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Résumé 

 

La transplantation d'organes est souvent la meilleure approche thérapeutique pour 

l'insuffisance organique au stade terminal. Le rejet de greffe est le principal obstacle pour une 

transplantation réussie, car cette dernière est le plus fréquemment réalisée entre individus 

génétiquement distincts. Les tissus ou organes transplantés sont généralement reconnus par le 

système immunitaire comme corps étrangers et sont rapidement détruits. Une série 

d'approches a été réalisée en clinique pour augmenter l'acceptation de la transplantation 

d’organes. Les immunosuppresseurs ont un rôle clé dans le combat contre le rejet de greffe. 

Actuellement, les résultats à court terme de la transplantation d'organes ont été 

considérablement améliorés avec l'émergence des inhibiteurs de la calcineurine (ICN), mais 

les résultats à long terme sont encore insatisfaisants. L'une des principales raisons est que les 

médicaments immunosuppresseurs actuels manquent de spécificité. Ces agents, en particulier 

ICN, sont considérés comme les facteurs de risque pour la perte tardive du greffon et les 

décès avec un greffon fonctionnel en raison de la toxicité des médicaments, de la sur-

immunosuppression et d'autres effets secondaires. Ainsi, il y a un besoin urgent de rechercher 

de nouvelles thérapies idéales. 

 

Les lymphocytes T jouent un rôle central dans l'initiation du rejet des allogreffes. La pleine 

activation des cellules T nécessite au moins deux signaux combinés, mais distincts. En plus 

du signal généré par l'interaction entre le récepteur des cellules T (TCR) et les complexes 

CMH-peptides, le second signal, appelé signal de costimulation qui est délivré par 

 
i 

 



l'engagement du récepteur de costimulation avec son ligand, est essentiel. L'engagement du 

TCR en l'absence de signaux de costimulation peut donner lieu à l'anergie des cellules T, un 

état d'absence de réponse immunitaire. Les molécules costimulatrices acquièrent ainsi 

l'attention en tant que cibles thérapeutiques potentielles. Du fait que ces molécules soient 

largement limitées à des cellules T et/ou des cellules présentatrices d'antigène, cibler la voie 

de signalisation de costimulation offre la possibilité de moduler le système immunitaire d'une 

manière plus sélective par rapport à des agents immunosuppresseurs conventionnels.  

 

À ce jour, de nombreuses molécules costimulatrices ont été identifiées et certaines ont été 

testées en tant que cibles thérapeutiques dans des modèles de transplantation d'organes. Les 

axes CD28–CD80/86 et CD40–CD40L sont importants et les deux voies de signalisation de 

costimulation les mieux connues. Bélatacept est un variant de l'antigène 4 des lymphocytes T 

cytotoxiques-immunoglobuline G (CTLA4-Ig) qui bloque la voie de signalisation CD28–

CD80/86. C'est le seul bloqueur de la costimulation à être approuvé pour utilisation clinique 

en transplantation d'organes. Par rapport à la thérapie basée sur les ICN pour les receveurs de 

transplantation rénale, les thérapies à base de bélatacept montrent un taux similaire de survie, 

une fonction supérieure du greffon et l'amélioration du profil de risque cardiovasculaire. 

Cependant, bélatacept est également associée à des taux plus élevés de rejet aigu et de 

syndrome lymphoprolifératif post-greffe (SLPG). 

 

Dans notre étude, l'efficacité d'ASKP1240, un nouvel AcM anti-CD40 complètement humain 

qui bloque la voie de costimulation CD40–CD40L, a été évaluée sur la prévention du rejet 

d'allogreffe avec le modèle de transplantation rénale chez le singe cynomolgus. Quand 
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ASKP1240 a été administré seul, il a réduit l'incidence du rejet aigu et a prolongé la survie de 

l'allogreffe rénale dépendamment de la dose administrée. L'acceptation de l'allogreffe rénale a 

été encore améliorée chez des singes qui ont reçus des traitements d'ASKP1240 combiné avec 

le tacrolimus (dose sub-thérapeutique) ou le mycophénolate mofétil (MMF). Le rejet aigu 

d'allogreffe a été totalement éliminé chez ces animaux et la médiane de survie du greffon 

rénal de ces groupes était significativement plus longue que ceux des groupes avec un 

traitement monothérapie. ASKP1240 a été bien toléré pour un traitement allant jusqu'à 180 

jours. Il n'y avait pas d'effets secondaires évidents, y compris les complications 

thromboémboliques liées au médicament. L'administration d'ASKP1240 n'a pas induite de 

libération de cytokines. 

 

Ensuite, nous avons étudié les effets d'ASP2409 sur le rejet de l'allogreffe rénale et la survie 

chez des singes cynomolgus. ASP2409 est une nouvelle CD86-sélective variante de CTLA4-

Ig, qui possède une affinité de liaison au CD86 14 fois plus élevée que le bélatacept in vitro et 

une amélioration de la puissance immunosuppressive. Une haute dose d'ASP2409 en 

monothérapie a montré des résultats supérieurs dans la réduction de rejet aigu et la 

prolongation de la survie de l'allogreffe rénale en comparaison avec une faible dose 

d'ASP2409 en monothérapie. Une faible dose d'ASP2409 en combinaison avec tacrolimus 

(dose sub-thérapeutique) inhibe complètement le rejet aigu d'allogreffe et prolonge 

significativement la survie de l'allogreffe rénale par rapport à une monothérapie avec une 

faible dose d'ASP2409 ou une dose sub-thérapeutique de tacrolimus. La médiane de survie de 

l'allogreffe des animaux recevant un traitement à base d'une dose élevée d'ASP2409, 

bélatacept, ou une dose thérapeutique de tacrolimus étaient identiques (> 91 jours). Les 
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traitements à base d'une dose élevée d'ASP2409 présentaient de meilleurs résultats 

histopathologiques que le traitement à base de bélatacept. En outre, la fréquence des cellules 

FoxP3+ dans les allogreffes rénales a été observée plus haute dans les traitements à base 

d'ASP2409 et de bélatacept comparés aux traitements à base de tacrolimus. L'étude a 

également montré que ASP2409 est sans danger pour les animaux pour les doses qui ont été 

testées. Nous n'avons pas trouvé de graves effets secondaires liés à ASP2409 au cours des 91 

jours d'étude.  

 

Collectivement, ces résultats suggèrent que la modulation sélective de la costimulation des 

cellules T avec des bloqueurs de la costimulation est une stratégie réalisable pour la 

prévention et le traitement du rejet d'allogreffe. ASKP1240 et ASP2409 sont tous deux des 

agents immunosuppresseurs prometteurs pour les régimes d'évitement ou de réduction des 

inhibiteurs de la calcineurine. 
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Abstract 

 

Organ transplantation is often the best therapeutic approach for end-stage organ failure. Graft 

rejection is the major obstacle to successful transplantation because transplantation is most 

frequently carried out between genetically distinct individuals. Transplanted tissues or organs 

are usually recognized by the immune system as foreign and are rapidly destructed without 

immune interventions. A series of approaches have thus been applied in clinic to inhibit the 

allogenic immune responses and in turn increase organ transplant acceptance. 

Immunosuppressive drugs are the key players in the "war" against immune cell-mediated 

rejection of allogenic transplants. Currently, the use of calcineurin inhibitors (CNIs) has 

dramatically decreased the risk of acute transplant rejection and improved the short-term 

outcomes of organ transplantation, but the long-term outcomes are still unsatisfied. One of the 

main reasons causing unsatisfied long-term outcomes is that current immunosuppressive 

drugs do not specifically target immune cells that cause transplant rejection. These 

immunosuppressive agents, especially CNIs, are the risk factors for late graft loss and death 

with functioning graft (DWFG) due to drug toxicity, over-immunosuppression, and other 

side-effects. Thus there is an urgent need for seeking novel therapies that can selectively 

eliminate the alloreactive immune responses while preserving the integrity of the remainder of 

the host immune system.   

 

It has been known that T cells play a central role in initiating allograft rejection. Full 

activation of T cells requires at least two collaborative but distinct signals. The first signal is 
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generated by the interaction between T cell receptor (TCR) and MHC-peptide complex. The 

second signal, termed costimulatory signal, is delivered through the engagement of 

costimulatory receptors by their ligands. Importantly, TCR engagement in the absence of 

costimulatory signals can result in T cell anergy, a state of T cell unresponsiveness. 

Costimulatory molecules thus gain attention as potential therapeutic targets. Because these 

molecules are primary expressed on T cells and/or antigen-presenting cells, targeting 

costimulatory signaling pathway offers the oppertumities to modulate immune system in a 

more selective way relative to conventional immunosuppressive agents.  

 

To date, numerous costimulatory molecules have been identified and some have been tested 

as therapeutic targets in organ transplant models. CD28–CD80/86 and CD40–CD40L axis are 

two important and the most well known costimulatory signaling pathways. Belatacept, a 

variant of cytotoxic T lymphocyte antigen 4-immunoglobulin G (CTLA4-Ig) that blocks 

CD28–CD80/86 signaling pathway, is the only costimulation blocker to be approved for 

clinical use in organ transplantation. Compared to CNI-based regimen for kidney transplant 

recipients, belatacept-based regimens show similar patient and graft survival rate, superior 

graft function, and improved cardiovascular risk profile. However, belatacept is also 

associated with higher rates of acute rejection and posttransplant lymphoproliferative disorder 

(PTLD). Disruption of CD40–CD40L interaction with anti-CD40L mAbs has also been 

demonstrated to be a reliable approach for preventing acute rejection and for prolonging 

allograft survival. Unfortunately, unexpected thromboembolic complications in preclinical 

studies and clinical trials discontinued the development of anti-CD40L mAbs. The main 

objective of this thesis is to identify the optimal T cell costimulation blockers that can show 
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improved safety and non-inferior efficacy in promoting allograft acceptance relative to 

current costimulatory blocking agents. 

 

Anti-CD40 mAbs are an alternative approach to block CD40–CD40L costimulatory pathway. 

CD40 is not involved in the stability of platelet thrombi and anti-CD40 mAbs are expected to 

not cause thromboembolic events. ASKP1240 is a novel fully human anti-CD40 mAb. In this 

study, the efficacy of ASKP1240 in the prevention of renal allograft rejection was evaluated 

in cynomolgus monkey kidney transplantation model. When ASKP1240 was administered 

alone, it dose-dependently reduced the incidence of acute rejection and prolonged renal 

allograft survival. Renal allograft acceptance was further improved in the monkey which 

received regiments using ASKP1240 combined with conventional immunosuppressive drugs 

tacrolimus (sub-therapeutic dose) or mycophenolate mofetil (MMF). Acute allograft rejection 

was totally eliminated in these animals and the kidney allograft median survival times (MST) 

of these groups were significantly longer than those of monotherapy groups. ASKP1240 

administration did not induce cytokine release. This agent was well tolerated in monkey 

kidney transplant recipients during the 180-day treatment period. There were no obvious side 

effects including drug-related thromboembolic complications.  

 

Next, we tested the hypothesis that a CD86-selective variant of CTLA4-Ig might show non-

inferior efficacy on the prevention of allograft rejection and prolongation of graft survival in 

comparison with belatacept. CD86 is the dominating ligand between the two natural ligands 

for CD28 in alloimmune response. Improvements in CD86 binding affinity of CTLA4-Igs 

confer increased immunosuppressive potency. A CD86-selective CTLA4-Ig variant may 
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reach therapeutic levels of CD86 occupancy while occupies substantially less CD80 ligand 

than non-CD86-selective CTLA4-Igs. Preservation of CD80 signaling may be favoring to 

retain protective immunity and to improve safety of CTLA4-Ig therapy. This thesis 

investigated the effects of a novel CD86-selective CTLA4-Ig variant, ASP2409, on renal 

allograft rejection and survival in cynomolgus monkeys. ASP2409 possesses 14-fold higher in 

vitro CD86 binding affinity than belatacept and improved immunosuppressive potency. 

Compared to no-treatment control, low-dose (0.3 mg/kg) ASP2409 monotherapy significantly 

prolonged renal allograft survival (MST = 5 and 26 days, respectively) but did not decrease 

the incidence of acute rejection (8/8). The rate of acute renal allograft rejection was reduced 

in the group of high-dose ASP2409 monotherapy (2/7) and, correspondingly, a much longer 

MST (>91 days) was shown in this group. Combination therapy of low-dose ASP2409 and 

tacrolimus (sub-therapeutic dose) completely eliminated acute allograft rejection and notably 

prolonged renal allograft survival (MST >91 days). The MSTs of renal allografts in the 

animals receiving high-dose ASP2409-, belatacept-, and therapeutic dose tacrolimus-based 

immunosuppressive regimens were same (>91 days). High-dose ASP2409-based regimens 

exhibited better histopathological results than belatacept-based regimen. Furthermore, higher 

frequencies of FoxP3+ Tregs in renal allografts were observed in ASP2409- and belatacept-

based regimens compared to tacrolimus-based regimen. ASP2409 was also demonstrated to 

be safe for animals with the doses to be tested. There were no serious side effects related to 

ASP2409 to be found in term of 91-day study.  

 

This study demonstrates that ASKP1240 is as effective as anti-CD40L mAbs on inhibition of 

acute rejection and prolongation of renal allograft survival, and do not cause thromboembolic 

 
viii 

 



complications. Previous studies indicated that CNIs could diminish the effects of anti-CD40L 

mAbs. In our study, ASKP1240 in combination with tacrolimus or MMF shows improved 

efficiency. Furthermore, the effects of ASP2409 on promoting renal allograft acceptance are 

not inferior to belatacept. These results collectively suggest that ASKP1240 and ASP2409 

both are the promising immunosuppressive agents for solid organ transplantation. 
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In 1954, organ transplantation from an idea in ancient legend successfully became a realistic 

therapeutic approach in clinical practice (Merrill 1956). Since then, transplantation of organs 

including kidney, heart, lung, liver, pancreas etc. gradually become a routine procedure to 

save the life of the patient with end-stage organ failure. Every year tens of thousands organ 

transplantations are preformed in the world. To date, organ transplantation is still the only 

cure for some end-stage organ failure, such as heart and liver failure. 

 

1.1 Rejection – the major cause of organ transplant failure 

Organ transplantations are mostly carried out between genetically distinct individuals because 

the donor who is genetically identical to the recipient is very rare. Although the outcome of 

transplantation could be affected by many factors including surgical techniques, organ quality, 

age and race of recipient, post-transplant complications etc., allograft rejection is the most 

common cause of transplant failure.  

 

The word "rejection" come from the French word "réjection", or directly come from the Latin 

word "reiectionem". It means "act of throwing back". In the 1940s, through serial studies of 

skin transplantation, Medawar and his colleagues demonstrated that transplant rejection was 

an immunologic event (Gibson 1943; Medawar 1944). During and after transplantation, the 

recipient's immune system recognizes certain components of transplanted cells, tissues, or 

organs as foreign, and then initiates a cascade of reactions aimed towards the allografts. 

Transplant injury caused by donor disease, organ harvesting, organ preservation, implantation, 

and reperfusion triggers a non-specific inflammatory response. Numerous proinflammatory 
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cytokines, chemokines and adhesion molecules are released during this process (Kim 2008). 

They promote various inflammatory cells including dendritic cell (DC), monocyte, and 

lymphocyte to migrate in and out the allograft and lead to antigen specific immune response 

to eliminate the transplant. Allograft rejection is usually an integrated result that many factors 

and multiple mechanisms involve in. Both innate and adaptive immunity play a role in this 

event even though one component of the immune system may dominate a certain type of 

rejection (Moreau 2013; Farrar 2013). 

 

The antigenic disparity between donors and recipients is the main factor to determine the 

potency of the alloimmune response (Sánchez-Fueyo 2011). Studies have demonstrated that 

incompatibility of the surface glycoproteins named major histocompatibility complex (MHC) 

is the most important cause of rapid graft rejection. MHC is found in all jawed vertebrates. 

These molecules are encoded by a set of genes and are involved in a lot of physiological 

processes including immunological and non-immunological activities (Gruen 1997; Kelley 

2005). In humans, the MHC is also known as Human Leukocyte Antigens (HLA). The HLA 

gene group is located on the short arm of chromosome 6 and consists of more than 200 genes 

(Shiina 2009). Based on gene locations, product functions and structures, these genes are 

categorized into class I–III three subgroups. HLA Class I molecules are found on most 

nucleated cells. On contrary, expression of HLA class II molecules are seen on DCs, B cells, 

and macrophages/monocytes. Molecules of these two groups serve as both stimulus and target 

in alloimmune response. Genes of HLA class III subgroup encode complements, cytokines, 

heat shock proteins, and the molecules not related to immune function (Shankarkumar 2004). 

Besides MHC, minor histocompatibility antigens (miH) that are MHC-bound peptides derived 
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from various endogenous proteins, can also act as alloantigens. They elicit cytotoxic T cell 

mediated immune responses and cause allograft rejection in MHC-matched individuals 

(Dzierzak-Mietla 2012; Dierselhuis 2009). 

 

Rejection occurs in almost all allografts if there are no immunomodulatory therapies to be 

applied to suppress the immune response against the transplant. Based on its clinical features, 

allograft rejection is classified into three types: hyperacute rejection, acute rejection, and 

chronic rejection.  

 

The most common pattern of allograft rejection is acute rejection. According to the literatures 

of the 1980s and 1990s, acute rejection occurred in 50% to 75% of kidney transplants 

(Gulanikar 1992), 64% of liver transplants (Wiesner 1998), and 70% to 85% heart transplants 

(Hunt 1983). The incidence of acute rejection dramatically declined with the advent of 

calcineurin inhibitors and other new immunosuppressive drugs (Figure 1.1). Organ 

Procurement and Transplantation Network data showed that the acute rejection rate within 

one year in kidney transplant recipients was on average approximately 15% in the period from 

2001 to 2003 (Djamali 2006). 

 

Acute rejection is a rapid reaction against allograft resulting in the injury of transplant 

parenchyma and blood vessels. This event can be mediated by T cells (acute cellular rejection, 

ACR) or antibodies (acute humoral rejection, AHR), or both together (Nankivell 2010). Acute 

rejection is most likely to happen within the first several posttransplant weeks, but may occur 

at any time, even many years after transplantation. In the process of acute rejection, the 
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allograft encounters inflammation, cell injury, and upregulation of MHC class I and II 

expression. The release of various inflammatory cytokines and infiltration of different cells 

lead to destruction of parenchymal and endothelial cells (ECs), edema and blood flow decline 

in tissues. Partial or whole transplanted tissue infarction may occur in the case of destruction 

of blood vessels (Moreau 2013; Nankivell 2010). Although nowadays the incidence of acute 

rejection has been significantly decreased, it still contributes to about 12% renal graft loss due 

to functional failure during the first six months after transplantation (El-Zoghby 2009). 

 

 

 

Adapted from Stewart F. Organ Transplantation. 1999 

Figure 1.1 Rejection rate and graft survival in kidney transplantation. 
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The principal mechanisms of cell-mediated acute rejection are to evoke cluster of 

differentiation (CD) 4+ T helper (Th) cell-mediated delayed-type hypersensitivity (DTH) 

reactions and CD8+ cytotoxic T-lymphocyte (CTL)-mediated cytotoxicity (Rocha 2003; 

Wood 2012). To date various CD4+ T cell subsets including Th1, Th2, Th9, Th17, Th22, T 

follicular helper (TFH) cells, and regulatory T cells (Tregs) have been identified. Each subset 

exhibits distinct cytokine production patterns and effector functions. Traditionally Th1 cells 

such as interferon gamma (IFN-γ)- and tumor necrosis factor (TNF)-secreting Th1 cells are 

the common CD4+ Th cell subsets that cause DTH. They secrete proinflammatory cytokines 

such as IFN-γ, TNF-α, and IL-1. These proinflammatory cytokines help to recruit and activate 

non-antigen-specific cells including monocytes and macrophages. These activated cells 

release proteolytic enzymes, nitric oxide, and other soluble factors that cause nonspecific 

local inflammation, and affect vascular tone and permeability, as well as enhance chemotaxis 

to result in cellular infiltrate, edema, and tissue damage. In turn, these non-antigen-specific 

activities promote the further activation and differentiation of antigen-specific T cells. 

Recently CD4+ Th17 cells are found to promote macrophage and endothelial activation, and 

to cause inflammatory tissue damage and graft rejection (Yuan 2008; Heidt 2010). 

Suppression of DTH leading to long term allograft acceptance from another angle 

demonstrates that DTH plays important role in allograft rejection (VanBuskirk 1998).  

 

CD8+ CTLs are the major effector cells in the cell-mediated cytotoxicity. Activation and 

differentiation of a naïve CD8+ T cell (CTL precursor) into a functional CTL occur within 

secondary lymphoid tissue. CTL precursors are activated by the interaction of the TCR and 

CD8+ molecules with MHC class I molecules expressed on donor APCs. CD4+ Th cells 
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provide help during the process via cell-to-cell contact or secretion of IL-2/IFN-γ cytokines 

(Ridge 1998). Activated CTL precursors differentiate into functional CTLs with up-regulating 

expression of IL-2 receptor, and forming lytic granules which contain perforins, granzymes, 

serglycin, calreticulin, and granulysin etc. CTLs then migrate into the allograft and identify 

target cells by specific interactions between MHC class I on the target cell and TCR as well as 

CD8 on the CTL. The contents within granules are released into the immunological synapse 

after cell-cell contact (Rocha 2003). Target cell apoptosis is induced via perforin/granzyme 

cell death pathway, or via the Fas/FasL pathway. 

 

AHR is less common than ACR. The incidence of AHR in kidney transplant recipients is 

about 5–7% (Takemoto 2008). This type of rejection is mediated by donor-specific antibodies 

(DSAs) that may either be pre-existed or de novo generated after transplantation. The 

prognosis of AHR is poorer than ACR because conventional immunosuppressive therapy is 

typically not effective enough for AHR. The vasculature of graft is the primary target in this 

type of rejection. The binding of DSAs to alloantigens (mainly MHC molecules) on the graft 

vascular ECs triggers activation of both the classical complement and coagulation cascades, 

and results in endothelial injury, intravascular thrombosis, necrosis of smaller vessels, edema 

and haemorrhage, and eventually destruction of the transplanted organ (Puttarajappa 2012; 

Lucas 2011). DSAs may also cause cell injury via antibody-dependent cell-mediated 

cytotoxicity (ADCC).                                                                                       

 

Hyperacute rejection is the most rapid and aggressive form of allograft rejection, and 

fortunately it is extremely rare nowadays due to pretransplantation cross-matching is routinely 
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applied as a prophylaxis. This type of rejection is mediated by high levels of preformed 

alloantibodies against donor antigens, particularly MHC class I or ABO blood group antigens.  

The vascular ECs are generally the main targets. Preexisting alloantibodies bind to endothelial 

antigens in transplanted organs, and lead to activation of complement and coagulation 

cascades. Both of them promote extensive intravascular thrombosis and irreversible tissue 

injury in the graft. Transplanted organ failure may occur within hours or even minutes 

(Colvin 2006). 

 

Chronic rejection is a slow and progressive process over months to years after transplantation. 

It usually develops insidiously and is the major cause of later graft loss. The pathologic 

features of chronic rejection in vascularized grafts include intimal thickening (caused by 

edema and cell infiltration), smooth muscle cell proliferation in the medial layer, and 

disruption of elastic lamina etc. These changes result in vascular occlusion and interstitial 

fibrosis in kidney and heart allograft (Gloor 2006; Tan 2007), bronchiolitis obliterans in lung 

allograft (Belperio 2009), and vanishing bile duct syndrome in liver allograft (Inomata 2001). 

The pathogenesis of chronic rejection is not fully understood. Multiple factors including 

DSAs, the degree of HLA mismatch, previous acute rejection episodes, immunosuppressive 

drug toxicity, ischaemia/reperfusion injury, infection, and hyperlipidaemia are associated with 

the development of chronic rejection. It implies that the pathogenesis of chronic rejection may 

involve both immune and nonimmune factors (Costello 2013). For this reason, in kidney 

transplant recipients, chronic allograft rejection was replaced by the term chronic allograft 

nephropathy (CAN). Recently the more descriptive phrase interstitial fibrosis and tubular 

atrophy (IFTA) took the place of CAN to define the level and severity of chronic renal 
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allograft damage. IFTA can be found in recipients with good allograft function and is closely 

associated with late renal transplant failure (Fletcher 2009; Shimizu 2016). 

 

1.2 T cells play a central role in allograft rejection 

T cells are essential in the event of allograft rejection. This notion was demonstrated by the 

experimental studies that fully mismatched transplants were not rejected in the animals 

lacking T cells, and adoptive transfer of normal T cells could restore allograft rejection in 

those animals (Pennycuik 1971; Manning 1973; Whitby 1990). Naïve T cells recognize 

foreign histocompatibility antigens particularly MHC is a key step to initiate allorejection. 

There are three different ways for immune recognition known as direct, indirect, and semi-

direct allorecognition (Afzali 2008).  

 

As soon as the recirculation is established in the transplanted organ, recipient APCs enter the 

allograft where they encounter foreign antigen derived from donor and become activated. The 

donor-derived DCs in the transplant may also be activated as a result of cell injury incurred 

during the transplant procedure. Those activated APCs (either donor-derived or recipient-

derived) then migrate to the recipient’s draining lymph nodes. Meanwhile, the soluble MHC 

proteins that come from transplant may be bound, processed, and presented by B cells. Naïve 

T cells circulating in the blood enter the lymph node via the afferent lymphatic vessels. They 

encounter and interact with APCs at the T cell zones in the lymph node paracortex, where 

allorecognition initially takes place. In the case of direct allorecognition, recipient T cells 

recognize intact foreign class I and class II MHC molecules expressed on donor-derived 
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APCs via interaction between TCR and MHC-peptide complexes. Donor-derived DCs are 

irreplaceable in this type of antigen recognition (Lechler 1982). This process induces a 

vigorous polyclonal T cell response; as a result, both CD4+ and CD8+ T cells that target donor 

antigens are generated. Direct allorecognition plays a significant role in acute allograft 

rejection (van Besouw 2005). 

 

Indirect allorecognition is similar to the way of T cell activation in response to pathogens. 

The allogeneic antigens from donor (e.g. cell membrane fragments, soluble MHC and miH 

molecules) are captured by recipient APCs (DCs and B cells) and are degraded into peptides 

within cells. These peptides bind to newly synthesized recipient MHC class II molecules, and 

then are transported to the cell surface. They integrate into the cell membrane of recipient 

APCs in the form of MHC-peptide complexes. CD4+ T cells recognize those peptide 

fragments via interactions between TCRs and MHC-peptide complexes, and the process of 

cell activation is then initiated. Beside of CD4+ T cells, CD8+ T cells can also be activated by 

indirect antigen recognition pathway (Carbone 1990; Zinkernagel 2002). Some studies have 

indicated that indirect allorecognition is involved in the induction and progression of chronic 

transplant rejection (Liu 1996; Vella 1997; Womer 2001).  

 

The third mechanism of antigen recognition is semi-direct allorecognition. This type of 

allorecognition pathway is proposed based on a well-recognized biological process that 

immunological cells such as DCs have the capacity to transfer membrane components 

between them via cell-to-cell contact or the exosomal route (Smyth 2008). Semi-direct 

allorecognition occurs when entire MHC peptide complexes released from donor DCs and 
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ECs are captured by recipient APCs (Bedford 1999; Herrera 2004). This kind of recipient 

APCs can then present donor peptide antigens either to CD4+ T cells in the form of self-MHC 

II peptide complexes or to CD8+ T cells via captured donor MHC I molecule. They possess 

the ability that same APC activates both CD4+ T help cell via indirect antigen recognition 

pathway and CD8+ cytotoxic T cell via direct antigen recognition pathway, even 

simultaneously (Afzali 2008).  

 

Allorecognition triggers further molecular interactions between T cells and APCs to extend 

the contact time. Naïve T cells that fail to make prolonged contact with specific antigen then 

leave the lymph node and return to the circulation. T cells that encounter antigen-specific 

interaction with APCs remain in the lymph node for 3–4 days. With the help of costimulatory 

molecules and other molecules, they become fully activated and undergo proliferation and 

differentiation.   

 

In adaptive immune response mediated allograft rejection, DTH, CTL-mediated cytotoxicity, 

and antibody-mediated responses are three principal mechanisms that cause destruction of 

transplanted tissues and organs. The CD4+ T cells orchestrate all three processes. Upon 

activation, with stimulation of cytokines secreted activated T cells, naïve CD4+ T cells 

differentiate into various Th cell subsets. Th cells secrete a range of cytokines and 

chemokines including IL-2, IL-4, IL-5, IFN-γ, and TNF-α etc. These cytokines and 

chemokines attract and activate corresponding effector cells, and lead to various immune 

responses. Th 1 and Th 17 involve in DTH (Cher 1987; Ishii 2010). The proinflammatory 

cytokines produced by them cause inflammatory damage of allografts. 
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In CTL-mediated cytotoxicity, although the effector cell is MHC class I restricted CD8+ T 

cell, CD4+ T cell is required for this immune response process. The differentiation and 

expansion of CD8+ T cells are CD4+ T cell dependent (Behrens 2004). CD8+ T cell and CD4+ 

T cell need to be activated by same APC (Bennett 1997). APC is firstly licensed via 

interaction with CD4+ T cell, with the help of IL-2 produced by CD4+ T cell, the same APC 

engages with CD8+ T cell and trigger cell activation and proliferation. Another model to 

generate functional effector CTLs is that CD4+ T cell, CD8+ T cell and APC form a three-cell 

cluster. Activated CTLs leave the secondary lymphoid organs and migrate to the graft where 

they attack donor cells and destruct transplanted organs. In addition, CD4+ T cells promote 

CD8+ T cell priming by amplifying DC production of IL-15 via CD40–CD40L interactions 

(Greyer 2016). 

 

Antibody-mediated responses are also T cell dependent. T cells involve in various steps of B 

cell immune response including activation, differentiation, and isotype switching. Naïve B 

cells in the circulation can only survive for a limited time unless they encounter their antigen. 

The engagement of B cell receptor (BCR) with antigen can trigger the activation of B cells. 

But, in the case of T cell absence, their interaction induces only low-level B cell proliferation. 

As a result of that, few antibodies are produced, or even there are no specific antibody 

productions in some time. The participation of CD4+ Th cells can remarkably enhance B cell 

functions (Reinitz 1990; Noelle 1991). When T cells and B cells encounter each other, CD4+ 

Th cells recognize the processed donor MHC peptides through the interaction between TCRs 

on the CD4+ cell membranes and MHC class II molecules on B cells. With the help of 

costimulatory molecules, coreceptors and adhesion molecules, CD4+ Th cells become 
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activated. Activated CD4+ Th cells release various types of cytokines. Those cytokines 

promote B cell proliferation, differentiation into plasma cells, and early isotype switching. 

Plasma cells produce specific alloantibodies primarily targeted ECs. The interaction between 

alloantibodies and ECs lining the donor vasculature activates both complement and 

coagulation cascades, and induces ADCC resulting in cell and organ damage (Wasowska 

2010). 

 

1.3 T cell receptor signaling in T cell activation  

In the context of transplantation, the binding of the TCR variable regions to the MHC-peptide 

complex is an essential for generating signals to initiate T cell activation. The TCR is a 

heterodimer composed of two (either α/β or γ/δ) transmembrane polypeptide chains. The 

cytoplasmic domains of the TCR α and β chain are very short and there are no any specific 

protein-binding motifs. To possess the capability of transmembrane signal transduction, 

therefore, the TCR assembles with CD3 molecules to form TCR-CD3 complex (Weiss 1994). 

The CD3 is a multimeric protein complex and is composed of four (γ, δ, ε and ζ) different 

chains. The intracellular domains of all CD3 chains contain a characteristic sequence motif 

for tyrosine phosphorylation, known as immunoreceptor tyrosine-based activation motif 

(ITAM). The ITAM is required to transduce receptor-mediated antigen recognition signals 

into the cytoplasm of T cells and to induce a series of intracellular signaling cascades 

(Flaswinkel 1995; Guy 2009). In addition to the CD3 complex, coreceptor CD4 or CD8 is 

also involved in the antigen recognition process. CD4 and CD8 bind to nonpolymorphic 
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regions of MHC class II and class I molecules, respectively, to stabilize the T cell–APC 

immunological synapse and to promote effective signal transduction (Barber 1989). 

 

Following TCR engagement, activation signals that are transmitted into the cell by CD3 

trigger a phosphorylation cascade. PCR signaling is initiated by the activations of two Src-

related protein tyrosine kinases (PTKs), Fyn that associates with the cytoplasmic tails of the 

CD3 complex and lymphocyte protein tyrosine kinase (Lck) that noncovalently associates 

with the cytoplasmic domains of the CD4 and CD8 coreceptors (Veillette 1988). Inactivated 

Lck has a closed configuration. Upon activation, Lck changes its conformation from the 

closed shape to an open structure by CD45-mediated dephosphorylation, and possesses active 

kinase function. CD3 is one of the substrates of Lck. Lck is recruited to CD3 complex to 

induce the tyrosine phosphorylation of the ITAMs (Barber 1989). This creates a docking site 

to facilitate another tyrosine kinase protein zeta-chain associated protein kinase 70 (ZAP-70) 

bind to phosphorylated CD3ζ-chain ITAMs and being activated. The activation of ZAP-70 

further amplifies the response by phosphorylating tyrosine residues on various adapter 

molecules including linker for activation of T cells (LAT), SH2 domain-containing leukocyte 

phosphoprotein of 76 kDa (SLP-76), phospholipase Cγ1 (PLCγ1), T cell receptor interacting 

molecule (TRIM) etc (Williams 1999; Zhang 1998; Bruyns 1998). These activated adapter 

molecules serve as docking sites for a number of cellular enzymes and lead to the activation 

of multiple downstream signaling pathways. PLCγ1 hydrolyzes the plasma membrane 

phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) to generate inositol trisphosphate   

(IP3) and diacylglycerol (DAG). IP3 induces the calcium release from calcium pool within the 

endoplasmic reticulum and the activation of plasma membrane calcium channel. The 
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serine/threonine phosphatase calcineurin is then activated along with the increase of 

intracellular calcium level. Calcineurin dephosphorylates nuclear factor of activated T cells 

(NFAT). NFAT is then able to translocate to the nucleus and execute its function as 

transcription factor. DAG is an activator of various signaling molecules including protein 

kinase C (PKC), Ras guanyl nucleotide-releasing protein (RasGRP). The activations of PKC 

and RasGRP initiate nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) 

and mitogen-activated protein kinase (MAPK) cascades. These lead to the generation of 

transcription factors including activation protein-1 (AP-1), NF-κB, and NFAT etc. These 

transcription factors enter the nucleus to modulate transcription of various genes that are 

involved in cell cycle initiation, proliferation, and differentiation (Smith-Garvin 2009; Zhong 

2008).  

 

Various factors are involved in the regulation of TCR signaling. The costimulatory molecule 

CD28 engagement by CD80/CD86 provides an initial adhesion capacity to allow T cell 

approaching APC that is an essential for T cell activation. With CD28 signals, naïve T cells 

become more sensitive to the stimulation of alloantigen because the TCR number required for 

activation is decreased. The activation of ZAP-70 is also affected by CD28 signals. 

Furthermore, CD28 signals allow T cell to enter cell cycle G 1 phase to achieve clonal 

expansion, and to activate transcription of the IL-2 gene by the induction of the NFAT 

(Appleman 2002; Boomer 2010). CD45 is also a critical regulator of TCR signaling because it 

induces the dephosphorylation of the tyrosine kinases including Lck and Fyn (Saunders 2010). 

Other factors that modulate TCR signaling include actin cytoskeleton (Beemiller 2013).  
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TCR signaling is also controlled by negative regulators to prevent the hyperactivation of T 

cells. Activated T cells may upregulate the expression of a costimulatory molecule CTLA4. 

CTLA4 shares same ligands with CD28 but possesses 10–20 fold higher affinity. Hence, the 

ligands (CD80/CD86) preferentially bind to CTLA4 and CD28 signals are antagonized. 

CTLA4 also execute it negative regulation via inhibition of the phosphorylation of TCR 

(Gough 2005). A transmembrane adapter protein (TRAP), Src homology 2 domain-containing 

protein tyrosine phosphatase-interacting TRAP (SIT), is a critical negative regulator of TCR 

signaling (Simeoni 2005). And another TRAP, phosphoprotein associated with 

glycosphingolipid-enriched microdomains (PAG), negatively regulates Ras activation by 

altering Src kinase activity (Brdicka 2000; Simeoni 2008). 

 

1.4 Costimulatory signals are required for the full activation of T 

cells  

T cells are the crucial mediators and controllers in the alloimmune response induced by 

foreign histoincompatible alloantigens. Full activation of T cell is a result of cooperation of 

multiple signals (Durrbach 2010). In 1987, Helen Quill and Ron Schwartz described a 

phenomenon termed T cell anergy. When functional APCs were absent, purified 

MHC/peptide complexes that were incorporated into artificial planar lipid membranes could 

induce high-affinity interaction between TCR and MHC/peptide complexes, but the T cells 

presented a state of proliferative nonresponsiveness rather than activation (Quill 1987). It was 

hypothesized that, besides the signal provided by the TCR engagement with MHC/peptide 

complexes, accessory signals that emanated from the interaction between functional APCs 
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and T cells were required for T cell to be fully activated. Results from subsequent studies 

provided concrete evidences to support this notion (Turka 1990; Koulova 1991; Gimmi 1993).  

The two-signal model of T cell activation was then recognized (Bernard 2002). In the process 

of T cell activation, TCR engagement with MHC/peptide complexes generates Signal 1 that is 

antigen-specific. This signal is transmitted into the cell via CD3 complex and triggers various 

early activation events including the activation calcium-dependent calcineurin protein, 

tyrosine phosphorylation, and inositol metabolism. The binding of TCR with MHC/peptide 

complexes is quite brief (Lanzavecchia 2000). The intrinsic affinity between them is very low 

and some coreceptors and adhesion molecules which stabilize the engagement between TCR 

and MHC/peptide complexes may take part in the process to enhance the activity. Signal 1 

alone is insufficient to lead to T cell being efficiently activated. An additional signal termed 

costimulatory signal (Signal 2) is essential for the full activation of T cells. Costimulatory 

signal is induced by the interaction between T cell costimulatory receptors and their 

corresponding ligands that are expressed by the functional APCs. This signal is non-antigen-

specific. In the absence of costimulatory signal, T cells cannot acquire the capacity of cell 

proliferation and become effector cells (Jain 1995; Serfling 1995). Costimulatory signals play 

an important role in the enhancement of tyrosine kinase activity. If there is no costimulatory 

signal, ZAP-70 is unable to achieve the critical threshold to activate downstream molecules. 

As a result of that, the entire intracellular phosphorylation cascade will be terminated. 

Consequently, the fates of T cells are either anergy or apoptosis (Figure 1.2). The exact 

molecular mechanisms of T cell anergy are still unclear. Studies indicated that both immune 

signal transduction pathways and the ubiquitin proteasome system are associated with clonal 

anergy (Appleman 2003; Safford 2005; Zheng 2008; Fathman 2007).  
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Figure 1.2  Costimulatory signals are essential for full T cell activation. The combined actions of Signal 1 

and Signal 2 result in T cells to become fully activated (A). In the absence of Signal 2, T cells exhibit a state of 

proliferative unresponsiveness rather than activation (B).      

 

1.5 Costimulatory molecules  

CD40 and CD28 are the two best characterized costimulatory molecules. They were identified 

in 1985 and 1986, respectively. Since then, numerous molecules that are involved in 

costimulatory signal transduction have been discovered. These molecules form a large group 

known as second signal family. Among them, some molecules provide enhancement signals 

to promote T cell activation, survival, and/or differentiation. These molecules are named 

positive costimulatory receptors and ligands. In contrast to them, some other molecules 

produce signals to antagonize TCR signaling resulting in termination of T cell activation. 
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They are referred as negative costimulatory receptors and ligands. Negative costimulatory 

signaling pathways play important roles in the maintenance of peripheral T cell tolerance and 

reducing inflammation after infection. However, the activations of naïve T cells will not be 

affected because naïve T cells do not express negative costimulatory molecules. The negative 

costimulatory molecules are expressed by effector T cells, and the expression of these 

molecules will be up-regulated at the end of an immune response. Apart from basing on the 

functional properties of costimulatory receptors mentioned above, costimulatory molecules 

can also be sorted according to their structural properties. Basing on their molecular structures, 

costimulatory molecules are classified into four distinct groups i.e. immunoglobulin (Ig) 

superfamily, tumor necrosis factor receptor (TNF-R) family, cell adhesion molecules, and T 

cell immunoglobulin and mucin domain (TIM) family.  

 

1.5.1 The immunoglobulin superfamily  

Costimulatory molecules in the Ig superfamily all possess a characteristic domain referred to 

Ig domain in their extracellular region. Ig domain contains a sandwich-like structure known as 

Ig fold which is formed by two sheets of antiparallel beta strands (Chattopadhyay 2009). 

Members in this superfamily play a central role in both immune activation and immune 

regulation. Some members of this superfamily promote (costimulatory) T cell activation and 

differentiation, whereas other members exhibit opposing effects (coinhibitory) on the 

activation of T cells. Generally the transductions of stimulatory and inhibitory signals are 

mediated by two loosely conserved motifs in their cytoplasmic region termed ITAM and 

immunoreceptor tyrosine-based inhibition motifs (ITIM), respectively (Sharpe 2002). 
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However, in some circumstances, ITAM may propagate inhibitory signals and ITIM may 

transmit activation signals (Blank 2009; Waterman 2010; Barrow 2006). In addition, some 

molecules of Ig superfamily such as CD28 also play an important role in the homeostasis and 

function of a population of Tregs (Sansom 2006). 

 

1.5.1.1 CD28/CTLA4–CD80/CD86 pathway 

The CD28 molecule is a 44 kDa homodimeric transmembrane glycoprotein which consists of 

202 amino acids. The human CD28 gene is localized on chromosome 2q33, and the mouse 

CD28 gene maps to chromosome 1 at band C (Lafage-Pochitaloff 1990; Howard 1991). The 

extracellular region (134 amino acids in length) of CD28 receptor comprises a single 

disulphide-linked V-like domain. A hexapeptide motif (MYPPPY) is essential for the 

interaction between CD28 and its ligands (Peach 1994; Boćko 2002). Forty one amino acids 

constitute the intracellular region of the CD28 receptor. This region contains four tyrosine 

residues that can be inducibly phosphorylated. They provide the binding sites for 

phosphatidylinositol 3-kinase (PI3K) and growth factor receptor-bound protein 2 (Grb2), and 

involve the regulation of downstream signaling cascade (Zhou 1993; Schneider 1995; Truitt 

1994; Cai 1995).  

 

In humans, CD28 is constitutively expressed on the surface of all naïve T cells, 80–95% 

CD4+ T cells, and approximately 50% of CD8+ T cells. In contrast, CD28 is expressed by all 

CD4+ and CD8+ mouse T cells (June 1994; Hutchcroft 1994; Paterson 2009). CD28 

expression has also been found on γδ T cells (Testi 1989), some human plasmablasts and 

plasma cells (Pellat-Deceunynck 1994; Kozbor 1987), and human fetal peripheral blood 
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natural killer (NK) cells (Nagler 1989). The expression of CD28 in humans is down-regulated 

with age and in chronic disease states, but it is not the case in mice.  

 

CD80 (B7-1) and CD86 (B7-2) are two known ligands for CD28. CD80 is a 60 kDa type I 

transmembrane monomeric glycoprotein that is constituted by 262 amino acids. CD86 is also 

a glycoprotein with molecular weight of 70 kDa. It shares structural homology to CD80 

(Freeman 1989; Schwartz 1992). The genes encoding CD80 and CD86 are localized to the 

same region in human chromosome 3q13.3-3q21 and 3q13-3q23 respectively (Freeman 1992; 

Fernández-Ruiz 1995). Both CD80 and CD86 molecules contain a single IgV-like domain 

and a single IgC2-like domain within their extracellular region. The amino-acid sequence 

analysis indicates that the SQDXXXELY motif in the immunoglobulin C-like domain is a 

putative CD28-binding sequence (Freeman 1991; Engel 1994; Fargeas 1995).  

 

CD80 is expressed on activated APCs including B cells, macrophages and DCs. Activated T 

cells and FoxP3+ Tregs also express CD80. In contrast, CD86 is constitutively expressed on 

APCs, and the level of CD86 expression will be upregulated upon stimulation by 

inflammatory cytokines. In addition, CD86 is also expressed on activated T cells (Azuma 

1993). Some studies indicated that CD86 probably acted as the major initial ligand for CD28, 

and CD80 was the preferential ligand for CD28 because CD80 possessed approximately 10-

fold higher binding affinity compared to CD86 and appeared to be a more potent costimulus 

in terms of T cell activation (Fields 1998; Olsson 1998). However, another in vitro study 

indicated that CD86 was the dominated ligand to induce naïve T cells to become IL-4 

producers (Freeman 1995). 
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When the TCR is properly engaged, CD28 costimulatory signal produced by the interaction 

between CD28 and its B7 ligands can result in a dramatic augmentation of the expression of 

genes induced by TCR signaling alone. The cooperative effects between TCR and CD28 

signals will lead to full activation of T cells (Figure 1.2). CD28 signaling pathway involves 

numerous activities. It participates in the regulation of glucose metabolism (Frauwirth 2002), 

promotes the production of IL-2 (June 1989), mediates entry of T cells into the cell cycle 

(Appleman 2000), increases the generation of cytokines and chemokines (Thompson 1989), 

controls Treg cell homeostasis (Salomon 2000), and reinforces resistance to apoptosis 

(Sperling 1996). CD28 costimulation can lower the threshold of activation by decreasing the 

number of TCRs required for T cell activation (Viola 1996). Together with CD28 signal can 

also promote cytoskeleton reorganization to the TCR contact site (Viola 1999), these might 

partially explain how CD28 exerts its costimulatory effects.  

 

Cytotoxic T-lymphocyte-associated protein 4 (CTLA4, CD152) is a T cell surface molecule 

with high sequence and structural homology to CD28. It is a glycoprotein constituted of 223 

amino acids. The genes for CTLA4 and CD28 are located on the same chromosomal region 

and share the same overall intron/exon organization. The human CTLA4 gene contains four 

exons. The exon 1 consists of the leader peptide sequence, and exon 2 to 4 encodes the ligand 

binding site, the transmembrane region, and the cytoplasmic tail respectively (Ling 1999). 

Between CTLA4 and CD28, there is about 20% identity at the gene structure level and about 

30% identity at the amino acid level (Howard 1991, Greenwald 2005). Similar to CD28, the 

extracellular domain of CTLA4 also contains a hexapeptide motif MYPPPY which is 

required for ligand binding.  
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CTLA4 is mainly expressed on T cells (Brunet 1987). The expression of CTLA4 on the 

surface of B cells (Kuiper 1995) and thymocytes (Wagner 1996) has also been reported. Full-

length CTLA4 is only detected on the surface of activated T cells, but not on resting T cells 

(Linsley 1992). Approximately 90% of CTLA4 exists as intracellular vesicles due to the rapid 

and constitutive endocytosis of surface CTLA4 (Alegre 1996). However, Treg is an exception. 

CTLA4 is constitutively expressed on the surface of Tregs. Studies also indicated that Tregs 

contained higher levels of CTLA4 than conventional T cells (Sakaguchi 2004; Tai 2012). A 

splice variant of CTLA4 known as ligand-independent CTLA4 (liCTLA4) that contains exons 

1, 3, and 4, unlike full-length CTLA4, is expressed on murine resting T cells. However, the 

level of liCTLA4 expression is downregulated along with T cell activation (Vijayakrishnan 

2004; Araki 2009). 

 

Same as CD28, CD80 and CD86 are two main ligands for CTLA4. Although it is highly 

homologous to CD28, CTLA4 appears as a negative regulator on T cell function by switching 

off T cell activation, proliferation and IL-2 production (Krummel 1996; Walunas 1996). How 

CTLA4 exerts its inhibiting effects on T cells still remains uncertain. It may down-regulate T 

cell immunity via various ways. CTLA4 is thought to directly affect CD28–CD80/CD86 

engagement by ligand competition because it binds to CD80 and CD86 with much higher 

affinity compared with CD28 (Linsley 1994; Greene 1996). CTLA4 can raise the threshold of 

TCR signaling for full activation of T cells (Chambers 2001). Moreover, CTLA4 coligation 

induces the activation of a cytosolic phosphatase and then blocks TCR-transmitted signal 

including to inhibit the formation of ZAP-70 containing microclusters (Harper 1991; 

Schneider 2007; Lee 1998). The CTLA4–CD80/CD86 interaction can induce the release of 
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indoleamine 2,3-dioxygenase (IDO). IDO can result in tryptophan catabolism and then 

suppress T cell proliferation (Boasso 2005; Fallarino 2003). CTLA4 on the surface of Treg 

cells can physically remove CD80 and CD86 from the surface of APCs through trans-

endocytosis (Oderup 2006; Qureshi 2011).   

 

1.5.1.2 ICOS –B7h pathway 

The inducible T cell costimulator (ICOS, CD278) is a member of Ig superfamily. This T cell 

surface receptor is a CD28 homolog. The cDNA of ICOS shares approximate 30–40% 

sequence similarity with CD28 and CTLA4 (Hutloff 1999). Induced expression of ICOS is 

detected on CD4+ and CD8+ T cells when these cells are activated. In contrast, resting CD4+ 

and CD8+ T cells do not express ICOS (Coyle 2000). B7h (also known as ICOS-L, B7h-2, 

B7RP-1, and GL-50) is the ligand for ICOS. It is a transmembrane glycoprotein. Althoug B7h 

shares the homologous structure of CD80 and CD86 costimulatory molecules, B7h does not 

contain the unique SQDXXXELY motif (Chattopadhyay 2006). The expression of B7h is 

found on B cells, monocytes and DCs (Yoshinaga 1999). Some non-lymphoid tissues 

including lung and heart also express B7h (Swallow 1999). ICOS–B7h engagement can 

provide additional costimulatory signals for T cell activation, differentiation and cytokine 

production. These signals show synergistic effects with CD28 signaling on T cell activation. 

Unlike CD28 signaling which mainly promotes initial T cell activation, ICOS signaling plays 

an important role in the activation of antigen-experienced T cells (Yoshinaga 1999). The 

interactions between ICOS and its ligand B7h can promote B cells, Tregs, Th17, Th1 and 

follicular B helper T cells responses (Kornete 2012; Herman 2004; Smith 2009). ICOS is also 

involved T–B cell interactions, immunoglobulin class switching (Dong 2001) and splenic 
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germinal centre formation (Tafuri 2001). In addition, ICOS signaling can induce T cell 

expansion in a CD28-independent manner (Swallow 1999).  

 

1.5.1.3 PD-1–PD-L1/PD-L2 pathway 

Another member of the Ig superfamily is programmed death-1 (PD-1, CD279). PD-1 is a 50–

55 kDa type I transmembrane protein. Unlike CD28 and ICOS as mentioned above, PD-1 

exerts coinhibitory effects on T cell activation. Structurally, PD-1 shares 23% similarity with 

CTLA4 but does not contain the amino acid sequence MYPPPY (Freeman 2000). The 

expression of most members of the Ig family are restricted to T cells, whereas PD-1 is 

expressed on activated CD4+ and CD8+ T cells, Treg cells, NK cells, B cells, DCs, 

macrophages but not resting T cells (Agata 1996; Chemnitz 2004; Keir 2008). PD-1 has two 

known ligands termed PD-L1 (B7-H1, CD274) and PD-L2 (B7-DC, CD273) (Latchman 

2001). PD-L1 is constitutively expressed on APCs, T and B lymphocytes, mast cells, 

mesenchymal stem cells and certain parenchymal tissues including heart, lung, kidney, 

pancreas, and placenta, ECs (Yamazaki 2002; Sharpe 2007; Liang 2003). The expression of 

PD-L1 is upregulated upon cell activation. Compared to PD-L1, the expression of PD-L2 is 

much more restricted. It is detected on DCs, macrophages, bone marrow-derived mast cells 

(Loke 2003). Recent study indicated that PD-L2 was also expressed on 50–70% resting 

peritoneal B1 cells (Zhong 2007). 

 

PD-1 signaling is critical for the regulation of autoimmunity, tumor immunity, transplantation 

immunity, and infectious immunity. Similar to CTLA4, engagement of PD-1 by its ligands 

generates the potent inhibitory signals that suppress T cell activation, proliferation and 
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cytokine production by arresting the cell cycle in the G0/G1 phase (Carter 2002; Chemnitz 

2004). Various studies (Parekh 2009; Francisco 2009) have demonstrated that PD-1 signaling 

is critical for the induction of anergy and the development of induced regulatory T cells 

(iTregs). 

 

1.5.2 The TNF/TNF-R family 

Numerous TNFs and TNF-Rs constitute another costimulatory molecule superfamily that is 

known as TNF/TNF-R family (Croft 2003). CD40L and CD40 are the first ligand-receptor 

pair of TNF/TNF-R family to be identified. Thereafter, the inventory of this family has been 

expanding rapidly. At present, 18 different genes that encode TNF have been identified in 

humans (Hymowitz 2007; Zhang 2004; Pradet-Balade 2002). The TNFs are important 

cytokines. All members of the family are type II transmembrane proteins, and they are 

homologous and share about 30% similarities (Bodmer 2002). According to their structures, 

TNFs are classified into three groups: conventional ligands (L-THD), EF-disulfide ligands (S-

THD) and the divergent ligands (V-THD) (Compaan 2006; Won 2010). In humans, the TNF-

Rs superfamily contains 29 reported members. Among them, 22 molecules belong to type I 

transmembrane receptors and the remaining 7 molecules are either type III transmembrane 

receptors or soluble receptors (Zhang 2004). TNF-Rs exhibit functional difference based on 

their structural diversities. TNF-Rs which contain a death domain (DD) motif with the length 

of approximately 80 amino acids can activate caspase cascades and result in apoptosis (Leist 

1996). In contrast, some TNF-Rs possess a TNF receptor associated factor (TRAF)-binding 

sequence that recruits TRAF proteins. TRAF is involved in cell activation, differentiation, and 
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survival. Therefore signals from these TNF-Rs participate in the regulation of T cell 

activation instead of the induction of T cell apoptosis (Borst 1989). 

 

Most TNF-Rs such as OX40, 4-1BB, and CD30 are expressed predominantly by activated T 

cells (de Jong 1991; Ellis 1993; Gramaglia 2000). Their ligands OX40L, 4-1BBL, and 

CD30L are expressed by activated APCs and can be detected within one to several days after 

activation (Croft 2003). These facts suggest that these costimulatory molecules are mainly 

involved in the effector and memory phases rather than the initial phase of T cell immune 

response. On the other hand, some costimulatory molecules such as the herpes virus entry 

mediator (HVEM) and its ligand LIGHT (homologous to lymphotoxin, exhibits inducible 

expression and competes with HSV glycoprotein D for binding to herpesvirus entry mediator, 

a receptor expressed on T lymphocytes, CD258) are constitutively expressed by naïve T cells 

and APCs, respectively (Morel 2000). It suggests that they play a role in the early activation 

of T cells and APCs. 

 

1.5.2.1 CD40–CD40L pathway 

CD40 is the first member of TNF-R superfamily. This cell surface receptor is a 48-kDa type I 

transmembrane glycoprotein (Stamenkovic 1989). The CD40 genes are located on 

chromosome 20 in humans and chromosome 2 in mice (Grimaldi 1992). CD40 is 

constitutively expressed on APCs and the expression level of CD40 could be dramatically 

upregulated upon activation of the cells. The expression of CD40 is also seen on some 

parenchymal cells such as ECs, fibroblasts, and smooth muscle cells (van Kooten 2000; 

Schönbeck 2001; Yellin 1995). The CD40 ligand (CD40L, CD154) belongs to the TNF 
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superfamily. It is a 32 to 33-kDa type II transmembrane protein (Armitage 1992). In both 

humans and mice, the genes that encode CD40L are located on the X chromosome (Villa 

1994). CD40L is expressed on activated T cells (CD4+ T lymphocyte lineage and a subset of 

CD8+ T cells), NK cells, B cells, mast cells, eosinophils, basophils, DCs and platelets (Grewal 

1998; Mach 1997). Studies have indicated that CD40L expressed on platelets is involved in 

the formation and stabilization of thrombi (André 2002). The CD40–CD40L signaling 

pathway is involved in both cellular and humoral immune responses (Figure 1.3). The 

receptor ligand interaction generates important signals to promote B-cell activation, 

proliferation, Ig production, Ig isotype switching, the generation of B-cell memory, and T cell 

activation (Foy 1996; Durie 1994; Kawabe 1994). CD40–CD40L engagement is a key step in 

APC activation. CD40-mediated activation of DCs is one of the mechanisms by which CD40 

signaling promotes immune response. Upon CD40 ligation by CD40L, DCs mature and 

become activated. Activated DCs produce high levels of proinflammatory cytokines and 

chemokines, and upregulate the expression of MHC class II and other costimulatory 

molecules including CD80, CD86 (Yang 1996; van Kooten 1997; Ma 2009). All these factors 

contribute to the augmentation of immune response. 

 

1.5.2.2 CD27–CD70 pathway 

CD27 is a 120-kDa type I transmembrane homodimeric glycoprotein. As a member of the 

TNF-R family, this molecule was identified in human cells in 1987. Low level constitutive 

expression of CD27 is seen on naïve T cells, B cells, and a subset of NK cells. CD27 exists on 

resting T cells in the form of disulfide-linked homodimer with subunits of 50–55 kDa (p55). 

A soluble form of CD27 (sCD27) can be generated from the p55 form by proteolytic cleavage 
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Figure 1.3 CD40–CD40L pathway plays a role in both cellular and humoral immune responses. The 

engagement of the CD40 and CD40L is critical for full activation of the T cell and T cell mediated effector 

functions. Upon CD40 ligation by CD40L, DCs become activated and the expressions of CD80, CD86 and MHC 

class II are upregulated. Activated DCs produce high levels of proinflammatory cytokines and chemokines. They 

jointly promote T cell activation and differentiation (A). CD40 signaling in B cells is involved in B cell 

proliferation, differentiation, immunoglobulin class switching, cytokine production, protection from apoptosis, 

development of GC B cells, and formation of long-lived plasma cells and memory B cells (B).   

 

 

after T cell activation (van Lier 1987; Loenen 1992). Upon activation, the expression of CD27 
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Sternberg cells in Hodgkin’s disease and non-Hodgkin’s lymphomas. CD70 is a homotrimeric 

type II transmembrane glycoprotein. Expression of CD70 is found on APCs, activated T cells 

and B cells. Epithelial cells in the thymic medulla constitutively express CD70 (Tesselaar 

1997; Oshima 1998; Hintzen 1994). CD27–CD70 interactions promote T cell activation, 

proliferation and cytokine production. The costimulatory signals provided to T cells by CD27 

engagement are CD28-independent. CD27–CD70 signaling pathway plays an important role 

in T cell–B cell interactions and T cell–DC communication. This pathway is involved in 

regulating B cell activation and T cell-dependent antibody production, and also participates in 

the NK-mediated innate immunity (Yamada 2005; Jacquot 2000; Taraban 2004). In addition, 

CD27 can trigger apoptotic cell death (Prasad 1997) by binding to a proapoptotic protein – 

CD27-binding protein (Siva). 

 

1.5.2.3 OX40–OX40L pathway 

OX40 is a membrane-bound member of TNF-R superfamily. This molecule was initially 

characterized as a T cell activation marker. It is a 50-kDa protein and is also known as CD134. 

OX40 is abundantly expressed on activated T cells rather than on naïve T cells. Generally 

OX40 is induced on T cells 12 to 24 hours after activation instead of immediately following 

the TCR ligation (Gramaglia 1998). The expression of OX40 is preferentially found on 

activated CD4+ T cells rather than on CD8+ T cells. Within few days, the level of expression 

of OX40 on activated T cells will be downregulated (Sugamura 2004). Th2 cell subset is the 

predominant group to express OX40, but Th1 cells can also express OX40 (Kim 2003; Roos 

1998). In addition, OX40 is expressed on activated CD4+CD25+ Tregs. Ligation of CD28 by 

its ligand can promote the expression of OX40 although CD28 is not required for OX40 
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expression (Rogers 2001; Walker 1999). OX40L (CD252) is the ligand for OX40, and is a 

member of TNF superfamily. Structurally, human OX40L shares approximately 40% 

sequence identity with murine OX40L (Compaan 2006). OX40L is expressed on activated 

DCs, B cells, T cells, macrophages and inflamed vascular ECs (Gramaglia 1998; Lepisto 

2007).  

 

OX40–OX40L signaling pathway exhibits an extensive impact on the T cell immunity. OX40 

signals play an important role in the survival and homeostasis of effector T cells, and in 

promoting the generation of memory T cells (especially memory CD4+ T cells) (Gramaglia 

1998; Rogers 2001). It is able to upregulate the expression of antiapoptotic proteins such as 

Bcl-xL and Bcl-2, and then inhibits apoptosis. OX40-deficient naïve CD4+ T cells are capable 

of IL-2 production, cell division, and expansion. However, the colony expansion is at low 

level and the cells die through apoptosis after activation (Rogers 2001). OX40 engagement 

delivers signal to promote IL-17 production (Nakae 2003). OX40 and OX40L expression can 

be induced in the CD8+ T cells which come from intraepithelial lymphocytes of the gut. This 

is considered to be related to cytotoxic effector function (Wang 2001). In addition, in 

activated CD4+CD25+ Tregs, OX40 stimulation can profoundly inhibit the expression of 

FoxP3 gene and therefore downregulate the expansion of Tregs (Vu 2007). OX40–OX40L 

interaction also enhances T cell-dependent B cell proliferation and differentiation, as well as 

the immunoglobulin production (Stüber 1995). 
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1.5.2.4 4-1BB–4-1BBL pathway 

4-1BB (CD137) is a type I transmembrane glycoprotein. This costimulatory molecule is also 

known as tumor necrosis factor receptor superfamily member 9 (TNFRSF9) or “induced by 

lymphocyte activation” (ILA) in humans. The human 4-1BB consists of 255 amino acids with 

an N-terminal signal sequence (17 amino acids), an extracellular domain (169 amino acids), a 

transmembrane domain (27 amino acids), and a cytoplasmic domain (42 amino acids). The 

murine 4-1BB is composed of 256 amino acids and shares approximately 60% amino acid 

sequence identity with its human counterpart. From mouse 4-1BB intracellular domain to 

human 4-1BB intracellular domain, there are 5 conserved amino acid sequences (Zhou 1995; 

Kwon 1989). 4-1BB is mainly expressed on the surface of activated CD8+ and CD4+ T cells 

as a 30 kDa monomer and a 55 kDa dimer. The soluble forms of 4-1BB have also been 

reported. 4-1BB is also constitutively expressed on human monocytes, DCs, blood vessel ECs, 

B cells, CD4+CD25+ Tregs, and NK cells (Cannons 2001; Kienzle 2000; Broll 2001). 

 

4-1BBL (CD137L), a member of TNF superfamily, is the ligand for 4-1BB. In mice, the 4-

1BBL encoding gene is located on chromosome 17, and contains three exons and two introns. 

4-1BBL is a 34-kDa type II transmembrane glycoprotein with a C-terminal extracellular 

domain (Goodwin 1993). It is primarily expressed on activated APCs including B cells, 

macrophages and DCs. T cells, hematopoieitic stem cells, myeloid progenitors, and tumor 

cells also express 4-1BBL (Lee 2008; DeBenedette 1995).  

 

4-1BB receptor ligation by 4-1BBL generates a costimulatory signal for T cell activation, 

proliferation and cytokine production (Vinay 1998; DeBenedette 1997). 4-1BB costimulatory 
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signal could exert its effect in a CD28 independent manner and replace the role of CD28 

signal on inducing T cell proliferation during early T cell expansion (Saoulli 1998). Studies 

have indicated that 4-1BB signal play an important role in the generation of cytotoxic T cells 

and in the maintenance of CD8+ T cell memory (Shuford 1997; Sabbagh 2007). 4-1BB signal 

promotes cell survival by suppressing activation-induced cell death via the upregulation of 

anti-apoptotic protein c-FLIPshort and Bcl-xL (Stärck 2005). On DC, 4-1BB signaling 

upregulates the expression of CD80 and CD86, and enhances IL-6 and IL-12 secretion 

(Futagawa 2002). 4-1BB promotes IL-8 and TNF-α production, but down-regulates the 

expression of IL-10 in monocytes (Kienzle 2000). It has also been obsevered that 4-1BB is 

involved in B cell survival and proliferation, as well as the production of TNF-α and -β 

(Zhang 2010). 4-1BB–4-1BBL engagement can also provide a reverse signaling to APCs. 4-

1BBL signaling is important in monocyte activation, migration, survival and proliferation 

(Drenkard 2007; Langstein 2000). When human monocytes are cultured with a recombinant 

4-1BB protein, 4-1BBL signaling induces monocyte to DC differentiation (Kwajah 2010). In 

DCs, 4-1BBL mediates the maturation of immature DC via autocrine, and promotes the 

expression of CD80, CD86, MHC class II and IL-12. 4-1BBL signal also plays a key role in 

the regulation of DC migration by enhancing expression of the CCR7 chemokine receptor. In 

addition, this signaling increases the capacity of DC in inducing antigen-specific T cell 

differentiation (Kim 2002; Lippert 2008). 
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1.5.3 The T cell immunoglobulin and mucin domain family 

The TIM family refers to a group of emerging cell surface costimulatory molecules. Its 

alternative name is transmembrane immunoglobulin and mucin domain family. All members 

in TIM family are type I transmembrane glycoproteins containing an extracellular region, a 

transmembrane region, and an intracellular tail. TIM molecules possess a unique structural 

feature to distinguish them with other costimulatory molecules i.e., in their extracellular 

domain, there are a heavily glycosylated mucin motif and an N-terminal Cys-rich 

immunoglobulin V motif (Freeman 2010). To date, in mice, the TIM gene family includes 

eight members named TIM-1 to TIM-8, and these genes are located on chromosome 11B1.1. 

In humans, three members (i.e., TIM-1, TIM-3, and TIM-4) have joined the TIM gene family. 

They are found to be clustered in human chromosome 5q33.2 which is a region to be linked 

with multiple autoimmune and allergic diseases (McIntire 2004; Marsh 1994). The members 

of TIM protein family that have been identified include mouse TIM-1–4 and human TIM-1, 

TIM-3, and TIM-4. 

 

TIM molecules are widely expressed on hematopoietic and nonhematopoietic cells including 

T cells, B cells, DCs, macrophages, mast cells, renal epithelial cells, and hepatocytes. They 

are involved in many immune responses such as promoting T cell activation, proliferation, 

cytokine production, and APCs activation (Umetsu 2005; Meyers 2005).   

 

TIM-1 is expressed by activated T cells, mast cells, and a B cell subpopulation. Upon 

differentiation, Th2 cells are the predominant cells to express TIM-1 (Nakae 2007; Sizing 

2007). Following the kidney ischemia/reperfusion injury, the expression of TIM-1 on tubular 
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epithelial cells is highly upregulated (Ichimura 1998). TIM-4, one of the ligands for TIM-1, is 

constitutively expressed on APCs (Meyers 2005). TIM-1–TIM-4 interaction can generate 

potent costimulatory signals to promote T cell proliferation, survival, and cytokine production 

(Umetsu 2005). In Tregs, TIM-1 signaling reduces the expression of forkhead box protein 3 

(FoxP3) and thereby hinders Treg cell development (Degauque 2008). TIM-1 is also involved 

in modulating the phagocytosis of apoptotic cells (Ichimura 2008). TIM-3 is expressed on the 

surface of differentiated Th1 cells, some CD8+ T cells, Th17 cells, mast cells, macrophages, 

DCs, microglias, NK and NKT cells (Hastings 2009; Khademi 2004; Anderson 2007). The 

ligands for TIM-3 are galectin-9 and PtdSer. Galectin-9, an S-type lectin, is expressed by 

mast cells, Tregs, T cells, B cells, macrophages, ECs, and fibroblasts (Wada 1997). Ligation 

of TIM-3 by galectin-9 leads to downregulation of Th1 responses by induction of cell death 

(Zhu 2005), inhibition of Th17 development, but promoting Treg generation (Seki 2008). 

TIM-3–PtdSer interaction plays an important role in the clearance of apoptotic cells 

(Nakayama 2009). In DCs and microglias, TIM-3 signaling enhances the expression of 

costimulatory molecules and cytokines (Anderson 2007). TIM-2 has not been found in the 

human genome. Mouse TIM-2 is a homologue of mouse TIM-1, and shares high sequence 

similarity with mouse TIM-1. TIM-2 is expressed on activated T cells, B cells, bile duct 

epithelial cells, and renal tubule cells (Kumanogoh 2002; Chen 2005). H-ferritin is a ligand 

for TIM-2. TIM-2–H-ferritin interaction is involved in extracellular H-ferritin endocytosis 

and iron transfer (Chen 2005). Another possible ligand for TIM-2 is class IV semaphorin 4A 

(Sema4A) which is a type I transmembrane protein found on the surfaces of DCs and B cells 

(Kumanogoh 2002). The TIM-2 protein function in the immune systems remains to be 

determined. 
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1.5.4 Cell adhesion molecules  

Cell adhesion molecules (CAMs) are a group of cell surface proteins which modulate cell 

adhesion. Cell adhesion is the interaction process between cells and the surrounding 

extracellular matrix (ECM). It is essential for multiple cellular processes including cell 

migration, proliferation, morphogenesis, cell trafficking, gene expression, cell division and 

survival. CAMs are typically transmembrane proteins which consist of three domains: an 

extracellular domain, a transmembrane domain and a cytoplasmic tail. Their extracellular 

domains contain ligand binding sites that allow CAMs to engage with their ligands on other 

cells or within ECM, while their cytoplasmic tails are usually connected to the cytoskeletal 

proteins to obtain the intracellular anchors. Based on the molecular structure of these proteins, 

most CAMs can be classified into four main families: integrins, immunoglobulin superfamily 

(IgSF), selectins and cadherins. Another classification system is to divide CAMs into calcium 

dependent and calcium independent two different groups. 

 

Integrins, one of the major groups of CAMs, firstly appeared in the article in 1986 although 

they are evolutionary old (Tamkun 1986). These molecules are heterodimeric transmembrane 

glycoproteins that contain two subunits: an α-chain and a β-chain. In mammalians, 18 α and 8 

β subunits have been identified, and the noncovalently associated α subunit and β subunit 

combinations generate at least 24 different integrin heterodimers. The expression manners of 

integrins base on the cell type and environmental context. Most of them are widely expressed 

by nucleated cells; however, some integrins such as αIIbβ3 and α6β4 are restricted to be 

expressed in certain cell types (Hynes 2002). Integrin receptors bind to various ligands 

including ECM ligands, cell surface ligands, and soluble ligands. The divalent cations such as 
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Ca2+, Mg2+, and Mn2+ are important for the interactions between integrin receptors and their 

ligands. Integrins are critical to a number of biological processes such as cell migration, cell–

ECM interactions, actin cytoskeleton organization, and embryonic development. The 

integrin–ligand interaction can provide both inside-out signaling and outside-in signaling, and 

the generated intracellular signals activate multiple signaling cascades to modulate cell 

proliferation, differentiation, motility, adhesion, and apoptosis (Schwartz 1995; Dedhar 1999). 

Integrins are also involved in T cell recirculation, antigen recognition, providing 

costimulatory signals, and stabilizing T cell–APC interactions during immune response 

(Dustin 1989; Shimizu 1990). Targeting integrins such as leukocyte function-associated 

antigen 1 (LFA-1) and very late antigen-4 (VLA-4) has been demonstrated to prolong 

allograft survival in the experimental transplantation models (Nicolls 2000; Paul 1993; Yang 

1995). 

 

IgSF is a very large family that includes numerous members. In humans, 765 genes that 

encode Ig domain have been identified via genome analysis (Lander 2001). Members of this 

superfamily all possess characteristic Ig-like domains consisting of 70–110 amino acids. 

These globular, loop structures are insensitive to proteases. According to the similarity to the 

variable and constant regions of antibodies, Ig-like domains are classified as 4 types i.e., IgC1, 

IgC2, IgV, and IgI. Structurally, IgSF molecules mostly are type I transmembrane proteins. 

IgSF CAMs possess small transmembrane domains, whereas the lengths of their intracellular 

domains vary from case to case because many of them contain signaling motifs to interact 

with cytoskeletal elements (Barclay 2003). The ligands for IgSF CAMs are integrins or 

different IgSF CAMs, and they exhibit either homophilic or heterophilic receptor–ligand 
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interactions. IgSF CAMs are mainly involved in modulating cell–cell interactions. Some of 

them, like neural cell adhesion molecule (NCAM, CD56), vascular cell adhesion molecule 1 

(VCAM-1, CD106), and T cell surface antigen T11/Leu-5 (CD2, LFA-2), play a role in 

immune response. In humans, LFA-2 is expressed on T cells, NK cells and most thymocytes. 

LFA-2 modulates adhesion between T cells and their target cells. In addition, it also 

transduces costimulatory signals when ligated by its ligand, LFA-3 (CD58) on APCs 

(Moingeon 1989). The costimulatory function of LFA-2 is particularly important for the 

memory T cell responses (Majeau 1994; Lo 2011). Alefacept, a fusion protein targeting LFA-

2 signaling pathway, was shown synergistic effects with CTLA4-Ig on the prolongation of 

renal allograft survival in NHP transplantation model (Weaver 2009). 

 

The cadherins are Ca2+ dependent CAMs. To date, there are more than 350 known members 

in this superfamily (Hulpiau 2009). Most cadherins are transmembrane glycoproteins that 

contain multiple cadherin domains in their extracellular regions. Each cadherin domain 

consists of about 110 amino acid residues (Takeichi 1995). Based on the sequence similarity 

of extracellular region, members of the cadherin superfamily are classified into different 

subfamilies: classical (type I) cadherins, atypical (type II) cadherins, flamingo cadherins, 

desmosomal cadherins, protocadherins, and solitary members (Nollet 2000). Almost all 

vertebrate tissues express cadherins, while the expression pattern of cadherin types is tissue-

specific (Takeichi 1988). The cadherins mediate cell–cell adhesion via homophilic binding 

interactions. They are essential for tissue organization and morphogenesis, cell–cell 

recognition and cell sorting, cell migration, desmosome formation, and maintenance of 

normal tissue architecture (Ivanov 2001). 
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The selectins are a family of transmembrane carbohydrate-binding proteins containing C-type 

lectin-like domains in their N-terminal sections. They interact with glycoproteins and/or 

glycolipids via heterophilic binding activities. The selectins paly an important role in 

lymphocyte homing and circulating leukocytes to migrate to sites of inflammation (Geng 

1990; Bevilacqua 1993). There are three known members in the selectin family: E-selectin, L-

selectin, and P-selectin that are primarily expressed on activated ECs, leukocytes, and 

platelets, respectively. 

 

1.6 Immunosuppressive strategies in organ transplantation 

To avoid destruction of transplanted organs or tissues by host immune system, the clinically 

applied approaches include to reduce the antigenic differences between donor and recipient 

and to inhibit immune response against the grafted organs and tissues. The pre-transplantation 

tests including ABO blood typing, tissue typing and cross-matching etc. aim to minimize 

immunogenicity of allograft to the greatest extent. Peritransplantation and posttransplantation 

immunosuppression, usually to be achieved by administration of several different types of 

immunosuppressive drugs, is the key to promote allograft acceptance. 

 

Medawar and his colleagues (Gibson 1943; Medawar 1944) indicated that allograft rejection 

was an immunologic event in the 1940s. Their research results inspired people in this field to 

explore the approach by suppression of host immunity to promote allograft survival. One of 

the means was to physically destroy the immune tissues and organs. Sublethal total body 

irradiation (TBI) was tested in a skin transplantation model in the 1950s (Dempster 1950). 
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Previous studies had demonstrated that TBI was able to suppress antibody production to 

bacteria. The rationale for this approach was that the immune response agaist the allograft 

could be minimized by generating generalized immunosuppression via ablation of the bone 

marrow. Cortisone, as another early attempt, was studied in a rabbit skin transplant model 

almost at the same time (Billingham 1951). Unfortunately, the effects of both two techniques 

were limited; the survival time of skin graft was prolonged for only a few days. Other 

therapeutic approaches targeting lymphocyte depletion such as splenectomy, thymectomy and 

thoracic duct drainage were also attempted (Starzl 1979). TBI was subsequently replaced by 

anti-cancer drugs including azathioaprine (AZA), methotrexate, actinomycin C and 

cyclophosphamide in the 1960s (Murray 1962; Goodwin 1963; Martin 1965). The mechanism 

of action of these myelotoxic agents was similar to TBI with the idea of inhibiting 

proliferation of donor-reactive cells. As with TBI, these agents also caused severe bone 

marrow depression and increased the risk of serious infections. The benefit of the myelotoxic 

agents was that, unlike TBI, the effects of these drugs could be reversible with drug 

withdrawal. The regimen of antimetabolites coupled with corticosteroids then became popular 

in clinical practice (Martin 1965; Starzl 1964). Corticosteroids were the main component of 

maintenance therapy, and in high dose, were the effective agents to reverse rejection crises 

(Goodwin 1963; Starzl 1963). The major drawback of corticosteroids was their multiple side 

effects including gastrointestinal bleeding, hypertension, infection, hyperglycemia, fluid 

retention, osteoporosis, hirsutism, weight gain, cataracts etc. Shortly afterward, heterologous 

antilymphocyte globulin (ALG) as a new immunosuppressive agent was introduced into 

transplantation realm (Starzl 1967a; Starzl 1967b). Compared to azathioprine and prednisone 

treated group, patients receiving treatment of ALG combined with azathioprine and 

 

40 
 



prednisone showed better graft function, less acute rejection episodes, improved graft survival, 

and reduction of the prednisone dose (Doak 1969; Taylor 1976). However, ALG was a 

heterologous antibody that had potential antigenic property, and this agent could non-

specifically bind to various hematopoietic cells leading to different types of side effects 

including fever, hypotension, thrombocytopenia, anemia, neutropenia, and anaphylaxis etc 

(Rosenberg 1975; Henricsson 1977; Grant 1995).  Polyclonal ALG was typically made in 

rabbits or horses. Batch-to-batch variation in potency was another problem because the 

method of preparation of ALG was not standardized. These drawbacks of ALG limited its 

application in clinical practice. 

 

In 1976, a novel antilymphocytic agent termed cyclosporine that was extracted from the soil 

fungi Cylindrocarpon lucidum and Trichoderma polysporum (Dreyfuss 1976), was found to 

be able to prolong skin allograft survival and to delay the onset of graft-versus-host disease 

(GVHD) (Borel 1976). The anti-rejection effects of cyclosporine A (CsA) were subsequently 

demonstrated in various organ transplantation studies (Calne 1978; Calne 1979). CsA can 

inhibit the expression of several genes that are critical in T cell activation, and thus prevent T 

cell responses to alloantigen. 

 

Comparison of the effects of corticosteroids and AZA on immune system, CsA is a relatively 

selective immunosuppressive agent. CsA exhibited potent immunosuppressive effect even in 

low dose, and its risk of bone marrow suppression was less than previous immunosuppressive 

drugs. The results of organ transplantation were dramatically improved from the wide use of 

this agent in clinical practice (Starzl 1980; Starzl 1981; Canafax 1983). The regimens based 
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on CsA became the standard clinical therapeutics for the prevention of acute rejection in solid 

organ transplantation in the 1980s. In 1989, tacrolimus, an extract of the soil fungus 

Streptomyces tsukabaensis that displayed much more potent immunosuppressive ability (Kino 

1987), was introduced into clinical practice as rescue therapy for the liver transplant recipients 

who had failed with conventional immunosuppression (Starzl 1989). Tacrolimus, similar to 

CsA, was found to inhibit early events in T cell activation by suppressing calcineurin. 

Therefore both of them were called calcineurin inhibitors (CNIs). This novel agent showed 

better clinical efficacy than CsA (Busuttil 2004; Haddad 2006), and has gradually replaced 

CsA in many transplant programs. Also in the late 1980s, a mTOR inhibitor termed sirolimus 

joined the family of anti-rejection medications (Saunders 2001; Geissler 2010; Klintmalm 

2014). Sirolimus inhibits a protein called mammalian target of rapamycin (mTOR) and 

subsequently blocks cell cycle progression from the late G1 to the S phase (Terada 1993; 

Crespo 2002). As a result, the growth and proliferation of T cells are suppressed. At almost 

the same period, some novel agents such as the anti-CD3 monoclonal antibody (mAb) 

Orthoclone OKT3 (muromonab-CD3) (Thistlethwaite 1984; Thistlethwaite 1987) which aims 

at all T cells (naïve or activated), and the antimetabolites mycophenolate mofetil (MMF) 

which targets all lymphocytes (selective inhibition of T and B lymphocytes purine nucleotides 

synthesis) (Sollinger 1992; Sollinger 1995), were added to the growing list of 

immunosuppressive drugs.  

 

The use of CNIs has tremendously improved the short-term outcomes of solid organ 

transplantation due to the incidence of acute rejection was substantially decreased. However, 

the improvement of long-term survival rates in solid organ transplantation has been 
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disappointing in the past decades (Meier-Kriesche 2004). Although the long-term outcome of 

organ transplantation can be influenced by a lot of factors, evidence does suggest that the side 

effects of immunosuppressive drugs (especially CNIs) play a role in late graft loss (Nankivell 

2003; Stratta 2005; Alam 2007). Long-term use of CNIs is associated with higher risk of 

hypertension, post-transplant diabetes, nephrotoxicity and neurotoxicity etc. These adverse 

effects of CNIs have been found to cause graft loss or death with functioning graft. To 

minimize the negative impact of CNIs on the long-term outcome of organ transplantation, 

various regimens to reduce CNIs exposure such as CNI minimization, avoidance, and early 

withdrawal have been tested. Combined use of a CNI and other immunosuppressive drugs 

that are synergistic is one of the most effective ways to reduce CNI exposure. The synergistic 

effect refers to a combination of two or more drugs produces the overall effect that is greater 

than the sum of their individual effects. Low-dose tacrolimus in combination with MMF and 

steroids is one example of CNI minimization protocols (Ekberg 2009). In CNI avoidance 

regimens, MMF and mTOR inhibitors are mostly chosen to replace the role of CNIs in 

maintenance therapy. However, the reported results from CNIs sparing trials are mixed and 

there are no concrete evidence to support the elimination of CNIs from this field (Larson 2006; 

Mathis 2014; Goralczyk 2012). To date, CNIs remain the cornerstone in posttransplantation 

immunosuppresion in clinical practice. In addition, all conventional immunosuppressive 

drugs are antigen nonspecific agents. They suppress the function of all lymphocytes or all T 

cells instead of selectively abolishing allogeneic immune responses. The non-specific immune 

suppression of these agents increases the risk of infection and malignancy that are also the 

major causes of death with graft function (Kahwaji 2011). Hence there is a need to seek novel 
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immunosuppressive strategies which specifically inhibit the alloimmune response initiated by 

donor antigens while preserving the integrity of the remainder of the host immune system.   

 

1.7 Costimulatory signaling pathways as novel targets for 

immunosuppression 

The notion that costimulatory signals are critical for the activation of T cells initiates the 

attempt by blocking costimulatory pathway to prevent allograft rejection (Lenschow 1992; 

Turka 1992). The rationale for this therapeutic approach is based on, in the absence of 

effective costimulation, interaction between TCR and MHC-bound peptides could induce T 

cells into a state of unresponsiveness to antigenic stimulation instead of activation (Schwartz 

1990). Thus the allorejection is interrupted because of the missing key component of the 

event. The actions of costimulation blockers are mainly focused on the specific signaling 

pathways and the T cells activated by TCR stimulation. Compared to the conventional 

immunosuppressive drugs, they modulate alloimmune response in a more selective and 

precise way. Targeting costimulatory pathways offers the potential to inhibit pathologic T 

cells while to retain protective T cell responses as much as possible. CD28-deficient mice 

showed impaired immune responses to viral antigens or alloantigens (Shahinian 1993; Kawai 

1996). In contrast, their responses to exogenous antigens were normal (Wu 1998). Blockade 

of CD28 signal with anti-CD28 mAb JJ319 in rats could successfully inhibit allogeneic T cell 

responses, whereas responses to exogenous antigens were unaffected (Haspot 2002). 

Costimulation blockers mostly are large molecule biologics. Their effects are mainly limited 
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to T cells and/or APCs. These features will be helpful for minimizing their side-effects on 

other organs and systems.  

 

In 1986, the costimulatory molecule CD28 was identified. Since then, a lot of novel 

costimulatory molecules have been discovered and various costimulatory pathways have been 

tested as targets to inhibit alloimmune responses (Table 1.1). CD28–CD80/86 and CD40–

CD40L are two well-characterized costimulatory signaling pathways. Numerous agents 

targeting these two pathways emerged over the past several decades. Some of them such as 

anti-CD40L mAbs and cytotoxic T lymphocyte antigen 4-immunoglobulin G (CTLA4-Ig) 

that competitively blocks CD28–CD80/86 interactions showed promising results in the 

prolongation of allograft survival in experimental animal models of transplantation. 

Development of anti-CD40L mAbs was discontinued because those agents were associated 

with thromboembolic complications. On the other hand, belatacept, a high-affinity variant of 

CTLA4-Ig, was demonstrated to promote allograft acceptance in further studies and clinical 

trials (Larsen 2005; Durrbach 2010). In 2011, belatacept was approved by the U.S. Food and 

Drug Administration (FDA) for use as an immunosuppressant to prevent acute rejection in 

adult patients who undergo renal transplantation. 

 

The agents targeting costimulatory molecules other than CD28–CD80/86 and CD40–CD40L 

pathways have also shown promise in prolonging allograft survival. It has been reported that 

TS-1/22, an anti-LFA-1 antibody, dramatically prolongs islet allograft survival when it is 

combined with basiliximab and sirolimus. Moreover, the combined use of TS-1/22 and 

belatacept exhibits synergistic effect on promoting islet allograft acceptance in nonhuman 
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primates (Badell 2010). OX40–OX40L costimulatory pathway have been found to play a 

critical role in CD28- and CD40-independent allograft rejection. Blocking OX40–OX40L 

pathway with anti-OX40L mAb (RM134L) extended skin allograft survival in CD28/CD40L 

double knockout mice. RM134L in combination with murine CTLA4-Ig (m CTLA4-Ig) and 

anti-CD40L mAb (MR1) showed much longer skin allograft survival time (>100 days) than m 

CTLA4-Ig and MR1 combination therapy as well as RM134L monotherapy (<15 days) in 

wild type C57BL/6 mice (Demirci 2004). Further studies demonstrated that RM134L was 

able to induce islet allograft tolerance in CD154 deficient mice. In addition, combined use of 

RM134L and MR1 in wild type C57BL/6 mice also yielded long-term islet allograft survival 

(Chen 2008). 

 

1.8 Hypothesis and objectives of this thesis 

The studies of costimulatory blockade in transplantation have been carried out more than two 

decades. Various costimulatory blockers that target different costimulatory signaling pathway 

have been tested. Belatacept is the only authorized agent targeting costimulatory molecules 

for clinical use in organ transplantation up to now. This biologic agent shows its advantage 

with similar graft survival rate and superior graft function relative to CNI-based regimen. 

However, higher rates of acute rejection in belatacept-based regimens implicate that there is 

still a need for improvement. 

 

Since the studies of anti-CD40L treatment were halted, anti-CD40 mAbs as an alternative 

approach have been investigated for many years. Anti-CD40 mAbs are expected not to cause 
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thromboembolic complications because CD40 do not involve platelet activation and the 

stability of platelet thrombi as CD40L do. To date, various anti-CD40 agents have been tested, 

and the efforts to seek an optimal anti-CD40 mAb for the prevention of transplant rejection 

are still ongoing. ASKP1240 is a novel fully human anti-CD40 mAb. Previous studies have 

demonstrated that ASKP1240 monotherapy could successfully prolong allograft survival, and 

the results of those studies also suggested that ASKP1240 need to be combined with 

additional immunosuppressive agents. Some studies have indicated that CNIs antagonize the 

effects of anti-CD40L mAbs, it raises the question of whether anti-CD40 mAbs are applicable 

for CNI minimization protocols. A main aim of this thesis is to test the hypothesis that 

ASKP1240 in combination with conventional immunosuppressive drugs including CNI can 

produce synergistic effects on promoting renal allograft survival, and does not cause 

thrombolytic complication. Meanwhile, the pharmacokinetics (PK) of ASKP1240 in monkey 

kidney transplant recipients are also observed. 

 

Current CTLA4-Igs including belatacept display high binding affinity for CD80. Between the 

two natural ligands for CD28, compared to CD80, CD86 exhibits higher binding affinity for 

CD28 and is the dominating ligand to mediate costimulatory signals in alloimmune response. 

Improvements in CD86 binding affinity confer increased immunosuppressive potency of 

CTLA4-Igs. Therefore, we hypothesize that ASP2409, a novel CTLA4-Ig variant with more 

specific binding to a CD86 costimulatory molecule, has improved efficacy in preventing 

kidney allograft rejection. To this end, we thus decided to investigate the effects of ASP2409 

on acute renal allograft rejection and graft survival in a NHP kidney transplantation model. At 

the same time, the PK and pharmacodynamic (PD) profiles of ASP2409, as well as the 
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influence of ASP2409 in intragraft Tregs are determined to provide valuable information for 

clinical trials. 
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Table 1.1 Costimulation blockers in organ transplantation 

      Agent Target Model Regimen Graft Survival (days) Ref. 
Anti-CD28-
PV1-IgG3 

CD28 Heart/Rat Anti-CD28 (1.2 mg/kg) 14, 22, 23, 26, 36 Jang 2008 
Anti-CD28 (2.5 mg/kg) 26, 27, 31, 31, 39 
Anti-CD28 (5.0 mg/kg) 26, 60, 61,  >100,  >100 
Anti-CD28 (1.2 mg/kg) + tacrolimus 24, 24, 32, 46, >100 
Tacrolimus 9, 10, 12, 14, 14 
Untreated 6, 6, 7, 7, 7 

FR104 CD28 Kidney/Baboon FR104 14, 16, 21, 28 Poirier 
2015 FR104 + MMF + Cs 21, 49, 158, 291 

FR104 + tacrolimus 77, 77, 84, 112 
FR104 + rapamycin 84, 91, 123 
Untreated 6, 6, 6, 7 

B7–24 CD80 Kidney/Rhesus B7-24 + 1G10 21, 22, 34, 35 Ossevoort 
1999 1G10 CD86 B7-24 + 1G10 + CsA 18, 53, 59, 225 

CsA 25, 69, 74, 266, 312 
h1F1  CD80 Kidney/Cynomolgus h1F1 + h3D1 9, 48, >119, >119 Hausen 

2001 h1F1 + h3D1 + CsA 96, >119, >119, >119 
h3D1 CD86 h1F1 + h3D1 + CsA + prednisone 50, 57, 59, 59 

CsA 22, 25, 38, 71 
(continued) 
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Table 1.1 Costimulation blockers in organ transplantation (continued) 

      Agent Target Model Regimen Graft Survival (days) Ref. 
CTLA4-Ig CD80 & 

CD86 
Kidney/Rhesus CTLA4-Ig 8, 8, 8, 58 Larsen 2005 

LEA29Y 38, 39, 45, 99, 134 
LEA29Y 
(belatacept) 

CD80 & 
CD86 

LEA29Y + MMF + 
methylprednisolone 

39, 45, 155, 221, 375 

MMF + methylprednisolone 8, 25, 36, 50 
LEA29Y + basiliximab 28, 116, 120, 129, 130, 145 

hu5C8 CD40L Kidney/Rhesus hu5C8 >73, >85, >136, >143, 
173, >206, >506, >519, >527 

Kirk 1999 

hu5C8 + MMF + steroids 36, 39, >272, >283, >295 
hu5C8 + tacrolimus 73, 148, >199 
hu5C8 + dacluzimab 74, 298, 428, 479 Xu 2003 

ABI793 CD40L Kidney/Cynomolgus ABI793 (7 mg/kg) 8, 8, 9, 9 Schuler 2004 
ABI793 (20 mg/kg) 23, 30, 32, 70, 108, 148, 206, 

266, 328 
Kidney/Rhesus ABI793 (20 mg/kg) 13*, 44, 139, 149, 154, 158, 

 221 
Kanmaz 2004 

(continued) 
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Table 1.1 Costimulation blockers in organ transplantation (continued) 

      Agent Target Model Regimen Graft Survival (days) Ref. 
IDEC-131 CD40L Skin/Rhesus IDEC-131 10, 16 Xu 2003 

IDEC-131 + sirolimus 84, 246 
IDEC-131 + sirolimus + DST 33, 202, 246 

Kidney/Rhesus IDEC-131 3, 7, 21, 44, 352 Preston 
2005 IDEC-131 + sirolimus 9, 9, 42, 108, 178 

IDEC-131 + sirolimus + DST 168, 269, >559, >993, >1012 
Sirolimus 10, 21, 23 

Kidney/Cynomolgus IDEC-131 + sirolimus + DST 108, 153, 177 Pearl 2007 
H106 CD40L Kidney/Rhesus Chi220 30*, 41, 56, 70 Pearson 

2002 CTLA4-Ig 8, 8, 8, 58 
Chi220 CD40 Chi220 + CTLA4-Ig 28, 35, 50, 84, 91 

H106 + CTLA4-Ig 35, 36*, 42*, 129, 290 
Chi220  
 
 
 
H106 

CD40 
 
 
 
CD40L 

Islet/Pig-to-rhesus Chi220+ basiliximab + sirolimus + 
belatacept 

56, >59, >203 Thompson 
2011 

H106 + basiliximab + sirolimus + 
belatacept 

30, 76, >86, >147, >169, 194, 
344 

Basiliximab + sirolimus + 
belatacept 

26, 33, 71 

Untreated 15, 15 
AH.F5 CD40L Small bowel/Rat AH.F5 14, 15, 16, 18, 19 Fishbein 

2002 AH.F5 + DST 41, 50, 88, 116, 119 
Untreated 8, 9, 11, 12, 12 

(continued) 
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Table 1.1 Costimulation blockers in organ transplantation (continued) 

      Agent Target Model Regimen Graft Survival (days) Ref. 
MR1 CD40L Heart/Mouse MR1 30, 48, >75, >75, >75,   

>75, >75,  >75, >75  
Larsen 
1996 

Untreated 12, 12, 12, 12, 13, 16, 18 
MR1 + DST 37, >60,  >60,  >60,  >60,  

>60, >120, >120, >120 
Valujskikh 
2002 

MR1 + DST + ATT (B10.A) 18, 23, 23, 26 
ATT (B10.A) 10, 12, 12, 14 
MR1 + DST + ATT (SJL) >70, >80, >80 
MR1 + DST + CD4 ATT (B10.A) 20, 25, 28 
MR1 + DST + CD8 ATT (B10.A) 23, 29, 30 
Untreated 11, 13, 14, 15, 15, 16 

ch5D12 CD40 Kidney/Rhesus ch5D12 (low) 8, 30 Haanstra 
2003 ch5D12 (high) 12, 42, 91, 135, 217 

ch5D12 (low) + chFun-1 7, 71 
chFun-1 CD86 ch5D12 (high) + chFun-1 61, 75, 78, 116 

CsA 25, 69, 74, 266, 312 
Untreated 5, 6, 6, 7 

(continued) 
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Table 1.1 Costimulation blockers in organ transplantation (continued) 

      Agent Target Model Regimen Graft Survival (days) Ref. 
3A8 CD40 Islet/Rhesus 3A8 + basiliximab + sirolimus 155, 158, 202, 208, 312 Badell 

2012 3A8  7, 9 
2C10R4 CD40 Islet/Rhesus 2C10R4 + basiliximab + sirolimus 163, 265, 296, 304 Lowe 2012 

Basiliximab + sirolimus 8, 8, 10 
Heart/Pig-to-baboon 3A8 + anti-CD20 + ATG + CVF + 

MMF + Cs  
21, 21, 28 Mohiuddin 

2013 
2C10R4 + anti-CD20 + ATG + 
CVF + MMF + Cs  

>30, >40, 60, 107, 146, 149 

2C10R4 + anti-CD20 + ATG + 
CVF + MMF + methylprednisolone 

146*, 159, 298, 616, 945 Mohiuddin 
2016 

CFZ533 CD40 Kidney/Cynomolgus CFZ533 76, 98, 100, 100, 100 Cordoba 
2015 

ICOS-Ig ICOS Kidney/Rhesus ICOS-Ig 6, 6, 6 Lo 2015 
ICOS-Ig + belatacept 36, 44, 45 
Belatacept 44, 71, 385 
Untreated 5, 6, 7, 7, 8 

JTT.1 ICOS Liver/Rat JTT.1 10, 10, 11, 11, 12, 13 Guo 2004 
JTT.1 + tacrolimus 35, 38, 41, 45, 47, 49, 56, 

58,  >100, >100, >100 
Tacrolimus 19, 22, 24, 26, 30, 42, 45 
Untreated 10, 11, 11, 11, 12, 12 

(continued) 
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Table 1.1 Costimulation blockers in organ transplantation (continued) 

      Agent Target Model Regimen Graft Survival (days) Ref. 
4D11 
(ASKP1240) 

CD40 Kidney/Cynomolgus 4D11 (1 mg/kg, induction) 31, 64, 69 Aoyagi 
2009 4D11 (5 mg/kg, induction) 75, 79, 317 

4D11 (10 mg/kg, induction) 92, 107, 320 
4D11 (20 mg/kg, induction) 90, 105, 169 
4D11 (1 mg/kg, maintenance) 10, 79, 80 
4D11 (5 mg/kg, maintenance) 43, 98, 220 
4D11 (10 mg/kg, maintenance) 27, 254, 373 
4D11 (20 mg/kg, maintenance) 153, 169, 216 
Untreated 5, 6, 7 

Liver/Cynomolgus ASKP1240 (10 mg/kg, induction) 11, 90, 188, 209 Oura 2012 
ASKP1240 (10 mg/kg, maintenance) 19, 31, 98, 168, 272, 278, 1035 
Untreated 4, 6, 7 

Liver/Cynomolgus ASKP1240 (10 mg/kg, induction) >15, >23, 210, 250, >608 Watanabe 
2013 ASKP1240 (10 mg/kg, maintenance) >96, >115, 523, >607 

Untreated 7, 8, 9 
OX86 OX40 Islet/Mouse OX86 + CD154 KO 17, 18, 25, 25, 34 Chen 2008 

RM134L + CD154 KO >150, >150, >150, >150, >150, 
>150, >150, >150 

RM134L OX40L MR1 + RM134L >150, >150, >150, >150, >150 
CD154 KO 13, 17, 17, 37, 82, 104 
Untreated 12, 15, 15, 17, 22 

(continued) 
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Table 1.1 Costimulation blockers in organ transplantation (continued) 

      Agent Target Model Regimen Graft Survival (days) Ref. 
OX40-Ig OX40 Heart/Mouse                                 

(BALB/c to CBA/Ca) 
OX40-Ig, 150µg 8, 8, 9, 9, 10, 10 Curry 

2004 OX40-Ig, 400µg 8, 8, 8, 9, 9 
OX40-Ig + CTLA4-Ig 10, 11, 11, 12 
OX40-Ig + sIL-15Rα  9, 10, 12, 12, 12 
Mouse IgG 7, 7, 8, 8, 9, 9 

Heart/Mouse                                 
(B10.BR to CBA/Ca) 

OX40-Ig, days 0, 2, 4, 6, 8, 10 81, 87, 88, 88, 88, 94, 100, 100, 100,  
100, 100 

OX40-Ig, days 0–15 71, 96, 96, >100,  >100,  >100,  >100,   
>100,  >100,  >100,  >100   

Mouse IgG 13, 13, 13, 14, 14, 14, 15 
RM134L OX40L Skin/Mouse (CD4KO) RM134L 10, 12, 18, 20 Vu 2004 

RM134L + CTLA4-Ig + MR1 82, 98, 98, >100, >100 
CTLA4-Ig + MR1 11, 15, 19, 22, 24 
Control 11, 11, 11, 12, 12, 13, 14, 15 

Skin/Mouse (CD8KO) RM134L 8, 8, 10, 12, 12 
RM134L + CTLA4-Ig + MR1 70, 78, 78, >100, >100, >100, >100,  

>100 
CTLA4-Ig + MR1 12, 18, 22, 24 
Control 7, 7, 7, 8, 8, 8, 10 

(continued) 
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Table 1.1 Costimulation blockers in organ transplantation (continued) 

      Agent Target Model Regimen Graft Survival (days) Ref. 
M-17.5.2 LFA-1 Islet/Mouse MR1 + CTLA4-Ig 4, 4, 6, 7, 8, 8, 16 Diab 2010 

M-17.5.2 + MR1 + CTLA4-Ig 4, 5, 6, 7, 7, 8, 13, 14, 17, 26 
Isotype control 0, 0, 4, 5, 8, 9, 13, 14 
Naïve 7, 14, 14, 15, 29 

TS-1/22 LFA-1 Islet/Rhesus TS-1/22 + belatacept 73, 223, 338, >367, >373 Badell 2010 
TS-1/22 10, 12 
Belatacept 8, 58, 60 
TS-1/22 +basiliximab + sirolimus >17, 67, 154, >371, >375 
Basiliximab + sirolimus 8, 8, 10 

4-1BBL mAB 4-1BBL  Rat/Liver 4-1BBL mAB 9, 12, 16, 18, 19, 20, 20, 24 Qin 2010 
Isotype mAB 7, 8, 10, 11, 11, 12, 14, 14 

3H3 4-1BB Corneal/Mouse 3H3 (200 mg) 6, 7, 8, 8, 8, 8, 8 Asai 2007 
3H3 (100 mg) 8, 9, 9, 10, 11, 12 

TKS-1 4-1BBL  TKS-1 (200 mg) 10, 11, 11, 12, 12, 13 
TKS-1 (100 mg) 8, 8, 11, 12, 12, 15 
Rat IgG (200 mg) 9, 10, 10, 10, 12, 14, 15 

 

ATT, adoptive transfer of T cells from skin-grafted-primed mice;  

Cs, corticosteroids; 

CVF, cobra venom factor;  

DST, donor-specific transfusion;  

*, died of complications 
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Effects of ASKP1240 Combined with Tacrolimus or Mycophenolate Mofetil 

on Renal Allograft Survival in Cynomolgus Monkeys 

Lijun Song, Anlun Ma, Hao Dun, Yanxin Hu, Lin Zeng, Jieying Bai, Guangzhou Zhang, 

Fumitaka Kinugasa, Yuji Sudo, Yasuhiro Miyao, Kazumichi Okimura, Toru Miura, Pierre 

Daloze, Huifang Chen 

 

Transplantation. 2014 Aug 15;98(3):267-76. doi: 10.1097/TP.0000000000000236. 

 

Summary: In this paper, we evaluated the efficacies of ASKP1240, monotherapy or in 

combination with conventional immunosuppressive drugs, on the prevention of acute 

rejection and the prolongation of graft survival in a nonhuman primate renal transplantation 

model. The PK and PD profiles of ASKP1240 in transplanted monkey and the side effects of 

this agent were observed simultaneously. 
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Abstract 

Background. Blocking the CD40–CD40L signal pathway has previously shown promise as a 

strategy to prevent allograft rejection. In this study, the efficacy of a novel fully human anti-

CD40 mAb — ASKP1240, administered as a mono- or combination-therapy (sub-therapeutic 

dose of tacrolimus or mycophenolate mofetil [MMF]), on the prevention of renal allograft 

rejection was evaluated in Cynomolgus monkeys.  

 

Methods. Heterotopic kidney transplants were performed in ABO compatible, stimulation 

index ≥ 2.5 in the two-way mixed lymphocyte reaction (MLR) monkey pairs.  Animals were 

divided into twelve groups and observed for maximum of 180 days. Histopathological, 

hematology and biochemistry analyses were conducted in all groups. Cytokine release (IL-2, 

4, 5, 6, TNF and IFN-γ) was investigated in several groups.  

 

Results. ASKP1240 prolonged renal allograft survival in a dose-dependent manner in 

monotherapy. Low (2 mg/kg) or high (5 mg/kg) dose ASKP1240 in combination with MMF 

(15 mg/kg) or tacrolimus (1 mg/kg), showed a significantly longer allograft survival time 

compared with monotherapy groups. No obvious side effects including drug-related 

thromboembolic complications were found. Cytokine release was not induced by ASKP1240 

administration.  

 

Conclusions. The present study indicates that ASKP1240, either alone or in combination with 

other immunosuppressive drugs, could be a promising anti-rejection agent in organ 

transplantation.                                                                                      
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Introduction 

Costimulatory signals play crucial roles in fully activating T cells that are involved in 

allograft rejection (Jenkins 1987; Jenkins 1988; Frauwirth 2002). The CD40–CD40L 

costimulatory pathway, has previously been shown to be an important interaction that 

mediates both the humoral and cellular immune responses (Eliopoulos 2000; Pype 2000; Li 

2008; Elgueta 2009). It has been demonstrated that blocking CD40–CD40L signaling 

pathway is a successful strategy to reduce allograft rejection (Larsen 1996; Parker 1995; Kirk 

1999). CD40L was initially chosen as primary therapeutic target, but the further studies 

encountered setbacks due to the unexpected thromboembolic complications associated with 

the administration of anti-CD40L antibodies (Kawai 2000; Schuler 2004; Koyama 2004; Kirk 

2001). Targeting CD40 as an alternate therapeutic strategy was developed when it was 

recognized that these thrombotic complications were CD40-independent (André 2002; Crow 

2003). To date, several anti-CD40 antibodies that are engineered as IgG1 or IgG4 chimeric 

isotypes, or fully human IgG4 have been shown to prevent allograft rejection in experimental 

studies (Haanstra 2003; Pearson 2002; Imai 2007; Badell 2012; Page 2012). 

 

ASKP1240 is an anti-CD40 mAb consisting of fully human IgG4. It interrupts the CD40–

CD40L pathway by preventing the interaction between CD40 and CD40L. This masking 

antibody was generated from trans-chromosome mice. As a fully human mAb, ASKP1240 is 

expected to have lower immunological risk than mouse or chimeric antibodies. In addition, 

ASKP1240 does not cause antibody-dependent cell-mediated cytotoxicity (ADCC) or 

complement dependent cytotoxicity (CDC) (Imai 2007; Okimura 2014; van der Pol 1998). 

ASKP1240 monotherapy has been demonstrated to delay renal, islet and hepatic allograft 
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rejection in nonhuman primate (NHP) models (Imai 2007; Aoyagi 2009; Watanabe 2011; 

Oura 2012).  

 

This study evaluated the effects of ASKP1240 when administered as a monotherapy or in 

combination with a sub-therapeutic dose of tacrolimus or mycophenolate mofetil (MMF), on 

renal allograft survival in NHPs. We also assessed the pharmacokinetic (PK) profile of 

ASKP1240 and its effect on cytokine release in transplanted monkeys. We found that 

ASKP1240 significantly prolonged allograft survival either as a monotherapy or in 

combination with tacrolimus or MMF without causing obvious side effects. 

 

Results 

Renal allograft survival   

Renal allograft survival day was recorded according to the following definitions: 1) The final 

day that the serum creatinine (sCr) level did not exceed a value of 10 mg/dL; 2) The day when 

significant asthenia had been observed; 3) A day before the finding of death; 4) Animal that 

survived to the end of study was described as >180 days. As shown in Table 2.1, the median 

survival times (MSTs) were 7 days for the control group, 10 days for the low-dose (0.5 mg/kg) 

tacrolimus monotherapy group, 52 days for the low-dose ASKP1240 monotherapy group, 

100.5 days for the high-dose ASKP1240 monotherapy group, 53 days for the low-dose 

ASKP1240 and low-dose tacrolimus combination group, 57 days for the high-dose 

ASKP1240 and low-dose tacrolimus combination group, 29 days for the MMF plus steroid 

treatment group, 121 days for the low-dose ASKP1240, MMF and steroid combination 

group, >180 days for the high-dose ASKP1240, MMF and steroid combination group, 28.5 
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days for the sub-therapeutic dose (1.0 mg/kg) tacrolimus monotherapy group, >180 days for 

the low-dose ASKP1240 and sub-therapeutic dose tacrolimus combination group, and >180 

days for the high-dose ASKP1240 and sub-therapeutic dose tacrolimus combination group. 

Compared with control group, the MSTs of all treatment groups except low-dose tacrolimus 

monotherapy group were significantly prolonged (Group 3 to 12, p = 0.005, 0.012, 0.005, 

0.001, 0.002, 0.005, 0.005, 0.002, 0.001, 0.001, respectively). ASKP1240 monotherapy 

improved renal allograft survival in a dose-dependent manner (MSTs of low-dose group and 

high-dose group were 52 days and 100.5 days, respectively). ASKP1240 combined with low-

dose of tacrolimus did not show a prolongation in the MST compared with ASKP1240 

monotherapy (Figure 2.1A & 2.1B). However, ASKP1240, either in low-dose or high-dose, 

combined with a sub-therapeutic dose of tacrolimus showed significantly longer MST 

compared with either tacrolimus monotherapy groups (Group 11 and 12 vs. Group 10, p = 

0.006 and 0.025, respectively) or the ASKP1240 monotherapy group (Group 11 vs. Group 3, 

p = 0.011; Group 12 vs. Group 4, p = 0.329) (Figure 2.1C & 2.1D). ASKP1240 combined 

with MMF and steroid showed much longer MSTs than either that of MMF plus steroid 

treatment group (Group 8 and 9 vs. Group 7, p = 0.001 and 0.017, respectively) or those of 

ASKP1240 monotherapy groups (Figure 2.1E & 2.1F). In all 12 groups, 19 animals survived 

to the end of study. Except of one animal was in the sub-therapeutic dose tacrolimus 

monotherapy group, the remaining animals were treated with low- or high-dose of ASKP1240, 

either as a monotherapy or in combination with tacrolimus or MMF.  
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Table 2.1  Renal Allograft Survival and Histopathological Evaluation  
 

Group Therapeutics Number MST Graft Survival Time (days) 
Histolopathogical Diagnoses of Renal Allografts  

1 Naïve 3 7 7 7 10           
AR III  
(v3/i1) 

AR IIB 
 (v2/i3) 

AR III  
(t2/v3/i3)           

2 Tac 0.5mg/kg 6 10 6 6 10 10 14 35     
AR III  
(v3/i2) 

AR IIA  
(t2/v1/i3) 

AR III 
 (v3/i3) 

AR IIA  
(t2/v1/i3) 

AR IIB  
(v2/i3) 

AR III  
(v3/i3)     

3 ASKP 2mg/kg 5 52 50 51 52 86 >180       
AR III 

(v3/i3/ct2/cv1/ci1) 
AR III 

(v3/i3/ct1/ci1) 
CAN IB 

(t1/i3/ct1/ci1/cg1) 
AR IIA 

(v1/i3/ct2/ci1/mm1)  i2       

4 ASKP 5mg/kg 6 100.5 10 19 74 127 180 >180     
AR III 
 (v3/i3) 

BC  
(t1/i2) 

CAN IIIA  
(i3/ct3 /ci3) 

CAN IIB 
(i3/ct3/cv1/ci2) 

CAN IIB  
(i3/ct2/cv2/ci3) 

CAN IIB 
(i3/ct2/cv3/ci2)     

5 ASKP 2mg/kg  
+ Tac 0.5mg/kg 5 53 27 35 53 70 >180       

AR IIA  
(t1/v1/i3) 

AR III 
(v3/i3) 

AR III 
(v3/i3/ct1/cv3/ci1) 

CAN IB 
(ct1/cv1/ci1) 

CAN IB 
(i1/ct1/cv3/ci1)       

6 ASKP 5mg/kg  
+ Tac 0.5mg/kg 7 57 25 46 48 57 70 94 >180   

AR IIA 
(v1/i2) 

AR III 
(v3/i3)  i1 AR IIA 

(t1/v1/i2) 
AR IIA 
(v1/i3) 

CAN IIIB 
(i2/ct3/cv3/ci3) NR   

7 MMF + Steroid 6 29 27 28 29 29 32 43     
AR IIA 

(t2/v1/i3) 
AR IIB 

(t1/v2/i1) 
AR IIB 

(t1/v2/i3) 
AR III 
(v3/i3) 

AR IIA 
(t1/v1/i3) 

CAN IB 
(i3/ct1/cv2/ci1)     

8 ASKP 2mg/kg + 
MMF + Steroid 5 121 48 70 121 122 175       

BC 
(t1/i1/ct1)  i1  i1 CAN IA 

(i1/ct1/mm2/ci1) 
CAN IB 

 (i1/ct1/cv1/ci1)       

9 ASKP 5mg/kg + 
MMF + Steroid 5 >180 28 116 >180 >180 >180       

 i1 CAN IIB 
(i2/ct2/cv2/ci2)  i1/cv2 CAN IB 

(i3/ct1/cv3/ci1) 
CAN IB 

(i1/ct2/cv2/ci1/cg1/mm2)       

10 Tac 1.0mg/kg 6 28.5 17 21 24 33 33 >180     
AR IIA   
(v1/i1) 

AR IIA 
(v1/t1/i3) 

CAN IA 
(i2/ct1/cv1/ci1/mm1) 

CAN IB  
(i2/ct1/cv1/ci2) 

CAN IA 
(i1/ct1/ci1/mm1) 

CAN IB 
(i1/ct1/cv2/ci1/mm1)     

11 ASKP 2mg/kg  
+ Tac 1.0mg/kg 8 >180  105 125 >180 >180 >180 >180 >180 >180 

CAN IB 
(i1/ct1/cv2/ci2/mm1) 

CAN IIB 
(i2/ct2/cv2/ci3) 

CAN IA 
(i2/ct1/ci1/cv1) i1/ct0/ci0/cv3 CAN IB 

(i1/ct1/cv1/ci2) 
CAN IA 

(i2/ct1/cv1/ci1)  i1 CAN IIIB 
(i2/ct3/cv3/ci3) 

12 ASKP 5mg/kg  
+ Tac 1.0mg/kg 7 >180  44 56 145 >180 >180 >180 >180   

CAN IIB 
(i1/ct3/cv1/ci2) 

CAN IA 
(i1/ct2/ci1) 

CAN IIIB 
(i2/ct3/ci3/mm1) 

CAN IIB 
(i3/ct2/cv3/ci2) i1/ci1  CAN IB 

(i1/ct1/cv1/ci1/mm1)  ct1   
 

AR, acute rejection; BC, borderline change; CAN, chronic allograft nephropathy; cg, glomerulopathy; ci, interstitial fibrosis; ct, tubular atrophy; cv, fibrous intimal thickening; i, interstitial 
inflammation; mm, mesangial matrix increase; NR, no rejection; t, tubulitis; v, intimal arteritis; anti-ASKP1240 antibody was detected during the maintenance treatment period; Tac, 
Tacrolimus; ASKP, ASKP1240; MMF, mycophenolate mofetil. 
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Figure 2.1 Renal allograft survival in each group. For comparison, each ASKP1240 combination therapy 

group and the relevant control groups were replicated in panels A to F. The curves represent renal graft survival 
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in naïve control (gray solid line), tacrolimus or MMF monotherapy (black dot dash line), ASKP1240 

monotherapy (gray dotted line), and combination therapy (black dashed line) group. (Tac 0.5 = tacrolimus 0.5 

mg/kg, Tac 1.0 = tacrolimus 1.0 mg/kg, ASKP 2.0 = ASKP1240 2.0 mg/kg, ASKP 5.0 = ASKP1240 5.0 mg/kg, 

MMF = mycophenolate mofetil 15 mg/kg; *: p < 0.05 ASKP1240 combination group vs. Tacrolimus or MMF 

monotherapy group, **: p < 0.01 ASKP1240 combination group vs. Tacrolimus or MMF monotherapy group, #: 

p < 0.05 ASKP1240 combination group vs. ASKP1240 monotherapy group).  

 

 

Renal graft function 

In general, when acute allograft rejection occurred, the sCr and blood urea nitrogen (BUN) 

levels of recipient monkeys were rapidly elevated. The renal function parameters were 

relatively stable in long-term survival monkeys (Figure 2.2A and 2.2B). 

 

Biochemistry   

Serum liver enzymes, creatinine kinase, electrolyte levels and all other biochemical 

parameters were unaffected by the administration of ASKP1240 (SDC, Table S2.1–S2.8). 

 

Hematological determinations 

The red blood cell (RBC), hemoglobin (HGB), and hematocrit (HCT) decreased on week 1 in 

Group 1, 11 and 12. These parameters were stable in other groups. This phenomenon can be 

explained based on the blood loss that may occur during the transplantation surgery. There 

were no consistent changes in white blood cell (WBC) or platelets (PLT) counts. The number 

of CD3+ T cells or CD20+ B cells in peripheral blood mononuclear cells (PBMCs) fluctuated  
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Figure 2.2 Renal graft function. A. Mean (± SD) serum creatinine level in each group. The elevation of sCr 

level was consistent with the occurrence of acute allograft rejection. B. Mean (± SD) blood urea nitrogen level in 

all groups. Changes of mean BUN levels were similar to sCr. 
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during the study period in all groups. However, no clear relationship between CD3+ and 

CD20+ cell counts and the administration of ASKP1240 was observed.  

 

Body weight and clinic symptoms 

Most of recipient monkey weights remained stable during the study. After recovery from 

surgery, all recipient monkeys were very active with good appetite. However, when acute 

rejection occurred, animal became lethargic, lost appetite and weight, and developed oliguria 

which was accompanied by an increase of sCr. 

 

Pharmacokinetic evaluation 

Serum ASKP1240 concentrations: The ASKP1240 concentration-time data are depicted in 

Figure 2.3A. In general, serum concentrations of ASKP1240 increased in a dose-dependent 

manner. The highest mean values of ASKP1240 trough level in most group appeared on Day 

14. Thereafter, these values decreased to relative lower levels that were consistent with dose 

reduction in maintenance phase. From Day 56, serum ASKP1240 trough level in most 

animals dropped to a very low level. That was different with what was observed in normal 

monkeys in another study (Ma 2014).  

 

Blood concentration of tacrolimus: The profiles of mean blood trough level of tacrolimus are 

illustrated in Figure 2.3B. The blood trough level of tacrolimus ranged from 0.31 to 85.47 

ng/mL. Blood tacrolimus trough level increased in a dose-related manner.  
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Plasma concentration of Mycophenolic acid (MPA): The mean plasma trough levels of 

MPA are shown in Figure 2.3C. MPA was detected in all submitted samples with the 

minimum value 0.126 μg/mL and the maximum value 10.3 μg/mL from Day 7 to Day 168. 

The range of mean trough level of MPA in each group was 1.45 to 3.70 μg/mL for Group 7, 

0.437 to 3.22 μg/mL for Group 8, and 0.411 to 1.47 μg/mL for Group 9.  

 

Anti-ASKP1240 antibody assay 

Anti-ASKP1240 antibodies in serum were detected in 15 of 48 animals during the 

maintenance treatment period (Table 2.1). They were mainly found in ASKP1240 2 mg/kg 

monotherapy or combination therapy groups (14/23), and only one was found in ASKP1240 5 

mg/kg treated groups (1/25).  
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Figure 2.3 Pharmacokinetic evaluation. A. The mean (± SD) serum trough levels of ASKP1240 in Group 3–6, 

8 and 9, as well as mean (± SD) serum concentration transitions of ASKP1240 in Group 11 and 12. Serum 

concentrations of ASKP1240 increased in a dose-dependent manner, and decreased to relative lower levels two 

weeks after drug administration in maintenance phases. (56BA = before ASKP1240 administration on Day 56, 

56AA = one hour after ASKP1240 administration on Day 56, Day 59 = 3 days after ASKP1240 administration, 

Day 63 = 7 days after ASKP1240 administration). B. The mean (± SD) whole blood tacrolimus trough levels 

increased in a dose-related manner. C. Mean (± SD) plasma trough levels of Mycophenolic acid. In general, in 
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the induction phrase, plasma trough levels of Mycophenolic acid revealed relatively higher level that was 

associated with the frequency of MMF administration. The plasma trough levels of Mycophenolic acid were 

stable in maintenance phases. (Tac 0.5, Tacrolimus 0.5 mg/kg, Tac 1.0, Tacrolimus 1.0 mg/kg, ASKP 2.0, 

ASKP1240 2.0 mg/kg, ASKP 5.0, ASKP1240 5.0 mg/kg, MMF, mycophenolate mofetil 15 mg/kg). 

 

 

Cytokine Assay  

Serum interleukin (IL)-2, 4, 5, 6, tumor necrosis factor (TNF), and interferon-gamma (IFN-γ) 

were measured in Group 10, 11 and 12. IL-2, 4, 5, TNF, and IFN-γ were not detected in any 

animals from Day 0 to Day 168. IL-6 was found in three samples (one of each group) on Day 

0 before surgery and dosing. Apparent elevated levels of IL-6 were detected in all Day 0 

(after surgery and dosing) samples and most Day 1 (before and after dosing) samples. From 

Day 3 to Day 168, IL-6 was sporadically detected in some animals. No clear difference was 

noted between the ASKP1240 and tacrolimus combination groups and the tacrolimus mono 

group. It was concluded that changes of serum IL-6 level were not related ASKP1240 

administration under the condition of this study. 

 

Histopathology  

The details of histological features of transplanted kidneys were summarized in Table 2.1. 

The percentage proportions of histological types in each group are depicted in Figure 4. Acute 

rejections were found in all renal grafts of Group 1 and Group 2. The incidence of acute renal 

rejection, in ASKP1240 monotherapy groups, dropped to 3/5 of Group 3 (ASKP1240 2 mg/kg) 

and 1/6 of Group 4 (ASKP1240 5 mg/kg). ASKP1240 combined with tacrolimus 0.5 mg/kg 

(Group 5 and 6) did not show benefits in reducing acute allograft rejection compared with 
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ASKP1240 monotherapy groups. When ASKP1240 combined with tacrolimus 1 mg/kg 

(Group 11 and 12) or MMF plus steroids (Group 8 and 9), no acute rejections were found in 

these groups. Varying degrees of chronic allograft nephropathy were the common 

pathological changes observed in long-term survival animals, except for one animal in Group 

6 that displayed no rejection. The histopathological results of 19 animals that survived to the 

end of study were following: No rejection = 1 (5.3%); Nonspecific changes = 6 (31.6%); 

Grade I chronic nephropathy = 8 (42.1%); Grade II chronic nephropathy = 3 (15.8%); Grade 

III chronic nephropathy = 1 (5.3%).  

 

Renal artery thrombosis, a common technical complication in the kidney transplantation 

model (Song 2010), was found in some animals. The incidence of renal artery thrombosis 

between ASKP1240-treated (5.00%) and non-ASKP1240-treated (4.35%) groups was not 

significantly different (p = 1.000; cases with technical complications were excluded from the 

analysis of survival and other parameters). No thromboembolism was found in other organs 

including the brain, lung, heart, liver, pancreas, and spleen in all animals at the time of 

necropsy, and at the histological assessments in obtained tissue specimens.  

 

Hepatic abscess was developed in one monkey in Group 9 and lymphoma was observed in 

another monkey in Group 12 in kidney, mesentery, mediastinum, left lung and heart. 
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Figure 2.4 Proportions of histological types in each group. Acute rejection (red and pink bar) was the only 

histological type in Group 1 and Group 2, and was also the primary histological type in Group 3, 5, 6 and 7. 

Varying degree of chronic allograft nephropathy (bars with baby blue, cobalt blue or navy blue) constituted the 

main parts of pathological findings in Group 4, 9–12. (NR = no rejection, NC = nonspecific changes, BC = 

borderline changes, AR = acute rejection, CAN = chronic allograft nephropathy, Tac 0.5 = tacrolimus 0.5 mg/kg, 

Tac 1.0 = tacrolimus 1.0 mg/kg, ASKP 2.0 = ASKP1240 2.0 mg/kg, ASKP 5.0 = ASKP1240 5.0 mg/kg, MMF = 

mycophenolate mofetil 15 mg/kg). 

 

 

Discussion 

Since the introduction of cyclosporine A (CsA) into clinical practice in the early 1980s, 

calcineurin inhibitors (CNIs) have dramatically improved short-term outcomes of renal 

transplantation. However, the extensive adverse effects of CNIs including nephrotoxicity, 
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neurotoxicity, posttransplantation diabetes, hypertension, and hyperlipidemia impact the long-

term success rates of renal transplants. It has been known that most toxicities of CNIs are 

dose-dependent. To minimize the side effects associated with CNI exposure, strategies 

applied in clinic include CNI reduction, avoidance, and withdrawal (Flechner 2008; Barbari 

2007). In the Cynomolgus monkey kidney transplant model, tacrolimus 2 mg/kg was the 

therapeutic dose, while 1 mg/kg was considered to be a sub-therapeutic dose (Kinugasa 2008). 

Here we show the notable additive effects when ASKP1240 either in high-dose (5 mg/kg) or 

in low-dose (2 mg/kg) combines with sub-therapeutic dose of tacrolimus. MSTs of renal 

allograft were also significantly prolonged in groups of ASKP1240 in combination with 

MMF and steroid. This implies that ASKP1240 can work in both CNI sparing and avoiding 

regimens. Previous report indicates the effect of anti-CD40L mAb can be abrogated when it is 

paired with CNIs (Blaha 2003). Our results demonstrate that it is not the same case with 

ASKP1240. Further studies to explore the effects of these regimens on immune components 

at the cellular and molecular level will be helpful to elucidate the exact mechanisms.  

 

Histopathologic results of this study revealed that ASKP1240 monotherapy could 

successfully inhibit acute renal allograft rejection in a dose-dependent manner. When 

ASKP1240 combined with MMF or a sub-therapeutic dose of tacrolimus, acute allograft 

rejections were abolished. Previous studies have shown that high-dose ASKP1240 can 

suppress the generation of donor specific antibodies (DSA) (Aoyagi 2009; Oura 2012) which 

are strongly associated with chronic allograft rejection (Mao 2007). The effect of ASKP1240 

on inhibiting acute rejection has been verified by this and other studies. To clarify the role of 

ASKP1240 in chronic allograft nephropathy will be an attractive topic for future. 

 

74 
 



It is notable during maintenance phase, with two weeks dosing interval, serum concentration 

of ASKP1240 in most animals decreased to a very low level. Correspondingly, ASKP1240 

trough levels in normal monkeys, especially in the high dose group, were apparently high. It 

also found that ASKP1240 half-life of the high dose group during maintenance phase was 

markedly shorter than that of normal monkeys (Ma 2014). These results imply that 

transplanted monkey may possess a different ASKP1240 metabolic profile compared with 

that of normal monkey. One of the possibilities of these differences is due to CD40 

overexpression in transplanted monkey (Ma 2014).  These factors should be taken into 

consideration during designing optimal dosing regimens. 

 

Previous studies showed that interference with the CD40–CD40L pathway by the 

administration of anti-CD40L mAbs was associated with thromboembolic events. The 

possible correlation between anti-CD40 mAbs and thromboembolism has been of concern 

although it is generally thought that these adverse effects are only associated with anti-CD40L 

mAbs (Crow 2003; Larsen 2006). To date, there have been no preclinical reports indicating 

that ASKP1240 or any other anti-CD40 mAbs are involved in the thromboembolic 

complications. In this study, except for renal artery thromboses which are common surgical 

complications and did not correlate to ASKP1240 treatment, there have been no 

thromboembolic findings in other organs.  

 

We also measured serum IL-2, 4, 5, 6, TNF, and IFN-γ level in renal transplanted monkeys. 

The results indicate that ASKP1240 does not induced cytokine release. Anti-ASKP1240 

antibodies were detected in some animals (mainly in low-dose groups). The partial reason for 
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the production of these antibodies is due to ASKP1240 is a human antibody and a foreign 

protein for monkey. On the other hand, anti-ASKP1240 antibody is rarely found in high-dose 

group. One of possible explanation is that higher dose ASKP1240 may suppress antibody 

production. 

 

ASKP1240 was shown to be a potent immunosuppressive agent in this NHP kidney 

transplantation model.  Treatment of these animals for up to 180 days was not associated with 

a deterioration in the general clinical observational signs (activity or appetite) nor was it 

associated with weight loss. A recent phase I clinical trial supports and extends these animal 

findings by demonstrating that ASKP1240 is well tolerated in healthy subjects and is not 

associated with either drug induced cytokine release or with thromboembolic events 

(Goldwater 2013). 

 

In conclusion, ASKP1240, a fully human anti-CD40 mAb, prolongs renal allograft survival in 

a dose-dependent manner when administered as a monotherapy to renal allograft transplanted 

cynomolgus monkeys. ASKP1240, when combined with sub-therapeutic dose tacrolimus or 

MMF plus steroid shows the additive effect on prolonging renal graft survival. The 

combination of ASKP1240 and sub-therapeutic dose tacrolimus, relatively, is more effective 

than ASKP1240 in combination with MMF plus steroid. With this treatment protocol, even 

though the low-dose ASKP1240, can successfully eliminate acute rejection and dramatically 

improve renal allograft survival. In view of the efficiency and safety, the combined use of 

low-dose ASKP1240 and sub-therapeutic dose tacrolimus is recommended. Collectively, 
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ASKP1240 appears to be a promising anti-rejection agent in solid organ transplantation. The 

present results provide concrete support for further clinical studies.  

 

Materials and Methods 

Animals  

Sixty-nine bred male Cynomolgus monkeys, with body weights ranging from 3.1–6.0 kg, 

hepatitis B virus (HBV), hepatitis C virus (HCV), simian immunodeficiency virus (SIV) and 

Herpes B virus free, were obtained from Laboratory Animals Center of the Academy of 

Military Medical Sciences (AMMS), Beijing, China. All experimental procedures were 

approved by the Ethical Committee for Animal Experimentation at Laboratory Animals 

Center of the AMMS, and were performed in accordance with the standards described in the 

Guide for the Care and Use of Laboratory Animals, National Institutes of Health Office of 

Animal Care and Use. Each animal was identified by number and randomly assigned to a 

dose group. All animals were screened for general health and quarantined for two weeks 

before study entry. They were housed in individual cages and were allowed free access to 

water, fruits and monkey chow.  

 

Life supporting kidney transplantation  

Renal transplantation was performed in ABO compatible, stimulation index ≥ 2.5 in the one-

way MLR monkey pairs. Each animal in this study acted as both donor and recipient. Left 

renal transplantations were performed as previously described (Song 2010; Qi 2000; Chen 

2000). Briefly, all donor and recipient monkeys were anesthetized by intramuscular injection 

of ketamine and xylazine. The left kidneys were exchanged in paired monkeys by 
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transplanting into the upper part of abdomen with end-to-side anastomoses of renal artery to 

aorta and renal vein to vena cava, and with end-to-end anastomosis of donor and recipient 

ureters. The right native kidney was removed after the transplanted kidney was reperfused. 

 

Experimental group and treatment  

Animals were divided into twelve groups as shown in Table 1: i.e. Naïve control, Tacrolimus 

monotherapy, ASKP1240 monotherapy, MMF monotherapy, ASKP1240 and Tacrolimus 

combination, ASKP1240 and MMF combination. ASKP1240 (2 mg/kg or 5 mg/kg) was 

given intravenously on Day 0 (before and after surgery), 3, 7, 11, 14, and then from Day 28 to 

Day 168 half dose (1 mg/kg or 2.5 mg/kg) bi-weekly. Tacrolimus (0.5 mg/kg or 1.0 mg/kg, 

non-therapeutic dose) (Kinugasa 2008) was orally administered immediately after kidney 

transplantation, then once daily, until Day 179. MMF (15 mg/kg) was given subcutaneously 

twice daily from Day 0 to Day 14, and then once daily till Day 179. Methylprednisolone 

(steroid) was administered subcutaneously once a day in a tapering manner. Recipients were 

observed for maximum of 180 days. 

 

Biochemical and hematological determinations  

Serum creatinine (sCr) was monitored at least twice a week for the first two postoperative 

months then weekly. Blood urea nitrogen, total protein, albumin, alkaline phosphatase, 

alanine aminotransferase, aspartate aminotransferase, total bilirubin, creatinine kinase and 

electrolyte levels (K+, Na+, Cl-) were measured using the auto analyzer. 
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Hematological parameters including RBC, WBC, HGB, HCT, PLT and lymphocyte 

phenotypes (CD3, CD20) were examined in PBMCs using the automated hematology 

analyzer.  

 

Pharmacokinetic evaluation 

Serum ASKP1240 trough levels were measured using enzyme-linked immunosorbent assay 

(ELISA) as described previously (Ma 2014) in Group 3–6, 8 and 9 on Day 0, 7, 14, 28, 56, 84, 

112, 140, and 168. The whole blood trough levels of tacrolimus in Group 2, 5, 6, 10–12 and 

plasma trough levels of mycophenolic acid (MPA) in Group 7–9 were determined using a 

validated LC-Tandem Mass Spectrometry (API 5000 LC/MS/MS System) assay on Day 0, 7, 

14, 28, 56, 84, 112, 140, and 168. In group 11 and 12, the serum concentration transition of 

ASKP1240 was monitored on Day 0, 7, 14, 28, 42, 56 (before and one hour after 

administration), 59, 63, 84, 112, 140 and 168. 

 

Immunological assays 

Anti-ASKP1240 antibody: Monkey anti-ASKP1240 antibodies were detected using an 

ELISA screening assay and further confirmed using immunodepletion assays at Shin Nippon 

Biomedical Laboratories (SNBL) (Ma 2014). 

 

Cytokine Assay: The serum concentrations of IL-2, 4, 5, 6, TNF, and IFN-γ were analyzed 

with CBA (Cytometoric Beads Array) Nonhuman Primate Th1/Th2 Cytokine Kit (BD 

Biosciences) using flow cytometer (FACSCalibur, BD Biosciences). 
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Histopathological determinations 

All recipient monkeys were subjected to complete gross necropsies. Routine hematoxylin and 

eosin staining were performed on all paraffin-embedded samples sections including graft 

kidney, liver, pancreas, spleen, heart, lung, stomach, jejunum, thoracic aorta, and mesentery 

lymph nodes. Graft kidney tissues were stained with Masson’s Trichrome and Periodic acid–

Schiff (PAS) as well. The Banff 97 classification of kidney pathology was used for scoring 

the presence and degree of renal rejection (Racusen 1999). 

 

Statistical analysis  

All results of body weight, biochemistry analyses, and drug concentrations were presented as 

mean ± SD. The statistical differences among groups were analyzed using one-way analysis 

of variance. Survival of renal allograft was presented as MST, with comparisons among 

groups performed by log rank test. A p value < 0.05 was considered statistically significant. 
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Supplemental Digital Content (SDC) 

Table S2.1  Mean (SD) serum alanine aminotransferase (U/L) in each group 

Group 
Postoperative Time (Days) 

0 7 14 28 56 84 112 140 168 
Group 1 20.0 (9.6) 84.0 (123.1) 15.0             

Group 2 32.5 (14.1) 53.8  (59.2) 20.0 (1.4) 22.0 
    

  

Group 3 52.6 (29.2) 32.8  (16.6) 33.8 (14.5) 30.0 (10.6) 34.3 (5.7) 45.5 (36.1) 53.0 33.0 29.0 

Group 4 32.3 (10.9) 15.0  (4.2) 19.2 (3.4) 22.8 (15.8) 31.0 (12.5) 30.7 (11.7) 26.3 (3.5) 61.5 (48.8) 28.5 (0.7) 

Group 5 54.8 (37.0) 62.4  (66.6) 35.4 (18.0) 27.3 (5.6) 41.7 (20.0) 60.0 38.0 35.0 31.0 

Group 6 54.3 (18.5) 36.9  (13.5) 42.0 (12.2) 41.0 (11.0) 37.0 (11.0) 37.5 (7.6) 67.0 56.0 54.0 

Group 7 70.7 (11.8) 36.5  (12.1) 46.8 (13.5) 48.8 (39.6) 
    

  

Group 8 60.6 (7.9) 54.6  (19.1) 68.6 (22.3) 52.8 (23.5) 57.0 (31.0) 34.7 (7.4) 32.3 (9.6) 31.0 34.0 

Group 9 93.6 (42.8) 43.6  (18.6) 44.6 (17.5) 37.6 (10.2) 43.8 (17.5) 55.5 (11.0) 50.8 (17.1) 51.0 (13.7) 43.3 (13.8) 

Group 10 64.5 (47.6) 33.3  (11.0) 26.8 (3.8) 20.8 (9.7) 39.0 41.0 49.0 77.0 128.0 

Group 11 44.4 (13.9) 32.0  (9.5) 33.5 (17.4) 26.8 (9.1) 28.6 (7.9) 27.0 (8.7) 29.1 (9.1) 33.8 (8.8) 48.8 (22.8) 

Group 12 57.7 (63.7) 36.4  (15.5) 30.1 (12.3) 45.4 (45.4) 30.8 (6.9) 46.2 (41.6) 31.2 (11.8) 34.0 (9.5) 46.3 (11.7) 
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Table S2.2  Mean (SD) serum aspartate aminotransferase (U/L) in each group 

Group 
Postoperative Time (Days) 

0 7 14 28 56 84 112 140 168 
Group 1 41.7 (4.5) 24.0 (20.9) 25.0             

Group 2 40.0 (6.2) 72.0 (70.6) 36.0 (0.0) 38.0 
    

  

Group 3 51.8 (20.7) 37.8 (9.1) 30.4 (10.0) 33.0 (12.0) 34.8 (5.1) 28.0 (5.7) 37.0 29.0 53.0 

Group 4 48.0 (16.9) 46.7 (29.6) 32.0 (4.6) 37.3 (8.1) 46.0 (5.6) 47.7 (5.5) 34.0 (5.3) 96.0 (69.3) 42.0 (1.4) 

Group 5 67.2 (27.4) 102.0 (117.0) 41.8 (17.7) 34.3 (1.7) 40.7 (10.7) 54.0 33.0 49.0 71.0 

Group 6 82.7 (47.4) 62.0 (37.4) 48.9 (16.1) 42.6 (6.4) 47.5 (20.3) 59.0 (53.7) 33.0 32.0 36.0 

Group 7 124.2 (61.4) 65.8 (31.4) 63.0 (19.8) 79.4 (72.7) 
    

  

Group 8 114.6 (11.7) 70.0 (10.7) 122.2 (55.1) 56.0 (24.8) 77.8 (47.6) 40.3 (7.0) 41.0 (12.5) 63.0 61.0 

Group 9 112.8 (39.2) 59.0 (11.7) 66.8 (28.6) 38.4 (7.8) 50.8 (17.2) 48.8 (23.5) 44.3 (11.2) 52.0 (7.9) 40.0 (11.8) 

Group 10 79.8 (46.6) 36.8 (3.8) 30.5 (3.6) 29.0 (6.6) 36.0 35.0 42.0 65.0 106.0 

Group 11 45.1 (6.8) 30.3 (4.5) 32.4 (11.0) 30.9 (8.4) 30.4 (4.1) 32.9 (4.7) 30.0 (6.7) 44.7 (6.9) 54.3 (9.8) 

Group 12 50.9 (19.9) 43.3 (12.4) 38.4 (17.7) 55.1 (31.5) 35.6 (8.1) 35.8 (10.8) 39.2 (12.2) 44.8 (5.3) 55.3 (13.7) 
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Table S2.3  Mean (SD) serum albumin (g/L) in each group 

Group 
Postoperative Time (Days) 

0 7 14 28 56 84 112 140 168 
Group 1 28.7 (1.2) 21.3 (3.8) 28.0             

Group 2 35.2 (3.7) 25.7 (4.3) 26.5 (10.6) 28.0 
    

  

Group 3 35.4 (3.1) 27.4 (2.6) 31.2 (4.6) 31.2 (3.9) 25.5 (4.8) 23.0 (4.1) 30.0 31.0 37.0 

Group 4 32.2 (4.2) 24.3 (4.7) 27.8 (5.0) 29.0 (7.4) 27.0 (7.6) 30.3 (8.6) 29.3 (7.2) 20.0 (7.1) 32.0 (5.7) 

Group 5 33.4 (3.0) 26.8 (6.1) 29.0 (4.8) 30.8 (4.1) 25.7 (6.8) 28.0 25.0 18.0 11.0 

Group 6 31.7 (3.0) 26.4 (2.4) 28.3 (4.5) 27.9 (4.0) 28.3 (5.7) 28.5 (10.6) 40.0 33.0 28.0 

Group 7 35.0 (3.7) 23.0 (3.0) 24.5 (3.3) 19.8 (2.7) 
    

  

Group 8 32.6 (0.9) 22.8 (2.6) 23.2 (2.8) 24.6 (2.5) 24.8 (4.5) 25.3 (0.6) 21.0 (2.6) 15.0 11.0 

Group 9 33.0 (1.0) 22.4 (3.8) 17.8 (5.0) 21.6 (7.4) 17.5 (5.4) 21.0 (3.2) 19.3 (1.9) 21.7 (2.1) 20.3 (2.9) 

Group 10 35.5 (5.2) 22.3 (5.2) 22.8 (4.3) 21.5 (4.5) 27.0 29.0 26.0 27.0 27.0 

Group 11 37.4 (7.1) 24.1 (3.8) 26.4 (3.5) 31.5 (6.7) 28.4 (2.6) 28.9 (2.3) 28.3 (4.3) 30.0 (5.3) 25.3 (5.8) 

Group 12 37.4 (4.0) 24.0 (3.1) 25.3 (3.1) 29.4 (2.5) 24.4 (3.8) 25.6 (4.3) 25.2 (2.2) 24.0 (2.3) 25.5 (3.9) 
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Table S2.4  Mean (SD) serum creatine kinase (U/L) in each group 

Group 
Postoperative Time (Days) 

0 7 14 28 56 84 112 140 168 
Group 1 106.7 (75.7) 197.3 (274.3) 45.0             

Group 2 293.5 (292.3) 73.2 (60.5) 48.5 (13.4) 90.0 
    

  

Group 3 194.8 (146.8) 53.6 (11.8) 72.4 (18.0) 97.4 (12.4) 143.3 (36.2) 90.5 (17.7) 289.0 110.0 553.0 

Group 4 354.0 (640.0) 408.2 (915.1) 81.0 (27.0) 100.8 (90.4) 113.0 (29.3) 90.0 (14.2) 93.0 (24.3) 692.0 (790.5) 126.0 (14.1) 

Group 5 144.6 (66.7) 49.8 (14.2) 82.2 (32.2) 146.8 (104.9) 87.0 (23.5) 111.0 85.0 98.0 153.0 

Group 6 669.0 (599.3) 68.6 (29.4) 92.7 (28.1) 93.9 (37.2) 352.0 (381.1) 196.0 (166.9) 150.0 117.0 109.0 

Group 7 1326.7 (1114.3) 305.3 (270.2) 351.5 (302.4) 199.6 (82.4) 
    

  

Group 8 843.6 (492.3) 332.4 (393.4) 571.6 (392.9) 365.4 (303.3) 337.3 (154.0) 135.3 (116.7) 101.0 (35.1) 400.0 1205.0 

Group 9 650.4 (426.5) 210.2 (159.7) 268.4 (146.6) 123.2 (30.2) 197.0 (205.8) 140.8 (63.5) 525.0 (529.3) 85.3 (12.7) 132.7 (88.7) 

Group 10 481.5 (800.4) 56.5 (23.0) 70.0 (32.2) 79.3 (29.8) 110.0 68.0 81.0 63.0 68.0 

Group 11 158.8 (64.1) 75.5 (55.9) 73.6 (41.3) 75.4 (36.3) 123.3 (100.5) 93.8 (41.2) 118.1 (96.8) 98.8 (53.8) 106.5 (32.2) 

Group 12 390.4 (676.9) 82.4 (53.7) 207.0 (367.8) 125.7 (69.0) 103.8 (76.8) 94.4 (49.8) 130.8 (117.1) 86.0 (40.7) 106.8 (52.3) 
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Table S2.5  Mean (SD) serum potassium (mmol/L) in each group 

Group 
Postoperative Time (Days) 

0 7 14 28 56 84 112 140 168 
Group 1 5.2 (0.9) 6.4 (2.3) 5.6             

Group 2 5.3 (0.8) 6.7 (1.0) 5.8 (1.1) 5.5 
    

  

Group 3 5.6 (1.2) 5.6 (1.0) 5.4 (0.7) 5.2 (0.8) 6.0 (2.3) 5.1 (0.6) 5.6 5.6 7.6 

Group 4 5.6 (0.6) 5.8 (0.4) 6.0 (1.1) 5.5 (1.2) 6.2 (1.7) 6.3 (1.2) 6.4 (1.0) 6.7 (0.8) 7.4 (0.2) 

Group 5 5.3 (1.0) 5.8 (0.8) 5.5 (1.7) 5.4 (0.8) 7.9 (4.8) 5.6 4.2 6.6 7.4 

Group 6 4.9 (0.8) 6.1 (0.5) 6.4 (1.3) 6.1 (1.3) 5.6 (0.9) 8.1 (2.5) 5.6 5.4 6.8 

Group 7 6.0 (0.8) 6.1 (0.5) 5.5 (0.6) 7.5 (1.0) 
    

  

Group 8 4.8 (0.6) 5.5 (0.4) 6.0 (0.8) 5.6 (1.2) 5.3 (0.7) 5.8 (0.6) 6.3 (1.3) 6.3 5.8 

Group 9 5.3 (1.0) 5.5 (1.0) 5.6 (0.6) 4.7 (0.5) 5.0 (0.5) 6.0 (0.9) 5.9 (1.2) 6.5 (0.8) 6.5 (2.1) 

Group 10 7.9 (1.3) 6.3 (1.5) 6.0 (0.6) 6.7 (0.8) 5.9 5.9 5.2 6.7 12.1 

Group 11 6.8 (1.2) 5.1 (0.6) 5.3 (0.8) 5.3 (0.5) 5.5 (0.4) 5.5 (0.8) 5.4 (0.9) 5.9 (0.9) 6.1 (1.6) 

Group 12 7.5 (0.8) 9.6 (3.4) 5.5 (1.4) 6.1 (0.9) 5.7 (0.6) 5.6 (1.1) 5.5 (1.0) 5.5 (1.1) 5.8 (1.1) 
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Table S2.6  Mean (SD) serum sodium (mmol/L) in each group 

Group 
Postoperative Time (Days) 

0 7 14 28 56 84 112 140 168 
Group 1 153.9 (16.5) 135.3 (8.9) 140.2             

Group 2 148.1 (1.9) 143.3 (6.3) 141.6 (8.7) 143.6 
    

  

Group 3 151.0 (8.9) 145.9 (1.9) 149.1 (3.0) 147.7 (2.8) 144.0 (4.2) 139.8 (3.8) 143.1 144.2 146.7 

Group 4 146.7 (4.9) 150.5 (5.9) 155.5 (14.7) 147.3 (6.5) 157.7 (6.4) 147.0 (2.9) 151.3 (6.3) 138.9 (3.2) 147.7 (1.9) 

Group 5 167.7 (4.1) 147.7 (4.1) 146.2 (3.7) 145.0 (2.6) 142.2 (5.0) 146.5 149.5 149.3 145.5 

Group 6 158.6 (10.8) 146.3 (3.4) 148.6 (6.1) 145.8 (8.7) 144.6 (7.3) 138.2 (10.7) 147.2 149.4 144.7 

Group 7 163.3 (11.0) 145.4 (2.9) 146.5 (3.4) 136.0 (6.3) 
    

  

Group 8 166.6 (2.3) 152.1 (1.7) 149.3 (4.6) 147.5 (1.4) 146.0 (2.0) 149.3 (0.8) 147.1 (6.1) 139.7 142.5 

Group 9 168.9 (6.8) 148.1 (3.2) 146.9 (3.9) 145.8 (3.6) 144.8 (3.9) 145.1 (3.2) 145.7 (4.0) 147.2 (4.3) 142.3 (4.5) 

Group 10 174.2 (17.2) 150.5 (3.1) 152.7 (4.8) 143.0 (9.6) 151.9 144.0 154.4 151.1 150.1 

Group 11 169.1 (18.9) 151.1 (7.0) 146.4 (6.7) 146.4 (3.0) 151.2 (2.8) 143.9 (3.1) 146.2 (4.2) 145.4 (4.3) 147.3 (2.8) 

Group 12 175.0 (15.0) 165.8 (23.2) 142.5 (24.0) 147.8 (3.2) 147.0 (2.0) 144.2 (6.9) 146.0 (6.1) 139.8 (13.8) 152.6 (3.0) 
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Table S2.7  Mean (SD) serum chloridion (mmol/L) in each group 

Group 
Postoperative Time (Days) 

0 7 14 28 56 84 112 140 168 
Group 1 109.4 (2.3) 99.0 (10.9) 100.9             

Group 2 110.9 (3.5) 100.3 (8.9) 102.8 (13.4) 111.8 
    

  

Group 3 110.1 (3.1) 104.3 (2.6) 108.5 (3.6) 108.1 (4.8) 104.9 (7.6) 106.5 (1.9) 101.1 103.7 103.7 

Group 4 108.4 (2.5) 105.8 (2.6) 109.7 (12.1) 106.3 (5.7) 114.5 (4.6) 109.2 (5.3) 109.3 (6.3)  97.0 (2.0) 100.0 (3.0) 

Group 5 111.5 (3.9) 105.0 (1.1) 104.3 (2.3) 105.3 (2.2) 101.6 (4.4) 109.3 108.7 107.3 106.3 

Group 6 112.5 (4.9) 107.3 (4.1) 107.2 (4.8) 103.4 (13.5) 101.4 (11.1) 104.6 (7.8) 105.0 109.0 107.8 

Group 7 117.8 (3.1) 103.3 (2.9) 103.2 (4.0) 96.4 (6.5) 
    

  

Group 8 114.5 (2.0) 106.4 (0.7) 106.2 (1.5) 105.4 (1.2) 106.0 (1.4) 107.6 (2.7) 106.9 (3.3) 102.8 112.1 

Group 9 115.7 (3.0) 105.1 (3.1) 105.3 (4.4) 104.5 (5.5) 104.1 (2.2) 106.4 (4.8) 108.6 (2.4) 111.3 (0.5) 109.7 (2.9) 

Group 10 129.2 (14.1) 105.3 (5.6) 109.2 (2.6) 105.7 (11.1) 106.4 104.3 109.8 105.4 106.2 

Group 11 122.7 (13.7) 107.7 (6.9) 108.9 (7.4) 108.1 (2.0) 110.0 (2.5) 110.6 (4.4) 108.2 (4.1) 104.6 (3.6) 105.4 (2.6) 

Group 12 128.3 (11.0) 121.6 (17.9) 103.1 (12.1) 110.0 (4.3) 111.0 (2.9) 111.2 (2.5) 108.4 (2.6) 100.7 (11.6) 108.7 (1.4) 
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Table S2.8  Mean (SD) serum alkaline phosphatase (U/L) in each group 

Group 
Postoperative Time (Days) 

0 7 14 28 56 84 112 140 168 
Group 1 217.7 (60.5) 194.3 (30.2) 230.0             

Group 2 239.7 (79.2) 214.5 (67.2) 316.5 (164.8) 345.0 
    

  

Group 3 229.0 (37.2) 191.8 (34.5) 239.6 (48.0) 280.6 (138.3) 202.3 (48.0) 149.0 (67.9) 203.0 248.0 209.0 

Group 4 257.8 (107.2) 203.0 (59.2) 231.6 (48.4) 191.5 (66.4) 234.5 (62.6) 216.0 (34.4) 163.3 (43.8) 394.5 (320.3) 177.0 (45.3) 

Group 5 277.2 (88.2) 284.4 (156.4) 286.2 (133.2) 421.5 (145.3) 256.0 (41.6) 212.0 172.0 132.0 162.0 

Group 6 225.0 (64.6) 192.9 (41.3) 247.6 (115.1) 281.4 (108.6) 164.5 (39.5) 217.5 (16.3) 238.0 153.0 205.0 

Group 7 207.8 (68.7) 195.7 (52.2) 184.5 (32.9) 267.0 (135.9) 
    

  

Group 8 235.8 (65.5) 191.0 (51.9) 216.0 (74.3) 296.6 (94.0) 190.3 (33.2) 153.3 (32.9) 126.3 (4.5) 89.0 194.0 

Group 9 308.2 (105.4) 254.8 (82.7) 320.6 (89.1) 369.8 (138.1) 382.8 (199.5) 251.5 (92.2) 184.8 (42.9) 134.3 (54.6) 208.7 (86.2) 

Group 10 208.8 (90.8) 246.8 (96.0) 263.3 (116.7) 215.5 (101.5) 77.0 65.0 74.0 86.0 85.0 

Group 11 353.0 (163.4) 284.6 (124.8) 295.5 (165.9) 343.8 (182.5) 306.0 (300.9) 203.9 (129.5) 327.7 (141.1) 274.8 (53.7) 198.8 (59.7) 

Group 12 302.9 (99.3) 278.4 (53.7) 288.9 (86.1) 305.3 (92.6) 167.8 (38.8) 122.2 (31.5) 229.6 (94.5) 212.0 (98.0) 204.8 (52.4) 
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Chapter 3  

 

ASP2409, a Next-Generation CTLA4-Ig, Versus 

Belatacept in Renal Allograft Survival in Cynomolgus 

Monkeys 
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Summary: This paper is mainly focused on exploring the effects of ASP2409, the first CD-

86 selective variant of CTLA4-Ig, on preventing acute kidney transplant rejection and 

promoting renal allograft acceptance in nonhuman primates. At same time, the influence of 

ASP2409 in the frequency of FoxP3+ Tregs in renal allografts, the PK and PD of ASP2409 in 

transplanted monkey, and the side effects of ASP2409 were studied. 
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Abbreviations: +, positive; A0.3, low-dose ASP2409 monotherapy; A0.3MP, low-dose 

ASP2409 combined with mycophenolate mofetil and pridol (methylprednisolone); A0.3T1.0, 

low-dose ASP2409 combined with subtherapeutic-dose tacrolimus; A1.0, high-dose ASP2409 

monotherapy; A1.0MP, high-dose ASP2409 combined with mycophenolate mofetil and 

pridol; A1.0T0.5, high-dose ASP2409 combined with very low-dose tacrolimus; A1.0T1.0, 

high-dose ASP2409 combined with subtherapeutic-dose tacrolimus; AMMS, Academy of 

Military Medical Sciences; APC, antigen-presenting cell; AR, acute rejection; BLOQ, below 

the lower limit of quantification; BMP, belatacept combined with mycophenolate mofetil and 

pridol; BUN, blood urea nitrogen; CAN, chronic allograft nephropathy; ci, interstitial fibrosis; 

CNI, calcineurin inhibitor; CTLA4-Ig, cytotoxic T-lymphocyte associated protein 4-

immunoglobulin; ct, tubular atrophy; cum, cumulative; cv, fibrous intimal thickening; DAPI, 

40,6-diamidino-2-phenylindole; FITC, fluorescein isothiocyanate; i, interstitial inflammation; 

MFI, mean fluorescence intensity; MMF, mycophenolate mofetil; MPA, mycophenolic acid; 

MST, median survival time; NR, no rejection; PE, phycoerythrin; PK, pharmacokinetic; POD, 

posttransplant day; PTLD, posttransplant lymphoproliferative disorder; sCr, serum creatinine; 

T0.5, very low-dose tacrolimus monotherapy; T1.0, subtherapeutic-dose tacrolimus 

monotherapy; T2.0MP, therapeuticdose tacrolimus combined with mycophenolate mofetil 

and pridol; Treg, regulatory T cell 
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Abstract 
Belatacept is the first costimulatory blockade agent approved for maintenance 

immunosuppression in kidney transplant recipients. Clinical results have indicated that 

belatacept is associated with superior renal function and improved metabolic profile. However, 

higher incidence of acute rejection and PTLD are the shortcomings of this agent. In this study, 

ASP2409, a new CTLA4-Ig possessing 14-fold higher in vitro CD86 binding affinity than 

belatacept, was tested for renal allograft survival in cynomolgus monkeys. ASP2409 

monotherapy dose-dependently prolonged renal allograft survival. Low-dose ASP2409 in 

combination with a sub-therapeutic dose of tacrolimus showed much longer MST than 

monotherapy. Similar allograft survival results were observed in high-dose ASP2409-, 

belatacept- and therapeutic dose tacrolimus-based regimens. The results of renal allograft 

histopathology of high-dose ASP2409-based regimens were not inferior to the belatacept-

based regimen. Moreover, higher frequencies of FoxP3+ Tregs in renal allografts were 

observed in ASP2409- and belatacept-based regimens compared to tacrolimus-based 

regimens. There were no serious side effects related to ASP2409 administration to be found 

during the study. The present data suggest that ASP2409 is a promising candidate for CNI 

sparing or avoidance regimens. 
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Introduction 

Organ transplantation opened a new era in the history of treatment of end-stage organ failure. 

Currently, rejection is still the major obstacle to success because most organ transplantations 

are carried out between genetically distinct individuals. T cells are the crucial mediators and 

controllers in graft rejection induced by histoincompatible alloantigens (Ingulli 2010). It is 

known that full T cell activation requires several collaborative but distinct signals. In addition 

to the triggered signal generated by the interaction between T cell receptor (TCR) and major 

histocompatibility complex (MHC)-bound peptide, costimulatory signals are also essential for 

T cells to be efficiently activated. In absence of these signals, T cells will enter a state of 

proliferative nonresponsiveness and undergo apoptosis (Jenkins 1987; Jenkins 1988; 

Frauwirth 2002). 

 

Currently, numerous costimulatory molecules have been identified. Unlike the targets of 

conventional immunosuppressants, these molecules are largely limited to T cells and/or 

antigen-presenting cells. Targeting costimulatory pathways offers the potential for selective 

inhibition of alloimmune response. CD28–CD80 (B7-1)/CD86 (B7-2) is one of the well 

characterized costimulatory receptor/ligand pairs. CD28 signals amplify TCR-induced 

signaling events, promote IL-2 production (June 1989), mediate T cells to enter the cell cycle 

(Appleman 2000), increase the generation of cytokines and chemokines (Thompson 1989), 

control regulatory T cell (Treg) homeostasis (Salomon 2000) and reinforce resistance to 

apoptosis (Sperling 1996). 
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Blocking the CD28–CD80/CD86 pathway with CTLA4-Ig has been demonstrated to 

successfully prevent allograft rejection. Belatacept, a high affinity variant of CTLA4-Ig, has 

been approved for clinical use in renal transplantation recipients. Compared to cyclosporine-

based regimen, belatacept-based regimens exhibited similar patient/graft survival, superior 

renal function, and improved metabolic profile (Vincenti 2005). However, belatacept was 

found to be associated with higher rates and grades of acute rejection. In addition, post-

transplant lymphoproliferative disorder (PTLD) was observed more frequently in belatacept-

treated patients (Vincenti 2010; Vincenti 2012). 

 

ASP2409 is a fusion protein recombining the modified extracellular portion of human CTLA4 

with the wild-type fragment crystallizable (Fc) region of human IgG2. This compound is 

created through directed evolution using DNA shuffling techniques. Compared with wild-type 

CTLA4-Ig, there are total 10 amino acid mutations (A24E, A50M, G55E, I65S, L104E, 

N56D, S64P, S70F, T30N, V32I) within the protein structure of ASP2409. Thus this novel 

CTLA4-Ig variant has binding affinity to human CD80 and CD86 with KD values of 64.2 pM 

and 30.0 pM, respectively. That means ASP2409 possesses approximately 14-fold higher 

CD86 binding affinity compared to belatacept, whereas the CD80 binding affinity of 

belatacept is 1.8-fold higher than that of ASP2409. Of note, previous CTLA4-Igs including 

belatacept are all selective for CD80 binding. ASP2409 is a CD86-selective CTLA4-Ig with 

2.1-fold higher binding affinity for CD86 than that for CD80 (Oshima 2016a). 

 

This study evaluated the effects of ASP2409 on renal allograft survival in nonhuman primates. 

We found that ASP2409, monotherapy and in combination with sub-therapeutic dose 
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tacrolimus or mycophenolate mofetil (MMF), significantly prolonged allograft survival. 

High-dose ASP2409-based regimens showed similar allograft survival results compared with 

the belatacept-based regimen and the therapeutic dose tacrolimus-based regimen, and non-

inferior histopathological results compared to the belatacept-based regimen. 

 

Materials and Methods 

Animals  

This study utilized specific pathogen (hepatitis B virus, hepatitis C virus, simian 

immunodeficiency virus, and Herpes B virus) free, 3.3 to 6.3 kg male cynomolgus monkeys, 

obtained from Laboratory Animals Center of the Academy of Military Medical Sciences 

(AMMS), Beijing, China. All experimental procedures were approved by the Ethical 

Committee for Animal Experimentation at Laboratory Animals Center of the AMMS, and 

were performed in accordance with the Guide for the Care and Use of Laboratory Animals. 

The recipient and donor pairs chosen were ABO antigen compatible with a stimulation index 

of 2.5 or higher in a one-way mixed lymphocyte reaction, as previously described (Ma 2014).  

 

Life supporting kidney transplantation  

Heterotopic renal transplantations were performed as described previously (Song 2010; Chen 

2000). Briefly, each animal in this study acted as both donor and recipient. Monkeys were 

anesthetized by intramuscular injection of ketamine and xylazine and a midline incision was 

made to open the abdominal cavity. The left kidney and ureter were removed en bloc and 

exchanged between paired monkeys. The allograft then was implanted 2–4 cm distal on the 

left native kidney by end-to-side anastomoses of renal artery to aorta and renal vein to vena 
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cava, and end-to-end anastomosis of donor and recipient ureters. The right native kidney was 

removed after the transplanted kidney was reperfused. 

 

Experimental group and treatment  

Animals were divided into twelve groups as shown in Table 3.1: i.e., no-treatment control, 

low-dose ASP2409 monotherapy (A0.3), high-dose ASP2409 monotherapy (A1.0), very-low-

dose tacrolimus monotherapy (T0.5), sub-therapeutic dose tacrolimus monotherapy (T1.0), 

low-dose ASP2409 combined with sub-therapeutic dose tacrolimus (A0.3T1.0), high-dose 

ASP2409 combined with very-low-dose tacrolimus (A1.0T0.5), high-dose ASP2409 

combined with sub-therapeutic dose tacrolimus (A1.0T1.0), low-dose ASP2409 combined 

with MMF and pridol (methylprednisolone) (A0.3MP), high-dose ASP2409 combined with 

MMF and pridol (A1.0MP), belatacept combined with MMF and pridol (BMP), therapeutic 

dose tacrolimus combined with MMF and pridol (T2.0MP). ASP2409 was provided by 

Astellas. All procedures for generation and production of ASP2409 were performed under the 

control of Perseid Therapeutics (Redwood city, CA). ASP2409 was administered 

subcutaneously at doses of 0.3 mg/kg or 1 mg/kg (0.2 mL/kg) on post-transplantation days 

(PODs) 0, 4, 7, then weekly to day 84. Tacrolimus (Astellas) was orally administered 

immediately after kidney transplantation, then once daily, until day 90. MMF (Hoffmann-La 

Roche Ltd.) 15 mg/kg was given subcutaneously twice daily from PODs 0 to 14, and then 

once daily until day 90. Pridol (Alfresa Pharma Corporation) was administered 

subcutaneously once a day in a tapering manner from PODs 0 to 90. Belatacept (Bristol-

Myers Squibb) was administered subcutaneously 5 mg/kg on PODs 0, 4, 7, and then once 

weekly to day 84. Study period was determined as 91 days. 
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Biochemical and hematological determinations  

Serum creatinine (sCr) and blood urea nitrogen (BUN) were monitored to determine renal 

function. Other biochemical parameters including total protein, glucose, amylase, cholesterol, 

triglyceride, lactate dehydrogenase, albumin, alkaline phosphatase, alanine aminotransferase, 

aspartate aminotransferase, total bilirubin, and creatine kinase were measured using the auto 

analyzer (Beckman Synchron CX5 Pro, Beckman Coulter Inc.). 

 

Hematological parameters, red blood cell, white blood cell, lymphocyte counts and 

differential, hemoglobin, hematocrit, and platelet counts were examined in peripheral blood 

samples using the automated hematology analyzer.  

 

Pharmacokinetic (PK) evaluation 

Serial serum samples were collected before drug administration on days 0, 7, 14, 21, 28, 35, 

42, 49, 56, 63, 70, 77, 84,  and on days 16, 30, 58, 86, 91 to measure ASP2409 and belatacept 

levels.  To measure tacrolimus levels, whole blood samples were taken before drug 

administration on days 0, 7, 14, 28, 56, 84, and 1 hr after drug administration on days 14, 28, 

56, 84. The plasma mycophenolic acid (MPA) levels were determined on days 0, 7, 14, 28, 56, 

and 84 before drug administration, and on days 14, 28, 56, and 84 at 1 h after drug 

administration. 
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Anti-ASP2409 antibody  

Monkey anti-ASP2409 antibodies were detected with electrochemiluminescent (ECL) 

immunoassay at PPD (VA, USA) under the control of Shin Nippon Biomedical (SNBL: 

Kagoshima, Japan). The sampling schedule was same as PK evaluation for ASP2409. 

 

Pharmacodynamics (PD) evaluation 

The following monoclonal antibodies (mAbs) were used in PD evaluation: FITC mouse anti-

human CD80 Clone: L307.4 (BD 557226), PE mouse anti-human CD86 Clone: 2331 (FUN-1) 

(BD 557344), APC mouse anti-human HLA-DR Clone: L243 (G46-6) (BD 559866), APC 

anti-CD14 antibody Clone: TÜK4 (MACS 130-091-243), FITC mouse IgG1, κ Isotype 

control Clone: MOPC-21 (BD 555748), PE mouse IgG1, κ Isotype control Clone: MOPC-21 

(BD 556650). 

 

A 1 mL of heparin anticoagulation blood was drawn from each monkey with same sampling 

schedule as PK evaluation for ASP2409. The CD80 receptor occupancy on MHC-DR positive 

cells and CD86 receptor occupancy on CD14 positive cells were evaluated using binding 

competition assay with commoditized CD80/CD86 mAbs to detect the mean fluorescence 

intensity (MFI) of the CD80/86-bound antibody with flow cytometry. The occupancy rate was 

calculated using the following formula: Occupancy rate (%) = ([ΔMFI before treatment] - 

[ΔMFI at each time point] / [ΔMFI before treatment]) × 100, (ΔMFI = MFI - MFI control). 

 

Detection of regulatory T cells by immunohistochemical staining assay in paraffin 

embedded sections of renal allografts 
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The infiltration of CD3+FoxP3+ and CD3+ T cells were examined by immunohistochemistry 

assay on kidney allograft paraffin sections in monkeys that survived till the end of study, and 

on normal kidneys that had no any therapy and transplantation. 

 

FoxP3 has been reported to be transiently expressed by activated nonregulatory T cells (Wang 

2007). High infiltration of FoxP3+ cells was observed in samples from kidney allograft with 

acute cellular rejection (Veronese 2007). Besides of Tregs, these intragraft FoxP3+ cells can 

also be activated effector T cells. To minimize the influence of this factor, the staining assay 

in this study was conducted in renal grafts that pathological diagnoses were not acute 

rejection. 

       

Histopathological determinations 

All recipient monkeys were subjected to complete gross necropsies. Routine hematoxylin and 

eosin staining were performed on all paraffin-embedded sample sections including kidney 

graft, liver, pancreas, spleen, heart, lung, stomach, jejunum, thoracic aorta, and mesentery 

lymph nodes. Kidney graft sections were stained with Masson’s Trichrome and Periodic 

Acid-Schiff (PAS) as well. The Banff 97 classification was used for scoring the presence and 

degree of renal rejection (Racusen 1999). 

 

Statistical analysis  

In this study, all analyses were conducted using SPSS 13. All laboratory assay data including 

the percentage of CD3+FoxP3+ T cells in renal allografts were analyzed by running post hoc 

tests. Renal allograft survival was presented as median survival time (MST), with 
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comparisons among groups performed by log rank test. A p value less than 0.05 was 

considered statistically significant. 

 

Results 

Renal allograft survival   

Renal allograft survival day was recorded according to the following definitions: 1) The final 

day that the sCr level did not exceed a value of 10 mg/dL; 2) The day when significant 

asthenia had been observed; 3) A day before the finding of death; 4) Animal that survived to 

the end of study period was described as >91 days. As shown in Table 3.1 and Figure 3.1C, 

the MSTs were 5 days for the no-treatment control group, 26 days for the low-dose ASP2409 

monotherapy group, >91 days for the high-dose ASP2409 monotherapy group, 7 days for the 

very-low-dose tacrolimus monotherapy group, 38.5 days for the sub-therapeutic dose  

tacrolimus monotherapy group, 47 days for the high-dose ASP2409 combined with very-low-

dose tacrolimus group, >91 days for the low-dose ASP2409 combined with sub-therapeutic 

dose tacrolimus group, >91 days for the high-dose ASP2409 combined with sub-therapeutic 

dose tacrolimus group, 42 days for the low-dose ASP2409 combined with MMF and pridol 

group, >91 days for the high-dose ASP2409 combined with MMF and pridol group, >91 days 

for the belatacept combined with MMF and pridol group, and >91 days for the therapeutic 

dose tacrolimus combined with MMF and pridol group. Compared with no-treatment control 

group, the MSTs of all treatment groups except T0.5 group were significantly prolonged (p = 

0.0082, 0.0003, 0.0566, 0.0013, 0.0006, 0.0003, 0.0001, 0.0001, 0.0001, 0.0003, 0.0001, 

respectively). Increasing ASP2409 dosage from 0.3 mg/kg to 1 mg/kg, the allograft survival 

times in ASP2409 monotherapy groups were dramatically increased (MST, 26 days vs. >91 
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Table 3.1  Renal Allograft Survival and Histopathological Evaluation  
 

Group Therapeutics Number MST 
Individual Graft Survival Time (days) 

Renal Allograft Pathology at Necropsy (Banff 1997) 

Control No Treatment 6 5 5 5 5 5 7 7   
AR III AR IIB AR III AR IB AR IIA AR III 

A0.3 ASP2409 0.3 mg/kg 8 26* 5 5 10 17 35 36 44 49 
AR IIA AR IIA AR IIA AR III AR IA AR IIA AR IIA/CAN Ib AR IIA/CAN Ib 

A1.0 ASP2409 1 mg/kg 7 >91* 17 35 46 >91 >91 >91 >91   
AR IA AR IIA/CAN Ib CAN Ia CAN IIIa CAN Ib CAN Ia CAN IIa 

T0.5 Tacrolimus 0.5 mg/kg 8 7 5 5 7 7 7 16 17 42 
AR III AR IIA AR III AR IIA AR III CAN Ia AR IA AR IIA/CAN Ib 

T1.0 Tacrolimus 1 mg/kg 8 38.5* 7 7 24 32 45 45 >91 >91 
AR IIA AR III AR III CAN Ia CAN Ia CAN Ia CAN Ib NR 

A1.0T0.5 ASP2409 1 mg/kg + 
Tacrolimus 0.5 mg/kg 6 47* 29 39 42 52 >91 >91   

CAN IIb CAN IIa CAN Ib CAN Ia CAN Ib NR 

A0.3T1.0 ASP2409 0.3 mg/kg + 
Tacrolimus 1 mg/kg 7 >91*#& 24 >91 >91 >91 >91 >91 >91   

CAN Ia NR NR NR CAN IIb CAN IIb CAN IIb 

A1.0T1.0 ASP2409 1 mg/kg + 
Tacrolimus 1 mg/kg 8 >91*& 68 85 >91 >91 >91 >91 >91 >91 

CAN Ia CAN Ia NR (ci1) NR NR CAN IIa NR (cv1) CAN Ia 

A0.3MP ASP2409 0.3 mg/kg +  
MMF 15 mg/kg + Pridol  8 42* 28 35 40 42 42 45 58 72 

AR IIA AR IIA AR IIA CAN Ib AR III AR IA AR IIA/CAN Ia AR IIA 

A1.0MP ASP2409 1 mg/kg +  
MMF 15 mg/kg + Pridol  8 >91* 34 64 70 >91 >91 >91 >91 >91 

NR (i1) CAN Ia AR IA/CAN Ib CAN Ib CAN Ia CAN Ia NR (i1/ci0/ct1) CAN Ia 

BMP Belatacept 5 mg/kg +  
MMF 15 mg/kg + Pridol  7 >91* 30 49 53 >91 >91 >91 >91   

AR IIA CAN Ib CAN Ia CAN Ia CAN Ib CAN Ia CAN IIa 

T2.0MP Tacrolimus 2 mg/kg +  
MMF 15 mg/kg + Pridol  8 >91* 51 >91 >91 >91 >91 >91 >91 >91 

CAN Ib NR (i1) CAN Ia CAN Ia NR NR NR (ct1) NR 

 
AR = acute rejection; CAN = chronic allograft nephropathy; ci = interstitial fibrosis; ct = tubular atrophy; cv = fibrous intimal thickening; i = interstitial inflammation; MST = median 
survival time; NR = no rejection.  
* p < 0.01 vs. no-treatment group, # p < 0.01 vs. A0.3 group, & p < 0.05 vs. T1.0 group.   anti-ASP2409 antibody was detected during the maintenance treatment period. 
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days, p = 0.0123). In terms of the 91-day observation period, ASP2409 (either in low-dose or 

high-dose) combined with sub-therapeutic tacrolimus, and high-dose ASP2409 in 

combination with MMF showed similar graft survival results with the belatacept-based 

regimen and the conventional therapeutic dose of tacrolimus-based regimen. 

 

Renal graft function 

Generally, rapid elevation of sCr and BUN levels implied the occurrence of acute graft 

rejection. The renal function parameters were relatively stable in long-term surviving 

monkeys (Figure 3.1A and 3.1B). 

 

Biochemistry   

There was no evidence that administration of ASP2409 affected serum liver enzymes, 

creatinine kinase, and other biochemical parameters.  

 

Hematological determinations 

Red blood cell counts, hemoglobin, and haematocrit decreased shortly after surgery in most 

groups. These parameters recovered and kept stable two weeks after surgery.  

 

Body weight and clinical symptoms 

Most of the monkey weights remained stable during the study. After recovery from surgery, 

all monkeys were very active with good appetites. However, when acute rejection occurred, 

animals became lethargic, lost appetite and weight, and developed oliguria which was 

accompanied by an increase of sCr. 
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Figure 3.1 Renal graft function and survival. A. Mean serum creatinine level in each group. The elevation of 

sCr level was consistent with the occurrence of acute allograft rejection. B. Mean blood urea nitrogen level in all 

groups. Changes of mean BUN levels were similar to sCr. C. Renal allograft survival in each group. (T0.5 = 
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tacrolimus 0.5 mg/kg, T1.0 = tacrolimus 1.0 mg/kg, T2.0 = tacrolimus 2.0 mg/kg, A0.3 = ASP2409 0.3 mg/kg, 

A1.0 = ASP2409 1.0 mg/kg, B = belatacept 5 mg/kg, M = mycophenolate mofetil 15 mg/kg, P = pridol). 

 

 

Pharmacokinetic evaluation 

Serum ASP2409 concentration: In general, serum concentrations of ASP2409 increased in a 

dose-dependent manner. During maintenance phase, the mean ASP2409 Ctrough values in low-

dose ASP2409 treated groups were from below the lower limit of quantification (BLOQ, 

<0.04 μg/mL) to 0.23 μg/mL, and the mean ASP2409 C2days values ranged from BLOQ to 

1.10 μg/mL. In contrast, the range of the mean ASP2409 Ctrough and ASP2409 C2days values in 

high-dose ASP2409 treated groups were 0.67–4.46 μg/mL and 3.48–10.80 μg/mL, 

respectively (Figure 3.2A). 

 

Serum belatacept concentration: The mean belatacept Ctrough values during maintenance 

phase ranged from 10.7 to 16.8 μg/mL. The mean belatacept C2days values on days 16, 30, 58, 

and 86 of dosing were 31.7, 29.3, 35.0, and 30.6 μg/mL, respectively (Figure 3.2B). 

 

Blood concentration of tacrolimus: The profiles of mean concentrations of tacrolimus are 

illustrated in Figure 3.2C. The whole blood tacrolimus concentrations increased in a dose-

related manner. The mean tacrolimus Ctrough values in 0.5 mg/kg, 1 mg/kg, and 2 mg/kg 

tacrolimus-treated groups were 2.87–13.09 ng/mL, 7.36–15.63 ng/mL, and 10.72–17.03 

ng/mL, respectively. The mean tacrolimus C1h values in 0.5 mg/kg, 1 mg/kg, and 2 mg/kg 

tacrolimus treated groups were 27.06–49.28 ng/mL, 36.64–51.05 ng/mL, and 41.55–82.99 

ng/mL, respectively.  
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Plasma concentration of mycophenolic acid: The mean plasma MPA levels are shown in 

Figure 3.2D. Generally the mean MPA Ctrough and C1h values in each group were similar. The 

mean MPA trough level fluctuated at the range of 0.54–2.60 μg/mL, and the mean MPA C1h 

values ranged from 4.13 to 10.98 μg/mL. 

 

Anti-ASP2409 antibody assay 

Monkey anti-ASP2409 antibodies were detected in 17 of 52 ASP2409 treated animals during 

the maintenance treatment period (Table 3.1). There were four cases in high-dose ASP2409 

treated groups (Two of each in groups A1.0T0.5 and A1.0MP). The remaining cases were all 

found in low-dose ASP2409 treated monkeys.  

 

Pharmacodynamics evaluation 

The CD80 and CD86 receptor occupancy by ASP2409 increased in a dose-dependent manner. 

The CD86 receptor occupancy rate reached an almost saturated state in all high-dose 

ASP2409 treated groups on POD 7, and remained stable in the maintenance phase.  The low-

dose ASP2409 treated groups showed slightly lower CD86 receptor occupancy rate than high-

dose ASP2409 treated groups on POD 7, but they dramatically decreased during the 

maintenance phase. The CD80 receptor occupancy by ASP2409 was relatively lower 

compared to CD86. The means of CD80 receptor occupancy in high-dose ASP2409 treated 

groups were higher than those of low-dose ASP2409 treated groups, especially during the 

maintenance phase. Compared to ASP2409, belatacept showed higher CD80 receptor 

occupancy and lower CD86 receptor occupancy (Figure 3.3A and 3.3B). 
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Figure 3.2 Pharmacokinetic evaluation. A. The mean serum concentration transitions of ASP2409 in each group. Serum concentrations of ASP2409 

increased in a dose-dependent manner. B. The mean serum concentration of belatacept. C. The mean whole blood tacrolimus trough levels and C1h increased 

in a dose-related manner. D. Mean plasma concentrations of mycophenolic acid. In general, plasma trough levels and C1h of MPA were similar in each group. 

(T0.5 = tacrolimus 0.5 mg/kg, T1.0 = tacrolimus 1.0 mg/kg, T2.0 = tacrolimus 2.0 mg/kg, A0.3 = ASP2409 0.3 mg/kg, A1.0 = ASP2409 1.0 mg/kg, B = 

belatacept 5 mg/kg, M = mycophenolate mofetil 15 mg/kg, P = pridol, ↑ = one hour after drug administration). 
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Figure 3.3 Pharmacodynamics evaluation. A. The mean level of CD80 receptor occupancy in each group. The 

rate of CD80 receptor occupancy by ASP2409 increased in a dose-dependent manner. Belatacept exhibited 

higher CD80 receptor occupancy than ASP2409, and it is consistent with belatacept possessing higher CD80 

binding affinity. B. The mean level of CD86 receptor occupancy in each group. The rate of CD86 receptor 

occupancy by ASP2409 dose-dependently increased. In the maintenance phase, high-dose ASP2409 treated 

groups exhibited high level of CD86 receptor occupancy, whereas CD86 receptor occupancy in low-dose 
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ASP2409 treated groups dramatically decreased. ASP2409 showed higher percentage of CD86 receptor 

occupancy than belatacept. It is consistent with ASP2409 to be designed possessing higher CD86 binding 

affinity than belatacept. 

 

 

CD3+FoxP3+ Tregs in renal allografts 

To evaluate whether blockade of CD28–CD80/CD86 costimulatory pathway affects Treg 

cells in kidney transplant, we examined the frequencies of CD3+FoxP3+ and CD3+ T cells in 

renal allograft by immunohistochemistry assay. 

 

As shown in Figure 3.4, the percentage of CD3+FoxP3+ Treg cells among total CD3+ T cells 

was very low in normal monkey kidneys (0.89%). In two combinations of ASP2409 and sub-

therapeutic dose tacrolimus, high-dose ASP2409 group exhibited higher proportion of 

CD3+FoxP3+ cells than low-dose ASP2409 group (4.60% vs. 1.92% p < 0.05). Substantially 

higher percentages of CD3+FoxP3+ cells were seen in renal allografts in groups high-dose 

ASP2409 combined with MMF (8.51%) and belatacept combined with MMF (7.28%) relative 

to the combination of therapeutic dose tacrolimus and MMF (2.41%).   

 

Histopathology  

The details of histological features of transplanted kidneys are summarized in Table 3.1. All 

renal allografts in groups no-treatment control and low-dose ASP2409 monotherapy exhibited 

acute rejection. Acute rejection was also found in most transplanted kidneys in groups very-

low-dose tacrolimus monotherapy (7/8) and low-dose ASP2409 combined with MMF (7/8). 
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The incidence of acute rejection was significantly decreased in groups sub-therapeutic dose 

tacrolimus monotherapy (3/8), high-dose ASP2409 monotherapy (2/7), high-dose ASP2409 

combined with MMF (1/8), and belatacept combined with MMF (1/7). No acute rejection was 

discovered in groups high-dose ASP2409 combined with very-low-dose tacrolimus, low-dose 

ASP2409 combined with sub-therapeutic dose tacrolimus, high-dose ASP2409 combined 

with sub-therapeutic dose tacrolimus, and therapeutic dose tacrolimus combined with MMF. 

Varying degrees of chronic allograft nephropathy (CAN) were the common pathological 

changes observed in long-term survival animals. Some animals in various cohorts displayed 

no rejection. 
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Figure 3.4 The infiltration of CD3/FoxP3 double-positive Tregs in renal allografts. A. The percentage of 

CD3+ cells in DAPI+ cells in renal allografts. DAPI, 40,6-diamidino-2-phenylindole. B. The percentage of 

CD3+FoxP3+ cells in CD3+ cells in renal allografts (* p < 0.05, ** p < 0.01). C. The fluorescent detection of 

CD3+ (green membrane staining) FoxP3+ (red intracellular staining) Tregs (inset shows enlarged image of Tregs) 

on paraffin sections of renal allografts. DNA was stained with DAPI (blue). Original magnifications: ×400. 

 

 

Discussion 

Currently calcineurin inhibitors (CNIs) are still the cornerstone for maintenance therapy in 

organ transplantation. However, the extensive adverse effects of CNIs that may cause graft 

dysfunction, loss and/or patient death impact the long-term outcomes of organ transplants. 

Several therapeutic regimens such as CNI reduction, avoidance, and early withdrawal have 

been tested to minimize the consequences associated with CNI exposure (Flechner 2008; 

Barbari 2007). The reported results of these immunosuppressive regimens have shown mixed 

results. Some of them increased the risk for acute and chronic rejection (Salvadori 2013; 

Grinyó 2009). The belatacept-based regimens shed light on CNI avoidance protocols. 

Through a series of renal transplantation clinical trials, belatacept-based regimens were 

demonstrated to confer similar patient and graft survival rates with cyclosporine-based 

regimens, and superior renal function, as well as an improved metabolic profile (Vincenti 

2005; Vincenti 2010; Vincenti 2012, Rostaing 2013). Unfortunately, higher incidence of 

acute rejection and PTLD is the potential “Achilles’ heel” of belatacept to slow the progress 

of this novel agent on other organ transplant clinical application (Vincenti 2010, Knechtle 

2014). 
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CD28 signaling plays a pivotal role in T cell activation, especially in the early post-transplant 

stage. Between the two natural ligands for CD28, CD86 exhibits higher affinity than CD80. In 

contrast, CD80 has a higher binding affinity for CTLA4 (Collins 2002; Linsley 1994). For the 

purpose to durably suppress allograft rejection, complete and equal blockade of the 

costimulatory pathway is required (Greene 1996). To develop new CTLA4-Ig proteins which 

possess more potent immunosuppressive properties, it is reasonable to engineer a molecule 

with higher binding affinity for its B7 ligands, especially CD86. ASP2409 is designed to 

reach this goal. In vitro pharmacology studies indicated that this new generation CTLA4-Ig 

had 220-fold and 14-fold improvement in human CD86 binding affinity compared to 

abatacept and belatacept, respectively (Oshima 2016a). The in vivo tests in cynomolgus 

monkeys showed that ASP2409 dose-dependently inhibited anti-tetanus toxoid (TTx) 

antibody production and delayed-type hypersensitivity (DTH) reactions. When the dosage 

reached 1 mg/kg, ASP2409 showed almost complete inhibitory effect on both TTx antibody 

production and DTH reactions, while belatacept with dose 10 mg/kg showed just partial 

suppression (Oshima 2016b). 

 

ASP2409 monotherapy dose-dependently prolonged the MST of allografts. Low-dose (0.3 

mg/kg) ASP2409 monotherapy showed significantly longer MST compared to no-treatment 

control. However, acute rejections were only delayed but not eliminated in this group. This 

implies that ASP2409 0.3 mg/kg is not a therapeutic dose for allograft rejection. Interestingly, 

when this dosage of ASP2409 was combined with sub-therapeutic dose tacrolimus (Kinugasa 

2008), the MST was dramatically increased and acute rejection was totally abolished. When 
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the dosage of ASP2409 was increased to 1 mg/kg, more than half animals in this 

monotherapy group survived to the end of the study and the incidence of acute rejection was 

significantly reduced. This dosage of ASP2409 in combination with either sub-therapeutic 

dose tacrolimus or MMF, revealed comparable MST to belatacept-based and therapeutic dose 

tacrolimus-based regimens. Histopathological findings of kidney grafts in high-dose 

ASP2409 combined with sub-therapeutic dose tacrolimus group were similar to therapeutic 

dose tacrolimus and MMF combination group. These collectively imply that ASP2409 may 

work for both CNI sparing and avoidance regimens. 

 

Serum concentrations of ASP2409 increase in a dose-related manner. Compared to low-dose 

groups, ASP2409 Ctrough and Cday2 values in high-dose groups present relatively low 

variability. It has been known that CD86 receptor saturation correlates with inhibition of T 

cell alloresponses (Latek 2009). In the induction phase, in either high-dose or low-dose, 

ASP2409 exhibited higher CD86 receptor occupancy than belatacept. The high level of CD86 

receptor occupancy was kept in ASP2409 high-dose groups in the maintenance phase. It is 

consistent with ASP2409 to be designed to possess higher CD86 binding affinity. However, 

with the low ASP2409 Ctrough during the maintenance phase, the levels of CD86 receptor 

occupancy in ASP2409 low-dose groups dramatically decreased. The development of anti-

ASP2409 antibodies was confirmed in 17 of 52 animals (≈33%) following administration of 

ASP2409 during the maintenance period. The partial reason for the high incidence of anti-

ASP2409 antibodies in this study could attribute to ASP2409, as a human protein, is a foreign 

antigen for monkeys. On the other hand, the incidence of anti-ASP2409 antibodies in high-

dose treated animals (≈14%) is much lower than that of low-dose treated animals (≈57%). It 
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implies that higher dose ASP2409 may involve in inhibition of the production of anti-

ASP2409 antibodies. High incidence of anti-ASP2409 antibodies in low-dose treated animals 

corresponds to low ASP2409 Ctrough values and decreased CD80 and CD86 receptor 

occupancies. One possible explanation for this phenomenon is that anti-ASP2409 antibodies 

neutralize the biological activity of ASP2409 and/or lower its half life in the circulatory 

system (Shankar 2010; Wadhwa 2010). 

 

Tregs are important regulators of immune tolerance. CD28 signals play a key role in the 

development of Tregs in the thymus. CD28 costimulation is also critical for the survival of 

periphery Tregs (Tang 2003; Sharpe 2006). It raises a concern that targeting the CD28–

CD80/CD86 pathway may interfere with Treg development and peripheral expansion. 

CTLA4-Ig has been reported to have a deleterious effect on Treg development and function in 

animal models (Riella 2012) and inhibits the in vitro human Treg generation (Levitsky 2013). 

This agent is also found to restore skin allograft rejection in Treg-mediated tolerance model 

by disabling IL-2-expanded Tregs (Charbonnier 2012). On the other hand, there is also the 

report to indicate that CTLA4-Ig induced the in vitro swine Treg generation via an IL-10-

dependent mechanism (Lee 2001). In renal transplant patients who received belatacept-based 

regimens, belatacept administrations did not affect the number or function of circulating 

Tregs (Bluestone 2008). The effects of CTLA4-Ig on Treg generation and function may be 

complicated.  

 

It has been known that CD28 costimulation is unnecessary for the generation or function of 

induced Tregs, whereas the development and maintenance of natural Tregs are strongly 
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dependent on CD28–CD80/CD86 signals (Pletinckx 2011). In addition, the effects of 

CTLA4-Ig on CTLA4 signaling pathways are still unclear. Further investigation is helpful to 

explore the overall profile of the effects of CTLA4-Ig on Tregs. In this study, we did not 

measure the number of circulating Tregs. Interestingly, we found that renal allografts treated 

with ASP2409- or belatacept-based regimens exhibited significantly higher proportion of 

FoxP3+/CD3+ T cells than normal kidney and renal allografts treated with CNI-based 

regimens. The situation is similar to what is found in graft biopsies of the patients who are 

treated with belatacept-based regimens (Bluestone 2008). These findings suggest that both 

ASP2409 and belatacept may have no significant deleterious effect on the frequency of Tregs 

in renal allografts. 

 

In this study, ASP2409 as an immunosuppressive agent was administered to cynomolgus 

monkey kidney transplant recipients for up to 90 days. Treatment with ASP2409 did not 

cause deterioration in the general clinical observational signs including daily activity and 

appetite. There was also no weight loss and other side-effects associated with ASP2409 

administration during the study period. It was demonstrated that ASP2409 was safe and well 

tolerated for the monkey at the doses tested. 

 

We conclude that ASP2409 exhibits potent immunosuppressive effects on the monkey renal 

transplantation model without causing serious side effects. When administered alone, this 

agent dose-dependently prolongs renal allograft survival. ASP2409 in combination with sub-

therapeutic dose tacrolimus or MMF shows similar MST to the belatacept-based regimen and 

tacrolimus-based regimens in terms of 91-day observation period. Histopathological findings 
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of kidney grafts in ASP2409-based regimen are non-inferior to the belatacept-based regimen. 

Chronic administration of ASP2409 does not negatively affect Treg frequency in renal 

allografts. These results imply that ASP2409 is a promising candidate for CNI sparing or 

avoidance regimens. They provide solid evidence for conducting further research on this 

compound including clinical trials. 
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The postgrafting immunosuppressive therapy, especially CNIs-based regimens, has greatly 

reduced the incidence of acute allograft rejection and has tremendously improved the short-

term outcomes in organ transplantation. In the USA, 1-year allograft survival rate has 

exceeded 90% among adult kidney transplant recipients (Knoll 2008; Hart 2016). However, 

the improvement in long-term results is not satisfied over the past several decades. Despite 

significant progresses have been made in transplantation techniques, organ preservation, 

recipient selection and the development of new immunosuppressive drugs, no major changes 

in 5–10-year death-censored graft attrition rate in kidney transplant recipients were observed 

during a 10-year period from 1989 to 1999 (Lamb 2011). Multiply factors, either antigen-

dependent or antigen-independent, are associated with late graft loss. Among them, the side-

effects of current "standard" immunosuppressive drugs are unignorable. These agents such as 

CNIs may directly cause graft injury, or lead to cardiovascular disease and diabetes mellitus, 

as well as infection and malignancy due to over immunosuppression. As a result of that, 

transplanted organs are eventually lost due to graft function failure or death with a functioning 

graft (Cosio 2008; Morales 2012). The disadvantages of conventional immunosuppression 

urge the need to find novel immunosuppressive methods that specifically target alloimmune 

responses. Costimulation blockade is one option among them. The research and clinical data 

suggest that blocking T cell costimulatory signals can successfully promote allograft 

acceptance, but challenges remain. 

 

4.1 Blockade of the CD40–CD40L costimulatory pathway in 

organ transplantation 
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CD40–CD40L signaling pathway is critical for the allogeneic antigen-induced immune 

responses. CD40 was first identified on B cells. Nowadays, it has been known that this 

molecule is broadly expressed on B cells, monocytes, ECs, platelets, epithelial cells, 

mesenchymal cells, activated DCs, and activated T cells (van Kooten 2000; Li 2008). The 

signals transmitted through CD40–CD40L pathway are involved in both cellular and humoral 

adaptive immunity. Ligation of the CD40–CD40L axis on APCs leads to upregulated 

expression of CD80, CD86, MHC class II, adhesion molecule, and cytokine (Caux 1994; 

Kawabe 2011). Interaction of CD40–CD40L plays pivotal roles in promoting effective T cell 

activation. It is also intimately involved in the activation of DCs, ECs, fibroblasts, and 

platelets (Ma, 2009; Inwald 2003). CD40 signaling in B cells activates B cell proliferation, 

antibody production, isotype switching, and germinal center formation (Durie 1994; van 

Kooten 2000). In terms of organ transplantation, the CD40–CD40L signaling pathway is 

closely associated with acute and chronic rejection. 

 

Anti-CD40L mAbs were demonstrated to successfully prolong allograft survival in 

experimental organ transplantation in rodents and in NHP (Larsen 1996; Kirk 1999). These 

facts suggest that bocking CD40–CD40L signaling pathway was a feasible strategy to 

promote allograft acceptance. Unfortunately, further studies were discontinued because of the 

thromboembolic complications of anti-CD40L mAbs in NHP model and clinical trials (Kawai 

2000). Therefore, CD40 was chosen as an alternative therapeutic target. Some anti-CD40 

mAbs such as ch5D12 (Haanstra 2003) and Chi220 (Pearson 2002) has been shown the 

effects to extend allograft survival in NHP model. However, the potencies of those agents 

were less than that of anti-CD40L mAbs. 
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This thesis (Chapter 2) investigates the efficacy of ASKP1240, a novel fully human 

antagonistic anti-CD40 mAb, on renal allograft survival in NHP model. Compared to control 

group, low-dose ASKP1240 monotherapy significantly prolonged survival time of renal 

transplant. The MST of allograft was further extended in high-dose monotherapy group. 

ASKP1240 monotherapy also decreased the incidence of acute transplant rejection in a dose-

related manner. However, acute rejection has not been totally abolished, even in high-dose 

group. These observations are consistent with other author's results (Imai 2007; Aoyagi 2009).  

 

When ASKP1240, either in low-dose or in high-dose, was combined with conventional 

immunosuppressant MMF or tacrolimus (sub-therapeutic dose), a notable improvement in 

graft survival was observed. In term of 180-day study period, except group low-dose 

ASKP1240 in combination with MMF, the MSTs of allograft in remaining three groups were 

180 days. The graft MST of low-dose ASKP1240 and MMF combination group was 121 days 

that was approximately two times and four times those of monotherapy groups of low-dose 

ASKP1240 and MMF, respectively. Results of the histopathological examination indicated 

that no acute rejection was found in the combination groups mentioned above. Previous 

studies showed CNIs could abrogate donor-specific tolerance induced by anti-CD40L mAb 

(Blaha 2003). In this study, we found that ASKP1240 in combinantion with tacrolimus (sub-

therapeutic dose) exhibited excellent results in both graft survival and prevention of acute 

rejection. Our results imply that ASKP1240 might work for both CNI-sparing and CNI-free 

regimens. 
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The thromboembolic events associated with anti-CD40L mAb raise the question of whether 

anti-CD40 mAb causes smilar complications. To date, how anti-CD40L mAbs involving in 

thromboembolism is not fully understood. Most anti-CD40L mAbs (e.g. hu5C8 and IDEC-

131) are recombinant IgG1 antibodies. One speculated mechanism is these molecules can 

cross-link with platelet Fc gamma receptors (FcγRs) leading to platelet activation and 

aggregation (Robles-Carrillo 2010; Prasad 2003). ASKP1240 was designed as a fully human 

IgG4 mAb. Compared to IgG1, IgG4 has an extremely lower binding affinity for FcγRIIa/b 

and FcγRIIIa, and has no detectable binding for FcγRIIIb (Bruhns 2009). Moreover, the 

stability of platelet thrombi is related to CD40L. Studies have indicated that CD40L-deficient 

mice formed unstable thrombi. These thrombi easily detach from vascular wall and circulate 

blood vessels as emboli. However, the stability of platelet thrombi was not affected in CD40-

deficient mice (André 2002). Thus, ASKP1240 is expected to not cause unwanted 

thromboembolic events. Okimura et al (2014) investigated the influence of ASKP1240 and 

anti-CD40L antibody (mu5C8) in human platelet thrombus formation. ASKP1240 did not 

activate platelet and ECs. Under physiological high shear stress condition, normal platelet 

thrombi were observed in ASKP1240-treated blood sample, in contrast, only smaller thrombi 

were seen in mu5C8-treated blood sample. These results suggested that ASKP1240 did not 

affect the stability of thrombi but mu5C8 did. To date several anti-CD40 mAbs had been 

tested in preclinical studies. There were no reports that anti-CD40 mAbs were associated with 

thromboembolic events. In this study, renal artery thrombosis, a common kidney transplant 

complication, was obseverved in some animals. However, the incidence of renal artery 

thrombosis was not significant different between ASKP1240-treated groups and non-

ASKP1240-treated groups. Futhermore, there were no thrombosis-related events to be found 
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in other organs. Together with the observations in previous studies about ASKP1240 (Aoyagi 

2009; Oura 2012), it could be concluded that ASKP1240 may be less likely to cause 

thromboembolism. 

 

In previous studies, the IgG1 anti-CD40 mAbs such as chi220 exhibited high cytotoxicity and 

led to circulating B cell depletion that increased the chance of cytomegalovirus infection 

(Pearson 2002). The constant region of ASKP1240 is designed to be IgG4, thus the 

probability of ASKP1240 to deplete CD40 positive cells (e.g. B cell, platelet) via ADCC and 

CDC activities is extremely reduced. Even though ASKP1240 was weekly administered at 

doses up to 100 mg/kg, the number of peripheral B cells did not decline significantly 

(Okimura 2014). The administration of ASKP1240 does not induce cytokine release. In this 

study, IL-2, IL-4, IL-5, TNFα, and IFN-F and IFN-γ were not detected in any samples to be 

tested. The safety of ASKP1240 is further confirmed in healthy volunteers. A double-blind 

randomized phase I clinical trial demonstrated that ASKP1240 could be well tolerated in 

subjects at doses up to 10 mg/kg. ASKP1240 did not cause serious side effects including 

drug-induced cytokine release and thromboembolic events (Goldwater 2013). 

 

4.2 Blockade of CD28-mediated T cell costimulation in organ 

transplantation 

CD28 is the primary positive costimulatory receptor that constitutively expressed on naïve T 

cells. It interacts with its legends CD80 and CD86 to generate the most critical costimulatory 

signals for T cell activation. Thus, blocking the CD28–CD80/CD86 pathway to prevent T 
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cell-mediated allograft rejection is a rational choice. The attempts that directly targeting 

CD28 with mAb met some diffculty (Suntharalingam 2006), whereas CTLA4-Ig, an agent 

targeting both CD80 and CD86, showed promise in the rodent transplantation models (Lin 

1993; Baliga 1994). Beside of preventing CD28–CD80/CD86 engagement, CTLA4-Ig also 

induces IDO production by DCs. IDO causes tryptophan degradation and subsequently 

suppresses T cell proliferation (Boasso 2005; Hwu 2000). However, CTLA4-Ig did not show 

the effects on the prevention of allorejection in further studies in NHP models (Kirk 1997). 

This molecule was then modified by mutating the binding domain to increase its binding 

affinity for both CD80 and CD86 (Larsen 2005). The novel CTLA4-Ig molecule is known as 

belatacept. Compared to its parent compound, belatacept showed much higher binding 

affinity to its ligands especially to CD86, and exhibited enhanced immunosuppressive activity 

in either in vitro or in vivo studies. 

 

Preclinical studies in NHPs indicated that belatacept, either in monotherapy or in combination 

with conventional immunosuppressive agents, significantly prolonged renal allograft survial 

(Larsen 2005). Subsequent phase II and III clinical trials in kidney transplantation also 

showed encouraging results. Compared to cyclosporine arm, belatacept-based regimens 

presented similar patient and graft survival rate, but superior renal graft function, improved 

cardiovascular risk profile, and a trend of less chronic allograft nephropathy. However, this 

agent was found to be associated with higher incidence of acute rejection than conventional 

CNI-based immunosuppression. Moreover, PTLD, a post-transplant malignancy, was more 

common in the recipients who received belatacept-based immunosuppression, although the 

overall incidence is rather rare (Vincenti 2005; Grinyo 2012; Vincenti 2010). Belatacept-
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based immunosuppression was also tested to determine if this approch would benefit the 

recipients besides renal transplantation. Unfortunately, the results of a recent phase II clinical 

trial in liver transplantation were disappointed. The incidence of acute rejection, graft loss, 

and death in the belatacept groups was higher than the tacrolimus groups (Klintmalm 2014). 

 

The effect of ASP2409, a novel CD86-selective variant of CTLA4-Ig, on renal allograft 

survival in NHPs was investigated in this thesis (Chapter 3). ASP2409 is a recombinant 

fusion protein created using DNA shuffling directed evolution methods. This new compound 

is comprised of the modified extracellular domain of human CTLA4 and the wild-type Fc 

region of human IgG2. Similar to belatacept, ASP2409 is also generated by mutating the B7 

binding region of CTLA4-Ig. Structurally, there are 10 amino acid substitutions in ASP2409 

molecule instead of two in belatacept. These differences confer ASP2409 possessing 14-fold 

higher human CD86 binding affinity than belatacept, and a lower CD80 binding affinity 

relative to belatacept (Oshima 2016).  

 

Although both CD80 and CD86 bind to their common receptors CD28 and CTLA4, they may 

not play equal roles in CD28/CTLA4–CD80/CD86 signaling pathway. CD86 exhibits higher 

binding affinity for CD28 relative to CD80. Thus CD86 is considered to be the dominant 

costimulatory ligand for signaling through CD28. In contrast, CD80 possesses a higher 

binding affinity for CTLA4 relative to CD86, and is the main ligand for CTLA4 (Linsley 

1994; Pentcheva-Hoang 2004). CD28 costimulatory signal is a key element for T cell 

activation. Improvements in CD86 binding affinity and selectivity would provide increased 

immunosuppressive efficacy of CTLA4-Ig. It is the theoretical basis for the development of 
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belatacept. Although the CD86 binding affinity of belatacept has been significantly improved 

compared to CTLA4-Ig, this compound is still a CD80-selective rather than CD86-selective 

CTLA4-Ig variant because its in vitro binding affinity for CD80 is 12-fold higher than CD86. 

In contrast, ASP2409 is a real CD86-selective CTLA4-Ig variant with 2.1-fold higher binding 

affinity for CD86 relative to CD80 (Oshima 2016). In our in vivo study, ASP2409, even in 

low-dose, exhibited higher CD86 receptor occupancy than belatacept in the induction phase. 

CD86 receptor occupancy was kept at nearly saturated level in high-dose ASP2409 treated 

animals during the whole maintenance phase. While the CD80 receptor occupancy in these 

animals mostly fluctuated in the range of 70% to 90%, and the CD80 occupancy rate in low-

dose ASP2409 treated animals was further lowered. On the other hand, belatacept treated 

animals showed high CD80 occupancy rate (almost saturated) and relative low CD86 

occupancy rate (ranged from 88% to 60%). It is consistent with the observation from in vitro 

studies. While CD86 ligands are almost fully occupied by ASP2409, CD80 ligands are 

partially unoccupied. CD80 plays an important role in antiviral immune responses (Lumsden 

2000), provides negative signal for the proliferation B cell lymphomas (Suvas 2002). 

Preservation of CD80 signaling may be helpful to reduce the complications related to current 

CTLA4-Igs such as increased susceptibility of infection and tumorigenesis, thus improves the 

safety of CTLA4-Ig therapy. However, the question is if an agent that completely blocks 

CD86 but partially blocks CD80 can effectively prevent allograft rejection. 

 

The results of present study in a cynomolgus monkey renal transplantation model give an 

affirmative answer. Low-dose ASP2409 monotherapy significantly prolonged renal allograft 

survival time compared to control animals. However, acute rejections were only delayed but 
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not eliminated in these amimals. The MST of renal allograft was further prolonged along with 

increasing of the dosage of ASP2409, and the incidence of acute rejection was also 

significantly reduced. ASP2409, either in low-dose or high-dose, in combination with sub-

therapeutic dose of tacrolimus showed similar renal allograft MST with therapeutic-dose 

tacrolimus-based immunosuppressive regimen, and acute rejection was totally eliminated in 

these groups. The regimen of 1 mg/kg ASP2409 in combination with MMF and 

methylprednisolone obtained equal MST and superior histopathological findings in renal 

allograft relative to the regimen of 5 mg/kg belatacept in combination with MMF and 

methylprednisolone. These results collectively demonstrate that ASP2409 can successfully 

promote renal allograft acceptance by inhibiting acute allograft rejection. These findings 

further support the hypothesis that CD86 is the dominating ligand to mediate costimulatory 

signals in alloimmune response, and increased CD86 receptor occupancy by CTLA4-Ig 

correlates with improved immunosuppressive potency (Latek 2009). 

 

Improvements in CD86 binding affinity and selectivity may also confer clinically-meaningful 

advantages in drug safety. With improved CD86 binding affinity, the novel CTLA4-Ig would 

be able to provide therapeutic levels of CD86 occupancy at substantially lower serum drug 

concentrations than current CTLA4-Igs. To achieve similar in vitro inhibition of primary 

human T cell proliferation, required protein concentration of ASP2409 is 18-fold lower 

relative to belatacept (Oshima 2016). This makes it possible to reach similar or better 

therapeutic efficacy as belatacept with lower dose level of ASP2409 by virtue of providing 

more complete saturation of the dominant costimulatory ligand CD86 throughout the dosing 

cycle and therefore may reduce the incidence of dose related side effects of CTLA4-Igs. 
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ASP2409 was demonstrated to be safe and well tolerated for the monkey at the doses tested in 

this study. Our cynomolgus monkey renal allograft recipients were treated with ASP2409 for 

up to 90 days. ASP2409 administration did not cause deterioration in the general condition of 

monkey including daily activity, appetite, and body weight during the study period. A dose 

escalation phase I clinical trial was recently performed in stable rheumatoid arthritis patients. 

ASP2409 was administered intravenously with a single dose ranging from 0.01 to 3.0 mg/kg. 

The results indicated that ASP2409 was well tolerated at all doses, and there were no 

clinically relevant safety issues (Zhang 2016). 

 

4.3 Costimulation blockade and regulatory T cells 

The Treg cells are a subgroup of T cells that are specifically dedicated to the suppression of 

immune responses. They play an important role in the maintenance of tolerance to self-

antigens, regulation of the magnitude of immune responses, and the prevention of 

autoimmune disease (Sakaguchi 1985; Wang 2016). Therefore, increasing the number and/or 

function of Treg might lead to tumour development; on the contrary, dysfunction of Treg cells 

contributes autoimmunity. In terms of organ transplantation, Tregs are involved in the 

inhibition of acute rejection and are the key players in the induction and maintenance of 

transplant tolerance. Tregs suppress alloimmune responses in an antigen-specific manner, and 

these cells can also be isolated and expanded in vitro. Treg therapy has been chosen as the 

novel therapeutic strategies against allorejection and is now on the road from bench to bed 

(Kingsley 2002; Kendal 2011). 
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To date two main classes of Tregs have been identified, i.e., CD4+ and CD8+ Tregs. The 

majority of Treg cells are CD4+ T lymphocytes. CD8+ Treg cells constitute a very small 

proportion of the Treg population (Ligocki 2015; Churlaud 2015). CD4+ Treg cells consist of 

two varieties: naturally occurring Tregs (nTregs) and induced (adaptive) Tregs (iTregs). 

nTregs develop in the thymus and constitutively express CD25 and FoxP3. iTregs are 

generated extrathymically at peripheral sites such as the mucosa-associated lymphoid tissue 

(MALT), inflammatory tissues, and transplanted tissues. They convert from conventional 

CD4+ T cells under the proper physiological conditions and some subsets like Type 1 

regulatory T cells (Tr1) may not express FoxP3 and CD25 (Pot 2011). nTregs constitute 

approximately 5–10% of peripheral CD4+ T cell population and are the critical regulators of 

immune homeostasis. They exert their suppressive effects via cell–cell contact, granzyme B-

dependent, and to produce TGF-β. While iTregs, unlike nTregs, mainly manifest their 

suppressive functions through the secretion of cytokines such as IL-10 and TGF-β. These 

molecules may induce effector T cell apoptosis or cell-cycle arrest, and inhibit DCs 

maturation (Jonuleit 2003; Workman 2009). iTregs are essential for the induction and 

maintenance of mucosal immune tolerance, and they also play an important role in the control 

of allergic inflammation (Curotto de Lafaille 2008; Huang 2013). 

 

Costimulatory signals are required for the generation of Treg cells. CD28 is the earliest 

identified costimulatory molecule which is critical for the development of nTreg cells in the 

thymus. The absolute number of the CD4+CD25+ T cells were reduced 5 to 6-fold in both 

CD28-deficient and CD80/CD86-deficient NOD mice (Salomon 2000). CD28 knockout mice 

exhibited significantly low frequencies of FoxP3+ T cells in thymus and peripheral lymph 
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nodes in comparison with those of wildtype mice (Sansom 2006). In contrast, in CTLA4-

deficient mice that revealed excessive CD28 stimulation, both frequency and number of 

CD4+FoxP3+ T cells increased enormously although these Tregs showed functional defects 

(Wing 2008). Moreover, CD28 costimulation promotes nTreg survival via induction of Treg-

extrinsic survival factor, and enhances their self-renewal. It is a key player to control 

peripheral homeostasis of nTregs (Tang 2003). iTreg cells are generated in the periphery 

under more varied conditions. CD28 is not necessary for the development of iTregs.  

Conventional CD4+ T cells are able to be converted into iTregs in the absence of CD28 

stimulation (Curotto de Lafaille1 2009; Taylor 2002). In fact, stimulation through high-level 

CD28 was shown to hinder TGF-β-induced Treg cell differentiation in vitro (Benson 2007). 

In contrast, CTLA4 is required for generation of iTreg cells. TGF-β can induce CD4+CD25– 

cells FoxP3 expression and conversion to  FoxP3+ iTregs.  However, neither normal level 

expression of FoxP3 nor suppressor activity was induced in CD4+CD25– cells from CTLA4-

deficient mice under the stimulation of TGF-β. Moreover, blockade of CTLA4 abolished 

TGF-β to induce activated wild-type CD4+CD25– cells to become CD4+CD25+FoxP3+ 

suppressor cells (Zheng 2006). Other stimulatory molecules such as OX40, glucocorticoid-

induced TNFR family-related protein (GITR), 4-1BB, were also found to affect the 

development and function of Tregs, and the details still needed to be clarified by further 

studies (Croft 2014).  

 

CTLA4-Ig and its variants block CD28–CD80/CD86 signaling by competitive inhibition of 

CD28 intreraction with CD80 and CD86. Recently, concerns that use of CTLA4-Igs may 

interfere with the development and function of Treg cells have been raised. Levitsky and 
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colleagues (2013) demonstrated that belatacept alone or in combination with other 

immunosuppressants inhibited the human Treg generation in vitro. Administration of CTLA4-

Ig significantly reduced the number of mouse Treg cells in vivo (Riella 2012). Skin allograft 

rejection and Th1 alloreactivity were restored by CTLA4-Ig administration in a mouse 

transplantation model that Treg-dependent long-term allograft acceptance had been achieved 

by short-term administration of IL-2/anti-IL-2 complex. CTLA4-Ig suppressed IL-2-induced 

in vivo Treg expansion and their immunosuppressive capacity (Charbonnier 2012). In contrast, 

some authors reported that CTLA4-Ig could induce the generation of porcine Treg cells in 

vitro using IL-10-dependent mechanisms (Lee 2001). Studies of mouse thymus-derived Treg 

cells indicated that CTLA4-Ig had no negative effect on Treg frequencies and function in 

vitro (Ahmadi 2014). The number and function of circulating Tregs were unaffected by 

belatacept administrations in kidney transplant recipients who received belatacept-based 

treatment (Bluestone 2008). Mixed results indicate the intricate effects of CTLA4-Igs on 

Tregs and the need to further delineate their relationship. 

 

Although FoxP3 is transiently expressed by activated nonregulatory T cells and some Treg 

cells do not express FoxP3, this nuclear transcription factor remains the best and the most 

lineage-specific marker of Treg cells to date. In this thesis, the percentage of FoxP3+ T cells 

among total CD3+ T cells was measured in paraffin embedded sections of renal allograft by 

immunohistochemical staining to evaluate the effects of ASP2409 on Tregs. The frequency of 

FoxP3+ T cells is very low in normal kidney that does not encounter surgical injuries and 

inflammatory stimulation. All kidney allografts including those of CNI-treated animals 

exhibit higher frequencies of FoxP3+ T cells compared to normal kidneys. Previous studies 
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have indicated that CNIs have a negative impact on Treg development and survival (Baan 

2005). Our reuslts also support this view. The frequencies of FoxP3+ T cells of ASP2409 

combined with CNI treatment groups are much lower than that of ASP2409 combined with 

MMF treatment group. In the regimens of ASP2409 combined with CNI, high-dose ASP2409 

group shows higher ratio of FoxP3+/CD3+ T cells compared to low-dose ASP2409 group. 

When either ASP2409 or belatacept in combination with non-CNI immunosuppressive agents, 

significantly higher proportion FoxP3+ T cells infiltration in renal allografts are observed 

relative to CNI-based regimens. Similarly greater amounts of FoxP3+ T cells were found in 

renal graft biopsy samples in patients who had received belatacept-based regimens (Bluestone 

2008). These results indicate that ASP2409 may promote Treg infiltration in renal allografts, 

at least ASP2409 do not show the significantly negative effects on the frequencies of Tregs in 

renal allografts. 

 

4.4 T cell costimulation blockers in combination with other 

immunosuppressive drugs 

Combination therapy is a commonly used therapeutic strategy in clinic. The purpose of this 

strategy is, by taken more than one medication or therapy to treat a single disease, to 

maximize overall effectiveness while the adverse effects and toxic effects of each drug or 

modality are minimized. Immunosuppressive therapy after organ transplantation is critical for 

the long-term allograft survival. Clinical immunosuppressive regimens may vary due to a 

multitude of factors such as drug compliance, side effects, intercurrent disease and cost etc 

(Popoola 2014).  Conventionally, they are a combination of 2–3 immunosuppressive drugs 
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that target various immune components especially different steps in T cell activation. The 

combinations of agents with different mechanisms of action provide the chance to promote 

overall effectiveness of immunosuppressive regimens because a subgroup of immune cells 

which are resistant to one agent may be inhibited by another agent. Meanwhile, several agents 

act on various steps of cell activity such as T cell activation offers the opportunity to lower 

doses of each individual immunosuppressant. Thus dose-related side effects and toxicity of 

each immunosuppressant could be minimized. Although the monotherapies of T cell 

costimulation blockers have shown promising results in the prolongation of allograft survival, 

they still need to be combined with additional immunosuppressive drugs to achieve a better 

antirejection effect and to lower drug-related side effects (Kirk 2009). 

 

In our study, two costimulation blockers, either ASKP1240 that targets the CD40–CD40L 

pathway or ASP2409 that blocks the CD28–CD80/CD86 signaling pathway, were 

demonstrated to inhibit acute renal allograft rejection and to prolong kidney transplant 

survival time in a dose-dependent manner. However, costimulation blocker monotherapy did 

not eliminate acute rejection in kidney transplant. Even in high-dose costimulation blocker 

treated animals, there was a certain percentage of acute renal allograft rejection to be found.  

In contrast, the rates of acute rejection were dramatically reduced in groups either ASKP1240 

or ASP2409 in combination with tacrolimus or MMF plus methylprednisolone. Histological 

analysis revealed that acute renal allograft rejection was completely abolished in most 

combination therapy groups (Figure 4.1). These groups correspondingly showed better renal 

allograft survival results. A typical example is the combination of low-dose ASP2409 and 

sub-therapeutic dose of tacrolimus. All aminals of the low-dose ASP2409 monotherapy group 
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Figure 4.1 The rate of acute renal allograft rejection in ASKP1240-based (A) or ASP2409-based (B) 

treatment groups. AR, acute rejection; Tac 0.5, tacrolimus 0.5 mg/kg; Tac 1.0, tacrolimus 1.0 mg/kg; ASKP 

2.0, ASKP1240 2.0 mg/kg; ASKP 5.0, ASKP1240 5.0 mg/kg; ASP 0.3, ASP249 0.3 mg/kg; ASP 1.0, ASP2409 

1.0 mg/kg; MMF, mycophenolate mofetil 15 mg/kg. 
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were euthanized due to acute rejection although they showed a better survival profile and a 

low incidence of high-grade acute rejection compared to untreated control group. Surprisingly, 

when low-dose ASP2409 was combined with sub-therapeutic dose of tacrolimus, none of 

acute renal allograft rejection was found in this combination group. All animals except one 

(1/7) receiving combination therapy survived to the end of the study. These results (Figure 4.2) 

were also much better than sub-therapeutic dose tacrolimus monotherapy group in either the 

rate of acute rejection (none vs. 37.5%) or graft survival profile (MST >91 vs. 38.5 days). A 

proper combination of costimulation blocker and conventional immunosuppressive drug 

produces synergistic effect. 

 

Clinical experience in kidney transplantation indicates that belatacept is associated with a 

high incidence of cell-mediated acute rejection (Grinyo 2012; Vincenti 2010). The exact 

mechanisms involved in the increase of allograft rejection in costimulation blockade-based 

immunosuppressive regimens have not yet been fully understood. Experimental data 

demonstrate that alloreactive memory T cells are insusceptible to costimulatory blockers and 

they likely play an important role in costimulatory blockade-resistant rejection (Zhai 2002; 

Valujskikh 2006). Memory cells are the products of immune responses and are critical 

elements in protective immunity against invading pathogens. Alloreactive memory T cells 

may be generated through previous antigen exposure (e.g. previous transplantation, blood 

transfusion, and pregnancy), or through the process of heterologous immunity (Amir 2010). 

They are able to persist in the host in an antigen-independent manner and have the capacity 

for self-renewal in vivo. Compared to naïve T cells, memory T cells exhibit a much lower 

threshold for activation. Their proliferation can occur in the environment of low concentration  
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Figure 4.2 The acute renal allograft rejection rates (A) and graft survival (B) in low-dose ASP2409 

monotherapy, sub-therapeutic dose tacrolimus monotherapy, and low-dose ASP2409 and sub-therapeutic 

dose tacrolimus combination therapy groups. Combination therapy totally eliminates acute rejection and 

shows much better graft survival results relative to the two monotherapies.  AR, acute rejection; Tac 1.0, 

tacrolimus 1.0 mg/kg; ASP 0.3, ASP249 0.3 mg/kg. 
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of antigen. CD28–CD80/CD86 and CD40–CD40L costimulatory signaling pathways are not 

necessary during the activation process of memory T cells. The alternative costimulatory 

signals such as that are generated by OX40–OX40L or 4-1BB–4-1BBL pathways may play a 

role in memory T cell activation (London 2000; Vu 2006). In addition, memory T cells can 

also be activated in the places other than secondary lymphoid organs in which the activation 

of naïve T cells takes place (Chalasani 2002). That makes memory T cells to have more 

chance to encounter the alloantigen and facilitates them to arouse a vigorous immune 

response. In contrast to naïve T cells, memory T cells are more resistant to regulation by 

Tregs (Yang 2007) and they are able to quickly expand following T cell depletion therapies 

(Pearl 2005; Neujahr 2006). Taken together, all these features of memory T cells make them 

become a large obstacle to successful transplantation especially in costimulation blockade-

based immunosuppression. The levels of donor-reactive memory T cells are considered to be 

related to posttransplant acute rejection episodes, and long-term allograft function (Heeger 

1999; Augustine 2005). 

 

Thus, the immunosuppressive regimens for organ transplantation should include the memory 

T cell-directed intervention therapies, especially considering the increasing application of the 

costimulation blockade-based protocols in clinical practice. Current strategies to control 

alloreactive memory T cells include T cell depletion, suppressing their activation and 

proliferation, and blocking their infiltration into the graft. As mention above, memory T cells 

exhibit resistance to T cell depleting agents such as polyclonal antithymocyte globulin (ATG). 

Lymphocytopenia caused by ATG induction can induce compensatory clonal expansion of 

memory T cells throgh homeostatic proliferation (Moxham 2008). On the other hand, some 
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studies have demonstrated that ATG promotes Treg survival and expansion; consequently, 

this agent shows overall immunosuppressive capabilities (Valdez-Ortiz 2015; Wittenbecher 

2013). In contrast to peri-transplant lymphoablation, targeting pre-existing memory T cells by 

pre-transplant administration of ATG is more efficient in controlling donor-reactive memory 

T cell, reducing their recovery speed from T cell depletion, and prolonging allograft survival 

(Ayasoufi 2013). Some studies indicate that the alternative costimulatory pathways such as 4-

1BB and OX40 involve in the activation and effector functions of memory T cells. These 

alternative costimulatory pathways are thus considered to be the novel therapeutic targets. 

Blocking OX40–OX40L pathway with anti-OX40L mAb has been demonstrated to prevent 

CD28 and CD154-independent rejection and to dramatically prolong skin allograft survival in 

a CD28/CD154 double-knockout mouse model (Demirci 2004). Targeting 4-1BB–4-1BBL 

interactions also shows efficacy in prolonging allograft survival (Cho 2004). Janus kinase-3 

(JAK-3) plays important roles in cytokine-driven proliferation of memory T cells. 

Conventional immunosuppressive drugs and JAK-3 inhibitors such as PNU156804 and CP-

690550 (tofacitinib) act synergistically to extend allograft survial (Stepkowski 2002; Borie 

2005). FTY720, a synthetic analogue of sphingosine, is able to retain lymphocytes within 

lymph nodes through modulating sphingosine-1-phosphate (S1P) signaling, which regulates T 

cell egress from thymus and secondary lymphoid organs. This agent is demonstrated to 

prevent infiltration of T cells including donor-specific memory T cells into allografts and 

appears to delay cardiac transplant rejection (Zhang 2006). Additionally, agents targeting 

adhesion molecules such as LFA-1 and VLA-4 have shown efficacy in inhibiting the 

infiltration of memory T cells into allografts. They can suppress T cell trafficking into grafts 

or/and donor-reactive memory recall responses, and reveal synergistic effects with 
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conventional costimulation blockers on the prolongation of allograft survival (Setoguchi 2011; 

Kitchens 2012; Badell 2010). LFA-3-Ig (alefacept), a fusion protein disrupting CD2–LFA-3 

interaction, is able to selectively eliminate memory T cells through multiple mechanisms 

including limiting Th cell adhesion to APCs and complement-mediated lysis (Weaver 2009). 

There is an increasing amount of evidence to suggest that conventional immunosuppression 

drugs have only a limited effect on memory T cells. Agents mentioned above should be 

considered when design the costimulation blockade-based anti-rejection regimens. Currently, 

some agents are not yet clinically available, further investigations about the efficacies and 

safeties of these agents are highly recommended. On the other hand, memory T cells are an 

important component in protective immunity. To suppress memory T cells while minimizing 

the influence on their protective effects is a big challenge for memory T cell-specific 

therapeutics. 
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Concluding remarks  

Belatacept to be approved for use in the clinic presaged the arrival of the era of costimulation 

blockers as novel immunosuppressive agents in organ transplantation. Post-transplant 

immunosuppression based on this compound is associated with improvement of renal 

allograft function and reduction of CNI-related cardiovascular and metabolic side effects, 

while the patient and graft survival rates are similar to CNI-based regimens. These results 

indicate that costimulation blockade is a feasible strategy for allograft acceptance. However, 

relatively high incidences of acute rejection and PTLD imply that there is still room for 

improvement. Along with the increase of knowledge about costimulatory signaling in 

alloimmune response, more and more agents targeting costimulatory pathway have emerged 

over the past decade. In this thesis, we investigated the effects of two new costimulation 

blockers, ASKP1240 and ASP2409, as a monotherapy or in combination with conventional 

immunosuppressive drugs on preventing acute allograft rejection and promoting transplant 

acceptance.  

 

Our results demonstrated that interrupting the CD40–CD40L interaction with anti-CD40 mAb 

ASKP1240 could successfully inhibit acute kidney transplant rejection and prolong renal 

allograft survival time. Meanwhile, taken together with the results of other NHP studies, we 

found that ASKP1240 as a monotherapy, even in high dose, was insufficient to abrogate all 

acute renal allograft rejection. However, acute rejection was totally eliminated when 

ASKP1240 was combined with tacrolimus or MMF, and the animals in these combination 

groups survived much longer than animals receiving single-drug therapy. ASKP1240 showed 
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comparable efficacy to anti-CD40L mAbs but did not cause thromboembolic complications 

that anti-CD40L mAbs did.  

 

We also firstly demonstrated that ASP2409, a CD86-selective CTLA4-Ig variant that could 

almost completely occupy CD86 but partially occupy CD80, dose-dependently reduced the 

incidence of acute rejection and prolonged MST of renal allograft when it was administered 

alone. ASP2409 in combination with tacrolimus or MMF further minimized acute renal 

allograft rejection episode and improved graft survival. Interestingly, similar graft survival 

results were seen in ASP2409 (1 mg/kg)/MMF combination and belatacept (5 mg/kg)/MMF 

combination. The results further confirm the hypothesis that CD86 is the dominant 

costimulatory ligand for CD28, and plays the main role in alloimmune response against 

transplated organs. Furthermore, our data indicated that both ASP2409 and belatacept did not 

exhibit adverse effects on Treg frequency in renal allografts although CD28 signals were 

critical for Treg development and survival. 

 

The encouraging results suggest that ASKP1240 and ASP2409 both are promising candidates 

for CNI-sparing or complete CNI avoidance immunosuppressive regimens. The studies also 

provide concrete evidence to support the application of costimulation-based approaches in 

organ transplantation. However, there are still lots of questions need to be addressed by 

further studies. Will ASKP1240 or ASP2409 based therapies improve the long-term outcomes 

of organ transplantation? Can these two agents reduce chronic allograft rejection? If memory 

T cell-directed intervention therapies are included in immunosuppressive regimens, will the 

overall results be improved as expected? An agent fully blocking CD86 and partially blocking 
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CD80 has shown promising results in inhibition of acute rejection and prolongation of graft 

survival. Will leaving CD80 partially unoccupied preserve the protective immunity, minimize 

side-effects, and achieve the goal of ASP2409 to be designed? We now have to wait for the 

answer from the further facts although theoretically T cell costimulatory blockade represents a 

more specific and selective immunosuppressive approach, and is expected to be a promising 

therapeutic strategy with reliable effect and minimizing adverse effects. 
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