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SUMMARY

In this thesis, we analyze the method of parameter estimation of the discrete
two-parameter stable distribution. We present an estimation method based on
minimizing the quadratic distance between the empirical and theoretical prob-
ability generating functions. This method makes it possible to use the discrete
stable distribution model in a variety of practical problems.

Firstly, we introduce some of the properties of the discrete stable distribution
and review some theorems. Secondly, we develop an expression for the variance-
covariance matrix for the terms of errors between the empirical and theoretical
probability generating functions, and we give the formulas of the estimators.
Thirdly, numerical examples are provided and the asymptotic properties of the
estimators are studied.

We simulate several samples of discrete stable distributed datasets with dif-
ferent parameters. The estimators obtained were quite good.

We also conduct inference about the parameters such as confidence intervals

of the parameters and tests concerning the parameters.
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SOMMAIRE

Dans cette thése, nous analysons une méthode d’estimation des paramétres de
la distribution discréte stable avec deux paramétres. Nous présentons la mé-
thode d’estimation basée sur la minimisation de la distance quadratique entre
les fonctions génératrices des probabilités empiriques et théoriques. La méthode
permet d’utiliser le modéle de la distribution discréte stable pour une diversité
de problémes pratiques.

Premiérement, nous introduisons quelques propriétés de la distribution dis-
créte stable et revisons certains théorémes. Deuxiémement, nous développons
une expression pour la matrice de variance-covariance des erreurs entre les fonc-
tions génératrices des probabilités empiriques et théoriques et nous donnons les
formules des estimateurs. Troisiémement, des exemples numériques sont fournis
et les comportements asymptotiques des estimateurs sont étudiés.

Nous simulons plusieurs échantillons de jeux de données suivant une loi dis-
créte stable avec des paramétres différents. Les estimateurs obtenus sont bons.

Nous faisons aussi l'inférence sur les paramétres, construisons les intervalles

de confiance et nous faisons des tests d’typothése sur les paramétres.
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Chapter 1

INTRODUCTION

The discrete two-parameter stable distribution is a special case of certain mixtures
of Poisson distributions. It was first introduced by Steutel and van Harn in 1979.
It is a distribution that allows skewness and heavy tails and has many intriguing
mathematical properties. The lack of closed formulas for the probability and
distribution functions has been a major drawback to the use of discrete stable
distribution by practitioners. For example, it is difficult to estimate the two
parameters, to compute probabilities or quantiles.

In this thesis, we will develop a method to estimate the parameters by min-
imizing the quadratic distance between the empirical and the theoretical prob-
ability generating functions. This method makes it possible to use the discrete

stable distribution model in a variety of practical problems.

1.1. STABILITY OF A RANDOM VARIABLE

Nolan (2004) defined a stable random variable as follows.
Definition 1.1.1. A random variable X is stable or stable in the broad sense if

for X1 and X, independent copies of X and any positive constants a and b,

aX; +bXo 2 cX +d (1.1.1)

b

holds for some positive ¢ and d € R, where the symbol = means equality in

distribution, i.e. both ezpressions have the same probability law.
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The random variable is strictly stable or stable in the narrow sense if the
equation (1.1.1) holds with d = 0 for all choices of a and b. A random variabls

is symmetric stable if it is stable and symmetrically distributed around 0, e.g.
XE2_Xx

The word "stable" is used because the shape is stable or unchanged under
sums of the type (1.1.1).
Examples of stable distribution include normal distribution, Cauchy distribu-

tion and Lévy distribution.

1.2. CONTRIBUTIONS OF THIS THESIS

When no explicit expression for the probability function exists, it will not
be possible to use a method like the maximum likelihood estimation method
to estimate the parameters. We will present an alternative estimation method
based on minimizing the quadratic distance between the empirical and theoretical
probability generating functions. The quadratic distance method is a useful tool
which uses theory developed for the classical linear regression model. In order
to obtain the estimators of the parameters, we need to minimize numerically the
quadratic distance between the empirical and theoretical probability generating
functions.

Secondly, the asymptotic properties of the estimators are studied. The consis-
tency, asymptotic normality and robustness of the estimators will be investigated.

Thirdly, numerical examples are provided. We will conduct numerous calcu-
lations using Kanter’s (1975) simulation method to generate groups of discrete
stable datasets, and will estimate the parameters based on these datasets. Luong
and Doray (2002) found that the quadratic estimators are robust and our results
showed the same thing for the stable distribution. So, we can use this method
to deal with truncated datasets. We will also give the effect of the percentage of

truncation on the bias of the estimators.



1.3. ORGANIZATION OF THE THESIS

The thesis is organized as follows. In chapter 2, we introduce some of the
properties of the discrete stable distribution. In chapter 3, we review some re-
sults that will be used later, such as the d-theorem, the moments of multinomial
random variables, the quadratic distance estimation method, the singular value
decompositon method for real matrix and the pseudo-inverse of a matrix. In
chapter 4, we develop an expression of the variance-covariance matrix for the er-
ror terms between the empirical and theoretical probability generating functions.
We also give the formulas of the estimators. In chapter 5, we use examples to
illustrate the estimation method we produced. In chapter 6, we will summarize

the main conclusions.



Chapter 2

DISCRETE STABLE DISTRIBUTION

Steutel and van Harn (1979) introduced the discrete stable distribution for inte-
ger valued random variables (the discrete stable family), and analyzed some of the
properties of this distribution, such as infinitely divisibility and self-decomposability.
"The discrete stable distribution was introduced via its probability generating
function. If X is a discrete random variable taking values on some subset of the
non-negative integers {0, 1, ...}, then the probability-generating function of X is

defined as
Px(2) =E(z%) =) f()7,
1=0

where f is the probability mass function of X.
For a € (0,1] and A > 0, let X(\, &) be a discrete stable random variable,

with probability generating function given by

Px(z) = exp[-A(1—2)%], |2|] <1 (2.0.1)

2.1. POISSON DISTRIBUTION AS A SPECIAL CASE

Obviously, with & = 1, we obtain

Px(2) = exp[=A(1 - 2)
=exp[A(z—1)], |2/ <1, A>0.

It is the probability generating function of Poisson distribution with parameter



2.2. AS A COMPOUND POISSON DISTRIBUTION
The discrete stable random variables can be obtained as
X2 M +My+-+ My (2.2.1)

where Y ~ Poisson(\), and Y is independent of M;, where My, M,, ..., are i.i.d.

random variables with probability generating function
Puy,(z2) =1—-(1-2)~ (2.2.2)

The discrete random variables M; follow the Sibuya distribution with param-

eter a (introduced by Sibuya (1979)). Note that

= BEy[B(M+Mat+My|y))
= Ey{E[(z")"|Y]}

= Ey[E(Pu,(2)¥[Y)]

= B[Py, (2)"]

= exp{\[Pu,(2) — 1]}

= exp{A[l - (1 —2)* - 1]}
= exp[-A(1 — 2)°]

This is the probability generating function of discrete stable distribution, hence

the discrete stable distribution is a compound Poisson distribution.

2.3. AS A POISSON RANDOM VARIABLE

Devroye (1993) proved that a discrete stable random variable with parameters
X and « is a conditional Poisson random variable with parameter \Y/ “Sa,1, Where
Sa,1 is a positive stable random variable with parameter o and Laplace transform

(a3

E(e™*%1) = e7%", Re(s) > 0.

See Devroye (1993).



Sa,1 can easily be generated by the method given by Kanter (1975)

l-a

ook () (o)t

where
Sa,1 is the positive stable random variable with parameter «.
U ~ Uniform(0,1)
E ~ Exponential(1)
U and E are independent.
Theorem 2.3.1. A discrete stable random variable X (\, a) is distributed as a
conditional Poisson random variable with parameter \/*S,,,, where S,,; is a

positive stable random variable with parameter a.
X\ o) Poisson(\*S,,;)

See Zolotarev (1986).

PROOF. The characteristic function of X is obtained as
E(eitX) _ E[e)\l/"Sa,l(e"“)] = exp[—\(1 — eit)a]‘

We recognize that this is the characteristic function of the discrete stable distri-

bution. O
Remark 2.3.1. For o = 1, S, becomes the degenerate distribution with atom
atx=1.

2.4. INFINITE DIVISIBILITY

Steutel and van Harn (1979) give the definition of infinite divisibility as fol-
lows.
Definition 2.4.1. A discrete random variable with probability generating function

P(z) is infinitely divisible if and only if P(z) has the following form

P(z) = exp[MG(2) — 1)], (2.4.1)
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where A > 0 and G(z) is a unique probability generating function with G(0) = 0.
Note that the probability generating function of a discrete stable distribution

is given by

Px(z) = exp[-A(1 — 2)%]

= exp[A(G(z) — 1)]

We already know that G(z) = 1 — (1 — 2)* is the probability generating
function of a Sibuya(a) random variable and G(0) = 0. This is in accordance

with definition 2.4.1. Therefore a discrete stable distribution is infinitely divisible.

2.5. DISCRETE SELF-DECOMPOSABILITY

Steutel and van Harn (1979) define discrete self-decomposability as follows.
Definition 2.5.1. A discrete distribution is called discrete self-decomposable if

its probability generating function satisfies
Px(z) = Px(1—a+aZ)P,(z), |z| <1, a€(0,1], (2.5.1)

with P,(z) a probability generating function.
Theorem 2.5.1. A probability generating function P(z) is discrete self-decomposable
if and only if it has the following form

P(z) = exp {—B / 1-Gl) du} (2.5.2)

1—u

where A > 0 and G is a unique probability generating function with G(0) = 0.
As a special case, consider the probability generating function of a Sibuya(a)

distribution

Gu) =1— (1 — )~



Since
1 _ 1 . a
/1 G(u)du:/ (1—u) Ju
;. l—u , l—u
1
=/ (1—u)*ldu
1 1
= —=(1-u)l}
1 (a4
- a(l - Z) )
hence

Px(z) = exp[-A(1 — 2)7].

It is the probability generating function of a discrete stable distribution. We

conclude that the Sibuya(a) distribution is self-decomposable.

2.6. SOME OTHER REPRESENTATIONS WITH DISCRETE STABLE DIS-

TRIBUTION

Pakes (1998) gave out some other properties of discrete stable distributions.
He found that some other discrete distributions such as the discrete Linnik dis-
tribution can be formed from discrete stable distribution.

Bouzar (2002) presented four other distributions derived from the discrete
stable distribution.

1. The following representation is the discrete analogue of a result obtained
in the continuous case. Let X (o, \) be a discrete stable random variable with
parameters a, A, and Y (6, A) be a stable continuous counterpart of X (a, A) with

Laplace transform:
¥5a(T) = exp(=A7°), T7>0 (2.6.1)
then
X(e, ) 2 X(B,Y(6,)) (2.6.2)

where 0 <a< f<1land A >0, and § = a/f.



We can prove it in the following way.
If Q(z) and F(z) denote the pgf of the right-hand side of (2.6.2) and the

distribution function of Y'(§, A) respectively, then, since 8§ = «,
Q=) = / 0 dF(z) = gsal(1 - 2)°] = e = Py(2),
0

2. Let Lo (v) denote the discrete Linnik distribution with probability generating

function
Pr(z) =[14+ X1 - 2)%7, 2| <1 (2.6.3)

where o € (0,1], A > O and v > 0, and let M, ,(v) denote the Gamma distribution
with density
1

Hp(z) = W(V):c”_le”“”/’\, >0 (2.6.4)
and Laplace transform
P (1) = (1 + A7) (2.6.5)
then, for « € (0,1] and A\, v > 0
Laa(v) 2 X(a, MyA(v)) (2.6.6)

where X (o, My 2(v)) is the discrete stable distribution with parameters o and
M 1, ,\(I/).
We can prove it in following way.

Let Q(z) be the pgf of the right-hand side of equation (2.6.5), we have:

Q) = [0 fyfa)de = 1al(1 = 7] = (1 A1 = 2T

3. Let Lo x(v) be a discrete Linnik distribution with parameters « and \ and
probability generating function (2.6.3) and let Mj;,(v) be the positive continuous
counterpart of the Linnik distribution with parameters 6 and A, and Laplace

transform

Gsa(r) =1+ M), 720 (2.6.7)
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then, we have
Laa(v) 2 X (8, Msa(v)) (2.6.8)

where 0 <a < B <1land A,v >0, and 6 = a/f, and X (5, Ms(v)) is a discrete
stable distribution with parameters 8 and M;,(v).

We can prove it in following way. Note that M ,(v) denotes the Gamma
distribution with density (2.6.4) and Laplace transform (2.6.5), and M ,(v) is the
positive continuous counterpart of the Linnik distribution with parameters é and
A, and Laplace transform (2.6.7). Let Y (4, M; A(v)) be the positive continuous
counterpart of the discrete stable random variable X. By (2.6.2) and (2.6.6) we

have
Lsa(v) £ X (o, Mia(v)) 2 X (8,Y (6, Mia(v))) (2:6.9)
If k(7) denotes the Laplace transform of Y (4, M; x(v)),then
k(r) = /0 " et Fro(@)dz = (1 + Arb)™
Hence,
Y (8, Mia(v)) 2 Mia(v)

which, combined with (2.6.9), implies (2.6.8).
4. Let M; (1) be an exponentially distributed random variable, and V, (1) be a
special case of the classical Linnik distribution with v = 1. It was first established

by Kotz and Ostrovskii (1996) that V, 1(1) has density function

1 :L.a—l
= (L 2.6.
9(z;a, 1) <7r sm(7ra)> T+ 2% + 22% cos(ra)’ x>0 (2.6.10)

and note that Pillai and Jayakumar (1995) give a mixture representation for the
discrete Mittag-Leffler distribution. The mixing random variable L, x(1) follows

the Mittag-LefHler distribution and density function given by

iz, @) = (/\””‘)‘lg(:c; a,1), z=>0. (2.6.11)
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Then
Laa(1) 2 X (1, Myx(1)Vaa(1)) (2.6.12)

where @ € (0,1] and A > 0, v = 1.
X (1, M15(1)Va,1(1)) is a discrete stable distribution with parameters 1 and
My A (1)Va1(1).

2.7. PROBABILITIES

Expanding the probability generating function Px(z) in a power series (first
the exponential function and then (1 — 2)®/, we obtain the expression of the

probability distribution of the discrete stable random variable.

PX =k =(-)rS [ Y Q (2.7.1)
=0 \ k J:
where £ =0,1,2, ..., and « € (0, 1].

Christoph and Schreiber (1998) represented these probabilities with finite

sums as follows.

k m :
m Q ™
P(X =k)=(-1)fe*> N I (-1, (2.7.2)
m=0j=0 \ J k m:
where £ =0,1,2,... and a € (0, 1]
Another representation of these probabilities is given by
PX=0)=¢ (2.7.3)
e o)
) — k_—\
P(X =k)=(-D*? > ] — , (2.7.4)
m=1 m: m

where k = 1,2,..., and a € (0, 1]
The summation is carried over all non-negative solutions (vy, va, ..., vg) of the
equation v; + vy + ... + v, = k.

Christoph and Schreiber (1998) also present the following recursion formula.
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Let X be a discrete stable random variable with exponent « and parameter

A. Then

k [¢]
(k+1)P(X =k+1) =AY P(X =k —m)(m+1)(~1)" (2.7.5)
m=1 m+1

for k=0,1,2,..and P(X =0) =e>.

These forms of the probability distribution of the discrete stable distribution
are mathematical expressions, difficult to use to estimate the parameters.

In Appendix A, we give several terms of the probability function by expanding
the probability generating function; it shows that the expressions of the proba-
bility distribution of the discrete stable distribution are difficult to deal with in
practice.

In figures 2.1 to 2.4, we use the expression(2.7.1) of the probability function
of the discrete stable random variable and give different values of & and A to see
the changes of the probability distribution of the discrete stable distribution with

parameters a and A.
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2.8. MOMENT CHARACTERISTICS

For the moments F(X") with r an integer, we consider this problem in two

cases.

2.8.1. Casea=1

With o = 1, the discrete stable random variable X (), ) follows a Poisson
distribution, and all moments exist.

They are equal to

z=1

where r=1,2,....

2.8.2. Case a € (0,1)

Steutel and van Harn (1979) mentioned that if we define a probability gener-
ating function P to be in the domain of discrete attraction of a stable probability

generating function P,, and if there exist a a, such that

lim {P(1 — an + an2)}" = Py(2),

n=c0
then it follows that all distributions with finite first moment are attracted by
the Poisson distribution by taking a,, = 1/n. As for the discrete stable random
variable with 0 < a < 1, it belongs to the domain of normal attraction of a
(strictly) stable random variable SA. That is the discrete stable random variable
X with 0 < & < 1is in the domain of discrete attraction of P, if and only if it
is in the domain of attraction of S2. Hence E(X") < co only for 0 <r < a < 1.
For r > a,a < 1, E(X") = oo; which is consistent with the results of Christoph
and Schreiber (1998).
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Chapter 3

STATISTICAL REVIEW

3.1. LINEAR REGRESSION

Standard parameter estimation methods such as maximum likelihood or the
method of moments are not applicable to the discrete stable distribution since its
density function cannot be written in a simple form, except for special cases, or
1ts moments may not exist. We will use the probability generating function and
some technique such as quadratic distance method to formulate our model and
to estimate the parameters «, A. For this purpose, we review some theory first.

Recall the classical multiple linear normal regression model, (see Weisberg

(1985) or Montgomery and Peck (1992)).
Y=X0+¢ (3.1.1)
where the vectors Y, ¢, 0 and matrix X are defined
Yoa=(V1 v, .. Y,) (3.1.2)

1 X11 X12 le

1 Xop X9 ... X
anp = . = % (313)

enxi=(¢€ € .. € ) (3.1.4)
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Opx1 =16, 0 ... 6,) (3.1.5)

and where the ¢;’s are independent errors distributed with a normal distribution
N(0,02), so that E(e) = 0, Var(e) = 01,

o? is an unknown parameter that needs to be estimated,
Y, is the response variable,
X;,; are explanatory variables (known and fixed), i = 1,2,...,n, 7 = 1,2, ..., p,
6 is an unknown parameter vector of dimension p and needs to be estimated.

With the least squares method, we obtain an estimator which is also the

maximum likelihood estimator of 8
6= (X'X)'XY, (3.1.6)
and we have

E(f) = E[(X'X)'X'Y]

E
E[(X'X)'X'(X0 + ¢)]
E

[(X'X)7'X'X0 + (X'X) 71 X€]

6

Var(f) = Var [(X'X)'X'Y]
= [(X"2)7'X] Var(Y)] [(X'X) ™' X
=o? [(X'X)7'X'] (X' X)X
=X (X'X){X'X)(X'X)!

— 02(XIX)—1

The estimator of o2,

s2_ SSE _[Y - X'y — x6

o - (3.1.7)
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is an unbiased estimator of o2, where SSE is the residual sum of squares
n
SSE = Z(yi —7:)°.
i=1

Sometimes the assumption Var(e) = o2 is unreasonable. We then need to
modify the ordinary least squares procedure. Suppose that we know the value of
a symmetric positive definite matrix X, such that the covariance matrix for the
error vector € is given by Var(e) = 023, with 02 > 0, but not necessarily known.

The model will be
Y =X0+¢

where E(e) = 0 and Var(e) = 0?%. ¢ is an error vector distributed with a normal
distribution N(0, o2%).

We can estimate 6§ by minimizing the generalized quadratic distance
S@)=(Y - X0/ Y(Y - X6). (3.1.8)

Minimizing this expression, we get the estimator

f=(X's X)X’z Y. (3.1.9)
We can show that
E(0) =0 (3.1.10)
and
Var(0) = (X'S71X)~ (3.1.11)

But in some circumstances, the covariance matrix ¥ will be a function of
the parameter 6 and needs to be estimated. Luong and Doray (2002) present
examples where this happens and use the following procedure to estimate the
parameter vector 6 and the variance-covariance matrix 3(6), where $(6) is a
function of parameter 6.

The algorithm is the following. By choosing £7!(6) = I, the identity matrix,
and by minimizing the generalized quadratic distance S(6) = (Y —X8)'~1(8)(Y —
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X6) we obtain §. Despite the fact that 6 is less efficient, it can be used to estimate

£1(6) by letting ©-1(0) = ©-1(f). We then can use £~1(6) to obtain the second

iteration for 6 and this procedure can be repeated with $7!(#) re-estimated at

each step; and 0 is defined as the convergent vector value of the procedure.
Luong and Doray (2002) also studied the asymptotic properties of the qua-

dratic distance estimator 6.

1. 4 is a consistent estimator.

2. O is asymptotically distributed as normal distribution with mean @ and variance

(X'S X)L

3. For certain parametric families, 6 has high efliciency.

4. For protection against misspecification of the parametric family as regards

to truncation, the quadratic distance estimator § has clear advantages over the

maximum likelihood estimator.

3.2. EMPIRICAL PROBABILITY GENERATING FUNCTION

Since we will estimate the parameters using the empirical probability gener-
ating function, we need first to consider its asymptotic behaviour.

Nakamura and Pérez-Abreu (1993) give the definition of the empirical prob-
ability generating function as follows.

Let Xy, X», ..., X, be arandom sample from a discrete distribution over 0, 1, 2, ...
with corresponding probabilities py, & = 0,1, 2, .... The empirical probability gen-

erating function is defined as
1 n
Po(2) =~ > o, (3.2.1)
1=1
for z € (0,1]. It is an estimator of the theoretical probability generating function

Px(2) = B(zX) =) pd*, |2l <1 (3.2.2)
k=0
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Rémillard and Theodorescu (1991) have proved that, as n — 00, sup,e(o,1j|Pn(z)—

Px(2)| converges to zero almost surely, i.e.
P (Jim supsculPa(z) = Px(z)| =0) =1. (323)
For the discrete stable random variable X and for a fixed z, call it 2y, we have
E(25) = Px(z0) = e 072",

which exists for |z| < 1. Since |z] < 1, we have |23| < 1, so E(23X) = e~ 1-%)°
also exists, where E(23*X) # 0. By the central limit theorem, the standardized
empirical probability generating function will converge to a standard normal dis-
tribution N(0, 1), and the mean of the empirical probability generating function

will be

B(z) = Px(z0) = e 0750,

the theoretical probability generating function.
We can use the empirical probability generating function and the minimum
quadratic distance method to estimate the two parameters A and « of the discrete

stable distribution.

3.3. MOMENTS OF MULTINOMIAL DISTRIBUTION

Johnson, Kotz and Balakrishnan (1997) introduce the definition and the prop-
erties of the multinomial distribution.

Consider a series of n independent trials, in each of which just one of k¥ mu-
tually exclusive events E, Ey, ..., B}, can be observed, and in which the prob-
ability of occurrence of event E; in any trial is equal to p; (with, of course,
p1+p2+ ... +pr = 1). Let fi, fo,..., f be the random variables denoting the
numbers of occurrences of the events Fy, Es, ..., Ey, respectively, in these n trials,
with f1 + fo +... + fi = n. Then the joint distribution of fi, fo, ..., fi is given by

k

m(fi = ni)

i=1

k
n
= P(ny, ng,..ng) = Hp?‘. (3.3.1)
i=1

Ny, Mg, ..., N

P
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This is the probability function of a multinomial distribution with parameters

(n; 01, D2, -y DE)-

Note that if k = 2, the distribution reduces to a binomial distribution (for
either f; or f;). The marginal distribution of f; is binomial with parameter (n, p;).
If we define the b** descending factorial of a as a® = a(a — 1)(a —2) - - - (a—
b+ 1), with a® = 1, the mixed factorial (ry, 75, ..., %) moments of a multinomial

distribution are given by

n
E(fl(rl)fg(r2)--- IETL-)) — Z ngﬁ)ng‘z)mng‘k)

k
7.
I]#r
i=1

1, M2, ..., Ny
k
k
= n(Zml T:) le't
i=1

From the above equation we obtain, in particular,
E(f;) = np; (3.3.2)
Var(fi) = np;(1 — p;). (3.3.3)
In terms of the relative frequency,
E(fi/n) = p; (3.3.4)
1
Var(fi/n) = ;pi(l - i) (3.3.5)

because f; has a binomial (n, p;) distribution. More generally, from the equation

of mixed factorial moments, we also obtain

E(fif;) = n(n — L)pip;. (3.3.6)
Thus, we have
Cov(fs, f;) = E(fif;) — E(fi)E(f;)
=n(n — 1)pipj - nzpipj

= —Npip;
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and

Cov(fi/n, f;/n) = %CO’U(fi,fj)

1
= - Epipj

3.4. DELTA THEOREM

In our later study we need to estimate the variance of a function of an esti-
mator by using the delta theorem. Rao (1973) presents the multivariate Delta
theorem and Rice (1995) gives the univariate version of it.

It is of interest to estimate a nonlinear function g(6) of §. The variance of g(4)
can be approximated from the variance of § by expanding the function g(6) about
its mean, usually with a one-step Taylor approximation, and then by taking the
limiting distribution.

Theorem 3.4.1. (Multivariate delta theorem) Let X,, be a k-dimensional random
variables (Xin, Xon, ..., Xkn) and p be a vector (p1, pa, -.., i), such that the joint
asymptotical distribution of v/n(Xin — p1), vVR(Xon — p2), -y VA ( Xin — i) s a k-
variate normal with mean zero and variance-covariance matriz ¥ = (o). Further
let g be a function of k-variables (g : n — k) which is totally differentiable, that is,
all 22 29 09 erist and not equal to zero. Then the asymptotical distribution

Our? Oua "7 By,

of Vnlg(Xin, s Xin) — g(pa, -, )] is normal with mean zero and variance

99 9g
Var = Z Zaija_y,ia_‘uj (341)

provided Var # 0.

PROOF. Since g is a totally differentiable function, then

k
0
Q(le ---ann) - g(#l) "'uu‘k) = § (Xz'n - )u”l.) (%) +€n ” Xn — K ||7
i=1 '

where €, — 0 as X;; — p;. This implies that for any small § > 0, |e,| < &

whenever [X, — u| < 6. Hence P(le,| < §) — 1 as n — oo. Since § is arbitrary,
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en — 0. And since 7 || X, — p ||= [2F, n(Xin — 1:)%"/2 has an asymptotic

distribution

VR 9(Xiny ooy Xin) = g1, - )] — ‘/T_ZZ(Xi" - ui)gﬁi

2,0

But the asymptotic distribution of v/n > (X;, — ui)a%%, being a linear function
of limiting normal variables is normal with zero mean and variance as given in
(3.4.1). By the limiting distribution theorem (if ¥, - Y and | X, = Y, 250,
then X, —— Y'), the asymptotic distribution of \/n[g(X1n, ..., Xkn) — (41, ---, tt)]
is the same as the asymptotic distribution of \/n Y (X;, — ui)aﬁ‘%. a

Theorem 3.4.2. (Univariate delta theorem) Let X,, be a sequence of real-valued
random variables such that for some u and o, \/n(X, — u) converges in distribu-
tion as m — oo to N(0,0%). Let g(-) be a real continuous differentiable function
from R to R having a derivative g'(u) at i, and g'(1) # 0. Then /ng(Xn)—g(k)]

converges in distribution as n — oo to N(0, ¢'(u)%0?).

PROOF. We have X, ~u = 0,(1/4/n) as n — oo. Also by Taylor-series expansion

of the function g(z) in a neighborhood of u, |z — p| < &, we have
9(z) = 9(1) + (z — w)g' (1) + 0p(lz — ul)
as £ — p by definition of derivative.Thus
9(Xn) = (1) + ' (1) (Xn = 1) + 0p(1 X5 — pal),

S0
Vlg(Xn) = 9(u)] = ¢ (VR( X — 1) + Vno,(1/v/n).

The last term is 0,(1), so the conclusion follows. O
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3.5. THE SINGULAR VALUE DECOMPOSITION (SVD) OF A MATRIX

AND THE PSEUDO-INVERSE MATRIX

3.5.1. The singular value decomposition

In our calculation example in chapter 5, we encounter the case where the
variance-covariance matrix is nearly singular. We need to use the pseudo-inverse
matrix to replace the variance-covariance matrix when the number of points of
z of the probability function we take is large. So we first need to review some
theory about pseudo-inverse. Golub and Van Loan (1989) and Watkins (2002)
introduce the method of singular value decomposition as follows. Let A € R™*™
where A is a matrix and n and m are positive integers. We make no assumption
about which of n or m is larger. The rank of A is the dimension of range(A), and
the range of A is defined by range(A) = {y € R" : y = Az for some z € R™}.
Theorem 3.5.1. (SVD Theorem) If A € R™™ is a real nonzero matriz with

rank T, then A can be expressed as the product
A=UxV’ (3.5.1)

where U € R™™ and V € R™™ are orthogonal matrices, and £ € R™™™ s g

nonsquare "diagonal” matriz as

(010--- O\

002

o3

Or

\0 -

where o1 > 09 > ... > 0, > 0 such that

U'AV = diag(oy, ...0,,0,...0) € R™™,
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The coefficients o1, 0, ...0, are the singular values of A and they are uniquely
determined. The columns of U, uy, us, ..., u, are orthonormal vectors called right
singular vectors of A, and the columns of V', v}, v,, ..., v, are called left singular

vectors of A. The transpose of A has the SVD
A =VvIU.

It is easy to verify by comparing columns in the equations AV = ZU and A'U =
Y'V that

A’Ui = O;U; (352)

A"U,i = 0O;V; (353)

where i = 1,2, ..min{n, m}.

It is convenient to have the following notation for designating singular values:

0;(A)=the ith largest singular value of A,

Omaz(A)=the largest singular value of A,

Omin(A)=the smallest singular value of A.

The SVD reveals a great deal about the structure of a matrix, it is a powerful
tool. The SVD may be the most important matrix decomposition of all, for both
theoretical and computational purposes.

Moreover, if the associated right and left singular vectors of A are v, ..., v,

and uy, ..., U, respectively, then, from equation (3.4.2) we have
T
A= Z ojU;V;. (3.5.4)
j=1

Finally, from the definition of the 2-norm, |||l = sup,., ””ATf””zl, where z € R™,

and the definition of the Frobenius norm, ||Al|r = \/ D i1 2jeq laij|?, where a;;
are elements of the matrix A, both the 2-norm and the Frobenius norm are neatly

characterized in terms of the SVD as follows

|All% =0 + 02+ ... + 02 (3.5.5)
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and
|Allz = [|A']|2 = o3. (3.5.6)
3.5.2. Computing the SVD

One way to compute the SVD of A is simply to calculate the eigenvalues and
eigenvectors of A’A and AA’.
Exemple 3.5.1. Find the singular values and right and left singular vectors of
the matriz A defined as
120
2 0 2

A=

Since A’A is 3 x 3 and AA’ is 2 x 2, it seems reasonable to work with the latter.

We easily compute

so the characteristic polynomial is
A=58)A—8)—4=X—-13A+36=(\—9)(\—4),

and the eigenvalues of AA" are \y =9 and Xy = 4. The singular values of A are

therefore

0'1=3

0'2=2.

The left singular vectors of A are eigenvectors of AA’. Solving (M1 — AA)u =0,
we find that multiples of [1,2] are eigenvectors of AA' associated with \;. Then
solving (Al — AA")u = 0, we find that the eigenvectors of AA’ corresponding to
Ao are multiples of [2,—1]'. Since we want representatives with unit Euclidean

norm, we take



29

1 2
Uy = —=

V5 1
These are the left singular vectors of A. Notice that they are orthogonal. We can
find the right singular vectors vy, va and vz by calculating the eigenvectors of A'A.

However, v1 and vy are more easily found by the formula v; = o7 'A'u;, 1= 1,2,

thus
5
o 1
1 W
4
0
NV
-1

Notice that these vectors are orthonormal. The third vector must satisfy Avs = 0.
Solving the equation Av = 0 and normalizing the solution, we get
-2

V3 = 1

1
3
2

Now that we have the singular values and singular vectors of A, we can construct
the SVD of A as A = ULV’ with U € R?>*? and V € R®*® orthogonal and
¥ € R?3 and get

U=(u1,u2)=i 1 2

v \a2 1

o 0 0 300
2: =

0 oy 0 020

and

We can check that A=UXV"'.
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In MATHEMATICA we can use the command "SingularValueDecomposition"

to compute the singular values or the singular value decomposition of a matrix.

3.5.3. Rank deficiency and numerical rank determination

One of the most valuable aspects of the SVD is that it enables us to deal
sensibly with the concept of matrix rank. Rounding errors and fuzzy data make

rank determination a nontrivial job. For example

(112\
3 3 3
2 2 4
3 3 3
A=1] 1 2 3
3 3 3 |
2 2 4
5 5 5
\314)
5 5 5

we note that the third column is the sum of the first two. A has rank 2. However,
if we compute its rank with MATLAB, using IEEE standard double precision

floating point arithmetic, we obtain

o1 = 2.5987

oz = 0.3682

and

o3 = 8.66 x 10~17.

Since there are 3 nonzero singular values, we must conclude that the matrix has
rank 3. But it is wrong! For this reason we introduce the notion of numerical
rank.

We may consider the matrix that has k "large" singular values, the other being
"tiny", has numerical rank k. For the purpose of determining which singular
values are "tiny", we need to introduce a tolerance € that is roughly on the level

of uncertainty in the data in the matrix.
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Indeed, for some small ¢ we may be interested in the e-rank of a matrix which

we define by

rank(A,e) = min rank(B)
lA-Bll2<e

where ¢ can be € = 10ul|A||, u is the unit roundoff error. Then, we say that A
has numerical rank & if A has k singular values that are substantially larger than

€, and all other singular values are smaller than e, that is

012022...20'k>>620'k+12....

Thus, if A € R™" has rank r, then we can expect n—r of the numerical singular
values to be small.

In MATHEMATICA, there is a command "MatrixRank|m,Tolerance->t]"
that gives the minimum rank with each element in a numerical matrix assumed

to be correct only within tolerance t.

3.5.4. The pseudo-inverse matrix

Watkins (2002) present the method to construct the pseudo-inverse matrix,
also known as the Moore-Penrose generalized inverse. It is a generalization of the

ordinary inverse. Note that if we define the matrix A* € R™*" by

AT =vEty’

where

E+ — . c Rmxn
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A* is referred to as the pseudo-inverse of A. It is the unique minimal F-norm

solution to the problem

min |[|AX — T,||F.

XeRmxn
We see immediately by SVD

rank(A") = rank(A),

and Uy, U, ..., Un, V1,V2, ..., Uy are left and right singular vectors of A*, respec-

~1

. -1 -1
tively, and o7, 05", ..., 07,

are the nonzero singular values.
The pseudo-inverse A* satisfies the following four Moore-Penrose conditions:
(i) AATA=A
(i) ATAAT = AT
(132) (AAY) = AA*
(v) (ATA)Y = ATA
Especially, if
m =n = rank(A),
then
At = A1
In MATHEMATICA, for numerical matrices, the command "Pseudolnverse[m]"

is based on the method of singular value decomposition.



Chapter 4

ESTIMATION AND HYPOTHESIS TESTING
OF THE PARAMETERS

In this chapter, we will develop the methods to estimate the parameters based
on minimizing the quadratic distance (see Doray and Luong (1997)) between
the empirical and the theoretical probability generating functions of the discrete

stable distribution.

4.1. THE MODEL

Let the theoretical and empirical probability generating functions be denoted

by Px(z), P.(z), respectively,
Px(z) = exp[-A1—-2)%], a€(0,1], A>0, |z/|<1

and
Pn(Z) = —1 E ZX’ |Z| <1
i=1 , '

In order to define the linear regression model, we take the logarithmic transfor-

mation of Px(z),
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Let us define the function g(-) as

9(Px(2)) = In[~In (Px(2))]
=1In[A(1 — 2)?]
=InA+aln(l-2)
=f+aln(l-2=2)
where 8 = In . It is a linear function of the parameters 3 and a. Now we can
define a linear model in terms of parameters 3, o, and an error term e, with the

empirical probability generating function.

The model is the following:

9(Po(2s)) = g(Px(2s)) + €, s=1,2,..k (4.1.1)

In[—1In P,(z)] = In[~In Px(2,)] + ¢,
=fF+aln(l—z)+e
where 21, 23, ..., 2 are selected points in the interval (—1,1).

Since In[—In Px(z;)] is not a random variable, from equation 3.2.2 and the

delta-theorem we can prove that, asymptotically,

E(es) = Elg(Pa(2s)) — 9(Px(2s))]
= E{ln [~ In Py(2,)]} — In[~ In Px(z,)]
= In [~ In Px(z,)] — In [~ In Px(z)]
=0

and

E(ee') = & = Var(e).
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Here, the variance-covariance matrix ¥ is a function of the parameters 5 and «
and needs to be estimated. The formula to estimate ¥ is presented in section
(4.2).

Let

ka1=(ln(—lnPX(zl)) In(—1InPx(22)) ... In(—InPx(z)) )I (4.1.2)

1 In(1-—2)

Xpa= | 1 20T (4.1.3)
1 In(1—z)

251 = ( g « )l (4.1.4)

€kx1 = ( €1 €3 ... € )I- (415)

The model written in matrix form becomes
Y = X0 +e.

The quadratic distance estimator (QDE) of the parameter vector § = (3, a)’,

denoted by é, is obtained by minimizing the quadratic form
Y — X0/'S71Y — X6).
Explicily, 6 can be expressed as:
f=(X's71X)'X's Y. (4.1.6)
From section 3.1 we have
E@) =0
and

Var(f) = (X'S71X) L.
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4.2. THE VARIANCE-COVARIANCE MATRIX

To find the variance-covariance matrix ¥ of the error term €, we need to use the
theory in section 3.3 and section 3.4, the moments of a multinomial distribution
and the delta theorem.

From the model (4.1.1), we have
€ =In[—InP,(z)] —In[—In Px(z)], s=1,2,.., k.
Since In [—In Px(z,)] is not a random variable, we get
Y =Var(e) = Var[ln (—In P,(z25)],

where ¥ is a function of the parameters 8 and « and takes the following form

( Var(e;) Cov(er,e2) Covler,e3) ... Covley,€x) \
Cov(ez,€1) Var(es) Covleg,e3) ... Covley,er)
L= Cou(es,e1) Cov(es,e2) Var(es) ... Cov(es,er) |- (4.2.1)

\ Cov(ex,€1) Couv(er,e2) Covlex,€3) ... Var(e) )
Now we need to define f;, the frequency of the sample point. Let X, X5, ey X

be a random sample of X, we define

n
=) 1(Xy), i=1,2..,n,
j=1

where 1,(X;) = 1, if i = j; 1;(X;) = 0, if 5 # 5.

Roussas (1997) presents a limit theorem which will be useful to us to find the
estimator of the probability generating function.
Theorem 4.2.1. Let X,,, n > 1, and X be random variables, and let g : R — R
be bounded and continuous, so that g(X,),n > 1, and g(X) are random variables.
Suppose X, iR X, as n — oo then g(X,) N g9(X), asn — oco.

Since p; = f;/n, we can prove that
In Py (z) £ n Px(2),

and we can estimate Px(z) by Px(z) and estimate In Px(z) by In Px(z).
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In our calculations, we have

PX(zs ZP’Z = Z i ;

From section 3.2, we know that we can also use Px(z,) to estimate P,(z,).
Now suppose the largest value of the observations in the sample is k, replacing

p; by its estimator p; = f;/n and by theorem (3.4.2)

Var(es) = Var(ln (— In P, (z,)]

— Va',-[ln (—— In pX(zS)]

h
= Var[ln(—In Z $:i2)]

i=1

= Varlln (= In X)) ’

X—'E:l—l I ZEH

o~ (%) Var[z Jo i

N (#lnu> T[Z fz :

! fi s
T (L, B V“’”[Z —z)-

sl {p=" pa2t

Now, we only consider the term Var[}_ 7| £2!] and get

fi . fi fi
Var[z “2Y] =Z Var +2ZZzzJCov - 1)
i=1 i<j
h
ZZ( ) lpz l_pz +2ZZZZ] pzp]
i=1 i<j

The variance of €, is given by

Zf 1( )21p1(1 _pl) +2221<] K] s( pzp])

Var(e;) =
ar(es) [k, Lzi)In (300, Lzi))2

(4.2.2)

where s = 1,2, ..., k.
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Similarly, we can also find the covariances of the error terms as follows:
h h

Cov(e,, €5) = Cov[ln (—In Zﬁizﬁ), In(~1In Z p;20)]
1=1 j=1

= Cov[ln(—InX),In(—InY)] ‘X:Zh_l Pty Y=S pad

~ [dn(=lnw) dln (—In p,) |
- _T,Uq_ |u1=21‘=1 Pz} dps |“2=Z?=1 pizs

h h
fi i f ]
Cov (; e ; #zﬁ)
Cov (Z?=1 %Zi: Z?:l —{fzg)
(S &) (T, £20)] (D0, L) n (S0, 22)]

_ Z?:l [(zrzs)i%pi(l - pi)] +> Zi<j [(*’44 + zgz;)(_%pipj)]
(S £z (S0, £2)] [(Shoy 22 n (Sl £2)]

= Cov(es, €,).

We have the terms to evaluate all the elements of the variance-covariance
matrix 2.

Since in the expression of the probability generating function
o0
PX(Z) = Zpizla
i=1

all p;’s are correlated, the variance-covariance matrix must be a full matrix.

4.3. THE INITIAL VALUES OF THE PARAMETERS

In order to estimate the parameter vector 8, we need to determine the initial
value of the parameter vector. We can use either of the following two methods to
find the initial value of §, denoted 8, = (BO, bp)', where By = In .

Method 1. By replacing ¥ by the identity matrix, we obtain a consistent esti-

mator of the parameter vector 6,
o = (X'X)'X'Y. (4.3.1)

However, it is not a fully efficient estimator of .
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Method 2. Using f;/n to estimate p; in the probability generating function, we

get

P = fi/n, (4.3.2)

For initial values, we take the logarithmic transformation of Px(z), and use

In Px(z) to estimate In Px(z), we get
In Px(z) = —\(1 — 2)°,

or

In(Zp, ): A1 — 2)e.

By Rémillard and Theodorescu (1991), using only two points z; and 2z, we have

In (Zp,zl) =—-A1-2)" (4.3.3)

and

In (Z ple) = -1 — z)* (4.3.4)
Dividing (4.3.3) by (4.3.4) and replacing p; by its estimator p; = fi/n, we obtain

In (32 L24) <1—21>“
In (Zi.—o }%22) -2/

Solving, we get

(4.3.5)
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then from (4.3.3),

C_ In(Tpicd)
Ay = — —~&xi=0717 4.3.6

0 (= 2y)0 (4.3.6)
In order to get more precise initial value of the two parameters, we should

take the two values of z far apart, for example, z; = 0.1 and 2z = 0.9.

4.4. THE ALGORITHM

1. Calculate the initial value of 8, denoted by 6o = (,30, &p), using either of the
methods in section (4.3).
2. By the series expansion of the probability generating function in terms of z

Px(2) = exp[-do(1 - 2)*] = > p2*

i=1

to calculate p)s using 6, (see appendix A).
3. Estimate the variance-covariance matrix 3; using the method provided in
section (4.2). It is function of the pls.
4. Use our model to obtain the new values of A; and &; by the equation (4.1.6).
5. For iteration, redo the steps 2, 3 and 4 to estimate new p’s, Ej and éj = (Bj, &;),

where j = 2,3..., up to the desired accuracy.

4.5. INFERENCES CONCERNING THE VECTOR ¢

Neter, Wasserman and Kutner (1989) describes the method for hypothesis
testing on the estimators. When n — oo, the sampling distribution of the vector

6 = (B , &) will follow an asymptotically normal distribution
Vn(d — 8y) =5 ASN (0, (X'S;0 X)) (4.5.1)
and, separately

V(B — Bo) = ASN (0, (Var(9)

S—’

(4.5.2)

Vnlé — ag) 55 ASN (o, (var(o})) , (4.5.3)
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where 6y is the true value of the vector 8, and 3y, ag are the true values of the
parameters 3 and «, respectively, and Var(ﬁ), Var(c;) are the diagonal elements

of the variance-covariance matrix (X'Sg'X)~!

4.5.1. Sampling distribution of the standardized statistic

Since B and & are asymptotically normally distributed, we know that the
standardized statistic (8 — 8)/1/Var(8), and (& ~ @)/+/Var(&) are standard
normal variables. Ordinarily, we need to estimate (3 — 8)/1/Var(8), and (& —
@)/+/Var(&) by (8- 8)/ @(ﬁ), and (& —a)/ @(&), and hence are inter-
ested in the distribution of the statistics (3—3)/1/Var(3) and (G—a)/ \70,\7"(&)
When a statistic is standardized but the denominator is an estimated standard
deviation rather than the true standard deviation, it is called a studentized statis-
tic. An important theorem in statistics states the following about the studentized

statistic (see Montgomery and Peck (1992)):

(6-mr/7ar@ 6)) ~ tn - 2) and
(@-ay Var(@) ~ tla—2)

where n is the number of the selected points of z, i.e. n = s. The reason for the
degrees of freedom is that two parameters (8 and a) need to be estimated for the
model, hence, two degrees of freedom are lost.

This result places us in a position to make inferences concerning § and a.

4.5.2. Confidence intervals for 3 and «

Since (3 — )/ ﬁ'(ﬁ) and (& — a)/ @(&) follow t-distributions, we can

make the following probability statement with confidence 1 — ¢,

P q taj2(n — ﬁ = ti—ay(n—2) p =1-a (4.5.4)
\/ ﬁ
and
a -«
P ta/z n — ta- a/g) n—2)r=1-aq. (4.5.5)

\/17(17 8
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Here, t,/2(n — 2) denotes the (/2)100 percentile of the t-distribution with
n — 2 degrees of freedom.
Because of the symmetry of the ¢-distribution around its mean 0, it follows

that
ta/z(n —-2)= —t(l_a/z)(’n —2). (4.5.6)

Rearranging the probability inequalities , we obtain:

P8 timarm(n— 2/ Var(B) <5< B+ t-apm(n—2 Var(h)}

=l-a«a

and
P{&—qkwﬁn—mdvaﬁy_agd+quMn—m ﬁﬁ@ﬁ
=1—a

Since the above equations hold for all possible values of 3 and ¢, the 1 — & (this

« is the significance level) confidence intervals for 3 and « are

B+ taasn(n — 2)\/Var(B) (4.5.7)
G+t ez (n— 2)4/ Var(a). (4.5.8)

4.5.3. Tests concerning a

a—a

Neter, Wasserman and Kutner (1989) have shown that since —2=2— is dis-
( ) vV Var(a)
tributed as a ¢-distribution with n — 2 degrees of freedom, tests concerning a can
be set up in the ordinary fashion using the ¢-distribution.
1. Two-Sided Test
To test
Hy:a=0ao"

vs H,:a# o,

an explicit test of the alternatives H, is based on the test statistic
a-—ao*

= ———. (4.5.9)
Var(a)
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The decision rule with this test statistic when controlling the significance level at
o is

If [t*| < ta—a/2)(n — 2), accept Hy, ie. a = o,

If [t*] > ta—a/2)(n — 2), reject Hy, i.e. a # a*.
2. One-Sided Test
Suppose instead we had wished to test whether or not the parameter o is greater
than some specified value o*, controlling the significance level at a. The alterna-

tive then would be:

Hozaga*
vs H,:a>a"

The test statistic would still be

. a— ot
=
Var(a)

and the decision rule based on the test statistic would be:
If |t*| < ti_a(n —2), accept Hy, ie. a = o,

If [t*] > ti_a(n — 2), reject Hy, i.e. o # o.

4.5.4. Tests concerning A

In section (4.1), we defined 3 as the logarithmic transformation of the param-
eter A\, so we have
A =é".

To determine the sampling distribution of A) , we need first to calculate the
& vV Var())

estimated variance of A using the delta-theorem,
Var(\) = e?Var(B). (4.5.10)

By the delta-theorem, we know that A is asymptotically normally distributed,

then —2=2_ will be t-distributed, A~ t(n — 2).

Var(\) VVar())

Tests concerning A can be set up in the following fashion using the ¢-distribution.

Two-Sided Test
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To test
Hy: A= X"
vs H,: A# N\,

an explicit test is based on the test statistic

t* = % (4.5.11)
Var(A)

The decision rule with this test statistic when controlling the significance level at
ais
If [t*| < t(1—as2)(n — 2), accept Hy, i.e. A = \*,
If |t*| > t(1—a/2)(n — 2), reject Hy, ie. X # A*.
The one-sided test is easily defined.



Chapter 5

NUMERICAL EXAMPLES

In this chapter, we will use the method of Kanter (1975) (see section 2.3) to gener-
ate samples of discrete stable random variables and use the parameter estimation
method provided in chapter 4 to estimate the two parameters of the distribution

and test hypothesis on the parameters.

5.1. EFFECT OF THE NUMBER OF POINTS TAKEN

Considering the probability generating function of the discrete stable distri-

bution
Px(z) = exp[-M1 - 2)%], |2] <1,

we select parameters A = 1 and a = 0.9 to generate 5000 discrete stable random
variables, since when « close to 1, the distribution is much like a Poisson distribu-
tion with parameter A. With this set of data, we analyze the effect of the selected
number of points of z that we should take in the process of the estimation. We
also consider the situations in which z takes negative values with 18 points, 10
points, 4 points and 2 points.

We consider the following cases:

1. z takes 19 points without negative values

z = {0.05,0.10,0.15,0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50,

0.55, 0.60, 0.65,0.70,0.75, 0.80, 0.85,0.90,0.95}
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2. z takes 18 points with negative values of z

z={-0.9,-0.8,-0.7, 0.6, —0.5, —0.4, —0.3, —0.2, —0.1,

0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}
3. z takes 10 points with negative values
z={-0.9,-0.7,-0.5,-0.3,-0.1,0.1,0.3,0.5,0.7,0.9}
4. z takes 9 points without negative values
z ={0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}
5. z takes 4 points with negative values
z={-0.9,-0.3,0.3,0.9}

6. z takes two points

z={-05,0.5}

7. z takes two points
z={-0.9,0.9}

When 2z takes 19 values, at the second iteration, the inverse of the variance-
covariance matrix 3 does not exist since the inverse matrix is singular (rank(X)=12).
The reason is that the selected points of z are too close. The same thing happens
when z takes 9 values, where rank(3)=8, and when z takes 18 values, where the
rank(X)=15. In these situations we use the pseudo-inverse of ¥ instead of the
inverse of ¥ and get the results. Those results have been marked with * in table
5.1.

When the number of selected values of z is 18, the variance-covariance matrix
Y is a 18 x 18 matrix and the variance-covariance matrix of the parameter vector

0, denoted by Var(é) 1s a 2 X 2 matrix. If we generate 5000 random variables,



then ¥ and Var(f) are given by

™
|

and

( 0.00170892
0.00149471
0.00131009
0.00115104
0.00101372

0.000225341
\ 0.000198651

Var(f) =

0.00149471
0.00132283
0.00117182  0.0010484
0.00103977 0.000939041
0.000924303 0.000842276

0.00131009
0.00117182

0.00115104
0.00103977
0.000939041
0.000848695
0.000767863

0.000226796 0.000226852
0.000201909 0.000203492

0.000226469
0.000204558

0.000251019 0.0000283142
0.0000283142 0.000034218
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0.000198651 \
0.000201909
0.000203492
0.000204558
0.000205569

0.000286112
0.000335412 )

When the number of selected values of z is 10, the variance-covariance matrix X

is a 10 x 10 matrix and the variance-covariance matrix of the parameter vector

¢, denoted by Var(f) is a 2 x 2 matrix. If we generate 5000 random variables,

then 3 and Var(f) are given by

™
Ji

and

/ 0.00170892
0.00131009
0.00101372
0.000791541
0.000623099

0.000252964

\ 0.000198651

0.00131009 0.00101372 0.000791541

0.0010484 0.000842276 (.000680596
0.000842276 0.000700581 0.000584763
0.000680596 0.000584763 0.00050339
0.000553014 0.000489813 0.000434216

0.000250874
0.000203492

0.000246846
0.000205569

0.000243059
0.000208052

X 0.000251444 0.0000288046

Var(0) =

0.0000288046 0.0000354222

0.000198651 \
0.000203492
0.000205569
0.000208052
0.000211567

0.000261848
0.000335412 )




TABLE 5.1. Effect of the numbers of the points of 2z
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points of z initial value first iteration | second iteration | relative error
19 points ag = 0.913933 | a = 0.917313 a = 0.916731* 1.859 %
Ao =0.994707 A =0.998783 A = 0.997756* -0.224 %
18 points ap =0.913933 a =0.919324 a = 0.91825" 2.028 %
Ao =0.994707 A =0.997456 A =0.99742* -0.258 %
10 points op =0.913933 o —0.916447 o =0.916447 1.827 %
Ao —0.994707 | A = 0.996336 A =0.996336 -0.366 %
9 points ap =0.913933 a =0.916731 a=0.916731* 1.859 %
Ao =0.994707 A =0.997725 A =0.997725* -0.227 %
4 points ap —0.913933 a =0.914694 a =0.914694 1.633 %
Ao =0.994707 A =0.996986 A =0.996986 -0.301 %
{-0.5,0.5} o —=0.913933 a =0.910087 a =0.910087 1.121 %
A0=0.994707 2=0.99298 A=0.99298 -0.707 %
{-0.9,09} 0p=0.913933 a=0.910871 a=0.910871 1.208 %
A0=0.994707 A=0.987717 A= 0.987717 -1.228 %

When the number of selected values of z is 4, the variance-covariance matrix &

is a 4 X 4 matrix and the variance-covariance matrix of the parameter vector 6,

denoted by Var(9) is a 2 x 2 matrix. If we generate 5000 random variables, then

> and Var(f) are given by

™M
[l

and

0.00170892

0.0
0.0
0.0

00791541
00394247
00198651

0.00025702

=}

Var(6) =

0.000791541 0.000394247 0.000198651
0.00050339 0.000324684 0.000208052
0.000324684 0.000267138 0.000224311
0.000208052 0.000224311 0.000335412

0.000029364

0.000029364 0.0000388233
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Also note that only with 2 iterations, the algorithm converged except when
using the pseudo-inverse variance-covariance matrix . Using values of 2z too
close to calculate the estimators makes the variance-covarince matrix ¥ singular
and we have to use the pseudo-inverse matrix. It also makes the calculations
much more time-consuming and since the relative errors of the parameters do not
decrease with the number of selected values of z, it is not suggested to use values

of z too close. 10 points of z with negative values
z={-0.9,-0.7,-0.5,-0.3,—-0.1,0.1,0.3,0.5,0.7,0.9}
and 4 points with negative values
z={-0.9,-0.3,0.3,0.9}

are recommended.

But too few points of z may cause a large bias of the estimators. To investgate
the relative errors of the parameters and the variance-covariance matrix of the
parameters we note that when the number of selected values of z equals 10 or
4, the results are quite good. The relative errors increase a lot (especially the
relative error of A ) as for the results obtained with only two points of z. (Refer
to the last two lines of Table 5.1).

Note that there is no significant difference between the results if we use or not
the negative value points of z.

We conclude that calculations with 10 or 4 values of z give the better estima-
tion, the relative errors are smaller than that of the others, and the calculation

speed is much faster.

5.2. CONFIDENCE INTERVALS FOR THE PARAMETERS

We have used many sets of data and have found that when the parameter «
becomes much smaller, the calculation speed is much slower. Thus to calculate

the confidence intervals of the parameters A and «, we generated several datasets
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TABLE 5.2. Confidence interval for § and A with 10 points

A ~

Size 8 A Var(3)| C.I for B C.I. for A

n = 2000{1.532663|4.63049| 0.028903 |(1.46601, 1.599314)((4.3319, 4.9496)

n = 1000{ 1.46474 |4.32642| 0.047404 | (1.3554, 1.5741) |(3.8784, 4.8262)

n = 500 |1.446368(4.24766| 0.042149 | (1.3492, 1.5436) |(3.8542, 4.6812)

n =100 11.399176|4.05186| 0.083938 | (1.2056, 1.5927) |(3.3388, 4.9172)

with A = 4.5 and o = 0.4. We use the results of Chapter 4 to calculate the

confidence intervals of the two parameters a and A,

B+ t(1—as2)(n — 2) VCL\T(B)

& £t a2 (n — 2)y/ Var(a).
Assume the significance level « is 5% and n = 10,
t(1-a/2)(n — 2) = to.975(8) = 2.306,

we get the C.I. for the parameters o and X in Tables 5.2 and 5.3. Notice that the

confidence intervals of the parameters become wider when n decreases.

5.3. TESTS CONCERNING A\ AND «

We use the estimation results of the previous section to conduct a two-sided
test concerning parameters a and A. The results are found in Tables 5.4 and 5.5
respectively.

1. To test

Hola=0.4



TABLE 5.3. Confidence interval for o with 10 points

Size & @(&) C.I. for «
n = 2000 0.41506 0.00896627 (0.394384, 0.435736)
n = 1000 | 0.383514 0.0180303 (0.341936, 0.425092)
n = 500 0.380229 0.014749 (0.346217, 0.4414241)
n = 100 0.39524 0.0299940 (0.326120, 0.464281)

TABLE 5.4. Test concerning o with 10 points

Size & tr= —0=04 t 8) =2.306 | conclusion
m 0.975( )
n = 2000 0.41506 1.6796 2.306 accept Hy
n = 1000 | 0.383514 -0.9144 2.306 accept Hy
n = 500 0.380229 -1.3405 2.306 accept Hy
n =100 0.39524 -0.1587 2.306 accept H,
vs H,:a#04,
the test statistic is
o d—a*A _ d—O.tf ‘
Var(a) Var(a)

The decision rule with this test statistic at the 5% significance level is:
If [t*] < to.975(8) = 2.306, accept Hy, i.e. a = 0.4,
If [t*] > to.975(8) = 2.306, reject Hy, i.e. a # 0.4.

2. To test

Hoi/\‘:4.5

vs H,: )\ #4.5,



TABLE 5.5. Test concerning A with 10 points

02

Size A 28V ar(B) % to.o75(8) = 2.306 | conclusion
n = 2000 | 4.63049 0.133835 0.975 2.306 accept Hy
n = 1000 | 4.32642 0.205090 -0.846 2.306 accept Hp
n = 500 4.24766 0.179035 -1.409 2.306 accept Hp
n = 100 4.05186 0.340105 -1.318 2.306 accept Hy
the test statistic is
o AN A—45

JVar()  /Tar(d)
note that we defined A\ = e® and by the delta-theorem @(;\) =% @(/:?)
The decision rule with this test statistic at the 5% significance level is:
If |t*| < to.975(8) = 2.306, accept Hp, i.e. A = 4.5,
If |t*| > to.975(8) = 2.306, reject Hy, i.e. A # 4.5.

5.4. EFFECT OF TRUNCATION

In this section we will discuss the effect of data truncation. When the dataset
is heavy tailed or with some extreme values, it must be truncated in order to
obtain the estimators with the algorithm proposed.

We use the parameters a=0.4 and A=4.5 to generate samples of discrete stable
random variables with different sample sizes (n=2000, n=1000, n-=500 and n=
100). These datasets are distributed with a heavy tail and the largest value of the
observation in the sample are so large (when n = 2000, it is 446,630,588; when
n = 1000, it is 47,287,674; when n = 500, it is 1.24 x 10® and when n = 100,
it is 149,289) that we must cut the datasets somewhere in order to estimate the

parameters.
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To conduct our calculation, we take:
z={-0.9,-0.3,0.3,0.9}

We put all the calculation results in Tables 5.6 to 5.9 to compare the differences
among the different situations.

Notice that at the same percentage of truncation, the absolute value of the
relative errors of estimator \ increases when the sample size decreases.

With 8% or 10% truncation, when n = 2000, the absolute value of the relative
errors of estimator X is 1.3%; when n = 1000, it is 3.5%; when n = 500, it is 7.7%
and when n = 100, it is 12.1%.

With 20% truncation, when n = 2000, the absolute value of the relative errors
of estimator A is 1.3%; when n = 1000, it is 8.1%; when n = 500, it is 10.0% and
when n = 100, it is 14.4%. We can see that the absolute value of the relative
errors of estimator A increases a lot with the decrease of the sample size n.

In total, the sum of the absolute value of the relative errors of the two esti-
mators increase with the decrease of the sample size n.

With 15% truncation, when n = 2000, the sum of the absolute value of the
relative errors of the two estimators are 9.8%; when n = 1000, it is 9.3%; when
n = 500, it is 10.6% and when n = 100, it is 19.5%.

With 30% truncation, when n = 2000, the sum of the absolute value of the
relative errors of the two estimators are 23.1%; when n = 1000, it is 23.7%; when
n = 500, it is 23.7% and when n = 100, it is 33.9%.

Also notice that the relative errors of estimators increase when the percentage
of truncation increases.

With n = 2000, the relative errors of estimator & increase from 3.8% (without
truncation) to 19.5% (with 30% truncation). At the same time, the absolute
values of the relative errors of the parameter A, fluctuate from 2.9% to —3.7%
with the percentage of truncation 8% to 30%.

With n = 100, the relative errors of estimator & increase from 3.5% to 16.9%

when the percentage of truncations changes from 10% to 30%. And the absolute
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values of the relative errors of the estimator ) increase from 12.1% to 16.9% when
the percentage of truncation changed from 10% to 30%.

After using many different percentages of the truncation to estimate the pa-
rameters, we conclude that with the percentage of truncation less than 15% and
the sample size n > 500, the estimation gives better results, the relative errors of

the parameters will be less then 10%.



TABLE 5.6. The effect of truncation on (n—2000)

estimators relative errors
without trunction ap=0.41337
initial values Ao —=4.6587
first iteration a =0.41506 3.765 %
A =4.63049 2.90 %
with truncation ag —=0.426388
off 8 % Ao =4.57748
first iteration a=0.424454
A=4.55938
second iteration a= 0.424454 6.11 %
A=4.55938 1.320 %
with truncation ap=0.439585
off 15 % A0=4.50096
first iteration a—0.438582
A—=4.49284
second iteration a—=0.438582 9.646 %
A=4.49284 -0.159 %
with truncation ap=0.450307
off 20 % Ao=4.44248
first iteration a= 0.450093
A=4.44256
second iteration «=0.450093 12.523 %
A=4.44256 -1.276 %
with trunction oy —=0.476048
off 30 % Ao =4.31414
first iteration o= 0.477842
A=4.33432
second iteration a—=0.477842 19.461 %
A=4.33432 -3.682 %

%)



TABLE 5.7. The effect of truncation (n=1000)

estimators relative errors
without trunction 0p=0.384607
initial values Ao —4.33825
first iteration a =0.383514 -4.122 %
A =4.32642 -3.857 %
with truncation ap —0.398828
off 9 % Ao =4.2464
first iteration a=0.398745
A=4.24436
second iteration a= 0.398745 -0.314 %
A=4.34436 -3.459 %
with truncation ap=0.409830
off 15 % A0—418011
first iteration a=0.410567
A=4.18573
second iteration a=0.410567 2.642 %
A=4.18573 -6.984 %
with truncation ap—0.42017
off 20 % A0=4.12129
first iteration a= 0.421705
A=4.1342
second iteration a=0.421705 5.426 %
A—=4.1342 -8.129 %
with trunction oy =0.444763
off 30 % Ao =3.99354
first iteration o= 0.44831
A=4.02405
second iteration a—0.44831 12.078 %
A=4.02405 -10.577 %

o6



TABLE 5.8. The effect of truncation (n=500)

estimators relative errors
without trunction | @y=0.430911
initial values Ao =4.78148
first iteration a =0.380229 -4.943 %
A =4.24766 -5.608 %
with truncation oy =0.44818
off 10 % Ao =467973
first iteration =0.397106
A=4.15322
second iteration a= 0.397106 -0.724 %
A=4.15322 -7.706 %
with truncation ap—=45819
off 15 % Ao—4.62468
first iteration a=0.406938
A=4.10246
second iteration a=0.406938 1.735 %
A=4.10246 -8.834 %
with truncation ap—0.469351
off 20 % A0=4.56642
first iteration a= 0.417944
A—4.04903
second iteration a=0.417944 4.486 %
A=4.04903 -10.022 %
with trunction ag =0.49616
off 30 % Ao =4.43864
first iteration o= 0.444568
A=3.93308
second iteration a=0.444568 11.142 %
A=3.93308 -12.598 %

27



TABLE 5.9. The effect of truncation (n=100)

estimators relative errors
without trunction ap=0.381712
initial values Ao =3.95355
first iteration a =0.39524 -1.19%
A =4.05186 -9.959 %
with truncation agp =0.399096
off 10 % Ao =3.85091
first iteration a—=0.414054
A=3.95739
second iteration a— 0.414054 3.515 %
A=3.95739 -12.058 %
with truncation ap=0.0.409252
off 15 % A0=3.79536
first iteration a—=0.42508
A=3.90667
second iteration a=0.42508 6.27 %
A=3.90667 -13.185 %
with truncation p=0.420645
off 20 % A0=3.73654
first iteration a= 0.437482
A=3.85335
second iteration a=0.437482 9.371 %
A=3.85335 -14.37 %
with trunction a9 —0.448314
off 30 % Ao =3.60746
first iteration a= 0.467762
A=3.73793
second iteration a=0.467762 16.941 %
A=3.73793 -16.935 %

o8



Chapter 6

CONCLUSION

In this chapter, we will draw some conclusions from our work.

To estimate the two parameters of the discrete stable distribution, we em-
ployed the method of minimizing the quadratic distance between the empirical
and theoretical probability generating function. The results show that this tech-
nique is powerful when the distribution that we worked on has no explicit expres-
sion for the probability distribution function.

We calculated the variance-convariance matrix of the difference between em-
pirical and theoretical probability generating functions and we gave out the for-
mulas for the quadratic distance estimators of the discrete stable distribution.

The estimators we got are consistent estimators and asymptotically have a

normal distribution with variance-covariance matrix

Var(0) = (X' 1Xx)™

We simulated several samples of discrete stable random distributed datasets with
different parameters. The estimators obtained were quite good.

We analyzed the effect of the selected number of values of z on the results
of estimation, and we found that 10 or 4 points of z is a better choice since it
gave us better estimators and it is more time-saving in calculation, because of the
smaller size of the variance-covariance matrix.

We also conducted inference about the parameters such as confidence intervals

constructing and hypothesis testing.
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Luong and Doray (2002) indicate that the quadratic distance estimator pro-
tects against a certain form of misspecification of the distribution, which makes
the maximum likelihood estimator biased, while keeping the quadratic distance es-
timator unbiased. Therefore, the quadratic distance estimator can be considered
as a robust semi-parametric estimator, offering protection against misspecifica-
tion of the parametric family, while the maximum likelihood estimator, strictly a
parametric estimator, is less robust.

Overall, the estimation results we got are quite good, especially for paramter
close to 1. As for data truncation, when the percentage of truncation is less than
15% and the sample size n greater than 500, the estimation results are better.

The method to estimate the parameters by minimizing the quadratic distance
between the empirical and the theoretical probability generating functions is good
to use to estimate the parameters for certain distributions, especially for distri-
butions that lack a closed formula for the probability and distribution functions,

such as the discrete stable distribution.
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Appendix A

SEVERAL TERMS OF THE PROBABILITY
FUNCTION

By expanding the probability generating function
Px(z) = exp[-A(1 - 2)%] = Zpizi,
i=1

we obtain the first several terms of the probability function, pg,pi1,ps,..,ps. It
shows that the expressions for the terms of the probability distribution function

of the discrete stable distribution are difficult to deal with in practice.
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