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Résumé

Dans cette thèse, je me suis intéressé aux modèles à variables instru-
mentales (VI) où les instruments sont nombreux et potentiellement faibles.
La théorie asymptotique n’étant pas toujours une bonne approximation de la
distribution d’échantillonnage des estimateurs et statistiques de tests, je con-
sidère la régularisation et la méthode Jackknife pour améliorer la précision
des estimateurs.

Dans le premier chapitre (co-écrit avec Marine Carrasco), nous étudions
l’estimation efficace d’un paramètre de dimension finie dans un modèle linéaire
où le nombre d’instruments peut être très grand. Cependant, en échantil-
lons finis, l’utilisation d’un grand nombre de conditions de moments accroit
le biais des estimateurs VI. Cette situation pourrait s’aggraver en présence
d’instruments faibles. Nous proposons une version régularisée de l’estimateur
Jackknife (RJIVE) basée sur trois méthodes de régularisations différentes,
Tikhonov, Landweber Fridman et composantes principales, qui réduisent le
biais. Nous montrons par la suite que les estimateurs RJIVE sont conver-
gents et asymptotiquement normaux. Ces méthodes font chacune intervenir
un paramètre d’ajustement, qui doit être sélectionné. Nous dérivons une
méthode basée uniquement sur les données pour sélectionner le paramètre
de régularisation, i.e. minimiser la perte espérée d’utilité. Des simulations
Monte Carlo montrent que nos estimateurs proposés se comportent mieux en
comparaison avec l’estimateur Jackknife sans régularisation.
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Dans le deuxième chapitre (co-écrit avec Marine Carrasco), nous pro-
posons une version modifiée du test de suridentification dans un contexte où
le nombre d’instruments peut être très grand. Notre test d’hypothèse com-
bine deux techniques: la méthode de Jackknife et la technique de Tikhonov.
Nous montrons théoriquement que ledit test atteint asymptotiquement le
seuil de probabilité en dessous duquel on est prêt à rejeter l’hypothèse nulle.
Les simulations montrent la dominance de notre test par rapport à d’autres
J tests existants dans la littérature en terme de niveau et de puissance du
test.

Dans le dernier chapitre, je propose un nouveau estimateur basé sur la
version Jackknife de l’estimateur du maximum de vraisemblance à informa-
tion limitée régularisé (JLIML) dans un environnement riche en données où
le nombre d’instruments (possiblement faibles) peut être aussi très grand. Je
montre que l’estimateur JLIML régularisé est convergent et asymptotique-
ment normal. Les propriétés des estimateurs proposés sont évaluées à travers
une étude Monte-Carlo, et une illustration empirique portant sur l’élasticité
de substitution inter-temporelle.
Mots-clés: Modèles de grande dimension, Jackknife, Régularisation, Vari-
able instrumentale faibles, Test de suridentification, Erreur quadratique moy-
enne, Hétéroscédasticité.
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Abstract

In this thesis, I have been interested in the instrumental variables (IV)
models with many instruments and possibly, many weak instruments. Since
the asymptotic theory is often not a good approximation to the sampling
distribution of estimators and test statistics, I consider the Jackknife and
regularization methods to improve the precision of IV models.

In the first chapter (co-authored with Marine Carrasco), we consider in-
strumental variables (IV) regression in a setting where the number of in-
struments is large. However, in finite samples, the inclusion of an excessive
number of moments may increase the bias of IV estimators. Such a situation
can arise in presence of many possibly weak instruments. We propose a Jack-
knife instrumental variables estimator (RJIVE) combined with regularization
techniques based on Tikhonov, Principal Components and Landweber Frid-
man methods to stabilize the projection matrix. We prove that the RJIVE is
consistent and asymptotically normally distributed. We derive the rate of the
mean square error and propose a data-driven method for selecting the tun-
ing parameter. Simulation results demonstrate that our proposed estimators
perform well relative to the Jackknife estimator with no regularization.

In the second chapter (co-authored with Marine Carrasco), we propose a
new overidentifying restrictions test in a linear model when the number of
instruments (possibly weak) may be smaller or larger than the sample size or
even infinite in a heteroskedastic framework. The proposed J test combines
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two techniques: the Jackknife method and the Tikhonov technique. We
theoretically show that our new test achieves the asymptotically correct size
in the presence of many instruments. The simulations show that our modified
J statistic test has better empirical properties in small samples than existing
J tests in terms of the empirical size and the power of the test.

In the last chapter, I consider instrumental variables regression in a set-
ting where the number of instruments is large. However, in finite samples, the
inclusion of an excessive number of moments may be harmful. We propose
a Jackknife Limited Information Maximum Likelihood (JLIML) based on
three different regularizations methods: Tikhonov, Landweber-Fridman, and
Principal Components. We show that our proposed regularized Jackknife
estimators JLIML are consistent and asymptotically normally distributed
under heteroskedastic error. Finally, the proposed estimators are assessed
through Monte Carlo study and illustrated using the elasticity of intertem-
poral substitution empirical example.
Keywords: High-dimensional models, Jackknife, Regularization methods,
Overidentification test, Many weak instruments, MSE, Heteroskedasticity.



Contents

Dédicace iii

Remerciements iv

Résumé vi

Abstract viii

Table des matières xii

Liste des figures xiii

Liste des tableaux xiv

1 Efficient estimation using regularized Jackknife IV estima-

tor. 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Presentation of the regularized Jackknife model . . . . . . . . 4
1.3 Asymptotic Properties of RJIVE . . . . . . . . . . . . . . . . 10
1.4 Mean square error . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5 Selection of the regularization parameter . . . . . . . . . . . . 17
1.6 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.7 Empirical application: Returns to schooling . . . . . . . . . . 26

x



xi

1.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Testing overidentifying restrictions with many instruments

and heteroskedasticity using regularized Jackknife IV. 40

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2 Model, estimator, and test statistic . . . . . . . . . . . . . . . 43
2.3 Asymptotic distribution . . . . . . . . . . . . . . . . . . . . . 48
2.4 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.5 Empirical applications. . . . . . . . . . . . . . . . . . . . . . . 60

2.5.1 Elasticity of intertemporal substitution. . . . . . . . . . 60
2.5.2 New-Keynesian Phillips Curve. . . . . . . . . . . . . . 62

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.7.1 Presentation of the Tikhonov Regularization. . . . . . . 65
2.7.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3 Jackknife LIML estimator with many instruments using reg-

ularization techniques 72

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2 Presentation of the regularized Jackknife LIML estimators . . 75
3.3 Asymptotic Properties of the regularized Jackknife LIML . . . 79
3.4 Selection of the regularization parameter . . . . . . . . . . . . 84
3.5 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.6 Empirical application: Elasticity of intertemporal substitution

(EIS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
3.8 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.8.1 Presentation of the Regularization methods. . . . . . . 93
3.8.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



xii

Conclusion. 105



xiii

List of Figures

2.1 Power curves of J tests, n=500, λ = 0.8, homoskedastic case . 58
2.2 Power curves of J tests, n=500, λ = 0.8, heteroskedastic case . 59



xiv

List of Tables

1.1 Simulations results of model 1a . . . . . . . . . . . . . . . . . 23
1.2 Simulations results of model 1b . . . . . . . . . . . . . . . . . 24
1.3 Simulations results of model 2 . . . . . . . . . . . . . . . . . . 24
1.4 Simulations results of model 3 . . . . . . . . . . . . . . . . . . 25
1.5 Estimates of the returns to education . . . . . . . . . . . . . . 27

2.1 Empirical rejection rates at 0.05 nominal level of the J test -
homoskedastic case . . . . . . . . . . . . . . . . . . . . . . . . 56

2.2 Empirical rejection rates at 5% nominal level of the J test -
heteroskedastic case . . . . . . . . . . . . . . . . . . . . . . . . 57

2.3 Estimated J statistics for the EIS Model. . . . . . . . . . . . . 63
2.4 Estimated J statistics for the New-Keynesian Phillips Curve

Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1 Simulation results of model 1 with R2 = 0.1, n=500 . . . . . . 88
3.2 Simulation results of model 2, CP = 35, n=500. . . . . . . . . 89
3.3 Estimates of the EIS . . . . . . . . . . . . . . . . . . . . . . . 91



1

Chapter 1

Efficient estimation using

regularized Jackknife IV

estimator.
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1.1 Introduction

Instrumental variables (IV) regression is largely used in economic re-
search to calculate treatment effects for endogenous regressors1. However,
IV estimates of structural effects are often imprecise in practice. One so-
lution to increase the precision of IV estimators is to use all the moment
conditions available. Empirical examples such as Eichenbaum, Hansen, and
Singleton (1988) who consider consumption asset pricing models and An-
grist and Krueger (1991) who measure return to schooling, were the first to
show the problem of the presence of many instruments. Theoretical liter-
ature on weak/strong instruments showed also that the inclusion of many
moments can improve the precision of IV estimators but the usual Gaussian
asymptotic approximation can be poor and IV estimators may be biased
(see among others Staiger and Stock (1997) and Chao and Swanson (2005),
Hansen, Hausman, and Newey (2008), Chao, Swanson, Hausman, Newey, and
Woutersen (2012a) (CSHNW), Bekker (1994) and Newey and Smith (2004)).
To deal with the problem of many instruments, this paper proposes new es-
timators for instrumental variables models when the number of instruments
is not restricted and may be smaller or larger than the sample size n or even
infinite. We propose a regularized version of the Jackknife estimator based on
three regularization techniques. The first estimator is based on the Tikhonov
method also called the ridge regularization, the second estimator is based on
an iterative method called Landweber-Fridman (LF) and the third estimator
is based on the principal components associated with the largest eigenvalues
(see Kress (1999) and Carrasco, Florens, and Renault (2007) for a review
of regularization schemes). We consider a linear model with heteroskedas-
tic errors and allow for weak identification as in Hansen, Hausman, and

1This chapter is a joint work with Marine Carrasco. The authors thank the participants
of the CEA 2015, of the 54th Société Canadienne de Science économique, of the 11th
CIREQ Conference, and of the seminar at the Queen’s University for helpful comments.
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Newey (2008) and Newey and Windmeijer (2009). This specification helps
us to have different types of weak instruments sequences, including sequence
of Bekker (1994) and have many weak instruments of Chao and Swanson
(2005). We show that the regularized Jackknife estimators are consistent
and asymptotically normal under heteroskedastic error. In the homoskedas-
tic case with strong instruments, our estimators reach the semiparametric
efficiency bound.
All regularization procedures involve a regularization parameter α, which is
the counterpart of the smoothing parameter in the nonparametric literature.
In this paper, we develop a data driven method to select the regularization
parameter by minimizing the higher-order expansion of the mean square er-
ror (MSE) of our estimators when the instruments are strong.
The simulations show that the leading regularized Jackknife estimators based
on the Tikhonov and Landweber-Fridman techniques perform very well (are
nearly median unbiased) in comparison with other existing estimators even
in the case of weak instruments.
Our paper is related to some other papers in the literature about many
instruments. Carrasco (2012) and Carrasco and Doukali (2016) propose reg-
ularized versions of the two-stage least squares (2SLS) estimator and the
limited information maximum likelihood (LIML) estimator for many instru-
ments. Their proposed estimators are consistent and asymptotically normally
distributed in presence of a very large number of instruments. Chao, Swan-
son, Hausman, Newey, and Woutersen (2012a) (CSHNW) derive the limiting
distribution of the Jackknife instrumental variables estimator and give for-
mulas for consistent standard errors in the presence of heteroskedasticity and
many instruments, but their estimator perform poorly when the number of
instruments L is larger than the sample size n. Regularization has also been
introduced in the context of times series and forecasting macroeconomics se-
ries using a large number of predictors. In this context, it is assumed that
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there is a fixed number of factors that provide a good estimation (see Stock
and Watson (2002), Bai and Ng (2010) and De Mol, Giannone, and Reich-
lin (2008)). Hansen and Kozbur (2014) propose an estimation and inference
procedure in the presence of very many instruments, they use a Jackknife
estimator combined with a ridge regularization. The condition they impose
allow for the number of instruments L to be larger than the sample size n.
Also, their estimation procedure do not assume sparsity, in other words, they
do not require any prior information about the ordering or the strength of
instruments, all instruments are used even if they are weak.
The rest of the paper is organized as follows. Section 2 sets up the model
and introduces the regularization methods. Section 3 derives the asymptotic
properties of the estimators. Section 4 derives the rate of convergence of
the mean square error. Section 5 proposes a data-driven selection of the
regularization parameter. Section 6 presents Monte Carlo experiments. An
empirical application to measuring the return to education is illustrated in
Section 7. Section 8 concludes. The proofs are collected in Appendix.

1.2 Presentation of the regularized Jackknife

model

This section presents the model and the regularized Jackknife estimators.
It is important to note that throughout the paper, the number of instruments
L is not restricted and may be smaller or larger than the sample size n.
We consider the same model as in Chao et al. (2012a):

yi = X ′iδ0 + εi (1.2.1)

Xi = Υi + ui (1.2.2)
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i = 1, . . . , n. The vector of interest is δ0 which is a p × 1 vector. yi is a
scalar. The vector Υi is the optimal instrument which is typically unknown.
We assume that yi and Xi are observed but the Υi is not. E(Xiεi) 6= 0, as a
result, Xi is endogenous and the OLS estimator of δ0 is not consistent. The
estimation will be based on a sequence of instruments Zi = Z(τ ; νi) where νi
is a vector of exogenous variables and τ is an index taking countable values.
Such a situation can arise by taking interactions between some exogenous
variables as in Angrist and Krueger (1991), or by non-linear transformations
of an exogenous variable as in Dagenais and Dagenais (1997) , or also by
allowing lagged dependent variables as in Arellano and Bond (1991).

Assumption 1. yi, Xi and νi are iid, E(ui|νi) = E(εi|νi) = 0; Υi = E(Xi|νi)
denote the p× 1 reduced form vector with E(Υiεi) = 0.

It is well known that the two-stage least squares (2SLS) estimator suffers
from a small-sample bias in presence of endogeneity that is increased dra-
matically when many instruments are used and/or the instruments are only
weakly correlated with the endogenous variables, see Yogo (2004). To solve
the problem of the correlation between estimated instruments and first-stage
errors, researchers have proposed the Jackknife method. The Jackknife es-
timator was first suggested by Phillips and Hale (1977) and popularized by
Angrist, Imbens, and Krueger (1999) by using the leave-one-out observation
approach to reduce the bias of the 2SLS estimator. CSHNW study the prop-
erties of the instrumental variable estimator in the case of many possibly
weak instruments, but they assume that the number of instruments L grows
slower than the sample size n, which is not the case in our work. Recently,
Chao et al. (2012b) propose a Jackknife version of the LIML estimator where
again L is smaller than n.
First we recall the expression of the usual Jackknife instrumental variable
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estimator (JIVE) when the number of instruments is finite.

δ̂ = (Υ̂′X)−1(Υ̂′Y ) (1.2.3)

δ̂ = (
n∑
i=1

Υ̂iX
′
i)
−1

n∑
i=1

Υ̂iyi (1.2.4)

The leave-one-out estimator Υ̂i is defined as Υ̂i = Z ′iπ̂−i, where π̂−i = (Z ′Z−
ZiZ

′
i)
−1(Z ′X − ZiX ′i) is the OLS coefficient from running a regression of X

on Z using all but the ith observation.
Using the formulation from CSHNW:

δ̂ = (
n∑
i=1

π̂′−iZiX
′
i)
−1

n∑
i=1

π̂−iZiyi (1.2.5)

π̂′−iZi = (X ′Z(Z ′Z)−1Zi − PiiXi)/(1− Pii) =
∑n

i 6=j PijXj/(1− Pii)

where
∑

i 6=j denotes the double sum
∑

i

∑
j 6=i and P is a n×n matrix defined

as P = Z(Z ′Z)−1Z ′ and Pij denotes the (i,j)th element of P.
Then, the JIVE is given by:
δ̂ = Ĥ−1

∑n
i 6=j XiPij(1− Pjj)−1yj, where Ĥ =

∑n
i 6=j XiPij(1− Pjj)−1X ′j.

When the number of the instruments is large, the inverse of Z’Z needs to
be stabilized because it is singular or nearly singular. There are many in-
fluential papers on how to deal with many instruments. Bai and Ng (2010)
assume that the endogenous variables depend on a small number of factors
which are exogenous, they use estimated factors as instruments, but their
variable selection procedure is based on the assumption that a small number
of selected factors may be a good-approximation of the endogenous variables,
and so this variable selection scheme requires a prior information about the
model. Belloni, Chen, Chernozhukov, and Hansen (2012) apply an instru-
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mental selection method based on Lasso when there is a low dimensional set
of instruments that leads to a good approximation of the relationship between
instruments and the endogenous variables. Donald and Newey (2001) reduce
the dimension of the instruments set by selecting the number of instruments
which minimizes an approximate mean square error. However, an ad hoc se-
lection of instruments leads to a loss of efficiency because some instruments
are discarded a priori. In this paper, we keep all available instruments by
applying regularization on the inverse of Z ′Z.
Now let us suppose that the number of instruments is finite or countable
infinite as in Carrasco (2012). Here are some examples of Zi.
- If Zi = νi where νi is a L-vector of exogenous variables with a fixed L, then
Z(τ ; νi) denotes the τth element of νi.
- Z(τ ; νi) = (νi)

τ−1 with τ ∈ N , thus we have an infinite countable sequence
of instruments.
Assume τ lies in a space Ξ (Ξ = {1, .., L} or Ξ = N) and let π be a positive
measure on Ξ. Let K be the covariance operator for instruments from L2(π)

to L2(π) such that:

(Kg)(τ) =
L∑
l=1

E(Z(τ, νi)Z(τl, νi))g(τl)π(τl).

where L2(π) denotes the Hilbert space of square integrable functions with
respect to π. K is supposed to be a nuclear operator which means that its
trace is finite. Let λj and ψj, j = 1... be respectively the eigenvalues (ordered
in decreasing order) and the orthogonal eigenfunctions of K. The operator
can be estimated by Kn defined as:

Kn : L2(π)→ L2(π)

(Kng)(τ) =
L∑
l=1

1

n

n∑
i=1

(Z(τ, νi)Z(τl, νi))g(τl)π(τl).
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If the number of instruments L is large relatively to n, inverting the operator
K is considered as an ill-posed problem which means that the inverse is not
continuous and its sample counterpart, Kn, is singular or nearly singular. To
solve this problem we need to stabilize the inverse of Kn using regularization.
A regularized inverse of an operator K is defined as: Rα : L2(π)→ L2(π) such
that limα→0RαKρ = ρ, ∀ρ ∈ L2(π), where α is the regularization parameter
(see Kress (1999) and Carrasco, Florens, and Renault (2007)).
Three types of regularization:

We consider three regularization schemes.

[1] Tikhonov (ridge) regularization:

(Kα)−1 = (K2 + αI)
−1
K.

(Kα)−1r =
∞∑
j=1

λj
λ2j + α

〈r, ψj〉ψj.

where α > 0, r ∈ Rn and I is the identity operator.

[2] Spectral cut-off or principal components:
It consists in selecting the eigenfunctions associated with the eigenval-
ues greater than some threshold.

(Kα)−1r =
∑
λj>α

1

λj
〈r, ψj〉ψj.

for some α > 0 and r ∈ Rn.

[3] Landweber-Fridman iterative method. Let 0 < c < 1
λ21(K)

where λ1(K)
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is the largest eigenvalues of K. define:

ψk = (1− cK2)ψk−1 + cKr, k = 1, 2, ...1/α− 1,

ψ0 = cKr.

where 1/α−1 is some positive integer. ψk converges to K−1r when the num-
ber of iterations k goes to infinity. The earlier we stop the iterations, the
more stable is ψk. Alternatively, we have:

(Kα)−1r =
∞∑
j

1−
(
1− cλ2j

)1/α
λj

〈r, ψj〉ψj.

These three regularized inverses of K can be rewritten using a common no-
tation as:

(Kα)−1r =
∞∑
j=1

q
(
α, λ2j

)
λj

〈r, ψj〉ψj

where:

• q
(
α, λ2j

)
= λ2j/

(
α + λ2j

)
for Tikhonov,

• q
(
α, λ2j

)
= I

(
λ2j ≥ α

)
for spectral cut-off,

• q
(
α, λ2j

)
= 1−

(
1− cλ2j

)1/α for Landweber-Fridman.

Let (Kα
n )−1 be the regularized inverse of Kn and Pα a n × n matrix as

defined in Carrasco (2012) by Pα = T (Kα
n )−1T ∗ where T : L2(π) → Rn

with Tg = (〈Z1, g〉, 〈Z2, g〉′, ...., 〈Zn, g〉′)′ and T ∗ : Rn → L2(π) with T ∗v =
1
n

∑n
j Zjvj.

such that Kn = T ∗T and TT ∗ is a n×n matrix with typical element <Zi,Zj>

n
.

Let φ̂j, λ̂1 ≥ λ̂2 ≥ .... ≥ 0, j = 1, 2, ... be the orthonormalized eigenfunctions
and eigenvalues ofKn and ψj the eigenfunctions of TT ∗. We then have T φ̂j =
√
λψj and T ∗ψj =

√
λjφ̂j. For v ∈ Rn, Pαv =

∑∞
j q(α, λ2j) < v, ψj > ψj.
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In the finite dimensional case, and for an arbitrary n× 1 vector, r, we define
the n× n matrix, Pα, as

Pαr =
1

n

n∑
j=1

q
(
α, λ2j

)
〈r, ψj〉ψj

where α is the regularization parameter. The case α = 0 corresponds to
the case without regularization, q

(
α, λ2j

)
= 1. Then, we obtain P 0 = P =

Z(Z ′Z)−1Z ′.
The regularized version of JIVE is given by:

δ̂ = Ĥ−1
n∑
i 6=j

XiP
α
ij(1− Pα

jj)
−1yj, (1.2.6)

where

Ĥ =
n∑
i 6=j

XiP
α
ij(1− Pα

jj)
−1X ′j (1.2.7)

and Pα
ij denotes the (i,j)th element of Pα. In the special case of ridge regu-

larization, δ̂ has been introduced by Hansen and Kozbur (2014).
Let ξi = (1− Pα

ii )
−1εi and substituting yi = X ′iδ0 + εi, we have :

δ̂ = δ0 + Ĥ−1
n∑
i 6=j

XiP
α
ijξj. (1.2.8)

1.3 Asymptotic Properties of RJIVE

In this section, we establish the asymptotic properties of the Jackknife
regularized IV estimator when the errors are heteroskedastic. We also allow
for the presence of many weak instruments as in Staiger and Stock (1997).
A measure of the strength of the instruments is the concentration param-
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eter, which can be seen as a measure of the information contained in the
instruments. If one could approximate the reduced form Υ by a sequence of
instruments Z, so that X = Z ′π + u where E[u2|Z] = σ2

u, the concentration
parameter would be given by:

CP = π′Z′Zπ
σ2
u

.

Assumption 2. Υi = Snfi/
√
n where Sn = Ŝndiag(µ1n, . . . , µpn) such that

Ŝn is p× p bounded matrix, the smallest eigenvalue of ŜnŜ ′n is bounded away
from zero; for each j, either µjn =

√
n (strong identification) or µjn√

n
→

0 (weak identification). Moreover µn = min
1<j<p

µjn → ∞ and 1/(
√
αµ2

n) →

0, α → 0. Also there is a constant C̄ such that ||
∑n

i=1 fif
′
i/n|| ≤ C̄ and

λmin(
∑n

i=1 fif
′
i/n) ≥ 1/C̄, a.s.

Assumption 2 allows for both strong and weak instruments. If µjn =
√
n,

the instrument is strong. If µ2
jn is growing slower than n, this leads to a weak

identification as that of Chao and Swanson (2005) and CSHNW. fi defined
in Assumption 2 is unobserved and has the same dimension as the infeasible
optimal instrument, Υi. Then fi can be seen as a rescaled version of this
optimal instrument.
An illustration of assumption 2 is as follows. Let us consider the simple
linear model yi = zi1δ1 + δ0pxi2 + εi, where zi1 is an included instruments and
xi2 is an endogenous variable. Suppose that xi2 is a linear combination of
the included instrumental zi1 and an unknown excluded instruments zip, i.e
xi2 = π1zi1 + ( µn√

n
)zip. The reduced form is:

Υi=

(
zi1

xi2

)
=

(
zi1

π1zi1 + ( µn√
n
)zip

)
=

(
1 0

π1 1

) (
1 0

0 µn√
n

) (
zi1

zip

)
with

Ŝn =

(
1 0

π1 1

)
, µjn =

{ √
n , j = 1

µn , j = 2
, with µn√

n
→ 0, and fi = νi =

(
zi1

zip

)
.

Assumption 3. There is a constant C̄, such that conditional on Z=(Υ, Z),
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the observations (ε1, u1), ..., (εn, un) are independent, with E[εi|Z] = 0 for all
i, E[ui|Z] = 0 for all i, supiE[ε2i |Z] ≤ C̄, and supiE[||ui||2|Z] ≤ C̄, a.s..

This assumption requires the second conditional moments of the distur-
bances to be bounded.

Assumption 4. (i) The operator K is nuclear. (ii) Υa (the ath row of Υ)
belongs to the closure of the linear span of {Z(.; ν)}for a = 1, .., p. (iii) There
exist a constant C̄ such that Pα

ii ≤ C̄ < 1, i = 1, ..., n.

Assumption 4 is the same as in Carrasco (2012). Condition (i) provides
that the smallest eigenvalues of the covariance operator K decreases to zero
sufficiently fast. Condition ii) implies that the optimal instrument f can be
approached by a sequence of instruments. In finite case, this condition is
equivalent to say that fi can be approached by a linear combination of the
instruments where Z(ν)L is a subset of the instruments. So, there exists a
πL such that

∑n
i=1 ||fi − πLZ(ν)L||2/n→ 0. Condition (iii) is reminiscent of

Assumption 1 in CSHNW: ′′for some C̄ < 1, Pii < C̄, i = 1, ..., n′′. However
it is much less restrictive. Indeed, Pii < C̄ < 1 implies that

∑
i
Pii
n

= L
n
<

1, L =rank(Z), which restricts the number of instruments. Our condition
Pα
ii ≤ C̄ < 1 implies that trace(Pα) =

∑
i qi < n, which implies a condition

on α. Recall from Carrasco (2012) that
∑

i qi = O( 1
α

). So Assumption (iii)
implies 1

αn
< 1.

Assumption 5. There exist a constant C̄, C̄ > 0 such that
∑n

i=1 ||fi||4/n→
0, supiE[ε4i |Z] ≤ C̄, and supiE[||ui||4|Z] ≤ C̄.

Assumption 5 is a standard condition which assumes that fourth moments
are bounded.

Theorem 1. Suppose that Assumptions 1-4 are satisfied. The Tikhonov,
Landweber-Fridman, and the Spectral cut-off regularized Jackknife estimators
satisfy S ′n(δ̂ − δ0)/µn

p→ 0 as n, µn go to infinity, α goes to 0.
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Remark 1. Here, we remark that the formulation of the JIVE from CSHNW
is quite similar, we can use this similarity to show the consistency of our
estimators.

Remark 2. Theorem 1 implies (δ̂ − δ0)
p→ 0.

See proof of remark 2 in Hansen and Kozbur (2014).
The following theorem will state the asymptotic normality of our proposed
estimators.
First, let: σ2

i = E[ε2i |Z], Hn =
∑

i fif
′
i/n, Ωn =

∑
i fif

′
iσ

2
i /n,

Ψn = S−1n
∑n

i 6=j(P
α
ij)

2(E[UiU
′
i |Z]σ2

j (1− Pjj)
−2+E[Uiεi|Z](1− Pii)−1

E[Ujξj|Z](1− Pjj)−1)S ′−1n .

Similarly to CSHNW, we give the conditional asymptotic variance of S ′n(δ̂−
δ0):

Vn = H−1n (Ωn + Ψn)H−1n

Theorem 2. Suppose that assumptions 1-5 are satisfied and 1
αµ2n

is bounded.
Then:

V
−1/2
n S ′n(δ̂ − δ0)

d→ N(0, Ip),

Remark 3. As in CSHNW, the term Ψn in the conditional asymptotic vari-
ance of δ̂ accounts for the presence of many instruments. The order of this
term is 1

αµ2n
. So the term Ψn vanishes asymptotically if 1

αµ2n
→ 0, then the

conditional asymptotic variance is: Vn = H−1n ΩnH
−1
n .

Homoskedastic case.

If the errors are homoskedastic, E[ε2i |Z]= σ2
ε , and if 1

αµ2n
→ 0, the asymp-

totic variance of the regularized Jackknife estimator is equal to σ2
ε [E(fif

′
i)]
−1,

which corresponds to the semiparametric efficiency bound (Chamberlain (1992))
and is smaller than that obtained in CSHNW. αµ2

n needs to go to infinity,
which means that the regularization parameter α should go to zero at a
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slower rate than the concentration parameter µ2
n goes to infinity. We believe

that the reason, why CSHNW obtain a larger asymptotic variance than us,
is that they use the number of instruments as regularization parameter. As a
result, they cannot let L grow fast enough to reach efficiency. Our estimator
involves an extra tuning parameter which is selected so that the extra term
Ψn in the variance vanishes asymptotically. Moreover, we assume that the
set of instruments is sufficiently rich to span the optimal instrument (As-
sumption 4(ii)).
It is useful to write the RJIVE as:

δ̂ = Ĥ−1
n∑

i,j=1

XiC
α
ijyj, (1.3.1)

where Ĥ =
∑n

i,j=1XiC
α
ijX

′
j, and Cα = (Cα

ij) =

{ Pαij
1−Pαii

if i 6= j

Cα
ii = 0 if i = j

. Then

the RJIVE estimator could be written as:

√
n(δ̂ − δ0) =

(X ′Cα′X)−1

n

(X ′Cα′ε)√
n

. (1.3.2)

The asymptotic variance is given by:

(X ′Cα′X)−1E[(X ′Cα′ε)(ε′CαX)](X ′Cα′X)−1

Now we give an estimator of the asymptotic variance in the homoskedastic
case:
σ̃2
ε (X

′CαX)−1(X ′Cα′CαX)(X ′Cα′X)−1, where σ̃2
ε = 1

n

∑n
i (yi −Xiδ̃)

2 and δ̃
is the consistent RJIVE estimator.

1.4 Mean square error

The three regularization schemes involve a regularization parameter α.
We will choose α that minimizes the mean square error (MSE). To do this,
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we follow the same approach as in Carrasco (2012), and Donald and Newey
(2001) by analyzing the higher-order expansion of the MSE of the regularized
JIVE.
In this section, we assume that we deal only with many strong instruments.
Let Υ = f = (f(ν1), ...., f(νn))′. Let H̄ be the p × p matrix H̄ = f ′f/n,
Σu = E(uiu

′
i|Z), σuε = E(εiui|Z) and X = (X1, ..., Xn) and finally let ||A||

be the Euclidean norm of a matrix A.

Assumption 6. (i) H = E(fif
′
i) exists and is non singular.

ii) there is a β ≥ 1/2 such that

∑∞
j=1

<E(Z(.,νi)fa(νi)),φj>
2

λ2β+1
j

< ∞, where fa is the ath element of f for a =

1, 2, ..., p.

Assumption 6(i) and 6(ii) are similar to those of Carrasco (2012). As-
sumption 6(ii) is used to derive the rate of convergence of the MSE. It guar-
antees that ||f−Pα|| = OP (αβ) for LF and SC and ||f−Pα|| = OP (αmin(2,β))

for T. The value of β measures how well the instruments approximate the
reduced form. The larger β, the better is the approximation.

Assumption 7. Xi, yi, νi iid, E[ε2i |Z] = σ2
ε , and E[ε4i |Z], E[u4i |Z] are bounded.

We assume that the instruments are strong.

Assumption 8. (i) E[(εi, ui)
′(εi, ui)] is bounded, (ii) K is a compact operator

with non zero eigenvalues, (iii) f(νi) is bounded.

A sufficient condition for Assumption 8 (ii) is that the eigenvalues of the
operator K are square summable

∑∞
j=1 λ

2
j < 0.

Theorem 3. Suppose that Assumptions 6-8 are satisfied. For RJIVE δ̂, the
approximate MSE for

√
n(δ̂ − δ0) is given by:

S (α) = H−1
[
Σ2
uσ

2
ε

tr (CαCα′)

n
+ σuεσ

′
uε

tr(Cα2)

n
+ σ2

ε

f ′ (I − Cα′) (I − Cα) f

n

]
H−1
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Moreover, for LF, SC, S(α) = Op(1/αn+αβ) and for T, S(α) = Op(1/αn+

αmin(β,2)).

We could compare S(α) with the expression of the approximate MSE
given by Carrasco (2012) and Carrasco and Doukali (2016).

SRJIV E (α) = H−1
[
Σ2
uσ

2
ε

tr (CαCα′)

n
+ σuεσ

′
uε

tr(Cα2)

n
+ σ2

ε

f ′ (I − Cα′) (I − Cα) f

n

]
H−1

S2SLS(α) = H−1[(σuεσ
′
uε)

[tr(Pα)]2

n
+ σ2

ε

f ′(I − Pα)2f

n
]H−1,

SLIML(α) = σ2
εH
−1[Σv

[tr((Pα)2)]

n
+
f ′(I − Pα)2f

n
]H−1.

We know that
SRJIV E(α) ∼ 1

nα
+ αβ,

S2SLS(α) ∼ 1
nα2 + αβ,

SLIML(α) ∼ 1
nα

+ αβ,
for LF, PC and if β < 2 in the Tikhonov regularization. For β ≥ 2 the
leading term of the Tikhonov regularization is
SRJIV E(α) ∼ 1

nα
+ α2,

S2SLS(α) ∼ 1
nα2 + α2,

SLIML(α) ∼ 1
nα

+ α2,
The approximate MSE of regularized Jackknife is of a smaller order in α than
of the regularized 2SLS and has the same order as the regularized LIML. The
simulation study in Section 1.6 shows that almost everywhere regularized
Jackknife performs better than regularized 2SLS and performs as well as the
regularized LIML.
We note that the approximate MSE of the 2SLS and RJIVE estimators is
composed of two terms, the first one corresponds to the bias term which
grows when α goes to 0, and the second term corresponds to the variance
term. For the LIML estimator, the leading terms in its approximate MSE
come only from the variance terms.
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1.5 Selection of the regularization parameter

We want to find α that minimizes the conditional MSE of v′δ for some
arbitrary p× 1 vector v. The conditional MSE is:
MSE = E[v′(δ̂ − δ0)(δ̂ − δ0)′v|Z] = v′S(α)v = Sv(α)

We will replace Sv(α) by an estimate obtained by cross-validation. First, we
need to reduce the dimension. If δ ∈ Rp for p > 1, the regression X = f + u

involves n × p matrices. We can reduce the dimension by post-multiplying
by H−1v, we have:

Xv = fv + uv (1.5.1)

where Xv, fv, and uv are n× 1 vectors such that Xv = XH−1v, fv = fH−1v

and uv = uH−1v. We have:

S (α) = H−1
[
Σ2
uσ

2
ε

tr (CαCα′)

n
+ σuεσ

′
uε

tr(Cα2)

n
+ σ2

ε

f ′ (I − Cα′) (I − Cα) f

n

]
H−1

= σ2
uνσ

2
ε

tr (CαCα′)

n
+ σ2

uνε

tr(Cα2)

n
+ σ2

ε

f ′ν (I − Cα′) (I − Cα) fν
n

.

The term f ′ν(I−Cα′)(I−Cα)fν
n

corresponds to the prediction error in the regres-
sion (1.5.1). It can be approximated by one of the usual cross-validation
techniques (see for instance Li (1987)). Because the trace of Cα is equal
to zero, Cp cross-validation, generalized cross-validation, and leave-one-out
cross validation coincide. Let

R̂ (α) =
1

n

∥∥∥Xν − f̂ν (α)
∥∥∥2

R (α) =
1

n
E

[∥∥∥fν − f̂ν (α)
∥∥∥2 |Z]

where f̂ν (α) = CαXν .
First we show that R̂ (α) is a conditionally unbiased estimator of R (α)
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up to an additive constant.

R̂ (α) =
1

n

(
fν + uν − f̂ν (α)

)′ (
fν + uν − f̂ν (α)

)
=

1

n

(
fν − f̂ν (α)

)′ (
fν − f̂ν (α)

)
+

1

n
u′ν

(
fν − f̂ν (α)

)
+

1

n

(
fν − f̂ν (α)

)′
uν

+
1

n
u′νuν .

Then,
E
(
R̂ (α) |Z

)
= R (α) + σ2

uν .

Moreover,

R (α) =
1

n
E
[
((1− Cα′) fν + Cα′uν)

′
((1− Cα′) fν + Cα′uν) |Z

]
=

1

n
f ′ν (I − Cα′) (I − Cα) fν +

1

n
σ2
uν tr (CαCα′) .

In the expression of S (α), the term σ2
uνσ

2
ε
tr(CαCα′)

n
+ σ2

ε
f ′ν(I−Cα′)(I−Cα)fν

n
can

be replaced by σ2
εR (α). So S (α) can be estimated2 by

Ŝ (α) = σ̂2
εR̂ (α) + σ̂2

uνε

tr(Cα2)

n

= σ̂2
ε

1

n
‖Xν − CαXν‖2 + σ̂2

uνε

tr(Cα2)

n
(1.5.2)

where σ̂2
ε and σ̂2

uνε are consistent estimators of σ2
ε and σ2

uνε. To estimate σ2
ε ,

let ε̃ = y−Xδ̃ where δ̃ is a preliminary estimator (obtained for instance from
a finite number of moments), then σ̂2

ε = ε̃′ε̃/n. To estimate σ2
uνε, one difficulty

arises which comes from the fact that Xν = XH−1ν is not observed. There
are two ways to proceed. One ad-hoc solution is to set H−1ν = e where e
is some arbitrary vector chosen a priori for instance e = (1, ..., 1)′. Another

2We dropped the extra term σ2
uν

because it does not depend on α.



19

solution consists in setting ν a priori (as a vector of ones for instance) and
estimating H by

H̃ = X ′C α̃′X/n

where α̃ is obtained from a first stage cross-validation criterion based on a
single endogenous variable (for instance the first one). Then Xν in (1.5.2) is
replaced by X̃ν = XH̃−1ν. Let ũν = (I − C α̃′)XH̃−1ν, then, σ̂uνε = ũ′ν ε̃/n.

So a feasible estimator of S (α) is given by

S̃ (α) = σ̂2
ε

1

n

∥∥∥X̃ν − CαXν

∥∥∥2 + σ̂2
uνε

tr(Cα2)

n
.

1.6 Simulation study

In this section we present a Monte Carlo study. Our goal is to demon-
strate the performance of our estimators and provide a comparison with other
standard estimators using a simulation study on a simple DGP.
The data generating process (DGP) is given by:

yi = X ′iδ0 + εi (1.6.1)

Xi = f(νi) + ui (1.6.2)

i = 1, . . . , n. δ0 = 0.1 and (εi, ui) ∼ N(0,
∑

) with

∑
=

(
1 0.5

0.5 1

)
For the purpose of comparison, we consider various setting for the remaining
parameters of the model.
Model 1.

In this model, f(νi) is linear as in DN.

f(νi) = ν ′iπ
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with νi
iid∼ N(0, IL), L= 15 and 30.

The νi are used as instruments so that Zi = νi. The instruments are inde-
pendent from each other, this example corresponds to the worse case scenerio
for our regularized estimators. Indeed, here all the eigenvalues of the oper-
ator K are equal to 1, so there is no information contained in the spectral
decomposition of K. Moreover, if L were infinite, K would not be compact,
hence our method would not apply. However, in practical applications, it is
not plausible that a very large number of instruments would be uncorrelated
with each other.
Model 1a.

πl = d(1− l/(L+ 1))4, l=1,2,...L where d is chosen so that π′π =
R2
f

1−R2
f
.

Here, the instruments are ordered in decreasing order of importance. This
model represents the case where there is some prior information about what
instruments are important.
Model1b.
πl =

√
R2
f

L(1−R2
f )
, l=1,2,3,... L and R2

f = 0.1. In this case, as πl is the same for

all l, there is no reason to prefer one instrument over another.
Model 2 (Factor Model).

Xi = fi1 + fi2 + fi3 + ui

where fi = (fi1, fi3, fi3)
′ ∼ iidN(0, I3), xi is a L × 1 vector of instruments

constructed fi through

νi = Mfi + θi

where θi ∼ N(0, σ2
θ) with σθ = 0.3, and M is L × 3 matrix which elements

are independently drawn in a U [-1,1].
Model 3 (weak instruments)

Following Chao and Swanson (2005), the concentration parameter is propor-
tional to π′Z′nZnπ, where Zn is the n × L matrix: Zn = (Z ′1, ..., Z

′
n)′. As
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here Zi
iid∼ N(0, IL), we have E(Z′nZn) = nIL. Therefore, the concentration

parameter can be approximated by:

CP = nπ′π = n
∑L

l=1 π
2
l

When πl = π1 for all l, CP = nLπ2
1. In model 1b, CP = n

R2
f

1−R2
f

= 55.5

Now, we consider CP = 70 and a smaller value of CP, namely CP = 35.3

The simulations are performed using 1000 replications of samples of size
n = 500. Our proposed estimators depend on a regularization parameter α
that needs to be chosen. We use a data-driven method to select α based
on an expansion of the MSE 4. We compute the estimators corresponding to
Carrasco and Doukali (2016) regularized two-stage least squares and limited
information maximum likelihood: T2SLS and TLIML (Tikhonov), L2SLS
and LLIML (Landweber-Fridman), P2SLS and PLIML (principal compo-
nent). In addition, we consider for each setting the regularized Jackknife
estimators Tjack (Tikhonov), Ljack (Landweber Fridman) and Pjack (prin-
cipal component). The optimal regularization parameter is selected using
Mallows Cp.
We report the median bias (M.bias), the median of the absolute deviations of
the estimator from the true value (M.abs), the difference between the 0.1 and
0.9 quantiles (dis) of the distribution of each estimator, the mean square error
(MSE) and the coverage rate (Cov.) of a nominal 95% confidence interval.
To construct the confidence intervals to compute the coverage probabilities,
we used the following estimate of asymptotic variance:

V̂ (δ̂) = (y−Xδ̂)′(y−Xδ̂)
n

(X̂ ′X)−1X̂ ′X̂(X ′X̂)
−1

3Note that the values considered by Hausman et al. (2012) correspond to nπ2
1 = µ2 = 8

and 32, so that we consider here smaller value of π2
1 , therefore weaker instruments.

4The optimal α for Tikhonov is searched over the interval [0.01, 0.5] with 0.01 incre-
ment. The range of values for the number of iterations for LF is from 1 to 300 and the
constant c in the LF algorithm is set equal to 0.1. For the number of principal components,
we search between 1 and the number of instruments.
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where X̂ = CαX.

Table 1.1 shows results for model 1a. We remark that the regularized Jack-
knife is better than the regularized 2SLS and performs as well as the reg-
ularized LIML in almost every case. We observe that the coverage of the
regularized 2SLS is very poor while that for the regularized Jackknife is
much better. Within the regularized Jackknife, T and LF perform better
than the others estimators especially when the number of instruments are
very high.
In Model 1b where all the instruments have equal weights and there is no
reason to prefer one over another, the regularized Jackknife dominates the
regularized 2SLS in terms of bias (see Table 1.2). We can also notice that,
when the number of instruments increases, the MSE of the regularized Jack-
knife becomes greater than those of regularized 2SLS.
The poor performance of SC 2SLS estimator and SC Jackknife estimator in
model 1a can be explained by the absence of factor structure.
In model 2 which is a factor model, Table 1.3 shows that the regularized
Jackknife estimator has similar performance as the regularized 2SLS for all
schemes. The T and LF Jackknife dominate the P Jackknife with respect to
all criteria.
Now we consider the model 3 which allows the presence of weak instruments.
From Table 1.4 we remark that:
(a) The performance of the regularized estimators increases with the strength
of instruments but decreases with the number of instruments.
(b) The bias of regularized Jackknife regularized estimator is quite a bit
smaller than that of regularized 2SLS. However, it is larger than that of the
regularized LIML especially for weak instruments but the coverage of regu-
larized Jackknife is better than that of regularized LIML.
(c) Tikhonov Jackknife estimator has the smallest bias while LF Jackknife
has the smaller MSE. The SC is not recommended in presence of weak in-
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struments as both its bias and variance are large.
As expected, regularized Jackknife estimators have smaller bias but larger
variance than the regularized 2SLS estimators. This loss of efficiency can be
regarded as the cost of improvement of the bias relative to the regularized
2SLS estimators.

Table 1.1: Simulations results of model 1a

T2SLS L2SLS P2SLS TLIML LLIML PLIML Tjack Ljac Pjack

L = 15 M.bias0.101 0.114 0.088 0.006 0.007 0.017
-

0.014
-

0.006 0.043
M.abs 0.114 0.100 0.174 0.103 0.102 0.102 0.120 0.109 0.192
Disp 0.302 0.312 0.843 0.391 0.391 0.390 0.466 0.429 0.993
MSE 0.023 0.02 12.943 0.025 0.025 4.5e+280.040 0.032 476.1
Cov 0.812 0.819 0.927 0.898 0.902 0.895 0.954 0.958 0.934

L = 30 M.bias0.172 0.167 0.180 0.007 0.009 0.046
-

0.004 0.003 0.141
M.abs 0.172 0.169 0.204 0.106 0.108 0.113 0.129 0.123 0.343
Disp 0.263 0.291 0.457 0.447 0.441 0.433 0.505 0.490 1.760
MSE 0.039 0.039 11.038 0.032 0.032 Inf 0.087 0.064 35.23
Cov 0.586 0.632 0.712 0.820 0.812 0.824 0.956 0.952 0.899
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Table 1.2: Simulations results of model 1b

T2SLS L2SLS P2SLS TLIML LLIML PLIML Tjack Ljac Pjack

L = 15 M.bias0.098 0.096 0.071
-

0.000
-

0.001 0.015
-

0.011
-

0.009 0.015
M.abs 0.110 0.114 0.185 0.103 0.102 0.103 0.108 0.107 0.108
Disp 0.288 0.296 0.760 0.390 0.386 0.380 0.423 0.417 0.408
MSE 0.022 0.023 3.319 0.024 0.025 1.4e+280.029 0.029 0.153
Cov 0.838 0.843 0.925 0.897 0.899 0.891 0.924 0.925 0.946

L = 30 M.bias0.176 0.165 0.129 0.010 0.011 0.042
-

0.002
-

0.004 0.0120
M.abs 0.176 0.165 0.275 0.107 0.110 0.111 0.126 0.126 0.355
Disp 0.258 0.276 1.500 0.412 0.421 0.413 0.504 0.485 1.610
MSE 0.039 0.038 24.344 0.030 0.033 1.3e+292.510 0.047 11.17
Cov 0.576 0.643 0.93 0.829 0.828 0.806 0.962 0.961 0.891

Table 1.3: Simulations results of model 2

T2SLS L2SLS P2SLS TLIML LLIML PLIML Tjack Ljac Pjack

L = 15 M.bias0.001 0.001 0.001
-

0.0003
-

0.0002
-

0.0002 0.0002 0.0002 0.001
M.abs 0.017 0.017 0.017 0.0177 0.0177 0.017 0.017 0.017 0.017
Disp 0.066 0.066 0.066 0.067 0.067 0.067 0.065 0.066 0.065
MSE 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007 0.0007
Cov 0.944 0.944 0.942 0.948 0.948 0.948 0.949 0.946 0.946

L = 30 M.bias0.0008 0.0004 0.0004 0.001 0.0009 0.0009
-

0.001
-

0.001
-

0.0004
M.abs 0.016 0.016 0.016 0.017 0.017 0.0172 0.017 0.017 0.017
Disp 0.065 0.065 0.065 0.067 0.067 0.067 0.065 0.065 0.065
MSE 0.0007 0.0007 0.0007 0.0007 0.0007 0.0035 0.0007 0.0007 0.0007
Cov 0.935 0.933 0.932 0.953 0.955 0.955 0.937 0.937 0.936
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Table 1.4: Simulations results of model 3

T2SLS L2SLS P2SLS TLIML LLIML PLIML Tjack Ljac Pjack

L=15 Cp=35 M.bias0.142 0.139 0.100 0.0003 0.001 0.066
-

0.006
-

0.013 0.033
M.abs 0.151 0.151 0.265 0.133 0.135 0.273 0.210 0.215 0.123
Disp 0.342 0.368 1.389 0.534 0.544 1.426 0.722 0.643 0.614
MSE 0.039 0.039 66.381 0.036 0.037 Inf 1.528 0.451 5.876
Cov 0.768 0.792 0.93 0.858 0.868 0.934 0.927 0.937 0.915

Cp=70 M.bias0.081 0.079 0.065
-

0.001 0.002 0.029
-

0.027
-

0.007 0.006
M.abs 0.097 0.098 0.143 0.092 0.090 0.153 0.114 0.096 0.090
Disp 0.271 0.286 0.617 0.348 0.350 0.747 0.489 0.385 0.341
MSE 0.018 0.018 3.345 0.015 0.015 1.5e+184.076 0.024 0.020
Cov 0.838 0.848 0.926 0.902 0.896 0.933 0.937 0.939 0.938

L=30 Cp=35 M.bias0.231 0.216 0.143 0.002 0.007 0.105
-

0.020
-

0.013 0.128
M.abs 0.231 0.217 0.384 0.153 0.155 0.399 0.216 0.181 0.198
Disp 0.293 0.323 1.999 0.611 0.627 2.031 0.950 0.822 0.753
MSE 0.064 0.062 104.3 0.050 0.051 Inf 13.64 1.866 5.937
Cov 0.481 0.559 0.947 0.719 0.734 0.95 0.927 0.956 0.893

Cp=70 M.bias0.150 0.139 0.082 0.003 0.003 0.055
-

0.003
-

0.007 0.047
Med. 0.151 0.139 0.230 0.102 0.102 0.244 0.105 0.114 0.116
Disp 0.249 0.262 1.085 0.391 0.398 1.239 0.417 0.442 0.448
MSE 0.030 0.029 7.716 0.031 0.027 2.5e+260.031 0.040 0.364
Cov 0.625 0.680 0.937 0.833 0.832 0.941 0.873 0.998 0.845
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1.7 Empirical application: Returns to school-

ing

To show that our proposed regularized estimators work well, we use the
classic example of Angrist and Krueger (1991). The authors estimate the
causal effect of the number of years of schooling on the log of the weekly
wage. Because of the problem of the endogeneity of the explanatory variable,
the OLS estimate is biased. Angrist and Krueger (1991) proposed to use the
quarters of birth as instruments. We use the same model and instruments
and we compute different versions of the regularized Jackknife estimators
and compare them with other competing IV estimators.
We consider the Angrist and Krueger (1991)’s model:

logw = α + δeducation+ β′1Y + β′2S + ε

where log w=log of weekly wage, education= year of education, Y= year of
birth dummy (9), S= state of birth dummy (50). The vector of instruments
Z = (1, Y, S,Q,Q ∗ Y,Q ∗ S) includes 240 variables, where Q is quarter-of-
birth dummy. The parameter of interest is δ which represents the impact of
education on earnings. The sample drawn from the 1980 US Census consists
of 325,509 men born between 1930 and 1939.
Table 1.5 reports schooling coefficients generated by different estimators ap-
plied to the Angrist and Krueger (1991) data with their standard errors.
Table 1.5 shows that all regularized 2SLS and Jackknife give close results.
This results confirm what simulations have shown. Table 1.5 shows also that
Tjack and Ljack are more reliable than their 2SLS counterpart and Pjack.
Pjack gives estimators which are quite bigger than Tjack and Ljack but we
do not trust Pjack because there is no factor structure here. The results
suggest that the return to education is between 0.0901 and 0.1077.
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Table 1.5: Estimates of the returns to education

OLS 2SLS TSLS L2SLS P2SLS
0.068 0.081 0.123 0.129 0.978
(0.0003) (0.010) (0.048) (0.030) (0.041)

. α = 0.00001 700 iterations Nb of eignf=81
. Jackknife Tjack Ljack Pjack
. 0.095 0.107 0.090 0.140
. (0.026) (0.030) (0.059) (0.074)

. α = 0.00001 700 iterations Nb of eignf=219

1.8 Conclusion

In this paper, we propose a new method for estimation with many weak
instruments. We derived the limiting distribution for the regularized Jack-
knife estimator. This estimator is consistent and asymptotically normal. We
show that, thanks to the regularization, our estimators are more efficient than
the standard Jackknife IV estimator. All regularization methods involve a
tuning parameter which needs to be selected. We propose a data-driven
method for selecting this parameter. Simulations show that the regularized
estimators (LF and T of Jackknife) perform well (are nearly median unbi-
ased) relative to other competing estimators. These proposed estimators are
attractive alternatives to existing methods for researchers working with many
weak instruments.



28

1.9 Appendix

Lemma A0.: If Assumptions 1-3 are satisfied Then :
i) Pα

ii < 1 for α > 0,
ii)
∑

i 6=j (Pα
ij)

2 = O(1/α) ,
iii)

∑
i 6=j P

α
ij = O(1/α).

iv)
∑

i,l,k,r P
α
ikP

α
klP

α
lrP

α
ri = O(1/α).

v)
∑

i,j (Pα
ij)

4 = O(1/α).
vi)
∑

i,j,k (Pα
ij)

2(Pα
j,k)

2 = O(1/α).
Proof of Lemma A0:
i) Let P = Z(Z ′Z)+Z ′ a n×n matrix where (Z ′Z)+ is the generalized inverse
of Z’Z.
P is a projection matrix of rank, say r, with r eigenvalues=1 and n− r = 0.
Let Pαv =

∑
j q(α, λ

2
j) < v, ψj > ψj. The eigenvalues of Pα are q(α, λ2j)

where q(α, λ2j) = 0 if λj = 0 and q(α, λ2j) < 1 if λj 6= 0 and α > 0.
(P − Pα)v =

∑
j(q(α, λ

2
j)− 1) < v, ψj > ψj

We know that q(α, λ2j) < 1, thus, Pα − P is negative definite.
Therefore for all vector v: v′(Pα − P )v < 0. Let v = (0, ..., 1, ....0) = ej, we
have:
e′j(P

α − P )ej = Pα
jj − Pjj < 0. Recall that the elements Pjj of a projection

matrix are such that 0 < Pjj < 1.
Conclusion: Pα

ii < 1 for α > 0.
ii)
∑

i 6=j (Pα
ij)

2 ≤
∑n

i

∑n
i 6=j (Pα

ij)
2 ≤

∑n
i,j (Pα

ij)
2.

We know that tr((Pα)2) =
∑

i,j (Pα
ij)

2 =
∑n

j q
2
j ≤

∑n
j qj = tr(Pα) = O(1/α)

because 0 ≤ qj ≤ 1. For the last equality see Lemma 4 of Carrasco 2012.
iii)
∑

i 6=j P
α
ij ≤

∑
i,j P

α
ij ≤ tr(Pα) =

∑
j qj = O(1/α).

iv) Let Pα = (Pα
ij)i,j for i = 1... and j = 1...

(Pα
ij)

2 = (Pα × Pα)ij =
∑

k P
α
ikP

α
kj = aij for i = 1... and j = 1...

(Pα
ij)

4 =
∑

l ailalj =
∑

l[
∑

k P
α
ikP

α
kl][
∑

r P
α
lrP

α
rj] =

∑
l,k,r P

α
ikP

α
klP

α
lrP

α
rj
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Then tr((Pα)4) =
∑

i,l,k,r P
α
ikP

α
klP

α
lrP

α
ri.

We know that tr((Pα)4) =
∑

j q(α, λ
2
j)

4 ≤
∑

j q(α, λ
2
j) = tr((Pα)) = O(1/α),

because
0 ≤ q(α, λ2j) ≤ 1. Then tr((Pα)4) =

∑
i,l,k,r P

α
ikP

α
klP

α
lrP

α
ri = O(1/α) .

v)
∑

i,j (Pα
ij)

4 ≤
∑

i,l,k,r P
α
ikP

α
klP

α
lrP

α
ri = O(1/α).

vi)
∑

i,j,k (Pα
ij)

2(Pα
j,k)

2 ≤
∑

i,l,k,r P
α
ikP

α
klP

α
lrP

α
ri = tr((Pα)4) = O(1/α).

Let us define some notations that will be used in the following Lemmas.
For random variables5 Wi, Yi, ηi and Z = (Y, Z). Let w̄i = E[Wi|Zi],
ȳi = E[Yi|Zi], η̄i = E[ηi|Zi], W̃i = Wi − w̄i and Ỹi = Yi − ȳi, η̃i =

ηi − η̄i, w̄n = E[(W1, ....,Wn)′|Z], ȳn = E[(Y1, ...., Yn)′|Z], µ̄W = maxi≤n|w̄i|,
µ̄Y = maxi≤n|ȳi|, µ̄η = maxi≤n|η̄i|, σ̄2

Wn
= maxi≤nvar(Wi|Zi)1/2, σ̄2

Yn
=

maxi≤nvar(Yi|Zi)1/2.
Define the norm: ||W ||2L2,Z =

√
E[W 2|Z], and let M, CS, T denote the

Markov inequality, the Cauchy-Schwarz inequality, and the triangle inequal-
ity, respectively.
Lemma A1.
If conditional on Z, the pairs of scalar random variables (Wi, Yi) are inde-
pendent across i, Pα is the regularized projection matrix. Then there is a
constant C such that:
||
∑n

i 6=j P
α
ijWiYj −

∑n
i 6=j P

α
ij w̄iȳj||2L2,Z < CBn

where Bn = (1/α)σ̄2
Wn
σ̄2
Yn

+ σ̄2
Yn
w̄′nw̄n + σ̄2

Wn
ȳ′nȳn and w̄n is defined as w̄n =

E[(W1, ....,Wn)′|Z], ȳn = E[(Y1, ...., Yn)′|Z], σ̄2
Wn

= maxi≤nvar(Wi|Zi)1/2,
σ̄2
Yn

= maxi≤nvar(Yi|Zi)1/2.
Proof of Lemma A1.

W̃i = Wi − w̄i and Ỹi = Yi − ȳi. We have:∑n
i 6=j P

α
ijWiYj−

∑n
i 6=j P

α
ij w̄iȳj =

∑n
i 6=j P

α
ijW̃iỸj+

∑n
i 6=j P

α
ijW̃iȳj+

∑n
i 6=j P

α
ij w̄iỸj.

Let D1n = σ̄2
Wn
σ̄2
Yn
. For i 6= j and k 6= l , E[W̃iỸjW̃kỸl|Z] is zero unless i = k

5 Note that here Wi and ηi are arbitrary scalar variables that will take various forms
in the sequel.
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and j = l or i = l and j = k. Then by Cauchy-schwarz inequality and
Lemma 1, we have:

E[(
n∑
i 6=j

Pα
ijW̃iỸj)

2

|Z] =
n∑
i 6=j

n∑
k 6=l

Pα
ijP

α
klE[W̃iỸjW̃kỸl|Z]

=
n∑
i 6=j

(Pα
ij)

2(E[W̃ 2
i |Z]E[Ỹ 2

j |Z] + E[W̃iỸi|Z]E[W̃jỸj|Z])

≤ 2D1n

n∑
i 6=j

(Pα
ij)

2

≤ 2D1n

n∑
i

Pα
ii

≤ 2D1n(1/α).

For W̃ = (W̃1, ...., W̃n)′, we have
∑

i 6=j P
α
ijW̃iȳj = W̃P ȳ −

∑
i P

α
ii ȳiW̃i . By

independence across i conditional on Z, we have E[W̃iW̃i|Z] ≤ σ̄2
Wn
In, so:

E[((ȳPαW̃ )
2|Z] = ȳ′PαE[W̃iW̃i|Z]Pαȳ ≤ σ̄2

Wn
ȳ′Pαȳ ≤ σ̄2

Wn
ȳ′ȳ,

E[(
∑

i P
α
ii ȳiW̃i)

2|Z] =
∑

i (P
α
ii )

2E[W̃ 2
i |Z] ≤ σ̄2

Wn
ȳ′ȳ.

Then by triangular inequality we have:
||
∑n

i 6=j P
α
ijW̃iȳj|| ≤ ||ȳPαW̃ ||+ ||

∑n
i P

α
ii W̃iȳi|| ≤ Cσ̄2

Wn
ȳ′ȳ.

Interchanging the roles of Yi and Wi we have
∑n

i 6=j P
α
ij w̄iỸj ≤ Cσ2

Yn
w̄′w̄.

Lemma A2. (adaptation of Lemma A2 of CSHNW)
Suppose the following hold conditional on Z:
(i) Pαv =

∑
j q(α, λ

2
j) < v, ψj > ψj.

(ii)(W1n, U1, ε1), ..., (Wnn, Un, εn) are independent, and D1,n :=
∑n

i=1E[WinW
′
in|Z]

satisfies ||D1,n|| < C

(iii) E[W ′
in|Z] = 0, E[Ui|Z] = 0, E[εi|Z] = 0, and there is a constant C such

that E[||Ui||4|Z] ≤ C and E[ε4i |Z] ≤ C

(iv)
∑n

i=1E[||Win||4|Z]→ 0 a.s.
(v) α→ 0 as n→∝.
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Then for:
D2,n := α

∑n
i 6=j(P

α
ij)

2(E[UiU
′
i |Z]E[ε2j |Z] + E[Uiεi|Z]E[U ′jεj|Z])

and any sequences c1n and c2n depending on Z with ||c1n|| ≤ C, ||c2n|| ≤ C,
and

∑
n
−1/2 = c′1nD1,nc1n + c′2nD2,nc2n > 1/C, it follows that:

Ȳn =
∑

n
−1/2√α(c′1n

∑n
i=1Wi,n + c′2n

∑n
i 6=j Ui(P

α
ij)

2εj)→ N(0, 1).
Proof Lemma A2.
The proof is similar to that of Lemma A2 CHSNW replacing P by the regu-
larized Pα, and using Lemma A1, and Lemma B1, Lemma B2, Lemma B3,
and Lemma B4 of CHSNW and replacing the number of instruments L by
1/α.
Lemma A3. (adaptation of Lemma A3 of CSHNW)
If conditional on Z and (Wi, Yi)i = 1, ..., n are independent scalars, then
there is C > 0 such that:
||
∑n

i 6=j(P
α
ij)

2WiYj − E[
∑n

i 6=j(P
α
ij)

2WiYj]||2L2,Z
< CB′n

where B′n = (1/α)(σ̄2
Wn
σ̄2
Yn

+ σ̄2
Wn
µ̄2
Y + µ̄2

W σ̄
2
Yn

).
Proof of Lemma A3.
We have:∑n

i 6=j(P
α
ij)

2WiYj −
∑n

i 6=j(P
α
ij)

2w̄iȳj =
∑n

i 6=j(P
α
ij)

2W̃iỸj +
∑n

i 6=j(P
α
ij)

2W̃iȳj +∑n
i 6=j(P

α
ij)

2w̄iỸj.
For i 6= j and k 6= l, E[W̃iỸjW̃kỸl|Z] is zero unless i = k and j = l or
i = l and j = k. Also |Pα

ij | ≤ Pα
ii < 1 by Lemma A0 (i). Also, we have
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(Pα
ij)

4 ≤ (Pα
ij)

2 and
∑

j(P
α
ij)

2 = O( 1
α

) by Lemma A0, so:

E[(
n∑
i 6=j

(Pα
ij)

2W̃iỸj)

2

|Z] =
n∑
i 6=j

n∑
k 6=l

(Pα
ij)

2(Pα
kl)

2E[W̃iỸjW̃kỸl|Z]

=
n∑
i 6=j

(Pα
ij)

4(E[W̃ 2
i |Z]E[Ỹ 2

j |Z] + E[W̃iỸi|Z]E[W̃jỸj|Z])

≤ 2σ̄2
Wn
σ̄2
Yn

n∑
i 6=j

(Pα
ij)

4

≤ 2σ̄2
Wn
σ̄2
Yn(1/α).

We have
∑n

i 6=j(P
α
ij)

2W̃iȳj = W̃ P̃ ȳ −
∑

i(P
α
ii )

2ȳiW̃i where P̃α
ij = Pα

ij
2. By

independence across i conditional on Z, we have E[W̃iW̃i|Z] ≤ σ̄2
Wn
In, so:

E[((ȳP̃αW̃ )
2|Z] = ȳ′P̃αE[W̃iW̃i|Z]P̃αȳ ≤ σ2

Wn
ȳ′(P̃α)

2
ȳ

= σ2
Wn

∑
i,j,k

ȳi(P
α
ik)

2(Pα
kj)

2ȳj ≤ σ2
Wn
µ̄2
Y

∑
i,j,k

(Pα
ik)

2(Pα
kj)

2

= σ2
Wn
µ̄2
Y

∑
k

(
∑
i

(Pα
ik)

2)(
∑
j

(Pα
kj)

2)

= σ2
Wn
µ̄2
Y

∑
k

(Pα
kk)

2

= σ2
Wn
µ̄2
Y (1/α)

E[(
∑

i(P
α
ii )

2ȳiW̃i)
2|Z] =

∑
i (P

α
ii )

4E[W̃ 2
i |Z]ȳ2i ≤ σ2

Wn
µ̄2
Y (1/α).

Then by the triangle inequality, we have:
||
∑n

i 6=j(P
α
ij)

2W̃iȳj||2 ≤ ||ȳP̃αW̃ ||2 + ||
∑n

i (Pα
ii )

2W̃iȳi||2 ≤ C(1/α)σ2
Wn
µ̄2
Y .

Interchanging the roles of Yi and Wi we have:
||
∑n

i 6=j(P
α
ij)

2w̄iỸj||2 ≤ C(1/α)σ̄2
Yn
µ̄2
W .

Lemma A4. (adaptation of Lemma A4 of CSHNW)
Suppose that there is a constant C > 0 such that, conditional on Z, (W1, Y1, η1),

...., (Wn, Yn, ηn) are independent with E[Wi|Z] = ai/
√
n, E[Yi|Z] = bi/

√
n,
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|ai| ≤ C, |bi| ≤ C, E[η2i |Z] ≤ C, V ar(Wi|Z) ≤ C/µ2
n, and V ar(Yi|Z) ≤

C/µ2
n, and there exists πn such that maxi≤n|ai−Z ′iπn| → 0 a.s. and 1

αµ2n
→ 0.

Then
An = E[

∑
i 6=j 6=kWiP

α
ikηkP

α
kjYj|Z] = Op(1),

∑
i 6=j 6=kWiP

α
ikηkP

α
kjYj − An

P−→ 0.
Proof of Lemma A4.
Lemma A4 of CSHNW holds with Pα replacing P .
Lemma A5.

If Assumptions 1-3 are satisfied, then
i) S−1n ĤS−1n =

∑n
i 6=j fiP

α
ij(1− Pα

jj)
−1f ′j/n+ op(1)

ii) S−1n
∑n

i 6=j XiP
α
ij(1− Pα

jj)
−1ε′j = Op(1 + (1/(

√
αµn)).

Proof of Lemma A5 .
Let ek denote the kth unit vector and apply Lemma A1 with Yi = e′kS

−1
n Xi =

fik/
√
n + e′kS

−1
n Ui and Wi = e′lS

−1
n Xi(1− Pα

ii )
−1 for some k and l. By as-

sumption 2, λmin ≥ C/µn, implying ||S−1n || ≤ C/µn.
E[Yi|Z] = fik/

√
n, V ar([Yi|Z]) ≤ C/µ2

n,
E[Wi|Z] = fil/

√
n(1− Pα

ii ), V ar([Wi|Z]) ≤ C/µ2
n,

We have a.s.
1√
α
σ̄Wnσ̄Yn ≤ C/(

√
αµ2

n)→ 0, σ̄Wn

√
ȳȳ′ ≤ C/µn

√∑
i f

2
ik/n→ 0.

σ̄Yn
√
w̄w̄′ ≤ C/µn

√∑
i f

2
il(1− Pα

ii )
−2/n ≤ C/µn(1−maxiPα

ii )
−2√∑

i f
2
il/n→

0.

We have e′kS−1n ĤS ′−1n el = e′kS
−1
n

∑n
i 6=j XiP

α
ijXjS

′−1
n el/(1−Pα

jj) =
∑n

i 6=j YiP
α
ijWj

and Pα
ij w̄iȳj = Pα

ijfikfjl/n(1− Pα
jj), applying Lemma A1 and the conditional

version of Markov, we have that for any v > 0 and
An = {|e′kS ′−1n ĤS ′−1n el −

∑n
i 6=j e

′
kfiP

α
ij(1− Pα

ii )
−1f ′jel/n| ≥ v}, P (An|Z)→ 0.

By the dominated convergence theorem, P (An) = E[P (An|Z)]. The preced-
ing argument establishes the first conclusion for the (k, l)th element. Doing
this for every element completes the proof of (i).
For (ii), we apply Lemma A1 with Yi = e′kS

′−1
n Xi as before and Wi =

εi/(1− Pα
ii ). Note that w̄i = 0 and σ̄Wn ≤ C. Then by Lemma A1,
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E[{e′kS ′−1n

∑n
i 6=j XiP

α
ij(1− Pα

ii )
−1εj}2|Z] ≤ c/(αµ2

n) + C.
The conclusion then follows from the fact that E[An|Z] ≤ C implies An =

Op(1).
Lemma A6.
If assumptions 1-4 are satisfied, then :
S−1n ĤS−1n =

∑n
i fif

′
i/n+ op(1).

Proof of Lemma A6.
Lemma A6 of CSHNW holds with Pα replacing P .
Proof of theorem 1.
First we note that S ′n(δ̂ − δ0)/µn → 0 implies δ̂ P−→ δ0. Because
||S ′n(δ̂ − δ0)/µn| ≥

√
λmin(SnS ′n/µn)||δ̂ − δ0|| ≥ C||δ̂ − δ0|| by Assumption 2.

Therefore, it suffices to prove the statement S ′n(δ̂ − δ0)/µn → 0.
The steps of the proof of theorem 1 of CSHNW holds with Pα

ii replacing Pii.
So we have :
S ′n(δ̂−δ0)/µn = (S−1n ĤS−1n )−1S−1n

∑n
i 6=j XiP

α
ij(1−Pα

jj)
−1ε′j/

√
n = Op(1)op(1)→

0 (by lemma A5 and lemma A6)
Proof of theorem 2.
The proof is similar to that of CHSNW replacing P by the regularized
Pα, and using Lemma A0 and Lemma A2. Define: ξi = εi

1−Pii and Yn =∑n
i fi(1− Pα

ii )ξi/
√
n+ S−1n

∑n
i 6=j UiP

α
ijξj

We now apply Lemma A2 to establish the asymptotic normality of Yn con-
ditional on Z, and we conclude after that the asymptotic normality of
S−1n

∑n
i 6=jWiP

α
ijξj.

Let Γn = V ar(Yn|Z), so:
Γn =

∑
i fif

′
i(1− Pα

ii )
2E[ξi

2|Z]/n+ S−1n
∑n

i 6=j(P
α
ij)

2(E[UiU
′
i |Z]E[ξ2j |Z] +

E[Uiξi|Z]E[U ′jξj|Z])S−1n ,
Note that ||Γn|| ≤ C see Hansen and Kozbur (2014).
Now, let β be a p×1 nonzero vector andWi = fi(1−Pα

ii )ξi/
√
n , c1n = Γn

−1/2β

and c2n =
√

1/αS−1n Γn
−1/2β.
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We show that all conditions of Lemma A2 are satisfied:
(i) Condition (i) is satisfied.
(ii) D1,n =

∑
iE[WiW

′
i |Z]=

∑
iE[(fi(1− Pα

ii )ξi/
√
n)(fi(1− Pα

ii )ξi/
√
n)′|Z].

= E[||
∑n

i fif
′
iε

2
i /
√
n||2|Z] =

∑n
i ||fif ′i ||2E[ξ2i |Z] ≤ C

∑n
i ||fif ′i ||2/n

a.s−→ 0.
Then, condition (ii) is satisfied.
(iii) Condition (iii) is satisfied by Assumptions 3 and 5.
(iv) Condition (iv) is satisfied. It is the same condition as in Theorem 2 of
CSHNW.
(v) Condition (v) is satisfied by Assumption 2.
Now, Let us apply Lemma A2. Note that c1n and c2n are bounded. Moreover,
the Σn of lemma A2 is:
Σn = V ar(c′1n

∑
iWin+c2n

∑n
i 6=j UiP

α
ijξj)
√
α|Z) = V ar(β′Γ

−1/2′
n Yn|Z) = β′β.

We have:
(β′β)−1/2β′Γ

−1/2
n Yn = Σ

−1/2
n (c′1n

∑
iWin + c2n

∑n
i 6=j UiP

α
ijξj)
√
α→ N(0, 1)

It follows that β′Γ−1/2n Yn → N(0, β′β), so by the Cramer-Wold device, Γ
−1/2
n Yn →

N(0, Ip).
Recall that Vn = H−1n ΓnH

−1
n for Hn =

∑
i fif

′
i . Let Bn = V

−1/2
n HnΓ

1/2
n . Bn

is an orthogonal matrix since BnB
′
n = V

−1/2
n HnΓ

1/2
n Γ

1/2
n

′
HnV

−1/2
n

′
= In, note

also that Bn depends only on Z.
Therefore,
V
−1/2
n (S−1n ĤS−1n

′
)−1Γ

−1/2
n = V

−1/2
n (Hn + op(1))Γ

1/2
n = Bn + op(1).

Note that because Γ
−1/2
n Yn → N(0, Ip) and Bn is only a function of Z, we

have that:
BnΓ

−1/2
n Yn → N(0, Ip). then by the slutsky lemma and δ̂ = δ0+Ĥ

−1∑n
i 6=j XiP

α
ijξj.

We have:
V
−1/2
n S ′n(δ̂ − δ0) = V

−1/2
n (S−1n ĤS−1n

′
)−1S−1n

∑n
i 6=j XiP

α
ijξj.

V
−1/2
n S ′n(δ̂ − δ0) = V

−1/2
n (S−1n ĤS−1n

′
)−1(Yn + op(1)).

V
−1/2
n S ′n(δ̂ − δ0) = (Bn + op(1)) (Γ

−1/2
n Yn + op(1)).

V
−1/2
n S ′n(δ̂ − δ0) = BnΓ

−1/2
n Yn + op(1)→ N(0, Ip).
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Proof of theorem 3.
P is the projection matrix after regularization and C is the matrix defined
in section 1.3, (α is hidden for simplicity). The proof is similar to Donald
and Newey (2001) (DN). We have:

√
n(δ̂ − δ0) = Ĥ−1ĥ

with Ĥ = W ′C′W
n

, and ĥ = W ′C′ε√
n

. First we state a preliminary lemma.
Lemma A7.
Let denote ef (α) = f ′(I − P )f/n, e2f (α) = f ′(I − P )2f/n,∆α = tr(e2f (α))

If Assumptions 1-3 are satisfied then:

(i) tr(f ′(I − P )f/n) =

{
op(α

β) for LF, SC,

op(α
min(β,1) for T.

∆α =

{
Op(α

β) for LF, SC,

Op(α
min(β,2) for T.

(ii) f ′(I − C)ε/
√
n = Op(∆

1/2
α ).

(iii) u′Cε = Op(1/(α)).

(iv) E[u′Cεε′C ′u|Z] = (σ2
uσ

2
ε + σ2

uε)O(1/α).
(v) E[f ′εε′Cu|Z] = Op(1/α).
(vi) ∆

1/2
α /(
√
αn) ≤ 1/(2αn) + ∆α/2.

(vii) E[hh′H−1u′f/n|Z] = Op(1/n).
(viii) E[ 1

n
(f ′(I − C)εε′Cu)|Z] = Op(∆

1/2
α /
√
αn).

Proof of Lemma A7.

(i) For the proof of (i) see Lemma5 (i) of Carrasco (2012).
(ii) f ′(I − C)ε/

√
n = f ′(I − P )ε/

√
n + f ′P̄ (I − P )ε/

√
n because C =

P − P̄ (I − P ) and P̄ = P̃ (I − P̃ )−1, where P̃ is a diagonal matrix with
element Pii, i = 1, ..., n on the diagonal.
The first term f ′(I − P )ε/

√
n = Op(∆

1/2
α ) follows from Lemma 5(ii) in Car-

rasco (2012)
||f ′P̄ (I − P )ε/

√
n||2 = ε′(I − P )P̄ ff ′P̄ (I − P )ε/n

= tr((I − P )P̄ ff ′P̄ (I − P ))εε′/n.

E[||f ′P̄ (I − P )ε/
√
n||2|Z] = σ2

ε tr((I − P )P̄ ff ′P̄ (I − P )).
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|f ′P̄ (I−P )(I−P )P̄ f | ≤ sup( Pii
1−Pii )

2(f ′(I − P )2f/n)1/2 ≤ c∆α. By Assump-
tion 4 (iii).
By Markov inequality , ||f ′(I − C)ε/

√
n||2 = (1− c)Op(∆α) = Op(∆α), and

f ′(I − C)ε/
√
n = Op(∆

1/2
α ).

(iii) u′Cε = Op(1/(α)). It follows from (iv) by Markov inequality.
(iv) We have: E[u′Cεε′C ′u] = E[(

∑
i,j

uiCijεj)(
∑
i,j

ukCk,lεl)|Z].

E[u′Cεε′C ′u] = σ2
uσ

2
ε

∑
i 6=j
C2
ij + σ2

uε

∑
i 6=j
CijCji ( because Cii = 0).

We have: Tr(CC′) =
∑
i 6=j
C2
ij, with C = P − P̄ (I − P ), and

P̄ = Diag(( P11

1−P11
), ....., ( Pnn

1−Pnn )).

CC ′ = (P − P̄ (I − P ))(P − P̄ (I − P ))′

CC ′ = P 2 − P (I − P )P̄ ′ − P̄ (I − P )P + P̄ (I − P )2P̄ ′.
We know that Tr(P (I − P )P̄ ′) = Tr(P̄ (I − P )P ) = O( 1

α
). Tr(P 2) = O( 1

α
),

by Lemma A0.
Tr(P̄ (I − P )2P̄ ′) =

∑
i P̄

2
ii(1− Pii)

2 =
∑

i P
2
ii ≤ Tr(P 2) = O( 1

α
), by Lemma

A0.
So
∑
i 6=j
C2
ij = Tr(CC ′) = Tr(P 2) − Tr(P (I − P )P̄ ′) − Tr(P̄ (I − P )P ) +

Tr(P̄ (I − P )2P̄ ′) = O( 1
α

).
Now, we show that,

∑
i 6=j
CijCji = O( 1

α
). With:

∑
i 6=j
CijCji = Tr(C2).

We have C2 = (P − P̄ (I − P ))(P − P̄ (I − P )) = P 2 − PP̄ (I − P )− P̄ (I −
P )P + P̄ (I − P )P̄ (I − P )

So, Tr(C2) = Tr(P 2)−Tr(PP̄ (I−P ))−Tr(P̄ (I−P )P )+Tr(P̄ (I−P )P̄ (I−
P )),

. Tr(P 2) = O( 1
α

). Tr(PP̄ (I − P )) = Tr(P̄ (I − P )P ) = O( 1
α

),
. Tr(P̄ (I − P )P̄ (I − P )) = Tr(P̄ 2 − P̄ 2P − P̄P P̄ + P̄P P̄P ),

. We have: Tr(P̄ (I − P )P̄ (I − P )) = Tr(P̄ 2) + Tr(P̄ 2P ) − Tr(P̄P P̄ ) +

Tr(P̄P P̄P ),
. Tr(P̄ 2) =

∑
i

P 2
ii

(1−Pii)2
≤
∑

i P
2
ii = O( 1

α
),
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. Tr(P̄ 2P ) =
∑

i
P 3
ii

(1−Pii)2
= O( 1

α
),

. Tr(P̄P P̄ ) = Tr(P̄ 2P ) = O( 1
α

),

. Tr(P̄P P̄P ) =≤ supλ(P̄P )Tr(P̄P ) ≤ cst
∑

i P
2
ii ≤ cstO( 1

α
).

Finally,
∑
i 6=j
CijCji = Tr(C2) = O( 1

α
).

Then, E[u′Cεε′C ′u] = O( 1
α

).

(v) The same proof as in DN (proof of lemma A3(vi) applies with P replaced
by C.
(vi) The same proof as in DN (proof of lemma A3(vi)) applies with K re-
placed by 1/α and P by C.
(vii) The proof follows from lemma A3(vii) in DN.
(viii) The same proof as in DN (proof of lemma Aa3 (viii)) applies here with
their K replaced by 1/α and ∆K by ∆α.
Proof of Theorem 3. (continued).
Let S (α) = H−1

[
Σ2
uσ

2
ε
tr(CC′)

n
+ σuεσ

′
uε
tr(C2)
n

+ σ2
ε
f ′(I−C′)(I−C)f

n

]
H−1.

By lemma A7, we have ρα,n = tr (S (α)) = O
(

1
αn

)
+ O

(
αβ
)
for SC and LF,

and O
(

1
αn

)
+O

(
αβ∧2

)
for T.

Now we check the conditions of Lemma A1 of DN with :
ĥ = h+ T h + Zh with h = f ′ε/

√
n,

Zh = 0,

T h = T h1 + T h2 ,

T h1 = −f ′(I − C)ε/
√
n,

T h2 = u′C ′ε/
√
n,

Ĥ = H + TH + ZH , with H = ff ′/n, TH = TH1 + TH2 ,
TH1 = −f ′(I − C)′f/n,

TH2 = (u′f + f ′u)/n,
ZH = (u′C ′u− u′(I − C)′f − f ′(I − C)′u) /n.
1)
∥∥ZH

∥∥ = o (ρα,n) by the triangular inequality and Markov inequality.
2) E[T h1 T

h
1
′|Z] = E[f ′(I −C ′)εε′(I −C)f/n|Z] = σ2

ε (f
′(I −C ′)(I −C)f/n).

3) E[T h1 h
′|Z] = E[f ′(I − C ′)εε′f/n|Z] = σ2

ε f
′(I − C)f/n.
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4) E[hh′H−1TH1 |Z] = E[f ′εε′fH−1f ′ (I − C)′ f/n2|Z] = σ2
ε f
′(I − C ′)f/n

= E[T h1 h
′|Z].

5) E[T h2 T
h
2
′|Z] = E[u′Cεε′C ′u|Z] = Σ2

uσ
2
ε
tr(CC′)

n
+ σuεσ

′
uε
tr(C2)
n

.

6) E[hT h
′

2 |Z] = E[f ′εε′Cu/n|Z] = E[f ′ε
(∑

i 6=j εiCijuj

)
/n|Z] = 0.

7) E[T h1 T
h′
2 |Z] = E[f ′(I − C)εε′Cu/n|Z] = 0.

8) E[hh′H−1TH2 |Z] = E[hh′H−1 (u′f + f ′u) /n|Z] = Op(1/n).

Let ẐA(α) = 0 and Â(α) = (h+ T h)(h+ T h)′ − hh′−1TH′ − THH−1hh′. We
have:
E(Â(α)|Z) = σ2

εH + Σ2
uσ

2
ε
tr(CC′)

n
+ σuεσ

′
uε
tr(C2)
n

+ σ2
ε
f ′(I−C′)(I−C)f

n
+ op (ρα,n) .

E(Â(α)|X) = σ2
εH +HS(α)H.
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Chapter 2

Testing overidentifying

restrictions with many

instruments and

heteroskedasticity using

regularized Jackknife IV.
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2.1 Introduction

When the number of the instruments grows, it is well known that the
conventional J test for overidentifying restrictions performs poorly1. It was
shown that the asymptotic behavior of the conventional J test of Hansen
(1982) gives a limit distribution which is not standard when the number of
instruments or moment conditions is very large (see Kunitomo, Morimune,
and Tsukuda (1983) and Burnside and Eichenbaum (1996)).
We propose a modified version of the J test when the number of moment
conditions increases and the error is heteroskedastic, we also allow for the
presence of weak identification. There is no assumptions or restrictions im-
posed on the number of instruments L, which can be larger or smaller than
the sample size n. We construct our proposed test by using regularization to
compute the inverse involved in the projection matrix P , instead of using the
projection matrix (see Carrasco, Florens, and Renault (2007) for a review of
inverse problems). For that purpose, we apply the Tikhonov regularization
method, which is also known as the ridge regression to stabilize the inverse
in the projection matrix P . Our method involves a tuning (regularization)
parameter, α, which needs to be selected. As in Carrasco and Doukali (2016)
we choose α that minimizes the cross-validation approximation of the mean
squared error (MSE). Our Monte Carlo study shows that our proposed J

test, using the regularized Jackknife IV estimator (RJIVE), performs favor-
ably compared to other existing J tests.
Other regularization techniques could be used in this framework such as the
Landweber-Fridman technique which is an iterative method or the principal
component which consists in selecting the eigenvectors associated with the
largest eigenvalues. Carrasco (2012) used those regularization techniques to

1This chapter is a joint work with Marine Carrasco. The authors thank the partici-
pants of the CIREQ Econometrics Conference in honor of Jean-Marie Dufour for helpful
comments. Carrasco thanks SSHRC for partial financial support.
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estimate a linear model in the presence of many instruments in a consistent
and efficient way. Carrasco and Doukali (2016) proposed a new estimator
which they called the regularized Jackknife instrumental variable estima-
tor (RJIVE) when the number of available instruments is very large in linear
models. In fact, there is a long history concerning the many instruments the-
ory, Chao and Swanson (2005) proposed a consistent estimation of various
k-class IV estimators when the number of instruments grows but at a slower
rate of convergence than the sample size. Bai and Ng (2008) and Kapetanios
and Marcellino (2010) proposed to use a variable selection method by using
the estimated factors as instruments, but they make the assumption that
the endogenous variables depend on a small number of factors which are ex-
ogenous. Donald and Newey (2001) selected the number of instruments by
minimizing an approximation of the mean squared error. Regularization has
been also introduced in the context of times series and forecasting macroe-
conomic variables using a large number of predictors, see Stock and Watson
(2002), Bai and Ng (2008) and De Mol, Giannone, and Reichlin (2008).
There are many studies related to this paper. Lee and Okui (2012) proposed
a modification of the Sargan (1958)’s test of overidentifying restrictions in
a homoskedastic framework when the number of instruments L grows with
the sample size n. They established the asymptotic null distribution of their
proposed test statistic and studied its local power under some regularity
conditions. Anatolyev and Gospodinov (2011) proposed a modification of
the Anderson-Rubin (AR) test and of the conventional J test for overidenti-
fying restrictions in linear models with homoskedasticity assumption under
many instruments asymptotics. They consider an alternative way to com-
pute the critical values of the chi-squared distribution. In a recent paper,
Carrasco and Tchuente (2016a) propose to use regularization techniques to
construct a robust Anderson Rubin (AR) test in linear models when the
number of instruments is large. Their inference relies on a new restricted
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efficient boostrap method and simulated Monte Carlo test. The closest pa-
per to our approach is Chao, Hausman, Newey, Swanson, and Woutersen
(2014), where they propose a new version of the J test that is robust to
many instruments and heteroskedasticity. Their test is based on subtracting
out the diagonal terms in the numerator of the test statistic. They con-
sider the heteroskedasticity robust version of the Fuller (1977) estimator of
Hausman, Newey, Woutersen, Chao, and Swanson (2012). Here, we consider
instead the regularized Jackknife instrumental variable estimator (RJIVE).
We choose this estimator because of its good properties (see Carrasco and
Doukali (2016) for more details) and we implement the Tikhonov technique
to stabilize the projection matrix P that appears in the numerator of the test
statistic in order to improve the accuracy of the overidentifying restrictions
test for linear models in presence of a large number of instruments. The
advantage of the regularization is that it permits to handle the case where
the number of instruments exceeds the sample size.
The remainder of this paper is organized as follows. Section 2 describes the
model and the test statistic. Section 3 establishes asymptotic results. Sec-
tion 4 reports Monte Carlo simulation results. Empirical applications are
illustrated in section 5. Section 6 concludes. All of the proofs are provided
in the appendix.

2.2 Model, estimator, and test statistic

This section presents the model, the estimator and the test statistic. We
note that, unlike the other existing test statistics, the number of moment
conditions is not restricted and may be smaller or larger than the sample
size. We propose a regularized J test.
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Consider the linear IV regression model:

yi = X ′iδ0 + εi (2.2.1)

Xi = Υi + ui (2.2.2)

i = 1, . . . , n. The vector of interest is δ0 which is a p × 1 vector. yi is the
scalar outcome variable. The vector Υi is the optimal instrument which is
typically unknown. We assume that yi and Xi are observed but the Υi is not
and E(Xiεi) 6= 0. The estimation will be based on a sequence of instruments
Zi = Z(τ ; νi) where νi is a vector of exogenous variables and τ is an index
taking countable values.
For the estimation of δ0, we consider the Tikhonov Jackknife estimator pro-
posed in Carrasco and Doukali (2016) because of its good properties relative
to other existing IV estimators in the presence of many instruments. First we
recall the expression of the Jackknife estimator (JIVE) proposed by Angrist,
Imbens, and Krueger (1999) when the number of instruments is finite.

δ̂ = (Υ̂′X)−1(Υ̂′Y ) (2.2.3)

= (
n∑
i=1

Υ̂iX
′
i)
−1

n∑
i=1

Υ̂iyi (2.2.4)

The leave-one-out estimator Υ̂i is defined as Υ̂i = Z ′iπ̂−i, where π̂−i = (Z ′Z−
ZiZ

′
i)
−1(Z ′X − ZiX ′i) is the OLS coefficient from running a regression of X

on Z using all but the ith observation.
The JIVE estimator can alternatively be written as:

δ̂ = (
n∑
i=1

π̂′−iZiX
′
i)
−1

n∑
i=1

π̂′−iZiyi (2.2.5)

with
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π̂′−iZi = (X ′Z(Z ′Z)−1Zi − PiiXi)/(1− Pii) =
∑n

j 6=i PijXj/(1− Pii)

where P is a n × n matrix defined as P = Z(Z ′Z)−1Z ′ and Pij denotes the
(i,j)th element of P.
Then, the JIVE estimator is given by:

δ̂ = Ĥ−1
n∑
i 6=j

XiPij(1− Pjj)−1yj,

where Ĥ =
∑n

i 6=j XiPij(1 − Pjj)
−1X ′j, and

∑
i 6=j denotes the double sum∑

i

∑
j 6=i. When the number of the instruments is large, the inverse of Z’Z

needs to be regularized because it is singular or nearly singular.
Now let us suppose that the number of moment conditions is finite or count-
able infinite. Here are some examples of Zi.
- If Zi = νi where νi is a L-vector of exogenous variables with a fixed L, then
Z(τ ; νi) denotes the τth element of νi.
- Z(τ ; νi) = (νi)

τ−1 with τ ∈ N , thus we have an infinite countable sequence
of instruments.
The expression of the Tikhonov Jackknife IV estimator δ̂ is:

δ̂ = Ĥ−1
n∑
i 6=j

XiP
α
ij(1− Pα

jj)
−1yj, (2.2.6)

Ĥ =
n∑
i 6=j

XiP
α
ij(1− Pα

jj)
−1X ′j (2.2.7)

where Pα is a n× n matrix after regularization defined as:

Pα = Z(Z ′Z + αI)−1Z ′,
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and Pα
ij denotes the (i, j)th element of Pα. The Tikhonov Jackknife estimator

depends on a regularization term α. In practice, we choose α that minimizes
the mean square error (MSE) as in Carrasco and Doukali (2016).
Remark:

It is useful to write the RJIVE as:

δ̂ = Ĥ−1
n∑

i,j=1

XiC
α
ijyj, (2.2.8)

where Ĥ =
∑n

i,j=1XiC
α
jiX

′
j, and Cα = (Cα

ij) =

{ Pαij
1−Pαii

if i 6= j

Cα
ii = 0 if i = j

. Then,

we obtain:

√
n(δ̂ − δ0) =

(X ′Cα′X)−1

n

(X ′Cα′ε)√
n

. (2.2.9)

The test statistic.

Chao et al. (2014) proposed a modified J statistic with many instruments
based on the heteroskedasticity-robust version of the Fuller (1977) estimator,
which is known as HFUL estimator. Their test statistic takes the form:

JCHNSW =
ε̂′P ε̂−

∑n
i=1 Piiε̂

2
i√

V̂
+ L (2.2.10)

with

V̂ =
ε̂(2)′P (2)ε̂(2)−

∑n
i=1 P

2
iiε̂

4
i

tr(P )
=

∑n
i 6=j ε̂

2
iP

2
ij ε̂

2
j

L

where L is the number of instruments, P is the projection matrix, ε̂i =

yi − X ′i δ̂, ε̂(2) = (ε̂21, ...., ε̂
2
n), P (2) is the n-dimensional square matrix with

ijth component equal to P 2
ij. Note that the numerator of the test statistic,∑n

i 6=j ε̂iPij ε̂j, is the numerator of the traditional Sargan test without the
observation i. The denominator is a heteroskedastic consistent estimator
of the variance of

∑n
i 6=j ε̂iPij ε̂j. The test rejects the null hypothesis when



47

JCHNSW is greater than the critical value of a chi-squared distribution with
L − p degrees of freedom. Chao et al. (2014), Anatolyev and Gospodinov
(2011) and Lee and Okui (2012) have proposed tests that allow for many
instruments but they impose that the number of moment conditions L can
not be larger than n, which is not the case in our present work.
In this paper, we assume that the number of moment conditions L is large
relatively to n. The inverse of Z ′Z needs to be stabilized because it is nearly
singular or even not invertible whenever L ≥ n. The main contribution is the
use of the Tikhonov regularization method to stabilize the inverse of (Z ′Z)

in presence of many instruments. For an arbitrary n× 1 vector v, we define
the n× n matrix Pα 2 as:

Pαv =
∞∑
j=1

λ2j
λ2j + α

〈v, ψj〉ψj

where ψj denotes the eigenvector of the n×n matrix ZZ ′/n associated with
the jth eigenvalue λj. We note here that the Tikhonov technique involves
a tuning parameter α. The case α = 0 corresponds to the case without
regularization. We obtain P 0 = P = Z(Z ′Z)†Z, where † denotes the Moore-
Penrose generalized inverse. The regularization parameter needs to go to
zero at a certain rate characterized in Section 2.3.
To describe our proposed test statistic, let Pα(2) be the n-dimensional square
matrix after regularization with ijth component equal to (Pα

ij)
2.

The test statistic we propose is:

JT ikh =
ε̂′Pαε̂−

∑n
i=1 P

α
ii ε̂

2
i√

V̂
+ tr(Pα) (2.2.11)

2Appendix A gives a detailed definition of the Tikhonov method and the definition of
Pα.
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with

V̂ =
ε̂(2)′Pα(2)ε̂(2)−

∑n
i=1 (Pα

ii )
2ε̂4i

tr(Pα)
=

∑n
i 6=j ε̂

2
i (P

α
ij)

2ε̂2j
tr(Pα)

, (2.2.12)

where ε̂i = yi−X ′i δ̂ where δ̂ is the regularized Jackknife estimator of Carrasco
and Doukali (2016).
It will be shown in the next section that JT ikh follows asymptotically a chi-
squared with tr(Pα) − p degrees of freedom. Let qr(τ) be the τth quantile
of chi-squared distribution with r degrees of freedom. We reject the null
hypothesis of our test with the asymptotic rejection frequency β if JT ikh ≥
qtr(Pα)−p(1− β).
Our test has the same form as Chao et al. (2014) test with the the projection
matrix P replaced by the regularized projection matrix Pα and the number
of instruments L replaced by the trace of Pα, i.e tr(Pα).

2.3 Asymptotic distribution

This section presents the asymptotic theory under which we establish the
limiting behaviour of our proposed test statistic in the presence of many
moment conditions. We consider many weak instruments asymptotic as in
Chao et al. (2014).

Let K be the covariance operator defined in Appendix A. For a finite
number of instruments, K = Z ′Z/n.

Assumption 1. (i) The operator K is nuclear. (ii) There exists a constant
C̄ such that Pα

ii ≤ C̄ < 1, i = 1, ..., n.

Assumption 1 (i) is the same as in Carrasco (2012). Condition (i) means
that the eigenvalues of the covariance operator K are summable. Condi-
tion (ii) is reminiscent of Assumption 1 in Chao et al. (2014): ”for some
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C̄ < 1, Pii < C̄, i = 1, ..., n”. However it is much less restrictive. In-
deed, Pii < C̄ < 1 implies that

∑
i
Pii
n

= L
n
< 1, L =rank(Z), which re-

stricts the number of instruments. Our condition Pα
ii ≤ C̄ < 1 implies that

trace(Pα) =
∑

i qi < n, which implies a condition on α. Recall from Carrasco
(2012) that

∑
i qi = O( 1

α
). So Assumption (ii) implies 1

αn
< 1.

The next assumption allows for the presence of many weak instruments.
A measure of the strength of the instruments is the concentration param-
eter, which can be seen as a measure of the information contained in the
instruments. If one could approximate the reduced form Υ by a sequence of
instruments Z, so that X = Z ′π + u where E[u2|Z] = σ2

u, the concentration
parameter would be given by

CP = π′Z′Zπ
σ2
u

.

The following assumption generalizes this notion.

Assumption 2. Υi = Snfi/
√
n where Sn = Ŝndiag(µ1n, . . . , µpn) such that

Ŝn is p × p bounded, the smallest eigenvalue of ŜnŜ ′n is bounded away from
zero; for each j, either µjn =

√
n (strong identification) or µjn√

n
→ 0 (weak

identification). Moreover µn = min
1<j<p

µjn → ∞ and 1/(
√
αµ2

n) → 0, α → 0.

Also there is a constant C̄ such that ||
∑n

i=1 fif
′
i/n|| ≤ C̄ and λmin(

∑n
i=1 fif

′
i/n)

≥ 1/C̄, a.s.n.

Assumption 2 allows for both strong and weak instruments. If µjn =
√
n,

the instrument is strong. If µ2
jn is growing slower than n, this leads to

a weak identification as that of Chao and Swanson (2005). fi defined in
Assumption 2 is unobserved and has the same dimension as the infeasible
optimal instrument, Υi. Then fi can be seen as a rescaled version of this
optimal instrument.
An illustration of assumption 2 is as follows. Let us consider the simple
linear model yi = zi1δ1 + δ0pxi2 + εi, where zi1 is an included instruments and
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xi2 is an endogenous variable. Suppose that xi2 is a linear combination of
the included instrumental zi1 and an unknown excluded instruments zip, i.e
xi2 = π1zi1 + ( µn√

n
)zip. The reduced form is:

Υi=

(
zi1

xi2

)
=

(
zi1

π1zi1 + ( µn√
n
)zip

)
=

(
1 0

π1 1

) (
1 0

0 µn√
n

) (
zi1

zip

)
with

Ŝn =

(
1 0

π1 1

)
, µjn =

{ √
n , j = 1

µn , j = 2
, with µn√

n
→ 0, and fi = νi =

(
zi1

zip

)
.

Assumption 3. There is a constant C > 0 such that (ε1, U1), ..., (εn, Un)

are independent, with E[εi] = 0, E[Ui] = 0, E[ε2i ] ≤ C, E[||Ui||2] ≤ C,
V ar((εi, U

′
i)
′) = diag(Ωi, 0), and λmin(

∑n
i=1 Ωi/n) ≥ 1/C.

This assumption requires the second conditional moments of the distur-
bances to be bounded. It also imposes uniform nonsingularity of the variance
of the reduced form disturbances.

Assumption 4. There exists a πL such that
∑n

i=1 ||fi − πLZi||2/n→ 0.

Assumptions 1 and 4 imply that the structural parameters are identi-
fied asymptotically. Assumption 4 implies that fi belongs to the closure of
the linear span of instruments. It does not imply that fi is a finite linear
combination of the instruments.

Assumption 5. There is a constant C > 0 such that, with probability one,∑n
i=1 ||fi||4/n2 → 0, E[ε4i ] ≤ C and E[||Ui||4] ≤ C.

Assumption 5 can be found in Chao et al. (2014). It simplifies the asymp-
totic theory in the sense that certain terms converge.
Let σ2

i = E[ε2i ],γn =
∑n

i=1E[Uiεi]/
∑n

i=1 σ
2
i , Ũ = U − εγ′n having ith row

Ũ ′iand let Ω̃i = E[ŨiŨ
′
i ].

Assumption 6. µnS−1n → S0 and 1/(αµ2
n) → C for finite C. Also each of

the following exists:
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Hp = limn→∞
∑n

i=1(1− Pα
ii )fif

′
i/n,

Σp = limn→∞
∑n

i=1(1− Pα
ii )

2fif
′
iσ

2
i /n,

Ψ = limn→∞ α
∑

i 6=j (Pα
ij)

2(σ2
iE[ŨjŨ

′
j] + E[Ũiεi]E[Ũ ′jεj]).

Note that Assumptions 1, 2, and 6 imply some restrictions on α, namely
α needs to go to zero but not too fast.
Theorem 1. Let qtr(Pα)−p(1−β) be the (1−β) quantile of a chi-square dis-
tribution with tr(Pα)−p degrees of freedom. If assumptions 1-6 are satisfied
then Pr(T̂ ≥ qtr(Pα)−p(1− β))→ β.
Proof: In appendix B.
Theorem 1 shows that, under the many instruments asymptotic condition,
our modified J test achieves the correct asymptotic critical value β. We can
see this test as a specification test for the linear instrumental variables regres-
sion (see Hansen (1982)). If the model is correctly specified, all the moment
conditions (including the overidentifying restrictions) should be close to zero.
The novelty of our proposed test is that it is robust to many instruments in
the sense that we do not make any assumption on the number of instruments.
Related Literature.

In the literature on testing overidentifying restrictions in linear models with
many instruments, the J test performs poorly when we increase the number
of the instruments. To deal with this problem, Anatolyev and Gospodinov
(2011) proposed a new J test that guarantee the asymptotical sizes, but their
test is valid only under the homoskedasticity case and when the number of
instruments is a fraction of the sample size 0 < L

n
< 1. Lee and Okui (2012)

proposed a modification of the Sargan (1958) test in the presence of a large
number of instruments. They gave the limiting behavior of their proposed
test statistic when the number of instruments and the sample size go to in-
finity, but they still maintained the assumption 0 < L

n
< 1. Donald, Imbens,

and Newey (2003) established the asymptotic distribution of some parameter
and specification tests in models when the number of instruments L increases
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asymptotically, but again slowly relative to the sample size n. They called
this assumption a moderately many instruments, but the validity of their
test fails in the case of the many instruments theory of Bekker (1994). Hahn
and Hausman (2002) developed a new specification test for the validity of
instrumental variables in linear models. They compared the difference of
the forward (conventional) 2SLS estimator with the reserve 2SLS estimator
under the assumption 0 < L

n
< 1.

In this paper, we consider the case when the number of instruments is po-
tentially very large. The matrix Z ′Z may be nearly singular or possibly
not invertible, so the projection matrix P = Z(Z ′Z)−1Z ′ that appears in
the numerator of the J test may affect the precision of the test statistic.
Inverting Z ′Z can be seen as solving an ill-posed problem. We implement
the Tikhonov technique to stabilize the projection matrix. The advantage
of the regularization is that we can use all the available information and we
do not need to discard some instruments a priori. This yields an improved
performance of the J test as illustrated in the simulation study.

2.4 Simulation study

The goal of our simulation study is to demonstrate the finite-sample per-
formance of the proposed J test and compare it to other existing J tests. We
consider a linear model with one regressor and L instruments. The J statistic
is interpreted as a test of the validity of the L−1 overidentifying restrictions.
We investigate two cases: the homoskedastic and heteroskedastic case.
Homoskedastic case.
The data generating process (DGP) is generated as follows:

yi = δXi + εi

Xi = z′iπ + ui,
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where (εi, ui)
iid∼ N(0,

∑
) and

∑
=

(
0.25 0.20

0.20 0.25

)
, zi

iid∼ N(0, IL), δ = 1, and

π = 1√
L
ιL, where ιL is an L-vector of ones.

Heteroskedastic case.
Now the error is allowed to be heteroskedastic. We keep the same DGP ex-
cept that the errors are now generated as follows:
εi = ρui+

√
1−ρ2

φ2+0.864
(φv1i+0.86v2i), where v1i

iid∼ N(0, z21i) and v2i
iid∼ N(0, (0.86)2).

We choose ρ = 0.3, φ = 0.2.
Tables 1 and 2 present the empirical size at 5% nominal level of J , JCorr,
JCHNSW and JT ikh tests which denote respectively the conventional J test,
the modified J test proposed in Anatolyev and Gospodinov (2011), the mod-
ified J test proposed in Chao et al. (2014), and the Tikhonov J test proposed
in this paper. These results are based on 5000 Monte Carlo replications. We
consider values of λ = L

n
equal to 0.2, 0.5, 0.8, 0.95, and 1.1. The values of

λ are used in combination with sample sizes of 100, 200 and 500. For the
Tikhonov J test, the regularization parameter α 3 is chosen by minimizing
the cross-validation approximation of the mean squared error (MSE) as in
Carrasco and Doukali (2016).
Description of the other tests.

Hansen-Sargan J test.

Let δ̂2SLS = (X ′PX)−1X ′Py be the two stage least-squared estimators. Let
ε̂ = y −Xδ̂2SLS. The Hansen-Sargan J test takes the following form:

J =
ε̂′P ε̂

σ̂2
, (2.4.1)

with σ̂2 = ε̂′ε̂/(n− L).
The decision rule of Hansen-Sargan J test consists in rejecting the null hy-
pothesis if J exceeds the critical value given by the chi-square distribution

3The regularization parameter α is searched over the interval [0.01,0.5] with 0.01 in-
crement.
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with L− p degrees of freedom.
Anatolyev and Gospodinov (2011)’s J test.

They suggest to use the same J statistic as in (2.4.1) with ε̂ = y −Xδ̂LIML,
where δ̂LIML is the limited information maximum likelihood estimator of δ
but the critical value is modified. The decision rule consists in rejecting H0

at the level β if J exceeds the quantile of a chi-square distribution with L−p
degrees of freedom and probability Φ(

√
1− L

n
Φ−1(β)), where Φ is the distri-

bution function of the standard normal.
Chao et al. (2014)’s J test.

JCHNSW uses the test described in equation (2.2.10) with ε̂ = y−Xδ̂HFULL,
where δ̂HFULL is the heteroskedasticity-robust version of the Fuller (1977)
estimator of Hausman et al. (2012).

Tables 2.1 and 2.2 report the empirical sizes of the four tests in the ho-
moskedastic and the heteroskedastic cases respectively. We remark that the
performance of the conventional J test is sensitive to the number of instru-
ments, ie the rejection frequencies for the J test is not close to the nomi-
nal value 5% throughout these tables. We also remark that Anatolyev and
Gospodinov (2011)’s J test, the JCHNSW and the JT ikh perform very well
when the number of instruments increase. However, J , JCorr, and JCHNSW
tests exhibit a large size distortion when λ is close to 1 (i,e. λ= 0.95), which
is worse in the heteroskedastic case. Our regularized JT ikh has almost correct
size results even with very large number of instruments. When the number
of instruments is larger than the sample size, the J , JCorr, and JCHNSW can
not be computed. Table 2.1 and 2.2 show also that our proposed regularized
J test performs well when L > n, in the sense that the empirical rejection
rates are close to the nominal value 5%.
To compare the powers of the different J tests, we consider the same design
as before, but the structural error is giving by: εi = ui + ρzz1i. We allow
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the correlation ρz between structural error and instrument to vary between
0 and 1. We choose n = 500 and λ = 0.8.
The rejection frequencies under the null hypothesis (ρz=0) are 0.048, 0.049,
0.051 respectively for JCorr JCHNSW and the JT ikh for homoskedastic case.
For the heteroskedastic case they are 0.046, 0.045, 0.050. The power curves
(rejection frequencies) are plotted in Figures 2.1 and 2.2. We see that JT ikh
statistic has typically better power properties than the JCorr and JCHNSW .
In conclusion, simulations suggest that the implementation of the Tikhonov
regularization can increase the power, while controlling for the size. Thus, the
regularization provides a correction to size distortions for the J test arising
from the use of many instruments.
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Table 2.1: Empirical rejection rates at 0.05 nominal level of the J test -
homoskedastic case

λ 0.2 0.5 0.8 0.95 1.1

n = 100

J 0.06 0.017 0 0 NA

JCorr 0.069 0.055 0.049 0.048 NA

JCHNSW 0.071 0.057 0.049 0.056 NA

JT ikh 0.072 0.065 0.070 0.061 0.059

n = 200

J 0.054 0.026 0 0 NA

JCorr 0.057 0.059 0.045 0.04 NA

JCHNSW 0.062 0.057 0.042 0.029 NA

JT ikh 0.063 0.062 0.058 0.056 0.053

n = 500

J 0.059 0.039 0 0 NA

JCorr 0.054 0.057 0.046 0.038 NA

JCHNSW 0.055 0.056 0.047 0.031 NA

JT ikh 0.056 0.059 0.053 0.050 0.050
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Table 2.2: Empirical rejection rates at 5% nominal level of the J test -
heteroskedastic case

λ 0.2 0.5 0.8 0.95 1.1

n = 100

J 0.044 0.007 0 0 NA

JCorr 0.072 0.079 0.141 0.040 NA

JCHNSW 0.074 0.080 0.144 0.09 NA

JT ikh 0.070 0.056 0.047 0.049 0.045

n = 200

J 0.044 0.008 0 0 NA

JCorr 0.064 0.060 0.104 0.113 NA

JCHNSW 0.066 0.059 0.102 0.125 NA

JT ikh 0.064 0.052 0.046 0.047 0.046

n = 500

J 0.036 0.008 0 0 NA

JCorr 0.056 0.050 0.052 0.126 NA

JCHNSW 0.058 0.0492 0.051 0.126 NA

JT ikh 0.056 0.053 0.048 0.048 0.049
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Figure 2.1: Power curves of J tests, n=500, λ = 0.8, homoskedastic case
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Figure 2.2: Power curves of J tests, n=500, λ = 0.8, heteroskedastic case
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2.5 Empirical applications.

2.5.1 Elasticity of intertemporal substitution.

The elasticity of intertemporal substitution (EIS) in consumption is cru-
cial in macroeconomics and finance. We follow the specification in Yogo
(2004) 4 who analyzes the problem of the estimation of the EIS using the
linearized Euler equation.
The estimated model is as follows:

∆ct+1 = τ + ψrf,t+1 + ξt+1 (2.5.1)

rf,t+1 = µ+
1

ψ
∆ct+1 + ηt+1, (2.5.2)

where ψ is the EIS, ∆ct+1 is the consumption growth at time t+ 1, rf,t+1 is
the real return on a risk free asset, τ and µ are constants, and ξt+1 and ηt+1

are the innovations to consumption growth and asset return respectively.
Yogo (2004) explains how weak instruments have been the cause of the EIS
empirical puzzle. He shows that, using conventional IV methods, the esti-
mated EIS, ψ, is significantly less than 1 but its reciprocal is not different
from 1. Carrasco and Tchuente (2015) estimate EIS using many instruments
and regularization. They increase the number of instruments 5 from 4 to
18 by including interactions and power functions. Their point estimates are
similar to those used for macro calibrations.
Tables 2.3 reports the test statistics corresponding to the four J tests based

4 Yogo (2004) used quarterly data from 1947.3 to 1998.4 for the United States.
5The instruments that Yogo (2004) uses are: the twice lagged, nominal interest rate

(r), inflation (i), consumption growth (c) and log dividend rate (p). We denote this bloc of
instruments by Z=[r, i, c, p]. The 18 instruments used in our regression are derived from
Z and are given by Z = [Z,Z.2, Z.3, Z(:, 1) ? Z(:, 2), Z(:, 1) ? Z(:, 3), Z(:, 1) ? Z(:, 4), Z(:
, 2) ? Z(:, 3), Z(:, 2) ? Z(:, 4), Z(:, 3) ? Z(:, 4)].
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on the 18 instruments of Carrasco and Tchuente (2015). We find that the J
statistic of the conventional J test, the Jcorr, and JCHNSW are larger than
chi-square critical value, which means that they reject the null hypothesis.
However, the J statistic of our proposed Tikhonov test is smaller than the
chi-square critical value. We can conclude that the model is correctly spec-
ified according to our proposed test, so the instruments used in the model
seem to be exogenous.
It may seem surprising that the JT ikh is so much smaller than other J tests.
One possible explanation is the presence of heteroskedasticity. The errors in
equations (2.5.1) and (2.5.2) are found to be heteroskedastic according to the
F test (p-value= 0.073). The J and JCorr are not robust to heteroskedas-
ticity which may explain the difference of conclusions. However, JCHNSW
is robust to heteroskedasticity. An explanation for the difference between
JCHNSW and JT ikh may be that the matrix Z ′Z is very ill-conditioned. The
condition number 6, which is the ratio of the largest eigenvalue on the small-
est eigenvalue of Z ′Z/n, is an indicator on how ill-posed the matrix Z ′Z/n.
The higher the condition number, the more imprecise the inverse of Z ′Z/n
will be. The smallest possible condition number is 1 (which corresponds to
the identity matrix). In this application, the condition number is equal to
5.06 105, and the smallest eigenvalue is equal to 2.35 10−5. This suggests that
regularization is necessary to stabilize the inverse. Finaly, we note here that
the instruments are standardized, which means that the instruments are di-
vided with their standard deviation. This standardization has no impact on
2SLS and LIML estimators which are scale invariant and used to construct
the J , JCorr. However, our Tikhonov J test, and JCHNSW are not scale in-
variant and standardization may improve the results. Such standardizations
are customary whenever regularizations are used, see for instance De Mol,
Giannone, and Reichlin (2008), and Stock and Watson (2012).

6 The condition number is scale invariant.
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2.5.2 New-Keynesian Phillips Curve.

We follow the specification in Galı and Gertler (1999) and estimate the
following model, representing a New-Keynesian Phillips Curve:

πt = γ + γfEtπt+1 + γbπt−1 + λmct

πt+1 = Etπt+1 + νt+1,

where πt is the inflation rate at time t, mct is the marginal cost, Etπt+1 is the
expectation of future inflation conditional on the information set at time t,
and νt+1 is a white noise error term. From the stochastic process describing
how actual inflation and inflation expectations are related, it follows that
Etπt+1 = πt+1 − νt+1 and then:

πt = γ + γfπt+1 + γbπt−1 + λmct − γfνt+1

= γ + γfπt+1 + γbπt−1 + λmct + εt.

We use the orthogonality condition Et[(πt−γ−γfπt+1−γbπt−1−λmct)Zt] = 0
7, where Zt is a matrix of instruments including variables that are orthogo-
nal to νt+1. We use the set of instruments {πt−i}ki=1 and {mct−i}ki=1 plus a
constant term, we estimate the model over the sample 1959.4−2007.4 for US
quarterly data 8, and we get the results in the table 2.4 below for a value of k
equal to 10. Note that, in this application, the total number of instruments
is L = 2k + 1.
Table 2.4 reports the test statistics corresponding to different J tests. We
find that the conventional J test and the Jcorr are larger than chi-square
critical value, which means that the null hypothesis is rejected. However,

7The instruments are standardized as in the previous application.
8The data were downloaded from the Federal Reserve Bank of St Louis’ website:

https://www.stlouisfed.org/.
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JCHNSW and the J statistic of our proposed Tikhonov test 9 are smaller
than the chi-square critical value, then we can conclude that the model is
correctly specified. The difference in the conclusion may be due to the pres-
ence of heteroskedasticity (the p-value of the F test is 0.061). Indeed, J and
Jcorr tests are not robust to heteroskedasticity.

Table 2.3: Estimated J statistics for the EIS Model.

J JCorr JCHNSW JT ikh

ψ 34.46 34.84 32.68 1.10

1/ ψ 53.23 61.42 41.48 0.510

∗ The chi-square critical value= 26.29 (level=5% and the degree of free-
dom=16).
∗ Critical value of the Jcorr= 25.72 (level=5% and the degree of freedom=16).
∗ tr(Pα) = 11.89, the critical value for the JT ikh = 18.15.

9 For the New-Keynesian Phillips Curve’ application, the condition number is equal to
1.53 105, and the smallest eigenvalue is equal to 3.73 10−6, which suggests that regular-
ization will be helpful to improve the J test.
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Table 2.4: Estimated J statistics for the New-Keynesian Phillips Curve
Model.

J JCorr JCHNSW JT ikh

J statistic 39.60 34.92 26.09 21.65

∗ The chi-square critical value= 27,58 (level=5% and the degree of free-
dom=17).
∗ Critical value of the Jcorr= 26.97 (level=5% and the degree of freedom=17).
∗ tr(Pα) = 18.51, the critical value for the JT ikh = 24.39.

2.6 Conclusion

To increase the accuracy of the conventional J test of overidentifying re-
strictions in linear models, researchers may use many instruments or moment
conditions. However, many existing J tests perform poorly when the number
of instruments is large. This paper proposes a new J test, based on Tikhonov
regularization and studies its properties under many possibly weak instru-
ments and heteroskedasticity. Simulations results show that the proposed
test performs well. Its empirical size is close to the theoretical size and its
power is greater than that of competing tests. We recommend the use of this
modified J test in applied studies because of its ease of implementation and
its robustness.
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2.7 Appendix

2.7.1 Presentation of the Tikhonov Regularization.

Here we consider the general case where the estimation is based on a
sequence of instruments Zi = Z(τ ; νi) with τ ∈ N . Assume τ lies in a space
Ξ (Ξ = {1, .., L} or Ξ = N) and let π be a positive measure on Ξ. Let K be
the covariance operator for instruments from L2(π) to L2(π) such that:

(Kg)(τ) =
L∑
l=1

E(Z(τ, νi)Z(τl, νi))g(τl)π(τl).

where L2(π) denotes the Hilbert space of square integrable functions with
respect to π. K is supposed to be a nuclear operator which means that its
trace is finite. Let λj and ψj, j = 1... be respectively the eigenvalues (ordered
in decreasing order) and the orthogonal eigenfunctions of K. The operator
can be estimated by Kn defined as:

Kn : L2(π)→ L2(π)

(Kng)(τ) =
L∑
l=1

1

n

n∑
i=1

(Z(τ, νi)Z(τl, νi))g(τl)π(τl).

If the number of instruments L is large relatively to n, inverting the operator
K is considered as an ill-posed problem which means that the inverse is not
continuous and its sample counterpart, Kn, is singular or nearly singular. To
solve this problem we need to stabilize the inverse of Kn using regularization.
A regularized inverse of an operator K is defined as: Rα : L2(π)→ L2(π) such
that limα→0RαKρ = ρ, ∀ρ ∈ L2(π), where α is the regularization parameter
(see Kress (1999) and Carrasco, Florens, and Renault (2007)).
Tikhonov regularization
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We consider the Tikhonov regularization scheme.

(Kα)−1 = (K2 + αI)
−1
K.

(Kα)−1r =
∞∑
j=1

λj
λ2j + α

〈r, ψj〉ψj.

where α > 0 and I is the identity operator. For the asymptotic efficiency α
has to go to zero at a certain rate. The Tikhonov regularization is related
to ridge regularization. Ridge method was first proposed in the presence of
many regressors. The aim was to stabilize the inverse of XX ′ by replacing
XX ′ by XX ′ + αI. However, this was done at the expense of a bias relative
to OLS estimator. In the IV regression, the 2SLS estimator has already a
bias and the use of many instruments usually increases its bias. The imple-
mentation of the Tikhonov regularization and the selection of an appropriate
ridge parameter for the first step regression helps to reduce this bias.
Let (Kα

n )−1 be the regularized inverse of Kn and Pα a n×n matrix as defined
in Carrasco (2012) by Pα = T (Kα

n )−1T ∗ where T : L2(π)→ Rn with
Tg = (< Z1, g >,< Z2, g >

′, ...., < Zn, g >
′)′

and T ∗ : Rn → L2(π) with
T ∗v = 1

n

∑n
j Zjvj

such that Kn = T ∗T and TT ∗ is a n×n matrix with typical element <Zi,Zj>

n
.

Let φ̂j, λ̂1 ≥ λ̂2 ≥ ..... ≥ 0, j = 1, 2, ... be the orthonormalized eigenfunctions
and eigenvalues ofKn and ψj the eigenfunctions of TT ∗. We then have T φ̂j =
√
λjψj and T ∗ψj =

√
λjφ̂j. For v ∈ Rn, Pαv =

∑∞
j q(α, λ2j) < v, ψj > ψj

where q(α, λ2j) =
λ2j

λ2j+α
.

Remark that the case when α = 0 corresponds to no regularization Thus we
have q(α, λ2j) = 1 and P 0 = Z(Z ′Z)−1Z ′.
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2.7.2 Proofs

Lemma A0.
If Assumptions 1-3 are satisfied, then :
i) Pα

ii < 1 for α > 0,
ii)
∑

i 6=j (Pα
ij)

2 = O(1/α) ,
iii)

∑
i 6=j P

α
ij = O(1/α).

iv)
∑

i,l,k,r P
α
ikP

α
klP

α
lrP

α
ri = O(1/α).

v)
∑

i,j (Pα
ij)

4 = O(1/α).
vi)
∑

i,j,k (Pα
ij)

2(Pα
j,k)

2 = O(1/α).
Proof of Lemma A0.

This is Lemma A0 of Carrasco and Doukali (2016).
Let us define some notations that will be used in the following Lemmas.
For random variables10 Wi, Yi, ηi, let w̄i = E[Wi], ȳi = E[Yi], η̄i = E[ηi],
W̃i = Wi − w̄i and Ỹi = Yi − ȳi, η̃i = ηi − η̄i, w̄n = E[(W1, ....,Wn)′],
ȳn = E[(Y1, ...., Yn)′], µ̄W = maxi≤n|w̄i|, µ̄Y = maxi≤n|ȳi|, µ̄η = maxi≤n|η̄i|,
σ̄2
Wn

= maxi≤nvar(Wi), σ̄2
Yn

= maxi≤nvar(Yi), σ̄2
η = maxi≤nvar(ηi).

Define the norm: ||W ||2L2
=
√
E[W 2], and let M, CS, T denote the Markov

inequality, the Cauchy-Schwarz inequality, and the triangle inequality, re-
spectively.
Lemma A1.
Suppose the following conditions hold:
(i) Pαv = Z(Z ′Z + αI)−1Z ′v,

(ii)(W1n, U1, ε1), ..., (Wnn, Un, εn) are independent, and D1,n :=
∑n

i=1E[WinW
′
in]

satisfies ||D1,n|| < C,
(iii) E[W ′

in] = 0, E[Ui] = 0, E[εi] = 0, and there is a constant C such that
E[||Ui||4] ≤ C and E[ε4i ] ≤ C,
(iv)

∑n
i=1E[||Win||4]→ 0 a.s.

10 Note that here Wi and ηi are arbitrary scalar variables that will take various forms
in the sequel.
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(v) α→ 0 as n→∝.
Then for:
D2,n := α

∑n
i 6=j(P

α
ij)

2(E[UiU
′
i ]E[ε2j ] + E[Uiεi]E[U ′jεj])

and any sequences c1n and c2n with ||c1n|| ≤ C, ||c2n|| ≤ C, and
∑

n =

c′1nD1,nc1n + c′2nD2,nc2n > 1/C, it follows that:
Ȳn =

∑
n
−1/2(c′1n

∑n
i=1Wi,n +

√
αc′2n

∑n
i 6=j Ui(P

α
ij)

2εj)
d−→ N(0, 1).

Proof of Lemma A1.

This is Lemma A2 of Carrasco and Doukali (2016). when Z and Υ are not
random.
Lemma A2.
If assumptions 1-3 are satisfied then:
(i) S−1n

∑n
i 6=j XiP

α
ijX

′
jS
−1
n = Op(1).

(ii) S−1n
∑n

i 6=j XiP
α
ijεj = Op(1 + 1√

αµn
).

Proof of Lemma A2.

(ii) holds by Lemma A5 of Carrasco and Doukali (2016) and (i) of Lemma
A0.
Now we turn our attention to (i).
We have S−1n

∑n
i 6=j XiP

α
ijX

′
jS
−1
n =

∑n
i 6=j fiP

α
ijf
′
j/n+ op(1).

We also have
∑n

i 6=j fiP
α
ijf
′
j/n = f ′Pαf/n−

∑n
i fif

′
iP

α
ii /n, and both f ′Pαf/n ≤

f ′f/n and∑n
i fif

′
iP

α
ii /n ≤ f ′f/n.

Lemma A3.
If δ̂ → δ, E[||Xi||2] ≤ C, E[ε4i ] ≤ C, ε1, ...., εn are mutually independent, and
either α→ 0 or maxi≤n Pα

ii → 0 then:
α
∑n

i 6=j (Pα
ij)

2ε̂2i ε̂
2
j − α

∑n
i 6=j (Pα

ij)
2σ2

i σ
2
j → 0.

Proof of Lemma A3.
By δ̂

p−→ δ we have ||δ̂ − δ||2 ≤ ||δ̂ − δ|| with probability one. Denote
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di = 2|εi|||Xi||+ |||Xi||2, we have:

ε̂i = yi −X ′i δ̂

= X ′iδ + εi −X ′i δ̂

= εi −X ′i(δ̂ − δ).

It follows that:
ε̂2i = ε2i − 2εiX

′
i(δ̂ − δ) + (δ̂ − δ)′XiX

′
i(δ̂ − δ).

Then:
ε̂2i − ε2i = −2εiX

′
i(δ̂ − δ) + (δ̂ − δ)′XiX

′
i(δ̂ − δ).

|ε̂2i − ε2i | ≤ 2|εX ′i(δ̂ − δ)|+ |(δ̂ − δ)′XiX
′
i(δ̂ − δ)|.

|ε̂2i − ε2i | ≤ 2|εi| ||Xi|| ||δ̂ − δ||+ |||Xi||2||δ̂ − δ||2 ≤ di||δ̂ − δ||.
Also by (ii) of Lemma A0,

∑n
i 6=j (Pα

ij)
2 = O(1/α),

αE[
∑n

i 6=j (Pα
ij)

2didj] ≤ αC
∑n

i 6=j P
2
ij ≤ C,

αE[
∑n

i 6=j (Pα
ij)

2ε2i dj] ≤ C.
Then by M,
α
∑n

i 6=j (Pα
ij)

2didj = Op(1) , α
∑n

i 6=j (Pα
ij)

2ε2i dj = Op(1) ,
Therefore, for V̂n = α

∑n
i 6=j (Pα

ij)
2ε̂2i ε̂

2
j , Ṽn = α

∑n
i 6=j (Pα

ij)
2ε2i ε

2
j , we have

|V̂n − Ṽn| ≤ α
∑n

i 6=j (Pα
ij)

2|ε̂2i ε̂2j − ε2i ε2j |
|V̂n − Ṽn| ≤ α||δ̂ − δ||2

∑n
i 6=j (Pα

ij)
2didj + 2α||δ̂ − δ||

∑n
i 6=j (Pα

ij)
2ε2i dj → 0.

Let Vn = α
∑n

i 6=j (Pα
ij)

2σ2
i σ

2
j and vi = ε2i − σ2

i . We have:∑n
i 6=j (Pα

ij)
2ε2i ε

2
j −

∑n
i 6=j (Pα

ij)
2σ2

i σ
2
j = 2

∑n
i 6=j (Pα

ij)
2viσ

2
j +

∑n
i 6=j (Pα

ij)
2vivj.

We note that E[v2i ] ≤ E[ε4i ] ≤ C, so we have:
E[(α

∑n
i 6=j (Pα

ij)
2viσ

2
j )

2] = α2
∑

i

∑
i 6=j
∑

k 6=i (P
α
ij)

2(Pα
ik)

2E[v2i ]σ
2
i σ

2
k

E[(α
∑n

i 6=j (Pα
ij)

2viσ
2
j )

2] ≤ Cα2
∑

i

∑
j (Pα

ij)
2∑

k (Pα
ik)

2

We note that Pα
ij = Pα

ji, and
∑

i

∑
j (Pα

ij)
2∑

k (Pα
ik)

2 = O(1/α) by LemmaA0
(vi). So:
E[(α

∑n
i 6=j (Pα

ij)
2viσ

2
j )

2] = Cα→ 0.
Also by CS, maxij(Pα

ij)
2 ≤ maxii(P

α
ii )

2, so that:
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E[(α
∑n

i 6=j (Pα
ij)

2vivj)
2] = 2α2

∑n
i 6=j (Pα

ij)
4E[v2i ]E[v2j ] ≤ Cα2

∑n
i 6=j (Pα

ij)
4 ≤

Cα2O(1/α)→ 0. Because of (v) of Lemma A0.
Then by T and M we have Ṽn − Vn

p−→ 0. The conclusion then follows by T.
Proof of Theorem 1.

√
α

n∑
i 6=j

ε̂iP
α
ij ε̂j =

√
α

n∑
i 6=j

[εi −X ′i(δ̂ − δ)]Pα
ij [εj −X ′j(δ̂ − δ)]

=
√
α

n∑
i 6=j

εiP
α
ijεj + (δ̂ − δ)′Sn ×

√
α[S−1n

n∑
i 6=j

XiP
α
ijX

′
jS
′−1
n ]S ′n(δ̂ − δ)

+ 2
√
α(δ̂ − δ)′Sn[S−1n

n∑
i 6=j

XiP
α
ijεj]

If 1/(αµ2
n) → C < ∞, then by Theorem 2 of Carrasco and Doukali (2016)

we have S ′n(δ̂ − δ) = Op(1). Then by LemmaA2 we have:

√
α

n∑
i 6=j

ε̂iP
α
ij ε̂j =

√
α

n∑
i 6=j

εiP
α
ijεj + op(1)

Next, note that σ2
i ≥ C by assumption 3 and Pα

ii ≤ C < 1 by Assumption
1 so that:

Vn = α
n∑
i 6=j

σ2
i (P

α
ij)

2σ2
j > C(α

n∑
i,j

(Pα
ij)

2 −
n∑
i

(Pα
ii )

2)

= Cα

n∑
i

Pα
ii (1− Pα

ii ) > C(1− C) > 0.
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Moreover, E[ε4i ] ≤ C and,

E[
n∑
i 6=j

(εiP
α
ijεj)

2] = E[
∑
i 6=j

∑
k∈{i,j}

Pα
ikP

α
jkεiε

′
jε

2
k +

n∑
i 6=j

Pα
ijε

2
i ε

2
j

= E[2
n∑
i 6=j

(Pα
ijε

2
i ε

2
j)] = 2

n∑
i 6=j

Pα
ijσ

2
i σ

2
j = 2tr(Pα)Vn

It follows from Lemma A1 with Win = 0, c1n = 0, c2n = 1, ui = εi that :∑n
i 6=j εiP

α
ijεj√

2tr(Pα)Vn

d−→ N(0, 1).

Next by Theorem 1 Carrasco and Doukali (2016) we have δ̂ p−→ δ. Moreover
by Lemma A0 (iii), tr(Pα) = O( 1

α
). Hence, by Lemma A3, V̂n − Vn

p−→ 0.
Then by Vn bounded and bounded away from zero,

√
Vn
V̂n
→ 1. Therefore by

slutsky theorem,∑n
i 6=j ε̂iP

α
ij ε̂j√

2tr(Pα)V̂n
=

∑n
i 6=j εiP

α
ijεj√

2tr(Pα)V̂n
+ op(1)

2V̂n
=
√

Vn
V̂n

∑n
i 6=j εiP

α
ijεj√

2tr(Pα)Vn
+ op(1)

d−→ N(0, 1)

Next note that T̂ ≥ q(tr(Pα)−p)(1− β) if and only if∑n
i 6=j ε̂iP

α
ij ε̂j√

2tr(Pα)V̂n
≥ q(tr(Pα)−p(1−β)−tr(Pα)√

2tr(Pα)

Using the fact that tr(Pα) = O( 1
α

), we have, as α → 0, q(tr(Pα)−p)(1 − β) −
(tr(Pα)−p)/

√
2(tr(Pα)− p)→ q(1−β) where q(1−β) is the 1−β quantile

of the standard normal distribution, also, we have
=
√

(tr(Pα))−p
tr(Pα)

(
q(tr(Pα))−p(1−β)−(tr(Pα)−p)√

2tr(Pα)−p
)− p√

2tr(Pα)
→ q(1− β).

The conclusion now follows.
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Chapter 3

Jackknife LIML estimator with

many instruments using

regularization techniques
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3.1 Introduction

This paper considers an estimation of a finite dimensional parameter in
a linear model in the presence of many weak instruments and heteroskedas-
tic data1. The use of many instruments is useful in practice in the sense
that it permits one to improve the efficiency of instrumental variables (IV)
estimates. However, the cost of the improvement in efficiency is that the IV
estimators, including the two-stage least square (2SLS), may suffer from a
substantial bias when the number of moment conditions or instruments is
very large; see among others Newey and Smith (2004) and Bekker (1994).
This paper proposes new estimators for IV models based on a Jackknife reg-
ularized version of the Limited Information Maximum Likelihood estimator
(LIML) when the number of instruments, L, is not restricted and may be
smaller or larger than the sample size, n, or even infinite. Our proposed
estimators are robust to heteroskedasticity because of their Jackknife form.
The main innovation of our approach is the use of regularization methods at
each iteration of the Jackknife to reduce the bias in the many-instruments
setting. The regularization permits one to solve the problem of the singular-
ity of the covariance matrix resulting from many instruments (see Carrasco,
Florens, and Renault (2007) and Kress (1999) for a review of regularization
schemes). The first estimator is based on the Tikhonov (T) method, also
called the ridge regularization, the second estimator is based on an iterative
method called Landweber-Fridman (LF), and the third estimator is based on
the principal components (PC) associated with the largest eigenvalues. In
this paper, we focus on the asymptotic theory that allows for both, the many
strong instruments, as in Kress (1999) and Kunitomo (1980), and the many
weak instruments, as in Chao and Swanson (2005), Stock and Yogo (2005),
and Han and Phillips (2006). We show that the regularized JLIML estimators

1I am much indebted to Marine Carrasco for intensive comments and advices.
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are consistent and asymptotically normal under the heteroskedastic assump-
tion. In the homoskedastic case, our estimators reach the semiparametric
efficiency bound of Chamberlain (1992). The regularization methods used in
our paper involve a regularization parameter that needs to be selected. We
propose a data-driven method was developed to select this regularization pa-
rameter. We use this method in our simulations to select the regularization
parameter.
Our Monte Carlo study shows that the regularized JLIML (T and LF JLIML)
performs well (i.e, are nearly median unbiased) compared to other competing
IV estimators in the literature.
Our work complements existing approaches to providing efficient estimation
that is robust to many possibly weak instruments when heteroskedasticity is
present. Hausman, Newey, Woutersen, Chao, and Swanson (2012) propose
a Jackknife version of the LIML and the Fuller (1977)’ estimator where the
number of instruments, L, is smaller than the sample size n (i.e, L

n
→ ρ with

1 ≤ ρ ≤ 1). Newey and Windmeijer (2009) show that the continuously up-
dated estimator (CUE) is consistent and asymptotically efficient compared
to others IV estimators, but L and n are needed to satisfy L2

n
→ C (C is a

constant) for consistency and L3

n
→ 0 for asymptotic normality. They pro-

pose a new variance estimator that is consistent under many weak-moment
conditions. However, this variance depends on using a heteroskedasticity-
consistent weighting matrix that can degrade the finite sample performance
of CUE with many instruments. In a recent paper, Carrasco and Tchuente
(2016b) propose a regularized version of the LIML estimator with many weak
instruments; their proposed estimator is consistent and asymptotically nor-
mally distributed, but they assume that structured errors are allowed to be
only homoskedastic. Regularization also has been introduced in the context
of forecasting using a large data set of predictors. Carrasco and Rossi (2016)
propose several dimension-reductions devices: principal components, Ridge,
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LF, and partial least squares to improve in-sample prediction and out-of-
sample forecasting in regressions with many exogenous predictors. Their
methods differ from those used in traditional factor models (see Bai and Ng
(2002) and Stock and Watson (2002)) in the sense that they use all the avail-
able predictors instead of summarizing the information from the large data
set of predictors into a low-dimensional vector of latent factors.
The rest of the paper is organized as follows. In Section 2, we present the
model and the three regularized Jackknife LIML estimators. Section 3 derives
the asymptotic properties of our proposed estimators. Section 4 presents a
data-driven method for selecting the tuning parameter involved in the regu-
larization methods we consider. Section 5 reports the Monte Carlo results.
An empirical application is illustrated in Section 6. Section 7 concludes. All
proofs are collected in Appendix.

3.2 Presentation of the regularized Jackknife

LIML estimators

In this section, we present the regularized JLIML estimators. We show
that our proposed JLIML estimators are consistent and asymptotically nor-
mal in the presence of heteroskedastic error and weak instruments and they
reach the semiparametric efficiency bound under the homoskedasticity as-
sumption.
Consider the linear IV regression model:

yi = X ′iδ0 + εi (3.2.1)

Xi = Υi + ui (3.2.2)

i = 1, . . . , n. The vector of interest is δ0, which is a p × 1 vector. yi is a
scalar. The vector Υi is the optimal instrument, which is typically unknown.
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We assume that yi and Xi are observed but the Υi is not. E(Xiεi) 6= 0, as a
result, Xi is endogenous and the OLS estimator of δ0 is not consistent. The
estimation will be based on a sequence of instruments, Zi = Z(τ ; νi), where νi
is a vector of exogenous variables and τ is an index taking countable values.
Such a situation can arise by taking interactions between some exogenous
variables, as in Angrist and Krueger (1991), by non-linear transformations
of an exogenous variable, as in Dagenais and Dagenais (1997), or also by
allowing lagged dependent variables, as in Arellano and Bond (1991).

Assumption 1. yi, Xi and νi are iid, E(ui|νi) = E(εi|νi) = 0; Υi = E(Xi|νi)
denote the p× 1 reduced-form vector with E(Υiεi) = 0.

The estimation will be based on a sequence of instruments, Zi = Z(τ ; νi);
τ may be an integer or take its values in an interval. Thus, the model allows
that the number of moments conditions is finite, or countable infinite. Here
some examples of Zi.
- If Zi = νi, where νi is an L-vector of exogenous variables with a fixed L,
then Z(τ ; νi) denotes the τth element of νi.
- Z(τ ; νi) = (νi)

τ−1 with τ ∈ N ; thus, we have an infinite countable sequence
of instruments.
We will present the JLIML estimators in the case where, Zi is an L×1 vector
of instruments, where L may be a larger or smaller integer than the sample
size n.
The estimation of δ is based on the orthogonality condition.

E[(yi −X ′iδ)Zi] = 0,

where Zi is a L × 1 vector of instruments. Let Z denote the n × L matrix
having rows corresponding to Z ′i. Denote ψj the eigenvectors of the n × n
matrix, ZZ ′/n, associated with eigenvalues λj. Recall the expression of the
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Jackknife k-class estimators:

δ̂ = (X ′PX −
n∑
i=1

PiiXiX
′
i − αX ′X)−1(X ′Py −

n∑
i=1

PiiXiyi − αX ′y)

where α is either a constant term or a random variable. The case α = 0

corresponds to the Jackknife IV estimator (RJIVE) studied in Chao et al.
(2012a), and the case α̂ = min

δ

∑n
i 6=j(yi−X′iδ)′Pij(yj−X′jδ)

(y−Xδ)′(y−Xδ) corresponds to HLIML
estimator studied in Hausman et al. (2012). We note that those estimators
involve the projection matrix P = Z(Z ′Z)−1Z. When the number of instru-
ments, L, is large relatively to n, inverting the matrix, Z ′Z, is considered as
an ill-posed problem, which means that Z ′Z is singular or nearly singular.
To address this issue, we propose a regularized version of the inverse of the
matrix Z ′Z. We apply the same regularizations methods 2 as in Carrasco
(2012). For an arbitrary n× 1 vector, d, we define the n× n matrix, P r, as

P rd =
1

n

n∑
j=1

q
(
r, λ2j

)
〈d, ψj〉ψj

where q
(
r, λ2j

)
is a weight that takes different forms depending on the regu-

larization schemes, and r is the regularization parameter. We consider three
types of regularization:

• q
(
r, λ2j

)
= λ2j/

(
r + λ2j

)
for T regularization,

• q
(
r, λ2j

)
= I

(
λ2j ≥ r

)
for PC regularization,

• q
(
r, λ2j

)
= 1−

(
1− cλ2j

)1/r for LF regularization.

We note here that all the regularizations techniques involve a tuning param-
eter r. The case r = 0 corresponds to the case without regularization. We

2Appendix A gives a detailed definition of the regularization methods and the definition
of P r.
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obtain:

P 0 = P = Z(Z ′Z)−1Z

Consider now the regularized Jackknife k-class estimators defined as follows:

δ̂ = (X ′P rX −
n∑
i=1

P r
iiXiX

′
i − αX ′X)−1(X ′P ry −

n∑
i=1

P r
iiXiyi − αX ′y)

The case α = 0 corresponds to the regularized Jackknife 2SLS estima-
tor (RJIVE) studied in Carrasco and Doukali (2016), and the case α̂ =

min
δ

∑n
i 6=j(yi−X′iδ)′P rij(yj−X′jδ)

(y−Xδ)′(y−Xδ) corresponds to our proposed regularized Jackknife
estimator JLIML, which we will study here.
The 2SLS estimator suffers from a small-sample bias in the presence of en-
dogeneity that is increased dramatically when many instruments are used
and/or the instruments are only weakly correlated with the endogenous vari-
ables. The LIML was proposed to correct the bias problem of the 2SLS es-
timator in the presence of many instruments. It was shown in the literature
that the LIML has better small-sample properties than the 2SLS estimator.
A drawback of the LIML estimator is that it is not consistent under het-
eroskedasticity. Hausman et al. (2012) propose the HLIML estimator, which
is based on the Jackknife version of the LIML estimator. Their proposed
estimator is robust to heteroskedasticity and many instruments because of
the Jackknife form. However, they assume that the number of instruments
is smaller than the sample size L

n
< 1. We contribute to this literature by

considering cases where L > n and regularization. The advantage of regular-
ization is that all available instruments can be used without discarding any
a priori.
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3.3 Asymptotic Properties of the regularized

Jackknife LIML

In this section, we establish the asymptotic properties of the regularized
JLIML estimator when the errors are heteroskedastic. We also allow for the
presence of many weak instruments, as in Chao and Swanson (2005). A mea-
sure of the strength of the instruments is the concentration parameter, which
can be seen as a measure of the information contained in the instruments. If
one could approximate the reduced form, Υ, by a sequence of instruments, Z,
so that X = Z ′π+u, where E[u2|Z] = σ2

u, then the concentration parameter
would be given by:

CP = π′Z′Zπ
σ2
u

.

The following assumption generalizes this notion.

Assumption 2. Υi = Snfi/
√
n, where Sn = Ŝndiag(µ1n, . . . , µpn) such that

Ŝn is a p × p bounded matrix, the smallest eigenvalue of ŜnŜ ′n is bounded
away from 0; for each j, either µjn =

√
n (strong identification) or µjn√

n
→ 0

(weak identification). Moreover, µn = min
1<j<p

µjn → ∞ and 1/(
√
rµ2

n) → 0,

r → 0. Also there is a constant, C̄, such that ||
∑n

i=1 fif
′
i/n|| ≤ C̄ and

λmin(
∑n

i=1 fif
′
i/n) ≥ 1/C̄, a.s.n.

This condition is similar to Assumption 2 of Hausman et al. (2012). It
allows for both strong and weak instruments. The concentration parameter,
µ2
n, will determine the convergence rate of the estimator δ̂. If µjn =

√
n,

the instrument is strong and the convergence rate will be
√
n. If µ2

jn is
growing slower than n, the convergence rate will be slower than 1/

√
n, leading

to a weak identification, as in Chao and Swanson (2005). fi, defined in
Assumption 2, is unobserved and has the same dimension as the infeasible
optimal instrument, Υi. Then, fi can be seen as a rescaled version of this
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optimal instrument.
An illustration of Assumption 2 is as follows. Let us consider the simple
linear model; yi = zi1δ1 + δ0pxi2 + εi, where zi1 is an included instruments
and xi2 is an endogenous variable. Suppose that xi2 is a linear combination
of the included instrumental, zi1, and an unknown excluded instruments zip,
i.e xi2 = π1zi1 + ( µn√

n
)zip. The reduced form is:

Υi=


zi1

xi2

 =


zi1

π1zi1 + ( µn√
n
)zip

 =


1 0

π1 1




1 0

0 µn√
n



zi1

zip


with

Ŝn =


1 0

π1 1

, µjn =


√
n , j = 1

µn , j = 2

, with µn√
n
→ 0, and

fi = νi =


zi1

zip

.

Assumption 3. There is a constant, C̄, such that the observations (ε1, u1), ..

., (εn, un) are independent, with E[εi] = 0 for all i, E[ui] = 0 for all i, E[ε2i ] ≤
C̄, and E[||ui||2] ≤ C̄, V ar((εi, u′i)′) = diag(Ωi, 0), and λmin(

∑n
i=1 Ωi/n) ≥

1/C̄.

This assumption is similar to Assumption 3 in Hausman et al. (2012). It
requires the second conditional moments of the disturbances to be bounded.
This condition also imposes the uniform nonsingularity of the variance of the
reduced-form disturbances, which will permit us to prove the consistency of
the proposed estimators.
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Assumption 4. (i) The operator, K, 3 is nuclear. (ii) Υa (the ath row of
Υ) belongs to the closure of the linear span of {Z(.; ν)} for a = 1, .., p. (iii)
There exists a constant, C̄, such that P r

ii ≤ C̄ < 1, i = 1, ..., n.

Assumption 4 is the same as in Carrasco (2012). Condition (i) provides
that the smallest eigenvalues of the covariance operator, K, decreases to 0
sufficiently fast. Condition (ii) implies that the optimal instrument, f , can
be approached by a sequence of instruments. In a finite case, this condition is
equivalent to saying that fi can be approached by a linear combination of the
instruments, where Z(ν)L is a subset of the instruments. Thus, there exists
a πL such that

∑n
i=1 ||fi − πLZ(ν)L||2/n → 0. Condition (iii) is reminiscent

of Assumption 1 in Hausman et al. (2012): ”For some C̄ < 1, Pii < C̄, i =

1, ..., n”. However it is much less restrictive. Indeed, Pii < C̄ < 1 implies that∑
i
Pii
n

= L
n
< 1, L = rank(Z), which restricts the number of instruments.

Our condition, P r
ii ≤ C̄ < 1, implies that trace(P r) =

∑
i qi < n, which

implies a condition on r. Recall from Carrasco (2012) that
∑

i qi = O(1
r
).

Thus, condition (iii) implies that 1
rn
< 1. Conditions (i) and (ii) imply that

the structural parameters are identified asymptotically.

Assumption 5. There exist a constant C̄, C̄ > 0 such that
∑n

i=1 ||fi||4/n→
0, supiE[ε4i ] ≤ C̄, and supiE[||ui||4] ≤ C̄.

Assumption 5 is a standard condition that assumes that fourth moments
are bounded.

Theorem 1. Suppose that Assumptions 1-4 are satisfied. The T, LF, and
PC regularized JLIML estimators satisfy µ−1n S ′n(δ̂ − δ0)

p→ 0; as n, µn go to
infinity, and r goes to 0.

Theorem 1 implies the consistency of the estimator, δ̂ p→ δ. Let us now
state the asymptotic normality of the regularized estimators. First, let:

3See Appendix A for the definition of the operator K.
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σ2
i = E[ε2i ] and γn =

∑n
i E[uiεi]/

∑n
i σ

2
i , ũ = u − εγ′n, and Ω̃i = E[ũiũ

′
i],

Hn = lim
∑n

i (1− P r
ii)fif

′
i/n, Σn = lim

∑n
i (1− P r

ii)
2fif

′
iσ

2
i /n,

and Ψn = r
∑n

i 6=j(P
r
ij)

2(E[uju
′
j]σ

2
i +E[ũiεi]E[ũjεj]).

Hausman et al. (2012) separate 2 cases: L
µ2n
→ C, for some constant C, and

the case L
µ2n
→ ∞, and gave the asymptotic variances for both cases (see

Hausman et al. (2012) (page 222)):

A = H−1n ΣnH
−1
n + αH−1n S0ΨnS

′
0H
−1
n in case 1,

A = H−1n S0ΨnS
′
0H
−1
n in case 2.

In this paper, we consider a third case where 1
rµ2n
→ 0. r is the regularization

parameter that can be controlled such that Ψn vanishes asymptotically. In-
stead of restricting the number of instruments (which may be very large or
infinite), we impose restrictions on the regularization parameter such that it
goes to zero at a slower rate than µ2

m. This insures us that all available and
valid instruments are used in an efficient way even if they are weak.
The asymptotic variance of our proposed estimator is given by:

V = H−1n ΣnH
−1
n .

Theorem 2. Suppose that Assumptions 1-5 are satisfied and n, µn, and rµ2
n

go to infinity. The T, Lf, and PC regularized JLIML estimators satisfy:

V −1/2S ′n(δ̂ − δ0)
d→ N(0, Ip).

Theorem 2 states the asymptotic normality of our proposed regularized esti-
mators. The asymptotic variance of those estimators is smaller than that
obtained in Hausman et al. (2012). It would be interesting to compare
the asymptotic variance of the regularized JLIML when the errors are ho-
moskedastic, E[ε2i ] = σ2

ε . With many weak instruments, where maxiP r
ii → 0,

we will have Hn = lim
∑n

i (1 − P r
ii)fif

′
i/n = lim

∑n
i fif

′
i/n = E(fif

′
i), and

Σn = lim
∑n

i (1 − P r
ii)

2fif
′
iσ

2
i /n = σ2

εE(fif
′
i), so the asymptotic variance
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of the regularized JLIML is equal to σ2
ε [E(fif

′
i)]
−1, which corresponds to

the semiparametric efficiency bound of Chamberlain (1992). Our asymptotic
variance is more efficient than the one obtained by Hausman et al. (2012).
They use the number of instruments as a regularization parameter, that is
why they obtain a larger asymptotic variance than we did. Moreover, we
assume that the set of instruments is sufficiently rich to span the optimal
instrument (Assumption 4 (ii)). In the Monte Carlo simulation, we find the
relevance of our leading estimators in finite samples (they are nearly median
unbiased).
Related Literature.

The problem of many (possibly) weak instruments in heteroskedastic data
is a growing part of the econometric literature. While the 2SLS estima-
tor is inconsistent in this framework, others IV estimators are shown to be
consistent and asymptotically normal, like HFUL estimator, and continuous
updating generalized estimator (CUE); see Angrist, Imbens, and Krueger
(1999), Newey and Windmeijer (2009), Chao and Swanson (2005), Chao
et al. (2012a), and Hausman et al. (2012). A drawback of all those papers
is that they assume the number of instruments, L, should be smaller than
the sample size n. We contribute to this literature by studying the case
when L > n. In fact, when L is very large, the inverse of the covariance
matrix of the instruments, Z ′Z, needs to be regularized because it is singu-
lar. The most classical method to regularize the matrix, Z ′Z, is to reduce
its dimension by using variable selection techniques; see Bai and Ng (2008)
and Gautier and Tsybakov (2011). Carrasco (2012) proposed a variety of
regularization schemes to directly regularize the inverse Z ′Z. Those regular-
ization procedures involve a regularization parameter r. The main difference,
between our work and the other papers, is that we are not making any re-
strictions on L to get the asymptotic properties of our proposed estimators.
The need for the Jackknife form is motivated by the inconsistency of the
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IV estimators in the many instruments situation when heteroskedasticity is
present. To deal with this issue, Chao et al. (2012a) introduced Jackknife
instrumental variables (JIV) estimators under many possibly weak instru-
ments. In another paper, Hausman et al. (2012) propose the Jackknife ver-
sion of FULL and LIML referred to as HFUL and HLIML respectively, they
derive the asymptotic normal distributions for both estimators, and show the
dominance of HFUL and HLIM on JIV in the sense that JIV is less efficient.
Again, a common condition in those papers is that L is not allowed to be
larger than n which is not the case in our work.

3.4 Selection of the regularization parameter

The three regularization schemes involve a regularization (or tuning) pa-
rameter r. An important practical issue is how to choose r. First, it is useful
to write the regularized JLIML as:

δ̂ = (X ′CrX − α̂X ′X)−1(X ′Cry − α̂X ′y)

where Cr = (Cr
ij) =


P r
ij if i 6= j

Cr
ii = 0 if i = j

.

We propose to select r that minimizes the generalized cross-validation equa-
tion (GCV) of Li (1987). We look for the best approximation of the first
stage equation: Xj = f + u, j = 1, .., p. To reduce the problem to a single
equation, we take Xλ = λ′Xj, where λ is some given vector, for instance
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λ = (1, ..., 1).

r̂ = arg min
r∈An

1

n

||Xλ − X̂λ||2

(1− 1
n
tr(Mn(r)))

where X̂λ = Mn(r) Xλ, Mn(r) = (Cr − α̂In), and An is the set within r is
selected.
Note that tr(Mn(r)) = tr(Cr)− tr(α̂In) = −α̂n does not depend on r, so the
regularization parameter r is selected by minimizing the following criteria:

R̂ (r) =
1

n
||Xλ − (Cr − α̂In)Xλ||2

Note also that, because the trace of Cr is equal to zero, generalized cross-
validation (GCV) validation, and Cp cross-validation coincide.

3.5 Simulation study

In this Monte Carlo simulation, our aim is to illustrate the performance
of our proposed estimators and provide a comparison to the regularized JIVE
estimators proposed in Carrasco and Doukali (2016).
The data generating process (DGP) is given by:

yi = X ′iδ + εi (3.5.1)

Xi = ν ′iπ + ui (3.5.2)

i = 1, . . . , n. δ = 0.1, νi
iid∼ N(0, IL), and (εi, ui)

iid∼ N(0,
∑

) with
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∑
=


1 0.5

0.5 1

.

For the purpose of comparison, we are going to consider two models.
Model 1 (Linear model).

We set πl =

√
R2
f

L(1−R2
f )
, l= 1,2,3,.., L with R2

f = 0.1. In this case, all the

instruments have the same weight, so there is no reason to prefer one instru-
ment over another. The νi are used as instruments so that Zi = νi.
Model 2 (weak instruments).

We keep the same DGP and we construct π such as: π =
√

CP
nL
ιL, where ιL

is an L-vector of ones, and CP is the concentration parameter (CP=35) and
L is the number of instruments equals to 15, 30 and 50.
The simulations are performed using 1000 replications of samples of size
n = 500. Our proposed estimators depend on a regularization (smoothing)
parameter r 4 that needs to be chosen. We select the regularization pa-
rameter by minimizing the generalized cross-validation equation (GCV) as
described in Section 3.4.
For comparison, we also report the RJIVE estimators of Carrasco and Doukali
(2016). In their paper, they proposed a data-driven methods for selecting the
regularization parameter r based on an expansion of the MSE to estimate
the RJIVE estimator. We use those data-driven methods for the choice of r.
We report summary statistics for each of the following estimators: Car-
rasco and Doukali (2016)’ regularized Jackknife JIVE, Tikhonov (TJack),
Landweber-Fridman (LJack), principal component (PJack), Tikhonov Jack-
knife LIML (TJLIML), Landweber-Fridman Jackknife LIML (LJLIML) and

4The regularization parameter r for Tikhonov is searched over the interval [0.01,0.5]
with 0.01 increment. The range of values for the number of iterations for LF is from 1 to
300, and the number of principal components ranges from 1 to the number of instruments.
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principal component Jackknife LIML (PJLIML).
We report the median bias (M.bias), the median of the absolute deviations
of the estimator from the true value (M.abs), the difference between the 0.1
and 0.9 quantiles (dis) of the distribution of each estimator, and the coverage
rate (Cov.) of a nominal 95% confidence interval. To construct the confi-
dence intervals to compute the coverage probabilities, we used the following
estimate of asymptotic variance:

V̂ (δ̂) = (y−Xδ̂)′(y−Xδ̂)
n

(X̂ ′X)−1X̂ ′X̂(X ′X̂)
−1

where X̂ = (Cr − α̂In)X.

Results on Model 1 are summarized in Table 3.1. We remark that, when
L = 15, the regularized JLIML estimators perform better than the regular-
ized JIVE estimators in terms of the the median bias. We can also notice that,
when the number of instruments increases, our regularized JLIML estima-
tors has similar performance as the regularized JIVE. Within the regularized
estimators, T and LF perform better than the PC method.
Now, we turn to Model 2 which allows for the presence of weak instruments.
We see that, when the number of instruments is small, L = 15, the bias of the
regularized JLIML is quite a bit smaller than that of the regularized JIVE.
However, when we increase the number of instruments (L = 50), there is no
clear dominance among the regularized JLIML and the regularized JIVE as
they all perform very well.
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Table 3.1: Simulation results of model 1 with R2 = 0.1, n=500

TJack LJack PJack TJLIML LJLIML PJLIML

L=15 Med.bias -0.011 -0.009 0.015 -0.001 -0.001 0.014

Med.abs 0.108 0.107 0.108 0.108 0.105 0.107

Disp 0.423 0.417 0.408 0.396 0.384 0.369

Cov 0.924 0.925 0.946 0.951 0.956 0.932

L=30 Med.bias -0.002 -0.004 0.012 0.009 0.009 0.037

Med.abs 0.126 0.126 0.355 0.109 0.115 0.115

Disp 0.504 0.485 1.610 0.455 0.441 0.428

Cov 0.962 0.961 0.891 0.947 0.953 0.914

L=50 Med.bias -0.004 0.000 0.079 -0.002 0.001 0.073

Med.abs 0.124 0.126 0.136 0.117 0.121 0.144

Disp 0.470 0.489 0.477 0.473 0.491 0.475

Cov 0.960 0.955 0.866 0.957 0.957 0.897
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Table 3.2: Simulation results of model 2, CP = 35, n=500.

TJack LJack PJack TJLIML LJLIML PJLIML

L=15 Med.bias -0.006 -0.013 0.033 -0.0001 -0.0001 -0.0005

Med.abs 0.210 0.215 0.123 0.019 0.016 0.019

Disp 0.722 0.643 0.614 0.071 0.068 0.072

Cov 0.927 0.937 0.915 0.954 0.954 0.955

L=30 Med.bias -0.020 -0.013 0.128 0.001 0.001 0.002

Med.abs 0.216 0.181 0.198 0.019 0.019 0.018

Disp 0.950 0.822 0.753 0.069 0.069 0.068

Cov 0.927 0.956 0.893 0.955 0.956 0.958

L=50 Med.bias -0.001 -0.001 -0.001 0.000 0.000 0.000

Med.abs 0.017 0.017 0.017 0.017 0.018 0.017

Disp 0.065 0.065 0.065 0.069 0.068 0.068

Cov 0.948 0.948 0.950 0.954 0.944 0.952
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3.6 Empirical application: Elasticity of intertem-

poral substitution (EIS).

We follow the specification in Yogo (2004) who analyzes the problem of
the estimation of the EIS using the linearized Euler equation. He explains
how weak instruments have been the cause of the EIS empirical puzzle. He
shows that, using conventional IV methods, the estimated EIS is significantly
less than 1 but its reciprocal is not different from 1.
The estimated model is as follows:

∆ct+1 = τ + ψrf,t+1 + ξt+1

rf,t+1 = µ+ 1
ψ

∆ct+1 + ηt+1

where ψ is the EIS, ∆ct+1 is the consumption growth at time t+ 1, rf,t+1 is
the real return on a risk free asset, τ and µ are constants, and ξt+1 and ηt+1

are the innovations to consumption growth and asset return, respectively.
The instruments that Yogo (2004) used are: the twice lagged, nominal in-
terest rate (rnominal), inflation (i), consumption growth (c) and log dividend
rate (p). We denote this bloc of instruments by Z = [rnominal, i, c, p]. As men-
tioned earlier, the source of the empirical puzzle is weak instruments. We
increase the number of instruments from 4 to 18 by including interactions
and power functions. The 18 instruments used in our regression are derived
from Z and are given by II = [Z,Z.2, Z.3, Z(:, 1)?Z(:, 2), Z(:, 1)?Z(:, 3), Z(:

, 1) ?Z(:, 4), Z(:, 2) ?Z(:, 3), Z(:, 2) ?Z(:, 4), Z(:, 3) ?Z(:, 4)]. Finally, we note
that, the instruments are standardized, which means that the instruments are
divided with their standard deviation as in Carrasco and Tchuente (2016b).
Estimation results are reported in Table 3.3. Interestingly, the point esti-
mates obtained by LF and T regularized estimators are close to those used
for macro calibrations (EIS equal to 0.71 in our estimations and 0.67 in Cas-
tro, Clementi, and MacDonald (2009)).
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Moreover, the results of the two equations are consistent with each other
since we obtain the same value for ψ in both equations. PC seems to take
too many factors, and did not perform well, this is possibly due to the lack
of factor structure in the instruments.

Table 3.3: Estimates of the EIS

LIML (4 instr) LIML (18 instr) TLIML LLIML PLIML

ψ 0.0293 0.2225 0.710 0.7104 0.150

(0.0994) (0.156) (0.424) (0.423) (0.111)

r =0.01 1000 iterations Nb of PC=8

1/ψ 34.1128 4.4952 1.407 1.4072 3.8478

(112.7122) (4.421) (0.839) (0.735) (3.138)

r =0.01 1000 iterations Nb of PC=17

JLIML (4 instr) JLIML (18 instr) JTLIML JLLIML JPLIML

ψ 0.0144 0.1591 0.7256 0.7915 0.1324

(0.1025) (0.1326) (0.4528) (0.1217) (0.1147)

r = 0.01 1000 iterations Nb of PC= 8

1/ψ 69.4234 6.2855 1.3809 1.5567 5.448

(491.5135) (5.2376) (0.8624) (0.9841) (1.2027)

r =0.01 1000 iterations Nb of PC=17

∗ NB: We report LIML and JLIML and for 4 and 18 instruments. The
regularized estimators are computed for 18 instruments. The standard errors
are given in parentheses.
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3.7 Conclusion

This paper proposes three new estimators based on the regularized version
of Jackknife LIML estimator. We considered the framework when the num-
ber of instruments is very large and errors are heteroskedastic. Theoretical
results show that the three main estimators are consistent and asymptoti-
cally normal and reach the semiparametric effiency bound when errors are
homoskedastic. In Monte Carlo experiments, we show that our proposed
regularized estimators (LF and T of Jackknife LIML) perform well. They
also perform well in the elasticity of intertemporal substitution example.
It would be interesting, for future research, to propose a method for se-
lecting the parameter of regularization that appears in all regularization
schemes. Another topic of interest is to study the asymptotic behaviour
of the regularized version of the HFUL estimator proposed by Hausman,
Newey, Woutersen, Chao, and Swanson (2012) in presence of a large number
or a continuum of moment conditions.
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3.8 Appendix

3.8.1 Presentation of the Regularization methods.

This section presents the regularization methods. These methods are the
same as those used in Carrasco (2012). We use a compact notation which
allows us to deal with a finite, countable infinite number of moments, or a
continuum of moments. We consider the following sequence of instruments
Zi = Z(τ ; νi) where τ ∈ S may be an integer or an index taking its values in
an interval and let π be a positive measure on Ξ. Let K be the covariance
operator for instruments from L2(π) to L2(π) such that:

(Kg)(τ) =
L∑
l=1

E(Z(τ, νi)Z(τl, νi))g(τl)π(τl).

where L2(π) denotes the Hilbert space of square integrable functions with
respect to π. K is supposed to be a nuclear operator which means that its
trace is finite. Let λj and ψj, j = 1... be respectively the eigenvalues (ordered
in decreasing order) and the orthogonal eigenfunctions of K. The operator
can be estimated by Kn defined as:

Kn : L2(π)→ L2(π)

(Kng)(τ) =
L∑
l=1

1

n

n∑
i=1

(Z(τ, νi)Z(τl, νi))g(τl)π(τl).

If the number of instruments L is large relatively to n, inverting the operator
K is considered as an ill-posed problem which means that the inverse is not
continuous and its sample counterpart, Kn, is singular or nearly singular. To
solve this problem we need to stabilize the inverse of Kn using regularization.
A regularized inverse of an operator K is defined as: Rr : L2(π)→ L2(π) such
that limr→0RrKρ = ρ, ∀ρ ∈ L2(π), where r is the regularization parameter
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(see Kress (1999) and Carrasco, Florens, and Renault (2007)).
Three regularization schemes.

We consider the Tikhonov regularization scheme.

[1] Tikhonov (ridge) regularization:

(Kr)−1 = (K2 + rI)
−1
K.

(Kr)−1v =
∞∑
j=1

λj
λ2j + r

〈v, ψj〉ψj.

where r > 0, v ∈ Rn and I is the identity operator. For the asymptotic
efficiency r has to go to zero at a certain rate. The Tikhonov regulariza-
tion is related to ridge regularization. Ridge method was first proposed
in the presence of many regressors. The aim was to stabilize the inverse
of XX ′ by replacing XX ′ by XX ′+ rI. However, this was done at the
expense of a bias relative to OLS estimator. In the IV regression, the
2SLS estimator has already a bias and the use of many instruments
usually increases its bias. The implementation of the Tikhonov regu-
larization and the selection of an appropriate ridge parameter for the
first step regression helps to reduce this bias.

[2] Spectral cut-off or principal components:
It consists in selecting the eigenfunctions associated with the eigenval-
ues greater than some threshold.

(Kr)−1v =
∑
λj>r

1

λj
〈v, ψj〉ψj.

for some vector v > 0.

[3] Landweber-Fridman
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This method of regularization is iterative. Let 0 < c < 1
λ21(K)

where
λ1(K) is the largest eigenvalues of K. define:

ψk = (1− cK2)ψk−1 + cKv, k = 1, 2, ...1/r − 1,

ψ0 = cKv.

where 1/r−1 is some positive integer. ψk converges to K−1v when the num-
ber of iterations k goes to infinity. The earlier we stop the iterations, the
more stable is ψk. Alternatively, we have:

(Kr)−1v =
∞∑
j

1−
(
1− cλ2j

)1/r
λj

〈v, ψj〉ψj.

These three regularized inverses of K can be rewritten using a common no-
tation as:

(Kr)−1v =
∞∑
j=1

q
(
r, λ2j

)
λj

〈v, ψj〉ψj

where:

• q
(
r, λ2j

)
= λ2j/

(
r + λ2j

)
for Tikhonov,

• q
(
r, λ2j

)
= I

(
λ2j ≥ r

)
for spectral cut-off,

• q
(
r, λ2j

)
= 1−

(
1− cλ2j

)1/r for Landweber-Fridman.

Let (Kr
n)−1 be the regularized inverse of Kn and P r a n×n matrix as defined

in Carrasco (2012) by P r = T (Kr
n)−1T ∗ where T : L2(π)→ Rn with

Tg = (< Z1, g >,< Z2, g >
′, ...., < Zn, g >

′)′

and T ∗ : Rn → L2(π) with
T ∗v = 1

n

∑n
j Zjvj

such that Kn = T ∗T and TT ∗ is a n×n matrix with typical element <Zi,Zj>

n
.

Let φ̂j, λ̂1 ≥ λ̂2 ≥ ..... ≥ 0, j = 1, 2, ... be the orthonormalized eigenfunctions
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and eigenvalues ofKn and ψj the eigenfunctions of TT ∗. We then have T φ̂j =
√
λjψj and T ∗ψj =

√
λjφ̂j. For v ∈ Rn, P rv =

∑∞
j q(r, λ2j) < v, ψj > ψj

where q(r, λ2j) =
λ2j
λ2j+r

.

Remark that the case when r = 0 corresponds to no regularization Thus we
have q(r, λ2j) = 1 and P 0 = Z(Z ′Z)−1Z ′.

3.8.2 Proofs

In the following, we provide proofs of Theorems 1 and 2. The proofs follow
from arguments similar to those of Hausman, Newey, Woutersen, Chao, and
Swanson (2012) and Carrasco and Doukali (2016) modified to account for
regularization in performing the Jackknife.
Lemma A0. (Lemma A0 of Hausman et al. (2012)).
If Assumption 2 is satisfied and ||S ′n(δ̂ − δ0)/µn||2/(1 + || δ̂||2) → 0, then
||S ′n(δ̂ − δ0)/µn||

p−→ 0.
We next give a result from Carrasco and Doukali (2016) that is used in the
proof of consistency.
Let us define some notations that will be used in the following Lemmas.
For random variables5 Wi, Yi, ηi. Let w̄i = E[Wi], ȳi = E[Yi], η̄i = E[ηi],
W̃i = Wi − w̄i and Ỹi = Yi − ȳi, η̃i = ηi − η̄i, w̄n = E[(W1, ....,Wn)′],
ȳn = E[(Y1, ...., Yn)′], µ̄W = maxi≤n|w̄i|, µ̄Y = maxi≤n|ȳi|, µ̄η = maxi≤n|η̄i|,
σ̄2
Wn

= maxi≤nvar(Wi)
1/2, σ̄2

Yn
= maxi≤nvar(Yi)

1/2.
Throughout, let C denote a generic positive constant that may be different
in different uses and let Markov inequality denote the conditional Markov
inequality, and define the norm: ||W ||2L2

=
√
E[W 2].

Lemma A1. (Special Case of Lemma A1 of Carrasco and Doukali (2016)).
The pairs of scalar random variables (Wi, Yi) are independent across i, P r is
the regularized projection matrix. Then there is a constant C such that:

5 Note that here Wi and ηi are arbitrary scalar variables that will take various forms
in the sequel.
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||
∑n

i 6=j P
r
ijWiYj −

∑n
i 6=j P

r
ijw̄iȳj||2L2

< CBn

where Bn = (1/r)σ̄2
Wn
σ̄2
Yn

+ σ̄2
Yn
w̄′nw̄n + σ̄2

Wn
ȳ′nȳn and w̄n is defined as w̄n =

E[(W1, ....,Wn)′], ȳn = E[(Y1, ...., Yn)′], σ̄2
Wn

= maxi≤nvar(Wi)
1/2, σ̄2

Yn
=

maxi≤nvar(Yi)
1/2.

For the next result, let S̄n = diag(µn, Sn), X̃ = [ε,X]S̄−1
′

n , and Hn =
∑n

i (1−
P r
ii)fif

′
i/n.

Lemma A2.
If Assumptions 1-4 are satisfied and 1/(

√
rµ2

n)→ 0, then :∑n
i 6=j X̃iP

r
ijX̃j = diag(0, Hn) + op(1).

Proof .
Note that:
X̃i =

(
µ−1n εi
S−1n Xi

)
=

(
0

fi/
√
n

)
+

(
µ−1n εi
S−1n ui

)
.

Since ||S−1n || ≤ Cµ−1n , we have V ar(X̃ik) ≤ Cµ−2n for any element X̃ik of X̃i.
Then applying Lemma A1 to each element of

∑n
i 6=j X̃iP

r
ijX̃j gives:∑n

i 6=j X̃iP
r
ijX̃j = diag(0,

∑n
i 6=j fiP

r
ijf
′
j/n) + Op(

1√
rµ2n

+ µ−1n (
∑

i ||fi||2/n)
1
2 ) =

diag(0,
∑n

i 6=j fiP
r
ijf
′
j/n) + op(1).

Note that:

Hn −
n∑
i 6=j

fiP
r
ijf
′
j/n =

∑
i

fif
′
i/n−

∑
i 6=j

P r
iifif

′
i/n−

n∑
i 6=j

fiP
r
ijf
′
j/n

= f ′(I − P r)f/n

= (f − Zπ′n)′(I − Pr)(f − Zπ′n)/n

≤ (f − Zπ′n)′(f − Zπ′n)/n

≤ IG
∑
i

||fi − πnZi||2/n→ 0.

The last inequality follows by A ≤ tr(A)I for any positive semidefinite (p.s.d)
matrix A. Since this equation shows that Hn−

∑n
i 6=j fiP

r
ijf
′
j/n is p.s.d and is

less than or equal to another p.s.d matrix that converges to zero, it follows
that

∑n
i 6=j fiP

r
ijf
′
j/n = Hn + op(1). The conclusion follows by the triangle
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inequality.
Lemma A3. (Lemma A3 of Hausman et al. (2012) holds with P r replacing
P).
If Assumptions 1-4 are satisfied, then S ′n(δ̂ − δ0)/µn

p−→ 0.
Proof .
Let Ȳ = [0, Y ], Ū = [ε, U ], and X̄ = [y,X], so that X̄ = (Ȳ + Ū)D for

D =

 1 0

δ0 I


Let B̂ = X̄ ′X̄/n. Note that ||Sn/

√
n|| ≤ C and, by standar calculations,

f ′u/n
p−→ 0. Then

||Ȳ Ū/n|| = ||(Sn/
√
n)f ′u/n ≤ C||f ′u/n|| p−→ 0.

Let Ω̄n =
∑

iE[ŪiŪ
′
i ]/n = diag(IG2+1, 0) by Assumption 3, where G2 + 1

is the dimension of the number of included endogenous variables. By the
Markov inequality, we have Ū ′Ū/n− Ω̄n → 0, so it follows that:
B̂ = (Ū ′Ū+ Ȳ ′Ū+ Ū ′Ȳ + Ȳ ′Ȳ )/n = Ω̄n+ Ȳ ′Ȳ /n+op(1) ≥ Cdiag(IG−G2+1, 0)

Since Ωn + Ȳ ′Ȳ /n is bounded, it follows that ,
C ≤ (1,−δ′)B̂(1,−δ′)′ = (y−Xδ)′(y−Xδ)/n ≤ C||(1,−δ′)||2 = C(1+||δ||2).
Next, as defined preceding Lemma A2, let S̄n = diag(µn, Sn) and X̃ =

[ε,X]S̄−1n .

Note that by P r
ii ≤ C < 1 and uniform nonsingularity of

∑n
i fif

′
i/n, we have

Hn ≥ (1− C)
∑n

i fif
′
i/n ≥ CIG. Then by Lemma A2,

Ã =
∑n

i 6=j P
r
ijX̃iX̃j ≥ Cdiag(0, IG)

Note that S̄ ′nD(0,= δ′)′ = (µn, (δ0 − δ)′Sn)′, and X̄i = D′S̄nX̃i. Then for all
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δ,

µ−2n
∑
i 6=j

P r
ij(yi −X ′iδ)(yj −X ′jδ) = µ−2n (1,−δ′)(

∑
i 6=j

P r
ijX̄iX̄

′
j)(1,−δ′)

= µ−2n (1,−δ′)D′S̄nÃS̄ ′nD(1,−δ′)′

≥ C||S ′n(δ − δ0)/µn||2

Let Q̃n(δ0) = (n/µ2
n)
∑

i 6=j(yi−X ′iδ)P r
ij(yj−X ′jδ)/(y−Xδ)′(y−Xδ). Then by

the upper left element of the conclusion of Lemma A2, µ−2n
∑

i 6=j εiP
r
ijεj

p−→ 0.
Then
Q̃n(δ0) = |µ−2n

∑
i 6=j εiP

r
ijεj/

∑
i ε

2
i /n|

p−→ 0.

Since δ̂ = argminδQ̂(δ), we have Q̂(δ̂) ≤ Q̂(δ0). Therefore, by (y−Xδ)′(y−
Xδ)/n ≤ C(1 + ||δ||2), it follows that:

0 ≤ ||S
′
n(δ̂ − δ0)/µn)||2

1 + ||δ̂||2
≤ CQ̂(δ̂) ≤ CQ̂(δ0)

p−→ 0

implying ||S ′n(δ̂−δ0)/µn)||2/(1+ ||δ̂||2) p−→ 0. Lemma A0 gives the conclusion.
Lemma A4. (Lemma A4 of Hausman et al. (2012) holds with P r replacing
P).
If Assumptions 1-4 are satisfied, α̃ = op(µ

2
n/n) and S ′n(δ̄− δ0)/µn)

p−→ 0, then
for
Hn =

∑n
i (1− P r

ii)fif
′
i/n,

S−1n (
∑
i 6=j

XiP
r
ijX

′
j − α̂X ′X)S−1

′

n = Hn + op(1),

S−1n (
∑
i 6=j

XiP
r
ij ε̂
′
j − α̂X ′ε̂)/µn

p−→ 0

Proof .
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We note that X ′X = Op(n) and X ′ε̂ = Op(n). Therefore, by ||S−1n || =

O(µ−1n ),

α̂S̃−1n X ′XS−1
′

n = op(µ
2
n/n)Op(n/µ

2
n)

p−→ 0

α̂S−1n X ′ε̂/µn = op(µ
2
n/n)Op(n/µ

2
n)

p−→ 0

Lemma A2 (lower right-hand block) and the triangle inequality then give the
first conclusion. By Lemma A2 (off diagonal), we have S−1n

∑
i 6=j XiP

r
ijεj/µn

p−→
0, so that:

S−1n
∑
i 6=j

XiP
r
ij ε̂j/µn = op(1)− (S−1n

∑
i 6=j

XiP
r
ijX

′
jS
−1′
n )S ′n(δ̂ − δ0)/µn

p−→ 0.

Lemma A5. (Lemma A5 of Hausman et al. (2012) holds with P r replacing P).
If Assumptions 1-4 are satisfied, and S ′n(δ̂−δ0)/µn

p−→ 0, then
∑

i 6=j ε̂iP
r
ij ε̂j/ε̂

′ε̂ =

op(µ
2
n/n).

Proof .
Let β̂ = S ′n(δ̄ − δ0)/µn and α =

∑
i 6=j εiP

r
ijεj/ε

′ε = op(µ
2
n/n). Note that

σ̂2
ε = ε̂′ε̂/n satisfies 1/σ̂2

ε = Op(1) by the Markov inequality. By Lemma A4
with α̃ = α, we have H̃n = S−1n (

∑
i 6=j XiP

r
ijX

′
j − α̃X ′X)S−1

′
n = Op(1) and

Wn = S−1n (
∑

i 6=j XiP
r
ijε
′
j − α̃X ′ε)/µn

p−→ 0, so∑
i 6=j ε̂iP

r
ij ε̂j

ε̂′ε̂
− α =

1

ε̂′ε̂
(
∑
i 6=j

ε̂iP
r
ij ε̂j −

∑
i 6=j

εiP
r
ijεj − α̃(ε̂′ε̂− ε′ε))

=
µ2
n

n

1

σ̂2
ε

(β̂′H̃nβ̂ − 2β̂′Wn) = op(µ
2
n/n),

The conclusion follows by the triangle inequality.
Proof of Theorem 1.
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First, if S ′n(δ̂ − δ0)/µn
p−→ 0, then by λmin(SnS

′
n/µ

2
n) ≥ λmin(S̄S̄ ′) > 0, we

have:

||S ′n(δ̂ − δ0)/µn|| ≥ λmin(SnS
′
n/µ

2
n)1/2||δ̂ − δ0|| ≥ C||δ̂ − δ0||,

implying δ̂ → δ0. Therefore, it suffices to show that S ′n(δ̂ − δ0)/µn)
p−→ 0.

This follows from Lemma A3.
Now we move on to asymptotic normality results. The next result is a central
limit theorem that was proven in Carrasco and Doukali (2016).
Lemma A6.
Suppose the following:
(i) P rv =

∑
j q(r, λ

2
j) < v, ψj > ψj.

(ii)(W1n, U1, ε1), ..., (Wnn, Un, εn) are independent, and D1,n :=
∑n

i=1E[WinW
′
in]

satisfies ||D1,n|| < C.

(iii) E[W ′
in] = 0, E[Ui] = 0, E[εi] = 0, and there is a constant C such that

E[||Ui||4] ≤ C and E[ε4i ] ≤ C.

(iv)
∑n

i=1E[||Win||4]→ 0 a.s.
(v) r → 0 as n→∝.
Then for:
D2,n := r

∑n
i 6=j(P

r
ij)

2(E[UiU
′
i ]E[ε2j ] + E[Uiεi]E[U ′jεj])

and any sequences c1n and c2n with ||c1n|| ≤ C, ||c2n|| ≤ C, and
∑

n
−1/2 =

c′1nD1,nc1n + c′2nD2,nc2n > 1/C, it follows that:
Ȳn =

∑
n
−1/2√r(c′1n

∑n
i=1Wi,n + c′2n

∑n
i 6=j Ui(P

r
ij)

2εj)→ N(0, 1).
Let α̃(δ) =

∑n
i 6=j εi(δ)P

r
ijεj(δ)/ε(δ)

′ε(δ) and

D̂(δ) = −[
ε(δ)′ε(δ)

2
]
∂

∂δ
[

∑n
i 6=j εi(δ)P

r
ijεj(δ)

ε(δ)′ε(δ)
]

=
n∑
i 6=j

XiP
r
ijεj(δ)− α̃(δ)X ′ε(δ)
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Lemma A7. (Lemma A7 of Hausman et al. (2012) holds with P r replacing
P).
If Assumptions 1-4 are satisfied and S ′n(δ̄ − δ0)/µn)

p−→ 0, then
−S−1n [∂D̂(δ̄)/∂δ]S−1n = Hn + op(1).
Proof .
Let ε̄ = ε(δ̄) = y − Xδ̄, γ̄ = X ′ε̄/ε̄′ε̄, and ᾱ = α̃(δ̄). Then differentiating
gives:

−∂D̂
∂

(δ̄) =
n∑
i 6=j

XiP
r
ijX

′
j − ᾱX ′X − γ̄

n∑
i 6=j

ε̄iP
r
ijX

′
j −

n∑
i 6=j

XiP
r
ij ε̄j γ̄

′ + 2(ε̄′ε̄)ᾱγ̄γ̄′

=
n∑
i 6=j

XiP
r
ijX

′
j − ᾱX ′X + γ̄D̂(δ̄)′ + D̂(δ̄)γ̄′,

where the second equality follows by D̂(δ̄) =
∑n

i 6=j XiP
r
ij ε̄j − (ε̄′ε̄)ᾱγ̄. By

Lemma A5, we have ᾱ = op(µ
2
n/n). We have, γ̄ = Op(1) so that S−1n γ̄ =

Op(1/µn). Then by Lemma A4 and D̂(δ̄) =
∑n

i 6=j XiP
r
ij ε̄j − ᾱX ′ε̄,

S−1n (
n∑
i 6=j

XiP
r
ijX

′
j − ᾱX ′X)S−1

′

n = Hn + op(1), S−1n D̂(δ̄)γ̄′S−1
′

n

p−→ 0

The conclusion then follows by the triangle inequality.
Lemma A8. (Lemma A8 of Hausman et al. (2012) holds with P r replacing
P).
If Assumptions 1-4 are satisfied, then for γn =

∑
iE[uiεi]/

∑
iE[ε2i ] and

Ũi = Ui − γnεi,

S−1n D̂(δo) =
∑
i

(1− P r
ii)fiεi/

√
n+ S−1n

n∑
i 6=j

ŨiP
r
ijεj + op(1)

Proof .
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Note that for W = f ′(P r − I)ε/
√
n, by E[εε′] ≤ CIn, we have

E[WW ′] = Cf ′(I − P r)f/n = C(f − ZπLn)′(I − P r)(f − ZπLn)/n

= CIG

n∑
i

||fi − πLnZi||2/n→ 0

So f ′(P r − I)ε/
√
n = 0p(1). Also by the Markov inequality,

X ′ε/n =
n∑
i

E[Xiεi]/n+Op(1/
√
n), ε′ε =

n∑
i

σ2
i /n+Op(1/

√
n),

Also, by Assumption 3,
∑n

i σ
2
i /n ≥ C > 0, The delta method then gives

γ̃ = X ′ε/ε′ε = γn + Op(1/
√
n). Therefore, it follows by Lemma A1 and

D̂(δ̄) =
∑n

i 6=j XiP
r
ijεj − (ε′ε)α̃(δ0)γ̃ that

S−1n D̂(δo) =
n∑
i 6=j

fiP
r
iiεj/
√
n+ S−1n

n∑
i 6=j

ŨiP
r
iiεi − S−1n (γ̃ − γn)ε′εα̃(δ0)

= f ′P rε/
√
n−

n∑
i

P r
iifiεi/

√
n+ S−1n

n∑
i 6=j

ŨiP
r
iiεi +Op(1/(

√
nµn))op(µ

2
n/n)

=
n∑
i

(1− P r
ii)fiεi/

√
n+ S−1n

n∑
i 6=j

ŨiP
r
ijεj + 0p(1)

Proof of Theorem 2.
By Theorem 1, δ̂ → δ0, First order conditions for JLIML are D̂(δ̂) = 0.
Expanding gives

0 = D̂(δ̂) +
∂D̂

∂δ
(δ̄)(δ̂ − δ0),

where δ̄ lies on the line joining δ̂ and δ0, and hence β̄ = µ−1n S ′n(δ̄ − δ0))
p−→

0. Then by Lemma A7, H̄n = S−1n [∂D̂(δ̄)/∂δ]S−1
′

n = Hp + op(1). Then
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[∂D̂(δ̄)/∂δ] is nonsingular and solving gives

S ′n(δ̂ − δ0) = −S ′n[∂D̂(δ̄)/∂δ]−1D̂(δ0) = −H̄−1n S−1n D̂(δ̂).

Next, apply Lemma A6 with Ui = Ũi and Win = (1− P r
ii)fiεi/

√
n,

n∑
i

E[||Win||4] ≤ C
n∑
i

||fi||4/n2 → 0

By Assumption 6, we have
∑n

i E[WinW
′
in]→ Σp. Let Γ = diag(Σp,Ψ) and

An =

( ∑n
i Win√

r
∑n

i 6=j ŨiP
r
ijεj

)

Consider c such that c′Γc > 0. Then by the conclusion of Lemma A6, we
have c′An → N(0, c′Γc). Also if c′Γc = 0, then it is straightforward to show
that c′An

p−→ 0. Then it follows by the Cramer-Wold device that:

An =

( ∑n
i Win√

r
∑n

i 6=j ŨiP
r
iiεj

)
d−→ N(0,Γ), Γ = diag(Σn,Ψ).

We consider the case where 1
rµ2n

= 0. In this case S−1
n√
α
→ 0. so that

Fn = [I, S
−1
n√
α

]→ F0 = [I, 0], F0ΓF
′
0 = Σn.

Then by Lemma A8,
S−1n D̂(δ0) = FnAn + op(1)

d−→ N(0,Σn),
S ′−1n (δ̂ − δ0) = −H−1n S−1n D̂(δ0)

d−→ N(0, V ), with V = H−1n ΣnH
−1
n .



105

Conclusion.

In this thesis, we illustrate the usefulness of regularization techniques
for linear IV estimation and testing overidentifying restrictions in the many
weak instruments framework. In Chapters 1 and 3, we propose new es-
timators which are the regularized versions of Jackknife 2SLS and LIML
estimators. We derived the theoretical properties of these estimators. In
addition, our simulations show that the leading regularized estimators per-
form better than other IV estimators. In Chapter 2, we propose a new J

test, based on Tikhonov regularization scheme and we study its properties
under heteroskedasticity for data rich environments. We theoretically show
that our new test achieves the asymptotically correct size in the presence of
many instruments. Two empirical applications illustrate the dominance of
our proposed J test: one regarding the New-Keynesian Phillips Curve, and
the other regarding the elasticity of intertemporal substitution.
We restricted our investigation to instrumental variables linear models. It
would be interesting, for future research, to study the behavior of regular-
ized version of non linear moment conditions estimators, such as continuously
updated generalized method of moments estimators or generalized empirical
likelihood estimator (see Newey and Windmeijer (2009)), in presence of many
weak instruments and heteroscedasticity. Another topic of interest is the use
of regularization to provide versions of robust test for weak instruments such
as Lagrange Multiplier (LM) or conditional likelihood ratio test (CLR) tests,
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that can be used with large numbers or a continuum of moments conditions.
Finally, the results in this thesis suggest that our proposed methods may pro-
vide practitioners with a useful tool when faced with big data in the sense
that all available data can be used without discarding any a priori.
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