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SOMMAIRE

Initialement, notre but était de considérer la question principale au sujet des

structures complexes; La 6-sphère a-t-elle une structure complexe? Après avoir

construit une structure presque complexe sur la 6-sphère, nous avons rapidement

constaté que ce problème était beaucoup trop compliqué. Nous nous sommes

alors résignés à simplement nous familiariser avec quelques notions élémentaires

en rapport avec les structures complexes, en préparation pour un retour éventuel

à la 6-sphère.

Nous dirons quelques mots au sujet des structures complexes en général, mais

notre intention est de mettre l’accent sur les structures complexes sur les surfaces

de Riemann. En cours de route, nous toucherons aussi à quelques notions voisines,

telles que les structures presque complexes et les structures de Cauchy-Riemann.

Au chapitre 1, nous parlons d’espaces vectoriels réels et complexes. Plus

exactement, nous alons induire une structure complexe sur un espace vectoriel

réel de dimension paire, pour en faire un espace vectoriel complexe.

Nous continuons cette approche au chapitre 2 pour imposer des structures

complexes sur des variétés. Nous étudierons aussi les structures presque com

plexes et les structures de Cauchy-Riemanu. Une variété presque complexe est

une variété lisse munie d’une structure linéaire complexe sur chaque espace tan

gent, qui varie de façon lisse. Une variété de Cauchy-Riemann est définie par un

sousfibré du fibré tangent complexifié.

Au chapitre 3, nous construisons l’espace de Riemann des modules d’une

surface. Pour une surface de Riemann donnée S, l’espace de Riemaun des mo

dules consiste des classes d’équivalence conforme (biholomorphe) de surfaces de

Riemann qui sont hornéomorphes à S. Dans ce chapitre, nous montrons aussi
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que toute surface de Riernann, sauf quelques exceptions, est représentée comme

quotient du demi-plan supérieur par un groupe fuchsien. Nous parlerons aussi

des fonctions automorphes. Une fonction automorphe sur un domaine est une

fonction méromorphe qui est invariante par rapport à un certain genre de groupe

d’automorphismes du domain.

Au chapitre 4, on introduit les transformations quasiconformes, utilisant une

méthode géométrique et une procedure analytique. Ensuite, on construit l’espace

de Teichmfller en utilisant les transformation quasiconformes. On montre aussi

que l’espace de Teichmfller est complet pour la distance de Teichmfiler. Ensuite

on explique que les automorphismes d’une surface forment u groupe discret,

le groupe modulaire, qui agit sur l’espace de Teichmiler de cette surface. Le

quotient de l’espace de Teichmùler par cette action est précisément l’espace de

modules de cette surface.

Au chapitre 5, on utilise les produits dans les quaternions et les octonions

pour construire une structure presque complexe sur la 2-sphère et la 6-sphère.

On montre aussi que cette approche ne marche pas sur les sphères de dimension

autre que 2 ou 6. Enfin, on montre que la structure presque complexe que nous

avons construite sur la 2-sphère provient d’une structure complexe.

Mots Clés: Espace de Teichmflhler, espace des modules, surfaces de Riemann,

structure complexe, structure CR, structure presque complexe.



$UMMARY

Our initial project was to consider the most outstanding problem concernillg

complex structures, namely, whether the 6-sphere S6 admits a complex structure.

We constructed an almost complex structure on 6-sphere, however it quickly

became apparent that the original problem was far heyond our reach and we

resigned ourselves to merely familiarizing ourselves with some preliminary notions

regarding complex structures, in the hope of eventually returning to the 6-sphere.

We shah say a few words about complex structures in general, but we intend to

emphasize complex structures on Riemalln surfaces. Along the way we shah

also touch upon related notions such as almost complex structures and Cauchy

Riemann structures.

In Chapter 1, we deal with real vector spaces and complex vector spaces.

Precisely, we will implement a linear complex structure on even dimensional real

vector spaces to become complex vector spaces.

We continue this approach to Chapter 2, to establish complex structures on

manifolds. We shah also study Almost complex structures and CR structures.

An almost complex manifold is a srnooth manifold equipped with smooth linear

complex structure on each tangent space and a CR manifold is defilled by a

subbundle of the complexified tangent bundie.

In Chapter 3, we construct Riemann’s moduhi space. For a given Riemann

surface S, Riemann’s Moduhi space consists of the conformal (biholomorphic)

equivalence classes of Riemann surfaces which are horneomorphic to S. In this

chapter we also show that every Riemann surface, except for a few types, is

represented as a quotient space of the upper haif plane by a Fuchsian group. We

shall also give the definition of automorphic functions. An autornorphic function
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is one which is meromorphic in its domain and is invariant under a certain type

of group of automorhisms of the domain.

b Chapter 4 we define quasiconformal mappings, using a geometric method

and an analytic procedure. Then the TeichmUller space is constructed by using

quasiconformal mappings. We also show that Teichmiiller space is complete with

respect to the Teichmûller distance. We also explain that the automorphisms of

a surface form a discrete group, the modular group, that acts on the Teichmùller

space of that surface. The quotient of the Teichmtiller space by this action is

precisely the moduli space of that surface.

In Chapter 5, we use the product in quaternions and octonions to construct

an almost complex structure in the 2-sphere and 6-sphere. We also show that

this approach cannot be applied to spheres in other dimensions. Finally, we show

that the almost complex structure which we constructed on the 2-sphere derives

from a complex structure.

Key words:

Teichmi1Ier space, Moduli space, Riemann surface, complex structure, CR

structure, almost complex structure.
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INTRODUCTION

Around 500 BC, the Greek mathematicians led by Pythagoras realized the need

for irrational numbers in particular the irrationality of the square root of two.

Negative numbers were invented by Indian mathernaticians around 600 AD, and

then possibly invented independently in China shortly after. In the l8th and l9th

centuries there was much work on irrational and transcendental numbers.

The earliest fleeting reference to square roots of negative numbers perhaps oc

curred in the work of the Greek mathematician and inventor Heron of Alexandria

in the lst century CE, when lie considered the volume of an impossible frustum of

a pyrarnid, though negative numbers were not conceived in the Hellenistic world.

Complex numbers became more prorninent in the l6th century, when closed for

mulas for the roots of cubic and quartic polynomials were discovered by Italian

mathernaticians.

After introducing real and complex vector spaces, we shah define complex

structures on manifolds. The name manifold cornes from Riemann’s original

German term Mannigfaltigkeit” which Wilhiam Kingdon Chifford translates as

rnanifoldness”. Herrnann Weyl gave an intrinsic definition for differentiable man

ifolds in 1912. The foundational aspects of the subject were clarified during the

1930s by Hassier Whitney and others, making precise intuitions dating back to

the later haif of the l9th century.

The notion of a complex manifold is a natural outgrowth of that of a dif

ferentiahie manifold. Its importance lies to a large extent in the fact that the

complex manifolds include the Riemann surfaces as special cases, and furnish the

geometric basis for functions of several complex variables.
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The problem of how to parametrize the variation of complex structures on

a fixed base surface originated with G.F.Bernhard Riemann. This problem ha.s

spurred exteilsive mvestigations, and progress has been considerable in the area of

the theory of Riemann surfaces. Riemann’s Moduli space consists of the conformai

(biholomorphic) equivalence classes of Riemann surfaces.

One of Oswaid Teichmihler’s great contributions to the moduli problem was

to recognize that it becomes more accessible if we consider not only conformai

mappings but also quasiconformal mappings. In the end of the 1950s, Lars V.

Ahifors and Lipman Bers developed the fundamentals of the theory of Teichmflhler

spaces.

The theory of Teichmflhler space gives a parametrization of ail the complex

structures on a given surface. This subject lies in the intersection of many im

portant area.s of mathematics. These include complex manifolds, holomorphic

functions, Riemann surfaces, Fuchsian groups and complex analysis. Recently,

the theory of TeichmUller spaces has begun to play an important role in string

theory.

String theory is a fundamental model of physics whose building blocks are one

dimensional extended objects (strings) rather than the zero dimensional points

(particles) that are the basis of the standard model of particle physics. String the

orists are attempting to adjust the Standard Model by removing the assumption

in quantum mechanics that particles are point-like. By removing this assumption

and replacing the point-like particles with strings, it is hoped that string theory

will develop into a sensible quantum theory of gravity. Moreover, string theory

appears to be able to “unify” the known natural forces (gravitational, electro

magnetic, weak and strong) by describing them with the same set of equations.

How do surfaces enter the picture? A string is 1-dimensional. As time varies, its

world-orbit is hence 2-dimensional, thus a surface. Teichmiler theory is useful

in studying the physics of 2-dimensional space time. The 2-dimensional model

of space time is of interest to physicists, because it gives them a simpler context

in which to study complicated phenomena. The understanding so obtained wili

hopefully yield insights into higher dimensional space-time.
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I hope to have whetted the reader’s appetite for more of this subject (Te

ichmflhler theory), a subject that Lipman Bers has called “the higher theory of

Riemann surface.”



Chapter 1

COMPLEX STRUCTURE ON VECTOR

SPACES

1.1. Co’11Ex STRUCTURES ON VECTOR SPACES

Definition 1.1.1. If V is a Teat vectOT space, a tinear map J: V —* V such that

j2 = —I is catted a comptex structure on V.

Example 1.1.2. Let V be a comptex vector space, then i is a comptex structure

on V.

Remark 1.1.3. A comptex structure on a vector space is an automoTphism.

If J is a complex structure so J2 = —I. The function I is a bijection so

j2 J o J is a bijection. If the composition of two functions is a bijection, then

it can be concluded that the first applied is injective and the second applied is

surjective. Here we have J o J, so J is injective and surjective.

The simplest example of a vector space over R is the trivial one: {O} which

contains only one element, O, of R. Both vector addition and scalar multiplication

are trivial. A basis for this vector space is the empty set, so that {O} is O

dimensional vector space over R. The linear map J(O) = O is a complex structure

on R°.

R is a vector space over itself. Vector addition is just field addition and scalar

multiplication is just field multiplication. The identity element, 1, of R serves as

a basis so that R is a 1-dimensional vector space over itself.
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Assume that R lias a complex structure. So there is a linear operator

J:R—Rsuchthat J2=—I.

In particular, this implies that:

J(J(1)) —1(1) = —1. (1.1.1)

Let a denote J(Ï). Then from (1.1.1) and linearity, we have:

—1 = J(J(1)) J(a) = aJ(1) a2.

Thus a2 — and this is a contradiction. Hence R has no coniplex structure.

In linear algebra, linear transformations can be represented by matrices. If T

is a linear transformation mapping R to R and x is a column vector with n

entries, then:

for some m x n matrix A, called the transformation matrix of T.

There is a linear transformation J from R2 —* R2 by (x, y) —* (—y, x). The

(o -i
matrix representation of J is f J and this is a complex structure on R2.

\1 O)
Theorem 1.1.4. There exists a comptex structure on a reat vector space if and

onty if it is not offinite odd dimension.

Pnoo. Let J he a complex structure on a real finite dimensional vector space. So

J2 = —I. Consider that (—1) is the determinant of —I which is the determinant

of J2 that is (1J12)• Thus (—l1 (IJD2 and so n is even. So R lias no complex

structure when n is odd.

Every member of a vector space is a linear combination of the basis elements

and a complex structure is a linear map, so it is sufficient to define a complex

structure on the ba.sis of a vector space.

Let e1, e2, e3,- - - , e2 be a basis of the vector space R2. In order to define a

linear transformation J : R27L —* R2’, it is sufficient to define the effect of J on the
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basis. Set J(ek) = e+k, J(ek+) = —ek, k 1,... ,n. The matrix representation

tonxn _Inxn
ofJis I

\InXfl °flXfl

A consequence of the axiom of choice is that every vector space has a basis and

conversely, if B is an arbitrary set, a vector space with dimension BI over a field

F can be constructed a.s follows: Take the set F(B) of ail functions f : B —* F.

These fullctions can be added and multiplied by elements of F, and we obtain

the desired F-vector space. A basis for F(B) would be given by the set of ail

[o ifab,
functions fb(a) =

1 ifarrzb

These functions generate F(B), because Vf F(B)

f:B-*F

b H-* f

we have f Ze They are also hnearly independent: Let ojf, =

O, so for every x = b E B, we have Z ,ecifbi(x) = cjf(b) 0, so = O.

Hence there exists a vector space having arbitrary cardinality.

Let V be a real vector space of infinite dimension m with basis B. We can see

the infinite ilumber m as a m = m+m. There exist vector spaces V1 and V2, both

of dimension m, with bases C and D respectively. So the vector space V can be

represented as V = V1 V and its basis B can be considered as a decomposition

{C, D}. Since C and D have the same cardinality, there is a bijectioii f : C —* D,

= f(c) where C {c}, a E a = IBI. Now we define a complex structure J

on the real infiuite dimensional vector space V as J(ca) = c4,, alld J(dc) =

wherea’Ea. D

1.2. ALL COMPLEX STRUCTURES ON VECTOR $PACES

If a vector space V has a complex structure J, then — J is also a complex

structure and if the dimension of V is greater than 0, then J is not equal to —J.

Thus the complex structure is aiways non-unique in a vector space of non zero

dimension. This does not depend on the dimension of V. It works also for infinite

dimension. So the compiex structure on a vector space is not unique.
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Definition 1.2.1. The comptexifi cation VC ofa reat vector space V is the cornptex

vector space VC that is obtained from the real vector space V by extending the fieÏd

of scatars.

The space V is the set of expressions X + iY, wliere X, Y e V, with the

operations of addition and multiplication by complex numbers are deftned as

follows:

(X1 +iïi)+(X2 +iY2) : (Xy +X2)+i(Yy +Y2), X1 +iY1,X2 +iY2 E VC

(a + ib)(X + iY) : (aX — W) + i(aY + bX), a + ib E C, X + iY E Vc.

And since we just extend the field of scalars of a vector space,

V=={ V}
finie

: j+j e C,b e basis of V}
firute

finite finite

se the dimension of VC over C is equal to the dimension of V over R, since every

basis of V is a basis of VC over C.

Definition 1.2.2. A group G is said to act on a set X i.e. X is a G-set, when

there is a map : G x X —* X s’uch that the fottowing conditions hold for alt

eternents X E X.

(1) ç(e,x) x where e is the identity etement of G.

(2) çl(g, çb(h, x)) = q5(gh, x) for alt g, h e G.

F0T simpticity, we write (g. x) = gx.

A group action G x X —* X is transitive if it possesses only a single group

orbit, i.e. for every pair of elemellts x and y, there is a group element g such that

gx = y.

Some elements of a group G acting on a set X may fix a point x. These group

elements form a subgroup called the isotropy group of x, defined by:

G1 {g E G: gx x}.
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When two points x and y are in the same group orbit, say y = gx, then the

isotropy groups are conjugate subgroups. More precisely, G = gGg’

h E G hy = y h(gx) = gx g1hg(x) = ï g’hg E G h E gG1g1.

For any suhgroup H C G, consider G/H = {aH : a E G} as a G-set, where

Vg E G, g(aH) = (ga)H E G/H.

Definition 1.2.3. Let S and 32 be two G-sets. A map T : —* 32 is a G

morphism if

T(hs) = h(Ts),Vh E G,Vs e $.

If ï and y are in the same orbit, G/G G/G: Define a rnap

T: G/G —* G/G

aG H-* agGg1

where G/G = {aG : a E G} and y = gx or G = gG.g’. We can easily check

that this map is a G-morphism because T(h(aG)) T((ha)G1) (ha)gGg =

h(agGg) = h(T(aG)).

Because a transitive group action implies that there is only one group orbit,

if G acts trallsitively on X, then X is G-isomorphic to the quotient space G/Ga,

by

G/G —+X

gG H—* gx

where G is the isotropy group of x. The choice of ï E X does not affect the

isomorphism type of G/G because ail of the isotropy groups are conjugate.

Theorem 1.2.4. An R-tinear may L: V1 — V2 is a G-tinear map L: (V1, J1) —

(, J2) if and onÏy if U1 = J2L.
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PROOF. Suppose L : V1 — V2 is R-linear and U1 = J2L. Since L is R-linear,

then

L(v + w) = L(u) + L(w),Vv,w E V1,

L((a + ib)v) = L(av + bJiv) = L(av) + L(bJiv) = aL(v) + bL(J1u)

= aL(v) + bJ2(L(v)) = (u + ib)L(v)

so L is C-linear. Converselv, suppose L is C-linear. So L(Jiv) = L((i)v) =

(i)L(v) = J2L(v), that means U1 J2L. D

Corollary 1.2.5. L E AutR(V) is in Autc(V, J) if and onÏy if U JL or

L = JLJ’ or J = L’JL.

Corollary 1.2.6. Let J1 and J2 be complex structures on V. An R-tinear rnap

L: V — V is u C-tinear map L: (J1) —* ( J2) if and onty if U1 = J2L.

Corollary 1.2.7. L E AutR(V) is u C-isornorphism L: (V, J1) —* (V, J2) if and

onty if U1 = J2L.

Theorem 1.2.8. The space (R2) of alt comptex structures on u 2n-dimensionat

reat vector space is u G-set for GL(2n, R) which is G-isomorphic with the G-set

GL(2n, R)/GL(n, C).

PROOF. Define a map

GU(2n,R) —* A(R)

A F—* AJ0A

tonxn —Inxn
where Jo = I I is the standard complex structure on R2’ This

InXfl °flXfl J
map is obviously wefl defined and it is surjective also: Let VC denote the com

plexification of V. Let J be a complex structure on V. Since V and VC have the

sanie basis, the complex structure J on V extends its definition on VC by

J(v) = J.r + iJy, where ii = x + iy, y V, .r, y E V.
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We can check that J remains linear and J2 = —I:

J2(v) J(J(x + iy)) = J(Jx + iJy) = J(Jx) + iJ(Jy) = —x + i(—y) —y.

J(vi + u2) = J((xi + iy1) + (12 + iy2)) = J((xi + ‘2) + i(yi + y2))

= J(xi + x2) + iJ(yi + y2) = (J(xi) + iJ(yi)) + (J(x2) + iJ(y2))

= J(vi) + J(v2).

J(u) = J((a + ib)(x + iy)) = J((ax — by) + i(ay + bi))

J(ax — by) + iJ(ay + bi) aJx — bJy -i- iaJy + ibJx

ta + ib)(Jx + iJy) = cJ(u) where c = o. + ib E C.

Since J2 = —I, J has eigenvalues =

Denote by E the eigenspaces of J for +i respectively, and E = Ker (I iJ):

x E Ker (I — iJ) = (I — iJ)(x) = O = iJx = x = Jx = —ix x E

xEKer(I+iJ)(I+iJ)(x)=0iJx=—x Jx=ixxEE.

And also Ker (I + iJ) = Range (I + iJ):

(I+iJ)(I—iJ)=I+iJ—iJ—i2J2=O, i2=_1, J2=—i,

so Range (I — iJ) C Ker (I + iJ) = E. On the other hand, if u e E, then:

1 1 1 1 1. 1 1.
(I — zJ)(v) — zJ(u) = u — zJu = — i(zu) = u,

so Ker (I + iJ) C Range (I — iJ). Hence Ker (I + iJ) = Range (I — iJ). The

other equality is similar.

We now have VC = Range (I — iJ) + Range (I + iJ) E E—.

We define the complex conjugation as the bijection

p: VC VC

V H—* V

X+iY H—* X—Y.
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This bijection is a group homornorphism:

(v+w)=e+w=+= (v)+(w),

= = ta + ib)(x + iy) = (CLX — by) + i(ay + bx) = (ax — by) — i(ay + bx)

= (a — ib)(x — iy) = Xo(v).

The complex conjugation p interchange E and E-, i.e. E— = p(Ej and

E = p(Ej: Since V and VC have the same hasis and J inherits its definition

on VC from its definition on V, so J(x + iy) = Jx — iJy = J. Let e E

be an eigenvector, i.e. Je iv. So, if y e E± then J = = = —i so

eE.

$imilarly, if e e E is an eigenvector, i.e. Je = —iv then JU = = = i so

e E.

Letw =nj+iej,j= 1,--• ,mbeabasisofE. SinceE =(E)=, so

JJ, j = 1, m generate E. They are linearly independent too:

Let Z’t afBj = O. So O = Z aTUJ = jw) = (L1
>Frorn the definition of , if u = x+iy and (v) = O, then, since ço(x+iy) x—iy,

we have x y = O and so y = O.

$0 t1 Jw = O, and because w, j 1,••• , m are linearly independent J
O,j=1,•••,m,andsoa=O,j=1,,m.

Hence ï3J, j = 1,.•• , ra form a basis of E and dimE=z dirnE+. We have already

shown that VC = E E- so dimVdimE±dirnE=2n. Hence dimE= n.

The vectors n1,.» ,e,,, where ei = n + iv j = i,••• ,n, are lin

early indep endent

n n W+W
an + Z=1 bV =

= 2
‘ e,

= 2i
an + bv = + + — = O

a = O, b = O, i = 1,» ,n.
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Also the vectors ni,••• , n, v;,••• ,v generate VC:

If u e E+ so u aw = a(n + iu) = ZZ1 aj’uj + Z1(ia)e.

If u e E SO y = a(n. — iv) = an + Z=i(—iai)uj.
If y e V, siiice VC = E+ E, sou can be generated by the vectors ‘u1, , ‘un, u1,

too. Hence ‘u1,••• , ‘u,, u1,••• , v, form a basis of Vc. By the resuit of the defini

tion 1.2.1, the basis of W over C is the basis of V over R, so n,••• , ni,, v1,•• ,

is the basis of V too.

Since w = n + iv, j = 1,•• , n is a basis of E so
= n +iu E E is an

eigenvector and Jw = iw and Jw = J(n + iv) —uj + in. This shows that:

Jni —vi, lvi = ni.

Let the linear transformation A : R2 —* V be given by:

=

(jn

—
v)

for = (,ii). It is easy to check that:

JAC =
J((n

— = (Jn — Ju)
= (—ii —

AJ0C = A(—’q, ) —

Hence JA = AJ0 and so J = AJ0A.

By defining action (A, J) —* AJA, GL(2n, R) acts on (R2’). So (R2’)

is a G-set for G = GL(2n, R) and the surjectivity of

GL(2n,R) A(R’)

A A’J0A

shows that GL(2n, R) acts on the set A(R2) transitively. So A(R2”), the set of

ail complex structures on R2, is isomorphic to the set GL(2n, R)/H where H is

the isotropy group GL(2n, R). The choice of J does not affect the isomorphism

because there is only one group orbit and so ail of isotropy groups are conjugate.

The isotropy group of J0,H0 = {A e GL(2n, R) : Jo = AJ0A}, consists of

ah matrices that commute with J0. If we identify R2 with C’ with z = (x, y)

corresponding to c+iy for x, y e R”, we can have another form of corollary 1.2.5
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in finite dimensional as: A e AutR(R2T) = GL(2n. R) is in Antc(C’) = GL(n, C)

if and only if AJ = JA or A = JAJ’ or J = AJA. So, H30, the isotropy

group of J0 is exactly GL(n, C).

Let J be an arbitrary complex structure on a real vector space V. With such

a structure, V becomes a complex vector space:

(a+ib)v=av+bJv,(a+ib)C,vV. (1.2.1)

b,eBiLet B be a hasis of V over C then B1 is linearly independent i.e. if Zfiniie iN

O the ci, = O,Vi. Let ZciJbj = O. By 1.2.1 Z (icij)b O. And

because B is linearly independent, so ici O and ci, = O,Vi. So J(B1) is

linearly independent. The set {B, J(31)} is linearly independent too, because

if Z (ci,b + 3Jb) = O, by 1.2.1 cij + i/3)b = O. And because B is

linearly independent, so c + if3 = O and so ci, = O, /3 = OVi.

Since B1 is a basis of V over C then Span(B1) = V over C so

V = {Ziinie(Xi + i:g) b1 Zfinite xb1 + yJb1 : x + ‘iyi C and b e B}

in other words:

V
= xb + y1Jb1 : x, y G R, b1 e B and Jb1 e J(B1)},

so Span({Bi, J(31)}) = V over R. Therefore if B is a basis of V over C then

{B, J(31) = B2} forms a basis of V over R.

Let V and V2 be real vector spaces with respective complex structures J1 and

J2. Then (V1, J1) and (V2, J2) are complex vector spaces. The morphisms between

real vector spaces are R-linear maps and the morphisms between complex vector

spaces are C-linear maps. And also every C-linear map is R-linear.

Theorem 1.2.9. The set of ati comptex strnctnres on an infinite dimensionat reat

vector spaces (V) cari be identified with the AutR(V)-set AntR(V)/Av.tc(V J).

PROOF. Let J be an arbitrary complex structure on an infinite dimensional real

vector space V. So (X/ J) is a complex vector space.

Let B = {b}, ci e a = II, be a hasis of the vector space V over C. Then

{B, JB = C} is a basis of V over R.
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We know by the end of theorem 1.1.4 that if there was a decomposition of

the basis of a vector space into two set with the same cardinality, so we could

consider a bijection f : B —* C by b —* c where C = {c}, e a ICI = BI,
and we could define a complex structure Jo on the vector space V:

J0(b) = f(ba) = c, Jo(c) = —f’(ca) —bu, e a.

If we take a bijection between B and C as f then J(b) = f(b) = c, = J0(ba)

and J(cc) = J(J(b)) = bc. = Jo(cc) so J = J0. If we take another bijection

between B and C as f g: B — C, there is a map q5: C —* C such that f bg.

We clefine q5 = JJ’ E AUtR(V). So J q5Jo.

So AutR(V) acts on (V) transitively. By 1.2.1, we see that J corresponds

to multiplication by i, so the isotropy group AutR(V)J, that is ail R-linear map

that commute with J, is ail Complex linear maps A’utc(V, J). Hence the set of

ail complex structures on an infinite dimensionai real vector spaces (V) can be

identified with the AUtR(V)-set A’utR(V)/AutctV J). D

1.3. THE EQUIVALENCE CLASS 0F COMPLEX STRUCTURES ON VEC

TOR SPACES

Definition 1.3.1. Two comptex structures J1 and J2 on a reat vector spaces V

are equivatent if there exist a C’-isomorphism L : (V, J1) — (V, J2).

Corollary 1.3.2. J1 J2 =z EL e Aut(V) such tÏzat J2 = LJ1L’.

The following theorem results easily from combining the previous theorems.

Theorem 1.3.3. Att comptex structures on a reat vector space are equivatent.



Chapter 2

COMPLEX MANIFOLDS

2.1. DIFFERENTIABLE MANIFOLDS

Let M be a Hausdorff topological space such that any point of M admits a

neighborhood homeomorphic to an open set in R’: rollghly, such a space is ob

tained by gluing together open subsets of R’. We decide to carry the differentiable

structure from the open sllbset bf R onto these neighborhoods in M.

Definition 2.1.1. A C atlas on a Hansdorff topologicat space M is given by an

open cover U, i I of M and a famity of homeomorphism Ij U — R where

the R are open subsets of R such that for ang i and j ‘in I, the homeomorphism

o q5’ (transition fnnctions) is in fact a C diffeomorphism from n LJ)

onto j(U fl U).

Two CP atiases for M, (Ui, j) and (Vi, j), are C’ equivalent if their union

is stiil a C atlas, that is if the çj o ‘7 are C’ diffeomorphisms from b(U n V)

onto(Ufl).

A differentiahie structure of class C’ on M is an equivalence class of consistent

C’ atiases. A differentiable manifold will be a connected Hausdorff topological

space, together with a differentiable structure.

2.2. COMPLEx MANIFOLDS

A real (differentiable) manifold is a topological space which is locally real

Euclidean. We shall now introduce complex manifolds, which are locally complex

Euclidean. Indeed, to define a complex manifold of complex dimension n, we



17

copy the definition of a real manifold of real dimension n. The only difference is

that, instead of requiring the to be open sets in real Euclidean space RIt, we

require that they be open sets in complex Euclidean space O’. We may speak of

complex coordinates, charts, atiases etc. Thus, a complex manifold of complex

dimension n cari be considered as a real manifold of real dimension 2n. Thus,

it would seem that the study of complex manifolds is merely the study of real

manifolds in even real dimensions. However, when considering complex manifolds,

we usually require a very high level of srnoothness. A complex atlas A is said to

be a holomorphic atlas if the changes of coordinates o are biholomorphic. A

holomorphic structure on M is an equivalence class of holomorphic atiases on M.

Often, we shah give a holomorphic atlas U for a manifold and think of it as the

equivalence class of all structures which are biholornorphically compatible with it.

0f course we shall associate the same holornorphic structure to two holomorphic

atiases U and V if and only if the two atlases are compatible. Since the union

of compatible holomorphic atlases is a holornorphic atlas, for any holornorphic

atlas A, there is a maximal holomorphic atlas compatible with an atlas A. This

is rnerely the union of all holomorphic atlases compatible with A. Thus we may

think of holomorphic structure on M as a maximal holomorphic atlas. It seems

we now defined a holomorphic st.ructure on M in three ways: as an equivalence

class of holomorphic atiases, as a holomorphic atlas which is maximal with respect

to equivalence or simply as a holomorphic atlas U, meaning the eqilivalence class

of U or the maximal holomorphic atlas equivalent with U. All that matters at

this point is to be able to tell whether two holomorphic structures on M are the

same or flot. No matter which definition we use, we shah always corne up with

the same answer. That is, two structures will be considered different with respect

to one of the definitions if and only if they are considered different with respect

to the other definitions.

A complex holomorphic manifold is a connected, Hausdorff topological space

M as above, together with a holomorphic structure. Since complex manifolds

of dimension n of smoothness less than holomorphic are merely real manifolds

of dimension 2n, we shall consider only holomorphic complex manifolds. Thus,



18

when we speak of a complex structure, we shah mean a holomorphic structure and

when we speak of a complex manifold, we shah aiways mean a manifold endowed

with a complex holomorphic structure. A Riemann surface is a complex manifold

of dimension one. Thus, complex manifolds are higher dirnensional analogs of

Riemann surfaces.

Definition 2.2.1. Let M and N be comptex manifotds with attases A and B

respectively. A map f t M —* N ia said to be hotomorphic if

o f o : (U n f’(V)) (V)

is hotornorphic for att (U, th) e A and (V, ‘J’) e B. 1ff is a homeomorphism and

both f and f are hotomorphic, me say that f is bihotomorphic and that M and

N are bihotomorphic or bihotomorphicatty equivatent.

2.3. TANGENT SPACE

2.3.1. Tangent space to a real manifold

Loosely, the tangent space T(X) of a real manifold X of dimension n is the

set of formal expressions

3 3 1T(X) = {a1----— + ... + a,— a e C (X)},
3x

which is the space of smooth vector fields on X. We shail define the tangent

space T(X) of X at a point p e X and we shall set

T(X)
= J T(X).

pEX

More precisely, let X be a smooth (real) manifold. If U is an open subset of

X, we denote hy (U) the set of smooth functions on U. If p e X, let us say

that f is a smooth function at p if f e r(U) for some open neighborhood U of p.

Two smooth functions f and g atp are said to be equivalent if f g in some

neighborhood of p. This is an equivalence relation and the equivalence classes are

called germs of smooth functions at p. For simphicity, we shah denote the germ

of a smooth function f atp also hy f. Denote by
,

the set of germs of srnooth

functions at p. The set r is an R-algebra.
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A derivation of the algebra r, is a vector space homomorphism

D : —÷ R

such that

D(fg) = D(f) g(p) + ftp)

where g(p) and f(p) are the evaluations at p of the germs g and f at p.

The tangent space of X at p, denoted by T(X), is the vector space of deriva

tions of the algebra
.

Since X is a smooth manifold, there is a diffeomorphism h of an open neigh

borhood U of p onto an open set U! C R”:

h:UUi,

and if we set h*f(x) f o h(c), then h has the property that, for open V C U!,

6(V) E(h’(V))

is an algebra isomorphism. Thus h incluces an algebra isomorphism on germs:

6h(p) “

and hence induces an isomorphism on derivations:

T(X)
,‘ Th(?)tR”).

Indeed, if D E T(X) vie define h(D) e Th(?)(R”) as follows: if f é 6h(p), we set

h(D)f = D(h*f).

Fix u E R”. Then {,. ,
are derivation of Œ(R”) and form a basis

of T(R71).

2.3.2. Tangent space to a complex manifold

Having discussed the tangent space to a smooth manifold, we now introduce

the (complex) tangent space to a complex manifold. Let p he a point of a complex

manifold M and let O be the C-algebra of germs of holomorphic functions at

p. The complex or holomorphic tangent space T(M) to M at p is the complex
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vector space of ail derivations of the C-algebra O, hence the compiex vector

space homomorphisms D: O,. —* C such that

D(fg) f(p) D(g) + D(f) g(p).

In local coordinates, we ilote that T(M) = T(C) and that partial derivatives

{—,. .. , —} form a basis of T(C). Having defined the compiex tangent space
3z1

T(M) to a complex manifold at a point p e M, we define the complex tangent

space T(M) of M:

T(M)
= U (M).

pEIVI

2.4. ALM05T COMPLEX STRUCTURE

2.4.1. Almost complex structure

Let M be a differentiable manifold of dimension 2n. Suppose that J associates

to each x, a complex structure J : T1tM) —* T1(M) for T1(M), i.e. J =

where I, is the identity isomorphism acting on T1(M).

We also suppose that J varies differentially with x. This means that if x is a

local coordinate in R’ and Aa, is matrix representing J with respect to the basis
3 3

{—,. . . , —}, then the coefficients of A1 vary smoothiy with x.axi ax1
Then J is caHed an almost complex structure for the differentiabie manifold

M. If M is equipped with an aimost complex structure J, then tX, J) is cailed

an aimost compiex manifold.

An almost complex structure J on M defines a complex structure in each

tangent space T1tM). As we have shown, dimension of T1(M) as a vector space

is even and dimension of M is equai to dimension of T1(M). So every almost

complex manifold is of even real dimension.

To show that every complex manifold carnes a naturai almost complex struc

ture, we consider the space Cri of n-tupies of compiex numbers (zi,... , z,) with

Zj = Xj+ZYJ, j = 1,... , n. With respect to the coordinate system txi,. . .
, x,, iJi•• , y)

we define an aimost compiex structure J on C’ by

0 0 0 0.
J() = ,J() = —,j = 1,..., n.

ah ay ay ax
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2.4.2. Differential forms

Let M be a one dirnensional complex manifold. A O—forrn on M is a function

on M. A 1
— forru w on M is an ordered assignment of two continuous functions

f and g to each local coordinate z = (;+ iy) on an open set U in M such that

Jdx + gdy

is invariant under coordinate changes; that is, if z’ is another local coorclinate on

an open set V in M and the domain of z’ intersects non trivially the domain of

z, and if w assigns the functions f’ and g’ to z’, then using matrix notation

=

(tztz’))

(2.4.1)
\\g’(z’)) g(z(z’)))

on z(U n V). The 2 x 2 matrix appearing in 2.4.1 is, of course, the Jacobian

matrix of the mapping z’ —* z.

A 2 — form on M is an assignment of a continuons function f to each local

coordinate z such that

fdx A dy

is invariant under coordinate changes; that is, in terms of the local coordinate z’

we have

f’(z’) = f(z(z’))) (2.4.2)

where .‘‘? is the determinant of the Jacobian. Since we consider only holomora(x ,y)

phic coordinate change 2.4.2 has the simple form

f’(z’) = f(z(z’))
2

Many times it is more convenient to use complex notation for differential

forms. Using the complex analytic coordinate z, a 1
— form may be written as

u(z)dz + v(z)d,

where

dz = dx + idy, d = dx — idy (2.4.3)
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and f u + u and g = «u — e). It follows from 2.4.3 that

dz A d = —2idx A dy.

Similarly, a 2
— form can be written as

h(z)dz A d’.

Remark 2.4.1. We have made use of the exterior multiplication offorms. This

muttiptication satisfies the conditions: dxAdx = O = dyAdy, dxAdy —dyAdx.

The product of a k
— form and an t — form is a k + t — foTm provided k + t < 2

and is the zero foTm for k + t > 2.

For C’ forms, that is, forms whose coefficients are C’ functions, we introduce

the differential operator U. Define

df = J1dx + fdy

for C’ functions f. For the C’ 1 — formw, we have by definition

dw=d(fdx)+d(gdy)rzdfAdx+dgAdy

= (f1dx + fdy) A dx + (gdx + gdy) A dy

= (g — f)dx A dy.

For a 2
— form Q we, of course, have by definition

dQ=O.

The most important fact concerning this operator is that

d2 = O,

whenever U2 is defined.

Using complex analytic coordinates we introduce two differential operators O

and by setting for a C’ function f,

3f = fdz, f =

and setting for a C’ 1 — form w = udz + ed,

3w = OuAdz+3vAd!= vdzAd,
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3w=8tAdz+3vAddAdz = —ndzAd,

where

f= (J-if),f= (h+if).

For 2 — forms, the operators 8 and are defined as the zero operators.

Remark 2.4.2. The equation f- = O is equivatent to the Cauchy-Riemann equa

tions for Ref and bnf, that is, f O if and ordy if f is hotomorphic.

On a complex manifold, we have defined operator 8 and which act on forms.

These operators satisfy:

drz 8+

82 a+a 2
= o.

In the next section, we characterize integrable almost complex structures in this

way. Namely, for a given almost complex structure J, we define operators 8j and

. We shah present the Newlander-Nirenbeg theorem which asserts that J is

integrable if and only if these operators satisfy the preceding relations.

2.4.3. Complex and almost complex structure

On an arbitrary almost complex manifold, one can aiways find coordinates for

which the almost complex structure takes the above canonical form at any given

point p. In general, however, it is not possible to find coordinates, so that J takes

the canonical form on an entire neighborhood of p. Such coordinates, if they exist,

are called local holomorphic coordinates for J. If around every point M admits

local holomorphic coordinates which induce J, then J is said to be integrable.

The local holomorphic coordinates patch together to form a holomorphic atlas

for M giving it the structure of a complex manifold. A complex structure can

then be defined as an integrable almost complex structure.

The existence of an almost complex structure is a topological question and is

relatively easy to answer. The existence of an integrable almost complex struc

ture, on the other hand, is a much more difficuit analytic question. For example,

it has long been known that 36 admits an almost complex structure, but it is stili

an open question as to whether or not it admits an integrable complex structure.
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Given an almost complex structure there are several ways for determining

whether or not that structure is integrable. Let J be an almost complex struc

ture on a manifold M, one can associate to J certain operators 8j and on forms.

In case, J is integrable, then these operators are just the usual operators 8 and

arising from the complex structure associated to J. We may now state the

Newlander-Nirenberg theorem which characterizes integrability of almost com

plex structures. The Newlander-Nirenberg theorem states that the following are

equivalent:

- J is integrable. (i.e. M is a complex manifold.)

- The Nijenhuis tensor, defined by

= [X,Y] + J([JX,Y] + [X,JY]) — [JX,JY]

vanishes for ail smooth vector fields X and Y. (i.e. An almost complex structure

is said to be integrable if it has no torsion.)

The Lie bracket of vector fields X and Y, [X, YJ, is also a vector field, defined by

the equation [X,Y](f) = X(Y(f)) - Y(X(f)).

- We can decompose the exterior derivative as d 8j +

2.5. TI-IE EQUIVALENCE CLASS 0F COMPLEX STRUCTURES ON MAN

IFOLDS

Proposition 2.5.1. A mapping f of an open subset of C” into 0m preserves the

atmost comptex structures of C” and Cm, i.e. f o J J o f, if and onty if f is

hotomorphic.

PR00F. Let (w1,... , w) with wk = ‘Uk + u)k, k = 1,. . . , m, be the natural coor

dinate system iII C”. If we express f in terms of these coordinate systems in C”

and Cm:
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where k = 1,... in, then f if holomorphic when and only when the following

Cauchy-Riemann equations holds:

8uk 3Vk
— o 8Uk 8Vk

—a ‘8
+ —

where k = 1,.. ,m and j = 1,... , n.

On the other hand, we have aiways (whether f is holomorphic or not):

fC-) -) +

m m

ft) = +

for j = 1,. . . , n. from these formulas and the definition of J in C’ and cm given

above, we see that f o J = J o f if and only if f satisfies the Cauchy-Riemann

equations.

D

To define an almost complex structure on a complex manifold M, we transfer

the almost complex structure of C to M by means of charts. Proposition 2.5.1

implies that an almost complex structure can be thus defined on M independently

of the choice of charts.

Definition 2.5.2. An almost comptex structure J on a manifold M is catted

a complex structure if M is an underlying differentiable manifold of a complex

manifold which induces J in the way just des cribed.

Let M and M’ be almost complex manifolds with almost complex structures

J and J’, respectively. A mapping f : M —* M’ is said to be almost complex

or complex linear with respect to the given complex structures on the tangent

spaces, if J’ o f = f o J. In particular, two almost complex structure on the

same complex manifold coincide if the identity mapping is almost complex. From

proposition 2.5.1 we obtain:

Proposition 2.5.3. Let M and Mi be complex manifolds. A mapping f: M —*

M! is hotomorphic if and only if f is atmost comptex with respect to the comptex

structures of M and M!.
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In particular, two complex manifolds with the same underlying differentiable

manifold are identical if the corresponding aÏmost complex structures coincide.

2.5.1. Pseudoholomorphic curves

We can specify a plane curve in two different ways: either as the set of solution

of an equation f(x, y) = O or via a parametrisa.tion; = x(t), y = y(t). For exam

pie, we can specify a circle by the equation x2 + y2 = 1 or by the parametrisation

= cost, y = sint.

We replace the real variables x, y above by complex variables z, w and con

sider complex or holomorphic curves in C2. Thus the same equation z2 + w2 1,

for example, describes such a holomorphic curve. We can consider parametrised

holomorphic curves z = z(r), w w(T) where z(T) and w(r) are holomorphic

functions of a complex variable r. More generally we may consider holomorphic

curves in complex manifolds, parametrised by holomorphic rnaps from Riemann

surfaces. A Riemann surface is a complex manifold of dimension one. The details

will come in chapter 3.

A pseudoholomorphic curve is just the naturai modification of the notion of

holomorphic curve to the case when the ambient manifold is almost complex.

That is. we consider a Riemann surface with complex structure j, an almost

complex manifold (M, J), and a differentiable map f: . M such that for each

u E the derivative

df: T —* Tf(0.)M

is complex linear or almost complex with respect to the given complex structures

on the tangent spaces.

The classical case occurs when M ami are both simply the complex number

plane. In real coordinates

(o-i
j=J=

O

and

/ du du

df= (dx dy

dv de
\dx dy
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where f(x,y) = (‘u(x,y),v(x,y)). After multiplying these matrices in two differ

eut orders, one sees immediately that the equation

J o df = df o j

is equivalent to the classical Cauchy-Riemann equations

dudu dv du
dxdy’ dx dy

2.6. CR STRUCTURE

2.6.1. The observation of Poincaré

Any two real analytic curves in C’ are locally equivalent: Given points p and

q on the curves fi and f2 there are open subsets of C’, U1 containing p and U2

containing q, and a biholomorphism 1: U, —* U2 with (U, n f ‘) U2 n f2. This

may be taken as a very weak form of the Riemann mappillg theorem. Poincaré

showed that the analogous resuit does not hold in C2. Namely, let s and $ be

real analytic surfaces of real dimension three in C2. In general, there will not

5e a local biholomorphism taking one to the other. The Poincaré proof uses the

fact that a function on a hypersurface is the restriction of a holomorphic function

only if it satisfles a certain partial differential equation.

Let the hypersurface 5e written as a graph

s = {(x, +iy1,x2 +zy2) : x1 = (y,,x2,y2)}

and let F(y,, X2, y2) 5e the function on s. If there exists a holomorphic function

f (z,, z2) of z1 x1 + iy, and z2 = X2 + Y2 such that

F(yi,x2,y2) = f(ql(y,,x2,y2) +iy1,x2 +iy2)

50

0F 0f . 0F 0f
= -—(b, + z), -— =

OYi 0Z1 0Z2 0Z1

Let

L=--(1 +i).

Thus LF = O.
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We consider two surfaces

s = {x1 (y1,x2,y2)}, $ {X1 (Y,X2,Y9)}.

For s and S to be locally equivalent we need to find three rea.1 functions Y1, X2, Y

of the variables (yi,x2,y2) such that both J1 = cF(,X2,Y2) + iY. and J =

X2 + iY are the restriction of holornorphic functions. That is, we must solve for

j = 1, 2

=0.

We have four real equation for three real unknowns. Thus solutions usualiy do

riot exist.

Since not ail hypersurfaces are locally equivalent, it is natural to seek invari

ants which allows us to distinguish one from another.

2.6.2. CR manifolds

Let (z1,.. . z71) be the usuai coordinates for C and (z1, ,...,x, y) t.he

corresponding coordinates for R2. ‘vVe define the first-order partial differential
o o o . 3 8 3

operator = (— — i—) and its conjugate operator = (— + i—).
Ozj Oxj Oyj 8J oxi 3uJj

A function F(z) f(x, y) of one complex variable is holomorphic if and only

if —J 0. We may consider — aiid as complex vector fields.

If V is a vector space over the real numbers, then C ® V is the corresponding

vector space over the complex numbers. If {v17.. . , v} is a basis for V then

C®V={cvj jeC}

C ® V is called the complexification of V.

Consider a manifold M and the tangent space TM to M at a pointp. The

tangent bundie is given by T M = U TM and the complexified tangent space

by C®TM= JC®TM.

When M is R2u1, Te have as a basis for T M and C 0 T M

03 33
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which yields a second basis for C ® T M

a a

We have seen that there is a differential operator L defined on M3 C C2 with

the property that Lf = O if f is the restriction to M of a holomorphic function.

So L may be considered as the induced Cauchy-Riemann operator. We shah soon

see that for M2n+l c C’ there are such induced Cauchy-Riemann operators.

This is what is abstracted as the definition of the CR manifolds. To explain this,

let us see another definition of the almost complex structure of C’.

Definition 2.6.1. Let M be a manifotd and let V be a subspace of C ® TM.

Then (M, V) is an atmost comptex manifold if

VnV={O}, VeV=C®TM.

Set dimc V = n; it follows that dimR M = 2n.

If M is a compiex manifold then the underlying almost complex manifold is

given locahly by choosing complex coordinates and setting

V Linearspanc{,

This subspace is independent of the choice of coordinates since it is preserved

by a holomorphic transformation. We use L e V as an abbreviation for “L is a

section of V over an appropriate set”.

Note that a function f is holomorphic if Lf = O for ail L E V. So V is the

space of Cauchy-Riemann operators.

We had another definition of an almost complex manifold, using an isomor

phism J: T M —* T M where J2 = —Id. If M is a complex manifold, then the

underlying almost complex manifold is given by

O .6 3 .0
= 3’

Again, J is independent of the choice of coordinates. For if zk = «wi, w,1) is

a change of coordinates, and if J is defined using z, then

_Vj(0’i O O
—i

O
k
0Wk —

k — OW k
— OWk
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and in the sarne way

.8

So J coincides with the operator defined using w.

Note that J is real in the sense that it provides a map of T M to itself, Since,

if X is a real tangent vector then:

X =

and

JX (zcj — — cj

So JX is also a real tangent vector.

The two definition of almost complex manifolds are equivalent.

For given (M,V), we define J: C®TM —* C®TM by letting V and V
be its eigenspaces corresponding to the eigenvalues —i and i respectively. Such a

J restricts to a map of T M to itself and satisfies J2 = —Id. Conversely, given

J: TM — TM with J2 = —Id, we extend J linearly to a map of C®TM to

itself and let V be the eigenspace corresponding to the eigenvalue —i.

Let X be any real tangent vector space. Note that

J(X + iJX) = -i(X + iJX).

Thus V = {X + iJX : X T M}.

We have seen that not every almost complex manifold cornes from some com

plex manifold. A necessary condition for an almost complex manifold to be

complex is that

[XV]cV.

Consider X, Y e V where X = and Y = bk, so by definition of Lie

bracket

[X,Y] = (X(bk) — Y(ak))— = (ait
—

In terms of J this means

[X, JY] + [JX, Y] = J{[X, Y] — [JX, JY]}.
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This is equivalent to

J({X, JYI + [JX, Y]) [JX, JY] — [X, Y1

that is the Nijenhuis tensor, that we have already seen.

Let M2’ be a submanifold of C’. We show how each of our definitions

of an almost complex structure on C’ leads to an induced structure on M and

then that these two included structures are essentially the same.

We set

H(C’1) = Linear spanc{,..., } c C ® TC’
8z1 3z1

and define H(M) by

H(M) = H(C’)nC®TM.

We denote H(M) by V. So

VnV={O}.

Note that w V if w = Z and in addition w is tangent to M.

Definition 2.6.2. A comptex vector W is tangent to M if the reat vectors Re W

and 1m. W are tangent to M.

We also could use the first definition of an almost complex manifold to define

the structure induced on M2’ C C’. To do this we let H = T M n JT M

and consider the restriction to H of J. We have

H C TM, dimRH = 2n, J: H —* H, J2 = —Id.

Since the almost complex structure on C is complex, the induced structure

on M defined by H(M) satisfies

[V, V] C V

Note that a vector W is in H if both W and JW are tangent to M. In the

structure on M defined using H = T M n JT M, X and Y in H satisfy

[JX,Y] + [X,JYj é H

and

J{[JX, YÏ + [X, JY]} = [JX, JY] — [X, Y].
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Definition 2.6.3. (M, V) is a OR manifotd if dimRM = 2n+ 1, V is a snbspace

ofC®TM with dimcV = n. VflV= {O} and [V,V] CV.

Definition 2.6.4. (M, H, J) is a OR manifold if dimRM 2n + 1, H is a

subspace ofTM with dimRH = 2n, J: H — H and J2 = —Id.

If X and Y are in H, then sois [JX, Y]+[X, JY] and J{[JX, Y1+[X, JY]} =

[JX, JY] — [X, Y1.
Remark 2.6.5. The OR refers to Caachy-Riemann because for M C V

consists of the induced Cauchy-Riemann operators. That is, a function f on M

con be the restriction of a hotomorphic function on an open subset of O+ onty

if Lf = O for ail sections L of V.

Let us show that the two definitions of CR structures are equivalent. Given

V we choose some basis {L1,. . , L,,} and note that V n V = {O} implies that

{ Re L1,... , 1m L} are linearly independent. Set H equal to the linear span over

R of this set and define J by

J(ReLk) = ImLk, J(ImLk) = —ReLk.

H does not depend on the choice of basis. The map J extends to a complex linear

map of 0 0 H to itself with V as its —i eigenspace and V as its +i eigenspace.

So J also is independent of the choice of basis. The integrability condition for J

follows from that for V.

Given H and J, extend J to a complex linear map of O 0 H to itself and let

V be the —i eigenspace. $o V n V = {O}. And the integrability condition for J

implies the one for V.



Chapter 3

MODULI $PACE

3.1. RIEMANN SURFACES

A Riemann surface is a one complex dimensional connected complex analytic

manifold, that is, a two real dimensional connected manifold M with a maximal

set of charts {U, za}aEÀ on M. that is, the {Ua}aE.4 constitute an open cover of

M and

Zc U —* C

is a homeomorphism onto an open subset of the complex plane C such that the

transition functions

fao’:

are holomorphic whenever U n U 0.

Example 3.1.1. The simpÏest exampte ofa Riemann surface is the comptexptane

C. The single coordinate chart (C, id) defines the Riemann surface structure on

C.

Given any Riemann surface M, then a domain D (connected open subset,

on M ‘is atso a Riemann surface. The coordinate charts on D are obtained by

restrzctng the coordinate charts of M to D. Thus, every domain in C is again a

Riemann surface.

The one point compactification, C U {oo}, of C (known as the extended com

ptex plane or Riemann sphere) is the simpÏest exampte of a clos cd (- compact)
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Riemann surface. The charts vie use are {U, z}ji,2 with

U1=c

U2 = (C\{0}) U {œ}

and

z1(z)=rz, zEU1

1
z2(z) = —, z E U2.

The two non triviat transition functions invotved are

fkj C\{0}C\{0}, kj,j=1,2

with

fkJ(z) =

3.1.0.1. Conformat mapping

Suppose that an arc ‘y with the equation z z(t), a t < /3, is contained

in a region Q, and let f(z) be defined and continuous in Q. Then the equation

w = w(t) = f(z(t)) defines an arc y’ in the w-plane which may be called the image

of
.

Consider the case of an f(z) which is holomorphic in Q. If z’(t) exists, we find

that w’(t) also exists and is determined by

w’(t) = f’(z(t))z’(t).

We will investigate the meaning of this equation at a point z0 = z(to) with

z’(to) O and f’(zo) 0.

The first conclusion is that w’(to) 0. Hence ‘ has a tangent at w0 = f(zo),

and its direction is determined by

argw’(to) = argf’(zo) + arg z’ (t0).

This relation asserts that the angle between the directed tangents to -y at z0 and

to 7’ at wo is equal to arg f’(zo). It is hence independent of the curve
.

For

this reason curves through z0 which are tangent to each other are mapped onto
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curves with a common tangent at w0. Moreover, two curves which form an angle

at z0 are mapped upon curves forming the same angle, in sense as weH as in size.

In view of this property the mapping by w f(z) is said to be conformai at ail

points with f’(z) 0.

A map

f: M —* N

between Riemann surfaces is called conformai if for every local coordinate (U, z)

on M and every local coordinate (V, () on N with U n f ‘ (V) 0, the mapping

of o z1: z(U n f’(V)) C(V)

is conformai (as a mapping from C to C).

3.1.0.2. Riemannian surfaces and conformai structures

Suppose that a Riemannian metric ds is given on a real two-dimensional real

manifold M. This metric is represented as

Us2 = Edx2+2Fdxdy+Gdy2

on a coordinate neighborhood (U, (x, y)) of M. Setting z x + iy, we see that it

is written in the form

Us2 = ÀIdz+d2, (3.1.1)

where À is a positive smooth fullction on U and i is a compiex valued smooth

function with < 1 on U. Actualiy, À and i are given by

À (E+G+2EG_F2),

— E-G+2iF
- E+G+2EG_F2

Local coordinates (u, u) on U are said to be isothermal coordinates for Us2 if

Us2 is represented as

Us2 p(Uu2+dv2)

on U, where p is a positive smooth function on U. The compiex coordinate

w = u + iv is aiso caiied an isothermal coordinate for Us2.



36

Since an isothermal coordinate w for ds2 satisfies

2= l w2 121 dz+ 2

comparing with 3.1.1, we conclude that an isothermal coordinate w for ds2 exists

if the partial differential equation

aw aw

has a diffeomorphic solution w. This equation is called a Beltrami equation.

We shah see in chapter 4 that such a solution w aiways exists provided that

If t < 1. Hence for a system of coordinate neighborhoods {(U, (xi, yj))}jj

on M, there exists an isothermal coordinate w on each U. {(U, w)}ej define

a complex structure on M. Denote by R the Riemann surface obtained in this

way. The complex structure on R may be called the conformai structure induced

by the Riemannian metric ds2.

for oriented 2-dimensional Riemannian manifolds (M, ds2) and (N, ds), an

orientation preserving diffeomorphism f: M —* N is a conformai mapping if the

pull back of ds by f is equal to exp(a)ds2 on M, where p is a real valued smooth

function on M. Intuitively, it means that the angle, measured by ds, between any

smooth curves c1 and e2 on M equals the angle, measured hy ds, between f(ci)

and f(c2) on N. We say that (M, ds2) and (N, ds) are conformally equivalent or

have the same conformai structure if there exists a conformai mapping between

them.

In the case of dimension 2, the uniqueness of the representation 3.1.1 leads to

the foliowing theorem.

Theorem 3.1.2. Let R and $ be Riemann surfaces induced by oriented 2-dirnensionat

Riemannian manifolds (M,ds2) and (N,ds), respectiuety. Then f: (M,ds2) —*

(N, ds) is conformat if and onÏy if f: R — S is bihotomorphic.

This theorem shows that, in the two dimensional case, concepts of complex

structure and of conformai structure are equivalent. This is the reason that

a bihoiomorphic mapping is cafled a conformai mapping. This assertion is a

remarkable property for one dimensional complex manifolds, i.e. two dimensional

real manifolds, which is not true for the higher dimensional case.
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3.1.1. Classification of Riemann surfaces

The classification of Riemann surfaces is given by the Uniformization theorem

which we shah discuss in this section.

3.1.1.1. The Riemann mapping theorem

We shah prove that the unit disk eau be mapped conformally onto any simple

connected region in the plane, other than the plane itself. This will imply that

any two such regions eau be mapped conformally onto each other, for we can use

the unit disk as an intermediary step.

Although the mapping theorem was formulated by Riemann, its first successful

proof was due to Koebe.

Theorem 3.1.3. Given any simpty connected region Q which is not the whote

ptane, and a point z0 E Q, there exists a u.niqne hotornorphic function f(z) in

Q, normatized by the conditions f(zo) = O, f’(zo) > O, such that f(z) defines a

one-to-one mapping of Q onto the disk w 1< 1.

PR00F. The uniqueness is easily proved, for if f1 and f2 are two sueh functions,

then f1(f’(w)) defilles a one-to-one mapping of w 1< 1 onto itself. We know

that sueh a mapping is given by a linear transformation S. The conditions 5(0) =

O, $‘(O) > O imply 5(w) = w, hence fi f.
A holomorphic funetion g(z) in Q is said to be univalent if g(z1) = g(z2) only

for z1 = z2, in other words, if the mapping by g is one-to-one. For the existence

proof we consider the family e formed by all functions g with the following

properties: (i) g is holomorphic and univalent in Q, (ii) I g(z) I 1 in Q, (iii)

g(zo) = O and g’(zo) > O. We contend that f is the function in e for which the

derivative f’(zo) is a maximum. The proof will consist of three parts: (1) it is

shown that the family e is not empty, (2) there exists f with maximal derivative,

(3) this f has the desired properties.
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To prove that e is not empty we note that there exists, by assumption, a

point a oc not in Q. Since Q is simply connected, it is possible to define a

single-valued branch of /z — a in Q, denote it by h(z). This function does not

take the same vaine twice, nor does it take opposite values. The image of Q under

the mapping h covers a disk (w — h(zo)) 1< p, and therefore it does not meet

the disk (w + h(zo)) 1< p. In other words, h(z) + h(zo) I p for z e Q, and in

partidiliar 2 I h(zo) I p. It can now be verified that the function

— p I W(Zo) I h(zo) h(z) - h(zo)
go(z) —

‘(o) h(z) + h(zo)

beiongs to the famiiy e. Indeed, because it is obtained from the univaient function

h by means of a linear transformation, it is itself univalent. Moreover, go(zo) = O

and g(zo) = () 3j > O. Finally, the estimate

h(z) - h(zo)
-I h(z) I.

- 2 <4 h(zo) I
h(z) + h(zo)

— °
h(zo) h(z) + h(zo)

—
p

shows that go(z) lin Q.

The derivatives g’(zo), g e e, have a least upper bound 3 which a priori

could be infinite. There is a sequence of functions g e e such that g,(zo) — B.

The family e is normal, that is, every sequence of functions in e contains a

subsequence which converges uniformly on every compact subset of Q. Hence

there exists a subsequence {gflk } which tends to a holomorphic hmit function f,
uniformly on compact sets. It is ciear that f(z) l 1 in Q, f(zo) = O and

f’(zo) 3 (this proves that B < oc). If we can show that f is univaient, it wiii

follow that f is in e and has a maximai derivative at z0.

In the first place f is not a constant, for f(zo) B > O. Choose a point

z1 e Q, and consider the functions g1(z) g(z) — g(zi), g e e. They are ail

O in the region obtained by omitting z1 from Q. Every hmit function is either

identicaliy zero or neyer zero. But f(z) — f(z1) is a limit function, and it is not

identically zero. Hence f(z) f(zi) for z z1, and since z1 was arbitrary we

have proved that f is univalent.

It remains to show that f takes every value w with I w 1< 1. Suppose it were

true that f(z) $ ‘w0 for some w0, I w0 1< 1. Then, since Q is simpÏy connected, it
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is possible to define a single valued branch of

F(z)=
1-wof(z)

It is clear that F is univalent and that F I 1. To normalize it we form

G(z) I F’(zo) I. F(z) - F(zo)
F’(zo) 1 — F(zo)F(z)

which vanishes and has a positive derivative at z0. For its value we find, after

brief computation and using f(zo) O and f’(zo) = B,

l-1w012
, _ IF’(zo)I — 2Iw0I l+IwoI

GzQ)—
2

—

l-IF(zo)I 1-Iwol 2IwoI
This is a contradiction, and we conclude that f(z) assumes ah values w, w

1. D

3.1.1.2. Uniformization of simpty-connected Riernann surfaces

Up to conformai equivalence, there exist three simply connected Riemann sur

faces,

• Ô C U {oo} the Riemann sphere,

• C the complex plane,

• = {z e C: Izi < 1} the unit disk.

Its proof is based on the use of subharmonic functions. $ubharmonic functions

are defined on Riemann surfaces with the aid of local parameters. This is possible

because sllbharmorncity is a local and conformahly invariant property.

First of all, classification of Riemann surfaces into compact, parabohic, and

hyperbolic surfaces in needed. A non compact Riemann surface $ is parabolic if

every negative subharmonic function on $ is constant, otherwise $ is hyperbolic.

Using subharmonic functions and Perron families, we can define Green’s func

tions for Riemann surfaces just as it is done for the case of plane domains. The

Green’s function g,, of a Riemann surface $ with singularity at the point p e $ is

a function which is positive and harmonic on $
—

{p}. To describe its singularity,
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we consider a local para.rneter z mapping a neighborhood of p onto the unit disc

sucli that z(p) = 0. Then it is required that gp + log I z be harmonic at p. This

is an invariant definition not depending on the choice of the local parameter.

The Green’s function is characterized by the property that among ail functions

positive and harmonic on $
—

{p} and possessing the same singularity atp as gp,

the function gp is the smallest. If a Green’s function exists for some p S, then

it exists for every p e S. By a theorem of Ohtsuka, the Green’s function exists if

and only if $ is hyperbolic.

If S is parabolic or compact, Green’s functions do not exist but it is possible

to prove the existence of a function flp,q with the following properties: flpq S

harmonic in $
—

{p} — {q}, if z(p) = 0, then Up,q — log I z is harmonic atp, and

if z(q) = 0, then u + log z is harmonic at q, outside pararneter discs (pre

images of discs under z) containing p and q, the function up,q is bounded (251).

Remark 3.1.4. The mi5bius transformation w
= Z

maps bihotomorphicaÏty,
z+

the upper hatf-ptane H onto the unit disc A, and hence we often use the unit disc

A instead of the upper haÏf-ptane H.

3.1.1.3. Uniformization of arbitrary Riemann surfaces

We provide the uniformization theorem for Riemann surfaces, based on uni-

versai covering surfaces, Môbius transformations and fuchsian groups.

In order to formulate the Uniformization theorem for an arbitrary Riemann

surface R, we shah consider the universal covering surface ] of R and its covering

transformation group F will be constructed. By the uniformization theorem for

simply connected Riernann surfaces, is biholomorphically equivalent to Ô, C

or H, and F acts properly discontinuously on as a group consisting of M5bius

transformations. In particular, when H, we cali F a Fuchsian group. In this

way, we conclude that every Riemann surface for which = H is represented

by a quotient space H/F of H by a fuchsian group f.
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3.1.1.4. Universat covering

Let R and f? be Riemann surfaces. A surjective holomorphic mapping u: f? —

R is said to be a covering map if every point p of R has a neighborhood U such

that for each connected component V of the inverse image u’(U) of U, the

restricted map u: V —* U is biholomorphic. We cali R a covering surface of R.

The covering map u is also called the projection of f? onto R. When f? is simply

connected. we eau R a universal covering surface of R.

Example 3.1.5. We give a few examptes of covering surfaces.

(1) Let u: C — C — {O} be given by u(z) = ez. Then C is a universat

covering surface of C — {O}.

(2) Let u: H —÷ A — {O} be given by u(z) e2lniz. Then H is a universat

covering surface of A — {O}.

(3) Let u: C — {O} — C — {O} be given by u(z) = z”, where n is a positive

integer. Then C — {O} is a covering surface of itseÏf, but it is not a

universat covering surface.

() Fora given (> 1), setr = exp(2) andA = {w e C: r w < 1}.

Define u: H A by u(z) = exp(2ui). Then H becomes a universat

covering surface of the annutus A.

(5) Let F- be a tattice group generated by 1 and a point r e H, and let u be

the projection of C onto the quotient space C/f. Then C is a universat

covering surface of the torus C/F,-.

Any biholomorphic mapping ‘y: f? —* R with u 0 ‘y u is called a covering

transformation. We denote by F the set of ail its covering transformations. By

the composition of mappings, F forms a group, which is called the covering trans

formation group. In particular, we cail F the universal covering transformation

group if R is a universai covering surface of R.

Example 3.1.6. We give the covering transformation groups of the coverings

in the previous examptes. The notation < 71,72, ,7n > expresses the group

generated by’y,’y2,»

(1) F =<‘y > with’yi(z) = z+2ui.
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(2) F = < yi> with 71(z) = z + 1.

9iri(3) F =<y1 > wzth71(z) = zexp(-).

() F <71> with 71(z) = z.

(5 F =<71,72 > where7y(z) = z+1 and72(z) = z+T.

Theorem 3.1.7. (The putt-back structure theorem). 1ff X — X1 is a homeo

morphism and X1 is a comptes manifold, then f induces a comptes structure on

X.

PR00F. X1 is said to have the structure of an n-dimensionai complex manifold

if there exists an atlas A = {(U, ,) t i e I} of charts on X1 such that:

1. {UJ is an open cover of X1.

2. j is a homeomorphism of U.j onto the opei subset (U) of C for ail i e I.

3. For alli,j e I, j’ is abiholomorphicrnap of (UflU) onto (UflU5).

Now we are going to construct an atlas on X.

When {U.} is an open cover of X1 and f is a homeomorphism, so {f—’(U)}

is an open cover of X.

We know that the composition of two homeomorphism is a homeornorphism,

so qf is a homeornorphism and it is a map of f—’(U) onto the open subset ç(U)

of C’ for ail i e I.

For ah i,j e I, (jf)(jf)-1 is a map from n U) onto i(U n U) and

(f)(f)-1 = cjff-’7’ j7’ where is a biholomorphic map from

çb(U n U) onto &(U n Ui). $o (f)(jf)’ is biholomorphic.

Hence, B {(f(U),ç5f) : i e I} is a compiex holomorphic atlas on X,

and X together with the atlas B is a complex manifold. D

Theorem 3.1.8. For every Riemann surface R, there exists a universat covering

surface R of R, which is bihotomorphic to one of the three Riemann surfaces ,

C orH.

Theorem 3.1.9. (U’niqueness of the universat covering) For any two universat

covering surfaces R and where n —* R and ni: —* R, there exist a

bihotomorphic mapping of to ] with n1 o = n.
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3.1.1.5. Construction of the universat covering

A path on a Riemann surface R is a continuous curve e: I —* R, where I is

the interval [0, 1]. The points c(O) and c(1) are said to be the initial and terminal

points of e, respectively. We also say that e is a path from c(0) to c(Ï). Its image

is also denoted by the same letter e.

for two paths e and e’ on R such that c(1) c’(O), by connecting the terminal

point of e with the initial point of e’, we get a path e c’ on R with the initial

point c(0) and terminal point c’(l).

Let fi be a covering surface of a Riemann surface R. A point in fi is said

to lie over a point p in R if ir() = p. A lift of a path e on R is a path on

with rr o = e.

Fix a point Po on a given Riemann surface R. Let (e, p) be a pair consisting

of a point p on R and a path e on R from Po to p. Two pairs (e,p) and (c’,p’)

are equivalent if p = p’ and e is homotopic to e’ on R. Denote by [e, p] the

equivalence class of (c,p). Let i be the set of all the equivalence classes [e,p],

and n: —* R be the projection given by n([c,p]) p.

Lemma 3.1.10. (Existence and uniqueness of a lift of a path) For any path c on

R with initial point p, and for any point of R over p, there exists a unique lift

of c with initial point 5.

Theorem 3.1.11. For Riemann surfaces R and S, let fI and be their universaï

covering surfaces where ic: R —÷ R and n8: S —* S. Then given an arbitrary

continuous mapping f: R —* S, there exists a continuous mapping f: fI —* S

with f on = ir8o J. This mapping J is uniquely determined under the condition

that J(;) = , where e fI and e are such that ns() = f(lrR(P1)).

Moreover, if f is differentiable or holornorphic, then f is also differentiable or

holomorphie.

PR00F. Setting j5 = [ei,pi] and j’ = [d1, f(pi)], we get a mapping defined by

f([e,p]) = [d1 .f(c’ .f(c), f(p)] for ail points [c,p] in fI. Then it is obvious that

J(j51) = Ïi and f o = n8 o. Since 7CR and n8 are locally biholomorphic and
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f is continuous, J must be continuons and if f is differentiable or holomorphic,

then so is The uniqueness assertion follows from lemma 3.1.10.

3.1.1.6. Universat coverirtg transformation group

Theorem 3.1.12. For a given universat covering surface of a Riemann surface

R, its universat covering group F is isomorphic to the fundamentat group 7ri(R, Po)

of R.

PR00F. For any element [eo] e rri(R,po), we define the action [co] on ] by

[co]([c,pj) = [co c,p], [c,p] E R.

This [coJ.. belongs to F, that is, it is a covering transformation.

The ahove correspondence [col —* [co] yields an isomorphism of the funda

mental group iri(R, P0) of R onto the universal covering transformation group

F.

This correspondence is a homomorphism of ny(R,po) to F. To prove that it

is injective, suppose that [co] is the unit element of F. Then we have

[co]([Io,po]) = [co,po] = [Io,pol,

where 1 is the path on R such that 10(t) = P0 for any t E I = [0, 11. Thus, e0 is

homotopic to 1, and hence [Co] is the unit element of rr(R, po). It follows that

this correspondence is mi ective.

To prove that this correspondence is surjective, take any element E F. Let

6 be a path on from [Io,pol to 7([Io,poj). Then the relation n 07 = n implies

that e n 0 6 is a closed path on R with base point Po• Hence 6 is a lift of e,

and [In, p0] and [e, p0] are the initial and terminal points of 6, respectively. Thus

lemma 3.1.10 shows that

7([Io,Po]) = [c,po] = [c]([Iopo]).

Since [e] is an element of ni(R,po), theorem 3.1.11 implies that = [c1, and

hence this correspondence is surjective. D
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Lemma 3.1.13. The universat covering transformation group F of a Riemann

surface R satisfies the fottowing propertzes:

• For any 5, E R with n(15) n(), there exists an etement E F with

= 7(15).

• For every 15 E ft, there is a suitabte neighborhood Ù of 15 in such that

7(Ù) n Ù = O for every e F — {id}. In particutar, each etement of F

except for the identity has no ftxed points.

• F acts property discontinuousty on R, that is, for any compact subset K of

, there are at mostfinitety many eÏements E F such that7(K)flK Ø•

PR00F. To prove the first property, suppose that 7r(J5) n() p. Then we

have j5 = [ci,p] and = [c2,pl for some paths e1 and e2 on R. Putting e0 =

we see that = [co] satisfies -j = 7(]5).

To see the second property, take a point 15 E R, and set p = n(j5), jS = [c,pj.

Choose a neighborhood U of p in R which satisfies the condition in the definition of

a covering map, and denote by Ù the connected component of 7r’(U) containing

j5. Actually, it is sufficient to take a simply connected domain U containing p. If

7(U) nU O for some 7E F, then there are points E U with f = 7(p).

Since no = n, we get n(j5i) = n(q1), and hence t7 = jy, for n is biholomor

phic on Ù. Thus we have 7(?5i) = IdQjJ1) where Id is the identity. By theorem

3.1.11, we conclude that 7 as a lift of Id: R —* R is uniqueiy determined by Id.

Finaily, to verify the third property, assume that there exists a sequence

{7n}=i consisting of distinct elements of F such that 7(K) n K O for ail

n. Then for each n, we can take two points , i E K with i, 7,,(q,). Since

K is compact, taking a subsequence if necessary, we may assume that

{}°= converge to , f E K, respectively, as n —* oc. Since n o 7,., = n, we

obtain n(j,,) = n(.,) and n(h) = n(i). Take a neighborhood U of n(q0) in R

satisfying the condition of the definition of a covering map, denote by Ù and

the connected components of n’(U) containing q0 and r0, respectively.

Since {7,,(j,)}°1 converges to , we have 7(U) n V O for a sufficientiy

iarge n. Since n o 771(U) = U, it foiiows that 7(U) , namely,
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= Û. By the second assertion, we conclude that y, = ‘y,. This is a

contradiction. E

3.1.1.7. Uniformization theorem for arbitrary Riemann surfaces

Now we are ready to state the uniformization theorem for arbitrary Riemann

surfaces. We construct a Riernann surface >/G from a Riemann surface M with

universal covering surface and a subgroup G of the biholomorphic automor

phism group Aut(), where G is assumed to satisfy the second and third proper

ties in lemma 3.1.13, that is, every element of G except for the unit element has

no ftxed points in , and G acts properly discontinuously on .

Theorem 3.1.14. Every Riemann surface M is conformalty equivatent to some

/G, where is C or C or , is flic universat cover of M, and G is a subgroup

of Ant(Z) acting property discontinuousty and ftxed-point freety on and G

iri(M).

3.1.1.8. Autrnnorphisms

Subgroups of the group of automorphisms of the three Riemann surfaces play

an important role in theorem 3.1.14, 50 it is a good idea to know what Antis for

each surface.

To find Aut(Ô), we use the fact that

âCP1 P’,

with the isomorphism given in hornogeneous coordinates on P’ by

z’
([zl,z21) —, ([1,0]) {oo}.

z2

The action of GL(2, C) on C2 projects to an action of PL(2, C) {GL(2. C)/\, . e
C*} on P’. Then PL(2, C) is the group Ant(C), whose action on C is

(u b (z, ,

___

z) c cl] z2) cz+d
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Such a transformation is called a Môbius transformation.

Aut() PL(2, C).

To find Aut(C), we note that the conformai automorphisms of C will be

those automorphisms of Ô which fix the point oc. It is clear that a Mi5bius

transformation which fixes oc must have c = O:

z’=az+b, UEC*,bCC.

This group is kllown as Aff(1, C), the affine transformations of the plane. It is

isomorphic to the group of matrices of the form

ta b’\
I, aEC.

\O 1)

Thus,

Aut(C) o Aff(1, C).

Ant() Aut(H) and every element cf Ant(H) h a form 7(z)

where a, b, c, d e R with ad — bc = 1. Se we have

Aut(H) PL(2,R).

3.1.2. Moduli of Riemann surfaces

Two Riemann surfaces can have the same underlying topologicai space, and

yet be conformally inequivalent (have different complex structures). The set of

conformally inequivalent Riemann surfaces over the same topological space is

known as a moduli space.

3.1.2.1. Surfaces with universat cover C

As we found before, Aut(Ô) is the group PL(2, C). Recali that if we think cf

Ô as C U oc, then the action cf Aut(Ô) is that of a Mbius transformation.

Proposition 3.1.15. The onty Riemann surface with universat cover C is Ô
itsetf
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PR00F. First we show that Mbius transformations fix at least one point of Ô.
ta b az+b

Let J e PL(2, C). Then a fixed point satisfies z = , which simplifies
dJ cz+d

to

z=a2d±ytd_a)2_4cb cO

Z=dba c=O,ad

z no c O, a = d, b O.

These equations clearly have solutions for any element of PL(2, C). Thus, we see

that every element of Aut(Ô) fixes at least one point of Ô, and so no element

of PL(2, C) can act fixed-point freely on Ô. From theorem 3.1.14 we have the

desired result. D

An obvions consequence of this proposition is that the moduli space of genus

zero surfaces which have Ô as their universal covering space, is a one-point set.

In fact, all three of the simply connected surfaces have one-point moduli space.

3.1.2.2. Surfaces with universat cover C

Recali that Aut(C) = Aff(1, C), with z H-* az + b. We will make use of the

fact that:

Theorem 3.1.16. If flic (hotomorphic) universat covering space D of M is C,

then M is conformatty equivatent to C, C*, or T2, a torus.

The respective covering groups are {e}, Z, Z Z. First, the covering group

G = {e}, in which case M is conformally equivalent to the plane C. Second,

examine the case G = Z. We can take z —* z + 1 as a generator. A fundamental

domain of such a group is the interior of the parallel strip bounded by straight

unes through O and through 1 and perpendicular to the vector from O to 1.

Topologically, D/G is an infinite cylinder. The function z —* exp(2friz), shows

that D/G is conformally equivalent to C*.
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G Z e Z is a bit more complicated. Consider a lattice in C:

A(w, i) {mw + 7] : rn, n E Z, W,?] E C linearly independent }.

Clearly it is a discrete group, isomorphic to Z e Z, and the quotient C/A(w, )
is a torus.

Proposition 3.1.17. The conjngacy ctass of A(w,7]) in Ant(C) is the set of

tattices of the form A(aw, a7j), with a E C.

PR00F. An elemellt (a, b) E Aut(C) acts on a geuerator h : z f—* z + w of the

group A(w, ) as (a, b) h(z) = a(z + w) + b, and thus, if a E C

(a, b)h(a, b)’(z) = z + aw.

D

Now we define T = and without loss of generality, choose Irn(T) > 0.

Furthermore, we choose a = , so that every lattice is conjugate to one of the

foum A(1,T).

Theorem 3.1.18. For any two points T and T’ in the uppe hatf-ptane H, two

ton RT and R are bihotornorphicalty equivatent if and onty if T and T’ satisfy

the relation

/ aT+b
T = , (3.1.2)

CT + d

where a, b, e and d are integeTs with aU — bc = 1.

PR00F. first, assume that there is a biholomorphic mapping f of R.- onto H,-.

Since C is simply connected, the theorem 3.1.11 implies that there exist a lift J of

f, that is, a holornorphic mapping 7: C —* C such that 7r oJ
= f o Because

f is biholomorphic, so is J. Then fis written as J = cZ + , where c, are

complex numbers and 0, because Avt(C) = Aff(1, C).

Moreover, we may assume that ff0) = 0, and hence = O. We have

[(T’) = aT’ a + b, ff1) = = CT + U,
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where a, b, c and d are integers. Therefore, we obtain

aT+b

CT + d

Applying the same argument to J’, we get

a’r’ + b’
= c’r’ + d’’

where a’, b’, e’ and cl’ are integers. furthermone, from the relations 07(1) = 1

and f’of(r’) = r’, we see that ad—bc = +1. $ince ImT’
aci bc

ImT >
IcT+d12

0, we have ad — bc 1.

Converseiy, if 3.1.2 holds, then a biholomorphic mapping f: RT’ —* R is given

byf([z]) = [(cr+d)zl.

Now, we eau the group

P$L(2,Z) ={7(z) = ±: a,b,c,de Zand ad—bc= 1}

the modular group. Every ‘y e PSL(2, Z) is a biholomorphic automorphism of

the upper haif-plane H.

Let M be the moduli space of ton, i.e. the set of ail biholomorphic equivalence

classes of ton. Theorem 3.1.18 implies that M is identified with the quotient space

of H by PSL(2, Z), that is,

M H/P$L(2,Z).

3.1.2.3. Fuchsian groups

A Riemann surface which is biholomorphic to one of Ô, C, C or ton is said

to be of exceptional type.

Theorem 3.1.19. A Riemanri surface M has a universat coveri’ng surface

bihotomorphic to H if and onty if M is not of exceptionat type.

We define a natural topology on Aut(H), i.e. the compact-open topoiogy.

This means that a sequence {7n}=i of Aut(H) converges to ‘y E Aut(H) if ‘y,

converges uniformly to ‘y on compact subset of H as n tends to oc. This topology

is equivalent to the one of the group P$L(2, R). The topoÏogy of PSL(2, R) is
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induced by the topology of SL(2, R). Here, the sequence {A}1 of SL(2, R)

(a b\ ta b’\
with A

= I converges to A = t in SL(2. R) if and only if a,
dnj c d)

b,,, c, and d converge to a, b, e and cl, respectively, as n tends to oc.

A subgroup F of Aut(H) is said to 5e discrete if F is a discrete subset of

Aut(H), i.e. F consist of isolated points.

Definition 3.1.20. A discrete subgroup ofAut(H) is catted a Fuchsian group.

Theorem 3.1.21. For a subgroap F oJAut(H) the fottowing are equivatent:

(1) F is Fuchsian.

() F acts property discontinuousty on H.

PRoof. That the second condition implies the first one is by the definition. Con

versely, assume that F does not act properly discontinuously on H. Then we

have a point z0 e H and a sequence {‘y,} of distinct elements of F such that

7n(20) —* w0 e H as n — oc.

We may assume that {‘yn} converges uniformly on compact subset of H to

a holomorphic function defined in H. This y must 5e an element of Aut(H).

Otherwise ‘y is a constant function. Hence F is not fuchsian, because if F were

a Fuchsian group, there would exist no sequences of distinct elements of F which

converge in Aut(H). D

Remark 3.1.22. For a subgroup F of Aut(Ô), the discreteness of F does not

atways impty that it acts property discontinuousÏy on C.

3.1.2.4. Automorphic functions

An automorphic function is a meromorphic function on a complex manifold

1W, that is invariant under some discrete group F of automorphisms of the given

manifold

f(’y(x))=f(x), xM, 7eF.

Automorphic functions are often defined so as to include only functions defined

on a bounded connected domain D of the n-dimensional complex space C that

are invariant under a discrete group f of automorphisms of this cÏomain. The
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quotient space X = M/f can be given a complex structure and automorphic

functions are then meromorphic functions on X. The automorphic functions

constitute a fleld K(F) and the study of this field is one of the main tasks in the

theory of automorphic functions.

Three cases are distinguished: M = Ô Riemann sphere, M = C and M =

H the upper haif plane. In the first case the discrete groups f are finite and

the automorphic functions generate the field of rational functions. Examples of

automorphic functions in the case iii = C are periodic functions and in particular

elliptic (doubly periodic) fullctions. Finally, for M = H and a discrete group f,

such that M/f is compact or has a finite volume, K(f) is the field of algebraic

functions on M/f.

Let us return to the torus constructed in the previous sections. The mero

morphic functions on this torus are the elliptic functions with periods 1, T. The

canonical example here is the Weierstrass ?9-function with periods 1, r:

( 1 -

_____

z2 \ (z — n — mT)2 (n + mT)2
(n,rn)#(O.O), (r,m)EZ2

The ?9-function satisfies the differential equation

= 4(t9 — ei)(i9 — e9)(iY — e3).

The points e can be identified as

1 T l+T
e1 = l9(), e2 = t9(), e3

2

t9’ is again ail elliptic function and hence a meromorphic function on the torus.

If we now write w = i9’, z = t9, we obtain

w2 = 4(z — ei)(z — e2)(z — e3),

and we see that w is an algebraic function of z. The Riemann surface on which

‘w is a single valued meromorphic fun ction is the two sheeted branched cover of

the sphere branched over z = e, j = 1,2,3 and z = oc.

Consider an irreducible polynomial P(z, w) and with it the set $ = {(z, w)

C2 : P(z, w) = O}. Most points of S are manifold points ancl after modifying the
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singular points and adding some points at infinity, S is the Riemann surface on

which w is an algebraic function of z.

In the case of the torus discussed above, we started with a Riemann surface

and found that the surface was the Riemann surface of an algebraic function.

Another way of saying the preceding is as follows: we saw in the case of the

toms that the field of elliptic functions determined the torus up to conformai

equivalence. If

f: M —* N

is a conformai map between Riemann surface M and N, then

f* K(N) —* K(M)

defined by

çoeK(N)

is an isomorphism of K(N) into K(M). If M and N are conformaiiy equivaient

(that is, if the function J above, has a holomorphic inverse) then the fields K(M)

and K(N) are isomorphic.
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TEICHMtJLLER $PACE

4.0.3. Geometric definition of quasiconformal mappings

A quadrilateral consists of a Jordan domain Q and a sequence z1, z2, z3, z4 of

boundary points of Q. The points z are caiied the vertices of the quadrilateral. In

the foilowing we shah consider oniy quadrilaterals Q(zi, z2, z3, z4) whose sequence

of vertices agrees with the positive orientation with respect to Q. The vertices

of a quadrilateral (z1, z2, z3, z4) divide its boundary into follr Jordan arcs, the

sides of the quadrilateral.

By a homeomorphism of the quadrilateral Q (zi, z2, z3, z4) onto the qiladrilat

eral Q’(wi,w2,w3,w4) we understand a topological mapping w: —* which

carnes the points z to w — w(z). If the restriction of w to Q is conformai, then

w is called a conformai mapping of Q(zy, z2, z3, z4) onto Q’(w1, w2, w3, w4). It is

not in general possible to map given quadrilaterals onto one another conformally,

since the images of three boundary points determine the mapping uniquely. Ail

quadriiaterais are therefore divided into several equivalence classes.

It follows from the Riemann mapping theorem that every quadrilateral Q (zi, z2, z3, z4)

can be mapped onto a quadrilaterai Q’(—, —1, 1, ) where O < k < 1 and Q’ is

the upper haif plane. The function

w(z)
= [Z

___________

Jo v(’ -C)(’ - k2C2)’
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rnaps the quadrilateral Q’(—., —1. 1, ) conforrnally onto a quadrilateral which

consists of a rectangle and its corners. We cali such a quadrilateral simply a rec

tangle. By combining the above mappings, we can rnap an arbitrary quadrilateral

conformaliy onto a rectangle. Such a mapping will be cailed the canonical map

ping of the quadrilateral and the corresponding rectangle the canonical rectangle

of the quadrilateral.

Every conformai equivalence class of quadrilaterals thus contains rectangles

and ail similar rectangles belong to the same class. Converseiy, every conformai

mapping between two rectangles is a similarity transformation.

Now, suppose that R = {x + iy : O < x < a, O < y < b} is a canonical

rectangle of Q(zi, z2, z3, z4) and that the first side (z1, z2) corresponds to the hne

segment O z a. The number a/b, which does not depend on the particular

choice of the canonical rectangle, is called the module of the quadrilateral Q. We

shah use the notation

]li(Q(zi,z2,z3,z4)) = a/b

for the module.

>From the definition it is ciear that the module of a quadrilateral is confor

rnally invariant.

Given a domain A, consider ail quadrilaterals Q(zi, z2, z3, z4) with C A.

Let f: A —* A’ be an orientation preserving homeomorphism. The nllmber

M(f(Q)(f(zi), f(z2), f(z3), f(z4)))
sup

Q M(Q(zi,z2,z3,z4))

is cahled the maximal dilatation of f.
Since the module is a conformai invariant, the maximal dilatation of a con

formai mapping is 1.

Definition 4.0.23. An orientation preserving homeomorphism with a finite max

imat ditatation is quasiconformat, if the maximal dilatation is bounded by a num

ber K, the mapping is said to be K-quasiconformat.

By this terminoiogy, f is 1-quasiconformai if and oniy if f is conformai. If f
is K-quasiconformal, then

M(f(Q))
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for every quadrilateral in A. So a mapping f and its inverse f1 are simultane

ously K-quasiconformal.

>From the definition it also follows that if f: A —* 3 is K1-quasiconformal

and g: B —* C is K2-quasiconformal, then g of is KiK-ciuasiconformal.

It is possible to arrive at the notion of the module of a quadrilateral by use of

the length area method. In order to arrive at this characterization of the module,

we consider the canonical mapping f of the quadrilateral Q(zy, z2, z3, z4) onto the

rectangle R {u + iv : O < u < a, O <y < b}. Then

IL f’(z) 2 dxdy =

Let f be the family of all rectifiable arcs in Q which join the sides (z1, z2) and

(z3,z4). Then

f lf’(z)

for ever -y E f, with equality if -y is the inverse image of a vertical une segment

of R joining its horizontal sides. Hence

— ffQ I f’(z) 12 dxdy
z3, z4))

— (inf7pf I f’(z) dz D2
.0.3)

We can get rid of the canonical mapping f if we introduce the family P whose

elements p are non-negative measurable functions in Q and satisfy the condition

f7 p(z) dz l 1 for every ‘y e f. With the notation

m(Q) = ffp2dxdY

we then have

]‘I(Q(z1,z2, z3, z4)) infm(Q).
pEP

This basic formula can be proved by a length a.rea reasoning. Define for every

given p e P a function p’ in the canonical rectangle R by (p, of) I f’ 1= p. Then,

by fubini’s theorem and Schwarz’s inequality,

= ff pdudv tf f
The last integral at the right is taken over a line segment whose pre image is in

f. Therefore, the integral is > 1, and so mn(Q) > M(Q(z,,z2,z3,z4)).
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To complete the proof we note that p = belongs to P. By 4.0.3 this is

a function for which rn(Q) M(Q(zi,z2,z3,z4)).

4.0.4. Analytic definition of quasiconformal mappings

vVe can generalize the characteristic property of conformai mappillgs that the

derivative is independent of the direction.

for a diffeomorphism f: A —* f(A) define the complex derivatives setting

0f = (f-if), f = (fT+if).

Here f1 and f, denote the partial derivatives of f with respect to x and to y,

z = x + iy, respectively.

Let 8f(z) denote the directional derivative of a diffeomorphic mapping f(x, y)

in a direction making an angle c with the positive x-direction. Thus

0j(z)
= 1.f(z + re) - f(z)

>from calculus Of = f1cos() + fsin(c), and consequently in complex

notation

3f = fe’ +

We conciude that if f is an orientation preserving diffeomorphic map between

planar domain, then

max Oaf(z) 1=1 f(z) I + I f(z)
,

min Oaf(z) f(z) I - I f(z) I.

The difference Of(z) I — f(z) is positive, because the Jacobian of the

function f J. 0f 2
— f 2 is positive for an orientation preserving diffeo

morphism.

We define the dilatation quotient as

maxaIOjI I0fI+fI
minaIOjI IfI-IfI’

and conciude that the dilatation quotient if finite.

The mapping f is conformai if and only if f vanishes identically. Then Oaf

is independent of c: we have 0j 0f f’. This is equivaient to the dilatation

quotient being identicaiiy equal to 1.
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Theorem 4.0.24. Let f: A —* A’ be an orientation preserving diffeomorphism

with the pToperty

Df(z) <K

for every z E A. Then f is a K-quasiconformaÏ mapping.

PR00F. We pick an arbitrary quadrilateral Q of A. Let w be the mapping which

is induced from the canonical rectangle R(O, M, M + i, j) of Q onto the canonical

rectangle R’(O, M’, M’ + i, i) of f (Q). Because of the conformal invariance of the

dilatation quotient, D is also majorized by K. Hence

w1 12 max 3w J2< KJ

and the desired resuit M’ < KM foilows by use of a length area reasoning:

M’ = m(R’)
= ff J(z)dxdy ffi w1(z) 2 dxdy

1 M 2
M’2

fy(f Iwx(z)Idx)

Theorem 4.0.25. An orientation preserving diffeomorphism f is K-quasiconformai

if and onty if the dilatation condition

max 8j(z) < Kmin 8af(z) I

hotds everywhere.

A real function u is said to be absoiutely continuous on lines or ACL in A, if

for each closed oriented rectangle

R= [a,b] X [c,d] cA

u(x + iy) is absolutely continuous in x for almost ail y E [c, U] and absoluteiy

continuons in y for almost ail x E [a, b]. A compiex valued function f is said to

be ACL in A if its real and imaginary parts are ACL in A.

Remark 4.0.26. If a homeomorphism f: D —> D’ is AOL in A, then it has finite

partial derivatives a. e. in A and hence has a differentiat a. e..
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Theorem 4.0.27. An orientation preserving homeomorphism J of a domain A

is K-quasiconformat if

(1) f is ACL in A,

(2) maxc, 8f(z) < Kmin,. I a.e. in A.

This theorem yields the analytic definition of quasiconformality.

PR00F. To prove that f is K-quasiconformal, we consider a quadrilateral Q,
c A, and its image f(Q). We have to show that the modules M = M(Q) and

M’ M(f(Q)) satisfy the inequality

M’ < KM.

Let f2 be the canonical mapping of f (Q) onto the rectangle R2 = {n + iv : O <

n < M’, O < u < 1}, and fi the inverse of the canonical mapping of Q onto the

rectangle R1 = { + i7 : O < < M, O < î] < 1}. The composed mapping

= f2 o f o fi is an orientation preserving homeomorphism of R1 onto R2, which

can be extended to the boundary. Our next step will be to show that f satisfies

condition 1 and 2 in R1.

The mapping f o fi is absolutely continuous on unes in R1, and the equation

o fi)() =

where 41 = arg f(ç), holds almost everywhere in R1 for every direction c.

$ince f2 is conformal, f* = f2 o f o fi is also absolutely continuous on lines in

R1. Furtherwehave

= f(f(fi (C)))f )6a+f (fi (C))

for almost all ( e R1. Since the derivatives f and f are independent of the

direction a, and f satisfies condition 2, this condition is also satisfied by f .

The inequality M’ KM can now 5e proved as follows. Since f* satisfies

condition 2, we have f* 2< KJ* almost everywhere in R1, where J is the

Jacobian of f It follows that

ff f*
2 < j ff J* < K rn(R2) KM’. (4.04)
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By Fubini’s theorem

IL,
f2du = f’d77fMIfI2d,

and by Schwarz’s inequality

f
IfI2d

Since f* is continuous on the boundary of R1, we have

pM

J I f+i77) I I f*(M+ ) f*(i77) I M’ (4.0.5)
o

for every i for which f* is absolutely continuous on every ciosed subsegment of

I = { + ii1 : O < < M}. Since f satisfies condition 1 in R1, 4.0.5 hoids for

almost ail rj, 0 <77 < 1. Our inequality M’ <KM now follows from 4.0.4-4.0.5.

E

Let f: A —* A’ be a K-quasiconformal mapping alld z e A a point at which

f is differentiable. Since

maxI8afI=I3fI+fI, minI3jI=I3fI-IfI,

the diiatation condition is equivalent to the inequahty

f(z) I I 8f(z) I. (4.0.6)

Suppose, in addition that Jf > 0. Then 0f(z) O and we can form the

quotient

af(z)

=

___

The function t, so defined a.e. in A, is called the complex dilatation of f.
By 4.0.6

K —1I(z)I< k=1(1 <1

almost everywhere iII A.

We shah determine the complex dilatation of a composed mapping gof. There

is the usual trouble with the notation which is most easily resolved by introducing

an mtermediate variable f(z).
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The usuai ruies are applicable and we find

(go f) = (g( o f)f + ( o f),

(g o f) (g o f)f + ( o f).

They give

g o f = [(g o f)J - (g o f)I]

f = [(g o f)f - (go f)f1

where J =1 h 12
— I h 12. We obtain

= h yof
—

f 1
—

P.f/Lgof

If g is conformai, then O and we find

/lgof = Pf•

If f is conformai, ,Uf = O and

of (Jj)2Iigof.

In any case, the dilatation is invariant with respect to all conformai transforma

tion. If we set g o f = h, we find

(4.0.7)
1 — tlf[tIj

Theorem 4.0.28. (Uniqueness theorem) Let f and g be quasiconformat mappings

of a domain A whose comptex dilatations agree a.e. in A. Then f o g’ is a

conformaI mapping.

PR00F. By 4.0.7, the complex dilatation of f o g1 vanishes a.e.. So f o g’ is

conformai.

Conversely, if f o g’ is conformai, we conclude from 4.0.7 that f and g have the

same complex dilatation.

A measurable function ,u which satisfies

ess sup I t(z) 1< 1
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is called a Beltrami differential in its domain. Let 1u be a Beitrami differential in

its domain. The differential equation

-

is called a Beitrami equation.

If f is conformai, /1 vanishes identically, and the Beltrami equation becomes

the Cauchy-Riemann equation

f=o.

Theorem 4.0.29. A homeomorphism f is K-qnasiconformat if and only if f is

a sotution of the Bettrami equation, where IIt’Ij < 1 foT atmost alt z.

4.0.5. Existence theorem

A quasiconformai mapping f of a domain D induces a bounded function

on D which satisfies ess sups I u(z) 1< 1.

We denote by L°°(D) the complex Banach space of ail essentiaily bounded

measurabie functions on a domain D. Here, the norm is given by

IIbtIIœ = ess sup I ti(z) I, L°°(D).
zCD

Let 3(D) be the open llnit bali {i é L(D) : tI < 1} of L°°(D), and cail any

element of 3(D) a Beitrami coefficient on D.

Theorem 4.0.30. For every Bettrami coefficient p é 3(C), there exist a home

omorphism f of Ô onto Ô which is a qnasiconformt mapping of C with comptex

dilatation ,i. Moreover, f is nniquety determined by the fottowing noTmatization:

f(O) = O, f(1) =1, f(œ) = oc.

We cail this f, uniqiiely determined by the normalization conditions, the

canonicai i-quasiconformal mapping of Ô, or the canonicai quasiconformal map

ping of Ô with complex diiatation j, and denote it by f’.
Proposition 4.0.31. Let z be an arbitrary etement of 3(H). Then there exists

a quaszconformat mapping w of H onto H with comptex dilatation t. Moreover,

sv,ch o ma?ping w (which cari be extended to a homeomorphism of H H u
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onto itsetf) is nniquety determined by the fottowing normalization conditions:

w(0) 0, w(1) = 1, w(oo) = oc.

We cail this unique w satisfying the normalization conditions the canonical

ti-quasiconformal mapping of H, and denote it by w’.

PR00F. To show the existence, set

(z), zEH

/%(z)=r 0, zER

zH

The canonical /i-quasiconforma1 mapping f‘ of Ô satisfies

f(z) = f).

In particular, we see that fi() = it. $ince f preserves orientation, f(H) = H.

Hence, the restriction of f onto H is the desired one. The uniqueness follows by

4.0.7 and the normalization conditions. D

4.0.6. Qiiasiconformal mappings of Riemann surfaces

A homeomorphism f between two Riemann surfaces $ and $2 is called K

quasiconformal if for any local parameters h of an atlas on $, i = 1, 2, the

mapping h2 o f o hj is K-quasiconformal in the set where it is defined. The

mapping f is quasiconformal if it is K-quasiconformal for some finite K 1.

Suppose that the local parameters h1, k1 of S have overlapping domains U1,

V1 and that f(U1 n V1) lies in the domains of the local parameters h2, k2 of $2.

Using the notation g h1 o kj’, h = k2 o hi’, we then have in k1(U1 n Vi),

k2ofok=ho(h2ofoh’)og.

The mapping h and g are conformai and therefore do not change the complex

dilatation.
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4.0.7. Quasiconformal deformation of Fuchsian groups

Let G be a group of Môbius transformations. A Beltrami coefficient ,ii on C

is called a Beltrami coefficient on G provided that

___

= [t(z), g E G.
g(z)

Then for every g E G, the function w”(g(z)) is a quasiconformal automorphism

of Ô. Hence, there is a Mbius transformation g1 with w” o g g1 o w1’. Let

G” = w1’G(w1’).

The mapping G — G” given by g —* w1’ o g o (w1’) —1 is called a quasiconformal

isornorphism defined y ji, or a t-quasiconformal deformation.

If G is a Fuchsian group and ,u is a Beltrami coefficient on G, then G1’ is called

a quasi-Fuchsian group. If i also satisfies the condition iÇ) = tt(z), then G” is

again Fuchsian.

4.0.8. Complex dilatation on Riemann surfaces

We can arrive at the complex dilatation of a quasiconformal mapping of a

Riemann surface, by lifting the given quasiconformal mapping to a mapping be

tween the universal covering surfaces. Let (D, îj) be a universal covering surface

of S, j = 1,2, and G the covering group of D over S. Consider alift w: D —* D

of the given quasiconformal mapping f: Si —* $2. Since the projection ir1 and

2 are holomorphic local homeomorphism, w is quasiconformal. Let t be the

complex dilatation of w. Because w o g o w is conformal for every g E G1, the

mapping w and w o g have the same complex dilatation. We obtain from 4.0.7

= ( o g) (4.0.8)

for every transformation g. Consequently, a quasiconformal mapping f of a Rie

rnann surface $ determines a Beltrami differential for the covering group. This

differential is called the complex dilatation of f.
Theorem 4.0.32. Let i be a Bettrami differentiat on a Riemann surface S.

Then there is a quasiconformat mapping of$ onto another Riemann surface with.
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comptex dilatation i. The mapping is uniquety determined up to a conformat

mapping.

PR00F. We consider t as a Beltrami differential for the coverillg group G of D

over S. By the existence theorem, there is a quasiconformal mapping f D —* D

with complex dilatation t. $ince 4.0.8 holds, f and f o g have the same complex

dilatation for every g e G. Then f o go f is conformal, and we conclude that f
induces an isomorphism of G onto the Fuchsian group G’ = {f ogo f1 : g E G}.

If n and n’ denote the canonical projections of D onto $ and S’ = D/G’, then

o n = n’ o f defines a quasiconformal mapping of $ onto S’. This mapping

has the complex dilatation .

Let be another quasiconformai mapping of $ with complex dilatation i and

w: D —* D its lift. Then w o f’: D —* D is conformal, and so its projection

‘çb: ‘ is also conformal. D

Theorem 4.0.33. A Bettrami differentiat of $ defines a conformai structure on

S.

PR00F. Let i be a Beltrami differential on a Riemann surface S, and h an

arbitrary local parameter on $ with domain V. From the existence theorem, it

follows that there is a complex valued quasiconformal mapping w of h(V) with

complex dilatation j o h. Then f = w o h is a quasiconformal mapping of V

into the plane with complex dilatation . If fi and f2 are two such mappings

with intersecting domains V, and V2, then by the uniqueness theorem, f2 o fj’ is

conformal in f,(V, n V2). D

4.0.9. Universal Teichmflhler space

Let us consider the family of ail quasiconformal mappings of a fixed domain in

the piane. We assume that this domain is the upper half-plane. We wili introduce

additional structure to this famiiy and begin by regarding two mappings f and

g as equivalent if they differ by a conformal mapping, that is, if there exists a

conformal mapping h from f(H) to g(H) such that g = h o f. In view of the
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Riernann mapping theorem, we may then restrict ourselves to self-mappings of

H as a universal cover of Riemann surfaces and require that they are normalized

so as to keep fixed the three boundary points 0, 1, oc. We denote by F the

family of such normalized mappings. Every element. of F can be extended to

a horneomorphic seif-mapping of the closure of H. It is actually the extended

mappings to which the normalization requirements apply.

By the existence and uniqueness theorems, there is a one to one correspon

dence between F and the open unit bail B of the Banach space which consists of

ail L°°-functions on H.

Definition 4.0.34. Two mappings of the famity F are equivatent if they agree

on the reat axis. The comptex dilatation of equivatent mappings are atso said to

be equivatent. The set of equivatence classes is the universat Teichrn’iitter space T.

We thus have two models for T: Its points are classes of equivalent mappings

in the family F or of equivalent functions on the bail B.

4.0.9.1. Metric on the universat Teichmitter space

The universal Teichmùller space has a natural metric. We obtain this metric

by measuring the distance between quasiconformal mappings in terms of their

maximal dilatation.

The distance between the points? and q of T is defined by

T(p,q)min{1ogK90f-I : fEp,geq},

where K denotes the maximal dilatation and f, g e F. This is caÏled the Te

ichmflller distance betweenp and q. This metric is non-negative and symmetric,

and T(p,p) = 0. If T(p, q) 0, it foilows that the mapping g o f is conformal.

Because cf the normalization, this mapping is the identity. Hence f = g, which

implies p = q. So T makes T into a metric space.

If f and g have complex dilatation j and y, the norm of the complex dilatation

of g o f1 is equal te —

. Therefore, in terms of complex dilatation, the
1—tii
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TeichmUller distance assumes the form

1

_______

(p, q) = min{log e p, y e q}.

1-II - Woo1 —tiv

Lemma 4.0.35. Every Cauchy sequence {[f7]} in (T, T) contains a subsequence

whose points are represented by comptex dilatations , with the fottowing propeT

ties:

(1) limjt(z) = p(z) exists atmost euerywhere;

(2) [f,] —* [f1j in the Teichrn’iitter metric.

PR00F. In order to simplify the notation, we renumber functions each time that

we pass from a sequence to its subsequence. Also, we write f, = f.
Let ([f1) be a Cauchy sequence in (t,T). We shah construct inductiveiy a

subsequence with the properties 1 and 2 using suitably chosen mappings f.
First, fix a mapping fj 50 that

minlogKf10f1 < , 1=1,2,...,

Where for each t, the minimum is taken over ail mappings of {f+t]. Since ([fa])
is a Cauchy sequence, such a mapping f exists. We renumber the sequence by

setting f = fi.

After this, we choose for every n > 1 the mapping f,, from its equivalence

class SO that

1
iogKf0f_I <

>From this new sequence (fa) we choose a mapping fk 50 that

minlogKf1Of_1 <

where again for each t the infimum is taken over ail mappings of the class [fk+tl.

We set fk f2, and for n > 2, choose a representative of [f7] so that

lOgKf0f-1 <—.
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Continuing this procedure we obtain a sequence (f,.), such that ([f,.]) is a sub

sequence of the given Cauchy sequence and siich that, for any two consecutive

indexes, the maximal dilatation satisfy the inequality

logKf,0f_1 < 2, n 1, 2

It follows that

logKf,0f1 <2’, (4.0.9)

for n, 1 1, 2

Considering the connection between the maximal dilatation and the norm of

the complex dilatation, we deduce from 4.0.9 that the complex dilatations ,. of

f,. satisfy the inequality

IIn+t — 1nllœ <211 n+t lie <2tanh2.
1

—

Thus (n,.) is a Cauchy sequence in L°°. Since L°° is complete, the limit t = lim ,.

exists in L°°. Thus the validity of condition 1 follows. From 4.0.9 we conclude that

the mappings f,. are K-quasiconformal for a fixed K. It follows that Il1tlIe < 1.

Therefore [j] = lim[i,.]. This means that the statement 2 is true. D

Theorem 4.0.36. The universal Teichm’iitter space is comptetc.

PROOF. By the statement 2 in lemma 4.0.35, if a Cauchy sequence contains a

convergent subsequence, then the sequence itseif is convergent. D

4.0.10. Teichmflhler space

We shall now generalize the notion of the universal Teichmùller space and

define the Teichmiiller space for an arbitrary Riemann surface.

Let us consider ail quasiconformal mappings f of a Riemann surface $ onto

other Riemann surfaces. If two such mappings fy and f2 are deciared to be

equivalent in the flrst sense, whenever the Riemann surfaces fy ($) and f2 (S) are

conformally equivalent. The collection of equivalence classes form the Riemann

space R5.
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We introduce another eqilivalence. Let fi and f2 be quasiconformal mappings

of a Riemann surface S. Then fi and f2 are said to be equivalent in the second

sense, if f2 o fj is homotopic to a conformai mapping of f(S) onto f2($).
Definition 4.0.37. The Teichm’iitter space T5 of the Riemann surface $ is the

set of the equivatence classes, in the second sense, of quasiconformat mappings of

s.
Theorem 4.0.38. If $ H then T5 agrees with the universat Teichm’iitter space.

PR00F. III appiying the above definition of T5 to $ = H, we flrst note that ail

quasiconformai images of H are conformally equivalent. It follows that we may

consider only the normalized quasiconformal seif mappings f of H with complex

dilatation t. The condition that f’2 o (ft1) be homotopic to a conformai

mapping is fulfiuled if and oniy if f”2 o (fi”)—’ agrees with the identity mapping

on the real axis R.

Consequently, f”’ is equivalent to f”2 by the above definition if and only

if f”’ IR= fi’2 IR• By the definition of universai Teichmiiller space, this is the

condition for fi’1 and fi’2 to determine the same point in the universal Teichmflhler

space. E

The definition of The Teichmiiller space T5 can also be formulated in terms of

the Beitrami differentials on 5. Every quasiconformal mapping of $ determines

a Beitrami differential on S, namely, its complex dilatation. Conversely, if i is

a Beitrami differential of 5, then by theorem 4.0.32 there is a quasiconformal

mapping of $ whose complex dilatation is ,u, and by the uniqueness part of that

theorem, ail such mappings determine the same point of T5. Two Beitrami dif

ferentials are said to be equivaient if the corresponding quasiconformal mappings

are equivalent. Hence, a point of T5 can be thought of as a set of equivalent

Beltrami differentials.

4.0.11. Teichmflhler space as a subset of the universal space

For a Riemann surface S, we defined the Teichmflhler space T5 by means of

quasiconformai mappings of S onto Riemann sufaces. Lifting the mappings to
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mappings between the universal covering surfaces leads to new characterizations

of T5 and makes it possible to see the connection between the general space T5

and the universal TeichmiÏller space. We impose on the Riemann surface S the

restriction that it has a haif-plane as its universal covering surface. We denote

by f’ the uniquely determined quasiconformal self mapping of H which has the

complex dilatation t and which keeps fixed the points 0, 1, cc on the real axis.

Theorem 4.0.39. The Bettrami differeritiats ,u and z’ of $ are equivatent if and

onÏy if f R= f” R

PR00F. Let us first assume that 1tt and z’ are equivalent. Let and /‘ be quasi-

conformai mappings of $ which lift to f” and f respectively. Then there is a

conformai map iz: (S) —* (S) such that z n is homotopic to z/.. So we have

f” = h ofR on R where h as a lift of 77, is a Môbius transformation. Since f’t and

f” both fix 0, 1, oc, it follows that h is the identity.

Suppose conversely that f” f” on the houndary R. Then f” and f” indtice

the same isomorphism of the covering group of H over $ onto a fuchsian group

G’. The projection of f” and f” maps $ onto the same Riemann surface H’/G’.

These projections are homotopic. So and z’ are equivalent. D

This theorem says that

[‘1f”IR

is a well-defined injective mapping of the Teichmihler space. In particular, T5

can be characterized as the set of equivalence classes [f”j, two mappings being

equivalent if they agree on R. We have arrived at the situation which was the

starting point cf the definition of universal Teichmiller space.

In the general case the complex dilatations of the mappings f are Beltrami

differentials for the covering group G. If G is trivial, then T5 is the universal

Teichmùller space.

Let $y and $2 be Riemann surfaces and G1 and G2 the covering groups of H

over $ and $2• If G is a subgroup cf G2, then T52 C I. In particular, every
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Teichmflhler space T5 can be regarded as a subset of the universal Teichmiiller

space.

4.0.12. Teichmflhler metric

Exactly as in the case of the universal Teichmiiller space, we define the distance

T(p, q) — min{log Kgofl : f p, g E q}

between the poillts p and q of the TeichmUller space. (T5, T) S a metric space.

The Teichmùller distance can be expressed in terms of Beltrami differentials:

1+11
- W001

.

_________

T(p,q)=mrn{tog :/IEp,vEq}.

‘-W - 11001 —iiv

Let r and T5 denote the Teichmflhler metrics in the universal Teichmihler space

T and the Teichmiiller space T5, respectively. Then the restriction r lT is also a

metric in T5. From the definition of r and r5 it follows immediately that

T IT8 T5.

I’ does not inherit its metric from the universal Teichmiiller space: The metrics

T5 and T 1r5 need not be the same.

Lemma 4.0.35 is true in every Teichmiiller space T5: A Cauchy sequence in

(T5, T5) contains aiways a subseqilence whose points have representatives ,, such

that 1imi.t(z) = (z) exists almost everywhere, [f] —* [f] in the r5-metric.

The proof is the same as in lemma 4.0.35. In this case every eu,. is a Beltrami

differential for G, i.e. o g) = From t(z) —* i(z) almost everywhere it

follows that the lim t also is a Beltrami differential for G, i.e. [ii] is a point of T5.

From this we obtain a generalization of theorem 4.0.36:

Theorem 4.0.40. The Teichmitter space (T5, T5) S comptete.

4.0.13. Modular group

Theorem 4.0.41. The Teichm’iitter space of two quasiconformatty equivatent Rie

mann snrfaces are isometricatty bijective.
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PROOF. Let $ and S’ be Riemann surfaces and h a quasiconformal mapping of

$ onto S’. The mapping

f J o

is a bijection of the family of ail quasiconformal mappings J of $ onto the family

of ail quasiconformal mappings of S’. If w f o we have w2 o wj’ f2 o

We first conclude that f, and J2 determine the same point of T5 if and only if w1

and w2 determine the same point in T51, i.e.

[f] [f o h-’] (4.0.10)

is a bijective mapping of T5 onto T51. D

Definition 4.0.42. Let h be a quasiconformat setf-rnapping of S. Then .O.1O

defines a bijective isometry of T5 onto itsetf. The group Mod(S) of att such

isomorphisms [f] —* [J o h’] of T5 is catted the moduler group of T5.

Theorem 4.0.43. The Riemann space is the quotient of the Teichmiitter space

by the modutar group.

PR00F. Assume first that the points [f] and [g] of T5 are equivalellt under

Mod($). We then have a qilasiconformal mappings h: S —* $ sllch that foh’ is

equivalent to g. But this means that there is a conformai mapping of f($) onto

g(S), i.e. f and g determine the same point of R5.

Conversely, let f and g represent the same point of R5. Then a conformai

mapping f($) —* g($) exists, and h = g’ o o f is a quasiconformal self

mapping of S. From g = o (J o h—’) we see that g and f o h—’ determine the

same point of T5. D



Chapter 5

COMPLEX AND ALMO$T COMPLEX

STRUCTURE ON THE SPHERE$

The absence of an almost complex structure on S4k for k Ï and $271 for n > 4

was proved by Wu [281 and jointly by Borel and Serre [7j respectively. Kirchhoff

[181 has shown that if $71 admits an almost complex structure, then $‘ admits

an absolute parallelism, and Adams [11 that $‘ admits an absolute paralleÏism

oniy for n +1 1, 3 and 7. The resuit of Adams combined with that of Kirchhoff

implies the resuit of Wu, Borel and Serre. Tt is well known that the six-dimensional

sphere $6 admits the structure of an almost complex manifold [10]. On the other

hand, for a given almost complex structure on the 6-sphere, necessary conditions

were given in order that it defille a complex structure (Ehresmann and Libermanil

[91, Eckmann and Fr5h1icher [81).

5.1. QuATERNIONs AND OCTONIONS

Quaternions are a non-commutative extension of complex numbers. Every

quaternion is uniquely expressible in the form a + bi + ci + dk where a, b, c and

d are real numbers and i, j and k satisfy:

ij k

i —1 k —i

j —k —1 i

k j —i —1
We denote the algebra of quaternions by H.
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Quaternions produce the usual three-dimensional vector product. In general,

if we represent a vector (ai, a2, a3) as the quaternion a1i+a2j+a3k, we obtain the

vector product of two vectors by taking their product as quaternions and deleting

the real part of the resuit (the real part will be the negative of the dot product

of the two vectors).

The algebra of octonians, O, has a basis (I, e0, e1 e6), where I is called

the unit element of O. The products e e are given by the equations

—I, e e = —e(i j; i,j 0,1,... ,6).

So we have the following multiplication table:

e0 e1 e2 e3 e4 e5 e6

e0 —I e2 —e1 e4 —e3 e6 —e5

e1 —e2 1 e0 —e5 e6 e3 —e4

e2 e1 —e0 —I e6 e5 —e4 —e3

e3 —e4 e5 —e6 —I e0 —e1 e2

e4 e3 —e6 —e5 —e0 —I e2 e1

e5 —e6 —e3 e4 e1 —e2 —I e0

e6 e5 e4 e3 —e2 —e1 —e0 —I

The algebra O is nonassociative; for instance, (e1 e2) e3 e1 (e2 e3) since

the left-hand side is e4, and the right-hand side is —e4. A vector product for

7-dimensional vectors eau be obtained in the same way by using the octonions

instead of the quaternions.

5.2. AN ALMOST COMPLEX STRUCTURE ON THE 2 AND 6-5PHERE

In this section we consider the three dimensional case R3, where the vector

cross product derives from the multiplicative properties of imaginary quaternions.

Indeed, as a linear space imaginary quaternions coincide with R3. Thus the unit

sphere $2 C R3 is isomorphic with the space of unit imaginary quaternions, and

it acquires a natural almost complex structure from the action of the quaternionic

vector cross product in R3. We have exactly the same approach for the 6-sphere;
$6 when considered as the set of unit norm imaginary octonions, inherits an

almost complex structure from the octonion multiplication.
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Explicitly this quaternionic or octonionic almost complex structure on $2 or
$6 is constructed as follows:

The dot or internai product (w, u) can be defined for any two vectors w and u

in R’1. However, we shah show that the cross product w x u, cari oniy be defined

for vectors in R3 or R7. The cross product has the following properties:

(1) w X u —v X w.

(2) w x u = O if and only if u is a multiple of w.

(3) w x u is orthogonal to both w and u.

(4) w x (w x u) = (w,v)w — (w,w)u.

These properties of the cross product allows us to see the sphere $2 and $6 as

almost complex manifolds. Recali that $2 (resp. $6) is the set of ail vectors w

in R3 (R7) such that (w,w) 1. Let u be any vector in R3 (resp. R7) which is

tangential to $2 (resp. $6) at the point w, so that (y, w) = O. Then w x u is

tangential to $2 (resp. $6) at w and w x (w x u) = —u. Hence, the transformation

which sends u to w x u is hinear and its square w x (w x u) = —u is equal to —I,
6so it defines an almost complex structure on $ (resp. $ ).

Here we explain the case $6 in more detail [12] [221. In order to introduce a

vector product in R7, we shah consider R7 as the hyperpiane of R8 consisting of

the irnaginary octoniolls. A general element of O may be written as

xI+X, xER,

where R is the set of ail real numbers, and

X=x’e, x’ER, i=0,1,...,6.

If x = 0, the element is called a purely imaginary octonian number. All

octonian numbers form an 8-dimensional vector space, which we denote by O,

over the reai numbers, and ail purely imaginary octonian numbers form a 7-

dimensional subspace R7 of O. Let

= y’j, y’ E R, i 0,1,... ,6.
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Then we define

X. Y=-(X,Y)I+XxY,

where

(X,Y) = Tly

X x Y = e

î3

are respectively the scalar product and the vector product of X and Y in W.

The operation of the vector product is bilinear. Now let us write

i,j=O,1,...,6.

Then from the octonions multiplication table, it follows that r — are 0, 1

or —1, and that

X x Y
=

xy ek,

k j

where

x=

1=o:ij

From the multiplication table, we obtain the whole matrix (xi):

4 x 4 4 4 4 4 D x2 x1 —x4 x3 —x6 x5

4 4 4 4 4 4 4 x2 O —x0 _x6 —x3 x4

4 4 4 4 4 4 4 —x x0 O _x6 —x5

4 4 4 4 4 4 4 x4 x6 O —x x1 —x2

4 4 4 4 4 4 x3 x6 x5 x0 O —x2

4 4 4 4 4 4 x4 —x1 x2 O —x0

4 4 4 4 4 4 4 —x5 —x4 —x3 2 1 x O

Thus we can show that

XxY=-YxX,

and that X x Y is orthogonal to both X and Y, that is,

(X, X x Y) 0, (Y X x Y) O.

Moreover,

X x (X x Y) = (X, Y)X - (X, X)Y
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Now that we have a vector product in R7, we can go back and repeat the

construction of an almost complex structure on the 6-sphere. Consider the unit

6-sphere $6 R7:

= {x E R7 : KX,X) = Ï}.

The tangent space Tr($6) of 6 X $6 can naturally be identified with the

subspace of R7 orthogonal to X. Define the endomorphism Jx on Tx($6) by

JxY=XxY for YETx($6).

Then

JY=y(XxY)Xx(XxY)=-

which implies that J = —I; here I is the identity operator. Thus the corre

spondence X —* Jx defines a J such that J2 = —I, and hence defines an almost

coinplex structure on $6

5.3. DIMENSION 0F A COMPOSITION ALGEBRA

The preceding construction of alrnost complex structure only works on the

spheres 2 and 6 This is due to the fact, that R3 and R7 are the only vector

spaces where one can define an aritisymmetric bilinear cross product of vectors.

The existence of a vector cross product on R3 and R7 reflects the fact that be

sides real and complex numbers, quaternions and octonions are the only normed

division algebras.

In this section, we show that the possible dimensions of a composition algebra

are 1, 2, 4 or $ [26]. Our starting problem is to understand composition algebras,

then, instead of composition algebras we look at the equivalent notion of vector

product algebras. These algebras can be obtained by rewriting the axioms of a

composition algebra in terms of the pure vectors.

5.4. COMPOSITION ALGEBRAS AND VECTOR PRODUCTS

Definition 5.4.1. A composition atgebra consists of a vector space C together

with

(1) a sym’metric bilinear form (,) on C,
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(2) a tinearmap C®C— C, x®yH-* xy,

(3) an etement O # e E C,

() e x = e = x,

(5) with N(x) = (x, x), N(x y) = N(x) N(y).

Definition 5.4.2. A vectoT product algebra consists of a vector space V together

with

(1) a symmetric bitinear for’m (,) on V,

(2atinearmapV®V—*V,X®yF--*xxy,

(3 K’ x y, z) is atternating in x, y, z

() (XX y) xx = (x,x)y— (x,y)x.

Vector product algebras and composition algebras are equivalent notions.

Namely, given a composition algebra C, let V = (e)’ and put

1
x x y = y

—

y• x).

Conversely, given a vector product algebra V, put C = (e)..LV and define the

product on C by

(ae+x) (be+y) = (ab — (x,y))e+ay+ bx+x x y.

This equivalence between composition algebras and vector product algebras seems

to provide a convenient way to comprise some well known rules in composition

algebras.

5.5. TI-IE CONTRACTION 0F (,)
Let V be a finite-dimensional vector product algebra and let (e) be an or

thonormal basis of V. Put

d = Z(ej,ei).

In the following we will apply the third property of definition 5.4.2 in the formu

lation

(xxy,z) = (x,yxz), (5.5.1)

y Xx = —x y. (5.5.2)
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The fourth property of definition 5.4.2 will be used also in the following forrns

which are obtained by polarizing and from the third property:

(x x y) x z + x x (y x z) = 2(x. z)y — (x, y)z — (z, y). (5.5.3)

(xx y.z x t) + (y x z,tx x) = 2(x,z)(y,t) — (x,y)(z,t) — (y,z)(t,x). (5.5.4)

Other relations to be used are

e x (u x e) e)v — v)e = dv — y = (d — 1)v (5.5.5)

and

= = (d—1)(e,e) = d(d—1). (5.5.6)

We first consider vector product algebras which correspond to associative

composition algebras.

Proposition 5.5.1. Suppose tha.t

(x x y) x z = (x, z)y
—

(y, z)x (5.5.7)

holds. Then d(d — 1)(d — 3) 0.

PR00F. Consider

A = (e x (ek x e),e x (ek x e)).

By 5.5.5 we have

A = (d— 1)2(ek,ek) = d(d— 1)2.

On the other hand, using 5.5.7 and 5.5.6 one finds

A = Z((ej x (ek x e)) x ej,ek x e)

((e, e)ek x e
— (ek x e, e)e, ek x e)

i,j,k

X x e)
— (ek x e,e)(e x ek,e)

i.k

= 2(ek x e,ek x e) = 2d(d— 1).
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So

O A—A d(d—1)(d—3).

D

Theorem 5.5.2. Let V be a finite dimensionat vector prodnct atgebra. One has

the relation

d(d — 1)(d — 3)(d — 7) = 0.

PR0OF. Put

h(n,u) = (u x e) x (e xv).

The following formula has been introduced by TA. Springer.

hQu, u) (d — 4)u x u. (5.5.8)

To check it one uses 5.5.3 with x = n, y = e and z = e x u and finds

h(u,u) = —n x (e x (et x u)) +2(u,e x u)e,

— e)e X u — Z(ej x u, e)n

= (cl — 1)n x u + 2(u x n,e)e — u xv — (v,e x e)u

(d—1)uxu—2uxu—uxu—0(d—4)uxu.

Formulas 5.5.8 and 5.5.6 make it easy to compute the sum

B (h(e, ek), h(ek, e))

= (d_4)2(ej x ek,ek x e) = —d(d— 1)(d—4)2.

We nest compute B in a different way. Que has

B = ((e x e) X (e X ek) X tek x ej) x (ej x e)).

i,j,k,t

Applying 5.5.4 shows

B+B’ = 2C-D-D’,
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where

B’ Z((ejxek)x(ekxet)x(etxej)x(ejxej)),

i,j,k,t

C = (e X x ei)(e X ek,et X e),

D = (e X e,eJ X ek)(ek x et,et z e),

i,j,k,t

D’ = (e X ek,ek x et)(et z z e).

i,j,k,t

By reindexing one finds B = B’ and D D’. Therefore

B=C-D.

We compute C and D:

C= x (ek x et))((e z ek) z et,e)

i,j,k,t

X tek x et), (e z ek) z et)

j,k,t

= ((e X tek z et)) z ((e X ek) z et))

=
— (h(ek z et, ek), et) = —(d—4) ((ek X et) X ek, et)

= —(d— 1)(d—4)(ei,et) = —d(d— 1)(d—4),

D = X (e X ek))((ek z et) z et,e)

z te X ek), tek z et) z et)

= td— 1)td— 1)(ek,ek) = d(d— 1)2.

Hence

B = —d(d—1)(d—4)
— dtd—1)2 = —d(d—l)(2d—5).
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Finally

O = 3—3 —d(d— 1)(2d—5)+d(d— Ï)(d—4)2

= d(d— 1)(d2 — lOd+21)

= d(d— 1)(d—3)(d—7).

5.6. COMPLEx STRUCTURE ON 2-DIMENSI0NAL MANIFOLDS

From the Newlander-Nirenberg theorem that we mentioned in chapter 2, we

shah show any two-dimensional almost complex structure is integrable. A famihiar

example is the two dimensional sphere $2 which inherits its complex structure

from the complex plane C as we saw in chapter 3. But iii higher dimensions a

given almost complex structure on a manifold is not necessarily integrable, and

an almost complex manifold does not need to be a complex manifold.

We show that Nj(X, Y) vanishes, for every almost complex structure J on a

2-dimensional orientable manifold M. For any vector field X on M, we have

Nj(X, X) = J[X, X] — J[JX, JX] — [JX, X] — [X, JX] = O.

On the other hand, in a neighborhood of a point where X is not 0, every vector

fleld Y is alinear combination of X and JX. Hence N = 0, proving our assertion.



CONCLUSION

After introducing an almost complex structure on the 2-sphere and the 6-sphere

and relinquishing the study of complex structure on the 6-sphere, our new objec

tive xvas to study complex structures on surfaces and construct the equivalence

classes of these structures. We solved this problem by studying the complex struc

tures on Euclidean spaces. We even obtained the resuit for infinite dimensional

vector spaces by defining the C-isomorphisms.

We continued constructillg complex structures on manifolds, based on the

property that locally look like Euclidean spaces, and proved that two complex

structures on a differentiable manifold are equivalent if the corresponding almost

complex structures are equivalent. Then we focused on Riemann surface as one

dimensional complex manifolds and we represented (most of) them as quotient

spaces of the upper haif plane by Fuchsian groups. By this way, we arrived at

Riemann’s moduli space, which consists of the conformai equivalence classes of

Riemann surfaces.

Along the way, we modified our definition of equivaient Riemann surface struc

tures. The new equivalence relation was stricter than simply biholomorphic equiv

alence. Indeed, two complex structures on the topological base surface, both being

quasiconformally diffeomorphic to the initial Riemann surface structure, were de

fined to be Teichmtiller equivalent if they were biholomorphically equivalent via

a quasiconformal mapping which was also required to be homotopic to the iden

tity map. Finaliy, The relation between moduli space and Teichmùller space was

shown by using modular groups.
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