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Résumé

Les systèmes logiciels dépendent de plus en plus des librairies et des frameworks logiciels. Les

programmeurs réutilisent les fonctionnalités offertes par ces librairies à travers une interface de pro-

grammation (API). Par conséquent, ils doivent faire face à la complexité des APIs nécessaires pour

accomplir leurs tâches, tout en surmontant l’absence de directive sur l’utilisation de ces API dans leur

documentation. Dans cette thèse, nous proposons une approche holistique qui cible le problème de

réutilisation des librairies, à trois niveaux. En premier lieu, nous nous sommes intéressés à la réutili-

sation d’une seule méthode d’une API. À ce niveau, nous proposons d’identifier les contraintes d’uti-

lisation liées aux paramètres de la méthode, en analysant uniquement le code source de la librairie.

Nous avons appliqué plusieurs analyses de programme pour détecter quatre types de contraintes d’uti-

lisation considérées critiques. Dans un deuxième temps, nous changeons l’échelle pour nous focaliser

sur l’inférence des patrons d’utilisation d’une API. Ces patrons sont utiles pour aider les développeurs

à apprendre les façons courantes d’utiliser des méthodes complémentaires de l’API. Nous proposons

d’abord une technique basée sur l’analyse des programmes clients de l’API. Cette technique per-

met l’inférence de patrons multi-niveaux. Ces derniers présentent des relations de co-utilisation entre

les méthodes de l’API à travers des scénarios d’utilisation entremêlés. Ensuite, nous proposons une

technique basée uniquement sur l’analyse du code de la librairie, pour surmonter la contrainte de

l’existence des programmes clients de l‘API. Cette technique infère les patrons par analyse des re-

lations structurelles et sémantiques entre les méthodes. Finalement, nous proposons une technique

coopérative pour l’inférence des patrons d’utilisation. Cette technique est axée sur la combinaison

des heuristiques basées respectivement sur les clients et sur le code de la librairie. Cette combinaison

permet de profiter à la fois de la précision des techniques basées sur les clients et de la généralisabilité

des techniques basées sur les librairies. Pour la dernière contribution de notre thèse, nous visons un

plus haut niveau de réutilisation des librairies. Nous présentons une nouvelle approche, pour identi-

fier automatiquement les patrons d’utilisation de plusieurs librairies, couramment utilisées ensemble,

et généralement développées par différentes tierces parties. Ces patrons permettent de découvrir les

possibilités de réutilisation de plusieurs librairies pour réaliser diverses fonctionnalités du projets.

Mots clés : Compréhension de programme, utilisabilité des API, inférence de patrons et

contraintes d’utilisation, documentation des API.



Abstract

Software systems increasingly depend on external library and frameworks. Software developers

need to reuse functionalities provided by these libraries through their Application Programming Inter-

faces (APIs). Hence, software developers have to cope with the complexity of existing APIs needed

to accomplish their work, and overcome the lack of usage directive in the API documentation. In this

thesis, we propose a holistic approach that deals with the library usability problem at three levels of

granularity. In the first step, we focus on the method level. We propose to identify usage constraints

related to method parameters, by analyzing only the library source code. We applied program anal-

ysis strategies to detect four critical usage constraint types. At the second step, we change the scale

to focus on API usage pattern mining in order to help developers to better learn common ways to

use the API complementary methods. We first propose a client-based technique for mining multi-

level API usage patterns to exhibit the co-usage relationships between API methods across interfering

usage scenarios. Then, we proposed a library-based technique to overcome the strong constraint of

client programs’ selection. Our technique infers API usage patterns through the analysis of structural

and semantic relationships between API methods. Finally, we proposed a cooperative usage pattern

mining technique that combines client-based and library-based usage pattern mining. Our technique

takes advantage at the same time from the precision of the client-based technique and from the gener-

alizability of the library-based technique. As a last contribution of this thesis, we target a higher level

of library usability. We present a novel approach, to automatically identify third-party library usage

patterns, of libraries that are commonly used together. This aims to help developers to discover reuse

opportunities, and pick complementary libraries that may be relevant for their projects.

Keywords: Program comprehension, API usability, usage pattern mining, usage constraint

inference, API documentation.
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Chapter 1

Introduction

1.1 Research context

Software reuse is a common practice in the development and maintenance of a modern software

system [26]. Indeed, modern industry builds software systems more and more by assembling features

offered by libraries and application frameworks. This contributes in facilitating the development of

complex systems with controlled costs while maintaining the delivery schedules, and quality [24].

Libraries expose the functionalities or services they provide through an interface API (Application

Programming Interface). And software developers increasingly need to reuse functionality provided

by external libraries through their APIs. Thus developers have to learn how to use existing APIs to

benefit from them.

Documentation is an essential resource for software comprehension in general, but is a critical

resource, in particular, for APIs usability and learning. API documentation usually specifies the

way in which client software can interact with the library and reuse its functionalities independently

of implementation details. Therefore, APIs benefits are dependent on documentation quality and

completeness. Indeed, with an incomplete or missing documentation, the client application code may

be inconsistent with the library implementation, and bugs may creep into the client programs [23].

Moreover, the benefits of using APIs do not come easily; different works on API usability showed

that learning how to use APIs presents challenging barriers [37, 58, 59, 70, 72].

The number and the size of APIs are continuously growing, and developers have to cope with

complexity of existing APIs that are needed to accomplish their work. Novice developers are faced

with the significant difficulty of learning a large number of APIs. Even experienced developers must

frequently learn newer parts of familiar APIs, or newly released APIs when working on new tasks.

Moreover, with the emergence of the continuous deployment, frequent release of new versions, and

time at their disposal, it is not possible for developers to learn all the APIs they need in depth. In this

thesis, we are interested on how to help developers to easily learn common ways to correctly use the

APIs.



1.2 Problem statement

Despite recent progress in API documentation and discovery, API usability is still a challenging

problem. Client application developers have to deal with the library usability challenges at different

levels. First, a developer has to cope with the library usability at the method level, when he is in-

terested in a specific method of the API. Second, he has to deal with the usability at the global level

of an API, when using complementary methods. Finally, developers often use more than one library

and, then, they have to tackle the usability challenges when coordinating the use of distinct libraries

that may be developed by different organizations. In the remainder of this section, we highlight the

different problems and challenges addressed in this thesis that are mainly related to the identification

of APIs usage patterns and constraints.

Library usability at the API method scope (first level)

Once an API method is selected, developers have to use it in a consistent way with its documen-

tation and implementation. The main challenge is then to respect precondition on the method inputs,

generally known as constraints on parameter values. Unfortunately, it often happens that the API us-

age constraints are not explicitly described in the documentation. This may generate additional cost

for debugging and correction, when the method usage constraints are violated. An interesting solution

to the problem of undocumented usage constraints is to automatically recover them from the code.

Existing approaches are either interested in the redocumentation of a program in general [28, 67–

69] or interested specifically in the re-documentation of usage constraints of an API. For the second

category, some existing works focused on the API side by analyzing the API documentation to infer

API specifications [54]. Others specify API use constraints by manually adding annotations into

the API code [33]. Such suggestions may be insufficient for large API and for the non-documented

constraints.

To overcome the aforementioned problem, another piece of work, try to analyze client appli-

cations, rather than the library documentation, to identify constraints [57, 86]. Regardless of the

effectiveness of such approaches, the needs of client applications that cover the entire target library

drastically limit their applicability.

.
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Library usability across complementary API methods (second level)

The API methods are generally used by client programs jointly with other methods of the API.

However, it is not obvious to deduce the co-usage relationships between API methods from their doc-

umentations. The increasing size and complexity of APIs introduce an additional difficulty. Indeed

large APIs are the most challenging to learn and use.

A large API may consist of several thousands public methods defined in hundreds classes. Since

API classes are typically meant for a wide variety of usage contexts, the elaborated documentation of

an API class may be very detailed as it tries to specify all aspects that a client might need to know

about the class of interest. Hence, software developers might spend considerable time and effort to

identify the subset of the class’s methods that are necessary to implement their task. Therefore, identi-

fying usage patterns for the API can help to better learn common ways to use the API complementary

methods.

Existing techniques for mining API usage patterns are valuable to facilitate API learning and

usage. However, existing techniques mainly identify flat usage patterns for specific usage scenario.

Such techniques are proposed to recommend usage examples relevant to one task (e.g. [87]), and/or

for auto-completion in a specific context (e.g. [50]). Accordingly, inferred usage pattern cannot reflect

the different interfering API usage scenarios, which is definitely required to improve the API learning

resource.

From another perspective and despite the different aspects they try to cover, existing techniques

are all based on client programs’ code. Which is a strong constraint since client programs’ code is

unfortunately not available for both newly released libraries and APIs which are not widely used.

Moreover, it is not possible to collect client programs that cover all the potential usage scenarios of

the API of interest. Indeed, client-based identification of API usage patterns can be used only for a

subset of the API of interest that is the set of the API methods which are already used, multi-times,

by different selected clients of the API.

Library usability across complementary software libraries (third level)

Nowadays, open source repositories provide a wide range of reuse opportunities of functionality

provided by well-tested and mature third-party libraries. However, as software libraries are docu-
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mented separately but intended to be used together, developers are unlikely to fully take advantage of

these reuse opportunities.

Much research effort has been dedicated to the identification of API usage patterns [79, 81, 87].

The vast majority of existing works focus on usage patterns within a single library. Indeed, these

approaches assume that the set of relevant libraries is already known to the developer. However, this

assumption makes the task of finding relevant libraries and understanding their usage trends a tedious

and time-consuming activity.

Software developers can spend a considerable amount of time and effort to manually identify

libraries that are useful for the implementation of their software. Worse yet, developers may even

be unaware of the existence of these libraries. Thus, they may tend to implement most of their

features from scratch instead of reusing functionalities provided by third-party libraries as pointed

out by several researchers [18, 79]. Therefore, we believe that identifying patterns of libraries that are

commonly used together, can help developers to discover and choose libraries that may be relevant

for their projects’ implementation.

All of these observations are at the origin of the work conducted in this thesis. In the next section,

we give an overview of our research directions to address the above-mentioned problems.

1.3 Research objectives and main contributions

The main objective of this thesis is to propose a holistic approach that deals with the usability

problem at the different levels of granularity when using external libraries. To overcome the previ-

ously identified problems, we propose the following contributions, organized into three major parts,

each corresponding to a specific level of library reuse.

Part 1: the method level

Our first contribution helps developers to comply with the constraints on API method parameters.

We propose to identify constraints by analyzing only the library source code. We selected four critical

usage constraint types related to method parameters. This is done by static and intra-procedural

analysis on control flow graphs to detect the selected constraints.
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We also conduct an observational study on a large set of libraries to evaluate the presence of

selected constraints in the code and the degree of their documentation as an indication of the risk of

constraint violation.

Part 2: the library level

Our second contribution is related to API usage pattern mining to help developers to better learn

common ways to use the API complementary methods.

We first propose a client-based technique for mining multi-level API usage patterns to exhibit the

co-usage relationships between API methods across interfering usage scenarios. Our technique is

based on an adaptation of a clustering algorithm, and the analysis of the frequency and consistency of

co-usage relations.

Then, we proposed a library based technique to overcome the strong constraint of client programs

selection. Our technique infers API usage patterns through the analysis of structural and semantic

relationships between API methods. This technique can even be applied to “new” APIs, for which

client programs are not available yet.

Finally, we proposed a cooperative usage pattern mining technique that combines client-based

and library-based usage pattern mining. Our technique takes advantage at the same time from the

precision of client-based technique and from the generalizability of library-based techniques.

Part 3: the group of libraries level

Our third contribution adds a new dimension to the library usability problem. We present a novel

approach, to automatically identify third-party library usage patterns, as a collection of libraries that

are commonly used together by developers. This approach is meant to help developers to discover

and use libraries that may be relevant for their projects. Thus we mine the ’wisdom of the crowd’

to discover usage patterns of software libraries. We evaluate the efficiency of our approach on an

extremely large dataset of popular libraries and client systems.

1.4 Dissertation organization

This thesis is organized as follows. Chapter 2 discusses previous research contributions that are

relevant to the main themes of this dissertation: API documentation techniques, API usage patterns
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mining techniques and API usage constraints inference techniques. The first part of the thesis core

consists of Chapter 3 that reports on our contribution for the detection of API usage constraints.

The second part of the thesis includes three chapters. Chapter 4 describes our first technique for API

usage pattern mining. We present our clustering adaptation to mine co-usage relations from API client

programs. In Chapter 5, we detail our second technique for API usage pattern mining using only the

library code. We investigate different library-based heuristics to infer patterns of complementary API

methods. In Chapter 6, we investigate deferent strategies to combine the client-based and the library-

based mining of API usage patterns. In the third part of the thesis (Chapter 7), we introduce a new

dimension to the library usability, in which we consider usage patterns of groups of software libraries.

Finally, Chapter 8 summarizes the contributions of the work presented in this thesis, underlines its

main limitations, and describes our future research directions.
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Chapter 2

Related Work

In this chapter, we provide a literature review on research work related to this thesis. First, we

give an overview of empirical studies on API usability to highlight the factors that hinder the API

usage and learning process (Section 2.1). Then, we present the work that targets the automation of

API documentation to reduce the difficulty of learning how to use APIs (Section 2.2). Finally, we

discuss the related work relevant to the main themes of this research work. This includes several

approaches for extracting API usage information, and the related work according to the inferred API

property (Section 2.3). We classify the inferred properties into mainly four classes: (i) unordered

usage patterns, (ii) sequential usage patterns, (iii) API constraints, and (iv) API migration and map-

ping considerations. We conclude this chapter with a discussion on the limitations of the presented

research contributions (Section 2.4).

2.1 Empirical studies on API usability

Previous studies on API usability try to identify factors that hinder the usability and learnability

of APIs.

Ellis et al. conducted a study, with twelve participants, to evaluation with five programming tasks

the usability of the Factory pattern in API design as compared to constructors for object creation

[20]. The authors observed that the participants spent significantly more time to create an object

from factories used in APIs than with a constructor. Additionally, the results suggest that the use of

factories in APIs should be avoided in many cases where other techniques, such as constructors, can

be used instead. In the same context,

Stylos et al. conducted a user comparative study to assess how developers use APIs with required

parameters in objects’ constructors as opposed to parameter-less "default" constructors [70]. Six pro-

graming tasks and thirty professional developers were involved in the study. One may presume that

parameters would create more usable and self-documenting APIs by guiding developers toward the



correct use of objects and preventing errors. However, the study reported that unexpectedly, develop-

ers strongly preferred and were more efficient with APIs that did not require constructor parameters.

In another study, Stylos et al. evaluated the impact of method placement on the API usability. On

which class or classes a method is placed is important since developers often start their exploration of

an API from one "main" class. The study reports that participants were significantly faster at identi-

fying relevant dependencies and combining objects when a class from which users generally start to

explore an API had methods that reference other classes in the API. This significantly enhanced the

productivity of the developers [72].

Other studies looked at the role of web resources in learning how to use APIs. Brandt et al.

observed, in a lab study involving twenty participants and five tasks, that programmers used the Web

primarily for just-in-time learning of new skills, and to clarify or remind themselves of previously

acquired knowledge [9]. In a different study, Stylos et al. identified several challenges developers

encounter when using the Web to find API elements and usage examples. For instance finding the

right terminology to describe API concept, spending time looking at irrelevant search results. Even

when a search did yield some relevant results, if the first few documents the developers browsed did

not seem relevant, they would often give up [71].

The more recent studies were interested in understanding the difficulties encountered with unfa-

miliar APIs. In his study, Robillard investigated the obstacles professional developers at Microsoft

faced when learning how to use APIs [58]. Around 80 developers answered the survey and a se-

ries of 12 interviews was conducted to identify what exactly does make an API hard to learn. The

overarching result of this study is that the resources available to learn an API are important and that

shortcomings in this area hinder the API learning progress.

In an another study, Robillard et al. collected the opinions and experiences of over 440 profes-

sional developers and report on the obstacles developers face when learning new APIs, with a special

focus on obstacles related to API documentation [59]. The study shows that when developers learn a

new API they struggle not so much in the mechanics of using the API, but in understanding how the

API relates towards its problem domain. The study found that developers need help mapping desired

scenarios in the problem domain to the content of the API, and in understanding what scenarios or

usage patterns the API provider intends and does not intend to support. Thus showing a pattern of

related calls is preferred to illustrations of individual methods. The study also found that developers
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want to understand how the API’s implementation consumes resources, reports errors and has side

effects.

In the same context, Duala-Ekoko et al. conducted a study in which twenty participants completed

programming tasks using real-world APIs [19]. Through a systematic analysis of the screen captured

videos and the verbalizations of the participants, the study isolated twenty different types of questions

the programmers asked when learning to use APIs. Among the identified question, the following two

held our attention.

– What is the valid range of values for a primitive argument, such as an integer, of a given method?

– Is NULL a valid value for a non-primitive argument of a given method?

Discussion forums were also explored to understand developers’ needs. Hou et al. conducted

an exploratory study in which they manually analyzed in detail 172 programmer discussions, from a

newsgroup, about specific challenges that programmers had about software APIs [32]. The objective

was to identify what makes APIs hard to use, and what can be done to alleviate the problems associ-

ated with API usability and learnability. The study identified several categories of obstacles in using

APIs. The most prominent observation was that developer asked for API usage solutions without ac-

tually attempted anything concretely, especially when the programing tasks require the composition

of API methods calls. Another arresting obstacle was the incorrect usage of APIs. In this case, the

developer generally tries the right solution but the program does not work as expected due to mistakes

in performing certain steps of the solution. Sometimes, a mistake was made by supplying the wrong

parameter values to some API methods. And in some cases, this was because the programmer is

unaware of the special constraints that the API method imposes [32]. A similar study was conducted

by Wang et al. [82]. The study explored API usage obstacles through analyzing API-related posts

regarding iOS and Android development from a Q&A website. The Study reported some scenarios

that appear to be the common cause of API usage obstacles, and presented a list of iOS and Android

classes that often cause usage obstacles without being frequently used.
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2.2 API documentation techniques

The impact of documentation on the usability of APIs has also been an area of active research [16,

36, 44, 48, 73, 78]. Researchers attempt to make API documentation accessible and understandable

to programmers.

Recent studies were interested in determining important types of knowledge conveyed in API ref-

erence documentations. Maalej et al. report on a study of the nature and organization of knowledge

contained in the reference documentation of hundreds of APIs [44]. They provided a global perspec-

tive on 12 types of knowledge conveyed in API documentation and their distribution throughout the

reference documentation. Maalej et al. found that functionality knowledge is pervasive and structure

is common, while other types, such as concepts and purpose, are much rarer.

Similarly, Monperrus et al. performed an extensive empirical study on the directives of API docu-

mentation [48]. The study proposed a taxonomy of 23 types of directives present in the documentation

of Java APIs. The taxonomy was constructed by analyzing more than 4000 API documentation items.

The taxonomy consists of the following high-class directives.

– Method Call Directives: related to constraints and guidelines when calling a particular library

method.

– Subclassing Directives: related to requirement that has to be satisfied when subclassing a library

class.

– State Directives: related to requirement on the internal state of receivers of a given method call.

– Alternative Directives: related to alternative implementations of given API element.

– Synchronisation Directives: related to concurrency on an API element.

– Miscellaneous Directives: directives related to software environment in general.

Dekel et al. worked on highlighting directives present in the Javadocs reference documentation

[16]. Their tool, eMoose, makes programmers aware of important usage guidelines or directives

from the documentation of API methods. The violation of such directives could lead to bugs. The

tool provides several helpful directives, which can be identified in eMoose by means of tags in the

documentation. API developers and contributors have to include such tags in the documentation, and

it is difficult to identify directives in existing documentation that does not include tags.

10



The reference documentation is an important form of API documentation. However, studies found

that developers use reference documentation only when they cannot get the needed information from

other possible sources [53]. This could be due to the presentation or the content of the reference

documentation. Nykaza et al. identified the importance of an overview section in API reference

documentation [53], and Jeong et al. highlighted the importance of explaining the API exploration

starting points to increase the quality of the documentation [34].

Kim et al. proposed eXoaDocs [36], a tool that integrates code snippets, mined from a source

code search engine, into the Java API reference documentation. eXoaDocs queries the search engine

for code examples that use a given API method, then eliminates from the code examples non relevant

segments to the use of the API method, and integrates the resulting code snippet in the description

section of the method in the API documentation. eXoaDocs was able to embed source code examples

for more than 20,000 API elements.

Stylos et al. proposed Jadeite [73], a tool that takes advantage from usage statistics of the APIs

classes and methods in code examples on the Web. It displays commonly used API elements more

prominently in the documentation. The tool also integrates code snippet on how to create instances

of API classes in the documentation. Additionally, Jadeite introduced the concept of “placeholders”,

a feature which enables API designers or users to annotate the API documentation with classes they

expect to exist in a given package of the documentation, or methods they expected to exist on a given

class, and to add forward references to the actual parts of the APIs that should be used instead of the

“placeholders”.

More recently Treude et al. proposed an approach to augmenting API documentation with in-

sights sentences derived from Stack Overflow sentences that are related to a particular API type [78].

They proposed a machine learning based approach that uses as features the sentences themselves,

their formatting, their question, their answer, and their authors as well as part-of-speech tags and the

similarity of a sentence to the corresponding API documentation. The proposed approach outper-

formed two state-of-the-art summarization techniques as well as a pattern-based approach for insight

sentence extraction. Moreover, the results show that considering the metadata available on Stack

Overflow along with natural language characteristics can improve existing approaches when applied

to Stack Overflow data.
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2.3 API property inference

Large APIs are difficult to use, because of hidden assumptions and requirements. Developers

should be aware of different API properties, to correctly use the API. This is why many approaches

have been proposed to infer these API properties. Each approach comes with a new definition of API

properties, new techniques for inferring these properties, and new ways to assess their correctness and

usefulness. In the following subsections we classify existing techniques into four broad categories.

2.3.1 Unordered usage patterns

A basic type of property that can be expressed about an API is that of an unordered usage pattern.

Patterns are typically observed from the data as opposed to being formally specified by a developer.

And usage patterns describe typical or common ways to use an API. Unordered usage patterns de-

scribe references to a set of API elements that co-occur with a certain frequency within a population

of usage contexts. As an example of unordered usage patterns, we may detect the pattern {open ;

close}, which indicates that whenever client code calls an API method open, it also calls the method

close, and vice versa. This pattern is unordered, as it does not encode any information about the

sequence between open and close methods.

Michail was the first to explore the use of association rule mining between a client and its library

to detect usage patterns [45, 46]. Michail’s idea was to help developers understand how to reuse

classes in a library by indicating relationships such as “if a class subclasses class C , it should also

call methods of class D”. Michail detects these relations by mining client code that uses the API

of interest. This preliminary work seeded the idea of using association rule mining on software

engineering artifacts. Michail targets the discovery of rules, and thus he applies his approach with

very low support and confidence, observing that a filtering step is necessary for the approach to be

feasible.

Unordered usage patterns can also be used to detect bugs. Li et al. used association rule mining,

in PR-Miner, to automatically detect unordered usage patterns [40]. PR-Miner parses source code to

store identifiers representing functions called, types used, and global variables accessed. The stored

identifiers are then used as items in the mining algorithm. Once identified, the patterns are considered

as rules and used to find violations. The assumption is that rule violations can uncover bugs. The tool
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was evaluated on three C/C++ systems, with up to three million lines of code. PR-Miner extracted

more than 32,000 programming rules from the evaluated systems, and detected around 82 violations

to the extracted rules. However, Li et al. noted that a large number of the association rules are false

positives, even with pruning steps.

The tool DynaMine proposed by Livshits et al. shares the same goal [42]. It infers usage patterns

by mining the change history of an API’s clients. The idea is that method calls that are frequently

added to the source code simultaneously often represent a pattern. DynaMine automates the task

of collecting and pre-processing revision history entries and mining for common patterns. Likely

patterns are then presented to the user for review; runtime instrumentation is generated for the patterns

that the user deems relevant, and patterns are checked by executing the client’s source code. Results

of dynamic analysis are also presented to the user. The authors find only 56 patterns in the change

history of Eclipse and jEdit using the chosen confidence and support thresholds, and only 21 of which

are observed to occur at runtime. Additionally, the tool detected a total of 263 pattern violations.

Another approach that focuses on bug detection is the one of Monperrus et al. [47]. The objec-

tive of this approach is to detect missing API method calls. They collect statistics about type-usages,

a type-usage being simply the list of methods called on a variable of a given type in a given client

method. Then, they use this information to detect other client methods that may need to call the miss-

ing method. Their idea is implemented in a tool called DMMC (Detector of Missing Method Calls).

Monperrus et al. do not use any standard data mining algorithm as part of their approach. Rather,

for a given variable x of type T, they generate the entire collection of usages of type T in a given

code corpus. From this collection, the authors compute various metrics of similarity and dissimilarity

between a type usage and the rest of the collection. The missing method calls are detected through

the characterization of deviant code on top of similarity and dissimilarity metrics. The tool produces

warnings for type-usages whose degree of deviance reaches a certain threshold.

Other techniques that detect unordered usage patterns have been proposed to recommend API

elements useful for programming tasks. Bruch et al. proposed FrUiT, a tool to help developers learn

how to use a framework by providing them with context-sensitive framework usage patterns, mined

from existing code examples [10]. Based on these patterns, suggestions about other relevant parts of

the framework or the API are presented to novice users. The tool combines data mining techniques

with a context-dependent recommendation. Currently, FrUiT’s suggestions use the whole class in the
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active editor as a context for recommendation. A more recent technique proposed by zhang et al. was

interested in API method parameters recommendation [86]. The tool, called Precise, mines existing

code base, uses an abstract usage pattern representation for each API usage scenario, and then builds

a parameter usage database. Upon request, Precise queries the database for abstract usage patterns in

similar contexts and generates parameter candidates by concretizing the patterns adaptively.

2.3.2 Sequential usage patterns

Sequential usage patterns differ from unordered patterns through considering the order in which

API operations are invoked. Sequential pattern mining would be able, for instance, to alert the pro-

grammer that open should precede close for the pattern {open; close}. The most common goals for

mining sequential API usage patterns are API documentation and bug detection. Techniques devel-

oped for API documentation infer some high-level patterns from a program, and assume that these

patterns will be valuable for API documentation. On the other hand, techniques developed for bug

detection typically go one step further. They detect usage patterns, and use these patterns for anomaly

detection.

Sequential patterns can be derived from a wide variety of inputs. Inference techniques can be

distinguished by the input they require. The main difference is naturally between dynamic and static

approaches. Dynamic approaches typically read a single execution trace as input. Whereas for static

approaches, the most popular strategy is to analyze API client programs source code. Gabel et al.

proposed a runtime tool for inferring and checking simple temporal patterns using a sliding-window

technique that considers a limited sequence of events and mine as usage patterns, regular expressions,

with exactly two method calls involved in each regular expression [25]. The static technique by

Whaley et al. uses interprocedural analysis and constant propagation to find call sequences of methods

that may establish conditions of predicates that guard throw statements [85]. These sequences are

considered illegal. Whaley et al. assume that programmers of languages with explicit exception

handling make use of defensive programming: A component’s state is encoded in state variables, and

state predicates are used to guard calls to operations and cause exceptions to be thrown if satisfied.

We further distinguish sequential mining approaches by the kind of mined patterns. A significant

number of approaches mine instances of a single sequential pattern. Such sequential patterns can

consist simply of an ordered pair of API elements, indicating that the usage of one element should
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occur before the other element in a program’s execution. An example of this category is the previously

mentioned approach proposed by Gabel et al. [25].

A further class of approaches mine instances of several patterns at once. Such patterns are gen-

erally instances of special temporal patterns such as Initialization, Finalization, Push-Pop, or Strict

Alternation [41]. Other approaches are also based on mining instances of certain patterns but describe

these patterns using temporal formulas, boolean formulas or temporal logic [43].

Many techniques mine API usage patterns by encoding temporal order as finite-state automata

[5], or using special representation models such as Groums. Groums are Graph-based object usage

models a special-purpose property representation, used by Nguyen et al. in GrouMiner [52]. Groums

associate events in a directed acyclic graph (DAG). In contrast to finite-state automata, this graph can

hold special nodes to represent control structures, such as loops and conditionals. Furthermore, edges

not only represent sequencing constraints, but also data dependencies.

Some approaches use frequent item set mining, and include temporal information in the definition

of the elements in the item sets [84]. Other approaches directly mine sequential patterns by using

closed frequent sequential pattern mining. This mining technique exhibits a higher computational

cost, but has the advantage of retaining useful information like the frequency of elements. Most of

these approaches use the BIDE algorithm [80]. For instance, Zhong et al. proposed MAPO, a tool

that clusters frequent API method call sequences extracted from client programs, then use the BIDE

algorithm to mine closed sequential patterns from the preprocessed method call sequences [87]. Thus,

MAPO capture groups of API’s method that are frequently used together. Wang et al. build on MAPO

and propose an approach that add pre and post clustering to reduce the number of redundant patterns

and detects more succinct ones [81].

2.3.3 API constraint

A number of approaches have been developed to describe the valid and invalid behavior of the

API when certain API properties are either met or more typically not met. One form of behavioral

description is through constraint, such as pre-conditions, post-conditions, and invariants defined over

an abstract data type or a class. A typical example of a pre-condition is that a value passed as an

argument to a function should not be a null reference.
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Existing techniques infer the API constraint through various analyses on the source code either

of the API or its client program. To this end, two general strategies are used to generate behavioral

specifications of APIs: the conjecture/refute strategy and the symbolic execution strategy.

Henkel et al. proposed an approach that follows the conjecture/refute strategy [29]. It systemati-

cally explores the state space of the class for which specifications are generated. They first create an

instantiation transition for the class, and then systematically construct a sequence of invocations of

increasing complexity on this instance. Then they focus on the detection of invalid sequences. To in-

validate the conjectured invariants the tool executes code corresponding to the synthetically generated

transitions. When executions result in an exception, the corresponding sequence is flagged as invalid.

Buse et al. proposed an exception documentation reverse-engineering approach [13]. The approach

follows the symbolic execution strategy. The use of symbolic execution in this approach only identi-

fies paths that result in an exception. Thus the tool produces for each (method, exception-type) pair,

a path predicate that describes constraints on the values of the method’s variables that will result in a

control-flow path ending in an exception of that type to be raised. Specifically, Buse et al. approach

infers, for a given API method, the possible exception types that might be thrown, the predicates over

paths that might cause these exceptions to be thrown, and human-readable statements that describe

these paths.

2.3.4 API migration and mapping

APIs evolve continuously and in a very fast way, client program developers may need support to

update clients of an API when the API evolves with backward-incompatible changes. Alternatively,

and due to license constraints, client application may need to switch between different, but equivalent,

APIs. In this context, several techniques have been proposed to infer migration mappings of elements

declared in one API to the corresponding elements in a different API, or in a different version of the

same API.

The most basic mappings are those that correspond to simple API refactorings, such as renaming

API elements or moving them to a different module. For instance, RefactoringCrawler by Dig et al.

infers mappings between refactored versions of an API [17]. It applies text similarity metrics to the

signatures of API elements. After identifying the most similar API element pairs by performing a

syntactic comparison between all API element pairs across the two API versions, RefactoringCrawler
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validates each refactoring candidate by checking whether references to and from the old element are

similar to the references to and from its candidate replacement element.

Other techniques go beyond standard refactorings by discovering more general mappings between

API elements. SemDiff by Dagenais et al. is an example of such techniques [14]. SemDiff does

not relate API elements by the syntactical similarity of their signatures. It rather identifies possible

candidate replacements for a method by analyzing the change history of a client of the API that has

already been migrated. SemDiff makes the hypothesis that, generally, calls to deleted methods will be

replaced in the same change set by one or more calls to methods that provide a similar functionality.

Having identified such change sets, SemDiff then ranks all detected replacements with respect to a

popularity-based metric, as well as name similarity, and presents these as a ranked list to the user.

Other techniques also present some kind of migration guidelines that illustrate how references

to the current element can be replaced by references to its target element(s). Nguyen et al. tool

LibSync falls in this category by discovering these series of steps required to update a client [51].

LibSync represents API usages as directed acyclic graphs called GROUMs that basically capture

reference and inheritance based usage of API methods and types, as well as various control structures

and dataflow dependencies between them. Given some mapping between an initial set of elements

in the current API version and their replacements set in a different version, LibSync first identifies

GROUMs describing usages of the elements in the initial set in the old versions of client code, and

then computes edit scripts to describe how those usages differ from the usages of the elements in the

replacements set in the new versions of its client code. GROUM-based edit scripts are provided to

frequent item set mining to generalize common edit operations.

2.4 Summary

Through this chapter, we presented a review of the existing work related to our contributions. We

first presented different studies that motivate the importance of facilitating usability and learnability

of APIs. We share with all the authors of these studies the idea that when developers learn a new

API, they struggle not so much on the mechanics of using the API, but in understanding how the API

elements are related to scenarios or usage patterns the API provider intends to support. Thus, showing

a pattern of related calls is preferred to illustrations of individual detailed method usage.
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Several approaches and tools have been proposed to deal with the learnability and usability prob-

lems of APIs. We presented various techniques that range from intuitive solutions to very complex

approaches. The majority of presented techniques either infer simple intuitive patterns or require high

computational cost. However, efficient tools should be scalable to work with large code bases with

millions lines of code and thousands of public API methods. To be inline with this requirement, we

need a non-expensive technique useful during the early step of the API learning process. Thus, we

opt for the mining of non-sequential usage patterns, and we avoid complicated data representations

such as partial order graphs.

The majority of the used techniques rely on the existence of large collections of API client pro-

grams to be effective. Consequently, newer APIs or non-popular parts of existing APIs may not have

sufficient usage examples to infer API patterns. We try to overcome this strong constraint and pro-

pose technique based on relationships inside the library itself. Our technique is thus applicable for

non-popular API new releases and even new APIs.

As compared to approaches that infer unordered usage patterns, the majority of these approaches

use a form of frequent itemset mining. Thus, the mined pattern tends to be many and redundant,

posing significant barriers to their practical adoption, and introducing an additional effort to filter,

classify and learn the patterns. Moreover, inferred patterns are flat and valuable only for recommen-

dation or auto-completion in a specific context and for a specific usage scenario. To overcome these

constraints, our technique should reflect interfering usage scenarios.

Through the presented overview of the usage patterns inference techniques, we can distinguish

different targeted goals. Several techniques were interested in documentation of usage patterns, and

others were interested in detection of violations to usage patterns or recommendation of API elements.

In our case, we try to ease the understanding and learnability of APIs for the early step of API learning

and usage process. The inferred constraints and patterns can then be easily integrated in an API

exploration process or to enrich documentation.

In the next chapters, we describe our contributions for API usage constraints, and patterns detec-

tion, and we show how to circumvent the above-mentioned problems.
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Part I

Library usability at the API method scope
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Chapter 3

API Usage Constraints Inference

Nowadays, APIs represent the most common reuse form when developing software. However,

the reuse benefits depend greatly on the ability of client application developers to use correctly the

APIs. In this chapter, we present an observational study on the API usage constraints and their

documentation. To conduct the study on a large number of APIs, we implemented and validated

strategies to automatically detect four types of usage constraints in existing APIs. We observed that

some of the constraint types are frequent and that for three types, they are not documented in general.

Surprisingly, the absence of documentation is, in general, specific to the constraints and not due

to the non-documenting habits of developers. These findings justify the importance of supporting

library usability at the API method level. This contribution was published at the IEEE International

Conference on Software Analysis, Evolution, and Reengineering [64].

3.1 Introduction

As mentioned earlier, much research effort has been dedicated to the redocumentation of APIs [12,

13, 30, 60], and proposed to recover various types of information such as usage constraints and usage

examples. Nevertheless, most of these contributions were devoted to a specific type of constraints

(method-call sequences, exceptions, etc.) and tried to redocument valid and invalid behavior of the

API. None of these contributions could address all possible types of constraints. Consequently, some

constraint types, especially those related to the parameters of API methods, may not be considered in

redocumentation tasks.

This can be understandable if we conjecture that these constraints are not frequent, and if they

are usually documented by the API developers. However, even if some studies were interested in

building taxonomies of constraints [48], to our best knowledge, there is no empirical evidence about

the frequency and documentation level of such constraint types.

In this chapter, we present an observational study that targets some usage constraints and their

documentation in existing APIs. To conduct the study, we selected four critical usage constraint types



that deal with method parameters, namely, Nullness not allowed, Nullness allowed, Range limitation,

and Type restriction. These were among the usage constraints identified in [48]. We implemented

automated strategies for finding instances of the selected usage constraints and validated them, with

subjects, on 13 APIs of JDK7.

Our study was conducted on a sample of 11 real-world APIs excluding the 13 APIs used to validate

the detection algorithms, except for one of the research questions. The results of our study show that

some of the constraint types are used extensively and that for three types, these constraints are poorly

documented in general. Moreover, the absence of documentation is, in many cases, specific to the

constraints and not due to the non-documenting habits of developers.

This chapter is structured as follows. Section 3.2 discusses with examples the importance of

identifying usage constraints. Section 3.3 describes the usage constraints selected for our approach

and show their detection strategies. Section 3.4 gives the setting and the results of our observational

study, including the validation of the detection algorithms. The threats to validity and a conclusion

are provided respectively in sections 3.5 and 3.6.

3.2 Motivating examples

After deciding which method to call, providing the right values for the parameters is among the

most important decisions when using an API. This is why client developers usually ask several ques-

tions in relation to method’s parameters when they reuse an API [19]. Since the signature of a method

is rarely enough expressive about most of the parameters’ usage constraints, it is necessary to be aware

of such constraints. In this section, we provide examples showing that relying only on method signa-

tures can induce the developer in error. That is why the explicit documentation of usage constraints is

needed. The following examples are all extracted from the JDK7 APIs.

– Example 1. Consider the method public Object parseObject(String source,

ParsePosition pos) from the Java class DateFormatwhich is a class for date and time

formatting. This method parses a string to produce a Date. It attempts to parse text starting at

the position given by pos.
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Just from the method signature, a developer can possibly conjecture that if the pos parameter

is not given (null), then the method is going to parse the whole text. However, the null value

has no particular semantic here, and will result in an exception.

– Example 2. This example shows exactly the opposite situation, where the null value has a

specific semantics important for the usage of the API method. Consider the following method

public boolean hasListeners(String propertyName) from the utility class

VetoableChangeSupport. The method in which we are interested checks if there are

listeners for a specific property.

Based on the signature, a developer can legitimately understand that passing a null value is not

allowed. Actually, when no property name is given, the method checks for listeners registered

on all properties. As in the previous example, a documentation is required to explain how the

null value is handled.

– Example 3. Another interesting example is one from the class MulticastSocket. This

class is useful for sending and receiving IP multicast packets, with additional capabilities for

joining groups of other multicast hosts on the Internet. The signature of the setTimeToLive

method is public void setTimeToLive(int ttl). This method set the default time-

to-live for multicast packets sent out on the considered MulticastSocket.

When looking at the declared type of the ttl parameter, the developer assumes that any integer

value can be passed to specify the default time-to-live for multicast packets. Nevertheless, a

restriction on the possible values of the parameter is imposed and only a value in the ranges

[0,255] is accepted, otherwise the parameter is considered as illegal.

– Example 4. The last example considered to show the importance of inferring usage constraints

is found in class Proxy. The following method in this class uses a parameter having as type

Object.

public static InvocationHandler getInvocationHandler(Object proxy)

Although the signature uses a generic type, only instances of class java.lang.reflect.Proxy

can be passed as arguments of the method, which returns the invocation handler for the specified

instance. Otherwise, an IllegalArgumentException is going to be thrown.

These examples illustrate well the need to report such usage constraints, to API users. Still, it is

important to study if these kinds of constraints are actually documented or not in the existing APIs.
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3.3 Approach

This section presents our approach to infer API usage constraint from the library source code.

For this study, we focus on usage constraint related to API method’s parameters. We first present the

selected constraint types, for which we will inspect the presence in library source code and the degree

of documentation. Then we describe the strategies defined to detect the selected constraints.

3.3.1 Constraint type selection

A clear understanding of what developers usually document will help us targeting a subset of

usage constraints to include in our study. As mentioned earlier, Monperrus et al. in [48] conducted a

study on API documentation to understand the kind of included directives. In their work, a directive

is defined as a natural-language statement that makes developers aware of constraints and guidelines

related to the API usage. As a result of the study, they extracted a taxonomy containing 23 directive

types grouped into six categories. Almost the half of these directive types (11) belong to the method

call category, which also includes the largest portion of directive occurrences in the studied APIs

(43.7%). Among the 11 directive types of this category, the most frequent one refers to the fact

that a parameter cannot be null (13%). Conversely, they also found that many directives refer to the

possibility of passing a null value to a parameter and explain its semantic. This directive type is less

frequent in general than the first one, but more frequent in some of the considered APIs such as in

JDK.

In addition to the previous contribution, we also considered the exploratory study conducted by

Duala-Ekoko and Robillard on the questions asked by client developers when using unfamiliar APIs

[19]. Among the frequent questions, many are related to values that can be passed to the methods and

especially the valid types and value ranges.

Consequently, we retained the following constraint types:

Nullness not allowed: A situation in which a null parameter, passed as an argument to a method in

the library, causes failures during execution.

Nullness allowed: A situation in which the argument passed to a method can be null. This value has

a specific semantics for this parameter.
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Type restriction: A situation in which the type declared by the method parameter is not enough to

be aware of various restrictions on the parameter type. Only a subset of type is allowed to avoid the

execution failures.

Range limitation: A situation in which the restriction on the values of a numeric parameter goes

beyond possible restrictions through the declared types.

3.3.2 Detection strategies

Almost all the occurrences of the selected usage constraints can be detected using a static intra-

procedural analysis, which is applied to the control flow graph (CFG). The analysis for some con-

straint types is flow-sensitive whereas, the one of the others is path-sensitive [49].

3.3.2.1 Nullness not allowed analysis

The objective of this analysis is to identify situations that prohibit a method parameter from being

null. To this end, we defined and combined two forward branched flow analyzes. More precisely,

the CFG is traversed from the entry node and, for each node, we determine if a given parameter is,

before this statement, definitely not null (NON_NULL tag), definitely null (NULL tag), both values

are possible (TOP tag) or we just don’t know (BOTTOM tag). The first analysis method, named

NullnessAnalysis starts from the basic idea that a variable x (the parameter in our case) is consid-

ered not-null after instructions of the form ’x = new()’, ’x = this’ or any other assignment of

something not derived from x itself, we can also know that the parameter is not null if tests such as ’x

instanceof T’ succeed. In addition, we can deduce that the variable x is null on the true branch

after conditional expressions that test the nullness of the variable. This node tagging is then used

in a second analysis that locates statements containing references to arrays, field references, method

invocations and monitor statements. These types of statements may generate unchecked exceptions

when the manipulated variables are null. Thus, the objective of our analysis is to detect the use of

the parameters in one of the statements mentioned above. If the analysis couldn’t determine that the

considered parameter is always not null before such statements, a Nullness not allowed constraint is

then detected.
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Figure 3.1: NullnessAnalysis example.

In the example of Figure 3.1, the NullnessAnalysis tags the nodes of the CFG for a parameter p.

Then, the second analysis traverses the CFG and locates the statement ’a.m1(p.bar)’ in which the

field bar is accessed while the node is tagged NULL for p. Consequently, a Nullness not allowed

constraint is detected for the analyzed method.

3.3.2.2 Nullness allowed analysis

One can conjecture that if the previous analysis does not detect a Nullness not allowed constraint,

then, null is allowed for the method parameters. However, the fact that it is allowed to pass a null value

as an argument to a method, does not mean that the null value has a particular semantics that should

be known by the client developer. For this reason, we are only interested in methods where a null

value is not prohibited for a parameter and where the null value has a semantic which is reflected by a

particular behavior of the method. The intuition behind our analysis is to consider each parameter as

a potential candidate for the Nullness allowed constraint, from the moment we can be sure using the

NullnessAnalysis, that the parameter in question is definitely null, at a given node, and that this node
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dominates a block of other nodes, representing a potential behavior. A node n1 dominates another one

n2 if all the paths that pass by n2 pass by n1 before. If such a case occurs, then, a Nullness allowed

constraint is detected.

3.3.2.3 Range limitation analysis

In this analysis, we identify the cases where only a specific range of values is allowed for a

numerical parameter, and the declared type is not specific enough to describe this restriction. This

analysis gives, when necessary, the legal ranges for the parameter in question. To achieve this goal, we

combine two forward-Analyzes, the first is path-sensitive and the second is flow-sensitive. The goal

of the first analysis (call it RangeLimitationAnalysis) is to determine for each numerical parameter at

each location of CFG (before each node), the range of values that the parameter can have. The basic

idea is to initially consider that the value range of each numerical parameter is bounded by the smallest

and largest value defined by its declared type. Then, based on the comparison operators involving the

parameter and used in conditional statements, we reduce the initial range for the different branches

of the CFG. This information is then reused in a second analysis which checks whether reduced

parameter ranges are present in all legal exit points of the method. In this case, a constraint is detected

with the reduced ranges for the given parameter.

If we reconsider the example mentioned in Section 3.2 of the MulticastSocket class (Ex-

ample 3), a simplified control flow graph of the method setTimeToLive(int ttl) is shown

in Figure 3.2. In this example, the RangeLimitationAnalysis starts by setting the range of parameter

ttl in the entry point to the initial range of an integer ]−∞,+∞[ (actually,
[
−231,231−1

]
). Then,

this range is reduced as the graph is traversed to reach [0,255] for the legal exit point. Any other value

results in an exception. As the range at the legal exit point is reduced compared to the initial one, a

constraint is detected.

3.3.2.4 Type restriction analysis

The objective of this analysis is to detect type restrictions that are not expressed by the type

declared for the method parameter. Indeed, several methods declare parameter types by conformity

with inheritance and method overloading. However, it is possible that the generic types do not work
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Figure 3.2: RangeLimitationAnalysis example.

for a given method redefinition. To detect type restriction cases, we combined a forward path-sensitive

analysis with a flow-sensitive one.

The first analysis (call it TypeRestrictionAnalysis) is similar to NullnessAnalysis and to RangeLim-

itationAnalysis. The difference is that the propagated information here is related to the parameter type

and not to its values. This analysis tags each location, for each parameter, as NOT RESTRICTED,

RESTRICTED (with the restricted type), TOP, or BOTTOM. To this end, we mainly use the instruc-

tions that contain casting statement d=(T)a, and conditional expressions that use the instanceof

operator to find out to which type a given instance belongs, e.g., if (o instanceof X). The type informa-

tion is then used in a second analysis to ensure that the restriction is valid on all the legal exit points

of the method. If this is the case, a Type restriction constraint is detected.
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3.4 Evaluation

To evaluate our approach, we first evaluated the correctness and validity of our constraints detec-

tion strategies. Then, we studied the usefulness of detecting the selected constraint types, looking at

the amount of their presence in real-world APIs, and the degree of their coverage in standard docu-

mentation. In this section, we describe our experimental setup and present the obtained results.

3.4.1 Detection validity evaluation

The objective of this part of our study is to evaluate the correctness of our constraint detectors.

We address the following research question.

– RQ1: To what extent can the proposed strategies detect the constraint of interest?

3.4.1.1 Setting

The process we followed to address our research question, starts by selecting a set of APIs known

for the quality of their documentation. To this end, we selected 13 APIs of JDK7, enumerated in

Table 3.I. To check the correctness, we ran our detection algorithms on the public methods of the 13

APIs and randomly selected 300 occurrences to manually check for the detection precision.

We selected 15 independent subjects (practitioners and graduate students) to manually assess the

correctness of the 300 constraints of our sample. Our subjects include one senior developer, four

junior developers, two M.Sc. students, and eight Ph.D. students. All the participants have at least an

experience of three years in java programming and are familiar with API usage and Javadoc docu-

mentation. The task of each participant involved reading the automatically generated description for

the detected constraints and checking whether the Javadoc for the corresponding method mention this

constraint.

To minimize the dependency on subjects’ judgement, each constraint was evaluated by three sub-

jects. As a consequent, we assigned 60 detected constraints to each subject. We ensured, when

preparing the material, that each subject evaluates occurrences of the four constraint types and that

the same constraint appears in random positions for the three concerned subjects. The evaluation re-

sulted in 900 opinions (15∗60), with three opinions per constraint. If at least two of the three subjects

decide that the Javadoc refers to the constraints, the detection is considered correct. Otherwise, two
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API Name Nb of evaluated classes Nb of evaluated methods
java.lang 167 2394
java.awt 267 4844
java.math 7 300
java.beans 41 547
java.io 74 1012
java.rmi 50 235
java.net 69 1040
java.applet 1 27
java.nio 186 1980
java.security 128 968
java.sql 27 222
java.text 42 661
java.util 205 4060

Table 3.I: Selected APIs for the detection evaluation

cases are possible: either the detected constraint is a false positive or the Javadoc does not report this

constraint. To distinguish between these two cases, we manually checked the suspected false positives

in the API source code to make a final decision.

To train the participants on the evaluation tasks, we gave them written instructions, including the

evaluation process and the definitions of constraint types. Then, we organized a training session,

in which the participants were asked to evaluate some constraints. After completing the tasks, we

discussed with them the answers and clarified any mistake or misunderstanding. To avoid fatigue and

boring effects, we developed a web application that allows the subjects to complete the evaluation at

their convenience. The web application offers the possibility to save the current state of the validation

session and resume it later.

We calculate the precision as the proportion of detected constraints that are actual constraints.

Precision =
Nb_correct_constraints

Nb_detected_constraints
(3.1)

To calculate the recall, we need to know, before hand, the list of actual constraints in the code.

Here again, we used a sample of constraint. To define the sample, we searched automatically in the

javadoc of the selected APIs, keywords that describe the four constraints types. Then, we manually
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check the query results to determine if the documentation indicates the presence of a constraint. This

process led to a sample of 123 occurrences.

The recall calculation was accordingly defined as the proportion of the manually sampled con-

straints detected by our algorithms.

recall =
Nb_correct_constraints

Nb_actual_sample_constraints
(3.2)

3.4.1.2 Results

We are interested, in this section, in the precision and recall of our detection algorithms. The

complete results of the detection on the 13 API of JDK7 are presented in the sections 3.4.2. For

the precision, the results are almost perfect for the four constraint types (96% to 100%) as shown in

Table 3.II. The error margins are low enough to trust our automatic constraints detection strategies.

Nb Detected constraint Nb correct constraint precision
Range 75 75 100%
limitation
Nullness 78 75 96%
allowed
Nullness not 111 108 97%
allowed
Type 36 36 100%
restriction

Table 3.II: Constraints detection precision

The recall results are reported in Table 3.III. A high majority of the actual constraints of our sample

was detected (between 78% and 94%). The constraints that were not found require, essentially, inter-

procedural analyzes. This is the case when, for example, the argument is used to set a class attribute.

Then, this attribute throws an exception in another method. Another case is when the argument is

directly used in another method call. As we are dealing with constraints that affect directly APIs

methods called from the clients, we consider that the recall of our detection algorithms is sufficient

for our study.
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Nb Detected Nb Detected recall
constraint via queries constraint via analysis

Range 26 22 85%
limitation
Nullness 18 14 78%
allowed
Nullness not 61 51 84%
allowed
Type 18 17 94%
restriction

Table 3.III: Constraints detection recall

3.4.2 Detection usefulness evaluation

The main objectives of this part of our study is to evaluate the presence of usage constraints in Java

APIs’ source code and to observe the degree of their documentation, as an indication of the usefulness

of detecting the selected constraints. To this end, we address the following research questions.

– RQ2: To what extent, usage constraints are present in real-world APIs?

– RQ3: When usage constraints exist in an API source code, are they documented in the Javadoc?

– RQ4: When usage constraints are not documented, is it specific for the constraint or because

of the non-documentation of the method as a whole?

3.4.2.1 Setting

In order to address our research questions, we selected 11 APIs. To achieve a good level of

representativeness, we balanced the following criteria: application domain, size, popularity in terms

of the number of downloads, and intended audience (development vs research). The evaluated APIs

are enumerated in Table 3.IV.

Figure 3.3 summarizes the followed process to address our research questions. This process is

organized in four steps. The first step consists in applying the constraint detectors on all the selected

APIs. The result of this step allows us to know, for each constraint type, the number of occurrences

1. Number of downloads made before the 30th April 2014
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API Name Description Nb of Nb of Nb of Intended
evaluated evaluated downloads 1 audience

classes methods
Super CSV An open-source library for

reading/writing CSV files.
64 336 105648 Development

Java MythTV A library to query and control
digital video recorder back-
end and database.

168 1605 3038 Development

GeneticLibrary A Genetic Algorithms Li-
brary.

3 39 604 Research

OpenJava
Weather

A library for providing ac-
cess to weather information
from different sources.

27 187 36 Research

PetriNetExec A library for embedding Petri
Nets into Java applications.

36 218 466 Research

IPtablesJava li-
brary

A library for firewall logs,
connection tracking and rule
management.

27 290 1171 Development

Simple2D A library to simplify menial
and advanced graphics tasks.

14 149 5 Research

Java Marine A library for enabling easy
access to data provided by
electronic marine devices.

57 500 4172 Research

tcpchannel A processes communication
library with TCP sockets.

7 48 142 Development

laverca An open-source library for
requesting signatures using
mobile signature services.

29 226 514 Development

xtarget A Library for automated edit-
ing of small XML Databases.

73 613 75 Development

Table 3.IV: Selected APIs

found in each API. By analyzing these results in terms of frequency and distribution over the APIs,

we are able to answer our research question (RQ2).

The second step is to extract the Javadoc documentation of the methods concerned with the de-

tected usage constraints. Then, in a third step, the javadoc of a method is aligned with a simple,

yet legible, description that we automatically generate to document a detected usage constraint. An
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Figure 3.3: Overview of the evaluation process.

example of such an alignment is shown in Figure 3.4. The constraint description (1) is on the left part

of the figure, and the method javadoc (2) is on the right part.

In the fourth step, we manually check if a detected usage constraint is documented, implicitly

or explicitly, in the javadoc of the corresponding method, as sketched in the taxonomy presented in

Figure 3.5. The documentation is considered as implicit when this latter mention an exception for

illegal argument without giving explicitly the cause. We consider the documentation as explicit when

the cause is stated. The data derived in this step, is used to answer the research question (RQ3).

When a considered usage constraint is not documented, two cases are possible. The first one is

that the developer did not comment the method at all. The other alternative is that the javadoc exists

for the method, but the constraint is not mentioned in it. The distinction between the two possibilities

is important. In the second case, it is difficult for the client application developer to suspect the
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Figure 3.4: side-by-side constraints description and javadoc.

Figure 3.5: Constraint classification taxonomy.
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existence of constraints not mentioned in the documentation. Consequently, the second case is more

serious. This last classification allows us to answer the research question (RQ4).

3.4.2.2 Results

In this section, we discuss the results for each research question.

Usage constraints existence (RQ2):

Table 3.V gives the detection results for the 11 APIs of Table 3.IV. As we are not dealing with the

documentation issue at this stage, we also present, in Table 3.VI, the detection results for JDK APIs

of Table 3.I.

API Name Nullness Nullness Type Range
not allowed allowed restriction limitation

Super CSV 87 6 12 0
Java MythTV 183 132 2 3
GeneticLibrary 8 0 0 0
Open Java 36 18 0 0
Weather
PetriNetExec 45 0 0 0
IPtables 27 7 0 3
Java library
Simple2D 28 0 0 4
Java Marine 57 1 0 15
tcpchannel 15 1 0 0
laverca 28 24 0 0
xtarget 87 21 2 3

Table 3.V: Number of Detected Constraints

Globally, the four constraint types occur in the considered libraries with different degrees. As

expected, the Nullness not allowed constraint is the most frequent one for the 24 APIs. The Nullness

allowed constraints are also frequently present, especially for the JDK APIs. The third constraint type

in importance is the Range limitation. We found occurrences in 16 APIs. The fourth constraint type

is the less frequent. Occurrences were found for almost all the JDK APIs, but in only three APIs of

our sample.
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To give some insight on the found constraints, we tried to characterize the detected cases. Looking

at the APIs’ source code, we noticed that the Range limitation constraints concern numerical parame-

ter with a fixed semantic. For example, we found constraints that limit the months to (1..12) , the day

to (1..31), and hours to (0..23). Other constraints deal with angles, positions, ports, etc.

Nullness allowed constraints are mainly related to situations were null signify that a default value

has to be used, as in the case of the method valueOf(ProtocolVersion protoVersion,

...) in the Schedule class of the MythTV API:

public static Schedule valueOf(ProtocolVersion protoVersion, int dbVersion,

IRecorderNextProgramInfo nextProgramInfo,

IProgramRecordingType.Type recordingType) {

...

if (recordingType == null) {

recordingType = IProgramRecordingType.Type.SINGLE_RECORD;

}

...

}

Null allowed constraints are also related to situations where the parameter is not required in some

method execution, for example, in one of the java.beans.PropertyDescriptor construc-

tors, the javadoc mentions that the readMethodName parameter may be null if the property is

write-only and the writeMethodName parameter may be null if the property is read-only.

For the other two types of constraints, we have not found particular characterizations. The only

observation is that Type restriction constraints are present in overloaded methods.

Constraints documentation (RQ3):

To answer the third research question, we do not use the APIs of JDK7 as these were selected

for the detection validation (Section 3.4.1). In fact, since they are well known for the quality of their

documentation. They are not representative of the existing APIs in terms of documentation.

Figure 3.6 present the results found for the 11 APIs that we have selected for the study. The first

conclusion we can draw is that, for three constraint types, the non-documented usage constraints are

by far more frequent than the documented one (more or less 80%). The only exception is the case of

Type restriction constraints where the two thirds of the occurrences are documented. Nullness allowed

constraints are the one with the lowest documentation rate (only 12%). This is really surprising since
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API Name Nullness Nullness Type Range
not allowed allowed restriction limitation

java.awt 788 243 6 135
java.beans 100 30 1 1
java.io 98 25 2 37
java.lang 369 43 15 40
java.math 83 0 2 9
java.net 84 20 18 23
java.nio 147 7 10 25
jaba.rmi 22 4 0 0
java.security 105 42 3 10
java.applet 1 0 0 0
java.sql 7 7 1 2
java.text 73 19 10 7
java.util 535 128 32 84

Table 3.VI: Number of Detected Constraints in JDK 7

the null value has, in general, specific semantics that must be understood by the client developers.

For example, if you look at the class DatabaseVersionRange in MythTV API, the constructor

is intended to construct a version-range object from two version objects given as parameters. Here,

when the parameters are null, the range is set with default version values. This is not obvious to guess

when it is not explicitly stated in the documentation.

public DatabaseVersionRange(DatabaseVersion from, DatabaseVersion to) {

super(

from==null?DB_VERSION_1029:from,

to==null?DB_VERSION_LATEST:to

);

}

In the case where the constraints are documented, it is worth looking at the nature of the documen-

tation, i.e., implicit vs explicit. We conjecture that explicit documentation is more efficient as it does

not require from the client developers a cognitive effort to fully understand the constraint. Conversely,

implicit documentation could lead to constraint misinterpretations.
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Figure 3.6: Documented vs non-documented constrains.

As shown in Figure 3.7, explicit documentation is clearly more frequent than implicit ones,

especially for the Type restriction and Range limitation constraints (100%). For example, in the

class SatelliteInfo of the Marine API, the javadoc explicitly mentions that if the parame-

ter value is out of bounds 0..99 dB an IllegalArgumentException is thrown for method

setNoise(int), which sets the satellite signal noise ratio. The Nullness allowed constraint type is

the one with the most implicit documentation (35%). For example, in the class Pixmap of MythTV

API the method, valueOf(..., Date lastModifiedDate) creates a new pixmap object to

read the preview image of a recording. We have detected that the parameter lastModifiedDate

is null-allowed, and the javadoc implicitly mention it, saying that lastModifiedDate is the last

modified date of the pixmap, if any. When we investigated this case, we understood that if the

lastModifiedDate parameter is null, the current preview image should be downloaded, whereas

when it is not null, the Pixmap object will be used to download a previously generated preview im-

age. Something more explicit than ’if any’ should have been mentioned. Nullness not allowed

constraint type has some implicit constraint documentation (9%). For instance, for the construc-

tor SentenceParser(String nmea) in Marine API, the javadoc mentions that the parameter nmea is

NMEA 0183 sentence and that an IllegalArgumentException is thrown if the specified sen-

tence is invalid. The developer has to understand that NMEA 0183 is a combined electrical and data

specification for communication between marine electronics that have its specific format and criteria
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so the nmea parameter will have to meet those criteria and format which wouldn’t be the case if the

parameter is null.

Figure 3.7: Explicit vs Implicit documentation.

Non-documentation scope (RQ4):

To better estimate the severity of the constraint documentation absence, we looked at the pres-

ence/absence of the global documentation of methods. Knowing if the constraint was not specifically

documented in spite of the method javadoc presence, gives an indication about the risk of constraint

violation, since with a method globally undocumented, the developer of a client application is more

vigilant while in the other case, the confidence in the documentation increases the developer’s vulner-

ability and therefore, increases the risk of constraint violation.

The results, shown in Figure 3.8 , indicate that the rate of specific absence is variable depending

on the constraint type. The case of Type restriction constraints seems particularly worrying as for

100% of the non-documented constraints, the method javadoc exists. However, the sample is too

small (only 5 non-documented constraints), to generalize the finding.

The case of Nullness not allowed constraints is more serious as half of the numerous constraints

are not specifically documented. Let us consider the following example, in the class QueryHint of

the Weather API. The example shows a portion of the source code and the Javadoc for the method

query(GeoLocation location, ...). Looking at the code, it is clear that the location

parameter cannot be null. However, the developer of a client application might think that a null value
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for this parameter corresponds to the use of a default location or activates a mechanism for geolocation

based on IP address, for example. Although this case could be confusing, nothing is mentioned in the

javadoc in relation to the Nullness not allowed constraints given below:

/**

* Queries the data source about the weather in alocation from a specific date onward.

* @param location the location

* @return the weather in the given location in the given period of time

*/

public List<WeatherReport> query(GeoLocation location, Date beginTime,

QueryHint hint) {

if (location == null) {

throw new IllegalArgumentException("Invalid coordinate: null.");

}

...

}

Another critical example is shown below. In the class DefaultDetachedNode of the Xtarget

API, the javadoc of the method addChild( XTDetachedNode child, int index ) does

not report any constraint on the child parameter.

/**

* Inserts the given child node at the given index.

* @param child The node to insert

* @param index The new index of the inserted node

...

*/

public void addChild(XTDetachedNode child, int index) {

...

testRecursion(child);

children.add(index, child);

child.setParent(this);

}

While looking at the code, we found that child is used to invoke the method setParent(...).

This invocation will lead to a NullPointerException if the parameter is null. Two cases are

possible, either the API developer is not aware of the constraint, or he assumes that the client devel-

oper will take care of testing his parameter before using the API method. In both cases, the constraint

should have been mentioned in the javadoc.
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Figure 3.8: Specific vs General documentation absence.

3.5 Threats to validity

Our study is an observational one. Thus, we do not apply specific statistics as we are not compar-

ing groups or identifying relationships between data. Consequently, we cannot generalize our results.

Still, we used criteria-based sampling that increases our confidence about the results, which give

an interesting portrait about the presence of usage constraints and their documentation. Moreover,

our study raises questions that can be addressed by randomized studies, e.g., are well-documented

APIs more used than poorly documented ones? or is there a relationship between the quality of API

documentation and the number of errors attributed to its usage?

A possible threat to validity of our study concerns the recall. We automatically looked in the

javadoc for keywords that describe the four constraint types, and we examined whether these con-

straints were detected by our algorithms. So our procedure will estimate recall based on a sample that

contains only methods for which the constraint is mentioned in the Javadoc. To alleviate the impact

of this threat, we applied this process only on the JDK APIs which are widely used and known for the

quality of their documentation.

Another possible threat is the documentation inspection by the authors to answer questions RQ3

and RQ4. We do not view this as an issue since we do not have particular result expectancies. The
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only expectancies that we could have are related to the validity of our constraint detection strategies.

In this case, we used independent subjects.

3.6 Conclusion

This chapter presents a set of analysis procedures to automatically detect certain types of API

usage constrains based only on the library source code. The detection technique is based on intra-

procedural analysis to determine when a particular type of constraint applies to a method. Our de-

tection has a precision which reaches 100% for certain constraint and a recall rate between 78% and

94%. We also report the results of an observational study on the occurrence and the documentation

of a set of API usage constraint types. Our study is based on both, looking at usage constraints inside

the API source code and examining their documentation. The results of our study show that almost

all the considered usage constraints are frequently present in API source code. We also discovered

that many important usage constraints are not documented. Our finding is compelling evidence that

the research effort dedicated to the automatic detection of usage constraint is justified.
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Part II

Library usability across complementary API

methods
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Chapter 4

Mining Multi-level API Usage Patterns

Software developers need to cope with complexity of Application Programming Interfaces (APIs)

of external libraries or frameworks. However, typical APIs provide several thousands of methods to

their client programs, and such large APIs are difficult to learn and use. An API method is generally

used within client programs along with other methods of the API of interest. Despite this, co-usage

relationships between API methods are often not documented. In this chapter we present our approach

for mining Multi-Level API Usage Patterns (MLUP) to exhibit the co-usage relationships between

methods of the API of interest across interfering usage scenarios. We evaluated our technique through

the usage of four APIs having up to 22 client programs per API. For all the studied APIs, our technique

was able to detect usage patterns that are, almost all, highly consistent and highly cohesive across a

considerable variability of client programs. This contribution was published at the IEEE International

Conference on Software Analysis, Evolution, and Reengineering [63].

4.1 Introduction

Software developers might spend considerable effort to identify the subset of the class’s methods

that are necessary to implement their task at hand. To learn how to use API’s methods, software

developers usually search for code snippets by means of source code search engines, such as the

Ohloh or OpenHUB 1 Code search engine. Yet, existing source code search engines return a huge

number of code snippets that use the API’s methods of interest. Therefore, we believe that identifying

usage patterns for the API can be helpful for a better learning of common ways to use the API.

Recently, automated techniques to detect API usage properties have gained a considerable atten-

tion [11, 31, 79, 87]. These existing techniques are valuable to facilitate API understanding and usage.

However, since the interference between different API usage scenarios could negatively impact the

usage pattern mining process, existing techniques mainly focus on identifying API patterns in a spe-

cific usage scenario. Such techniques are proposed for recommending usage examples of the API that

1. Ohloh Code search engine renamed to OpenHUB: https://www.openhub.net/



are relevant to one task at hand (e.g. [87]), and/or for auto completion of source code in a specific

context (e.g. [50]). In consequence, they fail short in identifying API usage patterns that are, at the

same time, context independent and reflect different interfering API usage scenarios.

In this chapter , we present our technique for mining multi-level API usage patterns. We define a

multi-level API usage pattern as a distribution on different usage cohesion levels of some API methods

which are most frequently used together in client programs, in a consistent way, and regardless of the

variability of client programs. Our technique is based on the analysis of the frequency and consistency

of co-usage relations between the API methods within a variety of client programs of the API of

interest. The rational behind this multi-level distribution of methods in a usage pattern is to identify

the pattern’s core, which represents the pattern’s methods that are ‘always’ used together, and to

reflect interfering usage scenarios of the pattern’s core with the rest of the API methods. Hence,

multi-level usage patterns add a new dimension which can be used to enhance the API documentation

with co-usage relationships between methods of the API of interest.

This chapter is structured as follows. Section 4.2 motivates the usefulness of this work with two

actual examples from HttpClient and Swing APIs. We explain our approach in Section 4.3 and present

the case study used for evaluating it in Section 4.4. Section 4.5 presents and analyzes the results of our

study. In Section 4.6 we discuss further our approach and the evaluation results, before concluding in

Section 4.7.

4.2 Motivation examples

In this section we present two motivation examples to illustrate the following aspects of the ad-

dressed problem:

– The same usage pattern can be used in different contexts (we have to be context independent)

– Interfering API usage scenarios could be presented using multi-level usage patterns.

4.2.1 HttpClient Authentication

We consider the HttpClient API [2], which provides a feature-rich package implementing the

client side of HTTP standards and recommendations. For this API, each time the setProxy(String,int)

method of HostConfiguration class is invoked, our technique will inform the developer that he
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will need to think about the method setProxyCredentials(AuthScope,Credentials)

of the class HttpState. This hypothesis on the co-usage relationship between setProxy and

setProxyCredentials methods is due to our analysis of various client programs of the Http-

Client API, which found that both methods are always called together.

For instance, Figure 4.1 shows two code snippets of HostConfiguration.setProxymethod 2.

In these code snippets, the HttpState.setProxyCredentials method is also invoked, after

setProxy. These code snippets are from two different projects MailBridege 3 and jUploader 4. In

the first code snippet, the methods of interest are used in the constructor of NetTools class, while

in the second code snippet the methods of interest are used in a factory of HttpClient objects

(in HttpClientFactory.getHttpClient()). The purposes of these client classes/methods

are completely different as their names indicate. It is worth noting that in these client methods, as

in others, the methods of interest (setProxy and setProxyCredentials) are used with other

methods of HttpClient, such as HttpClient.getParams and HttpClient.setParameter.

However, deeply analyzing a variety of client methods to setProxy method, we observed that its

co-usage relationship with setProxyCredentials method remains consistent, but its co-usage

relationships with other methods of HttpClient API are not.

Actually, for a given HTTP client, once proxy settings are set (using setProxy method), client

program should consider updating the HTTP client’s state, which contains all HTTP attributes that

may persist from request to request (such as authentication credentials). Therefore, the client program

should set the proxy credentials for the given authentication realm using setProxyCredentials

method.

Despite the very well elaborated documentation of the HttpClient API, we had to spend a no-

ticeable time to figure-out the above-mentioned information in this documentation. Indeed, read-

ing the Java doc of the aforementioned classes and methods, and reviewing the HttpClient’s code

sample 5, we did not find any documentation regarding the co-usage relation between the two meth-

2. With the query “setProxy & language = Java”, the Ohloh code search engine returned more than 5 million results
(the query was on 15th June 2014). Verifying all the code snippets found is practically impossible. However, most of the
results that we were able to verify were not relevant to the method of interest (HostConfiguration.setProxy),
but for other methods having the same name (“setProxy”).

3. MailBridege is a HTTP tunnel for POP and SMTP access via a proxy.
4. jUploader is a cross platform and cross-site photo uploader.
5. svn.apache.org/viewvc/httpcomponents/oac.hc3x/trunk/src/examples/
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ods HostConfiguration.setProxy and HttpState.setProxyCredentials. Finally,

reading the Authentication 6 section in the HttpClient’s user guide, we found that the first paragraph

“Server Authentication” and the fourth paragraph “Proxy Authentication” provide an implicit docu-

mentation of that co-usage relationship.

public class NetTools {
private HttpClient client = null;
...
public NetTools() {

...
client.getHostConfiguration().setProxy( proxyHost, proxyPort );
...
client.getState().setProxyCredentials( AuthScope.ANY, defaultcreds );
...

public class HttpClientFactory {
public static HttpClient getHttpClient() {

HttpClient client = new HttpClient(new MultiThreadedHttpConnectionManager());
...

HostConfiguration hc = client.getHostConfiguration();
hc.setProxy(proxyHost, proxyPort);

...
client.getState().setProxyCredentials(scope, creds);

...

Figure 4.1: Code snippets of “setProxy” found using Ohloh code search engine.

4.2.2 The Swing GroupLayout’s interface

To better illustrate the benefit of identifying consistent API usage patterns, we consider the class

GroupLayout 7 in the Swing API [4]. GroupLayout is a LayoutManager that hierarchically

groups components in order to position them in a Container. It is typically used by every client

programs of the Swing API for managing layouts in JPanels.

The (public) GroupLayout’s interface consists of 30 methods, and the class defines one con-

structor GroupLayout(Container host). Reading the GroupLayout’s Java doc, the asso-

ciated examples and the Java Swing tutorial, “How to Use GroupLayout” 8, we found that it is not

trivial at all to identify the smallest subset of GroupLayout’s methods that are actually required for

managing Swing GUI layouts. Indeed, the example provided with the GroupLayout documentation

6. hc.apache.org/httpclient-3.x/authentication.html
7. http://docs.oracle.com/javase/7/docs/api/javax/swing/GroupLayout.html
8. http://docs.oracle.com/javase/tutorial/uiswing/layout/group.html
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uses, in addition to the GroupLayout’s constructor, 6 methods of the GroupLayout’s interface.

In the Java Swing tutorial, the provided example on GroupLayout 9 uses additional method (7

methods in total).

Analyzing a wide variety of client methods to the GroupLayout class, we found that a relatively

small subset of the GroupLayout’s methods are always (consistently) used together to build layouts

of Swing GUIs. Those methods are: the GroupLayout’s constructor, then setHorizontalGroup

and setVerticalGroup methods. Hence, these methods represent a usage pattern of Swing API,

that we refer to as core usage pattern of GroupLayout. Moreover, our analysis revealed that build-

ing a layout (using GroupLayout) cannot be complete without using either createParallelGroup,

createSequentialGroup, or both methods, for specifying the type of layout’s horizontal and

vertical groups. In other words, the set {createParallelGroup, createSequentialGroup}

is, partially or totally, used with the core usage pattern of GroupLayout. We call these methods pe-

ripheral usage pattern of GroupLayout.

In summary, our technique for mining API usage patterns can inform Swing users that layouts can

be built using 5 methods: the core usage pattern (3 methods) and peripheral usage pattern (2 meth-

ods) of GroupLayout. Hence, developers can focus only on 5 methods of the GroupLayout’s

interface (instead of 30 methods) for building the layouts of their Swing GUIs. Then, as needed,

developers can then modify properties of their GUI layouts using other methods in GroupLayout.

4.3 Approach

In this section, we detail our approach for detecting multi-level API usage patterns. Before de-

tailing the used algorithm, we provide a deeper definition of multi-level usage patterns and their

representation in our approach.

4.3.1 Multi-level API usage patterns

As outlined earlier, we define an API usage pattern (UP) as a group (i.e. cluster) of methods of the

API of interest that are co-used together by the API client programs. An UP includes only methods

9. http://docs.oracle.com/javase/tutorial/uiswing/layout/groupExample.html
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which are accessible from client programs (i.e. public methods of the API), and each UP represents

an exclusive subset of the API’s public methods.

Ideally, the co-usage relations between the UP’s methods remain the same across all possible

client methods of the UP. However, APIs are open applications, and it is unfeasible to analyze all

their possible usage scenarios. Hence, we need a technique that can identify API usage patterns

independently of the variability of features provided by the API’s client programs and of the API’s

usage scenarios. Therefore, our technique for identifying API usage patterns should (1) capture out

interference in co-usage relationships between the API’s methods, and (2) isolate noises with respect

to the degree of co-usage relationships in detected patterns.

To illustrate the representation of multi-level usage patterns, we use our example on GroupLayout

class (Section 4.2.2). In this example, we showed that the core usage pattern of Grouplayout con-

sists of 3 methods, which are used together by all analyzed client methods of Grouplayout. We

also outlined that the Grouplayout core usage pattern was always used with other methods of

Swing. The issue here is to associate this usage pattern to other methods that are closely related to

it and can enhance its informativeness, and to isolate it from other methods that can degrade its co-

usage relationships and consistency. To address this issue, we incrementally cluster this core usage

pattern with closely related methods, from the closest to the least close ones, so that the resulted

multi-level usage pattern of Grouplayout will include the core and peripheral usage patterns of

Grouplayout as shown in Figure 4.2. This incremental clustering provides valuable information:

all client methods of the Grouplayout class, which invoke the Grouplayout(Container)

constructor, utilize methods in cluster L0 for Grouplayout initialization; most of these client meth-

Figure 4.2: The cluster L2 which represents the MLUP of class GroupLayout: L0 repre-
sents the GroupLayout’s core usage pattern, then the cluster L1/L2 includes partially/totally the
GroupLayout’s peripheral usage pattern.
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ods create parallel groups using the createParallelGroupmethod; and the other client methods

create sequential groups using the createSequentialGroup method, or create both parallel and

sequential groups.

4.3.2 Approach overview

Our approach takes as input the source code of the API to study and multiple client programs

making use of this API. The output of our approach is a set of usage patterns as described in Sec-

tion 4.3.1.

The API usage patterns detection approach proceeds as follows.

– First, the API’s and client programs source code is statically analyzed to extract the references

between the methods of the client programs and the public methods of the API. The static

analysis is performed using the Eclipse Java Development Tools (JDT).

– Second, we compute usage vectors for the API public methods. Each public method in the API

is characterized by a usage vector which encodes information about its client methods.

– Finally, we use cluster analysis to group the API methods that are most frequently co-used

together by client methods.

4.3.3 Information encoding of API methods

In our approach, each API public method is represented by a usage vector that has constant length

l, that is the number of all client methods which use the API methods. Figure 4.3 shows that the

API of interest is used by 7 client methods. And, these client methods use 5 methods of the API.

Note that the client methods could belong to different client programs of the considered API. For an

API method, m, an entry of 1 (or 0) in the ith position of its usage vector, denotes that m is used (or

not used) by the ith client method corresponding to this position. Hence, summing the entries in the

method’s usage vector represents the number of its client methods. For instance, in Figure 4.3, the

usage vector of API.m1 shows that this API method is used by 4 client methods, which are C1.m1,

C1.m2, C2.m3 and C3.m1. We can see that these client methods use also the API methods API.m2,

API.m3 and API.m4, but do not use API.m5.
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Figure 4.3: The usage vector representation of five API methods with seven client methods.

4.3.4 Clustering algorithm

Our clustering is based on the algorithm DBSCAN [22]. DBSCAN is a density based algorithm,

i.e. the clusters are formed by recognizing dense regions of points in the search space. The pseu-

docode of the DBSCAN algorithm is shown in Algorithm 1. The main idea behind DBSCAN is that

each point to be clustered must have at least a minimum number of points in its neighborhood. This

property of DBSCAN permits the clustering algorithm to leave out (not cluster) any point that is not

located in a dense region of points in the search space. In other words, the algorithm clusters only

relevant points and leaves out noisy points. This explains our choice of DBSCAN to detect API usage

patterns. Indeed, not all public methods of the API are to be clustered because some are simply not

co-used together nor with specific subsets of the API methods.

DBSCAN constructs clusters of API methods by grouping those that are close to each other (i.e.

similar methods) and form a dense region. For this purpose, we define the Usage Similarity, USim

in Equation (4.1), between two API methods mi and m j, using the Jaccard similarity coefficient with

regards to the client methods, Cl_mtd, of mi and m j. The rationale behind this is that two API methods

are close to each other if the corresponding methods share a large subset of common client methods.

USim(mi,m j) =
|Cl_mtd(mi)∩Cl_mtd(m j)|
|Cl_mtd(mi)∪Cl_mtd(m j)|

(4.1)

Where Cl_mtd(m) is the set of client methods of the API method m. For example, the USim

between the API methods API.m1 and API.m2 in Figure 4.3 is 4
5 ,since these API methods have in total

5 client methods, and 4 of them are common for API.m1 and API.m2. The distance between methods
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mi and m j is then computed as defined in Equation (4.2) and the function getNeighbors(P,

epsilon) in the pseudocode of the DBSCAN, uses the distance defined in Equation (4.2) to decide

if a point belongs to the neighborhood of a given point.

Dist = 1−USim(mi,m j). (4.2)

DBSCAN depends upon two parameters to perform the clustering. The first parameter is the

minimum number of methods in a cluster. In our context, we set it at two, so that a usage pattern

must include at least two methods of the studied API. The second parameter, epsilon, is the maximum

distance that within which two methods can be considered as neighbors to each other. In other words,

epsilon value controls the minimal density that a clustered region can have. The shorter is the distance

between the methods within a cluster the more dense is the cluster.

In practice, the choice of the epsilon value is not straightforward, since we do not know before

hand which density and which threshold of similarity between methods will lead to good-quality

usage patterns. Therefore, as it will be shown in the next section, we adapt DBSCAN algorithm to

use different epsilon values for identifying multi-level usage patterns.

4.3.5 Incremental clustering

In DBSCAN, the value of the epsilon parameter influences greatly the resulting clusters. Indeed,

in our approach, a value of 0 for epsilon, means that each cluster must contain only API methods

that are completely similar (i.e. distance among methods belonging to the same cluster must be 0).

Relaxing the epsilon parameter will relax the constraint on the requested density within clusters.

On the one hand, if we set epsilon at fixed small value, such as epsilon = 0, this will produce

usage patterns that are very dense. Yet, resulted usage patterns will not capture out interference in

co-usage relationships between the API’s methods: a usage pattern will include only methods that

are all always co-used together. On the other hand, fixing epsilon to relatively large value, such as

epsilon = 0.8, DBSCAN will produce usage patters that include some noises. Thus, for a given

usage pattern, it will not be easy to distinguish between dense subsets that capture out interference in

co-usage relationships from subsets that include noises.

In our approach, we decided to build the clusters incrementally by relaxing the epsilon parameter,

step by step to tolerate approximation of co-usage. Algorithm 2 shows the pseudo-code of our incre-
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Algorithm 1 DBSCAN algorithm
1: DBSCAN(DataSet, epsilon, MinNbPts){
2: clusters <- {} ; noisyPoints <- {} //output of the algorithm
3: for each unvisited point P in DataSet do
4: mark P as visited
5: Neighborhood_P = getNeighbors(P, epsilon)
6: if (Neighborhood_P.size) < MinNbPts then
7: noisyPoints <- noisyPoints + {P}
8: else
9: currentCluster <- new cluster

10: constructCluster(P, Neighborhood_P, currentCluster, epsilon, MinNbPts)
11: clusters <- clusters + {currentCluster}
12: end if
13: end for
14: }
15: constructCluster(P, Neighborhood_P, currentCluster, epsilon, MinNbPts){
16: currentCluster <- currentCluster + {P}
17: for each point Q in Neighborhood_P do
18: if Q is not visited then
19: mark Q as visited
20: Neighborhood_Q <- getNeighbors(Q, epsilon)
21: if Neighborhood_Q.size >= MinNbPts then
22: Neighborhood_P <- Union(Neighborhood_P,Neighborhood_Q)
23: end if
24: end if
25: if Q is not yet member of any cluster then
26: currentCluster <- currentCluster + {Q}
27: end if
28: end for
29: }
30: getNeighbors(P, epsilon){
31: for each point Q in DataSet do
32: if DIST(P,Q) < epsilon
33: then Q is neighbor of P.
34: end for
35: }
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mental clustering. First, we construct a dataset containing all the API methods and cluster them using

DBSCAN algorithm with epsilon value of 0. This results in clusters of API methods that are always

used together, and multiple noisy API methods left out. At the end of this run, for each produced clus-

ter we aggregate the usage vectors of its methods using the logical disjunction in one usage vector.

Then, a new dataset is formed including the aggregated usage vectors and the usage vectors of noisy

methods from the first run. This dataset is fed back to the DBSCAN algorithm for clustering, but

with a slightly higher value of epsilon, that is epsilon = 0+δ . This procedure is repeated in each step

corresponding to an epsilon value of α . And, the clustering process is stopped when epsilon reaches

a maximum value, β , given as parameter.

Algorithm 2 H-DBSCAN: Hierarchical DBSCAN algorithm

1: H-DBSCAN(DataSet, maxEpsilon, MinNbPts, epsilonStep){
2: epsinon <– 0
3: while epsilon < maxEpsilon do
4: DBSCAN(DataSet, maxEpsilon, MinNbPts, epsilonStep)
5: clusters <– DBSCAN.clusters
6: noisyPoints <– DBSCAN.noisyPoints
7: compositePoints <– constructPoints(clusters)
8: Dataset <– noisyPoints + compositePoints
9: epsilon <– epsilon + epsilonStep

10: end while
11: }
12: constructPoints(clusters){
13: for each C in clusters do
14: compositePoints <– OR(all points of C)
15: end for
16: }

For example, Figure 4.4 shows that result of our incremental clustering for the API methods in

Figure 4.3. In this example, the initial dataset contains 5 methods, API.m1, ..., API.m5, the epsilon

parameter is incremented in each step by δ = 0.2, and the epsilon maximum value was set to β = 0.5.

Figure 4.4 shows that the algorithm will produce one multi-level usage pattern that contains in total

4 methods (API.m1, ..., API.m4), and API.m5 is left out as a noisy method. The produced multi-level

usage pattern involves 3 levels of density. The first level, which is the most dense one, is clustered

at epsilon = 0, and it includes only API.m2 and API.m4. These two methods represent the core
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of the identified usage pattern since they are always co-used together (i.e. they have a perfect usage

similarity). The second level, is clustered at epsilon = 0.2, and includes API.m1 in addition to API.m2

and API.m4. This method, API.m1, is included in this level since its distance from both API.m2 and

API.m4 is smaller than 0.2. Finally, the third level, which is the less dense one, is clustered at epsilon

= 0.4. This level includes, in addition to the methods of the first and second level, the method API.m3.

At the end, the method API.m5 is left out as a noisy method since its distance from any clustered

method is larger than epsilon maximum value, which is 0.5. This multi-level usage pattern can be

interpreted as that the pattern’s core, which includes API.m2 and API.m4, can have 2 interference

usage scenarios: (1) the core methods can be co-used, most frequently, with API.m1, which shares

4/5 common client methods; (2) the core methods can be co-used with API.m3, which shares 3/5

common client methods.

Figure 4.4: Resulting clusters of applying the incremental algorithm to API methods of Figure 4.3.

4.4 Evaluation

The objective of our study is to evaluate whether our technique can detect API usage patterns

which are cohesive enough to provide valuable information that can help in learning and using APIs,

and which are generalizable independently of the API usage contexts. We formulated the research

questions of our study as follows:

– RQ1: to which extent the detected usage pattern are cohesive?

– RQ2: to which extent the detected usage pattern could be generalized to other “new” client

programs, that are not considered in the mining process?
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4.4.1 Systems studied

We evaluate our technique through the usage of four widely used APIs: HttpClient, Java Security,

Swing and AWT (Table 4.I). To perform our study, we selected 22 client programs for the Swing

and AWT APIs, and 12 client programs for the HttpClient and Java Security APIs (see Table 4.II and

Table 4.III). We selected these four API and thier client programs for our validation because they are

well studied in the related work.

API Description
Java Security Provides features to improve security of Java applications
HttpClient Implements standards for accessing resources via HTTP
Swing An API providing a graphical user interface (GUI) for Java programs
AWT An API for providing a platform dependent graphical user interface (GUI)

for a Java program

Table 4.I: Selected APIs for the case study

APIs Client programs Description
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Jakarta Cactus A simple test framework for unit testing server-side java code
Apache JMeter A project that can be used as a load testing and measure performance

tool
Heritrix A web crawler
HtmlUnit A GUI-Less browser for Java programs
OpenLaszlo An open source platform for the development and delivery of rich

Internet applications
Mule A lightweight enterprise service bus (ESB) and integration frame-

work
RSSOwl An aggregator for RSS and Atom News feeds.
Apache Jackrabbit Is an open source content repository for the Java platform.
Axis2 A core engine for Web services.
RESTEasy A JBoss project that provides various frameworks to build RESTful

Web Services
WildFly An application server
WSO2 Carbon An SOA middleware platform

Table 4.II: Client programs used in our case-study for HttpClient & Java Security
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APIs Client programs Description
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G4P (Processing GUI) A library that provides a rich collection of 2D GUI controls
Valkyrie RCP A Spring port of the current Spring Rich Client codebase.
GLIPS Graffiti editor A cross-platform SVG graphics editor
Mogwai Java Tools Java 2D and 3D visual entity relationship design and modeling

(ERD,SQL)
Violet An UML editor
Mobile Atlas Creator This application creates off-line raster maps
Metawidget A smart widget Building User Interfaces for domain objects
Art-of-Illusion A 3D modelling and rendering studio
VASSAL An engine for building and playing human-vs-human games
Neuroph A lightweight Java Neural Network Framework
WoPeD A Java-based graphical workflow process editor, simulator and

analyzer
jEdit A mature programmer’s text editor
Spring-RCP Provide a way to build highly-configurable, GUI-standards
GanttProject core An application for project management and scheduling
Pert The PERT plugin for GanttProject
Htmlpdf The html and pdf export plugin for GanttProject
Msproject MS-Project import/export plugin for GanttProject
swingx Contains extensions to the Swing GUI toolkit
JHotDraw A Java GUI framework for technical and structured Graphics
RapidMiner An integrated environment for machine learning and data min-

ing
Sweet Home 3D An interior design application
LaTeXDraw Is a graphical drawing editor for LaTeX

Table 4.III: Client programs used in our case-study for Swing & AWT

4.4.2 Comparative evaluation

To address our research questions we opted for a comparative evaluation, we compared our tech-

nique for mining multi-level API usage patterns (MLUP) to the most similar approche MAPO as

configured in [87]. To mine API usage patterns, MAPO clusters frequent API method-call sequences

extracted from client programs, then use the BIDE [80] algorithm to mine closed sequential patterns

from the preprocessed method-call sequences: i.e. to capture groups of API’s method that are fre-
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quently used together. This comparison allow us to better position our approach and characterize

the obtained results. For MLUP we fixed the maxEpsilon value to 0.35. Obtained results are not

computed for the core and the peripheral patterns separately, but rather for the usage pattern as a

whole.

4.4.3 Metrics and experimental setup

The following describes the process of our experiments for a given API of the case study. The

setup settings described in this section were applied for the two compared approaches MLUP and

MAPO.

Pattern Co-Usage Relationships

To address our first research question (RQ1), we need to evaluate whether detected usage patterns

are cohesive enough to exhibit informative co-usage relationships between the API methods. To

measure the usage cohesion of the detected patterns, we use the Pattern Usage Cohesion Metric

(PUC), PUC was originally proposed and used in [55, 56] for assessing the usage cohesion of service

interfaces. It evaluates the co-usage uniformity of an ensemble of entities, in our context, a group of

API methods which forms a pattern.

PUC takes its value in the range [0..1]. The larger the value of PUC is, the better the usage

cohesion is. PUC states that a usage pattern has an ideal usage cohesion (PUC = 1) if all the pattern’s

methods are actually always used together. The PUC for a given usage pattern p is defined as follows:

PUC(p) =
∑cm ratio_used_mtds(p,cm)

|CM(p)|
(4.3)

Where cm denotes a client method of the pattern p; ratio_used_mtds(p, c) is the ratio of methods

which belong to the usage pattern p and are used by the client method cm; while CM(p) is the set of

all client methods of the methods in p.

To answer our first research question (RQ1), we apply our technique and MAPO for all the se-

lected APIs of the case study, using the APIs client programs described in Table 4.II and Table 4.III.

Then we compare the cohesion of the detected usage patterns through the two techniques, using the

PUC metric.
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Pattern Generalization

The detection of usage patterns for an API depends on the used set of API’s client programs

(training client programs). Hence, to address our second research question RQ2, we need to evaluate

whether the detected API’s usage patterns will have similar usage cohesion in the context of new client

programs of the API (validation client programs). Our hypothesis is that: detected usage patterns for

an API are said “generalizable” if they remain characterized by a high usage cohesion degree in

the contexts of various API client programs. This is regardless of the natures and features of those

client programs, and of whether those client programs were used or not for detecting the API’s usage

patterns. Such generalizable usage patterns can contribute to learn common ways of using the API of

interest.

To evaluate the generalizability of detected patterns, we perform leave-one-out cross-validations

for all the selected APIs of the case study, using the API’s client programs described in Table 4.II and

Table 4.III. Let N represents the number of used client programs for the considered API (e.g. N =

22 for Swing), we perform N runs of the two compared techniques (MLUP and MAPO) on the API.

Each run uses N-1 client programs as training client programs for detecting usage patterns, and leaves

away one of the API’s client programs as validation client programs. The results are sorted in N runs,

where each run has its associated usage patterns, and its corresponding training and validation client

programs.

Then, we address our second question (RQ2) in two steps, as follows. In the first step, we evaluate

the cohesion of the detected usage patterns (as measured by PUC) in the contexts of validation sets.

However, in a given run, it is possible that some detected usage patterns involve only methods that

are not used at all in the validation client programs. Therefore, to evaluate the generalizability of

detected patterns in a run, we consider only patterns which contain at least one method that is actually

used by the run’s validation client programs. We call such patterns as the eligible patterns for the

validation client programs. For an eligible pattern, if only a small subset of its methods are used by

the validation client programs, while the other methods are not used, the pattern will have a low usage

cohesion. As a consequence, it will be evaluated as “not generalizable”. At the end of this step, we

compare between the cohesion results obtained with MLUP and MAPO.

In the second step, for each run we evaluate the consistency of the detected usage patterns between

the training client programs and the validation client programs. A pattern is said consistent if the
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co-usage relationships between the pattern’s methods in the context of the training client programs

remain the same (or very similar) in the context of the validation client programs. We define the

consistency of a usage pattern as:

Consistency(p) = 1−|PUCT (p)−PUCV (p)| (4.4)

Where PUCT and PUCV are the usage cohesion values of the pattern p in the training client programs

context and validation client programs context, respectively. This metric takes its value in the range

[0..1]. A value close to 1 indicates that the co-usage relationships between the pattern’s methods

remain the same between training client programs and the new validation client program, while a

value close to 0 indicates a dissimilar behavior of the pattern between the two sets of clients. This

metric allows us to see whether between changing contexts good patterns remain good ones and bad

patterns remain bad ones.

4.5 Results analysis

Before addressing our research questions, we analyzed the dependencies between the client pro-

grams in Table 4.II 4.III and the selected APIs. We also applied the two compared techniques for

detecting usage patterns of selected APIs. Table 4.IV summarizes the results of this phase, which

shows that, for all studied APIs, our technique (MLUP) has been able to detect more usage patterns

than MAPO. And, MLUP usage patterns are, overall, larger than MAPO ones. In the following, we

investigate the results of our experiments explained in Section 4.4 to address our research questions

RQ1 and RQ2.

4.5.1 Patterns cohesion (RQ1)

To answer our research question RQ1, we analyze the average and the distribution of usage co-

hesion values for all detected usage patterns per studied API, using the two compared approaches.

Table 4.V clearly show that, in average, MLUP outperforms MAPO for detecting cohesive usage pat-

terns. Moreover the Wilcoxon rank sum test statically confirms these statements. The usage cohesion

values obtained for MLUP reflect very strong co-usage relationships between the pattern’s methods
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MLUP MAPO
UP’s size UP’s size

API cov. mtd UPs Avg Min Max UPs Avg Min Max
Java Security 125 12 2.8 2 4 4 2.0 2 2
HttpClient 343 20 2.7 2 4 12 2.5 2 4
Swing 1618 102 3.9 2 7 69 2.0 2 2
AWT 1019 75 4.3 2 9 50 3.1 2 6

Table 4.IV: Overview on the number of covered/analyzed methods and the number of detected usage
patterns per API

for all studied APIs. Indeed, the average usage cohesion values for MLUP are between 90% and 96%,

whereas MAPO’s average values are between 55% and 71% .

API MLUP MAPO
Java Security 0.90 0.71
HttpClient 0.96 0.55
Swing 0.94 0.61
AWT 0.94 0.60

Table 4.V: Average Cohesion of identified API usage patterns, for MLUP and MAPO.

The distribution of usage cohesion values for all detected usage patterns in Figure 4.5 confirms

the above-mentioned finding. Indeed, in the worst case for MLUP and the best case for MAPO, the

case of Java Security API, the median usage cohesion with MLUP and MAPO are respectively around

90% and 71%. For the other studied APIs, the medians and lower quartiles remain larger than 90%

for MLUP, whereas with MAPO the medians and upper quartiles persist under 70%.

In summary, the co-usage relationships between the methods of every usage pattern detected with

MLUP are comparatively strong, where at least 70%, and upto 100%, of the pattern’s methods are

co-used together.

4.5.2 Patterns generalization (RQ2)

The cross-validation allow us to observe the generalizability of the detected patterns on two lev-

els. First we inspect the co-usage relationships of detected patterns in the context of potential new
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Figure 4.5: Cohesion values of identified API usage patterns, for MLUP (gray boxes) and MAPO
(white boxes).

client programs. Then we characterize the usage cohesion deterioration between the training and

validation client programs. In both levels, we first analyze the average value of corresponding mea-

surements collected from all cross-validation runs (Table 4.VI and Table 4.VII), and then we analyze

the distribution of collected values using median boxplots (Figure 4.6 and Figure 4.7).

Patterns Validation Cohesion

Table 4.VI summarizes, for both MLUP and MAPO, the usage cohesion of detected usage patterns

in the contexts of validation client programs. For MLUP we notice that the average values remain

high (around 85%), but with a slight degradation in the case of HttpClient API where the average

usage cohesion is 79%. We also notice that the standard deviation values are very low. This reflects

that, overall, the detected patterns using MLUP had always very good usage cohesion in the context of

validation client programs. As for MAPO, the average usage cohesion values are significantly lower.

In Figure 4.6, although patterns cohesion values were degraded for both MLUP and MAPO, as

compared to the patterns cohesion values in Figure 4.5, we observe that the median values for MLUP

remain high. We also notice that the degradation of cohesion values is much more visible for MAPO.

Precisely, for MLUP, in the worst case (HttpClient API) the median usage cohesion for detected
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MLUP MAPO
API Avg StdDev Max Avg StdDev Max
Java Security 0.85 0.12 1.00 0.67 0.12 1.00
HttpClient 0.79 0.16 1.00 0.45 0.08 0.58
Swing 0.85 0.09 1.00 0.58 0.03 0.64
AWT 0.84 0.06 0.95 0.39 0.09 0.67

Table 4.VI: Statistics on the Cohesion of identified API usage patterns for MLUP and MAPO , in
validation clients

patterns is around 75%. For the other studied APIs, the medians and lower quartiles remain larger

than 80%.

Figure 4.6: Cohesion values of identified API usage patterns, for MLUP and MAPO in the contexts
of validation clients

In summary, compared to usage patterns that are detected by MAPO, usage patterns detected with

our technique remain highly cohesive across various client programs of the API of interest. This

shows that MLUP detected usage patterns retain their informative criteria independently of the API

usage scenarios. Examples of such API usage patterns are the patterns that we discussed in Sections

4.2.1 and 4.2.2. These results show that API usage patterns detected with our technique can be used
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to enhance the API documentation with co-usage relationships with high confidence without a need

to consider all possible usage contexts (client programs) of the API of interest.

Patterns Consistency

As it can be seen in Table 4.VII, the results show that, using both MLUP and MAPO, the identified

usage patterns for the four studied APIs are overall characterized with high consistency. Indeed, for

both MLUP and MAPO, the average consistency values of detected patterns across multiple validation

client programs are around 80%. The table also shows that maximum consistency values for all

studied APIs are very close to the ideal value, which is 1, and the standard deviation values are very

small. We consider as example the case of AWT API, where 22 leave-one-out cross validations have

been made, using 22 client programs. In this case the results show that, for any AWT’s detected

pattern, on average 84% (for MLUP) and 77% (for MAPO) of co-usage relationships between pattern

methods remain similar across 22 client programs of AWT.

MLUP MAPO
API Avg StdDev Max Avg StdDev Max
Java Security 0.86 0.09 0.98 0.87 0.06 0.96
HttpClient 0.77 0.09 0.89 0.86 0.03 0.90
Swing 0.83 0.05 0.92 0.91 0.02 0.95
AWT 0.84 0.04 0.94 0.77 0.03 0.88

Table 4.VII: Statistics on the Consistency of identified API usage patterns for MLUP and MAPO

The boxplots in Figure 4.7 give more information on the consistency of detected usage patterns

in each run of the compared techniques. Overall, the boxplots in Figure 4.7 show that, for detected

patterns with MLUP, the median and lower quartile values are almost equal for 3 APIs (Java Security,

Swing, and AWT), and they are around 85% and 80%, respectively. Hence, for these 3 APIs, we

observe that almost all detected usage patterns (precisely 75% of detected usage patterns, according

to the box lower quartile) are characterized with a high consistency, where the pattern’s consistency

value is greater than 80%. In comparison with MAPO results for these 3 APIs, we observe that the

consistency of usage patterns detected with MLUP is comparable to that of MAPO, with a very small

delta in favor of MAPO in some cases. However, recalling that the cohesion scores for MLUP were

much higher than those for MAPO, in the context of both validation sets (Figure 4.6) and training
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sets (Figure 4.5), we believe that this degradation of patterns consistency for our technique MLUP is

actually acceptable.

Figure 4.7: Consistency values of identified API usage patterns for MLUP and MAPO, across multi-
ple validation clients.

In summary, the consistency metric reflects only the behavioral similarity of detected patterns with

reference to the training and validation client programs, regardless of the cohesion quality. Both tech-

niques are equivalent in terms of consistency, while MLUP remain much better in terms of cohesion

quality of detected patterns.

4.6 Discussion

We applied our approach to four APIs and detected usage patterns that are informative and which

could help to enhance the API’s documentation. The evaluation of our approach took into account

the generalization to other client programs of the same API and showed that the usage pattern of an

API remain informative for other clients. Although, we selected four APIs of different domains, the

approach may not be generalized to all APIs because they may be of different natures.

The API usage pattern detected by our technique have the valuable property of generalizability. An

API pattern detected using a certain set of client programs of the API, as input to our approach, is very

likely to be evenly detected using a different set of client programs of the API of interest. This aspect
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of our approach also ensures that the detected patterns are independent of specific usage scenarios.

The generalizability of the patterns suggests that they are used by different client programs involving

various features. From this perspective, our approach is meant for enriching the API documentation

and facilitating the development tasks when using new APIs.

One of the key contributions of our work is the adaptation of DBSCAN algorithm for mining

API usage patterns. We have opted for this technique rather than for classic hierarchical clustering

techniques since DBSCAN has a notion of noise, and is robust to outliers. Indeed, when mining API

usage patterns, it is very probable to find many API methods that are not used jointly with specific

set of methods. Such methods are utility methods that can be used with distinct subsets of the API

methods. These methods are considered as noise and should not be clustered.

Finally, the application of our technique to detect multi-level API usage patterns requires the

setting of thresholds that may impact its output. For instance, the epsilon parameter in the clustering

algorithm controls the co-usage strength of the detected patterns. A small value leads to highly

cohesive clusters which means that the detected patterns are very informative. Hence, decreasing the

value of this parameter would result in an improvement in cohesion of detected patterns. However, in

this case the number and the generalization of detected patterns could decrease. The highly cohesive

detected patterns may not be shared by a large number of clients because they may not reflect different

interfering API usage scenarios. Therefore, there is a tradeoff between the co-usage relationship of our

detected patterns and their generalization to a large number of clients. Based on our initial experience

we set the maxEpsilon value to 0.35 which reflects a similarity of 0.65 but this value still need

more investigation.

4.7 Conclusion

This chapter presented a novel technique that identifies multi-level API usage patterns. We detect

groups of API methods that are highly cohesive in terms of usage by client programs. We analyzed

four APIs along with up to 22 client programs per API. Our approach detected API usage patterns

that are generalizable for a wide variety of API client programs. The detected patterns are constructed

in a hierarchical manner and are useful to enrich the API’s documentation.

66



The efficacy of our approach relies on the coverage of the API methods, provided by the used

client programs for mining the API usage patterns. This coverage has also to be redundant, i.e. an

API method should be covered (used by) several client methods from different client programs. This

limitation is shared by all existing work around making use of multiple API clients. This observation

lead us to deal with non client based techniques, to infer API usage patterns. In Chapter 5 , we present

our technique for mining API usage patterns only using the library source code.
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Chapter 5

Mining API Usage Patterns only using the Library Source Code

As mentioned earlier learning to use existing or new software libraries is a difficult task for soft-

ware developers, which would impede their productivity. Our approach presented in chapter 4, and

much existing work has provided different techniques to mine API usage patterns from client pro-

grams in order to help developers on understanding and using existing libraries. However, considering

only client programs to identify API usage patterns is a strong constraint. In fact, the client programs

source code is not always available or the clients themselves do not exist yet for newly released APIs.

In this chapter, we propose a technique for mining Non Client-based Usage Patterns (NCBUPminer).

We detect unordered API usage patterns as distinct groups of API methods that are structurally and

semantically related and thus may contribute together to the implementation of a particular function-

ality for potential client programs. We evaluated our technique through four APIs. The obtained

results are comparable to those of client-based approaches in terms of usage-patterns’ cohesion. This

contribution was published at the IEEE International Conference on Program Comprehension [62].

5.1 Introduction

Identifying usage patterns for the API can help to better learn common ways to use the API, even if

there exists several different ways to combine API elements (e.g. methods). In recent years,[60] much

research effort has been dedicated to the identification of API usage patterns [11, 42, 46, 79, 81, 87].

These existing techniques are valuable to facilitate API understanding and usage. Despite the different

aspects they try to cover, these techniques are all based on client programs’ code. However, client

programs’ code is unfortunately not available for both newly released API libraries and APIs which

are not widely used. Even if client programs are available, all the usage scenarios of the API of

interest may not be covered by those clients. Indeed, from the coverage perspective, client-based

identification of API usage patterns can be used only for a subset of the API of interest, that is the

set of the API methods which are already used, multi-times, by different clients of the API. Hence,



such techniques need to access and analyze the code of different clients of the API, and guarantee that

those clients cover the possible variety of the API usage contexts.

In this chapter, we propose a technique which does not rely on client programs’ code to determine

API usage patterns, namely Non Client Based Usage Patterns miner (NCBUPminer). Usage patterns

describe references to a set of API methods that could co-occur with a certain frequency within a

population of usage scenarios [60].

Our approach is based on the idea that API methods can be grouped together based on their

mutual relationships. Our intuition is that related methods of the API may contribute together to

the implementation of a domain functionality in client programs and thus may form an API usage

pattern. We are interested, in particular, in two types of relationships, namely, structural and semantic

(conceptual) dependencies [8, 65].

NCBUPminer is premised on the analysis of structural and semantic dependencies of API methods

within the API code itself. More precisely, we start from two assumptions: (1) the API methods that

change the state and manipulate the same object could be complementary in their contribution to a

functionality, i.e. structural relationship assumption; and (2) the API methods can be related to the

same domain functionality if they share similar vocabulary, i.e. semantic relationship assumption.

The proposed approach is not an alternative to client-based ones. It is rather a solution when

client programs are not available, i.e. for newly released API libraries and non-widely used ones.

Therefore, we do not expect that it performs better for usage pattern identification. Still, our goal is to

obtain results that are close to those of client-based approaches. In this context, to assess how much

confidence we could have on the non-client based patterns, we performed a comparative evaluation

of our technique NCBUPminer against a client based one MLUP presented in Chapter 4.

This chapter is organized as follows. Section 5.2 motivates the usefulness of this work with two

actual examples from AWT and JavaSecurity APIs. We explain our approach in Section 5.3 and

present the setting and API used for evaluating it in Section 5.4. Section 5.5 presents and analyzes

the results of our study. In Section 5.6 we discuss further our approach and the evaluation results.

Finally,Section 5.7 concludes the chapter and describes our future research work.
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5.2 Motivation examples

In this section, we present two motivation examples to illustrate how the structural and semantic

dependencies could be interpreted as an indicator of co-usage relationships.

5.2.1 Java Security example

Java Security API[3] provides features to improve security of Java applications. The KeyStore

class in the java.security API represents a storage facility for cryptographic keys and certifi-

cates. A KeyStore object manages different types of entries used to authenticate other parties such

as PrivateKeyEntry, SecretKeyEntry and TrustedCertificateEntry. Before a

Keystore object can be accessed, it must be loaded, then, it would be possible to read/write entries

from/into it.

NCBUPminer detected a usage pattern reflecting this functionality through the following 3 API

methods:

1. load(LoadStoreParameter) loads Keystore objects using the given parameter.

2. getEntry(String, ProtectionParameter) gets the keystore entry for the specified

alias with the specified protection parameter.

3. setEntry(Str,Entry,ProtectionParameter) saves the keystore entry under a spec-

ified alias and with respect to the protection parameter.

These methods have strong structural dependencies and semantic similarity. Precisely, both the

getEntry () and the setEntry() methods need to start by looking up for the initialization

state of the keystore through the initialized field in the Keystore class, which is set via

the load() method. The aforementioned capabilities of the three methods are achieved via the

KeyStoreSpi field, that defines the Service Provider Interface (SPI) for the KeyStore class.

Moreover, LoadStoreParameter object, which must be passed to the load() method, is used

to set the ProtectionParameter object, which is used to protect the keystore data. That object

is then used as a parameter in both methods getEntry() and setEntry().
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5.2.2 AWT Example

AWT API [1] provides a reach toolkit for creating user interfaces and for painting graphics and

images. We consider the class Raster in the AWT API. Raster is used to represent image data

through a rectangular array of pixels. A Raster encapsulates a DataBuffer that stores the sample

values of image bands datum and a SampleModel that describes the layout of the image data and

how to locate a given sample value in a DataBuffer. Whenever a programmer need to manipulate

image low-level information, he can directly manipulate samples and pixels in the DataBuffer

of the Raster class. For that, a conventional way consists on starting with the creation of a

compatible sample model which describes the data of the manipulated image throw the method

createCompatibleSampleModel(int, int) in the class SampleModel. In the second

step, the programmer need to use the factory method createWritableRaster(SampleModel,

Point) in the Raster class. This provides pixel writing capabilities throw the created object

WritableRaster, and the programmer could manipulate the image low-level information. The

next step would be the use of createChild method of the Raster class, to copy either all bands

or only a subset of the image bounding rectangle. Finally the setDataElements method of the

WritableRaster class is used to set the data for a rectangle of pixels from the manipulated

image. Our technique detected these 4 methods as a usage pattern, since they are manipulating the

same objects. For instance, returned objects by some methods of the pattern are used as parameters

for the other methods. We can also notice the presence of some similarity between the vocabularies

of these methods. Figure 5.1 shows a code snippet from the SimpleRenderedImage class in

GanttProject, where the patterns’ methods are used to copy a rectangular region.

5.3 Approch

This section presents our approach for detecting non-client based usage patterns. We define a

non-client based usage pattern for an API (an API usage pattern, UP, for short) as a subset of the

API’s methods that are structurally and semantically related. A usage pattern includes only public

API methods that can be accessed from client programs, and each pattern represents an exclusive

subset of the API’s methods.
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public WritableRaster copyData(WritableRaster dest) {
Rectangle bounds;Raster tile;
if (dest == null) {

bounds = getBounds();
Point p = new Point(minX, minY);
/* A SampleModel to hold the entire image. */
SampleModel sm = sampleModel.createCompatibleSampleModel(width,height);
dest = Raster.createWritableRaster(sm, p);

...
for (int j = startY; j <= endY; j++) {

for (int i = startX; i <= endX; i++) {
tile = getTile(i, j);
Rectangle intersectRect = bounds.intersection(tile.getBounds());
Raster liveRaster = tile.createChild(intersectRect.x,

intersectRect.y, intersectRect.width,
intersectRect.height, intersectRect.x, intersectRect.y,
null);

dest.setDataElements(0, 0, liveRaster);
}

}
return dest;

}

Figure 5.1: Code snippets of Raster from GanttProject

The rationale behind fetching the co-usage relationships in the API code itself is that public meth-

ods that change the state of or manipulate the same set of objects cooperate to accomplish certain

domain functionality. However, even if some API methods are cooperating by manipulating the same

object states, this cooperation could be for different domain purposes. Hence, those methods may

not be co-used together, for one particular domain purpose, in client programs. As a matter of fact,

the domain knowledge is encapsulated in the methods vocabulary [6, 27]. Therefore, our technique

for identifying API usage patterns should isolate noises with respect to the degree of structural and

semantics relationships in detected patterns.

Our approach takes as input the source code of the API to study and the output is a set of usage

patterns as described earlier. The detection approach proceeds as follows.

– Extracting API methods, references and terms. First, the API source code is statically analyzed,

and its public methods are retrieved. We collect, for each public API method, all the fields that

are referenced either directly inside it or through the methods that it uses. We also collect terms

composing the public method name and those composing its parameters and the local variable

identifiers.
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– Encoding methods information. Then, we compute states and terms vectors for the API public

methods. Each public method in the API is characterized by: (1) a vector of states which

encodes information about objects and states manipulated by the method, (2) a vector of the

method’s terms, that will be used by LSI technique [15, 66] to construct a semantic space

representation for the API of interest. The static analysis is performed using the Eclipse Java

Development Tools (JDT).

– Clustering. Finally, we use cluster analysis to group the API methods that are most structurally

and semantically related.

5.3.1 Information encoding of API methods

In our approach, an API public method represents a point in the search space. As mentioned

above, each point is represented by two vectors.

The first vector is the states’ vector; it has constant length that is the number of all the manipulated

classes and fields through the API public methods. Figure 5.2 shows an example where eight fields of

four different classes are manipulated by the public methods of the API of interest. On that basis, the

API methods will have a states’ vector of length 12. For a given API method, an entry of 1 (or 0) in

the ith position of the states’ vector, denotes that the ith field is referenced (or not referenced) through

the API method. If at least one field of a class is referenced, then the position of the corresponding

class is also set to 1. This is done to, when computing the state similarity between two methods, give

more importance to situations where both methods access fields from the same class than fields from

different classes.

Figure 5.2: The state vector representation of 4 API methods. In this API, 8 fields (C1.f1 ...
C4.f2) of 4 different classes (C1 ... C4) are manipulated by the API methods.
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The second vector is the terms’ vector; it is computed from the lemmatized collected terms com-

posing the public method name and its parameter and local variable identifiers. Similarly to states’

vectors, the terms’ vectors have constant length that is the number of all lemmatized collected terms

composing the public methods in the API of interest. For a given API method, an entry of 1 (or 0)

in the ith position of the terms’ vector, denotes that the ith term appears (or does not appear) in the

method vocabulary.

The terms’ vectors of the API are used in a Latent Semantic Indexing process [66] to create a

term-document matrix C. Each of the rows of C represents a term, and each of its columns represents

a document (i.e. an API public method). C is an M×N matrix where M is the number of all terms

collected from the API and N is the number of public methods of the API. To better infer semantic

similarity relations based on terms co-occurrence, a Singular Value Decomposition (SVD) [66] is

applied. From the term-document matrix C, the SVD constructs three matrices: Uk is the SVD term

matrix; Σk is the singular values’ matrix; and V T
k is the SVD document matrix, where in our case

k = min(M,N). The SVD document matrix, V T
k , yields a new representation for each document (API

public method), that enables us to compute document-document similarity scores in the semantic

space representation as the cosine between the term vectors of the API methods.

5.3.2 Similarity and distance metrics

As mentioned earlier, our approach constructs clusters of API methods by grouping those that are

close to each other (i.e. similar methods). For this purpose, we define two similarity metrics, State

Manipulation Similarity StateSim and Semantic Similarity SemanticSim.

The rationale behind the first metric, StateSim, as defined in Equation (5.1), is that two API

methods mi and m j, are close to each other (i.e. similar) if they share a large subset of the classes and

fields they are manipulating.

StateSim(mi,m j) =
|accessed(mi)∩accessed(m j)|
|accessed(mi)∪accessed(m j)|

(5.1)

As for the semantic similarity metric, SemanticSim, we use the SVD document matrix, V T
k , as

mentioned above, to compute the cosine similarity between the API methods, as defined in Equa-
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tion (5.2). This measure is used to determine how much relevant semantic information is shared

among two API methods.

SemanticSim(mi,m j) =

−→
Vi ×
−→
Vj

||−→Vi ||× ||
−→
Vj ||

(5.2)

Where
−→
Vi and

−→
Vj are the jth and ith column corresponding to mi and m j in the document matrix V T

k .

The semantic similarity is then normalized between 0 and 1.

Using the similarity metrics, we compute the distance between two points pi and p j representing

respectively two API methods mi and m j as opposite to the average similarity between pi and p j:

Dist(Pi,Pj) = 1−
StateSim(mi,m j)+SemanticSim(mi,m j)

2
(5.3)

5.3.3 Incremental clustering

For the non-client based usage pattern mining, we also used the DBSCAN based incremental

clustering. The description of the algorithme and the pseudo-code are given in Section4.3.4 and

Section 4.3.5.

We adapt DBSCAN algorithm for identifying usage patterns that may have variant densities with

regard to the similarity between the pattern methods. That is to avoid limiting our patterns by one,

unjustified, threshold of similarity, which may lead to less-good solutions.

The incremental clustering first construct a dataset containing all analyzed methods of the API

of interest and cluster them using DBSCAN with an epsilon value of 0. The distance defined in

Equation (5.3) is used to decide if a point belongs to the neighborhood of a given point. This results in

clusters of the most similar API methods, and multiple noisy points left out, i.e. points that could not

be clustered because there is no other point exactly similar in terms of state and semantic similarity.

Then, we construct for each produced cluster of this run a representative point (new state and term

vectors), by aggregating the vectors of its composing methods using the logical disjunction. The new

term vector
−→
T is then mapped into its representation in the LSI semantic space by the following

transformation:

−→
Tk = Σ

−1
k ×UT

k ×
−→
T (5.4)
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A new dataset is formed including the new vectors and the noisy points from the first run. This

dataset is fed back to the DBSCAN algorithm for clustering, but with a slightly higher value of epsilon.

In the second run, some clusters form the first run are identical, other clusters are incremented with

other points, and new clusters could be formed. The incremental clustering process is repeated until

epsilon reaches a maximum value given as parameter.

5.4 Evaluation

The objective of our study is to evaluate whether our technique can detect API usage patterns of

good quality, that are comparable to those detected using several clients to the API of interest. We

formulate the research questions of our study as follows:

– RQ1: what is the quality of inferred usage patterns from the perspective of client programs?

and what is the impact/contribution of the two used assumptions (structural and semantic)?

– RQ2: to which extent the inferred patterns are comparable to those detected by the client-based

technique, MLUP?

5.4.1 Comparative evaluation

To fairly evaluate the quality of our detected API usage patterns from the perspective of the API

clients, and compare them to client-based detected usage patterns, we evaluate our technique using

the data set presented in Chapter 4. To perform our study we used the four APIs presented in Table 4.I

and their client programs Table 4.II, and Table 4.III.

To address our first research question, RQ1, we apply our technique on the four selected APIs and

analyze the quality of detected patterns in the contexts of selected client programs, using the parame-

ters and metrics that we detail in Section 5.4.2. To analyze the impact of different used assumptions

(state similarity vs. semantic similarity) on our detected usage patterns, we use each heuristic alone

for detecting patterns in the selected APIs, and compare the quality of the detected usage patterns.

We also evaluate the quality of the patterns produced by considering the combination of the two

heuristics.

To address our second research question, RQ2, we compare our technique for mining Non Client-

based Usage Patterns (NCBUPminer) to our client-based approach (MLUP) Chapter 4. We compare
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with MLUP since it is a client-based approach, and both approaches, MLUP and NCBUPminer, use

the same clustering algorithm. For a fair comparison, we need to assess how the newly proposed

heuristics in this work (structural and semantic similarity) will perform on the same set of API meth-

ods that can be clustered using MLUP, i.e. only the subset of methods used by the considered clients.

5.4.2 Experimental setup

This section describes the used metrics in our study, as well as the setting and process of the

performed experiments in our study.

To assess the quality of the detected API usage patterns from the perspective of the API client

programs, we need to evaluate whether these patterns are cohesive enough to exhibit informative co-

usage relationships between the API methods. To measure the usage cohesion of the detected patterns,

we use the Pattern Usage Cohesion Metric (PUC) Equation (4.3), that was previously adopted in

Chapter 4 to evaluate the quality of API usage patterns detected with MLUP.

To assess the quality of inferred API usage patterns using NCBUPminer, and analyze the impact of

different used heuristics (RQ1), we run NCBUPminer three times on each studied API. Each run uses

all the API’s public methods as the data set to be clustered. In the first run, we consider both heuristics,

structural and semantic similarity between methods, whilst in the second and third runs, we dissociate

the two heuristics and consider just structural similarity and semantic similarity, respectively. For each

studied API, we collect the inferred API usage patterns for the three runs and analyze their quality

w.r.t. their usage cohesion (i.e. PUC values) in the context of the API client programs in Table 4.II

and Table 4.III. Note that some of the inferred patterns by our technique, NCBUPminer, may not be

covered by the selected client programs –although we use a large variety of client programs for each

studied API. Therefore, we collect and consider the usage cohesion only for eligible patterns. In our

study, an API usage pattern is said eligible if at least one of its methods is used/covered by one of

the analyzed API client programs. In addition to the usage cohesion property, we also compare the

number and average size of inferred patterns in each run. Based on the comparison results, we decide

which heuristic/s is/are the best for inferring API usage patterns using NCBUPminer.

To answer our second research question (RQ2), for all the selected APIs we apply NCBUP-

miner (using both heuristics) and MLUP (using the APIs client programs described in Table 4.II and

Table 4.III). For a given API, only the API’s methods which are covered by the analyzed client pro-
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grams of the API can be clustered by MLUP. Hence, for a fair comparison between NCBUPminer and

MLUP, first we identify the set of methods that can be clustered by MLUP, then we use only this set

of methods as an input for NCBUPminer and MLUP. Then, we compare the detected usage patterns

through the two techniques, w.r.t. their usage cohesion in the context of the API’s client programs,

that MLUP used for identifying its usage patterns. We collect the PUC values of identified patterns

by NCBUPminer and MLUP, and use the Wilcoxon rank sum test with a 95% confidence level to test

whether a significant difference exists between the measurements for the two techniques. Moreover,

we opt for Cliff’s delta tests for estimating the effect-size delta between the cohesion scores of usage

patterns identified by the two techniques.

As both techniques use the DBSCAN incremental clustering algorithm, we set the maximum ep-

silon value for both techniques, in all runs, to 0.35. For NCBUPminer, this value can be interpreted as

follows: the value of maximal (structural/semantic) distance between two methods within an inferred

pattern should be smaller than 0.35 (where 0 and 1 are, respectively, the smallest and largest values

of distance). As for MLUP, this value means: for all detected patterns, the maximal non-uniformity

in the co-usage of the pattern’s methods should be smaller than 0.35.

5.5 Results analysis

In the following paragraphs, we report the results of our experiments.

5.5.1 Impact of used heuristics (RQ1)

To answer our research question RQ1, we analyze the quality (usage cohesion) of inferred API

usage patterns, as well as their number and size, and we inspect the impact/contribution of different

used heuristics.

Usage Cohesion

As illustrated in Figure 5.3, for all the studied APIs, when only the semantic similarity between

API methods is used, the inferred usage patterns reflect less-good co-usage relationships between

the pattern’s methods. Indeed, the average usage cohesion values for this case are between 44% for

HttpClient and 52% for Java Security. Nevertheless, when the structural similarity between the API

methods is considered, the usage cohesion values of inferred usage patterns are improved. Using
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this heuristic alone, on average 61% and up to 69% of the pattern’s methods are uniformly co-used

together. The obtained cohesion values using this heuristic alone are overall acceptable. However,

they are still lower than the average usage cohesion value obtained for the Java Security API while

combining both heuristics, which is 73%. In this last case, we notice that the average usage cohesion

is high, but with a slight degradation in the case of Swing API, where the average usage cohesion is

64%. This is mainly due to the large size of Swing. Indeed, Swing declares 7226 public methods,

as compared to Java Security API which declares 901 public methods. Despite the large number

of declared public methods in Swing, and with regard to 22 different clients of this API, the results

show that for an inferred usage pattern by NCBUPminer on average 64% of the pattern’s methods are

uniformly co-used together.

Figure 5.3: Average cohesion of inferred patterns using different heuristics

Number of Inferred Patterns

Figure 5.4 shows that an order relation can be observed between the numbers of patterns inferred

through the three heuristics. For all studied APIs, the lowest number of inferred usage patterns was

obtained while only the semantic heuristic is used. In second place, while combining the two heuris-

tics the number of inferred patterns for each studied API was much greater than the previous case.

Here, the number of inferred patterns for the Swing API reached a peak of 275 patterns.

Size of Inferred Patterns

The results in Figure 5.5 show that either when only the structural heuristic is used or both the

structural and semantic heuristics are combined, the obtained sizes are almost equivalent with more or
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Figure 5.4: Average number of inferred patterns using different heuristics

less three methods per usage pattern. The largest usage patterns were inferred while only the semantic

heuristic is used. Here, we observe that the average sizes of inferred clusters for HttpClient, Swing and

AWT are around 15, 17 and 22, respectively. This can explain the small number of inferred patterns

using this heuristic, as well as the low usage cohesion of the inferred patterns. When analyzing the

inferred patterns using this heuristic, we found that they group methods having similar vocabulary but

in most cases contribute to different functions in the domain. For some inferred clusters, we found that

clustered methods belong in general to different classes implementing the same interface. Moreover,

we were able to identify sub-clusters of methods that have strong structural similarity and contribute

to one specific function in that vocabulary domain.

Figure 5.5: Average size of inferred patterns using different heuristics
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As a summary, the results show that NCBUPminer can infer co-usage relationships between the

API’s methods with high precision. And, the structural similarity between the API methods has better

contribution than the semantic similarity for inferring good API usage patterns. Still that, combining

both heuristics NCBUPminer performs the best for inferring the co-usage relationships. In this case,

with regard to all studied APIs and their analyzed client programs, on average 64% and upto 73%

of methods in an inferred usage pattern are always uniformly co-used together, that is in the context

of a large variety of API client programs. More specifically, using the structural similarity leads to

cluster the API’s methods which tightly collaborate together, but might contribute to different domain

functions. The semantic heuristic enables our technique to identify clusters of methods that belong

to the same vocabulary domain, and the structural heuristic enables it to identify sub-groups in those

clusters, in which methods contribute together to one specific functionality in that domain.

Such good usage patterns detected by NCBUPminer, while combining both heuristics, are the

examples that we outlined in Section 5.2. In addition to those patterns, NCBUPminer was able to

infer other informative API usage patterns that were not covered/used by the API client programs

considered in our study –although we used a large variety of client programs for each studied API. For

instance, NCBUPminer inferred a usage pattern of the HttpClient API for validating certificate chain.

The inferred pattern consists of the following four methods defined in the classes PKIXParameters

(methods 1 and 2) and CertPathValidator (methods 3 and 4):

1. PKIXParameters(java.security.KeyStore),

2. setRevocationEnabled(boolean),

3. getInstance(String), and

4. validate(CertPath, CertPathParameters)

Although these methods are not covered by the 12 client programs of HttpClient API that we used

in our study, our analysis revealed that they form an informative usage pattern of HttpClient API. In-

deed, using code search engines, we found that these methods are uniformly used together in several

client programs of HttpClient API, as in the Waterken 1 project, for the purpose of validating cer-

tificate chains. For instance, the code snippet in Figure 5.6 shows how this pattern is used in a method

of the URL Handler class in Waterken, for checking the trusted server. The description of this

1. Waterken is a platform for secure interoperation using a capability messaging protocol.
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usage pattern is as follows. First the method PKIXParameters() is used to create an instance of

PKIXParameters, that the CertPathValidatorwill use to validate certification chains. Then,

the second method setRevocationEnabled() is used to enable or disabled the default revoca-

tion checking mechanism of the underlying PKIX (Public-Key Infrastructure X.509) service provider.

In the last step, the method getInstance() is invoked to create a CertPathValidator object

which implements the specified algorithm that can be used to validate certification paths by calling

the fourth method validate().

5.5.2 Comparative evaluation (RQ2)

To address our research question RQ2, we applied our technique (with the combined assumptions)

and MLUP for detecting usage patterns of selected APIs.Then, we compared the results.

We, first, analyze the average usage cohesion values for all detected usage patterns per studied

API obtained after using the two techniques as shown in Table 5.I. The results reveal that using both

NCBUPminer and MLUP, the identified usage patterns for the four studied APIs are overall charac-

terized with high usage cohesion values, which reflect very strong co-usage relationships between

the methods of identified patterns. Indeed, the average usage cohesion values of identified patterns

across multiple validation client programs are around 80% for NCBUPminer and 90% for MLUP.

Although the results of NCBUPminer are, as expected, slightly lower than the one of MLUP, they are

close and higher enough, considering that the client programs are not seen in the derivation process.

Actually, using the Wilcoxon rank sum test, we found that the difference between the two compared

approaches, with regard to the usage cohesion of detected patterns, is not statistically significant at

α = 0.05. To estimate the effect-size between the usage cohesion scores of NCBUPminer patterns

and that of MLUP patterns, we performed Cliff’s delta test at 95% confidence interval. The result is

that the estimated delta value, which is d = 0.10 in favor of MLUP patterns, is not significant. More

precisely, there is a probability of only 42.8% that a pattern randomly chosen from MLUP results

will have a higher usage cohesion score than a randomly chosen pattern from NCBUPminer patterns,

as compared to 32.3% probability in favor of NCBUPminer, and to 25% probability for the equality

of scores. Hence, we state that the performance of NCBUPminer for inferring API usage patterns is

comparable to that of MLUP.
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public void checkServerTrusted(X509Certificate[] chain, String authType) throws
CertificateException{

// Validate the certificate chain.
...

PKIXParameter params = new PKIXParameters(Collections.singleton(ta));
params.setRevocationEnabled(false);
CertPathValidator.getInstance("PKIX").validate(path, params);

...
}

Figure 5.6: Code snippet for validating certificate Chain, in method checkServerTrusted from
class Handler in Waterken.

API NCBUPminer MLUP
Java Security 0.84 0.90
HttpClient 0.83 0.96
Swing 0.78 0.94
AWT 0.81 0.94

Table 5.I: Average Cohesion of identified API usage patterns, for NCBUPminer and MLUP

Table 5.II summarizes the number and size of API usage patterns identified by NCBUPminer and

MLUP in this phase. The table shows that, for all studied APIs, MLUP has been able to identify more

usage patterns than NCBUPminer. Moreover, MLUP usage patterns are, overall, slightly larger than

NCBUPminer ones. We believe that this is mainly due to the capabilities of MLUP in resolving the

interference in co-usage relationships between API methods. Indeed, thanks to the valuable informa-

tion about the usage of API methods in the API client programs, MLUP can identify API’s methods

that do not belong to the same vocabulary domain, but their usage frequently interferes with each

others. Still, except for Java Security, the number of patterns inferred by NCBUPminer is comparable

to ones of MLUP. In HttpClient, Swing and AWT, the percentages are, respectively, 95% (19/20), 91%

(93/102), and 77% (58/75).

In conclusion, the detected usage patterns with NCBUPminer retain their informative criteria in-

dependently of the API usage scenarios, and our technique can be used to enhance the API documen-

tation with co-usage relationships with high confidence, when the client programs are not available

or are not numerous enough to cover the multiple usage scenarios. Indeed, the majority of usage pat-

terns detected by the client-based technique, MLUP, were inferred by our non-client based technique,
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NCBUPminer MLUP
UP’s size UP’s size

API cov. mtd UPs Avg Min Max UPs Avg Min Max
Java Security 125 4 2.5 2 3 12 2.8 2 4
HttpClient 343 19 2.4 2 4 20 2.7 2 4
Swing 1618 93 2.8 2 8 102 3.9 2 7
AWT 1019 58 2.5 2 6 75 4.3 2 9

Table 5.II: Overview on the number of covered/analyzed methods and the number of detected usage
patterns per API

NCBUPminer. However in some cases the inferred usage patterns were slightly different from the

exact real usage in client programmes.

5.6 Discussion

Software clustering techniques, which are based on structural or semantic coupling between soft-

ware entities, have been widely used to support program comprehension, software remodularization,

concept location or feature identification [8, 65]. However, this is the first time it is shown that com-

bining both heuristics, structural and semantic similarity between methods, can lead to identifying

new dimensions of dependencies between API methods, that are co-usage relationships within API

client programs. We evaluated the impact of the two aforementioned heuristics on the quality of

inferred API usage patterns. The results show that combining both heuristics performs the best for

inferring the co-usage relationships between the API’s methods within client programs.

The valuable contribution of NCBUPminer over existing techniques around identifying API us-

age patterns, is that it can be applied on “new” APIs, where client programs are not available. In

fact, our technique can be used even before the release of the API for assisting API developers in

comprehension tasks and in enriching the API documentation.

To evaluate the performance of our technique in inferring API usage patterns, we compared it

to the our client-based approach MLUP. We compared with MLUP since both techniques use the

same clustering algorithm. As both techniques use the DBSCAN incremental clustering , we used for

both the same configuration used for MLUP , where the value of the parameter maxEpsilon is set to
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0.35. However, as the comparative techniques use different heuristics, the parameter maxEpsilon has

a completely different interpretation in each technique.

We applied our approach to four APIs and detected usage patterns that are informative and, which

could help to enhance the API’s documentation. We state that the performance of our technique for

inferring API usage patterns is comparable to that of MLUP. However, as a threat to validity, this

finding is related to the used client programs in our study. Still, our study used a fair set of validation

client programs to evaluate the quality of inferred usage patterns by our technique.

5.7 Conclusion

In this chapter, we presente a technique that infers API usage patterns using only the API source

code, independently of the availability of API client programs or unit tests to cover the API function-

ality. Our technique uses only structural and semantic similarity between the API methods to infer

their co-usage relationships. We applied our technique on four APIs that differ in size, utility and

usage domains. To evaluate the performance of our technique, we analyzed the quality of inferred

API patterns in terms of usage cohesion using a large variety of API client programs. We found

that our technique can infer API usage patterns with a precision that is not fare from the most-recent

client-based technique for inferring API usage patterns. Furthermore, we evaluated the contribution

of each used heuristic for inferring good usage patterns. We found that by combining both heuristics,

structural and semantic similarity, our technique performs the best.

Despite these encouraging results, there is still room for improvement, . Indeed the library based

technique infers patterns that could apply to any client program, However, some of the inferred pat-

terns do not reflect real usage scenario. Conversely client based technique infers precise usage patterns

with actual instances in the used client programs, yet inferred patterns are limited to the usage scenar-

ios in the selected client. In chapter 6 we explore the combination of client-based and library-based

usage pattern mining.
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Chapter 6

A Cooperative Approach for Combining Client-based and

Library-based API Usage Pattern Mining

As mentioned earlier much existing work has provided different techniques to mine API usage

patterns based on client programs in order to help developers understanding and using existing li-

braries, such as our technique presented in Chapter 4. Other techniques propose to overcome the

strong constraint of clients’ dependency and infer API usage patterns only using the library source

code, such as the technique presented in Chapter 5 . In this chapter, we propose a cooperative usage

pattern mining technique (COUPminer) that combines client-based and library-based usage pattern

mining. We evaluated our technique through four APIs and the obtained results show that the cooper-

ative approach allows taking advantage at the same time from the precision of client-based technique

and from the generalizability of library-based techniques. This contribution was published at the

IEEE International Conference on Program Comprehension [61].

6.1 Introduction

The client-based techniques are known for their accuracy. However, client programs’ code is

unfortunately not available for both newly released libraries and APIs that are not widely used. And

even if client programs are available, in an exhaustive scenario, those clients may not cover all the

possible usage contexts of the API of interest. To address these issues, the solution is to overcome the

strong constraint of client dependency by only considering the library code.

Deriving the usage patterns from library code is interesting as the inferred patterns could ap-

ply to any client program (generality property). However, this kind of derivation could be unsafe

since it could lead to inferring usage patterns that do not reflect a real-world behavior. Conversely,

client-based derivation infers precise usage patterns with actual instances in the used client programs

(accuracy property). However, these patterns are specific to the considered clients. In this chapter, our

objective is to take advantage of the properties of generality and accuracy by combining the client-

based and library-based usage pattern mining. Our idea is similar to that of hybrid static-dynamic



analysis, which aims at finding a good compromise between the static-analysis soundness and the

dynamic-analysis accuracy [21].

We specifically study which form of combination is better suited to achieve the best tradeoff

between the generality and accuracy properties. As both techniques follow an iterative mining process

to refine the patterns, the obvious combination is the sequential one, by applying a first technique

(client or non client-based mining) to derive a set of patterns and then apply the second technique to

refine these patterns. A more sophisticated combination is to interleave the different iterations of the

two techniques (starting by one or the other technique) in a parallel and cooperative manner to solve

a common goal. As both techniques use parameters, the values of the parameters can be varied to

improve the accuracy and to explore the search space more efficiently.

We evaluated our hybrid technique using the four APIs of the dataset presented in Chapter 4: The

results indicate that the cooperative approach is better than the sequential one.

This chapter is organized as follows. Section 6.2 discuss the motivation behind this contribution.

We explain our approach and detail the cooperative mining in Section 6.3. The approach evaluation

setting and the used APIs are described in Section 6.4. Section 6.5 presents and discuss the results of

our study. Finally,Section 6.6 concludes the chapter.

6.2 Motivation examples

In this section, we illustrate through a motivating example how the combinations of client-based

and library-based techniques can lead to a better approximation of real-world behavior.

Digital signatures are used for authentication and integrity assurance of digital data. Signature

class of the Java Security API[3] is used to provide this functionality. A Signature object can be

used either for signing data or for verifying digital signatures. For that, a client program usually starts

by getting the Signature object that implements a specified standard signature algorithm through

the method getInstance(String algorithm) in the Signature class. Then, one needs to

initialize the Signature object either with a private key for signing (initSign(PrivateKey)),

or with a public key for verification (initVerify(PublicKey)). In the next step, the method

update(byte[]) is used to update the data to be signed or verified. Finally, depending on the

initialization type, either the methodsign() is used for signing the updated data or the method
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verify(byte[]signature) is used to verify the passed-in signature. Let us, now, show how

such a pattern has been mined using the client-based and library-based techniques.

The client-based technique presented in Chapter 4 detected a usage pattern reflecting the integrity

assurance functionality through the following 4 API methods getInstance(String algorithm),

initSign(PrivateKey), sign() and update(byte[]). The client-based technique missed

the methods related to verifying digital signatures, since these methods were not sufficiently used by

the considered client programs.

The library-based technique Chapter 5 grouped 12 API methods in a pattern reflecting the integrity

assurance functionality. The pattern includes the following methods: initVerify(PublicKey),

initSign(PrivateKey), sign(), and verify(byte[] signature) in Signature

class; generatePublic(..), generatePrivate(..) and getInstance(..) in the

class KeyFactory; getInstance(..), initialize(..) and generateKeyPair() in

KeyPairGenerator class; getPrivate() and getPublic() in KeyPair class. Although

this pattern includes the digital signature verification functionality, some of the associated methods,

e.g., generation of pairs of public and private keys, are not always relevant.

We will show later in this chapter that combining both client and non-client based techniques

help us restricting the mined pattern to only the 8 necessary API methods 6 of them are in the

Signature class : getInstance(String algorithm), initSign(PrivateKey),

sign(), initVerify(PublicKey) , verify(byte[]signature), update(byte[]

) and the other are in the KeyFactory class : generatePublic(..),generatePrivate(..).

6.3 Approch

This section introduces our cooperative approach for detecting API usage patterns. Before pre-

senting the cooperative patterns mining, we provide a brief overview of our approach.

6.3.1 Overview

We define a usage pattern for an API as a subset of the API’s methods that are either co-used to-

gether by the API client programs, or structurally and semantically related and thus may jointly con-

tribute to the implementation of a domain functionality in client programs. A usage pattern includes
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only public API methods that can be accessed from client programs, and each pattern represents an

exclusive subset of the APIs methods.

APIs are open applications, and it is unfeasible to analyze all their possible usage scenarios

(clients). For this reason, client-based mining emphasizes patterns’ accuracy over their generality.

Conversely, for the library-based mining, public methods that change the state of or manipulate the

same set of objects while sharing the same semantic context, could cooperate to accomplish cer-

tain domain functionality. This allows to find general patterns independently from a given subset

of clients. However, those methods, although similar, may not represent an actual usage pattern in

practice. Hence, the library-based mining emphasizes patterns’ generality over their accuracy. To

benefit from both generality and accuracy properties, our approach combines both client-based and

library-based techniques.

Our approach takes as input the source code of the API to study and multiple client programs

making use of this API. The output is a set of usage patterns as described earlier. The detection

approach follows three steps:

– Extracting API methods, references, terms and usage. First, the API source code is statically

analyzed, and its public methods are extracted. Exactly as for the client-based and library-

based techniques, We collect, for each public API method, all the fields that are referenced

either directly inside it or through the methods that it uses. We also collect terms composing

the public method name and its parameters as well as the local variable identifiers. In addition to

fetching information inside the library, all the provided client programs are statically analyzed

to extract the occurrences of API methods that are used in the clients’ methods.

– Encoding methods information. Again as for the client-based and library-based techniques,

after the information extraction, we derive states, terms and usage vectors for the API public

methods. Each public method in the API is characterized by: (1) a state vector which encodes

information about objects and states manipulated by the method, (2) a vector of the method’s

terms, that will be used by LSI technique [15, 66] to construct a semantic space representation

for the API of interest, and (3) a vector of the method’s usage which encodes information about

its client methods.
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– Clustering. Finally, we use cluster analysis to group the API methods that have the best trade-off

between structural, semantics and co-usage relationships. We are also based on the adaptation

of DBSCAN algorithm.

6.3.2 Cooperative patterns mining

This section details the combination process of the cooperative API usage-pattern mining. As

mentioned before, the API public methods represent points in the search space. These points will be

cooperatively clustered from two different perspectives. (i.e. client-based and library-based), which

allows examining the search space more efficiently. The challenge is then, how to combine these

two perspectives to achieve their respective benefits. For this question, we have two possibilities: (1)

the two techniques are ran one after the other (sequential combination), or (2) they are intertwined

(parallel combination).

6.3.2.1 Cooperative sequential combination

As mentioned earlier, the client-based and the library-based mining could be performed one after

the other. The rationale behind the sequential combination is that the obtained usage patterns with one

mining technique can be completed/enriched by the other technique. For the sequential combination,

we will test the possibilities of starting with one or the other technique.

1) Start with the client-based mining

In this case, as shown in Figure 6.1, we start the combined process with the client-based mining,

and the clustering is performed using the client based distance Equation (4.2). At the beginning, we

construct a dataset containing all the API methods and cluster them using DBSCAN algorithm with

an epsilon value close to 0. This results in clusters of API methods that are always used together. The

other methods are considered as noisy points. After this run, for each produced cluster, we aggregate

the usage vectors of its methods using the logical disjunction into one vector to form a new dataset.

The new dataset includes the aggregated usage vectors and the usage vectors of noisy methods from

the first run. This dataset is fed back to the clustering algorithm, but with a slightly higher value of

epsilon. This procedure is repeated until epsilon reaches a maximum threshold value.
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At this point, we switch to the library-based mining. For that, all the resulting clusters and noisy

points are used to construct the input dataset. The clustering is then performed using the library-based

distance Equation (5.3). Here again, we start by an epsilon value of 0. Then, we repeat the process

with the new technique: (1) clustering, (2) dataset updating, and (3) epsilon slight increase, until we

reach a second epsilon threshold. To update the dataset, the state and term vectors of the already-

clustered methods are respectively aggregated using the logical disjunction. The new term vector
−→
T

is then mapped into its representation in the LSI semantic space by the following transformation:

−→
Tk = Σ

−1
k ×UT

k ×
−→
T (6.1)

2) Start with the library-based mining

For this second sequential combination possibility, we start with the library-based mining, and

then the resulting clusters and noisy points are used to construct the input dataset for the client-based

mining, which is repeated until epsilon reaches a maximum value given as a parameter.
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Figure 6.1: Sequential combination start with the client-based mining
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Figure 6.2: Parallel combination start with the client-based mining

6.3.2.2 Cooperative parallel combination

For the parallel combination, the client-based and the library-based mining are intertwined. The

two mining process will, step by step, incrementally evolve in parallel exchanging the clustered data.

In each step, either an iteration of the client-based mining or an iteration of the library-based mining

is performed. Two epsilon values are maintained in parallel one for each technique: epsilonC and

epsilonL. In the parallel combination, we can choose to start with the client-based mining or the

library-based mining. The rationale behind the parallel combination is to go along the same lines of

incremental clustering allowing the data to be mutually influenced from the beginning of the pattern

construction.

1) Start with the client-based mining

In this case, as shown in Figure 6.2, we start the parallel combination with the client-based mining,

and the clustering is performed using the client based distance Equation (4.2). At the beginning, all

the API methods are clustered using DBSCAN algorithm with epsilonC value close to 0. At the end of

this run, the mining process is switched after updating the dataset according to the resulting clusters

92



and the noisy methods. As for the next iteration we use the library-based clustering, the dataset is

updated by considering the state and term vectors, and the clustering is performed using the library-

based distance Equation (5.3) with an epsilonL value of 0. At the end of this iteration, we switch back

to the client-based clustering. The dataset is updated by the aggregation of the usage vectors, and

epsilonC value is slightly increased. This cooperative process is repeated until epsilonC or epsilonL

reach a value given as a parameter.

2) Start with the library-based mining

In this case, we reproduce the previous mining processus with the difference that we start the

parallel combination with the library-based mining.

6.4 Evaluation

The objective of the evaluation study is to assess whether a cooperative approach can lead to a bet-

ter inference of API usage patterns compared to individual client-based and library-based techniques,

in terms of the tradeoff between the generality and accuracy properties of the mined patterns. The

evaluation is performed in two steps. We first determine which of the four combination options leads

to the best tradeoff. Then, we compare the cooperative approach, i.e. the best combination option,

with individual techniques. We formulate the research questions of our study as follows:

– RQ1: what is the best strategy to combine the client-based and the library-based mining, and

what is the impact of the different strategies on the quality of the inferred API usage patterns

from the perspective of client programs?

– RQ2: to what extent does the cooperative parallel approach performs better than the individual

techniques?

6.4.1 Comparative evaluation

In this chapter, we study the benefits of the cooperative approach (COUPminer) with respect to

individual techniques. To be consistent with the previous comparison studies, the evaluation in this

chapter is performed using the data set presented in Chapter 4. on the same four well-known APIs

presented in Table 4.I and their client programs Table 4.II, and Table 4.III.
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To address the first research question, RQ1, we apply each combination strategy for detecting pat-

terns in the considered APIs. Then, we compare the quality of detected usage patterns in the contexts

of the selected client programs, using the parameters and metrics that we detail in Section 6.4.2. We

use the Wilcoxon rank sum test with a 95% confidence level to assess whether a significant difference

exists between the measurements of the four combination strategies.

To address our second research question, RQ2, we compare the best cooperative strategy (COUP-

miner) with the client-based (MLUPminer) and library-based (NCBUPminer) techniques.

6.4.2 Experimental setup

This section describes the used metrics in our study, as well as the setting and process of the

performed experiments.

To assess the quality of the detected API usage patterns from the perspective of the API client

programs, we need to evaluate whether these patterns are cohesive enough to exhibit informative

co-usage relationships between the API methods. To measure the usage cohesion of the detected

patterns, we use the Pattern Usage Cohesion Metric (PUC)Equation (4.3), that was previously adopted

in Chapter 4 and Chapter 5 to evaluate the quality of API usage patterns detected with MLUPminer

and NCBUPminer.

6.4.2.1 Impact of used combination strategies (RQ1)

To assess the quality of inferred patterns using COUPminer, and analyze the impact of different

combination heuristics, we run the cooperative technique four times on each studied API. Each run

uses all the API’s public methods as the dataset to be clustered. In the first and second run, we

consider the sequential combination heuristic, whilst in the third and fourth runs, we consider the

intertwined parallel combination heuristic. Each heuristic was run twice, once starting with the client-

based mining, and once starting with the library-based mining. For each studied API, we collect the

inferred API usage patterns for the four runs and analyze their quality w.r.t. their usage cohesion (i.e.

PUC values) in the context of the API client programs selected for the study. Note that some of the

patterns inferred by our technique, COUPminer, may not be covered by the selected client programs.

Therefore, we collect and consider the usage cohesion only for eligible patterns. In our study, an API

94



usage pattern is said eligible if at least one of its methods is used/covered by one of the analyzed API

client programs. Based on the comparison results, we decide which strategy is the best for inferring

API usage patterns.

6.4.2.2 Comparative evaluation (RQ2)

We address our second research question in two steps, as follows. In the first step, for all the se-

lected APIs of the case study, we apply NCBUPminer, MLUPminer and the best cooperative strategy

COUPminer. Then, we compare the number and average size of inferred patterns for each tech-

nique. In the second step, we perform leave-one-out cross-validations to assess whether COUPminer

achieves a good tradeoff between library-based and client-based techniques.

The cross-validations was performed using the API’s client programs selected for the study. Let

N represents the number of used client programs for the considered API (e.g. N = 22 for Swing),

we perform N runs of the three compared techniques (NCBUPminer, MLUPminer and COUPminer)

on the API. Each run uses N-1 client programs as training client programs for detecting usage pat-

terns, and leaves away one different API’s client program for validation. Obviously for NCBUPminer

both the training clients and the validation client only served to assess the patterns’ quality, since

NCBUPminer is a non client-based technique.

To ensure that experimental observations are due to the proposed heuristic and not to the parameter

choice, we reused the same configuration for the three techniques, e.g. the maximum value of the

epsilon parameter is set to 0.35.

Patterns Validation Cohesion We used the results of the cross-validations to evaluate the cohesion

of the detected usage patterns (as measured by PUC) in the contexts of validation sets. However, in

a given run, it is possible that some detected usage patterns involve only methods that are not used

at all in the validation client programs. Therefore, we consider only patterns that contain at least one

method that is actually used by the run’s validation client programs. For such a pattern, if only few of

its methods are used by the validation client programs, whereas the other methods are not, the pattern

will have a low usage cohesion. At the end of this step, we compare the cohesion results obtained

with NCBUPminer, MLUPminer and COUPminer.
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Patterns Consistency For each run of the cross-validations, we evaluate the consistency of the

detected usage patterns between the training client programs and the validation client program. A

pattern is said consistent if the co-usage relationships between the pattern’s methods in the context of

the training client programs remain the same (or very similar) in the context of the validation client

programs. We define the consistency of a usage pattern as:

Consistency(p) = 1−|PUCT (p)−PUCV (p)| (6.2)

Where PUCT and PUCV are the usage cohesion values of the pattern p in the training client programs

context and validation client programs context, respectively. This metric takes its value in the range

[0..1]. A value close to 1 indicates that the co-usage relationships between the pattern’s methods

remain the same between training client programs and the new validation client program, while a

value close to 0 indicates a dissimilar behavior of the pattern between the two sets of clients. This

metric allows us to see whether, between changing contexts, good patterns remain good ones and bad

patterns remain bad ones.

6.5 Results and discussion

In the following sections, we discuss the results of our experiments.

6.5.1 Impact of used combination strategies (RQ1)

To answer RQ1, we inspect the impact/contribution of both the sequential combination heuristic

and the intertwined parallel combination heuristic. For each of these two heuristics, we first need

to compare the possible strategies, i.e. starting with the client-based mining and starting with the

library-based mining.

As illustrated in Table 6.I, for the sequential combination strategy, when the client based mining

is considered first, the inferred usage patterns exhibit less-good co-usage relationships between the

pattern’s methods. The average usage cohesion values for this case are between 73% for Swing and

81% for Java Security. Nevertheless, when the library-based mining is considered first, the usage

cohesion values of inferred patterns are improved for three out of four libraries (between 75% for
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Swing and 85% for Java Security). The only slight degradation was observed for HttpClient from

78% to 77%.

For the intertwined parallel combinations, we observed the same trend. When the process starts

with the client-based mining, all the average usage cohesion values were higher than 80%, except

for Swing with 77%. This low value can be attributable to the large size of Swing. Indeed, Swing

declares 7226 public methods, as compared to Java Security API, which declares only 901 public

methods. The values for Swing were also the lowest for the sequential combination strategies. The

best cohesion values are obtained for the cooperative strategy with library-based mining is used as the

initial technique. In this case, the usage cohesion values improve to reach, in the worst case, 82% for

HttpClient and in the best case 88% for Java Security.

For both the sequential and the intertwined parallel combinations, starting library-based mining

was the best option. The mined patterns reveal that with this option, it is possible to retrieve the

majority of potential patterns, then, the client-based mining allows refining these patterns. However,

the refinement is not performed at the same scale for the two combination heuristics. It is more

efficient at a low scale, when the refinement is performed at the early stage of the pattern inference,

which is the case for the intertwined mining.

Indeed, Table 6.I clearly show that, in average, the intertwined parallel combination outperforms

the sequential combination for detecting cohesive usage patterns. These results are statistically sig-

nificant according to the Wilcoxon rank sum test. The usage cohesion values obtained for intertwined

parallel combination reflect strong co-usage relationships between the pattern’s methods for all the

studied APIs.

SequentialCombination ParallelCombination
Start with Start with Start with Start with

API clientBased libraryBased clientBased libraryBased
Security 0.81 0.85 0.85 0.88
HttpClient 0.78 0.77 0.80 0.82
Swing 0.73 0.75 0.77 0.83
AWT 0.77 0.79 0.82 0.85

Table 6.I: Average Cohesion of identified API usage patterns, for NCBUPminer, MLUPminer and
COUPminer.
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6.5.2 Comparative evaluation (RQ2)

To answer our research question RQ2, we applied NCBUPminer, MLUPminer and COUPminer,

then we analyze the number and size of inferred API usage patterns, as well as their consistency and

validation cohesion.

6.5.2.1 Number and size of inferred patterns

Figure 6.3 shows that a trend can be observed between the numbers of patterns inferred through

the three mining techniques. For all studied APIs, the lowest number of inferred patterns was obtained

while only the client-based heuristic (MLUPminer) is used. Whereas the highest number of patterns

was inferred when only the library-based heuristic (NCBUPminer) is used. We notice that a compro-

mise is achieved while combining the library-based and client-based heuristics (COUPminer). For

instance, in the case of AWT the number of pattern was adjusted to 143 while it was 75 with MLUP-

miner and 177 with NCBUPminer. The results in Figure 6.4 show that a similar trend can be observed

for the patterns’ size. The largest usage patterns were inferred when NCBUPminer is used, and the

smallest patterns were inferred when MLUPminer is used. Once again, we notice that COUPminer

finds a tradeoff in terms of patterns’ size.

Figure 6.3: Number of inferred patterns using different techniques
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Figure 6.4: Average size of inferred patterns using different techniques

6.5.2.2 Cross-validation

The cross-validation allows us to observe on two levels the effect of COUPminer on inferred

patterns. First, we inspect the co-usage relationships of the detected patterns in the context of potential

new client programs. Then, we characterize the usage cohesion deterioration between the training and

validation context.

Patterns Validation Cohesion As it can be seen in Table 6.II, with MLUPminer, we obtained the

highest average validation cohesion with around 83%. This indicates very strong co-usage relation-

ships within the inferred patterns. In the case of NCBUPminer, we notice a visible decline in the

validation cohesion value with an average validation cohesion around 67%. In the case of COUP-

miner the decline was very limited with average values around 81%. We also notice that the standard

deviation values are very low. This shows that, overall, the detected patterns using COUPminer have

always a good usage cohesion in the context of the validation client programs. Looking at the cohe-

sion distribution in Figure 6.5, we observe that, for all studied APIs, the lower quartile in the case of

COUPminer is higher than the upper quartile of NCBUPminer. This means that at least 75% of the

cooperatively mined patterns are better than 75% of the patterns mined with NCBUPminer.
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NCBUP MLUP COUP
API Avg StdDev Max Avg StdDev Max Avg StdDev Max
Security 0.70 0.04 0.76 0.85 0.12 1.00 0.86 0.12 1.00
HttpClient 0.69 0.07 0.78 0.79 0.16 1.00 0.79 0.08 1.00
Swing 0.60 0.04 0.68 0.85 0.09 1.00 0.80 0.06 1.00
AWT 0.68 0.06 0.77 0.84 0.06 0.95 0.81 0.05 0.88

Table 6.II: Statistics on the Cohesion of identified API usage patterns for NCBUPminer, MLUPminer
and COUPminer , in the contexts of validation clients

    security httpClient      swing        awt

Figure 6.5: Cohesion values of identified API usage patterns, for NCBUPminer, MLUPminer and
COUPminer in the contexts of validation clients

Patterns Consistency As it can be seen in Table 6.III, the results reveal that the patterns identified

with NCBUPminer are overall characterized with very high consistency. Indeed, the average value

across multiple validation client programs is around 94%. A slight deterioration is observed for the

consistency of patterns mined with MLUPminer average values are around 81%. The table also

shows that for all studied APIs, in the case of COUPminer, consistency values are close to those

from NCBUPminer. We consider as an example the case of Swing API, where 22 leave-one-out

cross validations have been made, using 22 client programs. In this case, the results show that, for

any detected pattern in Swing, on average 87% (for COUPminer) and 94% (for MLUPminer) of co-

usage relationships between pattern methods remain similar across 22 client programs of AWT. When
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comparing median boxplots in Figure 6.6 we note that, for all studied APIs, at least half of the patterns

detected with COUPminer are more consistent than half of the patterns detected with MLUPminer.

NCBUP MLUP COUP
API Avg StdDev Max Avg StdDev Max Avg StdDev Max
Security 0.94 0.03 0.98 0.86 0.09 0.98 0.88 0.07 0.98
HttpClient 0.96 0.03 0.97 0.77 0.09 0.89 0.83 0.08 0.94
Swing 0.94 0.05 0.98 0.83 0.05 0.92 0.87 0.05 0.95
AWT 0.92 0.03 0.89 0.84 0.04 0.94 0.86 0.07 0.95

Table 6.III: Statistics on the Consistency of identified API usage patterns for NCBUPminer, MLUP-
miner and COUPminer , across multiple validation clients.

    security httpClient      swing        awt

Figure 6.6: Consistency values of identified API usage patterns for NCBUPminer, MLUPminer and
COUPminer across multiple validation clients.

6.5.3 Discussion and threats to validity

Overall, our technique COUPminer has been able to infer usage patterns that are more cohesive

than those of NCBUPminer and more consistent than those of MLUPminer. In addition, and above

all, as expected the cooperative cohesion was slightly lower than the one of MLUPminer, and the

cooperative consistency was slightly lower than the one of NCBUPminer. However, the results are

101



close and high enough to reflect accurate co-usage relationships and generalizable patterns. In con-

clusion, the cooperative approach allows achieving a very good tradeoff between the accuracy of the

client-based mining and the generalizability of the library-based mining.

Detected usage patterns could help to enhance the APIs documentation and the evaluation of our

approach took into account the generalization to other client programs of the same API and showed

that the usage patterns of an API remain informative for new clients. As a threat to the validity of

our study, this finding can be attributable to the client programs used in our study. Still, we used a

fair number of validation client programs to evaluate the quality of the inferred usage patterns by our

technique.

Another possible threat to validity, is the evaluation of our technique on four APIs only. Although,

we selected four APIs of different domains, the approach may not be generalized to a larger set of

APIs because these may be of different natures and qualities. Indeed, we are combining, on the one

hand, a library based heuristic that depends on the code quality and programming style, with, on the

other hand, a client based heuristic that depends on the API size and the amount of functionalities

provided to client programs. To better assess our cooperative approach, we are planning to investigate

the effect of these properties on the effectiveness of our technique, in a larger experimental setting.

6.6 Conclusion

In this chapter, we present a technique that infers API usage patterns using both library-based

and client-based heuristics. Our technique uses structural, semantic and co-usage similarity between

the API methods to infer usage patterns. We applied our technique on four APIs that differ in size,

utility and usage domain. To evaluate the performance of our technique, we analyzed the quality of

inferred API patterns in terms of consistency and usage cohesion through a large variety of API client

programs. We found that our technique allows taking advantage at the same time from the accuracy

of the client-based techniques and the generalizability of the library-based techniques.

In the next chapter we close the circle of our holistic approach through another level of library

usability across complementary software libraries.
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Part III

Library usability across complementary

software libraries
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Chapter 7

Automated Inference of Software Library Usage Patterns

As we mentioned previously, today’s open-source repositories provide a wide range of libraries,

and it is widely recognized that using mature and well-tested third-party libraries can improve devel-

opers’ productivity, reduce time-to-market, and produce more reliable software. However, as software

libraries are documented separately but intended to be used together, developers are unlikely to fully

take advantage of these reuse opportunities. In this chapter, we present our approach to automati-

cally identify third-party library usage patterns, i.e., collections of libraries that are commonly used

together by developers. Our approach employs a clustering technique to group together software

libraries based on external client usage. To evaluate our approach, we mined a large set of 6,000 pop-

ular libraries from Maven Central Repository and investigated their usage in 38,000 client systems

from the Github repository. Our experiments show that our technique is able to detect the majority

(77%) of highly consistent and cohesive patterns.

7.1 Introduction

Today’s code repositories provide an increasingly large number of reusable software libraries with

a variety of functionalities. Automatically analyzing how software projects utilize these libraries,

and understanding the extent and nature of software library reuse in practice is a challenging task

for developers. Indeed, software developers can spend a considerable amount of time and effort

to manually identify libraries that are useful and relevant for the implementation of their software.

Worse yet, developers may even be unaware of the existence of these libraries. Developers tend to

reinvent the wheel and implement most of their features from scratch instead of reusing functionalities

provided by third-party libraries as pointed out by several researchers [18, 79]. Therefore, we believe

that identifying patterns of libraries commonly used together, can help developers to discover and

choose libraries that may be relevant for their projects’ implementation.

In this chapter, we propose an approach for mining Library Co-Usage Patterns, namely LibCUP.

We define a usage pattern of libraries as a collection, with different usage cohesion levels, of libraries



that are most frequently jointly used in client systems. Our approach uses the adaptation of DBSCAN

clustering algorithm, to detect candidate library usage patterns based on the analysis of their fre-

quency and consistency of usage within a variety of client systems. Different client systems may use

utility libraries (e.g., JUnit, log4j, etc.) as well as domain-specific libraries (e.g., httpclient,

groovy, spring-context, etc.). Thus, the rationale behind the distribution on different usage

cohesion levels of libraries in a pattern, is to distinguish between the most specific libraries and the

less specific ones. Moreover, our approach is intended to be used first to identify patterns of partic-

ular libraries that interest a developer. These libraries could then be fed to the previously proposed

approaches (in chapters 4, 5, and 6) to recommend particular methods to be used in different contexts.

Moreover, LibCUP provides a user-friendly visualization tool to assist developers in exploring the

different library usage patterns.

We evaluate our approach on a large dataset of over 6,000 popular libraries, collected from Maven

Central repository 1 and investigated their usage from a wide range of over 38,000 client systems from

Github repository 2, from different application domains. Furthermore, we evaluated the scalability of

LibCUP as compared to LibRec [77], a state-of-the-art library recommendation technique based on

association rule mining and collaborative filtering. We also performed a ten-fold cross validation

to evaluate the generalizability of the identified usage patterns to potential new client systems. Our

results show that across a considerable variability of client systems, the identified usage patterns by

LibCUP remain more cohesive than those identified by LibRec.

The remainder of this chapter is organized as follows. Section 7.2 motivates the usefulness of

LibCUP with two real-world examples. We detail our approach in Section 7.3. We present our

experimental study to evaluate the proposed approach in Section 7.4, while providing discussions in

Section 7.5. Finally, Section 7.6 concludes the chapter.

7.2 Motivation and challenges

In this section, we present two real-world scenarios to motivate the usefulness of library co-usage

patterns. In the first example, the goal is to find a set of libraries that allow to meet the requirements

of a given software system. In the second example, the goal is to decide between two libraries with

1. http://mvnrepository.com
2. www.github.com
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similar functionalities to be used in a software system. In this context, we assume that a library with

more potential to be used with other related libraries is preferred. The related libraries are assumed to

extend the features of the software system.

7.2.1 Learning-environment example

Let us consider a software-development team responsible of the task of maintaining a Web portal

for a growing private university with around 4,000 undergraduate and graduate students. The uni-

versity is planing to move from a simple Web portal to an advanced course management system to

provide adequate service to their students and faculty members. As a first step, the development team

decided to go through an exploratory phase, during which they developed a situational application to

assess the turnout rate in the new learning environment. This application allows students and faculty

to schedule activities related to courses and maintain deadlines related to projects. It should also allow

real-time conversations between course or project participants.

Based on these requirements, developers found that their application requires some basic func-

tionalities including a scheduling and an emailing services that have to be integrated. In this situation,

developers can either implement the different features from scratch, or reuse features provided by ex-

isting libraries. In both cases, they may spend a considerable time and effort for either implementing

the features or finding compatible and useful libraries to be integrated in the application.

The development team later find out that they are required to use the quartz 3 library to imple-

ment the scheduler. With this new constraint, the developers have to solve the following challenges:

– What is the recommended emailing library that best complements the quartz library? The

selection should take into account assumed compatibility with the quartz library as well as

the effort needed to integrate the library into the system.

– More generally, what related libraries can be used to implement the remaining features of their

software system? The developers might be interested in related libraries that are commonly

used by similar systems with the quartz library.

Addressing these two challenges could be a complex task for developers if done manually. Indeed,

developers should check in open-source code repositories to find similar projects, and investigate their

3. http://mvnrepository.com/artifact/org.quartz-scheduler/quartz
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library usage. Manually finding libraries that are commonly used together in a particular scenario and

understanding the current usage practice for a particular library is unlikely to be effective.

7.2.2 Web application frontend example

We now consider another scenario with Aaron, a freelance programmer, who seeks to implement

an inventory-management web application. Aaron decided to develop his web applications in an

industrial setting, where the back-end is implemented in Java, and the front-end is implemented in a

Java/XML based framework. For the user interfaces, several libraries can be used; the most popular

ones are primefaces 4 the UI component library for Java Server Faces, and gwt-user 5 of the

Google Web Toolkit.

Aaron has to decide which library to use: primefaces or gwt-user. In other words:

– Which library is the best option in terms of future extension of the software system’s function-

alities? Aaron prefers libraries that are usually used with many other libraries, which offers

a large variety of functionalities. This provides a high potential of extensions of his software

system.

In both examples, we consider that mining patterns of libraries used jointly by many client systems

may provide insights to make the best decisions.

7.2.3 Challenges: mining library usage

In this work, we mine the ’wisdom of the crowd’ to discover usage patterns of software libraries.

Studying the current library usage within similar systems may provide hints on compatibility and

relevance between existing libraries. We assume that libraries that are commonly used together are

unlikely to have compatibility and integration issues.

The goal is to discover which sets of libraries are commonly used together by similar systems. To

this end, our approach is designed to find multiple layers, i.e., levels of relevant libraries according

to their usage frequency. For effective reuse, developers can go through the different levels inside

the usage patterns to discover relationships, with different strengths, between the collection of related

libraries.

4. http://mvnrepository.com/artifact/org.primefaces/primefaces
5. http://mvnrepository.com/artifact/com.google.gwt/gwt-user
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For the first motivating example, we use the usage patterns to discover that commons-email

library 6, which is a popular emailing library, complements the quartz library. Furthermore, by

using the multi-layers structure of our patterns, developers can then find related libraries that would

complement, at different degrees, both quartz and commons-email.

For the second motivating example, we found that gwt-user library is part of a usage pattern

with many other related libraries including gwt-dev 7, gwt-servlet 8, gwt-incubator 9, and

gin 10. This collection of libraries covers different functionalities such as browser support, widgets,

optimization, data binding, and remote communication. All these features are opportunities for future

extensions, and we are confident that they can be integrated together as demonstrated by the client

systems that already used them. Conversely, Aaron found that, although primefaces library might

be useful for his system, it is not widely used with other libraries and, then, does not offer a sufficient

guarantee of future integration with other libraries.

These two examples show that the task of identifying library usage patterns becomes more and

more complex, especially with the exponentially growing number of libraries available in the Internet.

This motivates our proposal of automatically identify library usage patterns to assist developers in

reusing and integrating libraries and, then, increase their productivity.

7.3 Approach

In this section, we present our approach, LibCUP, for mining library usage patterns. Before

detailing the used algorithm, we provide a brief overview of our approach, we finally describe our

visualization technique to explore the identified library usage patterns.

7.3.1 Approach overview

Our approach takes as input a set of popular libraries, and a wide variety of their client systems

extracted from existing open-source repositories. The output is a set library usage patterns organized

within different layers according their co-usage frequency.

6. http://mvnrepository.com/artifact/org.apache.commons/commons-email
7. http://mvnrepository.com/artifact/com.google.gwt/gwt-dev
8. http://mvnrepository.com/artifact/com.google.gwt/gwt-servlet
9. http://mvnrepository.com/artifact/com.google.gwt/gwt-incubator

10. http://mvnrepository.com/artifact/com.google.gwt.inject/gin
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We define a library co-usage pattern as a collection of libraries that are commonly used together.

It represents an exclusive subset of libraries, distributed on different usage cohesion layers. A usage

cohesion layer reflects the co-usage frequency between a set of libraries.

Indeed, similar client systems may share some domain-specific libraries, but they may at the same

time share some utility libraries, which are more commonly used by a large number of systems. For

this reason, we seek a technique that can capture co-usage relationships between libraries at different

levels.

Our approach proceeds as follows. First, the input dataset is analyzed to identify the different

client systems depending on each library. Then, the dependency information is encoded using depen-

dency vectors. Indeed, each library in the dataset is characterized with a dependency vector which

encodes information about (1) their client systems and (2) the rest of other systems in the dataset that

are not using it. Finally, we use a clustering technique to group the libraries that are most frequently

co-used together by clients. All libraries that have no consistent usage through the client systems are

isolated and considered as noisy data.

7.3.2 Multi-layer library co-usage pattern mining

For the library co-usage pattern mining, we also use the DBSCAN-based incremental clustering.

The description of the algorithm and the pseudo-code are given in Chapter 4, sections 4.3.4 and 4.3.5.

DBSCAN allows the clustering algorithm to filter out all points that are not located in a dense region

of points in the search space. This specific property explains our choice of DBSCAN to detect usage

patterns of libraries. Indeed, not all libraries of the dependency dataset are to be clustered because

some are simply not co-used with specific subsets of the libraries, while others are co-used with

almost all the subsets of libraries.

In our approach, each library is represented as a dependency vector that has constant length l. The

vector length is the number of all client programs which use the libraries in the dataset. Figure 7.1

shows that the considered dataset represents 8 client systems depending on 8 third-party libraries.

For an external library, Libx, an entry of 1 (or 0) in the ith position of its dependency vector, denotes

that the client system corresponding to this position depends (or does not depend) on the considered

library. Hence, summing the entries in the library’s vector represents the number of its client program

in the dataset. For instance, in Figure 7.1, the dependency vector of Lib1 shows that the four client
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systems C1, C2, C3 and C6 depend on this library. We can also see that these systems depend on

other libraries including Lib2, Lib3 but none of them depends on Lib5.

DBSCAN constructs clusters of libraries by grouping libraries that are close to each other, thus

forming a dense region (i.e. similar libraries) in terms of their co-usage frequency. For this purpose,

we define the Dependency Similarity, DSim in Equation (7.1), between two libraries Libi and Lib j,

using the Jaccard similarity coefficient with regards to the client programs, Cl_sys, of Libi and Lib j.

The rationale behind this is that two libraries are close to each other (short distance) if they share

a large subset of common dependent client systems.

DSim(Libi,Lib j) =
|Cl_sys(Libi)∩Cl_sys(Lib j)|
|Cl_sys(Libi)∪Cl_sys(Lib j)|

(7.1)

where Cl_sys(Lib) is the set of client programs depending on the library Lib. For example, the

DSim between the libraries Lib1 and Lib6 in Figure 7.1 is 2
4 since these libraries have in total 4 client

programs, and 2 of them are common for Lib1 and Lib6. The distance between the points in the search

space corresponding to two libraries Libi and Lib j is then computed as Dist = 1−DSim(Libi,Lib j).

C1 C2 C3 C4 C5 C6 C7 C8

Lib1 1 1 1 0 0 1 0 0

Lib2 1 1 1 0 0 1 0 0

Lib3 1 1 1 0 0 1 0 0

Lib4 0 0 0 1 1 0 0 0

Lib5 0 0 0 1 1 0 0 0

Lib6 0 0 0 0 0 0 1 0

Lib7 0 0 1 0 0 1 0 0

Lib8 1 1 0 1 1 0 1 1

Figure 7.1: The dependency vector representing the dependency between eight client programs and
eight libraries.

We build the clusters incrementally by relaxing the epsilon parameter, step by step. We first, takes

as input a dataset containing all the libraries and their client systems within a specific format, then
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we cluster them using an epsilon value of 0. This step results in clusters of libraries that are always

used together, as well as multiple noisy points left out. For each produced cluster, we aggregate the

dependency vectors of its libraries using the logical disjunction in one dependency vector. Then, a

new dataset is formed, which includes the aggregated dependency vectors and the dependency vectors

of noisy libraries from the previous run. This dataset is then fed back to the DBSCAN algorithm for

clustering, but with a slightly higher value of epsilon. This procedure is repeated in each step until

reaching a maximum value for epsilon, given as a parameter.

For example, Figure 7.2 shows the incremental clustering of the libraries. In this example, the ini-

tial dataset contains 8 libraries, Lib1, ..., Lib8, the epsilon parameter is incremented in each clustering

step by 0.25 with the epsilon maximum value set to 0.55. As shown in Figure 7.2(a), the first step

produces two clusters at epsilon = 0. The two clusters include respectively (Lib1, Lib2, Lib3) and

Lib4, Lib5. These libraries are clustered at the most dense level since, in each cluster, these libraries

were frequently co-used together. The second step is performed with epsilon = 0.25 as illustrated in

Figure 7.2(b). For this step, there is no change in the dataset since the distances are larger than the

current epsilon value. Finally at epsilon = 0.5, as illustrated in Figure 7.2(c) a new cluster involving

2 density level is generated. This cluster includes Lib7 in addition to (Lib1, Lib2, Lib3) since they

share 2 out of the 4 common client systems.

(a) epselone = 0 (b) epselone = 0.25

(c) epselone = 0.5 (d) epselone = 0.75

Figure 7.2: Resulting clusters of applying the incremental algorithm using ε-DBSCAN to the library
dataset presented in Figure 7.1.
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We can notice that Lib6 is a rarely used library and Lib8 is a utility library used with almost all

the considered client systems, showing no particular usage trend. Thus at the last iteration of the

incremental clustering as illustrated in Figure 7.2(d), the libraries Lib6 and Lib8 are left out as noisy

points since their distance from the clustered libraries is larger than the maximum epsilon value,

which is 0.55.

7.3.3 Pattern visual exploration

With the exponentially growing number of software libraries in the Internet, the size of possible

usage patterns tends to be very large. To simplify the exploration of the inferred patterns, we opted

for an interactive and user-friendly visual exploration technique. The distribution of libraries on

different usage cohesion levels follows a hierarchical structure by inclusion that can be visualized

through a treemap layout [35]. However, to better reveal the hierarchy, we opted for a circle packing

visualization [83] even if circle packing is not as space-efficient as a treemap.

In our visualization, the libraries are represented as white dots and the clusters as circular re-

gion with deferent shades of blue. Figure 7.3 shows an example of the circle packing visualization.

Elements belonging to the same cluster (co-used elements) are placed at the inner periphery of the

circular region representing the cluster. Thus the nesting between circular regions indicates the dif-

ferent clustering level. Our visualization enables us to map different information to the graphical

component of the visualization scene. For instance, library popularity can be mapped to the dot size,

and the cluster cohesion can be mapped to the region color.

The developer can use our visualization to explore the inferred patterns. The exploration is based

only on pattern cohesion and the circle packing nesting. Our visualization environment provides also

an interactive navigation where the user can click on any usage pattern, i.e., cluster, to zoom in or

zoom out. The visualization allows also to place the mouse over a library to get a tooltip with some

more information. For example, when clicking on a library the user is redirected automatically to its

artefact home page on the Maven Central repository 11 in order to download the library jar file. Our

visualization allows also the developer to provide as input the set of libraries he is already using in

his system and for which he is trying to find related and commonly used libraries. Thereafter, the

11. http://mvnrepository.com
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entered libraries are highlighted in a different color, and the developer can start his exploration from

the highlighted points.

Figure 7.3: circle packing visualization

7.4 Empirical evaluation

In this section, we present the results of our evaluation of the proposed approach, LibCUP. Our

study aims at assessing whether LibCUP can detect usage patterns of libraries that are (i) cohesive

enough to provide valuable information to discover relevant libraries, and (ii) generalizable for new

client systems. We also compare the results of our technique LibCUP to the available state-of-the-

art approach, LibRec [77]. LibRec combines association rule mining and collaborative filtering to

recommend libraries based on their client usage. For each experiment in this section, we present the

research questions to answer, the research method to address them, followed by the obtained results.
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7.4.1 Data collection

To evaluate the feasibility of our approach on real-world scenarios, we carried out our empirical

study on a large dataset of Open Source Software (OSS) projects. As we described earlier, our study

is based on widely used libraries collected from the popular library repository Maven and a large set

of client systems collected from Github repository. Since Github is the host of varying projects, to

ensure validity of quality Github projects, we performed the following filtering on the dataset:

– Commit size. We only included java projects that had more than 1,000 commits.

– Forks. We only include projects that are unique and not forks of other projects.

– Maven dependent project. We only included projects that employ the maven build process (use

pom.xml configuration file).

Each Github repository may contain multiple projects, each having potentially several systems.

Each of these systems are dependent on a set of maven libraries, that are defined in a pom.xml file

within the project.

Dataset

Snapshot Date 15th January 2015
# of github systems 38,000
# of unique dependent libraries 6,638

Table 7.I: Dataset used in the experiment

Note that for all data, we first downloaded an offline copy of the original software projects (the

source code) from Github and the libraries (the jar files) from Maven before extraction. Thereafter,

for each library, we selected the latest release. In the beginning, we started with 40,936 dependent

libraries. However, to remove noise, we filtered out libraries having less than 50 identifiers based on

methods, attributes and classes. This process removed libraries that we assume very small or partial

copies of their original libraries and thus are not relevant. Our dataset resulted in 6,638 different

Maven libraries extracted from unique 38,000 client systems from Github.

The dataset is a snapshot of the projects procured as of 15th January 2015. Our dataset is very

diversified as it includes a multitude of libraries and software systems from different application

domains and different sizes. Overall, the average number of used libraries per system is 10.56, while

the median is 6.
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7.4.2 Sensitivity analysis

As a first experiment, we evaluated the sensitivity of the patterns’ quality, identified by LibCUP,

with respect to different settings, including the dataset size and maxE psilon values. We aim at ad-

dressing the following research question.

RQ1. What is the impact of various experimental settings on the patterns’ quality?

7.4.2.1 Analysis method

To address RQ1, we need to evaluate whether the detected patterns are cohesive enough to ex-

hibit informative co-usage relationships between specific libraries. Hence, we use the Pattern Usage

Cohesion metric (PUC), as defined in Equation (7.2) to capture the cohesion of the identified patterns.

PUC(p) =
∑cp ratio_used_Libs(p,cp)

|C(p)|
∈ [0,1] (7.2)

where cp denotes a client system of the pattern p, ratio_used_Libs(p, cp) is the ratio of libraries that

belong to the pattern p and that are used by the client system cp, and C(p) is the set of all client

systems of all libraries in p.

To answer our first research question (RQ1), we perform two studies.

– Study 1.A. We apply LibCUP to our collected dataset described in Section 7.4.1. Then, we in-

vestigate the impact of different maxE psilon values on the PUC results of the detected patterns.

– Study 1.B. We investigate the scalability of our technique. We fix the maxE psilon value and

we run LibCUP several times while varying the dataset size to observe the patterns cohesion

and the time efficiency.

7.4.2.2 Results for RQ1

Study 1.A: Sensitivity to maxEpsilon parameter. Figures 7.4, 7.5, and 7.6 report the effect

of different maxE psilon values. Our experiments show that the maxE psilon parameter influences

different characteristic of the inferred patterns, including the pattern usage cohesion, the number of

inferred patterns, and the patterns size. Figure 7.4 shows that the average PUC ranges from 1 to

0.5, while varying the maxE psilon in the range [0,0.95]. We notice that even when the maxE psilon
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reaches high values, the inferred patterns maintain acceptable cohesion values. This is due to the

incremental construction of the patterns that generates multiple layers of libraries, each reflected at a

different À density level. Thus, layers inferred at the early steps influence the overall cohesion of the

final pattern.
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Figure 7.4: Effect of varying maxE psilon parameter on the average cohesion of the identified patterns.

When maxE psilon is set to 1 the patterns’ cohesion drop down to 0. This is because in the last

step all the libraries are clustered into one usage pattern as depicted in Figure 7.5. Moreover, we can

clearly see from this figure that the number of inferred patterns increases to reach a peak of 1,061

when maxE psilon is set to 0.80. In more details, we observe that:

– Before the peak, some of the existing patterns are enriched with new libraries to add new exter-

nal layers to the original usage pattern. Moreover, we also noticed that some new patterns are

identified with libraries that were considered as noisy. This is since we are tolerating less den-

sity within clusters when maxE psilon increases. We observe that this has an effect to increase

the global number of inferred patterns.

– After the peak, some of the existing patterns are merged without losing their internal structure.

This result, in turn has an effect to reduce the overall number of inferred patterns.

To get a more qualitative sense of the obtained results, we noticed that for the low values of

maxE psilon and up to intermediate values (i.e., 0.5, 0.6), the inferred patterns tend to mainly cover
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Figure 7.5: Effect of varying maxEpsilon parameter on the number of identified patterns.

domain specific libraries (e.g., program analyzers jdepend 12, graphics manipulation batik 13,

etc.). Those patterns are characterized with an average number of client systems that do not exceed

50 clients per pattern. The more the maxE psilon parameter is relaxed, the more the patterns are

enriched with other libraries. Starting with specific libraries, the patterns reach a step in which they

become enriched with utility or more generic libraries such as JUnit 14 and log4j 15. For sake

of simplicity, we do not present in Figure 7.6 the last step where all the libraries are clustered into

one single cluster with a larger number of client systems. Based on these results, LibCUP uses a

maxE psilon threshold of 0.5 as a defaults parameter.

Study 1.B: Sensitivity to the dataset size. To carry out this experiment, we set the maxE psilon

value to 0.5. This is a proactive choice to ensure that libraries appearing in the same pattern are used

more frequently together than separately. Thereafter, we run LibCUP with different dataset sizes. In

each run, we augmented the previously used dataset with 1000 libraries, and we observed the average

cohesion of patterns as well as the execution time taken to infer them. All experiments were carried

out on a computer with an Intel core i7-4770 CPU 3.40 GHz, with 32 GB RAM.

Figure 7.7 depicts the obtained results for this experiment. We noticed from the figure, that the

shape of the graph is consistent for the different dataset size. The PUC score slightly increases from

12. http://mvnrepository.com/artifact/jdepend/jdepend
13. http://mvnrepository.com/artifact/batik/batik
14. http://mvnrepository.com/artifact/junit/junit
15. http://mvnrepository.com/artifact/org.apache.logging.log4j/log4j-api
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Figure 7.6: Effect of varying maxE psilon parameter on the average number of clients per pattern.

0.79 to stabilize at 0.82 for the last three runs. In more details, we found that there is an increase in

terms of the number of inferred patterns from 62 in the first run with an average size of 3 libraries per

pattern, to reach the bar of 500 patterns at the last run with an average size of 5.5 libraries per pattern.

These results confirm that when considering more libraries, LibCUP is able to enrich the inferred

patterns with new libraries while detecting new patterns.
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Figure 7.7: Effect of varying the dataset size on the average pattern cohesion maxE psilon = 0.5.

In terms of time efficiency, Figure 7.8 depicts the influence of the dataset size on the execution

time. As it can be seen on the figure, the execution time of LibCUP is sensitive to the dataset size,
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as expected. At the first run, LibCUP took less than 7 minutes to mine a set of 1,000 libraries, while

reaching 159 minutes of execution time to mine the large set of 6,000 libraries with their 38,000 client

systems. However, it is worth saying that even with 159 minutes of execution time, LibCUP can be

considered time efficient, since the inference process is done off-line once, then the identified patterns

can be easily explored using our interactive visualization tool.
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Figure 7.8: Effect of varying the dataset size on the time efficiency with maxE psilon = 0.5.

In summary, the obtained PUC results of the identified usage patterns provide evidence that

LibCUP exhibits consistent cohesion using our adopted of DBSCAN algorithm. Using a default

maxE psilon = 0.5, we found that at least 50%, and up to 100%, of the usage patterns are co-used

together with high PUC. Moreover, our technique is stable and time efficient when varying the size

of the mined library set.

7.4.3 Evaluation of patterns cohesion

As a second experiment, we conduct a comparative study to evaluate the cohesiveness of the

identified library usage patterns against the state-of-the-art approach LibRec [77]. To the best of our

knowledge, LibRec [77] is the only existing approach that has addressed this problem. We aim at

addressing the following research question.

RQ2. To which extent are the identified library usage patterns cohesive as compared to those inferred

with LibRec?
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7.4.3.1 Analysis method

To address our second research questions (RQ2) we conducted a comparative evaluation of our

approach with LibRec in order to better position our approach and characterize the obtained results.

To infer usage patterns, LibRec is based on mining association rules obtained from closed itemsets

and generators using the Zart algorithm [74]. We applied both LibCUP and LibRec to all the selected

libraries of our dataset (cf. Section 7.4.1). Then, we compare the identified usage patterns of both

approaches in terms of PUC. More specifically, we compare the average PUC values for all detected

patterns of each approach. For LibCUP, we fixed the maxE psilon value to 0.5 as explained earlier.

For LibRec we fixed the Mincon f to 0.8 , the Minsup to 0.002 and the Number o f NearestNeighbors

to 25 [77].

7.4.3.2 Results for RQ2

Table 7.II reports the obtained results for RQ2. On average, LibCUP achieves an average PUC

score of 0.82, which outperforms LibRec that was only able to achieve 0.72 of PUC. The achieved

PUC values by LibCUP reflect high co-usage relationships between the pattern’s libraries making

them more cohesive.

In terms of the number of inferred patterns, we observe that our multi-layer clustering technique

allows detecting a reasonable number of patterns of 531, with a medium size of libraries distributed

on the different layers (i.e., 5.5). On the other hand, LibRec inferred an abundant number of patterns

up to 3,952, even though it relies on closed itemsets and generators to construct a compact set of

association rules [77]. Indeed, the set of patterns obtained from the closed itemsets and generators is

supposed to be much smaller than the complete set of rules. However, in practice the inferred patterns

with LibRec tend to be many but with smaller size (on average, it generates 2 libraries per pattern).

We believe that this large number of small size library patterns will in turn limit the practical adoption

and usefulness of the LibRec approach.

Furthermore, we studied the number of clients per pattern. We noticed from the results of Table

7.II, that the patterns inferred by LibCUP are used on average with 30 client systems. Indeed, by

manually investigating these client systems, we found that they generally share common domain-

specific features. For LibRec, the inferred patterns are used within too many client systems that share
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pairs or triplets of libraries, which are, in most of the cases, utility libraries such as JUnit, log4j,

slf4j-api, and commons-lang. These libraries are likely to be used by several unrelated client

systems.

Number of patterns LibCUP LibRec

Avg PUC 0.82 0.72
Nb Patterns 531 3,952
Avg pattern size 5.5 2.0
Nb Clients per Pattern 30 2,269

Table 7.II: Average cohesion and overview of the inferred usage patterns for LibCUP and LibRec.

7.4.4 Evaluation of patterns generalization

In this study, we aim at evaluating whether the identified library usage patterns with LibCUP can

be generalizable in comparison with those of LibRec. We aim at addressing the following research

question.

RQ3. To which extent are the detected usage patterns generalizable to other “new” client systems,

that are not considered in the training dataset?

7.4.4.1 Analysis method

To answer RQ3, we investigate whether the detected patterns will have similar PUC values in the

context of new client systems. Our hypothesis is that:

Detected patterns are said “generalizable” if they remain characterized by a high usage

cohesion degree in the contexts of various client systems.

To evaluate the generalizability of the detected patterns, we perform a ten-fold cross-validation

on all the client systems in the dataset. We randomly distribute the dataset into ten equal-sized parts.

Then, we perform ten independent runs of both approaches, LibCUP and LibRec. Each run uses nine

parts as training client systems to detect possible patterns, and leaves away the remaining part as a

validation dataset.
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The results are sorted in ten runs, where each run has its associated patterns, and its corresponding

training and validation client systems. Then, we address RQ3 through two experimental studies as

follows.

– Study 3.A. We evaluate the cohesion of the detected patterns (as measured by PUC) in the

context of the validation datasets. In a given run, it is possible that some detected patterns

contain only libraries that are never used in the validation client systems. Consequently, to

evaluate the generalizability of the detected patterns in each run, we consider only the patterns

that contain at least one library that is actually used by the run’s validation client systems.

We call such patterns the ‘eligible patterns’ for the validation client systems. An eligible pattern

will have a low PUC if only a small subset of its libraries is used by the validation client systems,

while the other libraries have not been used. As a consequence, it will be considered as “non-

generalizable”. This study aims at comparing the PUC results obtained for the training client

systems context and validation client systems context for both LibCUP and LibRec.

– Study 3.B. In this study, we push further the comparison, as LibRec is specifically designed

for library recommendation. We attempt to evaluate whether our approach is also useful in a

recommendation context. To this end, we define for the library patterns inferred by LibCUP an

ad-hoc ranking score based on the pattern cohesion and the library usage similarity.

For each fold, we identify a recommendation set of useful libraries for the validation client

systems. For each system, we drop half of its libraries and use them as the ground truth. The

remaining half is used as input to the recommendation process. This methodology was also

used in [77] and mimics the scenario where a developer knows some of the useful libraries but

needs assistance to find other relevant libraries.

For each system that should receive library recommendation, we first identified potentially

useful patterns containing at least on library from the ground truth set. Thereafter, we rank the

libraries of these patterns according to their recommendation score as defined below:

RecScore(L) = max
i
{DSim(L,Libi)/Libi ∈ GT} (7.3)

where DSim is the Dependency Similarity in Equation (7.1), and GT is the set of libraries

conserved as ground truth of the client system that should receive library recommendations.
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We evaluate the ranking for both LibCUP and LibRec using two metrics commonly used in

recommendation systems for software engineering [7, 75, 76]: (i) the recall rate@k, and (ii)

the Mean reciprocal rank (MRR) as follows. To measure the recall@k, we consider N target

systems S that should receive library recommendations. For each system Si ∈ S, if any of

the dropped libraries is found in the top-k list of recommended libraries, we count it as a hit.

The recall rate@k is measured by the ratio of the number of hits over the total number N of

considered systems. Inspired by the previous studies [7, 75, 76], we choose the k value to be 1,

3, 5, 7, and 10. Formally, the recall rate@k is defined as follows:

Recall rate@k(S) =
∑
∀Si∈S

isCorrect(Si,Top-k)

N
(7.4)

where the function isCorrect(Si,Top-k) returns a value of 1 if at least one of the top-k recom-

mended libraries is in the ground truth set, or 0 otherwise.

The MRR is a statistic measure that is commonly used to evaluate recommendation systems.

Let N be the number of systems that should receive recommendations, and ranki is the rank

of the first relevant recommendation for the ith system, then the MRR score is calculated as

follows:

MRR =
1
N

N

∑
i=1

1
ranki

(7.5)

7.4.4.2 Results for RQ3

Study 3.A: Patterns generalizability. To assess the PUC score variation between the training and

validation client systems, we first analyze the average value of their corresponding scores collected

from all cross-validation runs. Then, we analyze the distribution of the collected values using the

median. The results of this study are summarized in Table 7.III and Figure 7.9.

Table 7.III summarizes the PUC results of the detected patterns in the contexts of training and

validation client systems. In the training context, we notice that the average values are high for

both LibCUP and LibRec with respectively 77% and 72% of the patterns libraries that are co-used

together. For LibCUP, a slight degradation of the PUC value is observed in the context of validation
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LibCUP LibRec
Training Validation Training Validation

PUC context context context context
Avg 0.77 0.69 0.72 0.54
Max 0.78 0.78 0.88 0.89
StdDev 0.01 0.05 0.06 0.27

Table 7.III: Average Training and Validation Cohesion of identified usage patterns for LibCUP and
LibRec.

client systems. We also notice that the standard deviation values are very low (0.01 and 0.05). These

results reflect that, overall, the detected patterns had good PUC in the context of both validation and

training client systems. However, for LibRec the achieved average PUC values are significantly lower

in the validation context comparing to the training context.
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Figure 7.9: PUC results of the identified library usage patterns in the contexts of training (T) and
validation (V) clients achieved by each of LibCUP and LibRec.

In more details, the distribution of PUC values for all detected usage patterns in Figure 7.9 con-

firms the above-mentioned finding. Indeed, the medians and lower quartiles in the context of val-

idation clients remain larger than 66%. Figure 7.9 also provides evidence that the degradation of

cohesion values for each inferred pattern is much more visible in the case of LibRec.
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In summary, we can say that almost all detected usage patterns achieved by LibCUP retain their

informative criteria. Precisely, 75% of detected usage patterns, according to the boxplot’s lower

quartile, are characterized with a high usage cohesion in both training and validation contexts.

Study 3.B: Library recommendation. Table 7.IV reports the recall rate@k for both LibCUP

and LibRec while varying the value of k ∈ {1,3,5,7,10}. We notice that, as expected, larger k values

achieve higher recall rates for both approaches. More specifically, we can see that when comparing the

recall rate, LibCUP performs clearly better in terms of recall@1 and recall@3. However, the starting

from k = 5, LibRec tends to achieve better results. This indicates that LibCUP is more efficient in

recommending correct libraries in the top ranks within the recommendation list when using LibCUP.

The MRR results support this observation with a score of 0.15 for LibCUP.

Conversely, good recommendations are achieved for more targeted client systems when using

LibRec. This is mainly due to the fact that LibRec’s patterns are mainly composed of utility libraries,

unlike the LibCUP’s patterns which are mainly composed of domain-specific libraries. However, one

can notice that recommending utility libraries that are commonly used is less useful in practice. It

is also worth mentioning that for each fold, due to the large number of systems (3,800 validation

client systems) that require library recommendations, the recall values achieved by both LibCUP and

LibRec are still low (below 0.34) as reported in Table 7.IV.

LibCUP LibRec

Recall@1 0.12 0.01
Recall@3 0.14 0.11
Recall@5 0.15 0.19
Recall@7 0.17 0.27
Recall@10 0.22 0.34
MRR 0.15 0.09

Table 7.IV: Recommendation recall rate and MRR results achieved by both LibCUP and LibRec.

7.5 Discussion

We applied our approach to over 6,000 popular third-party libraries and 38,000 client systems

in order to detected possible library usage patterns. The detected patterns should be informative to
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help developers in automatically discovering existing library sets and therefore, relieve the developers

from the burden of doing so manually. More interestingly, our adaptation of DBSCAN shows high

scalability and performance with our large dataset.

The evaluation of our approach took into account the potential generalization of the identified

patterns to other client systems and showed that these usage patterns remain informative for other

clients.

The application of our technique to detect library usage patterns requires the setting of thresholds

that may impact its output. For instance, the max epsilon value in the clustering algorithm controls

the cohesion (PUC) strength of the detected patterns. A small value leads to highly cohesive clusters,

which means that the detected patterns are more informative. Hence, decreasing the value of this

parameter would result in an improvement in cohesion of the detected patterns. However, in this

case, the number and the consistency (generality) of the detected patterns could decrease because the

highly cohesive detected patterns may not be shared by a large number of clients. To ovoid bothering

potential users of our approach with tuning the max epsilon value, we set it to a default value of

0.5 which ensures that the libraries within patterns are at least used more frequently together than

separately.

To get a more qualitative sense, we describe one of the inferred patterns identified by our tech-

nique that can fulfil the requirements of the case scenario discussed in Section 7.2.1 and that provide

useful libraries for potential extensions of the system. The developer would use scheduler-api

and mailsender-api rather than the quartz and commons-email. This pattern has differ-

ent cohesion layers, and provides at the first layer, the libraries sakai -calendar-api 16 and

sakai-presence-api 17. In the second layer, we find three libraries that are added to the pat-

tern, namely portal-chat 18, messageforums-tool 19 and mailsender -api 20. At the

external usage cohesion layer, the scheduler-api is added to the pattern. Indeed, these libraries

have been frequently co-used in a set of 18 client systems at least in our dataset.

16. mvnrepository.com/artifact/org.sakaiproject.calendar/sakai-calendar-api/
17. mvnrepository.com/artifact/org.sakaiproject.presence/sakai-presence-api/
18. mvnrepository.com/artifact/org.sakaiproject.portal/portal-chat/
19. mvnrepository.com/artifact/org.sakaiproject.msgcntr/messageforums-tool/
20. mvnrepository.com/artifact/org.sakaiproject.mailsender/mailsender-api/
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It is worth noticing that we found a trade-off between the usage cohesion of the detected pat-

terns and their generalization. Indeed, another example of more generalizable patterns that was in-

ferred when max epsilon reached a relatively high value is the one formed in his core layer with

some libraries of the Spring framework such as spring-beans 21, spring-context 22 and

spring-orm 23. Then, in the second layer, we find some libraries of the Hibernate framework

such as the hibernate-entitymanager 24 and hibernate-annotations 25. Finally, in

the third layer, we find some json libraries such us the jackson- databind 26. The pattern con-

tinue growing until including some utility libraries of logging and testing. These libraries have been

co-used in a set of hundreds of client systems.

To better assist the developers in exploring potential library usage patterns, LibCUP provides an

interactive and friendly-user visualization tool. The visualization takes as input the inferred patterns

and distributes them through their different layers.

7.6 Conclusion

Third-party library reuse has become vital in modern software development. The number of

libraries provided on the Internet is exponentially growing, which would provide several reuse op-

portunities. In this chapter, we introduced our automated approach to detect multi-level library usage

patterns, as a collection of libraries that are commonly used together by client systems, distributed

through multiple levels of cohesion. We evaluated our approach on a large dataset of 6,638 popular

libraries from Maven repository, and a large population of 38,000 client systems from Github, and

we compared its results to those of a state-of-the-art approach. The results indicate that our approach

gives a comprehensive overview on third-party library usage patterns. The obtained usage patterns

exhibit high usage cohesion with an average of 77% , and could be generalizable to other systems.

Automatically detecting library usage patterns would support developers in enhancing the library

space discovery, and attract their attention the missed reuse opportunities.

21. mvnrepository.com/artifact/org.springframework/spring-beans
22. mvnrepository.com/artifact/org.springframework/spring-context
23. mvnrepository.com/artifact/org.springframework/spring-orm
24. mvnrepository.com/artifact/org.hibernate/hibernate-entitymanager
25. mvnrepository.com/artifact/org.hibernate/hibernate-annotations
26. mvnrepository.com/artifact/com.fasterxml.jackson.core/jackson-databind
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As future work, we are planning to unify our library-level usage pattern detection with method-

level usage pattern detection techniques in order to provide a comprehensive package for developers

supporting them in understanding and reusing third-party libraries.
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Chapter 8

Conclusion

In this chapter, we summarize the results and conclusions of this thesis. We also discuss the

limitations and future research directions.

8.1 Contributions

The main objective of this thesis was to develop a holistic approach to help software develop-

ers during the early step of library usage and learning process. To this end, we proposed different

techniques to deal with the library usability challenges at different levels of reuse. Our three main

contributions consider library usability respectively at the method level, across complementary API

methods, and within the combination of different complementary libraries.

The first contribution of our thesis, described in Chapter 3, helps developers to avoid the additional

cost for debugging and correction, due to the non-respect of method usage constraints. We focused on

four types of constraints that have been reported on several studies on API learning and usage obsta-

cles. The considered constraints are related to API method parameters, and our detection algorithms

succeeded in identifying the majority of the considered usage constraints. Typically, researchers and

practitioners try to identify usage constraint through the analysis of library documentation or multiple

client applications that cover the entire target library, which drastically limit the applicability of ex-

isting techniques. To support developers and relieve them from the burden of doing so, our technique

is based only on the analysis of the library source code, and achieved, in general, 100% of precision

and 94% of recall.

API methods are generally used within client programs jointly with other methods of the API. The

second contribution of our thesis is related to this fact. We proposed three techniques to identify API

usage patterns from different information sources. The identified patterns help developers to better

learn common ways to use the API complementary methods.

As described in Chapter 4 for the first technique, we applied multi-level clustering to mine usage

patterns that reflect interfering usage scenarios of the API. The technique is based on the analysis of



the frequency and consistency of co-usage relations between the API methods within client programs.

Our technique was able to detect usage patterns that are highly consistent and highly cohesive across

a considerable variability of client programs. The efficiency of this technique relies on the redundant

coverage from different client programs. Indeed, an API method should be used by several client

methods to infer usage patterns. This limitation is shared by all existing work around making use of

multiple API clients programs. This leads us to consider non client-based techniques as a potential

alternative.

Considering only client programs to identify API usage patterns is a strong constraint as the client

programs are not always available. In Chapter 5, we proposed a technique that supports pattern

mining using only the library source code. Our technique is based on the analysis of structural and

semantic dependencies of API methods within the library code itself. We assume that API methods

that manipulate the same object could be complementary in their contribution to a functionality. We

also assume that API methods can be related to the same domain functionality if they share similar

vocabulary. The proposed technique is not an alternative to client-based ones. It is rather a solution

when client programs are not available. It can be applied for non popular libraries and even for

“new” APIs. The proposed technique can infer usage patterns with a precision comparable to those

of client-based approaches.

Despite these encouraging results, there is still room for improvement. In Chapter 6, we proposed

our third technique for mining API usage pattern. The propose technique combines library-based and

client-based heuristics. Indeed, the library-based technique infers patterns that could apply to any

client program, but some of the inferred patterns do not reflect a real usage scenario. Conversely,

client-based technique infers usage patterns with actual instances in the used client programs, but

inferred patterns are limited to the usage scenarios in the selected client. We study which form of

combination is better to achieve the best tradeoff between library-based and client-based heuristics.

We evaluated the three techniques through the usage of four APIs having up to 22 client programs

per API. The obtained results show that the cooperative approach allows taking advantage at the

same time from the precision of client-based technique and from the generalizability of library-based

techniques.

From another perspective, developers spend considerable time and effort to identify libraries that

are useful and relevant for the implementation of their software. Worse yet, developers may tend to
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implement most of their features from scratch if they are unaware of the existence of libraries reuse

opportunities. In Chapter 7, our third contribution takes the form of a technique to automatically

identify third-party library usage patterns, as a collection of libraries that are commonly used together

when analyzing open source repositories. We evaluated our technique on a large dataset of around

6,000 popular libraries from Maven Central Repository and around 38,000 of their client systems

from the Github repository. Our technique is able to detect the majority of highly consistent and

cohesive patterns.

Finally, we believe that the inferred constraints and patterns can easily be integrated in an API

exploration process or to enhance API documentation, or even to recommend API elements.

8.2 Future Perspective

In this section, we discuss some open research directions and broader applications related to our

proposal for future work.

As we previously said, the inferred patterns by our approach are valuable for early steps of library

learning and usage process. However, when a developer gains experience with a library and takes

control of it, he may need more complex details on how to use the API. We are working to extend our

initial approach to support complex API usage patterns represented as linear temporal logic formulas

(LTL). The LTL specification can express different types of complex API usage properties, such as

safety properties that state the API calls that never happens together, or sequential properties that state

the temporal order between API calls. This kind of specification can be inferred from the execution

trace, collected for other software systems in similar contexts.

An important future direction consists of adapting our approach to detect API misuse. Over

the last few years, researchers proposed a multitude of techniques for bug-detection in the context

of library reuse. These techniques commonly mine API usage patterns from different API client

programs and find violations of those patterns, assuming that they may correspond to bugs. Such

pattern violations are called API misuses. As part of our future work, we intend to introduce a

completely deferent technique for API misuse detection. The technique will be based on the image

similarity of API usage glyphs. For the human-computer interaction community, glyphs [39] are very

popular and generally used to automatically generated visual icons, employed as object identification
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technique. Unfortunately, glyphs are rarely used to address software engineering problems. We

plan to generate API usage glyph dataset from trusted API client systems, and apply content-based

image retrieval techniques [38] to detect API misuse based on the glyphs’ image shapes and textures

similarity.

With tasks intended for experienced developers, such as API misuse related bug detection or

complex specification inference, we may need to use more complicated data representations. As part

of our future research on complex API usage tasks, we plan to study the usage of graph-based object

usage models (Groums) [52]. Groums can hold special nodes to represent control structures, such as

loops and conditionals. Furthermore, edges not only represent sequencing constraints, but also data

dependencies. Our intention will be to compare our multi level pattern to groums when used as input

for API misuse or complex specification inference technique.

From another perspective, our clustering-based technique for pattern mining can be adapted to

mine software components from object-oriented APIs, or to improve the service interface modular-

ization for service-oriented application.
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