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Résumé 
La voie de signalisation Ras/mitogen-activated protein kinase (Ras/MAPK) occupe un rôle 

central dans la régulation de différents processus biologiques tels que la croissance, la survie 

mais aussi la prolifération cellulaire. En réponse à des signaux extracellulaires, cette voie de 

signalisation mène à l’activation des protéines ERK1/2, impliquées dans l’activation de 

nombreux substrats cellulaires dont les protéines kinases RSK (p90 ribosomal S6 kinase). Ces 

protéines kinases sont, entre autres, impliquées dans l’invasion et la migration cellulaire mais 

les mécanismes responsables de ces phénomènes biologiques restent inconnus à ce jour. 

Dans mon mémoire, je développe tout d’abord les travaux précédemment réalisés dans notre 

laboratoire, et identifie la protéine p120-Catenin (p120ctn), un composant majeur des jonctions 

adhérentes (AJ), comme un nouveau substrat de la voie Ras/MAPK. En utilisant notamment un 

anticorps phospho-spécificique, nous avons pu démontrer que p120ctn est phosphorylée sur la 

sérine 320, un nouveau site de phosphorylation, d’une manière dépendante des kinases RSK. 

D’autre part, nous avons trouvé que la signalisation Ras/MAPK réduit l’interaction entre les 

protéines p120ctn et N-cadhérine. Ainsi, nos observations suggèrent que l’activation de la voie 

Ras/MAPK est impliquée dans la diminution de l’adhérence entre cellules par la déstabilisation 

des AJ. Compte tenu du rôle primordial de la voie de signalisation Ras/MAPK dans le cancer, 

ce mécanisme nouvellement décrit pourrait contribuer à l’avancement des connaissances sur le 

développement des cancers dépendents de cette voie de signalisation.  

Mots-clés : MAPK; RSK; p120ctn; jonctions adhérentes; cadhérine; phosphorylation; 
adhérence cellule-cellule; 
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Abstract 
The Ras/MAPK (mitogen-activated protein kinase) signalling pathway is vital in 

regulating cell growth, survival and proliferation in response to extracellular signals. Positioned 

downstream in the pathway, the p90 ribosomal S6 kinase (RSK) family regulates cell invasion 

by weakening cell-cell adhesion, but the mechanisms involved remain elusive.  

In this thesis, I expand upon previous work performed in our lab and identify p120ctn, a 

major component of adherens junctions (AJ), as a new substrate of the Ras/MAPK pathway. 

Using a phospho-specific antibody, we demonstrate that p120ctn is phosphorylated on a new 

phosphorylation site on S320 upon activation of MAPK signalling in a RSK-dependent manner. 

Furthermore, we show that Ras/MAPK signaling reduces p120ctn binding to N-cadherin, 

suggesting a new mechanism by which MAPK activity decreases cell-cell adhesion by 

destabilizing AJs. Finally, we designed and optimized two individual assays to be used in future 

experiments examining the effects of Ras/MAPK signalling on AJ function.  

Taken together, our data identifies RSK as a regulator of p120ctn phosphorylation, and 

also implicates Ras/MAPK signalling in regulating cell-cell adhesion by destabilizing AJ 

through p120ctn. Given the role of Ras/MAPK signalling in cancer, this new mechanism may 

play a role in the development and progression of Ras-driven cancers.    

 

Keywords : MAPK; RSK; p120ctn; adherens junction; cadherin; phosphorylation; cell-cell 

adhesion;   
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Ras/MAPK Signalling and RSK Kinases 

The Ras/MAPK signalling pathway 
Mitogen-activated protein kinase (MAPK) cascades are evolutionarily conserved signal 

transduction pathways in eukaryotic cells, allowing them to respond to various intracellular and 

extracellular stimuli. Many cell-surface receptors can stimulate Ras/MAPK signalling, such as 

G protein-coupled receptors (GPCRs), cytokine receptors, and receptor tyrosine kinases 

(RTKs). Traditionally organized, and characterized, by a three-tiered set of sequentially 

activated and evolutionarily conserved kinases, MAPK pathways act in cells to regulate a 

plethora of cellular processes, including gene expression, metabolism, motility, proliferation, 

survival and differentiation (Reviewed in [1]). In mammals, several essential MAPKs have been 

characterized, including the extracellular signal-regulated kinases 1/2 (ERK1/2), c-Jun amino 

(N)-terminal kinases 1/2/3 (JNK1/2/3), and p38 isoforms. Of these, the ERK1/2 module is the 

best studied, and plays a significant role in many human cancers, as evidenced by the many 

tumors showing hyperactivation of these kinases [2]. 

The core organization of the ERK1/2 module has been extensively studied, and, like 

many other traditional MAPK pathways, contains three sequentially acting kinases: A/B/C-Raf, 

MEK1/2, and ERK1/2. While other unconventional kinases have been shown to replace Raf 

function in a cell-specific manner, the canonical activation and regulation of the pathway 

remains consistent [3]. 

The ERK1/2 signalling cascade is most commonly activated in response to binding of 

extracellular growth factors, such as platelet-derived growth factor (PDGF), epithelial growth 

factor (EGF) and insulin, to cell surface receptors. While it has been demonstrated that GPCRs, 

cytokines and osmotic stress can also initiate ERK1/2 signalling, and that cAMP can regulate 

ERK1/2 activity in a cell-specific manner, the most well understood method of activation 

usually implicates RTKs (Fig. 1) [4]. 

Upon ligand binding, activation and dimerization of RTKs induces autophosphorylation 

of Tyr residues located on the intracellular domains of the receptors. These phosphorylated 

residues create docking sites for Src homology 2 (SH2) and phosphotyrosine-binding (PTB) 

domain-containing proteins, such as Grb2 (growth factor receptor-bound protein 2). Upon 

binding to RTKs, Grb2 recruits SOS (son of sevenless), a guanine exchange factor (GEF), to 
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the plasma membrane. SOS is best known for catalyzing the exchange of GDP for GTP bound 

to Ras, leading to its activation. Now active, Ras-GTP directly interacts with, and promotes the 

dimerization, of Raf protein kinases (A-, B- and C-Raf), which then phosphorylates its specific 

substrates MEK1/2 (MAPK/ERK kinase 1 and 2). The dual-specificity MEK1/2 kinases then 

phosphorylate the MAPKs known as ERK1/2 within a conserved Thr-Glu-Tyr (TEY) motif in 

their activation loop motif. Activation of ERK1/2 then leads to further propagation of the initial 

growth factor signal to a large variety of downstream substrates regulating, among other 

responses, gene transcription, cell growth, proliferation, motility and survival (Reviewed in [1]). 

In the context of cancer, many tumors harbour activating mutations within the genes 

encoding for initiating components of the ERK1/2 module, such as Ras and Raf – pointing to 

the oncogenic role of this pathway in driving cancer development and progression [2]. Thus, 

many cancers exhibit hyperactivation of ERK1/2 and deregulation of downstream biological 

functions, leading to tumor growth and survival.  

Academic efforts to better characterize and understand this critical signalling pathway 

has revealed several important downstream effectors, including the 90 kDa ribosomal S6 kinases 

(RSKs), a family of Ser/Thr kinases that lie immediately downstream of the ERK1/2 kinases. 
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Figure 1. Schematic representation of the Ras/MAPK pathway and RSK 
substrates 

Upon activation of cell surface RTKs, the Grb2/SOS complex is recruited to the plasma membrane and 

promotes GTP binding to Ras. Active Ras then initiates the signalling cascade leading to activation of the 

ERK1/2 MAPK signalling module, and RSK activation. Some of the known substrates of RSK are 

indicated here, including feedback inhibition of SOS to prevent hyperactivation of MAPK activity. 

Pharmacological compounds targeting MEK and RSK employed in this study are also highlighted. 

(Adapted from [5])  

The RSK kinase family 
Initially identified in 1985 as two kinases, S6KI and S6KII, that phosphorylated 

ribosomal protein S6 (rpS6) in Xenopus laevis eggs (later renamed RSK), are one of the many 

substrates of ERK1/2 and are effector kinases capable of regulating many cellular processes 

through its own substrates [6]. In human cells, there are four different isoforms (RSK1-4) that 

share between 73-80% sequence homology, mostly diverging in their C- and N-terminus regions 

[5] (Fig. 2). 
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Figure 2. Schematic representation of the RSK isoforms and their structural 
features. 

The 4 RSK isoforms all consist of the NTKD and CTKD connected by a linker region. All isoforms also 

contain a D-domain docking site for ERK1/2 association. Only isoform 3 contains a putative NLS domain. 

The phosphorylation sites required for RSK activation are indicated. 

 

All four isoforms contain two highly conserved, yet functionally different, kinase 

domains connected by a linker region approximately 100-residues in length containing 

hydrophobic and turn motifs that are involved in RSK activation and regulation. These two 

distinct functional kinase domains appear to be a unique feature of RSKs, with the exception of 

the mitogen- and stress-activated protein kinases (MSKs), which are highly similar to the RSK 

[7]. The amino-terminal kinase domain (NTKD) shares high sequence homology with members 

of the AGC kinase family (including Akt, PKC and S6K1/2) and is the main functional domain 

for phosphorylation of RSK substrates and signal propagation. On the other end, the carboxyl-

terminal kinase domain (CTKD) is similar to kinase domains found in the calcium/calmodulin-

dependent protein kinases (CaMKs) and its only known function is to autophosphorylate RSK 

for the activation of NTKD in response to upstream signals from ERK1/2 [8]. Beyond the 

CTKD, an ERK1/2 docking site is located in the C-terminal region of RSK and is essential for 

the association of ERK1/2 with RSK for activation of the latter [9]. Finally, at the very end of 

the C-terminus is a PDZ domain-binding motif that varies slightly between the four RSK 

isoforms, and has been shown to play a role in regulating RSK interaction with PDZ domain-

containing proteins during specific cellular processes, such as during synaptic transmission [10]. 
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RSK activation requires a well-characterized and well-regulated sequence of 

phosphorylation events on four essential phosphorylation sites: Ser221, Ser363, Ser380 and 

Thr573 in human RSK1. Upon activation by mitogenic signals, ERK1/2 phosphorylates RSK 

on Thr573 in the activation loop region of the CTKD [11]. Now active, the CTKD and ERK1/2 

coordinately phosphorylates Ser380 and Ser363, respectively, in the linker region of RSK [8, 

12]. These phosphorylated residues generate a binding site for 3’-phosphoinositide-dependent 

protein kinase 1 (PDK1) – a constitutively active Ser/Thr kinase that has been shown to regulate 

members of the AGC kinase family [13]. Recruited PDK1 then phosphorylates Ser221 located 

within the activation loop of the NTKD, leading to its full activation and phosphorylation of 

RSK substrates [14]. 

Looking at their expression patterns, mRNA encoding RSK1-3 are present within all 

tissue types, while RSK4 appears to have low levels of expression in both embryonic and adult 

tissues. While RSK is ubiquitously expressed, tissue-specific differences in mRNA levels of 

RSK1-3 have been observed. RSK1 mRNA levels are commonly elevated in kidney, pancreas 

and lung tissue, while RSK2 and 3 are more predominantly expressed in the heart and skeletal 

muscle [15]. Northern Blot analysis identified RSK4 mRNA expression in the brain, heart, 

cerebellum, kidney and skeletal muscle, and is completely undetectable in the lung, liver and 

pancreas [16]. Specifically in the central nervous system, RSK isoforms have been shown to be 

expressed in different brain structures [17-19]. Studies into the expression of RSK isoforms 

during developmental stages also reveals distinct patterns of expression. RSK1 and 3 perhaps 

play a greater role in development as they are more highly expressed in fetal mouse tissue 

compared to RSK2 and 4 that show lower mRNA levels [20].  

Taken together, these data suggest that while RSK isoforms may share high similarity, 

considering the differences in tissue distribution, and different expression patterns during 

developmental stages, the isoforms must regulate significantly different programs and serve 

different roles in a cell or tissue-specific manner. 

RSK substrates and functions 

To better understand the roles of RSKs in cells, various studies have been conducted 

with the aim to identify and characterize novel RSK substrates to build a greater understanding 

of the cellular functions controlled by RSK activity. Using synthetic peptides, the RSK1 
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consensus motif was initially believed to require the specific motif sequences: R/K-X-R-X-X-

pS/T or R-R-X-pS/T [21]. More recently, using a positional scanning peptide library (PSPL), 

our lab confirmed that the RSK1 consensus motif resembles R-X-R-X-X-pS/T with a strong 

requirement for arginine residues at the -3 position, and a preference to phosphorylate serine 

over threonine [22]. Identification of the RSK consensus motif helps not only to provide 

confirmation of previously identified RSK substrates, but also creates the opportunity for high-

throughput proteomic screening for novel RSK substrates.  

Collectively, the current known substrates of RSKs indicate they play a role in regulating 

gene transcription, protein synthesis, cell-cycle progression, proliferation, survival, motility and 

migration. For the sake of brevity, I will only address a few of the identified substrates of interest 

here, but for further details, more in-depth reviews specifically addressing RSK substrates can 

be found [5, 23]. 

At the transcriptional level, RSK2 has been shown to phosphorylate and stabilize c-Fos 

in cells, a component of the AP-1 transcription factor complex and is frequently overexpressed 

in tumor cells. The transcription factor c-Fos upregulates cyclin D1 and promotes G1 

progression in cells, driving cell proliferation [24]. Additionally, RSK2 has been shown to 

activate another transcription factor: cAMP response element-binding (CREB) protein through 

phosphorylation at Ser133 [25]. This RSK-CREB signalling pathway has been implicated in 

promoting tumor progression, cell survival and metastasis through upregulation of various genes 

[26]. Conversely, RSK3 and 4 appears to negatively regulate cell proliferation – especially in 

the context of cancer. RSK3 appears to function as a tumor suppressor in ovarian cancer cells, 

and RSK4 knockdown has been shown to promote proliferation, migration and metastasis of 

breast cancer cells [27, 28] 

Moving on to translation, rpS6 phosphorylation by RSK at Ser235/236 promotes cap-

dependent mRNA translation through assembly of the cap-binding complex [29]. Additionally, 

RSK promotes protein synthesis through mTOR (mammalian target of rapamycin) signalling. 

By phosphorylating tuberous sclerosis complex 2 (TSC2) on Ser1798, RSK inhibits its GTPase-

activating activity for Rheb (Ras homolog enriched in brain), a small GTPase that is required 

for the activation of the mTORC1 complex [7]. By an alternate mechanism, RSK can directly 

phosphorylate Raptor (regulatory associated protein of mTOR), an important scaffolding 

protein, to promote mTORC1 assembly and activation [30]. 
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Finally, a newly emerging function that is of particular importance to my project is the 

role of RSK in promoting Ras/MAPK-dependent cell motility and invasion. Using 

pharmacological inhibitors, RSK1 and 2 were initially identified to play a role in Raf-dependent 

migration in MDCK cells by upregulating expression of ~20% of ERK regulated mRNAs, many 

of which being invasion/motility genes encoding proteins such as uPAR, MMP-1 and RhoC 

[31]. A genome-wide RNAi screen for regulators of epithelial cell migration also identified RSK 

as a key effector and a point of convergence of various pro-migratory signals [32]. At the post-

translational level, recent studies have identified a handful of new RSK substrates, including 

Gab2 (Grb2-associated binder), KIBRA (expression enriched in kidney and brain), SH3P2 (SH3 

domain-containing protein 2), and EphA2 (Ephrin type-A receptor 2), that are all implicated in 

RSK-mediated cell motility and migration [33-36]. In our own phosphoproteomic and proximity 

ligation screens, we have identified a new potential RSK substrate, p120-catenin (p120ctn), that 

plays a significant role in regulating cell motility. p120ctn is a master regulator of cell-cell 

adhesion and a critical component of adherens junctions (AJs) [22]. 

The role of RSK in cancer 

As a major regulator of cell proliferation, growth and survival signals downstream of the 

Ras/MAPK pathway, RSK plays a significant role in cancer progression. I will provide a quick 

summary of RSK’s contribution to cancer development here, while more detailed explorations 

of its role can be found in excellent reviews such as: [37, 38].  

Overexpression and hyperactivation of RSK has been observed in several cancers such 

as breast, lung, prostate, head and neck, ovarian, melanoma, osteosarcomas and multiple 

myelomas (reviewed in [37]). Increased levels of of RSK2 were observed in ~50% of breast and 

prostate cancer tissues [39, 40]. Ectopic overexpression of RSK2 also promotes proliferation 

and anchorage-independent cell transformation in cells [41]. Pharmacological inhibition of RSK 

using SL0101, a RSK specific inhibitor, in cell lines derived from breast and prostate tumours 

has also been shown to significantly decrease proliferation of these cells in vitro [5].  

Beyond cell proliferation, RSK also promotes lung cancer survival via phosphorylation 

and inhibition of the Bcl-2 homology 3-only proapoptotic protein, Bad, in response to estrogen 

signalling. [42] Furthermore, research has uncovered isoform-specific effects of RSK signalling 

on cancer metastasis and invasion. RSK2 has been shown to be promigratory, with higher levels 
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of RSK2 correlating with increased metastasis of head and neck squamous cell carcinomas in 

patients [43]. Conversely, RSK1 appears to be a negative regulator in non-small cell lung cancer 

[44], while exhibiting promigratory effects in immortalized breast epithelial cells [32]. 

Additionally, as previously addressed, increased RSK4 expression appears to reduce the 

metastatic potential of breast cancer cells [45].  

Overall, the RSK family kinases play a multi-functional role in cancers by various 

mechanisms through their downstream substrates. In particular, the contradictory effects of RSK 

isoforms on cancer metastasis show that our understanding of how RSK regulates changes in 

cell motility and invasion is still quite poor. By studying the kinase-substrate relationship 

between RSK and p120ctn, our goal is to advance our knowledge of the mechanisms by which 

RSK signalling modulates cell-cell adhesion and cell motility in the context of cancer. 
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Cell-Cell Adhesion and Adherens Junctions 

Cell-Cell Adhesion Structures 
In multicellular organisms, cell contact and adhesion to neighbouring cells are required 

for generating functional tissue and organs by maintaining highly organized cellular polarity 

and architecture. Through evolution, different types of intercellular junction structures have 

emerged to participate in, and to regulate cell-cell adhesion.  

Strong cell-cell adhesion is most crucial in epithelial cells, one of the most ubiquitous 

cell types that are responsible for forming epithelial layers. The epithelial layer acts as boundary 

between different environments – such as the inside and outside of an organism. This barrier 

also controls the flux and exchange of biologically relevant molecules, nutrients, and ions into 

the body and organs. In vertebrates, three major types of adhesion systems have been identified 

to contribute to the integrity of cell-cell adhesion: adherens junctions (AJs), desmosomes (DM), 

and tight junctions (TJs) (Fig. 3A and B). 

Years of research have identified AJs as the main, defining cell-cell adhesion structure; 

however, the other two structures should still be quickly addressed. TJs are claudin- and 

junctional adhesive molecule (JAM)-based structures are located at the most apical part of 

epithelial cells, and are responsible for firmly sealing the space between adjacent cells in order 

to establish a barrier against diffusion of molecules across the epithelial layer [46]. DMs are 

composed of non-classical cadherins, such as desmogleins, and are associated to intermediate 

filaments to form patch-like points of adhesion between cells [47]. 

In contrast to the two structures defined above, AJs provide strong cell-cell adhesion by 

forming cadherin-based adhesive structures anchored to the actin cytoskeleton that are strongly 

resistant to mechanical stress. In epithelial cells, AJs are linked to a circumferential “adhesive 

belt” of actin-filament bundles called the zonula adherens (ZA) to maintain strong adhesion. In 

addition to being a major cell-cell adhesion structure, the ZA forms at the apical/basal border in 

cells, and is important in maintaining cellular polarity by segregating the lateral membrane into 

apical and basal compartments [48]. AJ-dependent cell polarization also precedes the formation 

of TJs and desmosomes, as components of these structures need to be targeted to different 

compartments of the lateral membrane as defined by the ZA [49]. 
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Despite its characteristically strong structure, numerous studies also illustrate the high 

plasticity of AJs. This is exemplified by the vital role of AJs in collective cell migration of 

various cells, such as astrocytes, neurons and neural crest cells, during development [50]. In 

neuronal cells, the association between AJs and the actin cytoskeleton function as 

mechanosensors to coordinate collective cell migration [51]. During collective cell migration, 

AJs are observed to undergo continuous treadmilling, a process where they are actively recycled 

from the rear of the cell to the front during migration. The process of AJ recycling helps not 

only to maintain adhesion between adjacent cells, but also maintains front-rear cell polarity and 

dictates the speed of migration [52, 53]. 

Collective cell migration is only one example showing how dynamic regulation of AJ 

influences cell-cell adhesion, and cell morphology. These dynamic morphogenic changes are 

also a hallmark of epithelial-mesenchymal transition (EMT), a well-studied physiological 

process that plays a crucial role in normal physiological functions as well as cancer progression. 

EMT is a dramatic phenotype change of epithelial cells in response to physiological 

signals. Epithelial cells lose their epithelial characteristics, migrate away from the epithelial 

monolayer and establish new tissue at a distant site. Epithelial cells acquire many changes during 

EMT, including loss of apical-basal polarity, acquisition of motile behaviour, cytoskeletal re-

organization, and the loss of E-cadherin-mediated cell-cell adhesion structures. Normally, EMT 

plays an important role in early embryogenesis during gastrulation and neural crest cell 

migration, and for wound healing in adult organisms, as healthy epithelial cells need to de-

differentiate and migrate towards the injury site to promote new epithelial growth (Reviewed in 

[54]). However, in the context of human cancers, the very same process is hijacked by tumour 

cells for invasion and metastasis. The process of metastasis by EMT has been observed in 

different tissue, such as lung, prostate and breast cancers [55-57]. 
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Figure 3. A basic schematic of cell-cell adhesion structures, and structural elements 
of adherens junctions. 

(A) A schematic drawing of adjacent cells, identifying the location of three main cell-cell adhesion 

structures: tight junctions (TJ), adherens junctions, also known as zonula adherens (ZA), and desmosomes 

(DM). (B) Electron microscope image of mouse intestinal epithelium cells, indicating the three main 

structures at cell-cell contacts. The actin filament bundle consisting the ZA is also indicated. (C) A detailed 

representation of the cadherin-catenin complex including known interacting proteins that are required for 

the attachment of the complex to the actin cytoskeleton and microtubules.  

The image in (B) was obtained from [58] 

Adherens junctions and cadherins 
The main AJ complex is composed of the adhesion molecule E-cadherin, which mediates 

strong, calcium-dependent binding between cells, and a catenin complex consisting of a-, b- 

and p120-catenin, that stabilizes and connects E-cadherin to the actin cytoskeleton (Fig. 3C). 
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The cadherins are a large family of cell-cell adhesion molecules, and play a role in tissue 

patterning and maintaining cell adhesion. Classical cadherins are single-pass, type I 

transmembrane glycoproteins that establish calcium-dependent, homophilic adhesion through 

binding cadherin molecules on neighbouring cells [59].  

The two most well-studied types of classical cadherins are E- and N-cadherin. As its 

name suggests, epithelial cadherin (E-cadherin) is found in epithelial cells, and contributes to 

the formation of adherens junctions for tight cell adhesion in epithelial cell layers [60]. Neural 

(N-cadherin) is most abundant in the nervous system and forms adherens junction-like structures 

at synapses and other parts of the neuron [61]. There are other forms of classical cadherins that 

have been identified, such as cadherin-11, but there is still much to understand about the function 

of these other cadherins due to different patterns of expression across tissue types. A more 

detailed review about the greater family of cadherins can be found in [62]. 

Each cadherin molecule is composed of a short C-terminal cytosolic domain, and five 

“extracellular cadherin” (EC) domains that are essential for calcium-binding and cell-cell 

adhesion [59]. Upon binding of extracellular calcium ions, the EC-domains adopt a stiff, rod-

like structure that extends from the cell membrane to form trans junctional interactions with 

cadherins on adjacent cells. These trans adhesive structures are incredibly sensitive to 

fluctuations in extracellular calcium levels, and have been observed to change conformation 

rapidly in response to removal of extracellular Ca2+. When extracellular concentration of Ca2+ 

drops below 1 mM, the conformational change of cadherin EC-domains results in detachment 

from one another, and leads to a rapid loss of cell-cell adhesion [63]. 

The formation and maintenance of AJ requires the retention of cadherins at the cell 

membrane, as well as functional attachment of adhesive cadherins to the actin cytoskeleton for 

mechanical transduction. These two important aspects are regulated through a major family of 

cadherin interacting proteins known as the catenins, which bind to the cytoplasmic domain of 

classical cadherins. There is high sequence identity between the cytoplasmic domains of 

classical cadherins, within which are sites for binding a complex composed of a-, b-, and p120-

catenins. Both b-catenin (b-cat) and p120-catenin (p120ctn) are direct interactors of cadherins, 

binding to different sequences in the cytoplasmic domain through their own highly conserved 
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armadillo (ARM) repeat domains. However, despite the sequence homology shared between b-

cat and p120ctn, they serve functionally different purposes in the cadherin-catenin complex.  

The linkage of cadherins to the actin cytoskeleton is mediated through b-cat and its 

association to a-catenin (a-cat). Initially it was believed that b-catenin binding to the distal 

portion of the cadherin recruits a-catenin, which serves to anchor the cadherin-catenin complex 

to the actin cytoskeleton either through directly binding F-actin or indirectly through other 

interacting proteins, such as afadin or epithelial protein lost in neoplasm (EPLIN) [64]. The 

specific mechanism of interaction between a-cat and F-actin is still under debate. Biochemical 

studies performed with AJ complexes in mouse and zebrafish indicates that a-cat binding to the 

AJ complex drastically decreases its affinity for F-actin.  However, another study shows that a 

“minimal cadherin-catenin complex” composed of a E-cadherin/a-cat fusion protein is capable 

of binding F-actin under force [65, 66]. Regardless, all studies agree that a-cat is a crucial 

component at AJ to mediate cadherin-actin cytoskeletal interaction. Meanwhile, b-cat appears 

to serve a supporting role at AJs by bridging cadherin to a-cat, and also harbours a collection 

of phosphorylation sites that converge from various signalling pathways for fine regulation of 

AJ. Briefly, phosphorylation of Ser/Thr in the b-cat binding domain of E-cadherin has been 

shown to strengthen b-cat binding, while phosphorylation of Tyr on both E-cadherin and b-cat 

reduces their affinity for each other, and promotes the dissociation of the cadherin-catenin 

complex (Reviewed in [67]). 

Independent of a- and b-cat, p120ctn binds cadherins at a separate juxtamembrane 

domain (JMD) located in a more proximal region of the cadherin cytoplasmic domain and acts 

as an important regulator of both cadherin stability and its localization to the membrane. 

Intentional knockdown of p120ctn in a variety of mammalian cell lines results in the destruction 

of the cadherin-catenin complex at AJ, and a significant reduction in the protein levels of all 

classical cadherins, and both a- and b-cat [68, 69]. These results suggest that p120ctn plays a 

pivotal role in the formation and maintenance of the AJ/cadherin-catenin complex even 

superseding that of a- and b-cat.  
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The p120-catenin Protein 

Structure of p120ctn 
Found only in vertebrates, p120ctn is a member of a larger family of ARM-repeat 

containing proteins including: delta-catenin, p0071, and armadillo-repeat protein deleted in 

velo-cardio-facial syndrome (ARVCF). Comparing the proteomes across different vertebrate 

and metazoan species shows that all of these proteins evolved from a d-catenin-like ancestor 

[70]. Successive evolution has generated multiple p120ctn family proteins in the vertebrate 

genome, while only one single d-catenin-like protein exists in invertebrates. Interestingly, 

deletion of p120ctn homologues in invertebrates (p120 in D. melanogaster and JAC-1 in C. 

elegans) does not affect survival and only produces minor adhesion phenotypes [71, 72]. In 

contrast, p120ctn depletion in vertebrates causes embryonic lethality, while knockdown of other 

p120ctn members are better tolerated (See Table 1) [73]. This suggests that in vertebrates, 

p120ctn has evolved into a protein essential for life, while other members of the family appear 

to play less substantial roles in regulating physiological functions.  

The gene coding for p120ctn, ctnnd1, consists of 21 exons encoding a total of 968 amino 

acids (Fig. 4), with alternative splicing sites occurring at exon 18 (exon A), exon 20 (exon B) 

which contains a nuclear export signal (NES), and exon 11 (exon C), the presence of which 

disrupts a nuclear-localization signal (NLS) [74]. In vertebrates, mRNA containing exon A is 

found to be abundantly expressed, while those with exons B and C are found at much lower 

copy numbers, with the only exception being in neural tissues where exon C appears to be 

abundantly expressed [75]. Aside from alternative splicing, the CTNND1 gene contains four 

unique start codons, and gives rise to four different isoforms, with isoforms 1 and 3 being the 

most commonly expressed in cells. There are four distinct functional regions to be found in the 

full-length p120ctn protein, beginning with a coiled-coil domain located near the N-terminal, a 

phosphorylation or regulatory domain, the ARM domain containing 9 ARM-repeats, and a C-

terminal tail [74]. Due to the location of alternative start codons, the coiled-coil domain is only 

found in isoform 1, and the regulatory domain is present in all but isoform 4. However, the main 

central ARM-repeat domains critical for the interaction between p120ctn and the proximal 

region of cadherins remain preserved in all isoforms. However, due to variations in the other 

domains, there still appears to be functional differences between isoforms. For example, 
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evidence indicates a stronger expression of isoform 1 in mesenchymal cells expressing N-

cadherin, while isoform 3 is preferentially expressed in epithelial cells and interacts more 

strongly with E-cadherin in these cells [76]. 

 

 
Figure 4. The structural features of p120ctn including main domains, subcellular 
localization signals, phosphorylation sites, and alternative splicing sites. 

The CTNND1 gene for p120ctn codes for a protein up to 968 residues in length. Due to alternative splicing, 

four different start sites are present to give rise to four different isoforms of varying lengths. Alternatively 

used exons A, B and C are their locations are indicated. As a member of the armadillo-repeat (ARM) 

protein family, p120ctn contains 9 ARM-domains indicated from 1-9. The structure of p120ctn contains 

two nuclear localization signals (NLS) and one nuclear export sequence (NES). All identified Ser, Thr and 

Tyr phosphorylation sites are identified by S/T/Y labels. The interaction domains of major p120ctn 

interactors are also indicated.   

CC: coiled-coil domain, RD: regulatory (phosphorylation) domain, ARM domains: 1-9. 
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p120ctn regulation of cell-cell adhesion 
Originally discovered as a novel substrate for membrane-associated Src, p120ctn was 

identified as a protein that plays a role in regulating cell-cell adhesion [77]. Supporting this 

initial prediction, subsequent studies identified p120ctn to be an important member in the 

cadherin/catenin complex found at AJ [78]. 

Similar to b-cat, p120ctn binds to the cytoplasmic tail of classical cadherins but does not 

play a role in linking cadherins to the actin cytoskeleton. Instead, p120ctn maintains AJ stability 

by regulating cadherin turnover at the membrane through regulation of cadherin endocytosis 

[69]. In the absence of p120ctn binding, cadherins become rapidly internalized and are degraded 

by an endo-lysosomal degradation pathway [79]. Early studies have shown direct interaction 

between the two proteins: classical cadherin and p120ctn are required for their proper function 

as a complex at the cell membrane. E-cadherin re-expression in E-cadherin deficient cells causes 

p120ctn to be recruited to the membrane [80]. Conversely, in E-cadherin expressing cells, 

downregulation of p120ctn results in a decrease in the total levels of E-cadherin and a drastic 

decrease in cell-cell adhesion due to loss of AJs [81]. Finally, only re-expression of wild-type 

p120ctn, and not a mutant incapable of binding cadherin, can rescue cadherin levels in p120ctn-

deficient cells [82]. This indicates that p120ctn mediated stabilization of cadherins requires 

direct interaction between these two proteins.  

At a physiological level, the importance of p120ctn in maintaining cell-cell adhesion in 

vertebrates was studied using tissue-specific knockout models, as whole animal knock-out of 

p120ctn proved to be embryonic lethal as addressed previously. Descriptions of the effects of 

conditional p120ctn knockout in various mouse tissues are summarized in Table 1. 

Overall, the trend suggests that conditional p120ctn knockouts produce defects in tissue 

morphogenesis resulting from loss in of cell-cell adhesion. Especially in epithelial tissue, the 

resulting defects in epithelial barrier function produces an inflammatory phenotype that further 

drives organ dysfunction (such as in the colon, skin, and salivary glands) and can generate a 

tumor promoting microenvironment [83]  
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Table 1: Effects of knockout and knockdown of p120ctn and related family members in 
different species. 

Protein Organism Tissue Phenotype Reference 
p120ctn Xenopus Whole animal Disrupted gastrulation; reduced C-cadherin 

levels. 
[84] 

  Anterior neural 
ectoderm 

Impaired optic vesicle and eye formation; 
changes in cranial neural crest cell 
migration; malformation in craniofacial 
cartilage. 

[85] 

 Mouse Whole animal Early embryonic lethality. [86] 
  Vascular 

endothelium 
Embryonic lethality due to defects in 
embryonic vasculature; hemorrhage and 
defective proliferation; reduced VE- and N-
cadherin levels. 

[87] 

  Salivary gland Die soon after birth; neoplasia formation; 
abnormal epithelial polarity and changes in 
morphology; reduced E-cadherin levels; 
affected acinar differentiation. 

[86] 

  Small 
Intestine/Colon 

Death within 3 weeks; reduced epithelial 
barrier function; intestinal bleeding and 
increased inflammation; reduced AJ 
components. 

[73] 

  Skin Viable; develops skin neoplasia and 
hyperplasia; chronic inflammation due to 
NFkB activation; mitotic defects. 

[88, 89] 

  Liver Viable; severely impairs in hepatic bile duct 
development; accelerated hepatocarcinoma 
development. 

[90] 

ARVCF Mouse Whole animal Viable; no apparent abnormalities. [91] 
Delta-
catenin 

Mouse Whole animal Viable; impaired cognitive functions and 
abnormal synaptic plasticity; reduced N-
cadherin levels. 

[92] 
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p120ctn and cadherins 
As outlined previously, p120ctn plays a significant role in maintaining cadherin 

expression and stability within cells by directly binding cadherins at its JMD. Crystallographic 

analysis of the binding interface between the E-cadherin JMD and p120ctn revealed the presence 

of an endocytic dileucine motif that lies in a region masked by p120ctn [93]. The exposed 

dileucine motif can be targeted by the adaptor protein AP-2, which promotes the clathrin-

dependent endocytosis of cadherins from the membrane [94, 95]. Within the same binding 

interface also lies two Tyr residues (Y753/754) that, upon phosphorylation by Src, recruits the 

E3-ubiquitin ligase Hakai. In the absence of p120ctn, Hakai is recruited and promotes the 

proteasome-dependent degradation of E-cadherin [96]. However, these two mechanisms of 

cadherin regulation are only present in E-cadherin and are not conserved in other classical 

cadherins such as N- and P-cadherin.  

Recently, a different endocytic DEE-motif was identified that is conserved across all 

classical cadherins, and re-emphasizes the role of p120ctn as an important regulator of all 

classical cadherins, not just E-cadherin [97]. This is reinforced by studies showing that p120ctn 

plays a vital role in regulating neuron growth and polarization through dynamic regulation of 

N-cadherin [98]. 

Outside of regulating cadherin dynamics through binding the JMD, a large number of 

interactors of p120ctn has also been identified that play a role in mediating alternative pathways 

of cadherin degradation. At AJs, p120ctn can recruit presenilin (PSEN1), a component of the 

gamma-secretase complex. The consequential assembly of the full complex results in the 

cleavage of E-cadherin amongst other target proteins, and promotes the disassembly of AJs [99]. 

Additionally, the C-terminal tail region of p120ctn can also associate with NUMB, and invokes 

clathrin-dependent endocytosis of the whole AJ complex – potentially for recycling back to the 

membrane during dynamic changes in cell-cell adhesion [100]. 

Finally, recent studies have also identified an interaction between the C-terminal domain 

of p120ctn and EPB41L5, a FERM (Four point one, Ezrin, Radixin and Moesin)-domain 

containing protein that has been identified to play a role in regulating cell-cell adhesion during 

EMT. EPB41L5 binding to p120ctn reduces its binding to E-cadherin at AJs and increases the 

number of E-cadherin positive vesicles detected in cells with EPB41L5 overexpression [101]. 
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Further studies indicate this mechanism may play a significant role in driving the invasion and 

metastasis of breast cancer cells [102]. 

 p120ctn and RhoGTPases 
In addition to membrane localized p120ctn, cytoplasmic and nuclear pools of p120ctn 

have been observed across various cells, and have been shown to harbour pleiotropic functions 

to regulate cell adhesion, cytoskeletal remodelling and cell signalling.  

Both membrane-bound and cytoplasmic p120ctn have been shown to control small 

RhoGTPase activity. At the membrane, cadherin-bound p120ctn recruits p190RhoGAP through 

a RhoGAP binding domain located in its C-terminal tail. The recruitment of p190RhoGAP 

mediates localized inhibition of RhoA at the cell periphery [103]. Uncoupling of p190RhoGAP 

from p120ctn in human pulmonary artery endothelial cells caused a drastic reduction in 

endothelial barrier recovery from disruption by thrombin, and contributes to vascular barrier 

dysfunction [104].  

In contrast, cytoplasmic p120ctn can behave like a rheostat for regulating the balance 

between RhoA and Rac1 signalling. In the cytoplasm, p120ctn acts as a Rho guanine nucleotide 

dissociation inhibitor (RhoGDI) by binding RhoA in its inactive, GDP-bound form [105]. It was 

observed that in an indirect manner, p120ctn can also activate Rac1 by interacting with Vav2, a 

Rho family guanine exchange factor (GEF). Consistent with these roles, overexpression of 

p120ctn in NIH-3T3 cells resulted in loss of stress fibres and focal adhesions, while inducing a 

more dendritic phenotype [106].  

However, more recent studies have shown that p120ctn’s effects on RhoGTPase 

signalling can vary in a tissue and cell-type specific manner. In an invasive lobular carcinoma 

mouse model, p120ctn may activate Rho/ROCK signalling to promote cell invasion and 

anchorage independent growth by inhibiting Myosin phosphatase Rho-interacting protein 

(Mrip) [107]. However, in MDCK cells, cytosolic p120ctn mediates Src- and Rac1-induced 

anchorage independent growth and anoikis resistance [108]. 

Collectively, the new emerging effects of p120ctn on Rho and Rac signalling builds a 

more complex picture of p120ctn’s role as a main regulator of Rho GTPase activity. Depending 

on the cell type, and biochemical context, cytosolic p120ctn can have a powerful effect on the 
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dynamics and balance of Rho/Rac signalling, and may significantly affect actin dynamics within 

epithelial cells.  

 p120ctn and transcriptional regulation 
In addition to localizing to the plasma membrane and the cytoplasm, there are NLS and 

NES sequences present within p120ctn that enable it to shuttle in and out of the nucleus. Similar 

to cytoplasmic p120ctn, nuclear p120ctn also appears to be regulated by cadherin levels in cells 

[109]. Additional mechanisms of p120ctn nuclear translocation appear to exist, implicating 

p120ctn’s ability to associate with microtubules and its interaction with another transmembrane 

protein – MUC1 that has been shown to also facilitate the nuclear translocation of b-cat [110, 

111]. 

Upon translocation into the nucleus, p120ctn modulates gene expression by direct 

interaction with Kaiso, a transcriptional repressor belonging to the Bric à brac/Pox virus and 

zinc finger (BTB/POZ)-zing finger family transcription factors [112]. p120ctn binding to Kaiso 

has been shown to relieve Kaiso-mediated transcriptional repression of its target genes. 

Interestingly, the target genes currently identified in literature controlled by Kaiso includes both 

tumor suppressor genes such as CDH-1 (E-cadherin) and Rb, as well as known components in 

canonical and noncanonical Wnt signalling pathways, whose activity has been shown to 

promote tumor cell metastasis and invasion (Reviewed in [113]). In the context of cancer, the 

role of Kaiso and p120ctn also appears to be cell type dependent. Evidence of nuclear Kaiso 

detected in high-grade invasive ducal carcinomas (IDC) and metastatic prostate cancer supports 

the oncogenic role of Kaiso repression [114, 115]. Conversely, detection of Kaiso in the 

cytoplasm of non-small-cell lung cancers (NSCLC) and invasive lobular carcinomas (ILC) 

suggest that Kaiso acts as a tumor suppressor in these cells [115, 116]. 

From these immunohistological studies, it is clear that localization of Kaiso plays a role 

in human cancers. However, how p120ctn regulates Kaiso localization remains ambiguous, and 

requires further research in order to elucidate p120ctn’s exact role in Kaiso dysregulation and 

cancer.  
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 Regulation of p120ctn by phosphorylation 
 One of the major methods of regulating p120ctn function is through phosphorylation of 

residues residing in the “regulatory domain” (RD) (which are present in all isoforms of p120ctn 

other than isoform 4), and a few in the C-terminal tail of all isoforms. In the last decade, 

academic efforts have identified many residues on p120ctn located within this region that are 

targets of post-translational modifications. The sites, as well as the known effects of 

phosphorylation at these residues, are summarized in Table 2.   

 Phosphorylation of p120ctn occurs at the membrane, and requires membrane 

localization of p120ctn rather than cadherin interaction – as it has been shown that simply fusing 

a CAAX-sequence to p120ctn is capable of inducing p120ctn phosphorylation in cadherin-

deficient cell lines [117] This suggests that many, if not all kinases that regulate p120ctn are 

located at the cell membrane.  

The interaction between p120ctn and cadherin is not only crucial to maintain cadherin 

stability, but also sequesters p120ctn to the cell membrane in epithelial cells and preventing its 

localization to the cytoplasm and nucleus, where it can exert pleiotropic functions. Hence, it is 

no surprise that many of these phosphorylation sites serve to alter p120ctn interaction with AJ 

members, and by connection, its localization into other cellular compartments.  

Looking through the data, the broad trend that emerges is that phosphorylation on Tyr 

residues on p120ctn is required for its supporting role at AJ – serving as docking sites for other 

proteins to be recruited to act on other components of AJ such as b-cat. In contrast, Ser/Thr 

phosphorylation modulates p120ctn localization by changing its preference for binding partners 

away from cadherin. This destabilizes AJ while promoting the other pleiotropic functions of 

p120ctn such as actin cytoskeletal remodelling and altering gene transcription to promote cell 

migration. 

This trend is supported by data from experiments using site-specific mutants of p120ctn. 

In Colo205 and A431D cell lines, the expression of 6 S/T phosphorylation-deficient mutants at 

S252, S268, S288, T310, S312 and T910 on p120ctn exhibited stronger cell-cell adhesion. 

While a phosphomimetic construct that replaced 4 S/T residues (S268, S288, T310 and S312) 

with basic, negatively charged glutamic acid greatly reduced cell-cell adhesion [118]. In a 

follow-up study that was published this year, it was discovered that in conditions of strong 

adhesion, there was further dephosphorylation observed on p120ctn outside of the 6 S/T residues 
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mutated in previous studies, suggesting the presence of other phosphorylation sites that respond 

to establishment of strong adhesion [119]. In a similar study, replacing 8Y residues (Y96, Y112, 

Y228, Y257, Y280, Y291, Y296 and Y302) with unphosphorylatable phenylalanines reduces 

the tumorigenic potential of p120ctn in breast cancer cells [120].  

An interesting new insight into the mechanism of tumorigenic tyrosine phosphorylation 

on p120ctn is the discovery of p120ctn forming two distinct junctional complexes surrounding 

the ZA belt in MDCK and Caco-2 cells. A complex located just apical to the ZA contains 

unphosphorylated p120ctn that recruits PLEKHA7 and a microprocessor complex DROSHA 

and DGCR8 to regulate miR-30b expression in cells suppressing cell transformation markers. 

On the basolateral side, a population of more Tyr-phosphorylated p120ctn is co-localized with 

active Src and other proteins that promote cell-cycle progression, endocytosis, and is associated 

with cell transformation [121]. It is possible that the role of regulating Tyr-phosphorylation on 

p120ctn impacts the homeostasis between these two complexes, and the imbalance between the 

two leads to changes in cell phenotype.  

Understanding how various cell signalling pathways converge on p120ctn have been an 

ongoing effort and area of focus in academia, and have been the subject of many reviews in the 

past decade [122, 123]. Not only is there a large collection of phosphorylation sites present, our 

understanding of the temporal relationships between these modifications, and how they translate 

to cellular responses to extracellular signals remain vague. As a major integrator of signals, it 

has been suggested that not only do individual modification sites matter in regulating p120ctn, 

but the collective pattern of phosphorylation on p120ctn affects its resulting function. 
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Table 2: Identified phosphorylation sites on p120ctn and the effects of site-specific 
modifications on p120ctn function. 

Phosphorylated 
Residue 

Kinase Functional Effect Reference 

S8/S11/S15 CK1a & 
GSK3b 

Phosphorylation at these residues promote p120ctn 
degradation. 

[124] 

S252  Unknown Phosphorylated in response to VEGF stimulation. 
Phosphomutants fails to localize to the membrane.  

[125] 

S268/S269 PKCe Regulated by Wnt activity. Phosphorylation decreases 
binding affinity to E-cadherin and increases p120ctn binding 
to Kaiso - facilitating Kaiso nuclear export.  

[126] 

S288 Pak4/5 Alters p120ctn localization into cytoplasm and nucleus.  [127] 

T310 GSK3 Required for the dissociation of p120ctn from N-cadherin 
during N-cadherin recycling in astrocyte migration.  

[52] 

S312 Unknown Phosphorylation seems to occur in concert with 
phosphorylation at T310. 

[128] 

S879 PKCa Promotes dissociation of VE-cadherins from AJ. [129] 

T916 Unknown Unknown [128] 

Y112 Fyn Phosphorylation lowers p120 association to RhoA, Rac and 
Vav2 and promotes E-cadherin binding.  

[130] 

Y217 Fyn/Src Releases p120ctn from E-cadherin. But a phosphomimetic 
mutant (Y217E) also shows decreased binding of Rac1 and 
Vav2.  

[131] 

Y228 Src Promotes p120ctn binding to RhoA and increases its 
inhibition. Constitutively phosphorylated in many 
carcinoma cell lines.  

[130, 132] 

Y96 Src 
Regulated 

Re-expression of a p120ctn construct with mutations at all 8 
Tyr residues (p120ctn-8F) in breast cancer cells produced 
less colonies in soft agar assay.   

[120, 133] 

Y257 

Y280 

Y296 

Y302 
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p120ctn in cancer 
In normal cells, formation of adhesion triggers signalling events that suppress cell 

growth and migration, but in tumor cells, this regulation is impaired as cells lose adhesive 

structures, and increases growth and motility. Based on its ability to regulate E-cadherin 

function, p120ctn was initially identified as a tumor suppressor by maintaining cell-cell 

adhesion. However, it is also implicated in regulating Rho-GTPase signalling to regulate cell 

migration and plays a role in Src-mediated cell transformation. Therefore, p120ctn appears to 

have both tumor suppressing and tumorigenic roles in the cell.  

In accordance with its role stabilizing E-cadherin, evidence of p120ctn as a tumor-

suppressor is found in studies into p120ctn deletion in vivo using mouse models (See Table 1). 

In the salivary gland, p120ctn deletion results in severe loss of adhesion due to E-cadherin 

destabilization, and created neoplastic lesions [86]. Additional studies performed in the oral 

cavity, esophagus, and forestomach also generated invasive squamous neoplastic lesions, as 

well as a tumorigenic inflammatory microenvironment, in response to tissue-specific p120ctn 

deletions [83]. The same deletion and knockdown of p120ctn performed in lung tumor cell lines 

resulted in loss of E-cadherin, and further promoted cell invasion and metastasis [134]. 

Immunohistochemical studies have shown that p120ctn is downregulated in certain tumors such 

as breast, prostate and lung cancers [135-137]. Together, these results suggest that the loss of 

p120ctn in cells is a significant event in some cancers and leads to increased tumor 

aggressiveness.  

Over the course of cancer development, the loss and downregulation of E-cadherin is 

observed in many tumors. In response to decreased E-cadherin levels in cells, p120ctn 

translocation to the cytoplasm is strongly linked to transforming pre-invasive lesions into 

metastatic tumors in lobular breast carcinoma [138]. This suggests that p120ctn mislocalization 

to the cytoplasm causes dysfunctional Rho-GTPase signal regulation, and thus driving the 

development of a metastatic phenotype in tumors. In colon cancer cells undergoing EMT, the 

loss of E-cadherin coincides with a decrease of RhoA activity and an increase in cytoplasmic 

p120ctn, which is correlated with increased tumor aggressiveness. Knockdown of p120ctn by 

RNAi in these cells could restore stress fiber formation, and significantly reduce motility – 

indicating that cytoplasmic p120ctn is a major driver of cell invasion upon loss of E-cadherin 

[139]. As addressed in a previous section, cytoplasmic p120ctn is also implicated in driving 
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invasive lobular breast carcinoma by inhibiting Mrip, and promoting ROCK1-mediated anoikis 

resistance [107]. Cytoplasmic p120ctn is also observed and correlated with poor prognosis in 

other cancers, such as pancreatic cancer, and lung squamous cell carcinoma. [137, 140].  

In addition to mislocalizing upon E-cadherin loss, p120ctn can drive EMT by playing 

an essential role in mediating a cadherin switch. Since it is possible for different cadherins to 

compete for binding with a limited pool of p120ctn in the cell, overexpression of mesenchymal 

cadherins, such as R- and N-cadherins, can induce E-cadherin destabilization [141]. An isoform 

switch between isoforms 1 and 3 of p120ctn can also promote the cadherin switch process by 

selectively stabilizing N- or E-cadherins, respectively. In lung cancer cells, expression of 

p120ctn-1A promoted EMT and increased N-cadherin expression, while p120ctn-3A inhibited 

cell invasion and promoted E-cadherin expression [142]. Another isoform-specific tumorigenic 

function was observed when comparing the expression of isoforms 1 and 4 in renal cancer, 

where only cytoplasmic isoform 1 was able to effectively inhibit RhoA activity and activate 

Rac1 due to RhoA binding to the N-terminal domain that is lacking in isoform 4 [143]. Similarly, 

analysis of p120ctn isoforms in breast cancer cell lines revealed preferential expression of larger 

isoforms 1 and 2 in more invasive cells [144]. 

Finally, in some cancers, p120ctn can exert tumorigenic properties even in the presence 

of E-cadherin. In inflammatory breast cancer, overexpression of the RNA-binding protein 

eIF4G1 induces an upregulation of p120ctn that further stabilizes E-cadherin. In this specific 

type of cancer, it appears the stabilization of E-cadherin paradoxically promotes its progression 

through an unknown mechanism [145]. In squamous cell carcinomas, p120ctn mediated 

stabilization of E-cadherin is essential for collective cell migration and invasion [146].  

Collectively, the data from decades of studying p120ctn in cancer reveals a nebulous 

number of potential mechanisms by which p120ctn can influence cancer progression. Given the 

large number of functions and regulatory roles that p120ctn plays within the cell, the mechanism 

by which it drives cancer development appears to be highly context dependent, and cell-type 

specific. However, in many of these cases, it appears that regulation affecting p120ctn binding 

to E-cadherin and localization can significantly alter the tumorigenic roles that p120ctn plays in 

a context-dependent manner. Studies into the phosphorylation status of p120ctn in cancers may 

come to reveal new connections by which signals impinging on p120ctn can drive cancer 

development and metastasis.  
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Rationale and Objectives 

Rationale 
The Ras/MAPK signalling pathway is responsible for regulating a variety of cellular 

processes and responses, including regulating cell motility. As a kinase located downstream of 

the Ras/MAPK pathway, RSK has been shown to play a role in Ras/MAPK-mediated cell 

spreading and cell motility. However, currently the specific mechanisms by which RSK causes 

cell-spreading and loss of cell-cell adhesion in cells remain unknown. Our own proteomics 

studies have identified a new phosphorylation site on p120ctn that is regulated in response to 

RSK activity. 

p120ctn is a crucial component of AJs and its dysregulation and mislocalization away 

from the plasma membrane is often linked to cancer progression, and more adverse outcomes. 

As a major stabilizer of classical cadherins in many cell types, its interaction with partner 

cadherins are crucial to maintaining proper cell function. Previous studies into phosphorylation 

sites present within the regulatory domain of p120ctn suggests these post-translational 

modifications (PTM) regulate p120ctn function by affecting its interaction with cadherins. In 

previous studies conducted by our lab, we have identified a potential novel phosphorylation site 

– S320 – on p120ctn that is also located within this crucial regulatory region. We hypothesized 

that phosphorylation of p120ctn at this site by Ras/MAPK activity promotes its dissociation 

from cadherins, and leads to AJ disassembly and overall loss in cell-cell adhesion (Fig. 1.5). 

The main goal of my M.Sc. project is to validate p120ctn as a bona-fide substrate of the 

Ras/MAPK signalling pathway, and understand how p120ctn is regulated at the functional level 

by Ras/MAPK activity. Finally, if possible, I wanted to strive to understand how Ras/MAPK 

mediated regulation of p120ctn affects AJ function and how this translates to impacts on cellular 

function in the context of cell-cell adhesion and cell migration.   
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Figure 5. Our proposed model of the effects of Ras/MAPK signalling on p120ctn 
function and AJ stability. 

The location of S320 within the regulatory domain of p120ctn suggests that phosphorylation at this site 

most likely will affect its binding to cadherins, and induce AJ destabilization. We present this model 

whereby increased phosphorylation of S320 in response to Ras/MAPK activity induces AJ disassembly 

by inhibiting p120ctn binding to cadherins at the surface. 

 

Objectives 
There are three main objectives to my thesis: 

1. Given that we have identified through two separate proteomic screens that p120ctn 

may be a substrate of RSK, we intend to confirm and demonstrate that the Ras/MAPK 

pathway, through RSK, regulates phosphorylation at a specific site: S320 on p120ctn 

2. As the proposed phosphorylation site, S320, is located within the regulatory domain of 

p120ctn, we intend to investigate how Ras/MAPK activity may affect p120ctn 

function, and how S320 phosphorylation may contribute to the observed effects. 

3. Since p120ctn is a major regulatory protein at AJs, we intend to investigate how 

Ras/MAPK activity, and how S320 phosphorylation of p120ctn can affect AJ function 

by designing specific assays for AJ turnover and integrity.  
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Cell culture and transient transfection 
HEK293, HEK293T, HEK293 Phoenix, HeLa, MCF7, MDCK, IEC6, A431, A375 and 

Colo829 cells were maintained at 37oC in Dulbecco’s modified Eagle’s medium (DMEM) with 

4.5g/L glucose, supplemented with 5% [v/v] fetal bovine serum (FBS) and 1% 

penicillin/streptomycin antibiotic mix.  

 MCF-10A cells obtained from Dr. Guillaume Charras (UCL, London, UK) were 

cultured in DMEM-F12 medium supplemented with 5% horse serum [v/v; Invitrogen], 20 

ng/mL human recombinant epidermal growth factor [EGF; R&D Systems, Minneapolis, MN], 

10g/mL bovine insulin [Sigma], 0.5g/mL hydrocortisone [Sigma], and 1% 

penicillin/streptomycin antibiotic mix [Invitrogen]. To maintain optimal growth, the cells were 

refed with fresh, complete media every 72 hours.  

 Caco2 cells were graciously provided by Dr. Samantha Gruenheid (McGill University, 

Montréal, Canada) and were maintained in Minimum Essential Medium – alpha modification, 

with nucleosides (AMEM) supplemented with 10% [v/v] FBS and 1% penicillin/streptomycin 

antibiotic mix. To maintain optimal cell growth, the cells were refed every 48-72 hours with 

fresh complete media as needed. 

 To maintain epithelial phenotype and prevent unwanted spontaneous transformation in 

epithelial cell lines, MCF-7, MCF-10A, A431, Caco-2 and IEC6 cells were grown to 100% 

confluency before being used in experiments, or passed into carry plates. When passing them 

into new plates, the cells were passed at a density of no less than one-third of a confluent plate, 

to maintain a constant, high-level of confluency of cells in culture. 

 For transient expression of p120ctn and RSK constructs in our characterization 

experiments, 2.5x106 HEK293 cells were seeded onto 10cm plates and allowed to grow for 24 

hours before transfecting with the desired plasmids by calcium phosphate co-precipitation. 24 

hours post-transfection, the media was changed to either full growth media or starvation media 

as required by experiment. In each experiment, all transfections were performed on the same 

day and time for direct comparison between conditions. Additionally, when necessary, mock 

transfections were also performed as a control using calcium phosphate transfection reagents 

only. 

 



 

42 

DNA constructs and recombinant proteins 
 The original plasmid encoding full-length, untagged p120ctn was kindly provided by 

Albert Reynolds (Vanderbilt University, Nashville, USA) in a pENTR-gateway plasmid 

backbone (pENTR-p120ctn-1AB) [104]. The HA-tagged avRSK1 and mRSK2 (both wildtype 

and kinase-dead) constructs were used from our own lab and have been described previously 

[33].  

 First, to validate the sequence encoded within the pENTR vector provided, we amplified 

the p120ctn region by PCR using the following primers:  

Forward 5’ – GGG CCC CAA ATA ATG ATT – 3’ 

Reverse 5’ – GTA ACA TCA GAG ATT TTG AGA CAC – 3’ 

The Sanger Sequencing results were aligned to the CTNND1 gene provided from NCBI 

databases to confirm sequence identity with the cDNA sequence for human p120ctn. 

 To generate the 6Myc-tagged p120ctn constructs used in the project, we inserted p120ctn 

into the pcDNA3.1-6Myc backbone by PCR cloning. To perform the ligation, both the p120ctn 

insert and pcDNA3.1-6Myc insert was digested by EcoRI and XbaI. The p120ctn encoded 

within the pENTR gateway vector was amplified by PCR using the following primers: 

Forward 5’ – GCG CGA ATT CGG ACG ACT CAG AGG TGG AGT – 3’ 

Reverse 5’ – CCC GTC TAG ACT AAA TCT TCT GCA TGG AGG – 3’  

 

 To subclone 6Myc-p120ctn into a pLPC-puro backbone to produce retroviral particles 

used in generating stable cell lines, we again employed PCR cloning. This time, the 6myc-

p120ctn insert and pLPC-puro target vector were subject to single-digestion by NheI. The 

primers used to amplify 6myc-p120ctn are: 

Forward 5’ – CCT GGC TAG CAT TTA AAG CTA TGG AGC AAA AGC – 3’  

Reverse 5’ – CGG CGC TAG CCT AAA TCT TCT G – 3’  

 During sub-cloning, we validated successful amplification, digestion and ligation by 

running the DNA products on agarose gels. To confirm the resulting plasmids, DNA was 

extracted from at least 3 positive bacterial colonies transformed with the ligation product and 

sent to sequencing to validate the final plasmid sequence. The primers used for sequencing were 



 

43 

common primers for pcDNA3.1 and pLPC-puro vectors obtained from Addgene. (T7 and CMV 

primers respectively) 

 To produce site-specific point mutants at S320, the QuikChange methodology was used. 

To generate point-mutants in both pLPC and pcDNA3.1 constructs, the following primers were 

used: 

S/A Forward 5’ – CCT CGT CGG CGC CTC AGG GCC TAT GAA GAC ATG ATT 

GGT G – 3’ 

S/A Reverse 5’ – CAC CAA TCA TGT CTT CAT AGG CCC TGA GGC GCC GAC 

GAG G – 3’  

S/D Forward 5’ – CCT CGT CGG CGC CTC AGG GAC TAT GAA GAC ATG ATT 

GGT G – 3’ 

S/D Reverse 5’ – CAC CAA TCA TGT CTT CAT AGT CCC TGA GGC GCC GAC 

GAG G – 3’ 

 

To validate the resulting mutation located at S320, we designed forward and reverse 

primers to perform Sanger sequencing for a specific section of the final p120ctn construct 

containing the mutation site of interest. The primers used were: 

Forward 5’ – GGG AGC AGC GTG GAT CTG – 3’ 

Reverse 5’ – AGG CCC TCC TTT GCG CAG – 3’  

  

RNA interference 
 Small interfering RNA (siRNA)-mediated knockdown of RSK1 and RSK2 were 

performed using previously validated, 21-nucleotide cRNAs with symmetrical 2-nucleotide 

overhangs obtained from Qiagen. [33] The siRNA specific for p120ctn were also obtained from 

Qiagen, and validated through experimental knockdowns performed in HEK293 cells using a 

validated antibody.  

 To perform the knockdowns, HEK293 cells were transfected with 50 nM of siRNA per 

10cm dish by calcium phosphate co-precipitation. The cells were then harvested 48 hours post-

transfection. HeLa cells were transfected using Lipofectamine 2000 (Invitrogen) in accordance 

with the manufacturer’s instructions, and the cells were harvested 48 hours post-transfection. 
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  To generate cells with stable knockdown of p120ctn, five small hairpin RNA (shRNA) 

constructs were purchased from MISSION shRNA library (Sigma). To generate lentiviral 

particles containing the appropriate shRNA for infection of HEK293, HeLa, MCF-7 and MCF-

10A cells, HEK293T cells were co-transfected with both the shRNA and lentiviral packaging 

constructs by calcium phosphosphate. 12h-hours post-transfection, the media was removed and 

replaced with fresh media and the HEK293T cells were left to produce lentiviral particles 

containing shRNA for 24 hours, after which the media was taken and applied to 10cm plates of 

target cells. 

 72 hours after lentiviral infection, the cells were selected with fresh media containing 

appropriate concentrations of puromycin: HEK293: 1.5 µg/mL, HeLa: 2.0 µg/mL, MCF-7: 1.5 

µg/mL, MCF-10A: 1.0 µg/mL. After a week of selection, the cells were maintained in passage 

for future experiments, or were plated at desired densities to use for experiments. 

 

Antibodies 
Table 3: Antibodies used in this study for immunoblots and immunofluorescence    
experiments. 

Target Protein Source Immunoblot 

Dilution 

Immunofluorescence 

Dilution 

p120ctn Santa Cruz 1:3000, 5% milk 1:500 

Phospho-p120ctn 

(S320) 

Cell Signalling 1:1000, 5% BSA N/A 

E-cadherin BD Bioscience 1:1000, 5% BSA N/A 

E-cadherin Sigma 1:1000, 5% BSA 1:500 

N-cadherin BD Bioscience 1:1000, 5% BSA 1:500 

Anti-Myc 9E10 monoclonal 1:3000, 5% milk 1:500 

Anti-HA 12CA5 monoclonal 1:1000, 5% milk N/A 

Anti-Tubulin Sigma 1:2000, 5% milk N/A 

Akt Cell Signalling 1:1000, 5% BSA N/A 

Phospho-Akt (S473) Cell Signalling 1:1000, 5% BSA N/A 
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ERK1/2 Cell Signalling 1:2000, 5% milk N/A 

Phospho-ERK1/2 

(T202/Y204) 

Cell Signalling 1:1000, 5% BSA N/A 

S6K Cell Signalling 1:1000, 5% BSA N/A 

Phospho-S6K 

(T389) 

Cell Signalling 1:1000, 5% BSA N/A 

rpS6 Cell Signalling 1:1000, 5% BSA N/A 

Phospho-rpS6 

(S235/236) 

Cell Signalling 1:1000, 5% BSA N/A 

 

Cell lysis and lysate preparation 
 To prepare lysates for immunoprecipitation or immunoblot analysis, cells were lysed 

using BLB lysis buffer. First, media was removed from plated cells by aspiration, and then cells 

were rinsed with ice cold, Phosphate Buffered Saline (PBS) pH 7.4 to remove any remaining 

media. Afterwards, cells were lysed using an appropriate amount of working BLB lysis buffer 

(10 mM K3PO4, 1 mM EDTA, 5 mM EGTA, 10 mM MgCl2, 50 mM β-glycerophosphate, 0.5% 

Nonidet P-40, 0.1% Brij 35, 0.1% deoxycholic acid, 1 mM sodium orthovanadate [Na3VO4], 

1mM phenylmethylsulfonyl fluoride, and a protease inhibitor cocktail tablet [Roche]). 

Processed cells were collected using a cell scraper, and the resulting total cell lysate were 

centrifuged at 14800 RPM for 10 minutes at 4oC. After centrifugation, the supernatant was 

collected and total protein levels in the cell lysate were determined via Bradford protein assay. 

Finally, the supernatant was used for further immunoprecipitation experiments, or diluted with 

2x Laemmli’s reducing sample buffer (5x buffer consists of 60 mM Tris-HCL, ph6.8, 25% 

glycerol, 2% SDS, 14.4 mM 2-mercaptoethanol, 0.1% bromophenol blue) and boiled at 95oC 

for 5 min. After boiling, the final samples were centrifuged at 14800 RPM for 1 min before 

loading on to SDS-PAGE gels for immunoblot analysis.  

 



 

46 

Bradford protein assay 
 To quantify protein concentration in cell lysate samples, Bradford reagent (Bio-Rad 

Laboratories Inc.) was diluted at a 1:5 ratio in Milli-Q water, and aliquoted in 1000 µL aliquots 

in individual Eppendorf Tubes. 

 First, to obtain a concentration curve for the Bradford assay, known concentrations of 

BSA, ranging from a final concentration of 1 µg to 20 µg, were added to the tubes containing 

diluted Bradford reagent. The relative absorbance of each sample was determined using light at 

595 nm, and the resulting absorbance measurements were used to create a protein concentration 

curve corresponding to absorbance. 

 Then, 2 µL of cell lysate samples in lysate buffer was added to the tubes containing 

diluted Bradford reagent and mixed. Afterwards, the relative absorbance of each sample was 

assessed, and using the previously generated curve, the protein concentrations in each sample 

was determined. If protein levels between samples needed to be equalized, the adjustments 

needed were calculated using the protein concentrations determined through the Bradford assay. 

Immunoprecipitation 
 For immunoprecipitations, 700 µL of cell lysates obtained from BLB lysis of cells from 

10cm plates were incubated with the indicated antibodies for 2 hours at 4oC using a rotating 

platform. Afterwards, 45 µL of protein A-Sepharose CL-4B beads (GE Healthcare) were added 

and incubated for another 1 hour at 4oC with constant rotation.  

 To obtain the final immunoprecipitated sample, the solution with beads were centrifuged 

at 4000 RPM for 2 minutes to precipitate the beads, and the supernatant were removed then 

washed three times with working BLB lysis buffer (described previously). After washing, the 

beads were resuspended in 50uL of 2x Laemmli’s reducing sample buffer and boiled at 95oC 

for 5 min. The beads were then centrifuged at 14800 RPM for 1 min before loading on to SDS-

PAGE gels for immunoblot analysis. 

SDS-PAGE gel separation and immunoblotting 
 To identify and quantify proteins of interest in cell lysate or immunoprecipitation 

samples, the samples were loaded and electrophoresed on 10% polyacrylamide gels at 55-85 

volts in 1X SDS-Page running buffer (25 mM Tris Base, 200 mM Glycine, and 0.1% SDS) 
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overnight to achieve proper separation of protein targets. Proteins were then transferred onto 

polyvinylidene difluoride (PVDF) membranes by wet electrotransfer at 0.75A for 2 hours.  

 After transferring, the membranes were then blocked in 1X TBST (20 mM Tris pH 7, 

150 mM NaCl and 0.1% Tween) with 5% skim milk powder by rocking for 1 hour at room 

temperature. Then, membranes were incubated overnight at 4oC with constant rocking in 

primary antibody solution in 1X TBST with either 5% skim milk powder, or 5% BSA at 

effective working dilutions as per “antibodies” section above. 

 Following overnight incubation with primary antibody, the membranes were washed 3 

times for 5 min with 1X TBST, and then incubated with secondary HRP-conjugated antibodies 

of specific species against the desired primary antibody. The secondary antibody is diluted at 

1:2000 in 1X TBST with 5% milk, and membranes were left with constant rocking for 1 hour 

at room temperature. 

 To reveal the immunoblots, the membranes were washed 3 times with 1X TBST for 5 

minutes before incubating them for a few seconds in enhanced chemiluminescence (ECL) 

solutions. The membranes were then developed on films at varying exposure times to visualize 

the protein bands.  

Retroviral infection of cells 
 To generate cell lines stably expressing exogenous Myc-tagged p120ctn constructs, 

A431, MDCK and MCF-10A cells were infected using pLPC-puro vectors packaged in 

retroviral particles – to varying levels of success.  

 To generate pLPC-puro containing retroviral particles, 4.0x106 HEK293 Phoenix cells 

were seeded in 10mL of complete DMEM media in 10cm cell culture plates and grown for 24 

hours prior to transfection. Then, each plate of cells was transfected with 20 ug of pLPC-puro 

vectors containing the 6Myc-p120ctn wildtype and mutants or an empty vector as a control, 

using calcium phosphate co-precipitation. Cells were then left to incubate for 24 hours post 

transfection, and the media was replaced with 10mL of new complete media specific to the cells 

of interest. At the same time, cells from the target cell lines were seeded in 10cm cell culture 

plates at appropriate densities that would result in 40-50% confluency the next day in 10 mL of 

the appropriate growth medium before infection. 
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 To perform the retroviral infections, 16 hours after plating, the media was removed from 

the target cells, and the now retrovirus containing media was collected from the 293 Phoenix 

cells, and passed through a 0.45 micron filter before being added directly to the target cells. 

Additionally, a final concentration of 4 µg/mL of Polybrene was added to the infection media 

to assist with the infection. 10mL of fresh media was put back in the 293 Phoenix plates to 

continue viral production. 6 hours later, the first infection media was removed from the target 

cell plates and a second round of retroviral infection was performed by adding media from the 

293 Phoenix cells to the target cells as before. Finally, after 24 hours of incubation with the new 

infection medium, the target cells were selected by adding media with an appropriate 

concentration of puromycin as determined by a kill curve experiment. The concentration of 

puromycin used for selection of each cell line are as follows: MDCK: 1.5 µg/mL, MCF-10A: 

1.0 µg/mL, A431: 1.0 µg/mL. 

 After 72 hours of selection, the plates with surviving cells were washed 2 times with 

PBS, and replaced with fresh media containing the same concentration of puromycin to maintain 

expression of the pLPC-puro constructs in surviving cells. If confluent, the cells were 

trypsinized and divided into new plates and selection was continued. Approximately one week 

after initial selection, the cells were divided into larger 15cm plates for making cell stock, or re-

plated into appropriate plates for use in experiments. 

 Immunofluorescence staining 
 To visualize cellular localization of proteins of interest, cells were seeded and cultured 

in 12-well plates, on glass coverslips coated with poly-D-lysine to improve cell adhesion to the 

coverslip during the washing and staining process. After at least 48 hours of incubation (in cells 

that were not experimentally treated), the cells were washed three times with ice-cold PBS pH 

7.4, and then fixed with 3.7% paraformaldehyde in PBS solution for 15 minutes at room 

temperature (RT). Afterwards, the cells were again washed three times with PBS to remove the 

paraformaldehyde and then permeablized by incubating in 0.3% Triton-X100/PBS solution for 

5 minutes at RT.  

 Post-permeablization, cells were washed three times with 0.05% PBS-Tween (PBS-T) 

washing solution, followed by a 1 hour long incubation in Blocking Buffer (1% Bovine serum 

albumin (BSA)/PBS). The cells were then washed again three times with PBS-T, then incubated 
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with desired primary antibodies at an appropriate concentration diluted in 1% BSA/PBS 

blocking buffer for 1 hour at RT. After three more washes with PBS-T, the cells were then 

incubated with the secondary antibody at an appropriate dilution in 1% BSA/PBS for 30 minutes 

at RT. The secondary antibodies conjugated to Alexa-Fluor dyes (488 or 555nm; Life 

Technologies) to identify target molecules were used at a 1:500 dilution. F-actin was labelled 

with Texas Red-X phalloidin (Life Technologies), used at 1:400 dilution. Finally, the coverslips 

were washed three more times in PBS-T before being mounted onto glass microscopy slides 

with Vectashield (Vector Laboratories) mounting medium containing DAPI.   

 Images of antibody-stained cells were taken using the DeltaVision (Applied Precision) 

microscope equipped with a CoolSNAP HQ2 camera (Photometrics) using 40x and 60x 

Apochromat objectives. Images were captured and analysed using SoftWoRx software (Applied 

Precision) before processing using Adobe Photoshop. 

Calcium depletion 
 EGTA is a divalent ion chelator with high specificity for Ca2+ ions and we utilized this 

mechanism to reduce Ca2+ concentration in the growth media to specific levels to induce AJ 

disassembly and cell-cell adhesion loss in cells.  

 Briefly, calculated amounts of 0.2mM EGTA pH 7.4 working solution were added to 

the full growth media of confluent cell monolayers to achieve desired final concentrations of 

EGTA in the media.  

Monolayer fragmentation assay 
 To perform the monolayer fragmentation assays, cells were seeded in 60mm cell culture 

plates to reach >90% confluency in 48 hours, as determined through a cell titration experiment. 

For MCF10A cells, 3.0x106 cells were seeded per plate, and p120ctn expressing A431 stable 

cell lines were seeded at a density of 1.5x106 cells per plate. Cells were plated in quadruplicate 

for each condition: three for fragmentation counts, and one for a total cell number count. 

 To isolate the monolayers from the plates, cells were washed twice with warm PBS (pH 

8.0) and then incubated for 20-40 minutes with 2 mL of media containing dispase (2.4U/mL, 

Roche) until the monolayer visibly began to detach. After detachment, 5 mL of warm PBS (pH 

8.0) was added slowly to fully release the monolayer, and the total 7 mL were transferred into 
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15 mL Falcon conical tubes (Fisher Scientific). The solutions were then centrifuged at 1000 

RPM for 5 min to pellet the monolayer, and the remaining supernatent was carefully removed 

by aspiration.  

 Before monolayers were subject to dispersion, 1 mL of complete media was added back 

to each tube to re-suspend the monolayer. For calcium depletion experiments, EGTA was added 

to the media at the desired concentration, and for the desired time before monolayers were 

disrupted. Each monolayer was then subject to disruption by pipetting up and down 15 times 

with a P1000 pipetman. Immediately after disruption, 10 µL of the final mixture was taken and 

single cells were counted using a haemocytometer.  

 Percentage fragmentation of each triplicate within a condition was then calculated 

against the cell count obtained from a fourth 60mm plate that is trypsinized to obtain a total cell 

count, rather than trypsinizing dispase treated cells.  

Cellular impedance assay 
 Changes in impedance of an epithelial monolayer was measured using the xCELLigence 

RTCA SP System (ACEA Biosciences). Briefly, the xCELLigence system functions by 

assessing changes in the electron flow between microelectrodes embedded at the bottom of wells 

in a 96-well specialized E-plate (ACEA Biosciences). In the plates, cells will impede the 

electron flow between electrodes resulting in an increase in detected electrode impedance that 

is translated into a variable known as “Cell Index” (CI) by the xCELLigence system. 

Commonly, cell growth, adhesion and changes in morphology can be assessed using this system, 

and are reflected in changes in CI.   

 To use the system to monitor changes in cell behaviour, a measurement is first made for 

the impedance of each well in the presence of only growth media before cell seeding to 

determine a background CI, this is then subtracted from future CI measurements during the 

experiment after cell attachment. 

 In cell titration experiments, different densities of A431, MCF-10A, IEC-6 and Caco-2 

cells were seeded in quadruplicate wells and left to attach for 30 minutes at RT before being 

placed in the incubator at 37oC. CI measurements were taken by the xCELLigence system every 

15 minutes for 96 hours. Cell confluency was indicated by a long-term plateau in CI, and time 
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to confluency was assessed through analysis of recorded CI curves to select optimal cell density 

to seed for future experiments.  

 In calcium depletion experiments using EGTA, MCF-10A cells were seeded in 

quadruplicate per condition at the optimal density and allowed to grow for 40 hours to reach 

confluency. During the growth period, CI measurements were taken every 15 minutes to monitor 

growth and establishment of confluency. Following EGTA addition, CI measurements were 

taken every 15 seconds for 8 hours by the xCELLigence system to closely monitor changes in 

cell-cell adhesion. Normalized cell index values were obtained by dividing by the cell index at 

the time of treatment and baseline-corrected by subtracting the cell index obtained from vehicle-

treated conditions. 

 To program experiments using the xCELLigence system, and to analyze the data 

collected, the RTCA Software Version 2.0 (ACEA Biosciences) was used. Post-processed data 

points (measured in CI) were then manually exported into Microsoft Excel 2016 for analysis.  
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SECTION 1: Ras/MAPK regulation of p120ctn phosphorylation. 

S320 on p120ctn is located within a highly conserved, AGC-kinase 
consensus sequence 
 Since there are many kinases responsible for regulating phosphorylation of proteins in 

cells, we started by identifying potential kinases which can regulate phosphorylation of this site 

on p120ctn. First, we asked if S320 was located within a consensus recognition sites for any 

known kinases, or kinase families. By using Scansite [147] to perform an analysis for minimal 

consensus recognition sites on p120ctn at high-stringency, we found that S320 is a putative 

phosphorylation site nestled in a basophilic AGC-kinase motif (reported as an Akt Kinase Motif) 

(Fig 6A).  

 Next, we asked if S320 was an evolutionarily conserved site by performing an in silico 

alignment of p120ctn proteins encoded by the CTNND1 gene across 5 different vertebrate 

species using BioWorkBench [148]. No invertebrates were included as p120ctn is only present 

in vertebrate species. The alignment results show that S320 is conserved in the regulatory 

domain of p120ctn from all five species (Fig 6B and C). Interestingly, we also see conservation 

of the residues surrounding S320, together making up the R-X-R-X-X-pS/T consensus motif 

shared by the AGC family of kinases, further supporting the ScanSite analysis.   

p120ctn is a substrate of the Ras/MAPK pathway 
 Following the in silico analysis of S320 as a potential phosphorylation site on p120ctn, 

we set out to confirm that this site is phosphorylated in vivo. To monitor phosphorylation at 

S320, we used a phospho-specific antibody raised against phosphorylated S320 on p120ctn.  

 First, HEK293 and HeLa cells were starved overnight then stimulated with different 

agonists to activate Ras/MAPK and PI3K/mTOR signalling (Fig 7A). Activation of each 

pathway is indicated by the levels of phospho-ERK1/2 (T202/Y204) and phospho-Akt (S473), 

respectively. We found that stimulation of cells with the phorbol ester PMA and epidermal 

growth factor (EGF) induced significant phosphorylation of S320 on endogenous p120ctn. 

Comparatively, treating cells with 10% fetal bovine serum (FBS) only produced detectable 

levels of S320 phosphorylation in HeLa cells, while insulin stimulation appears to be unable to 

induce phosphorylation at this site. In both cell types, phosphorylation of p120ctn at S320 

correlated closely with ERK1/2 activation. To further examine this correlation, we performed a 
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time-course analysis of p120ctn phosphorylation after PMA and EGF stimulation (Fig 7B). 

From this, we found that S320 phosphorylation correlated more closely with levels of phospho-

RSK (S380) than phospho-ERK1/2 (T202/Y204). Since phospho-RSK (S380) is a marker of 

RSK activity, our results implicate not only Ras/MAPK signalling in regulating S320 

phosphorylation, but also suggests that RSK is the AGC-kinase that regulates this site.  

 Since Akt and S6K are also relevant AGC kinases that can be activated by PMA and 

EGF stimulation, we tested if Akt could phosphorylate p120ctn at S320 by strongly activating 

PI3K/mTOR signalling in HEK293 cells with increasing doses of Insulin (Fig 7C). We found 

that Akt activation by this method was still unable to promote phosphorylation of S320, 

indicating that it is not the AGC kinase responsible for regulating this site. Additionally, the 

lack of increase in phospho-Akt (S473) in response to increasing Insulin indicates we have 

induced maximum activation of the pathway, albeit no effect on p120ctn phosphorylation. 

 However, since we still observe active S6K (T389) in response to PMA stimulation in 

the previous experiment (Fig 7C) we investigated its involvement in regulating S320 

phosphorylation by using pharmacological inhibitors targeting the Ras/MAPK and PI3K/mTOR 

pathways (Fig 7D). From the results, we see that treatment with a PI3K/mTOR dual specificity 

inhibitor (PI-103) or mTOR specific inhibitors (Ku-0063794 and Rapamycin) inhibits Akt and 

S6K activity without inhibiting S320 phosphorylation. In contrast, treatment with a MEK1/2-

specific inhibitor (PD184352) almost completely eliminates PMA- and EGF-induced p120ctn 

phosphorylation on S320. 

 Together, these experiments not only imply that growth factor induced phosphorylation 

of p120ctn on S320 is Ras/MAPK dependent, but also suggests that RSK is the likely AGC 

kinase involved in phosphorylating this site. 

Phosphorylation of p120ctn on S320 is RSK-dependent 
 To confirm the involvement of RSK in regulating p120ctn phosphorylation on S320, we 

exposed starved HEK293 cells with two RSK inhibitors (BI-D1870 and LJH685) before treating 

them with PMA and EGF (Fig 8A). We found that successful RSK inhibition, indicated by 

reduced phosphorylated rpS6 (S235/236), significantly reduced phospho-p120ctn (S320) levels.  

 As addressed in the introduction, there are 4 different isoforms of RSK present within 

mammalian cells, so we asked if phosphorylation on this site was isoform specific. From 
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previous studies in our lab, we know that RSK1 and 2 are the isoforms most highly expressed 

in HEK293 cells. Therefore, we utilized previously validated siRNA targeting RSK1 and 2 to 

perform either individual or additive knockdowns in HEK293 cells (Fig 8B). We found that, 

while knockdown of either isoform produced a marked decrease in p120ctn phosphorylation 

induced by PMA or EGF stimulation, a greater effect was seen when both isoforms were 

knocked down concurrently. This suggests not only that RSK is required for Ras/MAPK 

mediated phosphorylation of p120ctn on S320, but that both isoforms of RSK contribute to 

regulation of this site.  

 Conversely, we also transiently overexpressed wild-type (WT) or kinase-deficient (KD) 

RSK1 and 2 in HEK293 to test if RSK activity was sufficient to induce S320 phosphorylation 

(Fig 8C and D). Successful transfection of the RSK constructs are indicated by the anti-HA 

immunoblot. An increase in total RSK activity in cells transfected with WT RSK is indicated 

by the increase in phosphorylated rpS6 (S235/236) and decreased phosphorylated ERK1/2 

(T202/Y204) due to known feedback mechanisms. We found that WT RSK could not only 

increase S320 phosphorylation in response to PMA or EGF stimulation, but also induced 

phosphorylation at this site under starved conditions. However, the KD RSK fails to produce 

the same augmentation of p120ctn phosphorylation, indicating that active RSK is sufficient to 

promote phosphorylation of this site. Additionally, these results also confirm that RSK-mediated 

phosphorylation of p120ctn on S320 is not isoform specific.  

RSK regulates p120ctn phosphorylation on S320 in epithelial cell lines 
Since p120ctn plays an important role in regulating AJ function, which are crucial in 

epithelial cells for maintaining cell function and polarity, it was important for us to choose a 

suitable cell line, which we can use for future functional experiments. While HeLa cells are of 

an epithelial origin, and HEK 293 cells can adopt an epithelial morphology, p120ctn function 

and AJ formation have been extensively characterized and studied using more epithelial cell 

lines such as A431 and MCF-7 cells. A431 cells are an epidermoid carcinoma cell line, and 

MCF-7 cells are human breast adenocarcinoma cells that retain many characteristics of the 

mammary epithelium. Both cell lines have been used to study p120ctn function  [146, 149], and 

form clearly defined cell-cell adhesion structures. 
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To verify that p120ctn is phosphorylated by the same mechanism in these cells, we 

decided to recapitulate the agonist and inhibitor experiments conducted previously in A431 and 

MCF-7 cells. We pre-treated both cell lines with a MEK specific inhibitor (PD184352) and a 

RSK specific inhibitor (BI-D1870) before stimulating the cells with PMA or EGF (Fig 9A and 

B). We see that both PMA and EGF can stimulate p120ctn phosphorylation on S320 in these 

cells lines, and that inhibition of both MEK and RSK also effectively prevented this 

modification. Interestingly, unlike in HEK293 and HeLa cells, in these two cell lines EGF 

stimulation produced greater levels of p120ctn phosphorylation on S320 compared to PMA. 

Additionally, in both cell lines, we only detected one band of p120ctn, compared to two that we 

had seen in HEK293 and HeLa cells. This is most likely because epithelial cells are known to 

only express the shorter isoform (isoform 3) of p120ctn, while more mesenchymal cells express 

both isoforms 1 and 3 [75]. 
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SECTION 2: Ras/MAPK mediated effects on p120ctn 

Ras/MAPK activity reduces p120ctn binding to N-cadherin 
 Since cadherins are one of the most important binding partners of p120ctn in the cell, 

and are crucial to p120ctn function, we chose to evaluate how Ras/MAPK activity may affect 

this interaction. To address whether Ras/MAPK phosphorylation of p120ctn affects its binding 

with cadherin, we immunoprecipitated p120ctn from HEK293 cells that were stimulated with 

PMA for up to two hours, and analyzed the amount of N-cadherin that was bound to the 

immunoprecipitates (Fig 10A). We found that PMA stimulation quickly reduced the amount of 

N-cadherin bound to immunoprecipitated p120ctn. Moreover, we also found that PMA 

stimulation beyond an hour reduced N-cadherin levels in the total cell lysate, suggesting that N-

cadherin may be degraded under long-term PMA stimulation. This effect may be attributed to 

the reduction in p120ctn, resulting in destabilization of unbound N-cadherin. To avoid the 

possibility of N-cadherin degradation affecting our results, we chose to shorten PMA 

stimulation in the following experiments.  

 Next, we asked if Ras/MAPK inhibition could prevent the reduction in p120ctn binding 

to N-cadherin. This time we pre-treated starved HEK 293 cells with the MEK inhibitor 

(PD184352) for 30 minutes before stimulating with PMA for up to another 30 minutes (Fig. 

10B). Within this short-term of PMA stimulation, we still found a significant loss in p120ctn 

binding to N-cadherin. Inhibition of MEK partially restored N-cadherin binding to p120ctn, but 

the PMA-induced loss was not completely prevented. This shows that Ras/MAPK signalling, in 

part, contributes to PMA-induced loss of binding between p120ctn and N-cadherin. However, 

our results also suggest that PMA stimulation induces other pathways that converge on p120ctn 

to regulate its binding to N-cadherin. 

PMA Stimulation does not affect p120ctn localization 
 Another way by which p120ctn function can be altered and regulated by phosphorylation 

is by altering its localization in different cellular compartments. As addressed in the 

introduction, p120ctn has been shown to have different functions and different roles depending 

on its localization within the cell. This led us to question if Ras/MAPK signalling influenced 

p120ctn localization. We assessed this by staining for endogenous p120ctn in two different cell 

lines: HEK293 (N-cadherin positive) and A431 (E-cadherin positive) using a p120ctn specific 
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antibody. 

 First, to validate the p120ctn antibody, we immunostained HeLa and MCF-7 cell lines that 

were infected by 3 different shRNA to specifically knockdown p120ctn (Fig 11). While not all 

shRNA were effective at knocking down p120ctn, as indicated by the western blot results for 

total cell lysate, in cells with a drastic reduction of p120ctn, we also saw a loss of p120ctn 

staining by IF. From this, we can conclude that the antibody we are using is indeed specific for 

endogenous p120ctn. 

 With a validated antibody on hand, we proceeded to stimulate HEK293 and A431 cells 

with PMA for up to 8 hours after a 16-hour starvation period, and stained for p120ctn to 

investigate if there was a change in its localization away from cell membrane. To visualize the 

cell membrane and areas of cell-cell contact, we also stained for F-actin in cells. From the 

resulting IF images, we see that even with prolonged PMA stimulation, we are unable to 

visualize a significant change in localization of p120ctn. In HEK293 cells, much of the p120ctn 

remain localized at the cell membrane, co-localizing with F-actin (Fig 12). In A431 cells, which 

are highly epithelial, endogenous p120ctn localizes to sides of the cell in contact with adjacent 

cells, and not the protruding external edges of cells (Fig 13). Interestingly, in A431 cells, some 

p120ctn localize specifically to the tips of filopodia-like protrusions that form points of contact 

with adjacent cells (Indicated by white arrows). These structures have been identified as 

“punctate AJs” and are a cadherin-based cell-cell adhesion structure in epithelial cells that 

precedes for the formation of continuous regions of cell-cell contact [150]. This suggests that in 

epithelial cells, p120ctn remains localized at cadherin-rich areas in response to PMA 

stimulation.  

Site-specific mutation at S320 does not affect p120ctn localization 
 To investigate if site-specific phosphorylation at S320 affected p120ctn localization, 

independently from Ras/MAPK activity, we generated stable cell lines in MDCK cells 

expressing wild-type or phospho-mutants of Myc-tagged p120ctn (Fig 14A). We then visualized 

the localization of the exogenous p120ctn by staining the cells with a Myc-specific antibody. 

 First, we validated the specificity of the Myc antibody for our p120ctn constructs by 

comparing Myc-staining in MDCK cells infected with an empty vector and those stably 

expressing wild-type Myc-p120ctn (Fig 14B). In the latter cell line, we observed a significant 
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concentration of the immunofluorescence signal at the cell membrane, where we expect our 

p120ctn construct to localize, indicating the Myc antibody is efficient and specific for the 

detection of our p120ctn constructs. 

 Having the validated Myc antibody on hand, we proceeded to stain for Myc-tagged 

p120ctn in our three cell lines with similar levels of expression of each p120ctn construct (Fig 

14C). In each cell line, we observed an enrichment of Myc-tagged p120ctn at the cell membrane. 

This suggests that under standard growing conditions, phosphorylation at S320 does not regulate 

p120ctn localization in epithelial cells.  
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SECTION 3: Designing assays to examine AJ function 
 To examine effects of p120ctn phosphorylation on AJ function in more dynamic cell 

contexts, such as during cell migration or AJ disassembly, we designed two assays to evaluate 

two major properties of AJ function: the strength of AJ adhesion, and AJ turnover.  

To assess the strength of adhesion at actin-dependent cell-cell contacts, previous studies 

employed a dispase-based monolayer fragmentation assay [151]. Since AJs are a major structure 

in cell-cell adhesion, and provides epithelial monolayers with resistance to shear force, this 

assay uses dispase to isolate confluent monolayers, and then evaluates an epithelial monolayer’s 

resistance to tearing and shear force. The resulting % fragmentation of the monolayer correlates 

to the strength AJ-mediated adhesion. More recently, investigators successfully employed this 

method to quantify and compare the relative adhesion strength of different E-cadherin based 

cell-cell adhesion structures [152]. Given the specificity of this assay for E-cadherin based cell-

cell contacts, we chose to design a fragmentation assay in this project. 

Next, to study epithelial monolayer integrity, the transepithelial resistance (TER) assay 

is commonly employed. TER evaluates changes in epithelial integrity space by measuring the 

electron flow through the paracellular space between adjacent cells. As illustrated in the 

introduction section, cell-cell adhesion structures contribute to the integrity of epithelial sheets 

by closing the paracellular space between adjacent cells. Studies into regulation of cell-cell 

adhesion have used TER to measure the rate of assembly and disassembly of TJ and AJ, 

correlating with changes in epithelial barrier function [153]. More recently, a new impedance-

based method using the xCELLigence RTCA system was shown to generate the same 

quantitative results as a TER assay when performed in concurrent experiments studying cell-

cell adhesion structure [154]. With the same system available to us, we set out to design an 

impedance-based TER assay using the xCELLigence RTCA system. 

Having selected the two assays, our final aim is to apply them to study how Ras/MAPK 

signalling and S320 phosphorylation on p120ctn specifically affects AJ function in relevant 

epithelial cell lines. 
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MCF-10A cells form stable, confluent monolayers in culture 
A crucial requirement before beginning to validate and optimize the assays is the need 

to obtain stable, epithelial monolayers to work with. This begins with selecting an epithelial cell 

line that exhibits contact inhibition, and can be sustained for a long period.  

Since the xCELLigence RTCA system can generate real time measurements of cell 

growth, we leveraged its capabilities to monitor the growth pattern of different cell lines in 

culture. We seeded three different densities of MCF-10A, Caco-2, A431 and IEC-6 cells in 

quadruplicate into wells in a 96-well E-plate for the xCELLigence system. Then, generated 

growth curves by taking Cell Index (CI) measurements every 15 minutes for 72 hours as the 

cells grew towards confluency. At the same time, the same proportion of cells were seeded into 

clear bottomed, 96-well plates to confirm cell confluency by microscopy. 

From the resulting growth curves generated for each cell line, we see that the MCF-10A 

curve forms a stable plateau after 40 hours, indicating confluent growth (Fig 15A). In 

comparison, the data from A431 cells show an unexpected drop in CI, perhaps indicating cell 

death, or detachment, then resuming growth (Fig 15B). Similarly, Caco-2 cells appear to reach 

confluency, but then begins to rapidly decrease in impedance, possibly also due to cell 

detachment (Fig 15C). Finally, the IEC-6 cells appear to grow slowly, and after 72 hours is still 

growing towards confluency (Fig 15D). 

Through microscopy, we were able to visualize the quality of cell growth in the wells, 

paralleling that of the 96-well E-plates (Fig 15E-H). IEC-6, A431, and Caco-2 cells all form 

incomplete monolayers after 72 hours of growth, with visible spaces between cells (indicated 

by arrows). However, in 72 hours, MCF-10A cells have grown to a confluent stable monolayer, 

further supporting the results of the xCELLigence measurements.  

From these results, we can conclude that MCF-10A cells, when seeded at the selected 

density can produce a confluent monolayer after 40-50 hours of growth. Additionally, the CI 

curves indicate that confluency can be maintained in these cells for approximately 24 hours or 

more without any significant changes in cell adhesion or cell death.  

p120ctn knockdown induces complete monolayer fragmentation 
 To assess if the monolayer fragmentation assay is sensitive to the presence of AJs, we 

stably knocked down p120ctn in MCF-10A cells by shRNA to induce an overall loss of AJs in 
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the epithelial monolayer. By microscopy, the loss of AJs is reflected in the sh984 and sh988 cell 

lines taking on a more mesenchymal appearance, and the sh987 cells appear more “rounded” in 

shape indicative of loss of adhesion with adjacent cells (Fig 16A). To verify that the changes in 

cell morphology are not due to off-target effects, the knockdown of p120ctn was confirmed by 

western blot, with sh987 and sh988 cells showing undetectable levels of p120ctn. (Fig 16B). 

 Each respective cell line was seeded onto 60mm plates and allowed to grow to >90% 

confluency before being treated with dispase and then subjected to disruption (Fig 16C). In the 

cell lines where p120ctn was efficiently knocked down (at almost undetectable levels), we 

observed almost complete fragmentation of the monolayer in response to disruption, compared 

to the non-target control cells that retained high levels of cell-cell adhesion. This suggests that 

AJs contributes almost entirely to monolayer stability, and that changes in AJ stability will be 

reflected in fragmentation of epithelial sheets. 

Calcium depletion increases monolayer fragmentation and triggers AJ 
disassembly 
 AJ are calcium-dependent adhesive structures, and require extracellular calcium to 

maintain adhesion and prevent AJ turnover at the membrane. As another way of validating the 

both assays, we evaluated if they could detect AJ disassembly and adhesion loss over time in 

response to calcium depletion.  

 To test the monolayer fragmentation assay, we first released the monolayers by dispase, 

since this enzyme requires Ca2+ for its activity, and would be inhibited by EGTA addition. 

Afterwards, the monolayers were incubated in complete media, and 4mM of EGTA was added 

at 30-, 15- and 5-minute time points to deplete all Ca2+ from the media. Following incubation, 

the monolayers were disrupted using a pipette per the monolayer fragmentation protocol, and 

the final % fragmentation was calculated against a total cell count obtained by counting 

trypsinized cells (Fig 17A). We obtained a gradual increase in monolayer fragmentation over 

time after EGTA addition, indicating that calcium depletion decreases monolayer integrity. 

 It is well known that E-cadherin degradation and recycling occurs because of AJ 

destabilization and internalization, so to verify that the increase in fragmentation that we observe 

is specifically due to AJ disruption and not cadherin degradation, we analyzed the levels of E-

cadherin and p120ctn in MCF-10A cells treated with 4mM of EGTA (Fig 17C). After 30 
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minutes of EGTA treatment, we see that E-cadherin levels remain stable in MCF-10A cells, 

while some degradation appears to occur after one hour.  

 Therefore, taken together, we conclude that the observed increase in fragmentation of 

monolayers within 30 minutes of EGTA treatment is specific to disassembly and loss of the AJ 

adhesion structure, and not due to E-cadherin degradation. 

 To confirm the specificity of the xCELLigence RTCA system to monitor changes in AJs, 

we set out to determine if induction of AJ disassembly generates a distinctive decrease in Cell 

Index (CI) detected by the xCELLigence system. Since the CI is correlated with monolayer 

impedance, we anticipate that AJ disassembly will rapidly increase the paracellular space 

between cells, decreasing impedance, and will be reflected as a rapid decrease in CI.  

 As previously stated in the introduction, AJ adhesion and stability require sufficient 

concentrations of extracellular Ca2+, more specifically greater than 1mM of [Ca2+]. To validate 

the xCELLigence system, we added different concentrations of EGTA to decrease [Ca2+] to 

trigger AJ disassembly. Since EGTA chelates [Ca2+] at a 1:1 stoichiometric ratio, we could 

calculate the amount of EGTA required to reduce [Ca2+] to below the critical concentration of 

1.0 mM. Knowing that our growth medium contains 1.8 mM of Ca2+, we induced AJ 

disassembly by adding EGTA to a final concentration of 1 mM and 2 mM. As a control, we 

added EGTA to a “sub-optimal” concentration of 0.5 mM (Fig 17B). As anticipated, we 

observed a significant and rapid reduction in the normalized CI of MCF-10A monolayers treated 

with 1 mM or 2 mM of EGTA. In contrast, addition of 0.5 mM of EGTA did not produce a 

significant difference in CI from untreated cells. These results suggest that changes in the CI of 

confluent monolayers are specific to changes in cell-cell adhesion, and can reflect AJ 

disassembly. Interestingly, both 1 mM and 2 mM of EGTA produced the same decrease in CI, 

indicating that AJs disassembly occurs as an “all-or-none” response when [Ca2+] drops below 

the critical level of 1.0 mM, rather than occurring in a dose-dependent manner. 

Site-specific mutation of S320 on p120ctn produce minor effects on 
monolayer adhesion 
 Once the assays for cell-cell adhesion were validated, I was able to perform a preliminary 

experiment to investigate if site-specific phosphorylation at S320 on p120ctn affected cell-cell 

adhesion. First, we generated stable cell lines in A431 cells expressing wild-type or phospho-
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mutants of p120ctn. Since p120ctn levels have been shown to impact cell-cell adhesion, we first 

verified that the cells expressed equal levels of exogenous p120ctn constructs by 

immunoblotting using a Myc-specific antibody (Fig 18A). 

 After confirming that the cells express equal levels of exogenous p120ctn, we proceeded 

to seed each cell line in 60mm plates to obtain confluent monolayers. In hopes to perceive larger 

differences between the S320A and S320D isoforms, we starved the cells for 16-hours before 

releasing the monolayers by dispase and performing a fragmentation assay. From the resulting 

data, we see that overexpression of all p120ctn constructs appear to promote cell-cell adhesion 

(Fig 18B). The S/D mutant produced significantly lower percentage fragmentation compared to 

empty vector cells and wild-type cells. In contrast, the S/A mutant failed to produce significant 

stabilization of cell-cell adhesion compared to empty vector cells. While we did not observe 

major changes in the degree of fragmentation, nonetheless these preliminary results indicate that 

phosphorylation solely at this site perhaps produces minor effects in cell-cell adhesion.  
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CHAPTER 3: FIGURES 
 

 
 

Figure 6. Analysis of S320 as a putative phosphorylation site on p120ctn. 

Computational analysis of the protein sequence of p120ctn. (A) Using Scansite3 to search for consensus motifs 

present in p120ctn with high stringency parameters identifies S320 as a putative phosphorylation site on 

p120ctn. (B) Schematic of p120ctn indicating the location of S320. Known domains of p120ctn are also 

illustrated. (C) Alignment of p120ctn amino acid sequences from different vertebrate species reveals 

evolutionary conservation of S320 and the AGC-kinase consensus motif.  
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Figure 7. Activation of the Ras/MAPK pathway induces phosphorylation of 
p120ctn on S320. 

(A) HEK293 and HeLa cells were serum starved overnight before being stimulated for 30 min with PMA 

(100ng/mL), FBS (10%), Insulin (50ng/mL) or 10 min with EGF (25ng/mL). p120ctn phosphorylation on S320 

was assessed by immunoblotting total cell lysates using a phospho-specific antibody. (B) HEK293 cells were 

serum starved then stimulated with PMA and EGF for up to 60 minutes. Activation of Ras/MAPK signaling 

and p120ctn phosphorylation was assessed at each time point using the appropriate phospho-specific 

antibodies. (C) As in panel A, but cells were stimulated with increasing concentrations of Insulin (50, 100, 

200ng/mL) for 30 minutes. (D) HEK293 cells were serum starved overnight. Then, cells were pre-treated with 

PD184352 (10µM), PI-103 (10µM), Ku-0063794 (5µM) or Rapamycin (25µM) for 30 min before stimulation 

with PMA (100ng/mL) for 30 min or EGF (25ng/mL) for 10 min. p120ctn phosphorylation on S320 was 

assessed by immunoblotting total cell lysates using a phospho-specific antibody. 
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Figure 8. Ras/MAPK phosphorylation of p120ctn on S320 is RSK-dependent. 

(A) HEK293 cells were serum starved overnight. Then, cells were pre-treated with BI-D1870 (10µM) or 

LJH685 (10µM) for 30 min before stimulation with PMA (100ng/mL) for 30 min or EGF (25ng/mL) for 10 

min. p120ctn phosphorylation on S320 was assessed by immunoblotting total cell lysates using a phospho-

specific antibody. RSK inhibition is assessed by immunoblotting for phosphorylation of rpS6 (S235/236). (B) 

HEK293 cells were transfected with either a scrambled siRNA or siRNAs targeting RSK1 and/or RSK2. Cells 

were serum starved overnight, then stimulated with PMA (100ng/mL) for 30 min or EGF (25ng/mL) for 10 

min. p120ctn phosphorylation was assessed as in panel A. RSK knockdown efficiency was assessed by 

immunoblotting using antibodies specific for each isoform. (C and D) HEK293 cells were transfected with 

wild-type or kinase-deficient RSK1 (in C) or RSK2 (in D). Cells were then starved overnight before stimulating 

with PMA (100ng/mL) or EGF (25ng/mL). Successful RSK transfection was confirmed by immunoblotting 

with a HA-antibody. p120ctn phosphorylation was assessed as in panel A.  
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Figure 9. Activation of the Ras/MAPK pathway induces RSK-dependent p120ctn 
phosphorylation on S320 in epithelial cells. 

(A) A431 cells and (B) MCF-7 cells were serum starved overnight. Then, the cells were pre-treated with 

PD184352 (10µM) or BI-D1870 (10µM) for 30 min before stimulation with PMA (100ng/mL) for 30 min or 

EGF (25ng/mL) for 10 min. p120ctn phosphorylation on S320 was assessed by immunoblotting total cell 

lysates using a phospho-specific antibody. Effective MEK and RSK inhibition is evaluated by immunoblotting 

for phosphorylated ERK and rpS6 using appropriate antibodies. 
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Figure 10. Ras/MAPK activity reduces p120ctn binding to N-cadherin. 

(A) HEK293 cells were serum starved overnight before being stimulated with PMA (100ng/mL) over a time 

course of up to two hours. N-cadherin associated with endogenous p120ctn immunoprecipitates were assayed 

by immunoblotting. Total cellular levels of p120ctn and N-cadherin were also assessed by immunoblotting the 

cell lysate. (B) HEK293 cells were serum starved overnight then pre-treated with PD184352 (10µM) for 30 

min before stimulation by PMA (100ng/mL) for 15 or 30 min. N-cadherin and p120ctn levels were assessed 

as in panel A. 
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Figure 11. Validation of the p120ctn antibody for use in IF. 

HeLa and MCF-7 cells were infected with non-target (NT) shRNA or shRNA specific to p120ctn (sh984, sh987 

and sh988) to generate stable knockdown of endogenous p120ctn. (A) HeLa and (C) MCF-7 cells were grown 

on glass coverslips before being fixed and stained using phalloidin to visualize the actin cytoskeleton, anti-

p120ctn to visualize endogenous p120ctn, and DAPI to visualize nuclei. Only merge images are shown. 

Successful knockdown of p120ctn in (B) HeLa and (D) MCF-7 cells were assessed by immunoblotting using 

anti-p120ctn.  
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Figure 12. p120ctn remains localized at cell-cell contacts in HEK 293 cells in 
response to PMA stimulation 

HEK293 cells seeded onto glass coverslips were serum starved overnight before stimulating with PMA 

(100ng/mL) over an 8 hour time-course. Cells were then fixed and stained with anti-p120ctn to monitor 

endogenous p120ctn localization, phalloidin to visualize the actin cytoskeleton, and DAPI to visualize nuclei.  



 

72 

 
Figure 13. p120ctn remains localized at cell-cell contacts in A431 cells in response to 
PMA stimulation 

A431 cells were seeded onto glass coverslips and serum starved overnight before stimulating with PMA 

(100ng/mL) over an 8 hour time-course. Cells were then fixed and stained with anti-p120ctn to monitor 

endogenous p120ctn localization, phalloidin to visualize the actin cytoskeleton, and DAPI to visualize nuclei. 

Arrows are added to indicate and emphasize p120ctn localization at “punctate AJs”. 
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Figure 14. Myc-tagged p120ctn S320 mutants localizes to cell-cell contacts in stably 
expressing MDCK cells. 

(A) We generated MDCK cells stably expressing an empty vector, p120ctn-wt, p120ctn-S320A or p120ctn-

S320D mutants. Expression levels of exogenous p120ctn is assessed using both anti-Myc and anti-p120ctn 

antibodies. (B) Confocal images of fixed MDCK cells expressing an empty vector, or myc-tagged p120ctn-wt. 

Cells were stained with anti-Myc to visualize p120ctn, phalloidin to visualize the actin cytoskeleton, and DAPI 

to visualize nuclei. (C) Confocal images of MDCK cells expressing wt, S320A or S320D mutants of p120ctn. 

Cells were stained same as in panel B. 
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Figure 15. MCF-10A cells generate confluent monolayers in comparison to Caco-2, 
A431, and IEC6 cells. 

(A) MCF-10A, (B) A431, (C) Caco-2 and (D) IEC-6 cells were seeded in quadruplicates into 96-well E-plates 

and left to grow for 72 hours at 37oC, 5% CO2, in the xCELLigence RTCA system. (ACEA Biosciences) CI 

measurements were taken every 15 min for 72 hours to monitor cell growth. At the same time, (E) MCF-10A, 

(F) A431, (G) Caco-2 and (H) IEC-6 cells were seeded into clear-bottom 96-well plates and incubated in the 

same incubator as the xCELLigence cells for 72 hours. Brightfield photos were taken after 72 hours of growth 

to evaluate cell growth and confluency in each plate. Arrows show spaces left between monolayers and indicate 

lack of confluency. 
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Figure 16. p120ctn knockdown promotes monolayer fragmentation. 

MCF-10A cells were infected with either non-target (NT) shRNA or three different shRNAs targeting p120ctn 

(sh984, sh987, sh988) to generate cells with a stable knockdown of endogenous p120ctn. Successful p120ctn 

knockdown is evaluated by (A) Brightfield microscopy illustrating changes in cell morphology and (B) 

immunoblot using anti-p120ctn. (C) Each MCF-10A cell line was seeded into 60mm plates in quadruplicate 

and grown to confluency. At confluency, the monolayers from three plates were released by incubation with 

dispase, subject to disruption by Pipetman, and single cells were counted. Resulting percent fragmentation was 

calculated against a total cell count obtained by trypsinizing one untreated plate from each condition. Values 

are displayed as mean + SEM. * p< 0.05, ** p= 0.001-0.05 compared to control (shNT); two-tailed Student’s 

t-test. 
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Figure 17. Calcium depletion affects monolayer fragmentation and cell index. 

(A) MCF-10A cells were grown to confluency in 60mm plates then monolayers were released by incubation in 

2mL of dispase (2.4U/mL). Monolayers were then incubated in media treated with EGTA (4mM) for 5, 15 or 

30 min before being subject to disruption with a Pipetman. After disruption, single cells were counted and 

percentage fragmentation was calculated against total cell number obtained from a confluent plate treated with 

trypsin. Values are displayed as mean + SEM. * p< 0.05, ** p= 0.001-0.05 versus control (T= 0min); two-tailed 

Student’s t-test. (B) MCF-10A cells were seeded in quadruplicate into 96-well E-plates and allowed to grow 

for 48 hours to confluency. After 48 hours, EGTA was added at 0.5, 1 or 2mM concentration and CI was 

recorded every 15 sec for 30 min by the xCELLigence RTCA system. (C) MCF-10A cells were grown to 

confluency in 60mm plates, then treated with EGTA (4mM) for 30 or 60 min. Cell lysates were immunoblotted 

for E-cadherin and p120ctn using specific antibodies.   
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Figure 18. Stable expression of p120ctn phosphomutants in A431 cells affects 
monolayer adhesion. 

(A) Expression levels of p120ctn constructs and E-cadherin in A431 cells were evaluated by immunoblotting 

using the antibodies indicated. (B) A431 cells stably expressing empty vector (E.V), p120ctn wild-type (WT) 

and phosphomutants (S/A and S/D) were grown to confluency in 60mm plates then monolayers were released 

by incubation in 2mL of dispase (2.4U/mL) before being subject to disruption with a Pipetman. After 

disruption, single cells were counted and percentage fragmentation was calculated against total cell number 

obtained from a confluent plate treated with trypsin. Values are displayed as mean + SEM. * p< 0.05, ** p= 

0.001-0.05; two-tailed Student’s t-test. 
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General Findings 
 Stimulation of Ras/MAPK signalling has been shown to induce pro-motile and pro-

invasive properties in epithelial cells. Located downstream in the Ras/MAPK pathway, RSK is 

identified as an important effector in mediating Ras-induced cell motility by regulating the 

transcription of several potent pro-invasive genes [31]. More recently, it was also shown that 

RSK promotes cell migration by specifically weakening the strength of cell-cell contacts and 

promoting cell scattering through a yet unknown mechanism [155]. Our identification of a 

putative phosphorylation site regulated by RSK activity on p120ctn, a major component of AJs, 

in a phosphoproteomic screen suggests a novel, post-translational mechanism by which RSK 

can regulate cell-cell adhesion in epithelial cells [22]. We hypothesized that RSK-dependent 

phosphorylation at S320 on p120ctn regulates its function and impacts AJ stability and overall 

cell-cell adhesion.  

 By performing an alignment across vertebrate species, we show that S320 on p120ctn is 

an evolutionarily conserved residue, and located in a AGC-kinase consensus sequence. While 

phosphorylation of p120ctn at this residue has been observed in many high-throughput 

proteomic studies listed on the PhosphoSitePlus database, no studies have yet confirmed the 

phosphorylation of this site using low-throughput methods [156]. In our study, by using a 

phospho-specific antibody raised against S320 on p120ctn, we verified S320 as a bona fide, 

novel phosphorylation site on p120ctn regulated by Ras/MAPK signalling. Furthermore, by 

using RSK-specific pharmacological inhibitors, our experiments show phosphorylation of S320 

is highly dependent on RSK activity, and suggests with a high degree of confidence that RSK 

is the AGC-kinase that specifically regulates phosphorylation of this site.  

 Functionally, we provide evidence that Ras/MAPK activation rapidly decreases p120ctn 

binding to N-cadherin, without altering its localization away from the membrane. This 

demonstrates a new mechanism by which Ras/MAPK signalling regulates cell-cell adhesion by 

affecting the stability of cadherins at AJs. Additionally, it suggests that Ras/MAPK signalling 

can change p120ctn binding partners at the membrane, perhaps influencing local RhoGTPase 

activity at the cell membrane to promote cell spreading in coordination with loss in cell-cell 

adhesion.  

 Finally, we designed and validated two assays to assess the effects of Ras/MAPK 

activity and S320 phosphorylated p120ctn on AJ turnover and cell-cell adhesion. By employing 
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these assays, our preliminary results suggest that S320 phosphorylation produces minor effects 

in cell-cell adhesion in A431 stable cell lines.   

Regulation of S320 phosphorylation on p120ctn 
 Our discovery of S320 as a bona fide novel phosphorylation site on p120ctn introduces 

a new element into the already complex landscape of p120ctn phosphorylation. In the last 

decade, studies into p120ctn phosphorylation have mainly focused on understanding and 

elucidating the regulation and function of the original 8Y and 8S/T sites identified by the 

Reynolds lab [133]. Since then, the only new phosphorylation sites identified are located at the 

very tip of the N-terminal domain of p120ctn (S8, S11, S15) and are only found in the longest 

isoform [124]. In contrast, we find that S320 is phosphorylated on both major long and short 

isoforms in human cells, indicating this site plays a more general regulatory role on all p120ctn 

isoforms. 

 Our results challenge the previous conclusion that all S/T sites are constitutively 

phosphorylated in unstimulated cells, and are downregulated in response to growth factor 

signalling [69]. Instead, we show that S320 is rapidly and highly phosphorylated in a RSK-

dependent manner upon activation of the Ras/MAPK pathway.  

Compared to HEK293 and HeLa cells, stimulation of A431 and MCF-7 cells with EGF 

elicits higher levels of S320 phosphorylation compared to PMA treatment. Particularly in A431 

cells, we observe greater phosphorylation of S320 by EGF even though our immunoblots show 

equal Ras/MAPK activation in the PMA treated cells. (Fig. 9) This suggests the presence of 

other signals converging on p120ctn that influences Ras/MAPK mediated phosphorylation of 

S320.  

One potential explanation of this disparity in S320 phosphorylation is the inhibitory role 

of PKC signalling in epithelial cells. Many studies have implicated PKC as a major negative 

regulator of phosphorylation on S/T residues in p120ctn. Stimulation of vascular endothelial 

cells with VEGF promotes overall dephosphorylation of p120ctn on S/T residues by a PKC-

dependent mechanism [129, 157]. More specific to our experiments, treating cells with phorbol 

esters such as PMA to stimulate of PKC activity induced dephosphorylation of p120ctn on 

residues S268, S288 and T310 [117]. The mechanism by which PKC activity dephosphorylates 

these residues remain unknown, but it suggests that it signals to an unidentified phosphatase 
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targeted to this region. Since S320 is also closely located within this region, it is highly likely 

that this residue is subject to the same regulation. Our results do not show levels of PKC activity 

in A431 cells, but our use of PMA would undoubtedly activate the same mechanism. Therefore, 

our results suggest the possibility that S320 is RSK phosphorylation site that is subject to 

negative regulation by a PKC-dependent mechanism. However, further experiments using 

inhibitors of PKC-activity would allow us to confirm the role that PKC signalling has on 

regulation of S320 phosphorylation on p120ctn. Additionally, performing these experiments in 

a wide variety of cell lines would allow us to explore whether this antagonistic mechanism is 

cell-type specific.  

S320 phosphorylation on p120ctn function 
 Given its location in the “regulatory domain” of p120ctn, we expected phosphorylation 

on S320 of p120ctn to impact cell-cell adhesion by affecting its binding to its main interactor: 

cadherin. When we stably expressed p120ctn molecules with S320A and S320D mutations in 

A431 cells, our preliminary results show that overexpression of the phosphomimetic form of 

p120ctn promoted cell-cell adhesion, while the phospho-deficient mutant reduced cell-cell 

adhesion compared to wildtype p120ctn.  

This was surprising because, as addressed in the introduction, phosphorylation of other 

sites in the regulatory domain near S320 has been shown to promote p120ctn dissociation from 

cadherins. For example, phosphorylation on T310 by GSK3, just ten residues upstream of S320 

significantly decreases p120ctn binding to N-cadherin and promotes AJ disassembly during 

collective migration of mouse astrocytes and fibroblasts [52]. Further upstream, 

phosphorylation on S288 of p120ctn is detected in the nucleus, suggesting this PTM plays a role 

in p120ctn nuclear translocation [158]. However, in these examples, a distinct change in p120ctn 

localization is observed in response to phosphorylation of S288 or T310. In comparison, our IF 

results show both phosphomutants, and wt p120ctn remain localized to the membrane in MDCK 

cells. Results from a recent study suggested that p120ctn phosphorylation could induce 

conformational changes of the extracellular cadherin domains by an “inside-out” regulatory 

mechanism [118]. Since our phosphomutants appear to remain localized at the membrane, 

perhaps S320 regulates cell-cell adhesion in a similar manner rather than disrupting AJ stability. 

By performing a calcium-switch experiment to assess changes in monolayer impedance, we 
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could evaluate the rate of AJ turnover in these cells to confirm the prediction that S320 

phosphorylation does not disrupt AJ stability. 

Furthermore, studies evaluating the effects of individual site mutants of p120ctn on cell-

cell adhesion showed that modulation of each site does not produce large changes in the 

morphology of p120ctn-deficient A431 cells [117]. In contrast, mass mutations on several sites 

in the regulatory domain produced striking effects on cell-cell adhesion in A431 cells expressing 

phospho-deficient (6S/T>A: S252A, S268A, S288A, T310A, S312A, and T916A) and phospho-

mimetic (4S/T>E: S268E, S288E, T310E, and S312E) p120ctn constructs [118]. These results 

illustrate the impact the collective phosphorylation status of p120ctn can have on the final 

cellular response. In the scope of our experiments, the phosphorylation status of other sites on 

p120ctn are undetermined. Therefore, it is possible that the effects of p120ctn phosphorylation 

on S320 are masked by modifications on other sites. To resolve this, future experiments using a 

p120ctn construct with 6S/T>A mutations on the other known phosphorylation sites would help 

us isolate the effects of S320 phosphorylation on cell-cell adhesion. 

Also, unlike the studies performed by Petrova et al., our own cell-cell adhesion 

experiments used A431 cells stably expressing p120ctn phosphomutants over high levels of 

endogenous p120ctn [118]. Due to the low stoichiometric ratio of exogenous to endogenous 

p120ctn, it is possible that endogenous p120ctn masks the effects of our phosphomutant p120ctn 

constructs. Thus, future experiments should be performed in p120ctn deficient cells, such as 

SW-48 – a naturally p120ctn-deficient cell line, to better isolate the effects of the phosphomutant 

constructs [82]. 

 Recent studies have indicated that p120ctn can localize in distinct E-cadherin based 

complexes that are localized differently into apical and basolateral fractions [121]. In light of 

this discovery, our localization experiments appear to have been too narrow in scope to evaluate 

the apical-basal localization of p120ctn. While we show that p120ctn is localized at the 

membrane of stable cell lines, we failed to assess the apical/basolateral position of the mutants. 

Since p120ctn localization appears to be affected by its phosphorylation status, an interesting 

application of IF in future experiments will be to examine the apical-basal location of p120ctn 

phosphomutants in stable cell lines.  
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Ras/MAPK regulation of cell-cell adhesion through p120ctn 
 Since Ras/MAPK signalling is implicated in promoting cell migration, we expect that a 

MAPK-RSK-p120ctn mechanism would play a role in mediating this change in cellular 

function. Our biochemical studies confirm p120ctn as a substrate of the Ras/MAPK pathway, 

and we show that its phosphorylation occurs rapidly in response to RSK activation. Through co-

immunoprecipitation experiments, we show that activation of this MAPK-RSK-p120ctn 

signalling axis in response to PMA stimulation produces rapid loss in N-cadherin binding to 

p120ctn in HEK293 cells. This binding between p120ctn and cadherin is crucial for AJ 

stabilization in all mammalian cells [68]. Therefore, our data illustrates a new mechanism by 

which Ras/MAPK activity can rapidly affect cell-cell adhesion by promoting AJ disassembly. 

Future experiments to assess p120ctn binding to cadherins, and AJ stability under conditions of 

RSK-specific inhibition or in RSK knockdown cells will allow us to confirm if this destabilizing 

mechanism is RSK-dependent. 

 In contrast, other known RSK substrates which regulate cell-cell adhesion operate by 

indirect mechanisms that are much slower acting. For example, EphA2 is a RTK that promotes 

cell migration through its own distinct set of ligands and signalling pathways, including 

reciprocal signalling with Akt [159, 160]. SH3P2 phosphorylation by RSK induces cytoskeletal 

rearrangement and lamellipodia formation by promoting myosin-1E activity at the plasma 

membrane [35].  

 The regulatory role of Ras/MAPK signalling at AJs is not a new discovery however, and 

has been implied in many studies. In cells with constitutive Ras/MAPK activity, rescue of cell-

cell adhesion requires not only E-cadherin overexpression but also inhibition of ERK [161]. A 

more recent study also showed that ERK-inhibition prompts the translocation of E-cadherin 

bound b-cat to the membrane and areas of cell-cell contact [162]. Together, these studies suggest 

that ERK-inhibition promotes cadherin stability and AJ formation, possibly by restoring 

p120ctn binding to E-cadherin.  

Conversely, ERK activity has been shown to destabilize the interaction between a- and 

b-cat indirectly through CK2 in A431 cells, promoting Wnt pathway activation by increasing 

b-cat/TCF [163]. In this study, significant dissociation between the two catenins were observed 

after 6 hours of EGF stimulation. In comparison, we show significant loss in N-cadherin binding 
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to p120ctn in under 15 minutes of PMA stimulation. This suggests perhaps that Ras/MAPK 

signalling to p120ctn acts to destabilize and primes AJs to be further disrupted by these other 

mechanisms.  

Since it is likely that Ras/MAPK signalling to the p120ctn regulatory domain mediates 

this mechanism, future experiments using isoform 4 of p120ctn lacking the N-terminal 

regulatory domain would help us confirm this hypothesis. Perhaps isoform 4 will not be 

susceptible to MEK-induced AJ destabilization, and potentially abrogates MEK-induced b-

cat/TCF activity by sequestering active b-cat to the cell membrane.  

Usually, uncoupling of p120ctn from cadherin is associated with promoting its 

pleiotropic functions through other interactors. Our IF results in HEK293 cells show that even 

in response to PMA stimulation, p120ctn remains localized at the cell membrane. Many studies 

highlight the way interactors such as mucin 1, RhoA, p190RhoGAP, and PLEKHA7 compete 

with cadherin to bind p120ctn [103, 121, 164]. Given that some of these interactors, such as 

p190RhoGAP and RhoA are regulators of RhoGTPase dynamics, this “switch” would allow 

Ras/MAPK signalling to coordinate disassembly of cell-cell adhesion complexes with 

promoting localized cytoskeletal remodelling at the cell membrane to initiate cell spreading.  

This is not impossible as MEK/ERK signalling has been shown to regulate Rac1 activity 

at the cell periphery [165]. MEK inhibition significantly reduced EGF-induced migration of 

cells, and inhibited extensive cortical actin reassembly at the leading edge of cells. Since RhoA 

competes with cadherin to bind p120ctn, it is possible that loss of cadherin binding allows 

p120ctn to inhibit RhoA instead in response to Ras/MAPK signalling. Alternatively, promoting 

p120ctn binding to p190RhoGAP would also inhibit RhoA activity at the plasma membrane. 

In order to better understand changes in p120ctn binding partners, future GST-pulldown 

or IP-M/S experiments comparing proteins bound to p120ctn under different stimulation 

conditions could be performed. Additionally, by using site specific phosphomutants (ex. At 

S320), we could evaluate the effects of modifications at individual sites on p120ctn function.  
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 In this thesis, we present the discovery of a new phosphorylation site in the regulatory 

domain of p120ctn on S320 that is regulated by Ras/MAPK activity. Furthermore, even though 

we did not perform an in vitro kinase assay, we present compelling evidence that 

phosphorylation of p120ctn on S320 is specifically regulated by RSK kinases.  

Through our functional experiments, we show that MAPK activity destabilizes AJ by 

rapidly disrupting the binding between p120ctn and N-cadherins. However, in preliminary 

results using site-specific mutants of S320 on p120ctn, we find phosphorylation at this site 

promotes cell-cell adhesion. Moving forward, it will be important to reproduce the functional 

experiments by expressing phosphomutants in p120ctn deficient cell lines to better isolate the 

effects of the site-specific mutation. Additionally, experiments using isoform 4 of p120ctn will 

allow us to better understand the function of the p120ctn regulatory domain in mediating 

Ras/MAPK-dependent AJ disassembly.  

Collectively, the findings I have presented illustrate a new MAPK-RSK-p120ctn 

mechanism by which Ras/MAPK signalling can influence cell-cell adhesion and drive cell 

transformation by destabilizing cell junctions. Additionally, since dysregulation of p120ctn is 

greatly implicated in promoting cancer development and metastasis, this regulatory mechanism 

illustrates a new way by which Ras/MAPK signalling contributes to cancer progression.   
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