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SOMMAIRE

Ce mémoire porte sur deux méthodes de forage de données (data mining) ap

pliquées au domaine de l’assurance. Afin de mieux comprendre les données. deux

méthodes «analyse en grappes soient les analyses hiérarchiques et non hiérar

chiques. sont utilisées. Ensilite, des arbres de décision sont développés eu util

isant le ratio de vente comme variable dépendante. Le but de ces modèles est de

prédire les acheteurs de produits «assurance les plus probables. Pour ce faire. les

algorithmes de construct ion selon l’approche classique et 1 ‘approche bayésienne

sont confrontés. Ainsi. l’approche classique utilise un algorithme de construc

tion qui minimise une fonction d’impureté lors de chaque séparation. L’approche

bayésienne quant à elle utilise plusieurs distributions a priori telles que celles des

variables et du nombre de noeuds terminaux. L’objectif dans ce cas est de trouver

l’arbre ayant la probabilité a posteriori la plus grande possible. Une fois que les

arbres ont été construits selon les deux approches, les résultats sont comparés

afin de déterminer quelle est celle qui donne les meilleurs arbres.



iv

$UMMARY

ihis Masters thesis presents two data mining techniques applied in the insurance

business. First. hierarchical and partitional clustering are used to have a better

knowledge of the population under consideration. Then. in order to predict the

most potential buyers. we consider the decision tree models with the closing

ratio as the target variable. These trees are developed using the classical and

tue Ba esian statistical approaches. The classical n;etÏiod algorithu; constructs

CART models hy minirnizing an impurity function. On the other hand. the

Bavesian approach uses rnany priors as the variable priors or the tree shape prior

to construct trees with the n;aximuni posterior probahihty. Once the trees are

developed under these two approaches. the resuits are compared to determine

which method gives the best trees.
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INTRODUCTION

In the business and financial industries, data mining is becoming more and more

important. It allows to perform analysis on large data sets and therefore identify

key elements which descrihe the custorners. For example, cluster analysis seg

ments the database in order to have a hetter knowledge of the different groups

that form the data set. Data mining is also used to forecast and predict specific

customer characteristics with methods such as decision trees and neural networks.

This Masters thesis present.s two data mining techniques applied in the insurance

business. These methods were developed during an internship at TD Meloche

Monnex. a provider of group home and auto insurauce for professionals and

alumni. The project is doue with the MITACS internship program which ai—

lows the collaboration hetween a partner organization and a university.

ID Meloche Monnex Business Strategiesu department requested this anal

ysis since they wanted to gather further information relative to some aspects of

the client population. Due to their demand, this Masters thesis is written in Eng

lish. Their main objective is to understand a new category of the TD Meloche

Monnex clients: the Direct Market individuais. These individuals do uot belong

to any ID Meloche Monnex group or association as for instance. professional or

employer groups. This segment of clients is very different from the other groups

of custorners because it includes the general public. Hence. it is hecoming increas

ingly more important to have a hetter understanding of these clients in order to

identify which individuals are potential buyers.
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To have a hetter knowledge of the population under consideration, an ap

proach consists of dividing it in rnany homogeneous groups. Indeed the popula

tion itself is very heterogeneous so it is difficuit to describe it entirely. Cluster

analysis is thus used to create the groups by using different techniques. To see

what is the best approach to answer this prohiematic. hierarchical and partitional

clustering are studied. Furthermore, many distances and proximity measures are

considered aud the method giving the hest resuit is therefore chosen. Once the

groups (clusters) are created. they eau be descrihed and analyzed to see which

one of them have desirahie characteristics on a marketing and business point of

view.

Once we have a better understanding of the population of Direct Market eus

tomers. the next step consists of predicting what kind of individual in this market

is more likely to huy TD Meloche Monnex products or services. Hence, given that

an individual asked for a quote. we wish to be able to predict if he will buy the

product. The target variable used is the closing ratio which is the proportion

of sales over the quotes. To develop a predictive model for this target variable,

rnany statistical methods could have heen used like logistic regression or neural

networks. However, in the business context, decision trees allow to obtain a visual

aspect of the model. Is is also easy to explain to business units.

In this Masters thesis, two approaches are used and compared to develop

decision trees. First, the classical approach is considered to develop CART (clas

sification and regression tree). To construct the model, it uses an algorithm

presented by Breiman et aï. (1984). This method defines a goodness of split

function (the impurity) that must he minimized to find the best splitting rule.

The other method to construct decision trees is done under the Bayesian ap

proach. This technique, called BART (Bayesian and regression tree) uses the

a priori information to create a tree with the maximum posterior probability as

possible. Indeed. the variable trends and frequencies are studied and incorporated
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in tue a priori information. Furthermore, the prior distributions on variables de-

pend on each variable importance from a business stand point. The desired tree

characteristics like its shape or its number of terminal nodes are also included

in the model prior. Therefore, the algorithm presented by Chiprnan and McCul

loch (1998) and Denison and Mallick (2000) is developed to obtain BART models.

The Masters thesis starts with the explanation of the prohiematic and with

definitions of insurance notions that are helpful in order to better understand the

problematic. The database and the predictor variable are then presented followed

hy the descriptive analysis. This first chapter concludes with the explanation of

a statistical notion applied in Chapter 3. The next chapter explains the cluster

analysis and the decision tree model under the classical approach. To illustrate

these concepts, a practical example is preseuted and used in Chapters 2 and 3.

finally, Chapter 3 exposes the BART approach by presenting ail the elements

used in the caiculation of the tree posterior probahility. It also explains the

algorithm of the construction and the method to choose the best tree arnong

many possibilities.



Chapter 1

IN$URANCE AND $TATISTICAL NOTIONS

This chapter begins with the presentation of the project objectives. To better

understand these, some insurance notions are explained in Section 1.2. Then. the

database and the variables used for the analysis are introduced in Section 1.3. A

descriptive analysis is made in Section 1.4 and this chapter concludes with the

explanation of a statistical method that is applied later in the project.

1.1. OBJEcTIvEs

This Masters thesis has two main objectives:

(1) to understand the Direct Market populatioll,

(2) to model the closing ratio of this population.

1.1.1. Direct Market population

TD Meloche Monnex is a provider of group home and auto insurances for

professionals and alumni. Hence. the TD Meloche Monnex clients are divided

under three main segments due to some acquisitions. These are:

(1) employers and affiliated members,

(2) alumni and professional associations,

(3) direct market.

When Meloche Monnex was created, there was only the second segment consisting

of student groups and also of university and professional associations. Later on,

the ID Bank bought Meloche Monnex and the third segment that includes the

Direct Market segment was created. Then, Meloche Monnex bought Canada Life
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and LICC. two insurance companies specialized in employer groups and affiliated

members (the first segment).

Definition 1.1.1 (Direct Market). The Direct Market population inctudes in

dividuals that do not beÏong to any TD Metoche Monnex affinity group or associ

ation. The generat pubtic and TD clients are in this segment.

Definition 1.1.2 (Affinity group). A group is considered an affinity group f
an agreement is or may be estabtished with this group.

Since Direct Market clients refer to the general public, their characteristics are

not yet well known. The first objective of this project is thus to hetter understand

this population hy describing it and doing sorne segmentation.

1.1.2. Model the closing ratio

The second objective of this project is to know which individual in the Direct

Market population is more likely to buy a TD Meloche Monnex insurance prod

net. Based on some personal characteristics. we want to predict if an individual

will buy a product given that we provide him with a quote. In this context, the

variable to model is the closing ratio.

Definition 1.1.3 (Closing Ratio). The ctosing ratio represents the proportion

of sales among alt the quotes for a given product. Indeed this ratio refers to the

pro babitity of buying an insurance product given a quote has been offered.

$ome models using the closing ratio as target variables must be constructed

using many predictor variables. In this project. we use the total closing ratio that

is for auto and residential products combined.

1.2. DEFINITI0Ns

Because the analysis is doue in the insurance business. some insurance notions

must be deflned. Indeed the following definitions help to understand the database
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described later.

Definition 1.2.1 (Insllrance). Any individuat is e.xposed to a significant arnount

of risk associated with peri.ls tike death, fire, disabiiity, and so on. By purchasing

an insurance poticy, an individuat transfers this risk to the insurance company

(Broum and Robert, 2001).

Definition 1.2.2 (Claim). A daim is a demand for payrnent by an insured or

by an injured third party under the terras and conditions of an insurance contract.

An other important concept is the fiscal year. Indeed most variables are cal

culated at the end of the fiscal year instead of the calendar year.

Definition 1.2.3 (Fiscal year). The fiscal year begins at the November rnonth

ofpreceding year. For exampte. year 2007 is from Novem,ber 2006 to October 2007.

Definition 1.2.4 (Fiscal month). The fiscal month differs frorn the catendar

month in that it generatty ends on the tast Friday of the month.

As we will see in Section 1.3. the data set includes two categories of individ

uals: the actual clients and the prospects.

Definition 1.2.5 (Prospects). The prospects are individuaÏs that the cornpany

can potentiatÏy have as ctients.

Definition 1.2.6 (Expiration Date). The expiration date is the date after

which the insurance poliey is no longer vatid.

Every individual in the data set fias an entry for the expiration date. Further

more, this date either refers to the TD Meloche Monnex policy (for the actual

clients) or for another insurer policy (for the prospects). In order to convince the
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prospects to huy TD Meloche Monnex insurance products, those potential clients

are called forty five days before their expiration date. The list of prospects is

obtained by three ways:

(1) individuals who used to be TD Meloche Monilex clients,

(2) individual who called in on TD Meloche Monnex for a quote,

(3) individuals who have been targeted and called by the telemarketing de

partment in order to obtain their expiry dates. For instance. a market

ing campaign may target students from a specific university hy doing

some promotions. The targeted clients will he called and considered as

prospects.

Furthermore, the following definitions explain some concepts iII the insllrance

policy coverage.

Definition 1.2.7 (Collision coverage). When a poticy lias the collision protec

tion, f the vehicle is damaged in an accident. the insurer witl pay the cost of its

repair or reptacement as deftned in the poÏicy.

Definition 1.2.8 (Comprehensive coverage). The comprehensive protection

covers repairs on a damaged vehicte due to a perit other than cottision such as

fire, vandatism, stone chips and 50 On.

Definition 1.2.9 (Deductible). The amount of deductibte, let say d, means that

the poticyhotder is responsibÏe for the flrst $d of the repair or reptacement cost.

This tends to etiminate the fiting of smatt daims for which the cost of adminis

tration and setttement would tikety exceed the beneflts (Brown and Robert,2001,).

1.3. VARIABLEs AND DATABASE

The data set consists of ail the Direct Market clients and prospects in 2005

for the fonr regions of Canada (Québec, Ontario, Western Provinces, Atlantic

Provinces). Each entry in the data set refers to a client or a prospect. One client
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or prospect may have several automobile or residential policies. Furthermore.

each automobile policy eau include more than one vehicle and cadi residential

policy eau cover many homes.

Because TD Meloche Monnex is an insurer for automobile and residential

products. the studied variables are divided in the following categories:

(1) the demographic variables,

(2) the auto variables.

(3) the residential variables.

1.3.1. Demographic variables

The demographic variables are variables that describe tic individuals with

characteristics other than their home and residential policy characteristics. The

demographic variables present in the database are:

• Account since: number of months since the first quote was made on the

account,

• Gender: gender of the account’s principal owner,

• Average income: household average income viewed at the end of fiscal

year.

1.3.2. Automobile variables

The individuals in tic data set that have available information on automobile

variables are those who own an auto policy or prospects who had a quote made

for this kind of policy. The prospects that only made a residential quote do not

have the auto characteristic and therefore have missing values. The automobile

variables are:

• Driving record: the number of years since tic last accident on a given

account,

• Creditor: variable that indicates if there is a creditor on at least one of

the vehicles on tic account at the end of the fiscal year,



11

• Renting: indicates if there is a renting agreement on at least one of the

vehicles on the account at the moment of the renewal.

• High performance vehicle: indicates if there is at least one high per

formance vehicles on the account at the moment of the renewal,

• Vehicle deductible: refers to the sum of each vehicle deductible amount

on the account.,

• Motorcycle: the number of motorc des in the account in the last year

viewed at the end of the fiscal year,

• Private passenger vehicle (PPA): the number of private passenger

vehicles in the account in the last year viewed at the end of the fiscal

year.

• Ail-Terrain Vehicle (ATV): the number of ail-terrain vehicles in the

account in the last year viewed at the end of the fiscal year.

• Snowmobile vehicle: the number of snowmobiles in the account in the

last year viewed at the end of the fiscal year.

• Other vehicle: the number of other vehicles such as trailers, vintage or

motorhomes in the account in the last year viewed at the end of the fiscal

year.

• Sales: the number of sales by client or prospect in the last year viewed

at the end of the fiscal year,

• Quotes: the number of quotes by client or prospect in the last year viewed

at the end of the fiscal year.

• Resporisible daim: the number of responsible active collision daim files

in the last 3 years. viewed at the end of the fiscal year.

• Non responsible daim: the number of non responsible active collision

daims filled in the last three years. viewed at the end of the fiscal year.

• Comprehensive daims: the number of comprehensive active daim files

in the last three years, viewed at the end of the fiscal year.

• License sirice: the number of months since the youngest client on the

account has his driver license,
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• Collision coverage: indicates if there is a collision coverage on the ac

count,

• Vehicle age: the age of the oldest active vehicle of the policy viewed at

the end of the fiscal year.

1.3.3. Residential variables

The residential variables are:

• Homeowner package: number of horneowner packages in the account

in the last year viewed at the end of the fiscal year.

• Condo package: number of condo packages in the account in the last

year viewed at the end of the fiscal year,

• Tenant package: number of tenant packages in the account in the last

year viewed at the end of the fiscal year.

1.4. DEscRIPTIvE ANALYSIS

As we explained ahove, the analysis is donc on the Direct Market clients and

prospects in the four regions of Canada using 2005 data. It is interesting to

see how this population is distributed arnong the four regions of Canada. Table

1.1 shows that the majority of the Direct Market portfolio is in the province of

Ontario. There is a sirnilar number of observations in the regions of Québec and

Western and a small number in the region of Atlantic.

TAB. 1.1. Direct Market population distributed by region in 2005.

Region Percentage of observations (Y)

Ontario 61

Québec 19

Western 17

Atlantic 2
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1.4.1. Descriptive analysis for Ontario

Since the majority of the Direct Market clients and prospects are in the

province of Ontario, the descriptive analysis is presented for this province only.

The data set includes 153.02$ clients and prospects in Ontario and 34 vari

ables. However, only the most significant variables are described.

1.4.1.1. Dernographic variables

The demographic variables are variables that descrihe the individuals without

regard to their automobile or residential information. Consequently. these vari

ables are available for all the observations in the data set. Table 1.2 shows that

there is an important majority of males in the population and that clients and

prospects are alrnost equally represented.

TAB. 1.2. Percentages of observations for the variables gender?

and ‘dllents for the province of Ontario in 2005.

Characteristic Percentage of observations (c)

Male 72

Client 46

For the continuons variables, some descriptive statistics are presented in Table

1.3. The average age is around 40 and 28 of the population buys an insurance

product. Furthermore, the distribution of the variable !age is represented in

Figure 1.1.

1.4.1.2. Automobile variables

This subsection describes auto characteristics for individuals with at least one

auto policy (clients) or who asked for an auto quote (prospect). In Ontario. 89%

of the Direct Market population in 2005 had this characteristic. The 11% left are

individuals that have only residential products. Table 1.4 shows the automobile
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TAu. 1.3. Descriptive statistics for continuons demographic vari

ables for the province of Ontario in 2005.

Variable Mean Standard deviation Minimum Maximum

Age 40 12 16 90

Household average income 68,495 29.356 9,091 928,844

Closing ratio (%) 28 43 0 100

4000 --
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FIG. 1.1. Histogram of the variable “age.

characteristics for this subpopulation. For example, among the 89%, 65% of the

individuals have or asks for collision protection. Note that the sum of all the

percentages is not equal to 100% hecause a client or a prospect eau have more

than one of these characteristics. For instance. a client may have a moto vehicle

and a collision protection on his vehicle.

o — ,— .

Age
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TAB. 1.4. Percentages of observations with each auto characteristic

for the province of Ontario in 2005.

Characteristic Percentage of observations (c)

Collision protection 65

Private passenger vehicle 88

Snowmohile vehicle 9

Moto vehicle 3

Table 1.5 presents other auto characteristics. These continuous variables are

based on time notion and they ail have a minimum value of 0. For example, the

minimum of O for the vehicie age means that the vehicie was new at the moment

of the creation of the data set.

TAB. 1.5. Descriptive statistics for continuous variables related to

auto policy for Ontario.

Variable Mean Standard deviation Minimum Maximum

Vehicle age 7 6 0 51

Licence since (in months) 165 150 0 895

Account since (in months) 22 22 0 140

1.4.1.3. Residentiat variabÏes

The characteristics described in this subsection are for individuais with at ieast

one residential policy (clients) or who asked for a residential policy (prospect).

In Ontario, 25c of the Direct Market population in 2005 had this characteristic.

The 75%’c left are individuals that have only automobile products. In Table 1.6, we

sec that among the 25c, 69c of the observations have or asked for a homeowner

package.
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TAn. 1.6. Percentages of observations with each characteristic in Ontario.

Charact eristic Percent age of observations ( Y’c)

Homeowner package 69

Condo package 12

Tenant package 19

1.4.2. Average closing ratio

b model the closing ratio. only individuals who made a quote are included

in the database. Indeed when the number of quotes is nuil. the closing ratio is

missing. Consequently. the number of observations in the database is reduced 50

that each person has a value for the closing ratio. Table 1.7 shows the number of

observations in each region with the corresponding closing ratio.

TAn. 1.7. Number of observations and closing ratio for each region.

Region Number of observations Closing ratio (c)

Ontario 105,635 2$

Québec 43,791 15

Western 31,666 25

Atiantic 4,074 27

In Table 1.7, we see that the regions of Ontario. Western and Atiantic have

a similar closing ratio compared to Québec which has the smallest among the

different regions. This is hecause the Québec market is more competitive and it

is not as inuch regulated as the other provinces.

1.5. EM ALGORITHM FOR A MIXTURE MODEL

This section explains the EIvI algorithm that is used later in this pro.ject. In

our context, this algorithm is used to estimate the parameters of a mixture model.

Furthermore. as we will sec in Chapter 3, the mixtures used here are mixtures of

only two distributions.
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Suppose that the graphie representation of a variable is given hy the Figure

1.2. This bimodal graphie indicates that the variable lias a mixture distribution.

as

0
C
G)

o
c\j

Fia. 1.2. Density of a mixture of two normal variables.

We eau define the random variable Y having a mixture of two distributions

Yl

Y2

Y=(1-A)Y1+AY2,

where L\ {O, 1} with IP(A = 1) = y. The density of y is therefore

f(y) = (1 —p)øe1(y)+pg,(y).

where p is the prohability that an observation follows the distribution e5o2.

b estimate the parameters p. 6 and &2. the log-likelihood is calculat.ed as:

Ï(O;Z) log[(1 p)g1(yj)+p9(yj)].

o
o

I I I I I I

0 1 2 3 4 5

Y

i=i
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To maxirnize 1(0: Z). an iterative method is used and manv iterations are

required before convergence. In this Masters thesis. R proiect was used to execute

these iteratiolls. The algorithm is:

(1) take initial values for the parameters p. 01 aiid 02.

(2) compute the responsihilities:

- —

___________________

— (1 —p»ojy) +p62(yi)’

(3) generate u ‘- Bernouilli((),

(4) minimize the log-likelihood versus 0 and 02:

Ïo(O; Z. u) = {(1
—

îi) log1 (y) + u 1ogg2(y)] + [(l — u) log + u log].

where = r Z is the weighted pararneters.

(5) Iterate steps 2 to 4 bv replacing 61 bv §. 02 by 02 and p by j until con

vergence.

A way to choose the initial values of 0 and 02 is to take two y at random. for

the parameter p. the initial value eau be anv value betweeu O and 1. In this

Masters thesis, a value of 0.5 was choseu for this initial parameter (see Hastie et

aL. 2001).

This chapter began with the presentation of the two aims of the project.

Also, it. presented the variables included in the database. Then, the variables

explained in Section 1.3 were used to describe the Direct Market population and

to construct a moUd that predict the closing ratio. Chapter 2 will explain two

classic statistical methods to resolve the two objectives.



Chapter 2

CLA$$ICAL APPROACH

In Cliapter 1, the data set used for this project lias heen presented. This chapter

descrihes two statistical methods applied to analyze these data. The main objec

tive of this project is to predict who in the Direct Market segment is more likely

to buy insurance products. However. in order to create statistical models. the

understanding of the population under consideration is essential. Therefore, this

chapter begins with the description of an exploratory data analysis method. In

deed, Section 2.1 discusses about clustering. a statistical method to explore and

to classify the data. In order to describe Direct Market clients and prospects,

this technique tries to form homogeneous sub-groups which are very diffrent

from each other. In this first section. the closing ratio is not yet modeled hecause

the clustering is a descriptive method, i.e. a method that does not need a target

variable.

Once the population of interest lias been studied, the objective is to filld which

individuals are more likely to huy insurance products. Hence, a statistical model

must be developed to find these individuals. Therefore, some decision trees are

constructed using the closing ratio as target variable. This is described in Section

2.2.

2.1. CLUsTERING

An objective of this project is getting to know a particular segment of Me-

loche Monnex prospects and clients that is. tlie direct rnarket. However, because
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the population in this segment is composed of the general public, many different

individuals are in it. The population is thus an heterogeneous population. There

fore, describing it glohally could be misleading. The cluster analysis answers this

problem. This method lias the purpose of grouping clients and prospects into

groups or clusters hased on similarity in their characteristics.

This section begins with the description and the definition of the cluster anal

ysis. Then. we discuss the data preparation in Section 2.1.2. Afterward, sorne

similarity and distance measures are presented in Sections 2.1.3 and 2.1.4. We

follow in Section 2.1.5 with the explanation of two clustering strategies: the Hi

erarchical clustering and the Partitional clustering. To conclude this section, we

elahorate about the method used to find the optimal number of clusters.

2.1.1. Description

Cluster analysis is a common technique in exploratory data analysis. It is

the classification of objects into different groups. More precisely. the data set is

separated into subsets or clusters, so that all the objects in cadi cluster tend to

be similar to cadi other. There is many way to cluster a data set. Therefore, the

underlying mathematics of most of these methods are relatively simple but large

numbers of calculations are needed.

Definition 2.1.1 (Cluster). A ctuster is a group of contiguous eternents of a

statisticat poputation; for exampte, a group of peopte living in a singÏe house, a

consecutive mn of observations in an ordered series, or a set of adjacent plots in

one part of a field (cf. Everitt, 1993).

Definition 2.1.2 (Good clusters). Good ctusters are clusters that present Ïittte

varzaton into the groups and large variation between the groups. They aÏso need

to be large enough to be signiftcant.
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We begin with an example of a data set that could be divided into clusters.

Example 2.1.1. This simulated data set is cornposed of 10 individuals with the

foïlowing characteristics: their age. their number of auto daims and their ciosing

ratio. It is represented in Tabte 2.1. The ciuster analysis is donc using “age”

and “number of auto daims “. If an observation does not have any auto poticy,

its number of auto daim is missing (“. “). With this dataset, it is possible to

group some similar individuats and produce 2 differents ciusters. One group couÏd

inctude young persons with many auto daims whiÏe the other comttd be formed of

older individuats with a smaÏter number of daims.

TAu. 2.1. DataofExample2.1.1.

Observations Age Number of auto daims Clos ing ratio

1 30 0 1.00

2 2 1 0.30

3 20 2 0.75

28 3 0.00

5 55 1 0.30

6 33 0.0

7 35 3 0.0

8 30 5 0.0

9 . 0.00

10 51 . 0.25

2.1.2. Preparing the data

In a large database with many variables, the data must be preprocessed before

they are analyzed. First of ail. the missing values must be examined carefully.

Indeed, missing values eau have different meanings depending on the variable. As

we explained in Chapter 1, the variables eau be demographie. automobile or resi

dential. For the demographie variables, the data set is eleaned in order to obtain
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no missing value. For the auto variables. we must oniy have missing values for

individuals without an auto po1icy The same principle is applied to residential

variables while missing values must he for individuals without residential policy.

Another important consideration is the variable variances. For example. in

the data set, some variables are expressed in thousands while others are in hun

dreds. Therefore. variables with large variances tend to have more effect on the

resulting clusters than variables with srnall variances. It is thus recommended to

standardize these variables. However, if ail variables are measured in the same

units. there is no need for standardization.

Definition 2.1.3 (standardization). A variable x is standardized wken its vat

nes are transformed and given by:

[cii —

where is the mean ofx and uj, his standard deviation.

2.1.3. Similarity measure between individuals

A clustering method attempts to group the objects based on some measures

of similarity. $imilarities are a set of rules that serve as criteria for grouping or

separating items. It is possible to measure similarity and dissimilarity in a num

ber of ways. Consequently there is not a single correct classification. In order to

measure the sirnilarity, an important concept is the similarity matrix. This matrix

represents the sirnilarities or the dissimilarities between the individuals present in

the data set. It is used for the clustering algorithms. Therefore, we note D, the

similarity matrix that is a n x n matrix where n is the number of observations.

Each element of this matrix, noted dt is the similarity between the 1th and the

/th observation. This matrix is also symmetric and the diagonal elements are null.

To compute the matrix D. a similarity measure must be specified. Thus,

it is more common to measure the similarity as the dissimilarity between ob

jects. Therefore, we define x r the predictor variables and d(x, xi), the
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dissimilarity measure between ijj and xji, the values of the predictor i for the

observations j and j’. The dissimilarity between individuals j and j’ is therefore

function of d(xjj. xjj), where j 1,....p. j = 1 n, j’ = 1 n and p is

the number of predictor variables. The value of d(x. liji) can he determined by

many different functions. These functions depends on the variable types that can

he quantitative, ordinal or binary.

2.1.3.1. Similarity measure for quantitative variabtes

For the quantitative variables, we present the two most important measures:

(1) Euclidean distances: this is the most commonly chosen type of distance.

It is the geometric distance in the multidimensional space. The distance

between ij and is computed as:

,J(. .
.

.1,3’) — Ij L,3 an

D(x. .rj,) = d(i

(2) Manhattan distance: this distance is the average absolute value differ

ence across dimensions.

— x’ and

D(i,x) =

In Hastie et aï. (2001), a similarity measure based on the correlation between

variables is described. In this case, the similarity measure is a similarity measure

and is

— Z(x —

)(x — Ti)
—

— 2 — 2
— x) Z (xjj

—

xi’)

where Tj = 1 x is the average for the observation j over the p variables.

2.1.3.2. $irnitarity rneasure for ordinat variables

Another consideration is the distances measures for the ordinal variables.

These variables are those where ah possible values are ranked depending on their

importance. In that situation. the variables are transformed before the compu

tation of the dissimilarity matrix. The measiire is given by (cf. Hastie et at.,
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2001):

— .rjj — 1/2

M

where ij is the value of the observation j for the variable i such as ijj 1 ,...,M

and M is the number of categories for this variable. For each ordinal variable, this

measure replaces the original one and the similarity matrix could be calculated

using this transformed value. They are then treated as quantitative variables.

2.1.3.3. $irnitarity ‘rneasvre for binary variables

Many binary variables, also called dichotornous variables, are included in our

data set. They categorize data in two groups with value O for one group and 1 for

the other group. Suppose we observe the contingency table given in Table 2.2.

where n is the number of observations.

TAB. 2.2. Values to calculate similarity measure for dichotomous variables.

xj\xj 0 1 Total

O a b a+b

1 e d c+d

Total a+c b+d n

Therefore, we can now define different dissimilarities measures (cf. Lorr.

1983). The usual dissimilarity functions are:

(1) d(x. = e±4 (Coefficient of coilcordance),

(2) d(;,it) — d Jacquard coefficient),
— b+c+d

— 2d(3) d(x, j’)
— 2d+b+c’

(4) d(x, .,) — 2(a+d)
2(a+d)+b+c’

— d(5) —
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Now that some distances have been defined, the dissimilarities between x and

xj’ is given by:

D(.T.X) = d(x. xv),

where p is the number of predictor variables. Therefore. since the similarity

matrix cari he determined, we have ail pairwise distances for the individuals.

2.1.4. Distance measure between clusters

Now that the similarity between ail individuals is determined, the distance

between clusters cari he computed. However, hecause the clusters include many

individuals. the distance hetween clusters is not easily calculated. Therefore,

many distance functions exist. The usual measures to caiculate the distance

between these two clusters are:

Centroid distance: the distance between groups is the distance between

the cluster centers called the group centroids. Therefore, in order to find

the distance between two groups. let say H and L. the ciuster centers H

and mL must be determined. The centroid distance between these two

ciusters is:

jcentroid(H L) = rnH
—

mLL

where mH Z=l Xi,’,. mL Z=1 Z1 Xjh. H and L

are the numbers of observations in groups H and L respectively.

This measure is flot appropriate when the sizes of the two clusters to be

grouped are very different. In this case, the centroid of the new group

will be very close to the centroid of the larger group. Thus. the properties

of the smailer group are then virtually lost (cf. Everitt, 1993). However,

this measure has the advantage of only having to calculate the difference

between each cluster centroid. In opposition, the three other distances

described beiow need the calcuiation of the differences between every pairs

of individuais in the two groups.

Single linkage clustering: this measure is also called “Minimum or Nearest

Neighbour Method The dissimilarity hetween 2 clusters is the minimum
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dissimilarity between members of the two clusters. that is

dsinrle(H L) = min D(x,, xi).
Xh H.x1 L

This measure has the advantage of being the simplest but has the disad

vantage that an outiier cari cause two groups of individuals to be clustered

when rnost of the individuals are really distant.

Complete linkage clustering: this measure is also called ‘Maximllm or

Furthest-Neighhour I\/Iethod. The dissimilarity hetween 2 groups is equal

to the greatest dissimilarity between a member of a given cluster and a

member of the other one. This rnethod tends to produce very tight clusters

of similar cases. The distance between clusters H and L is

dclee(H, L) max D(xj,, It).
Xh rH.x, L

Complete linkage has the advantage over single linkage in that within a

cluster, all pairs of individuals will he within the distance at which the

cluster was formed.

Group Average Method: the distance hetween groups is the average of

the distances between pairs of individuals in the two groups. that is. the

distance hetween clusters H and L is:

fil L

D(x1,xt).
Ft=1 t=1

This measure is a good compromise between the extremes of single and

complete linkage. but the distances at which clusters are formed are av

erages, not real distances. Therefore, the clusters can he more difficuit to

interpret. However, it takes longer to evaluate.

2.1.5. Clustering strategies

Two main clustering strategies are discussed in this chapter:

(1) hierarchical clustering,



27

(2) partitional clustering.

2.1.5.1. HieTaTchicat ctustering

In hierarchical clustering, the data set is not partitioned into a partidular

cluster. Instead, a series of partitions or merges take place, which may run from

a single cluster containing ail ohjects to n clusters each containing a single ohject

or the other way around. that is from n clusters to 1. Hierarchical clustering

techniques are subdivided into top-down and hottom-up methods. A top-down

method begins with ail observations in the same cluster. This cluster is gradually

broken down into srnaller and smaller clusters. Bottorn-up techniques are more

commonly used. Initially. each obj cet is assigned to its own cluster and then

the algorithm proceeds iteratively. At each stage. the two most similar clusters

are joined and it continues until there is just a single cluster. Therefore, the

single observations are the smaller clusters possible. Hierarchical clustering may

be represented by a two dirnensional diagram known as a dendrogram (see figure

2.2) which illustrates the fusions or divisions made at each successive stage of the

analysis.

Definition 2.1.4 (Dendrogram). A dendrogram is a tree diagramfreqnentty nsed

to itÏustrate the arrangement of the clnsters produced by a clnstering aÏgorithm.

The vertical axis represents the distances between ctusters and the horizontal axis

is the observation sequence numbers. Each vertical tine represents a cluster.

Hierarchical clustering (sec section 2.1.5.1) was applied to Example 2.1.1.

figure 2.1 shows three dendrograms using Euclidean distance and three distance

measures hetween clusters. Although the distances hetween clusters are different,

it is possible to sec that the merges are similar for ah measures.

The process of bottom-up hierarchical clustering can be summarized as fol

lows:

(1) calculate the distance between ail initial clusters. In most analysis. initial

clusters will be made up of individual cases,
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Group Average Method Centroid distance Single Iinkage
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f 1G. 2.1. Dendrogram produced by hierarchical clustering on Ex

ample 2.1.1 using Euclidean distance and three distance measures.

The final clusters are similar for the three distance methods.

(2) merge the two most similar clusters and recalculate the distances.

(3) repeat step 2 until ail cases are in the same cluster.

The data set presented in Example 2.1.1 cari be classified using hottom-up

clustering (sec Figure 2.2). It is possible to sec that the clustering algorithm

begins with each observation being a single cluster. Then, we sec that individuals

6 and 7 are similar so they are grouped together. Table 2.3 shows the nine merging

steps. Thus. at step 7, there is three clusters formed with (1, 3. 4. 6. 7. 8).(2, 9)

and (5. 10).

In order to choose the final clusters. the dendrogram is used. Therefore. this

representation shows the distance between the merged clusters. The more this
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FIG. 2.2. Dendrogram produced hy hierarchical clustering using

Euclidean distance and group average method. It shows the dif

ferent cluster merges. At the beginning. each observation forms a

single cluster. Then, the observations are grouped until there is

just one cluster. A visual inspection is used to choose the number

of clusters by cutting the dendrogram at the desired level. The red

une represents the eut off distance where the merges are stopped.

distance is important, the more clusters are different from another. As the dus

ters are merged, the distances between them increase until the clusters are too

dissimilar. At this moment, the clusters must stay distinct and the merging pro

cess stops. Thus, an horizontal une is drawn in the dendrogram at this distance.

The number of vertical unes that cross the horizontal line corresponds to the

correct number of clusters. In Figure 2.2, the red line shows that there are four
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TAB. 2.3.

pie 2.1.1.

Merging process of the hierarchicai ciustering in Exam

Steps Clusters

1 (1).(2).(3).(4).(5).(6.7).(8).(9).(10)

2 (1).(2),(3),(4,8),(5).(6.7).(9).(10)

3 (1.4.8).(2).(3),(5).(6.7).(9).(10)

4 (1,4.8).(2.9).(3).(5),(6,7).(10)

5 (1,4,6,7,8) ,(2,9) ,(3) ,(5) ,(10)

6 (1.4.6.7.8).(2.9).(3).(5.10)

7 (1,3,4.6.7.8).(2.9).(5,10)

8 (1,3,4.6,7,8).(2.9.5.10)

9 (1.3.4.6,7,8.2.9.5.10)

different clusters. The observation 3 forms a single ciuster, the second inciudes (1,

4, 6. 7, 8), and the clusters 3 and 4 are respectively formed with (2, 9) and (5. 10).

In hierarchicai ciustering, there is a particuiar merging method calied \Vards

classification. According to Ward (1963), the loss of information which resuits

from grouping two ciusters can be measured by the total sum 0f squared devi

atiolls. At each step, the union of every possible pair of clusters is considered

and the two ciusters whose fusion resuits in the minimum increase in the error of

squares are combined (Everitt. 1993).

Hierarchical clustering is easily caicuiated but it is not adapted for large data

sets. Furthermore, it does lot ahow provision for realiocation of entities who may

have been poorly ciassified at an early stage in the analysis.

2.1.5.2. Fartitional ctnstering witk K-means ctustering

Partitional clustering is a ciustering method that directly divides the data

set into clusters. The clustering algorithm optimizes a criterion function hased

on two restrictions. It must minimize some measure of dissimilarity within the

clusters and must maximize the dissimilarity between the different clusters.
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FIG. 2.3. Illustration of the K-means algorithm.

Partitional clustering differs from hierarchical clustering in that they admit

relocation of the observations. Therefore, a poor classification might he corrected

at a later stage. Hence. this is the chosen method for this project hecause it is

appropriate for the efficient representation alld compression of large datahases.

The partitional technique presented here is called the K-means method because

it forms K different clusters. This method assumes that the number of groups

has been decided a priori. The algorithm works as follow:

(1) randomly selects K seeds used as initial estimates of cluster centers.

Many initialization methods eau be used. For example, MacQueen (1967):

chooses the first K points in the sample as the initial cluster mean vectors.

(2) Assign each record to its closest cluster center.

(3) Compute new cluster centers as the centroids of the clusters.

(4) For each observation, calculate its distance from each centroid.

(5) Repeat step 2 to 4 until convergence.

This algorithm is guaranteed to converge (see Andersberg. 1973).

Seed 2

o o

Sccd 3

o

o
o
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2.1.6. Number of clusters in K-means

One of the most important problem of cluster analysis is to identify the opti

mum number of clusters. Consequently, many rnethods have been developed to

determine this number.

Caliiiski and Harabasz (1974) developed a ratio given hy:

—

(n — K)trace(B$S)
ratio

— — 1)trace(WSS)’

where n is the total number 0f observations. K is the number of clusters. WSS is

the sum of squares within cluster, and BSS is the sum of squares between clusters.

Also. Duda and Hart(1973) proposed a criterion function that expresses how

well a given K-cluster description matches the data. We expect a description

in terms of K + 1 clusters to give a better fit than a description in term of K

clusters. Therefore, to see if there is a statistically significant improvement in

having K + 1 clusters instead of K clusters. the following ratio is computed:

WSS(K+1)
ratio

WSS(K)

where 111S$(K+1) is the sum of squared errors within cluster when there is K+ 1

clusters and WSS(K) is the sum of squared errors within cluster when there is

a K cluster. The nuil hypothesis that there are exactly K clusters is rejected at

the d-percent significance level if:

WSS(K + 1)
<1

— 2 — /2(1 Sn2p)

WSS(K) irp V
where p is the number of variables and cr is such as d = 1 — I(o.

Another criterion is proposed by Edwards and Cavalli-Sforza(1965). This ap

proach minimizes the variability within groups as rneasured by the sum of the

variation on each variable.
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To estirnate the number of clusters. the chosen criterion for this project is

the Cubic Clustering Criterion(CCC). This criterion is provided b the SAS pro

gramming package (Sarle. 1983). 11 also minimizes the variahility within groups.

We begin with some notations:

WSS: within-cluster sum of squares.

ESS: error sum of squares.

n: number of observations in the data set.

n:z_ number of observations in the kt1 cluster.

p:rr rrnmber of variables,

K: number of clusters.

X : n z K matrix of variable observations,

X: K z p matrix of cluster means.

Z : n z p matrix of cluster indicator with elements Zjk for which:

f 1 if the jth observation belongs to the kth cluster.
Zjk = ‘Ç

O if otherwise.

Let. ZZt, a K z K diagonal matrix with the 0k on the diagonal and k = 1 K.

such that

X= (ZZt)’ZtX.

The total-sample sum of squares and cross products (SSCP) matrix. denoted T

is given hy:

T = XtX.

The hetween-cluster $SCP niatrix BSS is:

BSS = ZtZ.

The within-cluster SSCP matrix is

WSS = (X — Z)’(X — Z)

= Xtx_X’zfz

= T-B.
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The within-cluster sum of squares pooled over variables corresponds t.o the trace

of WSS. Since T is constant for a given sample. minimizing trace(WSS) is

equivalent to maximizing:

R2 = 1
— trace(WSS)

(2.1.1)
trace(T)

where R2 is the proportion of variance accounted for by the clusters. The expeuted

value of R2. f(R2) is determined bv the assumption that the data have been

sampled from a uniform distribution based on a hyperbox. Therefore, in order to

obtain an approximation of E(R2). we have to find an approximation for R2 (cf

Sarle. 1983). The volume of the hyperbox. noted t’ is given bv:

‘L,

=

where s is the edge length of the hyperbox. If the hyperbox is divided into q

hvpercubes with edge length e. this length is given by:

c=(

The number of hypercubes along the dimension of the hyperbox is:

si
=

Furthermore, we have that the total variance along the th dimension is propor

tional to s2 and the within-cluster variance is proportional to e2. Therefore. R2

can he expressed by:

P 2
p2

— 1

______

ZP
2

i=1 5j

In Sarle (1983). the explain that the expected value E(R2). found with simula

tions is approximated by:

E(R2) =1 -

fl+U fl+j (n
- q)2(1

+ (2.1.2)
Z= ii n n

where p is an estimate of the dimensiouality of the hetween cluster variation.
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The CCC is estimated from the observed R2 as:

ccc—i 213— og
1 — R2 (0.001 + E(R2))’•2

To estimate the number of clusters, the CCC is plotted against the number of

clusters and the following conclusions can 5e made:

• the number of clusters that corresponds to maximums on the plot with

the CCC > 2 or 3 is chosen and indicates good clustering.

• If there is a maximum with the C1CC between O and 2. there is possible

clusters but t.hey should 5e int.erpreted cautiously.

• CCC is not appropriate for clusters that are highly elongated or irregularlv

shaped.

2.2. DEcisloN TREES

In this section, a statistical model is developed to find the individuals who are

insurance buvers. Therefore. some statistical models called CART are produced.

CART stands for Classification and Regression Trees. As the name implies. the

CART methodology involves using trees to resolve classification and regression

proS leins.

This section starts with the description of the CART structure. Then. the

method to construct the trees is explained in Section 2.2.2. To Setter understand

this aspect, Section 2.2.3 explains the set of questions used to split the tree. Sec

tion 2.2.4 discusses about some particularity of the data that affects the rnethod

used for this analysis. In Section 2.2.5. the measures of goodness of spiit are pre

sented and illustrated h means of an example. furthermore. to determine how

large to grow the tree. two concept.s must be explained. Therefore. Section 2.2.6

explains the tree pruning and Section 2.2.7 describes the rules applied to stop

the splitting. Once the trees are constructed, we want to know if they predict

correctly the closing ratio. Thus, Section 2.2.8 presents how to evaluate these

CART. This chapter is concluded with a discussion about the advantages and the

disadvantage of the CART methodology.
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2.2.1. Description

To predict the closing ratio, the statistical method used is the CART model.

This technique allows us to find which groups are more likely to bu Meloche

Monnex products hy partitioning the population into subgroups. A decision tree

is a set of questions that spiits the data into subgroups depending on the value

of the target variable. Consequentlv. we denote y. the target variable and X.

the data set that include the vector of predictors .r = (Xi rp)t where p is the

fixed dimensionality. Therefore, the decision tree begins with ail data at the first

node. also called the root node. from there, a spht criterion hased on a particular

variable is used to divide the data set into suhgroups called the children nodes. For

any node t. we suppose that there is a candidate split s” of variable
..

However.

sorne definitions are needecl to better understand the decision tree structures.

Definition 2.2.1 (Node). A node t is o partition of the dota set. If it is divided

into chiÏdren nodes and if is catÏed a parent node.

Definitiori 2.2.2 (Root node). The root node is the comptete data set which

corresponds to flic top node of the free.

Definition 2.2.3 (Terminal node). A terminal node is a node with no children

n odes.

Some terminology must be given (see Figure 2.4):

tLt the Ieft chiidren node.

tj: the rniddle chiidren node,

tR: the right children node.

The proportions of the observations in the different children nodes of the parent

node t are given by:

pL(t): proportion in t that goes into tL,

pM(t): proportion in t that goes into t1,

pR(t): proportion in t that goes into t.
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Figure 2.4 shows the CART structure. The root node is at the top of the

tree and there is three chiidren nodes with the corresponding prohabilities. In

this example. because the chiidren nodes are not splitted. they are also terminal

nodes.

PI (t(t\PR(t)
Yes No Not applicable

FIG. 2.4. Representation of the C1ART moclel. The root node is

divided into three chiidren nodes denoted tL. ti and 1R

An important issue in the tree procedure is how to read a tree. The Example

2.1.1 cari he used to produce a tree. Figure 2.5 represents a tree that include

two split questions. At the beginning, the 10 observations are in the root node

and the average closing ratio is 0.38. The first spiit is produced bv the number

of auto daims. The 4 observations with less than 2 auto daims are put in the

left child node and have an average closing ratio of 0.59. The 4 observations with

more than 2 auto daims are in the middle node and have a less important average

closing ratio of 0.30. The right child node includes the 2 individuals without an

auto policy and with an average closing ratio of 0.13 which is the lowest among

the nodes. We ilote that their closing ratio is ouï for the residential part. At this

point. the middle and the right child noUes are not divided. C1onsequently. these

two nodes are terminal nodes. However. the left noUe is splitted with the variable

X
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“age”. Therefore. the observations younger than 10 go in the left node and the

others are put in the right node. We can see that this tree allowed us to find a

group with a rnuch greater closing ratio than the average population. Indeed. the

group with less than 2 auto daims and younger than 40 has an average closing

ratio of 0.88.

Level O

s the number of auto daims
less than or equal to 2?

Yesoauto policy

Level 1

Is the age less than or
equal to 40?

À
Yes No

Level 2

FIG. 2.5. Example 2.1.1: tree model on 10 observations with the

variables “age” and “number of daims”. Within each node. the

flrst number is the number of observations present and the second

corresponds to the average closing ratio. The clarker are the nodes.

the greater is the average closing ratio within it.

In this chapter, we present the rnethod for CART models for the target vari

able as a hinary variable. Hence, we consider a decision rule (presented in Chapter

3. Section 3.8) that assign O for individuals with a small closing ratio. and 1 oth

erwise. Therefore. we are in a context of a two-categories t.arget variable.
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2.2.2. Construction

First of ail, the data used to create the model is divided into three groups:

the training set (70%) to huild a set of Inodels, the test set (30%) to see how the

model performs on unseen data.

An important notion in the construction 0f decision trees is the liomogeneity.

Definition 2.2.4 (Homogeneity). A node is homogeneous wken ait the obser

votions in if are from. the sarne category. In oui’ contexi, an hornoge’neous node

witt be a node that inciudes alt buyers or ail individv.als that do not buy any in

surance product.

At the heginning of the tree algorithm. ail data is included in the root node.

At this point. the objective is to divide this node into chulciren nodes to obtain

homogeneous groups in term of closing ratio. Then. a spiit criterion using a par

ticular variable is used to spiit the data set. This criterion, also called the splitting

rule, must he chosen to perform the best split. At each node the tree algorithm

searches through the variables one by one. heginning with .r1 anci continuing up

to .v. For each variable it finds the hest split. Then it compares thep hest single

variable split.s and selects the best of the best. In the next step. one or more of

these regions are split and this process is continued until some stopping mie is

applied. We note x the variable chosen to split the node t and s is the spiit

value to execute the split.

Definition 2.2.5 (Splitting rule). A sptiting Tute is a criterion that divides the

data and that is composed with two etements: the variable used to spiit. and flic

spÏit-point to achieve flic best sptit.

Definition 2.2.6 (Stopping rule). A stopping mie is a spiitting rute that makes

a node a terminal noUe.
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11w construct ion of a tree revolves around these elements:

(1) the choice of the best variable to spiit the data.

(2) the definition of a set of questions Q for each variable.

(3) the selection of the spiits by evaluating the goodness of spiit for any spiit
8Xt of any node t.

(4) the decision when to declare a node terminal or to continue to spiit,

(5) the assignrnent of each terminal node to a class.

2.2.3. Set of questions

The set Q of questions generates a set S of spiits s’ of every node t and every

variable 1k. k = 1 p. These variables eau he quantitative or qualitative. The

set of questions Q is defined such as:

(1) each split depends on the value of only a single variable.

(2) for each ordered variablei. Q includes ail questions of the form J

.r < s’ ? for ail s’ ranging over the domain of :c.

(3) if x is categorical. t.aking values in A (ai aL). the questions are of

the form ‘Is .r of a subset of A T’.

2.2.4. Data considerations for the spiits

In the literature, decision trees are binary, i.e. each parent node produces

two chilciren nodes. Hastie et aL(2001) suggests that binary spÏits are better he

cause multiwa spiits fragment the data too quicklv. Therefore. the next level

could include insufficient data. However, in our context, the splits can not always

be binarv Indeed. the observations in the data set are divided in three categories:

(1) individuals with auto products only.

(2) individuals with residentiai products oniy.

(3) individuals with both produets.
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In Chapter 1. we saw that the variables can he auto variables. residential variables

or demographic variables. In the Example 2.1.1. the number of daims is an auto

variable and the age is a demographic variable. If flic variable used f0 separate

the parent node is an auto variable. the observations without auto products does

not have a value for this variable. We thus say that the answer to the question is

not applicable for these individuals. Therefore, they are put in the right children

node. On the other hand, if the answer to the question is ‘yes for an observa-

t ion. it goes in the left chiidren node ad if the answer is no??. if goes in the

miciclie node. However, if the splitting rule is formed with a demographic variable.

the split is binary because everyone in the data set has a value for these variables.

As we will see in Chapter 4, most of the time, tertiary splits happen at the

beginning of the tree. Indeed, after sorne splits, the individuals without auto or

residential products are isolated. The decision tree produced in this analysis has

some binary splits and some tertiary splits. It does not affect the tree quality

because the data set is verv large and the majority of the splits are binary.

2.2.5. Goodness of spiit

When the splitting rule is chosen. the objective is to have maximum homo

geneity within a node. In other words, we want the child nodes to be as Ipurel?

as possible. Let the split s at each node t that makes immediate descendent

nodes as Hpure? as possible. A pure node is an homogeneous node. i.e a node

with all the patterns of the same category. Although. it is more convenient to

define the impurity rather than the purity of a node.

Definition 2.2.7 (Goodness ofsplit). A goodness of sptit is afunction 5(sX, t)

for any sptit s’ of any noUe t nsed to evaïnate if a sptit produces partitions Uf

ferent enough of the others.
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Definition 2.2.8 (Impurity). An impure node is a rrnde that is not homoge

neous. The i’mpurity is a measnre of goodness of sptit.

Let i(t) he the impurity of a node t. We want itt) to be O if ail of the

patterns that reach the node bear the same category label, and to he large if ail

the categories are equally represented. The spiit selected is the spiit that reduce

the node impurity the most. In our case, the objective is to find terminal nodes

with the most buvers as possible. Therefore. we want to obtain noUes with the

smallest impurity as much as possible. The goodness of the spiit at node t is thus

defined as the decrease in impurity given hv:

i(t)
— pLtt)i(tL) — pj (t)i(tsi)

— PR(t)t(tR)

\i(s’t, t) if there is three children nodes,

i(t)
— pL(t)i(tL) — pAi(/)i(tsj) if there is two children nodes.

Proposition 2.2.1. For any node t ancÏ sptit s.

Ai(st,t) O.

We note p(clt). the fraction of patterns at node t that are in category c

e 1 C where C is the number of categories. In our case. C = 2 but the

general case is presented here. The process of finding good splits is implernented

in this way:

(1) define the node proportions p(clt), e = 1 C so that p(ct) = 1.

(2) Define a rneasure i(t) of the impuritv of t as a nonnegative fonction of

p(clt).
(3) The best spiit s is the split for which the decreasing in impurity i(s. t) is

maximal. Consequently. i(s. t) must be caiculated for ail variables and

ah possible spiit values.
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Suppose we have doue some spiitting and arrived at a current set of terminal

nodes. We denote T, the set of terminal nodes

1(T) the overail tree impuritv

= i(t)p(t).

teT

Selecting the spiits that maximize Ai(s, t) is equivalent to selectillg those that

minimize the overail tree impurity (Breiman et at.. 1984).

Many different impurity functions eau be defined for selecting the best spiit

at each node:

(1) entropy.

(2) Gini irnpuritv (variance impurity for two classes).

(3) missclassificat ion impuritv.

Ah these impurity functions are therefore separately considered in our models.

However, according to Breiman et at.(1984), the properties of the final tree se

Ïected are insensitive to the choice of the impuritv function.

2.2.5.1. The entropy impurity

The entropy impurity is given by:

1(t) =
- Zp(ct) Ïog(p(ct)), (2.2.1)

where p(clt) is the proportion of observations that are in category e in the node t.

If all patteras are of the same category, the impurity is O: otherwise it is positive.

with the largest value ocdurring when the different classes are equally Iikely.

2.2.5.2. The Gini irnpnrity

The Gini impurity is the expect.ed error rate at node t if the cat.egory label is

selected randomly from the class distribution present at t. This impurity function

is defined as follow:
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>.

D

E

Probability

f 1G. 2.6. Node impurity measures for two-class classification, as a

function of the proportion p in class 2. Entropy fias been scaled to

pass through (0.5.0.5). (Hastie et aÏ.. 2001)

i() = p(clt)p(ilt) (2.22)
c#l

p(cIt) p(Ït) (2.2.3)

= [1 - p2(cjt)j. (2.2.4)

where e = 1 C represent.s the observation category. If ail observations are in

the same eategory. the impurity will be zero. This measure is the hest for a small

number of classes and works well for noisy data (Hastie et aL. 2001). It is also

simple and quick to compute.

In the two-class prohiem, the index reduces to:

Q

C,,

Q

CJ

Q

d

0.0 0.2 0.4 0.6 0.8 1.0

1(1) = 2p(1t)p(2It).
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In the two categories case. the Cmi impurity is see as a generalization of the

variance impuritv (Duda et ai.. 2001) defined as:

i(t) = p(1)p(2t).

2 2.5.3. The miscla.ssiflcation irnpurity

An other impurity measure is given hy the misclassification impurity. It. is

defined as:

i(t) 1— maxp(ct). (2.2.5)

It measures the minimum prohability that an observation would he misclassified

at node t. Among ail the impurity measures typicaliy considered. this measure

is the most strongly peaked at equal probabilities (Duda et al., 2001). This is

represented in figure 2.6.

2.2.6. Pruning

When the CART model is developed. the tree size must be deterrnined. A

very large tree might overfit the data, while a small tree might not capture the

important structure. Furthermore. the rules derived from decision trees. espe

cially from large trees are often quite complicated. Ibis is why the trees must be

reduced to ease its interpretation.

Definition 2.2.9 (Branch). (Breiman et al.. 1984) A branch T of a tire T

corsists of the node t and att descendants or chiidren of t in T.

Definition 2.2.10 (Pruning). (Breiman et al., 1984) Pruning a branch T from

a tree T cons’ists of deleting from T alt descendants of t.

Definition 2.2.11 (Horizon effect). Horizon effect happens when the sptitting

is stopped and the modet suffers from the tack of sufficient look ahead (beneficiaÏ

spÏits in subsequent nodes).
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Therefore. the pruning is executed when tire maximum tree is obtained and

it is often used because it avoids the horizon effect.

When a tree is pruned. it is grown fully until leaf nodes have minimum impu

rity as shown in Figure 2.7. Once tire big tree has been constructed. the resulting

terminal nodes are examined. If the spiits are not interesting enough. tire nodes

are eliminated. because of business reason or hecause tire decrease in impurity is

too small. Figure 2.7 is an illustration of this process. It represents tire tree of Ex

ample 2.1.1 fully developed. The dashed limes show spiits that form groups with

smaii average closing ratio. Because tire main goal of this project is to identify

tire buyers. we are not interested in nodes with small closing. Tirerefore. these

nodes could ire eliminated and their parent become terminal nodes.

2.2.7. Stopping mies

When a tree is grown. there is a moment when tire spiitting nrust stop. If tire

tree is huilt until each node corresponds to tire lowest impurity, tire data have

been overfit. Tirerefore. a stopping rule must ire applied at tins point. For tire

choice of the right size tree. mamy stopping mies could ire used:

(1) optinrization by minimum number of points.

(2) minimal change in impurity.

2.2.7.1. Optzmization by Tninirnnm nu’mber of points

In tins method. tire spiitting is stopped when tire number of observations in

tire mode is smaller tiran a prespecified miniirral size. In practice. the nrininral size

is set to 10% of the learning sample size. Tins approach is very fast. easy to use

and it leads to consistent results.

2.2.7.2. Minimal change in impurity

A good way to cut off insignificant nodes is to continue until tire change in

impuritv is too small. If tire thresirold for the reduction in impuritv is noted



47

10

0.38

s ffie number 0f auto daims
Iess than or equal to 2?

joYes No auto policy

s the age Iss than Ot Is the age Iess than or
equal to 30? equal to 50?

Yes No Yes No

No

I

y)

Fic. 2.7. Example of tree fully grown. Each terminal node is com

pletely pure hecause ail observations in it have the same closing

ratio. Therefore, the impurity of each node is nuil. The dashed

connect unes represent spiits that could be eliminated hecause they

produce chiidren nodes with small closing ratios. Indeed, the ob

jective is to find which persons have a closing ratio near 1.

‘3 > 0. the node is declared to be terminal if

max A(t) < 3.

However, it is often difficult to know how to set the threshold. Indeed, there is

rareiy a simple relationship between t3 and the overali performance (Duda et aï..

2001).

No

2

Isthe
Iessthan or equal toi?

Yes
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2.2.8. Model assessrnent

In the previous subsections, we developed a model to predict the target vari

able y. Now, we want to assess this model. Let J(X) be the estirnated closing

ratio where X represents the set of the predictor variables r1 This function

f(X) has been estimated from the training sample. Therefore. the loss function

for measuring errors hetween y and f(X) is deioted by L(y. f(X)). In Hastie et

aï. (2001). thev consider two choices for this loss function:

(1) the quadratic loss

L(y. î(X)) (y - .Î(X))2.

(2) the absolute value loss

L( Î(X)) y - Î(X)I.

The objective is to calculat.e the test error that is. the expected prediction

error over an independent test sample (Hastie et aï., 2001):

Err E[L(y. J(X))].

In Hastie et at.(2001), they discuss rnauy rnethods to estirnate this expected

value such as:

(1) the bias-variance decomposition.

(2) the optirnism of the training error rate.

(3) the estirnates of In-sample prediction error.

(4) the cross-validation.

However, as we saw in Subsection 2.2.2. the data set is divided into two

samples. Therefore, the training sample allows to construct the model. The test

set is used to evaluate the model by calculating:
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where n is the number of observations, y is the closing ratio for observation j,
= (.ri and J(i) is the predicted closing ratio for observation j.

Since enough data is availahie in our context, cross-validation is not needed

to estimate the sample error. Indeed, this method uses part of the available data

to fit the model and a different part to test it.

2.2.9. Advantages and disadvantages (Breiman et al., 1984)

Decision trees have the potential for heing a powerful and flexible classifi

cation method. Therefore, it can he applied to anv data structure through the

appropnate formulation of the set of questions Q. furthermore. it handies both

quantitative and categorical variables. However. the most important advantage

of decision trees is their interpretahility.

Definition 2.2.12 (Interpretabilitv). The rnterpretabitity is when feature space

partition is fnÏÏy described by a singte tree. An interpretabte tree provides insight

and understanding into predictive structure of the data.

Other advantages of decision trees are interesting:

(1) CART models lead to rapid classification: employing a sequence of typi

cally simple queries.

(2) CART provide a natural way to incorporate prior knowledge from human

experts.

(3) nonparametric model hecause this method does not require specification

of anv functional form.

(4) does not require variables to be selected in advance. It identifies the most

significant variables and eliminate non-significant 011es.

(5) CART results are invariant to monotone transformation of its independent

variables. If some transformations are applied to the data. the structure

of the tree is unchanged. In this case, onlv splitting value are modified.
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(6) CART can easily handie outiiers. These observations are isolated in a

separate node and they thus don’t affect the rest of the model.

(7) On a given level 0f the CART. there is no restrictio; for the spiitting rule.

Therefore. ail variables can he used to spiit at any level.

(8) Foi’ ail variables. there is no restriction in the spiit values.

CART models also have some disadvantages:

1) decision trees mav be unstable. They have indeed a high variance. There

fore. insignificant modifications could lead to radical changes. M any

node, there rnay 5e a number of spiits on different variables that give ai

most the same decrease in impurity. Therefore. the choice between com

peting spiits is difficuit and almost random. This choice can lead to a very

different interpretation.

2) CART spiit oni 5v one variable so thev may not catch the correct struc

ture of the data.

In this chapter. two statisticai methods were explaiued. In the first section,

ciuster analysis was used to cÏassify the individuais into different groups aïid was

descrihed in Section 2.1.1. To understand cluster analvsis. a method to calculate

the distances vas then cleflned. Therefore. rnany measures of simiiarity or dis

similarity- between the individuals heing clustered were described in Section 2.1.3.

The flrst section continued with the elahoration of two clustering strategies: the

bottom-up clustering and the K-means clustering. Consequentlv. Section 2.1 con

cluded with the explanation of the method used to find this number.

Section 2.2 elaborated about CART models that are used to predict the clos

ing ratio. In Section 2.2.1, the model structure was descrihed as a tree with a root

node at the top and chiidren descendent nodes. Then. the method to construct

this model was presented in Sections 2.2.2 and 2.2.3. To evaluate the goodness of

the split. the node impurity xvas calculated. furthermore. many impurity func—

tions could be used. Therefore, the entropy. the Ciii and the misclassification
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rate were explained in Section 2.2.5. When the tree is formed, an interesting

technique is the pruning process. In this case. the tree is fullv huilt and the

insignificant nodes are elirninated later. This was preseited in Section 2.2.6. An

other consideration in the tree construction is to know when the spiitting mllSt

stop. Thus, some stopping rules were presented in Section 2.2.7. To conclude

Chapter 2. the rnodel assessment method was explained as the computation of

the prediction error on the test sample.

Chapter 3 lias the sarne objective of Section 22. Indeed, it xviii produce

decision trees but using a Bayesian approach instead of the classicai approach.



Chapter 3

BAYESIAN APPROACH

In Chapter 2. we explained two useful statistical methods in the business con

text. Although cluster analysis does not create models. if allows us to better

understand the population under consideration. On the other hand. decision

trees produce models to predict the target variable, that is the closing ratio in

ouï context. Thus. decision trees ailow us to have a hetter understanding of the

huyers characteristics.

However, in the business situation. the trees grown in Chapter 2 with the

ciassical approach bas a main disadvantage. Indeed. each variable has a proba

hility to be selected without regard to his business importance. In the opposite

of this approach. the Bayesian approacli weights each variable depending of his

importance. Therefore. it is easier to obtain trees that are easy to explain and

understand. In our context, interpretable trees are essential if we want them to

he used on the actual population.

In this chapter. the Bavesian approach is used to add flexibility in the model.

This approach uses the a priori information to construct statistical models.

Therefore. we introduce prior specification on ail the unknowns. This allows us

to minimize undesirable model characteristics, such as tree complexity. or express

a preference for certain predictor variables. In the construction of decision trees.

the Bayesian approach is called BART. meaning “Bayesian regression tree. In

that case, it is used to increase the interpretability of the tree. By modehiig the
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unknown parameters of the sampling distribution through a probability structure.

the Bayesian approach allows us to give more weight to some variables useful to

the subject matter specialist.

This chapter is concerned with one main issue: to find trees with higli proba—

bility, more precisely with high posterior prohability. Therefore, man trees must

be constructed in order to find the hest model. We first start with the presen

tation of some aspects of the Bayesian paradigm. We continue in Section 3.2 hy

explaining how the tree is structured. Furthermore, the Example 2.1.1 is used

to illustrate these notions. In order to caiculate the posterior probability of a

tree. the specification of two elements are essential: the distribution of the target

variable y and the tree prior P(T). b find the y distribution. the predictor priors

are given in Section 3.3 and the distribution of g is presented in Section 3.1. The

specification of the tree prior is donc in Section 3.5 by preseuting three priors: the

prior for the choice of the spiit variable. the prior for the choice of the spiit value

and finally, the prior for the number of terminal nodes. The tree posterior is thus

presented in Section 3.6 with the variable and spiit posteriors. The algorithm

applied to constrnct the trees is then descrihed in Section 3.7. Once the trees are

created. the categories must be assigned to terminal nodes. This is presented in

Section 3.8. This chapter concludes hy a discussion on many criterions to evaluate

the trees such as the trees posterior prohahility. the likelihoods ) and

finally. the misclassification rates. Therefore. the best tree can be chosen.

3.1. BAYESIAN THEORY

Consider the model represented hy y f(y;3) where y is the vector of the

observations and B is the vector of parameters. The parameters B could be rnod

eled through a probability distribution irCB), called prior distribution.

Definition 3.1.1 (Bayesian statistical model). A Bayesian statisticat rnodeÏ is

made of a pa’rametric statistical model. jy 3). and a prior distribution on tue

parameters, 7r(B) (sec Robert. 2001).
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The inference is baseci on r(3y), the distribution of 3 conditional on y. called

posterior distribution and defined by

- f(y3)7r(L3)

- f f(y3(/)d;3

- f(y/3)(d)

m(y)

where rn(g) represent.s the marginal densitv 0f y defined below.

Definition 3.1.2 (Marginal distribution). The maïginaÏ distribution of y is the

density function of y atone. integrating the information about /3. This distribution

fiznction is:

m(y)
= f f(y3)rr(3)di3.

3.2. BART STRUCTFRE

A BART model is a Bayesian statistical model that descrihes the conditional

distribution of the target variable y given a vector of predictors i = (ii. ,r2

where p is the dimeilsion of the vector. A Bayesian tree model lias two com

ponents: the tree T with b terminal noUes and a vector of parameters O =

(01.02 Ob)t. The parameter value 0, is associated to the 1th terminal node. If r

lies in the regioli corresponding to the 1th terminal node, then the variable given

.i has distribution f(0). where f represents a parametric family indexed hy 0.

We set 0 (x sx) where x1 is the chosen variable for node i and sx is the

chosen split value for node L Furthermore, we denote yj as the observation

of y in the terminal noUe. j = 1 n1 and i = 1. ..., b where n1 is the number

of observations in node I. The b regions corresponding to the b terminal noUes

are disjoint so that the tree separates the data set hy assigning each observation

to one of the b terminal noUes. Consequently, if we denote the total number of

observations in the data set by n, we have that n1 n. To illustrate these

concepts. a BART model is applied on Example 2.1.1 and the tree is represented

in Figure 3.1. In this example. the data coiisists of 10 observations and two pre

dictor variables: the individuaFs age and his number of auto daims (see table

2.1). Therefore. r = (xi. r2). The Figure 3.1 shows a tree with b 1 terminal
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nodes and n1 = 2, n2 = 2, n3 = 4 and n4 = 2. Consequently. we see that each

observation is assigned to one particular terminal node.

As we explained in Chapter 2. each tree node forms a partition of t.he data set.

Level O (‘“

Is the number 0f auto daims
less than or equal to 2?

Yesoauto policy

Level I

s the age less than or
equal to 40?

Yes No

Level 2 2 2 7 0

FIG. 3.1. Example 2.1.1: tree model on 10 observations with the

variables age” and “numher of daims”. Within each node. the

first number is the number of observations present and the second

corresponds to the average closing ratio. Each question produces

three splits even though it mav produce an empty nocle (the daslied

node).

Therefore, in order tu identify each of them, we define a label on each node. We

note the position of cadi node by t. The root node. which is always in the model,

is chosen to be the first split node and its position is labeled as position 0. so that

t 0. Any descendant spiitting node’s l)OSitiOn. t. is ulliquely defined giveli its

parentss position. As we saw in Chapter 2. a parent node can produce

either two or three children nodes. In order to produce a model without too rnuch

complexity, we aiways produce three descendant splits. If the split produces only
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two subsets, we set the third descendant node to be nuli. This allows us to ob

tain a consistent terrninology. Furtherrnore. the nuli nocle does not count for a

terminal node hecause it exists just for computationallv matter. For example. in

Figure 3.2. we see that the node with label 6 is null. However. even if this node

is nuli. it is interesting to identify it hy its label. Therefore. we define the labels

for the three chuidren nodes as follow. For a node t. given the parents’s position.

its label is given hy:

3fPa1.eIlt + 1 if the node contains the data points

— for which the question at the parent node is true.

— 3tParet + 2 if the answer to the question is no.

3tn1t + 3 if the question is not applicable.

To better understand the labels, the Figure 3.2 shows how the tree is structured.

Indeed the children label depends on its parents label and on the split question

answer. Figure 3.1 can also he used. The labels alÏow us to identify cadi partic

ular subset. For example. the terminal node with individuais having less than 2

auto daims and older than 40 years old is identified as the node Ïaheled 5. Fur

thermore. this terminology allows to identify the node with the highest average

closing ratio. Consequently. we see that node 1 lias an average closing ratio of

0.88 that is the greatest average among tic tree.

Another consideration is the tree levels L. At. the top of the tree. the root

level is L = O and after the first split. L = 1. Using tic previous notation. the

labels cari easily be defined on a same level. On level L, there are exactly 3L

nodes. Tic first node label on a given level is the total number of nodes on the

previous levels. This is because the root node is labeled 0. Therefore. the first

nocle on a level L is given by:

L—1

rn=O

3L
— 1

2
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The last position on a level L will be +
23L_2

The positions of the nodes

on a level L are therefore ï
3L-1_3

For example, figure 3.2 shows

that the labels on level 2 are from 4 to 12. This figure also shows the node labels

and the tree levels. If the parent node lias a label of 3. the ehiidren labels will

be 10. 11 and 12. In the figure. we can also see that sorne nodes can he ernpty.

Therefore, the nodes 6 and 9 do not have anv observation.

Level O

Question 1

/K
Yes No Not applicable

Level 1 t=2

Question 2 Question 4

Yes Yesappble

Level 2 t=6’)

Question 3

Yes

t=8 t=9)

Fic. 3.2. BART with two levels and 7 terminal nodes. The labels

are shown within the nodes. The blue nodes are terminal nodes,

the green are nonterminal and the white dashed represents a nulÏ

node. The tree levels are also represented.
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3.3. DIsTRIBUTIoNs 0F THE PREDICT0RS

In order to develop a model for the distribution of y. we need to know the

distributions of the predictor variables. Thus. the likelihood is a function of the

distribution of these predictors. Therefore, we have to specify each variable den

sity. Because the variables used are either continuous or discrete, this distribution

depends on the nature of the variable.

For the continuous variables. the distribution is determined hy plottirig the

histogram of each variable. Therefore, three continuous distributions are

considered:

(1) If the histogram shows a hell-shaped curve” which is symmetrical about

the mean as Figure 3.3, the variable ,t N(O.u2). In this case, the

density of x for u > O is given by:

1 (zt—9)2

7rt.z:tI&. u)
/t27ru2)

t 2) If the histogram shows a non symmetric curve with a long right tail as

Figure 3.4. follows a gamma density with parameters u and 3 such as

G(u. f3). The distribution of , is give;1 b:

n(xtu. 3) = va_1e_xt[lt,)

where u. 8 > O.

(3) If the histogram is bimodal like Figure 3.5, the distribution of .r is

therefore a mixture of two Gamma such as .rti G(ui. i3i) and

Gtu2. 32). The ‘t variable is deflned as:

f ‘ti with proI)ability 1
=

‘2 with probahility p,

where p is the proportion of observations that follow G(u2, 32). The

density of xt is then given b:

(1
— p)r(.rt p) + it’t2Ip)’
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whereO<p< 1,1>O/31>O.c2>O.32>O.

Q)
D

o
o-

o

co
o

o

o

o
o

Predictor

I I I I I I I

—3 —2 —1 0 1 2 3

FIG. 3.3. Histogram for a normal density with 9 = O and u 1.



(n
C
w

-C

o
Û-

60

0 1 2 3 4

Predictor

Q

Q
Q

>

(n
(.

D Q

o
Û

Q

Q
Q

Q
Q

FIG. 3.4. Histogram for a gamma density with 1.5 and 3 = 2.

Q
Q

(O
Q

Q

Q
Q

Q
Q

FIG. 3.5. Histograrïi for a mixture of two gamma densities with

= 1.5. = 3. a2 17. d2 = 7 and p = 0.4.
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C,)

Q

>,

0

Q

4 I

Predictor

FIG. 3.6. Bar chart of a Poisson density with Iarameter À = 1.

For the discrete variables. two possihilities are considered. Indeed. the dis

crete variables can be either binarv variables or quantitative discrete variables.

Hence. the variable density depends on its type. To model the hinarv variables.

a Bernouilli distribution is appropriate. In this case. .r Bet(p) and its density

is given by:

(xp) —

where O < p < 1. The quantitative diserete variables are modeled as Poisson van

ahies. In Example 2.1.1. the variable “number of auto daims” should he modeled

as this distribution. Indeed. the Poisson variables are the number of events oc

curring in a fixed period of time with a known avera.ge rate. Furthermore these

variables are independent of the time since the last event. If x P(À), the

distribution of ; for À > O is given b:

Àxt
=
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Ibis density is shown in Figure 3.6.

To estimate the hyperparameters, the maximum likelihood method is used.

The gamma parameters are found using an iteration scheme. For the mixture of

tire two gamma densities. the EM algorithm described in Chapter 1 is used to

calculate each distribution weight and also each hyperparameter value.

3.4. DIsTRIBUTIoN 0F THE VARIABLE 0F INTEREST y

The objective of this project is to create a model to predict tire response vari

able that is the closing ratio. Furthermore. one individual closing ratio depends

on his number of purchases amoug iris uumber of quotes. Hence. we can consider

the closing ratio distribution as a binomial distribution depending on the num

ber of quotes aud sales. Ibis distribution depends also on the variable x used

to predict the closing ratio withiu tire node t. Therefore. we consider the link

function of a predictor as the associated binomial probahility.

Definition 3.4.1 (link function). The lin.k function is a function that provides

the relationship between the predictor and f/ic response variable distribution func

tion.

An important property of tire link functiou is that it is used to model the

predictor variables when the dependent variable is assumed to he uoulinearly

related to the predictors (McCullagh and Nelder. 1989). Various link functions

are commonly used. depending on the assumed distribution of the depeudant

variable y. However, it is important to match the domain of the link function to

the range of tire distribution function’s mean. In our case, the link functiou is a

probability functiou 50 the domaiu must be hetween O and 1. For the variable x.

tire liuk function used in tins project is given by:

p(sXt x) F(x <

=

7r(X)dx.
min(xt)
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The y distribution depends on each observation distribution functions within ail

terminal nodes. Indeed, the union of ail terminal nodes at a given level includes

ail the observations of the data set. Therefore, the y distribution is obtained

by multiplying the distribution function of each observation in a given terminal

node. For BART models, it is assumed that the response variable values within

n terminal noUe are i.i.d. Furthermore. these y values across terminal nodes are

independent (Chipman and McCtilloch. 1998). We denote yj (qij. vjj) where

qj and ‘j are respectively the number of quotes and the number of sales for

individual j iii node L The distribution of Yij is given hy:

,f(yjjIx, s) = )V3[1
— p(Sx, )]qj_vj (3.4.1)

\qij J

where x corresponds to the variable used to obtain node i and s’ is its spht

value. Therefore. the y distribution within a node I is simply the product of

equation (3.1.1) for ail terminal nodes.

= fl J(yx. s). (3.4.2)

where rq is the number of observations iII node L

3.5. $PEcIFIcATI0N 0F THE TREE PRIOR

The tree prior is specified hy a tree-generating stochastic process. Each real

ization of such a process can simply 5e considered as a random draw from this

prior. To draw from the prior. we start with the tree consisting of a single root

node. The tree then grows hy randornlv splittiig terminal nodes by assigning

them splitting mies and chiidren nodes.

Therefore. the growing process is determined by the specification of three

functions. First. we need the prior of the variable chosen to split the data and

second. the prior of the split value given this variable. An important considera

tion is also the size of the tree, i.e. the choice of the number of terminal noUes.

Thus. the tree prior probabilit.v consists of the product of the following priors: the

prior for the choice of the variable, the spiitting value prior and finally. the prior
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for the number of terminal nodes. These three priors are multiplied together to

obtain the tree prior denoted by P(T). If a tree has b terminal nodes, then there

is b ways to reach the final level of the tree. for each way. a prior prohahility is

calculated. Therefore, the tree prior is obtained as follow:

P() {ÙP(choosin variable x)P(choosing split value

x P(b terminal nodes), (3.5.1)

where x is the variable that spiits the data to obtain the terminal node i.

The next subsections will explain each of the following prior:

(1) P(choosing variable x) that correspond to the priors on variables.

(2) (choosing spiit value sx), that are the prior on spiit value.

(3) P(b terminal nodes) that is the prior on the number of terminal nodes.

3.5.1. Prior on variables

When the tree is grown. the first step is the selection of the variable used to

split the data set. The prior on variable is therefore an important consideration

and many priors are possible. A popular choice for this prior is the distribution

obtained by choosing .xt uniformly from available predictors. In this case, the

prior is given by:
1

lr(xt) — —

p

where p is the number of predictor variables. This choice represents the prior in

formation that at each node, available predictors are equally likely to be effective.

This prior is very simple and also invariant to monotone transformations on the

quantitative predictors.

However, in the business situation, some variables are thought to be more

important than others. Therefore, it could be better to consider a prior that
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takes info consideration the weight of each variable. In order to calculate a

weight function. we note wk the variable x, weiglit 50 that:

1.

The weights are determined as follow. Giving its importance. each variable 1k

gets a score ak from O to 10. The most important variable lias a score of 10

and the less important gets a score of 1. A score of O means that the variable is

simply eliminated from the model. For example. if the variable is constant for ah

observations, ifs score will lie null because it does not add any information to flic

model. The variable weiglit is calculated as follow:

ak
Wk =

. (3.5.2)
k=1

and the prior of rariahle Xk is given by:

7’(’k) = tek. (3.5.3)

3.5.2. Prior on splltting values

Once flic spiit variable is cliosen, the spiit value must he found. We denote

7r2(sxt xj). the prior distribution on splitting value r. Because the choice of a

sphit value depends on flic predictor variable. tlie distribution of the sphit value

is a distribution on tlie set of the predictors. Chiprnan and McCullocli (1998)

considered only priors for wliicli the overahl set of possible split values is fiuite. In

tliis case, 7r2(sxt It) is a discrete distribution. However, in this project, we consider

this distribution as a continuous function on tlie values of the variable. Thus. even

though we consider flic split variable as being a continuons random variable, it is

sufficient, in practice. to only consider flic observed values as potential sphit. For

example. if we ohserved S(i) < < •.. < 8(k). flic sphit of the data set will lie

the same if we clioose any values between S() and 8(i+1).

In Cliipman and McCulloch (1998). tlie uniform specification for this prior

is presented. Thus, the prior on a sphit value 8Xt given flic chosen variable Xt S

given by:
1

7r2(sxtxt) =
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where JXt is the number of Xj possible values. This method assigns lower proba

bilit to spiitting values based on a variable with more potential spiit values. In

Chipman and McCulloch (2002). they discuss the conflict between the prior and

the likelihood information from the data. If the prior is too concentrated around

its prior mean. it may he too informative. This eau overwhelm the information

in the data corresponding to a terminal node. However. if the prior is too spread

out. the posterior distribution xviii also be spread ont. particularlr for trees with

many terminal nodes. A spread ont prior is called a diffuse prior. It assigns

small probahility to each indiviclual spiit value for variables with many possible

values. furthermore, the prohability on each split value is much more important

for variables with fewer possible values.

We prefer to use the distribution on split value given the variable chosen as

an uniform on the range of the variable. The prior of a split value s’ given the

chosen variable it is therefore:

o(StIt)
= 1

(3.5.4)
— .max — .rrr In

where and 1T1 are respectively the maximum and the minimum of the spiit

variable.

3.5.3. Prior for the number of terminal nodes

An important consideration in the construction of tree is its size. A good size

tree must not he too small or too big. In Chipman and McCulloch (1998), they

first consider the prior for the number of terminal node as a constant as follow:

= b) =

where c > 0, b > 0 and ij represents the number of terminal nodes. Under this

prior. ail trees with b terminal nodes have the same probabilitv regardÏess of their

depth and shape. The shape is defined as the number of consecutive splits above

the terminal node. To consider the depth of the tree in this probability. another

form is proposed:

b) = o(1 +
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where 3 > O and it is the depth of the noUe t that is the level of the node t. This

prior is a decreasing function of the depth. Therefore. deeper nodes will be less

likely to spiit.

Figure 3.7 shows two different trees with the same number of terminal nodes.

Although they have both five terminal nodes, their shapes are very different. In

figure 3.7 (a). the tree is not equilibrated because il is developed only on the left

side. On this side, there are three consecutive spiits before the terminal node.

Figure 3.7 (b) illustrates a tree with the left and right sides equally splitted. This

tree is therefore more equilihrated. Indeed, there are two consecutive spiits hefore

the last. level ou the right and left sides.

Instead of using one of these two priors. we chose IP(îj = b) as a t.runcatecl

poissoI (Denison and Mallick. 2000). In this distribution. the domain of random

variable 7j is restricted to he greater than zero so the minimum number of terminal

node is 011e. The prior for the number of terminal nodes is given hy:

P(i1 b)
=

for b 1,... (3.5.5)
— 1)

When the tree is grown. we need to specify ,\ to compute this prohability. There

fore, we must specify the average number of terminal nodes in the tree. If this

number is b, we fiud ) for which b E(ij) where:

=

m!(e-1)
m=I

, )m

(e — 1) (in — 1)!
m=1

m

= (ex-1) m!
m=O

(e—1)
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FIG. 3.7. Example of two t.rees with the same number of terminal

nodes but with different shapes: (a) This tree is not equilibrat.ed

hecause only the left side is developed. On the left side, there is

three consecutive spiits hefore the last level while the other sides

include only one spiit before the terminal nodes. furthermore. there

is a total of five terminal nodes. (b) This tree is more equilibrated.

Indeed the left and right sides are developed. On the left and

right sides, there is two consecut.ive splits before the terminal node

whule the middle node has a single spiit before the terminal nodes.

Furthermore, there is a total of five terminal nodes.

So we eau now write the tree prior equation (3.5.1):

= {w2(sxhI;i)} P( =b)

(3.5.6)
I — I — 1)
Çi=1 O )
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3.6. P05TERI0R DISTRIBUTIONS

Now that ail the elernents to define the tree posterior distribution are known.

we begin this section wit.h its specification.

3.6.1. Posterior distribution on tree

The tree posterior IP(.i.
. ) can he defined as:

ll(Ii, . ) P(, , )P(). (3.6.1)

where:

= flf(yO)

h n

flflJ(0).
i=1 j=1

Using equation (3.1.2). we ohtain:

P(.
. ) = fl fl f(yi. sTI)

i=1 j=1

=

(e23)
p(s. i) [1 — p(5X )]JvzJ (3.6.2)

i=1 j1
q23

Using equation(3.5.6), the tree posterior distribution is given by:

{ x_ } b!(1 _e_À)

b n

x fi fl p(s, ;)3 [1 — p(s. (3.6.3)
i=1 j=1 I2J

3.6.2. Posterior distribution for the choice of the spiit variable

The first step in the tree construction is the choice of the spiit variable. This

variable must be the one that produce the most different. subsets in term of closing

ratio. Therefore. the variable chosen is the variable with the highest posterior

probability. Ibis conditional prohability is calculated hy t.aking into consideration

the variable prior and the marginal distribution of y given this variable. We also
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consider that the variable c is the predictor used to spiit the node that include

n observations. For variable 1t, its posterior prohahility is given by:

rn2(y;t)7r(xt)
q(,ty) = (3.6.4)

Zk=1 m2(yt)7r(xt)

where 7T(Xt) = Wt is the weight of the variable x so that alarger mass is applied on

the most important variables and rn(t) represents the marginal distribution

of g given the spiit variable. We eau see that the weight variable has a direct

impact on the choice of the spiit variable. To find the marginal of y given the

spiit variable ail possible splits for this variable must he take into account.

The marginal of g given the split variable is:

m2(It)
= f fWI,t, Xt)(Il It)ds

f [Ûj.S]

.rnax — .rnin

x f f[ (eti)p(St )Ut3 [1 —

p(1t. (3.6.5)

The variable chosen is given by:

argmax q(,,y). (3.6.6)
XftE(X1 Xp)

3.6.3. A posterior deiisity for the choice of the spiit value

We need now to det.ermine the best split given the choice of the hest variable

to spiit. As for the choice of the spiit variable. the choice of the spiit value is based

on the spiit having the highest posterior probability. Therefore. ail possible spiit

values for the variable xt are considered. To define a range for these splits. the

variables are plotted given the respouse variable. We denote S, the set of the

possible splits for the variable ‘. In order to calculate the posterior probability,

the equations (3.5.4), (3.6.2) and (3.6.5) are needed. At node t. when the split
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variable is x. the distribution of t.he spiit s is therefore given by:

4f 1 Xt f .it
— J YIt 5m )7C2Sm t

‘2 (su,
—

m2(yLr)
tf.’ \ f j

— JYXt,brn)ft2Sm t

—

2(sxtxt)f(xt,sxt)dsxt

—
1JZ ()P(5

,)Vt3 [1 — p(sXt.

— I fl (1t])p(scf, ,t)vt3 [1 — p(st, )]ti_VtjdsXt

where n is the number of observations in the node t. v is the number of purchases

made bv the observation j in the node t and qtj is the number of quotes made hy

the observation j in the node t.

The hetter spiit value for x is the spiit for which:

s1 = argmax fl (tu) p(it XYt] [1 — p(?t, )]tJVtJ (3.6.7)
5nf ESt j=1 qtj

3.7. CoNsTRUcTIoN 0F THE TREES

In this section. we present the algorithm developed to construct the trees. At

first. it starts hy spiitting the top of the tree using variable x and spiitting value

s where (,. s) represents the hest spiitting value. It continues by randomly

choosing among three independent steps (Denison and Mallick, 2000): the grow

ing. the pruning and the decision to stay. On node t. each of these moves has the

respective probabilities b. d and Tj such as:

b + d, + Tt = 1.

Furthermore. the different move probabilities are affected b the number of nodes

produced at each spiit. In the growing step. the spiit can produce either two or

three chiidren nodes. On the other hand, in the pruning step. it can delete one

or two nodes.

To present the steps, we suppose that we are in node t and that the tree has

b terminal nodes at this point. These steps are described in the next sections.
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3.7.1. Growing

\Vhen a node is grown, it is divided into chilclren nodes b assigning it a

sphtting fuie from the prior. The probability of growing the node t is given by:

f 2rmin ,

+b if there is two chiidren nodes.
IP — b — ) f(i1=b) j

GROVvj — t
—

b °)2ymin {i. } if there is three chiidren nodes.

where ]P(i7 b + 1) is the probabilitv of having b + 1 terminal nodes and r is a

constant to be defined later. iherefore. bv the equation (3.5.5). the ratio can be

writ t en:

iP(7)=b+1) À
(ij=b) b+1

It represents the prohabihty of passing from b terminal nodes to b + 1 terminal

iodes. When the spiit produces three chiidren nodes, the number of terminal

nodes increases by two. The ratio can also be simphfied by:

IP(î7=b+2) — À2

— (b+1)(b+2)’

3.7.2. Pruning

Pruning means to turn a parent node into a terminal node by collapsing the

nodes below it. The probahihty is:

t rmin 1, if there is two children nodes,
1T f(=b+1) jIrPRUNEtL) = Ut =

rrnin {i. f) } if there is three chiidren iodes.

This move is the inverse of the growing move. Indeed. if a node is prnned. the

number of terminal nodes decreases. If there is two chiidren nodes. these two are

coilapsed and the number of terminal nodes decreases by one. The same thing

happens when there is three children noUes, except that the number of terminal

noUes decreases by two. Because this move is the inverse of the growing step, the

ratio within the minimum is simply the inverse of the ratio that is in the growing

step.
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3.7.3. Stay

When this step is chosen. h means that the present node become a terminal

node. The probability is therefore:

STAY() 1
— b — d.

This is to respect the condition such as the sum 0f the three moves probabilities

must. he 1.

Denison and Mallick (2000) consiclers that the constant r is as large as possible

subject to

b+d<O.75 t=2,3....

This is hecause we do flot want too much moves in the algorithm. Furthermore,

for b 1, we put b = 1 because we want at least one spiit. Also. d = O if b 3

for the same reason. We choose b so that. if is twice as big as d1 when \ = b + 1.

This is done in order to compensate for the fact that the hirth step often proposes

a. tree which has fewer data points in the terminal nodes that is usually allowed.

Furt.hermore. Te want births and deaths to he proposed at a similar rate.

3.7.4. Specification of the algorithm

The algorithm used to develop the tree is given as follow. For a given node t

that is on level L of the tree:

(1) examine every allowahie spiit on each predictor variable and choose a

spiitting mie. The variable chosen is:

= argmax q(;hy).

The spiit value choseil for this variable is:

si = argmax n2(sjxj. y).
s E(x’ Xml)

(2) Set i, equal to the number of terminal nodes in the present level of the

tree (i = 3- as explained in section 3.2). This is because we want cadi
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node on a saine level to be spiit with the saine prohability.

(3) Generate u Multinomial such as:

1 with prohahility b,1.

‘u = 2 with prohability r,.

3 with prohability d,,.

(4) Use u to decide which of the three moves explaineci before is executed:

• if u 1, grow the node. i.e. add two or three chiidren nodes,

• if u 2, prune the node, i.e. delete two or three chiidren nodes.

• if ‘u 3. stav. i.e. make the node a terminal node.

(5) Repea.t step 1 to 4 on the next iiode until there is no further spiit.

3.8. ASSIGNING CLASSES TO TERI\IINAL NODES

When the trees are constructed, each terminal node is assigned to one class.

In Chapter 2, we saw that there is two classes in this project: the buyers and the

non buyers. that is, each terminal node is considered either as a buyer. either as

a non buyer. Hence each observation within the terminal node is assigned to its

node category. In order to assign these classes. the target variable (closing ratio)

is used. Lets define some terminologies:

Z: the closing ratio on total population.

zj(i):= the closing ratio of the observation j in terminal node I.

(i):= the average closing ratio in terminal node I.

I(zIi):= the indicator of buying for observation j at noUe L

The indicator I(zIi) determines if an individual is considereci as a buver or not.

If I(zjIi) = 1. the observation j at node lis considered as a buer.

Definition 3.8.1 (Class assignment mie in the context of K classes). A ciass

assigument rate assigns a cÏass k {1 K} to every terminal node on the tree.
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Note that we are in a two-classes prohiem. Therefore. in each terminal node.

we assign a class to everv observation such as:

0 if(i)<Z.
I(z) =

1 otherwise.

For ï 1, ...b. we determine if the observations in noUe are considered as buvers

with the function H(zi) as follow:

0 if P(J(zli) = 0) > P(I(zli) = 1),
H(zlz)

1 otherwise.

where P(I(zi) 1) Z I(z1 1i) and P(I(zli) = 0) = 1 — (I(zi) 1).

For example. in Figure 3.1 of Example 2.1.1, each node average closing ratio

(j) is written within the noUes. Therefore. hecause the population average closing

ratio is Z\7 0.38. it means that a terminal node will be considered as a buyer

node if its average is greater than this value. Therefore. the only node with this

characteristic is the node laheled 4 ( = 0.88). The observations in the other

terminal nodes are thus considered as observations with a closing ratio of 0.

3.9. CRITERiA FOR TREE SELECTION

Many trees are constructed and then compared to identify trees of most in

terest. A “good tree is a tree with the following characteristics:

(1) does lot have too many terminal nodes,

(2) is formed with interesting variables in the business context,

(3) has terminal nodes with eiiough observations in it.

(1) bas a large posterior probahilitv.

(5) has a low misclassification rate.

Chiprnan auJ McCullogh (1998) presented many criteria to identify good trees.

3.9.1. Posterior prohability of the tree

We define i as the set of the trees constructed. If we form B different trees.

this set is such as T = {T1 TB}. For each tree T1. we evaluate its posterior
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probahibty defined as

(Thy) = P(iT,,)(Th) h = 1 B.

The tree with the largest posterior probahilitv is chosen. However. Chipman aiid

McCullogh (1998) discussed on a problem linked to the prior choice. Indeed. it is

not the better approach when the prior on spiit value ii too diffuse. like discussed

in section 3.5.2. This problem is called the dilution effect. A criterion for tree

selection that avoids this difficultv is to use the likelihood P(. as descrihed

below.

3.9.2. Likelihood P(. , T)

The likelihood
. ) is independent of the dilution effect. Thus we can

choose the tree ‘h such as

T,, = argrnaxP(i. . f).
T,, r

An int.eresting criterion is also to plot the largest observed values of
. )

against the number of terminal nodes of T. It allows us to quantify the value of

adding terminal nodes while removing the influence of the tree prior (Chipman

and McCullogh. 1998).

3.9.3. Misclassification rates

Another good criterion is the misclassification rate. denoted ]1”ST. This

refers to the total number of observations different from the majority at each

terminal node. Therefore. we compare the two indicator functions presented in

the previous section for ail trees T T as fobow:

MIST =1 I(zi)
- H(z)I. (3.9.1)

i=1 j=1

where n
=

n. Vith this criterion. we choose the t.ree such that:

T,, = argmin IiiISP,.
Th T
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10

0.38

s the number of auto daims
Iess han or equal to 2?

Yesoauto policy

Is the age eus than or
equal to 40?

Yes No

2

lu the age Issu than or equal
to 30?

Yeu No

lu the numbe of auto daims lu the numt!er of auto daims
eus than o

y/\

102? leus,j,qual to 1?

No Yes No Not applicable

(b)ta)

10

0.38

lu the number of auto daims
Issu than or equal to 2?

Yes No No auto policy

10

038

lu the number of auto dlams
Issu than or equal to 2?

(d)(c)

FIG. 3.8. Representation of four trees using Example 2.1.1: (a)

Tree T1. (b) Tree T2, (c) Tree T3. (d) Tree T4. The three criteria

for the tree selection are calculated in order to find t.he best tree.

The tree assessment methods presented ahove are appÏiecl to four trees formed

using data from Example 2.1.1. They are illustrated in figure 3.8. 113e Table

3.1 shows that tree T2 lias the greater posterior probability and so the greater



78

TAB. 3.1. Tree assessments for Example 2.1.1 using a weight of

0.61 for the variable ‘age’ and 0.36 for the variable “number of

daims”. The expected number of terminal node is 5. The best tree

is indicated by the red color.

T,, Posteriori Likelihood Misclassification rate

T1 6.59 x 10_25 2.31 z 10’° 0.1

12 1.85 x iO’ 2.53 z i0° t).1

13 5.60 z 10_22 7.60 z 10’° 0.3

T4 7.60 z 10_29 4.26 z iO 0.1

likelihood. Furthermore, its misclassification rate is also very low with a rate of

0.1. Although T bas also a misclassification rate of 0.1, its likelihood is smaller

than T2. T3 has the worst misclassification rate among the four trees. The tree T4

has the lowest likelihood even if its misclassification rate is low. Among the four

trees. the tree 17 is therefore chosen hecause it is the hest for the three assessment

methods.

In tins chapter. we have presented a Baesian method called BART to con

struct trees and calculate their posterior probability. The objective was to model

the closing ratio as the target variable y. First. Section 3.1 presented the BART

general model and some terminology on the tree. In order to calculate the tree

posterior prohahility. two distributions were essential: the distribution of y and

the tree prior. The distribution of y was seen as a binomial distribution depend

ing on the purchases. the quotes and the predictor variables. Indeed. we wanted

to calculate the closing ratio as the number of purchases among the quotes. To

calculate the tree prior. three intermediate priors were used to obtain a tree with

interesting business variables with not too many terminal nodes. Therefore. the

variable prior was defined as a weight function of the variable importance. The

prior for the splits given the chosen variable depended on the variable range.

Finally, the prior for the number of terminal nodes was given as a truncated Pois

5011. Once these elements were known, the tree posterior probahility wras found.



79

This chapter explained also the three steps of the tree construction. On a certain

noUe. the algorithm could spiit it. it or finally. decide to stop there. When

the tree was constructed. we wanted to use it to predict the target variable. here

the closing ratio. Therefore. we had to determine which terminal nodes were seen

as huers. Finally. the last step of the BAR:T approach was to evaluate the trees

and to find the most interesting one.

In the next chapter. the classical approach to construct the tree. called CART

will he compared to the BART method hy using the data described in Chapter

1.



Chapter 4

RESULT$

In the previous chapters, we present some techniques to better understaHd the

Direct Market clients and prospects. Indeed the main objective of this pro ject

is to develop a model to predict the potential buyers of insurance products in

the population under consideration. Therefore, the descriptive analysis and some

insurance notions are exposed in Chapter 1. Chapter 2 includes two classical

rnethods in statistic and it is divided in two distinct parts: one to hetter describe

the population and the other to develop a predictive model of the closing ratio.

Hence. the first section of Chapter 2 presents cluster analysis which allows to

divide the population in homogeneous groups. The second section explains the

Classification And Regression Tree’ (CART) method that forms decision trees

used to predict if an individual will buy or not an insurance product. In Chapter

3. decision trees are also discussed but the approach used for the construction is

very different from the CART method since it is a Bavesian approach (BART).

Therefore. this chapter presents the different results of these analyses. Even

though the project is donc for four regions in Canada. this chapter shows only

the detailed resuits for the province of Ontario. Therefore. Section 4.1 covers the

resuits for the classical methods which are the cluster analvsis and the CARI

models. Section 4.2 descrihes the results under the Bayesia.n approach and the

comparison between the CART and BART models is presented in Section 4.3.
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1.1. CLAssIcAL RE5ULT5

4.1.1. Clustering

To divide the population into homogeneous groups. cluster analysis is applied

to the data set. Because K-means clustering is an efficient method for large data

base. this method is chosen instead of hierarchical clustering. Furthermore. the

statistical software SAS Enterprise Miner 5.2 allows to compute this clustering

tecimique. It calculates the optimal number of clusters using the CCC criterion

explained in Section 2.1.6. As the descriptive anahrsis. the resuits presented here

are for the province of Ontario.

In Ontario. among the 105,028 individuals. 7 clusters are found using the

centroid distance. The distribution of these clusters is represented in Figure 4.1.

FIG. 4.1. Ontario cluster distribution in 2005 using the K-means

algorithm with the centroid distance.
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4.1.1.1. Description

The clusters are described in Tables 4.1 and 4.2 using many characteristics.

Each column refers to one of the 7 clusters. They are presented in order of

percentage of the popillation they contained. for the automobile variables, the

percentages are not for the entire population but for the individuals who have or

asked for an auto policy. For example, in cluster 2, among the 86% of persons

who have or asked for au auto policy, 67% have their license since more than 10

years. The sarne principle is applied to the residential variables. Thus, in cluster

2, among the 45% of the persons who have or asked for a residential policy. 71%

have or asked for a horneowner package. Furthermore, we note that in clusters

1,4 and 5. the percentages of individilals who have or asked for residential policy

is almost nuil.

4.1.2. Decision tree

An important consideration in the closing ratio model is the impact of the

clusters formed previously. Indeed, at the beginning of the project. the purpose

was to use the cluster variable in the tree to sec which clusters are considered

as buyers alld which are not. However, it was decided not to use it hecause

the clusters do not include the same proportion of clients and prospects. Conse

quently, the clusters with a large proportion of clients will bave a good closing

ratio and those with a large percentage of prospects will have a very low clos

ing. Illdeed the prospects are individuals that did not huy the insurance products.

To obtain the hest closing ratio model as possible. many trees are developed

using SAS Enterprise Miner 5.2. This software allows to enter the following

parameters:

(1) the impurity function,

(2) the minimum number of observations included in a node.

(3) the maximum number of tree level.
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TAB. 4.1. Percentage of observations with each characteristic in

the Ontario main three clusters. Onlv significant variables are pre

sentcd

Variables Cluster 2 Cluster 1 Cluster 5

Percentage of the population 27 25 18

Account since more than 10 years 96 27 53

Age less than 30 9 27 26

Age hetween 1.5 and 65 36 26 23

Have or a.sked for an Auto policy 86 99 99

Have or asked for collision protection 85 98 2

Have or asked for condo package 14 <1 <1

Have or asked for homeowner package 71 <1 <1

Have or asked for a residential policy 45 2 0

Have or asked for tenant package 14 <1 <1

License since more than 10 years 67 44 21

Male 66 68 83

Private passenger vehicle 100 94 91

Prospects 16 88 13

Vehicle age less than 4 years 32 51 1

[ Closing ratio in percentage per cluster 10 1 34

4.1.2.1. Irnpurity

Man trees are constructed using the different impurity functions exposed in

Section 2.2.5. ihen, the tree witb the smaller misclassification rate is chosen. In

practice. the hest resuits were found with the entropy function.

4.1.2.2. Stopping rule

To determine the splitting rule. both methods of Section 2.2.7 are used. First,

when a split stops producing child nodes. it is because the closing ratio is not

different enough. This method corresponds to the minimal change in irnpurity.

Furthermore, t.he minimal number of observations is included in the pararneters.
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TAn. 4.2. Percentage of observations with each characteristic in

the remaining Ontario clust.ers. Only significant variables are pre

sent ed.

Variables Cluster 6 Cluster 4 Cluster 7 Cluster 3

Percentage of the population 13 8 6 3

Account since more than 10 years 46 62 29 33

Age less than 30 21 10 19 24

Age hetween 15 and 65 2.5 40 29 31

Have or asked for an Auto policv 91 98 12 91

Have or asked for collision protection 67 33 58 89

Have or asked for condo package 15 <1 8 1

Have or asked for homeowner package 43 <1 33 97

Have or asked for a residential policy 45 3 87 43

Have or asked for tenant package 28 <1 25 3

License siilce more than 10 years 32 80 70 43

Male 67 87 64 76

Private passenger vehicle 91 11 0 100

Prospects 15 17 86 92

Vehicle age less than 4 years 27 12 41 41

Closing ratio in percentage per cluster 80 60 1 ] 3

Consequently. when a node is too small, it is not divided and is therefore a

terminal node. The threshold for the minimum number of individuals in a node

is usuallv fixed at 10 % of the total number of clients and prospects in the data

set.

4.1.2.3. Spiitting raie

Under the classical approach, two techniques are used in the choice of the

splitting rule. In the first method, a tree is constructed using an automatic way.

Indeed. the starting parameters presented above are first determined and each

node is splitted using the splitting mie that minimize the irnpurity function.
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This algorithm continues until u stopping fuie 15 reached. Under this technique.

each variable and spht is chosen without regards of its interpretabihtv. However.

choosing aiways the sphtting mie that minimizes the impurity does not mean

that the fluai tree is optimal. Indeed the optimal tree is the tree with the overaH

iowest impuritv and it eau he ohtained in man wavs.

An alternative technique consists to add sorne a priori information to the

classical method. It is thus a combination between a classical and a Bayesian

method. It will be referred to as the combination method. When the node is

splitted under this approach, it is not aiways the optimal spiitting ruie that is

chosen. Indeed. the change in impurity is caicuiated for each possible splitthig

rule and the statistician chooses the most interesting one for the business.

For each technique. manv trees are constructed using different parameters.

The next subsections present the chosen tree for each inethod.

4.1.2.4. Tree from th.e pure ctassicai approack

The flna.i tree using the i’ ciassical approach for the sphtting rule is pre

sented in Figures 4.2 to 4.4. The root node is divided into three child nodes using

the variable ‘collision coverage. The left and middle child nodes are subtrees

while the right child is not splitted. From this tree, it eau he seen that the in

dividuals without the collision coverage are those with the iargest closing ratio.

Figure 1.2 also shows that the persons that do not have automohiie information

do not have a good ciosing ratio. Indeed the closing ratio in the node is heiow

the population average (0.28).

Figure 4.3 shows that among the individuals who have the collision covera.ge.

those with a closing ratio of 0.60 (see the number 1 in tins figure) have the

foliowing characteristics:

• no residential information and,

• at ieast one snowmobiie vehicie aud,



86

0.28
74,022

Collision coverage

‘des No No auto information

0.21 0A 0.16
42,870 22,972 8,180

FIG. 4.2. Root node and first level of the CART model for Ont ario

using the pure classical approach and the entropy impurity func

t ion.

• an account since more than 8.5 years.

We also see that the persons without an homeowner package have a closing

ratio of 0.56 (sec the number 2 in this figure). Furthermore, the subtree with the

individuals that have a collision coverage has 6 levels and 8 terminal nodes.

Figure 4.4 presents the middle subtree of Figure 4.2. It therefore includes

individuals without the collision coverage and among them, two groups have a

closing ratio that is more than 0.50 (sec the two numhered nodes in this figure).

Their characteristics are the following:

• a license since more than 3 years, an account since more than 8.5 years

and at least one snowmobile vehicle (sec the number 1 in this figure).

• a license since less than 3 years and no motorc de vehicle (sec the number

2 in this figure).

In conclusion. the whole tree under the classical approach is presented in

Figure 4.5. This t.ree lias therefore a total of 14 terminal nodes and Z levels.
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Collision coverage

0.21 j
42.870

I1omeoinr package

No — Yes No residenia1 infomation

0.56 0.37 0.17

[ 1,677 4,682 36.511

Snot mobile
vehicle

Yes

ois 0.56
34.423 2,028

Time since
Vehicle age creation account

Lesshan 9.5 yeaL and over Less 8 8.5 yers and
years over

0.13 0.29 0.41 0.60
31,602 L_2’82’ 379 1,709

License since

Less than 3 vents 3 yeurs and over

0.21 0.11
6.006 I L 25.596

Number of responsible
caims

None At Ieast one
0.10 0.23

23,497
[__2.099

Fic. 4.3. $ubtree of the Ontario CART model with individuals

that have a collision coverage. The pure classical approach is used

with an the entropy irnpurity function. The two numbers identify

the nodes with the higgest closing ratios. This subtree has 6 levels

and 8 terminal nodes.
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No collision coverage

0.46
22,972

License since
Less than 3 years I 3 years and over

0.54 0.41
7,580 15,392

oto Time since creafion account
vehicle I

______________

es Less thait 8.5 years 8.5 years and over

0.56 0.16 0.34 0.47
7,186 394 6,732 8,660

Snowmoble vehicle

Ys
0.65 0.39

2,766 5,894

o
FIG. 4.4. Subtree of the Ontario CART model with individuals

that do not have a collision coverage. The pure classical approach

is used with an the entropy impurity function. The two numhered

nodes are those with the biggest closing ratios. This subtree has 4

levels and 5 terminal nodes.
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1.1.2.5. Tree from ihe colnbinalion approach

In the method that combines the classical and Bavesian approaches. the first

spiit variable is chosen for business consideration. Indeecl. for the clients (the

“Business strategies” departrnent). the first variable in the model is verv impor

tant and it is better if it is a demographic variable. Therefore, the first spiit

variable is the “age” for ail regions. These separation allows to focus 011 distinct

group ages.

Figure 4.6 shows the global tree for Ontario that is produced with this ap

proach using the entropy as the impurity function. In this model. the first spiit

divides the root node in three subtrees: one for the individuals younger than 30

vears (sec Figure 4.7). one for those between 30 and 55 years old (sec Figure 4.9)

and the last one with the persons older than 55 vears olci (sec Figure 4.8). The

whole tree is presented in Figure 4.10. In the entire population. the closing ratio

is 0.28 and the tree aÏlows to find groups with an average closing twice this value.

0.28
74,022

Age

Less than 30 years Between 30 and 55 years 55 years and over

f 0.24 0.30 0.22 1
17,356

F
47,896 8,770

FIG. 4.6. Root noUe and first level of the CART moUd for Ontario

using the combination between the classical approach and some a

priori information. The impuritv function is the entropv function.

Figure 4.7 presents that arnong the persons younger than 30 years old. the

individuals with the biggest closing ratio (sec number 1 in the figure) have the

collision coverage, a vehicle age less than 8 years and a snowmohile vehicle.
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Less than 30 years

0.24
17,356

Coffision coverage

No Y1es No auto information

0.40 0.17 Œ19
5,673 10,105

Vehicle age

8 years and over 1..ess than $ years

0.24 0 15
8,373

Snowmobile vehicle

Yes No

0.57 0.14
311 8,062

Fic. 1.7. CART model for the individuals younger than 30 years

old in Ontario using the combination between the classical approach

and the addition of u priori information. The impurity function is

the entropy function and the subtree has 4 levels and 5 terminal

nodes.

Figure 4.8 presents the clients and prospects older than 55 years old. Among

them, two groups have a closing ratio of 0.55:

(1) the persons without a collision coverage and without a private passenger

vehicle (see number 1 in this figure),

(2) the persons with a collision coverage, a license since more than 20 years

and a snowrnohile vehicle (sec number 2 in this figure).



FIc. 1.8. CART model for the individuals older than 55 vears old

in Ontario using the combination hetween the classical approach

and sorne o priori information. The impurity function is the en

tropv function. The two numbered nodes are those with the biggest

closing ratios (0.55). Furthermore. this subtree has 6 terminal

noUes and 4 levels.

o 55 years and over

0.22
8,770

Collision coverage

SJo

0.43
Z060

PPA vehicle
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No auto information

I INo Yes

0.55 0.36
“4 1,286

o

Yes

0.16
5,304

License since

Less thon 2oyears 20 years and over

0.23 I 0.13
1,869

Snowmobile vehicle

Yes No

0.55 0.10
199 3,236
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figure 4.9 illustrates tue subtree of the persons between 30 and 55 years

old. Among them, we sec that the individuals with a closing ratio of 0.65 (sec

the number 1 in the figure) do not have the collision coverage. a license since

more than 3 years, no private passenger vehicle and at least one snowmobile

vehicle. Furthermore. the individuals that have a collision coverage. no residen

tial information. a vehicle age less than 10 vears. no I)riVate passenger vehicle and

a snowmohile velucle have a closing ratio of 0.60 (see the number 2 in figure 1.9).

The whole tree under the combination approach is illustrated in figure 4.10

and it allows to see that the whole tree has a total of 25 terminal nodes and 7

levels.
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4.1.2.6. Comparison between the two ctassicat techniques

Now that the two constructed trees are presented. we want to know what

approach is the best hetween them. The two techniques show similar trees in

term of closing ratio. Indeed, both methods allow to find groups with a closing

ratio that is twice as the population average. Although the significative variables

are very similar, the tree shapes are different. Indeed, Table 4.3 shows the number

of terminal nodes and the total number of levels for the two approaches. It is

possible to see that the combination method produces more terminal nodes with

one less level.

TAB. 4.3. Description of the tree shapes using the two different

classical approach for the construction of CART models.

Shape Pure Combination

classical method

Number of terminal nodes 13 25

Number of levels 7 6

To determine the method that gives the best result. the misclassification rates

are calculated and presented in Section 4.3.

4.2. BAYESIAN RE5ULTs

Decision trees are also constructed using the Bayesian approach (BART) that

is. the theory that is covered in Chapter 3 is applied and the results are presented

in this section. Because the first step is the choice of the splitting rule. the

following items must 5e determined for each variable before the beginning of the

algorithm:

(1) the score which also determines each variable weight calculated with equa

tion (3.5.2) of Section 3.5.1,

(2) the variable distribution (see Section 3.3),

(3) the set of possible splits (sec Subsection 3.5.2).
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Q Table 4.4 presents each scores and weights for the predictor variables. The

variable with the highest importance is “collision protection”. Table 1.5 shows

the predictor variables distributions (see Section 3.3).

TAB. 4.4. Predictor variable scores and weights.

Predictor variables Score Weight

Age 7 0,0522

Collision deductihie 10 0.0746

Gender 4 0.0299

High performance vehicle 1 0.0075

Household average income 3 0.0224

Indicator of automobile information 8 0,0597

Indicator of residential information 9 0,0672

Licence since 8 0,0597

Newest vehicle age $ 0.0597

Number of AIl-Terrain-Vehicles 6 0.0448

Nurnher of comprehensive daims 1 0.0075

Number of condo packages 5 0.0373

Number of horneowner packages 9 0.0672

Number of moto vehicles 3 0,0224

Numher of non responsible collision daims 4 0.0299

Number of other vehicles 2 0.0149

Number of private passenger vehicles 7 0,0522

Number of responsible collision daims 4 0.0299

Number of snowmobiles 7 0.0522

Number of tenant packages 5 0.0373

Number of years since t.he last accident 7 0,0522

Oldest vehicle age $ 0,0597

Renting vehicle 1 0.0075

Time since creation account 6 0.0448

Vehicle credit 1 0.0075
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Q TAn. 4.5. Predictor variable distributions.

Predictor variables Distribution

Age gamma

Collision deductible binomial

Gender binomial

High performance vehicle binomial

Household average income normal

Indicator of automobile information binomial

Indicator of residential information binomial

Licence since gamma

Newest vehicle age gamma

Number of Ali-Terrain-Vehicles vehicle Poisson

Number of coniprehensive daims Poisson

Number of condo packages Poisson

Number of homeowner packages Poisson

Number of moto vehicles Poisson

Number of non responsible collision daims Poisson

Number of other vehicles Poisson

Number of private passenger vehicles Poisson

Number of responsible collision daims Poisson

Number of snowmobiles Poisson

Number of tenant packages Poisson

Number of years since the last accident Poisson

Oldest vehicle age gamma

Renting vehicle binomial

Time since creation account mixture of gamma

Vehicle credit binomial

Before the beginning of the BART construction algorithm. some pararneters

must be determined.
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• Average number of terminal nodes: this is the desired number of

terminal nodes in the tree and it is given by b = E(rj). Therefore. it

will deternune the parameter that is used for the birth and pruning

probahilities. The average number of terminal nodes wanted depends on

the number of observations in the total population. Because the termi

nal nodes must include enough observations. a region that contains a hig

number of individuals will have more terminal nodes.

• Minimum number of observations: this parameter is the minimum

number of individuals that a node eau have in order to be splitted. When

a node contains a small number of observations. the algorithin forces it

to stay as terminal node. We fixe the threshold around 10% of the total

number of observations.

• Parameter r: this parameter is used in the birth and pruning proba

bilities. In une with the constraint b + c4 < 0.75 (see Section 3.7). many

possible values are tested hetween 0.15 and 0.2.

These parameters are different depending on the region model. Hence. for

each region. many different values were tried for each parameter and the hest

combination was kept. Consequently, many trees are formed for each region to

obtain the hest possible model. Then, the two following criteria (see Chapter 3)

are calculated:

• the log-likelihood
. r)),

• the misclassification rate.

To obtain the likelihood, all the observation densities are multiplied together.

However, when we multiply n small numbers, the result is near 0. This is why

the logarithm of this function is used. Furthermore. even with this transforma

tion, the constant e = log(10300) is added to the log-likelihood hecause of the
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large number of observations in the data sets (74.022 in Ontario).

These two criteria are thus computed for many models. For each region. the

resuits of two combinations of parameters are presented. Hence. Table 4.6 shows

the parameters that produce the hest models for each region. On the other hand,

Table 4.7 shows the parameters that are used for the 3ART models not chosen.

TAB. 1.6. Chosen parameters for the BART algorithm 1.

Region Average number I’viinimum number r

of terminal nodes of observations

Ontario 20 6,000 0.15

Quebec 20 3.000 0.15

Western 15 3.000 0.20

Atiantic 10 200 0.20

TAB. 4.7. Chosen parameters for the BART algorithm 2.

Region Avera.ge number Minimum number r

of terminal nodes of observations

Ontario 31 1.000 0.20

Quebec 24 4.000 0.20

Western 16 800 0.20

Atiantic 12 300 0.15

Furthermore. Table 4.8 presents the calculated criteria for each model. It is

then possible to see that the flrst model has the smallest misclassification rate

and the largest likelihood for ail regions. Hence. the chosen models are those with

the characteristics presented in Table 4.6.

For the province of Ontario, the final tree is presented with the Figures 4.11,

4.12 and 4.13. The complete tree is in Figure 4.14. Therefore. the first chosen

variable is “snowmoblle vehicle. It aliows to find at the first level a group with

an average closing ratio of 0.61 (see Figure 4.11). Indeed the individuals with a
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TAB. 4.8. Assessment of the two Bart models foi’ the four regions.

Region Model 1 Model 2

log-likelihood Misclassification rate log-likelihood Misclassification rate

Ontario 32,968 0.2653 2,125 0.2741

Quehec 11,37$ 0.1601 523 0.1614

Western 16.125 0.2655 14.511 0.2684

Atiaritic 9,54$ 0.2672 6,239 0.2946

snowmohile vehicle have a large closing ratio. The three child nodes produced by

this first split are defined as:

Ontario

0.28
74,022

Snowmobile

None Yes No auto information

0.26 0.61 0.16
59,976 6,180

FIG. 4.11. Root node and first level of the BART model for the

individuals in Ontario with r0. 15 and an average number of ter

minal node of 20. The first variable that divides the total data set

is the variable ‘snowmohile vehicle5 which produces threes sub

trees.

• The left subtree includes individuals without a snowrnobile vehicle (see

Figure 4.13). Among these persons, the number of private passenger ve

hicles, the licence since and the presence of residential information are

important factors in the prediction of the closing ratio. This suhtree lias

12 terminal nodes on 6 levels.

• The middle node includes individuals with a siowmobile vehicle and

is not splitted (sec Figure 4.11). Indeed this node has a strong average
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O closing ratio and do not have enough observations to be divided. It ïs thus

a terminal node.

• The riglit subtree contains persons without auto information and is only

splitted one time. Consequently, there is two terminal nodes that have

small closing ratios. (see Figure 4.12).

No automobile information

0.16
8,180

Time since creafion
account

Less than one year At least one year

0.15 0.19
6,336 1,844

Fic. 1.12. BART model for the individuals of Ontario without

automobile information available (right subtree). The model uses

r- 0.15 and an average number of terminal node of 20. ibis suhtree

shows 2 terminal nodes and 6 levels.

The whole BART model is presented in Figure 4.11 auJ it includes 15 terminal

nodes with a total of 7 levels. furthermore, the most significant variables under

this model were the number of “Private Passenger vehicles”. the licence since and

the presence of residential information.
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4.3. C0MPARIs0N BETWEEN CLASSICAL AND BAYESIAN APPROACHES

Now that CART and BART models have heen developed. it is possible to

compare these approaches. In term of average closing ratio. the classical, the

Bayesian and the combination of both approaches find nodes with average closing

ratio that are as twice as the population average. Furthermore. the three trees

have a total of seven levels.

The most significant variables in the three models are:

• the presence of snowmobile vehicle.

• the presence of residential information.

• the licence since.

• the time since the creation account.

However. the I? collision coverage” variable is very important in the classical model

but is not significant in the Bayesian model.

4.3.1. Interpretability

To evaluate each tree interpretabilitv. the significant variables the contains

are examined. Indeed. an interpretahie tree includes important variables in a

business matter. The score variables exposed in Table 4.4 are therefore used to

calculate each tree average score. The nearest to 10 is the average score. the

more interpretable the tree is. To calculate this measure. ail variable splits are

considered with their corresponding scores. For example. if the variable split

is “number of snowmohiies, the corresponding score is Z. In a given tree, the

average score is:

à = e8.

where e5 is the score of the variable r5 used to spht and N8 is the total number

of spiits in the tree. for instance. there is thirteen splits in the BART model.

Table 4.9 presents the average scores for the three models. It is possible to see

that the CART combination includes more important variables hecause it bas the

hest average score. furthermore. the BART model bas a similar average score

while the pure CART model bas the lowest score. However the BART model
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C is much less complex than the combination model with a total of thirteen spiits

insteaci of nineteen. Table 1.9 also indicates that the pure CART model gives a

tree with oulv eleven spiits. Therefore. this method shows interesting resuits in

term of interpretahility because it gives a simple tree. Thus, depending of the

tradeoif (score or number of spiits), any of the three candidates could be chosen.

However. because of bis simplicitv and bis good average score. the BART model

is seen as a good compromise hetween the t.wo other approaches.

TAB. 4.9. Average score and number of spiits for the three rnethods

for the Ontario models.

Method Avera.ge score Number of split.s

CART pure 6.9 11

CART combination 7.9 19

BART combination 7.6 13

4.3.2. Misclassification rates

To evaluate the tree performances, an other method is to calculate the misclas

sification rates for each model. Table 4.10 presents the results for the three dif

ferent approaches. Therefore, in term of misclassification rate. the BART model

TAB. 4.10. Misclassification rates for decision trees. The red color

indicates the best model.

Region CART CART BART

pure combination

Ontario 0.2674 t).2653 0.2653

is equivalent to the combination method. However. the result for the CART pure

approach is riot very different.

In conclusion, for the province of Ontario. the Bayesian approach can be seen

as a good compromise hetween the three approaches. Indeed. interesting results

are found in teum of interpretahility. For the misclassification rate criterion. it
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shows the same resuit as the combination method. However. in opposition to the

combination approach, the Bayesian approach allows to automatically construct

the trees.

In this chapter, the detailed resuits were presented for the region of Ontario.

In the cluster analysis. seven clusters were found by using the K-means algorithm

with the centroid distance. for the closing ratio models. two classical approaches

were presented: one that is a pure classical rnethod and another that is a com

hination between the classical and the Bayesian approach. The predictive model

was also developed under the Bayesian approach and we saw that the comhination

method and the Bayesian approach gave better resuits in term of misclassification

rate. However. hecause the Bayesian model gave a tree simple and interpretahle,

it was considered as the method with the hest overall performance.
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CONCLUSION

In the context of insurance, this Masters thesis explores classical and Bayesian

approaches t.o model nonlinear data. The project provides answers to two specific

questions asked hy TD Meloche Monnex.

(1) What kind of individuals are in the Direct Market population?

(2) In this population. w-ho are the buyers and how we can predict them?

To answer the first question. the project starts with a descriptive ariah-sis.

This allows to see that the majority of the population under consideration is in

the province of Ontario. Therefore. ail detailed results are shown for this province.

After the general data exploration. the cluster analvsis is clone to form different

groups that are more homogeneous than the total population. Many clustering

algorithms are presented but the hest method in our context is the partitional

clustering using the K-means algorithm. This is therefore compnted using the

statistical software SAS Enterprise Miner. In Ontario, seven clusters are thus

formed. each with specific characteristics. This allows to identify which groups

could be targeted in term of marketing.

b find the huver characteristics. a statistic.al model that uses the closing ratio

as the target variable is created. To construct this model. many different methods

could have been used. Indeed, the target variable is binary and consists of dater

mining if an individual is a buver or not. Consequentlv. a logistic regression couÏd

he an interesting approach. However, the clients who asked for this project are

not statisticians. Furthermore. the model interpretahility is almost as important

Q as its performance. In this context, the statistical technique that is chosen is the
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decision tree models.

To construct the decision trees, the classical and the Bayesian approaches are

used. The classical approach. that is most ofren used in industry, is computed

using the software SAS Enterprise Miller. Furthermore, two different methods

are compared under this approach. The first method that is purely classical con

sists of aiways choosing the best spiitting rule without regard to the a priori

information. The formed trees are showing good performance in term 0f closing

ratio because it allows to find groups with a closing as twice as the closing in the

Direct Market population. However, this approach can be improved by adding

a priori information. Indeed, a second method consists of using the same con

struction algorithm but with the choice of a spiitting mie that takes into account

the a priori information on variables. This approach shows models with smaller

misclassification rates and also a good performance in term of closing ratio.

The other rnethod to create the trees is the Bayesian approach. In this case,

the models are called BART models. This technique allows to put more weight

on variables that are important for business. Therefore. an algorithm exposed by

Chipman and McCullogh (1998) is applied. With the objective of finding a tree

with the maximum a posteriori probahility, many trees are formed with different

parameters. To compete many models, the likelihood and the misclassification

rate are calculated on cadi possible tree. Indeed the best tree must have the

smallest misclassification rate and the largest likelihood. Therefore tic resuits

show that tic Bayesian approaci give interesting models in terms of variables,

misclassification rate and closing ratio.

In tie Bayesian approaci, tie tree forest could have been used to construct

a large number of trees. Indeed the tree forest is a sequence of trees that allows

to combine many trees in tic same model. Altiough this metiod could be more

difficult to explain, it could help to reduce tie misclassification rate.
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In conclusion. the three methods used to construct. the CART and BART

models show interesting trees in term of closing ratio and tree shapes. Further

more, the rnost significant variables are similar in the three models. Indeed, the

most potential buyers have one or both of the following characteristics: snow

mobile vehicle and residential quote or policy. Under the classical approach. the

presence of collision coverage is an indicator of a smaller closing ratio.

To determine which approach is best, the tree interpretahility and misclassi

fication rate are examined for each model. Therefore, the BART model is more

interpretable and is either better or equivalent to the combination approach in

term of misclassification rate. The Bayesian approach is thus the method that

gives the hest resuits in this project.
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