Most of the time, end-users do

not even need to configure the software. Famous SaaS providers are Salesforce,

Oracle, SAP, Intuit and Microsoft.

2.6 Quality of Service in Cloud Computing

“Quality of service represents the set of those quantitative and qualitative char-

acteristics of a distributed multimedia system necessary to achieve the required

functionality of an application” (Vogel et al., 1995). By measuring the QoS of

a system, the performance can be improved and guaranteed in advance. Therefore,

QoS measurement increases the reliability and availability of the system. In cloud

systems, QoS is an essential aspect as cloud customers would like to have a measure

of the cloud’s performance and a cloud provider would like to find the best trade

off between the provided service and the cost. In the infrastructure level of cloud

15

computing, there are several QoS parameters that can be measured (Meegan et al.,

2012):

— Compute: availability, outage length, server reboot time.

— Network: availability, packet loss, bandwidth, latency, mean/max jitter.

— Storage: availability, input/output per second, max restore time, process-

ing time, latency with internal compute resource.

Cloud providers guarantee the QoS with Service Level Agreements (SLAs). Also,

Service Level Objectives (SLOs) are given as quantitative or qualitative parameters

of an SLA such as throughput, availability and response time (Sturm et al., 2000).

We discuss the definition of SLA and SLA management and life cycle in the

following sections.

2.6.1 Service Level Agreements

The relationship between a cloud provider and a customer is governed with a

Service Level Agreement (SLA). SLA is negotiated between parties and a level of the

service, QoS and its associated costs are agreed upon. SLA usually contains specific

parameters and a minimum level of quality for each element of the service that is

negotiated between the provider and the customer (Casalicchio and Silvestri, 2013).

A common framework for SLA definition is web service-level agreement (WSLA)

(Ludwig et al., 2003). Components of a WSLA is shown in Table 2.1.

From an application hosting point of view, SLA has two different types: In-

frastructure SLA and Application SLA. Infrastructure SLA guarantees a level of

reliability on infrastructures such as power, data center, latency and etc. by ded-

icating resources solely to the customer. An example is shown in Table 2.2. Ap-

plication SLA is appropriate for hosting models on which multiple applications are

co-located. In such a setting, cloud resources are available to applications accord-

ing the application demands. Hence, in application SLA, cloud providers ensure

meeting application demands. An example of application SLA is shown in Table

2.3.

For example, SLA can indicate a 99.99 % availability for requests of CPU, disk

and memory. An SLA might also contain constraints on the response time for each

request.

SLA is an important part of each contract because a provider would like to

16

Table 2.1 – Components of a Web Service Level Agreement (Buyya et al., 2010).

Service-Level
Parameter

Describes an observable property of a service whose
value is measurable.

Metrics These are definitions of values of service properties that
are measured from a service-providing system or com-
puted from other metrics and constants. Metrics are the
key instrument to describe exactly what SLA parame-
ters mean by specifying how to measure or compute the
parameter values.

Function A function specifies how to compute a metric’s value
from the values of other metrics and constants. Func-
tions are central to describing exactly how SLA param-
eters are computed from resource metrics.

Measurement
directives

These specify how to measure a metric.

Table 2.2 – An example of infrastructure SLA (Buyya et al., 2010).

Hardware availability 99 % uptime in a calendar month.

Power availability 99.99 % of the time in a calendar month.

Data center network
availability

99.99 % of the time in a calendar month.

Backbone network
availability

99.999 % of the time in a calendar month.

Service credit for
unavailability

Refund of service credit prorated on downtime pe-
riod.

Outage notification
guarantee

Notification of customer within 1 hr of complete
downtime.

Internet latency
guarantee

When latency is measured at 5-min intervals to an
upstream provider, the average doesn’t exceed 60
msec.

Packet loss guarantee Shall not exceed 1 % in a calendar month.

allocate the least amount of resources for each customer to reduce the cost of

its server infrastructure. At the same time, the provider needs to avoid having

17

Table 2.3 – An example of application SLA (Buyya et al., 2010).

Service-level
parameter
metric

• Website response time (e.g., max of 3.5 sec per user re-
quest).

Function • Latency of web server (WS) (e.g., max of 0.2 sec per
request).
• Latency of DB (e.g., max of 0.5 sec per query)
• Average latency of WS = (latency of web server 1 +
latency of web server 2) /2
• Website response time = Average latency of web server
+ latency of database

Measurement
directive

• DB latency available via http://mgmtserver/em/latency.
WS latency available via
http://mgmtserver/ws/instanceno/latency

Service-level
objective

• Service assurance.

Penalty • Website latency < 1 sec when concurrent connection <
1000.
• 1000 USD for every minute while the SLO was breached.

penalties due to failure of providing the agreed service. The failure of providing a

service is called an SLA violation. The customer would like to receive the service

on demand and without any interruptions. Despite these high availability rates,

violations do happen in real world and have caused both the provider and the

customer heavy costs (Leavitt, 2009).

2.6.2 SLA Management Life Cycle

According to Gallizo et al. (2009) SLA management has a life cycle of six phases:

— SLA Contract Definition

— Basic Schema with the Quality of Service (QoS) Parameters

— SLA Negotiation

— SLA Monitoring

— SLA Violation Detection

— SLA Enforcement

18

We will briefly describe these phases in the following subsections. Figure 2.5 illus-

trates this life cycle.

1. Contract
Definition

2. Basic Schema

3. SLA
Negotiation

4. SLA
Monitoring

5. SLA Violation
Detection

6. SLA
Enforcement

SLA Life Cycle

Figure 2.5 – SLA Life Cycle.

SLA Contract Definition

In this phase, the service and its corresponding price, QoS parameters with a

basic schema and also the penalty policy is defined. SLAs are usually defined using

standard or base templates or by customization of these base templates.

Basic Schema with the Quality of Service (QoS) Parameters

QoS parameters must be included in an SLA, covering different types of (virtu-

alized) physical resources (e.g. for the network resources QoS parameters may be

bandwidth, jitter, delay; for the computing resources the parameters may be CPU,

memory, etc).

19

SLA Negotiation

In this phase a customer discovers a service provider that meets the customer’s

needs. The terms and conditions of the SLA are negotiated and agreed upon in this

phase. A cloud provider needs to analyze the SLA in terms of scalability, availability

and performance of its services in order to avoid penalties before agreeing on the

specification of SLA. By the end of this phase, parties start to commit to the

agreement.

SLA Monitoring

In this phase, the provider’s performance in delivery of the service is measured

against the contract. An essential part of SLA monitoring is to be able to predict

violations enabling providers to reallocate the resources accordingly before occur-

rence of violations.

SLA Violation Detection

In this phase the parameters inside SLA are calculated and any deviation is

determined. In case of SLA violation, SLA enforcement is conducted.

SLA Enforcement

This phase is to enforce penalties for SLA violation. In this phase appropriate

actions are taken place when the violation has been detected in the previous phase.

The concerning parties are notified and penalty charges are taken place. After SLA

enforcement, SLA might also terminate due to timeout or violation.

20

3 Prediction Models

Machine learning is the study and development of programs and algorithms

that can learn from historical data and make prediction when exposed to new

data. There are three general types of algorithms that are used to solve differ-

ent problems in machine learning: supervised learning algorithms, unsupervised

learning algorithms and reinforcement learning (Murphy, 2012).

— Supervised Learning aims to find a function that maps the input to the

output given a labeled dataset 1.

— Unsupervised Learning aims to find the structures and patterns inside

the input given an unlabeled dataset.

— Reinforcement Learning aims to find a function that outputs a sequence

of actions that optimizes costs or rewards.

The focus of this thesis is on supervised learning. Consequently, after a re-

view of some terminologies in machine learning, Supervised Learning is introduced

in more details. Next, key concepts in machine learning such as Generalization,

Bias-Variance Trade Off, Overfitting, Regularization, and Cross Validation are

presented. Finally, we discuss how a model is evaluated in machine learning and

specifically discuss Confusion Matrix, Accuracy, Precision and Recall, Fβ and ROC

curves.

3.1 Terminology

In this section, we introduce the basic terminology of machine learning which

is used in the rest of this chapter. In a typical machine learning supervised task, a

dataset is given in a set of rows and columns. Each row of the dataset corresponds

to a single datapoint which is called a training example or a training instance.

1. In machine learning terminology the output variables or the targets are sometimes referred
as labels. Thus, a dataset with inputs and their desired outputs is called a labeled dataset.

21

The columns are called input variables, features or attributes. Each datapoint is

associated with one or more than one label(s), targets, or output variables.

The dataset is typically splitted into two sets; training set and test set. The

training set is used to learn the underlying factors of variation in data, while the

test set is used for the final evaluation. First, the model is trained given the training

set and during testing, an example represented by its features is provided to the

model and the output is the predicted label.

3.2 Supervised Machine Learning: Concepts

and Definitions

In supervised machine learning, two pieces of information are provided to the

algorithm: a set of input instances X = {x1,x2, ...,xm} and a corresponding set of

targets Y = {y1, y2, ..., ym}. Typically, each of these m input instances contains a

set of n features x = {x1, x2, ..., xn}. Generally speaking, each feature xi can take

any value, either numerical (values are real numbers) or categorical (values are

members of an unordered set). However, depending on the task at hand, features

may be required to be converted to certain types.

There is always a true function f ∗(.) that maps any possible x into the best

possible y. However, we never have access to this unknown function. Accordingly,

supervised learning amounts to approximating the function f ∗(.) based on the

information provided in the X and Y sets. The process of approximating f ∗(.)

using a function fθ(.) in which θ is a set of parameters is called learning.

Learning algorithms learn the parameters θ of the function fθ(.) by minimizing

the errors that the model makes. Formally, a function that maps the discrepancy

between the output prediction of the model and the true target into a real number

is called the loss function (Murphy, 2012).

If the true target y is a discrete variable, the prediction task is called Classi-

fication. On the other hand, if y is continuous, the task is called Regression. In

the following subsections, after formally introducing learning, we discuss these two

types of supervised learning algorithms in more details.

22

3.2.1 Learning

Approximating function f ∗(.) using function fθ(.) corresponds to extracting

the underlying factors of variation from data instances and mapping them to the

output. These underlying factors could be a table of probabilities, a structure of

a graph, or weights depending on which learning algorithm is used for knowledge

discovery. Generally, learning amounts to finding the best parameters θ in order

to minimize a loss function over all the examples in the dataset (Murphy, 2012).

Therefore, the learning process can be formulated as follows,

θ̂ = argminθ{
m∑
i=1

l(yi, oi; θ)}, (3.1)

in which θ̂ is the learned set of parameters, yi and oi are the target and output of

the model for the ith sample.

3.2.2 Classification

In a supervised classification task, the prediction output y is from one of the

total C distinct classes {1, 2, ..., C}. In order to get prediction for new examples, the

model can simply output a class label or the output can be a set of probabilities.

Each probability corresponds to one of C classes that indicates how probable it

is that the unseen input x belongs to a specific class. In models that output

probabilities, to get a discrete prediction out of the model, either the class with

the highest probability is chosen or the class label is drawn by sampling from the

output distribution.

3.2.3 Regression

Similar to a classification task, in regression problems, the goal is to learn a

mapping function from an n-dimensional vector x into a real-valued number o as

the prediction. Mean Square Error (MSE) is a common loss function used to

measure the performance of regression models. Consequently, learning amounts

to reducing the MSE between the model prediction and the true target which is

23

defined as follows,

MSE(O, Y) =
n∑
i=1

||oi − yi||2F (3.2)

The parameters of the model are then selected such that MSE is minimized.

3.3 Generalization

The goal of machine learning is to train models that are able to predict the

labels for new unseen examples. As a result, generalization to new examples is

an important side of each learning algorithm. We usually look for models that

perform well on testing data as well as on training data. As a result, we need to

prevent learning algorithms from simply memorizing training data; instead, these

algorithms need to learn the underlying factors of variation.

3.3.1 Bias-Variance Trade off

In order to determine how accurate a model is, we need to understand what are

the reasons behind errors. Bias and variance of a prediction model help us formally

measure these errors. To define bias and variance over a model, we need to assume

that we are able to train the same model multiple times with different randomly

selected data points. In this thesis, each trained model is called a model instance.

Errors in predictions that are caused by bias and variance are called error due to

bias and error due to variance respectively (Sammut and Webb, 2011) (Geurts,

2002).

Bias corresponds to the distance between the expected prediction of the model

and the true target (Wasserman, 2013). Considering f(x) as the model, the bias is

defined as follows:

bias = |E[f(x)]− y|2, (3.3)

where E[.] is the expectation and y is the true target. On the other hand, variance

corresponds to the variability in different predictions of multiple instances of a

24

model (Wasserman, 2013):

variance = |f(x)− E[f(x)]|2. (3.4)

The total error of a model in terms of bias and variance is defined as follows:

error = E[(f(x)− y)2] = bias2 + variance. (3.5)

Given the limited amount of data, there is always a trade-off between bias and

variance. The trade-off happens in a way that reducing one may lead to increasing

the other. As a result, minimizing the total error requires a careful balance between

bias and variance. A graphical illustration of this trade-off is shown in Figure 3.1.

Figure 3.1 – Dart chart: A graphical illustration of bias-variance trade-off. Consider a classi-
fication problem as throwing darts at a dart-board. If darts land in very different parts of the
board, the model has “high variance”. If their mean is close to the center of the board, the model
has “low bias”. Similarly, “low variance” and “high bias” can be defined. The above four dart
boards corresponds to these situations (Moore and McCabe, 1989).

3.3.2 Overfitting Problem

Overfitting is the case when a prediction model performs very good on the

training data but achieves a significantly lower performance on the test data. This

usually means that the model has memorized the whole training data including the

noises instead of the underlying factors of variation that are essential for gener-

alization. Overfitting could have different reasons including having small amount

25

of data or too many model parameters (Bishop, 2006). Another reason for the

problem of overfitting is unbalanced data which is one of the important aspects of

this thesis. A typical example of overfitting is shown in Figure 3.2.

Figure 3.2 – Left: the model is underfitted or equivalently has high bias. The reason is that we
are trying to approximate a second order polynomial function using a linear function. Right: the
model is overfitted because a high order polynomial function is used. Although the error on the
training set is close to zero, the model has a high variance. Middle: the model is just fitted. The
Figure is adopted from Bishop (2006).

One potential reason for overfitting could be high capacity of a model. Model

capacity is the ability of a model to fit a range of functions. Higher the model’s

capacity is, the wider range of functions can possibly be approximated (Bishop,

2006). It is worth mentioning that dealing with overfitting or underfitting in such

situations corresponds to the trade-off between bias and variance. As the model

complexity increases, bias decreases while variance might increase in an overfitting

setting.

Overfitting due to Unbalanced Data

If data contains a significantly large number of examples for one class and a few

examples for the other(s), the data is called unbalanced or skewed. In such scenar-

ios, classifiers may end up performing well on the majority class while performing

poorly on other minorities. This type of overfitting simply happens because the

classification objective assumes that errors from different classes have the same

costs (Ganganwar, 2012). Consequently, fewer number of examples for one class

leads to less error for that specific class.

26

3.3.3 Regularization

A group of different techniques used to avoid the problem of overfitting is called

regularization. In most regularization techniques, some kind of prior knowledge

is imposed on the model. For example, if number of examples in one class is not

enough, resampling might be used to correct the class distributions. Or in some

other cases, the model complexity might be controlled (Bishop, 2006).

Usually, as parameters of a model grow in size, the model complexity increases

which may lead to overfitting (Bishop, 2006). One of the basic solutions is to add

a penalty term to the loss function in order to penalize models with high capacity.

By adding this constraint, overfitting can be prevented as a result of preferring

simpler models by the learning algorithm. Specifically, for supervised problems, the

unregularized loss function in Equation 3.3 is altered with the following regularized

one,

θ̂ = argminθ{
n∑
i=1

l(yi, oi; θ) + λJ(θ)}, (3.6)

where J(θ) is a constraint on the parameters and the coefficient λ controls the

balance between two learning objectives.

3.3.4 Cross Validation

In order to find the parameters of the model that generalize the best, we need

to know if the model has been overfit. Cross validation helps us to find an overfit

model. Overfitting happens when the error rate in the training set decreases but

the error on the test set increases. As shown in Figure 3.3, as we increase the

complexity of the model, the error rate in the training set decreases but at some

point the error in the test set passes the minimum and increases. When the error

in the test set increases with higher model complexity the model is overfit.

In cross validation, the dataset is divided into training and validation sets. To

increase the validity of the model, k-fold cross validation is used where the dataset

is partitioned into k equal subsets. We define d as the complexity order of the

model. For each order-d hypothesis class:

— Repeat k times:

— Set aside one of the subsets.

27

Figure 3.3 – Test and training error as the function of model complexity. Figure is adopted
from Murphy (2012).

— Use the rest of the data points to find θ (model parameters).

— Compute prediction error on the held-out subset.

— Average the prediction error over the k rounds/folds. Use this as the esti-

mated true prediction error for order-d hypothesis class

The goal is to find d with the lowest estimated true prediction error. It is worth

mentioning that k-fold cross validation increases the computation k-times. Thus,

with larger datasets or complex models, smaller values of k is preferred.

3.4 Performance Evaluation

In this section, we introduce the common error metrics used for a classification:

(1) Confusion Matrix, (2) Accuracy, (3) Precision and Recall, (4) Fβ Score, and (5)

ROC Curves (Stehman, 1997). Error metrics help us indicate how good the model

will perform when exposed to unseen data. Thus, after the model is trained on the

training set and the best performing 2 model is chosen, it will be tested on an intact

test set. This approach helps us select a model which will have good performance

on unseen data.

2. On the validation set.

28

3.4.1 Confusion Matrix

A confusion matrix is a table used to describe the performance of a classification

model. To be able to construct the confusion table, the true targets must be

available. As shown in Figure 3.4, a Confusion Matrix contains four values to

describe the performance of a classification model: false positive, false negative,

true positive, and true negative. False positive (resp. negative) is the number of

mistakenly classified examples that are classified as 1 (resp. 0) where the actual

targets are 0 (resp. 1). Similarly, true positive (resp. negative) is the number of

correctly classified examples that are classified as 1 (resp. 0). Generally speaking,

the first term (false or true) indicates if the classification result matches with the

actual target. The second term (negative or positive) indicates the prediction of

the classifier. Based on the confusion matrix, accuracy, precision and recall, Fβ

and ROC curves are defined.

Figure 3.4 – Left: A confusion matrix; The table contains information about actual and pre-
dicted targets of a binary classifier. Right: A graphical illustration of the confusion matrix; Red
and Green are indicating the real classes while the dotted line corresponds to the threshold of a
classifier. The right side of the dotted line is labeled as positive and the left side is labeled as
negative.

3.4.2 Accuracy

Accuracy indicates the number of correct predictions from all predictions made

by a classification model. Formally, it is defined as,

accuracy =
True positives + True negatives

of all examples
. (3.7)

29

3.4.3 Precision and Recall

Classification accuracy alone is not necessarily the best measurement to eval-

uate the performance of a classifier and specifically in classification tasks with an

imbalanced targets distribution. Suppose a case where we have a majority class (for

instance 90 % of the targets belong to this class). A naive model that always pre-

dicts the majority class achieves high accuracy (Ganganwar, 2012). However, such

a classification model that always outputs the same prediction is useless. Thus,

accuracy could mislead us to prefer a model with high accuracy while there are

cases where we can not merely rely on accuracy.

Precision and recall are two other useful measures that can help us evaluate a

classification model more correctly. These two metrics are defined as follows,

precision =
True positives

of all positive predictions
, (3.8)

recall =
True positives

of all positive examples
. (3.9)

3.4.4 Fβ Score

Precision and recall can also be seen as a measure of model exactness and model

completeness respectively. However, in order to compare different models with

different precisions and recalls, we need a balance between these two. The metric

Fβ combines precision and recall into a single value such that different models are

compared more easily:

Fβ = (1 + β2) .
precision . recall

(β2 . precision) + recall
, (3.10)

where β is single number controlling the balance between precision and recall

(Salton and Buckley, 1988).

3.4.5 Receiver Operating Characteristics (ROC) curves

Receiver operating characteristic (ROC) curve is a visualization of the perfor-

mance of a binary classifier as its discrimination threshold changes. The discrimi-

30

nation threshold is the cut-off applied on the predicted probability of a test example

that assigns it to a particular class. In an ROC curve, true positive and false posi-

tive rates are plotted on vertical and horizontal axis respectively.

Figure 3.5 – In an ROC curve, the best ideal model would go straight up to left-upper corner
and then straight to the right-upper corner. An untrained model with no discrimination is the
diagonal one. Usually all classifiers are somewhere between the ideal one and the one with no
power.

31

4 Related Works

The assurance of quality in cloud and proposed approaches approaches have

been proposed since cloud computing. Researchers quickly realized that to achieve

higher revenue, cloud providers can offer much more resources to customers than

their available resources. This is due to the fact that not all customers use their

maximum requested resources at the same time. Indeed, there is an underlying

distribution that describes customers’ behaviors and can be used to manage the

requests and resources. As described in section 2.6.2, SLA management provides

a framework to effectively manage resource allocation to meet the requested QoS.

Cloud is mainly considered to have three service models; Infrastructure as a Service

(IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS); in this thesis

we mainly focus on the IaaS.

Different aspects of SLA management in IaaS can be categorized as follows:

Load Prediction, Resource Scheduling, and SLA Violation Prediction. In this chap-

ter we briefly describe the related works in each of these categories.

4.1 Load Prediction

A variety of contributions have been proposed for load prediction. Using re-

gression based models, Barnes et al. (2008) proposed an extension of a regression

based model for work load prediction in parallel applications. Zhang et al. (2011)

proposed a model that predicts the characterization of tasks such as wait time

and machine resource utilization on Google’s production clusters. Ganapathi et al.

(2010) proposed an extension of statistical models to predict resource requirements

based on workloads in cloud computing. Carrington et al. (2003) introduced a new

model to predict load values using a set of basis operations used in a specific appli-

cation. Akioka and Muraoka (2004) and Dabrowski and Hunt (2008) used Hidden

32

Markov Models for host load predictions on large-scale computational grids.

In a closely related work to this thesis, Di et al. (2014) proposed a recent work

on host load predictions in a cloud environment using Google Compute Cluster

dataset. Authors proposed a Bayesian model to predict the mean load over long-

term and consecutive future time intervals. The key idea in this paper is to generate

posterior distribution from the prior distribution and the recent fluctuations of load.

Ali-Eldin et al. (2012) proposed a provisioning model that monitors and also pre-

dicts future loads. Based on the predicted loads, an autonomous elasticity module

controls the number of allocated virtual machines and heuristically decreases it by

a factor of three.

4.2 Resource Scheduling

In resource scheduling, the fundamental goal is to optimize the usage of infras-

tructure while maintaining the highest QoS for provided services. In Zheng et al.

(2011), the authors use a parallel genetic algorithm (PGA) for the virtual machines

scheduling task and load balancing in an IaaS cloud. Their method improves the

availability and reliability of the cloud system.

In Zhang and Cao (2013), a resource management scheduling is modeled with a

dynamic sequential decision model where future demands are foretasted. Resource

management is done through basic operations such as switching on/off hosts, rent-

ing remote cloud machines, making machines standby and activating machines.

Grey Forecast Model is the core of their intelligent system where based on the

historical data, the required number of Virtual Machines is predicted. It is worth

mentioning that this work used synthetic data which is generated using a Poisson

distribution in a simulation environment.

Wang and Vassileva (2007) manage different services based on SLA and feed-

back from users in a peer-to-peer web application. In Wu et al. (2014), authors

proposed a detection scheme that prevents unfair ratings to compete with other

services. Alhamad et al. (2010) proposed an SLA-based trust model for cloud that

selects the provider based on a selection scheme; in this scheme, although no vi-

olation is predicted, the customers are grouped according to business needs and

33

the most trusted cloud provider is selected based on the customer’s non-functional

requirements.

4.3 SLA Violation Prediction

SLA violation prediction is an essential task in cloud systems as an SLA viola-

tion might cause interruptions for the customers’ availability of service and force

penalties on the provider. Emeakaroha et al. (2010) proposed LoM2HiS model

which maps monitored low-level metrics to high-level SLA parameters. While no

learning is involved, the paper uses heuristics, based on predefined threat thresh-

olds to predict potential future violations. Wu et al. (2011) proposed Profmin-

VMminAvaiSpace, an algorithm that maps users’ requirements into infrastructure

resources to provide a reliable service and at the same time maximize resource

allocation in order to prevent violations.

Authors in Jules et al. (2014) use a Naive Bayes model to predict SLA violations.

Despite its good performance, the dataset is generated using simulation which

does not necessarily represent a real environment. It contains 40% violations and

neglects the fact that in real world, violations are very rare (∼2.0%). In a similar

work for predicting SLA violations in composite services, in Leitner et al. (2010),

the authors propose a regression machine learning model; the regression model is

implemented using the WEKA framework which cannot be scaled to real world

environments.

The authors in Uriarte et al. (2015), use unsupervised learning to cluster the

resource usage and duration of services to avoid violations of Google Cluster trace

dataset. If a violation happens inside a cluster of services, the other services inside

the cluster will be assigned to other resources to avoid the violation. This helps in

violation avoidance in the cluster but there is no explicit prediction of SLA violation

for each service.

34

5Methodology

In this chapter, we propose machine learning models and techniques to tackle

the problem of SLA violation prediction. Previous contributions on SLA violation

prediction or avoidance have mainly neglected the challenges of using real world

data. We, on the other hand, use a real world dataset (Google Cloud Compute

Trace) to propose machine learning models that can best tackle real world data.

SLA violation prediction can be simply deemed as a classification problem. We

define two classes: violated and unviolated; the objective is to predict if a coming

request will be violated or not (will be served). After general analysis of the dataset,

we observe that the dataset is highly skewed meaning that the number of violated

tasks are much smaller than the number of unviolated ones 1. Thus, we are facing

an unbalanced classification task. An aspect that has been overlooked in most of

existing contributions as they do not use real world data to solve the problem.

The rest of this chapter is organized as follows. In section 5.1 we first analyze

the dataset and understand its characteristics, features and class distribution; this

helps to discover models that can best make predictions with such features. Then,

we discuss how SLA violations can be found and defined in the Google Cluster

Trace (Reiss et al., 2011) dataset which provides information for the availability

of service in the infrastructure layer of Google’s cloud clusters. In Section 5.2, we

present two approaches that we adopt in order to tackle the unbalanced classifica-

tion problem: algorithm-based approach (Ensemble methods in Section 5.3) and

data-based approach (Re-sampling techniques in section 5.4). Finally, in Section

5.5, we present the machine learning models that can best tackle the classifica-

tion task of SLA violation prediction on a skewed dataset; we also present the

implementation details.

1. For example, Google Cloud Compute Trace has 97.80% availability versus 2.20% violations.

35

5.1 Dataset

The dataset, we did consider, contains 29-day trace of Google’s Cloud Compute

published in 2011. For security reasons, part of the trace has been omitted or

obfuscated. For example, the values for CPU, disk and memory have been re-

scaled by dividing each value by their corresponding largest value in the trace.

Also the names of the users’ applications have been hashed. The trace has six

separate tables: Job Events, Task Events, Task Usage, Machine Events, Machine

Attributes, and Task Constraints. The entity relationship diagram of the database

is shown in Figure 5.1.

User’s application submits its required resources as jobs to the cluster. Each

job has several tasks. The state transition diagram of jobs and tasks is depicted

in Figure 5.2. The Job Events table traces the event cycle of the jobs that were

submitted to the cluster. The tasks inside each job are tracked in Tasks Events

table. Each task is then assigned to a specific machine. Machine Events table shows

removal or addition of a machine to the cluster or update of its resources. Machine

attributes table shows the attributes of each machine such as kernel version, clock

speed and presence of an external IP address (Reiss et al., 2011). Tasks can have

constraints (e.g. A task may have zero or more task placement constraints, which

restrict the machines on which the task can run.) on machine attributes which are

recorded in the Tasks Constraints table.

Metrics such as requested CPU, requested memory, requested disk space, schedul-

ing class and priority of the task are all recorded in tasks events table. The Task

Usage table contains the actual usage of resources for each task. It contains infor-

mation such as assigned memory and memory usage (Reiss et al., 2011).

The features, requested CPU, requested memory, requested disk space, scheduling

class and priority for each task are fed to the classifier model. Table 5.1 summarizes

features, their types and descriptions. Table 5.2 also provides an example for each

of two classes. A total of 20, 000 datapoints are used for training and validation the

model. In a 3-fold cross validation, one third of data is used for validation and the

rest is used for training. These features are considered as high level features that

can semantically fully represent each task. Other criterion such as state and load

of each machine when a request is taken place can also be considered as features.

However, we avoided using too many features in order to prevent the model from

36

Figure 5.1 – Google’s cluster trace dataset ERD (Entity Relationship Diagram). The dataset
contains the above five different tables. This ERD is used to define and find violated tasks based
on the definition in Section 5.1.1

overfitting.

37

Figure 5.2 – The state transition diagram of a task on Google Cluster machines (Reiss et al.,
2011).

5.1.1 Data Analysis

Figure 5.3 illustrates the mechanism of resource allocation in Google’s Cluster.

It shows the state of the cluster at 500 random snapshots. We define a snapshot as a

moment in time when the total/sum of requested resources is calculated. Similarly,

available or allocated resources are calculated at each snapshot. In Figure 5.3, the

total requested memory, assigned memory, memory usage and available memory

of the cluster at each snapshot are calculated using Task Events, Task Usage and

Machine Events tables. Since all the requested resources are not used at the same

time, it is the nature of cloud to allocate less resources than requested resources

and even accept more requests than its available resources. Figure 5.3 shows that

at all of the 500 snapshots, the requested memory to the cluster is much higher

than the actual usage of memory. Google scheduler has reserved a safe margin

between the assigned memory and usage of memory at these snapshots. Thus, the

availability rate is very high and violations are rare.

Violation Detection

In order to identify SLA violations, we need to have specific details of QoS

(Quality of Service) parameters and Service Level Objectives (SLOs). Although

we do not have access to the details of SLA for this dataset, we can find violations

in the availability of the service using the trace.

Figure 5.2 shows the state transition diagram for jobs and tasks in the trace.

We define a violation in the availability of the service when a task is evicted and

38

Feature Description Type

cpu_requested A floating point number in [0, 1] in-
dicating the normalized amount of re-
quested cpu.

Continuous

mem_requested A floating point number in [0, 1] in-
dicating the normalized amount of re-
quested memory.

Continuous

priority An integer that is mapped into a sorted
set of values, with 0 as the lowest pri-
ority and 10 as the highest.

Categorical

disk A floating point number in [0, 1] in-
dicating the normalized amount of re-
quested disk space.

Continuous

sched_cls An integer in [0, 3] representing how
latency-sensitive the task is.

Categorical

Table 5.1 – The description and type of features used as the input for the classification model.

Feature Violated Example Un-violated Example

cpu_requested 0.0436 0.0327
mem_requested 0.0632 0.0392
priority 3 8
disk 0.0082 0.0023
sched_cls 2 0

Table 5.2 – Two sample examples (datapoints) from the dataset for each class: violated and
un-violated.

never re-scheduled successfully after the eviction. According to the documentation

of the trace (Reiss et al., 2011), eviction of a task is due to ”overcommiting of

the scheduler or because the machine on which it was running became unusable

(e.g. taken offline for repairs), or because a disk holding the task’s data was lost”.

Thus, all the tasks that were evicted and never re-scheduled successfully after the

eviction were detected as cases of violations. The percentage of non evicted tasks

to the total tasks submitted to the cluster is 97.8%. Thus, the cluster has only

2.2% violations for the availability of the service. Our goal is to use this data and

predict future violations.

As previously mentioned, violation prediction can be simply considered as a

classification problem where we predict whether at a specific time in the future,

39

Figure 5.3 – The Figure shows 500 snapshots of the requested, available, assigned and used
memory of the cluster.

the provider will have violation or not. Since the availability rate is very high

(97.8%) and violations do not happen most of the time, machine learning models

have the tendency of always predicting the absence of violations, which is not

desirable. Thus, in Section 5.2 we introduce some techniques in machine learning

to handle the skewness of data, such as re-sampling techniques and applying models

that have better performance with skewed datasets.

Features such as the amount of requested CPU, disk and memory of the violated

tasks and also the available resources at the time of request can be studied to predict

future violations.

5.2 Tackling Unbalanced Data

In typical classification algorithms, the distribution of classes are usually consid-

ered to be balanced, either implicitly or explicitly (Provost, 2000). Consequently,

naively applying common classification models on unbalanced data may lead to

poor performance of classifiers.

In most of probabilistic classification models, such as Naive Bayes, the prob-

ability of occurrence of the rare class can be very close to zero. Furthermore, in

40

some other classification algorithms, such as decision trees, criterion for feature

selection simply ignores the imbalance between different classes (Drummond and

Holte, 2000). Given a small amount of data for one class, feature selection methods

could easily fail as there is no significant change in model performance by adding

or eliminating a feature (Provost, 2000).

Based on the assumption that poor classification performance is mainly due to

mis-classification of rare classes, we mainly focus on adaptation of learning algo-

rithms for rare classes. We investigate two general approaches to solve this problem.

The first method has an algorithm-based approach where it tries to improve the

results using an aggregation of several classifiers. We discuss this method in more

details in section 5.2.1. The second method has a data-based approach where it

changes the training data distribution in a smart way in order to bias the classifier

towards the rare class. This method re-samples the data set in a way that the two

classes will have close distributions. The data-based approach is described in more

details in section 5.2.2.

5.2.1 Algorithm-based Approach

The algorithm-based approach for tackling unbalanced data is the ensemble

methods. Ensembling is a form of model regularization aimed to compensate errors

of one classifier by building more complex classifiers from simpler ones. Ensembling

amounts to training several classifiers in order to aggregate their predictions to get

a final prediction with higher performance. As introduced in Chapter 3, in the

concept of bias-variance trade-off, due to data skewness, variance of a classifier

could be relatively high. Ensembling multiple classifiers usually helps reducing the

variance significantly. Random Forests is one of the successful ensemble methods

which is introduced in Section 5.5.4.

5.2.2 Data-based Approach

As a data-based approach, re-sampling the training data could bias the classifier

towards the rare class in order to make the error on the rare class as significant as

the other classes. The re-sampling can be done on any of the classes. There are two

forms of re-sampling: Over Sampling and Under Sampling. An over sampler creates

new data points in the minority class and an under sampler deletes data points

41

from the majority class. Different forms of re-sampling techniques are introduced

in Section 5.4.

5.3 Ensemble Methods

The core idea behind ensemble methods is to build a complex and powerful

classifier by combining the prediction results of simpler ones that are called base

algorithms. The base algorithm can be a Decision Tree, Naive Bayes or Support

Vector Machines. Ensemble of classifiers achieve higher performance as they reduce

the bias or variance or both (Opitz and Maclin, 1999).

There are several ways to create an Ensemble of classifiers, but the two general

approaches are: Bagging and Boosting. These approaches are illustrated in Figure

5.4. We briefly describe each of them in the following subsections.

…
.

…
.

single bagging boosting

Figure 5.4 – In a single model, the complete dataset is given to the model in one iteration. In
bagging, the dataset is divided into several sets randomly sampled with replacement from the
original dataset. The sets are then fed to the model in parallel. In boosting, random sampling
with replacement over weighted data is used. The data is sequentially given to a set of weak
learners.

5.3.1 Bagging

Bagging aims to reduce the variance and avoid over-fitting (Opitz and Maclin,

1999). It generates several sets by sampling with replacement from the original

dataset. These sets have the same size and some datapoints might be repeated

in each of them. This kind of sampling is called bootstrapping (Felsenstein, 1985).

42

Bootstrapping increases the size of the training set which reduces the variance.

The sets are fed to the model and their results are combined by either averaging

(regression) or choosing the majority class (classification) (Breiman, 1996).

5.3.2 Boosting

Boosting aims to reduce the bias and also the variance (Opitz and Maclin, 1999).

It combines a set of weak learners into a stronger one. At each round, the weighted

training set is fed to a weak learner which gets added to the final classifier with a

weight that is usually related to its accuracy. After a weak learner is added, the

data is re-weighted such that the datapoints that were classified correctly will lose

weight. This allows the succeeding learners focusing on the datapoints that were

misclassified. The process is repeated n times and the result will be a combination

of n weak learners as a strong learner (Freund and Schapire, 1995).

5.4 Data Resampling

Several models to re-sample the database and create a more balanced dataset

are presented in this section. They can be divided into three general categories:

Over Sampling, Under Sampling and combination of both. Random Over-sampling

and Random Under-sampling are baseline methods to combat the skewness of the

dataset and balance the class distribution. We will also briefly describe several

other techniques ; SMOTE, Borderline-SMOTE, Tomek links, One-sided Selec-

tion, Neighborhood Cleaning Rule, Near Miss (1, 2, 3), SMOTE-Tomek Links and

SMOTE-ENN.

5.4.1 Over Sampling Techniques

Random Over-sampling

In random over-sampling, the samples of the minority class are randomly picked

and duplicated. The method continues to create duplicate datapoints until the two

classes have roughly the same number of datapoints.

43

SMOTE

SMOTE ((Synthetic Minority Over-sampling Technique)) (Chawla et al., 2002)

is a re-sampling method that generates new “synthetic” datapoints of the minority

class using interpolation between the current datapoints. One major drawback of

this technique is that it may add new datapoints in the space of the majority class.

Borderline-SMOTE

Borderline-SMOTE (Han et al., 2005) tries to generate synthetic samples only

on the border line of the two classes. The datapoints which are in the borderline of

the classes are more prone to miss-classification and thus need more attention. It

is based on SMOTE for generating new datapoints. The synthetic datapoints are

created on the border line and between the minority datapoints and its selected

nearest neighbors.

5.4.2 Under Sampling Techniques

Random Under-sampling

Random Under-sampling is the case of randomly deleting data points from the

dominant class until both classes have roughly the same size. This method might

delete the datapoints in the decision boundary that are important in the process

of decision making.

Tomek links

Tomek links (Tomek, 1976) is an under sampling method. Tomek links tech-

nique removes the borderline and noisy datapoints. It takes two samples, Ei and

Ej and computes d(Ei, Ej) as their distance. A (Ei, Ej) is a Tomek link if there

is no sample Ek that d(Ei, Ek) < d(Ei, Ej) or d(Ej, Ek) < d(Ei, Ej). After finding

the links, the datapoints from the dominant class are removed.

One-sided Selection

One-sided Selection (Kubat et al., 1997) uses combination of Tomek links and

an extension of Nearest Neighbor which is defined as an optimization problem

for finding closest points (Gowda and Krishna, 1979). One-sided Selection finds

44

the safe samples and removes the unsafe samples from the majority class. Tomek

links removes the samples near the border line and Nearest Neighbor removes the

samples that are far from the border line.

Neighborhood Cleaning Rule

Neighborhood Cleaning Rule (NCR) Laurikkala (2001) improves Edited Nearest

Neighbor Rule (ENN)(Wilson, 1972) to remove some datapoints from the majority

class. ENN cleans the data such that any datapoint whose class is different from the

class of at least its two nearest neighbors is removed. NCR finds the three nearest

neighbors of each datapoint (Ei). If Ei’s three neighbors are from the minority

class, and Ei was classified as the majority class, then Ei is removed. But, if Ei

belongs to the minority class and its neighbors are from the majority class, then

its three neighbors will be removed.

NearMiss

NearMiss 1, 2 and 3 algorithms (Mani and Zhang, 2003) are under-sampling

methods. NearMiss 1 removes the datapoints from the majority class whose av-

erage distance to three closest datapoints in the minority class is the smallest.

NearMiss 2 chooses the majority class datapoints whose average to all datapoints

in the minority class is the smallest. NearMiss 3 removes a given number of major-

ity class datapoints for each datapoint in the minority class. The selection is done

by applying a clustering and selecting a sample from each clustered neighborhood.

5.4.3 Combination of Over Sampling and Under Sampling

Techniques

SMOTE-Tomek links

Since SMOTE over-sampling might lead to over-fitting and Tomek links under

sampling might remove important datapoints, the ensemble of these two methods

provides better results. In SMOTE-Tomek links (Batista et al., 2003), we first

over-sample the minority class with SMOTE and then under-sample using Tomek

links both the majority and minority classes producing a more balanced dataset.

45

SMOTE-ENN

SMOTE-ENN (Batista et al., 2004) is also a combination of SMOTE and ENN.

SMOTE is used as the over-sampler for minority class and then ENN provides data

cleaning for both classes.

5.5 Classification Models

In this section, we briefly describe the machine learning models that we use for

the task of SLA violation prediction; Naive Bayes Classifier, Decision Tree and

Random Forest Classifier. We also briefly describe the implementations details.

5.5.1 Naive Bayes Classifier

From a probabilistic point of view, the conditional probability of class k among

K different classes given a vector representation of n distinct features x = {x1, ..., xn}
can be written as P (Ck|x). According to the Bayes theorem (Vapnik, 1999), the

above probability can be reformulated as follows:

P (Ck|x) =
P (x|Ck)P (Ck)

P (x)
, (5.1)

in which P (Ck|x) is called the posterior meaning our updated knowledge condi-

tioned on the observed data. Two probabilities P (x|Ck) and P (Ck) are called the

likelihood and the prior respectively.

In a classification setup, the denominator P (x) is the same for all classes. In

practice, training such a Bayesian classifier amounts to maximizing the nominator

for the target class and minimizing it for the other classes (Friedman et al., 2001).

The nominator is the joint probability of features and classes P (Ck, x1, ..., xn) which

46

according to the chain rule (Schum, 1994), can be reformulated as follows:

P (Ck, x1, ..., xn) =P (Ck)∗

P (x1|Ck)∗

P (x2|x1, Ck)∗

P (x3|x2, x1, Ck)∗

...

P (xn|xn−1, ..., x1, Ck).

Consequently, since P (Ck|x1, ..., xn) ∝ P (Ck, x1, ..., xn), a classifier can be defined

as follows:

ĉ = argmax
k∈{1,...,K}

P (Ck, x1, ..., xn).

In practice, for large number of features, n, it is challenging to train such a

classifier. One of the simple, yet effective probabilistic classifiers is known as Naive

Bayes (Duda et al., 1973). Naive Bayes algorithm has an assumption that given

the class label Ck, all the features {x1, ..., xn} are independent of each other. The

adjective naive comes from the fact that the assumption of class conditional inde-

pendence is simplistic. A graphical illustration of this classifier is shown in Figure

5.5.

Figure 5.5 – Bayesian network representation of the naive Bayes classifier. According the the
graph representation, conditioned on the class Ck, xi’s are independent of each other.

5.5.2 Naive Bayes Implementation

As described in Section 5.5.1, Naive Bayes classifier uses the Bayes theorem

(Equation 5.1). In most of Naive Bayes implementations, the prior is computed by

47

using an estimate for the class probability from the training set 2. To model the

likelihood term, one can assume a distribution over the data represented by features

vector. In this work, we have chosen two distributions: (1) Bernoulli distribution

and (2) Gaussian distribution. As the task at hand has two states of being violated

or not violated, Bernoulli distribution is a desirable prior which assigns a success

probability of p and a failure probability of 1 − p. Gaussian distribution is also

a common prior distribution which provides easy inference and is mathematically

convenient. A Gaussian distribution can approximate a wide range of distributions

with two single parameters; mean and variance. In the following sub-sections, we

explain these extensions in more details.

Bernoulli Naive Bayes

In a Bernoulli Naive Bayes (McCallum et al., 1998), the likelihood is assumed to

have a Bernoulli distribution. Features are assumed to be independent booleans and

are required to be binary-valued. Thus, if other types of features were represented

to the model, the input is binarized. The decision rule is as follows:

p(x|Ck) =
n∏
i=1

pxiki(1− pki)
(1−xi), (5.2)

where pk is the probability of feature xi appearing in a sample belonging to class

Ck.

Gaussian Naive Bayes

In Gaussian Naive Bayes (McCallum et al., 1998), the likelihood is assumed to

have a Gaussian distribution:

P (x|Ck) =
1√

2πσ2
Ck

exp
(
− (xi − µCk

)2

2σ2
Ck

)
, (5.3)

where σCk
and µCk

are estimated using maximum likelihood.

2. Prior for a given class is computed as P (Ck) =
number of data point belong to class Ck

Total number of data points
.

48

5.5.3 Decision Tree Classifier

Decision Tree (Breiman et al., 1984) is a family of scalable classifiers that enjoy

the advantage of human-interpretable results. Formally, a classification decision

tree is a tree in which each leaf represents a target class, each internal node repre-

sents a condition, and each branch corresponds to the outcome of the condition in

the parent node.

As a simple example (Mitchell et al., 1997), consider a set of features {Outlook,

Humidity, Wind} and the target is PlayTennis which takes values of “Yes” or “No”.

A trained decision tree is shown in Figure 5.6.

Figure 5.6 – A graphical illustration of a Decision Tree: Classification starts from the top node
towards leaves by testing the Outlook. After moving to one of the left or the right subtrees, a test
on Humidity or Wind determines the class label (Mitchell et al., 1997).

Construction of a decision tree amounts to finding the appropriate conditions

on nodes and ordering them from root to the leaves. A condition is a test on one

of the features of the given datapoint. Among different types of tests, we use Gini

Impurity (Breiman et al., 1984) on each feature as the criterion that splits nodes to

their children. Gini impurity measures the probability of being wrongly classified

for a random datapoint, if the classification is based on the distribution of the

targets. We chose Gini Impurity as it is slightly more robust to mis-classification

compared to other criterion such as entropy.

5.5.4 An Ensemble of Decision Tree Classifier: Random

Forest

Random Forest is an ensemble learning method. Decision Tree is the base

algorithm for building the Random Forest model. From a geometrical point of

49

view, a decision tree leads to a hierarchical partitioning over the feature space.

Starting from the top node in the tree, each node divides the feature space into

two or more partitions. Consequently, as the tree gets deeper, more complicated

partitioning is done. However, in the case of over-fitting, the partitioned space is

over complicated and yields a small error on the training data while a relatively

larger error on the test data.

One of the successful ways to overcome the issue of over-fitting is to use ensem-

ble of decision trees or Random Forrest (Breiman, 2001). Random Forrest is an

ensemble of decision trees which the final prediction is the result of the aggregation

of each decision tree.

Given a training set X = {x1,x2, ...,xm} and a corresponding set of targets

Y = {y1, y2, ..., ym}, where each xi has a set of n features x = {x1, x2, ..., xn}, do

the following k times to train a random forest:

— Select a set of random samples with replacement from X called

Xk.

— Build a decision tree on Xk. Where the tree is trained on a random

subset of the features (n′ < n).

As illustrated in Figure 5.7, k different trees are trained. For a classification task,

the class prediction for an unseen sample can be made by choosing the majority

class. The performance of random forest depends on two aspects of the model

(Breiman, 2001): the correlation between two trees and the accuracy of each tree.

By increasing the size of n′, the strength of each tree increases but also the corre-

lation between two trees increases. Thus, the value of n′ needs to be optimized.

5.5.5 Random Forest Implementation

Random forest is an ensemble of decision trees. As the number of trees in a forest

increases, better overall performance is achieved (Oshiro et al., 2012). However,

it is computationally expensive to create large forests. There is certain point in

which adding more trees does not significantly improve the performance while it

adds more computations. Considering the size of our dataset and computational

resources, in all our experiments, we use ten trees. The bootstrap samples are

also created with the same size as the original dataset with random sampling with

replacement.

50

Figure 5.7 – In a random forest, k different decision trees are trained using k different subsets
of the dataset. During test time, a sample input point is fed to all trees and predictions P1..k are
generated. A voting is then applied on all predictions to make a single final prediction.

51

6 Results and Discussion

In the previous chapters, several methods and algorithms for the classification

task of SLA violation prediction and handling skewed data were introduced. In

this chapter, we first report and analyze the results of several machine learning and

re-sampling techniques in Section 6.2. In Section 6.1 we explain the toolkit and

environments in which the experiments are done. Finally, in Section 6.3, we discuss

the results.

In all our experiments we use 3-fold cross validation. The dataset is randomly

split into three partitions and the prediction model is trained three times. During

each training, two-third of the dataset is used as the training set and fed to the

model and one-third as the test set. The aggregated results of the three runs on

the model are reported as the final result.

6.1 Environments and Toolkits

In this section, the details of the environment and toolkit that were used for

the implementation are described. The source code for this work is available in the

author’s github 1.

6.1.1 Python

Python is a general-purpose, interpreted, dynamic programming language that

is widely used for data analysis. The robust collection of scientific, statistical and

mathematical tools in python allows easier implementation of Machine Learning

models.

Libraries such as NumPy (Van Der Walt et al., 2011) (Python’s Numerical Li-

brary), SciPy (Jones et al., 2001) (Python’s scientific library), Scikit-Learn and

1. https://github.com/ReyhaneAskari/SLA_violation_classification

52

https://github.com/ReyhaneAskari/SLA_violation_classification

Imbalanced-learn are built on top of python to provide easy computation and anal-

ysis on data. In this work we used python 2.7 along with many other libraries.

6.1.2 Scikit-Learn

Scikit-Learn (Pedregosa et al., 2011) is a machine learning library built on top

of python, Scipy and NumPy. Scikit-Learn provides various tools for data mining

and analysis and is also open source and commercially usable. It features differ-

ent classification, regression and clustering algorithms such as Random Forests,

Gradient Boosting, k-means and Naive Bayes.

6.1.3 Imbalanced-learn

Imbalanced-learn (Lemâıtre et al., 2016) is a python library built on top of

scikit-learn, Scipy and Numpy. It offers many re-sampling techniques for unbal-

anced data such as over-sampling, under-sampling and combination of both.

6.1.4 T-SNE (t-Distributed Stochastic Neighbor Embed-

ding)

T-SNE (Maaten and Hinton, 2008) is an effective dimensionality reduction tech-

nique which aims to preserve local structures in the high dimensional data while

bringing data into a lower dimensional space.

6.2 Results

For the sake of readability, results are presented in the following three sub-

sections; classification with under-sampling methods, classification with over-sampling

methods, and classification with a combination of Over-sampling and Under-Sampling.

For a general overview of all classification models and re-sampling methods, a sum-

mary including F1 score is presented in Figure 6.1. Tables of results contain ex-

periments for Naive Bayes and Random Forest classifiers, each with both Bernoulli

or Gaussian likelihood assumptions. Also, the ROC curves of the Random Forest

53

which have the best results are also shown in Figure 6.2. The following models re-

sulted in almost zero F1 score thus, have been removed from the tables: Naive Bayes

(Gaussian or Bernoulli), Naive Bayes (Gaussian or Bernoulli) with SMOTE, Naive

Bayes (Gaussian or Bernoulli) with SMOTE borderline, Naive Bayes (Gaussian or

Bernoulli) with Random Over-Sampling, Naive Bayes (Gaussian or Bernoulli) with

SMOTE Tomek Links, and Naive Bayes (Bernoulli) with SMOTE ENN.

In our evaluation, we used error metrics (precision, recall and F1 score) rather

than accuracy. Indeed, in skewed datasets, accuracy can not be a good error metric

to find the best performing classifier. Two classes are available: 2.2 % of the

samples are represented as violated class and 97.8 % of the samples are represented

as unviolated. Consider a classifier that predicts there will be no violations. It has

an accuracy of 97.8 % but Precision and Recall of zero. Thus, precision, recall and

Fβ score will help us find the better performing algorithm.

In order to have a better understanding of how each resampling method works,

different methods are visualized in 2D. Technically, since the data is in an 5-

dimensional space, visualization is impossible. To overcome this limitation, we

use t-SNE to bring the data into a 2-dimensional space. Specifically, we select a

small subset of the dataset (1000 data-points) and apply t-SNE to bring them into

a 2D space, we then visualize the application of any of the resampling methods.

6.2.1 Classification with Under-Sampling

Table 6.1 collects the results of models with different Under-Sampling methods.

A visualized comparison between data with no resampling and with different under-

sampling techniques is also shown in Figure 6.3.

6.2.2 Classification with Over-Sampling

Table 6.2 collects the results of models with different Over-Sampling methods.

A visualized comparison between data with no re-sampling and with different over-

sampling techniques is shown in Figure 6.4.

54

Model / Method Acc ROC Precision Recall F0.5 F1 F2

RF 0.9708 0.99 0.9353 0.6885 0.8728 0.7932 0.7269
NB (Gaus)-under sampled 0.5514 0.68 0.5293 0.8611 0.5735 0.6556 0.7652
NB (Bern)-under sampled 0.6420 0.72 0.6788 0.5280 0.6421 0.5940 0.5526

RF-under sampled 0.9486 0.99 0.9361 0.9800 0.9446 0.9576 0.9709
NB (Gaus)-near miss 1 0.7594 0.75 0.7892 0.7023 0.7702 0.7432 0.7181
NB (Bern)-near miss 1 0.7159 0.71 0.8056 0.5629 0.7416 0.6627 0.5990

RF-near miss 1 0.8350 0.91 0.9546 0.7146 0.8945 0.8174 0.7525
NB (Gaus)-near miss 2 0.7506 0.74 0.7882 0.6908 0.7666 0.7363 0.7083
NB (Bern)-near miss 2 0.7078 0.71 0.8076 0.5519 0.7391 0.6557 0.5892

RF-near miss 2 0.8314 0.91 0.9629 0.7064 0.8977 0.8150 0.7462
NB (Gaus)-near miss 3 0.86712 0.88 0.9436 0.9086 0.9364 0.9258 0.9154
NB (Bern)-near miss 3 0.9129 0.72 0.9129 1.0 0.9291 0.9544 0.9812

RF-near miss 3 0.9747 0.98 0.9927 0.9826 0.9907 0.9876 0.9846

Table 6.1 – Full results of Naive Bayes (NB) and Random Forest (RF) classification algorithms
with Under-Sampling techniques. Results are achieved using 3-fold cross validation.

Model / Method Acc ROC Precision Recall F0.5 F1 F2

RF 0.9708 0.99 0.9353 0.6885 0.8728 0.7932 0.7269
RF - Random over sampling 0.9688 0.99 0.9258 0.7058 0.8715 0.8009 0.7410

RF - SMOTE 0.9690 0.99 0.9404 0.6908 0.8770 0.7965 0.7295
RF - SMOTE borderline 1 0.9704 0.99 0.9189 0.7313 0.8740 0.8144 0.7624
RF - SMOTE borderline 2 0.9696 0.99 0.9158 0.7318 0.8720 0.8135 0.7625

Table 6.2 – The results of Random Forest (RF) classification algorithm with Over-Sampling
methods. Results are achieved using 3-fold cross validation.

6.2.3 Classification with Combination of Under-Sampling

and Over-Sampling

As some of the re-sampling methods are combinations of both under-sampling

and over-sampling, the results are shown in Table 6.3 and their visualizations are

shown in Figure 6.5.

Model / Method Acc ROC Precision Recall F0.5 F1 F2

RF 0.9708 0.99 0.9353 0.6885 0.8728 0.7932 0.7269
RF - SMOTE Tomek links 0.9683 0.99 0.9452 0.6920 0.8808 0.7990 0.7312
NB (Gaus) - SMOTE ENN 0.7457 0.82 0.1701 0.7325 0.2010 0.2761 0.4409

RF - SMOTE ENN 0.9988 1.0 0.9987 0.9972 0.9984 0.9980 0.9975

Table 6.3 – The results of Naive Bayes (NB) and Random Forest RF) classification algorithms
with combination of Over-Sampling and under-Sampling techniques. Results are achieved using
3-fold cross validation.

55

6.3 Discussion

In order to evaluate the models on skewed datasets, the F1 score is the princi-

pal metric. Thus, the best performing model in terms of F1 score is the random

forest classification algorithm on the dataset re-sampled using the SMOTE + ENN

technique. This method has also a very high accuracy rate of 99.88 %.

Random Forest has better performance because tree based classifiers are less

sensitive to class distributions and a classifier family with a much higher capacity

than naive Bayes. Thus, even with no re-sampling technique it has an acceptable

performance (accuracy = 97 % and F1 = 0.79). On the other hand, Naive Bayes

classifiers are highly biased with class distribution and do not have any acceptable

results without re-sampling techniques.

As discussed in the previous chapter, Random Forest is an ensemble method

and reduces the error by reducing the variance. There are two features contribut-

ing in the reduction of variance: averaging and random sampling. Each tree in the

Random Forest has a very high variance but averaging reduces the variance as long

as the trees are not co-related. Since training many trees on the same dataset gen-

erates strongly co-related trees, different subsets of the dataset are fed to decision

trees. By adding randomness to the sampling process, trees are trained even more

independently which in case of large number of trees, the gain for averaging can be

more dramatic.

Random Forest also provides human interpretable results and one can find the

importance of each feature in the classification task. According to the trained

model, the five features shown in Figure 6.6 are sorted based on their average

contributions in classification task. It can be seen that the requested memory has

the highest contribution (almost twice as much as the others). Such information

can further help the provider to find which part of the infrastructure needs more

attention to build a cloud infrastructure that can better serve the requests. In

this case, building a task scheduler that better allocates the memory requests can

have twice the effect in reducing the violations compared to paying attention to

the allocation of disk or CPU.

Among re-sampling methods, combined methods such as SMOTE-ENN and

SMOTE-Tomek links have good results. SMOTE-ENN has better performance

than SMOTE-Tomek links because the Tomek links algorithm removes the noise

56

and also the datapoints near the borderline of the two classes. Borderline datapoints

are important as they are more prone to miss-classification and are thus important

datapoints to be kept. Also ENN provides a more in depth data cleaning rule and

removes any sample whose three nearest neighbors is miss-classified, which helps

with better re-sampling the dataset.

57

Methods

Random Under Sampling

Naive Bayes

Gaussian ... 0.656.

Bernoulli ..0.594.

Random Forest ...0.958.

Near miss 1

Naive Bayes

Gaussian ... 0.743.

Bernoulli ..0.663.

Random Forest ...0.817.

Near miss 2

Naive Bayes

Gaussian ... 0.736.

Bernoulli ..0.656.

Random Forest ...0.815.

Near miss 3

Naive Bayes

Gaussian ... 0.926.

Bernoulli ..0.954.

Random Forest ...0.988.

Other Random Forest Variants

One-Sided Selection ..0.805.

Neighborhood Cleaning Rule0.998.

Random over sampling0.801.

SMOTE borderline 1 ...0.814.

SMOTE borderline 2 ...0.813.

SMOTE ..0.796.

Tomek links ..0.799.

ENN ...0.998.

Other methods∗ ...∼
0.0.

Figure 6.1 – A hierarchical depiction of different sampling methods and the models used for
each. The number associated with each methods indicates the F1 score. Other methods∗: Since
the data is highly unbalanced, the other models mostly overfit and learn to always predict the
most dominant class. These models include Naive Bayes, Naive Bayes One-Sided Selection, Naive
Bayes Neighborhood Cleaning Rule, Naive Bayes Random over sampling, Naive Bayes SMOTE
and its variants.

58

Figure 6.2 – ROC curves of different sampling methods imposed on the random forest algorithm.
ROC curves represent the performance of binary classifiers over different cut-off points of the
algorithm. The area under the curve is considered as a single number presenting the trade-off
between sensitivity (true positive rate) and specificity (true negative rate).

59

Figure 6.3 – A 2D t-SNE visualization of different under sampling methods. (a): No Resam-
pling, (b): Random Under-Sampling, (c): One-Sided Selection, (d): Neighborhood Cleaning
Rule, (e): Near-Miss 1, (f): Near-Miss 2, (g): Near-Miss 3.

60

Figure 6.4 – A 2D t-SNE visualization of different over sampling methods. (a): No Resampling,
(b): Random Over-Sampling, (c): SMOTE Borderline 1 and 2, (d): SMOTE. Note that the
similarity between (b) and (a) is because Random Over-Sampling, duplicates the existing points
randomly.

Figure 6.5 – A 2D t-SNE visualization of different combined sampling methods. (a): No
Resampling, (b): SMOTE Tomek Links, (b): SMOTE ENN

61

Figure 6.6 – The average contribution of each feature based on the best trained random forest
algorithm. The average is taken over all test examples.

62

7 Conclusion

The thesis systematically compares the performance of two Machine Learning

classification models on the task of SLA violation prediction. As discussed, in such

a classification task, the data is skewed meaning that the number of violated tasks

are much smaller than the number of unviolated ones. Consequently, the thesis

also explores several methods of handling unbalanced data.

To summarize our contribution, we find that the Random Forest algorithm

performs the best when SMOTE + ENN is used as a data re-sampling method.

Among other related works on SLA violation prediction or avoidance or QoS man-

agement, our models are trained on a real world dataset which introduces new

challenges that have been neglected in previous works (such as highly unbalanced

classification problem), to the best of our knowledge. It is worth mentioning that

the Random Forest model is human-interpretable and the results suggests that

mem_requested is the most important feature in predicting violations. Moreover,

thanks to the relatively high speed of random forest, it can be used in real-time

prediction applications.

Despite the impressive results achieved by random forest, one drawback of ran-

dom forest is that it is not trivial to update the knowledge representation of the

model based on the new coming examples. One of the future works might be to

explore other models that can be easily updated when receiving more training data.

Another remaining question in the area of SLA violation avoidance is how to take

advantage of the prediction of classifier in order to avoid violation. This work

can also be extended using other machine learning models such as Support Vector

Machines, and Neural Networks.

63

Bibliography

Akioka, S. and Y. Muraoka (2004). Extended forecast of cpu and network load on

computational grid. In Cluster Computing and the Grid, 2004. CCGrid 2004.

IEEE International Symposium on, pp. 765–772. IEEE.

Alhamad, M., T. Dillon, and E. Chang (2010). Sla-based trust model for cloud com-

puting. In Network-Based Information Systems (NBiS), 2010 13th International

Conference on, pp. 321–324. IEEE.

Ali-Eldin, A., M. Kihl, J. Tordsson, and E. Elmroth (2012). Efficient provisioning

of bursty scientific workloads on the cloud using adaptive elasticity control. In

Proceedings of the 3rd workshop on Scientific Cloud Computing Date, pp. 31–40.

ACM.

AlJahdali, H., A. Albatli, P. Garraghan, P. Townend, L. Lau, and J. Xu (2014).

Multi-tenancy in cloud computing. In Service Oriented System Engineering

(SOSE), 2014 IEEE 8th International Symposium on, pp. 344–351. IEEE.

Attiya, H. and J. Welch (2004). Distributed computing: fundamentals, simulations,

and advanced topics, Volume 19. John Wiley & Sons.

Banerjee, P., C. Bash, R. Friedrich, P. Goldsack, B. A. Huberman, J. Manley, C. Pa-

tel, P. Ranganathan, and A. Veitch (2011). Everything as a service: Powering

the new information economy. Computer 44 (3), 36–43.

Barnes, B. J., B. Rountree, D. K. Lowenthal, J. Reeves, B. De Supinski, and

M. Schulz (2008). A regression-based approach to scalability prediction. In

Proceedings of the 22nd annual international conference on Supercomputing, pp.

368–377. ACM.

Batista, G. E., A. L. Bazzan, and M. C. Monard (2003). Balancing training data

for automated annotation of keywords: a case study. In WOB, pp. 10–18.

64

Batista, G. E., R. C. Prati, and M. C. Monard (2004). A study of the behavior

of several methods for balancing machine learning training data. ACM Sigkdd

Explorations Newsletter 6 (1), 20–29.

Bishop, C. M. (2006). Pattern recognition. Machine Learning 128.

Breiman, L. (1996). Bagging predictors. Machine learning 24 (2), 123–140.

Breiman, L. (2001). Random forests. Machine learning 45 (1), 5–32.

Breiman, L., J. Friedman, C. J. Stone, and R. A. Olshen (1984). Classification and

regression trees. CRC press.

Buyya, R., J. Broberg, and A. M. Goscinski (2010). Cloud computing: Principles

and paradigms, Volume 87. John Wiley & Sons.

Carrington, L., A. Snavely, X. Gao, and N. Wolter (2003). A performance pre-

diction framework for scientific applications. In International Conference on

Computational Science, pp. 926–935. Springer.

Casalicchio, E. and L. Silvestri (2013). Mechanisms for sla provisioning in cloud-

based service providers. Computer Networks 57 (3), 795–810.

Chawla, N. V., K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer (2002). Smote:

synthetic minority over-sampling technique. Journal of artificial intelligence re-

search 16, 321–357.

Dabrowski, C. and F. Hunt (2008). Markov chain analysis for large-scale grid

systems. Technical report, Draft NIST Internal Report.

Darmann, A., U. Pferschy, and J. Schauer (2010). Resource allocation with time

intervals. Theoretical Computer Science 411 (49), 4217–4234.

Degabriele, J. P. and D. Pym (2007). Economic aspects of a utility computing

service. In Proceedings of the first international conference on Networks for grid

applications, pp. 27. ICST (Institute for Computer Sciences, Social-Informatics

and Telecommunications Engineering).

65

Di, S., D. Kondo, and W. Cirne (2014). Google hostload prediction based on

bayesian model with optimized feature combination. Journal of Parallel and

Distributed Computing 74 (1), 1820–1832.

Drummond, C. and R. C. Holte (2000). Exploiting the cost (in) sensitivity of

decision tree splitting criteria. In ICML, pp. 239–246.

Duda, R. O., P. E. Hart, et al. (1973). Pattern classification and scene analysis,

Volume 3. Wiley New York.

Emeakaroha, V. C., I. Brandic, M. Maurer, and S. Dustdar (2010). Low level met-

rics to high level slas-lom2his framework: Bridging the gap between monitored

metrics and sla parameters in cloud environments. In High Performance Com-

puting and Simulation (HPCS), 2010 International Conference on, pp. 48–54.

IEEE.

Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the

bootstrap. Evolution, 783–791.

Foster, I., Y. Zhao, I. Raicu, and S. Lu (2008). Cloud computing and grid computing

360-degree compared. In 2008 Grid Computing Environments Workshop, pp. 1–

10. Ieee.

Freund, Y. and R. E. Schapire (1995). A desicion-theoretic generalization of on-line

learning and an application to boosting. In European conference on computa-

tional learning theory, pp. 23–37. Springer.

Friedman, J., T. Hastie, and R. Tibshirani (2001). The elements of statistical

learning, Volume 1. Springer series in statistics Springer, Berlin.

Gallizo, G., R. Kuebert, K. Oberle, A. Menychtas, and K. Konstanteli (2009). Ser-

vice level agreements in virtualised service platforms. eChallenges 2009, Istanbul,

Turkey .

Ganapathi, A., Y. Chen, A. Fox, R. Katz, and D. Patterson (2010). Statistics-driven

workload modeling for the cloud. In Data Engineering Workshops (ICDEW),

2010 IEEE 26th International Conference on, pp. 87–92. IEEE.

66

Ganganwar, V. (2012). An overview of classification algorithms for imbalanced

datasets. International Journal of Emerging Technology and Advanced Engi-

neering 2 (4), 42–47.

Geurts, P. (2002). Contributions to decision tree induction: bias/variance tradeoff

and time series classification. Ph. D. thesis, University of Liège Belgium.

Gowda, K. C. and G. Krishna (1979). The condensed nearest neighbor rule using

the concept of mutual nearest neighborhood. IEEE Transactions on Information

Theory 25 (4), 488–490.

Han, H., W.-Y. Wang, and B.-H. Mao (2005). Borderline-smote: a new over-

sampling method in imbalanced data sets learning. In International Conference

on Intelligent Computing, pp. 878–887. Springer.

Jones, E., T. Oliphant, P. Peterson, et al. (2001). Open source scientific tools for

python.

Jules, O., A. Hafid, and M. A. Serhani (2014). Bayesian network, and probabilistic

ontology driven trust model for sla management of cloud services. In Cloud

Networking (CloudNet), 2014 IEEE 3rd International Conference on, pp. 77–83.

IEEE.

Kaur, H. and B. Singh (2015). International journal in applied studies and produc-

tion management.

Kephart, J. O. and D. M. Chess (2003). The vision of autonomic computing.

Computer 36 (1), 41–50.

Krebs, R., C. Momm, and S. Kounev (2012). Architectural concerns in multi-tenant

saas applications. CLOSER 12, 426–431.

Kubat, M., S. Matwin, et al. (1997). Addressing the curse of imbalanced training

sets: one-sided selection. In ICML, Volume 97, pp. 179–186. Nashville, USA.

Laurikkala, J. (2001). Improving identification of difficult small classes by balancing

class distribution. In Conference on Artificial Intelligence in Medicine in Europe,

pp. 63–66. Springer.

67

Leavitt, N. (2009). Is cloud computing really ready for prime time. Growth 27 (5),

15–20.

Leitner, P., B. Wetzstein, F. Rosenberg, A. Michlmayr, S. Dustdar, and F. Leymann

(2010). Runtime prediction of service level agreement violations for composite

services. In Service-Oriented Computing. ICSOC/ServiceWave 2009 Workshops,

pp. 176–186. Springer.

Lemâıtre, G., F. Nogueira, and C. K. Aridas (2016). Imbalanced-learn: A

python toolbox to tackle the curse of imbalanced datasets in machine learning.

CoRR abs/1609.06570.

Ludwig, H., A. Keller, A. Dan, R. P. King, and R. Franck (2003). Web service level

agreement (wsla) language specification. IBM Corporation, 815–824.

Maaten, L. v. d. and G. Hinton (2008). Visualizing data using t-sne. Journal of

Machine Learning Research 9 (Nov), 2579–2605.

Mani, I. and I. Zhang (2003). knn approach to unbalanced data distributions:

a case study involving information extraction. In Proceedings of workshop on

learning from imbalanced datasets.

McCallum, A., K. Nigam, et al. (1998). A comparison of event models for naive

bayes text classification. In AAAI-98 workshop on learning for text categoriza-

tion, Volume 752, pp. 41–48. Citeseer.

Meegan, J., G. Singh, S. Woodward, S. Venticinque, M. Rak, D. Harris, and

G. Malekkos (2012). Practical guide to cloud service level agreements version

1.0. Cloud Standards Customer Council 36.

Mell, P. and T. Grance (2011). The nist definition of cloud computing.

Mitchell, T. M. et al. (1997). Machine learning. wcb.

Moore, D. S. and G. P. McCabe (1989). Introduction to the Practice of Statistics.

WH Freeman/Times Books/Henry Holt & Co.

Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.

68

Opitz, D. and R. Maclin (1999). Popular ensemble methods: An empirical study.

Journal of Artificial Intelligence Research 11, 169–198.

Oshiro, T. M., P. S. Perez, and J. A. Baranauskas (2012). How many trees in

a random forest? In International Workshop on Machine Learning and Data

Mining in Pattern Recognition, pp. 154–168. Springer.

Pedregosa, F., G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay (2011). Scikit-learn:

Machine learning in Python. Journal of Machine Learning Research 12, 2825–

2830.

Provost, F. (2000). Machine learning from imbalanced data sets 101. In Proceedings

of the AAAI’2000 workshop on imbalanced data sets, pp. 1–3.

Rappa, M. A. (2004). The utility business model and the future of computing

services. IBM Systems Journal 43 (1), 32.

Reiss, C., J. Wilkes, and J. L. Hellerstein (2011). Google cluster-usage traces:

format+ schema. Google Inc., White Paper , 1–14.

Salton, G. and C. Buckley (1988). Term-weighting approaches in automatic text

retrieval. Information processing & management 24 (5), 513–523.

Sammut, C. and G. I. Webb (2011). Encyclopedia of machine learning. Springer

Science & Business Media.

Schum, D. A. (1994). The evidential foundations of probabilistic reasoning. North-

western University Press.

Stehman, S. V. (1997). Selecting and interpreting measures of thematic classifica-

tion accuracy. Remote sensing of Environment 62 (1), 77–89.

Sturm, R., W. Morris, and M. Jander (2000). {Foundations of Service Level

Management}.

Tomek, I. (1976). Two modifications of cnn. IEEE Trans. Systems, Man and

Cybernetics 6, 769–772.

69

Uriarte, R. B., S. Tsaftaris, and F. Tiezzi (2015). Service clustering for autonomic

clouds using random forest. In Cluster, Cloud and Grid Computing (CCGrid),

2015 15th IEEE/ACM International Symposium on, pp. 515–524. IEEE.

Van Der Walt, S., S. C. Colbert, and G. Varoquaux (2011). The numpy array:

a structure for efficient numerical computation. Computing in Science & Engi-

neering 13 (2), 22–30.

Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE transactions

on neural networks 10 (5), 988–999.

Vogel, A., B. Kerherve, G. von Bochmann, and J. Gecsei (1995). Distributed

multimedia and qos: A survey. IEEE multimedia 2 (2), 10–19.

Wang, L., G. Von Laszewski, A. Younge, X. He, M. Kunze, J. Tao, and C. Fu (2010).

Cloud computing: a perspective study. New Generation Computing 28 (2), 137–

146.

Wang, Y. and J. Vassileva (2007). A review on trust and reputation for web service

selection. In Distributed Computing Systems Workshops, 2007. ICDCSW’07.

27th International Conference on, pp. 25–25. IEEE.

Wasserman, L. (2013). All of statistics: a concise course in statistical inference.

Springer Science & Business Media.

Williams, B. (2012). The economics of cloud computing. Cisco Press.

Wilson, D. L. (1972). Asymptotic properties of nearest neighbor rules using edited

data. IEEE Transactions on Systems, Man, and Cybernetics (3), 408–421.

Wu, L., S. K. Garg, and R. Buyya (2011). Sla-based resource allocation for software

as a service provider (saas) in cloud computing environments. In Cluster, Cloud

and Grid Computing (CCGrid), 2011 11th IEEE/ACM International Symposium

on, pp. 195–204. IEEE.

Wu, Q., X. Zhang, M. Zhang, Y. Lou, R. Zheng, and W. Wei (2014). Reputation

revision method for selecting cloud services based on prior knowledge and a

market mechanism. The Scientific World Journal 2014.

70

Zhang, C. and J. Cao (2013). A dynamic resource management strategy for cloud

based on sequential decision model and demand forecast. In Cloud and Service

Computing (CSC), 2013 International Conference on, pp. 77–83. IEEE.

Zhang, Q., L. Cheng, and R. Boutaba (2010). Cloud computing: state-of-the-art

and research challenges. Journal of internet services and applications 1 (1), 7–18.

Zhang, Q., J. Hellerstein, and R. Boutaba (2011). Characterizing task usage shapes

in google compute clusters.

Zheng, Z., R. Wang, H. Zhong, and X. Zhang (2011). An approach for cloud

resource scheduling based on parallel genetic algorithm. In Computer Research

and Development (ICCRD), 2011 3rd International Conference on, Volume 2,

pp. 444–447. IEEE.

71

	 Résumé
	 Summary
	 Contents
	 List of Figures
	 List of Tables
	 List of Abbreviations
	 Acknowledgments
	1 Introduction
	1.1 Motivation and Statement of the Problem
	1.2 Contributions
	1.3 Organization of this Thesis

	2 Cloud Computing
	2.1 Cloud Architecture and Layered Model
	2.1.1 Hardware Layer
	2.1.2 Infrastructure Layer
	2.1.3 Platform Layer
	2.1.4 Application Layer

	2.2 Cloud Deployment Models
	2.2.1 Public Cloud
	2.2.2 Private Cloud
	2.2.3 Community Cloud
	2.2.4 Hybrid Cloud

	2.3 Cloud Computing Characteristics
	2.3.1 On Demand Self-service
	2.3.2 Broad Network Access
	2.3.3 Resource Pooling
	2.3.4 Rapid Elasticity
	2.3.5 Measured Service
	2.3.6 Service Oriented
	2.3.7 Multi-tenancy
	2.3.8 Geographic Distribution

	2.4 Related Technologies
	2.4.1 Grid Computing
	2.4.2 Utility Computing
	2.4.3 Autonomic Computing

	2.5 Service Model
	2.5.1 Infrastructure as a Service (IaaS)
	2.5.2 Platform as a Service (PaaS)
	2.5.3 Software as a Service (SaaS)

	2.6 Quality of Service in Cloud Computing
	2.6.1 Service Level Agreements
	2.6.2 SLA Management Life Cycle

	3 Prediction Models
	3.1 Terminology
	3.2 Supervised Machine Learning: Concepts and Definitions
	3.2.1 Learning
	3.2.2 Classification
	3.2.3 Regression

	3.3 Generalization
	3.3.1 Bias-Variance Trade off
	3.3.2 Overfitting Problem
	3.3.3 Regularization
	3.3.4 Cross Validation

	3.4 Performance Evaluation
	3.4.1 Confusion Matrix
	3.4.2 Accuracy
	3.4.3 Precision and Recall
	3.4.4 F Score
	3.4.5 Receiver Operating Characteristics (ROC) curves

	4 Related Works
	4.1 Load Prediction
	4.2 Resource Scheduling
	4.3 SLA Violation Prediction

	5 Methodology
	5.1 Dataset
	5.1.1 Data Analysis

	5.2 Tackling Unbalanced Data
	5.2.1 Algorithm-based Approach
	5.2.2 Data-based Approach

	5.3 Ensemble Methods
	5.3.1 Bagging
	5.3.2 Boosting

	5.4 Data Resampling
	5.4.1 Over Sampling Techniques
	5.4.2 Under Sampling Techniques
	5.4.3 Combination of Over Sampling and Under Sampling Techniques

	5.5 Classification Models
	5.5.1 Naive Bayes Classifier
	5.5.2 Naive Bayes Implementation
	5.5.3 Decision Tree Classifier
	5.5.4 An Ensemble of Decision Tree Classifier: Random Forest
	5.5.5 Random Forest Implementation

	6 Results and Discussion
	6.1 Environments and Toolkits
	6.1.1 Python
	6.1.2 Scikit-Learn
	6.1.3 Imbalanced-learn
	6.1.4 T-SNE (t-Distributed Stochastic Neighbor Embedding)

	6.2 Results
	6.2.1 Classification with Under-Sampling
	6.2.2 Classification with Over-Sampling
	6.2.3 Classification with Combination of Under-Sampling and Over-Sampling

	6.3 Discussion

	7 Conclusion
	 Bibliography

