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SUMMARY

Sex can be defined as a sum of characteristics caused by a network of

interacting genes and proteins that give rise to sexual phenotypes within an

individual. Sertoli celis drive testis formation and therefore, sex determination in the

male. While some of this pathway has been elucidated, a better understanding of the

RNA environment within the pre-Sertoli celi will help clarify the mechanisms by

which these celis drive the differentiation process. A mouse model expressing Red

Fluorescent Protein (RFP) under the control of a hybrid mouse/pig Siy promoter

(HybSRYp-RFP) was used to purify e12.0 pre-Sertoli ceils. RNA was extracted and

hybridized onto a micro-array (Affymetrix Mouse Genome 430 2.0) to compare the

transcriptomes of stage-matched pre-Sertoli celi populations vs. whole female genital

ridges. Genes identified as 2.5 fold overexpressed in the male notably consisted of

celi signaling and extracellular components. This data represents the earliest

microarray expression analysis of purified pre-Sertoli cells available to date. The

expression of SoxlO, WntC, Fgfl8, Fgf]3 and $tc2 were characterized by in situ

hybridization in the male and female gonads between ell.5 and e13.5. SoxlO, Fgfl8,

Fgf]3 and Stc2 were detected in the testis cords while Wnt6 was found in both the

male and female gonad. 0f these five genes Stc2, Sox]O and Wnt6 are present just

after sex determination and may have a role to play in sex determination. On the other

hand Fgf]8 and Fgf]3 are likely involved in the process of sex differentiation. Closer

examination of the microarray data provides evidence for the activation of several

intercellular signaling pathways and a new model for Sry is proposed.
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RÉSUMÉ

Le sexe se définit comme la somme d’une série de caractéristiques émergeant

des interactions entre certains gènes et protéines, engendrant le phénotype sexuel

chez un individu. Les cellules de Sertoli dirigent la formation des testicules et, du

coup, la détermination du sexe chez le mâle. Bien qu’une partie de cette voie ait été

élucidée, une meilleure compréhension de l’environnement d’ARNm dans les cellules

pré-Sertoli permettra de clarifier les mécanismes par lesquels ces cellules dirigent le

processus de différentiation. Une souris exprimant la protéine fluorescente rouge

(RFP) à partir d’un promoteur $ry hybride souris/porc (HybSRYp-RFP) fut utilisée

pour purifier des cellules pré-Sertoli à e12,0. L’ARN extrait et hybridé sur micro

array (Affymetrix Mouse Genome 430 2.0) permit de comparer les transcriptomes de

populations de cellules pré-Sertoli de stages spécifiques à des crêtes génitales

femelles entières. Plusieurs gènes impliqués dans la signalisation cellulaire ou dans

la formation de composantes extracellulaires comptent parmi ceux identifiés comme

étant 2,5 fois plus exprimés chez le mâle. Ces données représentent l’analyse

d’expression par micro-array de cellules pré-Sertoli purifiées la plus précoce réalisée

à ce jour. L’expression de SoxlO, Wnt6, Fgfl8, Fgf]3 et $tc2 fut étudiée par

hybridisation in situ dans les gonades mâles et femelles entre ell,5 et e14,5. $ox]O,

Fgfl8, Fgfl3 et Stc2 furent détectés dans les cordons testiculaires, alors que Wnt6 fut

identifié chez les deux sexes. Sox]O, Wnt6 et $tc2, présents immédiatement après la

détermination du sexe, pourraient jouer un rôle dans celle-ci, alors que Fgf]8 et Fgf]3

sont probablement impliqués dans la différentiation du sexe. Un examen plus poussé

du microarray propose l’activation de plusieurs voies de signalisation intracellulaires.

Finalement, un nouveau modèle est proposé pour $iy.
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INTRODUCTION

Hypothesis and Objective

The main objective of Dr. David W Silverside’s laboratory has been to study

sex determination and differentiation in mammals. We hypothesize that the pre

Sertoli celis drive male sex differentiation and that the genes involved are largeiy

undefined. To further characterize genes differentially expressed by pre-Sertoli ceils

at the beginning of sex differentiation we have made use of a mouse model

expressing Red Fluorescent Protein (RFP) under the control of a hybrid mouse/pig

Sîy promoter (HybSRYp-RFP) (Boyer et al., 2006). This mouse une was used to

isolate and purify pre-Sertoli ceils after the peak of S’y expression but before

histological testis cord formation. RNA from purified e 12.0 pre-Sertoli celis or stage

matched whole female genitai ridges was hybridized onto microarrays to study the

transcriptomes of pre-Sertoli celis.

Literature Review

1.1) Definition of Sex

Throughout the animal ldngdom the existence of two sexes, which contain

ceils that undergo meiosis and reproduce sexually, is aimost universal. The word

“sex” cornes from the Latin word sexus, meaning division (frorn secare, to cut or

separate). fronically, sex (being male or female) is flot a clear-cut bïological entity. In

several species sex is immaterial, with animais changing from male to female several

tirnes throughout their lives or being hermaphrodites, containing both sexes within

one individual (Dimijian, 2005). Even within species with obvious maie or femaie

groups, masculinity and femininity wiii vary among individuals in a population. This

means that populations are composed of individuais differing aiong a spectrum of

peculiarities of structure and function that define maies or females. Sex couid be

better defined as a sum of characteristics caused by a network of interacting genes

ai-id proteins that give risc to sexual phenotypes within an individual.
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1.2) Definition of Sex Determining System

A sex determining system is a biologicai system that determines the

development of sexual characteristics in an organism. Sexual reproduction requires a

balance of two sexes in a population in order to function efficiently. if a male and a

female are required for reproduction, having ail male or ail female offspring in the

population can ultimately iead to extinction (Miller et al., 2004). In order to avoid this

unfortunate quirk several sex determining systems have arisen to balance the ratio of

maies and females in a population. These strategies can be divided into two main

categories: environmental sex determination (ESD) and genetic sex determination

(GSD).

1.2.1) Environmentai Sex Determination (ESD)

Severai species of fish and reptiles rely on environmentai dues to determine

the sex of individuals. The sex of offspring can be determined by pH, environmental

temperature or even the existing male/femaie ratio in a population (Haqq and

Donahoe, 199$). For example, the marine turtle L. otivacea is ciassified as having

temperature-dependent sex determination (TSD). Turtle eggs incubated at

temperatures of 26°C will ail deveiop as maies whiie eggs incubated at temperatures

of 33°C will produce femaies (Moreno-Mendoza et al., 2001). Environmental sex

determination is taken one step further in some fish species. In C. citrineÏlum sexuai

identity is conferred to an individuai through social signais such as size and

dominance (Francis and Barlow, 1993).

1.2.2) Genetic Sex Determination (GSD)

In birds, mammais and severai types of insects sex is determined at

conception by one or more genes. Much like ESD there are severai strategies

contained within this category. Within Hymenoptera insects, which include ants,

wasps and honeybees, the sex of the individuai is determined by the total

chromosome number. DrosophiÏae metanogaster and Caenorhabditis etegans

measure relative amounts of inherited sex chromosomes. Within birds, inheritance of

sex Z or W chromosomes defines sexual identity. Within humans, and mammals in
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general, sex is thought to be assigned at fertilïzation with the inlieritance of either an

X or Y chromosome. In general these animais are bom either male or female and

develop testis or ovaries to produce sperm or ovum respectively. While populations

often follow these defined mechanisms it is flot the rule in every case.

1.2.3) Honeybee and Complementary Sex Determination (CDS)

The reason for sexual reproduction in general has been explained by several

theories. The two main and opposing theories are Muller’s ratchet (Muller, 1964) and

the Red Queen (Ridley, 1993). Muller’s ratchet basically states that sex acts as a way

to purge harmful mutations and genetic disease from the gene pool while the Red

Queen states that sexual reproduction is a means to increase genetic diversity to offset

evolving parasites and a changing environment. An excellent example of these two

theories working in tandem can be seen in the insect order Hymenoptera. This species

comprises over 200,000 species of ants, bees, wasps and sawfties (Bull, 1983; White,

1973) Ail members have haplodiploid sex determination: diploid individuals derived

from fertilized eggs develop as females and haploid individual derived from

unfertilized eggs develop as males.

One mode of sexual determination in Hymenoptera is termed single locus

complimentary sex determination (sl-CDS). In 2003 it was determined that the

primary gene regulating sexual development was CDS (Beye et al., 2003). Honeybees

heterozygous at this allele develop as females while hemizygous haploid individuals

are male. Occasionally, crosses that produce homozygote individuals for the sex

determining genes can result in diploid maies as well. Within honeybee populations

homozygous diploid males are usually sterile and in most cases are killed and eaten

by the workers (van Wilgenburg et al., 2006). This negative selection against

homozygosity in diploid individuals ensures that neutral or beneficially rare alleles

have a higher transmission rate as postulated in the Red Queen theory. At the same

time haploid males with detrimental mutations will die because a functional gene

does not mask the mutated gene. As stated in Muller’s Ratchet hypothesis this gene

will flot be passed on and it will be purged from the gene pool.



4

1.2.4) X:A sex determination and pathway evolution

Two well-studied organisms highlight how different sex determining

pathways can develop and differentiate. The nematode Caenorhabditis etegans and

the fty Drosophilae metanogaster dispiay sex determining mechanisms based on a

ratio of sex chromosomes to autosomes (reviewed by Cime and Meyer, 1996). In

both animais sex is determined by a set of dosage sensitive genes on the X

chromosomes. These X signal elements (XSEs) transmit information relative to the

amount of X chromosomes to autosomes in order to determine sex. In this manner a

double dose of XSEs (two X chromosomes) wiil specify a female fate whule a single

dose (one X chromosome) specifies a male fate. In C. etegans the primary target of

XSEs is the repression of XO lethal -l (xol-1), whule in D. melanogaster XSEs

activate sex tethat (sxl). Both xol-] and sxl have dual roies: first to control gene

dosage compensation and second to initiate sexual differentiation cascades through

the gene transformer. Even though both proteins have similar functions the functional

strategies differ greatly.

1.2.4.1) C. etegans

C. etcgans uses a sex determining system that measures the ratio of X

chromosomes to autosomes. The sexual determination mechanism of C. etcgans has

been studied in great detail (reviewed by Stothard and Piigrim, 2003; Cime and

Meyer, 1996). Worms with an X:A ratio of 0.75 or above wiii be hermaphrodites,

producing both sperm and eggs, while worms with an X:A ratio of 0.67 or below wiii

be males, producing oniy sperm (Madi and Herman, 1979). The major factor

influenced by this ratio is the expression of the transformer-] gene (TRA-1). The

suppression of this gene leads to the deveiopment of sperm and male phenotypes

whereas the expression of this gene causes the development of oocytes and female

sexual characteristics. Rather than being a short cascade, the X:A ratio does not

directiy control the expression of TRA- 1.

The initiai signais in this cascade consist of repressive XSEs and up reguiating

autosomai signal elements (ASE). The balance of repressive XSEs to positive ASEs

determines if xoi- 1 is active in sufficient amounts to promote maie deveiopment
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(Poweli et al., 2005). if xol-1 is inhibited (X:A=1) a group of sex and dosage

compensation (sdc-1, sdc-2 and sdc-3) and dosage compensation dumpy (dpy) genes

are transcribed. The SDC proteins are thought to act together as complexes with DPY

proteins to hypo-activate both X chromosomes and suppress the expression of

hermaphrodite-1 (her-]). In the absence of her-] the intraceliular tau of TRA-2 is

cleaved by TRA-3. This creates an intraceliular TRA-2 (TRA-2ic) ligand that binds

and inhibits the FEM proteins. Inactive FEM allows TRA-1 to repress genes such as

egi-] and mab-3 that, in tum, promote male development.

In the presence of xol-1 (X:A=0.5), SDC-2 protein production is suppressed

ailowing the activation of her- 1. When active, lier- 1 produces a ligand that binds and

inhibits the cleavage of the transmembrane protein TRA-2. TRA-2ic production is

suppressed thus FEMs are not inhïbited. Within the male nematode FEM proteins

suppress TRA-1 action that allows egt-] and mab-] to be expressed. For a more in

depth review the reader is directed to a review by Goodwin and Eliis (2002) and

Cline and Meyer (1996).

1.2.4.2) D. melanogaster

D. metanogaster also uses an X:A sex determining system. Again the major

downstream gene affected by this ratio is Tra. However rather than using negative

feedback Ïoops D. meÏanogaster achieves Tra activation through titration and gene

splicing (reviewed by SchUtt and N5thiger, 2000; Cline and Meyer, 1996).

The initial control of Sxl requires maternai factors, XSEs and ASEs. Maternai

factors are those products passed from the mother to the embryo via the oocyte and

include the product of genes such as daughtertess (da), hermaphrodite (her), groucho

(gro) and extramacrochaetae (emc). The known XSEs are three sisterless (sisA, sisB

and sisC) genes and the gene runt (run) while the oniy known ASE is deadpan (dpn).

In this system DPN works to prevent SIS proteins from forming heterodimers with

DA. if there are more SIS proteins than DPN proteins, as in femaies, a DA-SIS

heterodimer is formed which binds and activates an establishment promoter of sxl

(SXlpe) which in turn causes the production of a functional SXL protein. In males DPN

successfully binds enough SIS proteins so that this promoter site is flot activated.
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In the absence of SXL the gene mate spectflc Ïethat-2 (mst-2) is expressed and

works with three other msl genes to hyper activate the single X chromosome in the

male. Within the female there is also some evidence that SXL directly represses the

expression of several genes including mst-2. Regardless of the protein involved X

chromosome gene dosage is baianced in males and females.

Slightly after the titration step sxÏ is activated in both sexes through a

maintenance promoter. This promoter transcribes a non-functional mRNA, which

needs posttranscriptional splicing to occur in order to produce a functional protein. In

the female, the functionai SXL produced earlier, by activation of SXtpe, will promote

the proper spiicing of sxl mRNA leading to more functional SXL protein. These

functional SXL proteins will regulate the proper production of more SXL proteins. In

males the absence of functional SXL wiil lead to a non-functional SXL protein and

sxt gene expression will be lost.

In D. melanogaster, tra is active in both sexes and produces a pre-mRNA that

again needs to be spliced. In females, the functional SXL protein will bind to and

help splice tra mRNA in order to give a functional protein. TRA along with TRA2

will bind to a sub optimal 3’ site on the doubtesex (dsx) gene promoter which causes

a female form of DSX protein to be produced, DSXF. Along with her and intersex

(ix), DSXF works to up-regulate female specific genes while repressing genes

involved in male differentiation. In the absence of SXL, and therefore functional

TRA, a different 3’ binding site activates dsx and leads to the production of a male

form of DSX (DSXM or doubtesex male protein). This gene promotes the activation

of male genes and represses female genes.

1.2.4.3) Networks

The SXL protein is well conserved between severai species of fly including

Musca, Chiysomya, Megasetia, Ceratitis and Drosophita but SXL does flot seem to

determine sex in any other species other than Drosophila. On the other hand,

homologues of DSXM and DSXF do appear to follow a sex specific expression

pattern in ail of these species (Schtitt and Nithiger, 2000). Several experiments in

Drosophita could possibly illustrate that this genetic network can be rearranged to
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give several different sex determining systems (reviewed by Cime and Meyer, 1996;

Schûtt and N5thiger, 2000).

XX embryos from da mutant mothers do flot activate SXL and therefore die

resulting in 100% male offspring from these mothers (Parkhurst et al., 1990). if the

production of DA became dependent on nutritional cues this would allow the mother

to preferentially produce male offspring in certain environmental conditions and

female offspring in others. When msl-2 is ectopically expressed in heterozygotic msl

1 knockouts in Drosophila, male files will flot readjust X chromosome gene dosage in

response to ectopically expressed sxt. Therefore msÏ-2 becomes the genetic switch for

dosage compensation freeing the fiy from sex specific lethality. In this case a

functional sxt product will act as a dominant female determining factor regardless of

the X:A ratio. There are also several examples in the literature showing

circumvention of the sxt sex determination within Drosophila due to interruption or

improper expression of tra-] or tra-2. These range from the gain of function causing

male to female sex reversal (McKeon et al., 1988), loss of function causing female to

male sex reversai (Sturtevant, 1945) and even a temperature sensitive allele that

causes female to male sex reversal when larvae are raised in temperatures at or above

29°C (Belote and Baker, 1982). While none of these examples are shown to be actual

sex determining mechanisms in nature they do demonstrate that sex is flot a result of

one gene but of genes working together as a network. Furthermore genes that

function in a certain way in one network may have a very different role in another

network. This is something that should be kept in mmd when studying the vertebrate

sex determining systems.

1.2.4.4) Wilkins’ Theory

The information gathered from the study of sexual determination in

Caenorhabditis elegans bas led to the theory that sex determining pathways evolve in

a reverse stepwise fashion driven by frequency-dependent selection for the mlnority

sex (Wilkins, 1995). The theory assumes that a primordial sex determination pathway

would have been very simple, depending on one or two genes that in turn responded

to environmentai cues. These environmentally responsive elements would have
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allowed for an optimal sex ratio to be achieved in the population. Either through

diseases, which skew sex determination, such as PSR or Wolbachia (reviewed by

Normark, 2002; Werren and Stouthamer, 2003), or because of mutations in key

genes this balanced sex ratio, would have become skewed to favour one sex (i.e.

females). In an attempt to re-equilibrate the sex ratio, alleles that promote the

minority sex (males) would have been under positive selection pressure.

One strategy may be to suppress the gene causing the unbalanced phenotype,

as seen in Caenorhabditis etegans. A separate strategy may be flot to suppress the

disease but mask it by increasing gene expression, as seen in Drosophila

melanogaster. if these alleles aggressively promoted the minority sex they would

themselves push the population towards the sex originally suppressed by the disease

(male) causing positive selection for genes promoting the new minority sex (female).

In either case this seesaw sex ratio would continue until an equilibrium mechanism is

eventually achieved or the species goes extinct. The stepwise evolution of

superimposed sex determining mechanisms may be a major confounding factor in

unraveling the genetic cascade behind vertebrate sex determination systems and sex

differentiation.

1.2.5) Sex Chromosomes

In birds, mammals and several other species sex is genetically determined at

the time of fertilization through the inheritance of sex chromosomes. The sex

chromosomes are distinct from autosomes in that they differ in size, number, staining

characteristics and gene content when the two sexes are compared. Ohno’s law

asserts that heteromorphic sex chromosomes originated from an ancestral autosomal

chromosome, which obtained a mutation that confened a sexual advantage (Ohno,

1967). It has been hypothesized that chromosomal rearrangements, such as inversions

of specific sex related genes and operons, suppressed recombination and fostered the

accumulation of sex specific genes within the sex chromosomes. The differences in

size often observed between the sex chromosomes have been caused by subsequent

deletions. This degeneration has been demonstrated in the W chromosome of
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Neognathan birds and the Y chromosome of mammals (Ansari et al., 1988; Pigozzi

and Solari, 1997).

1.2.5.1) ZW/ZZ sex chromosomes

The ZW/ZZ sex determination system is found in birds and some insects. In

the ZW system females are the heterogametic sex (ZW) while the males are the

homogametic sex (ZZ). Bombyx mon, the commercial silk worm, is known to have a

dominant female determining factor residing on the W chromosome and therefore the

inheritance of the W chromosome drives female development (Goldsmith et al.,

2005). On the other hand, within Lepidoptera (butterfiies and moths) examples of

ZO, ZZW and ZZWW females have been found suggesting that the W chromosome

is flot essential for female development in some species. Within birds the presence of

a female determining gene on the W chromosome has not been found. Currently the

most accepted hypothesis stipulates that a double dose of an unknown gene on the Z

chromosome is needed for male development (reviewed by Clinton and Haines,

2001).

1.2.5.2) XYIXX sex chromosomes

Most mammals use the XX/XY sex determination system. In the XX/XY

system sex is conferred through the inheritance of either homogametic chromosomes

(XX) creating females or heterogametic chromosomes (XY) creating males. The

existence of Klineffelter’s males, in which two or more X chromosomes and one Y

chromosome are inherited, show that it is the presence of the Y chromosome and not

the dosage of the X chromosome that determines the entry into the male

developmental pathway. In 1990 the Sex —Determining Region of the Y chromosome

(SRY) gene was identified as a dominant gene found on the Y chromosome, which

drives testes determination (Sinclair et al., 1990).

1.2.5.3) Platypus

Comparative mapping of genes from the vertebrate Z and X chromosomes

showed that the two share no homology, implying that they are derived from different
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autosomes (Nanda et al., 1999; Shetty et al., 1999). According to a review by

Gruetzner et al. (2006) the ZW/ZZ and XY/XX sex chromosomes may be reiated.

This review points to studies of the piatypus, which contain ten sex chromosomes,

five X and five Y. These sex chromosomes construct multivalent chains in male

meiosis creating X1X2X3X4X5 gametes and Y1Y2Y3Y4Y5 gametes. Gene mapping

experiments have revealed that X5 at one end contains homologues of bird Z

chromosome genes and the X1 shows homologues of mammalian X chromosome

genes. These observations have iead to severai theories which suggest that both sex

determination system may have evoived and diverged from a common source.

2) VERTEBRATE SEX DETERMINATION

2.1) Common Goals in Vertebrate Sex Determination

As mentioned earlier reptiles, bird and mammals have differing sex

determination strategies including ESD, ZZ/ZW chromosomai and XXIXY

chromosomai sex determination respectively. Despite these differing strategies there

is a close anatomical relationship between the development of the genital ridge and

the excretory system during early ontogeny of ail vertebrates. In reptiles, birds and

mammals, a mesodermal layer ventral to the somites differentiates into structures

involved in excretion and reproduction. Gonadai organogenesis begins with the

thickening of the coelomic epitheiium on the medial aspect of the mesonephros in

which the germ ceiis wili eventually settie (Merchant-Larois et ai., 1984). At this

point it is impossible to morphologicaily distinguish males from femaies. The embryo

and the genital ridge are said to be bi-potential, possessing structures and celi types

that can differentiate into male or female phenotypes (Ito et al., 2006). In response to

signais from the ovary or testis, the femaie reproductive tract system deveiops

primarily from the paramesonephros (Mifilerian) duct, and the maie reproductive tract

forms from the pronephros (Woiffian) duct, respectiveiy (Grobstein, 1955). There are

differences among species in how closeiy connected the structures are in regard to

sharing ducts for secretion, but amongst teleost fish, reptiles, birds and mammals the

mature testes contain Sertoli and Leydig cells in addition to germ celis, and the

ovaries consist of thecai and granuiosa ceils surrounding the ovum (reviewed by



11

Blum, 1984). There is evidence of some conservation of genes involved in sexual

differentiation among ail of these creatures. While sex determination of fish, birds

and reptiles has been and is cunently being studied the largest amount of information

has been found in mammals.

3) MAMMALIAN SEX DETERMINATION

3.1) Alfred Jost and the Testis Determining Factor

The studïes donc in the 1940’s by Alfred Jost were the first to point towards a

Testis Determining Factor and the Female Default Pathway in mammals. Jost showed

evidence that rabbits castrated in utero before the time of sex determination

developed female reproductive systems (Jost, 1947). Through this study Jost showed

that the testicle in mammals drives development of the male reproductive tract. This

study also became the biological basis behind the theory of the female default

pathway. The female default pathway stipulated ovaries and female reproductive

organs would develop only in the absence of a Y chromosome male determining

gene(s). This in turn lcd to the hypothesis of the Testis Determining Factor (TDF), a

dominant gene that actively drives testis development. This gene remained

hypothetical until 1990, when Sex —Determining Region of the Y chromosome (Sry)

was identified (Sinclair et al., 1990).

3.2) Testicles Drive Internai Change

Early in embryonic development it is impossible to distinguish male embryos

from female embryos. In effect the embryo is bi-potential containing both Miillerian

ducts as well as Wolffian ducts. Two hormones secreted by the testicle drive male

development of the Wolffian ducts. Sertoli cells produce the hormone Mifilerian

Inhibiting Substance (MIS) also known as Anti-Miillerian Hormone (AMH) and

Leydig cells produce testosterone. MIS is responsible for the regression of the

Mifilerian ducts while testosterone maintains and differentiates the Wolffian ducts as

well as the extemal male genitalia (reviewed by Viger et al., 2005). Due to the action

of testosterone and its derivatives the Wolfftan ducts differentiate into the epididymis,

vas deference and seminal vesicle of the male reproductive tract. As well,
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testosterone heips to deveiop the penis and scrotum. In the absence of MIS and

testosterone the Miillerian ducts are maintained while the Wolffian ducts degenerate.

The effector causing the differentiation of the Mifilerian ducts is not weii known. It

has been suggested that the estrogens produced by the placenta, the fetal ovaries or

even that from maternai circuiation plays a role in Mifilerian duct differentiation

(Langmand and Sadier, 1996). As weii, the morphogen Wnt4 has been impiicated in

the development of the Mûilerian ducts and the repression of testosterone production

(Vaino et al., 1999). In either case, the Mûilerian ducts contribute a iarge portion of

the female reproductive tract, differentiating into the oviduct, uterus, cervix and upper

part of the vagina. While these processes are themselves accompanied by several

other changes throughout the body they are au dependent upon the determination of

sex and the subsequent interaction of the primordiai germ ceiis, support ceiis,

steroidogenic ceils and connective tissue celis.

3.3) An Indifferent Embryo and Bi-potentiai Gonads.

During vertebrate embryogenesis, the urogenitai system derives from the

intermediate mesoderm of the gastruia. The male reproductive tract forms from the

pronephros (Wolffian) duct and the femaie reproductive tract system deveiops

primarily from the paramesonephrotic (Mifilerian) duct. In the mouse, the Wolffian

duct is first formed from the intermediate mesoderm by embryonic day 9 (e9). Before

the Woiffian duct reaches the cloaca, the mesonephros forms. A thickening of the

coelomic epithelium on the ventral medial surface of the mesonephros is the first

indication of the genital ridge (Grobstein, 1955; Brennan and Chapei, 2004; Viger et

ai., 2005). At or near the same time, germ ceiis migrate from the hindgut to begin to

populate the genital ridge (McLaren, 2000). Shortly after the arrivai of the germ ceils

in the genital ridge at elO.5, the celis of the coelomic epitheuium of the genital ridge

begin to actively divide and invade the underiying mesenchyme.

The Mtiilerian duct starts to form by invagination of the surface epithelium of

the anterïor mesonephros around ell.5 in the deveioping urogenital ridge. This

epitheliai invagination extends caudally along the Woiffian duct, lateraily and then

mediaily towards the cloaca (Gruenwaid, 1941). Thus regardless of their genetic sex,
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the embryos have both male and female reproductive tract precursors, before

morphological signs of sexual differentiation occur.

In the mouse, around e 12.0, the epithelial celis of the genital ridge multiply to

form primitive sex cords. The primitive sex cords actively surround the germ celis

while stiil staying in contact with the surface epithelium. At this stage it is stiil

morphologically impossible to distinguish male from female gonads (Langmand and

Sadler, 1996). The gonads now contain the four main precursor cell types needed to

form either the testicle or ovary: The primordial germ cells (PGC), the support cells,

the steroidogenic ceils and the connective tissue celis. The PGCs migrate into the

gonad surrounded by the bi-potential support celis (Karl and Capel, 1998). The

mesenchymal cells will eventually differentiate into the connective ceils and

steroidogenic cells (Buehr et al., 1993; Martineau et al., 1997; Ito et al., 2006).

Within the male these celi types will differentiate into pro-spermatogonia, Sertoli

cells, peritubular myoid cells, endothelial cells and Leydig celis. Within the female

they form ovocytes, granulosa cells, stromal cells and theca cells.

4) CELLS AND STRUCTURES 0F THE GONAD

4.1) Germ Cells

Primordial germ cells (PGCs) are first detectable at e7.0 as a group of

approximately 50 cells clustered at the posterior of the primitive streak in the extra

embryonic region. As the embryo develops to the pre-somite stage, the germ celis

become a distinct group of cells distributed along the base of the vitelline vesicle

(Hogan et al., 1994).

By e8.0 the PGCs begin to actively migrate through the hindgut to the genital

ridge (Hogan et al., 1994). Around elO, germ celis begin to enter the genital ridge

(McLaren, 2000) and continue to do so until ell.0 — ell.5 (Hogan et al,. 1994).

Those that do not enter the genital ridge by this time are lost and eventually

eliminated (Molyneaux et al., 2001). During this migration and colonization of the

genital ridge, the germ ceils will divide mitotically once every 16 hours resulting in

close to 25 000 PGCs colonizing each gonad by e13.0. Within the male genital ridge

the PGCs will be requisitioned to the testis cords which consist of pre-Sertoli celis
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surrounded by peritubular myoid celis. Through interactions with Sertoli celis the

PGCs will stop dividing at phase Gi of the mitotic celi cycle at about e12.5

(McLaren, 2000). Though they are essential for fertility they play no role in the

development of the testis (McLaren, 2000; Adams and McLaren, 2002). Within the

female genital ridge the PGCs enter meiosis in an anterior-to-posterior wave and are

theorized to drive differentiation of the ovary (McLaren, 1984; Yao et al., 2003;

Bullejos and Koopman, 2004).

4.2) The Ovary

In the absence of Sry, the bi-potential gonads enter the female differentiation

pathway. In the mouse, the first recognizable morphological difference in the ovary,

the entrance of germ celis into meiosis, is seen at e13.5 (Nordqvist, 1995). In the

ovaries, the primitive sexual cords segment themselves into irregular cellular masses

containing germ cells. At this point germ cells are termed gonocytes. These gonocyte

nests are situated in the medullar region of the ovary and are later replaced by

vascular stroma (Langmand and Sadler, 1996). In contrast to the testicle, the

superficial epithelium of the ovary thickens and continues to proliferate finally

creating a second generation of sexual cords, the cortical sex cords. These cords will

penetrate into the underlying mesenchyme without separating from the coelomic

epithelium (Langmand and Sadier, 1996). The cortical cords themselves segment into

cellular masses containing one or more gonocytes that subsequently transform into

ovogonia and drive the differentiation and organization of the follicular ceils and

structures (Langmand and Sadier, 1996).

In the absence of Sertoli celis, gonocytyes enter meiosis at e13.5 and stop

development at prophase I. Most of these ceils will recommence their meiotic

division at the beginning of the ovarian cycle at puberty (McLaren, 2000). The

meiotic germ cells antagonize certain pro-testicular events. Meiotic gonocytes are

essential to follicular formation as cell migration and testicular cord formation can be

induced in XX gonads before gonocytes enter meiosis but not afterwards. Once

meiosis begins XX gonads loose their plasticity and are committed to an ovarian

pathway (Tilmann and Cape!, 1999; Yao et al., 2003). Gonocytes in the ovary enter
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into meiosis in an anterior to posterior wave, parallel to genetic markers that define

follicular ceils suggesting an influence of meiotic germ ceils on the support celi

population (Bullejos and Koopman, 2004).

Littie biologie or genetic information is available to explain ovarian

development. The PGCs are needed for the differentiation of the follicular ceils. In

the absence of PGCs follicles fail to develop in the ovary (Huang et al., 1993). One

gene expressed by the ovocytes, Figa, is necessary for the initial stages of

folliculogenesis; the recruitment of the granulosa cells around the primordial follicle

(Soyal et al., 2000). At the level of the somatic cells, FoxÏ2 is necessary for the

differentiation of the granulosa cells. Altliough Foxl2 is not essential for ovary

formation, granulosa ceils of FoxÏ2 KO mice are unable to become squamous cuboid

ceils and there is an arrest of folliculogenesis (Schmidt et al., 2004; Uda et al., 2004).

For a long time Daxi was considered to be the ovary determining factor but the

creation of a Daxi KO mouse demonstrated it was flot essential to ovary formation

(Yu et al., 1998a). A second gene, Wnt4 lias been shown to restrict migration of

endotlielial and steroidogenic celis in the XX gonad and also inhibits tlie formation of

the coelomic vesicle in male gonads when expressed ectopically. One last gene,

Follistatin (Fst), is necessary to prevent XY specific vascularization and also permits

survival of meiotic germ celis in tlie ovary (Yao et al., 2004).

4.3) The Testicle

There is stili no visible difference between the male and female gonads by day

11.0 even tliough Sry starts being expressed around elO.5. Not until e12.5, two days

after the initial expression of $iy, do tlie testicular cords become evident in the male.

By e13.5 tlie male gonad lias doubled its size compared to the ovary of the same age

and is morphologically far more complex. Four processes rely directly or indirectly

on the expression of Siy and are specific to male testicular development: 1) cellular

proliferation and formation of the testicular cords; 2) cellular migration; 3) testis

specific vascularization; and 4) differentiation of the Leydig celis.
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4.3.1) Celi Proliferation and Differentiation of Sertoli Cells

Quantitative studies on the mammalian embryo have shown that faster growth

of the male gonad compared with that of the female can be detected before any

histological differences are apparent (Lindh, 1961; Mittwoch et al., 1969). This has

led to the suggestion that testicular differentiation is dependent on an accelerated rate

of celi proliferation (Mittwoch et al., 1969; Schmahl and Capel, 2003; Hunt and

Mittwoch, 1987). During the early phase of proliferation both Sertoli celis and

interstitial celis (which include Fibroblast and Leydig cells) are thought to originate

from a population of celis expressing Steroidogenic factor 1 in the coelomic

epithelium (Karl and Capel, 1998). Schmahl et al. (2000) investigated Siy’s role in

the initiation of gonad size increase using 5’-bromo-2’-deoxyuridine (BrdU)

incorporation into dividing cells. They reported that celi proliferation in the coelomic

epithelium increases in the XY gonad by ell.2 and these cells migrate into the gonad.

Later studies showed that as these ceils migrate, Steroidogenic factor 1 (Sf1)

expression is eventually lost from the coelomic epithelium (Sekido et al., 2004).

Sekido et al. (2004) theorized that after the coelomic epithelial celis migrate into the

gonad, there is a decision to become either interstitial or supporting celis based on the

expression level of Siy. Relative levels of this gene in these celis may determine their

fate as Sertoli cells or interstitial celis.

Pre-Sertoli cells are considered to be the organizers of testis differentiation.

Early studies by Burgoyne et al. (1988) using XX/XY chimeric mice showed that

over 80% of the Sertoli cells are XY, whereas other lineages are composed more

evenly of XX and XY cells. This shows a high bias for the Y chromosome and Siy in

Sertoli celis, but the incorporation of roughly 10% XX containing cells indicate the

existence of a paracrine signaling system that is able to recruit ceils lacking Sry

expression to a Sertoli cell fate (Palmer and Burgoyne, 1991).

4.3.2) Migrating Cells

In 1993, Buehr, Gu and McLaren performed an in virto tissue incubation

experiment, which placed a membrane between the mesonephros and male gonad.

While this filter allowed cell signals to pass through, cell migration was effectively



17

stopped. This fiiter effectiveiy blocked the formation of the testis cords demonstrating

the importance of migrating ceils for the formation of the testicie. Later studies found

that Siy initiates these migration signais. Studies with XY gonads that do not express

Sry showed no ceil migration, whule XX gonads expressing Siy do migrate (Capei et

aL, 1999). Several morphogens have been shown to aid in this migration process

including TGFs, NT3 and HGf (Cupp et al., 2000; 2003; Ricci et al., 1999, 2002;

Ross et al., 2003). The only inhibitor of migration seems to be caused by meiotic

germ celis (Tiimann and Capel, 1999). The role of meïotic germ ceils in blocidng celi

migration is shown in PGC abiated XX genitai ridges. Studied have shown that ceii

migration can be observed in these genital ridges (Yao et ai., 2003).

Migration of mesonephric ceils occurs in the XY gonad between e 11.5-e 16.5

(Martineau et al., 1997). 1h 1997, Martineau et ai. characterized the celis migrating

into the testis cords and conciuded through morphology that they consist of

peritubuiar myoid ceiis, endotheiial celis and perivascular ceiis. In 2001, Nishino et

al., managed to separate and characterize the ceils migrating into the testis. The

migrating ceils contained three celi forms: a sharp ceil form, a cluster-forming ceil

and a round celi form. Celi Culture studies showed that the cluster-forming ceiis

readiiy differentiated into the round ceii form and expressed 313-HSD. From these

observations it was predicted that the sharp celi form were precursor ceiis for

peritubuiar myoid celis and the other two cell types corresponded to Leydig ceii

precusors. Brennan et ai. (2003) used a marker to iabei the coeiomic epithelium of the

gonads between el 1.5 — e12.0 and found that many of the migrating ceils were Sf1

negative (85%) while only 3% exhibited high levels of 5f] expression. They

conciuded that this wouid flot represent a major source for the fetal Leydig ceii

lineage. While the origins of fetal Leydig ceils is stili under debate the importance of

migrating celis to the testicuiar vascuiature is flot.

4.3.3) Vasculature

As with other processes in the embryo, initialiy the vasculature of the gonad is

identical in both sexes. Differences in the maie vascuiature begin to arise around
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el 1.0 after the expression of L’y and the initiation of celi migration into the testes.

Within the ovary vasculature will be created using ceils already present in the organ.

On the other hand, vasculature of the testes is dependent upon migration of cells from

the mesonephros. In fact, the coelomic vessel, a large blood vessel situated on the

surface of the testicle, is comprised almost exclusively of epithelial ceils that have

migrated into the testis. The early growth of the coelomic vessel is important for the

masculinization of the embryo. Rather than simply bringing nutrients to a rapidly

growing organ the vessel is also indispensable for delivering testosterone and other

masculinization signais to the rest of the embryo (Brennan and Capel, 2004).

4.3.4) Leydig ceils

In the mouse, the Leydig celis appear in the interstitial tissue around e 12.5

through the differentiation of mesenchymal-like stem cells (Byskov, 1986). While

adult Leydig ceils do produce testosterone, fetal Leydig ceils lack the enzyme 1713-

hydroxysteroïd dehydrogenase type 3 (HSD17f33) and therefore secrete

androstenedione which is in tum converted to testosterone by the pre-Sertoli celis in

the testis cords which express HSD17f33 (O’Shaughnessy et al., 2000). This

testosterone ensures the masculinization of embryo. Several androgens as well as

Insulin-like growth factor 3 (Insl3) are secreted by fetal Leydig ceils that are

important for the decent of the testis in some mammals (Kitamura et al., 2001).

The origins of fetal Leydig celis remain uncertain but it has been proposed

that the steroid-secreting celis of the gonad and adrenal gland share a common

progenitor. Both of these ceil populations are thought to arise from Sf1 expressing

celis found at the cranial end of the mesonephros (Hatano et al., 1996). Several

studies have suggested that Leydig celis arise from the migratory cell population

(Nishino et al., 2001; Merchant-Larios and Moreno-Mendoza, 1998) but other studies

dispute these origins. Studies by Merchant-Larios et al. (1993) have shown that if the

mesonephros is the origin of fetal Leydig cells they must enter the gonad before el 1.5

as removing the mesonephros after that time does not effect fetal Leydig

development. Another study using the Desert Hedgehog inhibitor forskolin raised the
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possibility that the Leydig ceil population does flot originate from the migratory ccli

population (Yao and Capel, 2002). This study showed that while migration of

mesonephric celis was blocked by forskolin, fetal Leydig celi differentiation could be

ectopicaliy activated. The authors predicted that fetai Leydig ceils originate from

other sources such as the coelomic epithelium of the gonad or that fetal Leydig cell

precursors migrate into the gonad before cl 1.25.

5) GENES N MAMMALIAN SEX DETERMINATION

5.1) Methods used to Identify Genes in Sex Determination and Differentiation

Studying human patients or transgenic mouse knockout models displaying sex

inversion or gonadai irregularities have permitted the discovery of severai genes

important in sex determination. These include transcription factors (Si-y, 5f], Wt],

Pod], Lhx9, Gata4, M33, $ox8 and Sox9) and cdl signaling molecuies (Wnt4,

TFGfis, Fgf9, Dhh, Fdgf FDG2, Ir, Irr) (reviewed by McLaren, 2000; Brennan and

Capei, 2004; Ross and Capel, 2005). Severai iaboratories have employed subtractive

screens or microarrays to search for sexually dimorphic gene expression between

whole maie and female embryonic mouse gonads (Bowies et ai., 2000a; Grimmond et

ai., 2000; Wertz and Herrmann, 2000; Menke and Page, 2002; Smith et ai., 2003;

McCiive et aL, 2003; Smaii et ai., 2005). Recentiy, a few groups have developed

mice expressing fluorescent protein driven by various lengths of the 8f] or Si-y

promoter which have been used to compare gene expression of ccii types in the

genitai ridge around the time of sex determination (Boyer et ai., 2004; Nef et aL,

2005; Beverdam and Koopman, 2006; Bouma et ai., 2006). We wiii now review sex

determination genes starting with transcription factors.

5.2) Transcription Factors

Transcription factors are proteins that regulate the activation of transcription

in the eukaryotic nucieus. This is accomplished either through direct binding to

specific promoter and enhancer sequence elements in the DNA or by creating

complexes with other DNA bound proteins. The reguiation of gene expression by
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transcription factors is a highly complex process that often involves several

transcription factors and specific DNA sequences, DNA structure and higher

chromatin order.

5.2.1) SRY function and Expression

With few exceptions, Sry is the testis-determining factor in mammals. The

demonstration in 1991 that the addition of S’y, as a transgene, could cause XX mice

to develop into males confirmed the invoivement of this gene in male sex

determination (Koopman et al., 1991). Further support for Siy being the sex

determining factor in humans came after the identification of several human XY sex

reversais involving mutations of this gene (Schafer and Goodfellow, 1996). Since the

discovery of Sry, over fifteen years ago, the mechanism of its action has been studied

but remains largely unknown and somewhat debated.

RegardÏess of its action, Sry is transiently activated around e 10.0 in the

supporting celi lineage (Selddo et ai., 2004; Aibrecht and Eicher, 2001; Wilhelm et

al., 2005; Hacker et al., 1995; Bullejo and Koopman, 2001). S’y is first seen in a

small population in the center of the genital ridge. Either due to paracrine signaiing or

ceii proiiferation the number of cells expressing S’y increases, expanding from the

center towards the poles untii the most of the Sertoli cells express Sry (Bullejos and

Koopman, 2001; Wilhelm et ai., 2005). Within the mouse this will be foiiowed by the

reduction and ioss of S’y expression by e12.5. In this regard, the mouse may be the

exception as other reports note continued expression in the pig, sheep and human

(Daneau et ai., 1996; Payen et al., 1996; Hanley et al., 2000).

5.2.1.1) S’y the Transcription Factor

Structurally S’y is a single, or in some marsupials a double, exon gene

containing a conserved DNA binding high mobility group (HMG) box (O’Neill and

O’ Neill, 1999). Several genes, including Sry-like HMG-box protein 9 (Sox9), display

possible S’y binding sites (Sekido et al., 2004). Sox9 has been shown to co-localize

with S’y in the nucleus of Sertoli celi precursors as early as el 1.5 (Sekido et al.,

2004) consistent with the hypothesis that Sox9 is a direct target of S’y. Though
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several other putative SRY binding sites have been found in vitro, features that

characterize active SRY binding sites in vivo are unknown. This may be further

frustrated as Siy may have very few direct targets in vivo. It lias been suggested that

the male determining cascade may grow tlirough tlie action of one or more secondary

genes (Canning and Loveli-Badge, 2002).

5.2.1.2) Sry the RNA Spiicing Factor

One study done by Olie et al. (2002) lias suggested a role for Sry as an RNA

spiicing factor. A spiicing factor is a class of molecules usually, RNA or proteins,

which modify mRNA post transcriptionally. When Sox6 was immunodepleted from

HeLa nuclear extracts there was a significant reduction in spiicing activity at the first

step of the spiicing reaction. When recombinant GST-SOX6, GST-SRY or GST

SOX9 HMG were added to SOX6 depleted HeLa celi nuclear extracts spiicing

activity was restored. Furthermore this study showed evidence that both SOX6 and

SRY are functionally co-localized with spiicing factors SC-35 in the nucleus of HeLa

and NT2/D1 liuman embryonic carcinoma ceils.

One hypothesis publislied by Lalli et al. (2003) lias suggested tliat Sry may

influence sex determination through sex specific spiicing of mRNA similar to the

action of sxl in Drosophila. Within this hypothesis similarities between SRY HMG

domain and tlie RNA binding domain of hepatitis delta small antigen is pointed out

by Veretnik and Gribskov (1999). As well this study mentions unpublished data that

confirms SRY and SOX6 can bind RNA.

5.2.1.3) Sry and Higher Chromatin Order

Siy has been theorized to act as a chromatin remodeling protein. In vitro

identification and characterization of the Kruppel-associated box only (Krab-O)

protein as an Siy-interacting protein has provided experimental evidence supporting a

model for Siy functioning as a chromatin-remodeling agent. Sry may recruit tlie

Krab-Kapl (Krab-associating protein 1) complex as a cliromatin modulator (Oh and

Lau, 2006). It was shown that the mouse Sry-Krab-Kap] complexes with

heterochromatin protein 1 (Hp]), suggesting that mouse Siy could use the Krab
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Kapl-Hp] organized transcriptional regulatory complex to regulate downstream

target genes through histone modification (Oh et al., 2005). At least one study debates

the role of Sïy as a chromatin-remodeling agent. Mizukami et al. (2004) incubated

e 11.5 genital ridges in Trichostatin A, a histone deacetylase inhibitor, at several

different concentrations for three days to see the effect of inhibiting chromatin

remodeling during sexual determination. This study found that Trichostatin A affects

the development of germ celis, but it did flot affect sex determination (Mizukami et

al., 2004).

5.2.1.4) Repressor of a Repressor

The “Z” gene hypothesis postulates that an as yet unidentified gene is

expressed in the XX gonad that represses the testis pathway and allows ovarian

development to occur (McElreavey et al., 1993). Alternatively this hypothesis states

that Siy, the male determining gene acts as an inhibitor of an inhibitor by repressing

this gene. When mutated or inactivated the “Z” gene would result in the

masculinization of the XX gonad with female to male sex reversai. Support for this

theory is seen in the XX sex reversal in goats with Polledlintersex syndrome (Pis)

(Vaiman et al., 1996). In accordance with the double-inhibition model, the Fis

mutation affects primarily the support celis of the gonads. Deletions in the Pis region

effected the transcription of the protein Foxl2 and two non-coding genes, Pisrti and

Ffoxic (Pailhoux et al., 2001; Pannetier et al., 2005). Though studies on Pisrti have

shown it is unlikely to be involved in sex determination both Foxl2 and PJoxic are

thought to play a role in the female pathway, as will be discussed below (Loffler et

al., 2005; Pannetier et al., 2003).

5.2.1.5) Odsex Mice

Information involving Odsex (Ods) mice lends credence to the idea that $ry

antagonizes a repressor protein. When mice carry a 150-kb deletion and transgene

insertional mutation, approximately 1 Mb upstream of Sox9, XX mice develop as

sterile XX males in the absence Siy. It is thought that this section of DNA represents

a long-range, gonad specific repressor regulatory element that down regulates Sox9 in
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the ovary (Bishop et al., 2000) This was brought into question when data coilected

later by the same group supported the idea that the Dct promoter in the transgene

couid be modifying $ox9 expression over a distance of 980 kb in Ods mice (Qin et

al., 2004).

5.2.2) SRY-reiated HMG box 9 (Sox9)

The most studied of the Sox genes in sex determination is Sox9. During

gonadogenesis of the mouse, Sox9 is initiaiiy expressed in both sexes, with

expression decreasing in the deveioping ovary and strongiy increasing in the

developing testis, concomitant with the peak of Siy expression at ell.5. As

mentioned earlier Sry disappears after e 12.5 but Sox9 on the other hand is

continuously expressed (Morais da Silva et al., 1996; Kent et al., 1996). Regulation of

$ox9 is thought to be initiated by Sry, but new data shows that continued expression

is dependent on Wtl action (Canning and Loveli-Badge, 2002; Gao et ai., 2006). In

vivo and in vitro studies have shown Sox9 is essential for the expression of severai

genes including Arnh, Sf1, and Vnnl (de Santa Barbara et ai., 1998; Arango et ai.,

1999; Shen and Ingraham, 2002).

The genitai ridge is sensitive to the level of Sox9 expression. In mice and

humans, extra copies of the Sox9 gene have been associated with XX sex reversai

(Vidai et ai., 2001; Huang et al., 1999). Even biocking nuciear export of Sox9 in

normaiiy functioning XX genitai ridges with leptomycin B can activate Arnh and

cause sex reversai (Gasca et ai., 2002). On the other hand, hapioinsufficiency (the

ioss of one of two functioning aiieies) of Sox9, in humans, causes a sever bone

disease, campomelic dyspiasia (CD), that is associated witli female deveiopment of

XY individuals in 75% of the cases (Houston et al., 1983). Whiie many of the genetic

iesions that cause this disease have been identified in the open reading frame of Sox9,

several breakpoints found between 50kb to 950kb upstream of Sox9 have also been

associated with CD XY sex reversai cases (Pfeifer et ai., 1999). One study lias shown

that mice have a higher tolerance to Sox9 hapioinsufficiency compared to liumans, as

they do not deveiop abnormal phenotypes. The authors attribute this to the

overiapping function of Sox8 in mice (Chaboissier et ai., 2004). On the fartliest end of
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the spectrum, tissue specific knockouts of Sox9 in the gonads of mice do not show

any signs of male differentiation. These mice lack expression of testis-specific

markers, such as AMH and steroidogenic side chain cleavage (5cc) genes, and instead

express the female-specific markers Wnt 4, Bmp2, Fst and Foxl2 even in the presence

of Sîy expression (Barrionuevo et al., 2006; Chaboissier et al., 2004). furthermore

Sox9 may need to be expressed in a threshoÏd number of ceils within the testes. If

prolïferation of the coelomic epithelium is inhibited during an eight-hour period

around e 11.0, Sox9 expression will be blocked and testis cords will fail to develop

(Schmahl and Capel, 2003).

5.2.2.1) Redundancy of E box Sox Family and Sry

Si-y, Sox8, Sox9 and Sox]O are ail present in the genital ridge during sex

determination in a testis specific manner (Sock et al., 2001; Chaboisser et al., 2004;

Barrionuevo et al., 2006; Beverdam and Koopman, 2006; Nef et al., 2005). Members

of the E Sox proteins, Sox8, Sox9 and SoxlO, are thought to have evolved from a

common ancestry (Bowies et al., 2000b; Wegner, 1999) and studies have shown

significant functional redundancy between them (Bylund et al., 2003; Cheung and

Brïscoe, 2003; Graham et al., 2003; Taylor and LaBonne, 2005; Kellerer et al., 2006).

Sox8 and Sox9 may be directly up regulated by Sry (Sekido et al., 2004) to influence

male sex determination and Sertoli celi differentiation (Barrionuevo et al., 2006;

Chaboisser et al., 2004; Sock et al., 2001; Takada and Koopman, 2003). $ox9 has also

been shown to completely replace the function of Siy in Ods mice (Qin and Bishop,

2005) and the HMG motif of Sox9 can functionally substitute for Siy when expressed

as an Sry/Sox9 transgene (Bergstrom et al., 2000). Several studies also show that

Sox$ and SoxlO have limited functional redundancy (Kellerer et al., 2006; Maka et

al., 2005; Stolt et al., 2004) and ectopic expression of Sox9 will induce endogenous

SoxlO expression in some ceÏÏ types (Chueng and Briscoe, 2003). While Sox8 and

SoxÏO have not been shown to be essential to sex determination they may aid in

tipping the balance towards male determination through their redundant action

(Chaboissier et al., 2004).
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Before the expression of SRY, loss-of-function mutations in a number of other

transcription factors resuit in the degeneration of gonads before sex determination,

suggesting that these proteins are required for the specification and maintenance of

the gonadal expression. M33, Envc2, Oddl, Podi, Lhx], Lhx9, Wt], and Sf1 have

been shown to play important roles both in the development of other organs and in

several stages of gonadal differentiation. Mutations in these genes cause gonadal

dysgenesis (or agenesis), and embryos develop a female phenotype regardless of

chromosomal sex.

5.2.3) Chromobox homolog 2 (M33)

Poiycomb genes in DrosophiÏa maintain the repressed state of certain

regulated genes by mediating changes in higher-order chromatin structure. Knockout

mice for M33, a mouse homologue of Polycomb, were created and many exhibited

male-to-female sex reversai though development was deiayed in both XX and XY

gonads. It was theorized that M33 caused sex reversais by inteffering with steps

upstream of Sîy (Katoh-Fukui et al., 199$).

5.2.4) Empty Spiracles 2 (Emx2)

The gene Ernpty Spiractes 2 (Emx2) is the mammaiian homologue of

Drosophila gene empty spiracles (ems). Emx2 nuii (-I-) mouse embryos appear

normai untii e 11.5, when abnormal degeneration of the Wolffian ducts commences

and the ceolomic epithelium fails to thicken where the gonadal ridge should form. By

e13.5, Mifilerian ducts also fail to develop. Finaiiy, in Emx2 mutant mice, the

lddneys, ureters, gonads and genital tracts are compietely absent, while the biadder

and adrenal glands remain (Miyamoto et al., 1997).

Emx2 is first expressed in the urogenitai system around e9.0 in the pronephric

primordium. This is thought to be the earliest stage of urogenitai differentiation from

the intermediate mesoderm. Ernx2 is subsequently expressed in the mesonephros and

the coelomic epitheiium covering the genital ridges by elO.0 Expression is seen

within the bi-potential gonad by e 11.0 and persists in both XX and XY gonads after

sex determination (Peiiegrini et al., 1997). The Emx2 promoter has binding sites for
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G1i3, TcJ and Smad proteins that are responsive to Brnp and Wnt signaling pathways

(Theil et al., 2002).

5.2.5) Odd-skipped related 1 (Oddl)

Oddl is first transcribed in the nascent intermediate mesoderm shortly after its

migration from the primitive streak at the midgastrulation stage (e7.5). Knock out

mice suggest that Oddl is essential for the differentiation of the intermediate

mesoderm. Homologous Odd] nuli mice exhibit complete agenesis of the adrenai

glands, metanephric kidneys and gonads via massive apoptosis by e 10.5 (Wang et ai,

2005). Oddl is proposed to be a regulator of several genes including Lhx], Fax2, and

Wtl (Wang et al., 2005).

5.2.6) Podocyte-Expressed 1 (Podi)

Using a lacZ reporter knocked into the Podocyte-Expressed 1

(Podl/Tcf2l/capsulin) gene, putative expression patterns have been deduced for

ell.5 and e12.5 mouse embryos. At ell.5, Podi expression is observed in both XY

and XX urogenital ridges localized primarily to the ceolomic epithelium of the gonad,

and to the boundary region between the gonad and mesonephros. This same

expression pattern was seen in e 12.5 embryos with slightiy increased expression in

the maie. Homozygote embryos, which are functional knockouts of this gene

displayed an XY sex reversai, being phenotypically female. By el$.5 testes not only

failed to descend but most were fused to the adrenals. Testes were significantly

smailer and had an irregular shape. Ovaries on the left side were aiso often fused to

the adrenals and had an irregular shape. Evidence aiso showed that Sf1 was up

regulated leading to ectopic steroidogenic ceils in both the maie and female genitai

ridges (Cui et al., 2004).

5.2.7) LIM homeobox gene Ï (Liml)

LIM homeobox gene 1 (Lim] or Lhxl) is expressed in the intermediate

mesoderm and lacZ mouse knockin models have shown expression as eariy as e7.5.

Later on Lim] expression is also detected in the fetal gonad (Nagamine et al., 1999;
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Birk et al., 2000; Bouchard et al., 2002). Expression is later restricted to the nephric

duct system of the mesonephros and arises cell-autonomously in the developing

Mûllerian ducts (Kobayashi et al., 2004; Tsang et aL, 2000). Mutations in Limi resuit

in a loss both of kidneys and gonads. It is shown that Lim] activity is essential for

tissue differentiation, possibly by activating Pax2, Hoxb6 genes and/or Wnt4

signaling activity (Tsang et al., 2000; Kobayashi et al., 2004).

5.2.8) LTM homeobox gene 9 (Lhx9)

LIM homeobox gene 9 (Lhx9) is one of the first genes present in the

urogenital ridge. Gata4 and Lhx9 are co-expressed in a small area of the coelomic

epithelium on the ventromedial aspect of the mesonephros specifically indicating the

area of the presumptive genital ridge (McCoard et al., 2001). Mice lacking Lhx9 were

found to have a female phenotype and lacked gonads as well as sex steroid

production (Birk et al., 2000; Wilhelm and Englert, 2002). One study done by

Wilhelm et al. (2002) has shown the importance of Lhx9 binding to the Sf1 promoter

for proper the regulation of this nuclear receptor.

5.2.9) Wilm’s tumor 1 (Wtl)

Wilm’s tumor 1 (WT1) is known to be present in the genital ridge before and

after sex determination in most species studied (Kent et aI., 1995). Homozygous

knockout of this gene in mice leads to an neonatal lethal phenotype as the ureteric

buds in the kidney fail to develop (Kreidberg et al., 1993). Wtl is also required for

the survival and proliferation of ceils in the genital ridge. In Wtl-/- mice the genital

ridge is present at elO.5 but fails to thicken and gonads are undetectable by e14.5

(Kreidberg et al., 1993). Also, conditional knockouts of Wtl after the time of testis

determination show Wtl may be an important regulator of the Sox genes. Male

AMH-CrefWtl-floxed mice display testicular cord formation and a normal Leydig

ceil count but display persistent Mifilerian duct syndrome and a complete lack of

Sox9 and Sox8 expression (Gao et al., 2006).

In mammals, Wtl encodes a zinc finger protein with 24 different isoforms,

and at least two of these are important in gonadogenesis. Alternative splicing of
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Wilm’ s Tumor 1 can resuit in the inclusion or exclusion of a lysine-threonine-serine

at the end of the third zinc finger, creating a +KTS isoform or a —KTS, isoform

respectively. Both isoforms of Wt] must be present, at proper levels, for gonad

formation as was shown by Hammes et al. in 2001. Knockouts of +KTS isoform

resulted in mice with Fraiser Syndrome phenotypes (defective kidneys and male sex

reversai) while knockouts of the —KTS isoform resulted in underdeveloped gonads

and small kidneys. The WT1-KTS isoforme has been shown to bind and

transactivate the S’y, Daxi and Sf1 promoters in mammals (Kim et al., 1999; Hossain

and Sanders, 2001; Wilhelm and Englert, 2002).

5.2.10) The NR5A proteins

5.2.10.1) Steroidogenic Factor 1 (Sf1)

Steroidogenic Factor 1 (Sfl/NR5AJ/AdBp4) has been described as the master

control gene of steroidogenic pathways and affects every level of the hypothalamus

pituitary-steroidogenic organ axis (reviewed by Parker and Schimmer, 1997). SF1 lias

been shown to be the key mediator of cytochrome P450 steroid hydroxylases,

Mûllerian inhibiting substance, lutenizing hormone and follicle stimulating hormone

ail of which are essential in sex determination and differentiation (reviewed by

Achermann et al., 2001; Parker and Schimmer, 1997). Within the urogenital ridge

ceils expressing Sf1 early in development will differentiate into adrenal celis, Sertoli

ceils (in the maie) and granulosa cells (in the female) (Albrecht and Eicher, 2001;

reviewed by Brennan and Capel, 2004). Sf1 may regulate survival andlor proliferation

of bi-potential gonads as null mutations of 5f] result in gonad and adrenal dysgenesis.

Sf1 is a nuclear receptor that preferentially binds to the Sf1 response element

(AAGGTCA) in the promoter region of several genes. Studies have shown

phospholipids may act as ligands for Sf1 though there is debate as to where different

phospholipids elect dïfferent responses in vivo (reviewed by Forman, 2005; Urs et al.,

2006). Protein-protein interactions can also mediate the action of this transcription

factor. Interactions between GATA4-SF1, WTÏ-SF1 and DAX1-SF1 are known to be

important during the regulation of Anti Mifilerian Hormone (Amh) (Tremblay and
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Viger, 2001; Nachtigai et aL, 1998). Aiso, -catenin may aid Sf1 in the recruitment of

other proteins when it is bound to steroid enzyme promoters (Jordan et al., 2003).

Mutations in SF1 have been reported in at least three patients, two individuals

with a 46,XY genotype, apparent sex reversai and adrenal faiiure (Achermann et ai.,

1999; Achermann et al., 2002) and a 46,XX genotype individuai with primary adrenai

faiiure and a normai female reproductive tract (Biason-Lauber and Schoenle, 2000).

SF1 nuli mice exhibit simiiar symptoms to those displayed by humans. Homozygous

knockout mice die by postnatai day 8 most likeiy due to adrenai cortical

insufficiency. These mice iack both adrenais and gonads and present with female

reproductive systems (Luo et al., 2000). Hapioinusfficiency in humans is thought to

cause gonadai agenesis but ailow normai adrenal function (Correa et al., 2004; Mallet

et al., 2004), while SF1 haipoinsufficient mice exhibit adrenal insufficiency and small

testes (Biand et ai., 2000). Studies on hapioisufficient mice and men show the

exquisite sensitivity of Sf1 dosage effects during development.

SF1 expression in the mouse is first detected at embryonic day 9 (e9) in the

urogenitai ridge. Sf1 transcription continues in the maie gonad there after. Expression

disappears between day e13.5 and e16.5 in the female and reappears after day e18.5

untii birth (&eda et al., 1994). In the maie SF1 reguiates expression of MIS within

Sertoli celis and later controls steroid production within Leydig ceiis (Parker and

Schimmer, 1997; Shen et al., 1994). SF1 also appears in adrenal cortical celis,

hypothaiamus and pituitary (Ingraham et al., 1994; Ikeda et ai., 1994). Within the

adult ovary SF1 is expressed in the granuiosa and thecai cells at the beginning of

folliculogenesis (Takayama et ai., 1995).

5.2.10.2) Liver Receptor Homolog-1 (LRH]; NR5A2)

The iiver receptor homoiog-1 (LRH]; NR5A2) and steroidogenic factor-1

(SF1; NR5AJ) are two members of the Ftz-F1 subfamiiy of nuclear receptors. Lrhl is

expressed in tissues derived from endoderm, inciuding intestine, liver and exocrine

pancreas, as well as in the ovary. In these tissues, Lrhl piays a roie in choiesteroi

metaboiism and steroid synthesis. While some data does point toward a Dxpressio
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role of these two proteins (Siriannia et al., 2002) the severe phenotype encountered

with Sf1 knockout mice indicates that Lrhl cannot compensate for the 8f] during the

sexual determination and development. In addition, preliminary studies demonstrate

that mice homozygous for a germiine mutation in Lrh] die before e7.5 therefore

conditional knock-out will be needed to understand the tme role of Lrh] in sex

determination and dofferentation (Labelle-Dumais et aL, 2006)

5.2.11) NROB family

Dax-1 and SHP are two proteins wich make up the NROB family of nuclear receptors.

These two proteins are unique as they contain a N-terminal domain consisting of

alinine/glycine-rich repeats of a novel 65-70 amino acid motif. Unlike other members

of the nuclear receptor family these two protieins contain no DNA binding domain

but instead contain a LXXL motif known as nuclear receptor boxes. Through these

nuclear receptor boxes it is though that the NROB family of proteins can bind to AF-2

domains of other nuclear receptors. The majority of information collected to date

points toward a transcriptionally repressive function for these proteins that is

achieved through these direct protein-protein interactions (reviewed by Bâvner et al.,

2005).

5.2.11.1) Dosage sensitive sex reversal-Adrenal hypoplasia critical region on the X

chromosome (DAXY/NROB 1)

Dax] is X linked in mice and humans (Zanaria et al., 1994; Swain et al., 1998)

and autosomal in marsupials (Pask et al., 1997). Much like SF1, Daxl is expressed at

every level of the hypothamalic-pituatary-adrenal-gonadal axis (HPAG) but rather

than being an activator of genes Daxi mainly acts to repress gene function. Within

the testis Daxi is strongly expressed within the Sertoli celis until e12.5 after which

expression is lost. It is later expressed within the Leydig cell population between

e13.5 to e17.5. Expression in the ovary of Daxi is seen between e 12.5 to e14.5

(&eda et al., 2001; Parker and Schimmer, 1997).

Daxi knockouts in mice and mutations in humans present with similar

phenotypes. Aplasia of the gonads and adrenals accompanied by defects in the
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pituitary and hypothalamus are described in both adrenal hypoplasia Expression

(AHC) patients and knockout mice (Parker and Schimmer, 1997). Experiments by

Meeks et al. (2003a) have shown that Dax-1 nuil mice have defects in the testis cords

due to decreases in the peritubular myoid celi population. This ultimately leads to

open and incompletely formed testis cords as well as ectopic Leydig ceils (Meeks et

al., 2003b). Celi specific Daxl rescue showed that expression is needed in both

Sertoli celis and Leydig celis as rescue of only one celi type will stiil result in

abnormal testis morphology (Jeffs et al., 2001a; Meeks et al., 2003c).

Dax-1 has been proposed to be a male differentiation inhibitor in vivo (Swain

et al., 1998), acting as a co-repressor in the female gonad by forming a heterodimer

with Sf1. This Sfl-Daxl heterodimer works by repressing downstream genes in the

testis determination cascade such as Sox9 expression, Amh production and steroid

production. Sry is theorized to change the conformation of the Sfl-Daxl heterodimer

to an inactive form therefore allowing the expression of these genes (Swain et al.,

199$; Muscatelli et al., 1994; Zanaria et al., 1994). Data supporting the role ofDAXJ

as a female determining gene is seen in XY female patients with a duplicated 160kb

region of Xp21 that contains Daxi (Bardoni et al., 1994) and over expression ofDaxl

in mice with hypoactive Sry (Swain et al., 1998). Even though some data does show

that Daxl is antagonistic to Sf1 action in vivo (Tremblay and Viger, 2001; Nachtigal

et al., 1998), knockout studies in mice indicate that Dax] is not required for normal

ovarian development (Yu et al., 1998b). On the other hand, Dax] is critical for

testicular development. As mentioned above, nuil mutation of Dax] cause severe

testicular dysgenesis (Jeffs et al., 2001a; 2001b; Meeks et al., 2003a, 2003b) also

when the Dax] nuil mouse is crossed to a Mus domesticus poschiavinus, Y pos strain

(which carnes a hypomorphic Sry allele), a complete male to female sex reversal

arises (Meeks et al., 2003a, 2003b). This evidence suggests that Dax] may actually

work slightly down stream of Sry to promote testis development.

5.2.11.2) Small Heterodimer Protein (SHP)

Another member of the NrOb family is SHP. In vitro studies have demonstrated that

SHP inertacts with approximately haif of ah mammalian nuclear receptor proteins but
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it has a preferential interaction with LRH1. Whule the LXXLL motif contained in the

SHP protein has potentially 36 different NR targets the preferential binding of LHR1

does hint towards protein specification. The majority of research into SHP has

focused on its’ foie ifl the iiver and pancrease but recently in vitro work has displayed

this proteins abiiity to form heterodimers with DAX 1. The significance of this protein

has yet to be shown in sex determination (reviewed by Bvner et al., 2005).

5.2.12) GATA Proteins

In mammals, the GATA family is composed of 6 members (GATA 1-6)

(Lowery and Atchley, 2000). Ail of these GATA factors contain two highly

conserved zinc finger domains that bind with high affinity to the DNA consensus

domain WGATAR and closely related sequences (Lowery and Atchiey, 2000;

Molkentin, 2000). Since the GATA famiiy members are involved in the development

of severai systems and organs, knockouts of GAlA 1, 2, 3, 4, and 6 result in

embryonic mortality (Lowery and Atchiey, 2000; Ohneda and Yamamoto, 2002;

Cantor and Orkin, 2002; Patient and McGhee, 2002; Moikentin, 2000; Moikentin et

aL, 2000; Morrisey et ai; 1996). Within the developing gonad Gata 1, 2, 4, 5 and 6

have been characterized to different degrees (Robert et al., 2002). 0f these five

GATA proteins GATA4 is known to play a major role in male sex determination.

Gatal lias been described in tlie deveioping gonad of the mouse but flot tlie

human. linmunohistochemical anaiysis shows GATA1 expression in Sertoli cells

between e13 to e14.5 (Ito et al., 1993). Due to the iocaiization of GATA-1 to the

cytoplasm it is not thought to be active as a transcription factor during male

gonadogenesis. GATA2 has been detected in the germ cells of the mouse ovary

between e 11.5 and e 14.5 and may play a role in female germ celi differentiation

(Siggers et al., 2002). GATA5 is expressed within the genital ridge as weil as the

epithelial ceiis iining the urogenital sinus. Whiie knockout GATA5 mice do survive

and are fertile, tliey do show abnormalities including malpositioning of the urogenitai

sinus, vagina and uretlira but display no plienotype within males (Moikentin et al.,

2000). Gata6 is found within the Sertoli cells at e19 in mice (Robert et al., 2002;

Ketola et ai., 1999). In the human fetus GATA6 is expressed in Sertoii and Leydig
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celis between weeks 16 to 40 of development (Ketola et al., 2003). Littie functional

data is known about GATA 6 within these celis.

5.2.12.1) GATA4

Gata4 testicular localization has been studied in several species including

mice and humans. In the mouse, Gata4 is first observed in the bi-potential gonad by

elO.5 and persists in both Sertoli and Leydig ceils throughout development and into

adulthood (Viger et al., 1998; Anttonen et al., 2002; Ketola et al., 2002; Ketola et al.,

1999). Immunohistochemical studies of mouse XX gonads show GATA4 expressed

at el 1.5 (Viger et al., 199$) but studies disagree as to whether GATA4 is then down

regulated at e13.5-14.5 or persists thereafter (Anttonen et al., 2002). In humans

GATA4 is found in the 12-week-old fetal testis, with peak expression during Sertoli

celi differentiation, and is continuously expressed in both the Sertoli and Leydig celis

throughout adulthood (Ketola et aL, 2000). GATA4 expression in the ovary is not as

clear. Within humans GATA4 is observed in fetal granulosa cells between 13 and 33

weeks of gestation (Vaskivou et al., 2001).

5.2.12.2) GATA4 Function

The role of Gata4 in sex determination has flot been studied directly because

embryos with nuil mutations of Gata4 die between e7.0 and e9.5 due to cardiac

defects (Moikentin et al., 1997). Ceil culture studies as well as in sitico searches have

revealed that GATA4 is potentially important in steroidogenesis. WGATAR

sequences are found in the promoters of StAR, CypliA, Cypl7, Cyp]9 and HSD3B2

that respond to GATA factors in vitro (reviewed by Viger et al., 2005). Gata4 is also

thought to up-regulate Dmrt], a gene crucial to male fertility (Lei and Heickert,

2004).

5.2.12.3) GATA4 and Friend of GATA (FOG)

Friend of GATA (FOG) 1 and FOG2 proteins are multitype zinc finger

proteins that interact with the N- terminal zinc finger domains of GATA factors to

modify their function depending on the cellular environment (Fox et al., 1998;
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Holmes et al., 1999). In vitro, both FOGÏ and 2 are expressed within primary Sertoli

ceil unes prepared from neonate rats (Robert et al., 2002) and expression of FOG2 is

thought to repress GATAISF1 synergism in gonadal celis. In vivo, Gata4 and Fog2

are expressed in somatic celis of the genital ridge around ell.5 (Heikinheimo et al.,

1997; Viger et al., 1998; Ketola et al., 2002; Tevosian et al., 2002). Two separate

mouse unes show the importance of FOG-2-GATA4 interaction to male

development. Mice nul! for Fog2 or containing a GATA-4 knock-in aliele (V217G)

that abolishes GATA-4/FOG-2 interaction, iack testis cords. Both unes show a

marked decrease in L’y expression after ell.5. As weli, Sox9, Amh and Dhh are

absent and Wnt4 is up reguiated in the XY gonad (Tevosian et al., 2002).

5.2.13) Forkhead Transcription Factor Foxl2 (Foxi2)

Foxl2 is expressed in an ovary specific manner across several species unes at

the time of sexuai differentiation suggesting an important role in ovarian development

(Loffler et al., 2003). The blepharophimosis-ptosis-epicanthus-inversus-syndrome

(BPES) in human with mutations in the Foxl2 gene suggests a role in germ celi

survival, which are important in female sex determination. Knockout studies in mice

showed that the interruption of Foxl2 does not initially effect ovary formation but

does inhibit differentiation of granulosa and theca ceils later on (Uda et al., 2004).

Recentiy, Ottoienghi et al. (2005) found that FoxÏ2 expression in granulosa celis is

required to repress the testis determination pathway genes in the postnatal ovary.

Though sex reversai was flot observed in knockout mice this theory was supported by

the observed activation of testis-determining genes such as Sox9, Wtl, Gata4, Dhh,

Sf1, Dmrt], Fgf9 and Fgfr2; ail were unregulated in FoxÏ2—/— ovaries postnatally

(Ottolenghi et al., 2005). Also the discovery of Pfoxic transcripts created by the bi

directional activation of the Foxl2 promoter has lead to the hypothesis of a self

regulating system of Foxt2 at the level of mRNA (Pannetier et al., 2005).

5.2.14) Aristalles-Related Homeobox Gene (ARX)

Mutations within the homeobox domain of Arx have demonstrated a role in

testis development of both mice and men. Mutations within this gene are linked to
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several forms of X-linked mental retardation including X-linked lissencephaly with

abnormal genitalia in humans. Humans and mice with Arx mutations have testis of

smaller total size but larger seminipherous tubules and a small number of Leydig

cells. Arx expression is restricted to fibroblast celis, endothelial celis and peritubular

myoid cells but mutations of this gene effect the development of fetal Leydig ceils.

This suggests a role for this gene activating signaling molecules these celi types that

are important to fetal Leydig cell development (Kitamura et al., 2002). Within this

study severai putative targets for Arx in other tissues were identified including target

genes such as Lhx9 and Wnt8b (Kitamura et al., 2002).

5.3) Extra-cellular signais

5.3.1) Retinoic acid (RA)

It is widely believed that fetal germ ceils are intrinsically programmed to enter

meiosis and initiate oogenesis, unless specifically prevented from doing so by a

putative “meiosis-inhibiting factor”. Recently data has shown that retinoic acid (RA),

the active form of vitamin A, initiates meiosis in germ cells and the “meiosis

inhibiting factor” in Sertoli ceils may be the gene Cyp26b] (Bowles et aï., 2006;

Vernet et al., 2006). RA concentrations, controlled by a balance of synthesis and

degradation, are known to regulate the development of many organ systems (Marietaz

et al., 2006). Cyp26b] encodes a P450 cytochrome enzyme that degrades RA (White

et al., 2000). Micro array analysis of 8f] expressing celis at the time of sex

determination showed that Cyp26b] is initially expressed in gonads of both sexes, but

became male-specific by e 12.5 (Beverdam and Koopman, 2006) In situ hybridization

revealed that Cyp26b] is expressed in the testis cords at e12.5 and e13.5 (Bowles et

al., 2006). Bowles et ai. (2006) found that when cultured on a layer of RA-sensitive

tacZ reporter cells, mesonephroi from ell.5 and e12.5 embryos stimulated abundant

lacZ gene activity. Furthermore, Aldhla2, a major enzyme regulating RA synthesis,

is robustly expressed in the mesonephoroi of both sexes during the time of sex

determination (Bowles et al., 2006). In order to test the theory that RA induces

meiosis, fetal mouse testes were cultured in all-trans RA. All-trans RA is an isoform
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of RA that is less easily degraded by P450 cytochrome enzymes. This culture

environment induced the pre-meiotic marker Stra8 and expression of $cp3 and Dmc],

as measured by quantitative RT-PCR. This was recapitulated when testes were

cultured in the cytochrome P450 inhibitor ketoconazole and by in vivo analysis of

Cyp26bl-null mouse embryos. Conversely, culturing of gonads in the RAR

antagonist AGN 193 109 arrested meiosis in both sexes (Bowies et al., 2006).

5.3.2) Prostaglandin (PDG2)

Stimulation of ovarian cells with PDG2 can induce Sox9 and Amh production

(Malld et al., 2005; Wilhelm et al., 2005). It was also shown that when gonad and

mesonephric cell aggregates were treated with BWA868C, an inhibitor of the PDG2

receptor DP, Sertoli cell recruitment was completely abolished (Wilhelm et al., 2005).

Conversely, when BWA868C treated Sertoli cells were treated with increasing

concentrations of PDG2 the production of Sox9 and Amh were increased in a

complimentary fashion indicating a positive feedback mechanism (Wilhelm et al.,

2005; Adams and McLaren, 2002). Evidence from Palmer and Burgoyne (1991)

would suggest that this paracrine system must achieve a threshold number of celis

producing PDG2 since chimeric gonads composed of less than 30% XY cells will

develop as ovaries.

5.3.3) Desert Hedgehog (DHH)

Desert hedgehog (Dhh) expression is initiated in Sertoli ceil precursors shortly

after the activation of Sry (Bitgood et al., 1996) Ptch], the receptor for Dhh, is

expressed around the mesonephric tubules at the anterior end of the mesonephros. By

e 12.0, interstitial cells near the anterior end of the gonad begin to express Ptchl under

the positive regulation of Dliii. Expression of Ptch] gradually extends toward both

anterior and posterior ends of the gonad (Yao et al., 2002). Dhh signaling is known to

be necessary for fetal Leydig ce!! development and may be regulated by $îy (Yao et

al., 2002). Based on in vitro experiments using cyclopamine to block hedgehog

signals, Yao et al. (2002) concluded that Dhh/Ftchl signaling specifies Leydig cell

fate by early up-regulation of Sf1. This was theorized because Leydig cel! markers
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were completely missing from the treated group but there was no recorded difference

in proliferation or apoptosis between celi populations.

5.3.4) Wingless-Type MMTV Integration Site Family, Member 4 (WNT4)

Genes of the Wnt family play roles in celi proliferation, migration and tissue

patterning through, at least, two different pathways. The best-described pathway is

the “canonical” pathway in which Wnts bind to the Frizzled receptor family and a

low-density lipoprotein family receptor. The binding of Wnts to these receptors

disrupts a [3 catenin degradation complex consisting of glycogen synthase kinase 3f3,

casein kinase-2, adenomatous polyposis cou and axin. This disruption results in

increased levels of f3 catenin in the cell eventuaily resulting in f3 catenin entering the

nucleus where it interacts with DNA binding molecules such as the T ccli

factor/lymphocyte enhancer factor family (reviewed by Logan and Nusse, 2004). The

“noncanonical” pathway works through the Frizzled receptor family and certain

thyrosine kinase receptors to initate the release of internai calcium stores. This

calcium signaling system lias several effects including the antagonism of the

canonical Wnt pathway (reviewed by Veeman et al., 2003). One of the most well

characterized Wnts in the sex determination pathway is WNT4.

Leydig and adrenocortical cells are thought to be derived from an Sf1 positive

celi population on the cranial aspect of the ceolomic epithelium. Wnt4 is thought to

act early on to separate these two ccli lineages. Wnt4 null mice display altered adrenai

cortex function and exhibit ectopic adrenal cells on both XX and XY gonads

(Heikldla et al., 2002; Jeays-Ward et ai., 2003). Furthermore Wnt4 nuil female mice

have no Mifilerian ducts but retain the Wolffian ducts (Vainio et al., 1999). Improper

expression of WNT4 in humans and mice lias been linked to problems in testis

differentiation (Jeay-Ward et al., 2003; Jordan et al., 2001) Over expression of Wnt4

in mice will cause a reduction in StAR protein expression leading to a reduction of

steroid and androgen production, as weil as a marked decrease in germ celis and a

disorganized vasculature of the testis (Jordan et al., 2003). Within humans, one XY

female with a duplication of the Wnt4 locus lias been reported (Jordan et al., 2001).
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Wnt4 is known to be an upstream regulator of Dax-] and Fst in the female

determination pathway (Mizusald et al., 2003). Wnt4 or Fst may act as repressors of

the male pathway, as the coelomic vessel, a testis-specific vessel, appear on the

surface of the Wnt4 or Fst nuil ovaries (Jeays-Ward et al., 2003; Yao et al., 2004).

5.3.4.2) FGF/WNT balance

Fgf9 and Wnt4 are known to be important in sex determination. One model

describes Wnt4 and Fgf9 genes acting antagonistically to each other (Kim et al.,

2006). Up regulation of Fgf9 in relation to Wnt4 drives male differentiation by

increasing the expression of Sox9, while higher relative expression of Wnt4 is

thought to block Sox9 and Fgf9 production. The loss of Fgf9 does result in a female

phenotype and down regulation of Sox9 but the loss of Wnt4 resuits in only a slight

peak of Sox9 expression in XX gonads that is quicldy abolished and does flot resuit in

a complete sex reversal (Kim et al., 2006).

5.3.5) Fibroblast Gowth factor (FGF)

The FibrobÏast growth factor (Fgf) family is composed of 22 members.

Signaling is mediated through membrane-spanning tyrosine kinase receptors encoded

by four different genes, each of which can generate several different isoforms. Fgfr

signaling is similar among the different Fgfreceptor subtypes (Powers et al., 2000).

Following ligand binding and dimerization, Fgfr activates several major signaling

pathways. These pathways include the ras—mitogen activated protein (MAP) kinase

(Kouhara et al., 1997), phosphoinositol 3-kinase (PI3K), and phospholipase C (PLC)

pathways (Burgess et aL, 1990; Cross et al., 2000) which influence cell growth, cell

mobility / survival, and cell differentiation, respectiveÏy (Wennstrom et al., 1994; Yao

and Cooper, 1995; Alimandi et al., 1997).

Fgt9 transcripts are detected within both XY and XX gonads at el 1.5, as well

as within the mesonephric duct and tubules of the adjacent mesonephroi of both

sexes, indicating that the sex-specific phenotype is flot determined by sex-specific

expression of FgJ9 at this stage. Later in gonad development (e 12.5) Fgt9 expression

is down regulated in the XX gonad and restricted to the testis cords of the XY gonad
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(Schmahl et al., 2004). At el 1.5 immunohistochemical analysis shows widespread

expression of Fgfrl, Fgfr3 and Fgfr4 in germ celis and somatic ceils throughout both

XY and XX gonads. Fgfr2 is expressed wealdy at e 11.0 and is strongly expressed at

e 11.2 in both XX and XY gonads. After el 1.2 sexually dimorphic nuclear

localization of Fgfr2 occurred in the male but not in the female gonad; this

internalization coincides with an arrest of ceil proliferation and migration away from

the coelomic epithelium of the Sf1 expressing celi une (Schmahl et al., 2004). Fgfr3

was shown to display a similar nuclear localization to Fgfr2 at e 14.5 in Sertoli ceils

(the only stage investigated) (Willerton et al., 2004). As a final note, it has recently

been shown that migratory germ cells express Fgfrl-IIIc and Fgfr2-IIIb (Takeuchi et

al., 2005).

XY mice with homozygous deletions FgJ9 fail to develop testis cord

structures. As a consequence, most Fgf9-I- XY mice develop as sex-reversed females

(Colvin et al., 2001). Supporting celis in male mice with FgJ9 knockouts are reduced

in number and rest in the coelomic epithelium much like an ovary (Colvin et al.,

2001; Schmahl et al., 2004). Furthermore, Fgf9 null mice fail to express Sertoli ceil

markers such as Sox9 and Amh but instead exhibit markers of ovarian development

including Pst and Bmp2 (Colvin et al., 2001; Schmahl et al., 2004; DiNapoli et al.,

2006).

As well as being a proliferation factor, Fgf9, Fg/2 and several fgf receptors

work together to promote testis cord organization. Fgf2 was found to be a peritubular

myoid cell survival and mitogenic factor (Hoeben et al. 1999; Colvin et al., 2001; El

Ramy et al., 2005; Willerton et al., 2004). When Sertoli cells were incubated with

FGF9 in vitro they displayed a differentiated epithelial phenotype, with celis in cord

like aggregations (Willerton et al., 2004). El Ramy et al., (2005) hypothesized that

Fgf2 and FgJP mediate mesenchymal—epithelial interactions between peritubular

myoïd ceils and Sertoli celis by selectiveÏy regulating the expression pattern of

specific proteinases and inhibitors that modify the basement membrane around the

testis cords. Fgf9 can also induce migration of mesonephric cells into the ovary

(Colvin et al., 2001).



40

FGF9 lias recently been identified as essential in male germ ceil survival. Fgf9

-I- mice are seen to have increased germ ceÏÏ death within the male gonad whule

female gonads are unaffected (DiNapoli et al., 2006). The effect of Fgf9-/- on Sertoli

ceil function and proliferation was rescued in organ culture supplemented with fetal

bovine serum but most male germ cells were lost. As previously mentioned Fgf9-/-

XY genital ridges express ovarian marker genes and by e14.5, the remaining germ

celis in these XY genital ridges enter meiosis synchronously with ovarian germ celis

(DiNapoli et aL, 2006). The author hypothesizes that these germ cells have escaped or

did flot develop a dependence on fgf9.

Fgf9 can bind and activate the four major FGFRs, although it has greatest

specificity for the FGFR1c, FGFR2c, FGFR3b and FGFR3c isoforms (Ornitz et al.,

1996). Null mutations in Fgfrl are lethal between e6.5 and e9.5, before gonad

formation (Deng et aL, 1994) but, chimeric mice indicate that the testis develops

normally even with 90% Fgfr]-/- celis (Deng et al., 1997). As well, mice with null

mutations for either Fgfr3 or Fgfr4 are at least partially fertile (Colvin et al., 1996;

Weinstein et al., 1998). Homozygous null mutations for Fgfr2 resuit in embryonic

lethality at elO.5 (Arman et al., 1999), such that the reproductive function of this

receptor lias not been assessed. The redundancy between these receptors may explain

why no single Fgf receptor lias yet been shown to be essential in sex determination.

5.3.6) Platelet Derived Growth Factors (PDGF)

Actions of platelet derïved growth factors (Pdgf) are mediated through MAP

kinase, PI3K, and PLC-y pathways (Wennstrom et al., 1994; Lubinus et al. 1994; Yao

and Cooper, 1995; Alimandi et al., 1997). Pdgfand its’ x and F receptor subunits are

expressed after el 1.5 to at least e 13.5 in the genital ridge with dimorphic sexual

expression of PdgfrŒ after e 12.5 in the male (Ricci et al., 2004; Brennan et al., 2003).

PdgfrŒ is expressed in the mesonephric mesenchyme and the coelomic epithelium of

both sexes at ell.5 and is up regulated in the interstitial cells of the testis by e12.5

(Brennan et al., 2003).
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Pdgfs have also been implicated in the migration of celis from the

mesonephrose into the testicle (Uzumcu et al. 2002a; Puglianiello et al. 2004; Ricci et

al. 2004; Smith et al., 2005). The population of interstitial ceils in Pdgfr-/- mice is

reduced by -6O% compared with wild-type levels (Brennan et al., 2003). Uzumcu et

al. (2002a) showed that inhibition of Pdgf actions after el 1.5 does not inhibit cord

formation but does alter normal cord development and morphology. Furthermore, the

addition of Pdgf-aa, Pdgf-bb, or Pdgf-ab in vitro will recruit cells into the XX gonad.

Expression of PdgfrŒ was also up regulated in treated XX gonads, but Pdgftreatment

did not up-regulate other male specific markers such as Sox9 or 5cc (Brennan et al.,

2003). In vitro experiments show that Pdgf must work with other factors.

Pdgf isoforms seem to have specific functions in the testis. Pdgf-bb will

reorganize disassociated testicular ceils into large ceil aggregates but not into

testicular cords (Ricci et al., 2004). Also, PdgfrŒ expression was important in the

gonad and flot the migrating celis suggesting Pdgf activates a secondary migratory

signal (Brennan et al., 2003). Pdgfra is also known to play a role in Leydig cell

differentiation. Brennan et al. showed that in Pdgfr-/- XY mouse gonads Leydig cell

markers express at low levels, indicating that fetal Leydig ceil differentiation was

severely impaired. However, 5cc expression is unaltered in adrenals of Pdgfr-/

embryos indicating a separate signal for adrenal cell differentiation. Furthermore, the

expression of Patched 1 (Ptch]) was reduced in Pdgfr-/- cells, even though the ligand

Desert Hedgehog (Dhh) was expressed normally, indicating Ptch] is downstream of

Pdgf-a.

5.3.7) Neurotropins (NT)

In non-neuronal cells, neurotropins are known to induce both PI3K and MAP

kinase signaling pathways leading to cell migration (Sawada et al., 2000).

Neurotropins act through the Trk family of receptor kinases to mediate celi survival

and growth (Kaplan and Miller, 2000; Patapoutian and Reichardt, 2001). The specific

Trk receptor for nerve growth factor3 (Nt3) is TrkC (Friedman and Greene, 1999).

Nt3 and TrkC are expressed in embryonic Sertoli cells and migrating mesonephric
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ceils, respectively, during the time of cord formation (Cupp et al., 2000; Levine et al.,

2000). Cupp et al. (2000; 2003) demonstrated that when rat e13 gonads were cultured

in the presence of a specific TrkC inhibitor (AG$79), Sertoli celi number is flot

affected but Sox9 expression is reduced and testis cords fail to develop. The proposed

function of Nt3 in the genital ridge is a peritubular myoid cell migration signal and

interruption of this signal effects testicular cord formation because peritubular myoid

celis fail to enter the gonad. Tt was also shown that Nts induce mesonephric celi

migration into the ovary (Cupp et al., 2003).

5.3.8) Hepatocyte growth factor (HGF)

The actions of Hgf are through its specific tyrosine kinase receptor c-met

(Bottaro et al., 1991). Hgf influences celi migration, cell proliferation, and

morphogenesis (Stuart et al., 2000). The Hgf receptor, c-met, is present in the

interstitial compartment and in the peritubular myoid celis of the embryonic mouse

testis at the time of the cord formation (Ricci et al., 1999, 2002). HGF is proposed to

play a role in testis morphogenesis by directing celi migration from the mesonephros

as well as regulating polarized laminin deposition around the testis cords (Ricci et al

2002).

5.3.9) Insulin receptor family

Insulin receptor (Ii), Tnsulin growth factor 1 receptor (Igf1) and Insulin related

receptor (frr) are essential for the proper growth and development in mice. Knockouts

of fr and Igflr, separately or in combination, are of below average size and die shortly

after birth due to ketoacidosis or respiratory failure (Accili et al., 1996; Joshi et al.,

1996; Liu et al., 1996; Louvi et al., 1997). frr is the sole receptor that has no abnormal

phenotype when globally knocked out (Kitamura et al., 2001). While most studies on

these receptors have been used in diabetes research, the insulin receptor family is also

needed for proper testis development as they promote early growth, testis cord

organization and testes decent. Whereas some 1r Igflr mutant embryos had partially

descended gonads, mutant male mice lacking Ir, Irr, Igflr, Ir and Irr, or Igflr and Irr

appeared to develop normally with respect to the male reproductive system. The
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author attributed the lack of phenotype in the gonads to a possible functional

redundancy. When ah of these receptors (Ir/Irr/Igfr) are mutated there were a reduced

number of celis and reduced $ry and Sox9 expression much hike that seen in Sox9

knockouts. These knockout mice display expression of Wnt4 and FigŒ as well as

several other ovarian marker genes in the XY gonad at e 12.5 (Nef et al., 2003).

One of the targets of insulin signaling is the activation of Akt (pro-kinase B).

In response to insulin, Akt interacts with Smad2 and 3, DNA binding proteins

important in TGF-13 signaling. Akt inhibits Smad3 activation by TGF-f3 in order to

decrease TGF-13/Smad3 mediated transcription and TGF-F3-induced apoptosis

(Conery et al., 2004; Remy et al., 2004). While Akt-Smad interactions have flot been

investigated with respect to sex determination an indirect association between Akt

activation and sex determination has been shown.

5.3.10) MAPK and PI3K transduction pathways

A signal transduction pathway common to ail the above growth factors (Pdgfs,

Fgf, Hgfs and Nts) is PI3K (Uzumcu et al., 2002b). Puglianielllo et al. (2004), using

a MAFK inhibitor (U0126) and a PI3K inhibitor (Ly294002) in vitro, showed that

mesonephric celi motihity and growth induced by exposure to Pdgf-bb involve MAP

kinase and PI3K pathways. Uzumcu et al. (2002b) showed the PI3K inhibitor

LY294002 acted by dramatically reducing the phosphoryhation of Akt, which in turn

reduced celi migration and blocked cord formation during early stages of testis

development but not after the 19-20 tau somite stage was reached. On the other hand,

this paper also showed that inhibition of the MAP kinase-signaling pathway with

PD98059 had no significant effect on cord formation or cell migration after e13.5.

However the researches also point out that LY294002 inhibits casein kinase-2, a

participant in Wnt signaling pathways, which may leave this study open to further

interpretation (Davies et al., 2000; Song et al. 2000).
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5.3.11) Anti-Mûllerian Hormone (AMH)

Anti-Mtillerian Hormone (AMH), also known as Mùllerian Inhibiting

Substance (MIS), is a glycoprotein belonging to the TGF super family of proteins.

In the mouse, Amh is produced in Sertoli ceils around e12.5 and expression is

maintained until birth (Mtinsterberg and Loveli-Badge, 1991; Shen et al., 1994).

AMH is thought to bind and act specifically through AMHRII and further stabilized

by AMHRI (BMPRI) (Mishna et al., 1996). Expression of AMHRII is found within

the mesenchymal celi sunounding the male Mifilerian ducts, Sertoli and granulosa

cells (in embryos and aduits) as well as aduit Leydig cell (Mishina et al., 1996;

Racine et al., 1998).

When both AMH and its receptors are expressed they regulate the regression

of the Mùllerian ducts but when mutated or absent cause persistent Mtlllerian duct

syndrome in men (Behringer et al., 1994; Josso et al., 1997; Jamin et al., 2002). Also

studies have shown AMH is an important regulator of aduit Leydig cell proliferation.

Strong over expression of AMH in transgenic mice leads to incomplete fetal

virilization and decreased serum testosterone in the adult (Behringer et al., 1990).

Conversely, AMH-deficient mice exhibit Leydig celi hyperplasia in adulthood

(Mishina et aL, 1996).

Sertoli celis express AMH by e12.5 through a well-defined process (reviewed

by Viger et al., 2005). A combination of genes including Sf1, Sox9 or Sox8, Gata4,

Fog2, Wtl and Dax-] are important for correct spatiotemporal expression of ArnIz.

Within the first 1$Obp of the Amh promoter the binding sites for Sox9, 8f] and Gata4

have been shown to be essential (Arango et al., 1999; Giuili et al., 1997; de Santa

Barbara et al., 1998; Viger et al., 1998). In addition to showing that 8f] and Sox9 (or

Sox8) can activate the Amh promoter singly, several studied have shown the

importance of synergism between 5f] and Sox9 and Gata4 in proper regulation

through time and space (Schepers et al., 2003; de Santa Barbara et al., 1998;

Tremblay and Viger, 2003).

Two studies have found that another function of Amh is the induction of

mesonepliric ceil migration and testis cord formation (Behringer et al., 1990; Ross et
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al., 2003). In 1990, Behringer et al. described the formation of testis cord like

structures in rat ovaries cultured in the presence of MIS. This process was further

investigated 13 years later by Ross et al. (2003) who described the development of a

male-specific vascular pattem in cultures of XX gonads when treated with Amh.

Studies have demonstrated that whule AMH is the only ligand accepted by AMHRII,

AMH is not the only TGFf3 family member to signal through the AMH type I

receptor. Many of the TGFf3 proteins including bone morphogenic proteins and

activins are able to induce mesonephric celi migration and ectopic coelomic vessel

formation in the XX gonad in culture (Ross et al., 2003; Yao et al., 2006).

5.3.12) Inhibin f3 (INHBb) and Follistatin (FST)

FST binds to certain members of the TGFf3 family of proteins and prevents

them from activating their receptors (Chang et al., 2002). FST lias the highest affinity

for activins, and the inhibitory effect of FST on activins have been established in

vitro and in vivo (reviewed by Welt et al., 2002). FST is expressed in the XX gonad

starting at ell.5 (Menke and Page, 2002; Yao et al., 2004). Similar to Wnt4 -I- mice,

FST-/- mice display ectopic expression of the coelomic vessel (Yao et al., 2004;

Jeays-Ward et al., 2003). Fst and Wnt4 are thought to inhibit coelomic vesse!

formation by inhibiting activin B (the homodimer product of Inhb) or repressing

inhibin beta mRNA expression respectively. In Wnt4 and FST null mice expression

of Inhibin f3 is thought to facilitate coelomic vessel formation because Inhbb-/-,

Wnt4-/- and Inhbb-/-, FST-/- XX gonads develop without a coelomic vessel (Yao et

al., 2006). Over expression of FST in transgenic mice causes hypogonadism. Within

adult testes of these transgenic lines there was some degree of Leydig cell

hyperplasia, seminiferous tubular degeneration and an arrest of spermatogenesis

leading to infertility (Guo et al., 199$).

5.4.1) Activation ofSRY

From elO.5 to e12.5 the XX and XY genital ridges are morphologically

indistinguishable from each other in the mouse though, in the male, decisions have
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already been made. In XY mouse embryos, the Y-linked gene Siy is transiently

activated around elO.0 in the Sf1 celi lineage (Sekido et al., 2004; Wilhelm et al.,

2005; Albrecht and Eicher, 2001; Hacker et al., 1995; Bullejos and Koopman, 2001).

Studies suggest that both the XX and XY genital ridges contain the necessary factors

to activate $iy, though there is some debate as to what factors are invoived (Koopman

et aL, 1991; Albrecht and Eicher, 2001; Danean et al., 2002). It is thought that Sf1

positively regulates SRY transcription (de Santa Barbara et al., 2001; Pilon et al.,

2003). It is aiso reported that both Wt] and Lhx9 will trans-activate Sry (Hossain and

Saunders, 2001; Shimamura et ai., 1997; Hammes et al., 2001).

As mentioned eariier, SRY up-reguïation is augmented by Gata4 and Friend

of-GATA-2 (Fog2). Gata4 and Fog2 are expressed in somatic ceils of the genital

ridge around e 11.5 and further increase the expression leveis of Sîy (Heikinheimo et

ai., 1997; Viger et al., 1998; Ketola et ai., 2000; Tevosian et al., 2002).

Interestingly, Sox9 is shown to both up regulated and down regulate Sry

(Daneau et ai., 2002; Charboisser et al 2004). In vitro studies using the pig SRY

promoter have shown that the pig 50X9 cDNA can activate this promoter 9 fold and

that when a putative Sox9 binding site (-205bp upstream) is mutated reporter gene

activation is reduced by 70% (Daneau et al., 2002). On the other hand, conditional

Sox9 knockout mice show an increased expression of S,y when compared to wiÏdtype

mice (Charboisser et al 2004).

5.4.2) Importin F3 and Caimoduiïn

SRY and $0X9 each contain two nuclear iocalization signais (NLS) that enable

binding to the nucleocytoplasmic transport proteins importin F3 and calmodulin.

Mutations within importin F3 or calmodulin, or the mutation of the Sox9 or Sry NL$,

have been impiicated in XY sex reversai in humans (Harley et ai., 2003; $im et al.,

2005). Acetyiationldeacetyiation of the NL$ by histone acetyltransferase p300 and

HDAC3, respectiveiy, are essential for the function of Sry and $ox9 (Thevenet et ai.,

2004; Furumatsu et al., 2005). In vitro studies have shown that the acetylation of the

C-terminal NLS is essentiai for importin F3 binding and nuclear iocaiization of Sry
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and $ox9 while deacetylation by HDAC3 causes localization of these proteins to the

cytoplasm (Malld et al., 2005, Forwood et al., 2001). Another nuclear import

molecule, calmodulin, dispiays a Ca2 dependent binding to SRY and SOX proteins

that seem to be essential for their proper functioning (Harley et aL, 1996). Both the

mutation of the N-terminus NLS or the inhibition of Ca2 binding by calmodulin is

known to interrupt this process (Sim et ai., 2005; Argentaro et al., 2003). Studies of

XY femaies show that both of these nuclear import processes must function properly

in order for male sex determination to occur (Sim et al., 2005).

5.4.3) Prostagiandin, Sry, Sox9, Importin 13 and Calmodulin Work Together

Recently, a model for celi-ceil prostaglandin D2 (PGD2) signaling mediated

up-regulation of Sox9 in pre-Sertoli ceils lias been proposed. This theory involves Sry

or Sox9 up-regulating PGD2 synthesis and secretion. Working through its DP

receptor PDG2 in turn up-reguiates Sox9 in an autocrine and paracrine manner

(Wilhelm et ai., 2005; Maiki et al., 2005). The PGD2 signaling pathway stimulates

adenylcyclase-coupied DPi receptor. The activation of cAMP-dependent protein

kinase A (PKA) induces pliosphorylation of Sox9 at two points on the protein. This

phosphorylation enhances binding of Sox9 to the nucleocytopiasmic transport protein

importin f3, a protein that has been impiicated in sex reversai in humans (Harley et al.,

2003). Binding of Sox9 to importin 13 brings Sox9 into the nucieus and therefore

doser to its binding targets (Maiki et ai., 2005). Thougli the pathway is flot as well

defined there is some evidence that caimoduiin may act in a similar manner

(Argentaro et al., 2003; Sim et al., 2005).



6) MATERJALS AND METHODS

6.1) Mouse Line, Ceil Collection, Celi Purification

The cloning, generation and characterization of tlie HybSRYp-RFP transgenic

mouse lias been previousiy described (Boyer et al., 2006). Mice were housed and

liandled according to national and international standards. The institution Ethics

Committee on use of animals in research approved the procedures used involving

animais. Female mice were superovulated using standard protocols of gonadotropin

injections (Nogy et al., 2003). Two days before mating female mice were injected

with 0.lml of PMSG, this was followed by a further injection of HCG on the day in

which males were placed in the same cage as the females. The following day males

were removed and females were cliecked for tlie presence of vaginal plugs. Noon on

tlie first day of vaginal plug detection was designated as embryonic day 0.5 (eO.5)

wlien staging embryonic development. Embryos were harvested at e12.0 and tlie

genital ridges were dissected. Genital ridges were sexed via expression of RFP, as

described previously (Boyer et al., 2006), and mesonephori were also removed. Male

and female genital ridges were pooled separately and digested for 30 min at 37°C in

M2 media (Sigma, St. Louis, MO) supplemented witli collagenase (50U mf’)

(Invitrogen, Canadian Life Technologies, Burlington, ON, Canada) and dispase (2.4U

mf’) (Invitrogen). For the male genital ridge, fluorescent and non fluorescent cells

were separated and collected via FACs (FACSTAR-Plus; FACs services, WCM,

Montréal, Canada). In order to insure samples were treated similarly female genital

ridges were also subjected to FACs procedures.

6.2) Generation of Micro Array List

25 000 fluorescent pre-Sertoli ceils were collected and compared against 25

000 ovarian cells from tlie same transgenic une. Total RNA was isolated from both

samples using the Rneasy Microldt (Quiagen, Mississaguga, ON, Canada) according

to tlie manufacturer’s instructions. A two cycle RT-PCR amplification of about 10 jig

RNA was performed per sample prior to probe synthesis in order to achieve sufficient

amounts of the probe. Probe hybridization on microarrays was performed at the
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Génome Québec Innovation Center at McGill University using GeneChip® Mouse

Genome 430 2.0 arrays (Affymetrix). This experiment in its entirety was repeated in

quadruplet. The methods used to further analyze this list and the criteria used to select

relevant genes for further analysis by in situ hybridization is discussed within the

article.

6.3) Generation of Riboprobes

Plasmids containing cDNA of the relevant candidate genes were created by

RT-PCR of mRNA extracted from e12.0 male genital ridges. RT-PCR reaction was

subjected to a hemi-nested PCR to purify the selected gene; the list of primers used is

presented in the appendix. The PCR product was ligated into a pGemt vector

(Promega, Madison, WI) and confirmed by sequence analysis. Sequence reactions

were preformed on cDNA via the dideoxy sequencing method (Big Dye Terminator

3.1; ABI Prism, Applied BioSystem, PE, Branchburg, NJ) using oligos designed to

target the SP6 or T7 domain of the pGEMT plasmid. Sequence reactions were

analyzed on an ABI Prism 310 sequencer (Applied BioSystems) and nucleic acid

sequences were analyzed by BLAST (Basic Local Alignment Search Tool; NCBI)

against the mouse genome. A DNA sequence was considered confirmed when

homology was greater than 95%. After confirmation, plasmids were linearized using

restriction enzymes and then used as templates to generate digoxigenin-labeled

antisense riboprobes. Riboprobes were made using a DIG RNA Labeling Kit

(SP6/T7) according to the manufacturer’s instructions (Roche Applied Science,

Penzbreg, Germany).

6.4) Whole mount in situ Hybridization (WISH)

Whole mount in situ hybridization (WISH) was carried out as described

below; unless otherwise mentioned all procedures were performed at room

temperature. A list of solutions can be found in the SuppÏementary Data. Expression

profiles were analyzed at el 1.5, e12.5 and e13.5 using at least four pairs of embryos

of each sex. Gonads were dissected in PBS-DEPC, fixed over night in 4%

paraformaldehyde at 4°C, washed in PBS, and then dehydrated in graded methanol
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solutions and stored at -20°C in 100% methanol for no more that one week. At this

point these gonads are considered samples and will be referred to as such from here

on. Samples were then rehydrated and bleached in a 6% H202 solution. Samples were

washed twice with PBT-DEPC and digested lightly for 5 to 10 minute, depending on

sizes, in a 10 jiglmL PKJPBT solution. Samples were then washed twice with 2

mg/mL solution of glycine/PBT for five minutes and then twice with PBT-DEPC.

After this samples were postfixed in 0.2% glutaraldehyde I 4% PFA PBS-DEPC

solution for 20 minutes. Two more washes in PBT-DEPC were followed by one wash

(at room tepurature) and Ï hour incubation (at 68°C) in hybridization buffer.

Hybridization buffer was replaced by RNA probe solutions (ljig digoxigenin-labeled

RNA probe/mL of hybridization buffer) and incubated at 68°C overnight.

The following day the samples were washed three times with solution 1 and

three times with solution 2. Each wash was performed at 68°C and lasted 30 minutes.

This was followed by three washes of TBST at room temperature. Samples were then

placed in 2 mL of blocking solution for two hours. Samples were then incubated in 1

mL of AB solution at 4°C overnight.

The following day samples were washed rapidly three times with TBS

levamisole followed by five 45 minute washes in the same solution. Two washes in

NTM-Levamisole preceded the revealing stage that consisted of incubating samples

in Revealing Solution at 34°C overnight. Samples were cleared with two washes of

TBST followed by two washes in CMFET and a three hour wash in CMFET:glycerol

(1:1). Embryos were then stored in CMFET:glycerol (1:4) at 4°C. A Leica MZ FUIT

stereomicroscope was used to visualize the genital ridge.
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ABSTRACT

In mammals, the pre-Sertoli celi of the male genital ridge is the first celi type

to display sex specific differentiation and gene expression. The genetic cascade

driving the differentiation of pre-Sertoli ceils and testis formation is beginning to be

unravelled, but many questions remain; a better understanding of the transcriptome of

pre-Sertoli ceils immediately after sex determination is now essential. A mouse

model expressing Red fluorescent Protein under the control of a hybrid mouse/pig

$RY promoter (HybSRYp-RFP) was used to purify ceils from embryonic day 12.0

(e 12.0) male genital ridges. The transcriptomes of of these ceils was compared to age

matched whole female genital ridge cells using Affymetrix Mouse Genome 430 2.0

microanays. The expression of genes considered markers for pre-Sertoli ceils,

including Sox9, Mis, Dhh and Fgf9 were identified within the HybSRYp-RFP

expressing ceil population, while markers for germ cells (Oct4, SSEA-]) and

endothelial celis (Ntrk3) were not. In a general fashion, genes identified as 2.5 fold

over expressed in HybSRYp-RFP expressing ceils coded notably for celi signalling

and extra cellular proteins. The expression of SoxlO, Stc2, Fgfl8, Fgfl3 and Wnt6

were further characterized via whole mount in situ hybridization (WISH) on male and

female genital ridges between el 1.5 and e14.5. SoxlO, Fgfl8, Fgf]3 and Stc2 gene

expression was detected within the male genital ridges while Wnt6 was found

diffusely within both the male and female genital ridges. These data represent the

earliest comprehensive microarray expression analysis of purified presumptive pre

Sertoli cells available to date.
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INTRODUCTION

In the mammalian male embryo, the first molecular signal of sex

determination is the expression of the Y-linked gene $RY within a sub-population of

somatic ceÏls of the indifferent male genital ridge (Koopman et al., 1990; Daneau et

al., 1996; Hanley et al. 2000). In the mouse, the transient expression of Sry between

embryonic day 10 (elO.0) and e12.5 drives the initial differentiation of pre-Sertoli

celis that would otherwise follow a “female default pathway” becoming granulosa

ceils (Albrecht and Ficher, 2001; Selddo et al., 2004). Following male sex

determination, pre-Sertoli celis proliferate, polarize and aggregate around the germ

celis to define the testes cords, which by exclusion define the interstitial spaces

between the cords (Tilmann and Capel, 1999; Schmahl et al., 2000). Migration of

celis into the gonad from the mesonephros (Merchant-Larios and Moreno-Mendoza,

199$; Nishino et al., 2001) or the coelomic epithelium (Schmahl et al., 2000; Karl

and Capel, 199$) is subsequently induced by signals emanating from the pre-Sertoli

celis (Martineau et al., 1997; Capel et al., 1999). Peritubular myoid cells surround the

testes cords and cooperate with pre-Sertoli celis to deposit the basal lamina and

further define the testis cords. Signalling molecules produced by pre-Sertoli cells

promote the differentiation of somatic cells found outside the cords into fetal Leydig

ceils, thus ultimately influencing the production of testosterone (Yao et al., 2002).

Endothelial celis associate to form the coelomic vessel which promotes efficient

export of testosterone.

Classically, many of the genes found to be involved in sex determination and

differentiation have been identified by studying human patients displaying sex

discordance syndromes or from mouse gene knockout models, and include $F],

LHX9, GATA4, $0X8, $0X9, fGF9, IR, IRR, PDG2, AMH, DHH, PDGF and WNT4

(reviewed by: Brennan and Capel, 2004; Ross and Cape!, 2005; Viger et al., 2005;

Wilhelm and Koopman, 2006). Recently, several large scale transcriptome

experiments have been performed to study genital ridge gene expression. Severa!

laboratories have employed subtractive screens or microarray analysis to search for
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sexually dïmorphic gene expression between male and female whole embryonic

mouse gonads (Bowies et al., 2000; Wertz and Herrmann, 2000; Menke and Page,

2002; Smith et al., 2003; McClive et al., 2003; $mall et al., 2005; Grimmond et al.,

2000). More recently, transgenic mouse models expressing fluorescent proteins

driven by various lengths of SRY or Sf1 promoters have been developed and used to

compare gene expression of specific celi types within the genital ridge around the

time of sex determination and differentiation (Boyer et al., 2004; Nef et al., 2005;

Beverdam and Koopman, 2006; Bouma et al., 2006).

To further characterize genes differentially expressed by pre-Sertoli ceils at

the beginning of sex differentiation we have made use of a mouse model expressing

Red Fluorescent Protein (RFP) under the control of a hybrid mouse/pig Siy promoter

(HybSRYp-RFP) (Boyer et al., 2006). This mouse une was used to isolate and purify

presumptive pre-Sertoli ceils after the peak of Sry expression but before histological

testis cord formation. RNA from purified e 12.0 presumptive pre-Sertoli ceils or stage

matched whole female genital ridges were hybridized onto micro-arrays to study the

transcriptomes of the presumptive pre-Sertoli ceil. The expression patterns of

selected genes were further characterized by whole mount in situ hybridization

(WISH). To our knowledge this represents the earliest comprehensive transcriptome

analysis of purified genital ridge somatic ceils consistent with a pre-Sertoli celi

phenotype reported to date.
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MATERIALS AND METHODS

Mouse Line, Celi Collection, Celi Purification

The generation and preliminary characterization of the HybSRYp-RFP

transgenic mouse lias been previously reported (Boyer et al., 2006). In the current

studies, mice were housed and handled according to national standards, and ail

experimental protocols invoïving animais were approved by the local institutional

ethics committee on the use of animais in researcli. For staging embryonic

development, noon on the first day of vaginal plug detection was designated as

embryonic day 0.5 (eO.5). Embryos were harvested early on the morning of e 12.0

and the genital ridges were dissected. Male genital ridges from embryos staged

between tau somite (ts) 20 to 25 were collected (average = ts23); generally male

genital ridges displaying visible testis cord formation were excluded from the data

set. Female genital ridges were taken from embryos that displayed no genital ridge

fluorescence at a comparable ts stage, generally from ts23 to ts25. Genital ridges

were sexed via expression of RFP as described previously (Boyer et al., 2006), and

the mesonephros was removed via dissection. Male and female genital ridges were

pooled separately and digested for 30 min at 37°C in M2 media (Sigma, St. Louis,

MO) supplemented with collagenase (50 U mf’) (Invitrogen, Canadian Life

Technologies, Burlington, ON, Canada) and dispase (2.4 U mf’) (Invitrogen). For

the male genital ridge, fluorescent and non fluorescent ceils were separated and

collected via fluorescence activated celi sorting (FACS) using a FACSTAR-Plus

machine (FACS services, IRCM, Montreal, Canada). In order to insure uniformity in

sample treatment, female genital ridges were also subjected to FACS separation

procedures.



56

Generation of Micro Array List

A total of 21 FACS procedures were performed in two separate experiments.

For the first experiment this involved dissecting 21$ male embryos to give 436

genital ridges. An equivalent number of embryos were dissected for the second

experiment, although the exact number was flot counted. Thus in total the number of

male embryos dissected was in excess of 400, and the number of total embryos

processed (male and female) was in excess of 800. Based on 15 male genital ridges

(displaying 2.15% fluorescent celis), a total of 366,367 ceils (fluorescent plus non

fluorescent) were recovered, representing about 25,000 total celis per genital ridge.

Within this total ceil population, 2.15% of celis were fluorescent, representing about

500 fluorescent celis per genital ridge. Based on tau somite counting of 64 male

embryos used in the experiments, the average tau somite age was found to be

ts=23.28, +1- 1.29 (SEM). Based on 20 FACS separations, where the mesonephros

had been dissected to give just the genital ridge, the percent fluorescent celis present

within the male genital ridge ceil sample was 1.69%, +1- 0.92% (SEM). Therefore,

for the overali experiment, the average genital ridge dissected was aged at about ts23,

with a fluorescent cell content of about 2%.

For a single experiment, approximately 25,000 fluorescent pre-Sertoli celis

were collected and compared to approximately 25,000 ovarian ceils from the same

transgenic une. Total RNA was isolated from both samples using the RNeasy

Microkit (Qiagen, Mississauga, ON, Canada) according to the manufacturer’s

instructions. Ten ng of total RNA was used for probe synthesis involving a two cycle

amplification protocol. For each sample group (presumptive pre-Sertoli ceils, female

genital ridge ceils), two probes were generated and hybridized to two replicates of the

Affymetrix GeneChip® Mouse Genome 430 2.0 microarrays. This experimental

protocol was performed twice, providing a total of 4 replicates per sample group.

Probe generation, hybridization and microarray reading was preformed at the

Genome Quebec Innovation Center at McGill University.

For precise staging of male genital ridges to determine the onset of Hyb$RYp

RFP transgene expression (see Figure 1), a genetic sexing method was employed.
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This involved mating the HybSRYp-RFP transgene into a transgenic mouse une

where a Gata4p-GFP transgene is integrated onto the X chromosome (Mazaud

Guittot et al., 2006). When a hemizygote Gata4p-GFP positive male mouse is mated

to a homozygote HybSRYp-RFP female mouse, all resulting embryos will be

HybSRYp-RFP positive. All female embryos will be Gata4p-GFP positive and can be

easily identified via GFP tissue fluorescence at e 11.5 to e 12.0 (and in fact as early as

e8.5). Ail male embryos will be negative for GfP tissue fluorescence but will be

transgenic for the HybSRYp-RFP transgene.

RT-PCR, Whole Mount In Situ Hybridization

To validate expression of selected genes identified via microarray analysis,

RT-PCR amplifications were performed on mRNA derived from FACs purified e 12.0

pre-Sertoli cells as described above. Primer oligomers and predicted amplification

lengths are presented in Table 1. Amplified cDNA sequences were ligated into a

pGem-T plasmid vector (Promega, Madison, WI), and sequences were verified via

dideoxy sequencing techniques. Whole mount in situ hybridization (WISH) was

carried out as previously described (Pilon et al., 2006). Briefly, gonads from ell.5,

e12.5 and e13.5 embryos were dissected in PBS-DEPC, fixed ovemight in 4%

paraformaldehyde at 4°C, washed in PBS, and then dehydrated in graded methanol

solutions and stored at -20°C in 100% methanol for no more that one week. To

generate the WISH probe, plasmids were linearized, the cDNA portion was purified

and then used as a template to generate digoxigenin-labeled antisense riboprobes.

WISH expression profiles were generated and analysed using at least four pairs of

embryos for each sex and each time point. As a positive control for the WTSH

protocol, a Sox9 probe was generated using mouse Sox9 cDNA sequences

(generously provided by Richard Behringer). A Leica MZ FLIII stereomicroscope

was used to visualize the genital ridge.
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RESULTS

Onset of Genital Ridge Iransgene Expression

The HybSRYp-RFP transgene resuits in RFP expression within cells that will

become pre-Sertoli ceils (Boyer et al., 2006). Fluorescence is first seen at e12.0, tau

somite 20 (ts2O) (Figure 1), which is slightly later than the peak of Sry expression at

tsl6 (Bullejos and Koopman, 2001; Mazaud Guittot et al., 2006). At this time, a

small number of ceils (generally from 10 to 20) of the genital ridge express readily

visible fluorescence. These celis are located within the mesenchyme of the central

part of the XY genital ridge, and are flot associated with either the anterior or

posterior poles of the genital ridge nor with the coelomic epithelium. Very quickly

the number of fluorescent cells increases such that by ts23, they are distributed in a

salt and pepper pattern throughout the mesenchyme of the genital ridge (Figure 1).

Based on dissections and FACS purifications used for the microarray experiments,

the number of fluorescent celis now averages about 500 per genital ridge, accounting

for about 2% of the total number of ceils per genital ridge.

Microarray Resuits

After normalization, the four data sets from the HybSRYp-RFP cells and the

four data sets from the XX genital ridge cells were summed and averaged to give

mean test (HybSRYp-RFP cells) and mean control (XX genital ridge) sample values.

Mean control sample values were then divided by mean test sample values to

determine the fold difference of expression between HybSRYp-RFP cells and XX

genital ridge celis for each gene investigated. A total of 1,953 probe sets, representing

4.3% of a possible 45,10 1 probe sets, showed 2.5 fold or higher expression within

either the XX genital ridge or Hyb$RYp-RFP expressing celis: 994 probe sets (51%)

were specifically over-expressed in the HybSRYp-RFP expressing cells, while 959
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probe sets (49%) were over-expressed in the XX genital ridge celis. Using Online

Mendelian Inheritance in Man (OMIM: http://www.ncbi.nih.gov/entrez) and

SOURCE (http ://source. stanford.edu/cgi-bin/source/sourcesearch) databases each

probe set over-expressed in the Hyb$RYp-RFP cell population was categorized

according to biological function; these general resuits are summarized in Table 2.

The top 100 HybSRYp-RFP expressing celi over-expressed probe sets (at e12.0) are

presented in Table 3, whule the complete list of over-expressed probe sets including

both HybSRYp-RFP expressing cells and female genital ridge ceils is available as

supplementary data. A general comparison of our HybSRYp-RFP expressing ceil

transcriptome data with lists generated from Sflpromoter-GfP expressing ceils of the

male genital ridge at e 11.5 or e12.5 (Nef et al., 2005; Beverdam and Koopman, 2006)

is presented in Figure 2.

Gene Expression Profihing: RT-PCR and WISH

To confirm that genes identified by the microanay analysis are expressed in

HybSRYp-RFP expressing ceils, further expression analysis was performed for

selected genes. A total of 15 genes were selected for further study based principally

on their role in celi proliferation, celi survival or celi signaling within other tissues.

The expression of these genes was confirmed by RT-PCR performed on mRNA

derived from HybSRYp-RFP expressing celis purified from e 12.0 male genital ridges

(Figure 3). The validity of the amplified bands was further confirmed by DNA

sequencing.

WISH expression experiments were performed on male and female genital

ridges atell.5, e12.5, andel3.5 forfive genes, includingSRY-relatedHMGbox

genelû (SoxlO), StanniocaÏcin2 (Stc2), Fibrobtast growthfactor 18 (Fgf]8),

Fibroblast growthfactor 13 (Fgfl3), and WingÏess-type mmtv integration site famity,

member 6 (Wnt6). Genital ridge expression of SoxlO was first detected at el 1.5 and

was found exclusively within the male genital ridge (Figure 4, A). Expression

continued between e12.5 and e13.5 within the male genital ridge (Figure 4, B-C) as

well as within the mesonephros after e 12.5. WISH resuits for Stc2 revealed a strong
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signal within the male genitai ridge at ail stages studied (Figure 4, D-F). For Fgf]8 a

weak WISH signal was detected in the testis shortly after e12.5; by e13.5 strong

expression within the testis cords and mesonephros was evident in the maie (Figure 4,

G-I). Fgf]3 expression was first detected at e 12.5 in the mesonephroi of both sexes

(Figure 4, J-K). By e13.5, Fgf]3 expression was detected within the testis cords

(Figure 4, L) and was no longer detectable in the mesonephroi of either sex. At the

detection level of the WISH procedure, Wnt6 expression was detected within the

genital ridges of both sexes at ell.5 and e12.5 (Figure 4, M-N). By e13.5, Wnt6

expression was siightiy more associated with the testicuiar cords than with other

tissues (Figure 4, 0).
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DISCUSSION

In mammals, the development of the male genital ridge is driven by pre

Sertoli celis which constitute the first celi une to commit to the male differentiation

pathway and which are known to recruit other ceil types to the male pathway through

various signaling mechanisms (Martineau et aL, 1997; Capel et al., 1999; Adams and

McLaren, 2002; Maiki et al., 2005). Characterization of the specific subset of genes

differentially expressed in pre-Sertoli celis compared with the female genital ridge

immediately after the moment of testicular sex determination should provide further

understanding of the molecular mechanisms involved in these processes. To pursue

this goal we have made use of a previously descrïbed transgenic mouse une

expressing RFP under the control of a hybrid mouse/pig SRY promoter (Boyer et al.,

2006). This model dispÏays male genital ridge specific expression of fluorescence at

e12.5 (Boyer et al., 2006). Via mating experiments, at e13.5, these HybSRYp-RFP

positive celis are found within the testis cords and represent the same celis that are

marked by a human SRY promoter-YFP transgene that themselves display a pre

Sertoli ceil expression pattern via histology and RT-PCR analysis (Boyer et aL,

2006). Furthermore, again at e 13.5, HybSRYp-RFP positive ceils represent a distinct

ccli population compared to germ ceils as represented by Oct4 promoter-GFP

expressing celis (Boyer et aL, 2006). Thus, at ieast by e 13.5, it can be conciuded that

HybSRYp-RFP expressing celis are pre-Sertoli celis, since they are male genital ridge

specific, found within the testis cords, distinct from germ celis, and co-mark celis

showing pre-Sertoli ccii marker gene expression. Working on the hypothesis that

Hyb$RYp-RFP positive celis mark presumptive pre-Sertoli ceils at eariier time points

and may thus be usefuÏ in deciphering molecular mechanisms of mammalian sex

determination and differentiation, we compared the transcriptomes of these celis at

e 12.0 to age matched female genital ridges using GeneChip® Mouse Genome 430

2.0 arrays (Affymetrix).
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Fluorescent Hy5SRYp-RFP celis express pre-Sertoli celis markers but not germ

celi markers

As predicted by our previous work (Boyer et al., 2006), our microarray

transcriptome analysis of genital ridge celis expressing the HybSRYp-RFP transgene

identified RFP positive ceils as consistant with being pre-Sertoli celis. Within this

ceil population we identified genes known to be important for testes development or

as pre-Sertoli celi markers, including Sox9, AmÏz/Mis, Dhh, Sfl/Nr5al, Gata4, Gata6,

Dmrt], Fg, and Ptgds (Kent et aL, 1996; Morais da Silva et aL, 1996; Bitgood et al.,

1996; Weda et al., 1994; Ketola et al., 1999; Tevosian et al., 2002; Colvin et al., 2001;

Adams and McLaren, 2002; Wilhelm et al., 2005; Malki et al., 2005). Notably,

HybSRYp-RFP expressing ceils did not express markers for germ celis, such as Oct4

and $sea-], or markers for endothelial cells, such as Ntrk3. In addition, genetic

markers for ovarian development of somatic celis were found over-expressed in the

ovarian data set, including fst and Bmp2.

Global analysis of presumptive pre-Sertoli celi transcriptome data

A total of 1953 probe sets showed 2.5 fold or higher expression within either

ovarian cells or presumptive pre-Sertoli cells at e 12.0. 0f the 994 probe sets that

were over expressed within pre-Sertoli cells, 660 (61.1%) represented genes of Imow

function based on OMIM and SOURCE databases (Table 2), leaving 334 probe sets

(3 8.9%) representing gene sets of unknown function. The functional groups most

represented are genes coding for ceil signalling molecules followed by genes coding

for molecules involved in tissue and extracellular organization. This is not

unexpected as pre-Sertoli cells are known to drive the differentiation of the testis

immediately after sex determination. Furthermore, these findings confirm

observations made by Small et al. (2005) who observed a predominance of cell

signalling transcripts within the male genital ridge shortly after sex determination.

Genes coding for molecules involved in metabolism and nutrient transport were also

up regulated in the presumptive pre-Sertoli celis most likely reflecting the increase in

celi proliferation within this celi population.
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RNA transcripts of DNA binding and RNA associated molecules made up

only 4% of over expressed genes in presumptive pre-Sertoli celi population; this is in

spite of the fact that most genes effecting testes determination identified to date (via

human clinical cases and by mouse gene knockout models) code for transcription

factors (Fleming and Vilain, 2005). This relative paucity of transcription factors may

reflect quantitative differences in expression level requirements between transcription

factors and signalling or structural molecules as well as the current detection limits of

solid phase hybridization technologies. An alternative explanation is that only a

relatively small number of transcription factors are actually required to drive testes

determination. Thus it may be that conceptual advances in our understanding of the

molecular genetics of testes determination will involve determining how an already

identified set of transcription factors interact with each other and with their target

genes, rather than identifying additional transcription factors previously not

associated with sex determination. Furthermore, as the Affimetrix GeneChip®

Mouse Genome 430 2.0 array does flot survey the non coding RNA transcriptome,

addressing the possibility of additional control of mammalian sex determination at

the post-transcriptional level must await further technical refinements (Lalli et al.

2003).

Comparisons of genital ridge celi transcriptomes based on SRY, Sf1 promoter

models

Recently, two research groups have described transcriptome data generated by

comparing purified Sf1 promoter-GFP positive celis from the somatic cell population

of male and female genital ridges at the time of sex determination and differentiation

(Nef et al. 2005; Beverdam and Koopman, 2006). At cl 1.5, this represented

approximately 5000 (Nef et al., 2005) and 4200 (Beverdam and Koopman, 2006)

GFP expressing cells per genital ridge. Both of these studies used GeneChip®

Mouse Genome 430 2.0 arrays (Affymetrix), with a replicate size of n=3 for both

male and female genital ridge derived cells. In comparison, our SRY promoter RFP
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mouse model expressed RFP only within the male genital ridge, and only after about

e 12.0 (ts2l). At ts 23, this represented on average about 500 celis per male genital

ridge. Characterization of the HybSRYp-RFP transgenic mouse une has shown that

within the genital ridge RFP expression is restricted to presumptive pre-Sertoli celis

at ail points studied (Boyer et al., 2006; this study). Thus we propose that at e 12.0

(ts23), our SRY promoter based model resuits in at least a 10 fold purification of

presumptive pre-Sertoli ceils compared to Sf1 promoter based models, and should

provide a valuable insight into the pre-Sertoli celi transcriptome in the time period

immediately after sex determination.

In spite of these methodological differences, 91 genes were found in common

to ail three studies at the time points between ell.5 and e12.5, providing strong

evidence that these 91 genes are important to pre-Sertoli ccli physiology and early

testis differentiation. Taken separately, over 45% of the microarray list reported by

Beverdam and Koopman (2006), and over 31% of the microarray list reported by Nef

et al., (2005) are also identified in our list (Figure 2).

Bouma et al. (2006) have recently described a micro-array study based on

comparing the expression of isolated Sry promoter-GfP expressing ceils from XY

and XX gonads of e 13.5 mice. Because this time period is well after histological

differentiation of testes cords, it is more relevant to studies of later gonad

differentiation rather than testes determination and early differentiation.

Genital ridge expression of selected genes via WISH

One of the consequences of 5iy expression is a dramatic increase in ccli

number and relative size of the testis compared to the ovary (Schmahl et ai., 2000).

Studies that block celi proliferation at el 1.0 have estabiished the essential role of this

increased ccli proliferation in testis cord development and the male genital pathway

in general (Schmahl and Capel, 2003). This increase in cdl proliferation can also be

blocked if ceil signalling is intermpted (Uzumcu et al., 2002). From the list of genes
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generated by the microarray, 5 genes were selected for further genital ridge

expression profiling via WISH, based on their involvement in celi proliferation, celi

signalling or celi survival. These genes included Sox]O (13.2 fold increase in

expression within presumptive pre-Sertoli celis compared to ovarian ceils via

microarray analysis), Stc2 (23.5 fold increase), Fgf]8 (3.3 fold increase), Fgf]3 (8.9

fold increase) and Wnt6 (2.6 fold increase). As a positive control for the WISH

protocol, a probe for Sox9 expression was included, which is known to have a pre

Sertoli ceil expression pattem in the male genital ridge immediately after sex

determination. In our microarray analysis, Sox9 showed a 15 fold enhancement of

expression within presumptive pre-Sertoli ceils compared to age matched ovarian

celis.

$0X10, $0X9 and $0X8 are ail members of the E group of $OX

transcription factor proteins, and are thouglit to have evolved from a common

ancestral gene (Bowles et al., 2000b; Wegner, 1999). Indeed, studies have shown

significant functional redundancy between these factors (Bylund et al., 2003; Cheung

and Briscoe, 2003; Graham et al., 2003; Taylor and LaBonne, 2005; Kellerer et al.,

2006). Within the male genital ridge, $ox8 and Sox9 gene expression are up

regulated as a consequence of Sty expression ($ekido et al., 2004) and influence male

sex determination and pre-Sertoli ceil differentiation (Barrionuevo et al., 2006;

Chaboisser et al., 2004; Sock et al., 2001; Takada and Koopman, 2003). $everal

studies have shown that Sox8 and Sox]O can have limited functional redundancy

(Kellerer et al., 2006; Maka et al., 2005; $tolt et al., 2004) and furthermore that

ectopic expression of $ox9 will induce endogenous $oxlO expression in some ceil

types (Chueng and Briscoe, 2003). In our present study the detection of Sox]O in pre

$ertoli celis of the male genital ridge between e 11.5 to e13.5 suggests a potential

involvement in sex determination and differentiation (Figure 4, A-C). $tudies of

naturally occurring mutations in mice and men, as well as transgenic knockout mice,

reveal a role for SOX]O predominantly in the neural crest celi populations and their

derivatives. In humans, haploinsufficiency of SOX]O can resuit in Hirschprung

disease defined by an absence of enteric ganglia in the myenteric and submucosal
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plexus along variable lengths of the distal gut (Gabriel et aL, 2002). In homozygous

$oxlO knockout mice, melanocytes, peripheral glia and the enteric nervous system are

missing (Kellerer et al., 2006). WISH analysis of Sox]0 confirms expression within

the male genital ridge compared to the female genital ridge at el.5, e12.5 and e13.5,

but does not suggest a strictly pre-$ertoli celi expression pattern. Although no

anomalies in sex determination or differentiation are reported for $0X10 mutations,

its expression within the male genital ridge during a critical period of early sex

differentiation suggest that it may influence the action of other molecules such as

$0X9, as is seen in the case of Sox$ (Chaboisser et al., 2004).

The $tc2 gene codes for a protein believed to play a role in calcium

homeostasis. STC2 is an antagonist of FSH-stimulated progesterone production in

granulosa ceils (Luo et al., 2005) and inhibits the sodium-phosphate transporters,

NaPi-3, in the kidney (Ishibashi et al., 1998). In addition, STC2 is involved in cell

survival during oxidative stress and hypoxia (Ito et al., 2004). Transgenic mice over

expressing STC2 display dramatic growth retardation in almost every organ and

tissue type with the exception of the testes which are identical in weight to wild-type

male mice at birth (Gagliardi et al., 2005). Via genital ridge WISH analysis, $tc2

shows expression within the male but flot the female genital ridge from el 1.5 to e13.5

(Figure 4, D-F), suggesting a potential role for STC2 in testes formation. It is

noteworthy that this expression is not confined to a strictly pre-Sertoli cell expression

pattem, and also that expression is seen within the mesonephros at later time periods.

Interestingly, it is known that Sry and Sox9 associate with the nuclear transport

protein calmodulin in a calcium dependent manner (Harley et al., 1996); it is

attractive to speculate that the genital ridge expression of Stc2 may increase calcium

concentrations within the testicular environment thereby facilitating calmodulin

mediated nuclear localization of Sry and Sox proteins. Further expression studies are

warranted.

FGF9 and FGF18 are secreted growth factors that can both signal through the

Fgfr2 and Fgfr3 transmembrane receptor proteins. Both Fgt9 and Fgfl8 display male
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specific expression in the gonads during testes differentiation (Xu et al., 2000;

Schmahl et al., 2004; Willerton et al., 2004). FGF9 is important in male sex

determination and differentiation (Colvin et al., 2001; SchmahÏ et al., 2004); Fgf9

nuli mice have reduced Sertoli ccli populations and exhibit markers of ovarian

deveiopment including Fst and Brnp2 (DiNapoli et al., 2006). Fgfl8 is important in

celi proliferation and differentiation in various tissues (Hu et al., 199$; Olibayashi et

al., 2002; Whitsett et al., 2002). We detect Fgfl8 expression via WISH in

developing testis cords by e13.5, and also within the male mesonephros (Figure 4, G

I). Lack of detectable genital ridge expression at earlier time points via WISH may

reftect the relative low resolution of this method compared to other methods such as

RT-PCR and microarray analysis. Because of its expression pattem within the male

genital ridge, we can speculate that FGF1$ may have a supporting role to play in pre

Sertoli cell proliferation. An FGF1$ knockout mouse line has been described, but to

date this model has not been characterized with respect to the genital ridge

(Ohbayashi et al., 2002).

Fgf13, also called Fibroblast growth factor homologous factor 2 (Fhf2) is

known to be expressed within the brain and muscle (Gecz et al., 1999). Defects in

FGFJ3 in humans result in hypogonadism, severe mental defects, epilepsy and

hypometabolism (Borjeson et al., 1962). Fgf 13 serves as a cofactor recruiting

mitogen-activated protein kinase (MAPK) to the scaffold protein 1132 (Schoorlemmer

and Goldfarb, 2001). Extracellular signais including FGFs (Kouhara et al., 1997),

neurotropins (Patapoutian and Reichardt, 2001; Sawada et al., 2000), HGF (Stuart et

al., 2000) and PDGFs (Lubinus et ai., 1994) stimulate several cellular responses

involving the activation of MAPK, to coordinate proliferation, differentiation,

migration and mitosis (Tibbles and Woodgett, 1999). We now show that Fgf]3

expression is detected by WISH within the testis cords of the male genital ridge by at

least e 13.5 (Figure 4, J-L). It is reasonable to suggest that FGF13 may contribute to

signal transduction within pre-Sertoli celis of the developing male genital ridge.
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Wnt6 is is a Wnt famiiy signailing protein known to have a foie ifl somite

formation by reguiating epitheiialisation (Schmidt et ai., 2004). Within the Iddney,

Wnt6 piays a role in tubulogenesis (Itiranta et ai., 2002), and can have both

redundant and antagonistic functions with Wnt4 (Itiranta et al., 2002). Within the

developing ovary, the proper deveiopment of the Mifilerian ducts and the repression

of testosterone production depend upon Wnt4 expression (Vaino et al., 1999; Jeays

Ward et al., 2003). In our microarray study Wnt6 is expressed at a higher ievel in

pre-Sertoii ceiis compared to the XX genital ridge ceils. However, via WISH, Wnt6

expression was detected in both the male and femaie gonads at approximately equal

ievels at ail time points studied (Figure 4, M-O). This discrepancy between

microarray and WISH resuits could reflect the relative resolution of these two

techniques. A more detaiied expression study of Wnt6 within the developing male

and female genital ridges is now warranted.

In summary, we have combined fluorescent marking of ceii populations in

transgenic modeis with differential expression screening to study gene expression in

presumptive pre-Sertoli cells of the manimaiian genitai ridge. Within the 994 genes

found over expressed the iargest functional groups identified were for ceii signaiing

molecules foliowed by extraceiiular matrix molecuies and cell structure component

molecuies. Using in situ hybridization, we have identified new candidate genes for

invoivement in testes differentiation and pre-Sertoli cell function, ïncluding $ox]O,

$tc2, Fgf]8, and Fgfl3. The exact nature of this involvement must await further

studies.
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Table 1. List of selected genes and respective primer oligomers used to confirm

expression in pre-Sertoli ceil transcriptome via RT-PCR amplification. Length of

amplified band is given in base pairs (bp).

Gene Primers (sense, antisense) PCR length (bp)

Bag3 5’ -AGCATCCAGGTGTGCTGAAAGTGG 465
5’ -ACACTAGGGAGCCACCAGGTTGC

Bag4 5’- CAAGTCCAGTATAGTGCTGAGCCT 406
5’- TGGCCAAATCAGTCACAGGCTCC

3c12 5’- TGACTTCTCTCGTCGCTACCGTC 404
5’- CCCAGGTATGCACCCAGAGTGAT

Ctgf 5’- AAGCTTACGCCATGTCTCCGTACATCTTC 1000
5’- GAATTCATGCTCGCCTCCGTCGCAGGT

Fgf]3 5’- GAATTCATGGCGGCGGCTATCGCCAGCTCGCT 730
5’- AAGCTTCTACGTTGATTCGTTGTGGCTCATG

Fgfl8 5’- AAGCTTCCTCTGATGTAGTTCTCTGGGG 600
5’- GAATTCATGTGGACTTCCGCATCCACGTG

Gdif 5’- GAATTCATGGGTCTCCTGCATGGGATTCG 750
5’- AAGCTTCAGATACATCCACACCGTTTAG

Inhb 5’- TGTGTGGAAGGAGGAAGCTGAGC 470
5’- GAATTCTACCTGAAACTGCTCCCCTATGTC

Miif 5’- GTTGTTGGTAAAGGTGATGGTACCG 233
5’- GGCACCTGCTGCTCAGAGTACAG

Nr5a2 5’- GAATTCGGACAATCTTCCTGGTTACTGGAG 425
5’- AAGCTTAGGCTCTTTTGGCATGCAGC

NrOb2 5’- GAATTCAAGATCCTGCTAGAGGAAGCCAG 419
5’- AAGCTTGGTCACCTCAGCAAAAGCATGTC

$ox]O 5’- GAATTCATGAACGCCTTCATGGTGTGGG 426
5’- AAGCTTCTGTCTTTGGGGTGGTTGGAG

Stc2 5’- GAATTCATGTGTGCGGAGCGGCTGGGCCA 900
5’- AAGCTTCATTTCACCTCCGGATGTCGGA

Trapla 5’- CTGGATAGCCAGGCAAAGCAAGC 469
5’- CTGCATGCCTAAGGTGAGAAGCC

Wnt6 5’- AAGCTTCAGAGGCACAGGCTGAGTTCC 400
5’- GAATTCTCTGCGCACCTGCTGGCAGAA



$2

Table 2. Biological classification of 994 genes over expressed (2.5x) in e 12.0 pre

Sertoli ceils.

Genes are classified based on OMIM and SOURCE databases.

Biological Function Number of Genes %

Unknown 334* 38.9

Ce!! signalling 168 19.6

Extrace!lu!ar matrix/cell adhesion 91 10.6

Metabolism & Apoptosis 87 10.1

Nutrient Transport 45 5.2

DNA binding & RNA associated 34 4.0

Protein modification 25 2.9

linmune function 25 2.9

Miscellaneous 49 5.7

*Redundant robe sets were not e!ïminated.
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Table 3. Top 100 probe sets over-expressed (2.5 fold or greater) in pre-Sertoli ceils
of the male genital ridge at e 12.0. Redundant probe sets for a given gene are
included. Genes known to be expressed within the male genital ridge at the time of
testis determination or early testis differentiation are in bold. The full list of over
expressed probe sets is available as supplementary data.

Probe Titie Gene Genbank Cytoband Foid

1460734_at procollagen type IX alpha 3 Co19a3 BG074456 2 108.0cM 587

1460693_a_at procollagen type IX alpha 3 Co19a3 BG074456 2 108.0cM 260

1426438_at DEAD (Asp-Glu-Ala-Asp) box polypeptide 3 Ddx3y AA210261 Y 2.07 cM 228
Y-linked

1443287_at Mus musculus 2 days pregnant aduit female BB555669 2 E5 165
ovary cDNA RIKEN full-Iength enriched
library clone:E330020H17 product:unknown
EST full insert sequence

1419080_at gtial ccli line derived neurotrophic factor Gdnt NM_010275 15 Al 147

1423859_a_at prostaglandin D2 synthase (brain) Ptgds A3006361 2 12.9cM 143

1418744_s_at RIKEN cDNA 241001 IK1O gene 2410011 KiORik NM_021344 5 64.0cM 132

1434959_at desert hedgehog Dhh AV367068 1557.4cM 124

143$654_x_at monocyte to macrophage differentiation- Mmd2 AV26941 1 5 G2 121
associated 2

1453486_a_at per-hexamer repeat gene 5 Phxr5 B1133839 7 E3 114

1417210_at eukaryotic translation initiation factor 2 Eif2s3y NM_01201 I Y 2.12 cM 111
subunit 3 structural gene Y-linked

1418813_at serine (or cysteine) proteinase inhibitor clade Serpina5 NM_008785 12E 95.1
A member 5

1456076_at testis specific beta defensin-like TdI AV209 128 2 Hi 93.9

1423860_at prostaglandin D2 synthase (brain) Ptgds AB006361 2 12.9 cM 55.7

1424534_at monocyte to macrophage differentiation- Mmd2 BC025064 5 G2 54.2
associated 2

1416645_a_at albumin I AlbI NM_007423 5 50.0cM 50.3

1418252_at peptidyl arginine deiminase type 11 Padi2 NM_008812 471.0cM 48.7

1451712_at RIKEN cDNA 803041 1F24 gene 803041 lF24Rik AF440735 2 G3 43.6

i434873_a_at potassium channel tetramerisation domain Kctdi 1 BBI 15902 11 B3 39.5
containing 11

1434528_at alanine and arginine rich domain containing Aard AV256613 15 C 35.5
protein

l450567_a_at procollagen type 11 alpha I Col2aI NM_031163 1554.5cM 34.9

1441213_at cDNAsequenceBCO2is9l BC021891 AV370141 8E2 33.8

1448906_at cadherin 16 Cdhl6 NM_007663 8 50.0cM 32.7

144903 1_at Cbp/p300-interacting transactivator with Citedi U6509 1 X 40.1 cM 32.0
Glu/Asp-rich carboxy-terminal domain 1

1436528_at expressed sequence Al842353 A1842353 A1842353 19 C3 31.4

1423407_a_at fibulin 2 Fbln2 BF228318 637.2cM 30.8

142976$_at dystrobrevin alpha Dtna BB355121 18 18.0cM 30.2

1417924_at p21 (CDKNJA)-activated kinase 3 Pak3 BQ174935 X F2 28.7

1456069_at dystrobrevin alpha Dtna BMll79i8 18 18.0cM 28.1

141641 1_at glutathione S-transferase mu 2 Gstm2 NM_008l83 3 F2.3 26.5

1434653_at PTK2 protein tyrosine kinase 2 beta Ptk2b AV026976 1428.0CM 26.9

1422072_a_at glutathione 5-transferase mu 6 Gstm6 NM_008184 3 F2.3 26.2

l455436_at Mus musculus aduit male hippocampus cDNA BM1 14282 26.2
RIKEN full-length enriched libraiy
clone:2900052J15 product:unclassifiable full
insert sequence

1435486_at p21 (CDKNIA)-activated kinase 3 Pak3 BQ175796 X F2 26.2
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1433532_a_at myelin basic protein Mbp A1323506 1855.0cM 25.9
1417109_at lipocalin 7 Lcn7 BC005738 4 D2.2 25.8
1450673_at procollagen type IX alpha 2 Co19a2 NM_007741 453.0cM 25.5
1436879_x_ai albumin 1 AlbI AV 124668 550.0cM 25.2
1435693_at cDNA sequence BC012256 BC012256 AV378589 2 F1 24.8
1448220_at RIKEN cDNA 2200008D09 gene 2200008D09Rik NM_025583 8 El 24.5
14387 18_ut fibroblast growth factor 9 Fgf9 AW046863 1421.0cM 24.2
1447845_s_at vanin 1 Vnnl AV360029 10 A1-B2 24.2
1449484_at stanniocalcin2 Stc2 AF031035 11 A4 23.5

1452077_ai DEAD (Asp-Glu-Ala-Asp) box polypeptide 3 Ddx3y AA2 10261 Y 2.07 cM 22.8
Y-linked

1428571_ai procollagen type IX alpha 1 Col9al AK004383 1 15.0cM 22.4
1424477_at cDNAsequenceBCOl973l BC019731 BC019731 5G2 21.8
I 443823_s_at ATPase Na+/K+ transporting alpha 2 Atp I a2 AV3259 19 1 94.2 cM 21.2

polypeptide
1449533_at RIKEN cDNA 1810057C19 gene 1$10057C19Rik NM_026433 11 C 21.0
14191 00_at serine (or cysteine) proteinase inhibitor clade Serpina3n N M_009252 12 E 21.0

A member 3N
1449392_at hydroxysteroid (17-beta) dehydrogenase I Hsdl7bl NM_0 10475 11 60.25 cM 20.7
1423271_at gapjunction membrane channel protein beta 2 Gjb2 AV239646 1421.0cM 20.6
141 5935_at SPARC related modular calcium binding 2 Smoc2 NM_02231 5 20.5
1435126_al dual specificity phosphatase-Iike 15 DusplS BB174$64 2 HI 20.4
1419072_at RIKEN cDNA 0610005A07 gene O6l0005AO7Rik NM_026672 3 F2.3 19.9
14211 14_a_at dermatan sulphate proteoglycan 3 Dspg3 NM_007884 1055.0cM 19.8
1440813_s_at plexin B3 Plxnb3 A1451018 X A7.l 19.7
1416632_at malic enzyme supematant Modi BCOI1O8I 948.0cM 19.7
1448871_at mitogen activated protein kinase 13 Mapkl3 NM_01 1950 17 A3-B 18.7
141 6666_at serine (or cysteine) proteinase inhibitor clade Serpine2 NM_009255 1 48.6 cM 18.3

E member 2
1418370_at troponin C cardiacfslow skeletal Tncc NM_009393 14 10.0cM 18.3
143442 1_at RIKEN cDNA B930052A04 gene, lslr2, BB344549 9 B 17.8

Immunoglobulin superfamily containing B9300S2AO4Rik
Ieucine-dch repeat 2

1443322_at Mus musculus transcdbed sequences AV32$597 17.7
141646$_at aldehyde dehydrogenase family 1 subfamily Aldhlal NM_013467 19 12.0cM 17.4

Al
1438068_al Mus musculus adult male olfactoiy brain BB25 1859 17.3

cDNA RIKEN full-Iength enriched Iibrary
clone:6430501N10 product:unknown EST full
insert sequence

1439604_at a disintegrin-like and metalloprotease Adamtsl6 AV319357 13 B3 17.1
(reprolysin type) with thrombospondin type 1
motif 16

I424930_s_at hypothetical protein MGC27770 MGC27770 BCO 16600 15 EI 17.0
1448330_ai glutathione S-transferase mu 1 Gstml NM_010358 3 F2.3 16.9
I433787_at Mus musculus simitarto retinoblastoma- A1841091 7 B3 16.9

binding protein 6 isoform 2; proliferation
polential-related protein; RB-binding Q
protein I (L0C243998) mRNA

1422 127_at desert hedgehog Dhh NM_007857 15 57.4 cM 16.8
1416225_at alcohol dehydrogenase I (class 1) Adhl BC013477 3 71.2cM 16.6
1417923_ut p21 (CDKN1A)-activated kinase 3 Pak3 BQ174935 X F2 16.3
1418743_a_ai RIKEN cDNA 241001 IKIO gene 241001 IKlORik NM_021344 564.0cM 16.1
1453063_ut clathiin light polypeptide (Lcb) Cltb AK009844 13 BI 16.0
1431 362_a_at SPARC related modular calcium binding 2 Smoc2 AK006809 15.7
141 84$6_at vanin 1 Vnnl NM_011704 10 AI-B2 15.4
14550$0_at protein phosphatase I regulatory (inhibitor) PpplrI6b BB375209 2 H2 15.2

subunit 16B
1424950_at SRY-box containing gene 9 Sox9 BC024958 11 69.5 cM 15.1
1456823_at Mus musculus similar to chromosome 14 AV274491 12 C3 14.8

open reading frame 50 (LOC2 10762) mRNA
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1417 150_at solute carrier family 6 (neurotransmitter SIc6a4 NM_0 10484 11 42.0cM 14.7
transporter serotonin) member 4

1418412_at tumorprotein D52-like I Tpd5211 NM_009413 10A4 14.7
1433607_at cerebellin 4 precursorprotein Cbln4 AV343573 2 H3 14.6
144$723_at retinol dehydrogenase 7 Rdh7 NM_017473 10 D3 14.4
1444038_at Mus musculus transcribed sequences 81076720 14.4
I 448955_s_at Ca<2+>dependent activator protein for Cadps NM_0I 2061 14 Al 14.3

secretion
1436295_ut hypocretin (orexin) receptor I Hcrtrl BB803 143 4 D2.2 14.2
1425985_s_at mannan-binding lectin serine protease I Maspi A8049755 16 82-83 14.2
1424903_at selected mouse cDNA on the Y Smcy AF127244 Y 2.03 cM 13.8
1434195_at RIKEN cDNA 6030424L22 gene 6030424L22Rik BB042892 9 E3.1 13.7
1438408_al RIKEN cDNA 5730467H21 gene 5730467H21Rik BB131927 5 E3 13.7
1449396_at amine oxidase copper containing 3 Aoc3 NM_009675 11 B2-B5 13.6
1431400_a_al growth arrest specific 7 Gas7 AK017394 11 B3 13.5
141738 1_at complement component 1 q subcomponent Ciqa NM_007572 466.1 cM 13.5

alpha polypeptide
1451689_a_at SRY-box containing gene 10 SoxlO BC018551 1546.6cM 13.2
141$237_s_at procollagen type XVIII alpha I Coll8al NM_009929 1041.3cM 13.2
1448507_at REKEN cDNA 4931430101 gene 4931430I01Rik BC019531 1 D 13.1
1434494_at zygote arrest I Zari BG071693 4C5 13.1
1437318_at p21 (CDKN1A)-activated kinase 3 Pak3 BB4680$2 X F2 13.0
1417160_s_ut extracellular proteinase inhibitor Expi NM_007969 11 C 13.0
1422823_ut epidermal growsh factor receptor pathway Eps8 NM_007945 6 66.0cM 12.9

substrate 8
1415883_a_at elastase 3B pancreatic EIa3b NM_026419 4 D3 12.9
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Figure 1. Onset of ceil fluorescence within the male genital ridge via the HybSRY

promoter-RFP transgene. Male genital ridges (GR) plus mesonephros (M) were

dissected from e 12.0 embryos, and then aged more precisely by counting tail somites.

Left panel represents bright field image at 1 OOx magnification; right panel represents

the same image using filters for red fluorescence protein (RFP). (A) At tail somite 20

(ts2O), a few celis within the genital ridge display readily detectable fluorescence.

These cells were found generally in the mid portion of the genital ridge within the

mesenchyme and flot associated with the coelomic epithelium, and were generally

dispersed in a “sait and pepper” pattern. (B) By ts22, considerably more celis of the

FIGURES:
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genital ridge display fluorescence; these celis remain dispersed and are flot as yet

organised. (C) By ts23 there is a marked increase in the number of ceils within the

genital ridge that display fluorescence. On average, about 500 celis per genital ridge

display fluorescence, representing about 1-3% of genital ridge celi content.

Distribution of fluorescent ceils is throughout the genital ridge.
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A) pre-Sertolï cells (994 probe sets)

Figure 2. General comparison of transcriptome data generated from specific ceil

populations of the male genital ridge. (A) pre-Sertoli celis at e 12.0 (present work).

(B) Male genital ridge celis expressing Sf1 at ell.5 (Beverdam and Koopman 2006).

(C) Male genital ridge celis expressing 5f] at e 12.5 (Nef et al., 2006).

B) SF1 expressing celis C) SF1 expressïng celis
(994 probe sets) (592 probe sets)
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1016 bp-i

506-517 bp
396bp-

Figure 3. Examples of PCR amplified cDNAs used to validate gene expression

within pre-Sertoli ceil transcriptome (see Table 1), size fractionated on a 1% agarose

gel. Amplified cDNA fragments were confirmed via sequencing, and selected

fragments were used to generate probes for whole mount in situ hybridization

(WISH) analysis (see Figure 4). Molecular weight (M.Wt.) standards are 1 Kb ladder

(Invitrogen Canada, Burlington).
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Figure 4. WISH expression patterns for SoxlO, Stc2, Fgf]8, Fgf]3, and Wnt6 genes in
mouse fetal gonads at different deveiopmentai time points. Testes are presented on
the ieft and ovaries are presented on the right. (A, B, C) Expression pattern of $ox]O
from ell.5, e12.5 and e13.5 respectiveiy. Generaiized expression is seen within the
testes at ail time periods. (D, E, F) Stc2 gene expression for ell.5, e12.5 and e13.5
respectively. In situ hybridisation signal is seen within the testicle at ail tïme perïods

e13,5elt5 elZ5

SoxlO

A

O) E)

StcZ IL:
Fgfl8

rgfl3

Wnt6
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I
Sox9



91

studied, with some staining of the mesonephros of both sexes at e 12.5 and e 13.5. (G,
H, I) Fgf]8 gene expression at ell.5, e12.5 and e13.5 respectively. Expression is flot
detected in el 1.5 gonads, whule slight expression is detected within the testis as well
as the mesonephros of both sexes at e12.5. By e13.5, strong expression is seen within
the testicular cords and male mesonephros. (J, K, L) Fgfl3 gene expression for el 1.5,
e 12.5 and e 13.5 respectively. fgf]3 expression is first detected within the
mesonephros of both sexes at e12.5. By e13.5 the signal is restricted to the testis. (M,
N, O) Wnt6 gene expression at el 1.5, e12.5 and e13.5 respectively. At ell.5 Wnt6
expression is seen in both male and female gonads and is evident in ail stages studied.
Within the testes expression is restricted to the testes cords by e13.5 while remaïning
diffuse within the ovary. As a positive control for the WISH protocol, male genital
ridges were hybridized with a probe for Sox9 at e12.5 and e13.5 (P, Q).



8) CONCLUSION

8.1) Contributions to Sex Determination and Differentiation.
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Figure 5. Putative mammalian Sertoli ccli determination model. A) Largely celi

autotnornous actions brought about by nuclear transcription factors specify the pre

Sertoli/granulosa celi with extema! Wnt4 specifying ccli migration pattems. B)

Expression of Sry is initiated by a combination of nuclear transcription factors

leading to the production of PDG2. This initiates a positive feedback loop increasing

the concentration of Sox9 and $ry in the nucleous, PDG2 also initiates the nuclear

localization of Sox9 in other celis recruiting them to a Sertoli celi fate. C) The fiuly

differentiated Sertoli ce!! initiates the production of several paracrine and endocrine

products which in tum drive testis differentiation.
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A putative schematic of some of the possible gene and protein interactions

that have been discussed in the literature is presented in figure 5.

The contribution of this thesis to the study of sex determination and

differentiation is the identification of genes up regulated in the pre-Sertoli ceils

compared to the XX genital ridge shortly after the time of Sry expression. This study

represents the earliest putative pre-Sertoli ceil microarray done within the genital

ridge to date. By FAC sorting ceils from the HybSRYp-RFP transgenic mouse genital

ridge at tau somite 20 we have isolated the earliest pre-Sertoli ceils thus far. The

limitations imposed by RFP being a protein that needs approximately 24 hours from

gene expression to signal preclude us from sorting an earlier celi population. In order

to have sorted celis at an earlier date we would need to use a GFP marker that has a

shorter translation time (about 6-8 hours). On the other hand this 24 hour time lag

may mean that we have isolated the original pre-Sertoli “stem celis” originating from

the coelomic epithelium (see 4.3.1). This would correspond to the salt and pepper

plienotype observed in the genital ridge as the original celis expressing RFP mRNA

would have 24 hours to migrate from the coelomic epithelium and enter the gonad

Subsequent celi divisions of these original “stem ceils” would give them an

appearance of random placement in the genital ridge.

A putative model of the five genes studied in this microarray study and their

placement in the male sex determination and differentiation cascade is shown in

figure 6. Several of these genes including Wnt6, Fgfl8 and Fgf]3 are most likely

invoÏved in sex differentiation and not sex determination. Wnt6 and Fgf 1$ may be

involved in a redundant system of checks and balances working antagonistically to

each other similar to the theory of Fgf9 vs. Wnt4 balance proposed by Kim et al.

(2006). Fgf13 is perhaps involved in the regulation and modification of MAPK

signaling pathways stimulated by such proteins as Hgf, Pdgf and neurotropins. Stc2

and SoxlO display an expression pattern more consistent with a direct role in sex

determination. SoxlO may influence the concentration of E box Sox proteins in the

nucleus directly. On the other hand, Stc2 may influence the nuclear localization of

Sry and E box Sox proteins by increasing calcium concentrations thereby increasing
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the effectiveness of calmodulin mediated transport of these proteins to the nucleus.

While ail of these hypotheses seem attractive more studies wi!! need to be done to

determine their authenticity.
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would be activated by the pathway. While few of the probes associated with core

proteins in signalïng pathways are represented in our data many of the modifiers of

these pathways are. The reason that evidence for the core proteins are missing may be

due to the comparative nature of this microanay. mRNA that is expressed at similar

levels between the ovarian celis and the pre-Sertoli ceils would cancel each other out

and therefore flot be represented in the microarray. Several themes are seen within the

data collected from the microarray that have flot been mentioned in the paper. Within

the genes overexpressed there is evidence for the activation of several celi signaling

categories including probes associated with Wnt, Rho/Rac/Ras, G-protein, insulin,

MAPK and calcium signaling.

8.1.3) Sry as a Canonical Transcription Factor

One interpretation of this microarray data may help to answer the central

question in sex determination, the exact role of SRY. Sry is thought to recognize and

bind to the consensus sequence AACAAT, this consensus sequence is also shared by

Lef- 1 and Tcf- 1, two transcription factors that are direct targets of the WNT pathway.

These two transcription factors are known to act in protein complexes both as

enhancers and repressors of transcription depending on the relative amounts of 3-

catenin. In the resting celi these transcription factors are complexed with the Groucho

protein (GRO) causing them to be transcriptionally repressive. In the presence of

canonical Wnt signaling, f3-catenin concentrations are increased in the cell, leading it

to enter the nucleus (see 5.3.4). When in the nucleus f3-catenin will replace GRO,

switching this repressive complex into a transcriptionally active one (reviewed by

Logan and Nusse, 2004).

Wnt4, Wnt5 and Wntll are known as the Wnt5a subclass. These Wnt

molecules can activate a noncanonical pathway that is antagonistic to the canonical

pathway at two levels. Upon stimulation of Frizzled by these proteins, a G-protein

complex phosphorilates Dishevelled maldng it unable to participate in the canonical

pathway (reviewed by Veeman et al., 2003). Furthermore, the stimulated G-protein

complex works to release internal calcium stores and initated a cascades involving
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Ca2/calmodulin-dependent protein kinase II (CaMKII) that leads to the

phosphorilation of Tcf1 and exportation of this protein out of the nucleous preventing

it from binding to DNA (Ishitani et al., 2003). If Wnt4 is acting in a non-canonical

fashion in the pre-Sertoli ceil it may work to repress the Tcf/Lef/f3-catenin complex

and therefore the expression of downstream genes (reviewed by Veman et al., 2003).

A putative role for Sry action may be to compete for these binding sites and

therefore negate the effect of this repressive complex or simply circumvent the

repressive noncanonical pathway and allow the expression of Wnt target genes. SRY

acting similarly to a canonical transcription factor is an attractive theory in light of

the Wnt6 expression pattern described. While Wnt4 is seen during the sarne time

period as Wnt6 it may be suppressing the action of Wnt6 through the non-canonical

pathway. Within the kidney, Wnt4 has both redundant and antagonistic functions

with Wnt6 therefore it would flot be unprecedented to see these two Wnts acting

antagonistically in the testes (Itiranta et al., 2002). Secondly, the presence of mRNA

species including those for CaMKII, Down syndrome critical region homolog 1

(Dscrl) and groucho related gene 6 (Grg6ITle6) in the pre-Sertoli ceil microarray

suggest an active non-cannonical pathway. Thirdly, the presence of Wnt5a mRNA is

seen as four fold overexpressed in the ovarian tissue compared to pre-Sertoli celi

mRNA. The Wnt5a activation of the noncanonical pathway may be why ovaries of

Wnt4 knockout mice do flot become totally sex reversed.

Activation of genes such as the E box Sox genes may in turn repress the non

canonicaT pathway allowing the canonical pathway to function and favor the

formation of the Tcf/Lef/13-catenin complex which may or may flot be able to replace

the action of Sry. Initial experiments using a promoter containing 2 Lef-1 binding

sites that drives a lucifrase reporter show both pig SRY and mouse Lef-143-catenin

can activate the expression of the reporter gene in a similar manner (unpublished

data). This lends some credence to the theory that Sry works by circumventing the

noncanonical Wnt pathway. If the noncanonical pathway is preventing TCFILEF

from entering the nucleus, SRY is well situated to interact with these binding sites.
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While this is promising, further study is needed to identify whether SRY can

outcompete TCF/LEF/GRO complexes for these same binding sites.

8.2) Analysis of the Microarray Technique

Within the last two years the study of sex determination lias entered an era of

microairay data. This new technology lias allowed us to peer more closely at the

genes expressed at different time points throughout sex determination and

differentiation. These studies have revealed several new mechanisms involved in

germ ccli differentiation (see 5.3.1) and sex determination (see 5.4.2) as well as at

least one theory of checks and balances (see 5.3.4.2). While microarray analysis is a

powerful tool it is stiil in its infancy and as with most children it has some problems

that it must grow out of and a lot of potential to grow into.

8.2.1) Limitations of the Microarrays

While microarrays do provided a useful tool for researchers there are specific

limitations some of which are immediately evident and others that are less evident.

The sensitivity of the microarray is a major limiting factor. The best example of this

is with the probe for Siy. Within our study, as well as the experiment by Beverdam

and Koopman (2006), Sry was not found when comparing celis from the male to the

female genital ridge. Within our study Siy may flot have been present as the mRNA is

diminishing in the genital ridge by ts23 but Beverdam and Koopman (2006) should

have found it at e 11.5. As mentioned Siy is arguably the most important gene

effecting male sex determination therefore the inability of the microarray to detect

Sry as overexpressed in the male genital ridge when compared to the female is

concerning. This glaring omission begs the question as to what else has been missed?

Also the amount of RNA needed to perform a single hybridization forces researchers

to either limit the specificity of their sample by including more than one cell type or,

as in this study, resort to pooling of celis from several samples. This limits the

amount of specificity by increasing the likelihood of having including unwanted ce!!

types in the sample.
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A 2nd limitation to the microarray is that it limits the amount of information to

RNA species that are already known. The design of the microchip is such that the

manufacturer is limited to RNA species that are already discovered. Other screening

types such as the SSH are not limited in this regard allowing the discovery of new

gene expression and perhaps new spiice variants. By claiming, as the Affymetrix

GeneChip® Mouse Genome 430.20 microanay does, that this microchip has probes

for the completely expressed genome it may liamper discovery of other RNA species

or spiice variants.

A 3C technical limitation of this microarray is the use of the poÏy A tau to

create the probes. The use of the poly A tau to amplify and create the cDNA probes

biases the results in two ways: 1) it ensures that only mRNA is converted to a

readable probe and 2) it has a limited capability to identify spiice variants if the

spiicing event occurs on the 5 prime end of the mRNA. This can cause several

problems: 1) non-coding RNA that may be regulating celi processes are entirely

ignored and 2) splice variants may be just as easily overlooked due to these technical

limitations. This has resently been addressed by the newer human, rat and mouse

microarrays. Through the use of random primer amplification and whole RNA

transcript probes the Affymetrix Mouse Exon 1.0 ST array can now avoid these

problems.

The 4111 limitation of microarrays has to do with the limited amount of general

knowledge in genetics. Within the microarray used by this study a large portion of the

probes on the microchip correspond to RNA species with no functional data.

Examples of these probes include the 334 genes classified into the unknown category

in Table 2 of the article. While these four areas are major limiting factors of the

microarray they represent technological problems that will no doubt be dealt with in

the near future.

8.2.2) Potential of the Microarray

The limitations of any tool are those imposed by its intended function and by

the imagination of its user. In this a microarray is no different. This tool lias an

amazing potential in the study of sex determination and differentiation.
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The gathering of massive amounts of information on tissues and celi unes is

the most obvious function of microarrays. By comparing transcriptomes across celi

unes we will have a better understanding of how these celis function. Indeed this has

been demonstrated in the present study. By comparing pre-Sertoli celis to the ovary

we have identïfied a large number of genes expressed by pre-Sertoli ceils. Other

comparisons that could be done with this model system could be the comparison of

pre-Sertoli celis to other celis in the male genital ridge, much like the study done by

Boyer et al. (2004). This could potentially highlight potential interactions between

pre-Sertoli celis and other celis in the genital ridge environment. Also by comparing

this ceil une to other ceil unes such as the neural crest or Leydig celis we may be able

to determine the interactions between developing organ systems and different origins

of celis.

By comparing similar celis across time (eg. one developmental stage to the

next) we will be able to develop a better understanding of liow cells and tissues

differentiate. With our model system the comparison of RFP pre-Sertoli cells from

one day to the next would give greater insiglit into how Sertoli celis differentiate over

time. The coupling of this microarray data to protein data would also allow us greater

insight into the worldng of the same ceil on several levels. By comparing mRNA data

to the proteins that are present at similar time points we would be able to determine

how much of sex determination and differentiation is regulated at the RNA-proteïn

translation level.

Perhaps the greatest function of microarray technology is that it can allow a

researcher to have a holistic approach to understanding gene interactions. By

comparing tissues or celi unes from mice subjected to certain treatments (eg. gene

knockout, replacement, mutation, ect.) to normal mice a researcher would have a

much better understanding of how the treatment alters gene expression. Indeed, some

research in sex determination lias started to realize this potential as seen in the recent

work by Coveney et al. (2006).
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8.3) Defining Sex

The word “sex” cornes from the Latin word sexus, to cut or separate, but sex

is flot a clear-cut biological entity. Even within species with obvious rnale or female

groups, individuals can differ along a spectrum of peculiarities of structure and

function that define males or females. The reason for this is the genetic complexity

behind these peculiarities. Whlle this genetic cascade lias been difficuit to unravel the

microarray is a powerful tool that may help us to define sex.
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1 434873_a_at 39,52498 Kctdl 1 11 B3 potassium channel tetramerisation domain containing 11

1434528_at 35,50753 Aard 15 C alanine and arginine rich domain containing protein
15 54.5

1450567_a_at 34,91833 Col2al cM procollagen type Il alpha 1

1441213_at 33,80502 BC021891 8 E2 cDNAsequenceBCO2l89l
8 50.0

1448906_at 32,64817 Cdhl6 cM cadherin 16
X 40.1 Cbp/p300-interacting transactivatot with Glu/Asp-rich

1449031_at 32,02401 Citedi cM carboxy-terminal domain 1

1436528_at 31,40535 Al842353 19C3 expressedsequenceAl842353
6 37.2

1423407_a_at 30,821 95 Fbln2 cM fibulin 2
18 18.0

1429768_at 30,18566 Dtna cM dystrobrevin alpha

141 7924_at 28,7291 Pak3 X F2 p21 (CDKN1A)-activated kinase 3
18 18.0

1456069_at 28,11944 Dtna cM dystrobrevin alpha

141 6411_at 26,52878 Gstm2 3 F2.3 glutathione S-transferase mu 2
14 28.0

1434653at 26,38299 Ptk2b cM PTK2 protein tyrosine kinase 2 beta

1422072_a_at 26,19306 Gstm6 3 F2.3 glutathione S-transferase mu 6
Mus musculus adult male hippocampus cDNA RIKEN
full-length enriched library clone:2900052J15

1455436_at 26,17879 product:unclassifiable full insert sequence

1435486_at 26,15383 Pak3 X F2 p21 (CDKN1A)-activated kinase 3
18 55.0

1433532_a_at 25,861 08 Mbp cM myelin basic protein
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141 71 09_at 25,74703 Lcn7 4 D2.2 lipocalin 7
4 53.0

1450673_at 25,51294 Co19a2 cM procollagen type IX alpha 2
5 50.0

1436879_x_at 25,23135 Albi cM albumin 1

1435693_at 24,82407 BCO1 2256 2 Fi cDNA sequence BCO1 2256

1448220_at 24,51484 2200008D09Rik 8 El RIKEN cDNA 2200008D09 gene
14 21.0

1438718_at 24,17502 Fgt9 cM fibroblast growlh factor 9

1447845_s_at 24,15176 Vnni 1OA1-B2 vaninl

1 449484_at 23,52219 Stc2 il A4 stanniocalcin 2
Y 2.07

1452077_at 22,82726 Ddx3y cM DEAD (Asp-Glu-Ala-Asp) box polypeptide 3 Y-linked
1 15.0

1428571_at 22,4166 Col9al cM procollagen type IX alpha 1

1 424477_at 21,75098 BCO1 9731 5 G2 cDNA sequence BCO1 9731
1 94.2

1443823sat 21,16184 Atpla2 cM ATPase Na+/K÷ transporting alpha 2 polypeptide

1449533_at 20,95882 1810057C19Rik 11 C RIKEN cDNA 1810057Ci9 gene

1419100_at 20,95479 Serpina3n 12 E serine (or cysteine) proteinase inhibitor clade A member 3N
11 60.25

1449392_at 20,68206 Hsdi7bl cM hydroxysteroid (17-beta) dehydrogenase 1
14 21.0

1423271_at 20,55737 Gjb2 cM gapjunction membrane channel protein beta 2

141 5935_at 20,52003 Smoc2 SPARC related modular calcium binding 2

1435126_at 20,401 38 Duspl5 2 Hi dual specificity phosphatase-like 15

1419072_at 19,8722 O6l0005AO7Rik 3 F2.3 RIKEN cDNA 0610005A07 gene
10 55.0

1421114_a_at 19,77151 Dspg3 cM dermatan sulphate proteoglycan 3

14408i3_s_at 19,72487 Plxnb3 X A7.i plexin B3
9 48.0

141 6632_at 19,6741 Modi cM malic enzyme supernatant

1448871_at 18,70329 Mapki3 17 A3-B mitogen activated protein kinase 13
1 48.6

141 6666_at 18,2955 Serpine2 cM serine (or cysteine) proteinase inhibitor clade E member 2
14 10.0

141 8370_at 18,28054 mcc cM troponin C cardiac/slow skeletal
lslr2, RIKEN cDNA B930052A04 gene, Immunoglobulin

1434421_at 17,81 277 B930052A04R1k 9 B supertamily containing Ieucine-rich repeat 2

1443322_at 17,6791 Mus musculus transcribed sequences
19 12.0

141 6468_at 17,44414 Aldhlal cM aldehyde dehydrogenase family 1 subfamily Al
Mus musculus adult male olfactory brain cDNA RIKEN
full-length enriched library clone:6430501 N10

1 438068_at 17,24624 product:unknown EST full insert sequence
a disintegrin-like and metalloprotease (reprolysin type) with

1439604_at 17,06847 Adamtsl6 13 B3 thrombospondin type 1 motif 16

1424930_s_at 17,01 866 MGC27770 15 Ei hypothetical protein MGC27770

1448330_at 16,93596 Gstml 3 F2.3 glutathione 5-transferase mu 1
Mus musculus similar to retinoblastoma-binding protein 6
isoform 2; proliferation potential-related protein;

i433787at 16,87683 7 B3 RB-binding Q-protein 1 (L0C243998) mRNA
15 57.4

1422127_at 16,84316 Dhh cM deserthedgehog
3 71.2

141 6225_at 16,62522 Adhl cM alcohol dehydrogenase 1 (class I)

141 7923_at 16,24576 Pak3 X F2 p21 (CDKN1A)-activated kinase 3
5 64.0

141 8743_a_at 16,04998 2410011 Ki ORik cM RIKEN cDNA 2410011 Ki O gene

1453063_at 15,94582 Cltb 13 Bi clathrin light polypeptide (Lcb)

1431362_a_at 15,68041 Smoc2 SPARC related modular calcium binding 2
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7418486_at 75,3653 Vnnl 1OA1-B2 vaninl

.1455080_at 15,15691 Ppplrl6b 2 H2 protein phosphatase 1 regulatory (inhibitor) subunit 16B
11 69.5

1424950_at 15,05233 Sox9 cM SRY-box containing gene 9
Mus musculus similar to chromosome 14 open reading frame

1456823_at 14,76314 12 C3 50 (L0C210762) mRNA
1 1 42.0 solute carrier family 6 (neurotransmitter transporter serotonin)

14171 50_at 14,74083 S1c6a4 cM member 4

1418412_at 14,73842 Tpd5211 10 A4 tumor protein D52-Iike 1

1433607_at 14,60704 Cbln4 2 H3 cerebellin 4 precursor protein

1448723_at 14,441 66 Rdh7 10 D3 retinol dehydrogenase 7

1444038_at 14,37036 Mus musculus transcribed sequences

1448955_s_at 14,26373 Cadps 14 Al Ca<2+>dependentactivator protein for secretion

1436295_at 14,24464 Hcrtrl 4 D2.2 hypocretin (orexin) receptor 7

1425985_s_at 14,17039 Maspi 16 B2-B3 mannan-binding lectin serine protease 1
Y 2.03

1424903_at 13,87 65 Smcy cM selected mouse cDNA on the Y

14341 95_at 13,66993 6030424L22Rik 9 E3.1 RIKEN cDNA 6030424L22 gene

1438408_at 13,65961 5730467H21Rik 5 E3 RIKEN cDNA 5730467H21 gene

1449396_at 13,58548 Aoc3 71 B2-B5 amine oxidase coppercontaining 3

1437 400_a_at 13,45449 Gas7 71 B3 growth arrest specific 7
4 66.1

141 7381_at 13,45312 Clqa cM complement component 1 q subcomponent alpha polypeptide
15 46.6

1457 689_a_at 13,23076 SoxlO cM SRY-box containing gene 70
10 41.3

1418237_s_at 13,20298 Coll8al cM procollagen type XVIII alpha 1

1448507_at 13,08535 4931430101Rik 10 RIKEN cDNA 4937430101 gene

1434494_at 13,06718 Zari 4 C5 zygote arrest 1

143731 8_at 12,98205 Pak3 X F2 p21 (CDKN1A)-activated kinase 3

14171 60_s_at 12,96539 Expi 17 C extracellular proteinase inhibitor
6 66.0

1422823_at 12,9391 EpsB cM epidermal growth factor receptor pathway substrate 8

141 5883_a_at 12,89801 Ela3b 4 03 elastase 3B pancreatic

1425627_x_at 12,85009 Gstml 3 F2.3 glutathione S-transferase mu 1

1452227_at 12,71123 23l0045A20Rik 5C1 RIKENcDNA2310045A2Ogene
6 66.0

1 422824_s_at 12,63219 EpsB cM epidermal growth factor receptor pathway substrate 8
NpaIl,

1453345_at 7 2,5821 3830408G70Rik 5 C3.2 RIKEN cDNA 3830408G 10 gene, NIPA-like domain containing 1

1437661_at 12,56472 16 Al Mus musculus similarto MGC45438 protein (L0C239691) mRNA
10 41.3

1426955_at 1 2,53046 CollBal cM procollagen type XVIII alpha 1

1423569_at 12,5255 Gatm 2 E5 glycine amidinotransferase (L-arginine:glycine amidinotransferase)
9 55.0

141 7494_a_at 1 2,45274 Cp cM ceruloplasmin

744891 8_at 72,33831 SIco3al 7 C solute carrier organic anion transporter family member 3a1

1433454_at 12,3258 AW539457 2 E2 expressed sequence AW539457

1422478_a_at 12,1798 Acas2 2 Hi acetyl-Coenzyme A synthetase 2 (ADP forming)
5 41.0

1451763_at 12,74916 Cngal cM cyclic nucleotide gated channel alpha 1
Y 2.07

1426439_at 12,12803 Ddx3y cM DEAD (Asp-GIu-Ala-Asp) box polypeptide 3 Y-linked
8 45.0

1419413_at 11,99332 Cc117 cM chemokine (C-C motif) ligand 17

1 434252_at 11,93742 C63007 6B22Rik 10 C2 RIKEN cDNA C63001 6B22 gene
NpaIl,

1456321_at 11,90134 3830408G10Rik 5 C3.2 RIKEN cDNA 3830408G10 gene
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1428975..at 11,80512 170001711 lRik 13 A5 RIKEN cDNA 1700017111 gene

1420388_at 11,75736 Prssl2 3 G1 protease serine 12 neurotrypsin (motopsin)

141 6416_x_at 11,69137 Gstml 3 F2.3 glutathione S-transferase mu 1
9 48.0

1 430307_a_at 11,67876 Modi cM malic enzyme supernatant
18 55.0

1 456228_x_at 11,56311 Mbp cM myelin basic protein
Mus musculus adult male corpus striatum cDNA RIKEN
fulI-length enriched Iibrary clone:C03001 2J07

1435994_at 11,51555 product:unknown EST full insert sequence

1428547_at 11,45887 NtSe 9 E3.1 5 nucleotidase ecto

143601 3_at 11,33301 C230098l05 7 F3 hypothetical protein C230098l05
11 35.0

1421 602_at 11,28789 Shbg cM sex hormone binding globulin
5 75.0

1 427529_at 11,28302 Fzd9 cM frizzled homolog 9 (Drosophila)

1 449873_at 11,25627 Oxct2a 4 D2.2 3-oxoacid CoA transferase 2A

1 454622_at 11,24309 S1c38a5, C81 234 X Al .1 Solute carrier family 38, member 5, expressed sequence C81 234
Mus musculus adult male corpora quadrigemina cDNA RIKEN fuIl-Iengtl
enriched Iibrary clone:B230343A10 product:unknown EST full insert

1442019_at 11,1968 sequence
9 56.0

1425546_a_at 11,14018 Trf cM transferrin

142871 7_at 11,13691 281001 9K23Rik 6 83 RIKEN cDNA 281001 9K23 gene

143501 2_x_at 11,06471 Ela3b 4 D3 elastase 3B pancreatic

1 422670_at 11,03725 Arhn 11 C-D ras homolog N (RhoN)

1 434945_at 11,03134 A330042H22 8 C5 hypothetical protein A330042H22

1455664_at 10,96932 Rtn4rll 11 B5 reticulon 4 receptor-like 1

1438602_s_at 10,95908 Maspl 16 B2-B3 mannan-binding lectin serine protease 1

1421556_at 10,95888 Serpina3a 12 E serine (or cysteine) proteinase inhibitor clade A member 3A

1427386_at 10,93807 Arhgef 16 4 E2 Rho guanine nucleotide exchange factor fGEF) 16
3 49.1

1448453_at 10,81437 Hsd3bl cM hydroxysteroid dehydrogenase-1 delta<5>-3-beta

1425559_a_at 10,68073 Sah 7 F1 SA rat hypertension-assœiated homolog

14531 91_at 10,64532 Co127a1 4 B3 procollagen type XXVII alpha 1
C-type (calcium dependent carbohydrate recognition domain)

142201 3_at 10,57516 Clecsf6 6 F2 lectin superfamily member 6

1422695_at 10,56227 Ttyhl 7 Al tweety homolog 1 (Drosophila)

14491 58_at 10,53441 Kcnk2 1 H6 potassium channel subfamily K member 2
14 18.5

141 6523_at 10,52237 Rnasel cM ribonuclease RNase A family 1 (pancreatic)
4 66.1

1449401_at 10,47071 Clqg cM complement component 1 q subcomponent gamma polypeptide

1439566_at 10,3424 C730021L23 6 B3 hypothetical protein C730021L23
9 60.0

1 450754_at 10,26687 Cacna2d2 cM calcium channel voltage-dependent alpha 2/delta subunit 2

1429682_at 10,15546 4930431 BO9Rik 3 F2.2 RIKEN cDNA 4930431 B09 gene
12 39.0

141 7384_at 9,969489 Entpd5 cM ectonucleoside triphosphate diphosphohydrolase 5
9 55.0

141 7495_x_at 9,91 4971 Cp cM ceruloplasmin
4 66.1

1437726_x_at 9,824385 Clqb cM complement component 1 q subcomponent beta polypeptide

1435554_at 9,820449 C630016B22Rik 10 C2 RIKEN cDNA C630016B22 gene
11 39.0

14491 64_at 9,7593 Cd68 cM CD68 antigen
4 66.1

141 7063_at 9,729437 Clqb cM complement component 1 q subcomponent beta polypeptide

141 7343_at 9,709277 Fxyd6 9 A5.2 FXYD domain-containing ion transport regulator 6
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1436870_s_at 9,697076 AUO41 783 19 D2 expressed sequence AUO41 783
3 18.2

141 7577_at 9,673335 Trpc3 cM transient receptor potential cation channel subfamily C member 3

1435793at 9,648543 463241 7K02 9 C hypothetical protein 463241 7K02

1449285_at 9,636237 Cst9 2 G3 cystatin 9
15 61.7

1452001_at 9,63204 Nfe2 cM nuclear factor erythroid derived 2

1449172_a_at 9,609737 Lin7b 7 B3 lin 7 homolog b (C. elegans)
14 58.0

141 8028_at 9,536512 Dct cM dopachrome tautomerase

14271 68_a_at 9,504552 Coll4al 15 D procollagen type XIV alpha 1

1448660_at 9,4703 Arhgdig 17 A3.3 Rho GDP dissociation inhibitor (GDI) gamma

1427537_at 9,370694 Eppkl 15 D3 epiplakin 1

1423523_at 9,272878 Aass 64.5cM aminoadipate-semialdehyde synthase

141 8551_at 9,24533 Mybpc3 myosin binding protein C cardiac
1 94.2

1455136_at 9,1 93327 Atpla2 cM ATPase Na+/K+ transporting alpha 2 polypeptide

1455794_at 9,101 688 D130058l21Rik 11 B4 RIKEN cDNA D130058121 gene

1429276_at 9,057213 9 F3 Mus musculus similarto mKIAAO342 protein (L0C235639) mRNA

141 9599_s_at 9,046317 Ms4al 1 19 A membrane-spanning 4-domains subfamily A member 11
Mus musculus transcribed sequence with strong similarity to
protein sp:P51 830 (M.musculus) CYA9_MOUSE
Adenylate cyclase type IX (ATP pyrophosphate-Iyase)

141 9811_at 9,032575 (Adenylyl cyclase) (Adenylyl cyclase type 10) (ACTP1O)

141 9503_at 8,993855 Stc2 11 A4 stanniocalcin 2

1439240_x_at 8,992973 Lin7b 7 B3 lin 7 homolog b (C. elegans)

1460459_at 8,978847 O6lOOlOll5Rik 9 C RIKEN cDNA 0610010115 gene

1 435343_at 8,905704 Docki 0 1 C5 dedicator 0f cytokinesis 10
X 18.0

141 8497_at 8,863267 Fgf13 cM fibroblast growth factor 13
14 28.0

1418626_a_at 8,807479 Clu cM clusterin

1 440889_at 8,740523 BC006965 11 E2 cDNA sequence BC006965

141 8492_at 8,723312 Prdc 1 H3 protein related to DAN and cerberus

1 420697_at 8,701158 SIci 5a3 19 A solute carrier family 15 member 3

1434874_x_at 8,687607 Kctdll 11 B3 potassium channel tetramerisation domain containing 11

1426959_at 8,656646 Bdh 16 Al 3-hydroxybutyrate dehydrogenase (heart mitochondrial)

1435830_a_at 8,646791 5430435G22Rik 1 E4 RIKEN cDNA 5430435G22 gene

1417673_at 8,632111 Grbl4 2 C1.3 growth factor receptor bound protein 14

1429831_at 8,567814 Pik3apl 19 C3 phosphoinositide-3-kinase adaptor protein 1
Mus musculus 16 days embryo head cDNA RIKEN fuIl-length
enriched library clone:C1 30042N08 product:inferred:

1440200_at 8,56658 KIAA1 276 protein (Homo sapiens] full insert sequence

141 5936_at 8,564687 Bcar3 3 G1 breast cancer anti-estrogen resistance 3

1445897_s_at 8,506356 2Ol0008Kl6Rik 11 D RIKEN cDNA2Ol0008Kl6gene

741 9289_a_at 8,409311 Syngri 15 El synaptogyrin 1
13 15.0

1422645_at 8,40251 Hfe cM hemochromatosis

1454795_at 8,372552 D430044D16Rik 2 C1.3 RIKEN cDNA D430044D16 gene

1437326_x_at 8,337014 Ela3b 4 D3 elastase 3B pancreatic
19 32.0

1434510at 8,323867 Papss2 cM 3-phosphoadenosine 5-phosphosulfate synthase 2

1428455_at 8,322022 Coll4al 15 D procollagen type XIV alpha 1

1434202_a_at 8,279081 MGC58343 14 Al hypothetical protein MGC58343

14401 56_s_at 8,238098 Mus musculus transcribed sequences

1460336_at 8,21 41 94 Ppargcl 5 Cl peroxisome proliferative activated receptor gamma coactivator 1
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1454909_at 8,19829 B230378H13Rik 8 A2 RIKEN cDNA B230378H13 gene

1424393_s_at 8,183462 Adhfei 1 A2 alcohol dehydrogenase iron containing 1

1460601_at 8,126008 Myrip 9 F4 myosin VIIA and Rab interacting protein

1441380_at 8,092921 2810439F02Rik 18 Ai RIKEN cDNA 2810439F02 gene

1421 671_at 8,091856 Hsdl7b3 hydroxysteroid (17-beta) dehydrogenase 3
2 67.1

1425248_a_at 8,078045 Tyro3 cM TYRO3 protein tyrosine kinase 3

1 433453_a_at 7,968385 AW539457 2 E2 expressed sequence AW539457

1 436279_at 7,964459 Slc26a7 4 Ai solute carrier family 26 member 7
10 70.0

1422523_at 7,946197 Si cM silver

1428835_at 7,943419 2400004E04Rik 7 B3 RIKEN cDNA 2400004E04 gene

141 721 2_at 7,931 26 9530058B02Rik - 17 A3.3 RIKEN cDNA 9530058B02 gene

1450020_at 7,890772 Cx3cri 9 F4 chemokine (C-X3-C) receptor 1

1427477_at 7,785297 L0C214531 9 A5.2 mosaic serine protease-like
11 69.5

1451538_at 7,748915 Sox9 cM SRY-box containing gene 9

1424392_at 7,71 71 59 Adhfel 1 A2 alcohol dehydrogenase iron containing 1
sema domain immunoglobulin domain (1g) transmembrane

14481 10_at 7,706679 Sema4a 3 F1 domain (TM) and short cytoplasmic domain (semaphorin) 4A

141 8654_at 7,690658 Hao3 3 F2.2 hydroxyacid oxidase (glycolate oxidase) 3
19 32.0

1421 989_s_at 7,667973 Papss2 cM 3-phosphoadenosine 5-phosphosulfate synthase 2
Mus musculus aduit male corpora quadrigemina cDNA
RIKEN full-Iength enriched Iibrary clone:B230343A1 O

1457270_at 7,648746 product:unknown EST full insert sequence

141 8051_at 7,6401 73 Ephb6 6 Bi Eph receptot B6

146001 1_at 7,622035 Cyp26bi 6 C3 cytochrome P450 family 26 subfamily b polypeptide 1

142521 4_at 7,5901 78 P2ry6 7 Ei pyrimidinergic receptor P2Y G-protein coupled 6
fleurai precursor ceil expressed developmentally

1422818_at 7,572 Nedd9 13 A4 down-regulated gene 9
1 69.9

1448975_s_at 7,532744 Reni cM renin 1 structural

1436996_x_at 7,514908

1433579_at 7,489162 9l300liBiiRik i2C3 RIKENcDNA9130011B11 gene

1437766_at 747191

141 9489_at 7,41 61 68 AW049604 15 E3 expressed sequence AW049604
1 -acylglycerol-3-phosphate 0-acyltransfe rase 1

1428336_at 7,41 2545 Agpat4 17 Ai (lysophosphatidic acid acyltransferase delta)

1428804_at 7,40396 4933428Ai5Rik 8 B3.1 RIKEN cDNA 4933428Ai5 gene

1451 01 9_at 7,40234 Ctsf 19 A cathepsin F
4 60.0

1449854_at 7,336724 NrOb2 cM nuclear receptor subfamily O group B member 2

1452301_at 7,325997 i70000iNl9Rik 19 A RIKEN cDNA 1700001N19 gene

1423729_a_at 7,241177 2500002Li4Rik 6 Cl RIKEN cDNA 2500002Li4 gene

141 7275_at 7,166371 MaI 2 F1 myelin and lymphocyte protein T-ceIl differentiation protein

i4272i4_at 7,098153 Agmat 4 El agmatine ureohydrolase (agmatinase)

1448475_at 7,071025 28i0002E22Rik 3 F2.2 RIKEN cDNA 2810002E22 gene

141 9482_at 7,027275 C3arl 6 F1 complement component 3a receptor 1
16 2.0

141 8586_at 7,006979 Adcy9 cM adenylate cyclase 9
Mus musculus transcribed sequence with moderate similarity
to protein sp:P00722 (E. cou) BGAL_ECOLI

1 436092_at 6,994358 Beta-galactosidase (Lactase)

1435495_at 6,99371 Mybph 1 E4 myosin binding protein H

141 8030_at 6,950911 Slco3al 7 C solute carrier organic anion transporter family member 3a1

14371 32_x_at 6,950011 Nedd9 13 A4 neural precursor celi expressed developmentally down-regulated
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gene 9

12 39.0
1433763_at 6933158 Entpd5 cM ectonucleoside triphosphate diphosphohydrolase 5

4 69.8
1431 339_a_at 6,919895 D4Wsu27e cM DNA segment Chr 4 Wayne State University 27 expressed

8 35.0
1448239_at 6,907719 Hmoxl cM heme oxygenase (decycling) 1

1458298_at 6,897265 Mus musculus transcribed sequences
7 50.0

1436945_x_at 6,89056 Stimi cM stromal interaction molecule 1

1425807_at 6,888899 BC021891 8 E2 cDNA sequence BCO21 891

1 450988_at 6,770716 Gpr49 10 D2 G protein-coupled receptor 49

1 447707_s_at 6,759869 phosphodiesterase 2A, cGMP-stimulated,Pde2a,---

1428891_at 6,674429 9130213B05Rik 5 E2 RIKEN cDNA 9130213B05 gene

1455274_at 6,673308 Mus musculus transcribed sequences
7 48.1

1421385_a_at 6,61 2845 Myo7a cM myosin Vila
Y 2.06

1426598_at 6,570302 Uty cM ubiquitously transcribed tetratricopeptide repeat gene Y chromosome

1450792_at 6,563086 Tyrobp 7 B TYRO protein tyrosine kinase binding protein
sema domain immunoglobulin domain (1g) transmembrane

1438934_x_at 6,557739 Sema4a 3 F1 domain (TM) and short cytoplasmic domain (semaphorin) 4A

1426189_at 6,557467 Duspi5 2 Hi dual specificity phosphatase-like 15

1427231_at 6,545025 Robol 16 Al roundabout homolog 1 (Drosophila)

1453794_at 6,532451 Feril4 2 Hi fer-1 -like 4 (C. elegans)
11 40.0

14351 48_at 6,530531 Atpl b2 cM ATPase Na+/K+ transporting beta 2 polypeptide
Mus musculus 16 days neonate cerebellum cDNA RIKEN
fuIl-Iength enriched Iibrary clone:9630053J03

1 452980_at 6,486511 product:unknown EST full insert sequence
type 1 tumor necrosis factor receptor shedding aminopeptidase

141 6942_at 6,463901 Artsl 13 Ci regulator
18 18.0

141 9223_a_at 6,456411 Dtna cM dystrobrevin alpha
14 21.0

1 420795_at 6,446916 Fgf9 cM fibroblast groMh factor 9

14i7757_at 6,433117 Uncl3a une-13 homolog A (C. elegans)
2 86.0

1424479_at 6,429855 Cst8 cM cystatin 8 (cystatin-related epididymal spermatogenic)

1425887_at 6,404624 493O5liJllRik i6Al RIKENcDNA493O511J11 gene

1 457825_x_at 6,381359
16 61.8

141 8057_at 6,373151 Tiaml cM T-ceIl lymphoma invasion and metastasis 1
13 55.0

1421 694_a_at 6,370251 Cspg2 cM chondroitin sulfate proteoglycan 2

i439015at 6,359183 Gfrai 19 D2-D3 glial celi line derived neurotrophic tactorfamily receptoralpha 1

1428184_at 6,325524 3liOO35Ei4Rik 1 A2 RIKENcDNA3110035E14gene

1433720_s_at 6,314702 i62O4OiEO4Rik 10 Ci RIKEN cDNA i620401E04 gene
Mus musculus adult male tongue cDNA RIKEN fulI-length
enriched Iibrary clone:231 0039G09 product:hypothetical
Vacuolar sorting protein 9 (VPS9) domain containing protein

14321 97_at 6,313968 full insert sequence
7 15.0

1432332_a_at 6,306442 D7Rp2e cM DNA segment Chr 7 Roswell Park 2 complex expressed
4 61.0

141 6023_at 6,296651 Fabp3 cM fatty acid binding protein 3 muscle and heart

1447808_s_at 6,284619 Slcisa2 16 Ai solute carrier family 15 (H+/peptide transporter) member 2

i430128_a_at 6,283152 Dplll 10 Cl deleted in polyposis 1-like 1
10 17.0

141 6953_at 6,279613 Ctgf cM connective tissue growth factor

i448320_at 6,273475 Stimi 7 50.0 stromal interaction molecule 1
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cM

1419873_s_at 6,27
sema domain seven thrombospondin repeats

15 19.7 (type 1 and type 1-like) transmembrane domain (1M)
1434776_at 6,249704 Sema5a cM and short cytoplasmic domain (semaphorin) 5A

1426784_at 6,23964 221 0023F24Rik 11 E2 RIKEN cDNA 221 0023F24 gene

1435033_at 6,197056 9330140K16Rik 1 B RIKEN cDNA 9330140K16 gene

1438074_at 6,155394 2210010C17Rik 7 A2 RIKEN cDNA 2210010C17 gene
13 20.0

1419486_at 6,140197 Foxci cM forkhead box Cl

1451 935_a_at 6,128531 Spint2 7 A3 serine protease inhibitor Kunitz type 2
Y 2.02

1450285_at 6,123199 Ubelyl cM ubiquitin-activating enzyme El Chr Y 1

1451 236_at 6,1019 Rerg 6 Gi RAS-like estrogen-regulated growth-inhibitor
8 53.0

1431763_a_at 6,081062 Ctrl cM chymotrypsin-like

1421 833_at 6,063904 Pip5kla 19 Cl phosphatidylinositol-4-phosphate 5-kinase type 1 alpha

1439500_at 6,063575 2810019K23Rik 6 B3 RIKEN cDNA 2810019K23 gene

1424277_at 6,057608 11 lOO2OLl9Rik X A7.1 RIKEN cDNA 1110020L19 gene
9 60.3 sema domain immunoglobulin domain (1g) short basic domain

144841 5_a_at 6,041 848 Sema3b cM secreted (semaphorin) 3B
5 51.0

1449984_at 6,032181 CxcI2 cM chemokine (C-X-C motif) ligand 2
8 33.5 endothelial differentiation lysophosphatidic acid

1442291_at 6,008824 Edg4 cM G-protein-coupled receptor 4
X 28.95

1420944_at 6,005875 Zfp185 cM zinc finger protein 185

1 450606_at 5,982313 Pnmt 11 D phenylethanolamine-N-methyltransferase

1427076_at 5,96326 Mpegl 19 A macrophage expressed gene 1
10 70.0

1434606_at 5,96234 Erbb3 cM v-erb-b2 erythroblastic leukemia viral oncogene homolog 3 (avian)
Mus musculus aduit male testis cDNA RIKEN
fulI-length enriched library clone:4930402124

1436552_at 5,953858 18 B3 product:hypothetical protein full insert sequence

1428952_at 5,930475 1810041 Fl3Rik 17 A3.3 RIKEN cDNA 1810041 F13 gene

143561 1_x_at 5,925198 Ela3b 4 D3 elastase 3B pancreatic

1460582_x_at 5,90613 Mus musculus transcribed sequences

1456509_at 5,905817 lllOO32FO4Rik 3 El RIKEN cDNA 11 10032F04 gene
4 59.1

1422467_at 5,896131 Pptl cM palmitoyl-protein thioesterase 1

1436905_x_at 5,858395 Laptm5 4 D2.3 lysosomal-associated protein transmembrane 5

1433578_at 5,854346 E130304D01 5 C3.2 hypothetical protein E130304D01

1424754_at 5,846382 A43O1O3C15Rik 19 A RIKEN cDNA A430103C15 gene

1448021_at 5,843421 Mus musculus transcribed sequences

1449590_a_at 5,835643 Mras 9 E3.3 muscle and microspikes RAS

1430352_at 5,8341 63 843041 7A2ORik 6 Dl RIKEN cDNA 843041 7A20 gene
15 42.7

14171 85_at 5,794759 Ly6a cM lymphocyte antigen 6 complex locus A

1424259_at 5,78506 240001 OGl5Rik 17 A3.3 RIKEN cDNA 240001 0G15 gene
9 52.0

141 6687_at 5,782431 Plod2 cM procollagen lysine 2-oxoglutarate 5-dioxygenase 2

141 8088_a_at 5,771204 Stx8 11 B3 syntaxin 8

1455833_at 5,765481 AU041783 19 D2 expressed sequence AU041783

1436868_at 5,722392 Rtn4rll 11 B5 reticulon 4 receptor-like 1

1419872_at 5,719254
4 81.5

145601 0_x_at 5,71 6076 Hes5 cM hairy and enhancer of split 5 (Drosophila)

142091 9_at 5,704887 Sgk3 1 A2 serum/glucocorticoid regulated kinase 3
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1 436532_at 5,685438 C730036H08 9 F3 hypothetical protein C730036H08
Mus musculus aduit male testis cDNA RIKEN fulI-Iength
enriched Iibrary clone:4921 513101 product:unknown

1456951at 5,684549 EST full insert sequence

1425258_at 5,680484 Cstl 1 2 G3 cystatin 11

1429549_at 5,663826 Co127a1 4 B3 procollagen type XXVII alpha 1

1 447800_x_at 5,657882

1452302_at 5,655762 C1n8 8 6.0cM ceroid-Iipofuscinosis neuronal 8
C-type (calcium dependent carbohydrate recognition domain)

141 9627_s_at 5,655482 Clecsf10 6 F2 lectin superfamily member 10

1426399_at 5,647689 4932416A11Rik RIKEN cDNA 493241 6A11 gene
Mus musculus transcribed sequence with moderate similarity
to protein pdb:1LBG (E. coli) B Chain B Lactose Operon
Repressor Bound To 21-Base Pair Symmetric Operator

1434537_at 5,6441 86 Dna Alpha Carbons Only

1429466_s_at 5,642734 O6l0008AlORik 9 C RIKEN cDNA 0610008A10 gene
11 60.0

1437341_x_at 5,61 9773 Cnpl cM cyclic nucleotide phosphodiesterase 1

1438968_x_at 5,61 6998 Spint2 7 A3 serine protease inhibitor Kunitz type 2

1 450430_at 5,615987 Mrcl 2 5.0 cM mannose receptor C type 1

1417707at 5,601182 B230342M21Rik 5 G3 RIKEN cDNA B230342M21 gene
1 16.5

1423626_at 5,566185 Dst cM dystonin
5 50.0

1416646at 5,526485 Albl cM albumin 1

1418601_at 5,52577 Aldhla7 19 B aldehyde dehydrogenase family 1 subfamily A7

1426808_at 5,514894 Lgals3 14 B lectin galactose binding soluble 3
2 86.0

1449455at 5,50568 Hck cM hemopoietic ceil kinase
12 39.0

1451765_a_at 5,494708 Entpd5 cM ectonucleoside triphosphate diphosphohydrolase 5
11 56.3

1451 822_a_at 5,492899 Dl 1 Moh48 cM DNA segment Chr 11 KL Mohlke 48

141 6806at 5,47946 Fdxr 1 1 E2 ferredoxin reductase
Mus musculus similarto Spindlin-like protein 2 (SPIN-2)

1455297_at 5,470494 X F3 (L0C278240) mRNA
14 28.0

1454849_x_at 5,467651 Clu cM clusterin

1416460at 5,461626 Aldrl6 15 E3 aldehyde reductase (aldose reductase)-like 6
1 64.1

1426858_at 5,456906 lnhbb cM inhibin beta-B

142461 5_at 5,453918 Arhg 7 E2 ras homolog gene family member G
3 50.5

144861 7_at 5,439277 Cd53 cM CD53 antigen
X 27.8

141 6934 at 5,41 7936 Mtml cM X-linked myotubular myopathy gene 1
4 66.1

1434366_x_at 5,41 4599 Clqb cM complement component 1 q subcomponent beta polypeptide

1437785_at 5,41 0841 8430403M15Rik 6 Dl RIKEN cDNA 8430403M15 gene
17 19.05

141 8204_s_at 5,405915 Aif 1 cM allograft inflammatory factor 1

1440668at 5,39681 C130057K09 7 D2 hypothetical protein C130057K09

14451 86_at 5,388441 Stc2 11 A4 stanniocalcin 2

1451606_at 5,379731 A530016L24R1k 12 F1 RIKEN cDNAA5300l6L24gene

1455721_at 5,3731 84 Gspt2 X C2 G1 to phase transition 2

1440823_x_at 5,372747 D130058l21Rik 11 B4 RIKEN cDNA D130058121 gene

1426288_at 5,35929 6430526J12Rik 2 El RIKEN cDNA 6430526J12 gene

1435469_at 5,3461 34 BC030934 2 A3 cDNA sequence BC030934

1436990_s_at 5,340768 1620401E04Rik 10 Cl RIKEN cDNA 1620401E04 gene
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11 60.0
141 8980_a_at 5,336341 Cnpi cM cyclic nucleotide phosphodiesterase 1

12 39.0
141 7382_at 5,328394 Entpd5 cM ectonucleoside triphosphate diphosphohydrolase 5

4 41.6
741 8791_at 5,325983 Sh3g12 cM SH3-domain GRB2-like 2

14341 00_x_at 5,321325 A830037N07R1k 5 Ci RIKEN cDNA A830037N07 gene
11 47.59

147 9561 _at 5,256716 Cc13 cM chemokine (C-C motif) ligand 3

1 420504_at 5,230284 Slc6al 4 X A2 solute carrier family 6 (neurotransmiffer transporter) member 14

1458347_s_at 5,225765 Tmprss2 16 C2 transmembrane protease serine 2

14471 00_s_at 5,224757 5730508B09Rik 3 G2 RIKEN cDNA 5730508B09 gene

1435375_at 5,194609 9830126M18 15 Bi hypothetical protein 9830126M18

7 426806_at 5,152878 5830411 El ORik 1 Ci .1 RIKEN cDNA 5830411 Ei O gene
ii 3.0

1448200_at 5,150013 Tcn2 cM transcobalamin 2

i4i8265_s_at 5,135918 lrf2 8 Bi.1 interferon regulatory factor 2
3 42.7

1448591_at 5,12135 Ctss cM cathepsin S
7 42.2

i429987_at 5,116357 AY007814 cM hypothetical protein i2Hi9.Oi.T7
sialyltransferase 9 (CMP-NeuAc:lactosylceramide

i460241_a_at 5,701 084 Siat9 6 Cl alpha-23-sialyltransferase)
Mus musculus similar to KRAB zinc finger protein KR1 8

i444589_at 5,098563 17 A3.2 (L0C240038) mRNA
sema domain immunoglobulin domain (1g) and GPI

1459903_at 5,095515 Sema7a 9 A3.3-B membrane anchor (semaphorin) 7A
Mus musculus 9 days embryo whole body cDNA RIKEN
full-length enriched library clone:D030029J20

i437885_at 5,087976 product:unknown EST full insert sequence

1424214_at 5,087644 9130213B05Rik 5 E2 RIKEN cDNA 913021 3B05 gene

1460674_at 5,074181 23iOO2lMl2Rik 4 D3 RIKEN cDNA 23l002lMl2 gene
10 19.0

141 9276_at 5,064653 Enppl cM ectonucleotide pyrophosphatase/phosphodiesterase 1

1452919_a_at 5,048534 i7000i2Gi9Rik 17 A3.3 RIKEN cDNA i700012Gi9 gene
14 28.0

l437689_x_at 5,022439 Clu cM clusterin
1 93.3

741 8340_at 5,021 888 Fcerlg cM Fc receptor IgE high affinity I gamma polypeptide

1425668_a_at 5,07 3681 Siat4c 9 A4 sialyltransferase 4C (beta-galactoside alpha-23-sialytransferase)
78 55.0

1436201_x_at 5,009609 Mbp cM myelin basic protein

1 442798_x_at 5,004449
Mus musculus 18-day embryo whole body cDNA RIKEN
fuII-Iength enriched Iibrary clone:li 10038008

1 435842_at 5,007583 product:unknown EST full insert sequence

1422903_at 5,001 553 Ly86 13 A3.3 lymphocyte antigen 86
X 57.5

141 7388_at 4,994806 Bex2 cM brain expressed X-Iinked 2

i435246_at 4,961314 l7000l9Bi6Rik 1 A4 RIKEN cDNA i700019Bi6 gene

143771 7_at 4,949676 Centbl 11 B3 centaurin beta 1

i459151_x_at 4,943633 2Ol0008Ki6Rik 11 D RIKEN cDNA2Ol0008Kl6gene
10 25.0

i424807_at 4,927805 Lama4 cM laminin alpha 4

1435229_at 4,924008 A930008A22R1k 9 A5.1 RIKEN cDNA A930008A22 gene
4 59.1

1422468_at 4,901 308 Pptl cM palmitoyl-protein thioesterase 1

1448852_at 4,898808 Rgn X A1.3 regucalcin

1 423856_at 4,86639

i451532_s_at 4,863209 Steap 5 3.0cM six transmembrane epithelial antigen cf the prostate

141 8398_a_at 4,848845 Phemx 7 69.0 pan hematopoietic expression
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cM

1441 850_x_at 4,834335

1424544_at 4,825109 BCO1 1468 15 D3 cDNA sequence BCO1 1468
1 15.0

1421 381_a_at 4,820376 Col9ai cM procollagen type IX alpha 1

1435402_at 4,809535 A930008A22Rik 9 A5.i RIKEN cDNA A930008A22 gene
Mus musculus O day neonate head cDNA RIKEN
fulI-length enriched library clone:483341 6E1 5

1 440339_at 4,808871 product:unknown EST full insert sequence
10 66.0

1423547_at 4,797555 Lyzs cM lysozyme
15 41.7

1453304_s_at 4,789942 Ly6e cM lymphocyte antigen 6 complex locus E

1450389_s_at 4,781546 Pip5kia 19 Cl phosphatidylinositol-4-phosphate 5-kinase type 1 alpha

1427331_at 4,76956 Adorai 1 E4 adenosine Ai receptor

1437058_at 4,769113 Egfl3 4 E2 EGF-like-domain multiple 3

1452202_at 4,761 836 Pde2a 7 Ei phosphodiesterase 2A cGMP-stimulated

1433615_at 4,761788 B930062P2iRik 15 E3 RIKEN cDNA B930062P21 gene
4 56.5

144231 5_at 4,7571 38 Foxd2 cM forkhead box D2

1430269_at 4,751032 li lOO37PliRik 3 F3 RIKEN cDNA 1 110037P1 1 gene

i456020_at 4,741826 D430044G18Rik 18 Ei RIKEN cDNA D430044G18 gene
16 15.0

i455093_a_at 4,71 91 44 Ahsg cM alpha-2-HS-glycoprotein
1 54.0

1448978_at 4,71 8969 Ngef cM neuronal guanine nucleotide exchange factor

1460235_at 4,703413 Scarb2 5 E3 scavenger receptor class B member 2

1435225_s_at 4,686248 Brpf3 17 A3.3 bromodomain and PHD finger containing 3

1431130_at 4,682375 2OlOliOPO9Rik 7 F2 RIKEN cDNA 201 0110P09 gene

1435551_at 4,662877 FHOS2 18 A2 formin-family protein FHOS2

141 9608_a_at 4,65493 Egln2 7 7.0 cM EGL nine homolog 2 (C. elegans)

1436614_at 4,648337 A530081L18Rik 18 D3 RIKENcDNAA530081L18gene

1 447885_x_at 4,633603
7 62.5

1455269_a_at 4,63027 Corola cM coronin actin binding protein lA

1423091_a_at 4,61 7743 Gpm6b X F5 glycoprotein m6b
9 60.3 sema demain immunoglobulin demain (1g) short basic

1431 795_a_at 4,613045 Sema3b cM demain secreted (semaphorin) 3B
sema domain seven thrombospondin repeats

15 19.7 (type 1 and type i-like)transmembrane demain
14221 67_at 4,61 2751 Sema5a cM (TM) and short cytoplasmic demain (semaphorin) SA

i417706_at 4,589964 Naglu li D alpha-N-acetylglucosaminidase (Sanfilippo disease 111E)

1453386_at 4,58835 2200001 Dl7Rik RIKEN cDNA 2200001 D17 gene

1427256_at 4,579571 Cspg2 1355.0cM chondroitin sulfate proteoglycan 2
X 30.02

1448354_at 4,563633 G6pdx cM glucose-6-phosphate dehydrogenase X-linked

1436324_at 4,5221 78 483l403C07Rik 2 ES RIKEN cDNA 4831 403C07 gene

1426013_s_at 4,521045 241000SC22Rik 7 B3 RIKEN cDNA 2410005C22 gene

1418414_at 4,51618 Kcnhi 1 H6 potassium voltage-gated channel subfamily H (eag-related) member 1

1420786_a_at 4,506854 Mm.471 1 Y 3.05 cM RNA binding motif protein Y chromosome family 1 member Al

141 6003_at 4,506023 Cldni 1 3 12.6cM claudin ii

144301 3_at 4,496368 Mus musculus transcribed sequences

14171 20_at 4,487205 D4Wsui 14e 4 76.4 cM DNA segment Chr 4 Wayne State University 114 expressed

1454889_x_at 4,484892 C630016B22Rik 10 C2 RIKEN cDNA C630016B22 gene

1430579_at 4,460513 1500031 Ai 7Rik 3 A3 RIKEN cDNA 1S00031Ai7 gene

i444468_at 4,459111 i7000l9Bi6Rik 1 A4 RIKENcDNA1700019B16gene
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145331 7_a_at 4,455873 Khdrbs3 1537.5cM KH domain containing RNA binding signal transduction associated 3

1448891_at 4,444732 Msr2 3 F1 macrophage scavenger receptor2

1433945_at 4,444509 5730507A09Rik 7 B5 RIKEN cDNA 5730507A09 gene

142461 4_at 4,439169 Arhg 7 E2 ras homolog gene family member G

1434092_at 4,421 203 Nos3 5 9.0cM nitric oxide synthase 3 endothelial celI

1433559_at 4,419576 93301 75B01 Rik 15 D3 RIKEN cDNA 93301 75B01 gene

1434387_at 4,41749 A1429612 17 A3.3 expressedsequence Al429612

141 6328_a_at 4,407337 Atp6voe 17 A3.3 AIPase H+ transporting VO subunit

1439426_x_at 4,389594 Lyzs 1066.0cM lysozyme

1436012_s_at 4,367199 DllMoh48 1156.3cM DNAsegmentChrll KLMohlke48

1457407_at 4,361492 Mus musculus transcribed sequences
Mus musculus 18 days pregnant aduit female placenta
and extra embryonic tissue cDNA RIKEN full-length
enriched Iibrary clone:383061 2M24 product:unknown

1435672_at 4,356861 EST full insert sequence

1452707_at 4,354742 4631 423F02Rik 1 D RIKEN cDNA 4631 423F02 gene

1442082_at 4,353961 C3arl 6 F1 complement component 3a receptor 1

141 9483_at 4,352928 C3ar1 6 F1 complement component 3a receptor 1

14381 65_x_at 4,340268 Vati 11 D vesicle amine transport protein 1 homolog (T californica)

141 9494_a_at 4,33913 Tpd52 3 A1-A2 tumor protein D52

1 452257_at 4,337667 Bdh 16 Al 3-hydroxybutyrate dehydrogenase (heart mitochondrial)

141 9400_at 4,334419 Mttp 366.2cM microsomal triglyceride transfer protein

1451204_at 4,327304 4933425F03Rik 14 Dl RIKEN cDNA 4933425F03 gene
UDP-N-acetyl-alpha-D-galactosamine: polypeptide

1452232_at 4,3231 63 Galnt7 8 B2 N-acetylgalactosaminyltransferase 7
Mus musculus 10 days neonate cerebellum cDNA RIKEN
full-length enriched library clone:B930025K1 1

1443401_at 4,31 2833 product:unclassifiable full insert sequence

1438097_at 4,31 2077 Rab2O 8 10.0cM RAB2O member RAS oncogene family
Mus musculus 13 days embryo heart cDNA RIKEN
full-length enriched library clone:D330001 Ml 7

1446741 _at 4,300779 product:unclassifiable full insert sequence

1454742_at 4,274491 4732452009Rik 5 E3 RIKEN cDNA 4732452009 gene

1437259_at 4,253515 4932415019 1 B hypothetical protein 4932415019

1426223_at 4,241721 2810439F02Rik 18 Al RIKEN cDNA 2810439F02 gene

1435135_at 4,214852 B230106l24Rik 3 A3 RIKEN cDNA B230106124 gene

1437458_x_at 4,205857 Clu 1428.0cM clusterin

1436008_at 4,20199 Tpd52 3 A1-A2 tumor protein D52

1441 937_s_at 4,194772

1425733_a_at 4,193736 EpsB 666.0cM epidermal growth factor receptor pathway substrate 8

1423653_at 4,186778 Atplal 348.4cM ATPase Na+/K+ transporting alpha 1 polypeptide

142111 8_a_at 4,185547 Gpr56 8 45.0 cM G protein-coupled receptor 56

141 831 5_at 4,18497 Nr5al 223.5cM nuclear receptor subfamily 5 group A member 1

1450380_at 4,181 077 AU040950 13 A2 expressed sequence AU040950

1424617_at 4,180706 2Ol0008Kl6Rik il D RIKENcDNA2O10008K16gene
1 -acylglycerol-3-phosphate 0-acyltransferase 1

1436640_x_at 4,17825 Agpat4 17 Al (lysophosphatidic acid acyltransferase delta)

1428706_at 4,174208 3llOOl3HOlRik 11 B2 RIKENcDNA31JOO13HO1 gene

1 425245_a_at 4,767985 Rgsl 1 17 A3.3 regulator cf G-protein signaling 11

1 447878_s_at 4,166851

1434812_s_at 4,163664 A930013K19 5 82 hypothetical protein A930013K19

1421 834_at 4,163485 Pip5kla 19 Cl phosphatidylinositol-4-phosphate 5-kinase type 1 alpha
Mus musculus similar to DNA segment Chr 7 ERATO

1447352_at 4,1 48599 7 F4 Dol 680 expressed fL0C384685) mRNA
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1438561 _x_at 4,147529

1450713_at 4,142068 Cspg5 933.1 chondroitin sulfate proteoglycan 5

1417073_a_at 4,13037 0k 175.9cM quaking

1421840_at 4,124895 Abcal 423.1 cM ATP-binding cassette sub-family A (ABC1) member 1

1429590_at 4,121552 B230378H13R1k 8 A2 RIKEN cDNA B230378H13 gene

142461 6_s_at 4,712895 Arhg 7 E2 ras homolog gene family member G

1436568_at 4,102524 Jam2 16 Al junction adhesion molecule 2

1460626_at 4,102406 D5Ertd6O6e 552.0cM DNA segment Chr 5 ERATO Dol 606 expressed

14231 75_s_at 4,099934 Pard6b 2 H3 par-6 (partitioning defective 6) homolog beta (C. elegans)

1451183_at 4,089867 lllOO55AO2Rik liC RIKENcDNA11JOO55AO2gene

14351 75_at 4,088624 BC034090 1 G3 cDNA sequence BC034090

1 428964_at 4,087272 S1c25a1 8 6 54.0 cM solute carrier family 25 (mitochondrial carrier) member 18

1433485_x_at 4,082062 Gpr56 8 45.0cM G protein-coupled receptor 56

1424016_at 4,06919 23i0007F2iRik 9 D RIKENcDNA2310007F21 gene

141 9490_at 4,068729 AW049604 15 E3 expressed sequence AW049604

1428788_at 4,067697 i7000i2Gl9Rik 17 A3.3 RIKEN cDNA 1700012G19 gene

1428867_at 4,04636 4933417E01Rik 7A2 RIKENcDNA4933417EO1 gene

14261 95_a_at 4,033879 Cst3 2 84.0cM cystatin C

141 7859_at 4,032503 Gas7 11 B3 growth arrest specific 7

141 6205_at 4,005156 GIbi 9 66.0cM galactosidase beta 1

1432466_a_at 3,995319 Apoe 74.0cM apolipoprotein E

1460555_at 3,976955 6330500D04Rik 13 A3.1 RIKEN cDNA 6330500D04 gene

141 7620_at 3,976031 Rac2 15 El RAS-related C3 botulinum substrate 2

14361 83 at 3,968234 Zc3havl 6 Bi zinc finger CCCH type antiviral 1

741 9493_a_at 3,965894 Tpd52 3 Ai-A2 tumor protein D52

141 5884_at 3,954449 Ela3b 4 D3 elastase 3B pancreatic
Mus musculus 2 days pregnant aduit female ovary cDNA
RIKEN full-length enriched libranj clone:E33001 4L20

1456022at 3,953879 product:unknown EST full insert sequence

141 6589_at 3,953707 Sparc 11 29.9 cM secreted acidic cysteine rich glycoprotein

1443847_x_at 3,943638 Mus musculus transcribed sequences

1433501 _at 3,941 741 Ctso 3 E3 cathepsin O

141 8507_s_at 3,940933 Socs2 10 52.0 cM suppressor of cytokine signaling 2
solute carrier family 6 (neurotransmitter transporter creatine)

1417116_at 3,933282 S1c6a8 XA7.1 member8

1425602_a_at 3,927723 26iOOiiAO8Rik 7 F3 RIKEN cDNA 261007 1A08 gene

1438470_at 3,924306 Socs2 1052.0cM suppressor of cytokine signaling 2

1425118_at 3,917354 BC026502 8 El cDNA sequence BC026502

1430318_at 3,914775 Sat2 ii B3 spermidine/spermine N1-acetyl transferase 2
Mus musculus transcribed sequence with strong similarity
to protein sp:P51830 (M.musculus) CYA9_MOUSE
Adenylate cyclase type IX (ATP pyrophosphate-lyase)

1449620_s_at 3,899363 (Adenylyl cyclase) (Adenylyl cyclase type 10) fACTP1O)

74221 24_a_at 3,896389 Ptprc 1 74.0 cM protein tyrosine phosphatase receptor type C
Mus musculus O day neonate head cDNA RIKEN fulI-length
enriched library clone:4833440021 product:unknown EST

1432591_at 3,886229 full insert sequence

1449106_at 3,871432 Gpx3 il B3-B5 glutathione peroxidase 3

1455i92_at 3,847038 A230078l05Rik 1 C4 RIKEN cDNA A230078105 gene

1437478_s_at 3,8367 07 D4Wsu27e 4 69.8cM DNA segment Chr 4 Wayne State University 27 expressed

i435203_at 3,823632 Man2a2 7 D2 mannosidase 2 alpha 2

1423556_at 3,822397 Akrib7 6 14.0cM aldo-keto reductase family 1 member B7

1437057at 3,821 289 Egfl3 4 E2 EGF-like-domain multiple 3
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Mus musculus 13 days embryo forelimb cDNA RIKEN
full-length enriched library clone:5930438H13

14551 50_at 3,820138 product:unknown EST full insert sequence

1451804_a_at 3,815767 lllOO37DO4Rik 13 A3.1 RIKEN cDNA 1110037D04 gene

1417601_at 3,80226 Rgsl 1 78.0cM regulatorofG-protein signaling 1

1460694_s_at 3,800644 Svil 18 Al supervillin

141 61 09_at 3,784074 Fuca 4 65.7cM fucosidase alpha-L- 1 tissue

1426880_at 3,783185 9430077C05R1k 2 A3 RIKEN cDNA 9430077C05 gene

1 447842_x_at 3,779737

1441 930_x_at 3,776233

145621 0_at 3,760734 Mus musculus transcribed sequences

1454651_x_at 3,75892 Mbp 18 55.0cM myelin basic protein

1452861_at 3,755619 201 O300CO2R1k 1 B RIKEN cDNA 201 0300C02 gene
DNA segment Chr 3 Brigham & Womens Genetics

1 427247_at 3,742179 D3BwgO562e 3 55.0 cM 0562 expressed

14571 18_at 3,735276 L0C271 849 2 F1 rai-like protein RaLP

141 7426_at 3,723658 Prg 10 B4 proteoglycan secretory granule

1 459740_s_at 3,715899
Mus musculus transcribed sequence with weak
similarity to protein ref:NP_055399.1 (H.sapiens)
ERO1-like (S. cerevisiae); ERO1 (S. cerevisiae)-like

143471 4_at 3,701674 [Homo sapiens]

141 7836_at 3,701177 311 OO5OFO8Rik 4 C7 RIKEN cDNA 311 0050F08 gene

1448620_at 3,700095 Fcgr2b 1 92.3cM Fc receptor lgG 10w affinity lb
sialyltransferase 9 (CMP-NeuAc:lactosylceramide

14491 98_a_at 3,697907 Siat9 6 Cl alpha-23-sialyltransferase)

1428896_at 3,695952 Pdgfrl 8 A4 platelet-derived growth factor receptor-like

1448241_at 3,690693 Gm2a 11 29.0cM GM2 ganglioside activator protein

1451422_at 3,684344 Myol8a 11 B5 myosin XVllla

1436977_at 3,682756 Mus musculus transcribed sequences

1452203_at 3,67604 58304l1E10Rik 1 C1.1 RIKENcDNA583O4JJE1Ogene

1417701_at 3,672406 Ppplrl4c 10 Al protein phosphatase 1 regulatory finhibitor) subunit 14c

1456607_at 3,667862 5730538E15R1k 1 A2 RIKEN cONA 5730538E15 gene

1424669_at 3,66643 111001 3HO4Rik 12 F1 RIKEN cDNA 111001 3H04 gene

1455849_at 3,6601 98 Navi 1 E4 neuron navigator 1

1436591_at 3,657681 BC023744 5 F cDNA sequence BC023744

1441 971_at 3,653507 Mus musculus transcribed sequences

1433833_at 3,647336 1600019004Rik 3 A3 RIKEN cDNA 1600019004 gene

1447326_s_at 3,646851 Zfp261 X 57.0cM zinc finger protein 261

1420394_s_at 3,63549 Gp49b 1032.0cM glycoprotein 49 B

14271 80_at 3,634341 S1c27a3 3 F1 solute carrier family 27 ffatty acid transporter) member 3

141 6226_at 3,633754 Arpcl b 5 G2 actin related protein 2/3 complex subunit 1 B

1433933_s_at 3,627428 Slco2bl 7 El solute carrier organic anion transporter family member 2b1

14491 09_at 3,623966 Socs2 10 52.0 cM suppressor of cytokine signaling 2

1439794_at 3,61 3656 Ntn4 netrin 4

1450036_at 3,613417 Sgk3 1 A2 serum/glucocorticoid regulated kinase 3

1448732_at 3,61 0401 Ctsb 1428.0cM cathepsin B

1 422247_a_at 3,600421 Uty Y 2.06 cM ubiquitously transcribed tetratricopeptide repeat gene Y chromosome

14211 29_a_at 3,592288 Atp2a3 11 B4 ATPase Ca++ transporting ubiquitous

1446769_at 3,582661 281 0439F02Rik 18 Al RIKEN cDNA 281 0439F02 gene

1433994_at 3,580291 4931406P16Rik 7 B1 RIKEN cDNA 4931406P16 gene

1455256_at 3,573434 l50003lAl7Rik 3 A3 RIKEN cDNA 1500031A17 gene
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1429379_at 3,565393 Xlkdl 7 E3 extra cellular link domain-containing 1
Mus musculus O day neonate kidney cDNA RIKEN
tuII-length enriched library clone:D630049N15

1436223_at 3,563899 product:unknown EST full insert sequence

1 448894_at 3,562553 Akrl b8 6 13.0 cM aldo-keto reductase family 1 member B8

1422327_s_at 3,558414 G6pd2 5 39.0cM glucose-6-phosphate dehydrogenase 2

1 436545_at 3,556678 BC044798 19 A cDNA sequence BC044798

1458464_at 3,5551 D030049F17 1 C1.1 hypothetical protein D030049F17

1422597_at 3,551799 Mmpl5 8 45.5 cM matrix metalloproteinase 15
UDP-N-acetyl-alpha-D-galactosamine:polypeptide

14181 95_at 3,549017 GaInti 0 11 Bi .3 N-acetylgalactosaminyltransferase 10

1 425942_a_at 3,546286 Gpm6b X F5 glycoprotein m6b

1426658_x_at 3,543379 Phgdh 8 Cl 3-phosphoglycerate dehydrogenase

141 5803_at 3,539646 Cx3cll 8 46.0cM chemokine (C-X3-C motif) ligand 1

1450062_a_at 3,529712 Magedi X 34.6cM melanoma antigen family D 1

1426315_a_at 3,528172 6330416G13Rik 4 B3 RIKEN cDNA 6330416G13 gene
Mus musculus 13 days embryo heart cDNA RIKEN full-length
enriched library clone:D3300421 16 product:unknown EST

1454984_at 3,526388 full insert sequence

1422479_at 3,526086 Acas2 2 Hi acetyl-Coenzyme A synthetase 2 (ADP forming)

143421 6_a_at 3,52374 D7Rp2e 7 15.0 cM DNA segment Chr 7 Roswell Park 2 complex expressed

1435064_a_at 3,518936 061 0008JO7Rik X F5 RIKEN cDNA 061 0008J07 gene
sema domain seven thrombospondin repeats
(type 1 and type 1-like) transmembrane domain (TM)

1437422_at 3,515055 Sema5a 15 19.7cM and short cytoplasmic domain (semaphorin) 5A

141 7932_at 3,514941 1118 9 29.0cM interleukin 18

1448321_at 3,514859 Smocl 12 C3 SPARC related modular calcium binding 1

1425525_a_at 3,510324 P2rx4 5 65.0cM purinergic receptor P2X ligand-gated ion channel 4

1459897_a_at 3,494971 Sbsn 7A3 suprabasin
- procollagen-proline 2-oxoglutarate 4-dioxygenase

1452094at 3,48703 P4hal 10 B4 (proline 4-hydroxylase) alpha 1 polypeptide

1425749_at 3,480926 Stxbp6 12 Bi syntaxin binding protein 6 (amisyn)

1459890_s_at 3,47746 11 l0008Pi4Rik 2 B RIKEN cDNA 1 110008P14 gene

1436756_x_at 3,470726 Hadhsc 3 G3 L-3-hydroxyacyl-Coenzyme A dehydrogenase short chain

1419971 3,468869 S1c35a5 16 29.9 cM solute carrier family 35 member A5

141 8826_at 3,468588 Ms4a6b 19 A membrane-spanning 4-domains subfamily A member 6B

141 6600_a_at 3,465254 Dscrl 1662.0cM Down syndrome critical region homolog 1 (human)

i427878_at 3,460894 O6iOOiOOi2Rik 18 B2 RIKEN cDNA 0610010012 gene

1448530_at 3,455204 Gmpr 13 A5 guanosine monophosphate reductase

1434706_at 3,446716 5730538E15Rik 1 A2 RIKEN cDNA 5730538E15 gene
Mus musculus transcribed sequence with strong
similarity to protein sp:Q61 753 (M.musculus)
SERA_MOUSE D-3-phosphoglycerate

143762i_x_at 3,444354 dehydrogenase (3-PGDH) (AiO)

1452924_at 3,440186 2310007D09Rik 2 H2 RIKEN cDNA 2310007D09 gene

1450627_at 3,437749 ank 15 14.4cM progressive ankylosis

1426260_a_at 3,432824 Ugtial 1 51.7cM UDP-glucuronosyltransferase 1 family member 1

1428958_at 3,432271 l7000l9Bi6Rik 1 A4 RIKEN cDNA 1700019B16 gene

1453473_a_at 3,431 822 Tctexl 17 3.1 cM t-complex testis expressed 1

1456195_x_at 3,431478 ltgb5 16 Al integrin beta 5

1450872_s_at 3,41 7924 Lipi 19 Cl lysosomal acid lipase 1

1 427352_at 3,417908 BCO31 593 15 F2 cDNA sequence BCO31 593

1431 833_a_at 3,41164 Hmgcs2 3 48.0 cM 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 2

141 9646_a_at 3,405919 Mbp 18 55.0 cM myelin basic protein
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1451255_at 3,404424 Lisch7 7 A3 liver-specific bHLH-Zip transcription factor

1448275_at 3,403629 2810428F02Rik 10 D2 RIKEN cDNA 2810428F02 gene

1428116_a_at 3,395999 Tctexl 173.1 cM t-complextestis expressed 1

1421 034_a_at 3,395062 lI4ra 762.0cM interleukin 4 receptor alpha

1437872_at 3,392344 A1448472 5A3 expressedsequenceAl448472
11 46.13

1450241_a_at 3,39057 Evi2a cM ecotropic viral integration site 2a

14561 65_at 3,386834 Crygc 1 32.0cM crystallin gamma C

1424652_at 3,386553 BCO1 4699 6 C3 cDNA sequence BCO1 4699

1454809_at 3,377275 9030406Ni3Rik 10 A4 RIKEN cDNA 9030406N13 gene

14561 55_x_at 3,376926 Fuca 4 65.7cM fucosidase alpha-L- 1 tissue

1424863_a_at 3,373792 Hipk2 6 B homeodomain interacting protein kinase 2

145341 9_at 3,372943 Mras 9 E3.3 muscle and microspikes RAS

1423593_a_at 3,361054 Csfir 1830.0cM colony stimulating factor 1 receptor

141 6637_at 3,357591 S1c4a2 5 14.0cM solute carrier family 4 (anion exchanger) member 2

1452864_at 3,356075 6530405F15Rik 3 D RIKEN cDNA 6530405F15 gene

1415801_at 3,355628 Gal 1029.0cM gapjunction membrane channel protein alpha 1

1 440795_x_at 3,352777

1460398at 3,350678 983014iC09Rik X F3 RIKEN cDNA 9830141C09 gene

143901 8_at 3,348227 6330505N24 3 Fi hypothetical protein 6330505N24

1428789_at 3,347724 4921528G01Rik 1 Hi RIKEN cDNA 4921528G01 gene

141 6382_at 3,343684 Ctsc 7 D3-E1.i cathepsin C

i449248_at 3,335228 Clcn2 16 16.0cM chloride channel 2

i439630_x_at 3,33021 Sbsn 7A3 suprabasin

i46035i_at 3,320218 SiOOali 3 F2.1 SiOO calcium binding protein Ail (calizzarin)

1427685_a_at 3,31 3077 Synj2 17 3.3cM synaptojanin 2

i426657_s_at 3,307236 Phgdh 8 Ci 3-phosphoglycerate dehydrogenase

141 701 0_at 3,305451 Zfp238 1 H4 zinc finger protein 238
Mus musculus transcribed sequence with strong similarity
to protein sp:Q6i 753 (M.musculus) SERA_MOUSE

1456471 _x_at 3,302906 D-3-phosphoglycerate dehydrogenase (3-PGDH) (AlO)

1427476_a_at 3,291 241 Trim32 4 Cl tripartite motif protein 32

1459818_x_at 3,289595 Zfp26i X 57.0cM zinc finger protein 261

1460428_at 3,286719 il0000lDlORik 5F RIKEN cDNA ll0000iDlO gene

1429678_at 3,286523 5730508B09Rik 3 G2 RIKEN cDNA 5730508B09 gene

1452344_at 3,28508 Syn]2 173.3cM synaptojanin 2

1 449545_at 3,281476 Fgf18 11 A4 fibroblast growth factor 18

1 433857_at 3,279529 Fath 8 25.0 cM fat tumor suppressor homolog (Drosophila)

1423865_at 3,278099 AW547365 4 B2 expressed sequence AW547365

1438306_at 3,277995 3ll000lEliRik l3Di RIKENcDNA3110001E11 gene

1418123_at 3,277769 Uncil9 li B5 unc-i19 homolog (C. elegans)

141 759i_at 3,277216 Ptges2 2 B prostaglandin E synthase 2

1450647_at 3,2761 59 Hps3 3 12.5cM Hermansky-Pudlak syndrome 3 homolog (human)

1423285_at 3,274955 Coch 1223.0cM coagulation factor C homolog (Limulus polyphemus)

1 426735_at 3,263667 MGC63429 1 H5 similar to mitochondrial isoleucine tRNA synthetase
UDP-N-acetyl-alpha-D-galactosamine:polypeptide

1416760_at 3,261823 Galntli 12 C3 N-acetylgalactosaminyltransferase-like 1
Mus musculus O day neonate head cDNA RIKEN
full-length enriched library clone:4831 440M03

1435484_at 3,258574 product:unknown EST full insert sequence

1 423726_at 3,252567 Vati li D vesicle amine transport protein 1 homolog (T californica)

1428283_at 3,251119 Cyp2si 7 A3 cytochrome P450 family 2 subfamily s polypeptide 1
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141 7490_at 3,244622 Ctsb 1428.0cM cathepsin B

1455583_at 3,240569 Gne 4 Bi glucosamine

1434073_at 3,235296 311 OO3lOl4Rik X E3 RIKEN cDNA 3110031014 gene

1427475_a_at 3,232679 1 ii000iAO5Rik 3 Hi RIKEN cDNA 1110001A05 gene

1 438980_x_at 3,229133

1449084_s_at 3,228271 Sh3d19 3 Fi SH3 domain protein D19

1425702_a_at 3,21 9645 Enpp5 1723.5cM ectonucleotide pyrophosphatase/phosphodiesterase 5

1438321_x_at 3,218521

1416036at 3,218374 Fkbpla 2 G3 FK506 binding protein la

1428644_at 3,21 758 Mgat5 1 E3 mannoside acetylglucosaminyltransferase 5

1453844_at 3,21 3547 Chiti 1 E4 chitinase 1 (chitotriosidase)

141 8269_at 3,213256 Loxl3 634.76cM lysyl oxidase-like 3

1429637_at 3,209967 i1i0032E23Rik 3 E3 RIKEN cDNA 1110032E23 gene

1455397_at 3,205408 C630036E02Rik 17 A3.3 RIKEN cDNA C630036E02 gene

1454875_a_at 3,204743 Rbbp4 retinoblastoma binding protein 4

1417389_at 3,204499 Gpcl 1 D glypican 1

1458351_s_at 3,203491 K1hl2 8 B3.i kelch-like 2 Mayven (Drosophila)

1449408_at 3,199893 Jam2 16 Al junction adhesion molecule 2
solute carrier family 6 (neurotransmitter transporter creatine)

1448596_at 3,195488 Slc6aB X A7.1 member 8

1421746_a_at 3,192865 Fbxoi7 7 A3 F-box only protein 17

14231 74_a_at 3,18997 Pard6b 2 H3 par-6 (partitioning defective 6) homolog beta (C. elegans)

1424037_at 3,188494 ltpka 2 ES inositol 145-trisphosphate 3-kinase A

1 454268_a_at 3,186444 Cyba cytochrome b-245 alpha polypeptide
Mus musculus transcribed sequence with strong similarity
to protein sp:Q61 753 fM.musculus) SERA_MOUSE

1454714_x_at 3,185267 D-3-phosphoglycerate dehydrogenase f3-PGDH) (AlO)

1458706_at 3,180745 Mus musculus transcribed sequences

1426975_at 3,171199 46324i3K17Rik 10 D3 RIKEN cDNA 4632413K17 gene

1434099_at 3,166741 A830037N07Rik 5 Cl RIKEN cDNA A830037N07 gene

i426655_a_at 3,16619 4930504E06Rik 3 F2.1 RIKEN cDNA 4930504E06 gene

1433560_at 3,165054 9330i7SB01Rik 15 D3 RIKENcDNA933O175BO1 gene

1452146_a_at 3,163499 2900026G05R1k 19 C3 RIKEN cDNA 2900026G05 gene

1451071_a_at 3,163312 Atplai 348.4cM ATPase Na+/K+ transporting alpha 1 polypeptide

1417492_at 3,158475 Ctsb 1428.0cM cathepsin B

1 425029_a_at 3,156511 281 OO49GO6Rik 12 Al .2 RIKEN cDNA 281 0049G06 gene

1422574_at 3,153676 Mad4 520.0cM Max dimerization protein 4

1426648_at 3,153602 Mapkapk2 1 E4 MAP kinase-activated protein kinase 2

141 9466_at 3,153384 Nkd2 13 Cl naked cuticle 2 homolog (Drosophila)

1452093_at 3,152183 250000iKllRik 1 E2.3 RIKENcDNA2S00001K11 gene

l423025_a_at 3,150735 Schipi 3 El schwannomin interacting protein 1

1448392_at 3,141144 Sparc 11 29.9cM secreted acidic cysteine rich glycoprotein

1430522_a_at 3,1401 01 Vamp5 5 vesicle-associated membrane protein S

1423582_at 3,138076 Dmrtl 19 C2-C3 doublesex and mab-3 related transcription factor 1

1451148_at 3,127732 Pinkl 4 D3 PTEN induced putative kinase 1

1452308_a_at 3,12371 Atpla2 1 94.2cM AlPase Na+/K+ transporting alpha 2 polypeptide

1428758_at 3,123657 i8i0054013Rik 7 B3 RIKEN cDNA 1810054013 gene

141 6340_a_at 3,123453 Man2bi 837.0cM mannosidase 2 alpha Bi

i425626_at 3,118752 Gstmi 3 F2.3 glutathione S-transferase mu 1

1455547_at 3,11863 Scrg3 15 El scrapie responsive gene 3

i430291_at 3,116488 Mus musculus aduit male corpora quadrigemina cDNA
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RI KEN fuIl-Iength enriched Iibrary clone:B23021 0C03
product:unknown EST full insert sequence

1417534_at 3,114673 ltgb5 16A1 integrin beta5

1434504at 3,111895 9630058020 5 Bi hypothetical protein 9630058020
Mus musculus 2 days pregnant adult female ovary cDNA
RI KEN fulI-length enriched Iibrary clone:E330009D23

1 443779_s_at 3,1 11012 product:unknown EST full insert sequence

1429292_a_at 3,107437 2310046K01Rik 2H1 RIKENcDNA2310046KO1 gene

1 438650_x_at 3,106093 Gjal 10 29.0 cM gap junction membrane channel protein alpha 1

1450875_at 3,104702 Gpr37 67.2cM G protein-coupled receptor37
Mus musculus 12 days embryo head cDNA RIKEN
full-length enriched library clone:3000002J10

1429052_at 3,103341 product:unknown EST full insert sequence

1416165_at 3,102453 1700093E07R1k 17 E1.1 RIKEN cDNA 1700093E07 gene

141 8983_at 3,100283 Cipp 4 C6 channel-interacting PDZ domain protein

142271 1_a_at 3,090695 Pnck X 23.5cM pregnancy upregulated non-ubiquitousiy expressed CaM kinase

1423362at 3,084257 Sorti 3 F3 sortilin 1

141 9329_at 3,082769 Sh3d4 14 34.5cM SH3 domain protein 4
17 19.06

1425548_a_at 3,076596 Lstl cM leukocyte specific transcript 1

1436965_at 3,07658 Lpin3 2 H2 lipin 3

1 434909_at 3,076422 Rragd 4 11.4 cM Ras-related GTP binding D
Mus musculus adult male colon cDNA RIKEN full-Iength enriched
library clone:9030621G03 product:unknown EST full insert

1455301_at 3,075298 sequence

1424365_at 3,072698 18i0037l17Rik RIKEN cDNA 1810037117 gene

1434275_at 3,072219 Nkd2 13 Cl naked cuticle 2 homolog f Drosophila)
Mus musculus aduit male corpora quadrigemina cDNA
RIKEN fulI-length enriched library clone:B230306E21

1 439994_at 3,072111 product:unknown EST full insert sequence

1440684_at 3,061 558 A330042H22 8 C5 hypotheticai protein A330042H22

142551 8_at 3,058025 5730402K07Rik 2 C3 RIKEN cDNA 5730402K07 gene

1448587_at 3,054165 TbcidlO liAi TBC1 domainfamilymemberlO

1428643_at 3,051426 26i0024A01Rik 1 E3 RIKENcDNA2610024AO1 gene

141 6383_a_at 3,050286 Pcx 19 0.0 cM pyruvate carboxylase

1 448568_a_at 3,045498 SIc2Oai 2 73.0 cM solute carrier family 20 member 1

1 420984_at 3,040759 Pctp 11 52.0 cM phosphatidylcholine transfer protein

1448883_at 3,034371 Lgmn 12 E legumain
Mus musculus RIKEN cDNA 3110001120 gene

1450642_at 3,033216 mRNA (cDNA clone IMAGE:6439419) partial cds

1448908_at 3,032441 Ppap2b 4 52.7cM phosphatidic acid phosphatase type 2B

1421 194_at 3,031 584 ltga4 246.0cM integrin alpha 4

1459741 _x_at 3,023292

1437982_x_at 3,009296 2900026G05Rik 19 C3 RIKEN cDNA 2900026G05 gene

14271 31_s_at 3,004411 C33001 8JO7Rik 16 Al RIKEN cDNA C33001 8J07 gene
fleurai precursor ceil expressed developmentally down-regulated

1450767_at 2,998677 Nedd9 13A4 gene9

1428209_at 2,996935 Rex3 X 57.5 cM reduced expression 3

1422432_at 2,991 72 Dbi 1 E2.3 diazepam binding inhibitor
Mus musculus 12 days embryo head cDNA RIKEN
fuIl-Iength enriched library clone:3000002J10 product:

1435537_at 2,990747 unknown EST full insert sequence

1448384_at 2,988317 BC003494 10 Cl cDNA sequence BC003494

145661 6_a_at 2,986333 Bsg 10 42.4 cM basigin

1434738_at 2,98537 A530046H20Rik 7 C RIKEN cDNA A530046H20 gene

1421 402_at 2,984081 Mta3 17 E4 metastasis associated 3
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1454614_at 2,972491 1810013D10Rik 5 RIKEN cDNA 1810013D10 gene

1426575_at 2,970701 9530058011Rik 19 Cl RIKEN cDNA 9530058011 gene

l424670_s_at 2,967545 lllOOl3HO4Rik 12 F1 RIKEN cDNA 1110013H04 gene
Mus musculus transcribed sequence with moderate
similarity to protein pir:S12207 (M.musculus) S12207

1439882_at 2,967169 hypothetical protein (B2 element) - mouse

1454978_at 2,967053 2900029G l3Rik 5 G2 RIKEN cDNA 2900029Gl3 gene

1428794_at 2,964563 B230396K10R1k 11 B2 RIKEN cDNA B230396K10 gene

l4l6882_at 2,961403 RgslO 7F3 regulatorofG-proteinsignalling 10

1429719_at 2,960752 Foxp4 17C forkhead box P4
Mus musculus 9 days embryo whole body cDNA
RIKEN fulI-Iength enriched Iibraryclone:D030071E17

1438437_a_at 2,958818 product:unknown EST full insert sequence

1427465_at 2,957326 Atpla2 1 94.2cM ATPase Na÷/K+ transporting alpha 2 polypeptide

1430623_s_at 2,956524 5830411E10R1k 1 C1.1 RIKENcDNA583O411E1Ogene

1 448737_at 2,955867 Tm4sf2 X Al .3-A2 transmembrane 4 superfamily member 2

1435867_at 2,953652 Mus musculus transcribed sequences

141 6368_at 2,951 448 Gsta4 9 El glutathione S-transferase alpha 4

l448433_a_at 2,948291 Pcolce 5 78.0 cM procollagen C-proteinase enhancer protein

1441 047_at 2,946296 9330175B01Rik 15 D3 RIKEN cDNA 9330175B01 gene

1426755_at 2,9451 64 5630400A09Rik 10 Cl RIKEN cDNA 5630400A09 gene

1451149_at 2,943665 Pgm2 445.8cM phosphoglucomutase 2

141 7936_at 2,943352 Cc19 11 47.4 cM chemokine (C-C motif) ligand 9

1448929_at 2,938853 F13a 13 A3.3 coagulation factor XIII alpha subunit

1440353_at 2,93818 Nff5 723.0cM neurotrophin 5

l447841_x_at 2,937487 SiatlO 16 Al sialyltransferase 10 (alpha-23-sialyltransferase VI)

1 456500_at 2,933605 463241 7K02 9 C hypothetical protein 463241 7K02

1435220_s_at 2,93312 2810404Fl8Rik 11 Bl.3 RIKENcDNA281O4O4F18gene

14561 33_x_at 2,931 348 ltgb5 16 Al integrin beta 5
Mus musculus 15 days embryo male testis cDNA
RIKEN full-length enriched library clone:8030484F22

l429736_at 2,930341 product:unknown EST full insert sequence

l450l9l_a_at 2,927381 50x13 1 E4 SRY-box containing gene 13

141 6686_at 2,926209 Plod2 9 52.0 cM procollagen lysine 2-oxoglutarate 5-dioxygenase 2

1433735_a_at 2,924618 963001 5Dl5Rik 4 A2 RIKEN cDNA 963001 5D15 gene
microtubule associated testis specific serine/threonine

141 7324_at 2,924099 Mtssk 4 Dl protein kinase

1453481_at 2,921989

1 428296_at 2,921933

1433885_at 2,920668 A630053010 13 Dl hypothetical protein A630053010

1460444at 2,91 6958 Arrbl 750.0cM arrestin beta 1

1436309at 2,91 6517 Neto2 8 C3 neuropilin (NRP) and tolloid (TLL)-like 2

1425249_a_at 2,91 41 03 Tyro3 2 67.1 cM TYRO3 protein tyrosine kinase 3

1448748_at 2,913961 Plek 11 6.5cM pleckstrin

l437046_x_at 2,913132 Anxa9 3F2.l annexinA9
Mus musculus adult male medulla oblongata cDNA
RIKEN full-length enriched library clone:633041 7012
product:microphthalmia-associated transcription factor

1455214_at 2,91 2005 full insert sequence

1 439964_at 2,900611 Mus musculus transcribed sequences

1458802_at 2,894951 Krc 4 D2.2 kappa B and Rss recognition component

1452878_at 2,893902 Prkce 17 E4 protein kinase C epsilon

1416441_at 2,893601 ll90003Pl2Rik 15 B3.l RIKEN cDNA ll90003Pl2 gene

1435964_a_at 2,893208 Mus musculus transcribed sequence with strong similarity
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to protein ref:NP_057365.1 (H.sapiens) STE2O-iike kinase;
STE2-Iike kinase [Homo sapiens]

145471 3_s_at 2,893188 Hdc 2 E5-G histidine decarboxylase

141 8572x_at 2,890553 Tnfrsf J 2a 17 A3.3 tumor necrosis factot receptor superfamily member 1 2a

144881 0_at 2,890048 Gne 4 Bi glucosamine

1420372at 2,887237 Sntb2 8 52.0cM syntrophin basic 2

141 7533_a_at 2,882881 Itgb5 16 Ai f ntegrfn beta 5

141 7040_a_at 2,882848 Bok 1 D BcI-2-reiated ovarian kf lier protein

1429418_at 2,882729 A530086E13R1k 13 B3 RIKEN cDNA A530086E13 gene

1420637_at 2,882539 Prps2 X 72.0cM phosphoribosyl pyrophosphate synthetase 2

1452655_at 2,882319 Zdhhc2 8 A4 zinc finger DHHC domain containing 2

1453003_at 2,881665 SorIl sortilin-related receptor LDLR class A repeats-containfng

1422483_a_at 2,881 63 Cycs 623.0cM cytochrome c somatic

1422728_at 2,875877 Inha 1 41.6cM inhibinaipha

1425026_at 2,872272 201 000501 3Rik 1 24.1 RIKEN cDNA 2010005013 gene

1421998_at 2,871115 Tor3a 1 03 torsinfamfly3memberA

1448118_a_at 2,864126 Ctsd 450.0cM cathepsfn D

1455291_s_at 2,86151 Znrf2 6 zinc finger/RING finger 2

1451031_at 2,859247 Sfrp4 137.0cM secreted frizzled-related sequence protein 4

14291 60_at 2,856003 281 001 2L1 4Rik 5 G3 RIKEN cDNA 281 001 2L14 gene

1451 91 2_a_at 2,855095 Fgfrii fibroblast growth factor receptor-lfke 1

14241 75_at 2,854588 Tef 1546.7cM thyrotroph embryonic factor
Mus musculus transcribed sequence with moderate similarity
to protein pir:167760 (E. cou) 167760 transposase —

1445679_at 2,853299 Escherfchfa cou insertion sequence ISJO

145201 i_a_at 2,852452 Uxsi 1 Cii UDP-glucuronate decarboxylase 1

1427075_s_at 2,848975 5330414Di0Rik 2 H4 RIKEN cDNA 5330414D10 gene

1453569_s_at 2,848303 Mark4 7 A2 MAP/microtubule affinfty-regulating kinase 4
Mus musculus transcribed sequence with strong similarity to
protein sp:P00722 (E. cou) BGAL_ECOLI Beta-galactosidase

1434451 _at 2,847089 (Lactase)

1433495_at 2,844689 281 0024B22Rik 8 B3.3 RIKEN cDNA 281 0024B22 gene

1445597_s_at 2,842803 Hrasis3 19 A HRAS like suppressor 3

141 9003_at 2,842689 Bves 10 29.0 cM blood vessel epfcardial substance

1 433520_at 2,83794 Scap 9 F3 Sreb cleavage-activating protein

1460081_at 2,832321 Syt7 19 A synaptotagmin 7

1457275_at 2,830919 Dmn 7 C desmusiin
Mus musculus transcribed sequence with strong similarity to
protein sp:P00722 (E. cou) BGAL_ECOLI Beta-galactosidase

1434845_at 2,826236 (Lactase)

1415823_at 2,825917 Scd2 1943.0cM stearoyl-Coenzyme A desaturase 2

1450984_at 2,821996 Tjp2 tightjunction protein 2

1450744_at 2,821103 E112 13 Cl elongation factor RNA polymerase 112

1428636_at 2,820362 4921 538Bi7Rik 5 Al-h RIKEN cDNA 4921 538B17 gene
UDP-N-acetyl-alpha-D-galactosamine: polypeptide

1426908_at 2,81 756 GaInt7 8 B2 N-acetylgalactosaminyltransferase 7

1437462_x_at 2,81405 MmplS 8 45.5cM matrix metal Ioprotef nase 15

1435494_s_at 2,813015 5730453H04Rf k 13 A3.3 RIKEN cDNA 5730453H04 gene

142951 1_at 2,812494 4933402E1 3Rik X AS RIKEN cDNA 4933402E1 3 gene

1452592_at 2,809343 Mgst2 3 C microsomai glutathfone S-transferase 2

141 8540_a_at 2,807611 Ptpre 767.6cM protefn tyrosine phosphatase receptor type E
Mus musculus 13 days embryo heart cDNA RIKEN
fuiI-Iength enriched Iibrary clone:D330021C01

1 435608_at 2,805842 11 Al product:unknown EST full insert sequence
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1426576_at 2,802685 953005801iRik 19 Cl RIKEN cDNA 9530058011 gene

1428527at 2,80246 Snx7 3 Gi sorting nexin 7

1 435342_at 2,802413 D7Ertd764e 7 9.5 cM DNA segment Chr 7 ERATO Doi 764 expressed

1 436472_at 2,802349

1448599_s_at 2,800563 D4Wsul 14e 476.4cM DNA segment Chr 4 Wayne State University 114 expressed
ATPase aminophospholipid transporter (APLT) class I type

1454728_s_at 2,796881 Atp8al 5 C3.1 8A member 1

1424886_at 2,796053 Ptprd 438.0cM protein tyrosine phosphatase receptor type D

141 7441_at 2,789204 Jdpl 10 B4 J domain protein 1

1428657_at 2,785082 lllOO37NO9Rik 13 A3.3 RIKEN cDNA 1110037N09 gene

1455750_at 2,784113 BC053994 2 Gi cDNA sequence BC053994

1455243_at 2,784058 Brpf3 17 A3.3 bromodomain and PHD fingercontaining 3

1 454078_a_at 2,783777 Gcst 11 Al galactosylceramide sulfotransferase
Mus musculus transcribed sequence with weak
similarity to protein pir:RGECDW (E. cou)
RGECDW transcription activator 0f D-serine dehydratase —

1435829_at 2,777996 Escherichia cou

1423903_at 2,776806 D7Ertd458e 74.0cM DNA segment Chr 7 ERATO Dol 458 expressed

1423341_at 2,761 704 Cspg4 9 B chondroitin sulfate proteoglycan 4

1450955_s_at 2,761 479 Sorti 3 F3 sortilin 1

1449325_at 2,760055 Fads2 19 A fatty acid desaturase 2

1460740_at 2,756798 Cltb 13 Bi clathrin light polypeptide (Lcb)

141 5837_at 2,756333 K1k6 723.0cM kallikrein 6

141 6497_at 2,75374 Cai 6 18.0cM calcium binding protein intestinal

142091 8_at 2,75321 Sgk3 1 A2 serum/glucocorticoid regulated kinase 3
X 28.87

141 6222_at 2,753096 Nsdhl cM NAD(P) dependent steroid dehydrogenase-like

1436542_at 2,751 974 Ptgerl 838.0cM prostaglandin E receptor 1 (subtype EPJ)

14601 67_at 2,751956 Aldh7al 18 29.0 cM aldehyde dehydrogenase family 7 member Al
Mus musculus transcribed sequence with moderate
similarity to protein sp;Qi 5884 (H.sapiens) Xl 23_HUMAN

1 435283_s_at 2,750292 Putative protein Xl 23

1 457404_at 2,749447 AA408868 16 Ai expreexpressed sequence AA408868

1451731 _at 2,746014 Abca3 17 A3.3 ATP-binding cassette sub-family A (ABC1) member 3

1423746_at 2,743512 Txndcs 13 A3.3 thioredoxin domain containing 5

1424386_at 2,741 705 BC020184 18 Bi cDNA sequence BC020184

141 5824_at 2,73982 Scd2 19 43.0 cM stearoyl-Coenzyme A desaturase 2

1433754_at 2,739402 Mbnl2 14 E4 muscleblind-like 2

141 9263_a_at 2,734801 Adrmi 2 H4 adhesion regulating molecule 1

1436848_x_at 2,733093 Impal 3 Al inositol (myo)-1(or 4)-monophosphatase 1

1428447_at 2,7321 68 5730496E24Rik 1 A4 RIKEN cDNA 5730496E24 gene

1428580_at 2,729983 Blvra 2 62.0cM biliverdin reductase A

1 424358_at 2,729569 BCO1 6265 14 11.2 cDNA sequence BCO1 6265

14481 88_at 2,725406 Ucp2 7 50.0cM uncoupling protein 2 mitochondrial

1455029_at 2,724609 Kif2la 15 55.1 cM kinesin family member 21A

141 6998_at 2,722856 Rrsl 1 8.0cM RRS1 ribosome biogenesis regulator homolog (S. cerevisiae)

1445031_at 2,721 777 Mus musculus transcribed sequences
Mus musculus aduit male eyeball cDNA RIKEN
full-length enriched library clone:7530422H1 8

1 439496_at 2,719214 product:unclassifiable full insert sequence

1416996_at 2,712851 Tbcld8 J B TBC1 demain family member8

1435493_at 2,711447 5730453H04Rik 13 A3.3 RIKEN cDNA 5730453H04 gene
Mus musculus transcribed sequence with strong similarity te

1 456584_x_at 2,710396 protein sp:Q61 753 (M.musculus) SERA_MOUSE
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D-3-phosphoglycerate dehydrogenase (3-PGDH) (AlO)

Mus musculus transmembrane 7 superfamily member 1
1439256_x_at 2,709534 (Tm7sfl) mRNA

145601 4_s_at 2,707687 Tptlh 19 A tRNA splicing 2’ phosphotransferase 1 homolog (S. cerevisiae)

1452783_at 2,704613 1600019004Rik 3 A3 RIKEN cDNA 1600019004 gene

1450674_at 2,700499 Cdk5 5 12.0cM cyclin-dependent kinase 5

1452872at 2,699758 Ank3 1038.0cM ankyrin 3 epithelial

1455048_at 2,69719 Igsf2 348.5cM immunoglobulin superfamily member 2

1426656_at 2,69508 4930504E06R1k 3 F2.1 RIKEN cDNA 4930504E06 gene

14511 60_s_at 2,691758 D7Ertd458e 7 4.0 cM DNA segment Chr 7 ERATO Dol 458 expressed
Mus musculus transcribed sequence with moderate
similarity to protein sp:Q1 5884 (H.sapiens) Xl 23_HUMAN

1435282_at 2,689807 Putative protein X123
Mus musculus O day neonate cerebellum cDNA RIKEN
fuII-Iength enriched Iibrary clone:C230090M03

1455684_at 2,685444 product:unknown EST full insert sequence

141 7794_at 2,683291 Zfp261 X 57.0cM zinc finger protein 261

1420371_at 2,6831 55 Sntb2 8 52.0cM syntrophin basic 2

1 460253_at 2,679362 Cklfsf7 9 F3 chemokine-like factor super family 7

141 8927_a_at 2,678875 Habp4 13 B3 hyaluronic acid binding protein 4
Mus musculus 18-day embryo whole body cDNA RIKEN
full-Iength enriched Iibrary clone:;; i 0014020

1428433_at 2,677442 product:unknown EST full insert sequence

1424250_a_at 2,672633 Arhgef3 14 9.0cM Rho guanine nucleotide exchange factor (GEF) 3

1448727_at 2,665435 T1e6 10 Cl transducin-like enhancer of split 6 homolog of Drosophila E(spl)

141 9757_at 2,661 633 Rdgb2 5 68.0cM retinal degeneration B2 homolog (Drosophila)

1449804_at 2,661204 Pnmt 11 D phenylethanolamine-N-methyltransfetase

1 429273_at 2,661126 311 OO56HO4Rik 9 A3 RI KEN cDNA 311 0056H04 gene

142471 1_at 2,656942 Tmem2 19 B transmembrane protein 2

1455288_at 2,656919 1110036003Rik 11 D RIKEN cDNA 1110036003 gene

1428465_at 2,653479 5033425B17Rik 7 A3 RIKEN cDNA 5033425B17 gene

1424468_s_at 2,647575 D330037A14Rik 9 A5.2 RIKEN cDNA D330037A14 gene

1460735_at 2,643331 SviI 18 Al supervillin

1424653_at 2,638656 2700063A19Rik 10 B4 RIKEN cDNA 2700063A19 gene

1448263_a_at 2,637736 O6lOOlOEO5Rik 18 E4 RIKEN cDNA 0610010E05 gene

1433571_at 2,636153 A130038L21Rik 13C3 RIKENcDNAA130038L21 gene

1423891_at 2,633322 Gstt3 10 Cl glutathione 5-transferase theta 3

1427332_at 2,629075 Zdhhc5 2 D zinc finger DHHC domain containing 5

1442340_x_at 2,628223 Cyr6l 3 72.9cM cysteine rich protein 61
tyrosine 3-monooxygenase/tryptophan 5-monooxygenase

1 454378_at 2,622282 Ywhaq activation protein theta polypeptide

1436209_at 2,621 89 4732437J24Rik 4 El RIKEN cDNA 4732437J24 gene

141 6505_at 2,620323 Nr4al 15 F nuclear receptor subfamily 4 group A member 1

141 8480_at 2,6201 76 Cxcl7 5 E2 chemokine (C-x-C motif) ligand 7

1428544_at 2,619558 O6l0007LOlRik 5 G1.3 RIKEN cDNA 0610007L01 gene

1449575_a_at 2,61 7542 Gstp2 19 0.0cM glutathione 5-transferase pi 2

l424852_at 2,61 5439 Mef2c 1345.0cM myocyte enhancerfactor 2C

1452385_at 2,61 4855 AA939927 3 Gi expressed sequence AA939927

1429233_at 2,606406 D5Ertd6O6e 5 52.0cM DNA segment Chr 5 ERATO Dol 606 expressed

1455345_at 2,605992 Phtl5 11 Bl.3 PHD finger protein 15

141 9688_at 2,604731 Gpc6 14 E4 glypican 6

1423478_at 2,602617 Prkcb 760.0cM protein kinase C beta

1435251at 2,602324 Snxl3 12 A2 sorting nexin 13
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1452654_at 2,601 387 Zdhhc2 8 A4 zinc finger DHHC domain containing 2

14521 24_at 2,598767 Ank3 1038.0cM ankyrin 3 epithelial

1429713_at 2,591205 261 OO4OFO5Rik 5 G1.3 RIKEN cDNA 261 0040F05 gene

142981 2_at 2,590723 261 0002D1 8Rik 4 D3 RIKEN cDNA 261 0002D18 gene

1424474_a_at 2,58769 Camkk2 5 F calcium/calmodulin-dependent protein kinase kinase 2 beta

1424726_at 2,587598 BCO1 4685 6 Cl cDNA sequence BCO1 4685

1452759_s_at 2,587063 Ppfibpl 6 G3 PTPRF interacting protein binding protein 1 (liprin beta 1)

1434600_at 2,586482 Tjp2 tightjunction protein 2

1435345_at 2,584856 AL024097 2 B expressed sequence AL024097

14231 41_at 2,58438 Lipl 19 Cl lysosomal acid lipase 1
15 58.86

1420647_a_at 2,580217 Krt2-8 cM keratin complex 2 basic gene 8

1437040_at 2,577132 4933417N20Rik 1 E4 RIKEN cDNA 4933417N20 gene

1416805_at 2,575235 1110032E23Rik 3 E3 RIKEN cDNA 1110032E23 gene

1448893_at 2,574917 Ncor2 nuclear receptor co-repressor 2

1434645_at 2,573651 C530008M17R1k 5 D RIKEN cDNA C530008M17 gene

1452823_at 2,572955 Gstkl 6 B2.1 glutathione S-transferase kappa 1

142851 0_at 2,572589 Lphnl 8 C2 latrophilin 1

141 9708_at 2,569793 Wnt6 1 C4 wingless-related MMTV integration site 6

1428142_at 2,569106 Etv5 16 Al ets variant gene 5

1460177_at 2,567923 O6lOOlOEO5Rik 18 E4 RIKEN cDNA 0610010E05 gene

1426883_at 2,565132 AW491445 19 A expressed sequence AW491445

1429065_at 2,565015 1700023M03Rik 10 C2 RIKEN cDNA 1700023M03 gene

1424440_at 2,564946 Mrps6 16 Al mitochondrial ribosomal protein S6

1456475_s_at 2,564418 Prkar2b 12 A2 protein kinase cAMP dependent regulatory type Il beta

1448842_at 2,56281 Cdol 1823.0cM cysteine dioxygenase 1 cytosolic

1426856_at 2,562408 26102071l6Rik 4 B3 RIKEN cDNA 2610207116 gene
Mus musculus 13 days embryo male testis cDNA
RI KEN full-length enriched library clone:6030408M1 7

141 8863_at 2,559029 product:GATA binding protein 4 full insert sequence

1434768_at 2,557531 C1n2 750.0cM ceroid-lipofuscinosis neuronal 2
Mus musculus transcribed sequence with strong similarity
to protein ref:NP_065580.1 (M.musculus) hypothetical

1433855_at 2,555116 protein 154 [Mus musculusJ

1423749_s_at 2,554734 Rangapi 1543.3cM RAN GTPase activating protein 1

14381 70_x_at 2,552304

1424265_at 2,548361 Npl 1 G3 N-acetylneuraminate pyruvate lyase

1436499_at 2,54797 953005801lRik 19 Cl RIKEN cDNA 9530058011 gene

1422491_a_at 2,547555 Bnip2 9 D BCL2!adenovirus E1B l9kDa-interacting protein 1 NIP2
protein kinase interferon inducible double strandedRNA

1448923_at 2,546691 Prkra 2 C3 dependent activator

1427339_at 2,543886 Slc3Oa2 4 D3 solute carrier family 30 (zinc transporter) member 2

1448107_x_at 2,543463 K1k6 723.0cM kallikrein 6

1 422208_a_at 2,541 114 GnbS 9 41.0 cM guanine nucleotide binding protein beta 5
Mus musculus 12 days embryo spinal ganglion cDNA
RIKEN fulI-length enriched library clone:D130031 D15

1 439858_at 2,541111 product:unknown EST full insert sequence

141 5988_at 2,536731 Hdlbp 1 55.3cM high density lipoprotein (HDL) binding protein

1420859_at 2,534565 Pkia 3 Al protein kinase inhibitor alpha

1450264_a_at 2,534087 Chk 19 3.0cM choline kinase

1448404_at 2,530449 Scamp2 9 B secretory carrier membrane protein 2

1448566_at 2,529856 Slc4Oal 1 B solute carrier family 40 (iron-regulated transporter) member 1

1448995_at 2,52978 Cxcl4 5 E2 chemokine (C-X-C motif) ligand 4
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141 7876_at 2,526664 Fcgri 345.2cM Fc receptor lgG high affinity I
UDP-N-acetyl-alpha-D-galactosamine:polypeptide

14521 82_at 2,52554 GaInt2 8 E2 N-acetylgalactosaminyltransferase 2

1435396_at 2,52487 6 Stxbp6 12 Bi syntaxin binding protein 6 (amisyn)

1459546_s_at 2,524644 Enppi 10 19.0cM ectonucleotide pyrophosphatase/phosphodiesterase 1

1 422943_a_at 2,52415 Hspbl 5 76.0 cM heat shock protein 1

147 6246_a_at 2,522474 Corola 762.5cM coronin actin binding protein lA

1417301_at 2,521085 Fzd6 15 13.1 cM frizzled homolog 6fDrosophila)

1433486_at 2,5201 09 CIcn3 832.2cM chloride channel 3

i429055at 2,518389 4930506M07R1k 19 D3 RIKEN cDNA 4930506M07 gene

141 8095_at 2,517492 Smpx X F4 small muscle protein X-linked

1457247at 2,517333 Mus musculus transcribed sequences
Mus musculus 6 days neonate head cDNA RIKEN
fuIl-length enriched library clone:543041 lAi3
product:serine/threonine kinase 39 STE2O/SPS1

141 9551_s_at 2,517027 homolog fyeast) full insert sequence

14i5832_at 2,513385 Agtr2 X 12.5cM angiotensin Il receptor type 2

1428i32_at 2,512019 i300002Ml2Rik 3 F2.i RIKEN cDNA 1300002M12 gene
transmembrane protein with EGF-Iike and two follistatin-like

i426649_at 2,511922 Tmeff 1 4 Bi domains 1

i421315_s_at 2,505381 Cffn 1331.0cM cortactin

1 438945_x_at 2,501513 Gjal 10 29.0 cM gap junction membrane channel protein alpha 1

1433908_a_at 2,501 341 Mus musculus transcribed sequences

1422484_at 2,501105 Cycs 623.0cM cytochrome c somatic
Mus musculus 16 days embryo head cDNA RIKEN
tull-length enriched library clone:C130079B08

1440985_at -2,50244 product:unknown EST full insert sequence

1420731_a_at -2,50427 Csrp2 10 Dl cysteine and glycine-rich protein 2

1426063_a_at -2,50851 Gem 4 2.6 cM GTP binding protein (gene overexpressed in skeletal muscle)

1437819_s_at -2,50901 9530020G05Rik 6 Bi RIKEN cDNA 9530020G05 gene

1435598at -2,50921 Shc2 1042.0cM src homology 2 domain-containing transforming protein C2

1436007_a_at -2,515 6330575PiiRik 7 F1 RIKEN cDNA 6330575P1i gene

1420994_at -2,51511 B3gntS 16 Al UDP-GIcNAc:betaGal beta-13-N-acetylglucosaminyltransferase 5

1449368_at -2,51519 Dcn 1055.0cM decorin
Mus musculus similar to myosin homolog brain - mouse

i452298_a_at -2,51726 18 (L0C383411) mRNA

141 61 30_at -2,52253 Prnp 2 75.0cM prion protein

i448296_x_at -2,52368 Tuba3 6 F3 tubulin alpha 3

1427299_at -2,52368 Rps6ka3 X 65.7cM ribosomal protein S6 kinase polypeptide 3

i442977_at -2,52411 Mus musculus transcribed sequences

1428797_at -2,52453 28i0004N23Rik 8 E2 RIKEN cDNA 281 0004N23 gene

i437i19_at -2,52467 Erni 11 El endoplasmic reticulum fER) to nucleus signalling 1

1421 374_a_at -252757 Fxydi 7 A3 FXYD domain-containing ion transport regulator 1

14271 76_s_at -2,52875 A1428936 7 A3 expressed sequence A1428936

1451 260_at -2,52889 Aldhibi 4 Bi aldehyde dehydrogenase 1 family member Bi

141 976i_a_at -2,52968 Gabpbi 2 71.0cM GA repeat binding protein beta 1

1448020_at -2,531 23 Rapia 348.5cM RAS-related protein-ia

i438946_at -2,53146 Pdgfra 5 42.0cM platelet derived growth factor receptor alpha polypeptide

i443260at -2,53207 Mus musculus transcribed sequences

i422786_at -2,53345 Slc3Oai 1 106.0cM solute carrier family 30 (zinc transporter) member 1

i452378_at -2,53429 22iO4OiKOlRik RIKEN cDNA 2210401 KOl gene

1428440_at -2,53531 51c25ai2 2 C2 solute carrier family 25 fmitochondrial carrier Aralar) member 12

i426363_x_at -2,53569 5430437EiiRik 10 B4 RIKEN cDNA 5430437E11 gene
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14371 74_at -2,5362 A330080J22Rik 9 E3.3 RIKEN cDNA A330080J22 gene

1458447_at -2,53645 Leki 1 H6 leucine glutamic acid lysine family 1 protein

1 447775_x_at -2,53679

145241 8_at -2,53827

1449407_at -2,53991 Cdvi 5 65.0 cM carnitine deficiency-associated gene expressed in ventricle 1

1435008_at -2,54953 S1c9a6 X A5 solute cartier family 9 fsodium/hydrogen exchanger) isoform 6

1433670_at -2,55091 Emp2 162.4cM epithelial membrane protein 2

1 433955_at -2,55437 Wdr9 16 Al WD repeat domain 9

1429530_a_at -2,55461 4122402022Rik 16 Al RIKEN cDNA 4122402022 gene

1435303at -2,55732 4932409F03Rik 18 Al RIKEN cDNA 4932409F03 gene

14321 43_a_at -2,55802 Hbpl 12 A2 high mobility group box transcription factor 1
a disintegrin-like and metalloprotease (reprolysin type)

145071 6_at -2,55847 Adamtsl 1653.4cM with thrombospondin type 1 motif 1

i448i7i_at -2,5585 Siah2 335.0cM seven in absentia 2

141 7656_at -2,5587 MybI2 2 93.0cM myeloblastosis oncogene-like 2

1451 342_at -2,56003 Sponi 7 F1 spondin 1 (f-spondin) extracellular matrix protein

1437889_x_at -2,561 31 Bgn X 29.3cM biglycan

1422697_s_at -2,56393 Jmj 1327.0cM jumonji
Mus musculus aduit male aorta and vein cDNA RIKEN
full-length enriched Iibrary clone:A530080E04

1441 328_at -2,56503 product:unknown EST full insert sequence

143807i_at -2,56631 Pmsl 1 C1.1 postmeiotic segregation increased 1 (S. cerevisiae)

1448666_s_at -2,56888 Tob2 15 El transducer 0f ERBB2 2

1 437544_at -2,57258 D3Ertd33Oe 3 H3 DNA segment Chr 3 ERATO Dol 330 expressed

1433985_at -2,57666 Abi2 1 C2 abl-interactor 2

1435878_at -2,57702 Stk38l 6 G3 serine/threonine kinase 38 like

1436210_at -2,57703 C330018K18Rik 9 E3.3 RIKEN cDNA C330018K18 gene

14251 0l_a_at -2,57934 Fkbp6 575.0cM FK506 binding protein 6

1423836_at -2,58111 Zfp503 149.0cM zinc finger protein 503
ubiquitously transcribed tetratricopeptide repeat gene

1427672_a_at -2,58186 Utx X 5.5cM X chromosome

1436926_at -2,5827 Esrrb 1241.0cM estrogen related receptor beta

14241i6_x_at -2,591 96 Pppsc 74.0cM protein phosphatase 5 catalytic subunit

i426766_at -2,59242 6330403K07Rik 11 B4 RIKEN cDNA 6330403K07 gene

1449137_at -2,59374 Pdhal X 66.5cM pyruvate dehydrogenase El alpha 1

i429372_at -2,59707 Soxl 1 SRY-box containing gene il

l420725_at -2,59754 Tmlhe trimethyllysine hydroxylase epsilon

1449089_at -2,60234 Nripl 16 Al nuclear receptor interacting protein 1

1453774_at -2,60256 2810002009Rik X C2 RIKEN cDNA 2810002009 gene

1425543_s_at -2,60309 28lO43iN2iRik 6G2 RIKENcDNA281O431N21 gene
Mus musculus aduit male corpora quadrigemina cDNA
RIKEN full-length enriched library clone:B230337E1 2

143467i_at -2,60321 product:unclassifiable full insert sequence

1452330_a_at -2,6058 120001 3AO8Rik 483.0cM RIKEN cDNA 120001 3A08 gene

1460592_at -2,60582 Epb4.lll 2 88.0cM erythrocyte protein band 4.1-like 1

1 428267_at -2,60748 Dhx4O il C DEAH (Asp-Glu-AIa-His) box polypeptide 40

1448754_at -2,60826 Rbpl 9 52.0cM retinol binding protein 1 cellular

1 433977_at -2,60955 Hs3st3b il 33.0 cM heparan sulfate (glucosamine) 3-0-sulfotransferase 3B

l442497_at -2,61085 4931400Ai4Rik 17 Ei.3 RIKEN cDNA 4931400A14 gene
Mus musculus 13 days embryo heart cDNA RIKEN
full-length enriched library clone:D330040F03

1446571_at -2,61186 product:unclassifiable full insert sequence

1439885_at -2,61311 1557.4cM homeoboxC5Hoxc5
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1456808_at -2,6142 Mus musculus transcribed sequences

1451501_a_at -2,61477 Ghr 15 4.6cM growth hormone receptor
Mus musculus 2 days neonate thymus thymic celis
cDNA RIKEN full-length enriched Iibrary clone:C920011F17

1439652_at -2,61531 product:unclassifiable full insert sequence

1448014_s_at -2,61665 2810030C21Rik 4 C7 RIKEN cDNA 2810030C21 gene

14501 72_at -2,61 665 Pknoxi 17 B-C Pbx/knotted 1 homeobox

1426799_at -2,61 793 D330025I23Rik 9 C RIKEN cDNA D330025123 gene

1 423422_at -2,61887 Asb4 6 0.6 cM ankyrin repeat and SOCS box-containing protein 4

1433930_at -2,62201 Hpse 5 E3 heparanase

1426208_x_at -2,62257 Plagli 10 15.0cM pleiomorphic adenoma gene-like 1

1423878_at -2,62273 061 0037F22Rik 18 Bi RIKEN cDNA 061 0037F22 gene

141 6034_at -2,62351 Cd24a 1026.0cM CD24a antigen

1427540_at -2,62445 DlOErtd749e 1038.0cM DNA segment Chr 10 ERATO Dol 749 expressed

1429564_at -2,62597 5830443C21Rik 19 C2 RIKEN cDNA 5830443C21 gene

1454727_at -2,62696 A1173486 18 El expressed sequence A1173486

1448745_s_at -2,62778 Lot 342.1 cM loricrin

1445427_at -2,62901 Mus musculus transcribed sequences

141 7756_a_at -2,62971 Lspl 769.0cM lymphocyte specific 1
acetyl-Coenzyme A acyltransferase 2

1428146_s_at -263147 Acaa2 1845.0cM (mitochondrial 3-oxoacyl-Coenzyme A thiolase)

1424375_s_at -2,63392 lani 6 B2.3 immune associated nucleotide 1

141 8258_s_at -2,63549 Arhgdia 11 E2 Rho GDP dissociation inhibitor (GDI) alpha

141 5999_at -2,63725 Heyl 32.4cM hairy/enhancer-of-split related with YRPW motif 1

1425918_at -2,63915 Egln3 12 B3 EGL fine homolog 3 (C. elegans)
Mus musculus 12 days embryo spinal ganglion cDNA
RIKEN fuII-Iength enriched library clone:D1 30062J21

1446929_at -2,63944 product:hypothetical protein full insert sequence

14451 91_at -2,6409 4932702D22 2 E5 hypothetical protein 4932702D22

1 448804_at -2,64457 Cypi 1 al 9 31.0 cM cytochrome P450 family 11 subfamily a polypeptide 1

1440604_at -2,65151 Mus musculus transcribed sequences

141 9356_at -2,65355 Klf7 1 C1-C3 Kruppel-Iike factor 7 fubiquitous)

1431 226_a_at -2,65469 2810430J06Rik 5 Bi RIKEN cDNA 2810430J06 gene

1424191_a_at -2,65535 5730578N08Rik 16 Al RIKEN cDNA 5730578N08 gene

141 7359_at -2,66046 Mfap2 4 D3-Ei microfibtillar-associated protein 2

i448990_a_at -2,66056 Myolb 1 24.8cM myosin lB

i451998_at -2,661 53 4930485D02Rik 2 F3 RIKEN cDNA 4930485D02 gene

1429971 _at -2,66631 Txnrd2 16 11.2 cM thioredoxin reductase 2

i454942_at -2,67037 Niban 1 G2 niban protein

1429060_at -2,67123 22lO4OiKOiRik RIKENcDNA221O4O1KO1 gene

1420385_at -2,67233 Gnai4 199.0cM guanine nucleotide binding ptotein alpha 14
Mus musculus 9 days embryo whole body cDNA RIKEN
full-length enriched library clone:D030060F23
product:Mus musculus U22 snoRNA host gene (UHG)

1454703_x_at -2,67316 gene complete sequence full insert sequence

1449645_s_at -2,67365 Cct3 350.0cM chaperonin subunit 3 (gamma)

1428502_at -2,67857 201 O200JO4Rik 10 C2 RIKEN cDNA 201 0200J04 gene
Mus musculus 16 days embryo head cDNA RIKEN
full-length enriched library clone:C1 30043Li 8

i438788_at -2,67858 product:unknown EST full insert sequence

1439095_at -2,67987 26100i9Ni3Rik 3 H4 RIKEN cDNA 2610019N13 gene

141 7780_at -2,68172 Lass4 8 Ai .1 Iongevity assurance homolog 4 (S. cerevisiae)

141 6689_at -2,68406 Tuftl 3 F2.1 tuftelin 1

1449026_at -2,68562 Ifnarl 1663.2cM interferon (alpha and beta) receptor 1
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1416710_at -2,68725 9030603L14Rik X E3 RIKEN cDNA 9030603L14 gene

1439373_x_at -2,6891 Wnt5b 6 56.2 cM wingless-related MMTV integration site 5B

1446550_at -2,68938 Gsptl 163.8cM Gi to phase transition 1

1421916_at -2,69001 Pdgfra 542.0cM platelet derived growth factor receptor alpha polypeptide
Mus musculus cDNA clone MGC:12i42 IMAGE:371 0749

1 425673_at -2,69323 complete cds

141 641 4_at -2,69443 Emilini 5 Bi elastin microfibril interface lœated protein 1

1437945_x_at -269465 NaplIl 10 Di nucleosome assembly protein 1-like 1

1456046_at -2,69542 Clqri 2 84.0cM complement component 1 q subcomponent receptor 1

1436948_a_at -2,69602 AW260253 X A3.i expressed sequence AW260253

1428667_at -2,7004 Maoa X 5.2 cM monoamine oxidase A

1417096_at -2,70405 2810430M08Rik 1 H5 RIKEN cDNA 2810430M08 gene

1434428_at -2,7063 D330028D13Rik 6 B2.3 RIKEN cDNA D330028D13 gene

1438816_at -2,70791 6230412P20Rik 1 102.0cM RIKENcDNA623O412P2Ogene
Mus musculus aduit male hypothalamus cDNA RIKEN
full-length enriched library clone:A230106P21

1443037_at -2,70905 product:unknown EST full insert sequence

1422053_at -2,71271 lnhba 1310.0cM inhibin beta-A

142931 0_at -2,71 463 Flrt3 2 F3 fibronectin leucine rich transmembrane protein 3

141 9301_at -2,71 614 Fzd4 744.5cM f rizzled homolog 4 (Drosophila)

1 420565_at -2,71849 Hoxai 6 26.28 cM homeo box Al

1434754_at -2,71 998 11 B5 Mus musculus L0C380710 fLOC380710) mRNA

141 7403_at -2,72167 Elovl6 3 G3 ELOVL family member 6 elongation of long chain fatty acids (yeast)

141 8673_at -2,72193 Snai2 169.4cM snail homolog 2 (Drosophila)

1446228_at -2,72295 Dl9Wsul2e 1924.5cM DNA segment Chr 19 Wayne State University 12 expressed

1438651 -2,72525

14251 14_at -2,72755 C030034J04R1k 7 F2 RIKEN cDNA C030034J04 gene
Mus musculus transcribed sequence with weak similarity
to protein sp:P00722 (E. coli) BGAL_ECOLI

1 443846_x_at -2,7289 Beta-galactosidase (Lactase)

1419706_a_at -2,7324 Akapl2 105.5cM A kinase (PRKA) anchor protein (gravin) 12

141 9655_at -2,73494 T1e3 transducin-like enhancer cf split 3 homolog of Drosophila E(spl)

1428498_at -2,73713 2610206B13Rik 14 E2.3 RIKEN cDNA 2610206B13 gene

14341 29_s_at -2,73899 Al447312 13 C3 expressed sequence A1447312

1438702_at -2,74249 Map4k5 12 C2 mitogen-activated protein kinase kinase kinase kinases

1425536_at -2,74266 Stx3 19 A syntaxin 3

141 6915_at -2,74424 Msh6 1747.0cM mutS homolog 6 (E. cou)

1428136_at -2,74752 Sfrpl 8 9.5cM secreted frizzled-related sequence protein 1

1 450068_at -2,74807 Bazi b 5 G2 bromodomain adjacent to zinc finger domain 1 B

1437507_at -2,74858 C430014D17Rik 3 F1 RIKEN cDNA C430014D17 gene

1428640_at -2,74986 Hsf2bp 17 A3.3 heat shock transcription factor 2 binding protein

1440830_at -2,7501 8430401C09Rik 17 B3 RIKEN cDNA 8430401C09 gene

1447757_x_at -2,75506 lnpp5f 7 F3 inositol polyphosphate-5-phosphatase F

1 448862_at -2,75679 lcam2 11 63.0 cM intercellular adhesion molecule 2

1452682_at -2,75786 4632404H22Rik X A4 RIKEN cDNA 4632404H22 gene

1452283_at -2,75993 AW123240 6 expressed sequence AW123240

141 891 7_at -2,76052 Hebp2 10 A3 heme binding protein 2

1 453007_at -2,76076 31 1008211 7Rik 5 G2 RIKEN cDNA 3110082117 gene

1431 166_at -2,761 93 Chdl 177.2cM chromodomain helicase DNA binding protein 1
O-linked N-acetylglucosamine (GlcNAc) transferase
(UDP-N-acetylglucosamine:polypeptide-N
acetylglucosaminyl transferase)142551 6_at -2,76264 Ogt X C3
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1440225_at -2,76308 8430401C09Rik 17 B3 RIKEN cDNA 8430401C09 gene

1 438620_x_at -2,76316

1444008_at -2,76415 4933432H23Rik 15 Dl RIKEN cDNA 4933432H23 gene
Mus musculus 9 days embryo whole body cDNA
RI KEN fuIl-Iength enriched library clone: D030060F23
product:Mus musculus U22 snoRNA host gene (UHG)

1437658_a_at -2,76556 gene complete sequence full insert sequence

1453285_at -2,76589 260001 7HO2Rik 11 B3 RIKEN cDNA 2600017H02 gene

1438041_at -2,76801 Pde7a 37.0cM phosphodiesterase 7A

1435302_at -2,76923 4932409F03Rik 18 Al RIKEN cDNA 4932409F03 gene

1455655_a_at -2,76973 Tardbp 4 E2 TAR DNA binding protein
Mus musculus similar to hypothetical protein FLJ40240

1441 098_at -2,77018 17 Al (L0C240023) mRNA

142808l_at -2,77177 l8lOO45KO6Rik 4 E2 RIKEN cDNA 18l0045K06 gene

1422587_at -2,77382 C630002M1ORik 16 Al RIKEN cDNA C630002M10 gene

1422452_at -2,7744 Bag3 7 F3 Bc12-associated athanogene 3

1429911_at -2,78321 DO30046NO4Rik 8 A1.3 RIKEN cDNA D030046N04 gene

l427298_at -2,78507 Npnl neoplastic progression 1

1424186_at -2,78548 26l000lEl7Rik 16 Al RIKEN cDNA 2610001E17 gene

1449071_at -2,78787 Myl7 11 0.75cM myosin light polypeptide 7 regulatory

1427084_a_at -2,78867 Map4k5 12 C2 mitogen-activated protein kinase kinase kinase kinase 5

1 450625_at -2,79046 Co15a2 1 Cl procollagen type V alpha 2

1444693_at -2,79163 Mus musculus transcribed sequences

1426530_a_at -2,79262 l3000l3CiORik 5 C3.1 RIKEN cDNA 1300013C10 gene
Mus musculus 16 days embryo head cDNA RIKEN
full-length enriched library clone:C130034A17 product:

14391 23_at -2,79592 unknown EST full insert sequence

1428523_at -2,79795 Lphn3 5 El latrophilin 3
glycine C-acetyltransferase

141 7823_at -2,7982 Gcat 15 46.6cM (2-amino-3-ketobutyrate-coenzyme A ligase)

1450070_s_at -2,80057 Paki 746.5 cM p21 (CDKN1A)-activated kinase 1

1457840_at -2,80265 Plxna4 6 Bi plexin A4

145401 1_a_at -2,80536 Rpa2 4 D2.3 replication protein A2

1460229_at -2,80619 Stag3 567.0cM stromal antigen 3

1444302_at -2,80718 MGC59592 6 D3 Unknown fprotein for MGC:59592)

1418100_at -2,80722 AO30009HO4Rik 11 B3 RIKEN cDNA A030009H04 gene

146001 5_at -2,80873 2 A3 Mus musculus hypothetical L0C227631 (L0C227631) mRNA

142267l_s_at -2,80962 Naalad2 9 A2 N-acetylated alpha-linked acidic dipeptidase 2
double cortin and calcium/calmodulin-dependent protein

1450863_a_at -2,81 062 Dcamkll 3 C kinase-like 1

1434442_at -2,81173 D5Ertd593e 5 52.0cM DNA segment Chr 5 ERATO Doi 593 expressed
Mus musculus aduit male cerebellum cDNA RIKEN
fuIl-length enriched library clone: 1 500009L1 6

1452840_at -2,81 441 product:hypothetical protein full insert sequence

1448395_at -2,81 67 Sfrpl 89.5cM secreted frizzled-related sequence protein 1

1429982_at -2,81764 493l417E21Rik 6 F2 RIKEN cDNA 4931417E21 gene
Mus musculus transcribed sequence with moderate
similarity to protein sp:P00722 (E. coli) BGAL_ECOLI

1 440438_at -2,81793 Beta-galactosidase (Lactase)

1448152_at -2,81994 lgf2 769.09cM insulin-likegrowthfactor2

1459713_s_at -2,82114 AU040576 7 F5 expressed sequence AU040576

14371 73_at -2,82144 Edg3 13 AS endothelial differentiation sphingolipid G-protein-coupled receptor 3

1452736_at -2,82198 l70002OMl6Rik 1432.5cM RIKEN cDNA 1700020M16 gene

1455900_x_at -2,82338 Tgm2 2 89.0cM transglutaminase 2 C polypeptide

1422663_at -2,82594 OrclI 4 D origin recognition complex subunit 1-like (S.cereviaiae)
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Mus musculus O day neonate cerebellum cDNA RIKEN
full-length enriched library clone:C230068K1 5

1455169_at -2,82642 product:unknown EST full insert sequence

1441 732_at -2,82667 Mus musculus transcribed sequences

1430059_at -2,82713 Mus musculus transcribed sequences

1428798_s_at -2,82959 281 0004N23Rik 8 E2 RIKEN cDNA 281 0004N23 gene
UDP-Gal:betaGlcNAc beta 1 4-galactosyltransferase

1460329_at -2,82979 B4galt6 18 A2 polypeptide 6

141 8260_at -2,83326 Hunk 7658.0cM hormonally upregulated Neu-associated kinase

1443939_at -2,84074 4 Dl Mus musculus hypothetical L0C230628 (L0C230628) mRNA

74351 23_at -2,84395 A1852640 12 A1.1 expressed sequence Al852640

1439837_at -2,84598 Tnrcl5 1 D trinucleotide repeat containing 15

1416405_at -2,84845 Bgn X29.3cM biglycan

1436173_at -2,85026 Dlcl 8 21.0cM deleted in liver cancer 1

1 423393_at -2,86089 Clic4 4 D3 chloride intracellular channel 4 (mitochondrial)

141 9354_at -2,86122 Klf7 1 Cl -C3 Kruppel-like factor 7 (ubiquitous)

1450699_at -2,86499 Selenbpl 3 50.8 cM selenium binding protein 1

14161 59_at -2,86615 Nr2f2 7 33.0 cM nuclear receptor subfamily 2 group F member 2

142191 0_at -2,86754 Tcf2O 15 E transcription factor 20

141 9497_at -2,86891 Cdknlb 662.0cM cyclin-dependent kinase inhibitor lB (P27)

14601 63_at -2,87527 Mus musculus transcribed sequences

1455609_at -2,8784 CO30025P15Rik 5 F RIKEN cDNA C030025P15 gene

1451516_at -2,88144 1810036J22Rik 15 F1 RIKEN cDNA 1810036J22 gene

1444777_at -2,88342 Rail4 15 A2 retinoic acid induced 14

1440092_at -2,88425 Mus musculus transcribed sequences

145541 8_at -2,8845 Mus musculus transcribed sequences

1459749_s_at -2,88551 603041 0K14 3 B hypothetical protein 603041 0K14

1433542_at -2,88665 lnppsf 7 F3 inositol polyphosphate-5-phosphatase F

144951 9_at -2,89013 Gadd4sa 370.5cM growth arrest and DNA-damage-inducible 45 alpha

1452250_a_at -2,89269 Co16a2 1041.1 cM procollagen type VI alpha 2
Mus musculus 13 days embryo stomach cDNA RIKEN
full-length enriched library clone:D530037H1 2

143791 7_at -2,89279 product:unknown EST full insert sequence

1431 085_a_at -2,89364 Pcmtl 107.0cM protein-L-isoaspartate (D-aspartate) 0-methyltransferase 1

1436970_a_at -2,8948 Pdgfrb 18 30.0cM platelet derived growth factor receptor beta polypeptide

1447602_x_at -2,89523 201 0004N24Rik 2 H3 RIKEN cDNA 201 0004N24 gene

1437605_at -2,89644 Nphs2 1 G3 nephrosis 2 homolog podocin (human)
Mus musculus 16 days neonate heart cDNA RIKEN full-length
enriched library clone:D830017E01 product:protein kinase

1 444232_at -2,89903 cGMP-dependent type I full insert sequence

1428647_at -2,89951 Pbxl 1 88.1 cM pre B-cell leukemia transcription factor 1
Mus musculus 12 days embryo spinal ganglion cDNA
RIKEN full-length enriched library clone:D130027H1 1

1441 547_at -2,89959 product:unknown EST full insert sequence

143691 1_at -2,90383 A23005301 6Rk 2 H4 RIKEN cDNA A23005301 6 gene

1431771_a_at -2,90392 lraklbpl 9 E2 interleukin-1 receptor-associated kinase 1 binding protein 1
Mus musculus transcribed sequence with strong similarity
to protein sp:P00722 (E. cou) BGAL_ECOLI Beta-galactosidase

1 458665_at -2,90482 (Lactase)

1437466_at -2,90633 Alcam 16 Al activated leukocyte celi adhesion molecule

1459288_at -2,90782 Mus musculus transcribed sequences

1 447676_x_at -2,90787

1429268_at -2,90905 2610318N02Rik 16 Al RIKEN cDNA 2610318N02 gene

142531O_a_at -2,91178 Co126a1 5 G2 collagen type XXVI alpha 1
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1451703_s_at -2,97 248 Aprt 8 67.0cM adenine phosphoribosyl transferase

1450784_at -2,97 625 Reck 4 Bi reversion-inducing-cysteine-rich protein with kazal motifs

1448601_s_at -2,91 646 Msxi 521.0cM homeo box msh-like 1

1460056_at -2,91 688 1700064D17Rik 2 RIKEN cDNA i700064Di7 gene

1452942at -2,91879 4930438D12Rik 15 Di RIKEN cDNA 4930438Di2 gene

145711 0_at -2,92705 Mus musculus transcribed sequences

74271 02_a_at -2,92721 Vamp3 4 E2 vesicle-associated membrane protein 3

i423072_at -2,92401 6720475J19Rik 19 A RIKEN cDNA 6720475J19 gene

1436737_a_at -2,92576 Sorbsl 1936.5cM sorbin and SH3 domain containing 7

i423450_a_at -2,92613 Hs3stl 5 22.0cM heparan sulfate (glucosamine) 3-0-sulfotransferase 1

1454659_at -2,92895 Dctd 8 B1.1 dCMP deaminase

1 437673_at -2,93018 Mus musculus transcribed sequences

141 5865_s_at -2,9318 Bpgm 6 A3.3 23-bisphosphoglycerate mutase

i427226_at -2,93738 Epn2 il B2 epsin 2
potassium voltage-gated channel shaker-related subfamily

1417680_at -2,94903 Kcnas 661.0cM members
Mus musculus aduit male testis cDNA RIKEN fuII-length
enriched Iibrary clone:4932442L1 1 product:hypothetical

1438884_at -2,95261 protein full insert sequence

i427474_s_at -2,95448 Gstm3 glutathione S-transferase mu 3
acetyl-Coenzyme A acyltransferase 2

14281 45_at -2,95497 Acaa2 18 45.0cM (mitochondrial 3-oxoacyl-Coenzyme A thiolase)

145821 8_s_at -2,95539 Pde7a 37.0cM phosphodiesterase 7A

141 7937_at -2,95566 Dacti 12 C2 dapper homolog 1 antagonist of beta-catenin (xenopus)

14261 46_a_at -2,95803 Chptl 10 Ci choline phosphotransferase 1

1440660_at -2,95869 Mus musculus transcribed sequences

1454637_at -2,95997 K1h18 5 55.0cM kelch-Iike 8 f Drosophila)

1436790_a_at -2,9625 Soxi 1 SRY-box containing gene 11

1426926_at -2,96717 Plcg2 8 Ei phospholipase C gamma 2

141 6346_at -2,96908 Timm8a X 51.0 cM transiocase of inner mitochondrial membrane 8 homolog a (yeast)

1427240_at -2,96965 4931 431 CO2Rik 9 A3 RIKEN cDNA 4931 431 C02 gene

147731 1_at -2,96971 Crip2 12 Fi cysteine rich protein 2

14431 56_at -2,97423 Mus musculus transcribed sequences

1448250_at -2,97715 9030425E1iRik 9A5.1 RIKENcDNA9O3O425E11 gene

14511 77_at -2,97851 201 0306G1 9Rik 3 H3 RIKEN cDNA 201 0306Gi 9 gene

i434839_s_at -2,97916 8030499H02Rik 3 A3 RIKEN cDNA 8030499H02 gene

1452761_a_at -2,98146 6720477E09Rik 9 F3 RIKEN cDNA 6720477E09 gene

1450776_at -2,98685 AUO41 707 8 A2 expressed sequence AUO41 707

1443897_at -2,98742 Ddit3 10 D3 DNA-damage inducible transcript 3

i444378_at -2,98921 Mus musculus transcribed sequences

i459722_at -2,98993 Mus musculus transcribed sequences

i457783_at -2,99082 Rabl2 17 Ei.i RAB12 member RAS oncogene family

i452359_at -2,99825 AA536743 5 C3.i expressed sequence AA536743

141 6077_at -3,001 22 Adm 750.5cM adrenomedullin

1 427932_s_at -3,00605

1424451at -3,00606 MGC29978 9 F3 3-ketoacyl-C0A thiolase B
Mus musculus 15 days embryo head cDNA RIKEN
fuIl-Iength enriched library clone:D930003N06

1455670_at -3,0085 product:unknown EST full insert sequence
Mus musculus transcribed sequence with weak
similarity f0 protein pir:15840i (M.musculus) 158401

i419033_at -3,00953 protein-tyrosine kinase (EC 2.7.1.112) JAK3 - mouse

1425784_a_at -3,01112 Olfml 2 A3 olfactomedin 7
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Mus musculus transcribed sequence with strong similarity
to protein pir:S12207 fM.musculus) S12207 hypothetical
protein (B2 element) - mouse1443325_at -3,01187

1435872_at -3,01 356 Pimi 17 16.4cM proviral integration site 1

1438244_at -3,01 458 Mus musculus transcribed sequences

1421 498_a_at -3,02047 201 0204K1 3Rik RIKEN cDNA 201 0204K13 gene

1436894_at -3,02708 L0C387 325 1 H2.3 LISCH7-like

1 447643_x_at -3,02947
UDP-Gal:betaGlcNAc beta 1 4-galactosyltransferase

143367 7_s_at -3,03443 B4gaItS 2 H3 polypeptide 5
Mus musculus similar to RAP2A member of RAS oncogene
family; K-REV; RAP2 member of RAS oncogene family

1436115_at -3,03642 12 F1 f K-rev) (L0C212539) mRNA

1457726_at -3,03866 RpsiSa 7 F1 ribosomal protein S75a

1450981_at -3,04172 Cnn2 10 Ci calponin 2
Mus musculus adult male testis cDNA RIKEN tull-length
enriched library clone:4930422N03 product:unknown

1453375_at -3,041 53 EST full insert sequence

1450976_at -3,0529 Ndrl 15 D2 N-myc downstream regulated 1
Mus musculus aduit male olfactory brain cDNA RIKEN
fuII-Iength enriched Iibrary clone:6430537K1 6

1438878_at -3,05428 product:unknown EST full insert sequence

1455220_at -3,05853 Frat2 19 C3 frequently rearranged in advanced T-cell Iymphomas 2

i428377_at -3,06582 6330404E16R1k 10 Cl RIKEN cDNA 6330404E16 gene

141 7110_at -3,06664 Mania 10 B3 mannosidase 1 alpha

i433733_a_at -3,06761 Cryl 1046.0CM cryptochrome 1 f photolyase-like)

1435644_at -3,06893 G431007EO3Rik 11 A4 RIKEN cDNA G431001E03 gene

1422642_at -3,071 63 Cdc42ep3 17 E3 CDC42 effector protein f Rho GTPase binding) 3

1421355_at -3,07312 Tgm3 2 F1 transglutaminase 3 E polypeptide

i447526_at -3,07449 Mus musculus transcribed sequences

1438855_x_at -3,07456 Tnfaip2 12 56.0cM tumor necrosis factor alpha-induced protein 2

1455037_at -3,07613 Plxna2 plexin A2
Mus musculus 16 days embryo head cDNA RIKEN
full-length enriched library clone:C1 30026110

1435284_at -3,0777 product:unknown EST full insert sequence

1429861_at -3,07952 Pcdh9 74 E2.i protocadherin 9

1478102_at -3,08179 Hesi 7627.0cM hairy and enhancer of split 1 (Drosophila)

1421 072_at -3,0848 lrx5 8 43.3cM Iroquois related homeobox 5 f Drosophila)

141 61 58_at -3,101 26 Nr2f2 733.0cM nuclear receptor subfamily 2 group F member 2

1455426_at -3,10401 Epha3 16 Al Eph receptor A3

1447934_at -3,10487 9630033F20Rik 6 F3 RIKEN cDNA 9630033F20 gene

1439909_at -3,10646 Evi3 18 Al ecotropic viral integration site 3

1428393_at -3,1152 Nrni 13A3.3 neuritin 1

145119l_at -3,11636 Crabp2 254.0cM cellular retinoic acid binding protein Il

1428220_at -3,1169 5730419l09Rik 6G3 RlKENcDNA573O4l9lO9gene
Mus musculus 17 days pregnant adult female ovary
and uterus cDNA RIKEN fuIl-Iength enriched library
clone:5033414A21 product:inferred: human CLASP-4

1 429028at -3,11804 {Homo sapiens] full insert sequence

1448889_at -3,12196 S1c38a4 15 F1 solute carrier family 38 member 4

1460232_s_at -3,7 2408 Hsd3b6 3 F2.2 hydroxysteroid dehydrogenase-6 delta<5>-3-beta

i4495i4_at -3,12424 Gprks 1955.0cM G protein-coupled receptor kinase 5

7457189at -3,1258 241 0003Hl2Rik 2 H3 RIKEN cDNA 241 0003H12 gene

1 434401_at -3,73112 99301 l4B2ORik 1 E2.1 RIKEN cDNA 9930114820 gene

1443870_at -3,13403 A830021KO8Rik 14 E4 RIKEN cDNA A830021K08 gene
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Mus musculus similar to phospholysine
phosphohistidine inorganic pyrophosphate

7 F3 phosphata (L0C384677) mRNA

6 B2.3 hypothetical protein C130032F08

Mus musculus transcribed sequences

5 cytochrome c oxidase subunit Vlb testes-specific

7 46.0 cM Rab38 member of RAS oncogene family

1 452889_at

1 454873_at

143371 6_x_at

1 435275_at

1 439628_x_at

1 446489_at

1423549_at

1 438453_at

1 448594_at

1 458739_at

1441771_at

14521 51_at

1442676_at

1416129_at

-3,13733

-3,13874

-3,14057

-3,14382

-3,14503

-3,14615

-3,15283

-3,15305

-3,15555

-3,15646

-3,15685

-3,15761

-3,15897

-3,15945

Cl 30032 F08

Coxvib2

Rab38

Slcla4

Rad5lc

Wispl

BCO21 523

Maoa

1300002 F1 3Rik

Tek

Tpm2

Kcnd2

4930553F04Rik

DIci

1 439887_at -3,16061

1 444785_at -3,16258

11 10.92
cM

1149.0cM

1538.5cM

15 E2

X 5.2 cM

4 E2

443.6 cM

4 A5

6 7.2 cM

18 A2

821.0cM

solute carrier family 1
fglutamate/neutral amino acid transporter) member 4

Rad51 homolog c (S. cerevisiae)

WNT1 inducible signaling pathway protein 1

Mus musculus transcribed sequences

Mus musculus transcribed sequences

cDNA sequence 8C021 523

monoamine oxidase A

RIKEN cDNA 1300002F13 gene
Mus musculus 16 days embryo head cDNA RIKEN
fuII-Iength enriched Iibrary clone:C130025B04 product:
unknown EST full insert sequence

Mus musculus transcribed sequences
Mus musculus 13 days embryo forelimb cDNA RIKEN
fuIl-Iength enriched Iibrary clone:5930433N17
product:unknown EST full insert sequence

endothelial-specific receptor tyrosine kinase

tropomyosin 2 beta

potassium voltage-gated channel Shal-related family member 2

RIKEN cDNA 4930553F04 gene

1440721_at

141 8788_at

1 425028_a_at

1 422834_at

1 429399_at

1 460602_at

-3,16321

-3,16836

-3,17067

-3,18055

-3,18913

-3,19316

1455727_at -3,19376 U2afl-rs2

deleted in liver cancer 1
U2 small nuclear ribonucleoprotein auxiliary factor f U2AF)

X 68.5 cM 1 related sequence 2
Mus musculus 12 days embryo eyeball cDNA RIKEN
full-length enriched Iibrary clone:D230045F22
product:unknown EST full insert sequence

glucosaminyltransferase 1-branching enzyme

myosin heavy chain IX

WNTJ inducible signaling pathway protein 1

G protein-coupled receptor 27

1443302_at

1 425503_at

1440708_at

1448593_at

1434848_at

14311 46_a_at

1 437406_x_at

1457445._at

1 437638_at

1431 295_a_at

141 6871_at

1 435456_at

1459983_at

143052 1_s_at

1423581 ._at

1457042_at

14501 17_at

1418664_at

-3,20942

-3,21158

-3,21 519

-3,21905

-3,21968

-3,22601

-3,22981

-3,23331

-3,24884

-3,25239

-3,2534

-3,25379

-3,25409

-3,25865

-3,2591

-3,26027

-3,26047

-3,2655

13 17.0cM

1543.3cM

15 38.5cM

6 D3

15 E3

11 D

1530.1cM

17 A3.3

5 B3

7 F3-F5

5F

18 El

15 E3

2 Al

Gcnt2

Myh9

Wispl

Gpr27

Cpne8

lgfbp4

Trpsl

Srrm2

Stxl 8

Adam8

A1428795

B43021 2CO6Rik

Cpne8

Nmt2

Tcf3

Mpdz

copine VIII

insulin-like growth factor binding protein 4

trichorhinophalangeal syndrome I (human)

serine/arginine repetitive matrix 2

syntaxin 18

a disintegrin and metalloprotease domain 8

expressed sequence A1428795

RIKEN cDNA B430212C06 gene

copine VIII

1441 620_at -3,26729

14561 39_at -3,26737

N-myristoyltransferase 2

Mus musculus transcribed sequences

6 30.4 cM transcription facto r 3

4 38.6 cM multiple PDZ domain protein
Mus musculus 13 days embryo lung cDNA RIKEN
fuIl-length enriched Iibrary clone:D430001 H03
product:unclassifiable full insert sequence

Mus musculus 16 days embryo head cDNA RIKEN
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full-length enriched library clone:C130073E08
product:unknown EST full insert sequence

1 434325_x_at -3,26772 Prkarl b 5 82.0 cM protein kinase cAMP dependent regulatory type I beta
Mus musculus 11 days pregnant adult female ovary
and uterus cDNA RIKEN full-length enriched library

1431 356_at -3,2708 clone:5033406101 product:unknown EST full insert sequence

1 440739_at -3,28442 Vegfc 8 B3 vascular endothelial growth factor C

1445758_at -3,28881 Mus musculus transcribed sequences

141 6492_at -3,28895 Ccnel 7 16.0cM cyclin El

1437685_x_at -3,29363 Fmod 1 74.3cM fibromodulin

1423313_at -3,29738 Pde7a 3 7.0cM phosphodiesterase 7A

1427522_at -3,29902 A530023E23Rk 9 A5.3 RIKEN cDNA A530023E23 gene

1436791_at -3,3017 Wnt5a 147.8cM wingless-related MMIV integration site 5A

1449145_a_at -3,30614 Cav 6 A2 caveolin caveolae protein
Mus musculus adult male liver tumor cDNA RIKEN
full-length enriched library clone:C730049014

1435084_at -3,31 023 product:unknown EST full insert sequence

1450710_at -33111 Jmj 1327.0cM jumonji

1449379_at -3,31 457 Kdr 5 42.0cM kinase insert domain protein receptor

1458053_at -3,31 714 Abi2 1 C2 abl-interactor 2

1448323_a_at -3,31 72 Bgn X 29.3cM biglycan

1424691_at -3,31 945 5930434B04Rik 2 A3 RIKEN cDNA 5930434B04 gene
F-box and WD-40 domain protein 7 archipelago homolog

1424986_s_at -3,31955 Fbxw7 3 E3.3 (Drosophila)

1424659_at -3,31 997 SIit2 5 B3 slit homolog 2 (Drosophila)

141 8946_at -3,32309 Siat4a 15 D2 sialyltransferase 4A (beta-galactoside alpha-23-sialytransferase)

141 9738_a_at -3,33094 Tpm2 4 AS tropomyosin 2 beta

14431 61_at -3,331 58 Mus musculustranscribed sequences
Mus musculus aduit male diencephalon cDNA RIKEN
full-length enriched library clone:93301 65B1 1

14551 60_at -3,3321 product:unknown EST full insert sequence

1 42326Q.at -3,34204 ldb4 13 31.0 cM inhibitor of DNA binding 4

1420719_at -3,34621 TexlS 8 A3 testis expressed gene 15

1437405_a_at -3,34804 lgfbp4 11 D insulin-like growth factor binding protein 4

14521 38_a_at -3,3488 Ace2 X 70.5 cM angiotensin I converting enzyme (peptidyl-dipeptidase A) 2

1435256_at -3,34957 1500005P14Rik 7 A3 RIKEN cDNA 1500005P14 gene

142811 1_at -3,35137 5lc38a4 15 F1 solute carrier family 38 member 4

1432331_a_at -3,3556 Prrx2 2 19.0cM paf red related homeobox 2
X-ray repair complementing defective repair in

1451968_at -3,36079 Xrccs 1 42.0cM Chinese hamster cells 5

1451415_at -3,3626 l8lOOllOlORik 8 A2 RIKEN cDNA 1810011010 gene

141 831 4_a_at -3,36334 A2bpl 167.2cM ataxin 2 binding protein 1
Mus musculus transcribed sequence with moderate
similarity to protein sp:Q9UBF2 (H.sapiens)
CPG2_HUMAN Coatomer gamma-2 subunit

1423294_at -3,36585 (Gamma-2 coat protein) (Gamma-2 COP)

1449439_at -3,37679 K1f7 1 C1-C3 Kruppel-like factor 7 (ubiquitous)

1427883_a_at -3,37759 Col3al 1 21.1 cM procollagen type III alpha 1

1 450922_a_at -3,3846 Tgfb2 1101.5 cM transforming growth factor beta 2

1433431_at -3,3863 1810007A24Rik 19 D2 RIKEN cDNA 1810007A24 gene

1456683_at -3,38775 5730555F13Rik 9 D RIKEN cDNA 5730555F13 gene

141 7580_s_at -3,39002 Selenbp2 350.8 cM selenium binding protein 2

1436799_at -3,3929 D230005DO2Rik 1424.1 RIKEN cDNA D230005D02 gene

1441 629_at -3,39348 Mus musculus transcribed sequences

141 5864_at -3,39889 Bpgm 6 A3.3 23-bisphosphoglycerate mutase
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1450079_at -3,40008 Nrk X 53.0cM Nik related kinase

1457277_at -3,40301 BC038925 5 G2 cDNA sequence BC038925

1 433662_s_at -3,40425 Timp2 11 72.0 cM tissue inhibitor ot metalloproteinase 2

1448436_a_at -3,40447 B430217B02Rik 11 Bi.3 RIKEN cDNA B430217B02 gene

1452217at -3,40523 231 0047C1 7Rik 19 A RIKEN cDNA 231 0047C17 gene

1456521_at -3,40766 Mus musculus transcribed sequences

1421654_a_at -3,42291 Lmna 342.6cM laminA
phosphatidylinositol 3-kinase regulatory subunit

1425514_at -3,43278 Pik3rl 13 50.0cM polypeptide 1 (p85 alpha)

14351 10_at -3,43305 Unc5b 10 B4 unc-5 homolog B (C. elegans)

141 8560_at -3,4361 Pdhai X 66.5cM pyruvate dehydrogenase El alpha 1

1456862_at -3,44082 Six4 12 C3 sine oculis-related homeobox 4 homolog (Drosophila)

1429175_at -3,44617 2810417M05Rik 17 E3 RIKEN cDNA 2810417M05 gene

141 91 23_a_at -3,45223 Pdgfc 3 E3 platelet-derived growth factor C polypeptide

1448471_a_at -3,45601 Tpbpb 13 83 trophoblast specific protein beta

1435436_at -3,45672 Mus musculus transcribed sequences

1432261_at -3,45764 23i0039D24Rik 8 C5 RIKEN cDNA 231 0039D24 gene

14291 54_at -3,45986 l500009KO5Rik 9 B RIKEN cDNA 1500009K05 gene

141 9355_at -3,46445 Klf7 1 C1-C3 Kruppel-like factor 7 (ubiquitous)

145951 2_at -3,46481 Mus musculus transcribed sequences

1448194_a_at -3,47171 H19 769.03cM H19 fetal liver mRNA

1 450000_at -3,47228 Rnh2 7 Al ribonuclease/angiogenin inhibitor 2

1455665_at -3,47429 Mus musculus transcribed sequences

1428026_at -3,47504 Sdccag33l 2 H3 serologically defined colon cancer antigen 33 like

1416613_at -3,47605 Cyplbl 17 E3 cytochrome P450 family 1 subfamily b polypeptide 1

1448254_at -3,48127 Ptn 6 13.5cM pleiotrophin
17 19.19

141 8536_at -3,48217 H2-Q7 cM histocompatibility 2 Q region bous 7

141 661 7_at -3,48954 Acas2l 2 G3 acetyl-Coenzyme A synthetase 2 (AMP forming)-Iike

1 435603_at -3,49273 SST3 1 D secreted protein SST3

142551 1_at -3,49445 Markl 1 H5 MAP/microtubule affinity-regulating kinase 1

1453448_at -3,49478 Nfib 4 38.6 cM nuclear factor bIB

1459133_at -3,50075 Mus musculus transcribed sequences
devebopmentally and sexually retarded with

1434283_at -3,50225 Desrt 10 B5.2 transient immune abnormalities

1447812_x_at -3,50313 lllOO55El9Rik 6 A3.3 RIKEN cDNA 1110055E19 gene

1454966_at -3,50407 ltga8 2 Al integrin alpha 8

141 71 30_s_at -3,51055 Angptl4 17 Bi angiopoietin-like 4

1452792_at -3,51401 2510025K24Rik 14 E4 RIKEN cDNA 2510025K24 gene
16 11.65

141 7839_at -3,51846 Cldn5 cM claudin 5

141 6579_a_at -3,51998 Tacstdl 17 E4 tumor-associated calcium signal transducer 1

1422477_at -3,52314 Cablesl 18 Al Cdk5 and AbI enzyme substrate 1

141 7355_at -3,53442 Peg3 76.5cM paternally expressed 3

141 6673_at -3,53479 Bace2 16 Al beta-site APP-cleaving enzyme 2

141 8402_at -3,54012 Adami 9 11 20.0 cM a disintegrin and metalboproteinase domain 19 (meltrin beta)

1 448785_at -3,5429 Cbfa2tl h 4 4.4 cM CBFA2T1 identified gene homobog (human)

1421 992_a_at -3,54475 lgfbp4 il D insulin-like groMh factor binding protein 4

1423110_at -3,5519 Colia2 60.68cM procollagen type I alpha 2
Mus musculus transcribed sequence with weak
similarity to protein ref:NP_443092.1 (H.sapiens)

kruppel-like zinc finger protein f Homo sapiens]1 439065_x_at -3,55368
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1436562_at -3,55432 6430573D20Rik 4 A5 RIKEN cDNA 6430573D20 gene

1456648_at -3,55499 Mus musculus transcribed sequences

143671 7_x_at -3,55722 Hbb-y 749.95cM hemoglobin Y beta-like embryonic chain

1457483_at -3,56254 Mus musculus transcribed sequences

1428434_at -3,56347 28i0028A0iRik X A3.1 RIKEN cDNA 2810028A01 gene

1425767_a_at -3,56477 Six4 12 C3 sine oculis-related homeobox 4 homolog (Drosophila)

1433525_at -3,5691 Ednra endothelin receptor type A

1451 753_at -3,57019 PIxna2 plexin A2

141 9234_at -3,57609 HeIb 10 69.0 cM helicase (DNA) B

1450752_at -3,57793 Cyct 2 47.0cM cytochrome c testis
Mus musculus aduit male hippœampus cDNA RIKEN
fuIl-length enriched library clone:2900073C17

7454301_at -3,58489 product:unclassifiable full insert sequence
Mus musculus adult male small intestine cDNA RIKEN
fulI-length enriched library clone:207 0004M1 3

7455646_at -3,58955 product:unknown EST full insert sequence

7437385_at -3,59752 Mus musculus transcribed sequences

1436823_x_at -3,60601 Hbb-y 749.95 cM hemoglobin Y beta-like embryonic chain

1451105_at -3,61122 B130052GO7Rik 7 H6 RIKENcDNAB130052GO7gene

141 6345_at -3,67 281 Timm8a X 51.0 cM translocase of inner mitochondrial membrane 8 homolog a (yeast)

1460574at -3,62051 6030410K14 3 B hypothetical protein 6030410K14

1452030_a_at -3,621 04 Hnrpr 4 D3 heterogeneous nuclear ribonucleoprotein R

1447551_x_at -3,62257 Lphn3 5 El latrophilin 3

1456200_at -3,62387 2410017C19Rik 10 B5.3 RIKEN cDNA 2410017C19 gene

141 8435_at -3,63349 Mkrni 6 Bi makorin ring finger protein 1

1 422537_a_at -3,63893 ldb2 12 7.0 cM inhibitor cf DNA binding 2

1424759_at -3,63914 241 0003CO9Rik 7 C RIKEN cDNA 241 0003C09 gene

741 6625_at -3,64317 Serpingi 2 D serine (or cysteine) proteinase inhibitor clade G member 1

1 436853_a_at -3,64471 Snca 6 29.0 cM synuclein alpha

7426725_s_at -3,65912 Etsi 9 75.0cM E26 avian leukemia oncogene 1 5’ domain

1456917_at -3,66298 Di30059BO5Rik 1 A2 RIKEN cDNA D130059B05 gene

1430520_at -3,66345 Cpne8 15 E3 copine VIII

i428387_at -3,66369 Facl3 1 C4 faffy acid Coenzyme A ligase long chain 3
Mus musculus transcribed sequence with moderate
similarity to protein ref:NP_i 77608.1 (H.sapiens)

1435468_at -3,66803 hypothetical protein MGC4655 [Homo sapiensJ

1423505_at -3,67597 Tagln 9 27.0cM transgelin

1440990_at -3,67853 4832420M10 1 H4 hypothetical protein 4832420M10
Mus musculus adult male xiphoid cartilage cDNA
RIKEN fulI-length enriched Iibrary clone:5230400M03

1437493_at -3,681 25 product;unclassifiable full insert sequence

i420664_s_at -3,681 75 Procr 2 Hi-3 protein C receptor endothelial

1 457304_at -3,68511 Mus musculus transcribed sequences
Mus musculus transcribed sequence with weak similarity
to protein pir:S52790 (H.sapiens) S52790 kynurenine—
oxoglutarate transaminase (EC 2.6.1.7) / glutamine—
phenylpyruvate transaminase (EC 2.6.1.64) cytosolic

1455991_at -3,69418 [similarityJ - human

i453384_at -3,69511 4930467Mi9Rik 1 RIKEN cDNA 4930467M19 gene

741 5777_at -3,69783 Pnhiprpi 1929.0cM pancreatic lipase related protein 1
sialyltransferase 7 ((alpha-N-acetylneuraminyl
23-betagalactosyl-i 3)-N-acetyl galactosaminide

1420903_at -3,70032 Siat7c 3 H3 alpha-26-sialyltransferase) C

1440093_at -3,70565 Mus musculus transcribed sequences
Mus musculus 2 days pregnant adult female oviduct

1440437 _at -3,70669 cDNA RIKEN full-length enriched Iibrary clone:E230038l17
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product:unknown EST full insert sequence

1438214_at -3,7162 AIl 15454 15 C expressed sequence Ail 15454

1435525_at -3,721 33 2900008Ml3Rik 15 El RIKEN cDNA 2900008M13 gene

1433953_at -3,72476 Zfp277 12 A3 zinc finger protein 277
solute carrier family 7 (cationic amino acid transporter

1448783_at -3,73527 S1c7a9 7 Bi y+ system) member 9

1445773_at -3,73798 Mus musculus transcribed sequences

1426301_at -3,73838 Alcam 16 Al activated leukocyte ceil adhesion molecule

1417901_a_at -3,74641 cal 62.9cM isletcell autoantigen 1

1422437_at -3,74679 Co15a2 1 Cl procollagen type V alpha 2

1424699_at -3,75324 BC006583 6 A3.3 cDNA sequence BC006583

141 6053_at -3,7546 Lrrni 6 El leucine rich repeat protein 1 neuronal
eukaryotic translation initiation factor 2 subunit

1421 895_at -3,75524 Eif2s3x X 32.0cM 3 structural gene X-linked
Mus musculus transcribed sequence with weak
similarity to protein ref:NP_081 764.1 (M.musculus)

1458296_at -3,75634 RIKEN cDNA 5730493B19 [Mus musculusJ

1417649_at -3,75816 Cdknic 769.49cM cyclin-dependent kinase inhibitor 1C (P57)

141 61 60_at -3,76877 Nr2f2 733.0cM nuclear receptor subfamily 2 group F member 2

1 450923_at -3,78298 Tgfb2 1101.5 cM transforming growth factor beta 2

1423756_s_at -3,78516 lgfbp4 li D insulin-like growth factor binding protein 4

i437584_at -3,79589 Mus musculus transcribed sequences

141 8589_a_at -3,79882 MIf 1 3 31.0 cM myeloid leukemia factor 1

1416431_at -3,79909 23i0057H16Rik 18 El RIKEN cDNA 2310057H16 gene

1450700_at -3,80597 Cdc42ep3 17 E3 CDC42 effector protein (Rho GTPase binding) 3

141 6029_at -3,8116 Tiegi 15 B3.l TGFB inducible early growth response 1
Mus musculus O day neonate lung cDNA RIKEN
full-length enriched Iibrary clone:E0300l 0013
product:inferred: unnamed protein product

1455056_at -3,82055 14 E2.3 {Homo sapiens] full insert sequence

i422852_at -3,82431 28i0434l23Rik 9 B RIKEN cDNA 2810434123 gene
Mus musculus transcribed sequence with weak
similarity to protein pir:l58401 fM.musculus) 158401

1444746_at -3,82522 protein-tyrosine kinase (EC 2.7.1.112) JAK3 - mouse

1419126_at -3,83727 Hoxd9 245.0cM homeo box 09

1436293_x_at -3,83834 L0C381 325 1 H2.3 LISCH7-like

1421 61 2_a_at -3,84642 4933432H23Rik 15 Dl RIKEN cDNA 4933432H23 gene

1 442749_at -3,84673 Braf 6 15.5 cM Braf transforming gene

141 7602_at -3,85218 Per2 1 D period homolog 2 (Drosophila)
Mus musculus 11 days embryo gonad cDNA RIKEN
ulI-length enriched library cione:7030414N10

1458205_at -3,85562 product:unknown EST full insert sequence

1 448977_at -3,86734 Tcfap2c 2 H3-H4 transcription factor AP-2 gamma

1428922_at -3,86817 1200009022Rik 6 B3 RIKEN cDNA 1200009022 gene

1449641 _at -3,86873 Adk 14 A2-B adenosine kinase
Mus musculus adult maie testis cONA RIKEN
full-iength enriched library clone:l 7001 22G02

1455692_x_at -3,87802 product:unknown EST full insert sequence
Mus musculus 10 days neonate cerebellum cDNA
RIKEN fuIl-length enriched library Clone

1442999_at -3,88361 :B930036G03 product:unknown EST full insert sequence

1445268_at -3,88366 Mus musculus similarto Copg2 protein (L0C382145) mRNA

14341 94_at -3,88565 Mtap2 1 33.7cM microtubule-associated protein 2

1437637_at -3,88721 1110054G21R1k 5 A3 RIKEN cDNA 1i10054G2l gene

141 7837_at -3,89248 Phlda2 7 69.5 cM pleckstrin homology-like domain family A member 2

1449351 _s_at -3,89878 Pdgfc 3 E3 platelet-derived growth factor C polypeptide
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1 449848_at -3,90647 Gnal 4 19 9.0 cM guanine nucleotide binding protein alpha 14

141 8091_at -3,91781 D930018N21Rik 1 E2.3 RIKEN cDNA D930018N21 gene

1417111_at -3,92287 Mania 10 B3 mannosidase 1 alpha
Mus musculus adult male olfactory brain cDNA RIKEN
fuIl-Iength enriched library clone:6430521 P21

1440662_at -3,94423 product:unclassifiable full insert sequence

1424769_s_at -3,95011 Caldi 617.5cM caldesmon 1

1449755_at -3,96071 Mus musculus transcribed sequences

1437841_x_at -3,96505 A1481750 15E1 expressedsequenceAl48l75o

1459838_s_at -3,96703 6330404E16Rik 10 Cl RIKEN cDNA 6330404E16 gene

1450857_a_at -3,971 93 Colla2 60.68cM procollagen type I alpha 2

14401 50_at -3,97529 Tgm3 2 F1 transglutaminase 3 E polypeptide

1 424295_at -3,9756 Dppa3 6 F2 developmental pluripotency-associated 3

1437112_at -3,97666 Pldl 310.5cM phospholipase Dl
Mus musculus 18 days pregnant adult female placenta
and extra embryonic tissue cDNA RIKEN full-length
enriched library clone:3830421G02 product:unknown

1433789_at -3,98077 EST full insert sequence

1434141_at -3,99188 Gucyla3 3 E3 guanylate cyclase 1 soluble alpha 3

1443219_at -4,001 98 Mus musculustranscribed sequences
Mus musculus transcribed sequence with strong
similarity to protein sp:P00722 (E. cou) BGAL_EC0LI

1 437784_at -4,00228 Beta-galactosidase (Lactase)

141 8892_at -4,00757 Arhj 12 C3 ras homolog gene family memberJ

1435595_at -4,01297 l8lOOllOlORik 8 A2 RIKEN cDNA 1810011010 gene

1455851_at -4,02061 BmpS 9 42.0cM bone morphogenetic protein 5

1449534_at -4,02399 Sycp3 10 C synaptonemal complex protein 3

141 9240_at -4,02492 Texi 4 11 C testis expressed gene 14

1436637_at -4,04612 Mus musculus transcribed sequences

1 443362_at -4,06714 Zfp277 12 A3 zinc finger protein 277

1455493at -4,06191 Synel 10 Al synaptic nuclear envelope 1

1424770_at -4,071 98 Caldi 6 11.5cM caldesmon 1
Mus musculus 2 days neonate thymus thymic cells
cDNA RIKEN full-length enriched library

1456505at -4,07825 clone:E430027H06 product:unknown EST full insert sequence

1441 248_at -4,07986 Clcn3 8 32.2cM chloride channel 3

1419693_at -4,09055 CoIecl2 18A1 collectinsub-familymemberl2

1424067_at -4,10014 lcaml 9 7.0cM intercellular adhesion molecule

1454631_at -4,10118 Gff2al 12 D3 general transcription factor Il A 1

1435458_at -4,10548 Pimi 17 16.4cM proviral integration site 1

14341 72_at -4,11427 Mus musculus transcribed sequences

141 7466_at -4,11703 RgsS 1 86.5cM regulator of G-protein signaling 5

1436600_at -4,11705 C230068E13 8 C4 hypothetical protein C230068E13

1430435_at -4,11893 Laf4 118.7cM lymphoid nuclear protein related to AF4

1433434_at -4,12424 AW551 984 9 A5.1 expressed sequence AW551 984
Mus musculus aduit male cecum cDNA RIKEN full-length
enriched library clone:91 3001 OF1 9 product:unknown EST

14291 59_at -4,12748 full insert sequence

1437012_x_at -4,13455 9330170P05Rik 15 F1 RIKEN cDNA 9330170P05 gene

1451817_at -4,13814 C630029K18Rik 19 A RIKEN cDNA C630029K18 gene
Mus musculus 2 days pregnant adult female ovary cDNA
RIKEN full-length enriched library clone:E33001 6N04

1456960_at -4,13924 product:unknown EST full insert sequence
potassium voltage-gated channel Shal-related family

1450773_at -4,14462 Kcnd2 67.2cM member 2



1454997_at -4,15174 D430026P16Rik 10 D2

3 F2.2

1027.0cM

X F4

16 Al

18 Al
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RIKEN cDNA D430026P16 gene
Mus musculus transcribed sequence with moderate
similarity to protein pir:S12207 (M.musculus)
512207 hypothetical protein (B2 element) - mouse

hypothetical protein A93001 0120

PR domain containing 1 with ZNF domain

RIKEN cDNA 5330432J06 gene

Mus musculus transcribed sequences

developmental pluripotency associated 2

RIKEN cDNA 241 0072D24 gene

1444406_at

1456891 _at

1420425_at

142901 3_at

1442760_x_at

1 429654_at

14271 70_at

1456561 _s_at

1 460256_at

1 435095_at

1 422870_at

144881 8_at

1 438966_x_at

1417262_at

-4,15841

-4,16094

-4,16344

-4,16878

-4,17191

-4,17548

-4,18181

-4,19084

-4,19608

-4,19966

-4,20436

-4,21044

-4,21477

-4,21616

Mus musculus transcribed sequences

3 11.7 cM carbonic anhydrase 3
Mus musculus aduit male corpora quadrigemina
cDNA RIKEN full-Iength enriched library
clone:B230313A1 1 product:unknown EST full
insert sequence

homeo box C4

1435154_at -4,21776

1 440997_at -4,22528

15 57.4cM

147.8cM

1 74.3cM

1 76.2 cM

7 Al

11 E2

wingless-related MMTV integration site 5A

fibromodulin

prostaglandin-endoperoxide synthase 2
Mus musculus similar to solute carrier family 7
(cationic amino acid transporter y+ system) member 3
(L0C245128) mRNA

RIKEN cDNA 9930033H14 gene
Mus musculus transcribed sequence with weak

similarity to protein pir:S07330 fM.musculus)
S07330 keratin epidermal - mouse

A93001 0120

Prdml

5330432J06Rik

Dppa2

241 0072D24Rik

Car3

Hoxc4

Wnt5a

Fmod

Ptgs2

9930033H 1 4Rik

Pnliprpl

Dsc2

Acta2

Ngfr

D43001 9H1 6Rik

Bnc

C630028C02R1k

Cdknla

lgf 1

Cl qtnf7

Cygb

PIxna2

Alas2

Etsl

Pdgfrb

Madh6

19 29.0 cM pancreatic lipase related protein 1

18 7.0cM desmœollin 2

1 434982_at

1 453469_at

142691 1_at

144001 4_at

141 6454_s_at

1 442903_at

1454903_at

1 455447_at

1 424890_at

1427308_at

1 440874_at

1424638_at

142351 6_a_at

145201 4_a_at

1 429030_at

1423630_at

1 453286_at

1451 675_a_at

1422028_a_at

141 71 48_at

1 422771_at

1 439933_at

141 9606_a_at

-4,2282

-4,24003

-4,24326

-4,24332

-4,24705

-4,25372

-4,26135

-4,26314

-4,26686

-4,26875

-4,28918

-4,29065

-4,29971

-4,30744

-4,31279

-4,32097

-4,33391

-4,34489

-4,34492

-4,34811

-4,35304

-4,36888

-4,36896

19 Cl

11 55.6cM

12 E

7 D2

4 C6

17 15.23
cM

1048.0cM

5 B3

11 E2

Mus musculus transcribed sequences

actin alpha 2 smooth muscle aorta
Mus musculus adult male olfactory brain cDNA
RIKEN full-length enriched library clone:6430566E03
product:unknown EST full insert sequence

nerve growth factor receptor (TNFR superfamily member 16)

RIKEN cDNA D43001 9H16 gene

basonuclin

RIKEN cDNA C630028C02 gene

Mus musculus transcribed sequences

cyclin-dependent kinase inhibitor lA (P21)
Mus musculus transcribed sequence with weak
similarity to protein pir:G00043 (H.sapiens) G00043
osteonidogen - human

insulin-like growth factor 1

Clq and tumor necrosis factor related protein 7

cytoglobin

plexin A2

X 63.0 cM aminolevulinic acid synthase 2 erythroid

9 15.0cM E26 avian leukemia oncogene 1 5’ domain

1830.0cM platelet derived growth factor receptor beta polypeptide

9 C MAD homolog 6 (Drosophila)
Mus musculus 4 days neonate male adipose cDNA
RI KEN full-length enriched library clone:B43031 6J06
product:unknown EST full insert sequence

7 9.0 cM troponin 11 skeletal slowTnntl
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14321 76_aat -4,3731 Eng 2 21.4 cM endoglin
17 13.25

141 7643_at -4,37733 Tsga2 cM testis specific gene A2

1449288_at -4,39256 Gdf3 6 60.6cM growth differentiation factor 3

1 454734_at -4,39414 Let 1 3 61.6 cM lymphoid enhancer binding factor 1

1452670_at -4,40545 My19 2 Hi myosin light polypeptide 9 regulatory

J 457377_at -4,41184 Mus musculus transcribed sequences
Mus musculus 18-day embryo whole body cDNA
RIKEN full-length enriched library clone:1 1 10004M10

1454286_at -4,42394 product:unclassifjable full insert sequence

1433768_at -4,4311 24i0003B16Rik 8 B3.1 RIKEN cDNA 2410003B16 gene

1427287_s_at -4,44251 ltprs 6 72.0cM inositol 145-triphosphate receptor 5
Mus musculus adult male hippocampus cDNA RIKEN
full-length enriched library clone:290001 1 L1 8

1432757_at -4,45858 product:unknown EST full insert sequence

145i466_at -4,45917 Dl6Ertd472e 16 Al DNA segment Chr 16 ERATO Doi 472 expressed

1 437846_x_at -4,46118 Bace2 16 Al beta-site APP-cleaving enzyme 2

1448251_at -4,46306 9030425E1iRik 9A5.1 RIKENcDNA9O3O425E11 gene
Mus musculus 9 days embryo whole body cDNA RIKEN
full-length enriched library clone:D030072J05

1438531_at -4,47523 product:unknown EST full insert sequence
Mus musculus 10 days embryo whole body cDNA RIKEN
full-length enriched library clone:261 0206G21

1453599_at -4,4828 product:unknown EST full insert sequence
Mus musculus O day neonate cerebellum cDNA RIKEN
full-length enriched library clone:C230088J21

1441 224_at -4,48509 product:unknown EST full insert sequence

141 8649_at -4,4969 Egln3 12 B3 EGL nine homolog 3 (C. elegans)

1426642_at -4,49786 Ff1 1 36.1 cM fibronectin 1

1434278_at -4,50588

1438820_at -4,50857 L0C380905 14 Cl similar to Tudor domain containing protein 4
Mus musculus mRNA similar to putative c-Myc-responsive

146071 3_at -4,5119 17 B3 (cDNA clone MGC:54855 IMAGE:5388297) complete cds
Mus musculus transcribed sequence with moderate similarity
to protein ref:NP_006770.i f H.sapiens) Cdc42 effector ptotein 2

1428750_at -4,51738 [Homo sapiensj

1434539_at -4,53063 Lrrn3 12 A3 leucine rich repeat protein 3 neuronal
Mus musculus O day neonate lung cDNA RIKEN
full-length enriched library clone:E030022N22

1455280_at -4,54285 product:unclassifiable full insert sequence

143771 8_x_at -4,55603 Fmod 1 74.3cM fibromodulin

1449077_at -4,56259 Eraf erythroid associated factor

14361 25_at -4,5629 Dl6Ertd472e 16 Al DNA segment Chr 16 ERATO Doi 472 expressed

1424939_at -4,56594 4933400N19Rik 6 A2 RIKEN cDNA 4933400N19 gene

1456258_at -4,57343 Emx2 1953.5cM empty spiracles homolog 2 (Drosophila)

1438512_at -4,57879 L0C210321 7 D2 epididymal protein Av381i26

1 429274_at -4,61202 231001 OM24Rik 2 Cl .1 RIKEN cDNA 231001 0M24 gene

1454745_at -4,62246 Bi300i7lOlRik 3G1 RIKENcDNAB130017IO1 gene

1454869_at -4,62318 A230038L21Rik X A3.3 RIKEN cDNA A230038L21 gene

141 951 9_at -4,63848 lgti 1048.0cM insulin-like growth factor 1

i418131_at -4,66063 Samhdl 2 Hi SAM domain and HD domain 1

1436937_at -4,68634 6720477E09Rik 9 F3 RIKEN cDNA 6720477E09 gene

1436938_at -4,69224 6720477E09Rik 9 F3 RIKEN cDNA 6720477E09 gne

1420119_s_at -4,69878 Pht3 J A5 PHD finger protein 3

J 453238_s_at -4,69915
Mus musculus similar to hemicentin; fibulin 6

1438532_at -4,70606 1 G1 f L0C240793) mRNA
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1429897_a_at -4,71801 Dl6Ertd472e 16 Al DNA segment Chr 16 ERATO Doi 472 expressed
Mus musculus similarto hypothetical protein FLJ10884

l457314_at -4,72514 4 C6 (L0C381591) mRNA

1435564_at -4,72951 C230078M08Rik 17 A3.3 RIKEN cDNA C230078M08 gene

1418136_at -4,74037 Tgfblil 7 F1-F3 transforming growth factor beta 1 induced transcript 1
Mus musculus 10 11 days embryo whole body cDNA
RIKEN fuIl-Iength enriched Iibrary clone:281 0001 G20

14551 70_at -4,74852 product:unknown EST full insert sequence

1422835_at -4,751 08 Kcnd2 6 7.2cM potassium voltage-gated channel ShaI-telated family member 2

14257 03_at -4,76066 Ace2 X 70.5 cM angiotensin I converting enzyme (peptidyl-dipeptidase A) 2

1436405_at -4,76659 Dock4 12 A3 dedicator 0f cytokinesis 4

1426927_at -4,7792 Ap3b2 738.0cM adaptor-related protein complex 3 beta 2 subunit

1424076at -4,78175 2610020H15Rik 11G RIKENcDNA261002OH15gene
Mus musculus ES ceils cDNA RIKEN fuII-length enriched
library clone:C330006P03 product:unknown EST full

1436387_at -4,79586 insert sequence

144111 6_at -4,81624 Mus musculus transcribed sequences

14527 63_at -4,83345 Etsl 9 15.0cM E26 avian leukemia oncogene 1 5’ domain

1 424768at -4,83767 CaIdl 6 1 1.5 cM caldesmon 1
Mus musculus transcribed sequence with weak similarity
to protein ref:NP 081 764.1 (M.musculus) RIKEN

1441013_at -4,83796 cDNA 5730493B19 [Mus musculus]

1420813_at -4,84134 4930570C03Rik 15 F1 RIKEN cDNA 4930570C03 gene

1438407_at -4,84709 93301 32EO9Rik 1 E2.1 RIKEN cDNA 93307 32E09 gene

1422926_at -4,85312 Mc2r 1837.0cM melanocortin 2 receptor

1 423250_a_at -4,86764 Tgfb2 1 701.5 cM transforming growth factor beta 2
Mus musculus adult male colon cDNA RIKEN fulI-length
enriched Iibrary clone:9030425L15 product:unknown EST

1429977_at -4,86962 full insert sequence

1420598_x_at -4,87277 Defcr-rs2 8 defensin related cryptdin related sequence 2

14577 46_at -4,88342 Mus musculus transcribed sequences

1438682_at -4,89591 C530050K14 13 Dl hypothetical protein C530050K14

147 5856_at -4,90467 Emb 13 D2.3 embigin

145257 4_a_at -4,90783 Kit 5 42.0cM kit oncogene

1 420534_at -4,91162 Gucyl a3 3 E3 guanylate cyclase 1 soluble alpha 3
Mus musculus O day neonate lung cDNA RIKEN full-length
enriched library clone:E030002K20 product:similar to
MUSCLEBLIND-LIKE PROTEIN FLJ1 131 6/DKFZP434

1434678_at -4,918 G22221DJ842K24.l [Homo sapiens] full insert sequence

1449347_a_at -4,92016 X1r4 X 29.0cM X-Iinked lymphocyte-regulated 4
Mus musculus similarto FLJ1O116 protein

1437250_at -4,92024 1 C3 (L0C381 269) mRNA

1441 680_at -4,92903 Mus musculus transcribed sequences
Mus musculus 15 days embryo male testis cDNA RIKEN
full-length enriched library clone:8030491 K24

14281 56_at -4,93632 product:unknown EST full insert sequence

1458057_at -4,96635 Mus musculus transcribed sequences

141 6049_at -4,97603 GIdc 19 25.0 cM glycine decarboxylase

1456768_a_at -4,98119 Emilin3 14 B elastin microfibril interfacer 3

1450078_at -4,99086 Nrk X 53.0 cM Nik related kinase
Mus musculus adult male testis cDNA RIKEN full-length
enriched library clone:1700122G02 product:unknown

143641 9_a_at -4,99216 EST full insert sequence

1437401_at -4,99547 lgfl 1048.0cM insulin-like growth tactor 1

141 6529_at -5,01 236 Empi 665.0cM epithelial membrane protein 1

1 438737_at -5,03471 Zic3 X 16.5 cM zinc finger protein of the cerebellum 3

1427809_at -5,04693 Mus musculus clone IMAGE:3708374 mRNA
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1418380_at -5,05728 Terf 1 1 11.8cM telomeric repeat binding factor 1

1442322at -5,06713 Mus musculus transcribed sequences

141 8681_at -5,08582 4833435D08Rik X F2 RIKEN cDNA 4833435D08 gene

1415944_at -5,08676 SUd 12 1.0cM syndecan 1

1440037_at -5,11056 Mus musculus transcribed sequences

1433902_at -5,1268 Takrp 6 D2 T-cell activation kelch repeat protein

141 5996_at -5,12913 Txnip thioredoxin nteracting protein

1423259_at -5,13753 ldb4 1331.0cM inhibitorofDNAbinding4

1427025_at -5,161 07 D8Ertd53le 822.0cM DNA segment Chr 8 ERATO Doi 531 expressed

1448154at -5,16762 Ndr2 14 Cl N-myc downstream regulated 2
Mus musculus 12 days embryo eyeball cDNA RIKEN
full-Iength enriched library clone:D230032A16 product:

1436398_at -5,18335 unknown EST full insert sequence

1435832_at -5,19286 Lrrc4 6 A3.3 leucine rich repeat containing 4

1428861_at -5,19586 4631422005Rik 16 RIKEN cDNA 4631422005 gene
ELAV (embryonic lethal abnormal vision Drosophila)-like

1421881_a_at -5,19977 Elavl2 442.6cM 2 (Hu antigen B)

1 422655_at -5,20111 Ptch2 4 56.5 cM patched homolog 2

1446906_at -5,22013 Mus musculus transcribed sequences

141 6855_at -5,2296 Gasl 1337.0cM growth arrest specific 1

1448816_at -5,24708 Ptgis 2 H3 prostaglandin 12 (prostacyclin) synthase

141 5927_at -5,25008 Actcl 2 64.0cM actin alpha cardiac

1 440803_x_at -5,25452 Tacr3 3 G3 tachykinin receptor 3

1423757_x_at -5,25604 lgfbp4 11 D insulin-like growth factor binding protein 4

1416840_at -5,25849 3llOO38LOlRik XA1.1 RIKENcDNA3110038LO1 gene

1417411_at -5,25883 lllOO2OM2lRik 6 B3 RIKEN cDNA 1110020M21 gene

14341 70_at -5,26019 A230038L21 Rik X A3.3 RIKEN cDNA A230038L21 gene

1451264_at -5,2685 4930488L10Rik 12 C2 RIKEN cDNA 4930488L10 gene

1444345_at -5,2718 Mus musculus transcribed sequences

143636l_at -5,28651 Vg112 10 B3 vestigial like 2 homolog (Drosophila)

141 9229_at -5,28763 Ehox X A3.1 ES celi derived homeobox containing gene

145641 0_at -5,29265 Mus musculus transcribed sequences

1455796_x_at -5,30014 Olfml 2 A3 olfactomedin 1

1 450928_at -5,30727 Idb4 13 31.0 cM inhibitor of DNA binding 4

144351 2_at -5,32267 Mus musculus transcribed sequences

1420941 _at -5,33453 Rgs5 1 86.5 cM regulator 0f G-protein signaling 5

141 9402_at -5,33833 Mnsl 9 D meiosis-specific nuclear structural protein 1

142981 7_at -5,37974 4933406N12Rik 3 C RIKEN cDNA 4933406N12 gene

1437052_s_at -5,38791 51c2a3 6 59.0cM solute carrier family 2 (facilitated glucose transporter) member 3
Mus musculus 12 days embryo female mullerian duct
includes surrounding region cDNA RIKEN full-length
enriched Iibrary clone:682041 6N07 product:unknown

1429743_at -5,401 89 EST full insert sequence

1456084_x_at -5,40889 Fmod 1 74.3cM fibromodulin

1435421_at -5,41 39 MGC58341 17 C hypothetical protein MGC58341

1427302_at -5,42926 Enpp3 10 A4 ectonucleotide pyrophosphatase/phosphodiesterase 3

1427228_at -5,48002 241 0003B1 6Rik 8 B3.1 RIKEN cDNA 241 0003B16 gene

1417300_at -5,49376 1110054A24Rik 4 D2.3 RIKEN cDNA 1110054A24 gene

1433707_at -5,52734 Gabra4 5 C3.2 gamma-aminobutyric acid (GABA-A) receptor subunit alpha 4

1454799_at -5,531 68 4933408F15 5 E4 hypothetical protein 4933408F15

14521 14_s_at -5,54259 Igfbp5 1 36.1 cM - insulin-like growth factor binding protein 5

1428568_at -5,54621 B230217C12Rik RIKEN cDNA B230217C12 gene
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1429772_at -5,54868 Plxna2 plexin A2

1 434502_x_at -5,56745 Slc4al 11 62.0 cM solute carrier family 4 (anion exchanger) member 1

145321 9_a_at -5,5686 D7Rp2e 7 15.0 cM DNA segment Chr 7 Roswell Park 2 complex expressed

1424220_a_at -5,57071 Porcn X Al .1 porcupine homolog (Drosophila)

1437029_at -5,57351 Tacr3 3 G3 tachykinin receptor 3

1 423754_at -5,59736 111 0004CO5Rik 7 F4 RI KEN cDNA 111 0004C05 gene

141 8762_at -5,6171 Mus musculus transcribed sequences

144931 9_at -5,62941 Rspondin 4 D2.2 thrombospondin type 1 domain containing gene

1455898_x_at -5,64207 Slc2a3 6 59.0 cM solute carrier family 2 (facilitated glucose transporter) member 3

141 71 22_at -5,68056 Vav3 3 Gi vav 3 oncogene

1425102_a_at -5,71 755 Ace2 X 70.5 cM angiotensin I converting enzyme (peptidyl-dipeptidase A) 2

143721 8_at -5,7577 Fnl 1 36.1 cM fibronectin 1

1422121_at -5,76396 Oprdl 464.8 cM opioid receptor delta 1

1427919_at -5,7691 lllOO39CO7Rik X E3 RIKEN cDNA 1110039C07 gene

1443913_at -5,80175
Mus musculus transcribed sequence with weak similarity ta
protein pir:S 12207 (M.musculus) S12207 hypothetical protein

1447260_at -5,81129 (B2 element) - mouse

141 9295_at -5,83476 Oasis 2 El old astrocyte specifically induced substance

1422458_at -5,8463 Tcll 1252.0cM T-cell lymphoma breakpoint 1
Mus musculus 15 days embryo male testis cDNA RIKEN
full-Iength enriched library clone:8030491 K24

1428157_at -5,86536 product:unknown EST full insert sequence

1454881_s_at -5,86818 Upk3b 5 G2 uroplakin 3B

1454926_at -5,86924 4930544G21Rik 1 C5 RIKEN cDNA 4930544G21 gene

1421096_at -5,90994 Trpcl 9 51.0cM transient receptor potential cation channel subfamily C member 1

143441 3_at -5,97459 lgfl 1048.0cM insulin-like growth factor 1

1438672_at -5,99029 Mus musculus transcribed sequences

1420797_at -5,99882 Otog 7 28.0cM otogelin

1441317_x_at -6,00381

1456174_x_at -6,01823 Ndrl 15 D2 N-myc downstream regulated 1

1 455722_at -6,06823

1445965_at -6,07606 Mus musculus transcribed sequences

14241 67_a_at -6,08693 Pmml 15 El phosphomannomutase 1

1420760_s_at -6,08817 Ndrl 15 02 N-myc downstream regulated 1

14251 63_at -6,1205 LOC224833 17 C hypothetical protein BC006605

1422890_at -6,12625 Pcdhl8 3G protocadherin 18

1450042_at -6,13043 Arx X Cl aristaless related homeobox gene (Drosophila)

1455367_at -6,14051 Dndl 18 B2 dead end homolog 1 (zebrafish)

1452092_at -6,1823 Mus musculus transcribed sequences
17 19.23

141 7945_at -6,21 32 Pou5f 1 cM POU domain class 5 transcription factor 1

1419414_at -6,24884 Gngl3 17 A3.3 guanine nucleotide binding protein 13 gamma
Mus musculus adult male tongue cDNA RIKEN full-length
enriched library clone:2310050P20 product:unknown EST

1453841 _at -6,26272 full insert sequence
Mus musculus adult male tongue cDNA RIKEN full-length
enriched library clone:231 0005C01 product:unknown EST

1429887_at -6,305 full insert sequence

1431 865_a_at -6,3082 4933405K07R1k 7 B3 RIKEN cDNA 4933405K07 gene

1424445_at -6,34568 201 0003F1 ORik 11 B3 RIKEN cDNA 201 0003F10 gene

1416114_at -6,34997 Sparcli 555.0cM SPARC-like 1 (mast9 hevin)

1454681_at -6,35247 BCO31 468 4 Al cDNA sequence BCO31 468
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145631 9_at -6,35287

1 444797_at -6,35562 L0C382231 X C3 hypothetical gene supported by AK033245

1448600_s_at -6,39423 Vav3 3 Gi vav 3 oncogene

1 456532_at -6,4113 Pdgfd 9 Al platelet-derived growth factor D polypeptide

1423635_at -6,41154 Bmp2 2 76.1 cM bone morphogenetic protein 2
Mus musculus 13 days embryo stomach cDNA RIKEN full-length
enriched library clone:D530034D18 product:unknown EST

1 438989_s_at -6,41 167 full insert sequence

1452384_at -6,43167 Enpp3 10 A4 ectonucleotide pyrophosphatase/phosphodiesterase 3

1428089at -6,43711 3200001 lO4Rik 14 E3 RIKEN cDNA 3200001104 gene

1427242_at -6,43808 Ddx4 13 67.0cM DEAD (Asp-Glu-Ala-Asp) box polypeptide 4

1460591_at -6,45202 Esrl 10 12.0cM estrogen receptor 1 (alpha)

1449876_at -6,47747 Prkgl 19 Cl protein kinase cGMP-dependent type I
sialyltransferase 7 ((alpha-N-acetylneuraminyl
23-beta-galactosyl-1 3)-N-acetyl galactosaminde

141761 6_at -6,48961 Siat7b 11 E2 alpha-26-sialyltransferase) B

1437752_at -6,56624 Lin28 4 D3 lin-28 homolog (C. elegans)

141 9324_at -6,57348 Lhx9 1 G-H2 LIM homeobox protein 9
Mus musculus aduit male hypothalamus cDNA RIKEN
full-length enriched library clone:A230069K02

1440534_at -6,57995 product:hypothetical protein full insert sequence

1429074_at -6,59411 1700026D08Rik 7 D2 RIKEN cDNA 1700026D08 gene
developmentally and sexually retarded with transient

1458238_at -6,61 93 Desrt 10 B5.2 immune abnormalities

1 439260_a_at -6,63068 Enpp3 10 A4 ectonucleotide pyrophosphatase/phosphodiesterase 3

1460226_at -6,63996 Trapla X 58.0cM tumor rejection antigen P1A

1 420533_at -6,66916 Gucyl a3 3 E3 guanylate cyclase 1 soluble alpha 3

1447851_x_at -6,67564 AtplOa 7 B5 ATPase class V type 1OA

1425575_at -6,67854 Epha3 16 Al Eph receptor A3

1431403_a_at -6,68185 5330432J06Rik X F4 RIKEN cDNA 5330432J06 gene

1452757_s_at -6,7097 Hba-al 1116.0cM hemoglobin alpha adult chain 1

1437113_s_at -6,77265 Pldl 310.5cM phospholipase Dl

1428685_at -6,801 03 4933406J07Rik 7 F4 RIKEN cDNA 4933406J07 gene

1418147_at -6,87996 Tcfap2c 2 H3-H4 transcription factorAP-2 gamma

1416612_at -6,91832 Cyplbl 17 E3 cytochrome P450 family 1 subfamily b polypeptide 1

1438889_at -6,97607 Mus musculus transcribed sequences
Mus musculus O day neonate cerebellum cDNA RIKEN
full-length enriched library clone:C230098021

1433988_s_at -6,99978 product:unknown EST full insert sequence

1438200_at -7,00071 Sulfi 1 A3 sulfatase 1

1452365_at -7,01 218 4732435N03Rik 8 B3.2 RIKEN cDNA 4732435N03 gene
Mus musculus O day neonate lung cDNA RIKEN full-length
enriched library clone:E030030K01 product:coatomer

1427320_at -7,03671 protein complex subunit gamma 2 antisense 2 full insert sequence

1434025_at -7,04236 KIfS 14 E2.1 Kruppel-like factor 5

1423327_at -7,09187 4930517K11Rik 16A1 RIKENcDNA493O517K11 gene

1421 31 7_x_at -7,11152 Myb 10 16.0cM myeloblastosis oncogene

141 5857_at -7,15393 Emb 13 D2.3 embigin

1436329_at -7,17068 Egr3 14 Dl early growth response 3

1420720_at -7,27717 Nptx2 5 G2 neuronal pentraxin 2

1420561_at -7,33766 Trpc7 13 Bi transient receptor potential cation channel subfamily C member 7

1 422058_at -7,35644 Nodal 10 31.5 cM nodal

1448494_at -7,37981 Gasl 1337.0cM growth arrest specific 1

143391 9_at -7,45463 Asb4 60.6cM ankyrin repeat and SOCS box-containing protein 4
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1423429_at -7,52201 Pem X 12.7 cM placentae and embryos oncofetal gene

1434237_at -7,53441 Upk3b 5 G2 uroplakin 3B
Mus musculus adult male liver tumor cDNA RIKEN fulI-length
enriched library clone:C730009F09 product:unknown EST full

1455599_at -7,57592 insert sequence

1449991_at -7,59271 Cd244 1 93.0cM CD244 natural killer cell receptor 2B4

7425233_at -7,62731 22i0407C18Rik 17 B1.3 RIKENcDNA22JO4O7C18gene

742531 7_x_at -7,77358 Stk3l 6 B2.3 serine threonine kinase 31

141671 5_at -7,84651 Gjb3 4 58.0 cM gap junction membrane channel protein beta 3

1429330_at -7,88167 Gabra4 5 C3.2 gamma-aminobutyric acid (GABA-A) receptor subunit alpha 4

1422567_at -8,04276 Niban 1 G2 niban protein

1 449434_at -8,0575 Car3 3 11.7 cM carbonic anhydrase 3

1438237at -8,07842 Mus musculus transcribed sequences

1422836at -8,09203 MbnI3 X A4 muscleblind-like 3 (Drosophila)

1 423424_at -8,09816 Zic3 X 16.5 cM zinc finger protein of the cerebellum 3

1 449559_at -8,11716 Msx2 13 32.0 cM homeo box msh-like 2

1441 527_at -8,1353 Mus musculus transcribed sequences

141 6464_at -8,31074 SIc4al 11 62.0 cM solute carrier family 4 (anion exchanger) member 1

141 7482_at -8,3244 Texi 9 1 1 E2 testis expressed gene 19

1457026_at -8,35006 Liph 16 Al lipase member H

1428361 -8,3572 Hba-al 11 16.0 cM hemoglobin alpha aduit chain 1

1453223_s_at -8,39272 Dppa2 16 Al developmental pluripotency associated 2

1433939_at -8,487 Laf4 1 78.7cM Iymphoid nuclear protein related to AF4

141 7356_at -8,49805 Peg3 7 6.5cM paternally expressed 3

1442379_at -8,49945 Mus musculus transcribed sequences

1 456208_at -8,53697 A530057A03 2 F1 hypothetical protein A530057A03

1424470_a_at -8,54878 9330170P05Rik 15 F1 RIKEN cDNA 9330170P05 gene

1433489_s_at -8,54963 Fgfr2 763.0cM fibroblast growth factor receptor 2

141 9542_at -8,5597 9 DazI 1725.6cM deleted in azoospermia-like

1450736_a_at -8,62295 Hbb-bhl 749.96cM hemoglobin Z beta-like embryonic chain

1433526_at -8,67396 K1h18 5 55.0cM kelch-like 8 (Drosophila)

14531 33 at -8,84055 1700034J06Rik 3 B RIKEN cDNA 1700034J06 gene

7437269_at -8,86927 9030019H09 75 E2 hypothetical protein 9030019H09

1451 021_a_at -8,97557 KIfS 74 E2.i Kruppel-Iike factor 5

1453228_at -8,97831 Stxll 1OA1 syntaxin li

1430780_a_at -9,01 573 Pmml 15 El phosphomannomutase 1

1429597_at -9,02756 Dppa4 16 Al developmental pluripotency associated 4

1456777_at -9,09244 6030407P20Rik 6 Bi RIKEN cDNA 6030407P20 gene
Mus musculus adult male pituitary gland cDNA RIKEN
full-length enriched library clone:5330403D1 4

7453395_at -9,21205 product:unknown EST full insert sequence

74411 87_at -9,39836 Mus musculus transcribed sequences

1449298_a_at -9,42293 Pdela 2 C3 phosphodiesterase lA calmodulin-dependent
Mus musculus 12 days embryo female mullerian duct
includes surrounding region cDNA RIKEN full-length
enriched Iibrary clone:6820401 H22 product:unknown

1456559_at -9,46953 EST full insert sequence

1442101_at -9,49468 A9300i7NO6Rik 5 G2 RIKEN cDNA A930017N06 gene

7430368_s_at -9,50192 l7000l9DO3Rik 1 C1.1 RIKEN cDNA 1700019D03 gene

7420448_at -9,52625 4930539l12Rik X A3.i RIKEN cDNA 4930539112 gene

7436221_at -9,54201 L0C381325 1 H2.3 LISCH7-Iike

1456307_s_at -9,62968 Adcy7 840.0cM adenylate cyclase 7
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1449502_at -9,76642 DazI 1725.6cM deleted in azoospermia-like

1440000_at -9,76954 E330013P04Rik 19 D3 RIKEN cDNA E330013P04 gene

1436978_at -9,81971 Wnt9a 11 B1.3 wingless-type MMTV integration site 9A

142041 0_at -9,8967 Nr5a2 1 E4 nuclear receptor subfamily 5 group A member 2

1445952_at -9,98796 Mus musculus transcribed sequences

14171 84_s_at -10,3271 Hbb-y 7 49.95 cM hemoglobin Y beta-like embryonic chain

1441 462_at -10,5158 Dock4 12 A3 dedicator of cytokinesis 4

14311 14_at -1 0,5702 Dock4 12 A3 dedicator of cytokinesis 4

1444390_at -1 0,6813 Mus musculus transcribed sequences

141 8362_at -1 0,706 Zfp42 8 24.0cM zinc finger protein 42

1456033_at -10,9031 Tbx4 11 49.0cM T-box 4

1442549_at -1 0,915 Mbnl3 X A4 muscleblind-like 3 (Drosophila)
Mus musculus 10 days neonate cortex cDNA RIKEN
full-Iength enriched Iibrary clone:A830052E03

1 454768_at -10,9225 12 Al .2 product:unknown EST full insert sequence

1 454904_at -10,9787

1417714_x_at -11,0174 Hba-a1 11 16.0cM hemoglobinalphaadultchain 1

1 448688_at -1 1,2975 Podxl 6 10.0 cM podocalyxin-like
Mus musculus 16 days embryo head cDNA RIKEN full-length
enriched library clone:C13001 9H05 product:unknown EST

1459279_at -11,3899 full insert sequence
Mus musculus similarto hypothetical protein C730031G17

1455595_at -11,4374 5 El (L0C231396) mRNA

1444292_at -11,6267 Nalpl2 7 Al NACHT LRR and PYD containing protein 12

141 6552_at -11,6427 Dppa5 9 El developmental pluripotency associated 5

141 6967_at -11,8127 Sox2 3 15.0cM SRY-box containing gene 2

1454969_at -11,9268 E1301 l5EO3Rik 2 Cl .1 RIKEN cDNA E1301 15E03 gene

1433147_at -12,1737 Caldl 611.5cM caldesmon 1

14241 52_at -1 2,21 83 Sa114 2 H3 sal-like 4 (Drosophila)

1449204_at -1 2,5704 GjbS 457.5cM gap junction membrane channel protein beta 5
ELAV (embryonic lethal abnormal vision Drosophila)

1421 883_at -12,6283 Elavl2 442.6cM like 2 (Hu antigen B)
double cortin and calcium/calmodulin-dependent protein

1424270_at -1 2,7246 Dcamkll 3 C kinase-like 1
11 10.92 solute carrier tamily 1 (glutamate/neutral amino acid transporter)

1456003_a_at -1 2,7438 Slcla4 cM member 4

1449064_at -13,3767 Tdh 14 C3 L-threonine dehydrogenase

1 436392_s_at -13,5462 Tcfap2c 2 H3-H4 transcription factor AP-2 gamma

1 460084_at -13,5721

1440452_at -13,6851 Drp2 X E3 dystrophin related protein 2

1452366_at -1 3,8287 4732435N03Rik 8 B3.2 RIKEN cDNA 4732435N03 gene
TAF7-like RNA polymerase Il TATA box binding protein

1420433_at -14,1126 Taf7l X E3 (TBP)-associatedfactor

1450621_a_at -1 4,1405 Hbb-y 749.95cM hemoglobin Y beta-like embryonic chain

1 448962_at -14,2616 Myhl 1 16 5.0 cM myosin heavy chain 11 smooth muscle

1436837_at -14,2952 4933405K18Rik 1 H2.3 RIKEN cDNA 4933405K18 gene

1426650_at -14,3632 Myh4 11 35.0cM myosin heavy polypeptide 4 skeletal muscle
Mus musculus 13 days embryo head cDNA RIKEN
full-length enriched library clone:31 10009007

1429905_at -14,9314 product:unknown EST full insert sequence

141971 9at -15,3978 Gabrbl 5 40.0 cM gamma-aminobutyric acid (GABA-A) receptor subunit beta 1

1450065_at -1 5,8802 Adcy7 8 40.0cM adenylate cyclase 7

1460627_at -1 5,9672 D130067l03Rik 1 E4 RIKEN cDNA D130067103 gene

1429366_at -1 6,2227 l700007JO6Rik 3 A3 RIKEN cDNA 1700007J06 gene

144871 6_at -1 6,3884 Hba-x 11 16.0cM hemoglobin X alpha-like embryonic chain in Hba complex
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141 941 8_a_at -16,7602 Morc 1633.7cM microrchidia

1435314_at -17,2302 Tph2 10 D2 tryptophan hydroxylase 2

1456552_at -17,2403 Mus musculus transcribed sequences

1436319_at -17,3772 SuIti 1 A3 sulfatase 1

1420549_at -17,7152 Gbpl 367.4cM guanylate nucleotide binding protein 1

1437810_a_at -1 8,9247 Hbb-bhl 749.96cM hemoglobin Z beta-like embryonic chain

141 901 8_at -1 9,3419 Psxl X A3.1 placenta specific homeobox 1

1449540_at -1 9,5452 Psx2 X A3.1 placenta specific homeobox 2

141 7504_at -1 9,6565 Calbl 4 10.5cM calbindin-28K

1 427238_at -20,3156 Fbxol 5 18 E4 F-box only protein 15

1437990_x_at -20,3661 Hbb-bhl 749.96cM hemoglobin Z beta-like embryonic chain

1 438645_x_at -20,4792

1456673_at -20,71 24 Mus musculus transcribed sequences

1429701_at -21,0692 241 0003JO6Rik X A7.3 RIKEN cDNA 241 0003J06 gene

1454138_a_at -21,5891 Stk3l 6 B2.3 serine threonine kinase 31
double cortin and calcium/calmodulin-dependent

1424271_at -21,8467 Dcamkll 3 C protein kinase-like 1

1421749_at -21,9261 Lin28 4 D3 lin-28 homolog (C. elegans)

1446308_at -22,4911 l700lO6Jl6Rik 11 C RIKEN cDNA 1700106J16 gene

1434280_at -22,92

1 447839_x_at -23,6085
ELAV (embryonic lethal abnormal vision Drosophila)-Iike

1421 882_a_at -23,8732 ElavI2 442.6cM 2 (Hu antigen B)

1434458_at -24,1609 Fst 13 D2.2 follistatin

1451 289_at -26,9889 Dcamkll 3 C double cortin and calcium/calmodulin-dependent protein kinase-like 1

141 8517_at -28,9836 lrx3 842.1 cM Iroquois related homeobox3 (Drosophila)
Mus musculus 9 days embryo whole body cDNA RIKEN
full-length enriched library clone:D030072M03

1427263_at -34,88 product:inactive X specific transcripts full insert sequence

1420970_at -37,5552 Adcy7 8 40.0cM adenylate cyclase 7
Mus musculus adult male testis cDNA RIKEN full-Iength
enriched Iibrary clone:4930563E1 8 product:unclassifiable

1432031_at -42,0019 full insert sequence
double cortin and calcium/calmodulin-dependent protein

1436659_at -54,06 Dcamkll 3 C kinase-like 1
Mus musculus O day neonate thymus cDNA RIKEN
full-length enriched library clone:A430022B1 1

1436936_s_at -67,1224 product:inactive X specific transcripts full insert sequence

1420771_at -108,638 Sprr2d 345.2cM small proline-rich protein 2D
Mus musculus O day neonate thymus cDNA RIKEN
full-length enriched library clone:A430022B1 1

1427262_at -1 44,417 product:inactive X specific transcripts full insert sequence

1421365_at -147,74 Fst 13 D2.2 follistatin
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Solutions:

lOx PBS
80g NaC1
2g KC1
14.4g Na2HPO4
2.4g KH2PO4
800m1 DDW
Dissolve, pH to 7.4, add DDW to iL, DEPC treat and autoclave.

PBT
PBS with 0.1% Tween-20

2OxSSC
175.3g NaC1
88.2g Sodium Citrate
800m1 DDW
Dissolve, pH to 7.0, add DDW to iL, DEPC treat and autoclave.

Antibody Buffer
10% Heat Inactivated Goat Serum
1% Boehringer Block
0.1% Tween-20
Dissolve in PBS at 70°C, vortexing frequently, and then filter (0.45um).

Hybridization Buffer (5OmL):
25mL Formamide (deionized with beads)
12.5mL SSC 20X pH5.O
2.5mL (5m1) SDS 20% (10%)
5OuL tRNA 8Omg/mL (in DEPC-H20)
5OuL Heparin 5Omg/mL (in DEPC-H20)
9.9mL (7.4m1) DEPC-H70
store at —20°C

H20-DEPC:
0.1% DEPC in H20, 37°C O.N. and autoclave.

PBS-DEPC:
0.1% DEPC in PBS, 37°C O.N. and autoclave.

PBT-DEPC:
0.1% Tween 20 and 0.1% DEPC in PBS, 37°C O.N. and autoclave.
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Solutioni (SOOmL):
125mL SSC 20X pH5.0
250mL Formamide (deionized)
lO0mL (75m!) H20
25mL (50m1) SDS 20% (10%)
store at —20°C

Solution2 (500mL):
5OmL SSC 20X pH5.0
250mL Formamide (deionized)
200mL H20
500uL Tween 20
store at —20°C

IBS fox (500mL):
40g NaC1
1gKC1
125mL Tris 1M pH 7.5
complete to 500mL with H20
autoclave

TBST:
0.1% Tween 20. Filter.

TBST-Levamisole:
24mg Levamisole Hydrochloride/ 5OmL TBST

Heat-Inactivated Serum (Goat or bovine):
at 56°C for 30min

MABI sx (200mL):
11 .6g Maleic Acid
$.7g NaC1
pH to 7.5 with solid NaOH
0.5% Tween
complete to 200mL with H20

10% BR:
10g of “Roche” Blocking reagent
100m! ofMABT iX
autoclave and store in 1.5m1 aliquots at -20°C

Blocking Solution (2mL):
200uL Heat-Inactivated Serum
200uLBR 10%
1 .6mL TBST-Levamisole
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Ab Solution (lmL):
lOuL Heat-liactivated Serum
890uL TBST-Levamisole
100uLBR 10%
0.5uL (0.75U/ul stock) anti-digoxigenin-AP Fab fragment

(or 5u1 of fluo-conjugated Dig antibody)

NTMT (5OmL):
Make fresli
1mLNaC1 5M
5mL Tris 1M pH 9.5
2.5mLMgC12 1M
5OuL Tween 20
41.5mL H20

NTMT-Levamisole:
24mg Levamisole Hydrochloride/ 5OmL NTMT

CMFET (lOOmL)
0.8g NaCL
0.02g KC1
0.115g Na2HPO4
0.02g KH2PO4
0.02g EDTA
lOOuL Tween 20
complete to lOOmL with H20
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