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Résumé
L’apprentissage profond est une sous-discipline de l’intelligence artificielle en

plein essor grâce à d’impressionnantes performances, obtenue durant la dernière
décennie, dans divers domaines d’application de l’apprentissage machine. Le pré-
entrâınement non supervisé des réseaux de neurones constitue une composante
essentielle de ce succès. L’investigation d’idées combinant l’apprentissage supervisé
et non supervisé se présente donc comme une étape naturelle.

Le réseau de neurones à échelles est une récente architecture semi-supervisée
ajoutant une composante non supervisée à la perte supervisée des réseaux pro-
fonds. Le modèle peut être compris comme étant une partie d’une juxtaposition
d’autoencodeurs debruitant apprenant à reconstruire chaque couche. Pour ce faire,
la reconstruction est atteinte en considérant une corruption de la couche présente
grâce aux retours des couches supérieures.

Le présent mémoire entreprend une analyse et déconstruction systématique de
la performance des réseaux de neurones à échelles. Ainsi, nous analysons dix-neuf
variantes de l’architecture obtenues en isolant les différentes composantes du mo-
dèles. Dans les chapitres I et II, nous introduisons les fondamentaux des réseaux
de neurones, leur entrâınement par descente de gradient, et leurs applications à
l’apprentissage des représentations.

Dans les chapitres III et IV, nous offrons une comparaison exhaustive d’un
grand nombre de variantes du réseau de neurones à échelles en contrôlant les hyper
paramètres ainsi que la sélection d’ensemble de données. Au cours de notre inves-
tigation, nous découvrons certaines propriétés générales du modèle qui le distingue
des habituels réseaux à propagation avant. Nous terminons par l’introduction d’une
variante du réseau à échelles obtenant ainsi des résultats dépassant l’état de l’art
actuel dans des tâches de classification supervisé et semi-supervisé sur la version
invariante aux permutations de MNIST.

Mots clés: réseaux de neurones, apprentissage automatique, apprentissage
de représentations profondes, apprentissage de représentations, apprentissage non
supervisé, apprentissage supervisé, apprentissage semi-supervisé, régularisation
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Summary
Deep Learning is a quickly growing area of research in the field of Artificial

Intelligence that has achieved impressive results in the last decade in various Ma-
chine Learning applications. Unsupervised learning for pre-training layers of neural
networks was an essential part of the first wave of deep learning methods. A nat-
ural next step is to investigate ideas that could combine both unsupervised and
supervised learning.

The Ladder Network is a recently proposed semi-supervised architecture that
adds an unsupervised component to the supervised learning objective of a deep
network. The model can be seen as part of a deep stack of denoising autoencoders
or DAEs that learns to reconstruct each layer. At each layer, the reconstruction
is done based on a corrupted version of the current layer, using feedback from the
upper layer.

This thesis undertakes a systematic analysis and deconstruction of the Lad-
der Network, investigating which components lead to its excellent performance.
We analyze nineteen different variants of the architecture derived by isolating one
component of the model at a time.

In Chapters 1 and 2, we introduce fundamentals of artificial neural networks,
the gradient-based way of training them and their application in representation
learning. We also introduce deep supervised and unsupervised learning and discuss
the possible ways of combining them.

In Chapters 3 and 4, we provide a thorough comparison of a large number of
variants of the Ladder Network controlling both hyperparameter settings and data
set selection. Through our investigation, we discover some general properties of
the model that distinguish it from standard feedforward networks.

Finally, we introduce a variant of the Ladder Network that yields to state-of-
the-art results for the Permutation-Invariant MNIST classification task in both
semi- and fully- supervised settings.

Keywords: neural networks, machine learning, deep learning, representation
learning, unsupervised learning, supervised learning, semi-supervised learning, model
regularization
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1 Artificial Neural Networks

1.1 Artificial Neural Networks

Inspired by the human brain, Artificial Neural Networks (also called simply

neural networks) are data processing systems composed of many small processing

units. In an analogy to the brain, each of these small processing units is called an

artificial neuron. Usually, lots of artificial neurons are connected to one another

in a hierarchical layered structure. Moreover, to mathematically model the firing

rate 1 of each neuron, an activation function is used on the output of each neuron.

In the next four sub-sections, we introduce the mathematical formulations of ANNs

and touch the biological inspirations behind these models.

1.1.1 Artificial neuron

An artificial neuron is a simple function from one or more inputs to a single

output. Consider a set of inputs x = {x1, x2, ..., xd} containing d input scalars. A

set of d scalar weights w = {w1, w2, ..., wd} are assigned to each input in addition to

a single scalar bias term b. Formally, an artificial neuron h(x) is defined as follows,

h(x) = g(
d∑
i=1

wixi + b), (1.1)

in which g(.) is a nonlinear function called the activation function. Consequently,

we refer to the term
∑

iwixi+b as the pre-activation. For simplicity, the summation

term can be written in vector multiplication,

h(x) = g(wTx + b). (1.2)

1. See more about firing rate in section 1.1.4
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Figure 1.1 – A graphical illustration of an artificial neuron. The input is the vector x =
{x1, x2, ..., xd} to which a weight vector w = {w1, w2, ..., wd} and a bias term b is assigned.
(Figure adapted from Hugo Larochelle’s slides)

Note that for a single set of inputs, x is a vector of size d× 1 while in the case of

N sets of inputs, x is a matrix of size d×N .

1.1.2 Activation function

In Equation 1.1 the pre-activation is simply a linear weighted sum. In order to

make the function from input to output nonlinear, the activation function is applied

on the pre-activation. Among different activation functions, here we introduce four

of them.

Sigmoid activation function is an element-wise function that ranges between

0 and 1. The output of this function can be interpreted as the probability of

activation. Denoting the pre-activation as z, this function is defined as follows,

g(z) =
1

1 + e−z
. (1.3)

Rectifier Linear Unit (ReLU) is also an element-wise function which for

negative inputs, is simply off (output is zero), while for positive inputs, the output

is the same as the input. This activation function is one of the most common

activation functions. We can simply define this function as follows,

g(z) =

0 z ≤ 0

z z > 0
(1.4)

Leaky ReLU (LReLU) (Maas et al., 2013) is an extension of the ReLU

activation function in which even in the negative region, the output is a small

2
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Figure 1.2 – (a) the Sigmoid activation function, (b) the Rectifier Linear Unit, and (c) the
Leaky Rectifier Linear Unit.

negative value. The intuition behind this activation function is that empirically,

optimization and training benefit from having a small amount of gradient in the

negative region. Compare this to the ReLU, where in negative region the neuron’s

output is zero and there is a gradient of zero in that region. LReLU is defined as

follows:

g(z) =

α ∗ z z ≤ 0

z z > 0
(1.5)

in which the term α denotes the slope of output in the negative region. Typically,

α is set to have a value between 0 and 0.2.

Softmax is another rather different type of activation function, which nor-

malizes a set of pre-activations in such a way that each can be interpreted as a

probability. Usually, in classification problems, if there are only two classes, a sin-

gle Sigmoid unit is used. However, if there are more than two classes, the Softmax

is used. Considering z as a vector of C pre-activations, the Softmax over these C

classes is defined as follows,

g(z)j =
ezj∑C
i=1 e

i
. (1.6)

A graphical depiction of the first three activation functions is shown in Figure

1.2. Note that since the Softmax is applied on more than two numbers, it is not as

visualizable as others.

3



Figure 1.3 – A Three layer neural network. The matrix W(k) connects the (k − 1)th layer to

the kth layer and therefore W(k) ∈ RDk×Dk−1

and b(k) ∈ RDk

. After each linear transformation
(weight multiplication and bias addition), an activation function is applied. (Figure adapted from
Hugo Larochelle’s slides)

1.1.3 Multilayer neural network

Artificial Neural Networks are usually organized in a layer-wise structure. As

shown in figure 1.3, in such a structure, in an individual layer, neurons with different

weights and biases 2 are applied on the same input. Then, the output of that layer

is the input for the next layer. Formally, a multilayer neural network is defined as

follows,

h(k)(x) = g(b(k) + W(k)h(k−1)(x)), (1.7)

in which, h(k)(x) is the nonlinear output of kth layer and h(0)(x) = x. Note that if

h(k−1)(x) ∈ RDk−1
and h(k)(x) ∈ RDk

, then W(k) ∈ RDk×Dk−1
and b(k) ∈ RDk

.

To sum up, a multilayer neural network can be seen as a complicated func-

tion from inputs to outputs, composed of many small functions. According to the

universal approximation theorem Hornik et al. (1989), multilayer feedforward net-

works are capable of approximating any measurable function to any desired degree

2. We refer to the weights W’s and biases b’s as parameters.

4
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Figure 1.4 – (a) a biological neuron: each neuron receives some inputs through the input ports
called dendrites and sends some outputs through the axons. (b) the abstract artificial model of
a biological neuron: the activation corresponds to the firing rate, the weights correspond to the
connection strength between two neurons, and the activation function and bias term correspond
to the threshold of firing.

of accuracy given sufficient number of layers and neurons per each layer. However,

finding the appropriate parameters W’s and b’s remains a challenging problem. In

section 1.2, we introduce the current methods for training such architectures.

1.1.4 Biological inspiration

Biological neural networks, such as the human brain, are made of billions of bio-

logical neurons. Biological neurons communicate by sending and receiving electro-

chemical signals. In the most popular simple models of neuron behaviour, each

neuron has some inputs and outputs which can be either on or off. Each transi-

tion between being on or off is called a spike and the number of spikes per unit of

time is called firing rate. A neuron fires (outputs a spike) when it receives input

spikes above a certain threshold. With these simple models, it is generally consid-

ered that when two adjacent neurons fire together, the weight between the two is

strengthened and vice versa.

The artificial neuron as described in section 1.1.1 is an abstract model of a

biological neuron, in which the weight between two adjacent neurons is modeled as

a scalar and the firing rate is modeled by the activation function. Figure 1.4 shows

a single biological neuron and its abstract artificial model.

Biologically, human visual cortex has a layer-wise structure, which has been an

inspiration for multilayer artificial neural networks. As shown in Figure 1.5, when

light hits our eyes, retinal neurons process the light into electro-chemical signals

and send them (possibly via other layers) to Lateral Geniculate Nucleus (LGN)
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Figure 1.5 – (a) A depiction of human visual cortex (Thorpe & Fabre-Thorpe, 2001). (b) A
multilayer artificial neural network imitating the visual cortex Lee et al. (2009), and a visualization
of filters learned by a trained multilayer artificial neural network, showing that it is also capable
of detecting edges, patterns, and objects in different layers.

and from LGN to other layers. Thorpe & Fabre-Thorpe (2001) shows that the

V1 is responsible for detecting edges and corners, V4 is responsible for detecting

intermediate visual forms, and finally AIT is responsible for high-level abstract

object descriptions.

1.2 Training Artificial Neural Networks

In the previous section, we introduced the structure of artificial neural networks.

We also defined two sets of parameters: weights and biases. In order that given a

certain input to the network, model outputs a certain output, the parameters need

to be adapted. The process of adapting the parameters is called training. In the

following subsections, we introduce methods in order to optimize the parameters

with respect to a predifined loss function.

1.2.1 Cost Functions

In optimization problems, cost function or loss function or objective function

is a function from a set of variables or values to a single real number. This single

6



real number is called the “cost”. Usually the objective of training procedure is to

minimize the cost (or maximize its negative).

To design an empirical cost function, consider a network with parameters θ

from the input x to the output ŷ. The objective is to minimize the loss between

the output ŷ and the target y. Having T pairs of (x(t),y(t)) and ŷ(t) = f(x(t); θ)

the cost function is defined as follows:

L(x, θ) =
1

T

∑
t

l(f(x(t); θ),y), (1.8)

in which, depending on the task, l(f(x(t); θ),y) might be Mean Square Error (MSE),

negative log-likelihood (nll), or other differentiable functions.

In a classification task with C classes, the value of each output neuron is inter-

preted as the probability of that specific class, i.e., f(x)c = Pr(y = c|x). In such a

task, the function l(., .) can be the negative log-likelihood:

l(f(x(t); θ),y) = −
∑
c

1y=c log f(x)c = − log f(x)y, (1.9)

in which the log is used for numerical stability and also for mathematical simplicity.

In the regression task, the target y is a vector of real values, the cost function

is often the MSE:

l(f(x(t); θ),y) = ||f(x(t); θ)− y||2F , (1.10)

where ||.||2F is the Frobenius norm. Frobenius norm of a vector V with n elements

is defined as follows:

||A||2F =

√√√√ n∑
i=1

a2i . (1.11)

1.2.2 Gradient Based Optimization

Artificial neural networks are typically trained using gradient based optimiza-

tion methods and specifically, using the Gradient Descent algorithm and its vari-

ants. Gradient Descent can be seen as approximating a function by its first-order

Taylor series. Gradient Descent finds a local minimum of a function by taking small

7



Figure 1.6 – A graphical depiction of the gradient descent algorithm. In this case, on two axes,
there are values of two parameters and on the z axis the value of the cost function is visualized.
(Figure adapted from Andrew Ng’s slides.)

steps in the direction of the gradient proportional to its magnitude. Therefore, gra-

dient descent is an iterative process that at each iteration updates the parameters

using the following update rule,

θt+1 ← θt − η∇θtL(x, θt), (1.12)

where η is called the learning rate.

In simple words, the gradient descent algorithm can be seen as a hiker climbing

down a hill to a part with lowest height. Each step of the hiker is determined by

the slope of the hill at that specific location. A graphical depiction of the gradient

descent algorithm is shown in figure 1.6.

Typically, Stochastic (mini-batch) Gradient Descent (SGD) is used rather

than Gradient Descent. SGD is a version of Gradient Descent in which instead of

computing the gradient ∇θL(x, θ) exactly, an estimate of the gradient is used based

on one or a few randomly selected examples. Since the examples are randomly

selected, the expected value of the gradient is the same as the exact gradient.

1.2.3 Adam Learning Algorithm

In practice, the learning rate is an important hyperparameter that can affect

learning significantly. One way to handle this problem is to use learning rates which

can adapt throughout the course of learning. In recent years, several algorithms

8



Figure 1.7 – A pseudo code for the Adam learning algorithm (Kingma & Ba, 2014). Note that
both mean and variance are computed using two moving averages starting at zero. As a result,
the moving averages are biased towards zero which are corrected.

with adaptive learning rate have been proposed. In this section, we introduce Adam

(Kingma & Ba, 2014) which is used in all of our experiments.

The Adam algorithm has its name derived from “adaptive moments”. It adapts

the learning rate of each parameter by scaling them. The scaling factor is propor-

tional to an exponentially weighted moving average over the accumulated gradient.

The pseudo code of this algorithm is shown in Figure 1.7.

Other than the global learning rate, there are two other hyperparameters ρ1

and ρ2. In practice, if the number of mini-batches is N , the best value for ρ2 is

1− 1
N

.

1.2.4 Backpropagation Algorithm

In the previous sections, we showed how to train neural network parameters

using gradients of their parameters. In this section, we introduce a well-known

algorithm for computing the gradients in an efficient way. In a multi-layer net-

work, backpropagation uses the chain rule to iteratively compute the gradients.

Obviously, in order to be able to use backpropagation, both activations and pre-

activations must be differentiable.

Each step of the backpropagation contains one forward and one backward paths.

Forward path means feeding the network input, computing the pre-activations and

9



Figure 1.8 – (a) The forward path and (b) the backward path in backpropagation algorithm on
a two-layer neural network. Note that in the backward path, in order to be able to go through
each module, it must be differentiable. (Figure adapted from Hugo Larochelle’s slides.)

activations, and finally computing the error (the cost function). Similarly, the back-

ward path amounts to propagation of errors on activations and then pre-actications

of each layer. Figure 1.8 depicts the forward and backward paths using a flow graph.

Formally, consider the network in Figure 1.8 and the cost function as the neg-

ative log-likelihood as described in sub-section 1.2.1. Consistent with our previous

notation, z(l) and h(l) are the pre-activations and activations at layer l, respectively.

The gradient of the loss w.r.t. the pre-activation at layer 2 is,

∇z(2)(x) − log f(x)y = −(e(y)− f(x)), (1.13)

in which e(y) is a one-hot representation that all the elements are zero except the

element in index y which is one. Using chain rule, since ∇W(2)z(2)(x) = h(1)(x) and

∇b(2)z(2)(x) = 1, the gradients w.r.t. the parameters can be derived as follows,

∇W(2) − log f(x)y =
(
∇z(2)(x) − log f(x)y

)
h(1)(x)T , (1.14)

∇b(2) − log f(x)y = ∇z(2)(x) − log f(x)y. (1.15)

To back-propagate the gradient to the next layer (specifically, the next pre-activation),
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we have,

∇h(1)(x) − log f(x)y = W(2)T
(
∇z(2)(x) − log f(x)y

)
, (1.16)

∇z(1)(x) − log f(x)y =
(
∇h(1)(x) − log f(x)y

)
� g′(z(1)(x)), (1.17)

in which � is an element-wise multiplication and g′(.) is the derivative of the

activation function. Having ∇z(1)(x)− log f(x)y, gradients of parameters in the first

layer can be computed in a similar way.

1.2.5 Faster Training using Batch Normalization

During training deep neural networks, as a result of changing parameters over

the course of learning, the distributions of representations at each layer change.

This change in distribution which makes the training procedure slower is known

as Internal Covariance Shift problem. It is hypothesized that reducing the Inter-

nal Covariance Shift helps both optimization and generalization (Ioffe & Szegedy,

2015).

One way to reduce the Internal Covariance Shift is a recently proposed method

named Batch Normalization (Ioffe & Szegedy, 2015). Batch Normalization stan-

dardize the pre-activations using the sample mean and sample variance over the

current mini-batch. Consider a mini-batch of pre-activations z ∈ RM×k in which

M is the number of examples in the mini-batch and k is the number of features.

The sample mean and sample variance vectors are computed as follows,

z̄ =
1

M

M∑
i=1

zi., (1.18)

σ2 =
1

M

M∑
i=1

(zi. − z̄)T (zi. − z̄). (1.19)

Therefore, both z̄ and σ2 are vectors in Rk. Using these statistics, we can apply

normalization on z,

ẑ =
z− z̄√
σ2 + ε

. (1.20)

in which ε is a small constant for numerical stability. However, such normalization
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reduces the representational power of each layer. To resolve this, two extra learnable

parameters β and γ are added and multiplied, respectively. Consequently, if we

denote a batch normalization layer as BN(.), the formulation is as following,

BN(z) = γẑ + β. (1.21)

Note that because of β, the bias term of the linear transformation can be removed.

Moreover, in the case of activation functions like ReLU and LReLU where only the

sign of the input matters and not the scale, the γ term is usually removed. It is

worth mentioning that during test time, we compute z̄ and σ2 over the training

set.
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2 Representation Learning

The success of many Machine Learning algorithms depends on data represen-

tation. For example, a feature representation that successfully separates distinct

classes can lead to perfect learning via simply a linear classifier in this representa-

tion space. In the past decades, it has been the norm for human experts to design

task-specific representations using domain-specific knowledge, prior assumptions,

or at times, simply trial-and-error. Despite the reasonable success of this approach

for specific tasks, we would ideally like to develop end-to-end trainable models

that learn the best feature representation for the task on its own. Over the last

decade, an explosion in the amount of the available data combined with increasingly

powerful computational resources has resulted in representation learning 1 methods

providing significant gains in performance across a wide range of tasks. For the task

of object recognition, representation learning methods have achieved performance

comparable to that of humans on the standard ImageNet dataset (Krizhevsky et al.,

2012) (He et al., 2015). In the area of Natural Language Processing, for different

tasks such as Machine Translation (Bahdanau et al., 2014), Sentiment Analysis

(Glorot et al., 2011), Language Modeling (Graves, 2013), representation learning

based algorithms currently hold state-of-the-art performance.

In this chapter, we first discuss two typical approaches for representation learn-

ing: 1) Supervised Learning and 2) Unsupervised Learning. Secondly, we discuss

how to combine these two approaches. In the following section, we start by intro-

ducing the idea of disentangling factors of variation.

1. Usually, both terms representation learning and deep learning are used interchangeably.
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Figure 2.1 – Learned features in a deep neural network. As we go deeper into the network, the
network has learned to extract increasingly higher levels of abstraction from raw pixel input data.
(Figure adapted from Lee et al. (2009))

2.1 Disentangling Factors of Variation

All sensory data that we receive, such as rays of light striking our retina (a

matrix of pixels for computers), are generated as a result of interactions between

many latent factors of variation. Different factors such as pose, face expression, skin

color, and illumination interact in real world and the result is a matrix of pixels.

Disentangling amounts to the process of teasing apart these factors of variations

and extracting high-level latent features from low-level sensory data.

As we discussed, the low-level, high-dimensional sensory data is provided to a

neural network through the input layer and it activates neurons in the subsequent

layers. The activations in each layer correspond to pattern detectors, such that as

we proceed deeper into the network, the patterns get more abstract. For example,

for a typical computer vision task, the first layer represents pixels, the next layer

learns to represent edges and patches, and the upper layers learn to represent high-

level scene components such as objects (Lee et al., 2009). Figure 2.1 provides a

visualization for the pattern detectors at each layer.

The fundamental principle of deep learning is that given enough data, a suf-

ficiently deep neural network is able to extract high-level features. Depending on

whether datapoints are labeled or not, we have two different categories of learning

tasks: supervised and unsupervised learning. Consider a computer vision task in

which the data contain only pixels and no label information. In such a scenario, an

unsupervised neural network can discover that neighboring pixels have strong cor-

relations with one another. Subsequently, other higher-level features can be built

on top of the discovered feature representation. On the other hand, if labels are

provided as well, they can be used to guide the network towards representations
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that are more task-specific. In the following two sections, we discuss supervised

and unsupervised learning in more detail.

2.2 Supervised Learning

In supervised learning, both the input and the desired output (or the target)

are provided during training. Training amounts to finding a mapping between the

input and the target.

Supervised learning problems are usually categorized into regression and clas-

sification tasks. In a regression problem the target is a continuous variable, and

for classification the target is categorical and discrete. In neural network appli-

cations, the most common supervised learning problem is classification. Object

detection, activity detection and handwritten digit recognition are all examples of

classification 2.

From a probabilistic point of view, the goal of supervised learning is to learn a

conditional probability distribution that can be used for making predictions. Such

a network is usually trained using a cross entropy cost function 3. Consider a multi-

layer neural network f(.) fed with a single input vector, x, that predicts the number

of classes, C, by modeling the following conditional distribution,

Pr(y = c|x) = f(x)c = ŷc. (2.1)

As described in section 1.2.1, for N training examples, the total cost function is

defined as follows,

Cost = − 1

N

N∑
n=1

logPr(ŷ(n) = y(n)|x(n)), (2.2)

where y is a one-hot vector with zeros everywhere except the cth element, which is

2. However, for all of these examples other types of learning may also be used, for example
unsupervised pretraining.

3. Since in classification the target is categorical, the cost function is called categorical cross
entropy.
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one. Such a network can be trained using Stochastic Gradient Decent and back-

propagation as described in the previous chapter.

Although deep supervised learning has been achieving impressive results, purely

supervised learning requires a huge amount of labeled data for deep models to work

well. Besides, sometimes, the learned representations in a supervised network are

optimized for a specific task and may not be transferable to other tasks. Since

unsupervised learning does not require label information, unsupervised learning is

of interest, since unlabeled data is cheap and easy to come by these days.

2.3 Unsupervised Learning

In unsupervised learning, the training data consists of a set of input datapoints,

x, without any corresponding target values. The principal idea behind unsupervised

learning is that only the raw input without any other information is sufficient for the

model to learn a meaningful representation of the data. In conventional machine

learning, clustering is a common example of unsupervised learning in which the

task is to group examples that are similar 4 to each other.

In the deep learning literature, unsupervised feature extraction, density estima-

tion, and manifold learning are the most common methods of deep unsupervised

learning. Deep learning and deep neural networks seem to be a great candidate

for feature extraction, following upon the intuition behind the compositionality as-

sumption that assumes more abstract features are made out of less abstract ones

(Bengio et al., 2013a). Density estimation also amounts to adapting model parame-

ters in order to recover Prdata given a training set. In manifold learning, the idea is

that the complicated distribution Prdata can be modeled with a simple distribution

Prz in which z is a latent variable that lies on a low-dimensional space.

Since unsupervised learning does not require label information, massive amounts

of readily available unlabeled data can be used to train such models. Differ-

ent models such as Restricted Boltzmann Machine (RBM), Deep Belief Network

(DBN) (Hinton et al., 2006), spike and slab Restricted Boltzmann Machine (ss-

RBM) (Courville et al., 2011), Stacked Autoencoders (Hinton & Salakhutdinov,

4. Some quantified measure of similarity is used.
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2006), and Sparse Coding are all examples of unsupervised deep learning. Among

these, we introduce, in the next subsections, two unsupervised models that have

achieved successful results in the last decade.

2.3.1 Auto-Encoders

Auto-Encoders (Hinton & Salakhutdinov, 2006) are models that map (encode)

the data in input space to another hidden space and then map the hidden repre-

sentation back (decode) to the input space (reconstruction). The objective is to

train a model in a way that has the lowest reconstruction error on test examples.

Formally, given a single input vector x and the encoder function fθ(.), we have,

h = fθ(x), (2.3)

where θ is the set of parameters and h is the hidden representation. Similarly, the

decoder has the following form,

x̂ = gφ(h). (2.4)

To measure the discrepancy between the reconstruction x̂ and the data x, in a

basic auto-encoder the cost function is usually the Mean Square Error (MSE),

Cost = ||x̂− x||2F . (2.5)

The two encoder and decoder functions are usually parameterized by neural net-

works. Figure 2.2 (a) is a graphical depiction of a standard auto-encoder.

2.3.2 Denoising Auto-Encoders

In the case of overcomplete auto-encoders in which the dimensionality of hidden

representation is larger than the dimensionality of input data, the auto-encoder may

“cheat” and learn an identity mapping that leads to zero reconstruction cost. One

way to prevent the model from learning a trivial mapping is to artificially corrupt

the input by adding noise to it before feeding it to the model. The model must

now reconstruct the uncorrupted input from its noisy version. The idea is that the

network must learn the data structure in order to be able to undo the corruption
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Figure 2.2 – (a) An auto-encoder: the input to the network is x and the output is the recon-
struction x̂. Note that each of fθ(.) and gφ(.) can be deep neural networks. (b) A denoising
auto-encoder: the input to the network is noisy, but the reconstruction x̂ is compared to the
uncorrupted data.

process. Such an extension of auto-encoders is called denoising auto-encoder (DAE)

(Vincent et al., 2010b).

In practice, the denoising auto-encoder leads to qualitatively better features.

Besides, a better classification performance can be achieved by using features from

a denoising auto-encoder rather than those from an standard auto-encoder.

From a manifold learning point of view, in the hidden representation space, all

data points lie on a low-dimensional manifold. When a corrupted data point is fed

to the network, it lies somewhere farther from the data manifold. Subsequently the

model must learn the probability distribution Pr(x|x̂) to project the noisy data

point back to the manifold. A graphical illustration of this process is shown in

Figure 2.3.

2.4 Combining Supervised and Unsupervised

Learning

Labeling data sets is typically a costly task and in many settings there are far

more unlabeled examples than labeled ones. Supervised learning algorithms on

small amount of labeled data can result in severe overfitting. As a result, it is de-

sirable to take advantage of huge amount of unlabeled data to learn representations

which are useful for the supervised task.
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Figure 2.3 – A visual illustration of the data manifold in low-dimensional hidden space. A
corrupted input lies far from the data manifold and the reconstruction function projects corrupted
inputs back. (Figure adapted from Vincent et al. (2010b))

Semi-supervised learning aims to improve the performance on some supervised

learning problem by using information obtained from both labeled and unlabeled

examples. Since the recent success of deep learning methods has mainly relied on

supervised learning based on very large labeled datasets, it is interesting to explore

semi-supervised deep learning approaches to extend the reach of deep learning to

these settings.

Historically, unsupervised learning played an important role in the first wave of

deep learning (Hinton et al., 2006; Vincent et al., 2008; Bengio, 2009). Unsuper-

vised pre-training of neural networks was used to initialize parameters of models for

supervised training, a process referred to as greedy layer-wise unsupervised pretrain-

ing. It’s considered a greedy method because the layers are learned one at a time

without consideration of what is being trained next 5. Consequently, a natural next

step is to investigate how ideas inspired by Restricted Boltzmann Machine training

and regularized autoencoders can be used for semi-supervised learning. Examples

of approaches based on such ideas are the discriminative RBM (Larochelle & Ben-

gio, 2008) and a deep architecture based on semi-supervised autoencoders that was

used for document classification (Ranzato & Szummer, 2008).

Recent examples of semi-supervised deep learning are the semi-supervised Vari-

ational Autoencoder (Kingma et al., 2014) and the Ladder Network (Rasmus et al.,

2015) which obtained state-of-the-art results (1.13% error) on the MNIST hand-

5. There is no global objective being trained.

19



written digits classification benchmark using just 100 labeled training examples.

The Ladder Network adds an unsupervised component to the supervised learn-

ing objective of a deep feedforward network by treating this network as part of a

deep stack of denoising autoencoders or DAEs (Vincent et al., 2010a) that learns

to reconstruct each layer (including the input) based on a corrupted version of it,

using feedback from upper levels. The term “ladder” refers to how this architecture

extends the stacked DAE in the way the feedback paths are formed.
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3 Prologue to the Article

Deconstructing the Ladder Network Architecture. Mohammad Pezeshki,

Linxi Fan, Philémon Brakel, Aaron Courville, and Yoshua Bengio. Proceedings of

the 33rd International Conference on Machine Learning (ICML), 2016.

Personal Contribution. The underlying idea of performing a deconstructive

study of the Ladder Architecture via an ablation study in a semi-supervised setup

was mine. Philémon Brakel and I designed different variants of the architecture.

Then, I conducted the experiments for the variants derived by removal of individual

components, and Linxi Fan conducted the experiments derived by replacement. I

implemented the majority of the code in Theano (Bergstra et al., 2010; Bastien

et al., 2012), Blocks and Fuel (van Merriënboer et al., 2015), based on code from

Rasmus et al. (2015); Valpola (2014). I contributed significantly to the writing

of the paper, with valuable inputs from my supervisors Yoshua Bengio and Aaron

Courville. My co-authors Philémon Brakel and Linxi Fan also reviewed and rewrote

some parts.

21



4 Deconstructing the Ladder
Network Architecture

4.1 Introduction

Labeling data sets is typically a costly task and in many settings there are

far more unlabeled examples than labeled ones. Semi-supervised learning aims to

improve the performance on some supervised learning problems by using informa-

tion obtained from both labeled and unlabeled examples. Since the recent success

of deep learning methods has mainly relied on supervised learning based on very

large labeled datasets, it is interesting to explore semi-supervised deep learning

approaches to extend the reach of deep learning to these settings.

Since unsupervised methods for pre-training layers of neural networks were an

essential part of the first wave of deep learning methods (Hinton et al., 2006; Vincent

et al., 2008; Bengio, 2009), a natural next step is to investigate how ideas inspired by

Restricted Boltzmann Machine training and regularized autoencoders can be used

for semi-supervised learning. Examples of approaches based on such ideas are the

discriminative RBM (Larochelle & Bengio, 2008) and a deep architecture based on

semi-supervised autoencoders that was used for document classification (Ranzato

& Szummer, 2008). More recent examples of approaches for semi-supervised deep

learning are the semi-supervised Variational Autoencoder (Kingma et al., 2014)

and the Ladder Network (Rasmus et al., 2015) which obtained state of the art

results (1.13% error) on the MNIST handwritten digits classification benchmark

using just 100 labeled training examples.

The Ladder Network adds an unsupervised component to the supervised learn-

ing objective of a deep feedforward network by treating this network as part of a

deep stack of denoising autoencoders or DAEs (Vincent et al., 2010a) that learns

to reconstruct each layer (including the input) based on a corrupted version of it,

using feedback from upper levels. The term ’ladder’ refers to how this architecture

extends the stacked DAE in the way the feedback paths are formed.
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This paper is focusing on the design choices that lead to the Ladder Network’s

superior performance and tries to disentangle them empirically. We identify some

general properties of the model that make it different from standard feedforward

networks and compare various architectures to identify those properties and de-

sign choices that are the most essential for obtaining good performance. While

the authors of the Ladder Network paper explored some variants of their model

already, we provide a thorough comparison of a large number of architectures con-

trolling for both hyperparameter settings and data set selection. Finally, we also

introduce a variant of the Ladder Network that yields new state-of-the-art results

for the Permutation-Invariant MNIST classification task in both semi- and fully-

supervised settings.

4.2 The Ladder Network Architecture

In this section, we describe the Ladder Network Architecture 1. Consider a

dataset with N labeled examples (x(1), y∗(1)), (x(2), y∗(2)), ..., (x(N), y∗(N)) and

M unlabeled examples x(N + 1), x(N + 2), ..., x(N +M) where M � N . The ob-

jective is to learn a function that models P (y|x) by using both the labeled examples

and the large quantity of unlabeled examples. In the case of the Ladder Network,

this function is a deep Denoising Auto Encoder (DAE) in which noise is injected

into all hidden layers and the objective function is a weighted sum of the super-

vised Cross Entropy cost on the top of the encoder and the unsupervised denoising

Square Error costs at each layer of the decoder. Since all layers are corrupted by

noise, another encoder path with shared parameters is responsible for providing the

clean reconstruction targets, i.e. the noiseless hidden activations (See Figure 4.1).

Through lateral skip connections, each layer of the noisy encoder is connected

to its corresponding layer in the decoder. This enables the higher layer features

to focus on more abstract and task-specific features. Hence, at each layer of the

decoder, two signals, one from the layer above and the other from the corresponding

layer in the encoder are combined.

1. Please refer to (Rasmus et al., 2015; Valpola, 2014) for more detailed explanation of the
Ladder Network architecture.
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Formally, the Ladder Network is defined as follows:

x̃, z̃(1), ..., z̃(L), ỹ = Encodernoisy(x), (4.1)

x, z(1), ..., z(L), y = Encoderclean(x), (4.2)

x̂, ẑ(1), ..., ẑ(L) = Decoder(z̃(1), ..., z̃(L)), (4.3)

where Encoder and Decoder can be replaced by any multi-layer architecture such

as a multi-layer perceptron in this case. The variables x, y, and ỹ are the input,

the noiseless output, and the noisy output respectively. The variables z(l), z̃(l), and

ẑ(l) are the hidden representation, its noisy version, and its reconstructed version

at layer l. The objective function is a weighted sum of supervised (Cross Entropy)

and unsupervised costs (Reconstruction costs).

Cost =− ΣN
n=1 logP (ỹ(n) = y∗(n)|x(n)) + ΣM

n=N+1Σ
L
l=1λl ReconsCost(z

(l)
(n), ẑ

(l)
(n)).

(4.4)

in which, y∗ is the true target. Note that while the noisy output ỹ is used in the

Cross Entropy term, the classification task is performed by the noiseless output y

at test time.

In the forward path, individual layers of the encoder are formalized as a linear

transformation followed by Batch Normalization (Ioffe & Szegedy, 2015) and then

application of a nonlinear activation function:

z̃(l)pre = W (l) · h̃(l−1), (4.5)

µ̃(l) = mean(z̃(l)pre), (4.6)

σ̃(l) = stdv(z̃(l)pre), (4.7)

z̃(l) =
z̃
(l)
pre − µ̃(l)

σ̃(l)
+N (0, σ2), (4.8)

h̃(l) = φ(γ(l)(z̃(l) + β(l))), (4.9)

where h̃(l−1) is the post-activation at layer l− 1 and W (l) is the weight matrix from

layer l − 1 to layer l. Batch Normalization is applied to the pre-normalization z̃
(l)
pre

using the mini-batch mean µ(l) and standard deviation σ(l). Functions mean and
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stdv are defined as follows,

mean(v) =
1

N

N∑
i=1

vi, (4.10)

stdv(v) =

√√√√ 1

N

N∑
i=1

(vi −meanv)2. (4.11)

The next step is to add Gaussian noise with mean 0 and variance σ2 to com-

pute pre-activation z̃(l). The parameters β(l) and γ(l) are responsible for shifting

and scaling before applying the nonlinearity φ(·). Note that the above equations

describe the noisy encoder. If we remove noise (N (0, σ2)) and replace h̃ and z̃ with

h and z respectively, we will obtain the noiseless version of the encoder.

At each layer of the decoder in the backward path, the signal from the layer

ẑ(l+1) and the noisy signal z̃(l) are combined into the reconstruction ẑ(l) by the

following equations:

u(l+1)
pre = V (l) · ẑ(l+1), (4.12)

µ(l+1) = mean(u(l+1)
pre ), (4.13)

σ(l+1) = stdv(u(l+1)
pre ), (4.14)

u(l+1) =
u
(l+1)
pre − µ(l+1)

σ(l+1)
, (4.15)

ẑ(l) = g(z̃(l), u(l+1)) (4.16)

where V (l) is a weight matrix from layer l + 1 to layer l. We call the function

g(·, ·) the combinator function as it combines the vertical u(l+1) and the lateral z̃(l)

connections in an element-wise fashion. The original Ladder Network proposes the

following design for g(·, ·), which we call the vanilla combinator :

g(z̃(l), u(l+1)) = b0 + w0z � z̃(l) + w0u � u(l+1) + w0zu � z̃(l) � u(l+1)+ (4.17)

wσ � Sigmoid(b1 + w1z � z̃(l) + w1u � u(l+1) + w1zu � z̃(l) � u(l+1)),

(4.18)

where � is an element-wise multiplication operator and each per-element weight
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is initialized as: 

w{0,1}z ← 1

w{0,1}u ← 0

w{0,1}zu, b{0,1} ← 0

wσ ← 1

(4.19)

In later sections, we will explore alternative initialization schemes on the vanilla

combinator. Finally, the ReconsCost(z(l), ẑ(l)) in equation (4.4) is defined as the

following:

ReconsCost(z(l), ẑ(l)) = || ẑ
(l) − µ(l)

σ(l)
− z(l)||2. (4.20)

where ẑ(l) is normalized using µ(l) and σ(l) which are the encoder ’s sample mean and

standard deviation statistics of the current mini batch, respectively. The reason

for this second normalization is to cancel the effect of unwanted noise introduced

by the limited batch size of Batch Normalization.

4.3 Components of the Ladder Network

Now that the precise architecture of the Ladder Network has been described

in details, we can identify a couple of important additions to the standard feed-

forward neural network architecture that may have a pronounced impact on the

performance. A distinction can also be made between those design choices that

follow naturally from the motivation of the ladder network as a deep autoencoder

and those that are more ad-hoc and task specific.

The most obvious addition is the extra reconstruction cost for every hidden

layer and the input layer. While it is clear that the reconstruction cost provides an

unsupervised objective to harness the unlabeled examples, it is not clear how im-

portant the penalization is for each layer and what role it plays for fully-supervised

tasks.

A second important change is the addition of Gaussian noise to the input and the

hidden representations. While adding noise to the first layer is a part of denoising

26



Figure 4.1 – The Ladder Network consists of two encoders (on each side of the figure) and
one decoder (in the middle). At each layer of both encoders (equations 4.5 to 4.9), z(l) and
z̃(l) are computed by applying a linear transformation and normalization on h(l−1) and h̃(l−1),
respectively. The noisy version of the encoder (left) has an extra Gaussian noise injection term.
Batch normalization correction (γl, βl) and non-linearity are then applied to obtain h(l) and
h̃(l). At each layer of the decoder, two streams of information, the lateral connection z̃(l) (gray
lines) and the vertical connection u(l+1), are required to reconstruct ẑ(l) (equations 4.12 to 4.16).
Acronyms CE and RC stand for Cross Entropy and Reconstruction Cost respectively. The final
objective function is a weighted sum of all Reconstruction costs and the Cross Entropy cost.

autoencoder training, it is again not clear whether it is necessary to add this noise

at every layer or not. We would also like to know if the noise helps by making the

reconstruction task nontrivial and useful or just by regularizing the feed-forward

network in a similar way noise-based regularizers like dropout (Srivastava et al.,

2014) and adaptive weight noise (Graves, 2011).

Finally, the lateral skip connections are the most notable deviation from the
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standard denoising autoencoder architecture. The way the vanilla Ladder Net-

work combines the lateral stream of information z̃(l) and the downward stream of

information u(l+1) is somewhat unorthodox. For this reason, we have conducted

extensive experiments on both the importance of the lateral connections and the

precise choice for the function that combines the lateral and downward information

streams (which we refer to as the combinator function).

4.4 Experimental Setup

In this section, we introduce different variants of the Ladder Architecture and

describe our experiment methodology. Some variants are derived by removal of

one component of the model while other variants are derived by the replacement

of that component with a new one. This enables us to isolate each component and

observe its effects while other components remain unchanged. Table 4.1 depicts

the hierarchy of the different variants and the baseline models.

4.4.1 Variants derived by removal of a component

Noise Variants

Different configurations of noise injection, penalizing reconstruction errors, and

the lateral connection removal suggest four different variants:

— Add noise only to the first layer (FirstNoise).

— Only penalize the reconstruction at the first layer (FirstRecons), i.e.

λ(l≥1) are set to 0.

— Apply both of the above changes: add noise and penalize the reconstruction

only at the first layer (FirstN&R).

— Remove all lateral connections from FirstN&R. Therefore, equivalent to

a denoising autoencoder with an additional supervised cost at the top, the

encoder and the decoder are connected only through the topmost connection.

We call this variant NoLateral.
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Table 4.1 – Schematic ordering of the different models. All the variants of the Vanilla model are
derived by either removal or replacement of a single component. The Baseline is a multi-layer
feedforward neural networks with the same number of layers and units as the vanilla model.

Models

Vanilla

Removal of a component

Noise variants

FirstNoise

FirstRecons

FirstN&R

NoLateral

Vanilla Combinator variants

RandInit

RevInit

NoSig

NoMul

Linear

Replacement of a component

MLP Combinators

MLP

Augmented-MLP

Gaussian Combinators

Gaussian

GatedGauss

Baseline models

Feedforward network

Feedforward network + noise

Vanilla combinator variants

We try different variants of the vanilla combinator function that combines the

two streams of information from the lateral and the vertical connections in an

unusual way. As defined in equation 4.17, the output of the vanilla combinator

depends on u, z̃, and u� z̃ 2, which are connected to the output via two paths, one

linear and the other through a sigmoid non-linearity unit.

Note that the vanilla combinator is initialized in a very specific way (equation

4.19), which sets the initial weights for lateral connection z̃ to 1 and vertical con-

nection u to 0. This particular scheme encourages the Ladder decoder path to learn

2. For simplicity, subscript i and superscript l are implicit from now on.
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more from the lateral information stream z̃ than the vertical u at the beginning of

training.

We explore two variants of the initialization scheme:

— Random initialization (RandInit): all per-element parameters are ran-

domly initialized to N (0, 0.2).

— Reverse initialization (RevInit): all per-element parameters w{0,1}z, w{0,1}zu,

and b{0,1} are initialized to zero while w{0,1}u and wσ are initialized to one.

The simplest way of combining lateral connections with vertical connections

is to simply add them in an element-wise fashion, similar to the nature of skip-

connections in a recently published work on Residual Learning (He et al., 2015).

We call this variant Linear combinator function. We also derive two more variants

NoSig and NoMult in the way of stripping down the vanilla combinator function

to the simple Linear one:

— Remove sigmoid non-linearity (NoSig). The corresponding per-element

weights are initialized in the same way as the vanilla combinator.

— Remove the multiplicative term z̃ � u (NoMult).

— Simple linear combination (Linear)

g(z̃, u) = b+ wu � u+ wz � z̃ (4.21)

where the initialization scheme resembles the vanilla one in which wz is

initialized to one while wu and b are initialized to zero.

4.4.2 Variants derived by replacement of a component

Gaussian combinator variants

Another choice for the combinator function with a probabilistic interpretation

is the Gaussian combinator proposed in the original paper about the Ladder

Architecture (Rasmus et al., 2015). Based on the theory in the Section 4.1 of

(Valpola, 2014), assuming that both additive noise and the conditional distribu-

tion P (z(l)|u(l+1)) are Gaussian distributions, the denoising function is linear with

respect to z̃(l). Hence, the denoising function could be a weighted sum over z̃(l) and

a prior on z(l). The weights and the prior are modeled as a function of the vertical
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signal:

g(z̃, u) = ν(u)� z̃ + (1− ν(u))� µ(u), (4.22)

in which

µ(u) = w1 � Sigmoid(w2 � u+ w3) + w4 � u+ w5, (4.23)

ν(u) = w6 � Sigmoid(w7 � u+ w8) + w9 � u+ w10. (4.24)

Strictly speaking, ν(u) is not a proper weight, because it is not guaranteed to be

positive all the time. To make the Gaussian interpretation rigorous, we explore a

variant that we call GatedGauss, where equations 4.22 and 4.23 stay the same

but 4.24 is replaced by:

ν(u) = Sigmoid(w6 � u+ w7). (4.25)

GatedGauss guarantees that 0 < ν(u) < 1. We expect that ν(u)i will be close

to 1 if the information from the lateral connection for unit i is more helpful to

reconstruction, and close to 0 if the vertical connection becomes more useful. The

GatedGauss combinator is similar in nature to the gating mechanisms in other

models such as Gated Recurrent Unit (Cho et al., 2014) and highway networks

(Srivastava et al., 2015).

MLP (Multilayer Perceptron) combinator variants

We also propose another type of element-wise combinator functions based on

fully-connected MLPs. We have explored two classes in this family. The first

one, denoted simply as MLP, maps two scalars [u, z̃] to a single output g(z̃, u).

We empirically determine the choice of activation function for the hidden layers.

Preliminary experiments show that the Leaky Rectifier Linear Unit (LReLU) (Maas

et al., 2013) performs better than either the conventional ReLU or the sigmoid unit.

Our LReLU function is formulated as

LReLU(x) =

x, if x ≥ 0,

0.1x, otherwise
. (4.26)
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We experiment with different numbers of layers and hidden units per layer in the

MLP. We present results for three specific configurations: [4] for a single hidden

layer of 4 units, [2, 2] for 2 hidden layers each with 2 units, and [2, 2, 2] for 3 hidden

layers. For example, in the [2, 2, 2] configuration, the MLP combinator function is

defined as:

g(z̃, u) = W3σ
(
W2σ(W1[u, z̃] + b1) + b2

)
+ b3 (4.27)

where W1, W2, and W3 are 2 × 2 weight matrices; b1, b2, and b3 are 2 × 1 bias

vectors. The function σ(.) is the Leaky ReLU activation function.

The second class, which we denote as AMLP (Augmented MLP), has a multi-

plicative term as an augmented input unit. We expect that this multiplication term

allows the vertical signal (u(l+1)) to override the lateral signal (z̃), and also allows

the lateral signal to select where the vertical signal is to be instantiated. Since the

approximation of multiplication is not easy for a single-layer MLP, we explicitly

add the multiplication term as an extra input to the combinator function. AMLP

maps three scalars [u, z̃, u � z̃] to a single output. We use the same LReLU unit

for AMLP.

We do similar experiments as in the MLP case and include results for [4], [2, 2]

and [2, 2, 2] hidden layer configurations.

Both MLP and AMLP weight parameters are randomly initialized to N (0, η).

η is considered to be a hyperparameter and tuned on the validation set. Precise

values for the best η values are listed in Appendix.

4.4.3 Methodology

The experimental setup includes two semi-supervised classification tasks with

100 and 1000 labeled examples and a fully-supervised classification task with 60000

labeled examples for Permutation-Invariant MNIST handwritten digit classifica-

tion. Labeled examples are chosen randomly but the number of examples for dif-

ferent classes is balanced. The test set is not used during all the hyperparameter

search and tuning. Each experiment is repeated 10 times with 10 different but fixed

random seeds to measure the standard error of the results for different parameter

initializations and different selections of labeled examples.

All variants and the vanilla Ladder Network itself are trained using the ADAM
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optimization algorithm (Kingma & Ba, 2014) with a learning rate of 0.002 for

100 iterations followed by 50 iterations with a learning rate decaying linearly to

0. Hyperparameters including the standard deviation of the noise injection and

the denoising weights at each layer are tuned separately for each variant and each

experiment setting (100-, 1000-, and fully-labeled). Hyperparmeters are optimized

by either a random search (Bergstra & Bengio, 2012), or a grid search, depending on

the number of hyperparameters involved (see Appendix for precise configurations).

4.5 Results & Discussion

Table 4.2 collects all results for the variants and the baselines. The results

are organized into two main categories for all of the three tasks. Boxplots of four

interesting variants are also shown in Figure 4.2. The Baseline model is a simple

feed-forward neural network with no reconstruction penalty and Baseline+noise

is the same network but with additive noise at each layer. The best results in

terms of average error rate on the test set are achieved by the proposed AMLP

combinator function: in the fully-supervised setting, the best average error rate

is 0.569 ± 0.010, while in the semi-supervised settings with 100 and 1000 labeled

examples, the averages are 1.002± 0.037 and 0.974± 0.021 respectively.

4.5.1 Variants derived by removal

The results in the table indicate that in the fully-supervised setting, adding

noise either to the first layer only or to all layers leads to a lower error rate with

respect to the baselines. Our intuition is that the effect of additive noise to lay-

ers is very similar to the weight noise regularization method (Graves, 2011) and

dropout (Hinton et al., 2012).

In addition, it seems that removing the lateral connections hurts much more

than the absence of noise injection or reconstruction penalty in the intermediate

layers. It is also worth mentioning that hyperparameter tuning yields zero weights

for penalizing the reconstruction errors in all layers except the input layer in the

fully-supervised task for the vanilla model. Something similar happens for No-

Lateral as well, where hyperparameter tuning yields zero reconstruction weights
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Figure 4.2 – Boxplots summarizing all individual experiments of four variants for 10 different
seeds. Box boundaries represent the 25th and 75th percentiles. The blue line and the red square
represent the median and the mean, respectively. The gray caps also show the minimum and
maximum values. The variants that perform much worse than the vanilla Ladder Network are
not plotted.
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Table 4.2 – PI MNIST classification results for the vanilla Ladder Network and its variants
trained on 100, 1000, and 60000 (full) labeled examples. AER and SE stand for Average Error
Rate and its Standard Error of each variant over 10 different runs. Baseline is a multi-layer
feed-forward neural network with no reconstruction penalty.

100 1000 60000

Variant AER (%) SE AER (%) SE AER (%) SE
Baseline 25.804 ± 0.40 8.734 ± 0.058 1.182 ± 0.010

Baseline+noise 23.034 ± 0.48 6.113 ± 0.105 0.820 ± 0.009
Vanilla 1.086 ± 0.023 1.017 ± 0.017 0.608 ± 0.013

FirstNoise 1.856 ± 0.193 1.381 ± 0.029 0.732 ± 0.015
FirstRecons 1.691 ± 0.175 1.053 ± 0.021 0.608 ± 0.013
FirstN&R 1.856 ± 0.193 1.058 ± 0.175 0.732 ± 0.016
NoLateral 16.390 ± 0.583 5.251 ± 0.099 0.820 ± 0.009

RandInit 1.232 ± 0.033 1.011 ± 0.025 0.614 ± 0.015
RevInit 1.305 ± 0.129 1.031 ± 0.017 0.631 ± 0.018
NoSig 1.608 ± 0.124 1.223 ± 0.014 0.633 ± 0.010

NoMult 3.041 ± 0.914 1.735 ± 0.030 0.674 ± 0.018
Linear 5.027 ± 0.923 2.769 ± 0.024 0.849 ± 0.014

Gaussian 1.064 ± 0.021 0.983 ± 0.019 0.604 ± 0.010
GatedGauss 1.308 ± 0.038 1.094 ± 0.016 0.632 ± 0.011

MLP [4] 1.374 ± 0.186 0.996 ± 0.028 0.605 ± 0.012
MLP [2, 2] 1.209 ± 0.116 1.059 ± 0.023 0.573 ± 0.016

MLP [2, 2, 2] 1.274 ± 0.067 1.095 ± 0.053 0.602 ± 0.010
AMLP [4] 1.072 ± 0.015 0.974 ± 0.021 0.598 ± 0.014

AMLP [2, 2] 1.193 ± 0.039 1.029 ± 0.023 0.569 ± 0.010
AMLP [2, 2, 2] 1.002 ± 0.038 0.979 ± 0.025 0.578 ± 0.013

for all layers including the input layer. In other words, NoLateral and Base-

line+noise become the same models for the fully-supervised task. Moreover, the

weights for the reconstruction penalty of the hidden layers are relatively smal in

the semi-supervised task. This is in line with similar observations (relatively small

weights for the unsupervised part of the objective) for the hybrid discriminant

RBM (Larochelle & Bengio, 2008).

The third part of Table 4.2 shows the relative performance of different combi-

nator functions by removal. Unsurprisingly, the performance deteriorates consid-

erably if we remove the sigmoid non-linearity (NoSig) or the multiplicative term
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(NoMult) or both (Linear) from the vanilla combinator. Judging from the size

of the increase in average error rates, the multiplicative term is more important

than the sigmoid unit.

As described in Section 4.4.1 and Equation 4.19, the per-element weights of the

lateral connections are initialized to ones while those of the vertical are initialized

to zeros. Interestingly, the results are slightly worse for the RandInit variant, in

which these weights are initialized randomly. The RevInit variant is even worse

than the random initialization scheme. We suspect that the reason is that the

optimization algorithm finds it easier to reconstruct a representation z starting from

its noisy version z̃, rather than starting from an initially arbitrary reconstruction

from the untrained upper layers. Another justification is that the initialization

scheme in Equation 4.19 corresponds to optimizing the Ladder Network as if it

behaves like a stack of decoupled DAEs initially, therefore during early training it

is like that the Auto-Encoders are trained more independently.

4.5.2 Variants derived by replacements

The Gaussian combinator performs better than the vanilla combinator. Gat-

edGauss, the other variant with strict 0 < σ(u) < 1, does not perform as well

as the one with unconstrained σ(u). In the Gaussian formulation, z̃ is regulated

by two functions of u: µ(u) and σ(u). This combinator interpolates between the

noisy activations and the predicted reconstruction, and the scaling parameter can

be interpreted as a measure of the certainty of the network.

Finally, the AMLP model yields state-of-the-art results in all of 100-, 1000-

and 60000-labeled experiments for PI MNIST. It outperforms both the MLP and

the vanilla model. The additional multiplicative input unit z̃�u helps the learning

process significantly.

4.5.3 Probabilistic Interpretations of the Ladder Network

Since many of the motivations behind regularized autoencoder architectures are

based on observations about generative models, we briefly discuss how the Ladder

Network can be related to some other models with varying degrees of probabilistic

interpretability. Considering that the components that are most defining of the

Ladder Network seem to be the most important ones for semi-supervised learning
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in particular, comparisons with generative models are at least intuitively appealing

to get more insight about how the model learns about unlabeled examples.

By training the individual denoising autoencoders that make up the Ladder

Network with a single objective function, this coupling goes as far as encouraging

the lower levels to produce representations that are going to be easy to reconstruct

by the upper levels. We find a similar term (-log of the top-level prior evaluated

at the output of the encoder) in hierarchical extensions of the variational autoen-

coder (Rezende et al., 2014; Bengio, 2014). While the Ladder Network differs too

much from an actual variational autoencoder to be treated as such, the similarities

can still give one intuitions about the role of the noise and the interactions between

the layers. Conversely, one also may wonder how a variational autoencoder might

benefit from some of the components of Ladder Networks like Batch Normalization

and multiplicative connections.

When one simply views the Ladder Network as a peculiar type of denoising

autoencoder, one could extend the recent work on the generative interpretation of

denoising autoencoders (Alain & Bengio, 2013; Bengio et al., 2013b) to interpret

the Ladder Network as a generative model as well. It would be interesting to

see if the Ladder Network architecture can be used to generate samples and if

the architecture’s success at semi-supervised learning translates to this profoundly

different use of the model.
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5 Conclusion

The thesis systematically compares different variants of the recent Ladder Net-

work architecture (Rasmus et al., 2015; Valpola, 2014) with two feedforward neural

networks as the baselines and the standard architecture (proposed in the original

paper). Comparisons are done in a deconstructive way, starting from the standard

architecture. Based on the comparisons of different variants we conclude that:

— Unsurprisingly, the reconstruction cost is crucial to obtain the desired reg-

ularization from unlabeled data.

— Applying additive noise to each layer and especially the first layer has a

regularization effect which helps generalization. This seems to be one of

the most important contributors to the performance on the fully supervised

task.

— The lateral connection is a vital component in the Ladder architecture to

the extent that removing it considerably deteriorates the performance for

all of the semi-supervised tasks.

— The precise choice of the combinator function has a less dramatic impact,

although the vanilla combinator can be replaced by the Augmented MLP

to yield better performance, allowing us to improve the state-of-the-art on

Permutation-Invariant MNIST for semi- and fully-supervised settings.

We hope that these comparisons between different architectural choices will help

to improve understanding of semi-supervised learning’s success for the Ladder Net-

work and like architectures, and perhaps even deep architectures in general.
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A Hyperparameter Selection

Here we provide the best hyperparameter combinations we have found for dif-

ferent variants in different settings. We consider the standard deviation of additive

Gaussian noise and the reconstruction penalty weights in the decoder as the hy-

perparameters. For each variant, we fix the best hyperparameters tuned on the

validation set and run the variant 10 times with 10 different but fixed data seeds

(used to choose 100 or 1000 labeled examples).

Depending on each variant and its hyperparameter space, we used either ran-

dom search or grid search. Table A.1 specifies the search space for hyperparam-

eters and tables A.2, A.3, and A.4 collect the best hyperparameter combinations

for each experiment setting. In the case of MLP and AMLP combinator func-

tions, standard deviation of the Gaussian initialization η is chosen from a grid of

(0.0001, 0.006, 0.0125, 0.025, 0.05). The best η values are listed in Table A.5.
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Table A.1 – Two different hyperparameter search methods. For random search, we run 20
random hyperparameter combinations for each variant and in each task.

Search method Noise stddev (×10−1) Reconstruction weights search space

Random search

(0, 0, 0, 0, 0, 0, 0)
(1, 1, 1, 1, 1, 1, 1)
(2, 2, 2, 2, 2, 2, 2)
(3, 3, 3, 3, 3, 3, 3)
(4, 4, 4, 4, 4, 4, 4)
(5, 5, 5, 5, 5, 5, 5)
(6, 6, 6, 6, 6, 6, 6)
(7, 7, 7, 7, 7, 7, 7)
(8, 8, 8, 8, 8, 8, 8)

(0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
(10.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
(50.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
(100.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
(500.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
(800.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
(1000.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
(2000.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
(4000.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
(6000.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
(500, 10.0, 0.1, 0.1, 0.1, 0.1, 0.1)
(1000, 10.0, 0.1, 0.1, 0.1, 0.1, 0.1)
(2000, 20.0, 0.2, 0.2, 0.2, 0.2, 0.2)

Grid 100 & 1000
(2, 2, 2, 2, 2, 2, 2)
(3, 3, 3, 3, 3, 3, 3)
(4, 4, 4, 4, 4, 4, 4)

(1000, 10.0, 0.1, 0.1, 0.1, 0.1, 0.1)
(2000, 20.0, 0.2, 0.2, 0.2, 0.2, 0.2)
(5000, 50.0, 0.5, 0.5, 0.5, 0.5, 0.5)

(10000, 100.0, 1.0, 1.0, 1.0, 1.0, 1.0)

Grid 60000
(2, 2, 2, 2, 2, 2, 2)
(3, 3, 3, 3, 3, 3, 3)
(4, 4, 4, 4, 4, 4, 4)

(500, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
(1000, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
(2500, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
(5000, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
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Table A.2 – Best hyperparameters for the semi-supervised task with 100 labeled examples.

Variant Search method
Best noise

stddev (×10−1)
Best reconstruction

weights

Baseline+noise Random (3, 3, 3, 3, 3, 3, 3) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
Vanilla Grid (3, 3, 3, 3, 3, 3, 3) (1000, 10.0, 0.1, 0.1, 0.1, 0.1, 0.1)

FirstNoise Random (6, 0, 0, 0, 0, 0, 0) (1000, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
FirstRecons Random (3, 3, 3, 3, 3, 3, 3) (1000, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
FirstN&R Random (6, 0, 0, 0, 0, 0, 0) (1000, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
NoLateral Random (7, 0, 0, 0, 0, 0, 0) (100.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
RandInit Grid (3, 3, 3, 3, 3, 3, 3) (1000, 10.0, 0.1, 0.1, 0.1, 0.1, 0.1)
RevInit Grid (3, 3, 3, 3, 3, 3, 3) (1000, 10.0, 0.1, 0.1, 0.1, 0.1, 0.1)
NoSig Grid (3, 3, 3, 3, 3, 3, 3) (1000, 10.0, 0.1, 0.1, 0.1, 0.1, 0.1)

NoMult Grid (3, 3, 3, 3, 3, 3, 3) (1000, 10.0, 0.1, 0.1, 0.1, 0.1, 0.1)
Linear Grid (3, 3, 3, 3, 3, 3, 3) (2000, 20.0, 0.2, 0.2, 0.2, 0.2, 0.2)

Gaussian Grid (3, 3, 3, 3, 3, 3, 3) (1000, 10.0, 0.1, 0.1, 0.1, 0.1, 0.1)
GatedGauss Grid (2, 2, 2, 2, 2, 2, 2) (2000, 20.0, 0.2, 0.2, 0.2, 0.2, 0.2)

MLP[4] Grid (2, 2, 2, 2, 2, 2, 2) (5000, 50.0, 0.5, 0.5, 0.5, 0.5, 0.5)
MLP[2,2] Grid (2, 2, 2, 2, 2, 2, 2) (2000, 20.0, 0.2, 0.2, 0.2, 0.2, 0.2)

MLP[2,2,2] Grid (2, 2, 2, 2, 2, 2, 2) (10000, 100.0, 1.0, 1.0, 1.0, 1.0, 1.0)
AMLP[4] Grid (3, 3, 3, 3, 3, 3, 3) (2000, 20.0, 0.2, 0.2, 0.2, 0.2, 0.2)

AMLP[2,2] Grid (3, 3, 3, 3, 3, 3, 3) (2000, 20.0, 0.2, 0.2, 0.2, 0.2, 0.2)
AMLP[2,2,2] Grid (3, 3, 3, 3, 3, 3, 3) (1000, 10.0, 0.2, 0.2, 0.2, 0.2, 0.2)

41



Table A.3 – Best hyperparameters for the semi-supervised task with 1000 labeled examples.

Variant Search method
Best noise

stddev (×10−1)
Best reconstruction

weights

Baseline+noise Random (2, 2, 2, 2, 2, 2, 2) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
Vanilla Grid (2, 2, 2, 2, 2, 2, 2) (1000, 10.0, 0.1, 0.1, 0.1, 0.1, 0.1)

FirstNoise Random (6, 0, 0, 0, 0, 0, 0) (1000, 10.0, 0.1, 0.1, 0.1, 0.1, 0.1)
FirstRecons Random (3, 3, 3, 3, 3, 3, 3) (4000, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
FirstN&R Random (6, 0, 0, 0, 0, 0, 0) (1000, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
NoLateral Random (6, 0, 0, 0, 0, 0, 0) (100.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
RandInit Grid (2, 2, 2, 2, 2, 2, 2) (1000, 10.0, 0.1, 0.1, 0.1, 0.1, 0.1)
RevInit Grid (2, 2, 2, 2, 2, 2, 2) (1000, 10.0, 0.1, 0.1, 0.1, 0.1, 0.1)
NoSig Grid (2, 2, 2, 2, 2, 2, 2) (1000, 10.0, 0.1, 0.1, 0.1, 0.1, 0.1)

NoMult Grid (3, 3, 3, 3, 3, 3, 3) (1000, 10.0, 0.1, 0.1, 0.1, 0.1, 0.1)
Linear Grid (3, 3, 3, 3, 3, 3, 3) (2000, 20.0, 0.2, 0.2, 0.2, 0.2, 0.2)

Gaussian Grid (3, 3, 3, 3, 3, 3, 3) (1000, 10.0, 0.1, 0.1, 0.1, 0.1, 0.1)
GatedGauss Grid (2, 2, 2, 2, 2, 2, 2) (1000, 10.0, 0.1, 0.1, 0.1, 0.1, 0.1)

MLP[4] Grid (3, 3, 3, 3, 3, 3, 3) (10000, 100.0, 1.0, 1.0, 1.0, 1.0, 1.0)
MLP[2,2] Grid (3, 3, 3, 3, 3, 3, 3) (5000, 50.0, 0.5, 0.5, 0.5, 0.5, 0.5)

MLP[2,2,2] Grid (3, 3, 3, 3, 3, 3, 3) (2000, 20.0, 0.2, 0.2, 0.2, 0.2, 0.2)
AMLP[4] Grid (3, 3, 3, 3, 3, 3, 3) (5000, 50.0, 0.5, 0.5, 0.5, 0.5, 0.5)

AMLP[2,2] Grid (3, 3, 3, 3, 3, 3, 3) (2000, 20.0, 0.2, 0.2, 0.2, 0.2, 0.2)
AMLP[2,2,2] Grid (3, 3, 3, 3, 3, 3, 3) (1000, 10.0, 0.2, 0.2, 0.2, 0.2, 0.2)
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Table A.4 – Best found hyperparameters for the task of semi-supervised with 60000 labeled
examples.

Variant Search method
Best noise

stddev (×10−1)
Best reconstruction

weights

Baseline+noise Random (3, 3, 3, 3, 3, 3, 3) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
Vanilla Grid (3, 3, 3, 3, 3, 3, 3) (500, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

FirstNoise Random (6, 0, 0, 0, 0, 0, 0) (500, 10.0, 0.1, 0.1, 0.1, 0.1, 0.1)
FirstRecons Random (3, 3, 3, 3, 3, 3, 3) (500, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
FirstN&R Random (6, 0, 0, 0, 0, 0, 0) (500, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
NoLateral Random (6, 0, 0, 0, 0, 0, 0) (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
RandInit Grid (3, 3, 3, 3, 3, 3, 3) (500, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
RevInit Grid (3, 3, 3, 3, 3, 3, 3) (500, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
NoSig Grid (3, 3, 3, 3, 3, 3, 3) (500, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

NoMult Grid (3, 3, 3, 3, 3, 3, 3) (500, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
Linear Grid (3, 3, 3, 3, 3, 3, 3) (500, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

Gaussian Grid (3, 3, 3, 3, 3, 3, 3) (1000, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
GatedGauss Grid (3, 3, 3, 3, 3, 3, 3) (2000, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

MLP[4] Grid (3, 3, 3, 3, 3, 3, 3) (2000, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
MLP[2,2] Grid (3, 3, 3, 3, 3, 3, 3) (2000, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

MLP[2,2,2] Grid (3, 3, 3, 3, 3, 3, 3) (1000, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
AMLP[4] Grid (3, 3, 3, 3, 3, 3, 3) (2000, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

AMLP[2,2] Grid (3, 3, 3, 3, 3, 3, 3) (2000, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)
AMLP[2,2,2] Grid (3, 3, 3, 3, 3, 3, 3) (2000, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

Table A.5 – Best MLP initialization η for all settings.

MLP variant 100 labels 1000 labels fully-labeled

MLP[4] 0.006 0.006 0.0125
MLP[2,2] 0.05 0.0125 0.05

MLP[2,2,2] 0.025 0.025 0.05
AMLP[4] 0.006 0.025 0.0125

AMLP[2,2] 0.0125 0.0125 0.025
AMLP[2,2,2] 0.006 0.006 0.006
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