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Résumé 

But : La perte de l’intégrité de la barrière hémo-encéphalique (BHE) est l’une des 

caractéristiques principales de la sclérose en plaques. Cette augmentation de la perméabilité est 

associée à une désorganisation des molécules de jonction serrée et à une augmentation de 

l’expression de molécules d’adhérence essentielles à l’extravasation des cellules immunitaires. 

Identifier de nouvelles molécules impliquées dans ce processus est donc crucial pour le 

développement de nouvelles thérapies contre la sclérose en plaques visant à promouvoir 

l’intégrité de la BHE et à diminuer la migration des leucocytes dans le système nerveux central 

(SNC) au cours du processus neuro-inflammatoire. Dans cette étude, le rôle spécifique de la 

molécule d’adhérence ALCAM, qui est exprimé à la surface des cellules endothéliales de la 

BHE (CE-BHE) et de certains sous-types de leucocytes, a été évalué. 

Méthodologie :  À l’aide d’une analyse protéomique exhaustive, notre laboratoire a 

identifié ALCAM comme étant une molécule d’adhérence surexprimée par les CE-BHE mises 

en culture dans un milieu pro-inflammatoire. Dans le but d’étudier le rôle spécifique d’ALCAM 

durant la diapédèse leucocytaire, nous avons induit chez des souris de type sauvages et des 

souris ALCAM déficientes l’encéphalite auto-immune expérimentale (EAE), le modèle animal 

de la sclérose en plaques. Le rôle d’ALCAM a aussi été étudié à l’aide d’un système d’adhérence 

sous flux laminaire. Cet appareil, qui imite un capillaire cérébral, permet de suivre en temps réel 

le mouvement des leucocytes, soumis à une pression physiologique, dans un tube couvert à sa 

base par des CE-BHE. 

Résultats : En utilisant ce système d’adhérence, j’ai pu démontrer que des anticorps 

dirigés contre ALCAM réduisent de façon significative le roulement et l’adhérence de 

monocytes CD14+ humains à la surface de CE-BHE. Par ailleurs, ces anticorps préviennent de 

façon marquée la diminution de la vitesse moyenne des cellules au cours de l’expérience. Par 

le fait même, j’ai aussi observé une réduction significative de l’extravasation des monocytes 

traités avec de l’anti-ALCAM au travers de CE-BHE dans un modèle statique de migration. 

Subséquemment, j’ai démontré que ces monocytes migrent plus rapidement et en plus grand 

nombre au travers d’une barrière constituée de cellules endothéliales méningées à comparer à 

des CE-BHE. Bien que des observations similaires ont été effectuées en utilisant des 
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lymphocytes T CD4+ humains ex vivo, j’ai été incapable de reproduire ces résultats à l’aide de 

cellules Th1 et Th17 réactivées in vitro. 

Par opposition à nos données in vitro, j’ai découvert que les souris déficientes en ALCAM 

développent une EAE active plus sévère que celle observée chez des souris de type sauvages. 

Cette EAE est par ailleurs associée à une infiltration périvasculaire de lymphocytes T pro-

inflammatoires et de monocytes/macrophages de type M1 plus marqué chez les souris 

ALCAM déficientes. L’induction d’une EAE par transfert adoptif, dans laquelle des cellules 

immunitaires de type sauvage réactivées par du MOG sont injectées à des souris déficientes en 

ALCAM, suggère que la pathophysiologie observée durant l’EAE active serait liée à l’absence 

d’ALCAM au niveau de la BHE. Une caractérisation de la barrière des souris ALCAM 

déficientes non immunisées a par la suite révélé une réduction de l’expression de certaines 

molécules de jonction serrée. Une analyse plus poussée a par ailleurs démontré qu’ALCAM 

est lié indirectement à des molécules de jonction serrée des CE-BHE, ce qui expliquerait 

l’augmentation de la perméabilité de celle-ci chez les souris déficientes en ALCAM. Une 

analyse de la perméabilité intercellulaire de la BHE effectuée in vitro a d’autre part corrélé ces 

résultats.  

Conclusion : Collectivement, nos données prouvent qu’ALCAM joue un rôle 

prépondérant dans la diapédèse des monocytes, mais pas des lymphocytes Th1 et Th17 au 

travers de la BHE. Par ailleurs, nos résultats suggèrent qu’ALCAM remplit une fonction 

biologique cruciale favorisant le maintien de l’intégrité de la BHE en agissant comme 

molécule adaptatrice intermédiaire entre les molécules de jonction serrées et le cytosquelette. 

De cette façon, l’absence d’ALCAM au niveau des CE-BHE promeut indirectement le 

recrutement de leucocytes pro-inflammatoires dans le SNC des souris atteintes de l’EAE en 

augmentant la perméabilité des vaisseaux sanguins de la BHE.           

 

 

Mots-clés : Activated leukocyte cell adhesion molecule (ALCAM), sclérose en plaques 

(SEP), encéphalomyélite auto-immune expérimentale (EAE), barrière hémo-encéphalique 

(BHE), diapédèse leucocytaire, molécules de jonction serrée, neuroinflammation.   
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Abstract 
Aim: The loss of blood-brain barrier (BBB) integrity is a hallmark of multiple sclerosis. It 

is associated with a disorganization of junctional molecules and an upregulation of cell adhesion 

molecules essential for immune cell transmigration. Identifying novel key players involved in 

this process is thus crucial for the development of MS therapies aimed at promoting BBB 

integrity and decreasing leukocytes trafficking into the central nervous system (CNS) during 

neuroinflammation. In this study, the specific role of the adhesion molecule ALCAM, found on 

BBB endothelial cells (BBB-ECs) and subsets of leukocytes, was assessed. 

Methods: We first identified ALCAM as an important molecule upregulated during 

inflammation in a proteomic screen of in vitro cultured primary human BBB-ECs. In order to 

study the effects of ALCAM on leukocyte transmigration, both active and passive experimental 

autoimmune encephalomyelitis (EAE) was induced in ALCAM KO and WT animals. The 

specific role of ALCAM during leukocyte transmigration was also assessed using a modified 

adhesion assay under sheer-stress, in which leukocytes flow across a capillary-like channel lined 

with a monolayer of BBB-ECs under physiological pressure.   

Results: Using the modified adhesion assay, we demonstrated that anti-ALCAM blocking 

antibodies significantly reduce the rolling and the adhesion of human CD14+ monocytes 

interacting with primary human BBB-ECs, as well as prevent their overall decrease in velocity. 

Concurrently, we also observed a significant reduction in the migration of ex vivo CD14+ 

monocytes, across a monolayer of human BBB-ECs. These monocytes also migrated more 

rapidly and in higher number across meningeal endothelial cells, as compared to BBB-ECs. 

While similar observations were made using ex vivo CD4+ T lymphocytes, we failed to 

reproduce these results using in vitro activated Th1 and Th17 cells. In opposition to our in vitro 

data, ALCAM KO mice developed a more severe active EAE associated with a significant 

increase in perivascular infiltration of pro-inflammatory lymphocytes (Th1/Th17) and M1 

monocytes/macrophages, as compared to WT controls. In addition, EAE transfer experiments, 

in which ALCAM KO mice received WT MOG-reactivated splenocytes, suggested that the 

pathophysiology observed in active EAE was linked to the absence of ALCAM on BBB-ECs. 

Phenotypic characterization of un-immunized ALCAM KO mice revealed a reduced expression 

of BBB junctional proteins. Further analysis showed that ALCAM is indirectly associated with 
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tight junction molecules of the BBB-ECs, which explains the increased CNS parenchymal blood 

vessel in vivo permeability in ALCAM KO animals. Correlating with these data, primary culture 

of mouse brain BBB-ECs was shown to possess a lower TEER and an increased permeability 

coefficient.  

Conclusion: Collectively, our data provide evidence of the implication of ALCAM in 

monocyte transmigration, but not Th1 or Th17 lymphocyte diapedesis across CNS endothelium. 

Our results also point to a biologically crucial function of ALCAM in maintaining BBB integrity 

by acting as an adaptor molecule between tight junctions and the cytoskeleton. As such, the 

absence of ALCAM at the level of BBB-ECs indirectly promotes the recruitment of pro-

inflammatory leukocytes in the CNS of EAE animals by increasing the BBB vessels 

permeability.   

 

 

 

Keywords: Activated leukocyte cell adhesion molecule (ALCAM), multiple sclerosis 

(MS), experimental autoimmune encephalomyelitis (EAE), blood-brain barrier (BBB), 

leukocyte transmigration, tight junction molecules, neuroinflammation.   
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1 

Introduction 

The central nervous system (CNS) has eluded many generations of scientists, clinicians and 

scholars owing to its inherent complexity and dynamic environment. While somewhat 

paradoxical, for generations, we could not understand the origin of our thoughts, nor the process 

behind it. With the rapid development of new technologies, we are slowly beginning to 

understand the genesis of new memories and abilities, while gradually deciphering innate 

capabilities both at a molecular and cellular levels. Although these scientific breakthroughs have 

allowed us to understand, as of now, a fraction of the CNS processes in homeostatic conditions, 

they have also fashioned the medical and pharmaceutical field in the context of CNS diseases.  

The inflammation of the CNS can be induced by a wide variety of events, including 

infections, autoimmunity, traumatic brain injury and accumulation of misfolded proteins or 

toxic metabolites. Persistence of the inflammatory stimuli and/or failure to resolve the acute 

inflammatory response can lead to chronic inflammation of the CNS. Under homeostatic 

conditions, the CNS is widely regarded as an immunologically privileged site and its 

environment is well controlled and balanced by the presence of the neurovascular unit (NVU), 

which comprises specialized endothelial cells (ECs), pericytes, basement membranes and 

supporting glial cells, including astrocytes and microglia. The NVU, acting as a blood-brain 

barrier (BBB), restricts the ingress of peripheral leukocytes and the movement of soluble factors 

into the CNS. For reasons yet unknown, the immune system of some individuals can gain access 

to the CNS and start targeting some of its components, ultimately leading to an autoimmune 

disease called multiple sclerosis (MS). While MS has been studied for decades, we still haven’t 

discovered a cure. This challenging scientific endeavour is the premise behind this thesis.        
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1. The Central Nervous System 

The CNS is composed of two main groups of cells: the neurons, which transport electrical 

and chemical signals from one cell to the next, and the glial cells, which support the neurons 

and maintain an homeostatic environment in normal conditions. Astrocytes, oligodendrocytes 

and microglia (along with some progenitor/stem cells) are grouped under the latter category of 

cells. The most numerous cell types, the astrocytes, can be divided in sub-categories based on 

their location and morphology in the CNS, but ultimately, they all provide a physical support to 

the other cells, while maintaining a suitable extracellular environment for neurons (especially 

in neuronal-synapses). The oligodendrocytes are specialized cells that wrap around neuronal 

projections (the axons) of several neurons, and form lipid-rich multi-sheeted isolation 

membranes called myelin sheets. These sections of myelin sheets improve the rate of electrical 

signal propagation along the axons and are necessary to the proper functioning of the CNS [1]. 

Microglia are the resident macrophages of the CNS. They help maintain the neuronal network 

via synaptic pruning and also provide the innate immune response in case of pathogen 

infiltration or traumatic injury. Whereas all the previous CNS cells originate from the 

neuroectoderm, microglia have a mesodermal origin. Recently, they were shown to be derived 

from primitive erythromyeloid progenitor cells, which invade the brain from the yolk sac at a 

very early stage of embryonic development [2-4]. 

 

1. The CNS Vasculature 

 Neurons have a high requirement for oxygen and nutrients. In fact, about 20% of the 

oxygen and 25% of the glucose consumed by an individual are dedicated to the CNS and yet it 

constitutes only about 2% of the total body mass [5]. The CNS therefore requires a high volume 

of blood, which is carried by a dense network of highly regulated specialized vessels that provide 

the essential nutrients, while also restricting the entry of soluble factors. The vascular system 

carries freshly oxygenated blood via the two carotid arteries and the two vertebral arteries to the 
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circle of Willis. From there, cerebral arteries irrigate blood vessels contained within the 

subarachnoid space, a sub-section of the meningeal tissue surrounding the CNS (Figure 1). 

 

 

Figure 1 – The vascular system and CSF compartments of the CNS. A Image showing 

a transversal cut of a human head with the CSF depicted in blue. The image also outlines two 

areas where the CSF can drain and return to the blood: the cribriform plate and the arachnoid 

villi, also shown in B. C Image of a transversal cut of the different meningeal layers, also 
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showing the vicinity of a blood vessel penetrating the CNS. Image from Ransohoff and 

Engelhardt [6]. 

 

Branching blood vessels then penetrate into the CNS parenchyma. The perivascular space 

found between the arterioles and the invaginating pia matter is called the Virchow-Robin space. 

It is an area where immune cells (meningeal macrophages or peripheral leukocytes) can 

accumulate during CNS inflammation. Deeper into the parenchyma, arterioles and capillaries 

are constituted of specialized endothelial cells forming the blood-brain barrier, which will be 

further discussed in the following chapters. Produced by ECs on their abluminal side, the 

endothelial basement membrane is fused with the parenchymal basement membrane. In post-

capillary venules, however, these two basement membranes can separate to form a perivascular 

space where infiltrating immune cells preferentially accumulate before trafficking to the 

parenchyma. As this region lies outside the parenchymal basement membrane, which form a 

continuous boundary with the glia limitans, the perivascular space is considered outside the CNS 

parenchyma. It can therefore be populated by meningeal macrophages under homeostatic 

conditions, which can sample the interstitial fluid draining toward the surface of the CNS into 

the cerebrospinal fluid (CSF) [6].  

The CSF is carried by another network of compartments present in the CNS. This fluid 

occupies the subarachnoid space, the ventricles, the cisterns and sulci of the brain, as well as the 

central canal of the spinal cord. Under homeostatic conditions, the CSF moves within the CNS 

ventricular system carrying ions, glucose and some patrolling immune cells, but very few 

soluble proteins. The CSF also helps protect the CNS from impacts and abrasion, while adjusting 

to the changes in brain volume and intracranial pressure. Furthermore, it participates in the CNS 

environment stability by carrying away metabolic wastes and lipid-insoluble compounds. It is 

generated by the choroid plexus in the ventricles of the brain, where liquid from the blood 

permeates the fenestrated blood vessels and the ependymal cells by osmotic pressure. Since the 

CSF is constantly being produced, an equivalent portion is therefore continually reabsorbed. 

The reabsorption of the CSF by the blood can occur in the dural venous sinuses via the arachnoid 

villi. Besides this pathway, the CSF was demonstrated to flow through the cribriform plate, into 
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the nasal submucosal lymphatic channels and reaching the deep cervical lymph nodes (LN). 

This CSF egress is believed to be significantly important for the presentation of CNS antigens 

to peripheral immune cells [6-9]. While very few laboratories have studied leukocytes egress 

from a healthy or inflamed CNS, two recent studies have provided evidence suggesting that B 

lymphocyte egress from the CNS is possible [10, 11]. Using CNS tissue and draining cervical 

lymph nodes from the same patients, the two groups have demonstrated that B cell clones are 

shared between the two compartments. In addition, they demonstrated that, from the founding 

clones, subsequent maturation appeared to take place in the cervical lymph nodes rather than 

the CNS and involved a bidirectional exchange. The CSF flow towards the cervical LN and this 

bidirectional exchange could therefore play an important role in epitopes spreading, a 

phenomenon well described in animal studies whereby the antigenic targets of the CNS 

inflammatory attack shift over time as injury exposes additional epitopes [10-12]. Additionally, 

the recent rediscovery of the “CNS lymphatic system”, dural lymphatic vessels, have reminded 

us that leukocytes and/or CNS antigens could also circulate from the subarachnoid space to the 

deep cervical LN via these vessels [11, 13-15]. Although this thesis will mainly focus on 

microvascular blood vessels, it is imperative to acknowledge the importance of the CSF and it’s 

carrying compartments in the CNS homeostasis and during neuroinflammation.   
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2. Formation of the Blood-Brain Barrier 

CNS blood vessel formation starts with the invagination of the perineural vascular plexus. 

Tip cells guide the outgrowing capillaries towards a vascular endothelial growth factor (VEGF) 

gradient to form vascular sprouts, in a process known as angiogenesis [16, 17]. At this early 

stage of neurovascular development, the primitive network of CNS vessels lacks functional 

barrier properties and proper organization of tight junction (TJ) complexes. Multiple signalling 

molecules and transcription factors, notably produced by the radial glial cells, are involved in 

the establishment of the anteroposterior and dorsoventral axes, which are essential during 

embryogenesis [18]. Many of these factors, in addition to VEFG, are involved during 

angiogenesis: these include Notch1, Wnt, ephrins, fibroblast growth factors (FGFs), Sonic 

Hedgehog and retinoic acid (RA) [19]. In conjunction, all these signalling pathways remodel 

and stabilize the embryonic vasculature and play a major role during the development of the 

BBB [20-25]. Indeed, BBB properties are not intrinsic to CNS-ECs, but emerge gradually 

during a maturation/specialization phase dependent on the association of ECs that line the newly 

formed vessels with perivascular glial cells and pericytes. This was evidenced by transplantation 

experiments in which peripheral vessels acquired functional and histochemical BBB features 

following prolonged contact with neuronal tissue [26]. In contrast, meningeal blood vessels, 

which express TJs but are not in direct contact with glial cells, display higher vascular 

permeability, as compared to BBB-ECs [23]. 

Pericytes are known to promote BBB properties in ECs. EC−pericyte interactions are 

primarily mediated by secreted Platelet Derived Growth Factor B homodimers (PDGF-BB), 

Notch, Transforming Growth Factor- (TGF- ), and by N-cadherin homotypic interactions 

[27]. Gap junctions formed by pairs of connexin 43 hemichannels also allow direct molecular 

communication between the cytoplasm of pericytes and BBB-ECs. Of note, in larger blood 

vessels, smooth muscle cells replace pericytes and form a continuous layer surrounding ECs 

[27].  

Although the ratio of pericytes to ECs is highest in the CNS microvasculature, the critical 

role of astrocytes in regulating BBB maintenance and integrity cannot be overlooked. 

Histological studies using fetal human brain tissue have demonstrated the presence of astrocytes 

in the CNS around the 9th week of gestation, and direct astrocyte-endothelial cell contact 8 
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weeks later [28, 29]. In the fully developed CNS, perivascular astrocytic end-feet almost 

completely ensheath the abluminal surface of the CNS microvasculature [30] (Figure 2).  

 

 

Figure 2 – The neurovascular unit (NVU). The NVU is composed of specialized endothelial 

cells (ECs) surrounded by two basement membranes and perivascular astrocytes and microglia. 

Essential in maintaining the blood-brain barrier integrity, the different tight junction and 

adherens junction molecules efficiently link together adjacent ECs, as shown in the magnified 

window. In the context of neuroinflammation, leukocytes accumulate in the perivascular space 

located in-between both basement membranes. Upon acquiring the capacity to secrete matrix 

metalloproteinases (MMPs), these leukocytes migrate into the central nervous system. ZO-1, -

2, -3: Zonula occludens / PECAM-1: Platelet endothelial cell adhesion molecule 1 / VE-

cadherin: vascular endothelial-cadherin (cadherin 5). Image from Lécuyer et al. [31]. 

 

Although astrocytes are separated from pericytes and ECs by a thin and compact double 

basement membrane (BM) (endothelial BM and parenchymal BM), connexins allow direct 

communication between these cellular constituents of the NVU [27]. In fact, astrocytes are 

responsible for inducing proper relative positioning of pericytes and ECs in tube-like structures 

in vitro [32] and are known to impact on BBB-ECs via different molecular pathways. Our group 
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has shown that astrocyte-conditioned media induces or re-establishes partial BBB properties to 

in vitro cultures of meningeal and BBB-ECs, respectively [33, 34] (and non-published data).  

Finally, beyond their important role during CNS neuronal development, microglial cells 

also contribute to CNS angiogenesis by promoting tip cell fusion and migration [35]. Evidence 

brought forward by Tammela et al. [36] shows that microglia-derived VEGF-C activates VEGF 

receptor-3 (VEGFR-3) in tip cells and promotes angiogenesis and vascular branching. Like 

astrocytes, microglia are found in close proximity to the mature CNS vasculature, suggesting 

their involvement in regulating BBB functions in adults (Figure 3). But whereas numerous 

studies have focused on the role of microglia in BBB breakdown, few have addressed their 

potential contribution to maintaining BBB properties.  

 

Figure 3 – Microglial interaction with the CNS vasculature. Human brain microglia (Iba1, 

red) is shown to interact with capillaries (Laminin, green) in both normal appearing white matter 

(top) and multiple sclerosis lesion (bottom) by confocal microscopy. Nuclei = blue, Topro-3. 

Scale bar = 10 m. Image from Lécuyer et al. [31]. 
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The concerted action of all these cellular components is required for the BBB to acquire 

and maintain its unique properties and functions. In the late stages of BBB formation, all these 

cellular inputs drive an increase in the organization and the complexity of TJs strands, forming 

inter-membranous networks of fusion points that can be visualized by freeze-fracture 

microscopy [37].   

 

3. The Blood-Brain Barrier Endothelial Cells 

The BBB is a highly organized multicellular complex responsible for maintaining CNS 

homeostasis by constantly regulating the exchange of molecules with the systemic circulation 

and restricting the ingress of peripheral immune cells into the CNS. The restrictive permeability 

of BBB-ECs is attributed in part to their inherent low pinocytic activity and their high 

concentration of efflux transporters. These specialized ECs also lack fenestrae and are tightly 

bound together by TJ and adherens junction (AJ) molecules, located in the intercellular space 

between adjacent ECs (Figure 2). TJs form the apico-lateral barrier and are composed of at least 

two 4-pass transmembrane protein families: the claudins [38] and TJ-associated MARVEL 

proteins (TAMP) (occludin [39], tricellulin [40, 41], and MARVELD3 [42]). Ig-like adhesion 

molecules, such as junctional adhesion molecules (JAMs), coxsackie and adenoviral serotype 

2/5 receptor (CAR) [43], and endothelial cell-selective adhesion molecule (ESAM) [44] are also 

located at the apico-lateral barrier. Together, these proteins form large molecular aggregates 

located in cholesterol-rich cell membrane regions called lipid rafts [34, 45]. Along with actin 

filament-anchored adaptor molecules zonula occludens (ZO-1, -2 and -3) [46], cingulin [47] and 

membrane-associated guanylate kinase protein family (MAGUK) [48], they form a 

macromolecular complex capable of recruiting various protein kinases, phosphatases, and 

transcription factors that regulate cell polarity, proliferation and differentiation [49]. However, 

the contribution of TJs and TJ-associated adaptor molecules to intra- and inter-cellular 

signalling, gene transcription and the modulation of barrier function is still poorly understood.  

AJs, which are located alongside the TJs, consist of transmembrane proteins of the cadherin 

family. BBB-ECs are known to express only two members of this family: vascular endothelial 

(VE)-cadherin and neuronal-cadherin (N-cadherin). However, N-cadherin does not play a role 
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at endothelial cell-cell junctions but instead establish contact between endothelial cells and 

pericytes [50, 51]. VE-cadherin associates via an extracellular domain with vascular endothelial 

protein tyrosine phosphatase (VE-PTP) [52]. A number of peripheral cytoplasmic proteins of 

the catenin family ( -, -, P120) [53] also link cadherins to the cytoskeleton [54, 55]. Similarly, 

a third group of cell-cell junctional proteins called tight junction-associated cell adhesion 

molecules (TJaCAMs) are present at the basolateral side of BBB-ECs. These proteins include 

CD99 [56], platelet endothelial cell adhesion molecule 1 (PECAM-1/CD31) [57, 58], 

intercellular adhesion molecule 1 (ICAM-1) [59], melanoma cell adhesion molecule 

(MCAM/CD146/S-endo-1) [60, 61], integrins and other poorly characterized proteins. 

TJaCAMs are known to have homophilic and heterophilic binding capacity and have been 

shown to mediate cell-cell or cell-basement membrane matrix adhesion [62, 63]. Together, all 

these junctional proteins highly restrict leukocyte transmigration under homeostatic conditions 

and are crucial to the molecular and cellular biology of ECs.    

 

4. Blood-Brain Barrier Endothelial and Glial Cell Interactions in 

Homeostatic Conditions 

Preserving neurovascular cell polarization by establishing a tightly controlled gradient 

between the luminal and abluminal surface of ECs is essential for maintaining the integrity and 

organization of TJ molecules, cell adhesion molecules, membrane receptors, ion channels, etc. 

The polarization of astrocytes is also critical for proper orientation of their own cellular 

machinery with respect to neuroglial cells and ECs, but also to establish the polarity of the BBB 

endothelium itself. This is exemplified in astrocyte end-feet, which are enriched in water 

channel aquaporin 4 (AQP4) and in inwardly rectifying potassium channel Kir4.1, both integral 

parts of the orthogonal arrays of particles (OAPs) [64] (Figure 4).  
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Figure 4 – Paracrine and autocrine regulation of the BBB during homeostasis and 

inflammation. Perivascular cells such as pericytes and glial cells have a major impact on blood-

brain barrier (BBB) functions. In homeostatic conditions, these cells provide a wide variety of 

secreted factors which, along with contact-dependent interactions, induces barrier properties. 

However, upon central nervous system inflammation, every cellular constituent of the 

neurovascular unit can promote barrier breakdown and facilitate immune cell transmigration. 

N-cadherin: Neural cadherin / Pgps: Permeability glycoproteins / Glut1: Glucose transporter 

1 / Smo: Smoothened / Ptch: Patched-1 / PDGFR Platelet-derived growth factor receptors  

/ PDGF-BB: Platelet-derived growth factor subunit B / FGFs: Fibroblast growth factors / 

GDNF: Glia-derived neurotrophic factor / AQP4: Aquaporin 4 / ANG1-2: Angiopoietin-1-2 / 

AGT: Angiotensinogen / Shh: Sonic hedgehog / MMPs: Matrix metalloproteinase / ROS: 

Reactive oxygen species / NOS: Nitric oxide synthase / TGF- : Transforming growth factor  / 

VEGF: Vascular endothelial growth factor / OAPs: Orthogonal arrays of particles / TNF: 

Tumor necrosis factor. Image from Lécuyer et al. [31]. 

 

OAPs are segregated towards the perivascular space through a specific isoform of agrin, a 

heparin sulphate proteoglycan located within the CNS vascular basement membranes. NtA-

agrin 0, A/y0, B/z0 is the long N-terminus variant (basal laminae-binding region) that does not 

incorporate any amino acid at the three different possible insertion sites [65, 66]. This isoform 
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is secreted by both ECs and astrocytes [67, 68]. NtA-agrin forms, along with -dystroglycan, 

1-syntrophin, laminin 1 and 2, perlecan and others, a molecular scaffolding complex 

(dystrophin–dystroglycan complex) that binds to OAPs and links various cytoskeletal-

associated proteins [69, 70]. This protein complex is required to provide optimal BBB 

properties, as the deficiency in one of its members, glial- -dystrobrevin, leads to an increase in 

BBB permeability, water retention and can cause progressive brain oedema. This phenotype is 

associated with the loss of OAPs and the formation of intracellular vacuoles in astrocyte end-

feet. These defects are thought to modify astrocyte-endothelial interactions and cause a 

deregulation of TJ molecule expression [71]. However, Haj-Yasein et al. [72] have 

demonstrated that the absence of AQP4 in astrocytes significantly reduces CNS water intake 

and consequently, brain oedema, using a stroke model in AQP4 knockout (KO) mice. It is worth 

pointing out that these animals have an intact BBB, unlike -dystrobrevin-deficient mice. These 

studies highlight the inherent complexity of the dystrophin–dystroglycan complex in regulating 

BBB properties.  

A growing body of evidence points towards the critical role of astrocytes in inducing BBB 

features and functions by promoting the proper expression and assembly of intermolecular 

junctions [33, 73], transporters (permeability glycoprotein 24 (Pgp24), glucose transporter 1 

(GLUT1), etc.) [74], and enzymatic pathways [75, 76]. Studies have also convincingly 

demonstrated that astrocyte-secreted factors, including VEGF, TGF- , glial-derived 

neurotrophic factor (GDNF), FGFs, and angiopoietin-1 (ANG1), are at least partly responsible 

for modulating BBB functions [77, 78]. Angiopoietins bind BBB-ECs via the tyrosine kinase 

Tie-2 receptor. Specifically, ANG1 participates in angiogenesis and vascular homeostasis by 

upregulating the expression of TJs, thereby reducing EC permeability [79, 80]. Similarly, FGFs 

promote BBB-EC tightness by regulating catenin VE-cadherin interactions. Murakami et al. 

[81] have demonstrated that FGF blockade triggers VE-cadherin internalization, which leads to 

a loss of BBB integrity. FGFs presumably act by downregulating VEGF downstream signalling, 

thus preventing a destabilization of AJs. VEGF is primarily known as a pro-angiogenic factor 

that promotes the growth of ECs through VEGFR-1, -2 and as such, can disrupt the BBB [82]. 

Conversely, GDNF has been shown to decrease vascular leakage by significantly increasing the 

trans-endothelial electrical resistance (TEER) of BBB-ECs via an upregulation of claudin-5 
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expression. Although astrocytes are the main source of GNDF, pericytes have also been shown 

to secrete it [83, 84]. Finally, of all astrocyte-secreted factors, TGF-  is undoubtedly the most 

studied and paradoxically one of the least well-understood molecules. This pleiotropic cytokine 

is secreted by, and acts on a wide variety of cell types. It is involved in a plethora of cellular 

processes, including apoptosis, wound healing, embryogenesis, cell proliferation and 

differentiation [85-89]. Although TGF-  was originally regarded as an anti-inflammatory 

cytokine, mainly because of its role in promoting regulatory T cell functions, we now know that 

it also drives the differentiation of pro-inflammatory Th17 cells [90]. Emerging evidences 

highlight the dual role of TGF-  and its increased expression in several neuroinflammatory 

diseases, including multiple sclerosis (MS) [89], Alzheimer’s disease (AD) [91] and stroke [92]. 

TGF-  has a neuroprotective role in the developing CNS through its effects in modulating the 

expression of Pgp efflux transporter on BBB-ECs and astrocyte end-feet, thereby restricting the 

penetration of xenobiotics into the CNS [93]. In a recent study, Pgp expression was shown to 

be significantly downregulated by BBB-ECs within the inferior colliculus following chemically 

induced focal astrocyte-microglial cell death. During the subsequent repopulation phase, a 

prolonged astrogliosis was observed in the affected area, while Pgp expression returned to its 

basal level [94]. Assessment of gadolinium and fluorescently labelled-dextran leakage also 

demonstrated BBB integrity disruption. This increase in permeability was maintained till the 

end of the regenerative phase. Altogether, these experiments highlight the role of astrocytes in 

maintaining Pgp and TJ expression in BBB-ECs [94-96]. Many glial factors, including the 

aforementioned ones, play a prominent role in regulating the physiology and functions of the 

BBB during homeostasis. However, they may be differentially modulated in a 

neuroinflammatory context, either to promote tissue repair and prevent inflammation or to 

increase immune cell transmigration and BBB permeability.       
5. Leukocyte Diapedesis across the CNS Barrier 

In neuroinflammatory disorders such as MS, pro-inflammatory encephalitogenic immune 

cells migrate across the BBB to gain access to the CNS and cause disease. This process has been 
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extensively studied over the last three decades and is thought to involve a sequential cascade of 

events [97-101] (Figure 5).   

 

 

Figure 5 – The transmigration cascade. The first step in this cascade of events is termed 

rolling, which initiate the interaction between leukocytes and activated endothelial cells (ECs). 

It is mediated by various selectins and their ligands. Chemokines secreted by the ECs trigger an 

increase in the binding affinity and avidity of integrins for their ligands, which mediates the 

complete arrest of immune cells. This adhesion step is also mediated by a wide variety of cell 

adhesion molecules. The adherent leukocytes then undergo a process called crawling, where 

they move against the blood flow in order to find a suitable area to migrate across the blood-

brain barrier-EC layer. PSGL1: p-selectin glycoprotein ligand 1 / ESL1: E-selectin ligand 1 / 

PECAM-1: Platelet endothelial cell adhesion molecule 1 / ICAM-1,-2: Intercellular adhesion 

molecule 1,2 / JAM-A: Junctional adhesion molecule / ESAM: endothelial cell-selective 

adhesion molecule / ALCAM: activated leukocyte cell adhesion molecule / VCAM: vascular cell 

adhesion molecule / MCAM: Melanoma cell adhesion molecule / VLA-4: very late antigen 4 

(integrin 4 1) / LFA-1: Lymphocyte function-associated antigen 1. Image from Lécuyer et al. 

[31].  

 

Initial contact between blood circulating leukocytes and the vascular endothelium is 

mediated by fluid dynamics. Leukocytes flowing into small capillaries and post-capillary 

venules tend to be off-centered, a phenomenon called margination [102]. This is caused by the 
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aggregation of rapidly flowing red blood cells (RBCs) in the center of blood vessels, as a result 

of their biconcave shape. When immune cells exit capillaries to enter post-capillary venules, 

RBCs push slower leukocytes on the vessel wall, at the blood-endothelium interface, where they 

are then free to probe the surface of BBB-ECs for potential ligands [102-104]. Not only are 

post-capillary venules physically favoured by fluid dynamics as the transmigration site of 

immune cells, but studies have also identified differences between the endothelial cells of post-

capillary venules and the ones forming the rest of the vascular network. Electron microscopy 

studies have shown disorganization in TJ and AJ molecules in post-capillary venule ECs. These 

results corroborated previous data showing that post-capillary vessels cannot completely 

prevent the leakage of exogenous tracers into the perivascular space [105]. Additionally, recent 

work by the group of Dr. Sorokin has demonstrated that CNS post-capillary endothelial 

basement membrane lacks laminin 5, which selectively inhibits immune cell extravasation 

[106, 107]. These findings are substantiating experiments demonstrating the presence of 

different constituents in the venule basement membrane in periphery [108]. Collectively, this 

provides an explanation for the transmigratory tropism of leukocytes towards post-capillary 

vasculature in the CNS.   

 The short initial interaction between BBB-ECs and leukocytes is termed capture, rolling 

or tethering and is mediated by selectins and vascular cell adhesion molecule 1 (VCAM-1), 

expressed on the surface of BBB-ECs, and their respective ligands: carbohydrates and 4-

integrins expressed on immune cells. Slow rolling along the vessels’ lumen allows leukocytes 

to sample chemokines secreted under inflammatory conditions, such as interleukin-8 (IL-8), 

monocyte chemoattractant protein-1 (MCP-1 or chemokine C-C motif ligand 2 (CCL2)), 

regulated on activation, normal T cell expressed and secreted (RANTES or CCL5) and 

interferon gamma-induced protein 10 (IP-10 or chemokine C-X-C motif ligand 10 (CXCL10)) 

[109, 110]. This triggers G-coupled protein signalling and initiates an intracellular cascade that 

leads to integrin clustering and enhances their binding affinity for their ligands, a step called 

activation [111]. Integrin clustering allows adhesion strengthening and facilitates leukocytes 

firm arrest. This step is also mediated by endothelial cell adhesion molecules (CAMs: ICAM-

1, VCAM-1, MCAM, Ninjurin and activated leukocyte cell adhesion molecule (ALCAM)), the 

expression of which is highly upregulated upon inflammatory stimuli that originate from the 
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parenchyma or from the release of pro-inflammatory mediators by leukocytes [55, 112, 113]. 

Integrin/CAM-mediated cell adhesion is followed by crawling of immune cells preferentially 

against the direction of the blood flow to find a permissive site for transmigration [114-116]. 

Intraluminal crawling is dependent on ICAM-1 and ICAM-2 [115]. Of note, under certain 

circumstances, immune cells may adhere directly to BBB-ECs without apparent rolling [112, 

117, 118]. However, it remains unclear whether prior rolling/activation occurred upstream of 

the observation site, or if it is a dispensable step of the leukocyte recruitment cascade. The final 

step of the cascade, diapedesis, is preceded by the formation of a docking structure called 

“transmigratory cup”, whereby endothelial pseudopods reach out and surround the migrating 

leukocytes [119-121]. The existence of transmigratory cups, initially identified in non CNS-

ECs, was confirmed using human and mouse CNS ECs [112, 113, 118]. Diapedesis can occur 

via two independent pathways: paracellularly, where leukocytes migrate in-between adjacent 

BBB-ECs or transcellularly, in which case, the immune cells extravasate directly through 

individual ECs by forming invasive podosomes (Figure 6) [122-124].  
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Figure 6 – Dual cellular pathway of immune cells transmigration. A Immune cell firm 

adhesion can trigger intracellular signalling leading to an increase in BBB-EC contractility, 

which in turn can facilitate diapedesis. B Paracellular immune cell migration pathway showing 

possible interactions between BBB-EC TJ, AJ, TJaCAMs and leukocyte CAMs. C Transcellular 

migration route showing the invagination of the BBB-EC around the immune cell, creating a 

tunnel through the cell body and the mechanisms behind this cellular process (membrane 

internalization and reshuffling, actin polymerization, interaction with integrins/CAMs and their 

intracellular binding partners ezrin/radixin/moesin (ERM)). D The migration of an immune cell 

across the basement membranes on the abluminal side of the BBB-ECs involving the secretion 

of MMP-2 and MMP-9 as well as different integrins and CAMs. Image adapted from Ley, K et 

al. [125].    
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In spite of the increasing knowledge on the mechanisms involved during diapedisis, the 

molecules that dictate whether a leukocyte extravasates via the paracellular or the transcellular 

routes are still ill-defined. [126]. For example, several TJaCAMs (JAM-A, CD99, PECAM-1 

and MCAM) have been detected on both the apical and the basolateral surface of BBB-ECs 

under inflammatory conditions and therefore, could be involved in either transmigration 

processes [127]. One mechanism that was put forward to explain this dichotomy is the 

internalization of the aforementioned molecules in a complex lateral border-recycling 

compartment, whose functions are not fully understood yet but thoroughly discussed by Muller 

et al. [128, 129]. In sharp contrast, TJ and AJ molecules involved in diapedesis, such as ESAM 

and VE-cadherin, are present exclusively in the intercellular space between adjacent ECs and 

thus, could only participate in paracellular migration [129]. However, a study published by 

Riethmuller, C. and colleagues in 2008 has challenged this view by showing that leukocytes, in 

fact, migrated through ECs, albeit in close proximity to the intercellular space, without 

disrupting the continuity of junctions; thereby arguing against the concept of paracellular 

transmigration [130].  In a disease context, pro-inflammatory leukocytes can contribute to BBB 

disruption and increase its permeability by virtue of the cytokines they release [55, 98, 128]. In 

addition, transendothelial leukocyte migration can itself perpetuate the inflammatory cascade 

by favoring subsequent site-specific immune cell infiltration [131]. Finally, a number of yet 

unidentified molecules could play an important role in initiating site-specific transmigration. 

Therefore, this aging question stays as of yet unresolved.    

While the transmigration of leukocytes across the BBB has been discussed, there are two 

other less well studied barriers, which can allow the passage of immune cells: the blood-

meningeal barrier (BMB) and the blood-CSF barrier (BCB). The meninges are composed of 

three layers that surround the CNS (dura mater, arachnoid mater and pia mater) and contain the 

CSF located within the subarachnoid space (Figure 1). Though the meninges were initially 

considered as a simple protective tissue to the CNS, more recent studies have established that it 

is also the site of continual immune surveillance [132]. Leukocyte egress from meningeal blood 

vessels is facilitated by the increased permeability of this barrier as compared to the BBB. 

Further findings using intra-vital live imaging in animals have demonstrated that lymphocytes 

migrate across the BMB prior to the disease onset and get reactivated in the subarachnoid space 
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[116]. Corroborating with these results, spinal cord immune cell infiltration and lesion 

dissemination is usually found to originate from the meninges and progressing toward the 

center. Another point of entry to the CSF is the BCB or choroid plexus, which is also known to 

be more permeable than the BBB. There, leukocytes can migrate from the blood to the ventricles 

and the arachnoid space. As mentioned previously, the blood vessels forming the choroid plexus 

are fenestrated and the barrier is instead created by the ependymal cells surrounding the 

ventricles. Those cells constitutively expressed ICAM-1, VCAM-1 and P-selectins and might 

therefore be a point of entry for patrolling T lymphocytes in homeostatic conditions and pro-

inflammatory encephalitogenic lymphocytes during neuroinflammation [6, 133].  

  

6. Glial Influences on the Blood-Brain Barrier during Neuroinflammation 

The role of gap junctions 

A common denominator of many neurological diseases is the loss of BBB integrity and the 

presence of immune cell infiltrates in the CNS. However, it remains unclear whether BBB 

dysfunction precedes immune cell trafficking, or if it is a consequence of peripheral immune 

cell activation. While the migration process itself can modify the characteristics of leukocytes 

and that of BBB-ECs [134-136], astrocytes and microglia also play fundamental roles in 

regulating leukocyte effector function, either directly or via the modulation of BBB-EC 

phenotype. Our group has shown that the loss of BBB integrity associated with a dysregulation 

of TJ molecules occurs early during lesion formation and coincides with perivascular 

astrogliosis and upregulation of endothelial CAMs. These findings suggest that BBB disruption 

precedes any overt CNS immune cell infiltration and might be a direct consequence of glial cell 

activation [137]. Small molecules involved in cell signalling and metabolism can spread rapidly 

through the continuous astrocyte network formed by gap junctions, and also referred to as the 

astrocytic syncytium [138, 139]. This network allegedly also serves to coordinate effectively 

and unify the immune response to stimuli, either to maintain homeostasis or to propagate pro-

inflammatory signals (Figure 4) [140]. As such, this mechanism might be implicated early 

during lesion formation. However, evidence against this hypothesis also exists: Brand-Schieber 

et al. demonstrated a significant decrease in expression of connexin 43 in astrocytes within 
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inflammatory lesions during experimental autoimmune encephalomyelitis (EAE), an animal 

model of MS [141]. It remains unclear whether this decreased expression translates into loss of 

function, and if it precedes focal inflammation. Another study has shown that the absence of 

astroglial connexin 43 promotes the recruitment of leukocytes via the activation of BBB-ECs 

(upregulation of CAM expression and chemokine secretion), effectively compromising CNS 

quiescence [142]. Although the absence of connexin 43 is associated with a progressive 

weakening of the BBB, the immune cell infiltration was not the result of an early BBB 

breakdown or glial cell activation in these KO animals. Unlike in other neuroinflammatory 

conditions, the immune cell response within the CNS of these animals was efficiently and 

rapidly controlled [142]. This study demonstrates an essential role for connexin-43 in 

maintaining CNS homeostasis, but also reveals that its absence does not, by itself, trigger a 

chronic autoimmune reaction. Furthermore, another study from the same group reports a 

significant loss of AQP4 and -dystroglycan in astrocyte end-feet, associated with a disrupted 

BBB and brain oedema in mice deficient for astrocytic expression of connexin 43 [143]. These 

findings are in agreement with several studies which correlated CNS inflammation with 

impaired segregation of AQP4 at the astrocyte end-feet, as well as a disruption of dystrophin–

dystroglycan complex; both  involved in the regulation of brain water uptake [144]. On the other 

hand, another study demonstrated that the loss of both connexin 43 and 30, in double KO mice, 

resulted in a much worse phenotype, namely widespread white matter pathology (oedema and 

vacuolation of astrocytes and oligodendrocytes) accompanied with region-specific astrocytic 

abnormalities [145]. Yet, it is unclear whether the modulation of connexin and/or OAPs 

expression during neuroinflammation is beneficial or detrimental for disease resolution. In fact, 

reactive astrocytes can either elicit a pro- or an anti-inflammatory response.  

 

The role of anti-inflammatory astrocyte-secreted molecules 

Our group has recently uncovered the critical role of astrocyte-secreted Sonic hedgehog 

(Shh) in dampening CNS inflammation. We showed that Shh, which expression is upregulated 

upon inflammatory challenge, alleviates neuroinflammation via activation of the signal 

transducer Smoothened (Smo), transcription factors of the Gli family and the Shh receptor 
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Patched-1 (Ptch-1) expressed by BBB-ECs. BBB-ECs treated with Shh showed a reduced 

expression of CAMs, a decreased chemokine secretion and an increased TEER. In addition, in 

vivo permeability experiments performed on endothelial-specific Smo KO mice revealed a 

significant increase in BBB permeability that correlated with a deregulated expression of TJs 

and disrupted BMs, as compared to WT animals. [23]. We further recently demonstrated that 

Netrin-1 is a downstream effector of Shh that promotes BBB phenotype and functions during 

homeostasis and inflammation, via an autocrine signalling pathway. Netrin-1 treatment during 

EAE significantly reduced BBB disruption by upregulating endothelial junctional protein 

expression, while alleviating the clinical and pathological indices of disease. Aside from its 

ascribed role of promoting BBB formation, the hedgehog pathway acts with Netrin-1 as an 

important molecular repressor of CNS inflammation, while promoting BBB repair and integrity 

[146].  

In order to control inflammation and promote homeostasis, astrocytes actively internalize 

glutamate and produce metabolizing enzymes and antioxidants, thus playing an important role 

in scavenging reactive oxygen species (ROS) and extracellular glutamate [147]. In a pro-

inflammatory environment, activated astrocytes also selectively induce Toll-like receptor-3 

(TLR3), which mediates the secretion of anti-inflammatory cytokines and neurotrophic factors 

[148]. Moreover, astrocytes can secrete angiotensinogen (AGT): a BBB-promoting factor that 

is cleaved into angiotensin-II, who then binds to type 1-angiotensin receptors expressed on 

BBB-ECs. Triggering this signalling cascade was shown to tighten the BBB via phosphorylation 

of occludin and its mobilization into intercellular lipid raft microdomains. In MS lesions, the 

expression of AGT by perivascular astrocytes is downregulated in a pro-inflammatory cytokine-

dependent fashion, and is paralleled with a decreased expression of occludin on BBB-ECs. 

These findings were confirmed in AGT deficient animals, highlighting the ability of reactive 

astrocytes to contribute to BBB breakdown during neuroinflammation [34].  

 

The role of VEGF 

In contrast to AGT, several other astrocyte-secreted factors have been reported to promote 

inflammation in the CNS. Amongst them, VEGF has the capacity to disrupt the integrity of the 
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BBB by modulating the expression of junctional molecules, including VE-cadherin, claudin-5 

and occludin; therefore, promoting immune cell migration into the CNS. The secretion of IL-

1  by activated microglia can also trigger the release of VEGF and thymidine phosphorylase 

(TYMP) by astrocytes [149, 150]. TYMP produces 2-deoxy-D-ribose which, along with VEFG, 

disrupts TJ proteins and increase BBB permeability. Both factors are also driving transcriptional 

pathways that result in the production of angiogenic and permeability genes [151]. However, it 

should be noted that VEGF can trigger independent pathways depending on which side of the 

BBB-ECs it is being secreted. A group has shown that the presence of VEGF on the abluminal 

side triggers signalling from VEGFR2, which in turns increase BBB permeability via p38. On 

the other hand, luminal VEGFR1 is activated by circulating factors and initiates Akt signalling 

pathways to promote cytoprotection. This highly polarized expression of VEGF receptors was 

found on CNS microvasculature, but not in peripheral vessels; illustrating the importance of 

BBB-ECs’ polarity in responding to inflammatory cues originating from the blood or 

parenchymal tissue [152]. 

Apart from its direct role on the BBB, VEGF is also known to upregulate the surface 

molecule ephrinB2 on different cell subsets [153]. EphB receptors and ephrinB ligands are 

preferentially expressed by arterial ECs, but also by smooth muscle cells and pericytes [154, 

155]. EphB2 was recently shown to be essential during blood vessel assembly suggesting a 

possible link between astrocyte-controlled angiogenesis, VEGF and EphB2-ephrinB2 [156]. 

Like VEGF, ephrins are also involved in neuroinflammation, particularly in leukocyte 

trafficking. They do so by acting as adhesion molecules or by regulating their activity. They 

have also been shown to modulate directly the activity of immune cells. For example, ephrinB2 

was reported to be involved in T cell co-stimulation [80]. Our group is currently working on a 

study demonstrating that pro-inflammatory Th17 cells express high levels of ephrinB1 and 

ephrinB2, which facilitate their transmigration into MS lesions. This study also provides 

evidence that these ephrins are essential for Th17 differentiation and pathogenicity in the context 

of neuroinflammation [157]. 

VEGF, along with FGFs, can also indirectly promote neuroinflammation by modulating the 

secretion of angiopoietin-2 (Ang-2) by BBB-ECs. Ang-2 is synthesized and stored, like multiple 

other pro-inflammatory factors (IL-8, selectins), in endothelial granules called Weibel-Palade 
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bodies that are involved in the rapid response of ECs to external stimuli. Recent experiments 

have demonstrated that Ang-2 deficient animals are unable to trigger a prompt inflammatory 

response following infection. An in-depth analysis of the phenotype of Ang-2 KO mice revealed 

that Ang-2 is involved during the adhesion process, but does not affect the rolling ability of 

activated leukocytes. Ang-2 might also increase BBB permeability by regulating endothelial 

junctional molecules and integrins that bind to the matrix [80] and potentiate endothelial 

responses to pro-inflammatory cytokines, thus promoting the upregulation of CAMs [158].  

 

The role of pro-inflammatory cytokines 

Aside from leukocytes, which are the main source of cytokines in the inflamed CNS, 

activated astrocytes and microglia are known to secrete an array of pro-inflammatory molecules, 

including ROS, IL-1 , IL-6, and IL-17A, to name a few. Meeuwsen et al. reported the 

production of IL-17A (also known as IL-17) by stimulated astrocytes, although the relevance of 

their findings was not clear at the time [159]. Later, Tzartos et al. detected IL-17 mRNA and 

protein in perivascular lymphocytes but also in astrocytes and oligodendrocytes found within 

active MS lesions; clearly demonstrating that IL-17A is secreted by a broad spectrum of 

neuroglial cells, and that it might be implicated in pathways far more complex than previously 

anticipated [160]. More recently, Zimmermann et al. have shown, using glial fibrillary acidic 

protein (GFAP)-driven IL-17A transgenic mice, that overexpression of IL-17A by astrocytes 

alone can activate glial cells, but is not sufficient to cause parenchymal infiltration, 

demyelination or neurodegeneration. However, lipopolysaccharide (LPS)-induced endotoxemia 

in these animals triggers enhanced microglial activation along with increased pro-inflammatory 

cytokine secretion, as compared to controls [161]. Another study has demonstrated that IL-17A 

could promote neuronal injury in a dose-dependent manner in vitro [162]. Furthermore, 

microglia, and to some degree astrocytes, are also known to express IL-17A and IL- 17C 

receptors (IL-17RA, IL-17RC), which upon intracellular signalling can potentiate tumor 

necrosis factor (TNF) effects, and trigger the release of pro-inflammatory cytokines and a wide 

range of chemokines involved in leukocyte trafficking, such as CXCL1 (GRO ), CCL2 (MCP-

1), CCL3 (macrophage inflammatory protein 1  (MIP-1 ), CCL20 (MIP-3 ), CXCL2 (MIP-



 
 

24 

2), CXCL9 (monokine induced by gamma interferon (MIG)), CXCL10 (IP-10) and CXCL11 

(IP-9) [163-168]. Of note, MCP-1 was shown to increase BBB permeability by binding BBB-

EC expressed chemokine C-C motif receptor 2 (CCR2), which in turn activates small GTPase 

Rho and Rho kinases to trigger the reorganization of the actin cytoskeleton and redistribution of 

TJ proteins [169]. Conversely, IL-17A was also shown to displays CNS protective function by 

inducing neuronal repair via the expression of GDNF, brain-derived neurotrophic factors 

(BDNF) and nerve growth factors (NGF). It is worth pointing out that whereas human IL-17A 

can bind both IL-17RA and IL-17RC receptors, mouse IL-17A only binds IL-17RA [170]. ECs, 

and even neurons, also upregulate their expression of IL-17RA receptors in the inflamed CNS. 

We have shown that IL-17RA is expressed at high levels on blood vessels within active MS 

lesions and that IL-17 increases BBB permeability in a dose-dependent manner, by disrupting 

TJ molecules. Similar to its effect on glial cells, IL-17 induces the secretion of pro-inflammatory 

cytokines and chemokines by BBB-ECs (IL-6, CCL2 and CXCL8), therefore, promoting 

leukocyte recruitment into the CNS [135]. 

IL-6 is a pleiotropic cytokine produced by astrocytes [171], brain endothelial cells [109] 

and microglia [171, 172] that is subjected to autocrine regulation. IL-6 expression can be 

induced by IL-17 alone or in synergy with TNF or IL-1 . IL-6 has both neurotrophic effects 

(promotes neuron survival via BDNF [173]) and pro-inflammatory functions [174]. Therefore, 

both glial- and endothelial-produced IL-6 can influence BBB properties by modulating the 

expression of different CAMs, cytokines and chemokines [175]. IL-6 also induces the 

differentiation of naïve T cells into Th17 lymphocytes, in the presence of TGF- . Th17 

lymphocytes secrete IL-17, who acts in an autocrine feedback loop to stimulate the production 

of IL-6 by astrocytes. Within the CNS, Th17 lymphocytes can induce the expression of pro-

inflammatory mediators by astrocytes and microglia through a contact-dependent manner, thus 

promoting myelin and neuronal damage [170, 176]. 

Another cytokine of the IL-6 family, oncostatin M (OSM) is highly produced by peripheral 

blood mononuclear cells (PBMC) obtained from MS patients [177]. It is also expressed by 

activated astrocytes and microglia surrounding MS lesions; suggesting that these cells might be 

an important endogenous cerebral source of OSM, in compromised CNS. OSM alone or in 

synergy with TNF has been shown to stimulate the expression of ICAM-1 and the production 
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of MCP-1 and IL-6 by BBB-ECs [178]. It can also act as a positive regulator of IL-6 expression 

by astrocytes [174]. More recently, OSM was also shown to decrease the TEER of rat BBB-

ECs and impact on the integrity and organization of TJ molecules such as ZO-1 and claudin-5 

[179]. Therefore, IL-6 family cytokines, secreted by astrocytes and microglia during 

neuroinflammation, contribute directly and indirectly to leukocyte trafficking across the BBB. 

Reactive astrocytes and activated microglia are also known IL-15 producers. This pro-

inflammatory cytokine induces the expression of hyaluronan on ECs, which in turn allows the 

extravasation of activated T lymphocytes into the CNS via a CD44-dependent adhesion cascade 

[180]. ECs themselves can secrete IL-15 and therefore, directly enhance the capacity of T 

lymphocytes to migrate into the CNS. IL-15 can also increase the avidity of lymphocyte 

function-associated antigen-1 (LFA-1) integrin to its ligand and affect the motility of immune 

cells [181]. Most notably, IL-15 is known to be involved in the activation of natural killer (NK) 

cells and can promote clonal expansion of NK-like CD4+ T lymphocytes, which exert 

cytotoxicity towards vascular ECs [182]. Another way by which IL-15 is implicated in 

neuroinflammation is by virtue of its role in maintaining and activating cytotoxic CD8+ T 

lymphocytes, known to contribute to MS pathogenesis. Saikali et al. have demonstrated that 

following stimulation with IL-15, CD8+ T lymphocytes up-regulated lytic enzyme production, 

NKG2D expression and antigen-directed cytotoxicity, which increased their ability to kill glial 

cells and migrate across BBB-ECs [183]. Our group has recently confirmed these data in a study 

which identified MCAM as a marker of encephalitogenic CD8+ T lymphocytes [184]. A report 

by Schneider et al. also shows that MS patients have elevated levels of IL-15 in their blood, as 

compared to healthy controls, and demonstrates that MS patient immune cells are more 

susceptible to the effects of this cytokine [185]. The fact that the majority of astrocytes and 

microglia present within demyelinating lesions express high levels of IL-15 underscores the 

critical role for IL-15 orchestrating multiple aspects of chronic inflammation in the CNS [183].  

 

The role of ROS 

Activated microglia produce ROS in response to NADPH oxidase activation. ROS are in 

part responsible for oligodendrocyte degeneration following oxidative damage during 
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neuroinflammation [186]. While they can cause direct damage, ROS can also increase BBB 

permeability by activating the PI3K/ATK pathway and by decreasing the expression of VE-

cadherin, occludin and claudin-5 in BBB-ECs [187-189]. By doing so, the release of ROS 

facilitates leukocyte transmigration and allows leakage of plasma protein into the CNS, 

including fibrinogen. In a recent study, Davalos et al. have demonstrated a direct effect of 

fibrinogen on the activation state of microglia using two-photon live imaging. They observed 

an increased motility of microglia to form perivascular clusters prior to the development of CNS 

lesions [190]. Collectively, these data point to a feed-back/amplification mechanism between 

ROS production by microglia, BBB dysfunction, leakage of fibrinogen into the CNS and further 

activation of microglia, leading to enhanced ROS production. While we can speculate that, in 

experimental models of neuroinflammation, peripheral inflammation causes BBB leakage, 

which then induces activation of perivascular glial cells, the situation might be different in a 

disease context. In human neuroinflammatory diseases, it remains unclear whether glial-

secreted inflammatory mediators induce the initial BBB breakdown, which causes the leakage 

of serum proteins that in turn promote glial cell activation in a positive feedback loop. The 

general consensus today is that microglia activation upregulates CAMs on the surface of brain 

ECs and compromises the integrity of the BBB in neurodegenerative disorders such as 

Alzheimer’s disease and in MS [191-195].  

 

The role of MMPs 

Once they have crossed the BBB, infiltrating leukocytes accumulate in the perivascular 

space between the two BMs (Figure 2). In order to gain access to the CNS parenchyma, pro-

inflammatory leukocytes need to secrete matrix metalloproteinase-2 (MMP-2) and MMP-9, as 

well as extracellular matrix metalloproteinase inducer (EMMPRIN), which are required to 

cleave fibronectin, laminin and dystroglycans that form the parenchymal BM [196, 197]. As 

such, the parenchymal BM and the astrocyte end-feet constitute an additional physical barrier 

that renders the BBB more selective and tightly controlled, especially in an inflammatory 

environment. Microglia can also increase BBB permeability through secretion of MMPs (MMP-

1, -2, -3, -9 and -19), which significantly destabilize the parenchymal BM. Microglial-produced 
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MMPs have been detected within pre-active and active MS lesions, which suggest their possible 

involvement in early disease pathogenesis [198].  

In spite of the remarkable increase of knowledge regarding the role of astrocytes and 

microglia during CNS inflammatory responses, further studies are needed to better understand 

their involvement in promoting leukocyte transmigration and BBB dysfunction, as well as their 

protective role in supporting cellular regeneration and CNS repair. It is becoming increasingly 

clear that the concomitant expression of multiple molecular and cellular effectors is required to 

initiate and sustain neuroinflammation, providing a mere glimpse into the complexity of the 

neuro-immune-glial crosstalk.      

 

2. Leukocyte Populations 

While leukocytes have been briefly mentioned in previous paragraphs, the following 

section will outline the different subsets of leukocytes and briefly discuss their role during an 

immune challenge.   

1. Lymphocytes 

Th1 Lymphocytes 

The distinction between two different subsets of T helper cells was first made in 1986 in a 

now seminal study published by Mosmann, T.R. et al. [199]. It was proposed that CD4+ T 

lymphocytes could differentiate into a Th1 subset specialized in viral and intracellular pathogen 

clearance via the secretion of IFNγ or into a Th2 subset mediating humoral immune response 

and immune reaction against extracellular pathogens via the production of IL-4 [200]. 

Subsequent studies have also shown that Th1 differentiation is dependent on IL-12, which via 

its surface receptor, induces STAT4 regulated genes. Those genes, in turn, induce STAT1, the 

Th1-specific transcription factor Tbet and promote the secretion of IFNγ [201, 202]. Th1 cells 

are also known to secrete TNF and IL-2 following activation. Together these cytokines play a 

role in macrophages activation and cell cytotoxicity [203].  
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Th2 Lymphocytes 

As previously mentioned, IL-4 is one of the major cytokines secreted by Th2 lymphocytes 

along with IL-5, IL-10, IL-13 and IL-25, which regulate the innate immune system. IL-4 also 

drives Th2 lymphocyte differentiation in a positive autocrine/paracrine feedback loop [204]. 

Mast cells and basophils can also produce high levels of IL-4 upon activation and are thus 

essential in priming Th2 cells against allergens and helminths [205]. An alternative activation 

pathway involves OX40-l and the Notch ligands Jagged-1 and Jagged-2 on activated dendritic 

cells (DC) [206]. In either pathway, the transcription factor GATA-3 is induced and promotes 

Th2 differentiation, while also upregulating itself in a positive feedback loop [207].  

 

Th3 Lymphocytes 

Very little is known about Th3 lymphocytes, although they appear to be involved in the 

protection of gut mucosal surfaces from unwanted immune responses toward ingested antigens. 

In this regard, they are closely related to the other regulatory cells, such as Tr1 lymphocytes 

(discussed later), which are responsible for oral tolerance [208]. They mediate an anti-

inflammatory environment capable of inhibiting Th1 and Th2 lymphocytes by secreting 

primarily TGF-β but also to some extent IL-10 [209]. In this context, TGF-β is known to 

promote antibody class switch to IgA, which is essentially a non-inflammatory immunoglobulin. 

IgA does not trigger phagocytosis and it is a poor activator of the classic complement system. 

In vitro studies have also demonstrated that the differentiation of Th3 lymphocytes is enhanced 

by TGF-β, IL-4 and IL-10. Further findings suggest that Th3 lymphocytes can be differentiated 

from natural T regulatory lymphocytes (nTregs); however, it is still unclear whether Th3 

lymphocytes and induced Tregs share the same lineage due to the absence of specific markers 

[210]. 
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Th9 T Lymphocytes 

IL-4 and TGF-β were found to promote the differentiation of naïve murine CD4+ T 

lymphocytes into IL-9-producing (Th9) T lymphocytes; however, no particular chemokine 

receptors have been linked to this potential T lymphocyte subset. On the other hand, recent 

studies have shown that PU.1 could be the unique transcription factor of Th9 cells [211]. Their 

exact function has yet to be completely determined, but they are thought to be involved in 

immunity against helminthic infections and they might promote inflammatory diseases via mast 

cells activation [212, 213]. They have also been linked to ulcerative colitis [214] and rheumatic 

diseases [215]. 

 

Th17 Lymphocytes 

Although IL-17 (IL-17A) has been known as an important pro-inflammation molecule since 

the 1990s, the term Th17 has only been coined in 2005. The distinct nature of Th17 lymphocytes 

was established following the differentiation of naïve T lymphocytes into IL-17-secreting cells 

using only IL-23 in the presence of antigens and splenic feeder cells. These newly transformed 

cells were also not dependent on previously known Th1 or Th2 specific transcription factors 

[216, 217]. This major discovery was the direct consequence of previous studies that discredited 

Th1 lymphocytes as being solely responsible for some autoimmune diseases, such as MS. 

Indeed, Th1 response had been associated with autoimmunity since their discovery, as IFNγ 

molecules found in lesions usually correlated with the extent of the disease [218]. Further studies 

even showed that Th1 lymphocytes specific for cognate CNS antigens could adoptively transfer 

EAE into naïve host. However, the Th1 disease-driven hypothesis was challenged when mice 

lacking IL-12p35 [219], IL-12β2 receptor [220], IFNγ or IFNγ receptor were not protected from 

EAE, but rather developed a more severe disease [218]. Furthermore, at that time, a novel 

cytokine chain, p19, was discovered to heterodimerize with the p40 chain of IL-12. This novel 

cytokine was later named IL-23. Based on these new evidences, it became clear that disrupting 

p40 would affect not only IL-12, but also IL-23 pathways. The disease susceptibility of IL-

23p19 and IL-12p35 deficient mice was therefore assessed and it was demonstrated that IL-23, 

but not IL-12 was necessary to induce EAE [221]. Two years later, the discovery of RORγt, a 
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transcription factor promoting Th17 genes, confirmed the independent nature of Th17 

lymphocytes from the Th1 lineage [222].  

In mice, TGF-β and IL-6 have been shown to be essential for the differentiation of naïve T 

cells into activated Th17 cells [223]. In humans, IL-6 and low level of TGF-β seems to be 

required (although debated [224, 225]), while the addition of IL-1β induces a double positive 

phenotype (IL-17+/IFN-γ+) [224]. Even though IL-23 was first thought to be a key Th17 

differentiation cytokines, the lack of receptors on naïve T lymphocytes demonstrated otherwise. 

It has since been linked to the stabilization of the phenotype [226]. As a result, we know that 

the combined signals of TCR binding, co-stimulatory molecules and cytokine receptors induce 

T-bet, RORγt and RORα. In recent studies, the latter was reported to play a similar role, although 

not identical to RORγt, suggesting its implication in Th17 differentiation might be necessary 

[227]. Confirming these results, another study demonstrated that RORγt deficiency alone 

attenuated, but did not abolish the secretion of IL-17, while RORα and RORγt double-KO 

completely inhibited the generation of Th17 [228]. Together, these transcription factors induce 

Th17 lymphocyte-lineage genes and trigger the production of IL-17, IL-17F, IL-21, IL-22, 

GM-CSF and under some conditions IFNγ.  

The high interest given to Th17 lymphocytes in the last few years, and especially in 

autoimmune diseases such as MS, is mainly due to their implication in the pathogenesis of 

numerous inflammatory diseases. Dr. Prat’s laboratory has also previously demonstrated that 

IL-17 and IL-22 were involved in the disruption of junctional molecules at the level of the blood-

brain barrier (BBB) during EAE. Furthermore, Th17 lymphocytes were shown to be very 

efficient at crossing the BBB and promoting directly brain lesions by secreting granzyme B or 

indirectly through the recruitment of effector lymphocytes [135]. Two years later, double 

positive Th17 lymphocytes were shown to preferentially cross the BBB, accumulating in the 

perivascular region in both EAE and MS [229]. However, adoptive EAE transfer of T 

lymphocytes deficient for IL-17A or IFNγ was shown to induce similar disease than the transfer 

of WT T lymphocytes [230]. By contrast, GM-CSF deficient T lymphocytes are incapable of 

inducing EAE and invading the CNS [231] and GM-CSF KO mice are resistant to EAE 

induction by MOG immunization [232, 233]. Corroborating these results, a recent study 
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demonstrated that deleting the GM-CSF receptor on CCR2+Ly6Chi monocytes prevented the 

induction of EAE, whereas the deletion of the receptor on dendritic cells (DCs) or neutrophils 

did not modify the course of the disease [234].  

 

Th22 T Lymphocytes 

Th22 lymphocytes have only been recently described following the identification of a 

subset of IL-22-secreting T lymphocytes distinct from Th17 lymphocytes [235]. Analogous to 

Th17 lymphocytes, experiments have shown the involvement of IL-6, but also TNF in the 

differentiation of Th22 lymphocytes [236]. However, as expected with in vitro studies, other 

groups have induced Th22 lymphocytes using other combinations of cytokines [235]. The exact 

cytokine cocktail has therefore yet to be completely determined. Borrowed from the Th17 

studies and further studied in a Th22 context, the aryl hydrocarbon receptor (AHR) is a ligand 

dependent transcription factor that translocate into the nucleus and subsequently promotes IL-

22 secretion [237]. IL-22 receptors are widely distributed in tissues, but IL-22 is a cytokine that 

acts mainly on epithelial cells. Therefore, Th22 T lymphocytes are presumed to play an 

important role in skin homeostasis and in the pathogenesis of skin diseases [236]. 

 

Naturally Arising Treg (nTreg) 

Tregs are the most studied regulatory T lymphocytes. They have been discovered by 

comparing WT mice to animals with a mutated transcription factor forkhead box P3 (Foxp3). 

The phenotype of the transgenic animals (Scurfy mice) is characterized by an extensive multi-

organ immune infiltration and drastically elevated pro-inflammatory cytokines level [238]. 

nTreg cells were further characterized as expressing CD4, high levels of CD25 and Foxp3 (and 

low levels of CD127 in humans). During the same year, Treg lymphocytes were identified in 

human peripheral blood and their ability to suppress T helper and cytotoxic cell proliferation 

was assessed in vitro [239]. Like other T lymphocytes, Treg express  TCR and the co-

stimulatory molecule CD28. They are also activated in a similar fashion via the interaction with 

the major histocompatibility complex class II (MHC-II) and B7 molecules, following which 
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they secrete anti-inflammatory cytokines (IL-10, TGF- ). They can also act via the secretion of 

granzymes and perforins or via the CTLA-4 inhibitory co-stimulator on their surface. nTreg 

lymphocytes can therefore regulate both antigen-presenting cells (APCs) and effector T 

lymphocytes in a contact-dependent manner [240]. Naturally arising regulatory T lymphocytes 

are, as their name implies, developing naturally in the thymus and reside primarily in secondary 

lymphoid organs, where they express CCR7 and CCR6 chemokine receptors [241].  

 

Induced Treg (iTreg) 

On the other hand, adaptive or inducible Tregs exit from the thymus as naïve single-positive 

CD4 T lymphocytes. Once in the periphery, they differentiate into CD45RO, CD25 high and 

Foxp3 positive Tregs following antigenic stimulation in the presence of self-antigens and 

specialized immunoregulatory cytokines, such as IL-2, TGF-β, IL-10 and IL-4 [242, 243]. It 

was also demonstrated that iTregs can be induced by commensal immunomodulatory molecules 

such as polysaccharide A from B. fragilis. These cells were shown to effectively produce IL-10 

during bacterial colonization [244] and to possess a shorter doubling time when compared to 

memory T helper lymphocytes. However, the same study also demonstrated that they are more 

prone to apoptosis [240]. Therefore, it is thought that iTregs are the primary cells responsible 

for immunoregulation at the sites of inflammation. In this context, iTregs are continuously 

stimulated by antigen presentation and the presence of growth factors facilitates their survival 

[242, 243].  

 

Tr1 

Tr1 cells were first discovered while studying colitis [245]. These T regulatory cells bear 

resemblance to other Treg lymphocytes, however, they do not express Foxp3 and possess only 

low amount of CD25 molecules on their surface [246]. More recently, they were shown to 

express the surface markers CD49b and lymphocyte activation gene (LAG-3), which facilitate 

their identification in situ but is not unique to this T lymphocyte subset. They have been shown 

to require IL-10 during their differentiation process and they, in turn, secrete high quantity of 
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IL-10 and to some extent TGF-β [247]. However, despite the discovery of these cells at the turn 

of the millennium, no specific transcription factor has yet been identified. We know that Tr1 

cells are mostly found in the gut mucosa and are linked to oral tolerance and T lymphocyte 

immunoregulation in the context of intestinal flora [248]. 

 

Cytotoxic T Lymphocyte (CTL) 

CD8+ T lymphocytes are cytotoxic cells from the adaptive immune branch. Like their 

CD4+ T lymphocytes relative, the vast majority of CTL express αβ TCR on their surface, while 

the rest express γδ TCR [249]. Their activation is thus regulated in a contact-dependent manner 

via the MHC-I/antigen complex present on APCs and on most of the cells in the body (target 

cells). Th1 CD4+ T lymphocytes are also known to provide them with indirect support via the 

secretion of cytokines [250]. As with other T lymphocyte subsets, CD8+ T lymphocytes possess 

a specific transcription factor called eomesodermin (Eomes) [249, 251]. It controls genes 

associated with the cytotoxic role of these cells. In order to accomplish their functions, CD8+ T 

lymphocytes are secreting perforins, which form pores in the target cells and allow granzymes 

to enter the cytoplasm. These enzymes mediate the induction of caspase cascades leading 

ultimately to program cell death.  An alternative pathway using cell surface FAS ligands can 

also induce target cell apoptosis following its interaction with FAS receptors. Using their 

cytotoxic potential, CD8+ T lymphocytes are therefore responsible for controlling viral 

infection and tumor cells, but in the CNS of MS patients, these cells are known to attack directly 

oligodendrocytes and neurons [250, 252].  

B Lymphocytes 

While B cells have previously been characterized as antibody-secreting lymphocytes 

(plasma cells), studies have demonstrated that they can also act as efficient APCs by presenting 

the peptide that is recognized by their B cell receptor [253]. Furthermore, B lymphocytes can 

modulate the local inflammatory response of both T lymphocytes and myeloid cells through the 

secretion of pro-inflammatory (GM-CSF, IFNγ, IL-6, TNFα and lymphotoxin-alpha) or anti-

inflammatory (IL-10 and IL-35) cytokines [254]. In a disease context, the abnormal presence of 
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antibodies in the CNS parenchyma or in the CSF continues to represent the most consistent 

diagnostic feature of patients with MS (discussed in the MS chapters). Early studies have 

demonstrated the presence of antibodies specific for myelin peptides or for the potassium ion 

channel KIR4.1 in the peripheral blood of MS patients [255-257]. Corroborating with these 

results, others have shown the presence of anti-myelin antibodies inside phagocytic cells within 

MS lesions [258]. However, more recent studies have analyzed the antibodies derived from 

CSF-expended B lymphocyte clones of MS patients and based on those results, concluded that 

autoantibodies may preferentially target neurons and astrocytes [259, 260]. Another debated 

theory around B lymphocytes is surrounding their presence in high number inside meningeal 

follicular-like structures during neuroinflammation [261-266]. Notwithstanding scientists’ 

divergent opinions on this subject, the presence of B lymphocytes in the CNS of MS patients 

and their contribution to disease activity is more widely accepted. In fact, this knowledge as 

stem the development of an anti-CD20 monoclonal antibody called Ocrelizumab, which is 

currently in phase III clinical trials and might soon be marketed as a therapy for MS.  Anti-

CD20 depletes B lymphocytes and substantially limits new disease activity [254], even though 

similar levels of endogenous antibodies can be found in the CSF of patients benefiting from the 

therapy [267]. This suggests that the therapeutic mechanisms of action by which B lymphocyte 

depletion limits new MS relapses are, at least in part, due to the antibody-independent role of B 

lymphocytes. As mentioned above, B lymphocytes can secrete pro-inflammatory cytokines and 

multiple studies have demonstrated that MS patients tend to have increased frequencies of those 

pro-inflammatory immune cells, which are also more readily induced compared to cells from 

healthy controls [268]. Presumably, anti-CD20 treatment reduces overall inflammatory 

mediators, which affects both encephalitogenic lymphocytes and myeloid cells. In fact, B 

lymphocyte depletion studies have demonstrated a reduction in pro-inflammatory T 

lymphocytes in the CNS of treated MS patients [269, 270]. Similarly, using anti-CD20 to deplete 

B lymphocytes after EAE onset in mice significantly reduces disease progression and the 

number of CNS infiltrating leukocytes. This further demonstrates that B lymphocytes contribute 

to EAE pathogenesis even though they do not produce pathogenic CNS targeting antibodies in 

most models [271]. In contrast, B lymphocyte deficient mice were shown to have no remission 

following the initial disease onset. This failure to resolve the ongoing CNS inflammation 
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correlated with the absence of IL-10-producing B lymphocytes [272]. The importance of 

regulatory B lymphocytes to control the immune system was further demonstrated using B 

lymphocyte specific IL-10 KO mice infected with murine cytomegalovirus. With this infection 

model, WT regulatory B lymphocytes were shown to control virus-specific CD8+ T 

lymphocytes responses and plasma cell expansion [273]. Although there is no consensus on the 

targets of IL-10-secreting B lymphocytes, dendritic cells, which are involved in the induction 

of T lymphocyte activation and pathogenic T lymphocytes themselves have been proposed. 

Nonetheless, further research will need to be conducted to identify reliably pro-inflammatory 

and anti-inflammatory B lymphocytes subsets or their progenitors in an effort to target more 

specifically the encephalitogenic immune cells.       

 

Other Lymphocytes 

While many other subsets of lymphocytes exist, they will not be discussed in detailed here 

(NK T lymphocytes, innate T lymphocytes, etc.). Similarly, variations of lymphocytes discussed 

above also exist, such as Tc17 lymphocytes (CD8+ CTL expressing IL-17) and a vast number 

of IL-10-producing cells, which are thought to have transient regulatory effects [274, 275]. 

Finally, while some scientists believe that lymphocytes can be locked in one fate, others argue 

that most if not all T lymphocytes are intrinsically plastic, modifying their functions based on 

the environment surrounding them [276-278]. In any case, it is human nature to categorise and 

catalogue what we discover and therefore, it is likely that the current nomenclature will be 

maintained.     

 

2. Antigen-Presenting Cells 

Monocytes / Macrophages 

Monocytes are innate immune cells of myeloid origin identified in part by their expression 

of CD11b in mice and CD14 and/or CD16 in humans. These cells, found in the blood and 

lymphoid organs, can transform into specialized APCs called macrophages once in the tissue. 
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In an attempt to categorize these cells with a terminology reminiscent of the early T lymphocyte 

nomenclature, macrophages have been divided in two groups: the M1 or pro-inflammatory cells 

and the M2 or anti-inflammatory cells. Although many studies have identified “subset-specific” 

markers [279-281], most scientists agree that these myeloid cells are highly plastic and can adapt 

to their environment [282]. As such, this bi-modal taxonomy is a simple representation of what 

is really a complete spectrum of sub-populations and/or different stages of cell differentiation. 

To mitigate the inherent rigidity of this model, additional subgroups (M2a, M2b, M2c, M4, etc.) 

were defined by different researchers, adding to this still imperfect classification [283]. 

Anyhow, M1 cells have been generally identified as expressing high levels of Ly6C in mice, 

whereas high levels of CD14 and low levels or absence of CD16 is used to characterize this cell 

type in humans (classical monocytes). Once activated, these pro-inflammatory myeloid cells 

also express high level of co-stimulatory molecules (CD80/CD86), reactive oxygen species 

(ROS), nitric oxide (NO) and secrete inflammatory cytokines such as TNF, IL-12, IL-6, TNF, 

IL-1β and IL-23. Conversely, M2 cells, which are believed to be patrolling immune cells 

involved in tissue repair, angiogenesis and tissue remodeling, secrete IL-10, TGF-β, 

glucocorticoids and express the prototypic enzyme arginase-1. They also express high levels of 

CD43, CD206 and low levels of Ly6C in mice, while low levels of CD14 and high levels of 

CD16 have been described in humans (non-classical monocytes). Macrophages respond to 

tissue invasion by external pathogens through the production of pro-inflammatory cytokines but 

also by engulfing the inflammatory stimuli via phagocytosis. To do so, macrophages express 

numerous pattern recognition receptors (PRRs) on their surface, as well as MHC class I and II, 

which are used to present to T lymphocytes their engulfed antigens. Using a complex process 

combining adhesion molecules, co-stimulatory molecules and cytokines, macrophages form 

immune synapses with T lymphocytes and can activate/polarize them, allowing the activation 

of the adaptive division of the immune system [284, 285].  

 

Dendritic Cells  

Dendritic cells (DCs) carry functions similar to macrophages. They express PRRs and MHC 

class I and II on their surface, which makes them highly specialized APCs. As with the 
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monocytes/macrophages, DCs have been divided into two broad categories: conventional 

dendritic cells (cDCs or mDCs for myeloid dendritic cells) and plasmacytoid dendritic cells 

(pDCs). Whereas both mouse subset express CD11c, the prototypic mouse DC marker, the 

characterization of human DCs is somewhat more complex. Both human monocytes and cDCs 

can express CD11b, CD11c, CD13 and CD33, but DCs lack CD14/CD16. Analogous to 

macrophages, other sub-populations of DC have been observed. Human cDCs can be further 

divided into CD1c+ or CD141+ cells, which are homologous to mouse CD11b+ or CD8+ DCs, 

respectively [286]. On the other hand, human pDCs lack CD11b, CD11c, CD13 and CD33, but 

express CD123, BDCA-2 and BDCA-4 [287], whereas mouse pDCs express CD4, 

B220/CD45R, CD209 and Ly6C. Although cDCs and pDCs share similar precursors, the former 

cells are much more efficient at presenting antigens, while the latter produce massive amounts 

of IFN-α [288]. 

Additional non-lymphoid tissue APC subsets have been identified. These cells are usually 

referred to as tissue-resident macrophages and dendritic cells. Langerhans cells are found in the 

skin and mucosa, Kupffer cells in the liver, alveolar macrophages in the lungs and microglia in 

the CNS; each of which express different combinations of markers and perform slightly different 

functions adapted to their environments. Other resident-APCs without specific names, but 

nonetheless with highly important functions, have also been identified: meningeal macrophages, 

which survey the CSF, resident macrophages of the intestine, which maintain mucosal 

homeostasis, etc. [285, 289]. Although both of these immune cell populations are found in 

completely different regions of the body, they both have been implicated in the pathogenesis of 

MS. Indeed, a growing body of evidence suggests that the gut microbiome affects the 

development and the maintenance of the immune system, while being implicated in a range of 

disorders including inflammatory bowel diseases, autoimmune diseases, obesity, cardiovascular 

diseases, etc. [290-295]. The role of the gut microbiota as an MS risk factor will be further 

discussed in the next chapter.      
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3. Multiple Sclerosis 

1. The History of the Disease 

In 1868, Dr. Charcot, a French neurologist, described a neurological disease characterized 

by the presence of demyelinating plaques in the CNS. Adopting a descriptive nomenclature, he 

named the disease “sclérose en plaques”, which can be directly translated as plaques of sclerosis, 

adapted in English as multiple sclerosis [296]. He also observed that patients affected by this 

disease showed intermittent neurological symptoms that varied between individuals and could 

be recurrent. He is generally regarded as being the father of MS clinical diagnosis and the basis 

of his histopathological work is still valid nowadays. In 1942, Dr. Kabat, well know for his work 

on antibodies, demonstrated the presence of gamma immunoglobulins in the CSF of MS patients 

and argued that these oligoclonal bands, as observed by electrophoresis, could help diagnose 

MS patients [297]. More recently, the development of new imaging technology using magnetic 

resonance and the marketing of novel immunomodulatory drugs have facilitated both the 

diagnosis and the treatment of MS. However, even if our knowledge on this illness has increased 

tenfold in the last few years, the cause(s) of MS is still unknown and as a result, it hampers our 

ability to cure the disease.   

 

2. Clinical Aspects of the Disease  

MS is an idiopathic demyelinating disease of the CNS characterized by the presence of 

inflammatory lesions disseminated both in time and space [298]. The loss of myelin sheets 

surrounding neurons slows down the transmission of electrical influx along the axonal 

projections, which in turn causes a large spectrum of symptoms in patients. In addition, the 

increased metabolic demand on the affected neurons, the collateral or direct inflammatory 

damages and the lack of adequate support contribute to Wallerian neuronal degeneration, which 

is the morphological basis of permanent clinical disabilities [299]. Depending on the area 

affected (brain or spinal cord, and their respective subregions), patients can demonstrate sensory 

deficiencies such as tingling, numbness or pain, as well as visual impairment, which is often 
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present during the first episode of neurologic symptoms (often referred to as clinically isolated 

syndrome (CIS)). Motor deficiencies are also a major component of MS symptoms, especially 

due to their inherent impact on the patient’s daily activities. Again depending on the affected 

region and the degree of demyelination, symptoms can vary from a loss in coordination to partial 

or complete paralysis of one or multiple body parts. Gaiting difficulties and spasticity of the legs 

are two of the most recurrent motor deficiencies observed in patients. Finally, psychological and 

cognitive deficits, which are often subtler disabilities and not well represented in the 

measurement methods of MS progression (such as the expanded disability status scale (EDSS)), 

include fatigue (one of the most common symptoms in MS), emotional changes and depression 

to name a few [300, 301].   
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Figure 7 – Graphical representation of the different types of MS disease. Clinically 

measurable/perceived disabilities are shown over the dashed-line. Background/hidden 

disabilities and/or CNS damage are shown below the dashed-line. Copyright Marc-André 

Lécuyer.      

 

Based on clinical observations, subtypes of MS disease have been described. Roughly 80 

to 90% of MS patients will be affected by a relapsing-remitting form of MS (RRMS) following 

their CIS (Figure 7) [302, 303]. As the name implies, patients suffering from RRMS will have 

relapses (active disease with symptoms) followed by complete or incomplete remissions. A 

majority of these patients will later transition to a secondary progressive form of MS (SPMS), 

which is characterized by a progressive accumulation of disability, albeit episodic disease 

exacerbations may still occur. This form of the disease is believed to be the results of cumulative 
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hidden CNS damage and brain atrophy (Figure 8). A small number of patients present steady 

disease progression following disease onset. This form of the disease as been coined primary 

progressive MS (PPMS). It is the least understood form of the disease as patients present 

different disease courses with varying clinical and histopathological evaluations. Finally, a 

fourth form of the disease, progressive-relapsing MS (PRMS), was defined as having steadily 

worsening neurologic functions from the disease onset/diagnosis with occasional relapses [304]. 

In 2013, the US National Multiple Sclerosis Society Advisory Committee on Clinical Trials in 

Multiple Sclerosis redefined more accurately the different subtypes of MS based on the 

important advances in technology and clinical assessment. Patients who were previously 

diagnosed with PRMS are now considered primary progressive MS patients with either an active 

(during relapses/new lesions formation) or inactive phenotype [305].   

     

 

Figure 8 – Graphical representation of the clinical disabilities, disease burden, brain 

volume and MRI activities of a mock average RRMS patient. Image obtained from Fox, R. 

J. and Cohen, J. A. [306] 



 
 

42 

As eluded previously, most MS patients will develop new lesions, observed by magnetic 

resonance imaging (MRI), which won’t translate into new clinically measurable deficiencies 

(Figure 8). In fact, the vast majority of MS patients exhibited disseminated lesions prior to their 

first neurologic symptoms, as revealed by MRI techniques [307]. This discordance between the 

lesions location/number and the clinical presentation is one of the limiting factors of MRI 

technology in terms of MS diagnosis. In fact, the MRI sensitivity and specificity can vary greatly 

depending on the location and the disease subtype. In the last few years, different imaging 

techniques and computer image analyses have been developed to cope with these issues. T1-

weighted, T2-weighted, T2-FLAIR (fluid-attenuated inversion recovery) and proton density 

(PD)-weighted MRI are just a few examples of different types of imaging techniques that can 

be used to observe more specifically different components of the CNS [308-310]. In addition, 

contrast agents, such as gadolinium, can be injected intravenously to enhance MR images. With 

MS patients, this technique is also used to find BBB leakage, which usually also correlates with 

active/acute MS lesions [311, 312]. On the other hand, longitudinal measurements of 

magnetization transfer ratio (MTR) allows the assessment of both demyelination and 

remyelination of MS lesions [313]. Using this technique, recent findings suggest that 

demyelinated lesions found during histopathological analysis of post-mortem CNS could be the 

result of multiple episodes of demyelination and incomplete remyelination [314].  

Another technique, the magnetic resonance (MR) spectroscopy relies on the characteristic 

spectral signature of biochemical compounds to measure organic compounds in vivo. By 

comparing the spectral signal of N-acetylaspartate, which is a relatively specific neuronal 

marker, with that of creatinine, MR spectroscopy can successfully assess neuronal and axonal 

loss [315]. Using a different approach, optical coherence tomography (OCT) also allows the 

measurement of neurodegeneration, neuroprotection, and potentially even neurorestoration by 

generating high-resolution 3D reconstructions of the retinal anatomy. While the retina is unique 

within the CNS, in that it contains axons and glial cells but no myelin, it is an ideal structure 

within which to visualize the MS disease progression. Not only the ease of access facilitates 

precise data acquisition, but the retina also enables scientists and clinicians to investigate the 

early disease processes often observed during a CIS [316-318]. Although all these techniques 

have allowed rapid non-invasive longitudinal examinations of MS patients, further development 
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is still needed to improve their efficiency and specificity in order to solely rely on them as 

diagnostic tools. In the meantime, the analysis of CSF for the presence of oligoclonal bands, 

which are found in nearly 90% of MS patients and contribute to the criteria of dissemination in 

space, will continue to be conducted during the evaluation of patients [319, 320]. 

 

3. MS Pathology   

Although the etiology of MS is still unknown, the mechanisms behind the clinical 

symptoms observed have been studied for decades. Early on, scientists concentrated on the 

histopathological analysis of the lesions (Figure 9). They demonstrated that the plaques 

observed in the CNS are in fact areas lacking myelin sheets. In addition, these regions are often 

characterized by the presence of infiltrating immune cells (both myeloid cells and lymphocytes), 

by the presence of activated microglia, by the presence of astrogliosis/glial scaring surrounding 

the lesions and by an increase in BBB permeability [321]. Further studies, using more modern 

techniques such as flow cytometry analysis of CNS infiltrating immune cells and high resolution 

immunofluorescence imaging using confocal and two-photon microscopy, have allowed a 

deeper understanding of the different mechanisms and players involved during the pathogenesis 

of the disease.  
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Figure 9 – Demyelinating lesion in the post-mortem brain of an MS patient. Perivascular 

infiltrating immune cells (dark purple) can be seen surrounding the central blood vessel in this 

Hematoxylin & Eosin / Luxol Fast Blue (H&E/LFB) tissue colouration. In the immediate 

vicinity of the vessel, the destruction of myelin sheet is denoted by the absence of blue staining. 

Copyright Alexandre Prat. The image was taken and stained by the group of Dr. Alexandre Prat.  

 

T lymphocytes are one of the most important immune cell subsets involved in this process. 

CD8+ cytotoxic T lymphocytes can directly attack the oligodendrocytes via FAS/FAS-L-

mediated cytolysis and the granzymes/perforin pathway. CD4+ T helper lymphocytes, on the 

other hand, favour the antibody production/maturation in B lymphocytes and promote the 

activation of both innate and adaptive immune cells. Both T lymphocytes subsets are found in 

high number in lesions and in the CSF of MS patients [322-324]. Surprisingly, studies have 
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demonstrated that self-specific T lymphocytes are readily found in both MS patients and healthy 

controls, alluding to the complexity of the disease pathogenesis [325]. B lymphocytes have also 

been implicated in lesion formation, especially plasma cells, by secreting anti-myelin antibodies 

that can trigger opsonisation via the complement factor cascade and phagocytosis via Fc-

receptors [258]. Likewise, myeloid cells are highly important during disease pathogenesis. In 

fact, untreated MS patients were shown to have higher levels of blood monocytes secreting IL-

6, TNF and IL-12 and expressing higher level of co-stimulatory molecule CD86/CD80, as 

compared to treated patients or healthy controls [284, 326]. Studies using animal models have 

also demonstrated that neutrophil and monocyte/macrophages are the first immune cell to 

aggregate in the meninges and the perivascular cuffs following immunization, while also 

encompassing the majority of immune cells present in early lesions [327-329]. Whereas 

activated microglia and macrophages can induce CNS damage via the secretion of pro-

inflammatory factors, they can also engulf debris found in lesions and thus promote a pro-

inflammatory response by presenting new CNS antigens to T lymphocytes. Indeed, both 

microglia and macrophages found in lesions were shown to contain a wide variety of myelin 

proteins (myelin basic protein (MBP), proteolipid protein (PLP), myelin oligodendrocyte 

glycoprotein (MOG), myelin associated glycoprotein (MAG)). Conversely, phagocytosis of 

dead cells and debris have also been demonstrated to favour remyelination by removing 

inhibitory molecules as well as providing trophic factors to oligodendrocyte precursor cells 

(OPCs) [330-332].  

Following the acute inflammatory phase, immune regulatory cells, along with glial cells, 

can mediate the resolution of the inflammation by secreting anti-inflammatory cytokines. OPCs 

present in the CNS and surviving oligodendrocytes surrounding the lesions then get recruited 

and begin remyelinating the denuded axons. However, the thickness and complexity of the 

original myelin sheets is not reached and therefore, despite compensatory redistribution of ion 

channels, the electrical propagation often remains impaired [333, 334]. The remyelination rate 

can vary from one lesion to the other and in-between different individuals based on the 

inflammatory lesion environment, the presence of myelin debris and mitochondrial damage, the 

level of axonal loss/damage and the lack of trophic factors [330, 334-337]. Whereas astrocyte 

activation can promote inflammation, as discuss before, they are also necessary during the 
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remyelination phase. However, astroglial scarring can impede the remyelinating process [334, 

337]. 

More recently discovered, the presence of diffuse lesions in the “normal appearing white 

matter” (NAWM), which is often used as internal control to compare a lesion to “healthy” tissue, 

was described as another pathological aspect of MS. These diffuse white matter lesions, 

probably resulting from neuronal oxidative stress, are characterized by axonal swelling and by 

the presence of some activated microglia and astrocytes. As patients slowly progress towards a 

more chronic and progressive phase of the disease, more diffuse inflammation of the NAWM 

and cortical demyelination are observed [338-341].  

In general, MS lesions can be classified based on their inflammatory stage. An active lesion 

is newly formed with massive amount of infiltrating immune cells containing macrophages 

filled with myelin debris. Chronic active lesions are characterized by an inactive center, mostly 

devoid of peripheral immune cells, and surrounded by an active border, defined by the presence 

of infiltrating leukocytes, activated microglia and astrocytes. Variable axonal damage can be 

observed in these lesions. Finally, chronic inactive lesions consist in well-defined areas of 

demyelination lacking immune cells. Extensive astroglial scarring can be observed in these 

lesions [298, 336, 342]. Our group has also published recently a study demonstrating the 

existence of pre-active lesions. Those lesions found in both MS and spontaneous EAE display 

considerable BBB disruption, perivascular astrogliosis, redistribution of junctional proteins and 

increased expression of endothelial cell adhesion molecules, while being completely devoid of 

leukocytes [137]. 

 

4. Epidemiology  

Prevalence 

MS is a disease that affects predominantly people living between the 45th and 65th degree 

of the northern hemisphere, with a prevalence generally increasing with respect to the distance 

to the equator [343]. Canada has one of the highest prevalence rates in the world with roughly 

280 cases per 100 000 inhabitants. This is probably due to a variety of confounding factors that 
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increase significantly the risk of developing autoimmune diseases; some of which will be 

discussed in further details in the following paragraphs. As comparison, Northern European 

countries, such as Norway, Sweden, Scotland, and Ireland, have prevalence rates ranging 

between 150 and 350 per 100 000 inhabitants. Conversely, Northern Asian countries are not as 

affected with levels lower than 70 cases per 100 000 inhabitants in Russia and between 1 and 

13 cases per 100 000 inhabitants in Mongolia, Japan and China [343]. It should be noted that 

while these countries have lower MS prevalence rates than most north Western countries, their 

proportion of patients with neuromyelitis optica spectrum disorder (NMOSD), a new unifying 

term regrouping neuromyelitis optica (also known as Devic’s disease) and what was previously 

described as the opticospinal form of MS, is much higher, accounting for 15 to 56 percent of 

MS-like cases. NMOSD is a relapsing inflammatory demyelinating disease (although a 

monophasic form exists) that affects the optic nerves and the spinal cord, but in some cases may 

also target other parts of the brain. The disease relapses tend to be more severe and often 

different from MS. Although the newly established nomenclature and diagnostic criteria have 

been left broad enough to encompass similar clinical manifestations, NMOSD is most often 

characterized by the presence of anti-aquaporin-4 antibodies, also known as NMO-IgG, in the 

serum of patients [344-346]. 

In northern countries, RRMS is predominantly a female disease with a ratio man to female 

that can reach 1:3-4. Conversely, similar number of male and female are affected by the primary 

progressive form of the disease [347-349]. Another striking difference between the two types of  

disease is the mean age of disease onset, which is between 20 and 50 years of age for RRMS 

and close to a decade later for PPMS [303]. However, close to half of the RRMS patients will 

convert to a secondary progressive form of the disease after 10 years of their initial diagnosis 

and this proportion keeps increasing in patients affected by the disease for longer periods of 

time [350]. 

      

Risk Factors 

Although it is clear that MS has a geographic pattern of prevalence, other factors also 

contribute to the incidence of the disease. Genetic mutations, for example, have been 
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demonstrated to play a determining role in the etiology of MS. Nevertheless, no mutation or 

collection of mutations are enough to guarantee the development of MS, as demonstrated by 

monozygotic twin studies showing a clinical-genetic concordance rate of 20 to 30%. Dizygotic 

twins, on the other hand, have between 2 and 5% chances of developing the disease if their 

sibling has MS, which is approximately the same risk that first-degree relative shares [321, 351]. 

Most of the discovered polymorphisms associated with MS are immune related, with the highest 

relative risk associated to the Human Leukocyte Antigen (HLA)-DRB1-1501 allele. This 

subtype of MHC-II reportedly can present specific self-antigen to CD4+ T lymphocytes, which 

could lead to the activation of the immune system. Other haplotypes of the MHC class II and 

class I can confer either higher risk of developing MS or a protective effect [352-357]. Outside 

of the MHC molecules, other proteins involved in the immune system have been shown to 

influence MS susceptibility. Most of these genes are involved in T lymphocyte immune 

processes, such as activation (CTL-4, CD6), cytokine and chemokine production (IL-2) and 

transmigration (ALCAM) [354, 358-360]. 

Even if a high number of genetic mutations have been shown to contribute to MS etiology, 

the relatively low concordance rate of monozygotic twins demonstrates the existence of other 

non-genetic factors. Among them, environmental factors (often associated with socioeconomic 

factors) have been proposed to contribute to disease onset. One of the main supporting 

arguments in favour of an environmental aspect, aside the latitudinal distribution of the disease, 

is the dissimilarity in the prevalence rate between the Northern European descendants living 

closer to the equator and their ancestors. Indeed, studies have demonstrated that if an individual 

migrate from a region of high MS prevalence to a region with low prevalence before the age of 

15, its risk of developing the disease is adjusted to the risk of the new region. The reverse being 

also true [361-363]. The geographical MS distribution might therefore be explained by events 

in someone’s life that would alter significantly its immune system in a permanent way at a young 

age. One of the most important contributing factor to the overall quality of the environment is 

the socioeconomic level of a country, which, based on recent epidemiological studies, seems to 

be linked to the incidence rate of MS. For example, while the global MS prevalence rate is low 

in Asia, the highest rate is found in Japan, the most developed country [343]. Further 

longitudinal studies have also demonstrated that the risk of developing MS or other autoimmune 
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diseases increases in countries that have had major economic development in the last decades. 

Therefore, it is safe to assume that a portion of the environmental factor is due to the exposure 

to urban living conditions (pollution, chemicals, diet, smoking, stress, etc.) [364].  

Industrialization has also considerably contributed to the ease of access to disease-free food 

and water, as well as to modern medicinal treatments. This reduced exposure to infectious agents 

at an early age and perhaps the overconsumption of antibiotics has given rise to the hygiene 

hypothesis, which states that exceeding cleanliness may increase the risk of allergic and 

autoimmune reactions by polarizing the immune system toward an immune over responsive 

state. In other words, the absence of regular benign infections and contacts with inflammatory 

triggers (pollen, dust, nuts, etc.) at an early age, which would normally shape the immune system 

reactivity, increases the propensity to react more aggressively to immune challenges in 

adulthood. Corroborating with this hypothesis, several studies concluded that parasitic 

infections diminish the number of relapses and the number of new demyelinating lesions in MS 

patients by favouring a Th2-mediated/Treg immune response [365-367]. Small clinical trials 

using live helminths to treat MS have been conducted and showed mitigated but encouraging 

results. In the future, mimicking their immuno-protective effects might lead to novel therapeutic 

compounds without the inconveniences [368].  

The composition of the gastro-intestinal (GI) flora, a collection of thousands of different 

commensal organisms that covers the GI epithelium is also directly related to the consumption 

of antibiotics and the presence of pathogens/bacteria in the daily diet. Numerous research groups 

are currently studying the impact of these microorganisms on the human biology, both in 

homeostatic conditions and with respect to specific diseases such as MS [290, 364, 369-374]. 

Building up from the original studies, other groups have demonstrated that patients suffering 

from inflammatory bowel diseases are at greater risk of developing MS [375, 376]. Interestingly, 

studies have also shown that commensal gut bacteria can influence the blood-brain barrier 

integrity [377, 378], leukocyte polarization and even the susceptibility to EAE [379, 380], 

opening the way to new therapies involving faecal transplantation [381]. 

As opposed to the lack of infectious agents, the contact with specific viruses have been 

suggested as a possible cause of MS. The Epstein-Barr virus (EBV), which is present in almost 
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all MS patients (although also present in roughly 90% of the adult population), have been studied 

extensively in the last few years. EBV infection usually occurs early in life, but in industrialized 

countries, a late infection is possible and usually lead to the development of infectious 

mononucleosis. During the infection, the EBV genome is integrated in B lymphocytes DNA, 

where it can persist indefinitely. Studies have demonstrated that seronegative individuals are 

significantly less at risk of developing MS, while seropositive children with a CIS have a greater 

risk of being diagnosed with MS. In addition, the risk of developing MS is increased by roughly 

50% in individuals that have had mononucleosis [353, 367, 382-384]. Another virus from the 

same family, the human herpes virus 6 has been associated with MS. Similar to EBV, it is found 

in the majority of the general population. Antibodies specific to the virus can be found in the 

CSF and the serum of MS patients in higher concentration, as compared to healthy controls. In 

addition, viral messenger RNA was detected surrounding MS lesions [385-389]. Based on these 

discoveries, several hypotheses were suggested to explain the etiology of MS. Viral antigens 

similar to human CNS proteins (often referred to molecular mimicry) could, once the immune 

system activated, divert the attack to target self-antigens. This theory is corroborated by several 

studies that have shown high homology between myelin peptides and proteins from the herpes 

virus family, the influenza virus family and some coronavirus [390-396]. The bystander cellular 

activation is an alternative theory put forward where a viral infection triggers the activation of 

the immune system (both the anti-viral and the self-specific T lymphocytes) leading to the 

formation of lesions, at least initially, close to infected areas of the CNS.      

People in industrialized countries tend to spend more time inside, protected from the sun, 

than in third-world countries. Furthermore, people living closer to the poles are not exposed to 

as much ultraviolet (UV) radiation as people closer to the equator. This can lead to a deficiency 

in vitamin D, which has also been associated with a higher MS susceptibility rate [397]. Indeed, 

most vitamin D present in the human body is synthesized from 7-dehydrocholesterol found in 

the skin, which is converted to pre-vitamin D3 following exposure to UVB rays. Next, this pre-

vitamin is hydroxylated by the liver and the kidneys to become the biologically active vitamin 

(1,25-dihydroxyvitamin D3). It can then bind to the vitamin D receptor on the cell surface, 

translocate inside the cell nucleus and regulate the transcription of genes via DNA regions called 

vitamin D-responsive elements. As such, although called a vitamin, this molecule acts more as 
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a hormone [398-400]. Vitamin D is known to play a critical role in many biological processes 

including the regulation of calcium in the blood, bone growth and remodeling and more 

importantly for MS, the regulation of the immune system [401]. While vitamin D was shown to 

inhibit the maturation of DCs and the proliferation/polarization of Th1/Th17 lymphocytes [398, 

402-404], the efficacy of the administration of supplement to MS patients, although encouraged 

in the clinics, still needs to be demonstrated [301].  

The fact that women with RRMS outnumber the number of men with the disease suggests 

that other hormonal factors are involved. This is also supported by data demonstrating a lower 

relapse rate during pregnancy and a disease rebound afterwards [364]. Likewise, the use of 

hormonal therapy to increase women’s fertility have been found to significantly enhance the 

disease activity and clinical symptoms [405]. However, behavioural differences between the 

two sexes could also explain in part the risk variation. In fact, behavioural influences are the 

biggest unknowns in risk studies as it is difficult to account for every event in someone’s life.  

As briefly mentioned earlier, the diet is probably the easiest controllable and measurable 

behaviour, albeit with important ramifications on the overall health of an individual. Obesity, 

for example, is known to be responsible for many illnesses including, most notably, diabetes. 

Obesity has also been linked to low levels of vitamin D and an increase in MS susceptibility 

[406-408]. Indirectly related, a sodium rich diet has recently been associated with an increase 

number of pathogenic Th17 lymphocytes and a significant worsening of EAE [409, 410]. Thus, 

it is clear that the development of MS is a complex process involving multiple factors implicated 

at different levels of the human biology, and which, together, push the normally highly regulated 

immune system beyond its limit.  

 

5. Experimental Autoimmune Encephalomyelitis 

Similar to other autoimmune diseases, MS has not been observed in wild animals yet. 

Scientists have therefore relied on induced animal models to study the pathogenesis of the 

disease. As with many scientific and medical discoveries, the origin of EAE is the result of 

unrelated studies performed by Louis Pasteur at the end of the 19th century. While injecting 
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animals with rabies infected brain homogenates in an effort to develop a vaccine, Pasteur noticed 

that some recipients demonstrated similar pathological and histological features. The disorder 

was characterized by an ascending paralysis, which could lead to the death of the animals. A 

similar disease was also observed in some human patients immunized the same way following 

an animal bite in order to prevent a rabies infection. While some people claimed that this 

disorder was likely due to a bacterial contaminant, Pasteur proved otherwise by pasteurizing the 

homogenates prior to the injections. The disease was then called experimental allergic 

encephalomyelitis [411]. The cause of this lethal illness was only explained in the 1930s, when 

a study showed that animals immunized with brain homogenates will produce autoantibodies 

damaging its CNS [412]. Thirty years later, another study demonstrated that EAE could be 

induced in healthy animals by transfer of sensitized lymphocytes from an EAE-affected animal 

[413], whereas autoantibodies were insufficient to trigger the disease [321]. Adjuvants were also 

developed to improve the induction of the disease and ameliorate the reproducibility in research 

studies [414]. 

Nowadays, three major types of EAE are routinely used for research purposes: active, 

passive and spontaneous EAE. [415]. Active EAE is induced by the subcutaneous injection of 

a myelin peptide (MOG, PLP, MBP; depending on the strain of the animal) in an emulsion of 

complete Freund’s adjuvant (CFA), which contain a variable quantity of inactivated 

Mycobacterium tuberculosis. Depending on the laboratory and the strain used, pertussis toxin 

can be injected intra-peritoneal (i.p.) at day 0 and/or day 2 post-immunization to increase 

leukocytes adhesion to the vasculature and favour a pro-inflammatory reaction [416-418]. 

Immunized animals develop a monophasic or polyphasic ascending paralysis (often followed 

by a chronic phase), allowing the study of different stages of the disease [419]. Passive EAE, 

often called adoptive EAE transfer, is induced by injecting i.p. or intravenously (i.v.) immune 

cells isolated from active EAE animals that have been reactivated in vitro. These pro-

inflammatory immune cells trigger the classical ascending paralysis in the recipient animals, but 

atypical symptoms can sometimes be observed (ataxia, gaiting deficiency, prostration) [420, 

421]. Spontaneous EAE is observed in transgenic animals. A majority of these mutations are 

targeted at the T cell receptor (TCR), forcing the expression of only one myelin-specific TCR. 

As their name implied, these animals spontaneously develop EAE after a certain period of time, 
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which can vary based on the transgenic modifications [422, 423]. Although not technically an 

EAE model, Theiler's murine encephalitis is a virus-induced demyelinating disease, which is 

used to study the possible viral etiology of MS. It is also useful to conduct studies on molecular 

mimicry and epitope spreading in the context of MS [424, 425]. Finally, many research groups 

are also using toxins to study different aspects of EAE pathogenesis. Allegedly the most 

frequently used toxin, Cuprizone is a copper chelator that causes rapid demyelination and gliosis 

in the CNS of the animals. It is generally used to study specifically the processes behind 

demyelination and remyelination, two exceedingly important aspect of MS [426].  

While these models allow scientists to study different aspects of the disease both in time 

and space, something oftentimes difficult or impossible to accomplish in humans, they remain 

imperfect models which can’t recapitulate completely MS pathogenesis. This was clearly 

demonstrated by discrepancies between human and animal results obtained following an anti-

IFNα treatment. While the studies conducted on animals demonstrated a significant amelioration 

of EAE clinical scores, multiple studies and a clinical trial with MS patients showed an 

exacerbation of their symptoms. Monophasic CNS demyelination episodes and even new onset 

of MS disease were also described in patients with arthritis following treatment [427-432]. The 

lack of animal to human therapy translation can be blamed on a variety of intrinsic differences 

between the model and the human disease. For instance, MS is an idiopathic disease whereas 

EAE is artificially induced in otherwise resistant animals. These animals are also usually 

genetically identical and similar in age, weight, sex, etc. to facilitate the interpretation of the 

data by limiting the variability. It should be noted, however, that differences in disease severity, 

time of onset post-immunization, incidence rate, etc. do exist. This inter-laboratory variability 

is often caused by changes in the environment (cleanliness of the animal facility, stress level of 

the animals, etc.) or the genetic drifting of a colony from the source. Differences inside a colony 

can also be observed in a season-dependent fashion or may vary depending on the person 

manipulating the animals [433, 434]. Even though the animal models used in research are 

inherently flawed, they are still invaluable tools to study specific immunological mechanisms 

and biomolecular markers in an attempt to identify novel therapeutic targets. 
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6. Therapeutic Approaches 

Relapse management therapies, which consist in steroid medications, help decrease the 

severity and duration of MS relapses. Their use over short periods of time is considered 

relatively safe with few side effects (difficulty sleeping, stomach upset, irritability, etc.). 

Approved MS treatments, called disease-modifying therapies, have only been demonstrated to 

be effective against RRMS and PRMS. However, some clinical trials are currently studying the 

effect of novel compounds on SPMS and PPMS patients.  

The first-line treatments, IFNβ and glatiramer acetate, have a moderate efficacy in 

diminishing relapses, yet they are considered the safest, with few side effects (flu-like symptoms 

and redness/swelling at the subcutaneous injection site are the most common). They act by 

reducing immune cell proliferation and pro-inflammatory cytokine secretion, while also 

interfere with antigen presentation [298, 301, 342, 435]. 

Fingolimod was the first oral treatment to be approved for MS. Its mechanism of action is 

via the inhibition of the sphingosine-1-phosphate receptor present on T lymphocytes, which 

prevent the cells from leaving peripheral LNs. Fingolimod has many possible side effects 

including the increased risk of opportunistic infections and progressive multifocal 

leukoencephalopathy (PMLs), which is secondary to the uncontrolled multiplication of the John 

Cunningham virus (JC virus) in lymphopenic patients [301, 436, 437]. 

Teriflunomide is also an oral therapy that modulates the immune system. Its exact 

mechanism of action is still not fully understood, but studies have demonstrated that it inhibits 

the synthesis of pyrimidines in proliferating cells. Therefore, it is thought to reduce the number 

of peripheral immune cells. It has few minor side effects which include diarrhea, nausea, flu or 

sinus infection, upset stomach, abdominal pain, rash, abnormal liver tests and hair thinning or 

loss [436, 438, 439]. 

Dimethyl fumarate is an oral drug taken twice daily that causes T lymphocyte apoptosis and 

favours the production of Th2 cytokines. Dimethyl fumarate or rather its active metabolite, 

monomethyl fumarate, inhibits NF-κB from translocating inside the nucleus and thus suppresses 

NF-κB-dependent transcriptions, which impact a wide variety of pathways including the 
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secretion of pro-inflammatory cytokines, the expression of adhesion molecules and the 

modulation of oxidative mechanisms. It also favours the intra-nuclear translocation of Nrf2, 

which in turn exerts a neuroprotective effect by promoting the production of antioxidant 

enzymes. In addition, monomethyl fumarate is an agonist of the hydroxycarboxylic acid 

receptor 2 (HCA2), a G-coupled protein membrane receptor, via which it reduces neutrophil 

adhesion and chemotaxis. HCA2 was also demonstrated to be essential for the therapeutic effect 

of dimethyl fumarate during EAE, as indicated by its absence of effect in HCA2 KO animals. 

As with other lymphopenia inducing drugs, one of the most serious possible side effects of this 

medication is the risk of developing a PML [436, 440-443]. 

Natalizumab was the first second-line treatment available to treat MS. It is a monoclonal 

antibody specific to the alpha-4 integrin subunit of VLA-4, which is implicated in the 

transmigration of leukocytes by binding to its ligand, VCAM-1, on activated BBB-ECs. As with 

all immunosuppressive treatment, Natalizumab is significantly more effective at preventing 

relapses in MS patients as compared to first-line therapies. As expected, however, it also has 

significant side effects, of which the risk of PML is the most serious. Recent studies have 

demonstrated that the risk of PML significantly increases following 24 months of infusions. 

Similarly, the risks are increased in patients that have previously been treated with another 

immunosuppressive agent or with patients that have anti-JCV antibodies [444-449].  

Alemtuzumab has recently been approved as a second-line treatment, which consists of 

three to five intravenous infusion of monoclonal anti-CD52 antibodies per year. Anti-CD52 

antibodies cause the depletion of some T and B lymphocytes, NK cells and monocytes that 

express CD52 on their surface. This treatment is significantly better at preventing relapses 

compared to first-line therapies. However, due to its immunosuppressive effect, some patients 

might develop opportunistic infections. In addition, some patients demonstrated evidence of 

autoimmune dysfunction (autoimmune thyroid disease and autoimmune skin disease) [450-

453]. 

While these drugs have proven to significantly prevent relapses in RRMS patients, the most 

effective second-line therapies come with highly debilitating and sometime health-threatening 

side effects. Identifying novel therapeutic targets involved in the pathogenesis of the disease is 
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thus crucial for the development of new MS therapies. Whereas drugs aimed at promoting CNS 

repair and remyelination are cruelly missing, multiple laboratories have recently started to focus 

their efforts on this goal. Besides, our laboratory has been studying novel adhesion molecules 

expressed by encephalitogenic immune cell subsets and/or the inflamed BBB-ECs in an effort 

to discover new ways of promoting BBB integrity and decreasing leukocytes trafficking into the 

CNS during neuroinflammation.  

4. Activated Leukocyte Cell Adhesion Molecule 

MS is a complex disease with multiple potential therapeutic approaches. One of which 

consist in blocking the entry of encephalitogenic immune cells by disrupting their ability to 

interact with specific adhesion molecules and thus, interfere with the transmigration cascade. 

Following the mitigated success of Natalizumab, the alpha-4 integrin blocker with severe 

adverse effects, researchers are currently seeking a more elegant target instead of a broad 

immune-compromising agent [454]. The goal here would be to find cell-specific molecules that 

could be targeted and allow the sequestration of immune cell subsets outside of the CNS in a 

neuroinflammatory context. With this goal in mind, our group began studying activated 

leukocyte cell adhesion molecule. ALCAM, also known as CD166, MEMD, SB-10, HB2, KG-

CAM in rat/mouse/human, neurolin in fish and DM-GRASP/SC-1/BEN in chicken, is part of 

the immunoglobulin superfamily. Given all its names, it is easy to presume the rich history 

behind this molecule. Indeed, it has been cloned independently in several organisms, hence the 

eclectic names found in the literature. ALCAM has been and still is heavily studied in the fields 

of cancer, embryology, haematopoiesis and angiogenesis. However, it was only recently that 

we, amongst others, have started to study this adhesion molecule with respect to leukocyte 

transmigration during inflammatory processes. 

  

1. The Discovery 

ALCAM, or rather its chicken homologue BEN (90% homology), was discovered in 1990 

by Pourquié and colleagues. They had raised antibodies against chicken Bursal epithelium and 

identified a glycoprotein located in the B lymphocyte differentiation zone. Additional 
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immunohistochemistry stainings lead to the identification of the same protein in neurons of both 

the peripheral and central nervous system. Hence, they named the protein BEN for bursal 

epithelium and neurons [455]. Two years later, they published another article describing the 

presence of BEN in all three embryonic germinal layers, although differently glycosylated in 

the different tissues. Of outmost interest, their group also identified BEN as belonging to the 

immunoglobulin (Ig) superfamily with its two N-terminal variable chain-like domains, three 

membrane-proximal C2 domains, a transmembrane domain, and a small cytoplasmic tail 

composed of 33 amino acids [456]. In 1991, DM-GRASP was identified as a 95 kiloDalton 

(kDa) glycoprotein expressed on chicken axons and involved in neurite extension [457]. In the 

same year, another group independently isolated a spinal cord chick protein, which they called 

SC-1. Using purified SC-1, they demonstrated that SC-1+ cells could bind a SC-1 coated 

surface, indicating a homophilic interaction [458].  

Following the discovery of other orthologues (mentioned previously), CD166 was finally 

characterized in human in a series of four publications in 1995. It was identified in thymic 

epithelial cells as a ligand for CD6, a lymphocyte costimulatory molecule extensively studied 

in the 90’s [459, 460]. The group therefore coined the name activated leukocyte cell adhesion 

molecule. Furthermore, the same laboratory also identified the membrane-proximal scavenger 

receptor cysteine-rich (SRCR) domain (D3) of CD6 as containing the ALCAM binding site 

(Figure 10) [461, 462]. This heterotypic interaction is now known to regulate T lymphocyte 

development in the thymus and play a major role in the immunological synapse formation 

between activated APCs (ALCAM) and lymphocytes (CD6) [463].  
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Figure 10 – Schematic representation of ALCAM homophilic and ALCAM-CD6 

heterophilic interaction. ALCAM is a type 1 transmembrane cell adhesion molecule with a 

size of 583 amino acids (aa) and a native weight of 65 kDa (glycosylated 100-110 kDa). It has 

a 27 aa signal peptide, a 500 aa N-terminal extracellular domain (aa 28-527) containing three 

Ig-like C2-type domains and two Ig-like V-type domains, a 24 aa transmembrane domain and a 
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33 aa cytoplasmic domain, which is associated with -actin cytoskeleton filaments (pink) [464]. 

ALCAM has a high sequence identity between species homologues especially at the N-proximal 

domain (V1), which mediate trans-ligand binding with CD6 and ALCAM [465]. The CD6 

binding site is located in the membrane-proximal SRCR domain 3 region (D3). The membrane-

proximal C2-type domains (C2) mediate lateral oligomerization and control the avidity of 

ALCAM binding (only groups of two ALCAM molecules are represented for simplicity, but 

macromolecular complexes can be formed) [466]. The intracellular binding partners of ALCAM 

in endothelial cells (at the bottom) are represented (ZO-2, cingulin, coronin 1C, TARA, CD9; 

further discussed in the results and discussion sections). The potential binding partners of 

ALCAM in leukocytes (Ezrin and Syntenin-1) are also depicted. Those molecules in turn bind 

to actin filaments (pink) and the surrounding tropomyosin fibres (yellow). Copyright Marc-

André Lécuyer.    

 

2. The Genome  

In humans, the ALCAM gene is located at 3q13.1-3q13.2 and it is organized into 16 exons 

of nearly 150 kilobases (kb) in length [460]. As of yet, we have a limited knowledge on the 

different transcriptional and translational regulation of ALCAM. Studies, performed on 

cancerous tissues and cell lines, demonstrated that the promoter region is devoid of a canonical 

TATA-box, but rather has multiple GC-boxes. It also contains cis regulatory sequences such as 

NF-κB and GATA-1 binding sites [467-469]. Other studies provided evidences suggesting that 

ALCAM expression is also controlled by microRNAs. One group found that both miR-192 and 

miR-215 are upregulated in gastric tumors and can suppress ALCAM [470]. Similarly, miR-9 

was demonstrated to inhibit ALCAM translation in different cancerous cells. Interestingly, the 

transcription of the miR-9 precursor RNA is induced by the P50/P65 subunits of NF-κB, which 

as mentioned previously, also promote the production of ALCAM, thus creating an auto-

regulation [469, 471].  
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3. The Protein 

In 2001, using a series of truncated ALCAM mutants, van Kempen and colleagues 

demonstrated that the homophilic ALCAM-ALCAM interaction in trans is dependent on the 

membrane-distal amino-terminal Ig domain and that binding avidity is controlled by ALCAM 

cis-clustering at the cell surface (Figure 10). Analogous to other members of the Ig superfamily, 

this mechanism was shown to be mediated by the membrane-proximal Ig domains [466]. 

Although the complete crystal structure of ALCAM has not been published yet, Hanka 

Venselaar, a PhD student at the Centre for Molecular and Biomolecular Informatics at the 

University of Nijmegen, has performed computer 3D model analyses of ALCAM based on its 

amino acid sequence and previously published crystal structure of analogous proteins 

(immunoglobulin light chain, immunoglobulin heavy chain and other Ig-like molecules [472]). 

Using her work, I completed a probable 3D model of ALCAM, where each subunit is shown 

with different colors (Figure 11).  
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Figure 11 – Computer generated 3D model of ALCAM. This is an approximation of the 3D 

structure of ALCAM. The transmembrane and intra-cytoplasmic tail are shown in red. The 

ALCAM homotypic and heterotypic binding site is located in the dark-blue N-terminal domain. 

Image created by Marc-André Lécuyer with data adapted from 

http://www.cmbi.ru.nl/~hvensela/alcam/ALCAM_2.html. 

 

More recently, a group has published the crystal structure of the two N-terminal domains 

of ALCAM along with the three SRCR domains of CD6 [473]. While this study demonstrated 

in detail the interaction between CD6 and ALCAM at a molecular level, this binding had been 

well characterized in the past by using a selective mutation approach (Figure 10) [459, 461, 

462, 474-476]. Using single-molecule force spectroscopy, a more recent study has demonstrated 

that the homotypic interaction is weaker than the heterotypic ALCAM-CD6 bond, even 

following the disruption of the actin cytoskeleton [464]. Those results were based on several 

studies that had previously demonstrated a linked between ALCAM and the actin cytoskeleton 
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[477, 478]. One study in particular demonstrated that clustering of ALCAM is essential for cell 

adhesion and that it is mediated partly by actin polymerization. Their study also suggested a 

strengthening of the cytoskeleton linkage following ALCAM ligand binding [479].  

Although publications had demonstrated a link between ALCAM and the cytoskeleton, the 

specific molecules involved were not known as of recently. This will be further discussed in the 

results and discussion sections. Moreover, the signalling pathways leading to the modulation of 

ALCAM adhesion still remain elusive, with only one major publication on the subject. This 

group first demonstrated that, in contrast to some integrins and other CAMs, small GTPases 

RhoA (Ras homolog gene family member A), Rac1 (Ras-related C3 botulinum toxin substrate 

1) and Cdc42 (cell division control protein 42 homolog), which are key players in the 

organization of the actin cytoskeleton, are not involved in ALCAM-mediated adhesion. Instead, 

their results suggested that PKCα plays a dominant role in modulating the cytoskeleton-

dependent avidity of ALCAM. They also concluded that ALCAM is not a direct substrate of 

PKCα due to a lack of phosphorylation on the molecule and the dispensable nature of the serine 

and threonine residues for ALCAM-mediated adhesion. Therefore, they concluded that PKCα 

indirectly controls ALCAM binding via cytoskeletal rearrangements [478].  

 

4. The Functions 

As mentioned previously, ALCAM is expressed during various phases of the organism 

development and by a wide variety of cell types. Therefore, the roles it plays can vary 

accordingly. ALCAM has probably been studied the most extensively in the context of cancer. 

It has been observed consistently in metastatic lesions of numerous cancer types, including 

prostate carcinoma, breast cancer, cutaneous melanoma, colorectal cancer, etc., and is thus 

considered a marker of cancer metastasis [480]. ALCAM has also been linked to the progression 

of a cancerous lesion. It was observed that as some types of tumor progress in stage and in size, 

ALCAM expression is proportionally increased. These results correlates with its role as a cell 

adhesion molecule, which consists in maintaining the cohesiveness of cellular aggregates [481]. 

Conversely, another study demonstrated that the lack of ALCAM or the presence of truncated 

mutants enhances the metastatic potential of cancerous tissues as it promotes cell motility 
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despite decreasing tumor growth/cell clustering [482]. Likewise, the metalloprotease ADAM17 

has been demonstrated to cleave ALCAM, leading to the generation of soluble ALCAM 

(sALCAM) in circulation. The sALCAM molecules can compete for membrane-bound 

ALCAM and thus effectively block other homotypic interactions, which increases the risk of 

metastases  [483, 484]. One hypothesis put forward to explain the importance of ALCAM in 

cancer proposes that the modification of a cell’s genetic material to become cancerous may 

involve the expression of stem cell genes. This theory is based on the fact that those cells behave 

similar to cancerous cells (de-differentiated cells) and that ALCAM is expressed on the surface 

of many stem cells and embryonic tissues [480]. Finally, other groups also emphasised the 

importance of ALCAM in metastatic cell invasion by suggesting that it allows cancerous cells 

to adhere to vessel walls, similar to its role in immune cell trafficking [480]. 

As discussed in detail in chapter 1, ALCAM has been shown to play an important role 

during leukocyte transmigration. The first study to show such a role was published in 2006. It 

demonstrated that ALCAM is involved in the transmigration of a human monocyte cell line 

(THP1) across pulmonary rat microvascular endothelial cells [485]. Another study suggested a 

similar role for ALCAM on Tregs during their transmigration across pancreatic tumor-derived 

endothelial cells [486]. More recently, we have demonstrated the presence of ALCAM on 

human and mouse CNS microvascular endothelial cells and its high upregulation during 

neuroinflammation. Furthermore, ALCAM increased expression mostly co-localized with 

lesions present in MS and EAE tissues, which presented with disrupted TJs proteins staining 

and the presence of immune cells. We have also demonstrated the recruitment of ALCAM into 

lipid rafts upon pro-inflammatory stimuli as well as its participation in the formation of 

transmigratory cup upon contact with immune cells [98, 113]. A role for ALCAM in MS was 

further demonstrated by showing its involvement in the transmigration of ex vivo human CD4+ 

T lymphocytes, CD19+ B lymphocytes and CD14+ myeloid cells across a monolayer of BBB-

ECs in an in vitro model of the BBB. Finally, ALCAM blocking antibodies were shown to 

reduce EAE clinical severity and the number of inflammatory lesions [113]. Recently, the group 

of Dr. Berman confirmed, in an HIV setting, the upregulation of ALCAM on infected monocytes 

and its crucial role during transmigration across human BBB [487, 488]. Another study also 

confirmed these results in HIV+ patients consuming cocaine. In addition, it demonstrated the 



 
 

64 

upregulation of ALCAM on human and mouse BBB-ECs upon the infectious immune challenge 

or simply following the intake of cocaine. Furthermore, the study suggested that cocaine-

mediated induction of ALCAM is possible via the translocation of cocaine hijacks σ1 receptors 

to the plasma membrane, followed by phosphorylation of PDGF-β receptors, which in turn, 

activate the mitogen-activated protein kinase (MAPK), protein kinase B and NF-κB pathways 

leading to ALCAM expression [489]. This year, Curis and colleagues provided evidences upon 

the fact that ALCAM is overexpressed on the surface of HTLV-1-infected lymphocytes, 

resulting from the activation of the NF-κB pathway by viral proteins. Corroborating with 

previous results, they demonstrated that ALCAM blockade significantly reduced the infiltration 

of HTLV-1-infected lymphocytes into the CNS [490]. Collectively, these studies support the 

hypothesis that ALCAM plays an important role in the transmigration cascade and thus permits 

the infiltration of pathogenic peripheral blood leukocytes into the CNS. In the context of MS, 

targeting ALCAM would represent a viable therapeutic strategy to reduce the ongoing 

neuroinflammation especially considering that it does not seem to be involved in CD8+ 

cytotoxic T lymphocytes transmigration. Therefore, those immune cells could theoretically 

provide constant protection against JC viruses and thus potentially prevent PML in MS patients 

treated with anti-ALCAM antibodies. 
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Objectives and Hypothesis 
While studying MS, one has to integrate its immunological expertise with the complexity 

of the neuronal system. In trying to understand the etiology of the disease and perhaps finding 

a target for a treatment, our laboratory has studied extensively in the past years the protective 

barrier of the CNS and the different molecules involved in leukocyte transmigration across the 

BBB. While therapeutic compounds restricting the capacity of pro-inflammatory leukocytes to 

migrate inside the CNS already exist, their lack of specificity inhibits the immune patrolling of 

the CNS and gives rise to multiple undesirable side effects. The identification and 

characterization of novel adhesion molecules implicated specifically and exclusively in the 

transmigration of encephalitogenic leukocytes is therefore required. The research leading to this 

Ph.D. thesis has been conducted in this context. 

The general hypothesis of this work is that the activated BBB-ECs can modulate the 

inflammatory reaction, in coordination with the other cellular constituents of the NVU, via a 

tight control over the expression of extracellular molecules, especially cell adhesion molecules. 

A previous study from the laboratory has established the existence of ALCAM on human BBB-

ECs using a proteomic approach. The study also demonstrated the upregulation of ALCAM on 

primary human BBB-EC culture upon inflammatory stimulation [45, 113, 491]. The same study 

has provided evidence upon the fact that ALCAM can be found in lipid rafts in the extracellular 

cell membrane and that it is involved in the transmigration of leukocytes into the CNS of both 

mice and humans. However, the characterization of the specific role of ALCAM during EAE 

and leukocyte transmigration was not elucidated.  

The first hypothesis of this project was that ALCAM plays a role in the firm adhesion, 

crawling and diapedesis of encephalitogenic pro-inflammatory leukocytes across BBB-ECs. 

The aims were thus to study independently the cascade of events leading to monocytes, Th1 and 

Th17 lymphocytes diapedesis using a modified adhesion assay under shear-stress and a static 

migration assay. 

The second hypothesis was that the absence of ALCAM on BBB-ECs and leukocytes of 

ALCAM KO mice significantly diminishes their EAE clinical symptoms, while reducing the 

absolute number of monocytes and T lymphocytes infiltrating the CNS upon immunization. The 
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aim was to study the role of ALCAM during neuroinflammation in mice. More specifically, the 

objectives were to study both in vivo and in vitro the impact of the absence of ALCAM on the 

immune system, the BBB and the onset of the disease, as a model to study the potential 

modulation of ALCAM in MS patients. All those aspects of my project will be further discussed 

in the following sections of this thesis. 
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Results:  

Manuscript 1 

Title: ALCAM (CD166) is involved in extravasation of monocytes rather than T cells across the 

blood-brain barrier 

 

Authors: Ruth Lyck*, Marc-André Lécuyer*, Michael Abadier, Christoph B. Wyss, Christoph 

Matti, Maria Rosito, Gaby Enzmann, Laure Michel, Ana Garcia, Urban Deutsch, Alexandre 

Prat, Britta Engelhardt 

* = Authors contributed equally.   

Journal: In press in The Journal of Cerebral Blood Flow & Metabolism. Manuscript ID: JCBFM-

0511-16-ORIG 

 

Contributions: The project, initiated by myself as a follow-up of Cayrol et al., 2008, consisted 

in studying in more detail the role of ALCAM during leukocyte transmigration across the blood-

brain barrier. To conduct this study, I have developed and optimized the adhesion assay under 

shear stress using human cells. I have also performed the majority of the in vitro and in situ 

experiments using human cells and tissues. Following the publication of abstracts at 

international conferences, the group of Dr. Engelhardt approached us to collaborate on this 

project. We agreed that they would conduct the mouse experiments of the study. Therefore, 

Michael Abadier has performed the adhesion studies under flow using mouse cells. Christoph 

B. Wyss, Christoph Matti and myself have performed the Western blot on the mouse and human 

tissue/cells. Gaby Enzmann has performed the histology on the human CNS tissue. Maria Rosito 

has performed endothelial cell cultures in the laboratory of Dr. Engelhardt and helped with the 

adhesion assays. Laure Michel has helped with the Boyden assays performed with human cells. 

Ana Garcia has performed FACS analysis of the Th1 (sorted) mouse cells. Urban Deutsch has 

performed the mouse genotyping and managed the colony in Dr. Engelhardt’s laboratory. Ruth 

Lyck, Britta Engelhardt, Alexandre Prat and myself have participated in the scientific 
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discussions, the elaboration of the different experiments and the analysis of the results. We have 

also constructed the figures and wrote the manuscript.    
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Abstract  

Activated leukocyte cell adhesion molecule (ALCAM) has been proposed to mediate leukocyte 

migration across the blood-brain barrier (BBB) in multiple sclerosis (MS) or experimental autoimmune 

encephalomyelitis (EAE). Here, we confirmed vascular ALCAM expression in human brain tissue 

samples in situ and on two different human in vitro BBB models. Antibody mediated inhibition of 

ALCAM reduced diapedesis of human CD4+ Th1 but not of Th17 cells across the human BBB in 

vitro. In accordance to human Th1 cells, mouse Th1 cells showed reduced diapedesis across an 

ALCAM-/- in vitro BBB model under static but no longer under flow conditions. In contrast to the limited 

role of ALCAM in T cell extravasation across the BBB, we found a contribution of ALCAM to rolling, 

adhesion and diapedesis of human CD14+ monocytes across the human BBB under flow and static 

conditions. Taken together, our study highlights potential differences in the CNS expression of 

ALCAM in mouse and human and supports a prominent role for ALCAM in the multi-step 

extravasation of monocytes across the BBB.  
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Introduction 

The blood-brain barrier (BBB) is formed by microvascular endothelial cells (ECs) of the central 

nervous system (CNS). It establishes a particularly tight endothelial barrier that protects the brain or 

spinal cord parenchyma from the changeable milieu in the blood stream while also limiting immune 

cell trafficking into the CNS.1 During autoimmune neuroinflammation such as multiple sclerosis (MS) 

or its animal model, experimental autoimmune encephalomyelitis (EAE), high numbers of immune 

cells extravasate across the BBB and critically contribute to disease pathogenesis.2 Preventing 

immune cell entry into the CNS has been successfully translated into the clinic with the release of 

the humanized anti- integrin antibody natalizumab.3 However, the low but serious concurrent risk 

of progressive multifocal leukoencephalopathy (PML) makes pressing the need for more detailed 

knowledge on the extravasation of autoagressive immune cells across the BBB. 

Extravasation of immune cells across the BBB is a highly dynamic multi-step process mediated by 

the sequential interaction of cell adhesion and signaling molecules on the immune cell surface with 

their respective endothelial counter receptors.4 In vivo and in vitro live cell imaging have revealed 

that upon firm adhesion, effector T cells not only resist flow, but polarize and crawl along the luminal 

face of the BBB endothelium until they reach a site permissive for transcellular or paracellular 

diapedesis.5-9 Thereby, EC adhesion molecules and their leukocyte ligands fulfill critical roles. 

Previously, we have shown an essential role for intercellular adhesion molecule (ICAM)-1 and 

vascular cell adhesion molecule (VCAM)-1 in shear resistant arrest of encephalitogenic CD4+ Th1 

cells. We have also demonstrated that high level of ICAM-1 is involved during CD4+ Th1 cell crawling 

against the flow and favors a transcellular diapedesis across the BBB.5, 6  

Activated leukocyte cell adhesion molecule (ALCAM; CD166) on human and mouse brain ECs has 

also been assigned a role in the extravasation of CD4+ T cells across the BBB and in the development 

of EAE.10 Similar to ICAM-1, ALCAM harbors five extracellular immunoglobulin (Ig)-like domains, a 

single spanning transmembrane domain and a short cytoplasmic tail.11-13 During homophilic ALCAM-

ALCAM interactions, the first N-terminal Ig-domain of cis-clustered ALCAM binds to the N-terminal 

Ig-domain of another ALCAM in trans.14 The stronger heterophilic ALCAM-CD6 interaction is 

mediated by the N-terminal Ig-domain of ALCAM and the membrane proximal scavenger receptor 
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cysteine-rich (SRCR) domain of CD6.15 CD6-mediated interaction of T cells 16, 17 with ALCAM on 

antigen presenting cells 18 or on thymic epithelium 11 has been assigned a role in T cell activation 

and selection of thymocytes, respectively. In humans, the risk for MS development is associated with 

a distinct ALCAM polymorphism19 and one MS risk allele, named rs17824933G, is located in intron 

1 of the CD6 gene 20, 21. Thus, ALCAM as a BBB specific ligand for neuroinflammatory cells could be 

an interesting candidate in the search for alternative pharmaceutical targets aiming to prevent 

pathological immune cell infiltration into the CNS.  

We here addressed the role of endothelial ALCAM in the extravasation of immune cell subsets 

critically involved in EAE and MS pathogenesis across the human and mouse BBB. We revealed 

differences in the expression of ALCAM on the human versus mouse BBB and delineated a limited 

role of ALCAM in the diapedesis of CD4+ Th1 or Th17 cells across the human or mouse BBB. In 

contrast, prominent impairment occurred at various steps of CD14+ monocyte extravasation upon 

functional ablation of ALCAM. This suggests that ALCAM might influence MS pathogenesis by 

interfering with myeloid recruitment to the CNS but less so with T cells. 
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Materials and Methods  

Mice 

Wild type C57BL/6J mice were obtained from Harlan (Horst, Netherlands) and Janvier (Genest Saint 

Isle, France). ALCAM-/- mice 22 backcrossed into C57BL/6J background for 8 or more generations 

were kindly provided by Prof. Cornelia Halin, ETH Zürich, Switzerland. Mice were housed in 

individually ventilated cages under specific pathogen-free conditions. Animal procedures were 

performed in accordance with the Swiss legislation on the protection of animals or the guidelines of 

the Canadian Council on Animal Care and were approved by the Veterinary Office of the Kanton of 

Bern or the Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) 

Animal Care committee (N11023APs). 

 

In vitro models of the BBB  

Human brain-like endothelial cells (HBLECs). CD34+ cells and pericytes were isolated and 

differentiated exactly as described before.23, 24 For the collection of human umbilical cord blood, 

infants’ parents signed an informed consent form, in compliance with the French legislation. The 

protocol was approved by the French Ministry of Higher Education and Research (CODE-COH 

Number DC2011-1321). 

Human brain endothelial cells (HBECs). HBECs were isolated from non-epileptic surgical human 

CNS material (resection path) exactly as published. 10, 25, 26 

Human meningeal endothelial cells (HMECs). HMECs were isolated from leptomeningeal tissue 

removed from the CNS material. The tissue was extensively washed in PBS, cut into small pieces, 

and centrifuged at 1045 g for 15 min. The pellet was incubated in collagenase IV (1 mg/ml) (Sigma) 

at 37 C for 15 min, then washed in culture media and centrifuged at 485 g for 10 min. The pellet was 

resuspended in culture media and passed through a 30 μm nylon filter (Miltenyi). The fraction < 30 

μm was cultured in 6-well plates pre-coated with 0.5% gelatin.  
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HBECs and HMECs. Informed consent and ethic approval were given prior to surgery (Centre de 

Recherche du Centre Hospitalier de l’Université de Montréal research ethic committee approval 

number HD04.046).  

Primary mouse brain microvascular endothelial cells (pMBMECs). Isolation and culture of pMBMECs 

was performed exactly as described before.5, 27 Cytokine stimulation of pMBMECs was done with 

TNF-α at 10 ng/ml, IL-1β at 20 ng/ml or TNF-α/IFN-γ at 10ng/ml and 100 U/ml for 16–20 h prior to 

the experiments. 

 

Mouse brain or spinal cord microvessel  

Isolation of mouse brain or spinal cord microvessels was performed as described before 28 and 

immediately processed for protein lysate. 

 

Immune cell subsets 

Ex vivo human CD4+CD45RO+ T cells. Venous blood samples were obtained from consenting 

healthy donors in accordance with institutional guidelines (Centre de Recherche du Centre 

Hospitalier de l’Université de Montréal research ethic committee approval number SL05.022, 

SL05.023 and BH07.001), and immune cells were isolated as previously published.29  

In vitro polarized Th1 or Th17 cells. Ex vivo human CD4+CD45RO+ T cells were in vitro polarized as 

previously published.30 Briefly, 0.5 × 106 CD4+CD45RO+ T cells/ml were cultured with autologous 

monocytes at a 1 to 0.6 ratio and soluble anti-CD3 (clone OKT3 at 2.5 μg/ml, eBioscience). For Th17 

differentiation recombinant human IL-23 (25 ng/ml), anti-human IL-4 antibody (5 μg/ml) and anti-

human IFN-γ antibody (5 μg/ml) were added, whereas IL-12 (10 ng/ml) in the presence of anti-IL-4 

was added for Th1 differentiation (all reagents from R&D Systems). Th1 cells were harvested at day 

5 and Th17 cells at day 6 of culture to be used in adhesion and transmigration experiments using 

HMECs or HBECs. 
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CD4+CD45RO+ Th1 cells sorted from peripheral blood. Human CD4+ CD45RO+ Th1 cells were 

directly sorted from healthy human blood donors according to differential expression of chemokine 

receptors (CXCR3+, CCR4-, CCR6-) as previously described.31, 32 Th1 cells were cultured in the 

presence of IL-2 (500 U/ml) for a total 20 days and then employed for adhesion assay. 

Human monocytes. Ex vivo human CD14+ monocytes were isolated from venous blood of consenting 

healthy donors in accordance with institutional guidelines (Centre de Recherche du Centre 

Hospitalier de l’Université de Montréal research ethic committee approval number SL05.022, 

SL05.023 and BH07.001) as previously published.29 In brief, peripheral blood mononuclear cells 

were obtained using density gradient centrifugation on Ficoll-Paque™ (GE Healthcare) followed by 

immune-positive MACS® beads (Miltenyi) isolation and used directly (ex vivo) for 

monocyte/endothelial interaction under flow, adhesion and transmigration experiments with HBECs 

or HMECs. 

Mouse CD4+ Th1 cells. The encephalitogenic CD4+ proteolipid protein (PLP) aa139–153 specific Th1 

cell line SJL.PLP7 (IFN-γ+GM-CSF+IL-4-IL-17-) was used for studying mouse Th1 cell interaction with 

pMBMECs. Activation with the cognate antigen and culture of Th1 cells was as previously published. 

5, 33 

 

Antibodies and cytokines 

Antibodies and cytokines are named in the figure legends and specified in supplementary material.  

 

Immunohistochemistry and ALCAM quantification on human brain tissue 

Human brain tissues were obtained from post-mortem autopsies supplied by the UK Multiple 

Sclerosis Tissue Bank (UK Multicentre Research Ethics Committee, MREC/02/2/39), funded by the 

Multiple Sclerosis Society of Great Britain and Northern Ireland (registered charity 207495, 

Supplementary Table 1). Immunohistochemistry on cryostat sections (12 μm) from fresh frozen 

tissue blocks was performed as described before.34 ALCAM immunostaining was evaluated by 
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calculating the average signal intensity of all microvessels (Ø<15μm) in randomly taken pictures from 

control (30 pictures from 6 cases) and MS cases (NAWM: 28 pictures from 6 cases, chronic Lesion: 

21 pictures from 5 cases). Average signal intensities were first calculated for single cases and tissue 

type and were then compared in between the different tissue types. Differences between the tissue 

groups were calculated using the student’s t-test. 

 

Immunofluorescence (IF) 

IF staining on HBLECs. The human in vitro BBB was stimulated as indicated with TNF-α (10 ng/ml), 

IL-1β (20ng/ml) or TNF-α/IFN-γ (10 ng/ml each) for 16 h and then incubated with mouse anti-human 

ALCAM antibody clone 105901 (10ug/ml) or with mouse IgG1 isotype control for 30 min at 37°C. The 

BBB was washed, fixed in 1% PFA, unspecific binding sites were blocked in skimmed milk (5% in 

PBS) and incubated for 45 min with donkey anti mouse IgG-Cy3 (1:500). Images were acquired with 

a Nikon Eclipse E600 microscope equipped with a digital camera. 

IF staining on HBECs or HMECs. HBECs or HMECs were grown to confluency in Ibidi μ-slides VI0.4 

and then treated for 24 h with TNF-α/IFN-γ (at 100 U/ml each). Cells were washed with PBS and 

then fixed at room temperature with 70% ethanol. Staining was performed as previously reported 35 

using anti-human ALCAM antibody clone 105901 followed by donkey anti-mouse Cy3. TOPRO-3 

Iodide (1:300 in Mowiol mounting medium) was used to stain nuclei. Images were acquired with a 

LEICA SP5 confocal microscope. 

 

Quantitative RT-PCR  

RNA was extraction, cDNA synthesis and SYBR green qPCR was exactly as described before.6 

Primers (Eurogentec S.A., Seraing, Belgium) were as follows. ALCAM (NM_009655): 

CTTCAGTGTTTGGGGAATGG (sense) and TTATGCCTTCAGGCTGTCCT (reverse); ICAM-1 

(NM_010493): CACGCTACCTCTGCTCCTG (sense) and TCTGGGATGGATGGATACCT (reverse); 
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and ribosomal protein S16 (Rps16) (the endogenous control) (NM_013647): 

GATATTCGGGTCCGTGTGA (sense) and TTGAGATGGACTGTCGGATG (reverse). 

 

EAE, protein lysates, Western Blot and protein quantification  

Active EAE, Western Blot and protein quantification were performed according to standard methods. 

Details are described in supplementary material. 

 

Adhesion assay 

Adhesion of ex vivo sorted human CD4+ Th1 cells to HBLECs. After 6 days of co-culture with 

pericytes on 3 μm pore size Transwell® inserts, HBLECs were treated with cytokine for 16 hours. 

Both, the HBLECs and human CD4+ Th1 cells were pre-incubated with mouse anti-human ALCAM 

antibody (10μg/ml), anti-human ICAM-1 (15 μg/ml) or mouse IgG1 control antibody (15μg/ml) for 30 

min at RT. Soon after incubation 104 human Th1 cells labelled with CMFDA cell tracker (Life 

Technologies, ThermoFisher) were added on top of the human in vitro BBB and allowed to adhere 

for 30 min. Non adherent cells were then gently washed away with PBS and cells were fixed with 1% 

PFA in PBS, blocked in 5 % skimmed milk in PBS and incubated for 45 min with donkey anti mouse 

Cy3 antibody (1:500). The human in vitro BBB treated with mouse isotype control was incubated 

after fixation with mouse anti-human VE-cadherin (1:200). Assays were analyzed by fluorescence 

microscopy (Nikon Eclipse E600) and Th1 bound cells per pre-defined field were determined by 

counting five fields per filter. Assays were performed in triplicates for each value.  

 

Diapedesis assay 

Diapedesis of human immune cell subsets across HBECs or HMECs. HBECs or HMECs (3.5 × 104 

cells per filter) were grown on gelatin-coated 3 μm pore size Boyden chambers (Fisher Scientific) in 

culture media supplemented with 40% astrocyte-conditioned media for 72 h (to confluency). When 
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indicated, antibodies specific for ALCAM (clone 105901, R&D Systems, 30 μg/ml), ICAM-1 (clone 

BBA3, R&D Systems, 10 μg/ml) or the appropriate isotype control were added to endothelial cells 

and immune cell subsets 1 h prior to the experiment. In presence of the blocking or control antibody, 

a suspension of 1x 106 specified leukocyte subset was added to the upper chamber and allowed to 

migrate for 16 - 18 h. Absolute number of cells that transmigrated to the lower chamber was then 

assessed. All conditions were performed in triplicate for each donor. 

Diapedesis of mouse Th1 cells across pMBMECs. T cell diapedesis across pMBMECs under static 

conditions was assessed as described before.5, 36 

 

Imaging of extravasation under flow 

In vitro live cell imaging of mouse CD4+ Th1 cell interaction with pMBMECs. Imaging of mouse Th1 

cell dynamic interaction with pMBMECs cultured on matrigel coated cell culture surfaces 

(μ-dish35 mm-low, ibidi Vitaris, Baar, Switzerland) was performed as described before.5, 37  

In vitro live cell imaging of human monocyte, Th1 cell or Th17 cell interaction with HBECs. Imaging 

of human leukocyte subset interaction with HBECs under flow was performed as previously 

published 29, 38.  

 

Statistics 

Statistical analysis was performed using GraphPad Prism 6.0 software (Graphpad software, La Jolla, 

CA, USA). Asterisks indicate significant differences (*P<0.05, **P<0.01, ***P<0.001 and ****P< 

0.0001). Nonspecific differences are without label. Unless otherwise specified, data are expressed 

as mean ± standard error of the mean (SEM) and statistical differences of two groups were calculated 

by unpaired Student’s t-test with equal SD. 

  



 
79 

Results  

ALCAM expression in chronic MS lesions in situ and on the human BBB in vitro 

Previously, we have described prominent ALCAM staining on brain vessels in acute MS lesions.10 

Here, we addressed expression of ALCAM in chronic MS lesions. Immunostaining of post-mortem 

brain tissue from MS cases confirmed ALCAM on small human brain vessels in chronic MS lesions 

as well as on microvessels in normal appearing white matter (NAWM) and control brain tissue 

samples (Fig. 1A). Quantification of staining signal intensity revealed no significant difference of 

microvascular ALCAM between all three types of human brain samples (Fig. 1 B). ALCAM 

immunostaining was also detected on large diameter brain vessels, which were however excluded 

from analysis because they are not involved in immune cell extravasation. Thus, unlike in acute MS 

lesions,10 microvessels in chronic MS lesions do not show increased ALCAM staining.   

In line with our previous observations, we here confirmed ALCAM immunostaining on primary human 

brain endothelial cells (HBECs) (Fig. 1C).10 We further demonstrated ALCAM immunostaining on a 

second in vitro model of the human BBB established from CD34+ cell derived human brain-like 

endothelial cells (HBLECs) (Fig. 1E).23, 24 Immunofluorescence staining confirmed upregulation of 

endothelial ALCAM following stimulation with TNF-α, IL-1β or a combination of TNF-α and IFN-γ 

(TNF-α/IFN-γ) on HBECs or HBLECs (Fig.1C, E). As leptomeningeal immune cell infiltration is an 

important aspect in EAE and potentially in MS, we have additionally compared primary cultures of 

HBECs with primary cultures of human meningeal endothelial cells (HMECs) (Fig.1C). As opposed 

to HBECs, HMECs stained more prominently for ALCAM in resting conditions and no significant 

increase in staining was observed under inflammatory conditions (Fig.1C). Differential cell surface 

expression of ALCAM by HBECs and HMECs was confirmed by flow cytometry analysis, which also 

confirmed upregulation of ICAM-1 and VCAM-1 on both HBECs and HMECs upon cytokine 

stimulation (Fig.1D). 
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Limited involvement of ALCAM in the interaction of human CD4+ T cells with the BBB in vitro  

We have previously assigned a role for ALCAM in the extravasation of monocytes and CD4+ T cells 

across the human BBB.10 However, neither the precise effector T cell subset nor the precise step of 

extravasation affected by blocking ALCAM has been identified. Here, we aimed to address the role 

of ALCAM in the extravasation of activated CD4+ Th1 and Th17 cells across the human BBB. First, 

we tested the adhesion of ex vivo human CD4+CD45RO+ Th1 cells sorted from human peripheral 

blood as described before.39 These T cells expressed CD6 and ALCAM on their surface as 

determined by flow cytometry (Supplementary Fig. 1) and readily adhered to HBLECs in a static 

environment (Fig. 2A, B). As expected, increased numbers of Th1 cells adhered to the cytokine 

stimulated HBLECs when compared to unstimulated HBLECs (Fig. 2A, B). However, masking 

ALCAM with a function-blocking antibody did not interfere with Th1 cell adhesion to the unstimulated 

or stimulated HBLECs. At the same time, antibody-mediated blocking of endothelial ICAM-1 

significantly reduced T cell adhesion to the unstimulated and cytokine stimulated HBLECs (Fig 2A, 

B). Using an in vitro flow system, we also tested rolling and initial arrest of human in vitro polarized 

Th1 and Th17 cells on HBECs. Th1 and Th17 cells used for this experiment were generated by in 

vitro polarization of ex vivo human CD4+CD45RO+ T cells as described.30 These T cells expressed 

similar cell surface levels of CD6 but lower cell surface levels of ALCAM when compared to ex vivo 

sorted Th1 cells (Supplementary Fig. 1). The addition of function-blocking anti-ALCAM antibodies to 

HBECs and Th1 or Th17 cells did neither reduce their rolling nor their arrest on resting or stimulated 

HBECs (Fig. 2C, D and data not shown). Taken together, we concluded that ALCAM is not involved 

in rolling, shear resistant arrest and firm adhesion of human Th1 and Th17 cells to human in vitro 

models of the BBB.  

To address the role of endothelial ALCAM in T cell diapedesis across HBECs, we used a modified 

Boyden chamber assay. In line with our previous observations, we found that inhibition of ALCAM 

reduced the diapedesis of ex vivo sorted CD4+CD45RO+ T cells across HBECs (Fig. 2E).10 However, 

no effect of ALCAM blockade occurred when CD4+CD45RO+ T cells were allowed for diapedesis 

across HMECs (Fig. 2E). For refinement, we then analyzed the diapedesis of in vitro polarized Th1 

versus Th17 cells and observed that pre-treatment of HBECs with the function-blocking anti-ALCAM 

antibody significantly reduced diapedesis of Th1 but not of Th17 cells (Fig. 2F, G). At the same time 
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antibody-mediated blocking of ICAM-1 had a more pronounced effect on the diapedesis of both T 

helper cell subsets across HBECs (Fig. 2F, G). Taken together, blocking ALCAM failed to reduce 

diapedesis of human CD4+ Th17 cells across HBECs and exerted a limited effect on the diapedesis 

of human CD4+ Th1 cells across the human BBB. 

 

Prominent neuronal ALCAM masks endothelial ALCAM at the BBB in mice 

Research using mouse in vivo EAE models or mouse in vitro BBB models has been fundamental in 

improving our understanding of the immune pathogenesis of MS.40 Previously, we have 

demonstrated that anti-ALCAM antibody treatment ameliorates MOG(aa35-55)-induced EAE in C57BL/6 

mice.10 To determine ALCAM expression in vivo in the mouse CNS during EAE, we next analyzed 

protein lysates from inflamed CNS tissue of C57BL/6 mice suffering from acute EAE compared to 

age and gender matched healthy controls. ALCAM protein levels were comparable in lysates from 

the brain cortex and cerebellum of both cohorts (Fig. 3A-C). In lysates from the inflamed spinal cord 

ALCAM protein was lowered concomitant with an increase of the ICAM-1 protein level compared to 

control samples (Fig. 3A, D, E). As expected, protein lysates from healthy ALCAM-/- C57BL/6 mice 

were devoid of ALCAM (Fig. 3F). To localize the cellular sources of ALCAM in the mouse brain, we 

performed immunofluorescence staining on frozen naïve brain or spinal cord sections and on 

respective tissue sections from ALCAM-/- mice (Supplementary Fig. 2). We found strong ALCAM 

immunostaining in the meninges of the mouse brain and a more moderate, widespread staining in 

the parenchyma of the cerebral cortex and the striatum (Supplementary Fig. 2A, C). Strong ALCAM 

immunoreactivity was also observed in neurons and axons of the dorsal root ganglia, the dorsal and 

the ventral horn (Supplementary Fig. 2D-F), and in the axons that projected to a particular dorsal 

lamina (Supplementary Fig. 2H). However, multi-color immunofluorescence staining failed to locate 

ALCAM staining on IB4-positive CNS vessels in brain and spinal cord sections of C57BL/6 mice 

(Supplementary Fig 2J). We therefore hypothesized that the strong signal intensity of neuronal 

ALCAM did not allow the detection of lower endothelial ALCAM levels in situ.  
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Therefore, we next tested the expression of ALCAM on freshly isolated CNS vessels and in primary 

mouse brain microvascular endothelial cells (pMBMECs) from C57BL/6 mice. ALCAM protein was 

readily detectable in protein lysates from brain and spinal cord vessels of wild type mice but was 

absent in the respective samples from ALCAM-/- C57BL/6 mice (Fig. 3G). Similarly, ALCAM mRNA 

was detected in unstimulated and cytokine stimulated pMBMECs from wild type C57BL/6 mice (Fig. 

3H). Remarkably, the stimulation of pMBMECs with IL-1β induced a 3-fold upregulation of ALCAM 

mRNA, as compared to controls, whereas TNF-α provided no change (Fig. 3H). At the same time 

the levels of ICAM-1 or VCAM-1 mRNA were upregulated 23-fold and 8-fold upon stimulation 

pMBMECs with IL-1β (Fig. 3I, J). Taken together, endothelial ALCAM is expressed in mouse CNS 

microvascular endothelial cells but at a lower level than in human.  

  

Endothelial ALCAM plays a limited role in mouse Th1 cell diapedesis across the BBB   

We next investigated the role of ALCAM during diapedesis of Th1 cells in mouse. To specifically 

target the role of endothelial ALCAM, we took advantage of the ALCAM-/- C57BL/6 mouse as a 

source of pMBMECs.22, 41 ALCAM and CD6 protein expression on mouse encephalitogenic Th1 cells 

5, 33 was confirmed by flow cytometry (Supplementary Figure 3). Using the modified Boyden chamber 

assay, we found, in accordance with the observations made with human Th1 cells, a reduction of 

mouse Th1 cell diapedesis across unstimulated ALCAM-/- pMBMECs compared to wild type 

pMBMECs (Fig. 4A). However, the difference was abrogated by the stimulation of pMBMECs with 

TNF-α, IL-1β or TNF-α/IFN-γ (Fig. 4A). Compensatory upregulation of ICAM-1, ICAM-2 or VCAM-1 

in the absence of ALCAM on stimulated ALCAM-/- compared to wild type pMBMECs was ruled out 

through side-by-side analysis of their cell surface expression (data not shown). Possibly, low levels 

of ALCAM on resting BBB-ECs contribute to Th1 cell migration, but ALCAM may become 

dispensable when other molecules involved in T cell extravasation, such as ICAM-1 or VCAM-1, are 

upregulated under inflammatory conditions.  

To dissect the precise role of endothelial ALCAM leading to reduced Th1 cell diapedesis, we next 

employed in vitro time-lapse live cell imaging under physiological flow.37 This approach has proven 
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valuable for dissecting the different roles of other CAMs during the extravasation cascade across the 

BBB.5, 6, 42 First, we compared the shear resistant arrest of Th1 cells on the unstimulated or cytokine 

stimulated wild type or ALCAM-/- pMBMECs (Fig. 4B). Irrespective of the presence or absence of 

cytokine stimulation, we found comparable numbers of Th1 cells arresting on wild type and ALCAM-/- 

pMBMECs (Fig. 4B), demonstrating that ALCAM does not contribute to mouse Th1 cell arrest on the 

BBB. Next, we compared the dynamic post-arrest behavior of Th1 cells on ALCAM-/- and wild type 

pMBMECs (Fig. 4C-I). On unstimulated wild type pMBMECs, the majority of the arrested Th1 cells 

continuously crawled on the endothelial surface and another substantial fraction detached due to low 

sustained adhesive interactions, while only a minor fraction of the Th1 cells migrated across the 

pMBMEC monolayer (Fig. 4C). In contrast, the majority of arrested Th1 cells crossed the cytokine 

stimulated-endothelial monolayer and another substantial fraction of Th1 cells continuously crawled 

on the endothelial surface with only rare events of detachment (Fig. 4D, E). Importantly, the 

comparison of the dynamic Th1 cell behavior on wild type versus ALCAM-/- pMBMECs did not show 

any significant differences (Fig. 4C-E). We also assessed shorter periods of evaluation to focus on 

early diapedesis which, however, did not reveal any significant difference in the dynamic Th1 cell 

behavior on wild type versus ALCAM-/- pMBMECs (Fig. 4E, F). Furthermore, the speed of Th1 cell 

crawling (Fig. 4G), the time elapsed between Th1 cell arrest and diapedesis (Fig. 4H) or the duration 

of diapedesis (Fig. 4I) were comparable on wild type and ALCAM-/- pMBMECs. Taken together, our 

detailed live cell imaging analysis did not reveal any role for endothelial ALCAM in the multi-step Th1 

cell migration across mouse BBB-ECs in vitro. Thus, the observed role for endothelial ALCAM in 

mediating Th1 cell diapedesis across the BBB under static conditions is abrogated under 

physiological flow.  

 

ALCAM is involved in multiple steps of monocyte migration across the BBB   

Considering our previous findings on ameliorated EAE upon anti-ALCAM treatment 10 but the limited 

role of ALCAM in Th1 cell diapedesis across the BBB, we finally aimed to delineate the role of ALCAM 

in monocyte migration across the BBB. After extravasation across the BBB, monocytes can 

differentiate into dendritic cells (DCs) and macrophages and contribute to disease pathogenesis.43, 
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44 Here, we used ex vivo sorted human CD14+ monocytes of which 60 to 85% expressed ALCAM, 

as demonstrated by us and others before.10, 45 Using the in vitro flow system, ex vivo human CD14+ 

monocytes were allowed to interact with HBECs over a period of 30 minutes and were recorded in 

real time for multiple intervals of 30 seconds. Tracking of individual monocytes overtime 

demonstrated that blocking both, monocyte and endothelial ALCAM with a function-blocking antibody 

significantly reduced monocyte/HBEC interactions and interfered with an overall decrease in 

monocyte speed, as compared to the isotype control (Fig. 5A). More specifically, anti-ALCAM 

antibody treatment blocked both, rolling (Fig. 5B) and firm adhesion (Fig. 5C) of CD14+ monocytes 

on unstimulated HBECs. The function-blocking anti-ALCAM antibody also significantly reduced firm 

adhesion of CD14+ monocytes on TNF-α/IFN-γ stimulated HBECs (Fig. 5D). Using the modified 

Boyden chamber assay, we found that antibody-mediated blocking of ALCAM reduced the migration 

of CD14+ monocytes across resting HBECs (Fig. 5E). We also correlated the diapedesis of 

monocytes across HMECs obtained from the same donors as the HBECs. As expected, monocytes 

migrated in higher numbers across the more permeable HMECs, while also being significantly 

blocked upon the addition of anti-ALCAM antibodies (Fig. 5E). Importantly, the effect of antibody-

mediated inhibition of ALCAM on monocyte diapedesis was comparable to the extent of antibody-

mediated blockage of ICAM-1 (Fig. 5E). In conclusion, ALCAM contributes to the extravasation of 

human CD14+ monocytes across the human BBB at various individual steps, namely rolling, firm 

adhesion and diapedesis. Thus, we conclude that a therapeutic targeting of ALCAM in the treatment 

of neuroinflammation would affect the recruitment of monocytes into the CNS but exert limited effect 

on the recruitment of CD4+ effector T cells. 
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Discussion  

MS is an inflammatory disease of the CNS with no cure available to date. However, treatments that 

ameliorate and delay the progression of the disease exist. Successful therapeutic strategies targeting 

immune cell trafficking have been translated into the clinics such as the humanized anti-α4-integrin 

antibody natalizumab and the sphingosine-analogue fingolimod.2, 3 Unfortunately, natalizumab and 

fingolimod harbor a low risk of developing the fatal disease PML, which is due to the complete 

inhibition of the CNS immune surveillance.46, 47 To define alternative therapeutic targets aimed at 

inhibiting pathological immune cell entry into the CNS during MS, more detailed knowledge on the 

multi-step extravasation of different immune cell subsets across the BBB is required. In previous 

studies, we have defined the individual roles of endothelial selectins, VCAM-1, ICAM-1 and ICAM-2 

in CD4+ Th1 cell extravasation across the BBB during EAE.5, 6, 49, 50 However, further endothelial cell 

surface proteins expressed at the BBB, such as melanoma cell adhesion molecule (MCAM, 

CD146),29, 51 netrin-1,28 Ninjurin-1,38, 52 and ALCAM 10 were recently proposed as additional players 

in the migration of different immune cell subsets including Th1 and Th17 cells across the BBB and 

hence as potential pharmaceutical targets for the treatment of MS. However, the precise steps 

mediated by these additional molecules within the extravasation cascade have not been solved. To 

this end, we here analyzed the role of ALCAM in various steps of extravasation using human Th1 or 

Th17 cells and monocytes, as well as mouse Th1 cells across both human and mouse in vitro models 

of the BBB. Functional analysis was complemented by the analysis of ALCAM expression in human 

and mouse CNS tissue or on their respective in vitro models of the BBB. 

In a previous study, we found increased ALCAM expression on brain vessels in acute MS lesions.10 

Similarly, inflamed vessels in the CNS of drug-abusing or HIV-infected patients 53 show increased 

ALCAM expression. In the present study, we confirmed the expression of ALCAM protein in human 

brain BBB-ECs. However, we also found that, in chronic MS lesions, vascular ALCAM is not 

enhanced compared to NAWM or control tissues from individuals without neurological diseases. 

Obviously, specific inflammatory conditions play a decisive role in the upregulation of ALCAM at the 

human BBB in situ. On the other hand, ALCAM was readily detectable on both, unstimulated stem 

cell- and primary cell-derived in vitro models of the human BBB and increased upon cytokine 
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stimulation in line with our previous observations.10 Thus, our data confirm the expression of ALCAM 

on the human BBB in situ and in vitro.  

In our previous study, we have demonstrated a role for ALCAM in the diapedesis of human CD4+ but 

not CD8+ T cells across the human BBB.10 In apparent contrast, another study failed to find a role for 

endothelial ALCAM in the migration of human CD3+ T cells across an in vitro model of the human 

BBB consisting of commercially available human brain microvascular endothelial cells co-cultured 

with astrocytes.45 However, the latter study was based on a different experimental setup including a 

chemotaxis component towards CCL2 or CXCL12, longer duration of the T cell migration period and 

a different anti-ALCAM antibody.45 In addition, the more heterogeneous population of CD3+ T cells 

investigated in that study might have superseded the role of ALCAM in mediating the diapedesis of 

specific T cell subsets across the BBB. The role of ALCAM in the extravasation of CD4+ Th1 and 

Th17 cells has not been addressed hitherto. Here, we confirmed the role of ALCAM in the diapedesis 

of mixed populations of ex vivo CD4+ T cells across unstimulated HBECs. However, antibody-

mediated inhibition of ALCAM neither blocked rolling nor flow resistant arrest of in vitro polarized 

human Th1 cells nor adhesion of ex vivo sorted human Th1 cells to unstimulated or stimulated 

HBECs or HBLECs, respectively. Nonetheless, antibody-mediated inhibition of ALCAM significantly 

reduced the diapedesis of in vitro polarized human Th1 cells across HBECs but neither adhesion nor 

diapedesis of human Th17 cells. Thus, our results suggest that ALCAM plays a limited role in T cell 

extravasation across the BBB by contributing solely to the diapedesis of human CD4+ Th1 but not 

Th17 cells across the human BBB. 

Research based on mouse species offering knock-out models for in vivo and in vitro studies for the 

inhibition of leukocyte trafficking has been fundamental for the clinic.3, 40 To set the stage, we here 

investigated the expression of ALCAM in the mouse CNS and its role in Th1 cell extravasation across 

the BBB. We determined that either equal or lower amount of ALCAM protein is present in the brain 

or spinal cord of C57BL/6 mice during acute EAE. The inflamed condition of the samples was 

confirmed by the upregulation of ICAM-1 compared to control samples.54, 55 While the expression of 

ALCAM on neurons has been described before,22, 56 we here confirmed ALCAM expression in situ 

on neurons and in the meningeal layers whereas the parenchymal CNS vasculature did not visibly 
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stain positive for ALCAM. We concluded that in contrast to the human brain, ALCAM protein in mouse 

CNS vessels might be difficult to detect due to its low level compared to its high level in neurons.  

To test whether the role of ALCAM in the diapedesis of Th1 cells across the BBB is conserved 

between human and mouse in spite of the obvious differences in ALCAM protein levels on the BBB, 

we used encephalitogenic mouse Th1 cells 41 and a mouse in vitro BBB model composed of 

pMBMECs.27, 36 Isolation of pMBMECs from ALCAM-/- C57BL/6 mice 22 and wild type littermates in 

parallel enabled a direct comparison of Th1 cell interaction with the BBB in the presence or absence 

of ALCAM. To model an inflamed BBB with high levels of ICAM-1 and VCAM-1, pMBMECs were 

stimulated with pro-inflammatory cytokines.5, 6 Under static conditions, mouse Th1 cell diapedesis 

was reduced across unstimulated ALCAM-/- compared to wild type pMBMECs. In vitro live cell 

imaging under physiological flow has proven valuable in delineating the different roles of endothelial 

ICAM-1, ICAM-2 and VCAM-1 during the extravasation of immune cell subsets across the BBB.5, 6, 

36, 57, 58 Interestingly, our detailed analysis revealed comparable Th1 cell shear resistant arrest, 

diapedesis, crawling speed or duration of diapedesis on wild type and ALCAM-/- pMBMECs. Upon 

stimulation with pro-inflammatory cytokines, the diapedesis rate of mouse Th1 cells across ALCAM-

/- or wild type pMBMECs was also equal under static and under flow conditions. Following the strong 

upregulation of mouse endothelial ICAM-1 and VCAM-1 upon cytokine stimulation as compared to 

ALCAM and considering their essential roles in the multi-step extravasation cascade, our data 

suggest that ALCAM could be involved in the diapedesis of mouse Th1 cells across the BBB in 

unstimulated low shear stress conditions in vivo, but becomes dispensable during 

neuroinflammation.5, 6  

To explain the prominent role of ALCAM previously observed during the development of EAE,10 we 

investigated the role of monocytes, which can differentiate into DCs and macrophages after 

infiltrating the CNS and thus contribute to EAE and MS pathogenesis.59 In particular, early depletion 

of monocytes completely abrogates clinical development of EAE 44 and depletion of monocytes after 

disease onset still protects from axonal loss during EAE.60 This led us to finally analyze the role of 

ALCAM in various steps of monocyte extravasation across the BBB. We here confirmed a significant 

role of ALCAM in monocyte diapedesis across unstimulated and cytokine stimulated HBECs that 

previous studies have described before.10, 45, 61 In the present study, we found additional roles for 
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ALCAM during monocyte rolling and shear resistant arrest on the human BBB not addressed by 

others hitherto. Possibly, higher levels of ALCAM on monocytes versus Th1 or Th17 cells could 

explain the increased effect of blocking ALCAM on the multi-step extravasation of monocytes across 

the BBB, as compared to the T cell subsets. In support, overexpression of ALCAM on the surface of 

human T-lymphotropic virus type 1 (HTLV-1)-infected lymphocytes was identified as a cause for their 

increased migration across the human BBB.62 

In conclusion, we here demonstrate a higher expression of ALCAM on the human BBB, as compared 

to the mouse BBB. Nevertheless, in both species, ALCAM is involved in the diapedesis of Th1 cells 

across the uninflamed BBB, though it is not involved in shear resistant arrest, adhesion strengthening 

and diapedesis of Th1 cells under flow. In contrast, the prominent role of ALCAM in multiple steps of 

the monocyte extravasation cascade across the BBB suggests that the function blocking anti-ALCAM 

antibody specifically interferes with monocyte infiltration into the CNS during autoimmune 

neuroinflammation and thus lead to the amelioration of EAE as observed before.10 Considering the 

prominent expression of ALCAM on the human BBB, ALCAM might be a suitable therapeutic target 

for specifically targeting myeloid cell migration into the CNS, while leaving T cell mediated CNS 

immune surveillance intact.  
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Figure 1: 

ALCAM protein expression on the human BBB 

A, ALCAM expression pattern on control, MS NAWM and chronic MS lesion tissue samples from the 

subcortical white matter region of post-mortem human brains as detected by immune histochemistry 

(polyclonal goat anti-human/mouse ALCAM antibody). Scale bar = 50 m. B, Densitometry of ALCAM 

signal intensities on human brain microvessels (Ø<15 m) as shown in representative images in A. 

Randomly taken pictures from control (30 pictures from 6 cases) and MS cases (NAWM: 28 pictures 

from 6 cases, chronic Lesion: 21 pictures from 5 cases) were evaluated. ALCAM intensity is presented 

as arbitrary units. C, D, Anti-ALCAM immunoreactivity (clone 105901) on unstimulated or cytokine 

stimulated HBECs and HMECs (C) and HBLECs (D, ctrl, control antibody) is in red. Cytokine stimulation 

as labelled, nuclei were stained with DAPI (blue). Representative of n = 3 independent experiments. 

Images were acquired with a 20x objective (C, scale bar = 10 μm) and 40 x objective (D, scale bar = 20 

μm). E, Quantification of ALCAM (antibody clone 3A6), ICAM-1 (antibody clone HA58) and VCAM-1 

(antibody clone 51-10C9) protein expression on HBECs (n = 10) or HMECs (n = 7) as determined by 

flow cytometry. Values show % of positive endothelial cells. 
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Figure 2: 

Role of ALCAM during the interaction of human Th1 or Th17 cells with HBLECs, HBECs or 

HMECs 

A-B, Adhesion of ex vivo sorted human CD4+ Th1 cells to HBLECs after treatment with function blocking 

antibodies to ALCAM or ICAM-1 or with isotype control. HBLECs were unstimulated or stimulated with 

TNF-α (10 ng/ml), IL-1β (20 ng/ml) or TNF-α/IFNγ (10 ng/100 U/ml). A, Representative images of CD4+ 

Th1 cells (green, CMFDA loaded) adherent on the human BBB stained for VE-cadherin, ALCAM or 

ICAM-1 (red). Cell nuclei are stained with DAPI (blue). Images were acquired with a 40x objective. Scale 

bar, 20 μm. B, Quantification of CD4+ Th1 cell adhesion to HBLECs. Values are of 3 independent 

experiments performed in triplicates and expressed relative to Th1 cell adhesion to isotype control 

treated and unstimulated HBLECs (1.0). C-D, numbers of adherent in vitro polarized CD4+ Th17 cells 

on resting (C) or cytokine (TNF-α/IFN-γ) stimulated HBECs 20 minutes after Th17 cell perfusion. Th17 

cells from individual healthy donors are compared side-by-side (Horizontal lines) (n = 8 experiments). 

E, Diapedesis of ex vivo human CD4+CD45RO+ T cells across HBECs or HMECs that were pre-treated 

with ALCAM or ICAM-1 blocking antibodies or isotype control antibody (n = 4). HBECs and HMECs from 

the same donors were tested side-by-side and diapedesis rates were normalized to T cell diapedesis 

across isotype control treated HBECs (100 %). F-G, Diapedesis of human in vitro polarized CD4+ Th1 

cells (F) or Th17 cells (G) across unstimulated HBECs that were pre-treated with ALCAM or ICAM-1 

blocking antibodies or isotype control antibody (n = 4 experiments). Data are expressed relative to 

isotype control treated HBECs (100 %). Antibodies were anti ALCAM clone 105901 (A-G), anti ICAM-1 

clone 15.2 (A, B) and clone BBA3 (E-G). 
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Figure 3: 

ALCAM expression in the mouse CNS and on the mouse BBB 

A, ALCAM or ICAM-1 protein in lysates from the brain cortex (ctx), cerebellum (crb) or spinal cord (sc) 

of wild type mice afflicted with acute paraplegic EAE or healthy gender and age matched control mice 

by Western Blot. Each lane represents protein samples from one individual mouse. Staining of β-actin 

proves equal loading, which was 20 μg/lane. B-E, Quantitative densitometry evaluation of the Western 

Blot shown in A. ALCAM or ICAM-1 signal intensities were normalized to β-actin and expressed as 

fractions of the healthy control set to 100 %. F, Analysis of ALCAM protein in brain cortex (ctx) or 

cerebellum (crb) lysates from an ALCAM-/- (ko) or wild type (wt) mouse by Western Blot. Equal loading 

of total protein amount (20 μg/lane) was confirmed through β-actin assessment. G, ALCAM protein in 

brain (left) or spinal cord (right, sc) microvessel lysates from healthy wild type (wt) or ALCAM-/- (ko) mice 

was assessed by Western Blot. Equal loading (20 μg/lane of brain vessels, 9 μg/lane of spinal cord 

vessels) was ensured by α-actin staining in parallel. A, F, G, polyclonal anti mouse/human ALCAM 

antibody. H-J, Relative quantification of ALCAM, ICAM-1 and VCAM-1 mRNA level in RNA lysates from 

wild type pMBMECs that were unstimulated (open bars) or stimulated for 4 hours with TNF-α (grey bars) 

or IL-1β (dark grey bars) as assessed by qPCR. Unstimulated condition was set to 1.0. Bars show the 

mean ± SD from five independent experiments, each performed in triplicate. 
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Figure 4:  

Comparison of mouse CD4+ Th1 cell interaction with ALCAM-/- or wild type pMBMECs.  

A, Diapedesis of CD4+ Th1 cells across wild type (wt, black bars) or ALCAM-/- (ko, grey bars) pMBMECs 

was tested under static conditions. pMBMECs were without cytokine stimulation (w/o) or stimulated with 

TNF-α, TNF-α/IFN-γ or IL-1β as labelled. Diapedesis of mouse Th1 cells across ALCAM-/- (ko) is shown 

relative to Th1 cell diapedesis across wild type pMBMECs (wt) set to 1.0. Data are mean of 10 samples 

from three independent experiments (w/o) or mean of six samples (TNF-α, TNF-α/IFN-γ) or three 

samples (IL-1β) from one representative experiment. Error bars are SD. B-I, Dynamic interaction 

behavior of mouse Th1 cells on wild type (wt) or ALCAM-/- (ko) pMBMECs evaluated through in vitro live 

cell time lapse imaging under physiological flow. B-F, pMBMECs were without cytokine stimulation (w/o) 

or stimulated with IL-1β or TNF-α/IFN-γ as indicated. Values are the mean of 3 independent 

experiments. B, numbers of arrested Th1 cells per field of view (FOV). C-F, Dynamic post-arrest 

interaction of the Th1 cells on the pMBMECs is described in 4 behavioral categories: Diapedesis (black 

bars), crawling but no diapedesis (hatched bars), detachment (dark grey bars) or stationary (light grey 

bars). Numbers of arrested Th1 cells were set to 100 % and the behavioral categories are expressed in 

fractions of arrested T cells. Period of observation was 30 minutes (C, w/o), 20 minutes (D, TNF-α/IFN-

γ) or 25 and 10 minutes (E, F, IL-1β). G, crawling speed of Th1 cells on the surface of IL-1β stimulated 

pMBMECs. Each dot represents the crawling speed of one Th1 cell. H, time elapsed between initial 

arrest and start of diapedesis in seconds on IL-1β stimulated pMBMECs. Each dot represents mean 

values from at least 50 CD4+ Th1 cells in one experiment. I, duration of T cell diapedesis across IL-1β 

stimulated pMBMECs. Each dot represents one T cell.  
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Figure 5: 

Role of ALCAM in the extravasation of human monocytes across the human BBB 

A-D, Monocyte/HBEC interactions were analyzed under flow conditions. HBECs and CFSE-labeled 

human CD14+ monocytes were treated with a function-blocking anti-ALCAM antibody or isotype control 

(n = 7 individual experiments). A, Monocytes were perfused over HBECs and 30-second-movies were 

acquired at 1 min, 5 min, 10 min, 15 min, 20 min or 30 min (x-axis: 1, 5, 10, 15, 20, 30; c, ctrl; A, anti-

ALCAM). Each dot represents the mean velocity of a single CFSE+ cell. The horizontal bars are 

representative of the mean per data set. B, Numbers of rolling monocytes (1-20 μm/sec) per FOV at 1 

min, 5 min, 10 min, 15 min, 20 min or 30 min after monocyte perfusion are shown. C-D, numbers of 

adherent CD14+ monocytes on resting (C) or cytokine (TNF-α/IFN-γ) (D) stimulated HBECs 20 minutes 

after monocyte perfusion. Monocytes from individual healthy donors are compared side-by-side 

(horizontal lines). E, Diapedesis of human monocytes across HBECs or HMECs; both cell types were 

pre-treated with ALCAM or ICAM-1 blocking antibodies or isotype control antibody (n = 4). HBECs and 

HMECs from identical donors were tested side-by-side and diapedesis rates were normalized to 

monocyte diapedesis across isotype control treated HBECs (100 %). Antibodies were anti ALCAM clone 

105901 (A-E) and anti ICAM-1 clone BBA3 (E).  
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Supplementary material  

Antibodies and cytokines 

For immunofluorescence, flow cytometry and functional blockade of HBLECs, HBECs or HMECs or 

immunohistochemistry on post-mortem human brain tissue, we used monoclonal mouse anti-human 

ALCAM clone 105901 (R&D Systems) or clone 3A6 (BD Biosciences), VCAM-1 clone BBIG-V1 (R&D 

Systems) or clone 51-10C9 (BD Biosciences), ICAM-1 clone BBA3 (R&D Systems), clone HA58 (BD 

Biosciences) or clone 15.2 (Abcam, Cambridge, UK), mouse anti-human VE-cadherin clone F-8 (Santa 

Cruz Biotechnology, Heidelberg, Germany) and polyclonal goat anti-human/mouse ALCAM antibody 

(R&D Systems). For On-Cell Western on pMBMECs, we used rat anti-mouse monoclonal to ICAM-1 

clone 29G1, VCAM-1 clone 6C7.1, ICAM-2 clone 3C4, and control anti-human monoclonal to CD44 

clone 9B5 described previously.5 For immunofluorescence on mouse tissue, we used polyclonal rabbit 

anti-Substance P (AB1566, 1:500, Chemicon), rat anti-mouse ALCAM clone 33.1,22 and Isolectin B4 

(IB4) from Griffonia Simplificolia directly labeled with FITC (1:100, Vector Laboratories). For Western 

Blot, we used anti-β-Actin (AC-15) from Sigma-Aldrich (Buchs, Switzerland), polyclonal goat anti 

ALCAM (R&D Systems) and polyclonal rabbit anti-ICAM-1 raised against mouse immune globulin 

domains 1 and 2 (custom made, Eurogentec, Seraing, Belgium). For FACS analysis of human or mouse 

T cells, we used mouse anti-human CD6 clone M-T605 (BD-Pharmingen), rat anti-mouse CD6 clone 

96123 (R&D Systems), rat anti-mouse ALCAM clone eBioALC48 (eBiosciences, Vienna, Austria), 

polyclonal goat anti-ALCAM (R&D Systems). 

Secondary antibodies used for Western Blot and On-Cell Western were goat anti-mouse IgG-IRDye® 

800CW (Li-Cor, Bad Homburg, Germany) or –horse radish peroxidase (HRP), donkey anti-goat IgG-

Alexa Fluor® 680 or –HRP, goat anti-rat IgG-Alexa Fluor® 680 and goat anti-rabbit IgG-Alexa Fluor® 

680 (ThermoFisher Scientific). Secondary antibody used for immunohistochemistry was donkey anti-

goat IgG-biotin (Jackson ImmunoResearch). Secondary antibodies used for immunofluorescence 

staining were donkey anti-mouse IgG-Cy3 (1:500), donkey anti-goat IgG-Cy3 (1:200) and goat anti-rat 
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IgG-Cy3 (1:500) (Jackson ImmunoResearch). Secondary antibodies used for FACS analysis were goat 

anti-rat, goat anti-mouse donkey anti-goat IgG-Phycoerythrin (PE) (Jackson ImmunoResearch). 

For stimulation of pMBMECs, we used recombinant murine TNF-α from PromoKine (Vitaris AG, Baar, 

Switzerland), recombinant murine IL-1β and recombinant murine IFN-γ from PeproTech (Rocky Hill, NJ, 

USA). For stimulation of HBLECs we used recombinant human TNF-α, human IL-1β and human IFN-γ 

(R&D Systems, Bio-Techne AG, Zug, Switzerland). For stimulation of HBECs or HMECs we used 

recombinant TNF-α and IFN-γ (Gibco, Carlsbad, CA). 

Cytokines used for T cell differentiation are named with the method. 

 

Immunofluorescence staining of mouse tissue 

Animals were anesthetized using isoflurane anesthesia (Abbott, Wiesbaden, Germany), and were 

perfused with PBS followed by 4 % formaldehyde (PFA) in PBS through the left ventricle of the heart. 

Tissue was removed, equilibrated in 30 % sucrose and then embedded in Tissue-Tek (OCT, Miles Inc., 

Vogel, Giessen, Germany), and snap-frozen in a 2-methylbutane (Merck, Darmstadt, Germany) dry ice 

bath at −80 °C. Cryostat sections (6-18 μm) were air dried overnight. For immunofluorescence staining, 

frozen tissue sections were blocked for 20 min with 2.5 % BSA, 0.1 % Triton X-100 in PBS followed by 

incubations with primary antibody (1 hour to overnight) and secondary antibody for 1 hour with PBS 

washing steps in between. After a final PBS-wash, sections were mounted in Mowiol (Calbiochem, 

Grogg Chemie AG, Stettlen/Deisswil, Switzerland). Images were acquired with a Leica DM5000B 

microscope at 20x magnification with a Leica DFC350 camera. 

Flow cytometry  

Human or mouse CD4+ Th1 cells were washed twice with FACS buffer (PBS supplemented with 2.5% 

FBS and 0.1% NaN3) and aliquoted at 0.5-1x 106 cells per well in a 96 round bottom well plate. HBECs 

at confluency prior to any passage (at passage 0) and HMECs at passage 3 - 4 were trypsinized, washed 

in serum containing media and then in FACS buffer. The cells were then aliquoted at 0.5x - 1x 105 cells 

per well in a 96 round bottom plate. Antibody incubation was performed for 30 min with primary 
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antibodies and with the PE-conjugated secondary antibodies at 4°C with washing steps in between. 

Cells fixed in 1% PFA/PBS or without any fixation were then analyzed by flow cytometry  using a 

FACSCalibur and CellQuest or a BD LSR II Flow Cytometer and BD FACSDiva software (BD 

Biosciences, San Diego, CA) and FlowJo software (Tree Star Ashland, OR) for data analysis. 

 

EAE, protein lysates, Western Blot and protein quantification  

Active EAE was induced in 8-week-old female wild type C57BL/6J mice with 200 μg of myelin 

oligodendrocyte glycoprotein (MOG)aa35–55 in complete Freund’s adjuvants (CFA) (LabForce; Santa 

Cruz Biotechnology) supplemented with 4 mg/ml nonviable, desiccated Mycobacterium tuberculosis 

(H37RA; Difco/BD Biosciences/BD Clontech) subcutaneous. A total of 300 ng of pertussis toxin from 

Bordetella pertussis (List; LuBioScience) per mouse was administered intraperitoneal (i.p.) at days 1 

and 3 postimmunization. Mice were euthanized at acute paraplegic EAE. Healthy age and gender 

matched C57BL/6J mice served as controls. Cortex of the cerebrum, the cerebellum and the spinal cord 

of PBS perfused healthy or EAE mice were harvested separately and homogenized in RIPA (50 mM 

Tris, pH 7.6, 150 mM NaCl, 1 % NP-40, 0.5 % sodium deoxycholate, 0.1% SDS) supplemented with 2 

mM EDTA and protease inhibitors (Roche Diagnostics, Rotkreuz, Switzerland). Homogenates were 

centrifuged at 13’800xg for 10 minutes at 4 °C. Supernatants were frozen in aliquots at -20 °C. Protein 

concentration was determined using the PierceTM BCA Protein Assay Kit (ThermoFisher Scientific). 

SDS-PAGE and Semi-Dry Western Blotting on nitrocellulose membrane (Bio-Rad Life Science, 

Cressier, Switzerland) was according to standard procedures. Western Blot signal detection was with 

the ECL system (Amersham Biosciences) combined with the Bio-Rad Gel Doc system to digitalize 

images or with the Odyssey® infrared reader (Li-Cor GmbH, Bad Homburg, Germany). For 

quantification ALCAM, ICAM-1 or β-Actin signal intensities were determined with the Odyssey® 

software. Then, signal intensities were normalized to β-Actin and expressed relative to the healthy 

control samples set to 100 %. 
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Supplementary Table: 

Human brain tissues 

Control patients 
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Cause of death 
Tissue 
block 

C11 M 77 26     
Carcinoma of the lung 
metastasised C11-1 

C15 M 64 18     Cardiac failure C15-1 
C20 F 60 13     Ovarian cancer C20-2 
C21 M 75 17     cva, aspiration pneumonia C21-4 
C23 F 88 20     Bronchopneumonia C23-1 
C25 M 84 5     Bladder cancer C25-3 

Multiple Sclerosis patients 
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Cause of death 
Tissue 
block 

M01 F 56 8 31 SPMS Breast carcinoma M1-2 
M02 F 58 16 22 PPMS Peritonitis M2-2 
M03 F 78 18 33 SPMS Myocardial infarction M3-3 
M05 F 74 19 26 SPMS Septicaemia M5-1 
M07 F 20 17 17 PPMS Pulmonary embolus M7-1 
M20 F 86 21 56 ? Pneumonia M20-2 

Statistics 
Multiple Sclerosis patients  Stdev 
Average Age 62.00 years 23.63 years 
Average Postmortem time 16.50 years 4.51 years 
Average Disease duration 30.83 years 13.64 years 
   
Control patients   
Average Age 74.67 years 10.95 years 
Average Postmortem time 16.50 years 7.06 years 
   
   
ttest age 0.2720657  
ttest postmortem time 1  
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Legend to supplementary table: 

Cortical tissue with subcortical white matter from six cases without any diagnosed neurological disease 

was taken as controls. These subjects had an average age of 74.7 years (± 10.95 SD) and an average 

post-mortem time of autopsy was 16.5 h (± 7.06 SD). Cortical tissues from six cases with multiple 

sclerosis with average disease duration of 30.8 years (± 13.6 SD) were used for this study. Their average 

age was 62 years (± 23.63 SD), and an average post-mortem time of autopsy was 16.5 h (± 4.51 SD). 
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Supplementary Figure 1:  

ALCAM and CD6 expression on human Th1 or Th17 cells 
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Legend to supplementary figure 1 

Flow cytometry analysis of cell surface expression of ALCAM and CD6 on ex vivo sorted human CD4+ 

Th1 cells (A, anti-ALCAM clone 105901, anti-CD6 clone M-T605) or on in vitro polarized human CD4+ 

Th1 cells or Th17 cells (B, anti-ALCAM clone 3A6). Isotype control staining is shown as thin dotted lines 

and CD6 staining is shown in thick continuous lines. Y-axes show numbers of CD4+ Th1 cells measured 

per intensity. Anti-ALCAM antibodies used were clone 105901 (A) and clone 3A6 (B). Anti-CD6 was 

clone M-T605 (A, B). Data are from one representative experiment out of 3 independent experiments.  
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Supplementary Figure 2: 

ALCAM immune fluorescence on mouse CNS tissue 
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Legend to supplementary Figure 2 

A-L, Representative ALCAM immunoreactivity in the CNS of an ALCAM heterozygous (cont, A, C-F, H, 

J), an ALCAM-/- (ko, B, G, I, J) and a C57BL/6J wild type mouse (wt, J). ALCAM immunoreactivity was 

detected with antibody clone 33.1 and is shown in red. A,C, Strong ALCAM signal in the meninges of 

the cerebral cortex (A) and striatum (C). D-F, strong ALCAM immunoreactivity in neurons and axons of 

the dorsal root ganglion (D), the dorsal (E) and the ventral horn (F). H-I, merged images of ALCAM with 

isolectin B4 (IB4, green) and Substance P (blue) shows ALCAM highly concentrated in the axons 

projected to the inner part of lamina II and to lamina III, as ALCAM immunostaining was ventral to both 

Substance P- and IB4-positive terminals in lamina I and the outer part of lamina II, respectively (H).63 

The laminar projections of Substance P and IB4-positive terminals did not appear to be disrupted in 

ALCAM-/- mice consistent with the lack of overt neurological phenotypes in this mouse (I).22 J, high 

magnification of merged images of ALCAM with IB4 (green) of a wild type (wt, left), an ALCAM+/- (het) 

and an ALCAM-/- (ko, right) mouse do not reveal ALCAM immune reactivity of vessels (green). 

Objectives were 10x (A,B), 20x (C-I) and 63x (J). 
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Supplementary Figure 3:  

ALCAM and CD6 expression on mouse CD4+ Th1 cells 
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Legend to supplementary figure 3: 

A-C, Flow cytometry analysis of cell surface expression of ALCAM and CD6 on mouse CD4+ Th1 cells. 

Isotype control staining is shown as thin dotted lines, ALCAM and CD6 staining is shown in thick 

continuous lines. Y-axes show numbers of CD4+ Th1 cells measured per intensity. Antibodies used were 

anti-mouse ALCAM clone eBioALC48, polyclonal anti human/mouse ALCAM 105901 and anti-mouse 

CD6 clone 96123. Data are from one representative experiment out of 3 independent experiments.  
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Abstract 

ALCAM is a cell adhesion molecule found on blood-brain barrier endothelial cells (BBB-ECs), 

which was previously shown to be involved in leukocyte transmigration across the endothelium.  

In the present study, we found that ALCAM knock-out (KO) mice developed more severe 

MOG35-55-induced experimental autoimmune encephalomyelitis (EAE). This was associated with 

a significant increase in the number of CNS-infiltrating pro-inflammatory leukocytes, as compared 

to WT controls. Passive EAE transfer experiments suggested that the pathophysiology observed in 

active EAE was linked to the absence of ALCAM on BBB-ECs. In addition, phenotypic 

characterization of un-immunized ALCAM KO mice revealed a reduced expression of BBB 

junctional proteins. Further in vivo, in vitro and molecular analysis confirmed that ALCAM is 

associated with tight junction molecules assembly at the BBB, explaining the increased 

permeability of CNS blood vessels in ALCAM KO animals. Collectively, our data point to a 

biologically important function of ALCAM in maintaining BBB integrity. 
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Introduction 

 The loss of blood-brain barrier (BBB) integrity is a hallmark of multiple sclerosis (MS). It 

is associated with the disorganization of junctional molecules which normally form complex apico-

lateral molecular aggregates located in cholesterol-rich cell membrane regions called lipid rafts (1, 

2). These molecules are highly regulated and are integral to the maintenance of the barrier. They 

can be divided in two major categories, the tight junction molecules (TJs) and located abluminally, 

the adherens junction molecules (AJs). The junctional adhesion molecules (JAMs), occludin and 

the claudins are well-characterized transcellular TJs molecules. Zonula occludens 1 and 2 (ZO-1, 

-2) and cingulin are adaptor molecules located intracellularly which anchor the TJs to the actin 

filaments and regulate them spatiotemporally (3, 4). AJs are composed of cadherin molecules, such 

as vascular-endothelial (VE)-cadherin and are linked to the cytoskeleton via proteins of the catenin 

family (α-, β-, p120) (5). Together, all these junctional proteins highly restrict leukocyte 

transmigration under homeostatic conditions. 

 Upon inflammation, cell adhesion molecules, such as intercellular adhesion molecule 1 

(ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1), which are two of the most studied 

molecules involved in immune cell transmigration and recruitment to the brain and spinal cord, are 

upregulated (6). Proof of concept that targeting CAMs for the treatment of autoimmune 

neuroinflammatory diseases, e.g. MS, was provided by the clinical success of Natalizumab, which 

targets the alpha4 integrin subunit of very late antigen-4 (VLA-4; binding partner to VCAM-1). 

However, use of Natalizumab in clinical practice is limited due to the emergence of progressive 

multifocal leukoencephalopathy and rebound MS activity following withdrawal (7). Identifying 

novel key players involved during leukocyte diapedesis is thus crucial for the development of novel 

therapies which aim at decreasing leukocyte trafficking into the central nervous system (CNS) 

during neuroinflammation. 
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 Although the roles of ICAM-1 and VCAM-1 during leukocyte transmigration in most 

vascular beds have been extensively studied (8-10), additional adhesion molecules have also been 

shown to partake in the transmigration process of encephalitogenic immune cells, including 

activated leukocyte cell adhesion molecule (ALCAM/CD166) (11), MCAM (12-14), MadCAM 

(15, 16), VAP-1 (17, 18), Ninjurin-1 (19) and JAM-L (20). We have previously demonstrated that 

ALCAM is part of a group of novel adhesion molecules, found on blood-brain barrier endothelial 

cells (BBB-ECs), that are involved in immune cell diapedesis (11). ALCAM was initially 

discovered as a ligand for CD6, a co-stimulatory molecule involved in the formation of the immune 

synapse between lymphocytes and antigen-presenting cells (21-23). ALCAM can also bind to itself 

(homotypic ALCAM-ALCAM), although ALCAM-CD6 binding was later found to be the stronger 

of two possible interactions (24-26). Recently, both ALCAM and CD6 alleles were associated with 

an increased risk of developing MS (27-30).   

 In the current study, we found that ALCAM knock-out (KO) mice develop a more severe 

active experimental autoimmune encephalomyelitis (EAE) due to an increased permeability of the 

BBB. We also present data indicating that ALCAM indirectly links junctional molecules to the 

cytoskeleton, suggesting that in addition to its role in transmigration, ALCAM regulates and 

maintains tight junction stability by acting as an adaptor molecule. 
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Results 

ALCAM is absent from blood-brain barrier endothelial cells and the immune compartment 

of ALCAM knock-out mice. 

 To test the hypothesis that ALCAM plays an important role during leukocyte transmigration 

across the BBB, we used an ALCAM knock-out mouse. We first evaluated whether ALCAM was 

indeed absent in the animal cells. Using Western blot, ALCAM was detected on both freshly 

isolated brain and spinal cord microvessel from wildtype (WT) but not from ALCAM KO animals 

(Fig 1A). These results were corroborated by the analysis of primary cultures of WT and ALCAM 

KO BBB endothelial cells (BBB-ECs) mRNA via RT-PCR. Following activation with TNF and 

IFNγ, ALCAM mRNA expression was up-regulated in EC cultures derived from WT animals, while 

ALCAM mRNA could not be detected in ALCAM KO samples (Fig 1B). Similar results were 

obtained by flow cytometry analysis of PECAM-1+ BBB-EC primary cultures (Fig 1C). This 

confirmed the absence of ALCAM on BBB-ECs, and thus allowed us to use ALCAM KO CNS 

blood vessels in order to study the role of ALCAM in transmigration. 

 Next, we assessed by flow cytometry the expression of ALCAM on ex vivo CD4+ T 

lymphocytes isolated from the CNS of early symptomatic active EAE animals, as well as CD11b+ 

monocytes/macrophages and CD11b+CD11c+ dendritic cells isolated from the spleen of the same 

animals. Whereas myeloid cells of WT animals express high levels of ALCAM even in resting 

state, T lymphocytes express low to intermediate levels of ALCAM only once highly activated (Fig 

1D). Resting T lymphocytes do, however, express constitutively CD6, which is a co-stimulation 

marker and one of the ligands of ALCAM (Fig S1A-B). ALCAM KO animals had normal absolute 

numbers, proportion and distribution of peripheral immune cells in the spleen, lymph nodes (LNs) 

and thymus, as compared to their WT littermates (data not shown). Nevertheless, to assess the 

effect of ALCAM deficiency on lymphocyte proliferation in more details, we conducted in vitro 
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proliferation assays using WT CD4 T lymphocytes in combination with WT or ALCAM deficient 

antigen-presenting cells. Both mixed leukocyte reactions and control assays showed similar 

percentages of cellular proliferation (50.9% ± 3.2 and 51.6% ± 2.4, respectively). Likewise, no 

significant difference was observed in the production of IL-17 and IFNγ by CD4 T lymphocytes 

(IL-17: WT= 20.9% ± 5.9 and KO= 23.4% ± 7.3; IFNγ: WT= 26.1% ± 4.7 and KO= 24.7% ± 3.2). 

These data confirmed results obtained beforehand using anti-ALCAM blocking antibodies (11), 

demonstrating that the absence of ALCAM does not significantly influence the activation of 

lymphocytes and in vivo immune homeostasis. 

 

ALCAM KO mice develop a more severe active EAE associated with a significant increase in 

pro-inflammatory leukocyte infiltrating the CNS. 

 To assess the role of ALCAM during the pathogenesis of EAE, active EAE was induced in 

WT and ALCAM KO mice using MOG35-55 in complete Freund’s adjuvant. As opposed to what 

we had expected based on previous publications (11, 23), ALCAM KO mice developed more 

severe clinical symptoms (Area under the curve (AUC) WT: 86.48 ± 6.80, ALCAM KO: 117.6 ± 

7.21), showing a diminished remission and often an earlier disease onset (1 day prior to their WT 

littermates) (Fig 2A). Additional active EAE experiments induced with recombinant human MOG 

corroborated these results (data not shown). Furthermore, these observations were made in two 

different animal facilities using independently bred ALCAM KO mice and their WT littermates, 

demonstrating the certainty of the outcome.  While the absolute number of immune cells found in 

the draining inguinal LNs of both groups were virtually identical throughout the disease course, 

the absolute number of splenocytes was significantly higher in ALCAM KO animals at 9 days post-

induction (dpi) (Fig 2B). On the other hand, the highest absolute number of immune cells 

infiltrating the CNS of ALCAM KO mice occurred 3 days earlier than in their WT littermates (Fig 



123 
 

2C). Of those CNS infiltrating immune cells, IFNγ+, IL-17+, as well as IFNγ+/IL-17+ CD4 and 

CD8 T lymphocytes were found to enter the CNS of ALCAM KO animals earlier and in greater 

number than in WT animals, as assessed by flow cytometry (Fig 2D). In addition, the number of 

CD4+CD25+FOXP3+ regulatory T lymphocytes was found to be similar throughout the disease 

process in both ALCAM KO and WT CNS (Fig 2E), which suggests that the increased disease 

severity observed in ALCAM KO mice was not due to a deficiency in the immune regulatory 

system. Finally, and importantly, we did not observe differences in cytokine production in the 

periphery (data not shown), suggesting that enhanced and early recruitment of encephalitogenic 

lymphocytes in the CNS of ALCAM KO animals was not caused by an enhanced number of 

circulating activated peripheral immune cells.   

 While EAE is mainly a CD4+ T lymphocyte driven disease, myeloid cells also play a crucial 

role both in the establishment of the disease and in the remission phase. Therefore, we have 

assessed by flow cytometry the ratio of M1 (pro-inflammatory) versus M2 (anti-

inflammatory/tissue repair) monocytes/macrophages present in the CNS. As expected from the 

ongoing increased clinical scores, ALCAM KO mice had a higher M1 over M2 ratio at peak of 

disease (12 dpi), as well as in the chronic phase of the disease (Fig 2F). Interestingly, ALCAM 

positive monocytes, dendritic cells and CD4 T lymphocytes were also enriched in the CNS of WT 

EAE animals, as compared to the periphery (data not shown); clearly suggesting the importance of 

ALCAM during EAE pathogenesis. Collectively, these results were corroborated by in situ 

immunofluorescence confocal microscopy of spinal cord material from ALCAM KO and WT 

animals harvested at 12 dpi (Score 3.0 and 2.5 respectively). Immunostainings for CD4 and F4/80 

in conjunction with pan-laminin confirmed the significant increase in the number of helper T 

lymphocytes and macrophages in the CNS of ALCAM KO EAE mice, as compared to WT animals 

(Fig 2G-H). 



124 
 

 

The absence of ALCAM on BBB-ECs increase EAE disease severity. 

 Different cell adhesion molecules (CAMs) (i.e. ICAM-1 and VCAM-1) can compensate for 

the lack of specific CAMs in KO animals (31-33). We have therefore chosen to compare, by flow 

cytometry, the expression of other CAMs on primary cultures of WT and ALCAM KO mouse CNS 

ECs, under resting or stimulated conditions (TNF and IFNγ). While we confirmed that some CAMs 

are upregulated upon inflammation, we could not demonstrate the presence of such compensatory 

mechanism in ALCAM KO endothelial cells (Fig 3A). MCAM, Ninjurin-1 and CD62E, previously 

shown to be involved in the recruitment of specific immune cell types to the CNS (13, 14, 19, 34, 

35), were also assessed and showed no significant differences between ALCAM KO and WT 

MBECs either in resting or stimulated conditions (data not shown).  

 We then performed passive (adoptive transfer) EAE by injecting WT MOG-reactivated 

splenocytes into both WT and ALCAM KO mice (Fig 3B). ALCAM KO recipients demonstrated 

the first sign of symptoms 2 days earlier than their WT littermates, and had higher clinical scores 

at peak of disease and subsequently during the remission phase (AUC: WT recipients: 21.43 ± 

1.94, ALCAM KO recipients: 38.06 ± 5.03). The disease incidence rate was also slightly more 

elevated in ALCAM KO recipients as compared to WT with 100% and 95%, respectively. In 

addition, the absolute number of CNS infiltrating immune cells were higher in ALCAM KO 

recipient after 12 days following cell transfer, corroborating the clinical scores (Fig 3C). From 

these immune cells, the percentage of CD4+ T lymphocytes was higher in ALCAM KO, whereas 

the percentage of CD8+ T lymphocytes was higher in the WT recipients (Fig 3D). As expected, 

the percentage of ALCAM+ leukocytes was lower in ALCAM KO animals as only the donor cells 

express that protein. However, it demonstrates that roughly 20% of CD4+ T lymphocytes and 

CD11b+ monocytes present in the CNS of ALCAM KO originated from the donor cells (Fig 3D). 
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While the percentage of CD4 and CD8 T lymphocytes were different in the two recipient groups, 

the percentage of those cells positive for IFNγ or IL-17 were not that different, with the exception 

of IFNγ+CD4+ T lymphocytes (Fig 3E). Overall, this means that more pro-inflammatory cytokine-

secreting CD44hiCD4+ T lymphocytes were present in the CNS of ALCAM KO at day 12, while 

the reverse was true for CD8 T lymphocytes. Ultimately, this transfer experiment allowed us to 

hypothesize that the absence of ALCAM on BBB-ECs might destabilize the BBB and therefore 

explain the increased EAE severity observed in MOG-induced active EAE. 

 We then performed the reverse transfer experiment, in which ALCAM KO splenocytes are 

injected into either ALCAM KO naïve recipients or their WT littermates. The disease onset was 

slightly earlier in ALCAM KO recipients and animals developed more severe EAE scores, as 

compared to WT recipients (AUC: ALCAM WT recipients: 60.85 ± 8.89, ALCAM KO recipients: 

90.67 ± 10.69) (Fig 3F). The disease incidence was also higher in ALCAM KO mice with 83%, as 

compared to 72% for the WT. While the absolute number of CNS infiltrating immune cells were 

not significantly higher in ALCAM KO recipient after 12 dpi, a noticeable trend can be observed, 

albeit with a large variability (Fig 3G). Similar to the WT to KO/WT transfer experiment, a higher 

percentage of CD4 T lymphocytes could be observed by flow cytometry in the CNS of ALCAM 

KO recipients, while a smaller percentage of CD8 T lymphocytes was present (Fig 3H). Since 

ALCAM positive leukocytes present in the CNS can only originate from the recipient, virtually no 

ALCAM+ signal was detected in ALCAM KO animals as expected (Fig 3I). Finally, the percentage 

of CD4 cells positive for IFNγ, IL-17 or expressing high levels of CD44 were greater in ALCAM 

KO recipients (Fig 3J). Similar results were obtained while gating on CD8+ T lymphocytes with 

the exception of IFNγ, which was expressed at equally high levels in both groups (Fig 3J). Overall, 

this transfer experiment corroborated our hypothesis that ALCAM expression on the BBB helps 

maintaining its integrity.  
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The blood-brain barrier of ALCAM KO animals is more permeable.           

 We next tested the integrity of the ALCAM KO BBB in vitro and in vivo. Using a trans-

endothelial electrical resistance (TEER) assay, we first demonstrated that confluent monolayers of 

primary mouse brain microvascular endothelial cells (pMBMECs) from ALCAM KO mouse were 

significantly more permeable (i.e. less resistant) than their WT counterpart (Fig 4A). Whereas 

TEER measurements can clearly assess the integrity of the endothelial barrier, we also decided to 

corroborate the result using bovine serum albumin (BSA) and 10 kDa dextran as permeability 

markers in a modified in vitro Boyden chamber assay, in which confluent monolayers of mouse 

BBB-ECs (MBECs) were grown on the insert. This tracer diffusion assay demonstrated that 

ALCAM KO MBECs have a higher permeability coefficient, as compared to WT cells (Fig 4B), 

when using either resting MBECs or MBECs stimulated with TNF and IFNγ. Next, we wanted to 

confirm these in vitro data with an in vivo approach. Using different sizes of fluorescent dextran 

markers injected intravenously, we measured the accumulation of these tracers in the CNS (and 

indirectly the permeability of the BBB) in naïve animals, as well as in EAE mice at 7 and 10 dpi. 

While CNS vessels of naïve ALCAM KO animals were not more permeable than those from 

control WT littermates, CNS vessels from pre-symptomatic ALCAM KO EAE animals were 

significantly more permeable to the small 3 kDa dextran marker, as compared to vessels from WT 

littermates (Fig 4C); the differences in vascular permeability for larger molecular weight dextran 

markers became apparent at 10 dpi, corresponding to the time of disease onset (Fig 4C).  

 

Junctional molecules expression at the BBB is altered in ALCAM KO animals. 

 To explain the increased BBB permeability in ALCAM KO, we assessed the expression of 

junctional molecules. Using immunofluorescence confocal imaging, we evaluated the organization 
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of TJ and AJ molecules, as well as their expression levels based on the maximum fluorescence 

intensity. Analysis of spinal cord sections from naïve animals revealed that the expression of the 

tight junction protein occludin, and the adherens junction protein α-catenin, were reduced in 

ALCAM KO mice (Fig 4D). We further demonstrated that claudin-5, p120 and ZO-1 were also 

down-regulated in situ, at the level of the blood-spinal cord barrier in ALCAM KO naïve animals, 

while VE-cadherin, PECAM-1, β-catenin, ICAM-1 and VCAM-1 were similar (Fig 4E and data 

not shown). Similarly, we compared the expression of junctional molecules in MBECs cultures. 

Using the same method, α-/β-catenin, claudin-5, ZO-1 and VE-cadherin expression were shown to 

be reduced in vitro, whereas the expression of PECAM-1 and ICAM-1 were comparable (Fig 4F). 

Although we also analyzed the spinal cord of EAE animals, the results were much more variable 

depending on the clinical score (data not shown). Furthermore, the presence of massive 

perivascular infiltrates, the disorganization of junction molecules by the immune cells and the 

presence of debris in demyelinating lesions made it more challenging to analyze.  

 

ALCAM is linked to junctional molecules 

 Having established that the integrity of ALCAM KO BBB is defective due to the 

disorganization and reduced expression of junctional molecules, we next elected to confirm a 

possible molecular interaction between ALCAM and junctional proteins. To do so, we performed 

an immunoprecipitation of ALCAM on MBECs protein lysates (Fig 5A). A proteomic analysis 

was performed by liquid chromatography–tandem mass spectrometry on the proteins pulled-down 

with ALCAM. A list of the most abundant proteins was made and from that list, probable ALCAM 

binding partners were identified. Eight of those were subsequently verified by Western blot. We 

demonstrated that an isoform of ZO-2, cingulin, TRIO and F-actin binding protein (TRIOBP, 

TARA), coronin 1C, β-actin and pan-tropomyosin (TPM) were all linked directly or indirectly to 
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ALCAM (Fig 5B). Although present on the list, both ZO-1 and occludin were not detected by 

Western blot in the proteins pulled-down with ALCAM (Fig 5B). Similarly, ezrin and syntenin-1, 

which have been recently identified as intracellular ALCAM binding partners in dendritic cells 

were not detected in the pulled-down protein lysate (Fig 5B) (36). These results suggest that 

ALCAM is present in the intercellular junctions and stabilizes the junctional molecular complexes 

by binding to cellular structural fibres such as actin and myosin.    
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Discussion 

 In previous studies, ALCAM has been shown to be expressed on BBB-ECs and its ligands, 

CD6 and ALCAM, on activated and resting leukocytes (11, 37). Furthermore, we have previously 

demonstrated that physical hindrance of ALCAM during active EAE, using anti-ALCAM blocking 

antibodies, delays the progression and reduces the severity of the disease, while also partially 

preventing the infiltration of leukocytes in the CNS (11). In addition, several groups have 

demonstrated the involvement of ALCAM in leukocyte transmigration across human or mouse 

BBB-endothelial cells (11, 37-40). 

 Using a constitutive ALCAM KO animal, we now provide evidence that, following the 

induction of active EAE, ALCAM deficient mice progress to a higher clinical score, with a 

significantly more severe ascending paralysis than their WT littermates. Correlating with this 

observation, a significantly higher number of leukocytes are found in the CNS of ALCAM KO 

animals at peak of disease. From this population of CNS infiltrating immune cells, a higher 

percentage of T lymphocytes are secreting the pro-inflammatory cytokines IFNγ and IL-17, as 

compared to those found in WT mice. Similarly, “M1” macrophages (pro-inflammatory) are found 

in higher number in the CNS of ALCAM deficient animals. However, the number of regulatory T 

lymphocytes are found in similar numbers in the CNS of ALCAM KO and WT animals, despite 

the fact that a previous study described the role of ALCAM in recruiting Tregs into tumour tissues 

(41). While these EAE results were unexpected, we also found enriched populations of ALCAM+ 

leukocytes infiltrating the CNS of WT EAE mice, as compared to peripheral immune 

compartments, suggesting that ALCAM expression on encephalitogenic immune cells is important 

during the transmigration process, which is in line with previous literature. 

 Although some groups have shown a role for the heterotypic interaction ALCAM-CD6 in 

the proliferation of CD4 T lymphocytes (23, 28), we have previously established that ALCAM 
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blockade does not influence in vitro proliferation and activation of human CD4 T lymphocytes 

(11). In the current study, we now provide in vivo evidence that genetic neutralization of ALCAM 

does not affect peripheral immune system homeostasis, nor T cell proliferation. Therefore, it is 

unlikely that the impeded CD6 activating signalling pathways on T lymphocytes or a compensatory 

mechanism are responsible for the increased clinical score of ALCAM KO mice during active 

EAE.  

 Using transfer EAE experiments, where MOG-reactive WT splenocytes are transferred to 

ALCAM KO animals, we confirmed that ALCAM genetic neutralization in the recipient mice lead 

to a more severe disease, and to an increased number of encephalitogenic leukocytes infiltrating 

their CNS, as compared to WT littermates. To rule out the possibility that increased immune cell 

infiltration could be mediated by the up-regulation of additional CAMs (ALCAM-independent 

pathways) in ALCAM KO animals, we assessed the expression of other CAMs on BBB-ECs and 

found no evidence of compensatory mechanisms. However, we could demonstrate a significant 

reduction of BBB integrity in ALCAM deficient animals, as supported by a reduced TEER and an 

increased extravasation of fluorescent molecules, both in vitro and in vivo. This altered BBB 

integrity was associated with a dysregulation of TJ and AJ molecules in the CNS of ALCAM KO 

animals, including occluding, α-, β-catenin, claudin-5, ZO-1, p120 and VE-cadherin. Differences 

found between in vitro and in vivo experiments might be the result of complex intrinsic glial cells 

contribution to the development of a tightly controlled BBB (6), which concurrently help delineate 

the inherent limits of in vitro assays. Collectively, these experiments therefore demonstrate that 

ALCAM deficient animals have a dysregulated BBB.  

 Based on previous studies demonstrating the presence of ALCAM in lipid rafts of both 

human and mouse BBB-ECs (11, 37) and the colocalization of human ALCAM immunostaining 

with BBB-EC lateral junctions (unpublished data), we hypothesized that, in homeostatic 
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conditions, ALCAM is located within intercellular structures and might therefore directly or 

indirectly bind to junctional molecules. As such, ALCAM would be similar to PECAM-1, CD99, 

JAMs and MCAM, which are present within BBB-EC junctions but also mediate immune cell 

transmigration (14, 42-45). While Masedunskas et al.  (39) have previously reported the presence 

of ALCAM in endothelial cell junctions using pulmonary microvascular ECs transfected with rat 

ALCAM-GFP, the localization of endogenous ALCAM in BBB-ECs junction had still not been 

established. The findings presented herein, using primary cultures of MBECs, demonstrate that 

ALCAM is localized with intercellular junctional proteins and also bind to the TJ adaptor 

molecules ZO-2 and cingulin; confirming a direct link between ALCAM and intracellular TJ 

adaptor molecules. In contrast, transmembrane TJ molecules (occludin, the JAMs and the claudins) 

were not pulled-down with ALCAM, which suggests that ALCAM binds or recruits cytoplasmic 

adaptor molecules to junctional complexes, but does not directly interact with transmembrane TJ 

proteins. Using the pulled-down protein lysate, we also identified actin-binding proteins TARA 

and coronin 1C, which, along with the presence of β-actin and tropomyosin proteins, confirm 

previous studies and provide further evidence demonstrating that ALCAM is directly linked to the 

actin cytoskeleton (46, 47). 

 While no protein of the catenin or cadherin families were identified in the proteomic list, 

an indirect link with ALCAM via ZO-2 could still be possible in homeostatic condition.  Additional 

proteins previously shown to bind ALCAM intracellularly, such as ezrin and syntenin-1 (36), were 

not pulled-down during our experiments. The discrepancy between their findings and the data 

presented herein could be explained by their use of the K562 cell line combined with the 

transfection of modified ALCAM proteins, as opposed to endogenous ALCAM obtained from 

primary MBECs. Similarly, Gilsanz et al. (48) have recently reported that ALCAM forms a 

complex with the tetraspanin molecule CD9 and the “sheddase” ADAM17, which together regulate 



132 
 

ALCAM expression and activity (49). While CD9 is highly expressed on endothelial cells (50), we 

were unable to confirm the link between ALCAM and CD9. However, the existence of such a bond 

in BBB-ECs is still a possibility as a different cell activation state might be necessary to observe 

the link. Technical differences in the protocols used could also explain the discrepancy.  

 Collectively, our data demonstrate that ALCAM KO mice develop a more severe active 

EAE, which can be explained by an increased permeability of their BBB. This loss in BBB integrity 

is due to a dysregulation of junctional molecules caused by the lack of ALCAM at the level of the 

TJ molecules. Our results also show that ALCAM indirectly and directly links junctional molecules 

to the actin cytoskeleton, suggesting that, in addition to its role during leukocyte extravasation, 

ALCAM regulates and maintains tight junction stability by acting as an adaptor molecule. Most 

importantly, mouse and human ALCAM molecules are 93% homologue and the binding regions, 

the transmembrane region and the intracytoplasmic tail are all highly conserved between most 

vertebrates, suggesting that the results reported herein may also be applicable to human. 
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Methods 

ALCAM knock-out mice 

The ALCAM KO C57BL/6 mice (Alcamtm1Jawe) were generously provided by Joshua A. Weiner 

(51). The founding animals were further backcrossed in our animal facility for 7 generations. The 

weight of the animals matched those of aged-matched WT C57Bl/6 and no gross abnormalities or 

phenotypes were apparent from the embryonic stage to the adulthood, confirming the observation 

made by the group of Dr. Weiner (51). Animals were kept for a maximum of 1.3 years with no 

health issue, which suggest a normal life expectancy. All animal procedures were approved by the 

CRCHUM Animal Care committee (N11023APs) and followed guidelines of the Canadian Council 

on Animal Care. All animal procedures executed in the Engelhardt laboratory were approved by 

the committee of animal experimentation of the Veterinary Department of the Kanton Bern (permit 

number BE42/14) and are in keeping with institutional and standard protocols for the Care and Use 

of Laboratory Animals in Switzerland. 

 

Active EAE disease induction and scoring 

EAE was induced in 6-9 weeks old female C57BL/6 mice as previously published (13, 14). In 

brief, animals were immunized subcutaneously with 200 g of MOG35–55 

(MEVGWYRSPFSRVVHLYRNGK; Alpha Diagnostic International) in a 100 l emulsion of 

Complete Freund’s Adjuvant (4 mg/ml Mycobacterium tuberculosis; Fisher Scientific). On day 0 

and day 2, Pertussis toxin (500 ng PTX, Sigma-Aldrich) was injected intra-peritoneally (i.p.). The 

scoring system used was as follows: 0 = normal; 1 = limp tail; 2 = slow righting-reflex; 2.5 = 

difficulty walking/ataxia; 3 = paralysis of one hindlimb (monoparalysis); 3.5 = hindlimb 

monoparalysis and severe weakness in the other hindlimb; 4 = paralysis of both hindlimbs 



134 
 

(paraparalysis); 4.5 = hindlimbs paraparalysis and forelimbs weakness; 5 = moribund (requires 

sacrifice). Mice were scored by an investigator blinded to the transgenic group.  

Active EAE in Dr. Engelhardt’s laboratory was induced in 8-week-old female mice with 200 μg 

of MOG35–55 in complete Freund’s adjuvants (CFA) (LabForce; Santa Cruz Biotechnology) 

supplemented with 4 mg/ml of desiccated Mycobacterium tuberculosis (H37RA; Difco/BD 

Biosciences/BD Clontech). A total of 300 ng of PTX (List; LuBioScience) per mouse was 

administered i.p. at days 1 and 3 post-immunization. Weights and clinical severity were assessed 

twice daily and scored as: 0, healthy; 0.5, limb tail; 1, hind leg weakness; 2, hind leg paraplegia; 3, 

hind leg paraplegia and incontinence.  

 

Transfer EAE 

Transfer EAE was performed as previously described (13). Briefly, active EAE was induced as 

described above except that PTX (500 ng) was only injected on day 0. On day 7, mice were 

sacrificed and leukocytes were recovered from LN and spleens as previously published (52). Cells 

isolated were cultured for 90h in RPMI supplemented with 10% FBS, glutamine, non-essential 

amino acids, HEPES, sodium-pyruvate and β-mercaptoethanol. Reactivation of cells was 

performed in the presence of MOG35–55, rhTGF-β, rmIL-6, rmIL-23 and rmIL-12 (R&D systems). 

Fresh complete medium (20% of initial volume) with rmIL-23 (500% of initial concentration) was 

added to all cultures on day 2. Cells were then harvested, washed in Hank's Balanced Salt Solution 

(HBSS) and then processed for analysis by flow cytometry. 25X106 total leukocytes were injected 

i.p. to all the recipient female C57BL/6 animals. Recipient mice received a single dose of PTX 

(200 ng) i.p. on day 2 following transfer. The scoring system used was the same as described above. 
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Primary cultures of mouse BBB-endothelial cells (MBECs / pMBMECs) 

Primary cultures of mouse brain parenchymal capillary endothelial cells were prepared from 10 to 

15 wild-type or ALCAM knock-out 7-9 weeks old female C57BL/6 mice. The brains were isolated 

without perfusion and meninges/choroid plexuses were removed. The parenchymal tissue was 

minced and homogenized at low speed in a mechanical Dounce homogenizer.  The homogenate 

was then digested in DMEM containing 0.7 mg/ml collagenase type II (Worthington Biochemical 

corp.) and 39 U/ml DNase I (Worthington Biochemical corp.) for 75 min at 37°C. Myelin was 

removed by centrifugation at 1000g for 20 min in 20% BSA-DMEM (Sigma). The remaining pellet 

was then shook for one hour at 37°C with a mixture of 1 mg/ml collagenase-dispase (Roche) and 

39 U/ml DNase I in DMEM. The microvessels were separated from remaining glial cells and red 

blood cells using a 33% continuous Percoll gradient centrifuged at 1000g for 10 min. Microvessels 

were plated on 6-wells culture dishes coated with 5 μg/ml collagen type IV (Sigma). MBECs were 

cultured in DMEM supplemented with 20% (v/v) FBS (Sigma), 1 ng/ml basic fibroblast growth 

factor (Roche), 100 μg/ml heparin (Sigma), 1.4 μM hydrocortisone (Sigma), and 1X antibiotic-

antimycotic solution (Invitrogen). The media was replaced every 24 hours during the first 3 days. 

Puromycin (10 μg/ml) (Sigma) was added to the media for the first 48 hours of culture. After 72 

hours, 4 μg/ml of puromycin was maintained in the culture media. A confluent monolayer was 

formed following 4-6 days in culture. MBECs culture expressed vascular endothelial–cadherin 

protein. No immune reactivity for α-smooth muscle actin, glial fibrillary acidic protein, or neuronal 

nuclei protein could be detected, confirming the absence of contaminating smooth muscle cells, 

astrocytes, and neurons, respectively. To stimulate endothelial cells mouse recombinant TNF 

(3ng/ml) and IFNγ (60ng/ml) (R&D systems) were added to the culture media 24h prior to the 

experimental procedure. 
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The isolation and culture of primary mouse brain microvascular endothelial cells (pMBMECs) in 

Dr. Engelhardt’s laboratory was performed as described before (9, 53).   

 

Flow cytometry analysis 

Extracellular and intracellular stainings were performed as previously described (13). Briefly, 

before intracellular cytokine staining (ICS), cells were activated for 5 hours with 1 μg/mL 

ionomycin and 20 ng/mL phorbol 12-myristate 13-acetate (PMA) in the presence of 2 μg/mL 

brefeldin A (all from Sigma). After staining for surface antigens, cells were then fixed and 

permeabilized in 4% (w/v) paraformaldehyde with 0.1% (w/v) saponin in HBSS for 10 minutes at 

room temperature before proceeding to intracellular staining. Mouse immune cells isolated from 

lymph nodes, spleen and CNS were labelled with the following antibodies against surface markers 

CD3, CD4, CD8, CD11b, CD11c, CD25, CD45, CD54/ICAM-1, CD62E (from BD Biosciences), 

CD6, CD44 from ebioscience, CD31/PECAM-1, CD34, CD102/ICAM-2, CD106/VCAM-1, 

CD146 from Biolegend, CD166/ALCAM (FAB1172P from R&D) and Ninjurin-1 (custom made 

from BD Biosciences). For intracellular staining of mouse cytokines, the following antibodies 

specific for mouse were used:  IL-17, GM-CSF, TNF, IFN-γ (from BD Biosciences), GzB and 

perforin (from ebioscience). Intra-nuclear stainings were performed using eBioscience 

fixation/permeabilization kit in combination with anti-FOXP3 antibodies (eBioscience and BD 

Biosciences). Non-specific background staining was assessed using appropriate fluorochrome-

matched isotype antibodies. Cells were processed on the same day for analysis on a BD LSR II and 

data analyzed using BD FACSDiva software (BD Bioscience). 
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Flow cytometry analysis strategy for M1-M2 monocytes/macrophage 

Cells positive for CD45, CD11b, Ly6Chi, IL-12 (all from BD Biosciences) and negative for CD11c, 

CD43 (BD Biosciences), NK1.1, IL-10 (BD Biosciences and Biolegend) and CD206 (Biolegend) 

were considered as M1 monocytes/macrophages or “classically activated” pro-inflammatory cells. 

Cells positive for CD45, CD11b, CD43, CD206, IL-10 and negative for CD11c, NK1.1, Ly6Chi, 

IL-12, were considered as M2 monocytes/macrophages or “alternatively activated” anti-

inflammatory cells.  

 

In vitro T lymphocyte proliferation assay 

Using Miltenyi Biotec magnetic beads and columns, CD4+ T lymphocytes were isolated (negative 

selection) from the draining LNs of WT pre-symptomatic active EAE animals and CD11b+ 

monocytes were isolated (positive selection) from the spleen of both WT and ALCAM KO mice. 

T lymphocytes were labelled using the vital dye 5,6-carboxyfluorescein diacetate succinimidyl 

ester (CFSE) and were cultured in the presence of either WT or ALCAM KO monocytes for 4 days. 

The cytokine cocktail and media utilized during in vitro reactivation of immune cells to induce 

passive EAE was used. T lymphocyte proliferation and cytokine production were assessed by flow 

cytometry.   

 

Immunostaining of CNS material and cell culture 

Frozen sections of CNS specimens (brain and spinal cord) obtained from mice following rapid 

intracardiac perfusion were studied as previously described (54-56). First, EAE lesions, defined as 

areas of demyelination associated with intense perivascular immune cell infiltration, were 

identified by Luxol Fast Blue (LFB) and haematoxilin and eosin (H&E) staining. Sections adjacent 

to active lesions were selected for immunohistofluorescence. Following fixation in acetone for 10 
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minutes, sections were transferred to ethanol for 5 minutes, hydrated in PBS and blocked with 10% 

species specific serum of the secondary antibodies hosts. Primary antibodies diluted in 3% serum 

were incubated for 1h at room temperature or overnight at 4 degrees. Following washes with PBS-

tween20 (0.05%), secondary antibodies were incubated 45 min at room temperature. Sections were 

then mounted using mowiol, containing Topro-3 (Invitrogen, 1:400) when indicated. Each 

experiment included negative controls (incubation with secondary antibodies alone). For 

immunocytofluorescence, MBECs were trypsinized and transferred to Ibidi μ-slides VI 0.1 coated 

with collagen IV. Once the cells reached confluency, they were fixed with 70% ethanol for 5 

minutes then permeabilized with PBS-tween20 (0.05%) for 5 minutes. The subsequent staining 

procedures were the same as above. The following primary antibodies were used: rabbit anti-

laminin (1:2000, Dako), rat anti-CD4 (1:70, BD Bioscience), rat anti-F4/80 (1:80, Biolegend), 

rabbit anti-occludin (1:50, Invitrogen), rabbit anti-α-catenin (1:40, Invitrogen), rabbit anti-claudin-

5 (1:100, Invitrogen), goat anti-p120 (1:30, Santa Cruz), rabbit anti-ZO-1 (1:70, Invitrogen), rabbit 

anti-β-catenin (1:150, Invitrogen), rat anti-VE-cadherin (1:10, BD Bioscience), rat anti-PECAM-1 

(1:300, BD Bioscience), rat anti-ICAM-1 (1:100, eBioscience). Fluorescence acquisition was 

performed using a Leica Confocal Microscope SP5 platform (Leica Microsystems). Image 

processing and analysis was done using Leica LAS AF and ImageJ (NIH) softwares. 

 

Real Time -PCR 

RT-PCR was performed as previously published (11). Briefly, total RNA was extracted from 

primary culture of WT and ALCAM KO mouse blood-brain barrier endothelial cells using the 

RNeasy Mini Kit and transcribed into complementary DNA using QuantiTect Reverse 

Transcription kit (both from Qiagen) according to the manufacturer's instructions. ALCAM and 

GAPDH specific primers were used for the PCR.  
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Immunoprecipitation 

Mouse brain endothelial cells (MBECs) homogenates were prepared from P0 monolayers in T75 

flasks. The cells were washed 3 times with room temperature PBS and then scrapped and 

transferred to 15 ml tubes in PBS. The cells were precipitated by centrifugation at 400g for 10 

minutes at room temperature. The supernatant was removed and the cell pellets were homogenized 

with 200 μl of ice cold RIPA buffer (ThermoFisher scientific) per T75 flask by pipetting. 

Homogenates were transferred to 1.5 ml Eppendorf tubes and incubated for 20 minutes on ice, then 

centrifuged at 13000g for 10 min at 4°C to precipitate nuclei. The supernatants were collected in 

new pre-chilled 1.5 ml Eppendorf tubes. The protein concentration of homogenates was determined 

using the BCA protein assay kit (PIERCE) following the manufacturer instructions. 

 

To immunoprecipitate ALCAM, 50 μl Dynabeads protein G (ThermoFisher scientific) were 

coupled to 10 μg of polyclonal goat anti-mouse ALCAM (R&D systems, AF1172) or to 10 μg of 

irrelevant goat IgG (R&D systems), following the manufacturer instructions. To avoid post-

coupling elution of the immunoglobulin, they were covalently attached to the beads by BS3 

(bis(sulfosuccinimidyl)suberate) cross-linking agent (ThermoFisher scientific) following the 

manufacturer instructions. 50 μl of the resulting anti-ALCAM Dynabeads or the irrelevant IgG 

control were incubated overnight with 200 μg of MBECs homogenates at 4°C with gentle rotation. 

The beads were then washed 4 times with PBS-tween20 0.05%. The supernatant was completely 

removed and 40 μl of 1X SDS loading buffer with 2.5 % β-mercaptoethanol were added to the 

beads and incubated 15 minutes at room temperature following resuspension. The beads were 

boiled at 95°C for 5 minutes and then centrifuged at 13000 RPM for 2 minutes. The supernatant 
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was collected and migrated in SDS-PAGE, transferred to PVDF membranes and immunostained 

with the corresponding antibodies.  

 

Immunoblotting 

Immunoblotting was performed as previously described (11, 57). Briefly, MBECs lysates or BBB 

blood vessel lysates were separated by standard SDS-PAGE and immunoblots were analyzed with 

the following antibodies: goat anti-ALCAM (0.25μg/ml, AF1172, R&D systems), rabbit anti-ZO-

1 (1:125, Invitrogen), rabbit anti-ZO-2 (1:125, Invitrogen), rabbit anti-cingulin (1:500, Thermos), 

rabbit anti-TARA (1:500, Thermos), mouse anti-coronin 1C (1:500, abnova), mouse anti-β-actin 

(1:20000, Sigma), mouse anti-tropomyosin (1:500, Sigma), rabbit anti-occludin (1:250, 

Invitrogen), rabbit anti-ezrin (1 μg/ml, abcam) and rabbit anti-syntenin-1 (1:500, Bioss). 

Horseradish peroxidase–conjugated secondary antibodies (Dako) and the ECL system (Amersham 

Biosciences) were used to detect specific binding, and anti-β-actin (sigma) served as a loading 

control. Digital images obtained with the Bio-Rad Gel Doc system were used for band intensity 

analysis. 

 

Trans-endothelial electrical resistance (TEER) measurement 

Barrier properties of confluent monolayers formed by primary MBECs (53) from ALCAM KO or 

WT mice grown on filter inserts (0.4 μm pore size, 8.36 mm diameter; ThinCertTM, Greiner Bio-

One, Vitaris AG, Baar, Switzerland) were assessed by impedance TEER measurements 

(CellZscope R, Nanoanalytics, Muenster, Germany) according to the manufacturer’s instructions. 

 

 

 

 



141 
 

In vitro permeability of MBECs to tracer molecules  

MBECs were isolated and cultured to 90% confluence in 6-wells plates. Then, using trypsin 0.25% 

diluted in PBS-EDTA (2mM) the cells were quickly detached and plated on gelatin/collagen IV-

coated 3 μm pore size Boyden chambers at a density of 4x104 cells per well. Cells reached 

confluency after 3-4 days, at which point the culture media was changed for DMEM media 

supplemented with 20% FBS. After 2 hours, fluorescein-isothiocyanate-labelled bovine serum 

albumin (FITC-BSA, 66.5kDa, Invitrogen) and Alexa 647-labelled dextran 10 kDa (Invitrogen) 

were added at 50 μg/ml to the upper chambers. Aliquots of 50 μl were separately harvested from 

each upper and lower chamber at 0 and 1 hour. Experimental conditions were prepared in 

triplicates.  The permeability of the tracers was quantified with a fluorescence multimode plate 

reader (Biotek, Synergy 4) which allows to calculate the permeability coefficient of each 

fluorescent markers. 

 

In Vivo BBB permeability 

In vivo BBB permeability was assessed by measuring Cascade Blue-labelled dextran 3 KDa 

(Invitrogen) and Dextran-TRITC (20 KDa; Sigma) in the CNS of mice at different time-points. 

Mice were injected intravenously with saline 0.9% NaCl containing 1mg of dextran-Cascade Blue 

and 1mg of dextran-TRITC. Then, 15 minutes later, 200μl of blood was obtained by intracardiac 

puncture and placed in EDTA-coated blood tube (Sarstedt). Immediately after, the mice were 

perfused with ice-cold saline. The brains and spinal cords were then removed and placed in 1 ml 

of cold PBS protected from light.  The CNS samples were weighed and then homogenized using 

syringes and decreasing size needles. The CNS and blood proteins were precipitated with 1 ml of 

60% trichloroacetic acid. The precipitates were removed by centrifugation. Fluorescence was 

measured using a fluorescence multimode plate reader (Biotek, Synergy 4). Dextran-Cascade Blue 
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(excitation at 557 nm, emission at 575 nm) and dextran-TRITC (excitation at 390 nm, emission at 

420 nm) was measured in supernatant samples using dark wall clear bottom Cornstar 96-wells 

plate. The quantity of dyes contained in the CNS tissue was expressed as a percentage of the 

fluorescence intensity found in the blood originating from the same animal, normalized based on 

the CNS weight.  

 

Statistical analysis 

Statistical analysis was performed using PRISM GraphpadTM software and results are presented as 

the mean ± standard error of the mean (SEM). Paired or unpaired Students’ t-test were performed 

when appropriate. Two-way Anova and Students’ t-test were performed on the calculated area 

under the curve (AUC) using individual EAE scores. Only p values < 0.05 were considered 

statistically significant. (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001) 
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Fig 1. Expression of ALCAM at the blood-brain barrier and on immune cells. 

A Expression of ALCAM in freshly isolated blood vessels from the brain and spinal cord of WT 

and ALCAM KO mice, by Western blot (actin: control protein). Representative of n=5 

independent experiments. B RT-PCR analysis of ALCAM mRNA obtained from primary culture 

of mouse blood-brain barrier endothelial cells from WT and ALCAM KO mice, either resting 

(Ctrl) or treated with TNF and IFNγ (Stim: Stimulated). Representative of n=2 independent 

experiments. C Expression of ALCAM and PECAM-1 on primary cultures of mouse blood-brain 

barrier endothelial cells obtained from WT and ALCAM KO mice, as assessed by flow cytometry. 

Representative of n=5 independent experiments. D Expression of ALCAM on ex vivo CD4+ T 

lymphocytes isolated from the central nervous system, as well as CD11b+ 

monocytes/macrophages and CD11b+CD11c+ dendritic cells isolated from splenocytes of 

ALCAM KO mice or their WT littermates, during the early symptomatic phase of active EAE. 

Representative of n=3 independent experiments.      
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Fig 2. ALCAM KO mice develop a more severe active EAE. 

A Mean cumulative clinical EAE score from MOG35-55-immunized C57BL/6 WT and ALCAM 

KO mice. Data shown are the mean ± SEM of 40 mice per group and representative of n=12 

independent experiments. Absolute numbers of immune cells isolated from the spleens and lymph 

nodes (LN) B or from the central nervous system (CNS) c of WT and ALCAM KO mice at 

different days post induction of EAE. Data shown are the mean ± SEM of 3-12 animals per time 

point and representative of n=8 independent experiments. D Percentage of IFNγ-, IL-17- or IFNγ 

and IL-17-expressing CD4+ and CD8+ T lymphocytes isolated from the CNS of WT and ALCAM 

KO mice at different days post induction of EAE, as assessed by flow cytometry. Data shown are 

the mean ± SEM of 3-5 animals per time point. Representative of n=5 independent experiments. 

E Absolute numbers of CD4+CD25+FOXP3+ regulatory T lymphocytes infiltrating the CNS of 

ALCAM KO and WT mice at different days post induction of EAE, as assessed by flow cytometry. 

Data shown are the mean ± SEM of 3-6 animals per time point. Representative of n=3 independent 

experiments. F Prevalence of M1 monocyte/macrophages relative to M2 subtype isolated from the 

CNS of WT and ALCAM KO mice at different days post induction of EAE, as assessed by their 

expression of CD11b, CD43, CD206, Ly6C, IL-10, IL-12, by flow cytometry. Data shown are the 

mean ± SEM of 4-10 animals per time point pooled from 3 independent experiments.  G 

Immunofluorescent staining of Laminin (green), TOPRO-3 (nuclei-blue) and CD4 or F4/80 (red) 

in spinal cord sections of ALCAM KO and WT mice at day 12 post induction of EAE. Scale bars: 

100 μm. Image shown are representative of 9 sections per animal, n=4 animals per group. H 

Absolute numbers of CD4+ T lymphocytes and F4/80+ macrophages observed per lesion. n=10-

15 lesions assessed from 3 animals per group. (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001) 
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Fig 3. The absence of ALCAM on BBB-ECs increases EAE disease severity. 

A Expression of cell adhesion molecules (ALCAM, PECAM-1, ICAM-1, VCAM-1, ICAM-2 and 

CD34) on primary culture of MBECs under resting or stimulated (stim.; TNF and IFNγ) 

conditions, isolated from WT and ALCAM KO mice, as assessed by flow cytometry. n=4 

independent experiments using 4 primary cultures. B Mean cumulative EAE clinical score of WT 

and ALCAM KO mice adoptively transferred with MOG35-55-reactivated WT splenocytes. Data 

shown are representative of n=3 independent experiments, 20 animals per group. C-E 

Characterization of immune cells infiltrating the CNS of WT or ALCAM KO animals in the 

adoptive transfer EAE experiment, at 12 days post-transfer (shown in B). C Absolute numbers of 

immune cells isolated from the CNS of recipient mice. D-E Percentage of CNS infiltrating immune 

cells expressing the surface markers CD4, CD11b, CD11c and CD8 and percentage of ALCAM+, 

CD44hi, IFNγ+ and IL-17+ cells gated on the previous surface markers. Data shown are the mean 

± SEM of 3-4 animals per group, and representative of 3 transfer experiments. F Mean cumulative 

EAE clinical score of WT and ALCAM KO mice adoptively transferred with MOG35-55-

reactivated ALCAM KO splenocytes. Data shown are representative of n=3 independent 

experiments, 26 WT and 20 ALCAM KO mice per group. G-I Characterization of immune cells 

infiltrating the CNS of WT or ALCAM KO animals in the adoptive transfer EAE experiment, at 

12 days post-transfer (shown in F). G Absolute numbers of immune cells isolated from the CNS 

of recipient mice. H and I Percentage of CNS infiltrating immune cells expressing the surface 

markers CD4, CD11b, CD11c and CD8 and percentage of ALCAM+, CD44hi, IFNγ+ and IL-17+ 

cells gated on the previous surface markers. Data shown are the mean ± SEM of 4 animals per 

group, and representative of 3 transfer experiments. (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001) 
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Fig 4. ALCAM KO mice exhibit disorganized tight junction molecules which translates into 

an increase in trans-endothelial cell permeability.  

A TEER values of confluent monolayers of pMBMECs isolated from WT or ALCAM KO mice, 

expressed relative to WT values (1.0). Data shown are the mean ± SEM of 7 independent 

experiments performed in triplicates. B Permeability coefficient of 10 kDa dextran and bovine 

serum albumin (BSA) across monolayers of MBECs, in vitro, from WT or ALCAM KO mice, 

either untreated or treated with TNF and IFNγ (stim.). Data shown are the mean ± SEM of 3-4 

replicates per conditions and representative of n=3 independent experiments. C in vivo BBB 

permeability using i.v. injected fluorescently-labelled 3 and 20 kDa dextran, at different time point 

during EAE, in WT and ALCAM KO mice. Data expressed as a percentage of blood fluorescence 

intensity and measured by spectrofluorometer. Data shown are the mean ± SEM of 5-15 replicates 

per conditions pooled from n=3 independent experiments. D Immunofluorescent staining of α-

catenin (green) and occludin (red) in spinal cord sections of naïve ALCAM KO and WT mice. 

Nuclei: blue. Scale bars: 20 μm. Representative of 5 sections per animal, n=4 animals per group. 

E Maximum pixel intensity analysis of junctional molecules in naïve ALCAM KO and WT spinal 

cord sections, as assessed by confocal microscopy. n=25-65 blood vessels per group. F Maximum 

pixel intensity analysis of junctional molecules in primary culture of mouse BBB-ECs. n=160-260 

cell junctions per group. (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001) 
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Fig 5. ALCAM binds directly and indirectly to tight junction molecules. 

A Expression of ALCAM protein in whole-cell lysate from MBECs and in the ALCAM 

immunoprecipitation (pull down) sample, by Western blot. B Immunoblot for ALCAM (90-120 

kDa), zonula occludens-2 (ZO-2; isoforms ± 160 kDa), cingulin (160 kDa), TRIO and F-actin 

binding protein (TARA; 68kDa), coronin 1C (57 kDa), β-actin (42 kDa), pan-tropomyosin (TPM; 

isoforms ± 33 kDa), zonula occludens-1 (ZO-1; 240-260 kDa), occludin (65-80 kDa), ezrin (69 

kDa) and syntenin-1 (33 kDa) on the ALCAM pull-down lysate (right) and the corresponding 

MBECs total cell lysate (left).  
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Supplemental figure 1. Expression of ALCAM and CD6 on resting memory CD4+ T 

lymphocytes. 

Mean fluorescence intensity of A ALCAM (blue) or B CD6 (blue) and their respective isotype 

control (grey) on CD4+ T lymphocytes isolated from naïve WT splenocytes. 
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Discussion 

MS is a chronic debilitating disease that affects an important portion of the Canadian 

population. While the cause of the disease is still unknown, we know that the main pro-

inflammatory agent, source of demyelination and clinical symptoms, is the immune system. 

Infiltrating T effector lymphocytes, pro-inflammatory myeloid cells and B lymphocytes have 

all been associated with neuroinflammation. In MS, the specialized vasculature forming the 

BBB, which normally plays a key function in regulating the CNS environment, becomes 

dysregulated and allows the passage of those encephalitogenic immune cells [6]. Thus, the BBB 

is an interesting therapeutic target to limit the migration of leukocytes and control MS relapses. 

In this context, this Ph.D. project aimed to study in detail the role of ALCAM in 

neuroinflammation and to understand the molecular mechanisms behind immune cell 

diapedesis.  

 

The Role of ALCAM During Leukocytes Diapedesis 

As discussed previously, therapeutic treatments targeting immune cell trafficking 

(Fingolimod, Natalizumab) are currently used successfully to prevent MS relapses. 

Unfortunately, both drugs create an immunosuppressed environment, which favours the 

development of PMLs. To find alternate adhesion molecules involved in immune cell 

transmigration, proteomic analyses of purified lymphocytes and BBB-ECs were performed 

[112, 113, 491]. ALCAM was one of the top candidates being flagged as highly upregulated on 

inflamed BBB-ECs. While the role of ALCAM as a leukocyte adhesion molecule was not 

known at the time, multiple studies had associated it with cell migration and adhesion during 

neurogenesis, angiogenesis, blastocyst implantation and tumor invasion [492, 493]. In the study 

published by Cayrol et al. in 2008 [113], our laboratory established that ALCAM is involved 

during ex vivo migration of monocytes, CD4 T lymphocytes and B lymphocytes, but not CD8 

T lymphocytes. The goal of this work was thus to describe in more detail the function of 

ALCAM during leukocyte transmigration into the CNS. To this end, we analyzed the 
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extravasation of human and mouse Th1 and Th17 lymphocytes along with ex vivo CD14+ 

monocytes using, amongst other things, a dynamic migration assay under shear-stress. To 

adequately compare the results obtained following ALCAM blockade, we also conducted the 

experiments using anti-ICAM-1 antibodies. ICAM-1 is a well-characterized adhesion molecule 

involved during the adhesion, crawling and diapedesis steps of leukocytes transmigration across 

endothelial cells [115, 494]. 

In this study, we first confirmed that ALCAM is involved during static diapedesis of ex vivo 

human CD4+ T lymphocytes. We felt this confirmation was necessary as another study recently 

failed to block the migration of CD3+ T lymphocytes in an in vitro model of the human BBB 

[488]. However, the differences between our models might explain this discrepancy. In addition, 

the presence of CD8+ T lymphocytes, which are not blocked by anti-ALCAM antibodies, may 

have skewed their results. As opposed to ex vivo lymphocytes, we could not block the migration 

of in vitro polarized human Th17 lymphocytes, even if they expressed high levels of CD6. 

Interestingly, a small reduction in the migration of Th1 lymphocytes could be measured. One 

difference observed between those two immune subsets was their respective levels of ALCAM, 

with Th1 lymphocytes having slightly more of the adhesion molecule on their surface. The 

hypothesis that the homotypic ALCAM-ALCAM interaction is important during migration and 

less so the heterotypic ALCAM-CD6 bond, pushed us to re-evaluate the role of ALCAM during 

pro-inflammatory T lymphocyte trafficking. However, using sorted human Th1 lymphocytes, 

which expressed higher levels of ALCAM, we found similar results as with in vitro reactivated 

Th1. Therefore, we concluded that antibody-mediated ALCAM blockade only plays a limited 

role in human activated pro-inflammatory T lymphocytes extravasation across the BBB. 

Equivalent results were also obtained by comparing ALCAM KO and WT BBB-ECs during 

mouse Th1 lymphocyte transmigration. Our data also suggested that mouse BBB-ECs express 

lower levels of ALCAM, as compared to human primary culture BBB-ECs. Nonetheless, we 

confirmed that ALCAM plays an important role in the transmigration of monocytes. 

Furthermore, we discovered that it is involved specifically during rolling, shear resistant arrest 

and diapedesis. Finally, we demonstrated that ALCAM is over-expressed on meningeal ECs as 

compared to BBB-ECs and that both CD4+ T lymphocytes and monocytes migrate more rapidly 

and in higher number across the former CNS barrier.  
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Conceivably, higher expression levels of ALCAM on monocytes (which 60 to 85% of them 

constitutively express ALCAM) versus T lymphocytes might explain the different cell 

behaviours observed in ALCAM blocking experiments. Supporting this theory, a recent study 

demonstrated that ALCAM is overexpressed on HTLV-1-infected T lymphocytes and that as a 

result, it increases their migration across the human BBB [495]. Similarly, the difference 

observed during the migration of ex vivo naïve/inactivated CD4+ T lymphocytes and polarized 

Th1/Th17 lymphocytes could originate from the presence of additional highly effective 

adhesion molecules on the activated immune cell subsets compensating the lack of ALCAM in 

ALCAM KO mouse or the steric hindrance of ALCAM in human cell cultures. 

Nevertheless, the fact that our results suggest that only APCs (myeloid cells and B 

lymphocytes; recent interesting unpublished data on B lymphocytes are corroborating the 

preliminary results published in Cayrol et al. [113]) are significantly relying on ALCAM to 

cross the BBB could provide a therapeutic advantage. These results demonstrate that an 

ALCAM blocking therapy could potentially specifically block myeloid cells from entering the 

CNS during neuroinflammation, while not compromising the immune-surveillance of the CNS 

by T lymphocytes. Although MS and EAE are arguably lymphocyte-driven diseases, the 

contribution of APCs to their pathogenesis is undeniable. For instance, myeloid cells have been 

shown to accumulate in abundance in demyelinating lesions, where they often represent the 

dominant cell type. We have also previously published a study demonstrating that Ninjurin-1, 

an adhesion molecule predominantly expressed on BBB-ECs and myeloid cells, contributes 

significantly to monocyte transmigration. When blocked, significantly fewer monocytes were 

found in the CNS of EAE animals, which lead to the amelioration of their clinical scores [118]. 

In addition, another study from the laboratory demonstrated that these peripheral monocytes are 

the main source of DCs in an inflamed CNS [134]. These pro-inflammatory DCs, present in 

both MS and EAE, have been demonstrated to be essential during lesion formation as they can 

polarize and reactivate CD4+ T lymphocytes, while promoting their proliferation [134, 496-

498].  

Further evidences demonstrating the importance of monocytes in EAE pathogenesis have 

been published recently. While GM-CSF KO mice are resistant to EAE, repeated injections of 
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recombinant GM-CSF were shown to re-establish their susceptibility via the recruitment of 

CD11b+Ly6C+ monocytes to the CNS [232, 233, 499]. Corroborating with these results, 

another study from the group of Dr. Becher demonstrated that the principal GM-CSF responders 

are the monocytes, while the cytokine has little effect on microglia. In addition, GM-CSF 

stimulation induces the production of IL-23 by monocytes, which in turn allows the polarization 

of CD4+ T lymphocytes into Th17 pro-inflammatory lymphocytes [231]. A follow-up study has 

demonstrated that deleting the GM-CSF receptor on CCR2+Ly6Chi monocytes prevented the 

induction of EAE. In addition, they demonstrated that these cells produce CCL6, CCL24, and 

CCL17, which are known to be critical for the recruit of more myeloid cells, effectively creating 

an immune amplification loop during neuroinflammation. Finally, these monocytes are also 

known to secrete high levels of IL-1β, which modulate the BBB integrity and upregulate the 

expression of adhesion molecules [234, 500, 501].  

Collectively, the results put forward in this first article suggest that anti-ALCAM antibodies 

could be an interesting therapy against MS. Besides, positive effects on EAE clinical scores 

have already been published in Cayrol et al. [113]. The same experiments have also 

demonstrated the absence of negative effect of the anti-ALCAM antibodies on the integrity of 

the BBB and showed no deleterious effects in the animals over multiple injections. Furthermore, 

based on the positive results obtained from the clinical trials of ocrelizumab, an anti-CD20 

monoclonal therapy aimed at depleting B lymphocytes, for both RRMS and PPMS patients, it 

is conceivable that a non-T lymphocyte-related therapy be used against MS [502]. As discussed 

previously, although B lymphocytes play a role during disease pathogenesis by producing 

antibodies against CNS molecules, they also act as APCs by presenting antigens and secreting 

pro-inflammatory cytokines or anti-inflammatory cytokines during disease remission. While 

blocking disease promoting B lymphocytes is beneficial, an anti-ALCAM therapy would affect 

equally the regulatory B lymphocytes. Nevertheless, positive clinical outcomes of B lymphocyte 

depletion therapies suggest that blocking ALCAM would not impede disease remission. In fact, 

an increase in the percentage of CD27- B lymphocytes, which demonstrate superior capacity to 

produce IL-10, was observed 12 months following B lymphocyte depletion in MS patients 

[503]. Therefore, an ALCAM-specific therapy would in theory target all APCs (myeloid cells 

and B lymphocytes) and have a broad positive impact on the disease process. Especially, as 
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myeloid cells have been proposed to be directly and indirectly implicated in neuronal damage 

[299]. It would also be an important addition to the therapeutic regiment available nowadays as 

it would not target T lymphocytes and thus, may not be plagued by the increased risk of PMLs.             

 

The Novel Role of ALCAM in Maintaining BBB Integrity 

Although the first manuscript established precisely the role of ALCAM during leukocyte 

diapedesis, we were interested in seeing if those in vitro results would translate in an in vivo model 

of MS. Therefore, this second section of my Ph.D. project was originally aimed at understanding 

the role of ALCAM during neuroinflammation in the EAE model. The mechanisms underlying the 

complex interactions between leukocytes and the BBB would have been studied and confirmed by 

using transgenic animals. However, it became clear following the first few active EAE experiments 

that, as opposed to our initial hypothesis, ALCAM KO mice were not protected from the disease, 

but rather developed more severe symptoms accompanied by an increase in CNS infiltrating pro-

inflammatory immune cells. Based on our published EAE results using anti-ALCAM antibodies 

[113] and on our new in vitro detailed analysis of ALCAM functions during leukocyte 

transmigration, we proposed that the phenotype observed was due to an upregulation of other 

adhesion molecules as a compensatory mechanism. Yet, we quickly refuted that theory following 

the analysis of the expression levels of multiple adhesion molecules using flow cytometry. We also 

confirmed that there was no other difference in the peripheral immune system of ALCAM KO mice 

(number and ratio of immune cells, antigen presentation, secretion of cytokines and chemokines, 

etc.), as compared to their WT littermates, that could have accounted for the results observed. 

Furthermore, a study conducted by the group of Dr. Weiner, the creator of the ALCAM KO strain, 

described the animals as appearing normal, with no apparent phenotypes or defects. The mice also 

bred normally and their offspring matched closely the development rate of WT pups. Upon further 

characterization of the animals, however, they discovered that the mice have defects in the 

fasciculation of retinal ganglion cells and prominent retinal dysplastic regions were observed 

[504]. Nevertheless, these defects do not seem to affect the animals and does not have, to the 

best of my knowledge, a direct influence over the course of EAE. 
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Using adoptive EAE transfer, in which WT leukocytes are injected into ALCAM KO or 

WT mice, we confirmed that the lack of ALCAM only in the recipient animals recapitulates the 

phenotype observed in active EAE. We thus hypothesized that the absence of ALCAM at the 

level of the CNS microvasculature is causing the increased EAE clinical score observed in 

ALCAM KO mice. Phenotypic characterization of un-immunized ALCAM KO mice revealed 

a reduced expression of BBB junctional proteins, which was associated with a significant 

increase in the permeability of the BBB of these animals. A detailed molecular analysis of 

ALCAM intracellular binding partners in primary cultures of mouse BBB-ECs demonstrated 

that the TJ adaptor molecules ZO-2 and cingulin are linked to ALCAM cytoplasmic tail. In 

addition, actin-binding proteins TARA and coronin 1C, along with the presence of β-actin and 

tropomyosin proteins in the ALCAM pulled-down protein lysate, confirmed previously 

published studies and provided further evidence demonstrating that ALCAM is directly linked 

to the actin cytoskeleton [477, 479]. Conversely, transmembrane TJ and AJ molecules, such as 

occludin, JAM-A, claudin-5 and VE-cadherin, were not found to be linked to ALCAM. These 

results suggest that ALCAM may interact with junctional molecule complexes only via TJ 

adaptor molecules.    

A recent study published by Tudor, C. and colleagues has identified ezrin and syntenin-1 

as two intracellular molecules binding to ALCAM [505]. Although our experiment did not 

confirm their findings, the differences observed between our results could be explained by their 

use of a cell line transfected with modified ALCAM proteins, as opposed to endogenous 

ALCAM obtained from primary mouse BBB-ECs. Interestingly, although the cytoplasmic tail 

of ALCAM contains clusters of positively charged amino acid residues that typically interact 

with members of the ezrin/radixin/moesin (ERM) family, a study performed with pulmonary 

microvascular endothelial cells (PMVECs) found no association between ALCAM and ERM 

protein family members, corroborating our results [506]. Thus, the experiments performed by 

Tudor, C. et al., which were designed to assess ALCAM intracellular binding partner in a cell 

line of human APCs, might not be relevant to mouse endothelial cells.  

While this study did not support our results, other studies reported functional links between 

ALCAM and junctional molecules in a variety of cell types. In 2000, Tomita and colleagues 
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demonstrated that, in an α-catenin-deficient prostate cancer cell line, ALCAM expression is 

limited to the cytoplasm. However, upon transfection with α-neuronal-catenin, ALCAM is co-

localized with the transfected protein at the level of the cell membrane [507]. As catenin 

molecules are known to interact with cadherins and the actin cytoskeleton, this study suggests 

that ALCAM is part of the macromolecular complexes forming cell-cell contact in prostate 

cancer cells. Another study published by the group of Dr. Weiner described similar protein 

bonds in uveal melanoma cell lines. They demonstrated that, when ALCAM is overexpressed, 

both N-cadherin and β-catenin localization to cell contacts is enhanced along with ALCAM, 

whereas silencing ALCAM results in defective adherens junctions [508].   

In PMVECs, another study reported the co-localization of ALCAM with N- and VE-

cadherin via confocal microscopy, while immunoprecipitation assays identified N-cadherin, 

VE-cadherin and β-catenin as ALCAM binding partners [506]. Strangely, ALCAM, N-cadherin 

and E-cadherin were isolated from the lipid rafts of PMVECs, but VE-cadherin was only 

detected in the bulk plasma membrane fractions, contradicting previous findings [509]. Similar 

results were also obtained from our laboratory using primary cultures of human BBB-ECs [113]. 

The localization of these proteins to lipid raft is consistent with the current literature which 

associates these cell membrane microdomains with the formation of complex macromolecular 

structures involved in immune cell transmigration (selectins, ICAM-1, VCAM-1, etc.), 

intercellular junction formation, cytoskeleton anchoring and intracellular signalling pathways 

[510-512]. Although these studies do not confirm the results obtained in the second manuscript, 

they do however collectively provide further evidence that ALCAM is linked to junctional 

molecules and the cytoskeleton.  

Studies also suggest that ALCAM is linked to other cell membrane protein either in trans 

or in cis. Gilsanz, A. et al. [513] have recently reported that ALCAM, along with other Ig-like 

adhesion molecules, forms a complex with the tetraspanin molecule CD9 and the “sheddase” 

ADAM17, which together regulate ALCAM/sALCAM expression and activity in a TGFβ-

dependent or -independent fashion [514, 515]. CD9, which acts as a membrane chaperone 

molecule, is also known to interact directly with claudins in a cholesterol-sensitive manner 

[516]. Thus, this ALCAM-CD9 bond provides a secondary indirect link between claudins and 
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ALCAM. Though CD9 is highly expressed on endothelial cells [517], we did not detect it in the 

ALCAM immunoprecipitation assay. Technical differences in the protocols used (detergent, cell 

type, antibody used, etc.) and different stimulation states of endothelial cells could explain this 

discrepancy. Indeed, since CD9 is known to enhance ALCAM-mediated adhesion by promoting 

its clustering on the cell surface, perhaps a CD9-ALCAM binding would have been detected in 

stimulated BBB-ECs [513].   

Although the identified deficiency in the BBB integrity of ALCAM KO mice is a viable 

explanation to the worsening of EAE clinical score, EAE remains a complex disease affected 

by multiple biomolecular mechanisms. As such, other factors overlooked could be modified in 

ALCAM KO mice and participate on different levels to the disease pathogenesis. RAGE 

(receptor for advanced glycation end-products) could be one of those molecules. It is a close 

structural and functional homolog of ALCAM and it was recently identified by von Bauer and 

colleagues to be upregulated in ALCAM deficient animals, potentially as a compensatory 

mechanism [518]. RAGE also shares common features with TLRs as it has been described to 

bind to danger-associated molecular patterns (DAMPs), such as S100 proteins and HMGB-1, 

released by cells upon cellular stress and necrosis. As such, RAGE, which can be upregulated 

in many tissues by inflammatory mediators, is involved in propagating acute and chronic 

inflammation and leads to perpetuated cell activation [519-522]. The recent study by von Bauer 

et al. also identified S100B as a ligand of both RAGE and ALCAM, which induces a dose- and 

time-dependent expression of members of the NF-κB family [518]. Moreover, other studies 

demonstrated that in the CNS of EAE animals, RAGE is upregulated on infiltrating 

macrophages and CD4+ T lymphocytes, as well as on BBB-ECs, while S100 proteins are over-

expressed in the spinal cord tissue. Furthermore, the administration of soluble RAGE, acting as 

a molecular decoy, or anti-RAGE antibody significantly reduces EAE symptoms and leukocyte 

infiltration in the CNS [523, 524]. Expression of dominant negative RAGE (a mutant form of 

RAGE without the cytosolic domain and lacking the capacity of signal transduction) selectively 

in CD4+ T lymphocytes also reduced the inflammatory reaction in EAE [523]. Corroborating 

with these results, EAE symptoms were shown to be significantly increased in mice 

overexpressing RAGE in a Tie2-dependent manner [525]. Another study suggesting that RAGE 

is expressed by oligodendrocytes in response to oxidative stress provides further evidence of the 
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implication of RAGE in EAE and MS [526]. Taken together, these studies link RAGE and 

ALCAM to leukocyte transmigration across the BBB and reveal important mechanisms 

contributing to neuroinflammation. Overall, the results described in the second manuscript 

demonstrate that ALCAM is associated with junctional molecules and thus participate in the 

modulation of intercellular connexions between BBB-ECs.  

   

Future Perspective 

Multiple genetic studies have identified ALCAM and CD6 gene polymorphisms as risk 

factors in MS, increasing the odds of developing the disease by 1.18 to 2.34 [358-360, 527]. 

Thus, these studies provide further evidences of the implication of ALCAM and CD6 in MS 

pathogenesis. On the other hand, since ALCAM is expressed in multiple cell types (endothelial 

cells, immune cells, epithelial cells, neurons, tumours, stem cells, etc.), it would be essential to 

characterize and understand the different physiological functions it partakes in both homeostatic 

and pathological conditions before considering therapeutic ALCAM modulation in MS patients. 

Case in point, the deleterious effects of ALCAM deletion in the pathogenesis of EAE. While 

the two manuscripts of this thesis clarify the specific role of ALCAM during immune cell 

trafficking and identify novel intracellular binding partners, the exact signaling pathways 

downstream of ALCAM are still unknown. Therefore, additional biomolecular studies would 

be needed to identify all molecules interacting with ALCAM in BBB-ECs and leukocytes. These 

studies would also potentially help define the players involved in paracellular and transcellular 

diapedesis and decipher their respective mechanisms. Likewise, it would be important to 

understand specifically why blocking ALCAM doesn’t affect more the transmigration of T 

lymphocytes even if they express CD6 and ALCAM. Again this would require a thorough 

understanding of the binding partners of ALCAM as multiple molecules both intracellular and 

extracellular might be involved in regulating its avidity. As previously mentioned, other 

adhesion molecules and integrins could also overshadow the role ALCAM is playing during T 

lymphocyte diapedesis. A recent study from the group of Dr. Wiendl has provided further 

evidences for this theory by concluding that VLA-4-blockade alone did not affect significantly 

the adhesion of MCAM+ Th17 T lymphocytes, but the combination of anti-MCAM and anti-
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VLA-4 did [528]. One could therefore argue for the existence of inherent redundancies in the 

molecular players involved during immune cell transmigration. As multiple important cellular 

systems are known to have redundant pathways, it would make sense for a mechanism involved 

in the protection of the organism from external pathogens to possess fail-safes. Mapping the 

macromolecular cell surface complexes would be essential not only in MS but also in other 

pathologies where ALCAM has been described. This is the case for most cancers, where 

understanding the exact role of ALCAM in tumour progression and metastasis would be 

necessary before modulating ALCAM in an effort to diminish the infiltration of deleterious 

Tregs and increase pro-inflammatory anti-tumor immune cell recruitment. Likewise, therapeutic 

modulation of ALCAM in HIV+ patients could prevent the infection of the CNS by the virus or 

help control the inflammatory reaction in HTLV-1 infected patients.        
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Conclusion 
Although the etiology and the physiopathology of MS is still not fully understood, 

evidences point to a critical role fulfilled by CNS infiltrating pro-inflammatory leukocytes 

during lesion formation. The research experiments conducted as part of this thesis have provided 

new evidences of the implication of ALCAM during this process. The first hypothesis of this 

project was that ALCAM plays a role in the firm adhesion, crawling and diapedesis of 

encephalitogenic pro-inflammatory leukocytes across BBB-ECs. Studies presented in this thesis 

have confirmed the hypothesis on ex vivo human CD14+ monocytes. However, experiments 

using a conventional static migration assay or the modified adhesion assay under shear-stress 

have demonstrated the relative absence of effect of anti-ALCAM antibodies on the T 

lymphocyte transmigration cascade. The second hypothesis was that the absence of ALCAM on 

BBB-ECs and leukocytes significantly diminishes the severity of EAE symptoms, while 

reducing the absolute number of leukocytes infiltrating the CNS following immunization. Our 

initial active EAE experiments rapidly disproved this theory. Collectively, our data have 

demonstrated that ALCAM KO mice develop a more severe active EAE, due at least in part to 

an increase in the permeability of their BBB. This loss in BBB integrity is the result of a 

dysregulation of junctional molecules triggered by the absence of ALCAM, which was shown 

to directly and indirectly associate with TJ molecules and the cell cytoskeleton. Thus, ALCAM 

regulates and maintains tight junction stability by acting as an adaptor molecule. Overall, these 

results confirm the importance of the BBB in preserving the environment of the CNS and 

suggest that ALCAM could be targeted by disease-modifying therapies to limit peripheral 

monocytes from participating in lesion formation in MS patients.    
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