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SOMMAIRE

Initialement, notre but était de considérer la question principale au sujet des
structures complexes; La 6-sphére a-t-elle une structure complexe? Aprés avoir
construit une structure presque complexe sur la 6-sphére, nous avons rapidement
constaté que ce probléme était beaucoup trop compliqué. Nous nous sommes
alors résignés a simplement nous familiariser avec quelques notions élémentaires
en rapport avec les structures complexes, en préparation pour un retour éventuel
a la 6-sphére.

Nous dirons quelques mots au sujet des structures complexes en général, mais
notre intention est de mettre I’accent sur les structures complexes sur les surfaces
de Riemann. En cours de route, nous toucherons aussi 4 quelques notions voisines,
telles que les structures presque complexes et les structures de Cauchy-Riemann.

Au chapitre 1, nous parlons d’espaces vectoriels réels et complexes. Plus
exactement, nous alons induire une structure complexe sur un espace vectoriel
réel de dimension paire, pour en faire un espace vectoriel complexe.

Nous continuons cette approche au chapitre 2 pour imposer des structures
complexes sur des variétés. Nous étudierons aussi les structures presque com-
plexes et les structures de Cauchy-Riemann. Une variété presque complexe est
une variété lisse munie d’une structure linéaire complexe sur chaque espace tan-
gent, qui varie de fagon lisse. Une variété de Cauchy-Riemann est définie par un
sousfibré du fibré tangent complexifié.

Au chapitre 3, nous construisons l’espace de Riemann des modules d’une
surface. Pour une surface de Riemann donnée S, I’espace de Riemann des mo-
dules consiste des classes d’équivalence conforme (biholomorphe) de surfaces de

Riemann qui sont homéomorphes 4 S. Dans ce chapitre, nous montrons aussi
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que toute surface de Riemann, sauf quelques exceptions, est représentée comme
quotient du demi-plan supérieur par un groupe Fuchsien. Nous parlerons aussi
des fonctions automorphes. Une fonction automorphe sur un domaine est une
fonction méromorphe qui est invariante par rapport a un certain genre de groupe
d’automorphismes du domain.

Au chapitre 4, on introduit les transformations quasiconformes, utilisant une
méthode géométrique et une procedure analytique. Ensuite, on construit ’espace
de Teichmiiler en utilisant les transformation quasiconformes. On montre aussi
que l’espace de Teichmiiler est complet pour la distance de Teichmiiler. Ensuite
on explique que les automorphismes d’une surface forment un groupe discret,
le groupe modulaire, qui agit sur I’espace de Teichmiiler de cette surface. Le
quotient de l'espace de Teichmiiler par cette action est précisément ’espace de
modules de cette surface.

Au chapitre 5, on utilise les produits dans les quaternions et les octonions
pour construire une structure presque complexe sur la 2-sphére et la 6-sphére.
On montre aussi que cette approche ne marche pas sur les sphéres de dimension
autre que 2 ou 6. Enfin, on montre que la structure presque complexe que nous
avons construite sur la 2-sphére provient d’une structure complexe.

Mots Clés: Espace de Teichmiiller, espace des modules, surfaces de Riemann,

structure complexe, structure CR, structure presque complexe.



SUMMARY

Our initial project was to consider the most outstanding problem concerning
complex structures, namely, whether the 6-sphere S® admits a complex structure.
We constructed an almost complex structure on 6-sphere, however it quickly
became apparent that the original problem was far beyond our reach and we
resigned ourselves to merely familiarizing ourselves with some preliminary notions
regarding complex structures, in the hope of eventually returning to the 6-sphere.
We shall say a few words about complex structures in general, but we intend to
emphasize complex structures on Riemann surfaces. Along the way we shall
also touch upon related notions such as almost complex structures and Cauchy-
Riemann structures.

In Chapter 1, we deal with real vector spaces and complex vector spaces.
Precisely, we will implement a linear complex structure on even dimensional real
vector spaces to become complex vector spaces.

We continue this approach to Chapter 2, to establish complex structures on
manifolds. We shall also study Almost complex structures and CR structures.
An almost complex manifold is a smooth manifold equipped with smooth linear
complex structure on each tangent space and a CR manifold is defined by a
subbundle of the complexified tangent bundle.

In Chapter 3, we construct Riemann’s moduli space. For a given Riemann
surface S, Riemann’s Moduli space consists of the conformal (biholomorphic)
equivalence classes of Riemann surfaces which are homeomorphic to S. In this
chapter we also show that every Riemann surface, except for a few types, is
represented as a quotient space of the upper half plane by a Fuchsian group. We

shall also give the definition of automorphic functions. An automorphic function
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is one which is meromorphic in its domain and is invariant under a certain type
of group of automorhisms of the domain.

In Chapter 4 we define quasiconformal mappings, using a geometric method
and an analytic procedure. Then the Teichmiiller space is constructed by using
quasiconformal mappings. We also show that Teichmiiller space is complete with
respect to the Teichmiiller distance. We also explain that the automorphisms of
a surface form a discrete group, the modular group, that acts on the Teichmiiller
space of that surface. The quotient of the Teichmiiller space by this action is
precisely the moduli space of that surface.

In Chapter 5, we use the product in quaternions and octonions to construct
an almost complex structure in the 2-sphere and 6-sphere. We also show that
this approach cannot be applied to spheres in other dimensions. Finally, we show
that the almost complex structure which we constructed on the 2-sphere derives
from a complex structure.

Key words:

Teichmiiller space, Moduli space, Riemann surface, complex structure, CR

structure, almost complex structure.



CONTENTS

S 10 'L 0 F= 1 o PP iii
118041 4 -1 o P v
Remerciements .........cooiuiiiiiieiiiriin it iieiineeennnennannns 1
Introduction.........ooiiiiiiiiiiiiiiiiii ittt ieiieninnnraeannnn 2
Chapter 1. Complex structure on vector spaces................. 5
1.1. Complex structures on vector Spaces . ...............cooveeeoino... )
1.2.  All complex structures on vector spaces........................... 7
1.3. The equivalence class of complex structures on vector spaces...... 15
Chapter 2. Complex manifolds ................ ... i, 16
2.1. Differentiable manifolds................. ... ... . ...l 16
2.2. Complex manifolds .......... ... ... 16
2.3. Tangent SPace .........couiiiiit i 18
2.3.1. Tangent space to areal manifold............................... 18
2.3.2. Tangent space to a complex manifold ....................... ... 19

2.4. Almost complex structure................... ... ... ... 20
2.4.1. Almost complex structure................cooiiiiiiiiii.... 20
2.4.2. Differential forms................. ... 21
2.4.3. Complex and almost complex structure ........................ 23

2.5. The equivalence class of complex structures on manifolds.......... 24



2.5.1. Pseudoholomorphic curves......................... ... ... 26
26. CRstructure.......... ... i 27
2.6.1. The observation of Poincaré.................................... 27
26.2. CRmanifolds............ ... .. . 28
Chapter 3. Modulispace ...........cciiiiiiiiiiiiiiiiiinnnnnnn.. 33
3.1. Riemannsurfaces.......... ... 33
3.1.0.1. Conformal mapping.............. ..., 34
3.1.0.2. Riemannian surfaces and conformal structures............. 35
3.1.1. Classification of Riemann surfaces.............................. 37
3.1.1.1. The Riemann mapping theorem............................ 37
3.1.1.2.  Uniformization of simply-connected Riemann surfaces...... 39
3.1.1.3. Uniformization of arbitrary Riemann surfaces.............. 40
3.1.1.4. Universal covering ..............oooiiiiiiiniiiiiniai... 41
3.1.1.5. Construction of the universal covering...................... 43
3.1.1.6. Universal covering transformation group ................... 44

3.1.1.7.  Uniformization theorem for arbitrary Riemann surfaces .... 46

3.1.1.8. Automorphisms.............. ... ... ... 46
3.1.2. Moduli of Riemann surfaces.................................... 47
3.1.2.1. Surfaces with universal cover C.................coiiii... 47
3.1.2.2. Surfaces with universal cover C............................ 48
3.1.2.3. Fuchsian groups ...............oo i 50
3.1.2.4. Automorphic functions............ ... ... ... .. .. .. ... 51
Chapter 4. Teichmiiller space.........c.ciiiiiieriieinnnnnennn. 54
4.0.3. Geometric definition of quasiconformal mappings............... 54
4.0.4. Analytic definition of quasiconformal mappings ................ 57
4.0.5. Existence theorem ............ ... . ... ... ... ... 62
4.0.6. Quasiconformal mappings of Riemann surfaces................. 63
4.0.7. Quasiconformal deformation of Fuchsian groups................ 64
4.0.8. Complex dilatation on Riemann surfaces....................... 64
4.0.9. Universal Teichmiiller space.................................... 65



4.0.9.1. Metric on the universal Teichmiiller space.................. 66
4.0.10. Teichmiiller space.............ooiiiiiiii .. 68
4.0.11. Teichmiiller space as a subset of the universal space........... 69
4.0.12. Teichmiiller metric............ ... o i 71
4.0.13. Modular group. ... 71

Chapter 5. Complex and almost complex structure on the spheres 73

5.1. Quaternions and octonions. ............... ... ... .. 73
5.2.  An almost complex structure on the 2 and 6-sphere............... 74
5.3. Dimension of a composition algebra................................ 77
5.4. Composition algebras and vector products ........................ 77
5.5. The contraction of (,) ... ... 78
5.6. Complex structure on 2-dimensional manifolds.................... 82
Conclusion. .. ..ot i et re e 83



REMERCIEMENTS

I would like to express my sincere gratitude to my supervisor, Professor Paul
Gautbhier, for his support over the past two years. His knowledge, his enlighten-
ment and encouragement as well as his invaluable instructions, helped me to a
great extent, and made this thesis possible.

Also I wish to express my truly appreciation to the faculty of Mathematics
and Statistics at University of Montreal, my schoolmates and my friends, for their
helps and their information sharing.

Finally and most importantly, I wish to greatly thank my dear husband,
Mehran and my kind parents, for all of their encouragement, their patience and

their endless devotion.



INTRODUCTION

Around 500 BC, the Greek mathematicians led by Pythagoras realized the need
for irrational numbers in particular the irrationality of the square root of two.
Negative numbers were invented by Indian mathematicians around 600 AD, and
then possibly invented independently in China shortly after. In the 18th and 19th
centuries there was much work on irrational and transcendental numbers.

The earliest fleeting reference to square roots of negative numbers perhaps oc-
curred in the work of the Greek mathematician and inventor Heron of Alexandria
in the 1st century CE, when he considered the volume of an impossible frustum of
a pyramid, though negative numbers were not conceived in the Hellenistic world.
Complex numbers became more prominent in the 16th century, when closed for-
mulas for the roots of cubic and quartic polynomials were discovered by Italian
mathematicians.

After introducing real and complex vector spaces, we shall define complex
structures on manifolds. The name manifold comes from Riemann’s original
German term "Mannigfaltigkeit" which William Kingdon Clifford translates as
"manifoldness". Hermann Weyl gave an intrinsic definition for differentiable man-
ifolds in 1912. The foundational aspects of the subject were clarified during the
1930s by Hassler Whitney and others, making precise intuitions dating back to
the later half of the 19th century.

The notion of a complex manifold is a natural outgrowth of that of a dif-
ferentiable manifold. Its importance lies to a large extent in the fact that the
complex manifolds include the Riemann surfaces as special cases, and furnish the

geometric basis for functions of several complex variables.
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The problem of how to parametrize the variation of complex structures on
a fixed base surface originated with G.F.Bernhard Riemann. This problem has
spurred extensive investigations, and progress has been considerable in the area of
the theory of Riemann surfaces. Riemann’s Moduli space consists of the conformal
(biholomorphic) equivalence classes of Riemann surfaces.

One of Oswald Teichmiiller’s great contributions to the moduli problem was
to recognize that it becomes more accessible if we consider not only conformal
mappings but also quasiconformal mappings. In the end of the 1950s, Lars V.
Ahlfors and Lipman Bers developed the fundamentals of the theory of Teichmiiller
spaces.

The theory of Teichmiiller space gives a parametrization of all the complex
structures on a given surface. This subject lies in the intersection of many im-
portant areas of mathematics. These include complex manifolds, holomorphic
functions, Riemann surfaces, Fuchsian groups and complex analysis. Recently,
the theory of Teichmiiller spaces has begun to play an important role in string
theory.

String theory is a fundamental model of physics whose building blocks are one
dimensional extended objects (strings) rather than the zero dimensional points
(particles) that are the basis of the standard model of particle physics. String the-
orists are attempting to adjust the Standard Model by removing the assumption
in quantum mechanics that particles are point-like. By removing this assumption
and replacing the point-like particles with strings, it is hoped that string theory
will develop into a sensible quantum theory of gravity. Moreover, string theory
appears to be able to "unify" the known natural forces (gravitational, electro-
magnetic, weak and strong) by describing them with the same set of equations.
How do surfaces enter the picture? A string is 1-dimensional. As time varies, its
world-orbit is hence 2-dimensional, thus a surface. Teichmiiler theory is useful
in studying the physics of 2-dimensional space time. The 2-dimensional model
of space time is of interest to physicists, because it gives them a simpler context
in which to study complicated phenomena. The understanding so obtained will

hopefully yield insights into higher dimensional space-time.
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I hope to have whetted the reader’s appetite for more of this subject (Te-
ichmiiller theory), a subject that Lipman Bers has called "the higher theory of

Riemann surface."



Chapter 1

COMPLEX STRUCTURE ON VECTOR
SPACES

1.1. COMPLEX STRUCTURES ON VECTOR SPACES

Definition 1.1.1. If V is a real vector space, a linear map J : V — V such that
J? = —1I is called a complex structure on V.

Example 1.1.2. Let V be a complez vector space, then i is a complex structure
onV.

Remark 1.1.3. A complex structure on a vector space is an automorphism.

If J is a complex structure so J2 = —I. The function I is a bijection so
J? = Jo J is a bijection. If the composition of two functions is a bijection, then
it can be concluded that the first applied is injective and the second applied is
surjective. Here we have J o J, so J is injective and surjective.

The simplest example of a vector space over R is the trivial one: {0} which
contains only one element, 0, of R. Both vector addition and scalar multiplication
are trivial. A basis for this vector space is the empty set, so that {0} is 0-
dimensional vector space over R. The linear map J(0) = 0 is a complex structure
on R°.

R is a vector space over itself. Vector addition is just field addition and scalar
multiplication is just field multiplication. The identity element, 1, of R serves as

a basis so that R is a 1-dimensional vector space over itself.



Assume that R has a complex structure. So there is a linear operator
J: R — Rsuch that J®>= -1
In particular, this implies that:
J(J(Q)) =—-I(1) = -1. (1.1.1)
Let a denote J(1). Then from (1.1.1) and linearity, we have:
—-1=J(J(1)) = J(a) = aJ(1) = a®.

Thus a® = —1 and this is a contradiction. Hence R has no complex structure.
In linear algebra, linear transformations can be represented by matrices. If T
is a linear transformation mapping R™ to R™ and z is a column vector with n

entries, then:
T(Z)=A7T

for some m x n matrix A, called the transformation matrix of T

There is a linear transformation J from R? — R? by (z,y) — (—y,z). The

matrix representation of J is - and this is a complex structure on R2.
1 0

Theorem 1.1.4. There exists a complex structure on a real vector space if and

only if it is not of finite odd dimension.

PROOF. Let J be a complex structure on a real finite dimensional vector space. So
J? = —I. Consider that (—1)" is the determinant of —I which is the determinant
of J? that is (|J|?). Thus (—1)" = (|J|)? and so n is even. So R™ has no complex
structure when n is odd.

Every member of a vector space is a linear combination of the basis elements
and a complex structure is a linear map, so it is sufficient to define a complex
structure on the basis of a vector space.

Let ej, ez, €3, + ,ea, be a basis of the vector space R?". In order to define a

linear transformation J : R?" — R?" it is sufficient to define the effect of J on the
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basis. Set J(ex) = enik, J(€k4n) = —€x, kK =1,--- ,n. The matrix representation
Of J iS Onx-n —Inxn

Inxn O’nXTL
A consequence of the axiom of choice is that every vector space has a basis and

conversely, if B is an arbitrary set, a vector space with dimension |B| over a field
F' can be constructed as follows: Take the set F'(B) of all functions f : B — F.
These functions can be added and multiplied by elements of F', and we obtain
the desired F-vector space. A basis for F(B) would be given by the set of all

0 ifa#b,
functions fy(a) =

1 ifa=5b
These functions generate F'(B), because Vf € F(B)

f:B—=F

b — f;
we have f = Z'}ﬁge fifs,- They are also linearly independent: Let Zl}"iige o fy, =
0, so for every = = b; € B, we have Y o5, oy (z) = a;fi,(b;) = 0, s0 @; = 0.

Hence there exists a vector space having arbitrary cardinality.

Let V be a real vector space of infinite dimension m with basis B. We can see
the infinite number m as a mm = m+m. There exist vector spaces V; and V4, both
of dimension m, with bases C and D respectively. So the vector space V can be
represented as V = V; @ V;, and its basis B can be considered as a decomposition
{C, D}. Since C and D have the same cardinality, there is a bijection f : C — D,
do = f(cq) where C = {c,}, @ € & = |B|. Now we define a complex structure J
on the real infinite dimensional vector space V' as J(c,) = dy and J(d,) = —cq

whereaé&. O

1.2. ALL COMPLEX STRUCTURES ON VECTOR SPACES

If a vector space V has a complex structure J, then —J is also a complex
structure and if the dimension of V is greater than 0, then J is not equal to —J.
Thus the complex structure is always non-unique in a vector space of non zero
dimension. This does not depend on the dimension of V. It works also for infinite

dimension. So the complex structure on a vector space is not unique.
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Definition 1.2.1. The complezification V¢ of a real vector space V is the complex
vector space V¢ that is obtained from the real vector space V' by extending the field
of scalars.

The space V¢ is the set of expressions X + 1Y, where X,Y € V, with the
operations of addition and multiplication by complex numbers are defined as
follows:

(X1 +iY1)+ (Xo+1iY2) = (X1 + Xo) +i(V1 + Ya), Xi +iY), Xo +iYo € V©
(a+b)(X +1Y) = (aX —bY)+i(aY +bX),a+ibe C,X +iY € Ve

And since we just extend the field of scalars of a vector space,

V={)_ abi:0;€R,b; € basis of V}
finite
Ve={ Z (a; +10;)b; - a; +if; € C, b; € basis of V}

finite

={>_ aibi+i »_ Pibi: B € R,b; € basis of V}

finite finite

so the dimension of V¢ over C is equal to the dimension of V' over R, since every
basis of V' is a basis of V¢ over C.
Definition 1.2.2. A group G is said to act on a set X i.e. X is a G-set, when
there is a map ¢ : G x X — X such that the following conditions hold for all
elements x € X.

(1) ¢(e,z) = = where e is the identity element of G.

(2) ¢(g,d(h,z)) = ¢(gh,z) for all g,h € G.
For simplicity, we write ¢(g,x) = gz.

A group action G x X — X is transitive if it possesses only a single group
orbit, i.e. for every pair of elements = and y, there is a group element g such that
9T =1y.

Some elements of a group G acting on a set X may fix a point z. These group

elements form a subgroup called the isotropy group of z, defined by:

G:={g9€G:gz =z}
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When two points = and y are in the same group orbit, say y = gz, then the

isotropy groups are conjugate subgroups. More precisely, G, = gG,g~* .

heG, & hy=ys h(gz) =gz g 'hg(z) =z g 'hg € G, & h € gG.g~ L.

For any subgroup H C G, consider G/H = {aH : a € G} as a G-set, where
Vg € G, g(aH) = (ga)H € G/H.
Definition 1.2.3. Let S; and Sy be two G-sets. A map T : S; — S5 is a G-
morphism if

T(hs) = h(T's),Yh € G,Vs € S;.

If z and y are in the same orbit, G/G; ~ G/G,: Define a map

T:G/G, — G/G,

aGy = agGog™"

where G/G; = {aG; :a € G} and y = gz or G, = gG,g~'. We can easily check
that this map is a G-morphism because T'(h(aG,)) = T((ha)G;) = (ha)gG.g~! =
h(agGag™") = W(T(aGy)).

Because a transitive group action implies that there is only one group orbit,
if G acts transitively on X, then X is G-isomorphic to the quotient space G/G,
by

GG, —X
9G: gz

where G, is the isotropy group of z. The choice of z € X does not affect the
isomorphism type of G/G, because all of the isotropy groups are conjugate.
Theorem 1.2.4. An R-linear map L : Vi — V, is a C-linear map L : (V},J;) —
(Va, J2) if and only if LJ; = J,L.
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PROOF. Suppose L : V; — V5 is R-linear and LJ; = J,L. Since L is R-linear,
then

L(v+ w) = L(v) + L(w),Yv,w € Vi,
L((a + ib)v) = L(av + bJiv) = L(av) + L(bJ1v) = aL(v) + bL(J1v)

= aL(v) + bJa(L(v)) = (a + ib) L(v)

, 50 L is C-linear. Conversely, suppose L is C-linear. So L(Jjv) = L((i)v) =
(2)L(v) = J2L(v), that means LJ; = J,L. O

Corollary 1.2.5. L € Autr(V) is in Autc(V,J) if and only if LJ = JL or
L=JLJ™ or J=L"'JL.

Corollary 1.2.6. Let J, and J, be complex structures on V. An R-linear map
L:V =V isa C-linear map L : (V,J1) — (V, Jo) if and only if LJ, = JoL.
Corollary 1.2.7. L € Autg(V) is a C-isomorphism L : (V,J1) — (V, J2) if and
only if LJ, = J,L.

Theorem 1.2.8. The space A(R™) of all complex structures on a 2n-dimensional
real vector space is a G-set for GL(2n, R) which is G-isomorphic with the G-set
GL(2n,R)/GL(n,C).

PROOF. Define a map

GL(2n,R) — A(R™M)
A — A_IJ()A

Onxn _]an . 2n .
where Jy = is the standard complex structure on R*". This

I’nXTL Onxn

map is obviously well defined and it is surjective also: Let V¢ denote the com-
plexification of V. Let J be a complex structure on V. Since V and V¢ have the

same basis, the complex structure J on V extends its definition on V¢ by

J(v) = Jz + iJy,where v=z+iy,v € V- z,yeV.
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We can check that J remains linear and J? = —1I:

J*(v) = J(J(z +1iy)) = J(Jx + iJy) = J(Jz) + iJ(Jy) = —z + i(~y) = —v.
J(v1 +v2) = J((z1 + 1) + (22 + 1y2)) = J((z1 + z2) + i(v1 + 12))
= J(@1+ 22) +iJ (Y1 + y2) = (J(=1) +id (1)) + (J(22) + 3T (12))
= J(v1) + J(v2).
J(aw) = J((a + ib)(z + iy)) = J((az — by) + i(ay + bx))
= J(azx — by) + iJ(ay + bz) = aJz — bJy + iaJy + ibJz

= (a+ib)(Jz +1Jy) = aJ(v) where a = a +ib e C.
Since J2 = —I, J has eigenvalues \ = Fi:
Ju=>X = —v=J=J(Jv) = J(W) = v = N2 = —1.
Denote by E¥ the eigenspaces of J for F¢ respectively, and EF = Ker (I F1iJ):
z€Ker I -iJ)=(I—-iJ)(z)=0=iJz=z=>Jz=—iz=>z€ E,

ze€Ker [+i))=>(I+iJ)(z)=0=>iJz=—-z=Jr=iz=>z€E".

And also Ker (I ¥4J) = Range (I +1J):
T+i) (I —iJ)=T+iJ—iJ—2J2=0, #=—1, J2=—I,
so Range (I —iJ) C Ker (I +iJ) = E*. On the other hand, if v € E*, then:

| 1 o1 1 1. 1 1.
(I — zJ)(iv) =gv- ZJ(EU) =5V - EzJ'U =gv- 52(11}) =,

so Ker (I +iJ) C Range (I —iJ). Hence Ker (I +J) = Range (I —1J). The

other equality is similar.
We now have V¢ = Range (I —iJ) + Range (/ +iJ)=Et@PE".

We define the complex conjugation as the bijection

p: Ve — Ve

v > v

X+iY — X —3Y.
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This bijection is a group homomorphism:

pv+w)=v+w=T+T = p(v) + pw),

(M) = dv = (a + ib)(z + iy) = (az — by) + i(ay + bz) = (az — by) — i(ay + bz)
= (a —ib)(z — iy) = 2o = Ap(v).
The complex conjugation ¢ interchange E* and E~, ie. E~ = @(E*) and

E* = ¢(E™): Since V and V*° have the same basis and J inherits its definition
on V¢ from its definition on V, so Jv = J(z +iy) = Jz —iJy = JU. Let v € E+

be an eigenvector, i.e. Jv = . So, if v € E* then JU = Jv = tv = —i¥ so
ve E™.
Similarly, if v € E~ is an eigenvector, i.e. Juv = —iv then JT = Jv = —iv = 7 s0
v€ E*.

Let w; = uj +1v;, j = 1,--- ,m be a basis of E*. Since E~ = p(E*) = E¥, so

w;,j = 1,--- ,m generate E~. They are linearly independent too:

Let > 7, a;W; = 0. So 0 = D i W5 = Yo plajw;) = (3251 Tw;).

>From the definition of ¢, if v = z+¢y and p(v) = 0, then, since p(z+iy) = z—1y,
we have z =y =0 and so v = 0.

So ZT:l a;w; = 0, and because w;,j = 1,--- ,m are linearly independent @; =

0,j=1,---,m,andsoa;=0,5=1,--- ,m.

Hencew;,j =1, -+ ,m form a basis of E~ and dimE~= dimE*. We have already
shown that V¢ = E* @ E~ so dimV°=dimE~+dimE*=2n. Hence dimE*= n.

The vectors uy,--- ,un, v, -+ ,v,, where w; = u; +4v; j = 1,---,n, are lin-

early independent:

E?:l a;u; + Z?:l biv; =0, u; = ' y Ui =
= Z?:l a;u; + Z?:l biv, = Z?:l(% + %)wi + Z?:l(% - %)E =0
=a,=0,0=0,a=1,--- n.
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Also the vectors uy,- - ,un,v1,- - , v, generate V<

fveEtsov=> " aw; =>" a;u+ 1) = au + y ;. ,(a)v.

1=

fveE sov=3 . ,aW = a(w;— i) =3 0, aus + 3o, (—ia;)v;.

Ifv e Ve since Ve = EtY @ E~, so v can be generated by the vectors uy, -+, un, vy, - - -

too. Hence uy,- -+ ,un, vy, -+, v, form a basis of V¢. By the result of the defini-
tion 1.2.1, the basis of V¢ over C is the basis of V over R, so uy, - ,Upn, V1, - ,VUn

is the basis of V too.

Since w; = u; +14v;, 7 = 1,--- ,n is a basis of E* so w; = u; +1v; € E* is an
eigenvector and Jw; = tw; and Jw; = J(u; + iv;) = —v; + tu;. This shows that:
Ju]‘ = —vy, J’U]' = Uj;.

Let the linear transformation A : R>® — V be given by:
AC = (&uy — myvy)
=1

for ( = (&,7). It is easy to check that:

n n

JAC = J() (&us — njvy)) = Y (& Tu; — mdvy) = D _(=&v; — my5),
j=1 i=1 i=1

n

AJoC = A(—n,€) =) (=&, — nyuy).

=1
Hence JA = AJy and so J = AJ,A~L.

By defining action (A, J) — A~'JA, GL(2n, R) acts on A(R?*). So A(R?")
is a G-set for G = GL(2n, R) and the surjectivity of

GL(2n,R) — A(R™)

A — A7l JpA
shows that GL(2n, R) acts on the set A(R?") transitively. So A(R?"), the set of
all complex structures on R?", is isomorphic to the set GL(2n, R)/H where H is
the isotropy group GL(2n, R);. The choice of J does not affect the isomorphism
because there is only one group orbit and so all of isotropy groups are conjugate.
The isotropy group of Jo,Hj, = {A € GL(2n,R) : Jo = A7'JyA}, consists of
all matrices that commute with Jo. If we identify R?>" with C™ with z = (z,y)

corresponding to x + iy for z,y € R", we can have another form of corollary 1.2.5

» Un



14

in finite dimensional as: A € Autgr(R*") = GL(2n, R) is in Autc(C™) = GL(n,C)
if and only if AJ = JAor A = JAJ ' or J = A"'JA. So, Hy,, the isotropy
group of Jy is exactly GL(n, C).

(]

Let J be an arbitrary complex structure on a real vector space V. With such

a structure, V' becomes a complex vector space:

(a +1ib)v =av+bJv,(a+1ib) e C,ve V. (1.2.1)

Let B; be a basis of V over C then Bj is linearly independent i.e. if Zj’%iﬁ; o;b; =

0 the a; = 0,¥i. Let Y jeitenJb; = 0. By 1.2.1 Y hS2 (ioy)b; = 0. And
because B, is linearly independent, so ia; = 0 and o; = 0,Vi. So J(B) is
linearly independent. The set {B;, J(B;)} is linearly independent too, because
if Zl}‘iig;(aib,- + 3;Jb;) = 0, by 1.2.1 Zl}'iig;(ai +i06;)b; = 0. And because B; is
linearly independent, so «; + i6; = 0 and so o; = 0, 5; = OVi.

Since B is a basis of V over C then Span(B;) = V over C so
V= {Zﬁm.te(:vi + 1y;)b; = Zﬁm.te z;b; + y:Jb; c x; + 1y; € C and b; € By}
in other words:
V= {Zfinite zib; + 4 JJb; : i,y € R, b; € By and Jb; € J(By)},
so Span({B;,J(B1)}) = V over R. Therefore if B, is a basis of V over C then
{Bs, J(B1) = By} forms a basis of V over R.

Let V; and V; be real vector spaces with respective complex structures J;, and
J2. Then (W4, J;) and (Vs, J») are complex vector spaces. The morphisms between
real vector spaces are R-linear maps and the morphisms between complex vector
spaces are C-linear maps. And also every C-linear map is R-linear.

Theorem 1.2.9. The set of all complex structures on an infinite dimensional real

vector spaces A(V') can be identified with the Autp(V)-set Autr(V)/Autc(V, J).

PROOF. Let J be an arbitrary complex structure on an infinite dimensional real
vector space V. So (V, J) is a complex vector space.

Let B = {b,},a € & = |B|, be a basis of the vector space V over C. Then
{B,JB = C} is a basis of V over R.
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We know by the end of theorem 1.1.4 that if there was a decomposition of
the basis of a vector space into two set with the same cardinality, so we could
consider a bijection f : B — C by by — ¢, where C = {c,},a € & = |C| =B,

and we could define a complex structure Jy on the vector space V:
Jo(ba) = f(ba) = Cay Jo(Ca) = —f Y (ca) = —bg, € Q.

If we take a bijection between B and C as f then J(by) = f(by) = ca = Jo(ba)
and J(c,) = J(J(ba)) = —ba = Jo(ca) so J = Jy. If we take another bijection
between B and C as f # g : B — C, there is a map ¢ : C — C such that f = ¢g.
We define ¢ = JJ; ' € Autr(V). So J = ¢J;.

So Autg(V) acts on A(V) transitively. By 1.2.1, we see that J corresponds
to multiplication by ¢, so the isotropy group Autg(V);, that is all R-linear map
that commute with J, is all Complex linear maps Autc(V,J). Hence the set of

all complex structures on an infinite dimensional real vector spaces A(V) can be

identified with the Autg(V)-set Autgp(V)/Autc(V, J). O

1.3. THE EQUIVALENCE CLASS OF COMPLEX STRUCTURES ON VEC-

TOR SPACES

Definition 1.3.1. Two complex structures J; and J, on a real vector spaces V
are equivalent if there exist a C-isomorphism L : (V, ;) — (V, J3).
Corollary 1.3.2. J; ~ Jy <= 3L € Autg(V) such that J, = LJ, L™},

The following theorem results easily from combining the previous theorems.

Theorem 1.3.3. All complex structures on a real vector space are equivalent.



Chapter 2

COMPLEX MANIFOLDS

2.1. DIFFERENTIABLE MANIFOLDS

Let M be a Hausdorff topological space such that any point of M admits a
neighborhood homeomorphic to an open set in R™: roughly, such a space is ob-
tained by gluing together open subsets of R". We decide to carry the differentiable
structure from the open subset of R™ onto these neighborhoods in M.
Definition 2.1.1. A C? atlas on a Hausdorff topological space M is given by an
open cover U;, i € I of M and a family of homeomorphism ¢;: U; — §; where
the Q; are open subsets of R™ such that for any i and j in I, the homeomorphism
¢; o ¢! (transition functions) is in fact a CP diffeomorphism from ¢;(U; N U;)
onto ¢;(U; N U;).

Two C? atlases for M, (U;, ¢;) and (V},9;), are CP equivalent if their union
is still a CP atlas, that is if the ¢; o d;j‘l are C? diffeomorphisms from ;(U; N V})
onto ¢;(U; N V).

A differentiable structure of class C? on M is an equivalence class of consistent
C? atlases. A differentiable manifold will be a connected Hausdorff topological

space, together with a differentiable structure.

2.2. COMPLEX MANIFOLDS

A real (differentiable) manifold is a topological space which is locally real
Euclidean. We shall now introduce complex manifolds, which are locally complex

Euclidean. Indeed, to define a complex manifold of complex dimension n, we
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copy the definition of a real manifold of real dimension n. The only difference is
that, instead of requiring the €; to be open sets in real Euclidean space R", we
require that they be open sets in complex Euclidean space C". We may speak of
complex coordinates, charts, atlases etc. Thus, a complex manifold of complex
dimension n can be considered as a real manifold of real dimension 2n. Thus,
it would seem that the study of complex manifolds is merely the study of real
manifolds in even real dimensions. However, when considering complex manifolds,
we usually require a very high level of smoothness. A complex atlas A is said to
be a holomorphic atlas if the changes of coordinates ¢;0¢; ! are biholomorphic. A
holomorphic structure on M is an equivalence class of holomorphic atlases on M.
Often, we shall give a holomorphic atlas U for a manifold and think of it as the
equivalence class of all structures which are biholomorphically compatible with it.
Of course we shall associate the same holomorphic structure to two holomorphic
atlases U and V if and only if the two atlases are compatible. Since the union
of compatible holomorphic atlases is a holomorphic atlas, for any holomorphic
atlas A, there is a maximal holomorphic atlas compatible with an atlas A. This
is merely the union of all holomorphic atlases compatible with A. Thus we may
think of holomorphic structure on M as a maximal holomorphic atlas. It seems
we now defined a holomorphic structure on M in three ways: as an equivalence
class of holomorphic atlases, as a holomorphic atlas which is maximal with respect
to equivalence or simply as a holomorphic atlas U, meaning the equivalence class
of U or the maximal holomorphic atlas equivalent with U. All that matters at
this point is to be able to tell whether two holomorphic structures on M are the
same or not. No matter which definition we use, we shall always come up with
the same answer. That is, two structures will be considered different with respect
to one of the definitions if and only if they are considered different with respect
to the other definitions.

A complex holomorphic manifold is a connected, Hausdorff topological space
M as above, together with a holomorphic structure. Since complex manifolds
of dimension n of smoothness less than holomorphic are merely real manifolds

of dimension 2n, we shall consider only holomorphic complex manifolds. Thus,
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when we speak of a complex structure, we shall mean a holomorphic structure and
when we speak of a complex manifold, we shall always mean a manifold endowed
with a complex holomorphic structure. A Riemann surface is a complex manifold
of dimension one. Thus, complex manifolds are higher dimensional analogs of
Riemann surfaces.

Definition 2.2.1. Let M and N be complex manifolds with atlases A and B
respectively. A map f: M — N ia said to be holomorphic if

Yo fop~l:g(UNfTHV)) — p(V)

is holomorphic for all (U,¢) € A and (V,y) € B. If f is a homeomorphism and
both f and f~' are holomorphic, we say that f is biholomorphic and that M and

N are biholomorphic or biholomorphically equivalent.

2.3. TANGENT SPACE

2.3.1. Tangent space to a real manifold

Loosely, the tangent space T(X) of a real manifold X of dimension n is the

set of formal expressions

B 0 J 1
T(X)—{ala—zl—i——i-ana—x:aJEC (X)},

which is the space of smooth vector fields on X. We shall define the tangent
space T,(X) of X at a point p € X and we shall set
T(X) = | T(X).
pEX

More precisely, let X be a smooth (real) manifold. If U is an open subset of
X, we denote by €(U) the set of smooth functions on U. If p € X, let us say
that f is a smooth function at p if f € ¢(U) for some open neighborhood U of p.
Two smooth functions f and g at p are said to be equivalent if f = g in some
neighborhood of p. This is an equivalence relation and the equivalence classes are
called germs of smooth functions at p. For simplicity, we shall denote the germ
of a smooth function f at p also by f. Denote by ¢, the set of germs of smooth

functions at p. The set ¢, is an R-algebra.
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A derivation of the algebra €, is a vector space homomorphism
D:e,— R

such that
D(fg) = D(f) - g(p) + f(p) - D(g),

where g(p) and f(p) are the evaluations at p of the germs g and f at p.

The tangent space of X at p, denoted by T,,(X), is the vector space of deriva-
tions of the algebra ¢,.

Since X is a smooth manifold, there is a diffeomorphism h of an open neigh-

borhood U of p onto an open set U7 C R™:
h:U— U,
and if we set h*f(z) = f o h(z), then h has the property that, for open V C Uy,
h* :e(V) — e(h™Y(V))
is an algebra isomorphism. Thus ~* induces an algebra isomorphism on germs:
h* : enp) — €p,
and hence induces an isomorphism on derivations:
hy : Tp(X) = Thep) (R™).

Indeed, if D € T,(X) we define h.(D) € Ty,)(R™) as follows: if f € epp), we set
h«(D)f = D(h" f).
0 0

Fix a € R*. Then {7—,..., =} are derivation of ¢,(R") and form a basis
6:51 81L'n
of T,(R™).

2.3.2. Tangent space to a complex manifold

Having discussed the tangent space to a smooth manifold, we now introduce
the (complex) tangent space to a complex manifold. Let p be a point of a complex
manifold M and let O, be the C-algebra of germs of holomorphic functions at
p. The complex or holomorphic tangent space T,(M) to M at p is the complex
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vector space of all derivations of the C-algebra O,, hence the complex vector

space homomorphisms D : O, — C such that

D(fg) = f(p) - D(g) + D(f) - 9(p)-

In local coordinates, we note that T,(M) = T,(C") and that partial derivatives
0

{'8_'2'1'7 P
T,(M) to a complex manifold at a point p € M, we define the complex tangent

space T(M) of M:

3}
, 87} form a basis of T,(C"™). Having defined the complex tangent space

T(M) = | T,(M).

pEM
2.4. ALMOST COMPLEX STRUCTURE

2.4.1. Almost complex structure

Let M be a differentiable manifold of dimension 2n. Suppose that J associates
to each z, a complex structure J, : To(M) — T(M) for To(M), ie. J2 = —1,
where I, is the identity isomorphism acting on T,(M).

We also suppose that J, varies differentially with z. This means that if z is a

local coordinate in R™ and A, is matrix representing J, with respect to the basis
{ 0 0

Or," " Oz,

Then J is called an almost complex structure for the differentiable manifold

}, then the coefficients of A, vary smoothly with z.

M. If M is equipped with an almost complex structure J, then (X, J) is called
an almost complex manifold.

An almost complex structure J on M defines a complex structure in each
tangent space T,(M). As we have shown, dimension of T,,(M) as a vector space
is even and dimension of M is equal to dimension of T(M). So every almost
complex manifold is of even real dimension.

To show that every complex manifold carries a natural almost complex struc-

ture, we consider the space C™ of n-tuples of complex numbers (zi, ..., 2,) with

zj = zj+iy;, 7 = 1,...,n. With respect to the coordinate system (z1, ..., Zn, y1, - . .

we define an almost complex structure J on C™ by

0 0 0 0

— )V =— J(—)=——,9=1 ... n.

;yn)
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2.4.2. Differential forms
Let M be a one dimensional complex manifold. A 0—form on M is a function

on M. Al— formw on M is an ordered assignment of two continuous functions

f and g to each local coordinate z = (z + iy) on an open set U in M such that
fdz + gdy

1s invariant under coordinate changes; that is, if 2’ is another local coordinate on
an open set V in M and the domain of 2’ intersects non trivially the domain of

z, and if w assigns the functions f’ and ¢’ to 2/, then using matrix notation
g g g

FE _ (8 o) (@) (2.4.1)
g'() % % g(2(2"))

on z(UNV). The 2 x 2 matrix appearing in 2.4.1 is, of course, the Jacobian
matrix of the mapping 2’ — 2.
A 2~ form on M is an assignment of a continuous function f to each local

coordinate z such that

fdz A dy

is invariant under coordinate changes; that is, in terms of the local coordinate 2’

we have
! ! !/ a(a:7 y)
fi(Z') = f(z(z ))3(:1:’,y’) (2.4.2)
where aa((;,’i,)) is the determinant of the Jacobian. Since we consider only holomor-

phic coordinate change 2.4.2 has the simple form

dz 2.

dz'

F'(#) = £(2(2) |

Many times it is more convenient to use complex notation for differential

forms. Using the complex analytic coordinate z, a 1 — form may be written as
u(z)dz + v(2)dz,

where

dz = dz +1idy, dz = dx — idy (2.4.3)
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and f =u+ v and g = i(u — v). It follows from 2.4.3 that
dz Ndz = —2idz A dy.
Similarly, a 2 — form can be written as
h(z)dz A dz.

Remark 2.4.1. We have made use of the exterior multiplication of forms. This
multiplication satisfies the conditions: dr Adz = 0 = dyAdy, drAdy = —dyAdz.
The product of a k — form and anl— form is a k+1— form provided k+1 < 2
and is the zero form for k+1 > 2.

For C? forms, that is, forms whose coefficients are C? functions, we introduce

the differential operator d. Define
df = frdz + fydy
for C?! functions f. For the C' 1 — formw, we have by definition
dw = d(fdz) + d(gdy) = df ANdz + dg AN dy
= (fedz + fydy) A dz + (gzdz + gydy) A dy
= (g — fy)dz A dy.
For a 2 — form ) we, of course, have by definition
dQ = 0.
The most important fact concerning this operator is that
d* =0,

whenever d? is defined.
Using complex analytic coordinates we introduce two differential operators 0

and 9 by setting for a C? function f,
8f = f.dz, 8f = fodz,
and setting for a C! 1 — form w = udz + vdz,

Ow = OuNdz+ 0vAdzZ =v,dz A dz,
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Ow = Ou Adz + Ov A dZ = uzdZ A dz = —uzdz A dZ,

where
1 . 1 )
fz = E(fz - 'Lfy);fEZ i(fz +2fy)-

For 2 — forms, the operators & and 0 are defined as the zero operators.
Remark 2.4.2. The equation fz = 0 is equivalent to the Cauchy-Riemann equa-
tions for Ref and Imf, that is, fz =0 if and only if f is holomorphic.

On a complex manifold, we have defined operator 0 and 0 which act on forms.

These operators satisfy:

d=0+79,
P=00+00=9 =0.

In the next section, we characterize integrable almost complex structures in this
way. Namely, for a given almost complex structure J, we define operators d; and
d;. We shall present the Newlander-Nirenbeg theorem which asserts that J is

integrable if and only if these operators satisfy the preceding relations.

2.4.3. Complex and almost complex structure

On an arbitrary almost complex manifold, one can always find coordinates for
which the almost complex structure takes the above canonical form at any given
point p. In general, however, it is not possible to find coordinates, so that J takes
the canonical form on an entire neighborhood of p. Such coordinates, if they exist,
are called local holomorphic coordinates for J. If around every point M admits
local holomorphic coordinates which induce J, then J is said to be integrable.
The local holomorphic coordinates patch together to form a holomorphic atlas
for M giving it the structure of a complex manifold. A complex structure can
then be defined as an integrable almost complex structure.

The existence of an almost complex structure is a topological question and is
relatively easy to answer. The existence of an integrable almost complex struc-
ture, on the other hand, is a much more difficult analytic question. For example,
it has long been known that S® admits an almost complex structure, but it is still

an open question as to whether or not it admits an integrable complex structure.
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Given an almost complex structure there are several ways for determining
whether or not that structure is integrable. Let J be an almost complex struc-
ture on a manifold M, one can associate to J certain operators 8; and 8; on forms.
In case, J is integrable, then these operators are just the usual operators 0 and
0 arising from the complex structure associated to J. We may now state the
Newlander-Nirenberg theorem which characterizes integrability of almost com-
plex structures. The Newlander-Nirenberg theorem states that the following are
equivalent:

- J is integrable. (i.e. M is a complex manifold.)

- The Nijenhuis tensor, defined by
N; = [X,Y]+ J([JX,Y] + [X,JY]) — [JX, JY]

vanishes for all smooth vector fields X and Y. (i.e. An almost complex structure
is said to be integrable if it has no torsion.)

The Lie bracket of vector fields X and Y, [X,Y], is also a vector field, defined by
the equation [X,Y](f) = X(Y(f)) — Y(X(f)).

- We can decompose the exterior derivative as d = 9; + 9.

-9, =0.

2.5. THE EQUIVALENCE CLASS OF COMPLEX STRUCTURES ON MAN-
IFOLDS
Proposition 2.5.1. A mapping f of an open subset of C™ into C™ preserves the

almost complex structures of C* and C™, i.e. f,oJ = Jo f,, if and only if f s

holomorphic.

PROOF. Let (ws,...,w,) with wy = ux + vy, k = 1,...,m, be the natural coor-
dinate system in C™. If we express f in terms of these coordinate systems in C™

and C™:

Up = Uk(T1, -, Ty Y1y - Yn)s Uk = Uk(T1y e o, s Y1y - -+ 1Y),
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where £ = 1,...,m, then f if holomorphic when and only when the following
Cauchy-Riemann equations holds:

ous o _ o Du  ow

Or; Ody; Oy Ox;
where k=1,...,mand j=1,...,n.

On the other hand, we have always (whether f is holomorphic or not):

0 T, Oup., O =, Ou.., 8

0 8uk a'UL
f*(ayj) Z ay, (9u,1~ Z By] ka

k=
for j =1,...,n. From these formulas and the definition of J in C™ and C™ given
above, we see that f, o J = Jo f, if and only if f satisfies the Cauchy-Riemann
equations.

g

To define an almost complex structure on a complex manifold M, we transfer
the almost complex structure of C™ to M by means of charts. Proposition 2.5.1
implies that an almost complex structure can be thus defined on M independently
of the choice of charts.

Definition 2.5.2. An almost complezx structure J on a manifold M is called
a complex structure if M is an underlying differentiable manifold of a complex
manifold which induces J in the way just described.

Let M and M’ be almost complex manifolds with almost complex structures
J and J/, respectively. A mapping f : M — M’ is said to be almost complex
or complex linear with respect to the given complex structures on the tangent
spaces, if J' o f, = f, o J. In particular, two almost complex structure on the
same complex manifold coincide if the identity mapping is almost complex. From
proposition 2.5.1 we obtain:

Proposition 2.5.3. Let M and M/ be complex manifolds. A mapping f: M —
M7 1s holomorphic if and only if f is almost complex with respect to the complex

structures of M and M.
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In particular, two complex manifolds with the same underlying differentiable

manifold are identical if the corresponding almost complex structures coincide.

2.5.1. Pseudoholomorphic curves

We can specify a plane curve in two different ways: either as the set of solution
of an equation f(z,y) = 0 or via a parametrisation z = z(t), y = y(t). For exam-
ple, we can specify a circle by the equation 2%+ y2 = 1 or by the parametrisation
T = cost, y = sint.

We replace the real variables z, y above by complex variables z, w and con-
sider complex or holomorphic curves in C2. Thus the same equation 22 4+ w? = 1,
for example, describes such a holomorphic curve. We can consider parametrised
holomorphic curves z = z(7), w = w(7) where z(7) and w(7) are holomorphic
functions of a complex variable 7. More generally we may consider holomorphic
curves in complex manifolds, parametrised by holomorphic maps from Riemann
surfaces. A Riemann surface is a complex manifold of dimension one. The details
will come in chapter 3.

A pseudoholomorphic curve is just the natural modification of the notion of
holomorphic curve to the case when the ambient manifold is almost complex.
That is, we consider a Riemann surface ¥ with complex structure j, an almost
complex manifold (M, J), and a differentiable map f: ¥ — M such that for each

o € ¥ the derivative

dfe: ToX — TyoyM

is complex linear or almost complex with respect to the given complex structures
on the tangent spaces.

The classical case occurs when M and ¥ are both simply the complex number
plane. In real coordinates

1 0

and

du du

df = dz dy
f=\a a
dz dy
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where f(z,y) = (u(z,y),v(z,y)). After multiplying these matrices in two differ-

ent orders, one sees immediately that the equation
Jodf =dfoj

is equivalent to the classical Cauchy-Riemann equations

du _ dv dv du

dr  dy’ dz dy
2.6. CR STRUCTURE

2.6.1. The observation of Poincaré

Any two real analytic curves in C! are locally equivalent: Given points p and
g on the curves I'; and I'y there are open subsets of C!, U, containing p and U,
containing g, and a biholomorphism ®: U; — U, with ®(U;NT"}) = UsNTy. This
may be taken as a very weak form of the Riemann mapping theorem. Poincaré
showed that the analogous result does not hold in C%. Namely, let s and S be
real analytic surfaces of real dimension three in C2. In general, there will not
be a local biholomorphism taking one to the other. The Poincaré proof uses the
fact that a function on a hypersurface is the restriction of a holomorphic function
only if it satisfies a certain partial differential equation.

Let the hypersurface be written as a graph

s={(z1+ iy, T2 +1y2) : T1 = O(Y1,Z2,2)}

and let F'(y;,Z2,y2) be the function on s. If there exists a holomorphic function

f(z1,22) of z; = x; + iy; and 2y = x5 + 1y, such that

F(y1,z2,y2) = f((y1, T2, y2) + iy1, T2 + 1y2)

SO
oF _ of . OF _of
ayl - azl(¢y1 +7‘)7 85 - azl z2*
Let

0 , 0
L—%B_yl = (y, ‘H)%-

Thus LF = 0.
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We consider two surfaces

s={x; = d(y1,72,92)}, S={Xi=2(;, X, Y2)}.

For s and S to be locally equivalent we need to find three real functions Y;, X5, Y
of the variables (y1,z2,y2) such that both f; = ®(Y;,X,,Ys) +4Y; and f, =
Xy + Y5 are the restriction of holomorphic functions. That is, we must solve for

17=12
0 ) 0
¢z2(y1>$27y2)ay1 - (7‘ + ¢y1 (yl)x27y2))65 f] =0.

We have four real equation for three real unknowns. Thus solutions usually do
not exist.
Since not all hypersurfaces are locally equivalent, it is natural to seek invari-

ants which allows us to distinguish one from another.

2.6.2. CR manifolds

Let (21,...,2,) be the usual coordinates for C™ and (z1,¥1,...,%n,yn) the
corresponding coordinates for R?". We define the first-order partial differential
operator o _ X 0 i 0 ) and its conjugate operator 9 _ 3 0 +z'i)

P 8z; 2'0z; Oy jugate op 0z, 2'0z; Oy,

A function F'(2) = f(z,y) of one complex variable is holomorphic if and only
0 0

if Fr f =0. We may consider a—zJ and 8?] as complex vector fields.
If V is a vector space over the real numbers, then C ® V' is the corresponding

vector space over the complex numbers. If {vy,...,v,} is a basis for V then

C’®V={iaj'uj c o € C}
j=i
C ® V is called the complexification of V.

Consider a manifold M and the tangent space T,M to M at a point p. The
tangent bundle is given by T M = Up T,M and the complexified tangent space
by CQTM=,CoT,M.

When M is R*™, we have as a basis for TM and CQ T M

(00 0 o
axl’ayl,”.,axn’ayn
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which yields a second basis for C ® T M

LI N T
EERERR ol R
We have seen that there is a differential operator L defined on M3 C C? with

the property that Lf = 0 if f is the restriction to M of a holomorphic function.
So L may be considered as the induced Cauchy-Riemann operator. We shall soon
see that for M?"*! C C™*! there are such induced Cauchy-Riemann operators.
This is what is abstracted as the definition of the CR manifolds. To explain this,
let us see another definition of the almost complex structure of C™**.
Definition 2.6.1. Let M be a manifold and let V be a subspace of C ® T M.
Then (M,V) is an almost complex manifold if

VNV ={0}, VeV=CeTM.

Set dimc V' = n; it follows that dimg M = 2n.
If M is a complex manifold then the underlying almost complex manifold is

given locally by choosing complex coordinates and setting

V = Linear spanc{=— =il a——az;n}

This subspace is independent of the choice of coordinates since it is preserved
by a holomorphic transformation. We use L € V' as an abbreviation for “L is a
section of V' over an appropriate set”.

Note that a function f is holomorphic if Lf =0 for all L € V. So V is the
space of Cauchy-Riemann operators.

We had another definition of an almost complex manifold, using an isomor-

phism J: TM — T M where J? = —Id. If M is a complex manifold, then the

underlying almost complex manifold is given by

0 0 0
J=)=—t—=, J(7—)=i—.
((9Zk ) : (9Zk ' ( 82;; ) : 8Zk
Again, J is independent of the choice of coordinates. For if z; = ¢(wy, .. ., W) 18

a change of coordinates, and if J is defined using z, then

0\ _ 8¢J 3¢J _. 0
J(awk) B Z Owy, 6‘, Z 8wk azj B lawk
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and in the same way

(e i

Bwk 8@;
So J coincides with the operator defined using w.
Note that J is real in the sense that it provides a map of T' M to itself, Since,

if X is a real tangent vector then:

o _ 0
X = Z(Olja—zj + aja_z—]-)

and
JX = Z(m"a% - a—ja%_).

So JX is also a real tangent vector.

The two definition of almost complex manifolds are equivalent.

For given (M,V), we define J: C® TM — C ® T M by letting V and V
be its eigenspaces corresponding to the eigenvalues —¢ and 7 respectively. Such a
J restricts to a map of T M to itself and satisfies J2 = —Id. Conversely, given
J:TM — T M with J2 = —Id, we extend J linearly to a map of C® T M to
itself and let V' be the eigenspace corresponding to the eigenvalue —:.

Let X be any real tangent vector space. Note that
J(X +iJX)=—i(X +iJX).

Thus V={X+iJX : X e T M}.
We have seen that not every almost complex manifold comes from some com-
plex manifold. A necessary condition for an almost complex manifold to be

complex is that

V,Vjc V.
Consider X, Y € V where X = a i and Y = b i so by definition of Lie
) - ka_Zk == ka_Zk, Yy
bracket
d 8bk 8ak 0
Y= (X(b)-Y — =|a;— —bj— | —.
[X: ] ( ( k) (ak))az—k <aJaz—j b] 82;) aa

In terms of J this means

(X, JY] + [JX,Y] = J{{X,Y] - [JX, JY]}.
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This is equivalent to
J([X,JY]+ [JX,Y]) = [JX,JY] - [X,Y]

that is the Nijenhuis tensor, that we have already seen.
Let M?+1 be a submanifold of C**!. We show how each of our definitions
of an almost complex structure on C™*! leads to an induced structure on M and

then that these two included structures are essentially the same.

We set
H(C l) = Linea'l spanc{— .. } C C ® TC 1
8_17 B 1

and define H(M) by
H(M)=HC"™)YNC®T M.
We denote H(M) by V. So
vnV=/{0}.

Note that we Vifw =) ak%k and in addition w is tangent to M.
Definition 2.6.2. A complex vector W is tangent to M if the real vectors Re W
and ImW are tangent to M.

We also could use the first definition of an almost complex manifold to define
the structure induced on M?"*! C C"*!. To do thiswelet H =TMNJT M

and consider the restriction to H of J. We have
HcCcTM, dimgH=2n, J:H—H, J>=-Id.

Since the almost complex structure on C™"*! is complex, the induced structure

on M defined by H(M) satisfies
V,V]c V.

Note that a vector W is in H if both W and JW are tangent to M. In the
structure on M defined using H=TMNJT M, X and Y in H satisfy

[JX,Y]+[X,JY] e H

and

J{JX,Y])+[X,JY]} = [JX, JY] - [X,Y].
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Definition 2.6.3. (M, V) is a CR manifold if dimgpM = 2n+1, V is a subspace
of C®T M with dimcV =n, VNV = {0} and [V,V] C V.
Definition 2.6.4. (M, H,J) is a CR manifold if dimgM = 2n+ 1, H is a
subspace of T M with dimpH = 2n, J: H — H and J? = —Id.

If X and Y arein H, then so is [JX,Y]+[X, JY] and J{[JX,Y]+[X, JY]} =
[JX,JY] - [X,Y].
Remark 2.6.5. The CR refers to Cauchy-Riemann because for M C C™*', V
consists of the induced Cauchy-Riemann operators. That is, a function f on M
can be the restriction of a holomorphic function on an open subset of C™*! only
if Lf =0 for all sections L of V.

Let us show that the two definitions of CR structures are equivalent. Given
V we choose some basis {L1,...,L,} and note that V. NV = {0} implies that
{ReLy,...,ImL,} are linearly independent. Set H equal to the linear span over

R of this set and define J by
J(Re Ly) =Im Ly, J(ImLy)=—RelLy.

H does not depend on the choice of basis. The map J extends to a complex linear
map of C ® H to itself with V as its —i eigenspace and V as its +i eigenspace.
So J also is independent of the choice of basis. The integrability condition for J
follows from that for V.

Given H and J, extend J to a complex linear map of C ® H to itself and let
V be the —i eigenspace. So VNV = {0}. And the integrability condition for J

implies the one for V.



Chapter 3

MODULI SPACE

3.1. RIEMANN SURFACES

A Riemann surface is a one complex dimensional connected complex analytic
manifold, that is, a two real dimensional connected manifold M with a maximal
set of charts {Uy, 2o Jaca On M, that is, the {Uy}aeca constitute an open cover of

M and

20: Uy — C

is a homeomorphism onto an open subset of the complex plane C such that the

transition functions
fop = 240 zElz 28(Up NUg) — 24(Us N Up)

are holomorphic whenever U, N Uz # 0.

Example 3.1.1. The simplest example of a Riemann surface is the complex plane
C. The single coordinate chart (C,id) defines the Riemann surface structure on
C.

Given any Riemann surface M, then a domain D (connected open subset)
on M is also a Riemann surface. The coordinate charts on D are obtained by
restricting the coordinate charts of M to D. Thus, every domain in C is again a
Riemann surface.

The one point compactification, C' U {0}, of C (known as the extended com-

plex plane or Riemann sphere) is the simplest ezample of a closed (= compact)
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Riemann surface. The charts we use are {Uj, z;} ;=12 with
U1 = C

Uy = (C\{0}) U {oo}
and
z2(z)=2, zelU
1
29(z) = = 2 € U,.

The two non trivial transition functions involved are

fist C\0} = C\{0}, & #5,j=1,2
with
fisl) = =

3.1.0.1. Conformal mapping

Suppose that an arc y with the equation z = 2(t), @« < t < §, is contained
in a region 2, and let f(z) be defined and continuous in 2. Then the equation
w = w(t) = f(2(t)) defines an arc v in the w-plane which may be called the image
of .

Consider the case of an f(z) which is holomorphic in Q. If 2/(¢) exists, we find

that w'(t) also exists and is determined by

w'(t) = f'(2(1)Z(2).
We will investigate the meaning of this equation at a point zy = z(ty) with

(o) # 0 and f'(z) # 0.
The first conclusion is that w'(ts) # 0. Hence ' has a tangent at wy = f(20),

and its direction is determined by
argu!(to) = arg f'(z0) + arg # (to).

This relation asserts that the angle between the directed tangents to v at zo and
to 7 at wp is equal to arg f'(z). It is hence independent of the curve 7. For

this reason curves through z; which are tangent to each other are mapped onto
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curves with a common tangent at wg. Moreover, two curves which form an angle
at zp are mapped upon curves forming the same angle, in sense as well as in size.
In view of this property the mapping by w = f(z) is said to be conformal at all
points with f'(z) # 0.
A map
f:M—N
between Riemann surfaces is called conformal if for every local coordinate (U, z)

on M and every local coordinate (V,{) on N with UN f~!(V') # 0, the mapping
(ofozt:2(UNfH(V)) = ¢(V)

is conformal (as a mapping from C to C).

3.1.0.2. Riemannian surfaces and conformal structures

Suppose that a Riemannian metric ds is given on a real two-dimensional real

manifold M. This metric is represented as
ds® = Edz® + 2F dzdy + G dy?

on a coordinate neighborhood (U, (z,y)) of M. Setting z = x + iy, we see that it

is written in the form
ds® = )| dz + udz |?, (3.1.1)

where A is a positive smooth function on U and p is a complex valued smooth

function with | 4 |< 1 on U. Actually, A and p are given by

A s i(E+G+2\/EG—F2),

 E-G+2F
P ErGrovECG-F°

Local coordinates (u,v) on U are said to be isothermal coordinates for ds? if

ds? is represented as
ds* = p(du® + dv?)

on U, where p is a positive smooth function on U. The complex coordinate

w = u + v is also called an isothermal coordinate for ds?.
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Since an isothermal coordinate w for ds? satisfies
’Ll)—

pldwl= plw, [’|dz+—dz *,
2z

comparing with 3.1.1, we conclude that an isothermal coordinate w for ds® exists
if the partial differential equation

Jw ow

5z "oz

has a diffeomorphic solution w. This equation is called a Beltrami equation.
We shall see in chapter 4 that such a solution w always exists provided that
| & lloo< 1. Hence for a system of coordinate neighborhoods {(Uj;, (z;,v;))}ies
on M, there exists an isothermal coordinate w; on each U;. {(U;, w;)};es define
a complex structure on M. Denote by R the Riemann surface obtained in this
way. The complex structure on R may be called the conformal structure induced
by the Riemannian metric ds?.

For oriented 2-dimensional Riemannian manifolds (M, ds?) and (N, ds?), an
orientation preserving diffeomorphism f: M — N is a conformal mapping if the
pull back of ds? by f is equal to ezp(p)ds® on M, where g is a real valued smooth
function on M. Intuitively, it means that the angle, measured by ds?, between any
smooth curves c¢; and ¢; on M equals the angle, measured by ds?, between f(c;)
and f(cp) on N. We say that (M, ds?) and (N, ds?) are conformally equivalent or
have the same conformal structure if there exists a conformal mapping between
them.

In the case of dimension 2, the uniqueness of the representation 3.1.1 leads to
the following theorem.

Theorem 3.1.2. Let R and S be Riemann surfaces induced by oriented 2-dimensional
Riemannian manifolds (M,ds?) and (N,ds?), respectively. Then f: (M,ds?) —
(N, ds?) is conformal if and only if f: R — S is biholomorphic.

This theorem shows that, in the two dimensional case, concepts of complex
structure and of conformal structure are equivalent. This is the reason that
a biholomorphic mapping is called a conformal mapping. This assertion is a
remarkable property for one dimensional complex manifolds, i.e. two dimensional

real manifolds, which is not true for the higher dimensional case.
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3.1.1. Classification of Riemann surfaces

The classification of Riemann surfaces is given by the Uniformization theorem

which we shall discuss in this section.
3.1.1.1. The Riemann mapping theorem

We shall prove that the unit disk can be mapped conformally onto any simple
connected region in the plane, other than the plane itself. This will imply that
any two such regions can be mapped conformally onto each other, for we can use
the unit disk as an intermediary step.

Although the mapping theorem was formulated by Riemann, its first successful
proof was due to Koebe.

Theorem 3.1.3. Given any simply connected region Q0 which is not the whole
plane, and a point zy € CQ, there exists a unique holomorphic function f(z) in
2, normalized by the conditions f(z) = 0, f'(z0) > 0, such that f(z) defines a

one-to-one mapping of ) onto the disk | w |< 1.

PROOF. The uniqueness is easily proved, for if f; and f, are two such functions,
then fi(f;"(w)) defines a one-to-one mapping of | w |< 1 onto itself. We know
that such a mapping is given by a linear transformation S. The conditions S(0) =
0, S'(0) > 0 imply S(w) = w, hence f; = f,.

A holomorphic function g(z) in 2 is said to be univalent if g(z;) = g(z;) only
for z; = 23, in other words, if the mapping by g is one-to-one. For the existence
proof we consider the family © formed by all functions g with the following
properties: (i) g is holomorphic and univalent in €, (i) | g(z) |[< 1 in , (iii)
9(z0) = 0 and ¢'(2p) > 0. We contend that f is the function in © for which the
derivative f'(z) is a maximum. The proof will consist of three parts: (1) it is
shown that the family © is not empty, (2) there exists f with maximal derivative,

(3) this f has the desired properties.
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To prove that © is not empty we note that there exists, by assumption, a
point a # oo not in Q. Since € is simply connected, it is possible to define a
single-valued branch of v/z — a in 0, denote it by h(z). This function does not
take the same value twice, nor does it take opposite values. The image of 2 under
the mapping h covers a disk | (w — h(z)) |< p, and therefore it does not meet
the disk | (w + h(20)) |< p. In other words, | h(z) + h(z) |> p for z € 2, and in
particular 2 | h(z) |> p. It can now be verified that the function

_pIR(2) | hz) h(z) = h(z0)
4| h(z) |2 h'(z0) h(z)+ h(z0)

go(2)

belongs to the family ©. Indeed, because it is obtained from the univalent function
h by means of a linear transformation, it is itself univalent. Moreover, go(zp) = 0

and gp(z0) = (g)M > 0. Finally, the estimate

[R(z0)|2
h(z) = h(z0)| _ V] 1 2 4| h(z) |
ey =0 |~ r | <

shows that | go(2) [< 1 in .

The derivatives ¢’(z), g € O, have a least upper bound B which a priori
could be infinite. There is a sequence of functions g, € © such that ¢/ (z) — B.
The family © is normal, that is, every sequence of functions in © contains a
subsequence which converges uniformly on every compact subset of 2. Hence
there exists a subsequence {g,, } which tends to a holomorphic limit function f,
uniformly on compact sets. It is clear that | f(z) |< 1in Q, f(2) = 0 and
f'(z) = B (this proves that B < 00). If we can show that f is univalent, it will
follow that f is in © and has a maximal derivative at zg.

In the first place f is not a constant, for f’(z9) = B > 0. Choose a point
21 € §2, and consider the functions ¢;(z) = ¢(z) — g9(z1), g € ©. They are all
# 0 in the region obtained by omitting z; from Q. Every limit function is either
identically zero or never zero. But f(z) — f(2;) is a limit function, and it is not
identically zero. Hence f(z) # f(z;) for z # z,, and since z, was arbitrary we
have proved that f is univalent.

It remains to show that f takes every value w with | w |< 1. Suppose it were

true that f(z) # wo for some wy, | wp |< 1. Then, since Q is simply connected, it
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is possible to define a single valued branch of
f(z) —wo
1—-w5f(2)
It is clear that F' is univalent and that | F' |< 1. To normalize it we form
G(Z) — | F,(ZO) I . F(Z) _F(ZO)
F'(20) 1 — F(z)F(2)

which vanishes and has a positive derivative at z;. For its value we find, after

F(z) =

brief computation and using f(z) = 0 and f'(2) = B,

1— | Wo |2
, | F'(zo) | 2| wo | 14+ | wo |
G = T ) P~ T=Jwo] ~ 2lwo]

This is a contradiction, and we conclude that f(z) assumes all values w, | w |<

1. g

3.1.1.2. Uniformization of simply-connected Riemann surfaces

Up to conformal equivalence, there exist three simply connected Riemann sur-

faces,

e C' = C U {oo} the Riemann sphere,
e (C the complex plane,
e A ={z€C:|z| <1} the unit disk.

Its proof is based on the use of subharmonic functions. Subharmonic functions
are defined on Riemann surfaces with the aid of local parameters. This is possible
because subharmonicity is a local and conformally invariant property.

First of all, classification of Riemann surfaces into compact, parabolic, and
hyperbolic surfaces in needed. A non compact Riemann surface S is parabolic if
every negative subharmonic function on S is constant, otherwise S is hyperbolic.

Using subharmonic functions and Perron families, we can define Green'’s func-
tions for Riemann surfaces just as it is done for the case of plane domains. The
Green’s function g, of a Riemann surface S with singularity at the point p € S is

a function which is positive and harmonic on S — {p}. To describe its singularity,
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we consider a local parameter z mapping a neighborhood of p onto the unit disc
such that z(p) = 0. Then it is required that g, + log | z | be harmonic at p. This
is an invariant definition not depending on the choice of the local parameter.
The Green’s function is characterized by the property that among all functions
positive and harmonic on S — {p} and possessing the same singularity at p as g,,
the function g, is the smallest. If a Green’s function exists for some p € S, then
it exists for every p € S. By a theorem of Ohtsuka, the Green’s function exists if
and only if S is hyperbolic.

If S is parabolic or compact, Green’s functions do not exist but it is possible
to prove the existence of a function u,, with the following properties: w,, is
harmonic in S — {p} — {g¢}, if z(p) = 0, then u,, —log | z | is harmonic at p, and
if z(q) = 0, then u, 4 + log | z | is harmonic at g, outside parameter discs (pre

images of discs under z) containing p and ¢, the function u,, is bounded (|25]).

z—1

Remark 3.1.4. The mébius transformation w = i maps biholomorphically,
z+1

the upper half-plane H onto the unit disc A, and hence we often use the unit disc

A instead of the upper half-plane H.

3.1.1.3. Uniformization of arbitrary Riemann surfaces

We provide the uniformization theorem for Riemann surfaces, based on uni-
versal covering surfaces, Mobius transformations and Fuchsian groups.

In order to formulate the Uniformization theorem for an arbitrary Riemann
surface R, we shall consider the universal covering surface R of R and its covering
transformation group I' will be constructed. By the uniformization theorem for
simply connected Riemann surfaces, R is biholomorphically equivalent to C, C
or H, and T acts properly discontinuously on R as a group consisting of Mobius
transformations. In particular, when R = H, we call I" a Fuchsian group. In this
way, we conclude that every Riemann surface for which R = H is represented

by a quotient space H/T of H by a Fuchsian group T.
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3.1.1.4. Unwversal covering

Let R and R be Riemann surfaces. A surjective holomorphic mapping 7: R —
R is said to be a covering map if every point p of R has a neighborhood U such
that for each connected component V of the inverse image n~'(U) of U, the
restricted map 7: V — U is biholomorphic. We call R a covering surface of R.
The covering map 7 is also called the projection of R onto R. When R is simply
connected, we call R a universal covering surface of R.
Example 3.1.5. We give a few examples of covering surfaces.
(1) Let m: C — C — {0} be given by n(z) = e*. Then C is a universal
covering surface of C — {0}.
(2) Let m: H — A — {0} be given by n(z) = e*. Then H is a universal
covering surface of A — {0}.
(3) Let w: C — {0} — C — {0} be given by m(z) = 2", where n is a positive
integer. Then C — {0} is a covering surface of itself, but it is not a
universal covering surface.

(4) For a given A (> 1), setr = exp(

2

™
A= : )
log/\)and {fwel:r<jw|< 1}

Definen: H— A byw(z) = exp(QWiizgi

). Then H becomes a universal
covering surface of the annulus A.

(5) Let ', be a lattice group generated by 1 and a point T € H, and let m be
the projection of C' onto the quotient space C/T.. Then C is a universal
covering surface of the torus C/I',.

Any biholomorphic mapping v: R — R with moy = 7 is called a covering
transformation. We denote by I" the set of all its covering transformations. By
the composition of mappings, I' forms a group, which is called the covering trans-
formation group. In particular, we call I" the universal covering transformation
group if R is a universal covering surface of R.

Example 3.1.6. We give the covering transformation groups of the coverings
in the previous examples. The notation < 71,7, - ,7n > expresses the group
generated by v1,72, ", Vn-

(1) T =<y > with v1(z) = z + 2mi.
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(2) T =<y > withy1(z) = z+ 1.
(8) T =<y > with m(z) = zexp(ZL).
(4) T =< v > with 11(z) = Az.
(5) T =<m,v2 > where 1(z) = 2+ 1 and 13(2) = z+ 7.
Theorem 3.1.7. (The pull-back structure theorem). If f : X — X is a homeo-

morphism and X, is a complex manifold, then f induces a complez structure on

X.

PROOF. X, is said to have the structure of an n-dimensional complex manifold
if there exists an atlas A = {(U;, ¢;) : i € I'} of charts on X; such that:

1. {U;} is an open cover of X.

2. ¢; is a homeomorphism of U; onto the open subset ¢;(U;) of C" for all ¢ € I.
3. Foralli,jel, d)iq’)j_l is a biholomorphic map of ¢;(U; N Uj) onto ¢,(U; NT;).

Now we are going to construct an atlas on X.

When {U;} is an open cover of X; and f is a homeomorphism, so {f~!(U;)}
is an open cover of X.

We know that the composition of two homeomorphism is a homeomorphism,
so ¢; f is a homeomorphism and it is a map of f~!(U;) onto the open subset ¢;(U;)
of C™ foralli e 1.

For all i,5 € I, (¢:f)(¢;f)™" is a map from ¢;(U; N U;) onto ¢;(U; N U;) and
(0 f)(@5F)" = ¢uff7'¢;! = ¢ud;' where ¢i¢;' is a biholomorphic map from
¢;(U; N U;) onto ¢,(U, NU;). So (¢:.f)(¢;f)" is biholomorphic.

Hence, B = {(f~'(U;),¢:f) : © € I} is a complex holomorphic atlas on X,
and X together with the atlas B is a complex manifold. O

Theorem 3.1.8. For every Riemann surface R, there exists a universal covering
surface R of R, which is biholomorphic to one of the three Riemann surfaces C,
C or H.

Theorem 3.1.9. (Uniqueness of the universal covering) For any two universal
covering surfaces R and R, where 7: R — R and M e ]%1 — R, there exist a

biholomorphic mapping ¢ of R to Ry with m o Q= .
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3.1.1.5. Construction of the universal covering

A path on a Riemann surface R is a continuous curve ¢: I — R, where I is
the interval [0, 1]. The points ¢(0) and ¢(1) are said to be the initial and terminal
points of ¢, respectively. We also say that c is a path from ¢(0) to ¢(1). Its image
is also denoted by the same letter c.

For two paths ¢ and ¢’ on R such that ¢(1) = ¢/(0), by connecting the terminal
point of ¢ with the initial point of ¢/, we get a path c¢- ¢’ on R with the initial
point ¢(0) and terminal point ¢'(1).

Let R be a covering surface of a Riemann surface R. A point $ in R is said
to lie over a point p in R if m(p) = p. A lift of a path c on R is a path & on R
with mo ¢ = c.

Fix a point pp on a given Riemann surface R. Let (c,p) be a pair consisting
of a point p on R and a path ¢ on R from py to p. Two pairs (c,p) and (¢, p')
are equivalent if p = p’ and ¢ is homotopic to ¢ on R. Denote by [c,p] the
equivalence class of (c,p). Let R be the set of all the equivalence classes e, p],
and 7: R — R be the projection given by 7([c,p]) = p.

Lemma 3.1.10. (Ezistence and uniqueness of a lift of a path) For any path ¢ on
R with initial point p, and for any point p of R over p, there exists a unique lift
¢ of ¢ with wnitial point p.

Theorem 3.1.11. For Riemann surfaces R and S, let R and S be their universal
covering surfaces where Tg: R—> Randng: S — S. Then given an arbitrary
continuous mapping f: R — S, there ezists a continuous mapping f: R — S
with forr = mgo f. This mapping f is uniquely determined under the condition
that f(p1) = ¢i, where p; € R and ¢ € S are such that ws(d) = f(mr(p1)).

Moreover, if f is differentiable or holomorphic, then f is also differentiable or

holomorphic.

PROOF. Setting p1 = [c1,p1] and ¢ = [dy, f(p1)], we get a mapping defined by
fle,p]) = [di-f(c1)™t- f(c), f(p)] for all points [c, p] in R. Then it is obvious that

f(p1) = G and fomg = mgo f. Since 7 and 7g are locally biholomorphic and
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f is continuous, f must be continuous and if f is differentiable or holomorphic,

then so is f. The uniqueness assertion follows from lemma 3.1.10. O

3.1.1.6. Universal covering transformation group

Theorem 3.1.12. For a given universal covering surface R of a Riemann surface
R, its universal covering group I is isomorphic to the fundamental group 71 (R, po)

of R.

PROOF. For any element [cy] € m1 (R, po), we define the action [co, on R by

[col([e;p]) = [co-¢,p], e, € R

This [co]. belongs to I, that is, it is a covering transformation.

The above correspondence [co] — [co]« yields an isomorphism of the funda-
mental group m1(R,po) of R onto the universal covering transformation group
I.

This correspondence is a homomorphism of m; (R, pg) to I'. To prove that it

is injective, suppose that [cp]. is the unit element of I'. Then we have

[col+([o, Po]) = [co,P0] = [Lo, Do),

where Iy is the path on R such that Iy(t) = po for any ¢t € I = [0,1]. Thus, ¢ is
homotopic to Iy, and hence [cg] is the unit element of m (R, pp). It follows that
this correspondence is injective.

To prove that this correspondence is surjective, take any element v € I". Let
¢ be a path on R from [Iy, po] to ¥([lo, po]). Then the relation 7 0y = = implies
that ¢ = mo ¢ is a closed path on R with base point py. Hence ¢ is a lift of c,
and [Io, po] and [c, po] are the initial and terminal points of ¢, respectively. Thus

lemma 3.1.10 shows that

7([10;p0]) = [C,po] = [c]*([101p0])'

Since [c] is an element of m (R, po), theorem 3.1.11 implies that v = [c]., and

hence this correspondence is surjective. U
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Lemma 3.1.13. The universal covering transformation group I' of a Riemann
surface R satisfies the following properties:

e For any p,§ € R with n(p) = n(q), there exists an element v € T with
q = v(p)-

e For every p € R, there is a suitable neighborhood U of p in R such that
YO)YNU = 0 for everyy € T — {id}. In particular, each element of T
except for the identity has no fized points.

e I acts properly discontinuously on R, that is, for any compact subset K of

R, there are at most finitely many elements y € T such that y(K)NK # 0.

PRrROOF. To prove the first property, suppose that 7#(p) = n(§) = p. Then we
have p = [c1, p] and § = [cq, p] for some paths c; and ¢; on R. Putting ¢y = c-c7?,
we see that v = [cp). satisfies § = v(p).

To see the second property, take a point f € R, and set p = 7(p), p = ¢, p].
Choose a neighborhood U of p in R which satisfies the condition in the definition of
a covering map, and denote by U the connected component of 7~ }(U) containing
p. Actually, it is sufficient to take a simply connected domain U containing p. If
Y(U)NU # @ for some y € T, then there are points py,d; € U with ¢ = v(5y).

Since moy = m, we get m(p1) = 7(q1), and hence §; = p, for 7 is biholomor-
phic on U. Thus we have y(p;) = I d(py) where Id is the identity. By theorem
3.1.11, we conclude that v as a lift of /d: R — R is uniquely determined by Id.

Finally, to verify the third property, assume that there exists a sequence
{}32, consisting of distinct elements of I" such that v,(K) N K # 0 for all
n. Then for each n, we can take two points ¢, 7, € K with 7, = 7,(¢,). Since
K is compact, taking a subsequence if necessary, we may assume that {¢,}%,,
{rn}2., converge to o, 70 € K, respectively, as n — co. Since mo 7y, = w, we
obtain 7(¢,) = 7(r,) and 7(gs) = w(rp). Take a neighborhood U of 7(g) in R
satisfying the condition of the definition of a covering map, denote by U and V
the connected components of 7! (U) containing go and 7y, respectively.

Since {7n(dn)}; converges to 7o, we have 1,(U) NV # 0 for a sufficiently

large n. Since m o 1,(U) = U, it follows that 7,(U) = V, namely, Vit ©
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(U) = U. By the second assertion, we conclude that yn41 = v,. This is a

contradiction. O

3.1.1.7. Uniformization theorem for arbitrary Riemann surfaces

Now we are ready to state the uniformization theorem for arbitrary Riemann

surfaces. We construct a Riemann surface £/G from a Riemann surface M with
universal covering surface ¥ and a subgroup G of the biholomorphic automor-
phism group Aut(X), where G is assumed to satisfy the second and third proper-
ties in lemma 3.1.13, that is, every element of G except for the unit element has
no fixed points in 3, and G acts properly discontinuously on X.
Theorem 3.1.14. Every Riemann surface M is conformally equivalent to some
Y/G, where T is C orC or A, is the universal cover of M, and G is a subgroup
of Aut(X) acting properly discontinuously and fized-point freely on & and G =
m(M).

3.1.1.8. Automorphisms

Subgroups of the group of automorphisms of the three Riemann surfaces play
an important role in theorem 3.1.14, so it is a good idea to know what Aut is for
each surface.

To find Aut(C), we use the fact that

C ~CP!' =P},
with the isomorphism given in homogeneous coordinates on P! by

(lon,22)) = 2, (1,0) = {oo}.

The action of GL(2, C) on C? projects to an action of PL(2,C) = {GL(2,C)/\, X €
C*} on P'. Then PL(2,C) is the group Aut(C), whose action on C is

2 a b 21 , az+b
o —

z = .
P c d] \z cz+d
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Such a transformation is called a Mobius transformation.

~

Aut(C) ~ PL(2,C).

To find Aut(C), we note that the conformal automorphisms of C will be
those automorphisms of C which fix the point co. It is clear that a Mobius

transformation which fixes oo must have ¢ = 0:
Z=az+b, a€C*beC.

This group is known as Af f(1,C), the affine transformations of the plane. It is

isomorphic to the group of matrices of the form

a b
, a€C".
01
Thus,
Aut(C) ~ Aff(1,0).
Aut(A) ~ Aut(H) and every element of Aut(H) has a form (z) = :Z:__z
2

where a,b,c,d € R with ad — bc = 1. So we have

Aut(H) ~ PL(2, R).

3.1.2. Moduli of Riemann surfaces

Two Riemann surfaces can have the same underlying topological space, and
yet be conformally inequivalent (have different complex structures). The set of
conformally inequivalent Riemann surfaces over the same topological space is

known as a moduli space.

3.1.2.1. Surfaces with universal cover C

-

As we found before, Aut(C') is the group PL(2,C). Recall that if we think of
C as C U 0o, then the action of Aut(C) is that of a Mobius transformation.
Proposition 3.1.15. The only Riemann surface with universal cover C is C

itself.
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PRrROOF. First we show that Mdbius transformations fix at least one point of C.

a b . ) az+b Sy
Let € PL(2,C). Then a fixed point satisfies z = > which simplifies

c d cz +
to
a—d 1
= — —a)? —
z 5 i?c (d—a)2—4cb c#0
z= b c=0,a#d
= =0,

z=00 ¢=0,a=d,b#0.

These equations clearly have solutions for any element of PL(2,C). Thus, we see
that every element of Aut(C) fixes at least one point of €, and so no element
of PL(2,C) can act fixed-point freely on C. From theorem 3.1.14 we have the

desired result. O

An obvious consequence of this proposition is that the moduli space of genus
zero surfaces which have C as their universal covering space, is a one-point set.

In fact, all three of the simply connected surfaces have one-point moduli space.

3.1.2.2. Surfaces with universal cover C

Recall that Aut(C) = Aff(1,C), with z — az + b. We will make use of the
fact that:
Theorem 3.1.16. If the (holomorphic) universal covering space D of M is C,
then M is conformally equivalent to C, C*, or T?, a torus.

The respective covering groups are {e}, Z, Z @ Z. First, the covering group
G = {e}, in which case M is conformally equivalent to the plane C. Second,
examine the case G = Z. We can take z — 2+ 1 as a generator. A fundamental
domain of such a group is the interior of the parallel strip bounded by straight
lines through 0 and through 1 and perpendicular to the vector from 0 to 1.
Topologically, D/G is an infinite cylinder. The function z — exp(2miz), shows

that D/G is conformally equivalent to C*.
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G = Z ® Z is a bit more complicated. Consider a lattice in C":
Aw,n) = {mw +nn:m,n € Z, w,n € C*linearly independent }.

Clearly it is a discrete group, isomorphic to Z @ Z, and the quotient C/A(w,n)
is a torus.

Proposition 3.1.17. The conjugacy class of A(w,n) in Aut(C) is the set of
lattices of the form A(aw, an), with a € C*.

PROOF. An element (a,b) € Aut(C) acts on a generator h, : z — z + w of the

group A(w,n) as (a,b) - hu(2) = a(z + w) + b, and thus, if a € C*
(a,b)h,(a,b) ! (2) = z + aw.
O

Now we define 7 = 21 and without loss of generality, choose Im(7) > 0.
Furthermore, we choose a = 5, so that every lattice is conjugate to one of the
form A(1,7).

Theorem 3.1.18. For any two points T and 7' in the upper half-plane H, two
tori R, and R, are biholomorphically equivalent if and only if 7 and 7' satisfy

the relation

at + b
- 3.1.2
T ct+d’ ( )

where a,b, c and d are integers with ad — bc = 1.

PROOF. First, assume that there is a biholomorphic mapping f of R,» onto R,.
Since C is simply connected, the theorem 3.1.11 implies that there exist a lift f of
f, that is, a holomorphic mapping f: C — C such that 7, o f = f o ... Because
f is biholomorphic, so is f. Then f is written as f = aZ + B, where «, 3 are
complex numbers and a # 0, because Aut(C) = Aff(1,C).

Moreover, we may assume that f (0) = 0, and hence 8 = 0. We have

frYy=ar =ar+b, f(l)=a=cr+d,
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where a, b, c and d are integers. Therefore, we obtain

, art+b

T Ter+d

Applying the same argument to f~!, we get
a/,r/ + b/

T = —™
or+d’

where a/, ', ¢ and d' are integers. Furthermore, from the relations f~'o f(1) = 1

L d—b
and f~'o f(7') = 7', we see that ad—bc = *1. Since Im 7’ = 22T I >
| e +d |?

0, we have ad — be = 1.

Conversely, if 3.1.2 holds, then a biholomorphic mapping f: R, — R, is given
by f([z]) = [(eT +d)2]. O

Now, we call the group

b
arto. a,b,c,d € Zand ad — bc =1}

PSL(2,Z) = {v(z) = o rd

the modular group. Every v € PSL(2,Z) is a biholomorphic automorphism of
the upper half-plane H.

Let M be the moduli space of tori, i.e. the set of all biholomorphic equivalence
classes of tori. Theorem 3.1.18 implies that M is identified with the quotient space
of H by PSL(2,Z7), that is,

M = H/PSL(2, Z).

3.1.2.3. Fuchsian groups

A Riemann surface which is biholomorphic to one of C , C, C* or tori is said
to be of exceptional type.
Theorem 3.1.19. A Riemann surface M has a universal covering surface ¥
biholomorphic to H if and only if M is not of exceptional type.

We define a natural topology on Aut(H), i.e. the compact-open topology.
This means that a sequence {v,}2, of Aut(H) converges to v € Aut(H) if v,
converges uniformly to v on compact subset of H as n tends to co. This topology

is equivalent to the one of the group PSL(2, R). The topology of PSL(2, R) is
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induced by the topology of SL(2, R). Here, the sequence {4,}52, of SL(2, R)
) a, by a b\
with A, = converges to A = in SL(2, R) if and only if a,,
Cn dn c d
bn, ¢, and d,, converge to a, b, c and d, respectively, as n tends to oo.

A subgroup I' of Aut(H) is said to be discrete if I" is a discrete subset of
Aut(H), i.e. T consist of isolated points.
Definition 3.1.20. A discrete subgroup of Aut(H) is called a Fuchsian group.
Theorem 3.1.21. For a subgroup I' of Aut(H) the following are equivalent:

(1) T is Fuchsian.

(2) T acts properly discontinuously on H.

PRrROOF. That the second condition implies the first one is by the definition. Con-
versely, assume that I" does not act properly discontinuously on H. Then we
have a point 29 € H and a sequence {7,}52; of distinct elements of I" such that
Tn(20) = wp € H as n — oo.

We may assume that {7,}32, converges uniformly on compact subset of H to
a holomorphic function 7 defined in H. This v must be an element of Aut(H).
Otherwise <y is a constant function. Hence T is not Fuchsian, because if " were
a Fuchsian group, there would exist no sequences of distinct elements of I' which

converge in Aut(H). O

Remark 3.1.22. For a subgroup T of Aut(C), the discreteness of T' does not

always imply that it acts properly discontinuously on C.

3.1.2.4. Automorphic functions

An automorphic function is a meromorphic function on a complex manifold
M, that is invariant under some discrete group I' of automorphisms of the given

manifold:
f(v(z)) = f(z), z€M, ~vel.

Automorphic functions are often defined so as to include only functions defined
on a bounded connected domain D of the n-dimensional complex space C™ that

are invariant under a discrete group I' of automorphisms of this domain. The
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quotient space X = M/I" can be given a complex structure and automorphic
functions are then meromorphic functions on X. The automorphic functions
constitute a field K (I") and the study of this field is one of the main tasks in the
theory of automorphic functions.

Three cases are distinguished: M = C Riemann sphere, M = C and M =
H the upper half plane. In the first case the discrete groups I' are finite and
the automorphic functions generate the field of rational functions. Examples of
automorphic functions in the case M = C are periodic functions and in particular,
elliptic (doubly periodic) functions. Finally, for M = H and a discrete group T,
such that M/T is compact or has a finite volume, K(T') is the field of algebraic
functions on M/T'.

Let us return to the torus constructed in the previous sections. The mero-
morphic functions on this torus are the elliptic functions with periods 1, 7. The

canonical example here is the Weierstrass 9¥-function with periods 1, 7:

J(z) =zi2+ > ((z—nl—mr)2 (n +1m7)2>'

(n,m)#(0,0), (n,m)€ 22

The J-function satisfies the differential equation
12

v = 4(’(9 — 61)(’[9 — 62)(1.9 - 63).

The points e; can be identified as

er = 9(=), ez=19(g), e3 = 9(

1
Z )

2 2

9’ is again an elliptic function and hence a meromorphic function on the torus.

If we now write w = ¥, z = ¥, we obtain
w? =4(z —e1)(z — e2)(z — e3),

and we see that w is an algebraic function of z. The Riemann surface on which
w is a single valued meromorphic function is the two sheeted branched cover of
the sphere branched over z =¢;, j =1,2,3 and z = 0.

Consider an irreducible polynomial P(z,w) and with it the set S = {(z,w) €
C? : P(z,w) = 0}. Most points of S are manifold points and after modifying the
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singular points and adding some points at infinity, S is the Riemann surface on
which w is an algebraic function of z.

In the case of the torus discussed above, we started with a Riemann surface
and found that the surface was the Riemann surface of an algebraic function.
Another way of saying the preceding is as follows: we saw in the case of the
torus that the field of elliptic functions determined the torus up to conformal
equivalence. If

f:M—N
is a conformal map between Riemann surface M and N, then

F*: K(N) = K(M)

defined by

ffo=9pof, peK(N)
is an isomorphism of K(N) into K(M). If M and N are conformally equivalent
(that is, if the function f above, has a holomorphic inverse) then the fields K (M)
and K (V) are isomorphic.



Chapter 4

TEICHMULLER SPACE

4.0.3. Geometric definition of quasiconformal mappings

A quadrilateral consists of a Jordan domain @) and a sequence zj, 23, 23, 24 of
boundary points of @. The points z; are called the vertices of the quadrilateral. In
the following we shall consider only quadrilaterals Q(z1, 22, 23, 24) whose sequence
of vertices agrees with the positive orientation with respect to Q. The vertices
of a quadrilateral Q(zi, 22, 23, z4) divide its boundary into four Jordan arcs, the
sides of the quadrilateral.

By a homeomorphism of the quadrilateral Q(z, 22, z3, 24) onto the quadrilat-
eral Q'(w;,ws,ws,ws) we understand a topological mapping w: Q@ — @' which
carries the points z; to w; = w(z;). If the restriction of w to Q is conformal, then
w is called a conformal mapping of Q(z1, 22, 23, 24) onto Q' (wy, wq, w3, wy). It is
not in general possible to map given quadrilaterals onto one another conformally,
since the images of three boundary points determine the mapping uniquely. All

quadrilaterals are therefore divided into several equivalence classes.

It follows from the Riemann mapping theorem that every quadrilateral Q(z1, 22, 23, 24)

can be mapped onto a quadrilateral Q'(—4,—1,1,+) where 0 < k < 1 and @' is

the upper half plane. The function

G [«
<) /o\/(1—<2)(1—k2<2)’
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maps the quadrilateral Q' (—%, -1,1, %) conformally onto a quadrilateral which
consists of a rectangle and its corners. We call éuch a quadrilateral simply a rec-
tangle. By combining the above mappings, we can map an arbitrary quadrilateral
conformally onto a rectangle. Such a mapping will be called the canonical map-
ping of the quadrilateral and the corresponding rectangle the canonical rectangle
of the quadrilateral.

Every conformal equivalence class of quadrilaterals thus contains rectangles
and all similar rectangles belong to the same class. Conversely, every conformal
mapping between two rectangles is a similarity transformation.

Now, suppose that R = {z +iy : 0 < z < a,0 < y < b} is a canonical
rectangle of Q(z1, 22, 23, 24) and that the first side (z;, z3) corresponds to the line
segment 0 < z < a. The number a/b, which does not depend on the particular
choice of the canonical rectangle, is called the module of the quadrilateral Q. We

shall use the notation
M(Q(zl7 22,23, 24)) = a/b

for the module.

>From the definition it is clear that the module of a quadrilateral is confor-
mally invariant.

Given a domain A, consider all quadrilaterals Q(z1, 22, 23, 24) With Q C A.

Let f: A — A’ be an orientation preserving homeomorphism. The number

sup M Q)(f(21), f(22), f(23), f(2a)))
Q M(Q(z1, 22, 23, 24))

is called the maximal dilatation of f.

Since the module is a conformal invariant, the maximal dilatation of a con-
formal mapping is 1.
Definition 4.0.23. An orientation preserving homeomorphism with a finite maz-
tmal dilatation is quasiconformal, if the mazimal dilatation is bounded by a num-
ber K, the mapping is said to be K -quasiconformal.

By this terminology, f is 1-quasiconformal if and only if f is conformal. If f

is K-quasiconformal, then
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for every quadrilateral in A. So a mapping f and its inverse f~! are simultane-
ously K-quasiconformal.

>From the definition it also follows that if f: A — B is K;-quasiconformal
and g: B — C is Kj-quasiconformal, then g o f is K; K,-quasiconformal.

It is possible to arrive at the notion of the module of a quadrilateral by use of
the length area method. In order to arrive at this characterization of the module,
we consider the canonical mapping f of the quadrilateral Q(z1, 22, 23, 24) onto the

rectangle R={u+1iw : 0 <u<a,0<v<b}. Then

/ /Q | £(2) |2 dzdy = ab.

Let I' be the family of all rectifiable arcs in @ which join the sides (21, 22) and

(23, 24). Then
[17@1z

for every v € I', with equality if 7y is the inverse image of a vertical line segment
of R joining its horizontal sides. Hence

Jfy | £(2) 2 dady
(nbyer [, | 7(2) 142 [

We can get rid of the canonical mapping f if we introduce the family P whose

M(Q(z1, 22, 23, 24)) = (4.0.3)

elements p are non-negative measurable functions in ) and satisfy the condition

[, p(2) | dz |> 1 for every v € . With the notation

m(@) = [ /Q Pddy,

M(Q(Zl, 29, 23, 24)) 1nf mp(Q)

we then have

This basic formula can be proved by a length area reasoning. Define for every
given p € P a function p; in the canonical rectangle R by (p10 f) | f |= p. Then,

by Fubini’s theorem and Schwarz’s inequality,

// 2dudv > = /Oa du(/ob p1(u + iv)dv)?.

The last integral at the right is taken over a line segment whose pre image is in

I'. Therefore, the integral is > 1, and so m,(Q) > § = M(Q(21, 22, 23, 24)).
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To complete the proof we note that p = | ]; |
a function for which m,(Q) = M(Q(21, 22, 23, z4)).

belongs to P. By 4.0.3 this is

4.0.4. Analytic definition of quasiconformal mappings

We can generalize the characteristic property of conformal mappings that the
derivative is independent of the direction.

For a diffeomorphism f: A — f(A) define the complex derivatives setting

0f = 3(fe—ify), Bf = 5(fu+ify)

Here f, and f, denote the partial derivatives of f with respect to z and to y,
z = z + 1y, respectively.
Let 0, f(z) denote the directional derivative of a diffeomorphic mapping f(z, )

in a direction making an angle a with the positive z-direction. Thus

0af(2) = lim fz+re?) — f(z)

T—00 r

>From calculus 0,f = fycos(a) + f,sin(a), and consequently in complex

notation
Ouf = f.% + fre™*.
We conclude that if f is an orientation preserving diffeomorphic map between

planar domain, then

max | 0af(2) |=] f2(2) | + | fz(2) |, min | 8af(2) |=] fo(2) | — | fz(2) |-

The difference | df(2) | — | 8f(z) | is positive, because the Jacobian of the
function f, J; =| 8f |> — | 8f |* is positive for an orientation preserving diffeo-
morphism.

We define the dilatation quotient as

D, Mm% |8af | _|0f|+]0f]
"7 wming | 8uf | |0f - |0F]|

and conclude that the dilatation quotient if finite.

The mapping f is conformal if and only if f vanishes identically. Then 8, f
is independent of a: we have d,f = 0f = f’. This is equivalent to the dilatation

quotient being identically equal to 1.
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Theorem 4.0.24. Let f: A — A’ be an orientation preserving diffeomorphism

with the property
Df(Z) S K

for every z € A. Then f is a K-quasiconformal mapping.

PROOF. We pick an arbitrary quadrilateral @ of A. Let w be the mapping which
is induced from the canonical rectangle R(0, M, M +1,1) of Q onto the canonical
rectangle R'(0, M', M’ +1,1) of f(Q). Because of the conformal invariance of the

dilatation quotient, D,, is also majorized by K. Hence
| we |*< max | Gaw |?°< K J,,

and the desired result M’ < KM follows by use of a length area reasoning:
M =m(R) = [[ duedody > < [[ Vel P dady
R K JJr
M

1 1 2 MI2
> > .
= MK/O dy </0 | we(2) | d“’) = MK

Theorem 4.0.25. An orientation preserving diffeomorphism f is K -quasiconformal

O

if and only if the dilatation condition
max | af(2) | < K min | 8, f(2) |

holds everywhere.
A real function u is said to be absolutely continuous on lines or ACL in A, if

for each closed oriented rectangle
R=a,b] x [c,d] C A

u(z + 1y) is absolutely continuous in z for almost all y € [c,d] and absolutely
continuous in y for almost all z € [a,b]. A complex valued function f is said to
be ACL in A if its real and imaginary parts are ACL in A.

Remark 4.0.26. If a homeomorphism f: D — D’ is ACL in A, then it has finite

partial derivatives a.e. in A and hence has a differential a.e..
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Theorem 4.0.27. An orientation preserving homeomorphism f of a domain A
1s K -quasiconformal if

(1) f is ACL in A,

(2) maxy | 0,f(2) | < Kmin, | 0,f(2) | a-e. in A.

This theorem yields the analytic definition of quasiconformality.

ProoF. To prove that f is K-quasiconformal, we consider a quadrilateral @,
@ C A, and its image f(Q). We have to show that the modules M = M(Q) and
M’ = M(f(Q)) satisfy the inequality

M < KM.

Let f; be the canonical mapping of f(Q) onto the rectangle Ry = {u +iv : 0 <
u < M',0<wv<1}, and f; the inverse of the canonical mapping of Q onto the
rectangle Ry = {{+1in : 0 < &€ < M,0 < n < 1}. The composed mapping
f* = fao fofiis an orientation preserving homeomorphism of R; onto R, which
can be extended to the boundary. Our next step will be to show that f* satisfies
condition 1 and 2 in R;.

The mapping f o f; is absolutely continuous on lines in R;, and the equation

Ba(f 0 f1)(C) = f1(O)ars f(£1(C)),

where § = arg f](¢), holds almost everywhere in R; for every direction a.
Since f, is conformal, f* = fy0 fo f; is also absolutely continuous on lines in

R;. Further we have

Bef"(¢) = F(F(F1(ONF1(Q)Basaf (1(C))

for almost all ( € R;. Since the derivatives fj and f] are independent of the

direction «, and f satisfies condition 2, this condition is also satisfied by f*.
The inequality M’ < KM can now be proved as follows. Since f* satisfies

condition 2, we have | f7 I2< K J* almost everywhere in R;, where J* is the

Jacobian of f*. It follows that

// |f§|2d0SK/ J'do < Km(Ry) = KM'. (4.04)
Rl R]
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By Fubini’s theorem

//Rl|f5|2d0=/Oldn/oleEIQdﬁ,

and by Schwarz’s inequality

M \ 1 M . 2
[Prsreaz g ([ ira)

Since f* is continuous on the boundary of R;, we have

M
/O | fi€+in) | 2| f(M+in)— flm) |= M (405)

for every n for which f* is absolutely continuous on every closed subsegment of

I'={(+1ip : 0< &< M}. Since f* satisfies condition 1 in R;, 4.0.5 holds for

almost all 7, 0 < 7 < 1. Our inequality M’ < KM now follows from 4.0.4-4.0.5.
O

Let f: A — A’ be a K-quasiconformal mapping and z € A a point at which

f is differentiable. Since
max | 8o f |=| 0f | +10f |, min|duf|=|8f|—|0f],

the dilatation condition is equivalent to the inequality

135(:) 1S g 1 05(2) | (4.06)

Suppose, in addition that J; > 0. Then 9f(z) # 0 and we can form the

quotient

_9f(2)
k) = Bty

The function u, so defined a.e. in A, is called the complex dilatation of f.
By 4.0.6

K-1
K+1

|u(z) |< k= <1

almost everywhere in A.
We shall determine the complex dilatation of a composed mapping go f. There
is the usual trouble with the notation which is most easily resolved by introducing

an intermediate variable ¢ = f(z).
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The usual rules are applicable and we find
(90 f): = (gc0 f)f-+ (gz0 ),

(9o flz=(g9co )fs+ (g0 N)f=
They give
5o f = Sllgo NFe~ (g0 )T

90 f = 3l(g 0 flef. ~ (g0 - F,
where J =| f, |> — | fz |>. We obtain

fo Pgor — iy
/1, Of= - .
! fz 1_“f:“9°f

If g is conformal, then py = 0 and we find

Hgof = Hy-

If f is conformal, s = 0 and

e
pgo f = (lf—’l) Hgos-
In any case, the dilatation is invariant with respect to all conformal transforma-
tion. If we set go f = h, we find
fz Hh — Hf

Hho 10f=_————_—— 407
hof 71T (4.0.7)

Theorem 4.0.28. (Uniqueness theorem) Let f and g be quasiconformal mappings

of a domain A whose complex dilatations agree a.e. in A. Then fog™! is a

conformal mapping.

PROOF. By 4.0.7, the complex dilatation of f o g=! vanishes a.e.. So fog™!is

conformal. O

Conversely, if f o g~! is conformal, we conclude from 4.0.7 that f and g have the
same complex dilatation.

A measurable function p which satisfies

ess sup | u(z) |< 1

-4
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is called a Beltrami differential in its domain. Let x be a Beltrami differential in

its domain. The differential equation

of = udf

is called a Beltrami equation.
If f is conformal, p vanishes identically, and the Beltrami equation becomes

the Cauchy-Riemann equation

3f = 0.

Theorem 4.0.29. A homeomorphism f is K-quasiconformal if and only if f is

a solution of the Beltrami equation, where ||pl|eo < 1 for almost all z.

4.0.5. Existence theorem

A quasiconformal mapping f of a domain D induces a bounded function puy
on D which satisfies ess sup, | u(z) |< 1.
We denote by L*°(D) the complex Banach space of all essentially bounded

measurable functions on a domain D. Here, the norm is given by

lloo = ess sup lu(z) ], neL™(D).

Let B(D) be the open unit ball {u € L*°(D) : ||pg|le < 1} of L®(D), and call any
element of B(D) a Beltrami coefficient on D.

Theorem 4.0.30. For every Beltrami coefficient p € B(C), there exist a home-
omorphism f of C onto C which is a quasiconforml mapping of C' with complex

dilatation p. Moreover, f is uniquely determined by the following normalization:

f(0)=0, f(]'):l) f(00)=00

We call this f, uniquely determined by the normalization conditions, the
canonical g-quasiconformal mapping of C, or the canonical quasiconformal map-
ping of C with complex dilatation p, and denote it by fH.

Proposition 4.0.31. Let u be an arbitrary element of B(H). Then there ezists
a quasiconformal mapping w of H onto H with complex dilatation pu. Moreover,

such a mapping w (which can be extended to a homeomorphism of H = HU R
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onto itself ) is uniquely determined by the following normalization conditions:
w(0)=0, w(l)=1, w(oo)=o00.

We call this unique w satisfying the normalization conditions the canonical

p-quasiconformal mapping of H, and denote it by w*.

PRrOOF. To show the existence, set

u(z), z€H

~

i(z) = <0, z€R

u(z), ze€ H*

The canonical ji-quasiconformal mapping f# of C satisfies

M=) = fA(z).

In particular, we see that f#(R) = R. Since f# preserves orientation, fA(H) = H.
Hence, the restriction of f* onto H is the desired one. The uniqueness follows by

4.0.7 and the normalization conditions. O

4.0.6. Quasiconformal mappings of Riemann surfaces

A homeomorphism f between two Riemann surfaces S; and S, is called K-
quasiconformal if for any local parameters h; of an atlas on S;, i = 1,2, the
mapping h, o f o hi! is K-quasiconformal in the set where it is defined. The
mapping f is quasiconformal if it is K-quasiconformal for some finite K > 1.

Suppose that the local parameters hq, k; of S; have overlapping domains U7,
V) and that f(U; NV;) lies in the domains of the local parameters hy, ky of S,.
Using the notation g = h; o k7!, h = ky o h;', we then have in k;(U; N V4),

kyofoki'=ho(hyo fohi!)og.

The mapping h and g are conformal and therefore do not change the complex

dilatation.
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4.0.7. Quasiconformal deformation of Fuchsian groups

Let G be a group of Mébius transformations. A Beltrami coefficient u on C

is called a Beltrami coefficient on G provided that

we@ D — uz), gec.

Then for every g € G, the function w”(g(z)) is a u-quasiconformal automorphism
of C. Hence, there is a M&bius transformation g1 with w#* o g = g, ow*. Let
Gt = wtG(wH) 1.

The mapping G — G* given by g — w¥ogo(wH)~! is called a quasiconformal
isomorphism defined by pu, or a p-quasiconformal deformation.

If G is a Fuchsian group and p is a Beltrami coefficient on G, then G* is called

a quasi-Fuchsian group. If p also satisfies the condition u(zZ) = u(z), then G* is

again Fuchsian.

4.0.8. Complex dilatation on Riemann surfaces

We can arrive at the complex dilatation of a quasiconformal mapping of a
Riemann surface, by lifting the given quasiconformal mapping to a mapping be-
tween the universal covering surfaces. Let (D, ;) be a universal covering surface
of S;, 7=1,2, and G; the covering group of D over S;. Consider alift w: D — D
of the given quasiconformal mapping f: S; — S;. Since the projection m; and
my are holomorphic local homeomorphism, w is quasiconformal. Let u be the
complex dilatation of w. Because w o g o w™! is conformal for every g € G4, the

mapping w and w o g have the same complex dilatation. We obtain from 4.0.7

I

p=(pog) (4.0.8)

!

Q

for every transformation g. Consequently, a quasiconformal mapping f of a Rie-
mann surface S; determines a Beltrami differential for the covering group. This
differential is called the complex dilatation of f.

Theorem 4.0.32. Let u be a Beltrami differential on a Riemann surface S.

Then there is a quasiconformal mapping of S onto another Riemann surface with
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complex dilatation p. The mapping is uniquely determined up to a conformal

mapping.

PROOF. We consider i as a Beltrami differential for the covering group G of D
over S. By the existence theorem, there is a quasiconformal mapping f: D — D
with complex dilatation u. Since 4.0.8 holds, f and f o g have the same complex
dilatation for every g € G. Then fogo f~! is conformal, and we conclude that f
induces an isomorphism of G onto the Fuchsian group G’ = {fogo f™': g € G}.
If 7 and 7' denote the canonical projections of D onto S and S’ = D/G’, then
¢ om = 7' o f defines a quasiconformal mapping ¢ of S onto S’. This mapping
has the complex dilatation .

Let 1 be another quasiconformal mapping of S with complex dilatation p and
w: D — D its lift. Then wo f~': D — D is conformal, and so its projection

: ¢! is also conformal. O

Theorem 4.0.33. A Beltrami differential of S defines a conformal structure on
S.

PROOF. Let p be a Beltrami differential on a Riemann surface S, and A an
arbitrary local parameter on S with domain V. From the existence theorem, it
follows that there is a complex valued quasiconformal mapping w of A(V) with
complex dilatation g o h™'. Then f = w o h is a quasiconformal mapping of V
into the plane with complex dilatation p. If f; and f, are two such mappings
with intersecting domains V; and V3, then by the uniqueness theorem, f, o0 fi' is

conformal in fi(Vi NV,). O

4.0.9. Universal Teichmiiller space

Let us consider the family of all quasiconformal mappings of a fixed domain in
the plane. We assume that this domain is the upper half-plane. We will introduce
additional structure to this family and begin by regarding two mappings f and
g as equivalent if they differ by a conformal mapping, that is, if there exists a

conformal mapping h from f(H) to g(H) such that g = ho f. In view of the
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Riemann mapping theorem, we may then restrict ourselves to self-mappings of
H as a universal cover of Riemann surfaces and require that they are normalized
so as to keep fixed the three boundary points 0, 1, co. We denote by F the
family of such normalized mappings. Every element of F' can be extended to
a homeomorphic self-mapping of the closure of H. It is actually the extended
mappings to which the normalization requirements apply.

By the existence and uniqueness theorems, there is a one to one correspon-

dence between F' and the open unit ball B of the Banach space which consists of
all L*°-functions on H.
Definition 4.0.34. Two mappings of the family F are equivalent if they agree
on the real azis. The complez dilatation of equivalent mappings are also said to
be equivalent. The set of equivalence classes is the universal Teichmiiller space T .

We thus have two models for T: Its points are classes of equivalent mappings

in the family F' or of equivalent functions on the ball B.

4.0.9.1. Metric on the universal Teichmiiller space

The universal Teichmiiller space has a natural metric. We obtain this metric
by measuring the distance between quasiconformal mappings in terms of their
maximal dilatation.

The distance between the points p and g of T is defined by

1 .
7(p,q) = §mm{logKgof—l : fep geq},

where K denotes the maximal dilatation and f,g € F. This is called the Te-
ichmiiller distance between p and ¢. This metric is non-negative and symmetric,

1 is conformal.

and 7(p,p) = 0. If 7(p,q) = 0, it follows that the mapping go f~
Because of the normalization, this mapping is the identity. Hence f = g, which
implies p = ¢g. So 7 makes T into a metric space.

If f and g have complex dilatation p and v, the norm of the complex dilatation

(1# —Y) llo- Therefore, in terms of complex dilatation, the

of go f~! is equal to ||-——
v
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Teichmiiller distance assumes the form

(b —v)
1+Ill_ﬁy lloo
7(p,q) = 5 min{log i) HEPVE q}-

Lemma 4.0.35. Every Cauchy sequence {[f.]} in (T,7) contains a subsequence
whose points are represented by complex dilatations p,, with the following proper-
ties:

(1) im p,(2) = pu(z) exists almost everywhere;

(2) (fun] = [fu] in the Teichmiller metric.

PROOF. In order to simplify the notation, we renumber functions each time that
we pass from a sequence to its subsequence. Also, we write f, = f,..
Let ([f»]) be a Cauchy sequence in (t,7). We shall construct inductively a
subsequence with the properties 1 and 2 using suitably chosen mappings f,.
First, fix a mapping f; so that

1

minlogKfMofi-l < 2 l=1,2,...,

Where for each {, the minimum is taken over all mappings of [f;+;]. Since ([f,])
is a Cauchy sequence, such a mapping f; exists. We renumber the sequence by
setting f; = fi.

After this, we choose for every n > 1 the mapping f, from its equivalence

class so that

log Kfnoff‘ < 5

>From this new sequence (f,) we choose a mapping fi so that

min log ka+z°f,§1 < %,
where again for each [ the infimum is taken over all mappings of the class [fi1]-
We set fr = fo, and for n > 2, choose a representative of [f,] so that

1

log Kfnof;‘ < 1
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Continuing this procedure we obtain a sequence (f,), such that ([f,]) is a sub-
sequence of the given Cauchy sequence and such that, for any two consecutive

indexes, the maximal dilatation satisfy the inequality
logKanof;l <2™ n=12, ...

It follows that
l

<) ormhl gt (4.0.9)

=1

log K,

—1
n+19fn

forn,l=1,2,....
Considering the connection between the maximal dilatation and the norm of
the complex dilatation, we deduce from 4.0.9 that the complex dilatations u, of

fn satisfy the inequality

Hntl — Un —n
”un-{-l - ,un”oc < 2”_{_-*-_—1.”00 < 2tanh 27",

nbnt
Thus (1) is a Cauchy sequence in L. Since L* is complete, the limit g = lim u.,
exists in L*. Thus the validity of condition 1 follows. From 4.0.9 we conclude that
the mappings f,, are K-quasiconformal for a fixed K. It follows that ||ulle < 1.
Therefore [u] = lim[u,]. This means that the statement 2 is true. O

Theorem 4.0.36. The universal Teichmiiller space is complete.

PRrROOF. By the statement 2 in lemma 4.0.35, if a Cauchy sequence contains a

convergent subsequence, then the sequence itself is convergent. O

4.0.10. Teichmiiller space

We shall now generalize the notion of the universal Teichmiiller space and
define the Teichmiiller space for an arbitrary Riemann surface.

Let us consider all quasiconformal mappings f of a Riemann surface S onto
other Riemann surfaces. If two such mappings f; and f, are declared to be
equivalent in the first sense, whenever the Riemann surfaces f;(S) and f»(S) are
conformally equivalent. The collection of equivalence classes form the Riemann

space R;.
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We introduce another equivalence. Let f; and f, be quasiconformal mappings
of a Riemann surface S. Then f; and f, are said to be equivalent in the second
sense, if f> o f{'! is homotopic to a conformal mapping of f;(S) onto f»(S).
Definition 4.0.37. The Teichmiiller space Ts of the Riemann surface S is the
set of the equivalence classes, in the second sense, of quasiconformal mappings of
S.

Theorem 4.0.38. If S = H then T, agrees with the universal Teichmiiller space.

PROOF. In applying the above definition of T; to S = H, we first note that all
quasiconformal images of H are conformally equivalent. It follows that we may
consider only the normalized quasiconformal self mappings f of H with complex
dilatation p. The condition that f#2 o (f#1)~! be homotopic to a conformal
mapping is fulfilled if and only if f#2 o (f#1)~! agrees with the identity mapping
on the real axis R.

Consequently, f#! is equivalent to f*2 by the above definition if and only
if f#1 |g= f#* |gr. By the definition of universal Teichmiiller space, this is the
condition for f#* and f*? to determine the same point in the universal Teichmiiller

space. O

The definition of The Teichmiiller space T can also be formulated in terms of
the Beltrami differentials on S. Every quasiconformal mapping of S determines
a Beltrami differential on S, namely, its complex dilatation. Conversely, if u is
a Beltrami differential of S, then by theorem 4.0.32 there is a quasiconformal
mapping of S whose complex dilatation is x4, and by the uniqueness part of that
theorem, all such mappings determine the same point of 7,. Two Beltrami dif-
ferentials are said to be equivalent if the corresponding quasiconformal mappings
are equivalent. Hence, a point of T can be thought of as a set of equivalent

Beltrami differentials.

4.0.11. Teichmiiller space as a subset of the universal space

For a Riemann surface S, we defined the Teichmiiller space T, by means of

quasiconformal mappings of S onto Riemann sufaces. Lifting the mappings to
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mappings between the universal covering surfaces leads to new characterizations
of T, and makes it possible to see the connection between the general space T}
and the universal Teichmiiller space. We impose on the Riemann surface S the
restriction that it has a half-plane as its universal covering surface. We denote
by f# the uniquely determined quasiconformal self mapping of H which has the
complex dilatation p and which keeps fixed the points 0, 1, co on the real axis.

Theorem 4.0.39. The Beltrami differentials u and v of S are equivalent if and
only if f* |r= f" |r-

PROOF. Let us first assume that 4 and v are equivalent. Let ¢ and ¢ be quasi-
conformal mappings of S which lift to f* and f”, respectively. Then there is a
conformal map 7: ¢(S) — ¥(S) such that n N ¢ is homotopic to ¥. So we have
fY = ho f* on R where h as a lift of 7, is a Mobius transformation. Since f* and
f¥ both fix 0, 1, oo, it follows that h is the identity.

Suppose conversely that f# = f¥ on the boundary R. Then f* and f* induce
the same isomorphism of the covering group of H over S onto a Fuchsian group
G'. The projection of f* and f* maps S onto the same Riemann surface H'/G".

These projections are homotopic. So p and v are equivalent. (W]

This theorem says that
(6] — f* |r

is a well-defined injective mapping of the Teichmiiller space. In particular, T,
can be characterized as the set of equivalence classes [f*], two mappings being
equivalent if they agree on R. We have arrived at the situation which was the
starting point of the definition of universal Teichmiiller space.

In the general case the complex dilatations of the mappings f* are Beltrami
differentials for the covering group G. If G is trivial, then T, is the universal
Teichmiiller space.

Let S; and S; be Riemann surfaces and G; and G, the covering groups of H

over S and S;. If G is a subgroup of Gy, then Ty, C T,. In particular, every
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Teichmiiller space Ts can be regarded as a subset of the universal Teichmiiller

space.

4.0.12. Teichmiiller metric

Exactly as in the case of the universal Teichmiiller space, we define the distance

1 .
7(p,q) = é’mln{logKgof—l : fep geq}

between the points p and ¢ of the Teichmiiller space. (T, T) is a metric space.

The Teichmiiller distance can be expressed in terms of Beltrami differentials:

L [ oo
. 1—5
7(p,q) = - min{log — t k€ p, v Eq}.
? N

Let 7 and 7, denote the Teichmiiller metrics in the universal Teichmiiller space
T and the Teichmiiller space T, respectively. Then the restriction 7 |z, is also a

metric in 7. From the definition of 7 and 7y it follows immediately that
T |1, < 7s.

T, does not inherit its metric from the universal Teichmiiller space: The metrics
7, and 7 |1, need not be the same.

Lemma 4.0.35 is true in every Teichmiiller space T,: A Cauchy sequence in
(T, T5) contains always a subsequence whose points have representatives p,, such
that lim p,(z) = u(z) exists almost everywhere, f,.] — [f.] in the 7,-metric.

The proof is the same as in lemma 4.0.35. In this case every u, is a Beltrami
differential for G, i.e. (uno g)z—: = Un. From p,(z) — p(z) almost everywhere it
follows that the lim p also is a Beltrami differential for G, i.e. [y] is a point of Ts.

From this we obtain a generalization of theorem 4.0.36:

Theorem 4.0.40. The Teichmiiller space (T, 7s) is complete.

4.0.13. Modular group

Theorem 4.0.41. The Teichmiiller space of two quasiconformally equivalent Rie-

mann surfaces are isometrically bijective.
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PROOF. Let S and S’ be Riemann surfaces and h a quasiconformal mapping of
S onto S’. The mapping

f— foh™!
is a bijection of the family of all quasiconformal mappings f of S onto the family
of all quasiconformal mappings of . If w; = f;oh™!, we have wpow; ' = fyo fT'.
We first conclude that f; and f, determine the same point of T} if and only if w;

and w, determine the same point in Ty, i.e.
[fl — [foh] (4.0.10)
is a bijective mapping of T onto Ty . O

Definition 4.0.42. Let h be a quasiconformal self-mapping of S. Then 4.0.10
defines a bijective isometry of Ts onto itself. The group Mod(S) of all such
isomorphisms [f] — [f o h™Y] of Ty is called the modular group of T.

Theorem 4.0.43. The Riemann space is the quotient of the Teichmiiller space
by the modular group.

PROOF. Assume first that the points [f] and [g] of T, are equivalent under
Mod(S). We then have a quasiconformal mappings h: S — S such that foh=!is
equivalent to g. But this means that there is a conformal mapping of f(S) onto
9(S), i.e. f and g determine the same point of R;.

Conversely, let f and g represent the same point of R,. Then a conformal
mapping ¢: f(S) — g(S) exists, and h = g7! o ¢ o f is a quasiconformal self-
mapping of S. From g = ¢ o (f o h™!) we see that g and f o h~! determine the

same point of 7. (]



Chapter 5

COMPLEX AND ALMOST COMPLEX
STRUCTURE ON THE SPHERES

The absence of an almost complex structure on S* for k > 1 and S** for n > 4
was proved by Wu [28] and jointly by Borel and Serre [7] respectively. Kirchhoff
[18] has shown that if S™ admits an almost complex structure, then S™*! admits
an absolute parallelism, and Adams [1] that S™*! admits an absolute parallelism
only forn+1 = 1, 3 and 7. The result of Adams combined with that of Kirchhoff
implies the result of Wu, Borel and Serre. It is well known that the six-dimensional
sphere S® admits the structure of an almost complex manifold [10]. On the other
hand, for a given almost complex structure on the 6-sphere, necessary conditions
were given in order that it define a complex structure (Ehresmann and Libermann

[9], Eckmann and Frohlicher [8]).

5.1. QUATERNIONS AND OCTONIONS

Quaternions are a non-commutative extension of complex numbers. Every
quaternion is uniquely expressible in the form a + bi + ¢j + dk where a, b, ¢ and

d are real numbers and ¢, j and k satisfy:

i j ok
i1 k —j
il=k -1
k| j —i —1

We denote the algebra of quaternions by H.
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Quaternions produce the usual three-dimensional vector product. In general,
if we represent a vector (a;, as, az) as the quaternion a,i+a,j+ask, we obtain the
vector product of two vectors by taking their product as quaternions and deleting
the real part of the result (the real part will be the negative of the dot product
of the two vectors).

The algebra of octonians, O, has a basis (I, eg, €y, ...,e5), where I is called

the unit element of O. The products e; - e; are given by the equations

e =—I, eiej=-¢(i#5;4,5=01,,...,6).

So we have the following multiplication table:

€p €1 €9 €3 €4 €g €g
€0 I €y —€; €4 —€3 €g —€5
e1|l—eys —I e —e5 €g es —ey
€2 €1 —€ I €p € —€4 —€3
€3 | —€e4 € —€g -1 € —€ €9
€4 €3 —€g —€5 —€y I €9 €1
€5 | —€g —€3 €4 €1 —€q —I €g
€g €5 €4 €3 —€3 —€1 —€y —1I

The algebra O is nonassociative; for instance, (e; - e3) - e3 # e; - (ea - e3) since
the left-hand side is e4, and the right-hand side is —e;. A vector product for
7-dimensional vectors can be obtained in the same way by using the octonions

instead of the quaternions.

5.2. AN ALMOST COMPLEX STRUCTURE ON THE 2 AND 6-SPHERE

In this section we consider the three dimensional case R3, where the vector
cross product derives from the multiplicative properties of imaginary quaternions.
Indeed, as a linear space imaginary quaternions coincide with R3. Thus the unit
sphere S? C R3 is isomorphic with the space of unit imaginary quaternions, and
it acquires a natural almost complex structure from the action of the quaternionic
vector cross product in R3. We have exactly the same approach for the 6-sphere;
5%, when considered as the set of unit norm imaginary octonions, inherits an

almost complex structure from the octonion multiplication.
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Explicitly this quaternionic or octonionic almost complex structure on S? or
S8 is constructed as follows:

The dot or internal product (w,v) can be defined for any two vectors w and v
in R". However, we shall show that the cross product w x v, can only be defined
for vectors in R3 or R”. The cross product has the following properties:

(1) wxv = —-vxw.

(2) w x v = 0if and only if v is a multiple of w.

(3) w x v is orthogonal to both w and v.

(4) wx (wxv) = (w,v)w — (w,w)v.

These properties of the cross product allows us to see the sphere 5% and S as
almost complex manifolds. Recall that S? (resp. S°®) is the set of all vectors w
in R?* (R") such that (w,w) = 1. Let v be any vector in R® (resp. R") which is
tangential to S? (resp. S®) at the point w, so that (v,w) = 0. Then w x v is
tangential to S? (resp. S%) at w and wx (wxwv) = —v. Hence, the transformation
which sends v to w x v is linear and its square w X (w X v) = —v is equal to —1,
so it defines an almost complex structure on S? (resp. S°).

Here we explain the case S° in more detail [12] [22]. In order to introduce a
vector product in R’, we shall consider R as the hyperplane of R® consisting of

the imaginary octonions. A general element of O may be written as
zI + X, z€R,

where R is the set of all real numbers, and

6
X=Z:Eiei, *€R, i=0,1,...,6.
i=0
If £ = 0, the element is called a purely imaginary octonian number. All
octonian numbers form an 8-dimensional vector space, which we denote by O,
over the real numbers, and all purely imaginary octonian numbers form a 7-

dimensional subspace R’ of O. Let

6
Y= ye, y€R i=0]1,...,6
=0
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Then we define
X - Y=-(X,Y)I+ X xY,
where

6
(X,Y) = > 2y,
=0

Xszz:xiyjei~ej
i#]
are respectively the scalar product and the vector product of X and Y in R’.

The operation of the vector product is bilinear. Now let us write
6
€ * €5 =Zefjek, 1,7 =0,1,...,6.
k=0

Then from the octonions multiplication table, it follows that ¥, = —e¥; are 0,1

or —1, and that

X xY=ZZz§yjek,
ko J

where
6
xf = Z zisfj.
i=0,i]
From the multiplication table, we obtain the whole matrix (z7):

( zg 2% 2§ 2§ z§ 2 :cg\ ( 0 —z% z' —z* 3 —2% 2P \
zt zl zl zl z 2l z? 0 —-z° =z —z8% —z3 ¢
2 2 12 22 1 2?2 a2 —z! z° 0 -z —z% z¢ 2°
z3 a3 z3 x3 23 2} | =| o -5 6 0 —z% 2! —2?
zy xi i z§ zi =i = —z3 8 5 20 0 —z2 -2l
Ty T T3 Ty Ty, TY T} 2 2 ozt 2! 222 0 —z°

\:cg z8 z§ 2§ 2§ =z§ 8 / \—xs —zt -3 2 ! 0 0

Thus we can show that

XxY=-YxX,

and that X x Y is orthogonal to both X and Y, that is,
(X, X xY)=0, (Y, XxY)=0.

Moreover,

X x (X xY)=(X,Y)X — (X, X)Y.
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Now that we have a vector product in R, we can go back and repeat the
construction of an almost complex structure on the 6-sphere. Consider the unit
6-sphere S® in R:

S ={zeR : (X, X)=1}.

The tangent space T'x(S%) of S8 at X € S® can naturally be identified with the
subspace of R orthogonal to X. Define the endomorphism Jx on Tx(S¢) by

JxY=XxY for YETx(SG).

Then
JJZ(Y:JX(XXY):XX(XXY):—Y,

which implies that J% = —TI; here I is the identity operator. Thus the corre-
spondence X — Jx defines a J such that J?> = —I, and hence defines an almost

complex structure on S°.

5.3. DIMENSION OF A COMPOSITION ALGEBRA

The preceding construction of almost complex structure only works on the
spheres S? and S®. This is due to the fact, that R® and R are the only vector
spaces where one can define an antisymmetric bilinear cross product of vectors.
The existence of a vector cross product on R* and R" reflects the fact that be-
sides real and complex numbers, quaternions and octonions are the only normed
division algebras.

In this section, we show that the possible dimensions of a composition algebra
are 1, 2, 4 or 8 [26]. Our starting problem is to understand composition algebras,
then, instead of composition algebras we look at the equivalent notion of vector
product algebras. These algebras can be obtained by rewriting the axioms of a

composition algebra in terms of the pure vectors.

5.4. COMPOSITION ALGEBRAS AND VECTOR PRODUCTS

Definition 5.4.1. A composition algebra consists of a vector space C together
with

(1) a symmetric bilinear form (,) on C,
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(2) a linear map CQC - C,zQ@y— z -y,

(8) an element 0 # e € C,

({)e-z=x-e=uz,

(5) with N(z) = (z,z), N(z -y) = N(z) N(y).
Definition 5.4.2. A vector product algebra consists of a vector space V' together
with

(1) a symmetric bilinear form (,) on V,

(2) a linear map VOV -V, 2Qy—z Xy,

(8) {x x y, z) is alternating in z,y, z ,

(4) (z x y) x z = (z,z)y — (z,9)2.

Vector product algebras and composition algebras are equivalent notions.
Namely, given a composition algebra C, let V = (e)* and put

1
zxy = g(ey-y-z)

Conversely, given a vector product algebra V, put C = (e)LV and define the
product on C by

(ae+1z)-(be+y) = (ab—(z,y))e+ay+ bz +z xy.

This equivalence between composition algebras and vector product algebras seems
to provide a convenient way to comprise some well known rules in composition

algebras.

5.5. THE CONTRACTION OF (,)

Let V be a finite-dimensional vector product algebra and let (e;);, be an or-

thonormal basis of V. Put

d = Z(ei,ei).

In the following we will apply the third property of definition 5.4.2 in the formu-

lation

(z xy,z) = (z,y x 2), (5.5.1)

YXT=—-TXY. (5.5.2)
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The fourth property of definition 5.4.2 will be used also in the following forms
which are obtained by polarizing and from the third property:

(zxy)xz+zx(yxz)=2z2z2)y— (z,y)z — (2,y)z, (56.5.3)

(Txy,zxt) + (yxz,txz) = 2z, 2)(y,t) — (z,y){(z,t) — (y,2){t,z). (5.5.4)

Other relations to be used are

Zei X (v Xe) = Z(ei,e,-)v - Z(eg,v)ei =dv—v = (d—1v (55.5)

and
Z(eixej,eix\ej) = Z(ei,ej x(e;xe;)) = (d—1) Z(e,,el = d(d-1). (5.5.6)
ij ij

We first consider vector product algebras which correspond to associative
composition algebras.

Proposition 5.5.1. Suppose that

(zxy)xz = (z,2)y — (y,2)z (5.5.7)

holds. Then d(d —1)(d —3) =0.

Proor. Consider

A= Z e; X (ex X €;),e; x (ex X €;)).

1,5,k

By 5.5.5 we have
A= (d—1)%ex, ex) = d(d—1)".

k
On the other hand, using 5.5.7 and 5.5.6 one finds

A= Z e; X (ex X €;)) X ej,ex X €;)

1,5,k

= Z((ei,ej)ek X e; — <€k X ei,e]-)ei,ek X Ej)
1,7,k

= Z(ek X €;,€er X €) — Z(ek x e;,€e;)(e; X ex,e;)
ik .5,k

=2 (er X e;, e X €5) = 2d(d — 1).
ik
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So
0=A-A=d(d-1)(d-3).
O

Theorem 5.5.2. Let V be a finite dimensional vector product algebra. One has

the relation

d(d — 1)(d — 3)(d — 7) = 0.

PRrOOF. Put

h(u,v) = Z(u X e;) X (e; X v).

The following formula has been introduced by T.A. Springer.
h(u,v) = (d —4)u x v. (5.5.8)
To check it one uses 5.5.3 with z = u, y = e; and z = ¢; X v and finds

h(u,v) = "ZU X (e; X (&; x v)) +22(u,ei X v)e,
— Z(u, e;)e; X v — Z(ei X v, €)u

%

= (d—1ux v+22(’u X U, e;)e; —uxv—~Z(v,ei X e;)u

= (d-luxv—2uxv—uxv—0=(d—4)uxv.
Formulas 5.5.8 and 5.5.6 make it easy to compute the sum
B = Z(h(ei,ek),h(ek,ei))
ik

=(d— 4)22(61- X ex,ex X €;) = —d(d — 1)(d — 4)2.
ik

We nest compute B in a different way. One has
B = {(e; x e5) x (g X ex) X (ex x e) x (&1 x €)).
Ty
Applying 5.5.4 shows
B+B =2C-D-D,



where

B = Z ((ej x ex) x (ex x &) x (e1 X €;) X (e; X €;)},
ik

C = Z(e, X e;,ex X e){e; X ex, e X ),
igkl

D = Z(e, X €5,€5 X ek)(ek X e, e X ei),
1,3,k,0

D = Z(e]’ X €, e X 61)(61 X €;,€e; X ej).
i,k
By reindexing one finds B = B’ and D = D’. Therefore
B=C-D.

We compute C and D:

C= Z e;,e; X (ex x e))((ej X ex) X ey, e;)

i,7,k,0

—-Z e; X (ex X €),(ej X ex) X e)
7.k,

—Z ekxel)x((ejxek)xel))
7.k,

= — z(h(e;c X e,er),e) =—(d—4) Z((ek X e1) X e, e;)
kL k.l

=—(d-1)(d—4)> (e er) = —d(d - 1)(d - 4),

l

D= Z (ei, €5 % (5 x ex))((ex x €1) X €1, €;)

ikl
= Z(eJ (ej % er), (ex X €1) X €)
3kl
=Y (d—1)(d—1){ex,ex) =d(d—1)%
k

Hence

B = —d(d-1)(d-4) — d(d—1)* = —d(d - 1)(2d - 5).
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Finally
0=B-B=—d(d—1)(2d—5)+d(d—1)(d — 4)?
= d(d — 1)(d* — 10d + 21)

= d(d—1)(d—3)(d— 7).

5.6. COMPLEX STRUCTURE ON 2-DIMENSIONAL MANIFOLDS

From the Newlander-Nirenberg theorem that we mentioned in chapter 2, we
shall show any two-dimensional almost complex structure is integrable. A familiar
example is the two dimensional sphere S? which inherits its complex structure
from the complex plane C as we saw in chapter 3. But in higher dimensions a
given almost complex structure on a manifold is not necessarily integrable, and
an almost complex manifold does not need to be a complex manifold.

We show that N;(X,Y’) vanishes, for every almost complex structure J on a

2-dimensional orientable manifold M. For any vector field X on M, we have
Ny(X,X)=JX,X]|-JJX,JX]-[JX,X]-[X,JX]=0.

On the other hand, in a neighborhood of a point where X is not 0, every vector

field Y is a linear combination of X and JX. Hence N; = 0, proving our assertion.



CONCLUSION

After introducing an almost complex structure on the 2-sphere and the 6-sphere
and relinquishing the study of complex structure on the 6-sphere, our new objec-
tive was to study complex structures on surfaces and construct the equivalence
classes of these structures. We solved this problem by studying the complex struc-
tures on Euclidean spaces. We even obtained the result for infinite dimensional
vector spaces by defining the C-isomorphisms.

We continued constructing complex structures on manifolds, based on the
property that locally look like Euclidean spaces, and proved that two complex
structures on a differentiable manifold are equivalent if the corresponding almost
complex structures are equivalent. Then we focused on Riemann surface as one
dimensional complex manifolds and we represented (most of) them as quotient
spaces of the upper half plane by Fuchsian groups. By this way, we arrived at
Riemann’s moduli space, which consists of the conformal equivalence classes of
Riemann surfaces.

Along the way, we modified our definition of equivalent Riemann surface struc-
tures. The new equivalence relation was stricter than simply biholomorphic equiv-
alence. Indeed, two complex structures on the topological base surface, both being
quasiconformally diffeomorphic to the initial Riemann surface structure, were de-
fined to be Teichmiiller equivalent if they were biholomorphically equivalent via
a quasiconformal mapping which was also required to be homotopic to the iden-
tity map. Finally, The relation between moduli space and Teichmiiller space was

shown by using modular groups.



BIBLIOGRAPHY

[1] J.F.Adams, On the non-ezistence of elements of Hopf invariant one, Ann. of Math.
17, 1960: 20-104.
[2] L. V. Ahlfors, Complexr Analysis : An Introduction to The Theory of Analytic
Functions of One Complex Variable, New York , McGraw-Hill, 1979.
[3] L. V. Ahlfors, Lectures on Quasiconformal Mappings, Princeton, Van Nostrand
Toronto, 1966.
[4] L. Bers, Uniformization, moduli and Kleinian groups, Bull. London Math. Sci. 4,
1972, 257-300.
[5] A. Boggess, CR Manifolds and The Tangential Cauchy-Riemann Complez, Boca
Raton , CRC Press, 1991.
[6] W. M. Boothby, An Introduction to Differentiable Manifolds and Riemannian Ge-
ometry, Amsterdam , Academic Press, 2003.
[7] A. Borel ; J.P. Serre, Groupes de Lie et puissance réduites de Steenrod, Amer. J.
Math. 75, 1953: 409-448.
[8] B. Eckmann ; A. Frohlicher, Sur l’intégrabllité des structures presque complezes, C.
R. Acad. Sci. Paris 232, 1951: 2284-2286.
[9] C. Ehresmann ; P. Libermann, Sur les structures presque hermitiennes isotropes,
C. R. Acad. Sci. Paris 232, 1951: 1281-1283.
[10] C. Ehresmann , Sur les variétés presque-complezes, Proc. Int. Congr Math., 1950,
vol.2, Amer. Math. Soc., Providence, R.I., 1952, 412-419.
[11] H. M. Farkas ; I. Kra, Riemann Surfaces, New York , Springer-Verlag, 1980.
[12] C.C. Hsiung, Almost Complex and Complex Structures, Singapore , World Scien-
tific, 1995.
[13] F. P. Gardiner, Teichmiiller Theory and Quadratic Differentials, New York , Wiley,
1987.
[14] P. M. Gauthier, Several complez variables, Lecture notes, webpage, 2004.



85

[15] F. W. Gehring, Characteristic Properties of Quasidisks, Montréal , Presses de
I’Université de Montréal, 1982.

[16] Y. Imayoshi, An Introduction to Teichmiiller Spaces, Tokyo , Springer-Verlag, 1999.

[17) H. Jacobowitz, An Introduction to CR Structures, Providence, R.I. , Amer. Math.
Sci. , 1990.

[18] A. Kirchhoff, Sur l‘existence de certains champs tensoriels sur les spheres a n di-
mensions, C. R. Acad. Sci. Paris 225, 1947: 1258-1260.

[19] S. Kobayashi ; K. Nomizu , Foundations of Differential Geometry, New York ,
Interscience, 1963-69.

[20] O. Lehto, Univalent Functions and Teichmiiller Spaces, New York , Springer-Verlag,
1987.

[21] O. Lehto ; K.I. Virtanen, Quasiconformal Mappings in The Plane, New York ,
Springer-Verlag, 1973.

[22] A. Marshakov ; A. J. Niemi, Yang-mills, complex structures and Chern‘s last the-
orem, Mod. Phys. Lett. 20, 2005: 2583-2600.

[23] D. McDuff; D. Salamon, J-holomorphic Curves and Symplectic Topology, Provi-
dence, R.I. , Amer. Math. Sci. , 2004.

[24] S. Nag, The Complex Analytic Theory of Teichmiiller Spaces, New York , J. Wiley,
1988.

[25] R. H. Nevanlinna, Uniformisierung, New York , Springer-Verlag, 1967.

[26] M. Rost, On the dimension of a composition algebra, Doc. Math. J. DMV 1, 1996:
209-214.

[27) R.O. Wells, Differential Analysis on Complex Manifolds, New York , Springer-
Verlag, 1980.

[28] W. T. Wu, Sur les classes caractéristiques des structures fibrées sphériques, Actu-

alités Sci. Indust. Paris 1183, 1952.



