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Sommaire

Ma thèse est centrée sur lintroduction (le l’asymétrie dans les modèles d’évaluation d’aetifs

financiers et dans le choix de portefeuille. Dans le premier chapitre. nons examinons comment

l’éc1nihbre (l’un marché financier révèle, à la fois par les ciuantités détenues à l’équilibre et par

les prix, les préférences (les investisseurs pour trois types de caractéristique (les rendenients : leur

espérance. leur variance et leur asymétrie. Dans le de1Lxième chapitre, en prenant en compte

I’ asymétrie, nous déterminons mie nouvelle borne sur la variance (le tout facteur d’actualisation

stochastique (SDF) qui valorise correctement les rendements d’actifs financiers et les gains (le pro—

duits dérivés qui sont (les fonctions quadratiques (les gains d’actifs risqués. Dans le troisième

chapitre, nous construisons une économie où les préférences des investisseurs et 1cm’ consonunation

dépendent d’une variable d’état qui suit un processus de type Markovien à deux états et montrons

que ce modèle économique produit et explique les énigmes de l’aversion pour le risque et du SDP

mises en évi(lence par Jackwerth (2000. RFS). Dans le quatrième chapitre. nous proposons une ap

proche pour l’évaluation (le prodmts dérivés par les arbres lorsqu’une variable (l’état non observable

affecte le processus de prix du sous-jacent.1

Dans le premier chapitre, nous examinons comment l’équilibre d’un marché financier révèle, à

la fois par les quantités détenues à l’équilibre et par les prix, les préférences des investisseurs po-ir

trois types de caractéristique des rendements leur espérance. leur variance et leur asymétrie. Deux

types d’approche sont utilisés pour cela. D’abord, en considérant une situation au voisinage (le la

non-incertitude (expansion en petit bruit), on calcule les demandes des agents pom’ différents types

d’actifs risqués. L’idée est de considérer un actif en offre non nulle, représentatif du portefeuille de

marché, et des actifs dérivés en offre nette nulle mais dont les gains sont des fonctions non linéaires

(lu portefeuille (le marché. On s’aperçoit alors que la demande d’actifs dérivés est précisément

justifiée par le goût des investisseurs pour l’asymétrie .Au niveau (les prix, la rémunération du risque

(lépend non seulement du bêta de marché, connue (lans un contexte moyenne—variance classique.

mais aussi (11m coefficient de coas métrie par rapport au marché. Les conclusions obtenues par

te premier chapitre (le cette thèse a été écrit en collaboration avec Dietrnar Leisen et Eric Renault Le delLxiètrle,

troisième et le quatrième chapitre ont été écrits en collaboration avec René Garda et Eric Renault.
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l’expansion en petit bruit peuvent ensuite étre retrouvées clans des contextes plus généraux grace

à la définition d’un facteur d’actualisation stochasticiue adapté. Cette double approche peut etre

ensuite étendue à iiri marché à cieux périodes où d’autres phénomènes d’asymétrie doivent étre pris

en compte dans la dépendance temporelle des rendements d’une période à l’autre.

L’objet du deuxième chapitre est l’extension de l’approche des bornes de variance proposée par

Ilansen et Jagannathan (1991, JPE). Alors ciue llansen and Jagamiathan (1991, JPE) caractérisent

la variance minimale que doit avoir un facteur d’actualisation stochastique (SDF) susceptible de

valoriser correctement mi ensemble donné d’actifs primitifs, nous considérons l’effet sur cette borne

de variance de l’ajout de contraintes imposées par l’évaluation correcte des fonctions quaciratiques

des gains de ces actifs primitifs. Nous approchons ainsi le problème de l’évaluation d’actifs dérivés

dont les gains sont par définition des fonctions non linéaires des gains des actifs sous-jacents.

II est alors éclairant de décrire la nouvelle frontière de variance ainsi obtenue dans un espace à

trois dimensions mettant en jeu non seulement les rendements espérés et leur variance mais aussi

leur coefficient d’asymétrie. De mème ciue la frontière de variance de Ilansen anci Jagannathan

(1991, JPE) présente une relation de dualité avec la frontière efficiente moyenne-variance du choix

optimal de portefeuille au sens de Markowitz (1952, Jf), la frontière ciue nous proposons peut

étre interprétée en ternies de choix de portefeuille par minimisation du risque sous contrainte non

seulement de cotit et de rendement espéré, mais aussi d’une contrainte qui dépend de l’asymétrie du

portefeuille. Nous montrons que la solution du problème de minimisation du risclue sous contrainte

de coùt, du rendement espéré et d’asymétrie du portefeuille proposée par de Athayde et flores

(2004, JEDC) est un cas particulier de notre problème de choix de portefeuille. En ce sens, notre

travail donne uni nouvel éclairage à la cluestion du choix de portefeuille en présence de rendements

asymétriciues.

Dans le troisième chapitre, nous présentons un modèle économnique avec changements de

régime qui produit et explique les énigmes de l’aversion pour le risque et du SDF mises en évidence

clans Jackwerth (2000, RFS). Nous construisons un modèle où les préférences des investisseurs et

leur consommation dépendent d’une variable cfétat cmi suit un processus de type Markovien à cieux

états et sinriulonis les prix d’options d’achat européennes. En utilisant la méthodologie proposée par
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Jackwerth (2000, RFS), nous déduisons la fonction d’aversion absolue pour le risque et dii SDF

pour chaque valeur de la richesse. Ces fonctions présentent les mêmes énigmes ciue celles observées

par Jackwerth (2000, RfS). Lorsciue nous appliquons la même méthodologie clans chaciue état de

l’économie, l’énigme de l’aversion absolue pour le risque disparaït. Nos résultats suggèrent ciue ce

modèle rationalise et explique l’énigme de l’aversion pour le risclue et du SDF mises en évidence

par Jackwerth (2000, RFS).

Dans le quatrième chapitre, nous présentons un modèle d’évaluation des produits dérivés par la

méthode d’arbre lorsque le processus du prix du sous-jacent est affecté par une variable c[’état non

observable. Ce modèle généralise les modèles d’arbre existants : Cox, Ross et Rubinstein (1979)

et Boyle (1988). Dans ce modèle, la variable d’état non observable capture les faits niarcluants

mis en évidence par l’observation des prix d’options, en particulier l’asymétrie et la dynamique de

l’asymétrie présentes dans les actifs dérivés.

Mots clés: variable d’état, modèle d’arbre, choix de portefeuille, énigme de l’aversion pour le

risclue, énigme du facteur d’actualisatioii stochastique, asymétrie, facteur d’actualisation stochas

tique.
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Summary

My thesis focuses on the introduction of asymmetry in asse t pricing models anci portfolio se

lection. In the ffi’st chapter, we use a small noise expansion approach to investigate how the market

equilibrium discloses, through quantities and prices, investors’ preferences for tbree characteristics

of asset returns: expected retm’n, variance and skewness. In the second chapter. taking into ac

count asset higher moments, we find a new hound on the volatility of any admissible stochastic

discount factor (SDF) that prices correctly a set of primitive asset returns ami derivatives which

payoffs are a quadratic function of the same primitive assets. We frnther propose a method for

portfolio selection which accounts for ffigher moments, in particular skewness. In the tifird chapter,

we develop a utility-based economic mnodel with state dependence in fundamentals and preferences

which rationalizes and explains the risk aversion and pricing kernel puzzles put forward in Jack

werth (2000, RFS). Chapter four proposes a lattice-based mode] for valuing derivatives when the

underlying process is affected by ami unobservable state variable.

The first chapter examines how the market equilibrium cliscloses, througli quantities anci prices,

investors’ preferences for three cbaracteristics of asset returns: expecteci return, variance and skew

ness. We use a smali-noise expansion approach to compute heterogeneous agents’ demnands for

severai risky assets. The idea is to consider a risky asset in positive net supply wbicb represents

the market portfoiio and derivatives assets in zero net suppiy which payoffs are noniinear functions

of the market returu. We observe that the demand for derivative assets comes from the fact that

investors have a preference for skewness. With regard to the equilibrium prices of derivative assets,

we find that the risk is priced througb the market beta like in the standard mean-variance arialysis

but also through an additional parameter which is the co-skewness of derivative assets with respect

to the market. These fincbngs obtained under a small noise expansion approach can be found in a

more general context if we define an appropriate stochastic discount factor. This methodology can

be extended in a two-period market to sec how other skewness effects should be taken into accoimt

to expiain temporal dependence hetween asset returns across time.

The second chapter extends the well-known ilanscn and Jagannathan (1991, JPE) volatility

bound. Ilansen and Jagamiathan characterize the volatility lower hound of any admissible SOU’
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that prices correetly a set of priimitive asset retm’ns. \Ve characterize tins lower bounci for aux’

admissible SDF that priees correetly both primitive asset returns and quadratic payoffs of the same

primitive assets. In particular, we aim at prieing derivatives whieh payoffs are defined as nonlinear

functions of the nnderlying asset payoffs. We put forward a new volatilit surface frontier in a

three-dimensional space hy considering not only asset expected payoffs and variances. but also asset

skewness. Since there exists a duality between the Ilansen and Jagannathan (1991, JPF) mean

variance frontier and Markowitz (1952, JF) mean-variance portfolio frontier, our volatility surface

frontier ean be interpreted in ternis of portfoho selection by minimizing the portfoho risk subject to

portfoho cost and expected return as nsnal. bnt also to an additional constraint wNch depends on

the portfolio skewness. This approach which consists in finding the lower risk portfoho snbject to

portfoho cost, expected retnrn and skewness, embeds the mean-variance-skewness portfoho ehoiee

of de Athayde and Flores (2004, JEDC). In this sense, our paper sheds light on portfolio selection

when asset retnrns exhibit skewness.

The tiùrd chap ter examines the ability of economic models with regime shifts to rationalize and

explain the risk aversion and pricing kernel puzzles pnt forward in Jackwerth (2000, RFS). \Ve build

an economy where state dependences are introdnced either in investors preferences or fnndamen—

tais and simulate Enropean cail option prices. Following Jackwerth’s (2000, RFS) nonparametric

methodology, we recover the risk aversion and pricing kernel functions across wealth states. These

functions exhibit the same pnzzle fonnd in the data. llowever, when we appiy the same method

ology within each regime the puzzles clisappear. 0m’ findings suggest that state dependence in

preferences or fnndamentals potentially explains the risk aversion puzzle.

The last chapter presents a lattice-based rnethod for valuing derivatives when the xmderlying

process is affected by an unobservable state variable. This model generalizes the existing lattice

roodels: Cox, Boss and Rnbinstein (1979) and Boyle (1988) trinomial pricing model. In this

model, an unobservable state variable captures the salient featmes of derivatives snch as options,

in particular skewness and the dynamic effect of asset skewness.

Key words: lattice, portfolio choice, pricing kernel puzzle, risk aversion puzzle, skewness, state

variable, stocliastic discount factor.
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consumption and dividend is 0.6. The number of options nsed is 50. The number

of wealth states is n = 170. TI left—hand panel contains the unconchtional ARA

function across wealth states for the Goodness-of-fit and the llansen and Jagan

nathan (1997) distance measures. The rigl,t-hancl panel contains the unconditional

ARA frmction across wealth states for the Goodness of Fit and the llansen and Ja

gannathan (1997) distance measures. The nnconditional ARA (Ph) function is the

ARA (Ph) ftmction conputed when regirnes are not observed 23
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Introduction générale

La validité des modèles d’évaluation d’actif financiers dépend de leur capacité à reproduire

les caractéristiques des prix observés sur le marché. Sous certaines conditions dont celle d’absence

d’opportunité d’arbitrage, Ilansen et Richard (1987) montrent qu’il existe un facteur d’actualisation

aléatoire qui sert à évaluer le prix de tous actif financier. De part sa nature aléatoire, ce facteur est

appelé facteur d’actualisation stochastique (SDE). Ilansen et Richard (1987) montrent que le prix

d’un actif financier s’écrit corume la valeur espérée du produit du SDF et du gain de cet actif. La

spécification de ce facteur dépend en général des hypothèses sur les préférences des investisseurs.

La ligne directrice de cette thèse est l’étude parcimonieuse des différentes spécifications de ce SDF

et leur implication en terme d’évaluation d’actifs financiers, de produits dérivés, de préférence et

de choix de portefeuille.

Dans le premier essai de cette thèse, nous examinons comment l’équihbre d’un marché financier

révèle, à la fois par les quantités détermes à l’équilibre et par les prix, les préférences des investis

senrs pom’ trois types de caractéristique des rendements leur espérance. leur variance et leur

asymétrie. Deux types d’approche sont utilisés pour cela. D’abord, en considérant une situation an

voisinage de la non-incertitude (expansion en petit bruit), on calcule les demandes des agents pour

différents types d’actifs risqués. L’idée est de considérer un actif en offre non nulle, représentatif du

portefeuille de marché, et des actifs dérivés en offre nette nulle mais dont les gains sont des fonc

tions non linéaires du portefeuille de marché. En faisant une expansion en petit bruit an premier

ordre, on s’aperçoit que la demande d’actifs dérivés est déterminée uniquement par l’aversion des

investisseurs pom’ la variance. Au niveau des prix, la rémunération du risque dépend du béta de

marché connue dans un contexte moyerme—varianee (voir Markowitz (1952)). Le SDF impliqué par

ce modèle est une fonction linéaire du rendement r[e marché. En d’autres termes une expansion en

petit bruit au premier ordre produit le modèle d’évaluation d’actifs financiers CAPI\l. Toutefois, de

nombreuses éturles empiriques ont souligné que ce modèle n’est pas pertinent en terme d’évaluation

d’actifs financiers. Ce qui nous a conduit à faire une expansion en petit bruit au elenxième ordre.

Dans ce cas, on s’aperçoit alors que la demande d’actifs diérivés est précisément justifiée par le
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gofit des investisseurs pour l’asymétrie. Au niveau des prix, la rémunération du risque dépend

non seulement du bèta de marché, comme dans un contexte moyenne—variance, mais aussi d’un

coefficient de coasymétrie par rapport au marché. Le SDF impliqué par une expansion en petit

bruit au deuxième ordre est une fonction quacfratique du rendement (le marché. Cette approche

peut etre étendue à un marché à deux périodes où d’autres phenomuenes d’asymétrie doivent etre

pris en compte dans la dépendance temporelle des rendements d’nne période à l’autre.

Une fois un facteur d’actualisation stochastique identifié, un des aspects importants est de le

comparer à un SDE de référence pour s’assurer de sa pertinence ou de sa validité, Différentes

méthodes sont proposées pour comparer les modèles d’évaluation d’actifs financiers, tester 1cm’

validité et s’assurer de leur pertinence. Bien souvent, ces méthodes utilisent cormne référence le

SDF proposé par Flansen et Jagannathan (1991). Étant donné une série de rendements observés,

Hansen et Jagannatban (1991) déterminent la variance minimale que doit avoir un SDF pour

évaluer correctement les rendements d’actifs financiers, Le SDF (le Ilansen et Jagannathan (1991)

(lépend des deux premiers moments des rcndements d’actifs financiers, donc ne prend pas en compte

l’asymétrie observée dans ces rendements, Pom’ les actifs fondamentaux comme les indices boursiers

et les indices obligataires qui servent à l’évaluation des modèles, les moments d’ordre supérieur à

deux ne jouent pas en général un rôle déterminant. Toutefois, dans plusiem’s études empiriques,

il est admis que ces deux premiers moments ne caractérisent pas entièrement la distribution des

rendements, Un (les faits stylisés est que la distribution des rendements est souvent asymétrique.

Comme nous l’avons précisé dans le premier chapitre, l’asymétrie peut s’avérer importante pour la

prise de décisions d’investissement. D’abord, un investissement avec une distribution de cash—flows

fortement etalce a droite peut etre attractif meme si son ratio de Sharpe n’est pas tres eleve. Ensuite,

les contrats d’option d’achat ou de vente exhibent evidemment (les payoffs tres assyrnetriques. Pour

toutes (‘es raisons, la frontiere proposee par llansen et Jagannathan (1991) dans le plan moyeene

variance pour decrire les SDF admissibles ne met sans doute pas assez l’accent sur la remuneration

(le l’assvmetrie.

Dans le deuxième essai de cette thèse, nous proposons un SDE (le variance numnmnale parmi les
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SDF qui évaluent correctement non seulement les rendements d’actifs financiers fonclamentanLx mais

aussi ceux de produits dérivés et de stratégies financières complexes telles qne celles utilisées par les

fonds spéculatifs. Nous supposous que le gain de tout produit dérivé peut être approximé par nue

fonction quachatique des actifs primitifs. Intuitivement, nous augmentons l’ensemble des oppor

tunités d’investissement des agents économiques en considérant non seulenient les actifs financiers

mais aussi les produits dérivés qui sont fonction des actifs primitifs. Tout connue le SDF de Ilansen

et Jagannathan (1991), ce SDF est simple et facile à utiliser, il peut être utilisé pour coiuparer les

modèles d’évaluation d’actifs fmanciers et pour tester leur validité. Il peut être interprété comme

nue simple extension du SDF de Ilansen et Jagannathan (1991). Toutefois, sa particularité est qu’il

prend eu compte les moments d’ordres supérieurs des rendements d’actifs, en particulier l’asymétrie

observée dans ces rendements. Le SDF proposé dans cet essai est une fonction quadratique des

rendements d’actifs primitifs. Récemment, de nombreux auteurs parmi lesquels Harvey et Sidcbque

(2000) et Barone-Adesi et al. (2001) ont souligné l’importance d’utiliser un SDF qui est une fonc

tion quadraticue du rendement de marché pour étudier l’impact de l’asymétrie sur les rendements

espérés d’actifs financiers. Par exemple, Ilarvey et Siddllque (2000) montrent qu’un SDF fonction

quadratique du rendement de marché permet d’expliquer les variations en coupe transversale des

rendements espérés entre différents actifs. Tout comme le SDF de Ilansen et Jagannathan (1991).

nous montrons que le SDF proposé dans cet essai peut être interprété en terme de choix de porte

feuille en proposant une simple approche de choix de portefeuille sous asymétrie. Cette approche

est une simple extension de l’approche moyenne-variance (voir Markowitz (1952)) et de l’approche

moyenne-variance-asymétrie (voir de Athayde et Flores (2004)). Cette dernière approche consiste

à chercher le portefeuille le moins risqué ( portefeuille ayant la plus petite variance) parmi tous les

portefeuilles ayant un même coefficient d’asymétrie et une même valeur espérée. En terme de choix

de portefeuille, cet essai apporte deux contributions. Premièrement, nous généralisons le problème

de choix rie portefeuille résolu par de Athayde et Flores (2004). DenLxièmemnemit, nous proposomis

mie approche simple qui permet de déduire facilement (sans une résolution numérique) la solution

à ce problème.
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Dans une première application empirique, nous illustrons la perte d’information sur le SDF qni

résulte d’une utilisation du SDF de Ilansen et Jagannathan (1991) lorscin’il y acte forte présomptions

que l’asymétrie est évaluée sur le marché. Dans une ctemdème application empiridlue, nons utilisons

le SDF proposé dans cet essai ponr vérifier si les modèles basés sur la consommation explicnent

ou non l’énigme de la prime de risque mise en évidence par Mehra et Prescott (1985). Le SDF

proposé dans ce essai rend l’énigme de la prime de risque encore plus difficile à expliquer. Dans une

troisième application empirique nons montrons que les investisseurs qui ont une préférence pour

l’asymétrie choisissent un portefeuille autre que celui proposé dans de Athayde et Flores (2004).

fls ne choisissent le portefeuille proposé par de Athayde et Flores (2001) que sons des hypothèses

plus restrictives qui ne sont en général pas vérifiées empiriquement.

Dans le troisième essai, nous présentons un modèle économique avec changements de régime

qui produit et explique les énigmes de l’aversion pour le risque et du SDF mises en évidence

dans Jackwerth (2900). En résolvant le problème de choix de portefeuille de l’agent économique

on s’aperçoit que le SDF peut étre interprété connue un taux marginal de substitution intertemn—

porel. En admettant que la fonction d’utilité de l’agent économique est concave (pour mi agent

économique averse au risque), le taux marginal de substitution intertemporel doit etre une fonc

tion décroissante de la richesse de l’agent économique, tout comme d’ailleurs la fonction d’aversion

absolue pour le risque de l’agent économique doit également étre une fonction décroissante de sa

richesse. Toutefois, les études empiriques (voir Jackmverth (2000) et Ait Sahalia et Lo (2000)) mon

trent que ni le SDF, ni la fonction d’aversion absolue pour le risque n’apparaissent cornue des

fonctions décroissantes de la richesse. Pour expliquer ce paradoxe, nous construisons un modèle

où les préférences des investisseurs et leur consommation dépendent d’une variable d’état qui suit

mm processus de type Markovien à deux états et simumilons les prix d’options d’achat européennes.

En utilisant la méthodologie proposée par Jackwerth (2090), nous déduisons la fonction d’aversion

absolue pour le risque et le SDF pour chaque valeur de la richesse. Ces fonctions présentent les

memes énigmues que celles observées par Jackwerth (2000) et Ait Sahalia et Lo (2000). Lorsque nous

appliquons la mnéme méthodologie dans chaque état de l’économie, l’énigme de l’aversion absolue
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ponr le risque disparait. Nos résultats suggèrent que ce modèle rationalise et explique l’énigme (le

l’aversion pour le risque et du SDF mises en évidence par Jackwerth (2000).

Dans le quatrième cbapitre, nous présentons nn modèle d’évaluation des produits dérivés par

la méthode d’arbre lorsque le processus du prix du sous—jacent est affecté par une variable d’état

non observable. Dans un modèle (le marché à une période, nous montrons (iie ce modèle est

observationnellement équivaleut an modèle proposé dans Boyle (1988). Sur deux périodes, nous

montrons que ce modèle généralise le modèle (le Bole (1988). Dans ce modèle, la variable (l’état

non observable capture les faits marquants mis en évidence par l’observation des prix d’options, en

particulier l’asymétrie et la dynamuique (le l’asymétrie présentes dans les actifs dérivés.
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Cliapter Ï

I1i1i)ÏicatiOlis of Asynimetry Risk for PortfoÏio Analysis
aiid Asset Pricing



1. Introduction

Asynunetric shocks are common on rnarkets and will lead to payoffs that are iiot norrnally

cistrihiited anci exhibit skewness. Moreover, even when the primitive assets have symmetric payoffs,

typical derivative assets display a high degree of skewness. The risk-returrr trade off on such payoffs

may not be captured well by mean-variance analysis. llowever, Samuelson (1970) arguecl that

mean-variance analysis is stiil a valid approach to characterize the optimal portfolio problem in

general, i.e. even in those cases when the decisiou maker has a general concave von Neurnan

Morgenstern utility function and asset returns are not normally distributed. lus resuit is basecl on

the liinit of portfolio holdings under infinitesimal risk. We argue, in the presence of “small” risks

h is necessary to study also the siope of portfolio holdings in the neighborhood of zero risk, and

thereby incorporate skewness risk into the analysis. This paper extends Samuelson’s analysis of

frnancial decision making to derive agents’ portfolio holdings and the equilihriunn allocation under

mean-vari ance-skcwness risk.

We characterize portfolio holdings using risk—tolerance anci a terrn we cali skew-tolerance which

contains the third derivative of an agents utility function. Risk—tolerance captures the mean—

variance trade-off and skew-tolerance the mean-variance-skewness tracle-off. Using appropriately

defined “average” risk-tolerance and “average” skew-tolerance we show that such an “average” agent

sets prices whule cadi heterogeneous agent’s holdings are proportional to the difference between the

agents skew-tolerance and that of the “average” agent. The proportionality factor is cleterrnined

through co-skewness with the market; two—fund separation theorems typically do not hold under

skewness risk. A relateci work is Judd and Guu (2001) where Samuelson’s analysis is also extencteci

to an asyrnptotically valid theory for the trade-off between one risky asset and the riskless asset in

single perioci setups. Ilowever, while their approacli is baseci on bifurcation theory. oui results are

based ffirectly on limits of fn’st orcler conditions.

Our paper makes the foilowing contributions

First, we generalize Sanutclsons analysis by not irnposirg that risk premia are Iocally propor

tional to variance. By relaxing tIns restriction, we are able to characterize the price of skewness in



equilibrium. A significant resuit is that, aithougli separation theorenis do not hold uiicter skewness

risk. it reniains true that am- risk is compensateci onlv tlwoiigh its relationship wit.li the market.

either through the standarc[ market beta or through market co—skewriess which is akin to a beLa

with respect to the squarecl rnarket return. In this respect, one may say that neitirer idiosucratic

variance nor ichosyncratic skewness are compensatect iii ecinilibrium. We thereby provicte a foun

dation for empiuica.1 stuclies tha.t exLend the CAPI\1 model using in an ac[-lioc vay the scluared

market return as a second factor. Furthermore this paper provides a methoci to cteterïnine portfolio

holdings uiider skewness ri sk.

Second, we study extensively the pricing implications of a Stochastic Discount Factor ( SDF)

specification that is cluadratic with respect to market return. Although motivated by the above

small risk analvsis à la Samuelson (1970), this stucty h valid under very general settings and can

be comparecl to previous litemature on the pricirig implications of skewness risks. \‘Ve revisit beta

pricing mider skewness as alreadv considered b Kraus and Litzenberger (1976). Barone-Actesi

(1985), Harvey and Sicktic1te (200tJ), Dittmar (2002), and Barone-Adesi. [rga anct Gagliardini

(2004) amo;ig others. For the purpose of derivative asset pricing, we also relate skewness pricing

to risk neutral variance ( Rosenberg(2000)) and price of volatility contracts ( Bakshi anci Madan

(2000)). We shed more light on beta pricing relationships as proposeci by Ilarvey and Siddique

(2000) by showing that they correspond to a. lirnit case which is strictlv speaking a.t odds with

a no—arbitrage reciuirement, narnely the case of a zero risk—neutral variance of the market. We

put forward a more general beLa pricing relationship which explicitly depencis on the price of the

sciuared return on the mnarket portfolio, or ecpmivalently, on the market risk neutral variance.

Finally, while the statistical identification of a signiflcantly positive skewness prernmm is gener—

allv considerect to be a chfficult task (Barone_Adesi, Frga and Gagliardini (2001)). we provicle some

empirical evidence whicli suggests that such premia show up in a more manifest way when the

are comrsiclered from a conclitional point of view. This evictence is documenteci froin sinuilated data

calibrated on the GARCIT factor model with in urean effects recently estimateci by Bekaert and

Liu(2004). i\/Ioreover, this empirical evideirce also shows that neglecting the market risk neutral
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variance as Ilarvey and Siddique (2000) beta pricing inodel does lead to a severe underestimation

of tbe skewness premium which may go so far as to invert iLs sign.

The remainder of the paper is organized as follows: the next section discusses portfolio choice

and asset pricing in the context of infinitesimal risks. Section 3 studiles quadratic pricing kernels

in the conditional setup of Ilansen and Richard (1987). Section 4 makes an ernpirical assessment

of the order of magnitude of the various effects put forward in section 3. Ail proofs are postponed

to the appendix.

2. Static Portfolio Analysis in Terms of Mean, Variance and Skew

ness

Samuelson (1970) argues that, for risks that are infinitely small, optimal shares of wealth invested in

each secnrity coincide with those of a rnean-variance optirnizing agent. llowever Samuelson (1970)

also derives a more general theorem about higher order approximations. To further characterize

the way the optimal shares vary locally in tbe direction of any risk, that is their flrst derivatives at

the limit point of zero risk, one needs to push one step further the Taylor expansion of the utility

function; carrying this out will lead us to n mean-variance-skewness approach.

We start here from a slight generalization of Sarnuelson’s approximation theorem. Following

closely his exposition, let us denote respectively by Ri, i = 1, ...n, the retm’n from investing $1 in

each of security i=1,...n. The random vector R (Ri)1<< defines the joint probability distribution

of interest, which is specified hy the following decomposition:

R (u) = i + u2a (u) + uY. (2.1)

Ilere, a (u), j = 1, . ..n, are positive ftmctions of u and p. is the gross return on the riskless (safe)

security. The u parameter characterizes the scale of risk that is crucial for our aualysis. We are

typically interested in this section in local approximations in the neighborhood of u = 0. The small

Hoise expansion (2.1) provides a convenient framework to analyze portfolio holdings and resulting

equilibrimu allocations for a given random vector Y = (Y)1< with E [Y] = 0, and Var (Y) = Z
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a symrnetric and positive definite rnatrix1.

In equation (2.1), the terrn u2a (u) has flic interpretation of the risk premium. Samuelson

(1970) restricts the hinction a (u) to constants; nncler this assnmption risk premia are proportional

to the squared scale of risk; we relax this restriction throughout since it would prevent us from

analyzing the price of skewness in equilibrium. Throughout we refer to a (u) (a (u))1_1 as

fie vector of risk premia.

2.1 The individual investor problem

XVe consider an investor with Von Neuxnann—Morgenstern preferences, i.e. she clerives utility from

date 1 wealth according to the expectation over some increasing and concave function u evalnated

over date 1 wealth; for given risk-level u she then seeks to determine portfobo holdings (w)1<< e

r of risky assets that maximize lier expected utility.

max
rpn

Eu + Z w (R (u)
—

ri)) (2.2)
(w)1<<L

i

Note that for the sake of notational simplicit the initial invested wealth is normalized to one. The

solution of this prograni is denoted by (w (u)) 1<i<n artd depends on die given scale of the risk u.

Tire cjnestion we ask is then the following: to what extent does a rfaylor approximation of u allow

us to understand well the local hehavior of tire shares w (u), i = 1, .. n, in tire neighborhood of

zero risk. u = 0, that is to correctly characterize the two quantities:

w (0) = lim w (u) and (0) lin (u) (2.3)

for i=1...n? Samuelson (1970) stresses that a tffird-order Taylor expansion of u is needed to do the

job. We slightly extend his result hy showing that its remains valid even thougb tire function a (u)

are not assurned to be constant.2 Let us then consider a third orcler Taylor expansion of u in tire

1Sarnuelsori (1970) provides a heuristic explanation of (2.1) that is of interest for reaclers accustomed to contrnuous

time finance models; he couches this ternis of Brownian motion of time and identifies u with the square root of Mmc.

2Let W (u) n w (R (u)
— n) denote end of period wealth and note that W (0) p. For the sake of

simplicity, we denote 1V (u) W.
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neighborhood of the safe return i:

u,

(W) = () + ‘ (p) (W — t) +
2!

(W — )2
+

U
(W — )3 (2.1)

Let us clenote by ( (u))1<< the solution of the approximateci problem:

max Eu* (rt+Êwi(Ri(u)_)) (2.5)
(W)i<j<u i=i

(O) and ‘ (O), i=1...n are deffied accorclingly by continuity extension as in (2.3). We prove:

Theorem 2.1 Under suitabte smoothness and concavity assumptions. tue sotution b [lie gene rat

probiem (2.2) is retated asyinptoticatty to that of [lie 3-moment probtem (2.5) by the tangency

equivatei ces:

=

(O) = (O) for ail i=i ,..., n.

This theorein states that third—order Taylor expansions give tangency eciuivalence. The intuition

behind this result is:

1. The optimal shares ofwealth invested wj (O), i=O,...n, in the lirnit case u O depend only on

its first two derivatives u’ (ji) and u” (p). Thirs a second order Taylor expansion of’u, that is

a mean-variance approach, provides a correct characterization of these shares.

2. The flrst derivatives with respect to u, 4 (O) i=1,...,n of optimal shares, in the ilmit case

u O, depenci on the utility function u only through its first three derivatives u’ (ii), u” ()

and u” (p). Thnis a third order Taylor expansion of u, that is a rnean-variance-skewness

approach, does the job.

As far as optimal shares are concerned, theorem 2.2 below confirms that they are conformable

to standard mean—variance formulas, that is formulas iisually oht.ained with an assmnptiori of joint

normality of returns:
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Theorem 2.2 Tue veci or w (O) = (wj (0))-< ofshares of weolih invcsted in the tirnil case o- = O

is given by:

w(O) = TL1a(O).

wheTe ci (O) = (a ())<< is the vector of jisÏ,- and T =
—

fl()
is the risk toierance

coefficient.

To see tue equivalence with standard fountulas commonly deriveci uiuler an assumption of joint

norrnality, two remarks are in order:

1. While joint normality with a general utility ftmction would lead to introduce a kind of average

risk tolerance coefficient (—Eu’ (W) /Eu” (W)) with W = w (R — tt), this actually

coincides with T in the lirnit case u • O.

2. Joint normality would iinplv. in ecimÏibriuiti. constant functions a (u) (sec theorent 2.1 below).

In sucli a case, the formula of theorem 2.2 cnn be rewritten:

w (O) T (VarR(u))1 u2a.

where u2a ctefines the vector of risk prernia.

Generally spealing, following theorem 2.2, if we see optimal shares of wealth invested w (u) as

ecluivalent to T1a (u) in the neighborhood of u = O, we get a Sharpe ratio for optimal portfolios

ecluivalent to:

E {wT (u) (R (u) - [t)]
— uP (O)

(Var [w’ (u) R (u)])

where

P (O) = [ci’ (O) (O)] (2.6)

clenotes, by unit of scaling risk u, the potential performance of the set R of returns as in traclitional

mean variance analvsis [sec e.g. Jobson arid Korkie (1982)]. 0f course, the above analvsis neglects
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the variation in eciuilibrimn of the risk prernium functions a (u). We are going to sec in theorem

2.1 helow that these furictions will not lie constant, even locally in the neghborliood of u O, as

soon as asset return joint probahulity distribution features some asymmetries.

These asymrnetries will actually play a double role in the local behavior of optimal shares of

wealth invested. First, preferences for skewness woulcl increase, ceteris paribus, asset fiemands in

the direction of positive skewness. Second, rnarket eciuilibriuin induced variations in risk prernium

which potentially crase this eflèct. To sec this, let us clefine the co-skewness of asset k in portfolio

as:

Defiuiitioii 2.3 The co-skewness of asset k in portfolio is:

CL.

Goy (‘
T2)

=

(2.7)
Var [Y]

where Th. = E [YYYJ is flic 7atrix of couariances between Y ami cross prodnct YY;, i.j=1 n.

Wc will sec in section 3 lielow that this notion of co—skewness is tiglïtly relateci to a measure

put forwarcl by Kraus anci Litzenberger (1976) (sec also Ingersoll (1987), p 100). For the optimal

portfolio ‘(0) characterized in theorem 2.2, we have CL. (‘(0)) CL. ctefinecl as:

ck p2(0)aî(0)ZFLZ ‘a(O). (2.8)

Typically, asyrnmetry in the joint probability distribution of the vector R of returns means that

at least sorne niatrices F, k=1 n are non-zero. We get the following result:

Theorem 2.4 The stope ‘ (0) of the vector (0) of optimal shares of wealtk inuested in the neigk

borhood of u O s gven by.

(0) = T’ [a’ (0) + pP2 (0) c]

wkere a’ (0) (a (0)) is tue oector of marginal ïsk premia. c = (ck)i<k<fl defined by (2.8)

is the vector of co-skewness coefficients and p
=

is tue skcw toteiance coefficient.



11

In other words, up to variations o’ (0) of risk preniiruus in equiiibriuiti, a positive co—skewriess

of asset k xviii have a positive effect ou the demand of this asset. This positive eftect xviii be ail

the more pronounced that the skew tolerance coefficient p is large. 0f course, this interpretation

is based on two irnplicitly maintaineci assumptions:

1. The slcew tolerance coefficient is nonnegative (! > 0). TIns assumption conforms to bot.h

the literature 011 prudence [Kimbail (1990)] antI the literature on prefèrences for high order

moments [Dittmar (2002), Ilarvey anci $iddique (2000), Ingersoll (1987)]

2. The vector e () (Ck (W))1<k<fl represents a mriltivariate notion of skewness that investors

do like to get positive, cornponentwise. This assertion is justified bv the fact that on average:

n E [(—Y)3]

Var[IY]

is positive if and orfly if the portfolio return is positively skewed. 0f course, individual

preferences for positive skewness xviii increase. ceteris paribus. the ecjuilibriuni price of assets

witli positively skewed returns. TIns xviii actually appear in the eciuilibrium value ci’ (0) of

risk premium siopes in the neighborhood of u = 0.

2.2 Equilibrium allocations and prices

Let us consider consider asset markets for risky assets i=1,2,...,n with agents s=1 ,..., S. Eacli agent

is characterized by a Von Neumann-Morgenstern utility firnctions u3 and associated preference

coefficients:

u (pc) T U @)
T3 = — ,, ami p =

‘u3 (ht) 2 u3 (t’)

Note tliat for the sake of notationai simplicity, we assume that the net supply of each riskv asset

i=1 n is exogeneous and fixed to unitv as a normalization. Then, in the limit case u 0. the

inarket clearing conditions can be written:

(2.9)

(0) = 0.
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where (s) (0) =
(j (°))1<j< and e clenotes the n—clirnensional colurnn vector, the componerits of

which are ail equal to 1. Beiow, it vill be coiwenient to corisicler arr average investor characterized

by average holdings , an average risk tolerance and average skew tolerance , where

s
s p3T5

rrC =-T3, (2.10)
s1 Z -r5

sj— 1

if ail individual were identical, each one would buy the average portfolio Z5. The link between the

two average preference coefficients anci and individual portfolios clemands is characterized h

theorern 2.5.

Theorein 2.5 In equitibrium, in tire timit case u 0, tire opti7 at si ares of weatth invested (u)

by agents s = 1 S is characterized by:

() (0)

,(s)’ (0) = T3 [p3
—

P2 (0) -1c() for s=i S.

where p2 (0) is tire (sqnared,) market Sharpe ratio and e () is tire vector of tire rnarket

co-skewness coefficients.

In other words, in the limit case u 0, the vector (s) (u) of optimal shares of wealth invested

is as in n standard mean-variance separation theorem. All individuals buy n share of the market

portfolio e the size of this share being determined by the comparison of individual risk tolerance

T3 with respect to average one. Freferences for skewness oiily piay a role for the siopes (s)’ (0) of

the shares of wealth invested in the ueighborhoocl of zero. A positive rnarket co-skewness ck ()
will have a positive effect on the inctividual s demand of asset k if and oiily if his skew tolerance

coefficient is niore than the average one . On the contrary, if p3 <, the positive effect of asset k

co—skewness on its market price is higher than rectuirecl to coinpensate the investor’s preference for

skewness.

In order to characterize the asset pricing implications of risk tolerance and preference for skew

ness, we deduce the local behavior of the risk premium in eqiiilibrium:
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Theoreiri 2.6 In [ha iinifl case u 0. the equilibiinin. risk prenuam uector u (u) is such [liai ihe

average portfolio is optimal for [ha averaqe inuestor:

1a(0)

aitd us stope in [ha neughborhood of zero 15 given by:

a’(O) -P2(0)c().

where P2 (U) JTL is the (squtared) marÏuet Shaipe ratio and c() is the vector of [ha marluet

co-skewness coefficients.

Note that, by comparison of theorems 2.4 arid 2.6, the eciuilihrium siopes are precisely such

that the average agent wouM have no motive to deviate from the rnarket portfolio (‘ (0) 0 for

tue average jnvestor)

Theorem 2.6 gives as a new asset pricing model. While approxirnating risk preiriia by their

limit va’ues a (0) would dearlv give the Sharpe—Lintuer CAPI\I, approximat)ng them by liiglier

orcler expansions n (0) + ua (0) gives a new rnean—variance-skewness asset pricing model. A con

venient way to describe the implications of an asset pricing model is to characterize it through a

Stochastic Discount factor (henceforth SDF), see e.g Cochrane (2001). By definition. a $Df ‘ru (u)

must. be ahie to price correctly ail available securities; here we therefore need: Em (u) = and

E [in (u) (i + u2a (u) + u)] = 1 for i=i n. We ctenote R.1 (u) = (u) the market retm’n.

\Ve are then able to translate theorem 2.6 in terms of a SDf:

Theorem 2.7 The random variabte:

in (u) = ± — (u)
— ERM (u)) + -—2 [(RAI (u)

— ERA,J (u))2 — E (RAI (u) — ERA] (u))2]

/t /iT T

is u SDF consistent with variance-skewuess risk premivin defined hy u (u) = u (0) + ua’ (0) where

a (0) and a. (0) are given hy theoiem 2.6.

The conjunction of theorems 2.6 anct 2.7 summarizes what we have learnt so far about portfolio

choice and asset pncmg in the context of mean—variance—skewness preferences:
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1. Due to heterogeneity in preferences for skewness, the common two-fund C’APM separation

theorem is violateci: diffèrent individuals rnay hold in equilibrium different risky portfolios.

2. Ilowever, the pricing implications of a cormnon separation theorem remain truc iii some

respect. Somewhat nnexpectedly, the market retnrn alone is still able to smnrnarize the

pricing of risk. 0f course, siuce not only market betas but also market cŒskewness must be

taken into acconut, both the actual market return and its squared value enter liuearly in the

pricing kernel.

Following the serninal paper by Kraus auJ Litzenberger (1976), Ilarvey and Siddique (2000)

auJ Dittmar (2002) among others have recently stuffied the empirical implications of a SDF which

involves a qnadratic ftmction of market return. Theorem 2.7 above provides a theoretical basis for

doing so. Section 3 will elaborate more on the pricing implications of such a SDF.

3. Nonlinear Pricing Kernels

The pricing implications of a SDF’ formula tbat h quacfratic with respect to the market retmn

are stndied in this section, first with a linear beta pricing point of view auJ second in terms of

derivative pricing.

3.1 Beta pricing

hi their paper about conclitional skewness in asset pricing tests, Ilarvey and Siddique (2000) start

with the mnaintained assumption that the SDF is ciuadratic in the market retnrn:

= vot + !JflRj + v2tRj+1. (3.11)

It actually suffices to revisit onr section 2 ahove with a conditional viewpoint to sec theorem 2.7

as a theoretical justification of (3.11). lien, the coefficients VOt, Vit and V2f are ftmctions of the

conditioning information I at timne t.
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From t.heorem 2.7. ‘e interpret the facIors coefficients as:

p
112t =

> ° (.3.12)
T

and

1
vit = ————

—

<0. (3.1:3)
/I)T [I5 T

It is worth characterizing the role of the two factors RMt+i and in the SDF (3.11) in Lerms

of beLa pricing relationships. Assuming the existence of a conditionali risk—free asset (with returu

fit), we can write for the net excess return ri
— fit of any asset :

E [ij,+irflt+i] 0,

that is:

1E [riti] + vtCovt [‘rt+ i. R111,+11 + i’2CO [rit+I. R11] = O

or, using the market net excess return. we get:

±Et [r+] + (Vit + 2[ttV2t) Coet [rit+i. iit+t] + v2tCout [rit+ ‘Iti] = 0.

that is:

E [r+] itCon [Tjt±1, TMiJ — À2Coe [7t+i,

with:

/\yj = —[tt (Vit + 2ftt121) anti /\2t = Pt1’2t.

if Vit anti v2 are interpreted in tenus of preferences of an average investot as in (3.12) anti (3.13),

we deduce:

1 )—
= + (E,R+ —i’) and À2t

Note that ‘\2t is something like a structural invariant. orilv tirne varying through the value of

preference pararneters coniputect front the cterivatives of the utility function at )t1. À2 shonild
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he non—negative and ail the more positive that preference for skewness is high. $irniiariy, Ài is

expecteci to be positive anci time varying insofar as the market risk prentium (EIRAII+1
—

t) is.

To summarize:

Theorem 3.1 Under the maintained ussurnption (3.11) of a quadratic $DF, net etpected ret urus

are given by:

Etrj÷i = À1Cov [rjt+i, TAit+1] — À2Cuv. [rit+i, rit+ïÏ

1 in addition, theorem 2.7 appties, and À2t are 11017 negative. ‘\21 = is dci ermined by

average preferences for skewness while:

À11 = + 2/\2IEITML+l.

Note that ‘\lt lias two components which are both increasing with the average risk aversion,

first as 1/T and second as the rnarket risk premiu;n Etri1jt+i. \Vhen applying theorem 3.1 to the

market return itseif (rti = rM( ), we get even more insight 01 what inakes /\jt large:

Corollary 3.2 Under flic assumptions of t.heorem 3. 1

EITMt+i Shewt (TA[t+1)

VartrArt+l t7artr,iti

where 5’kew (rMt+1) = Guet (rAIt+1,’rt+l)

In particuiar, we can see that theorem 3.1 coincides with the standard Sharpe-Lintner CAPM

formula when À21 = 0, that is the average preference for skewness is zero. By contrast, À1 is

augmented in the general case by an additive term which is proportionai to both À21 and

Ske71. (rMt÷1) = Cue1 (rAIt+i, r,jtii) = Etrrt+t (EtrMtil) (Etrit+i)

This notion of market co-skewness lias aiready been put forwarcl by IIarvey anci Sicldic1lte (2000)

anci theorem 3.1 arid corollary 3.2 correspond to their formulas (7). It is also worth rewriting the

pricing relationship of theorem 3.1 ancl corollary 3.2 in term of betas:

Etrt-j-i = (ÀitVa;trit+i) 3imt — (À2jVartd11+ 7imt’ (3.14)
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and

r. _fr. t) t ir .2 ( 2 t (t
U1? it+1 — tt’ AItfI) jtj —

211’ al tt Ml-j-1 t’)imt — fmrnhirtttI ‘ k’ ‘-‘i

Cour [rtti ,r&l t . .where t3im( =
15 the standard market beLa whale the beta coefficient with respect to

Covt[rt+i.r 1
the sqnared market return: 7jmf = var r2

Mt+1 is tightly related to tlw nieasure ol co-skewness
Att-’-l

afreadv introduced in section 2. More preciseh it is straightforward to sec tint the retuin decom—

position of section 2 gives: 7t = cfr (u) with c7 (0) as introduced in definitioii 2.3. \Vhlle we

had aheacly seen in theorem 2.6 that risk premirnus in equilibrium where influenced b- skewness

preferences in proportion of the vector c () of market cŒskewness coefficients, the same vector

shows np in the beta pricing relationship (3.14) with 7jmj = (u). Note that what Ilarvey

and Siddic1ue (2000) eau “market co—skewness” is actually Skew1 (rAj1) = 7rnntt (Vartr1t+1).

11w beta pricing model (3.14) with a second beta coefficient interpreted in terms of co-skewness

with the market is chserx’ationallv equivalent to a conditional version of the three—moments C’AFM

fnst proposcd 1w Krans and Litzenberger (1976) (sec also Ingersoll (1987), plOO). Whule they pnt

fonvard a rneasnre of co—skewness defined as:

c, (Rj1+1 — ERI1+l)2)

biint =

Cov1 (RAJf÷i (RAftti — ER[t+l)2)

we have preferred to remain truc to a genuine notion of beta coefficient as y,-. Flowever, the

difference between the two is just a matter of normalization and is inmiaterial in terms of asset

pricing. In particular (3.15) enhances as formula (61) in Ingersoll (1987) that tbe beta pricirig

relationship differs from Sharpe-Lintner CAPM by a factor proportional to the difference between

the two betas. It is however worth noticing that these authors derive this pricing relationship by

using a ntility function directlv defined over mean, standard deviation and skewness. The srnall

noise expansion approach of section 2 affords more tbeoretical nnderpinnings for doing so.

Normalization in terms of beta coefficient is usually convenient since it allows a direct interpre—

tation of beta loaffings in terms of factor risk premium. For instance, when À2, = 0, (3.11) applied
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to the markeL gives the nsual formula: /\it = with

(l) — 1t”Mt1-1
Mi

— yaiî5

It is. however, worth noticing that in general case, À1 aiid À21 cari not be reaci as simple risk

preniimn associated respectively to the two payoffs r511•1 and iti• Even if we assmne that

does correspond to a payoff of a portfolio available in the market with price the risk

premium 011 sucli a payoff:

-

p ()
lit

2 (3.16)
(r1)

will not coincicle with (—À2t7)t). The difference comes from the fact that the two factors are not

orthogonal. À1 does clepenci on À2t (sec corollary 3.2) and the expression of À2t in frmnction of the

ecluilibrium prices is more involved:

Theoreiri 3.3 If ri = E [mt+irtt+i] denotes the equitibrinin price of a payoffr1,1 tue have:

Ymrnr1 - (ru)
À2=

2 21
— flt (r5It÷1. H+[)

where accoïding b (3.16), P (rit) is the risk premium on the asset wzth paYOffTEl and p (rAp 1,

deno tes the square (conditionat,) tinear cor7viation coefficient between r111 and L÷ i.

It is worth considering the limit case when r11 is almost worthless. From (3.16):

(2) 2

lim
(rit) = EtrAIH1

(3.17)
tjO rit Vart (r1+1)

11m this limit case, one gets:

(1) E1r111
Yrfl ml 511

— Car1 (r2
Alt--1

“21— 1 21. .2
— Pt ] wt-i, ‘w,i-i

which actually coincides with the fonriula put forward by Ilarvev and Sicldiciue (2000). Ilowever,

tus lirnit case appears to he at odds with a no—arbritage condition sirice g1 = E [înt+irrnti]

should be positive. Incleecl, as shown in subsection 3.2 helow, o- = r11t11 mnay be interpreteci as

the risk iieutral variance of the market return.
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Besicles the no—arbitrage condition, the fact that risk neutral variance is significantly positive is

of conrse an empirical question. Since, from (3.16):

p(2) () —

— (‘3 19)
— Var1 (ri1+i)

— *2one may expect that considenng the hmit case (3.11), that is = O leads to overestimate

and then to nnclerestimate À21. The relevant einpirical issue (sec section 4) is then to decide if

considering only the limit case (3.18) leads to an economically siguificant nnderestimation of the

weight À21 of coskewness in the two factors pricing relationship (3.15). If ii is the case, wc must

realize tbat À21 actually depends on investors preferences for skewness as they show np eithcr in the

(rnarket) price of squared market return or, equivalently, in the risk neutral variance of the market

return.

3.2 Derivative pricing

The huge expansion of derivative asset markets, introclucing asset payoffs which are uonllnear ancl

often skewed functions of uuclerlying primitive asset returns, has motivateci the renewal of iuterest in

asset payoffs skewness. For salie of notational simplicity, we consider in this subsection orily options

written on the market return. Ilowever, most of tue results could be extendeci to other primitive

assets. Let us then consider the pricing issue for a payoff h1 (.) of the market retuin, the definition

of which may depend on conffitioning information. Maiutaining, as we do in this section, the as

sumptiou that a valid SDF is quadratic meaus that the price of the payoff lit (Rpj1+i) coincides with

the price of its (conditional) affine reçession h2 (RAII+i) = DL1 [lit (RMItI) RA[t+i, R,11+1] ou

RAJt+1 and

r (L2)
E. [rnt+iht (RA,I,+i)] = E1, [mt+1h1 (Rr1+)

Besicles this, uuderstanffing why a C’AFIVI Sharpe-Lintuer pricing does not accommodate well the

pricing of derivatives is akin to showing why the (conditional) afflue regxessiou

1(Li)
(fi) = DL1 [h1 (RMt±i) IRAItFi]
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of li (RAJ1+i) 011 Rjwj+i does not summarize the risk which is compensated in equilibrinrn:

E1 {zntElllt (RAJIE1)] $ E1. [nit+111L1) (R)]

Starting with the simplest nonlinear payoff h1 (RAJI+1) = R1111, we are then lcd to study the

clifference between the price

= E,. [r1lt[lRfI÷l]

of tille so-called “volatility contract” (sec Bakshi, Kapadia and Madan (2003)) and the price of its

linear approximation:

Et [mt+1EL1 [RqtiIRjwt+i]]

To enhance the role of skewness it is first worth noticing that:

Lenmia 3.4 Tke conditional linear regresszon of R11+, on RAJI÷1 is:

EL1 [Rjt+iRjwt+i] = E1R111 + 2 (E, RJrcf1) (RAJI+1 — EtRxi, ÷i) +

E (RAIIt1 — E,R111,±i
)3

—

VarRMI+i

Note that hy contrast, the Taylor expansion of Ri1÷1 arround E1Rpj1ti

+ 2 (EtRxjtti) (R1i
— EIRA/rt+i)

does not take into account the crucial role of the skewness term. This remark casts some donbts

on theories of higher moments pricing which are based on Taylor expansions. In that respect, the

small noise expansion appears to be more reliable.

In any case, it is worth relatirig the price of the volatility contract with risk neutral pricing

popular for derivative pricing. We have:

= E, [nlt+1R/Itbl] = 1E [R11+1]

where E7 clenotes the condlitional expectation with respect to a risk neutral probability measure.

By definition, E7 [R71111] = I’t, 60 that

= E (RAfttl
—

[)2
= ( —

ji) =
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can be interpreted as a risk nent rai variance (see Rosenberg (2000)).

As aiready noficed from theorem 3.3, we expect tliat higlier is the price Th of rL÷ the smailer

xviii he thc prcrruurn P anci thc larger xviii be price À21, of cŒskewncss. Thcreforc, one way to

assess flic strengtli of prefcrence for skewness is to clescrihe flic factors which tend to incrcasc ceteris

paribns flic risk ncntral variance u% = i’ilh For doing so, we first state a uscfnl relation bctwccn

risk nentral variance and historical one = Vart (RAIt+i)

Theorem 3.5

= Q —

((0)2)
— PE (R1j+i — EtRkIt÷i)3 +

where R1111—EL [R/It+iIRAit÷i] denotes flic residnalo[the (eonditional) affine regression

of R,i+1 on

Note finit flicorem 3.5 is valid nnder flic very gencrai assumption that a posit ive SDF mtti is

abic to price flic asset of interest and in particular to defme risk neutrai conditional expectafions

as (RAJt+i) = E1 [rnt+iht (RAI .1-1 )]. It is flien wortli revisiting skewness pricing by stndying

flic factors wliich may pofenfially increase flic risk nentral variance. Tlieorern 3.5 basically puts

forward fwo factors. One factor is model dependent, fhrongli Goy1 (nit+i, rttJ) wffile flic oflier

ferms can be directly observed from flic market refurn. Typically, in flic case of a positive refurn

skewness (E1 (RML÷1 — EIRAII+i)3 > 0), flic risk neutral variance is inversely relateci to flic risk

premium P%?. Infnitively, liigli risk nentral variance, that is liigli compensation for skewness, may

compcnsaf e a low risk premlimi PJ. By contrast, tlie effect cncapsnlatcd in Grni1 (mit’, rt+i)

dcpcnds in general explicitly on flic SDF specificafion, tliaf is on flic investor prcferences. Tliere is

however a case whcrc tlie risk ncutral variance is prcfercncc frce, in flic sense tliaf if is complet ely

dcfcrmined by flic observation of flic risk—free infcresf rate and flic markcf risk premimn. Tliis is

flic case of joint log normalify wliicli is an extension (sec Garcia, Gliyscls and Renault (2003)) of

flic risk neufral valuation relafionsliips first infrodnced hy Brennan (1979):
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Theorem 3.6 If (log mt+1, log RAIt+1) is jointiy normai given flic con ditioning in ornat ion,

= [ 1
]2

<1•

Theorem 3.6 conflrms in a particular case the ahove discussion of the difference hetxveen risk

neutral variance and historical one. Whhle we expect the former to be smaller than the latter in

case of positive skewness, the difference between the two is inversely related to the market risk

prernimri.

In the general case, the role of investor preference for skewness in increasing the risk nentral

variance can be characterized from the following resnlt:

Theorem 3.7 With a qaadra[ic SDF,

= Ot + vitRit+i + v2tR?ft+i,

flic [cnn Cov (ni+, r+) is giver lnj:

C’ov (mt÷i, = u2!. (VartRiti) (1
— p? (Rirt÷i,

Therefore, we do expect that this term increases die risk neutral variance, ail the more that

RMI±i and are weakly correlated and the average skewness tolerance = 112t[1t82r2 is

large. The main message of this subsection is that empirical assessments of risk nentral variance

as recently proposed by Rosenberg (2000) from derivative asset prices may also be seen as a way

to characterize preferences for skewness.

4. Empirical Illustration

4.1 The general issue

The empirical relevance issue of the asset pricing rnodel with coskewness as developeci in previons

sections is encapsnlated in the asset pricing eciuation (3.15):

E (ri, = (Errjwj+i) /3jrnj — À2, Varrr1111 — 7rrznztdjrnt) . (4.20)
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The question is: does this asset pricing equation significantly cleviate froin standard C’APM?,

that is should we maintain a significantly positive skewness premiuin /\2t?

It turn ont that the statistical identification of this hypothesis is difficult since, as well noticed

by Barone-Adesi, Gagliardini and Urga (2004), covariance anci coskewness with market tend to be

almost collinear across common portfolios, leading to hardly significant coskewness factors (7irnj —

77nrnt5imt) To shed more light on this identification issue, let us consider the (conditional) affine

regression of net return of asset i on rnarket return:

= Qj. + /3irntTMt+1 + (4.21)

It is clear that asset i coskewness can be interpreted as the covariance between the residnal of tUs

regression with sqnared marke t return:

(Vart (r’jt.+i)) (7irnt — 7mrntfiimt) Covt (ttt.+i, rLt.+i) = Covt. (ut.+i . (4.22)

Therefore, a positive sign for \2t can be identified only insofar as one can observe some asset

returns rit+i with positive (negative) coskewness Cor,’ (ua,.i, rj,’+i) and check that they com—

mand a lower (higher) expected return than explained by standard CAPM. The problcm is that

Cor,’ (ut.+i. r1,’1) will be more often than not close to zero since is by clefinition (condi—

tionally) uncorrelated with 0f course non correlation does not imply independence (except

in linear market models like the Gaussian one) and one may hope that some portfolios i exhibit

a significantly positive (or negative) covariance Cor,’ (ua+i, djt+i) Ilowever, as long as a linear

approximation is valid, Cou,’ (un-1-i, r,’,’+i) is almost zero leading to:

Cor,’ (rt+i, %it.+) furn,’P0t’,’ (r1r.t±i,

ahnost collinear with 8imt across portfolios.

rfo avoid such a perverse linearity effect, Barone-Adesi, Gagliardini and Urga (2004) focus on

a qnaffl’atic market model first introdnced by Barone-Adesi (1985). Thanks to this specification,

they estimate a slightly significantly positive coefficient À2,’, at least Mien the risk free rate is a free

parameter, not assmned to be observed by the econometrician. Ilowever, their approach is uncondi

tional and this may explain the ffifficnlty to identify the sign of À2,’. in particular with respect to the
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risk free rate issue. To remedy that, we propose here to consicler instead an asynunetric GARCII

in mean model recently estimated by Bekaert and Liu (2004). Since this model exhihits interesting

time-varying non-linearities in the consurnption process, it may allow an accurate identification

of tirne varying conditionai coskewness and in trn’n consumption-based preference for coskewness.

The superior identification power of such a concitionai approach will actually be conflnned below

through a series of Monte Carlo sirmilations baseci on Bekaert and Liu (2001) parameters estimates.

4.2 The simulation set up:

Bekaert and Lin (2001) estimate a GARCIT factor model with in mean effects for the trivariate

process of logarithm of consumption growth Xj, logarithin of stock return Log (RA/yt+jj, and

logarithm of bond returu Log (,um)

Y+i [Yr1i, Y2t+i, Y+] [Xtr, Log (RAyt+i) , Log

that is a nrodel of the forrn:

c + AY + Qet÷i (1.23)

where the coefficient of ct, j = 1,2, 3, is an affine function of Vart [‘+] and ail the time

variation in volatility is efriven by time varyirig uncertainty in consumption growth: the conditional

probabiiity distribution of et+r given information h is normal with zero mean and a diagonal

covariance matrix , the coefficients of which are constant except the ffl’st one which foilows an

asymmetric GARCII(i,1):

Var1 [elt+1] = 6 + n’ (eu)2 + Var, r [en] + (Aax [0, ert])2. (4.24)

To further lirnit parameter proliferation, they assume that ail tire off diagonal coefficients of tire

matrix Q are zero except in the flrst colurnn; in other words the consumption shock is tire oniy

factor. For sake of normahzation, the diagonal coefficients of Q are fixed to the value 1. Table 1.1

gives tire parameters estimates obtained by Bekaert and Liu (2004) on montffly US data. These

estimates will be considerecl below as true population values for sirnulating a sanrple path and we

dont care about estimation errors.
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A corivenient feature of the above model for our purpose is that, since it maintains a conclitional

joint nor;iiality assmnption for log—consumption anct log—market return, it allows ils to apply tlieorem

3.6 to assess the risk neutral variance without rieed of a preference specification. More precisely,

insofar as the log—pricing kernel is, given I, a linear combination of the first two components of

as it is not only in the Lucas (1978) consumption based CAFM with isoelastic preferences

but also more generally in the Epstein and Zin (1991) recursive utility rnodel, we are sure that

theorem 3.6 applies. Then, oui simulation set up is as follows:

For a given simulated path of the process (Y1’±1), specifications (4.23) arrd (4.21) allow us to

compute corresponcing paths of:

1 Compute °-? t [i/E (RMj+1)]2,

2 Compute r1’

Er2
3 Compute /l? t 1I) = t 111 t+1 mt

171 c1rt(r111)

pf2)L
4 Compute M1H rit

I5 Compute ‘\2t
= 1 21’ 2

PI ,rA1(+1 .T1111

By contrast, the limit case put forward by Ilarvey and Sicldiciue (2000) corresponds to the

alternative formula:
11’ 2

7mrnt lit
— 7ar (r2

— tIs Mt+1

2 21—p1 (TAIt+y,rMt+l)

the path of which is also easy to build from above simulations.

0f course, by introducing only one risky asset, this setting does not allow us to compare coskew

ness across portfolios. llowever, the focus of oui interest here is to get time series of /\2t aixi À

in order to assess their sign and their differences both date b date and in average. Note moreover

that return skewness in this market is not as trivial as log-normality may lead to think. Over two

periods, temporally aggregated asset returns will feature sorne sophisticateci skewness, first due to

the asymmetric effect in the variance dynarnics and second due to time varying risk premiuni. A

detaileci characterization of induced clynaniic skewness pricing is beyond the scope of this paper.
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4.3 Monte Carlo resuits

Ail de sirnuiated paths considereci correspond to 500 montbs. The main message conveyed by

these simuiated series is wefi snmmarized by figure 1.1 where we plot on the saine graph hoth the

path of À21 corresponding to our formula for the price of coskewness and of À corresponcing to

Ilarvey and Siddique (2000) hmit case. 11w conclusions clraw from tins graph are twofokl:

First, wNle [lie series of /\21 does show a positive price for coskewuess as expectecl (1.25 in

average). the series À1 of ulisplays some implausihie huge negative price of coskewness (—67.82 in

average). This tends to prove that neglecting die price rj1 of sqnared net retmus (or equivalendy

the risk neutral variance) ieads to a severe understirnation of coskewness price. 50 severe that it may

reverse the direction of the effect of coskewness in asset prices. The time series of q1 (figure 1.2) and

risk prernium P (tj) (figure 1.3) as well conflrrn that they are positive. Note also that while ‘\2t

and are stationary processes-in particular flrst order differences (À21 — À21_1) and (À — À i)

have a zero time average - the former is more stable than the latter: the standard error of the

series (À21 — À2, 1) is onlv 4.93 while it is 8.75 for (4 — À,). Ibis give sorne support to our

interpretation of À21 as a kind of preference—based structural invariant. wffich is tirne varying only

through the value of utility denvatives at point ji.

Second, our simulations confirm that the positive sign of the price for coskewness should be

harffly identifiable in an rrnconditional setting. While the series À21 cloes show a positive average

price of 4.25 for coskewness, it cornes with a standard error of 4.06. This may explain why Barone

Adesi, Gagliarchni and Urga (2004) found it difficnlt to identify a positive price in an unconditional

setting. They actually get a t—statistic of 1.01, which has the sarne order of magnitude as oui

informaI assessment. 0f course, a rigorous unconcbtional study should not be simply based on

tirne averages. Hy contrast, figure 1.1 shows that spot values of the process series À2, mav cover

the full intervai betweeu O and 20. making them likely significant for a munher of dates. Ibis

enhauces the important contribution of Ilarvey and Siddique (2000) who stress that coskewness

nmst he addressed in a conditional setting. llowever, even an uncondiltional approach would not

make the sirnplifiecl price series À, nwaningful since their standard error is only 7.45, which cloes
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not compensate their negat ive average of (-67.82).

Overall, we concimie that there should be a positive price for coskewness. but iiot 50 high arid

hardly identifiable in an unconditional setting. Que way to interpret the limited level of this price

is to realize that bnying flic squared nef market return commands a positive risk prenflmu (sec

figure 1.3) which, by theorem 3.3 leads to lower die price À2. T1fls cloes not mean that skewness is

worthless but ordv that, by lenuna 3.1, a part of ifs value is already capfnred by flic linear pricing

of squared retm’n. In order word, a positive skewness implies a positive correlation befween market

return and squared market retuin, so that the two components of asset prices caimot be interpreted

separately.

Finally, one ought to realize that qnach’atic pricing kernels cannot he more than local approxi

mations of a truc pricing kernel, for instance in the neighborhood of small risk as in section 2. In

particular, while a representative agent with a convex utility frmction would imply that the pricing

kerncl is decreasing with respect to the market return, this cannof be the case on f he full range

of refurns with a quadratic hmction. More precisely, a quadrafic prieing kernel as characterized

bv (3.11). (3.12). ancl (3.13) with a positive coskewness price \2t will become increasing when flic

market refurus exceeds ifs condifional expectafion by more than (Sr/2p). This kind of paradox

ical increasing shape of pricing kernels for large levels of markef return atready showcd up in flic

empirical evidence documented by Diftmar (2002). 0f course, a negative À as in tbe case of de

zero-price approximation woidd produce an even weirder behavior with increasing pricing kernel

for any value of flic market refurn below its expectation.

As far as Dittmar’s paradox is conccrned, if does not mean thaf one should give up nonlinear

polynomial pricing kernels because their decreasing shape cannot be enforced on flic whole range of

possible market returns. Que must oiily remember tliat polynomial approximations are local and

ought to be used cautiously. For instance, if is cicar that markef iiilorniation about risk neutral

variance oi. cquivalenfly about f hc price q. of squarcd nef market refurn may be helpful for a

better control of a quachafic pricing kernel on tbe range of interest. Sirice fbis information rnay

be in practice backed ouf of observed derivative asset prices, it is worth chedung how if works
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on sinmlated paths. Figure 1.4 displays the pricing kernel surface as well as its time average as a

function of the net market return. This figure is obtaineci with our value of r,. (tirne average of 6.4

10) which determines the coefficients /\lt and /\2t of the pricing kernel by application of corollary

3.2 and theorem 3.3. No paradoxical behavior of the pricing kernel is observed in this figure: on

the range of interest for the net market return, the pricing kernel is aiways decreasing. If now one

increases tire vaine of ‘ by fixing somewhat arbitrariiy the price of tire squared market returu at

the ievei 1.02, which in tnrns imphes a time-varying ‘h (with a time average of 15.6 10—s), one gets

figure 1.5. Then, one may observe that, by contrast with figure 1.1, on the same range of values of

tire market return, tire aforementioneci increasing slrape of tire pricing kernel for large returus may

show up.

5. Conclusion

This paper investigates tbe reievance of noriluirear pricing kerneis botir at tire theoreticai aird em—

pirical ievels. We first slrow tirat considerhrg priciirg kernels that are ciuacfratic fmictions of tire

market return is a weli-founded approximation of actuai expected utihty behavior wlren one wants

to characterize iocally the demand for risky asset in the neighborhood of zero risk. Such quaffi’atic

pricing kernels disciose some pricing for skewiress, but only tirrougir co—skewuess witlr tire market.

h other words, whuie taking heterogeneity of skewness preferences into account yieids a violation

of common separation theorems in terms of asset demands, it remains taie that idliosyncratic risk

is not priced, hoth in tenus of variance anci skewness.

S.iVirile statisticai identification of positive skewiress premimrr may be ififficait siirce covari

ance and co-skewness tend to be aimost coilinear across cornmon portfolios, we are ahie to show

through simulated data cahbrated oir actual estimation of a factor GARClI moclel of returns with

in mean effect that a conditional set up is much iuore informative to capture relevant uouhuearities

in pricing kerueis. Sucir iroir huearities impiy soirre levei of risk neutrai variance for tire market

wifich cairirot be iregiecteci. Tins observation ieads us to a geirerahzation of tire Ilarvey auci Sicl—

clique (2000) beta priciirg model for skewiress; by contrast with theirs, oru model cousiclers tire
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price of the sqnared market return as a free parameter whose actnal vaine might be backed ont

from observed derivative asset prices.

Although conditional, our study is purely static in the sense that inves tors only maxirnize a

one—period utility fmiction. As an intertemporal extension of tRis stndy is stiil work in progTess.

it will point ont the role of varions kinds of asymmetries in a dynarnic setting. Typically, while

orily conclitional skewness of asset returns shows up in the current paper, a mriltiperiod setting

will also erdiance the role of dynanhc asyrnmetry, that is soine instantaneous correlation hetween

asset retnrns and their volatility process. Snch an eflèct bas been dnbbed the leverage effect by

Black (1976) and specific leverage-based dynamic risk premia sbonld be tbe resuft of non-myopie

intertemporal optimization bebavior of investors witb preferences for skewness.
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6. Appendix: Proofs

PROOF. The solution w(o)
=

(wj (u))1<<-T, of prohlern (2.2) cletermines a terminal wealth

W (u) = + (u) (R —

accorcUng to the first orcler conditions:

Eu,’ (W (u)) (R — [t) = 0. (6.1)

These conditions could be written:

Eh(u)=0 (6.2)

with

h (u) = u’ (W (u)) (uaj (u) + ).

(6.2) implies

dÏi
E— (u) = 0.

du

which also implies

lim (u) = 0. (6.3)
oO-’- du

An easy calculation gives:

(A3) w (0) Cou (Y, Yk) = -‘, a (0).

(0)=1ra(0).

The Sharpe ratio for optimal portfolio is equivalent to

E [ (u) (R —
= uF (0).

(Var [ (u) I?])

Then,

2 2 — (E { (u) (R — )])2

/ar[., (u)
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anci

2p2 u)
— (Ta (O) Z_Iu2a(O))2

— r (O) 1 (u2) 1a (O)

— 2(a’(0) la(O))2

—

a(O) ‘a(O)

Then

P(O)= [a’(O) 1a(O)]

Sirnilarly, (6.2) implies

72 JC 1
11m E— (o) = O,

€r-O-- d2o

that is:

w(O)CoL’(Yj,Yk) (6.4)
n-i

(O) Cov (, .) = Cov [(T () )2 ] + ra (O),

where p = We now define the cskewness of asset k in portfolio as:

Coe [(TR)2
,

Ck
= Var [wIR]

Then,

C [(w’ (O) R)2 ,

= Var[w(O)R]

— a’(O) iFla(O)

P2(O)

(6.4) is ectuivalent to

J (O) = TZ
1 [c((O)) Var [R] + a’ (O)]

= TZ
1

[c ( (O)) [TaT (O) 1 (u2) ‘Ta (O)] + a’ (O)]

= TZ [ ( (O)) p?2 (O) + a’ (O)].



35

Therefore

‘ (0) = r 1 [c ( (0)) pP2 (0) + a’ (0)] (6.5)

Now, we consider asset markets for risky assets i=1,...,n with s agents s=1 ,..., S. Each agent is char

acterized by a Voil-Neuman Morgenstern utility ftmction u5 anci associated preference coefficients:

u. (P) 2 Us (JL)
andp3([L)=rT3

u (pj) 2u5 (ti)

\Ve also assmne that the net supply in each risky asset i=1 n is exogeneous and fixed to uHity

(normalization): Then in the lirnit case

(0) e,

(0) 0.

\Ve clecluce:

js) (o) = ‘T5a(0).

Then

which implies

ci (0) = (6.6)

We rewritte tue marginal shares of agent s

js) (0) =
1 [ nP2 (0) + a (0)]

Taking die SUflI of this ecluation for sr=1,...,S, we get

(0) =
I [C()pP2(o) +a’ (0)] = 0.
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This expression is eqiiivalent to

n’ (O) —c()P2(O).

Then

ak (O) = -5ck () P2 (O)

= —5a’(O)Z 1FkZ ‘a(O)

Since

(O) = !, (6.7)

we then have

a (O)
— /

1
2CFkC (6.8)

(ZT8

ç
_ ——(wF).

T

From (6.5), we rewritte the marginal shares of agent s

(O) = [e () p3P2 (O) + n’ (O)]

=

Therefore,

[p8 —]A for s = 1 S.

A variable ni is a valici SDF when risk premium of asset k is 2 [ (O) + (O)] if and orily if:

Em (Rk — rt) = O Coi’ (ni, R = _2 [a (O) + na (O)].

Note from (6.7) that:

2°k (O) = ,Cov (, ,
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and from (6.8).

(O) = Cov
((-S)2 ( (Y))2 )

Therefore,

‘2 [ (O) + ua (O)] Cou —

. Ê (u) + 2 ( (Yi))

2

[tZTs’ [t(TS)
Ç

anci to identifv this covariance with Cou (m. Rk) it is suffices to choose:

= — () + ( (u))

2

[t Z T5 i1
[L (Z T8)

s—1

s (Ê(R_ER)) + 2 (Ê(R_j))
[t Z rs [I tz T5)

1 s1

for sortie well chosen constal1t. a.

Let us denol.e

RM R.

Then, we rewrite m

ni a — (RM — ERM) + 2 (RM — ER1)2

[IZT5 [t(ZT5)

=

5[LT 5 [tT

Using the faut that

Em = ±.
[t

we get

a =
—

[t1(1?M - FI?)2
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arici

rn = — (RM — ERAJ) + —2
[(R11

— fRAI)2 — E(R111 — ER1)2].
t p)T T

PROOF 0F THEOREM 3.3. We apply (3.15) to the asset net return:

7it+i = —

1vVe get:

V . .2

ftr,it±i
—

= (EtrAft+1) 7Mt+l
—

À2 (VaTT’,jt+i) (1
—

(ryt+1, rit+i))ar

that is:

(2)

= — /\21; (1
— P 7’it+i))

This gives the announcecÏ value for ‘\2t.

PROOF 0F LEMMA 3.4. The conditional linear regression of on Rji+i is of the forrn

EL [R+ï Ri+1] = ERj1 + aFyt+i,

where

F11 = — EIRAJt+1.

111e residual of the conditional linear regression of R111 on RAJt+1, that is R1+1—ELt lRAIt+1]

is orthogonal to Fi+i. Conseciuently,

Cov (R1+1 — EL [R’Jt+lRAIt+j] = O.

Solving this equation gives

a
—

(R1,11, R17j11)

— VCiT (RAII+1)
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Then

Cot (R
EL1 [R11+1Rit+i]

1
(RAÏt+y —

. (6.9)
(lt tRMt+I)

But,

COVI (Rr1+y, R1111) = Cov1 ((R11÷1 — EIRAît+l + EIRArt+i)2

= Cov1 ((R1t+1 — EtRAJI+l)2 + 2(RM,+1 — E,R1j,+i) EtRAJI -1

= cour ((Ri1+1 — EtRM,+l)2 ut+i) + 2EiRit+iVait (Ri1+i)

E1 (RItf1 — E1Rr1+i)3 + 2EtRrt+iVart (RArt÷1)

Therefore,

2 2 (RM,1 — EtRAIt+l) f1 (RMt+1 —

EL1 tRAit+iRit+i] EtRi1+i +
t7ar, (RAt+1)

+

2 (R!lyt+j —
EI?1t1 1) fI Rit+

This encis the proof. •

PROOF 0F THEOREM 3.5. Let us flist note that

— ïtEtïnî+i (RAI(+1
— )2

where,

(R11ï
—

/tt)2 = R1111 + — 2Rl1Fy/i,. (6.10)

But the scinared market return tan be rewritten as

D2 — FD2 D 1
— EL1 LJUAIt+1 ‘it+ij + Eti

where,

= U.
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We replace this last expression into (6.10) auJ get

2 1 2
(Ri+i

—
p) = EL [Rjwt+IJ?Mtb1j + EtI + t — 2RMt11[LI

3

E 2 (R11.11 — EtRAÏ(11) E (RA,t+ I —

— t Mt+1 +
.

2 (Rj+i — ERw+i) EtRA[t+1 + EtI1 + IJ
— 2RMt+i[t.

Tiierefore,

i (i
— EtRAIt+1) E (RAIt1 — EtRit+i)3

= EtR+1 +
t

+
I

2 (1
—

EIRAJt+1 + LtCOV (rnt+i, Et+1) —

= ER,11+1 (R111
— EtRMt+1)3 + 2 (1

— ERi+i) EtRM[1 +

Co’v (mt+;, t+1) —

= (E1r1+1 — 2 (Etrwt+I)2)
— (nt-i-i — EIRMt+I)3 + ïttCov (rnt+1, t+J)

= tt (‘ — (i(fl)2
— PE (Rjt+ï — EIRAIt+i)3 + t1C’ov (m,i, Et+1).

This encis the proof. •

PROOF 0F THE0REM 3.6. Assume that the joint process (mt+1, RMty)T is conditionally lognor

mal. Then,

Log(mti)
/I N

I-1mt rrtrt

LogRjiti m.rt

Let us denote

2
cmt = Etnit+iRpj1.

The market return risk neutral variance is

*2 — 17’*D2 2
mt — -‘-t JL]Iit.1

—

Where,

ERII+1 =
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\Ve know that:

Log (mt+iRj1) = Log (tfltI) + 2Log (I?AIt+1).

Therefore,

= exp (p + 2tit + O.5 + + 2rnrt)

= exp (—t — O.5u) exp + 2) exp (—2ït
—

z

[exp + + O.5 + + JrnTt)]

But

ErnRAf1 1 exp ([17fl( + + O.5? + O.5u’ + mrt)

Therefore.

L1i exp ([“int — U.5) exp (2it + 2u) exp (2RMt —

— ERJtFl
— ttfî T)

t-t fli’[/ -i-l)

Cortseqient1y,

*2 2 EtR11 2 — 2 f 2
2

mt — 1+ 2 — — mt j i- n I < rnt
(ERi) \ ‘‘t’it±1 J

PROOF 0F THEOREM 3.7. Assume that

= ‘lot + ‘i,Rn+i + ii2RL+1.

Theti,

Cov (rnt+1, Et i) v2Cov (R’,
- 1’ j)
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BiL

Cut’t (R’1, Ej+1) covt (R11 R111
— — E,.RAIt+i) Covt (R1t+i, RAIt+1)

Vart (RAJt-1)

Vart (R÷)
— Cov (R,r+1. I?ii)

Var1 (RA[1)

= Var (Ri1+i) 1
— Cou? tR+i’ RAIt+i)

Vaut (R,1.+i) Var (RArt±1)

Vaut (R1) [1
— n? (R111, R1+1)].
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Table 1.1: Estimated resuits of the Factor GARCH in mean (sec Bekaert and Lin (2004))

Ecinations Coefficient s

Yt1 Y2t

Y1t.1i 0.0030 0.361 —0.029 0.008

(0.0005) (0.033) (0.022) (0.005)

Y2t+i 0.0056-162.65(eit)2 —0.198 0.738 —0.0002

(0.0006) (0.0001) 0.031 (0.037) (0.0043)

0.0188 — 58.02 (ci1)2 —1.734 1.029 0.077

(0.0083) (0.0003) 0.005 (0.014) (0.034)

constant

Var1 (e111) 0.000019 —0.0265 0.0008 0.2705

0.000018 (0,0807) (0.7898) (0.0426)

62 0.000014 0 0 0

(0.000002)

63 0.006134 0 0 0

(0.00103)

= —0.0564 i2 = 3.182

(0.1425) (0.003)

Notes: In this table, we reproduce the results of the Factor GARCII in mean estimated by

Bekaert and Lin (2004). 62 = Vart (e2tj1) and 63 = Var1 (e3tl1).
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Figure 1.1: Price of coskewuess: Price of coskewness inferred from simulated data according

to the Factor GARCH in mean estimated in Bekaert and Liu (2004). FIS indicates the price of

coskewness corresponding to Harvey and Siddique (2000) limit case. CLR indicates the price of

coskewness corresponding to our formula.
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data according to the Factor GARCH in mean estimated in Bekaert and Liu (2004).

II

50 100 150 200 250 300 350 400 450 500



48

Figure 1.3: Risk premium on the sqnared net retnrn: Risk premium on the squared net

return inferred from simulated data according to the Factor GARCH in mean estimated in Bekaert

and Liu (2004).

250



Figure 1.4: Quadratic SDF: Quadratic SDF inferred from simulated data according to the Factor

GARCH in mean estimated in Bekaert and Liu (2004). In the left hand side graph, we plot the

pricing kernel mt+1 as a function of t + 1 and rMt+1. L the right hand side, we plot the average

pricing kenel E[=1+mt+i.
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Figure 1.5: Quadratic SDF: Fixing the price of the squared market return at the level 1.02,

which in turns implies a time varying we infer the quadratic pricing kernel for simulated data

according to the Factor GARCH in mean estimated in Bekaert and Liu (2004). h the left hand

side graph, we plot the pricing kernel mt+1 as a furiction of t + 1 and rjqj = x. In the right hand

side, we plot the average pricing kernel ET_1 +mt+1.
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Chapter 2

$tocÏiastic Discount Factor VoÏatiÏity Bounci aiid
PortfoÏio Selection Uiicïer Higlier iVioments
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1. Introduction

Ilansen and Richard (1987) iutroduced the concept of a stochastic discount factor (SDF) to

the financial econometrics literature and defined a stochastic discount factor as a randoin variable

that discounts payoffs dift&ently in ffifferent states of the world. Since this seminal contribution.

it lias become evident that the empirical implications of asset pricing models cari be characterized

through their SDFs [Cochrane (1991)]. In this context, llansen and Jagannathan (1991) adctess

the question of what asset retm’ns data may he able to teli us about the behavior of the SDF

volatility. They found a lower bound on the volatility of any admissible SDF that prices correctly a

set of asset returns. Their bound bas been applied to a variety of fmancial issues. For example, the

Hansen and Jagannathan (HJ) bormd is used to test if a particular SDF implied by a model is valid

or not. Recently, Barone-Adesi et al. (2004) assume a quadratic specification of the SDF in terms

of the market return and test asset pricing models with cŒskewness. Tbey found evidence that

asset skewness (co—skewness) is priced in the inarket tbrough the cost of the squared miarket return

even if the sciuared market return is not a tracled asset. This une of thinking had been initiateci

by Ingersoll (1987) and pursued more recently by Ilarvey and Siddique (2000) ancl Dittmar (2002).

They look at extensions of the CAFM framework by considering asset skewness. Assunbng higher

skewness is preferred, Ingersoll (1987) shows that a decrease in cŒskewness requires an increase in

expected return to induce the same holding of the asset at the margin. Furthermore if we use a

Taylor series of derivatives’ payoff functions as quadratic frmctions of the miderlying asset return,

we realize that the price of the derivatives is a function of the cost of the squared return and tIns

cost is tigbtly related to retm’n skewness. The cost of the squared portfolio return is, therefore,

particularly relevant when pricing derivatives. Since the 11J volatility bound considers admissible

SDFs that price correctly only a set of asset returns, it appears useful to construct a new variance

bound for any admissible SDF that prices correctly not only a set of primitive assets but also the

squared returns of the sanie primitive assets.

The first contribution of this paper is to find such a lower bound. While IIJ mimdnbzes the SDF

variance for a given SDF mean rmder the assuniption that the admissible SDFs price correctly
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a set of primitive asset retnrns. we minimize tire SDF variance for a given SDF mean nnder the

assnmption that the admissible SDFs price correctly not onlv a set of primitive asset returns but

also the squared retrn’n of the same primitive assets. Our variance bounci tightens the IIJ bound

by an adffitional quantity whieh is a function of the assets’ cŒskewness and the cost of the squared

primitive asset retnrns. We derive necessary and sufficient conditions to get the well-known IIJ

bonnd as a particular case. In this more general setting, onr minimum variance SDF can be

rewritten as a quachatic function of asset returns. By this, we mean a liriear combination of two

vectors; R and R21 where R represents a vector of primitive asset returns and R (2) is a vector of

the squared primitive asset returns whose comnponents are of the form RR1 with i j. When R

is tire market retnrn, we get a quafflatic specification of tire SDF in terms of the market return

which is often used to underline the importance of skewness (co-skewness) in asset pricing models

[Ingersoll (1987), Hamvey and Siddique (2000), Dittmar (2002)]. We use the return on tire Standard

and Poors 500 stock index and tire commercial paper index from 1889 to 1994 to illustrate our SDF

voiatility surface frontier. We aiso use tire cousmnption n non—durables and services over tue saure

period to relate tire C’RRA and Epstein and Zin (1989) preference nrodeis to our voiatihty boimcl

for particlilar values of the relative risk aversion coefficient. Vie illustrate irow our SDF variance

frontier tigirtens tire IIJ variance frontier and makes tire equity premium puzzle even more difficuit

to soive.

Tire second contribution of tire paper is to offer a new approach for portfolio seiection witir

ldgher nroments. Tins approacir is based on factors that span our minimum variance stocirastic

discount factor. Tire intuition behind our portfoho selection anaiysis is motivated by tbe duality

between the IIJ minimum variance SDF and Markowitz mean-variance anaiysis [Campbeii Lo and

Mc Kinlay (1997)]. Since we have found a minimum variance SDF that tightens the IIJ minimunr

variance SDF, it is of interest b aiso give a portfolio selection approach which is based on our

minimunr variance SDF. Our approach consists in mininbzing the portfolio risk subject to tbe

portfolio expecteci return and an addlltionai constraiut (cost of tire sciuared portfolio return) wibcir

depencis on tire portfoho skewness. Tire question we tbereafter asic is: under wiricir comrclitions is
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0m portfolio choice observationally equivaient te the standard portfolio selection under skewness?

\‘Ve theii gerieralize the standard portfolio selection approach under skewness which consists in

minimizing the portfolio risk subject te the portfolio expected return and skewness [see Lai (1991),

de Athaycle and Flores (2004)]. Our more general approach is relevant since it flrst provides a

formai bridge between the SDF variance bound and the portfolio selection uncler higher moments.

Second, it shows that the standard approach of portfolio selection uncler skewness may overlook an

iinpor tant factor.

VTe aise provide an empirical illustration for portfolio selectiori. We use daily asset returns for

four inclividual flrms. Our portfolio selection approach clepends on the cost of the squarecl asset

retiirns. Te compute this cost, we assume that the joint process of the SDF and asset returns

is lognormally distributed. The iognormal distribution is flexible and allows for skewness in asset

returns. Many asset pricing tests assume that the joint process of SDF-asset returns is conditionally

jointly lognormal. Moreover, diffusion models imply a locally lognormal distribution. Our resuits

suggest that the cost of the sciuarecl portfoho return and portfolio higlier moments have a significant

impact on the portfolio mean-variance frontier.

The rest of the paper is organized as follows. Section 2 gives the theoretical background and

an empirical illustration for the generalized SDF variance bound. In Section 3, we offer a portfolio

selection approach based on factors that span our minimum variance SDF. Section 4 gives an

empirical illustration for portfolio selection under higher moments. The last section concludes the

paper.

2. The Minimum-Variance Stochastic Discount Factor

in this section, we flrst review the IIJ bommd and derive the SDF variance bound under higher

moments. hi section 2.2, we provicle conditions uncler which the cost of the scjuarecl returns affects

the variance bound auct give some empirical implications of our new hounci. Section 2.3 discusses

the variance bounci when we restrict admissible SDFs te be positive.



2.1 The general framework

In this subsection we construct a new hourd on the volatilitv of any admissible SDF which tightens

the IIJ volatility hoiind. By a SDF, we mean a random variable that cari be irseci to compute the

market price of an asset toclay by discomiting payoffs cliflrent1y in differerit states of the world in

the friture. IIJ have proposed a way to firid the lower bormd on the volatility of any SDF that

prices correctly a set of primitive asset returns. Their approach treats the uncondlitional mean of

the stochastic discount factor as an unknown parameter . For each possible pararneter , IIJ

form a stochastic discount factor rnH] () as a linear combination of asset returns and show that

the variance of mHj () represents a lower bound on the variance of any stochastic discount factor

that has mean and satisfies:

ErnR = t,

where I represerits an N—vector with components unity and R is a set of N primitive asset returns.

Let .F1 () clenote the set of SDfs that have rneari ami that price correctly R. Therefore,

LFiÇ)={rnL2:Ern,EmR=l}.

Thus, mj-jj () is the solution to the problem:

Min cr(m).
mCi()

HJ show that

rnHj(m) =Pi+(t -PiER)’Q(R-ER)

and

Var [TflHJ (rn)] = (t —ER)’ Q1 (t —TiER),

where Q is die covarjance matrix of the asset returns. llere, the N assets are risky anci no linear

combination ol the returns in R is eciual to one with probahility one SO that Q is nonsingrilar. Vsing

the IIJ bound, it is then possible to derive an admissible region for inean and standard deviations of



56

candidate SDFs usirig only asset retiirns data. By pbtting these regions. the IIJ approach provides

an appealing graphical technicjue through which to gauge the specification of many asset pricing

moclels. llowever it appears important for any admissible SDF to price correctly not only a set

of primitive assets but also payoffs which are nonlinear frmnctions of primitive assets’ payoffs. For

instance, a Taylor expansioll series of derivatives’ payoffs around a benchmark return will irnpiy, in

general, that the cost of squared portfolio returns is re)evant when pricing derivatives.

Suppose r w’ R represents a portfolio retuin, where w (w, w2, .. .wN) is a vector of portfoiio

weights which satisfies w’t 1 with t = (1. 1, .1)’. The sciuared retuin of the portfolio cari be

represented by

(w’)2 (w 0w)’ (R® R),

where ® stands for the Kronecker product. The cost of the squarecl portfolio return is therefore,

C () =

(w O w)’ (R o R)

w(2)’EmR(2)

where (2) represents a colunui vector whose components are of the form,

f 2wwifi<j
wii

wifi=j

and R2 represents a colunm vector, the components of winch are of the form RI?1 with i < j.

It can be observed that the cost of the squared portfolio return is a fmiction of the cost of the

squared” asset returns, R2.’ The dluestion we asic is whether we eau we tighten significantly the

IIJ volatility bound by consiclering any admissible SDF that correctly prices payoffs that can be

expressed as n cluadiratic function of the primitive assets. The idea is to consicter a set of SDFs that

correcti price the N asset returns, R, and the “squared” asset returns 11(2) If T2 (Pi. ij) clenotes

1For portfolio algebra using the inverse of covariance matrices, we prefer using R2 than R Q R since the latter

has a singular covariarice rnatrix.
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a set of SDPs that correcL1 price R and R(2), we have,

J (Ti, r) = {m E L2 Eïn = 7Ï, EruR = t, EniR12
=

wliere i clenotes the vector of puces of squared returus. Notice that .F2 (h ij) C T1 (Ph). Intiiitively,

we exciucle an admissible SDF that does not correctly price derivatives with payoffs that can be

writteu as a quadratic ftrnction of a set of primitive assets. We then treat the uncoriditional mean

ii of the SDF and the cost r of the “scjuared” primitive asset, R21, as imknown parameters. for

each iiI anci îj, we form a candidate SDF. mms ( as a ciuaclratic function of asset returns:

rntmVS (ï) = a (ij,h) + /3(J)’ R + 7Q?,ïi)’ R2 (2.1)

with

silice (ï. hhh) = 737. Therefore, we exploit the pricing formulas E (Roi) = t and E (R(2)în) q

to compute the parameteus,

1(t—7TiER)—l ‘A-y(ïj,737),

= [z_A’Q’A]1 [r,_ER(2) _A’W1(t_fR)],

with,

= ER2 (R(2) — ER(2)),

A’ = f (R(2) — ER(2)) R’.

Note that A is related to the notion of co—skewness [see Ingersoll (1987), Harvey and Sidcicjue

(2000)]. The expansion ‘Ii = — A’Ç— 1A denotes the residual covariance matrix in the regiession

of R2) on R. \Ve assume that the matrix 1J is nonsingular; that is, no squarecl returns are recÏimclant

with respect to the primitive assets. This assumption wihl be maintaineci hereafter for the sake of

notational simplicity. A simple application of the IIJ argument to the vector [R. (ctiag q)
-i R(2)]
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of returns, (where ctiag 17 cïenotes the cHagonal matrix with coefficients clefineci by the components

of î) ensmes that mm9 (ij,) gives the volatility lower—bounci in F2 (, ri). That is, it solves:

min u (in)

b compare this miniimnmi variance SDf to the IIJ minimum variance stochastic discount factor

associateci with only the vector R of returns, we rewrite mmvs (, ) as a function of the IIJ

minimum variance $DP.

Proposition 2.1 The minimum variance stochastic discount facto r amoig any admissibte stockas-

tic discoui?J, factors that correctty price not onty a sel of primitive assets but aiso derivatives the

payoffs of which can be written as a quadratic Junction of the same primitive assets as foltows:

rnT8 ( ) mj () + 7 (, )‘ [R(2)
— ER2 — A’ 1 (R — ER)]

wherc,

= [ — A2 ‘A] [ —7ER2 — A’f 1 (t _ER)].

We are now going to discuss the necessary anci sufficient conditions to get the 1IJ miniminn

variance SDF.

Proposition 2.2 The minimum variance stockastic discount factor, mtmtS (î, ) cottapses to the

Ilansen and Jagannathan minimum variance stochostic discount facto r, mH] (rn), if and onÏy if

17=ER2+A’2 ‘(t-MER).

PROOF. 0f course, if (rï,T) O, we have mrttms (g) = mj (). Contversely, assume that

,rnvs (g, ) = mjj () thnis it follows that

7 (7jTt)’ [R(2)
— rR2 — A’Q 1 (R — ER)] = o.

If we premndtiply this ecluality by mtmt38 (g,P) , we get

7 (1/,) fllmV8
(î,,)

[(
— ER2 — A’ (R — R)] = o.
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Taking the expectation of this ciuantity, it is easy to show that

r7-ER2 —A’Q- (t—ER) r=O.

This implies that y(?J) = O. •
Note that propositions 2.1 and 2.2 have been clerived imder the maintaineci assiimption that

sqiiarecl returns are not redundant assets, that is R(2) does not coincicle with its affine regiession

R:

R2 — ER2 — A’2_1 (R — RI?)

Ilowever, wheri ever this residual lias zero price, we see from proposition 2.2 that mr9 (,) and

rriHj (lii) coincide, that is when its product by the SDF has a zero expectation.

Our volatility bound can be used to assess the specification of a particular asset pricing model

as is usually donc with the IIJ bound. But our bourid is tigliter:

u [ni7m’8 (rï,Ti)] u [ÏI1HJ ()] for ail (2.2)

To sec how our volatility bomici can be used to check if a particular asset pricing rnodel expiains

asset returns, let us corisider a proposed SDF, m (x), wherex represents a set of relevant variables,

for exampie the ratio of consumption, x = or the flrst difference of consumption C1 — Ct. b

gauge if the proposed SDF passes oui’ volatility bound, we need to first compute i = Em (x) Rt2

and Em (x) and then check if u [m (x)j u [mm Us
(ii, Em (x))]. if the proposed SDF passes the IIJ

bound but not our variance bound, it means that the proposed SDF variance is too low so that

this SDF cannot correctly price derivatives, the payoffs of which are a cluadratic function of the

primitive assets. Since the price of such derivatives can be written as a ftmction of the cost of R(2)

and that this cost is a function of asset skewness, the failure of the proposed SDF is akin to a

failure to price skewness correctly.

2.2 Why does the price of squared returns matter?

By the inequality (2.2), we realize that our variance bounci is greater than the 11.1 houncl. The first

question we then ask is: is there pricing condition(s) mider which oui’ variance bound coincides



60

with the IIJ bourid? Uncler these conchtioiis, the squared return cost does not riiatter and we have

failed to shed more light on the SDF variance hounci. Proposition 2.3 summarizes tus issue.

Proposition 2.3 C’onsidcr (he tinear Tcgression of the sqnared returns, on. tire rrtuîn. R,

that is:

EL[R(2)R] =ER2+A’2 ‘(R—ER).

and

= ER2 + A’Q 1(t i7ER),

the price oJ this regrrssion. Then, there exists ï > O such that

u [mtm1’8 ( )] = u [mHy (7i’fl]

if and onÏy if rd > 0.

PROOF. We have (, ) = [z — A’Ç2- lA]
1

— 7]*]. Then f > 0, r implies (, ) = 0.

We, therefore, have u [rn1 (7]*)] [mj ()J. Conversely assume that there exists i] > O

such that u [mmv8 (ri, 7)] = u [mHJ (fit)]. This implies that y (, yi) [z — A’Ç2- ‘A]
- (r,, ) = 0.

But

[z — A_1A] (7],)
— 7]*) [z — A’’A] ( 7]*)

Therefore, (r, —

J*)’ [z — A’1A] (r, —

= 0. Since in this paper we assume that the matrix

z — A’ ‘A is norisingiilar, we conclude by the Caudhy-Schwarz inecuality that z — A- tA

positive definite, then r = r,> 0. •
In other worcls, when 77* < 0, u [mm

(i)] > u [mHj (m)] for ail r, > 0. Then taking into

account the cost of scjuared retuins will aiways have a significant impact on the volatilit bourid.

Recently, Kan and Zhou (2003) proposecl an alternative way to tighten the II.] bounci. They

assume that they can finci a vector x of state variables such that the conditional expectation of

mj (fil) given x coincicles with its affine regression. Under this rnairitainecl assmnption. they are
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able to show that aiiv admissible SDF in (z) wlùch is a deterministic function of r lias a larger

volatilltv than a bound u2 [nh,z] dehned hy:

2
[m (z)]

2 [rriKz]
= 2

1 2
[mj ()]

Pni j r

where is the multiple linear correlation coefficient between 11HJ (Tit) ami z. By considenng

z = [R, R(2)], we can then daim that:

inf u2 [m”8 (î iifl] .2
[rnJçz]

77

Therefore, the Kan and Zhou volatilitv bound does not make om bound irrelevant. The cost of

squared returns may matter sigriificantly.

We now give empirical illustrations showing that squared returri cost may be important. We

first consider the annual exeess simple return of the Standard and Poors 500 stock index over the

commercial paper from 1889 to 1994. hi this case, q = 1 and our SDF variance bound is easy to

illustrate graplncally Figures 2.1 and 2.2 illustrate our variance bound surface and flic IIJ bomid

respectively. If can be seen frorn these figures that the cost of flic squared asset excess return

lias a siginficant impact on the SDF mean-standard deviation frontier. For example. for a SDF

mean in tbe neighborhood of 1, the IIJ SDF standard-deviation is about 0.3 whereas our SDF

standard deviation is greater than 0.6 for any positive value of the squared retmn cost. Accorffing

to proposition 2.3, this should be a case where the cost îj of the affine regression of R2 on R

is negative. Furthermore, when the SDF mean in the neighborhood of 1, our minimum variance

SDF standard-deviation highly deperids on 11w cost of the squared asset excess return. Thris the

squared returns cost is relevant for determining flic SDF variance bound. Sindlarly to the IIJ

volatilitv bound. our volatility hound can be used to illustrate if a particular asset pricing model

fails to explain a set of asset returns. To give this illustration. ive consider several consumption

based models. The flrst model assrmies that there is a representative agent who maximizes a

time-separable power utihty function, 50 that:

— 1
u (Ci)
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where n is the coefficient of relative risk aversion and is the aggregate consumption. Therefore,

it can be shown that the representative agent optirnization problem yields a SDF of the form:

u’ (C1)
rnt±i

u (C1.)

where 8 (0, 1) is a subjective dliscount parameter. For this ERRA prefererice modeL we set

= .95. Using consumption on non durables and services over the same periocl, 1889 to 1991.

Campbell, Lo and Mc Kinlay (1997) show that the variance of m enters in the IIJ feasible region

if the relative risk aversion coefficient n is greater than 25. This cari be seen through Figure 2.3.

Varying exogenously n from O to 27, the point (Erntji, u (rnt+i)) does fail into the feasible region

until the coefficient of the relative risk aversion reaches a value of 25.

Since oui SDF variance bourid is greater than the 11,1 variance bound, it is clear that for n 24,

the point (Emt+i, o- (m) rï) with i = Ernt+1R(2) cloes not enter into our feasible region. We

need to check if any particular relative risk aversion n 25 produces a point (Emti, u (mt) ,

which enters our feasible region. To proceed to 0m- graphical illustration, for n = 25 aricl n =

27, we compute 17 and find the correspondling feasible region. We check, thereafter, if the point

(Emt+i, u (rnj)) enters oui feasible region. While Figure 2.4 shows that for various relative risk

aversion coefficients, oui variance bound neyer coincide with the IIJ bound, the two bouncis give

nevertheless the same conclusion about the candidate SDFs produced by this model.

We repeat the same calibration exercise using the Epstein and Zin (1989) state-non-separable

preferences. Following Epstein and Zin (1989), we assume that the state-non-separable preferences

are given hy V U [Ce, E +i] where

[(1 _j3)C P+[1+(1_f3) (1_n) 17]] -1
U[C V]=

(1-/3)(1-n)

The elasticity of interterriporal substitution is l/p. The representative agent SDF is

[+‘)
P]+(a)i

where Rmt+i is the return on the market portfolio. Figure 2.5 plots the bounci and the representative

agent SDF volatihties for Epstein and Zin (1989) consumption based inodel. For this consumption

haseci model, the parameters used are 3 0.96. ViTe use the saine data set as in the ERRA case.
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figure 2.5 reveals that for 43 = 0.96, (p, c) = (3.05, 6.86) the point (Emt+i, u (mIi)) enters the

IIJ feasible region, but this point cloes not enter our feasible regioli. This means that taking into

account the cost of citiadratic derivatives makes the eciuity premium puzzle even more difficuit to

solve. For reasonable value of the preference pararneters, we also realize through Figure 2.5 that

our variance bound neyer coincicles with the IIJ bound. This underlines why squared returns cost

shoulci be taken into account in asset pricing models.

Next, we consider a model with state clepenctence in preferences. Several authors [sec e.g.,

Cordon and St-Amour (2000), Melino and Yang (2003)] have pointecito countercyclical risk aversion

as a potential source of rnisspecification that may account for the equity premium puzzle. It is then

noteworthy to check if these models can explain this puzzle when using our variance bounci on

admissible SDF. We consider Gordori and St-Amour (2000) ancl Melino and Yang (2003) state

dependent preference rnodel.

The Cordon anci St. Amour (2000) stochastic discount factor is of the form

t-[ 1 =

where the coefficient of relative risk aversion clepencis on a latent state variable U and is tue

ratio of next period’s level of consumption to u scale parameter 8. For the state variable, we set

the transition matrix to2

0.9909 0.0061
11=

0.0091 0.9939

Since the frontiers are very close under the two bouncis, we find that when the implied Cordon

and St-Amour SDF passes the IIJ bomid it also passes our variance bourid. We report here (sec

Figure 2.6) only the case: di (3.7, 2.23), 0 = 12, 18. Melino and Yang (2003) generalize the

model of Epstein and Zin (1989) by allowing the representative agent to dlisplay state-dependent

preferences and show that these preferences eau acici to the explanation of the equity premium

puzzle. They corisider several state-clependent preference cases: state-clepenclent Constant Relative

2m this matrLx, the prohability of staying in state 1 is 0.9909 anci the probahulity of staying in sate 2 is 0.9939.
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Risk Aversion ((RHA). state-depenclent Eiasticity of Ltertemporai Substitution (FIS) and state

dependent subjective discount parameter 3. Without loss of generalitv. we consider the Melino and

Yang (2003) stochastic discount factor when the FIS and the subjective discomit parameter 3 are

constant:

I —OE(U()

C, p I p (I_aRt))i

=

L Figure 2.7, we give two exampies of SDF bounds. For fLxed values of (3, p) = (0.08, 3.58). the

first exampie shows that for the state-dependent preferences parameter a = (7.8,0.4), the state

dependeut implieci SDF passes the IIJ bound but does not pass our bomid whereas in the second

exampie, = (8.8, 9.35) produces a SDF which passes both bounds. L tire ncxt subsection,

provide insights on the SDF variance bound under a positivity constraint.

2.3 Positivity constraint on the SDF

So far we bave ignored tire arbitrage restriction that an achnissibie SDF must he nomiegative.

IIJ show that when an unconditionafly riskiess asset exists. it is straightforwarcl to find tire IJJ

minimum variance SDF with a noimegativity constraint. But they show that this SDF may not

be unique. In our case. when tire unconditionaiiy riskiess asset exists, it can be shown that tire

nrininumr variance SDF with positivity constraint is:

nrm ()
= ( (p)’ R + (p)’ R(2)),

where :r+ = max (0, x) represents the nounegativc part of x. The parameters 6 (p) and (p) can

be computed by soiving tire uonhnear equations:

ERnitms (,)+ = j

ER(2)nrmL’s () + =

These two equations are nonhnear in tire paramcter vectors (p) and (p) and the soiution ( (p)

3 (p)) camiot be represented in ternis of matrix inanipuiatious. Simiiarlv to IIJ. it can be shown
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that this solution exists but may not be unique. Once this solution is found, however, it is easy to

show that înm (i)+ lias a minimum variance among any admissible. SDF in i (îj) where

(T)) = {rn E L2 t m> O, ErnR = t, EîuR2

To understand this more clearly, consider any other nonnegative admissible SDF in (ii) and

note that

E trnrn ()+ m] E [m ( (n)’ R + (n)’ R(2))]

/3 (n)’ ErnR + (T)) ErnR2

43 (ri)’ Ernrnvs () R + (r)’ Ern8 () R2

= E [(irnvs ()j2]

It follows that

Em2 E [(nvs
(îj)

f)2]

anid

u (rn) u (rnflUs ()+)

HJ fmd a similar inecuality, but in their fiarnework,

u(rn) u(mj),

for any admissible SDF in F = {rn C L2 : rn> O,EmR =t}, where = ([JR)+. Since

L1 (r) C T, it is straightforwarcl to show that:

u (1rnv8 (ri)+) u (mb).

Therefore. when the riskless asset exists and if we use a nonnegativity constraint on m, our variance

bound also tiglitens the IIJ variance bomid. Following the same iclea as Ilansen and Jagannathan

(1991), this result can be generalized to deal with the case in which there is no unconditionally

riskless asset. In the rest of this paper, we work without a positivity constraint on admissible S DEs.
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Motivated by tire dnality between the IIJ frontier and the i\’Iarkowitz mean—variance portfolio

frontier, we offer, in the next section, a portfolio selection approach based on onr rniuirnnrn variance

SDF snrface frontier.

3. Portfolio Selection

Markowitz mean—variance analysis is the central tenet of portfolio selection in financial theory.

Since any asset pricing moclel can be represented by a SDF model, a nnmher of papers establish

a connection between Markowitz mean-variance analysis and the IIJ bonnd on the SDF volatility.

See for example, Campbell, Lo and Mc Kinlay (1997), Nijman and de Roon (2001) and Penarancla

and Sentana (2001). The leaWng assnmption in Markowitz mean-variance analysis is that investors

are interested in three characteristics of their portfolio: expected payoff, cost, and variance. Under

these assnmptions, it can be shown that the IIJ minimum variance SDF is spanned by two factors

and that the Markowitz optimization problem (whidh entails minimizing the (rmit cost) portfolio

variance snbject to the portfolio expected return) yields an optimal mean-variance portfolio which

cari be written as a function of the same two factors.

In this section, we assume that investors are not only interested in these three characteristics

of their portfolio but they are also interested in the cost of their sqnared portfolio retnrn.

We first nse these four characteristics to decompose the SDF as a frmction of factors which we

nse to provide a portfolio selection approach. Onr main contribntion is to show that tire recent

portfolio selection approach based on mean-variance-skewness may miss an iniportant factor.

3.1 A SDF decomposition

Let 2N be tire set of payoffs which is given by the linear span of primitive assets and QN be tire

set of the payoffs which is given by the linear span of “sqnared” primitive assets The elements

of 2N will be of tire form
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Siinilarly the elernents of QN wjll be of the form

RR.

PN, Ç are closed linear subspaces of L2, where L2 denotes the Ililbert space under the Mean-Square

inner product clefineci as (x, y) = Exy and the associated meall—scluare norm Kir
)i/2 with x, y

G L2. Assume that investors are interested at least in four characteristics of their portfolio p

the (normalized) cost of their portfolio, their portfolio expected payoff value, the variance of their

portfolio payoff and the cost of their sciuared portfolio returns which are given by C (p) =

E (p) = ‘v, V (p) = w’w and C (p2) respectively.

For convenience, we deriote

F = ERR’,

(2) = FR(2)R(2)’

Uricler the law of one price, we can interpret both C (.) , E (.) as linear functionals that rnap die

elerneuts of PN into the real une. In this sense, the Riesz representation theorem says that there

exists two uniclue elements of PN, p+ and p, such that:

C(p)=E(pp) VPEPN,

with

= with a+’ = t’f’, (3.3)

and

E(p)=E(pp) VPGPN, (3.4)

with

= with a’ = v’F .
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Sirnilarly, 3 (.) can 11e viewed as a linear fnnctional that rnaps the elernents of tjjv info the real

une. The Riesz representation theorem aigain implies that there exists a nnique element of Çpq

such that:

é(p)=E(p*p) VpEÇN, (3.5)

with

= a’R,

where a*’ r/ [F]
.

111e following theorem shows that these three vectors p+, p++ and pt are

able to span the mirûmrnn variance SDFs.

Theorem 3.1 For any rj # q, the minimum variance stochastic discount factor (ïj.117) eau

be decoinposed as:

07m.vs (T) = 1HJ (ni) + cE?3,

wttk 02HJ (777) = 777 + oF1 + bF2 where.

F1 = — Ept

F2 =

= p*_EL[p*Fi,F2]

and

i’FH —7YEEpt
a

= Var(jï1)

b
— (Vt ‘1—ffiFP)

— Cov(Fi,p)

— Cov (F2, ++)
acou (F2, ++)

e
— (r,’ [P2)] 1

q —mEp)
— acov (F1.pt)

— bcm (F2,pt)

— Cov(Fs.p*) Cor (F3.p) Cov(F3.p*)

The notation FL [jF indicates flic lïnear rcgrcssion on F.

\Ve now use this SDF clecomposition 10 provide a portfolio se)ection approach.
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3.2 Application to portfolio choice

It can be shown that the Markowitz J)ortfOliO selection approach which consists in miniinizing the

(unit cost) portfolio risk subject to the portfobo cxpected return is based on factors p+ and p++.

Markowitz minimizes the portfolio risk subject to the portfolio cost and expected payoff,

min u (p)
p

s.t Ep = C (p) = 1

If pm cÏenot.es the optimal solution to the problem above, pmt is the oniv linear coinbination of p1

anci p11 satisfyirig the constraints. We consider now a portfolio selection approach hased not oiily

on p and p++ but also on p.

Definition 3.2 Given the portfotio e.rpected retuni. the cost of the squared primitive asset î an-d

[lie cost of squared portfolio ret-iwn. c the mean—uarianee—cost optimal poitjoÏio is defined os t-lie

solution (o [lie toilowing program.

min u(p) (3.6)
p

s.t Ep C (p) = 1, C (p2) =

where C (p) represents the cos[ of [he port jotio p and C (p2) the cos[ of the squared -poTtfotio return.

The clifference between our optimization problem and the Markowitz optirnization problemn

is that we mnininiize portfolio nisk subject to an additional constraint which takes into accourit

the portfolio skewness. We first solve (3.6) and then show the relationship between omir portfolio

selection approach and the standard portfolio selection under skewniess. If pWVS c[enotes the optimal

solution for problem (3.6), we have,

rnus = €l1 + O2F2 + n3l3.
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where, i, 2 ancl C3 are determined hy eciuaIions below:

niEp+n2EF2+a3EF.3 =

n1E (ppj + Q2E (P2pj + c3E (Jp) = 1,

n;E(p+p*) +a2E(f2p*)+3E(3p*) = c*.

The variance of prnVS

u2 (*,
p) cf1/ar (pi) + c VaT (F2) + aVar (13). (3.7)

To get the optimal portfolio weights, we have,

pWVS
= w’]? =

Thus, premiiltiplying ptmV9 by R and taking the expectation, we cÏeduce

= n1F1E (Rpj + n2F ‘E(RF2) + a3F1i(RFi). (3.8)

We refer o Ci as beiirg the set

Ci= {(, c, u
(pmUs)

([tv, c*) E R2)}

where C1 represents the mean-variance-cost surface frontier. For each portfolio pmJ8 j we find

the corresponding portfolio skewness s
= E(p

. If we refer C2 as Seing the set
J \C •i,

C2={([Lp,sp,utpm) (i,s) ER2)}

then C2 represents the mean-variance-skewness surface. Now, consider the payoff:

mvs ( —

— )‘ 717

— C(rnmi8(r,fT))

if follows that:

C(RT) = L (3.9)

if clenotes the cost of (Rmv8)2 it eau 5e shown that,

c,9 = (2
+ u2 [rnTs (in, ïj)])

E(RmL5)3
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Using (3.9), we show that

1/
—

1/ — jjmv = u[rnmv8 (f7)]
Vin C 2 (747) (3.10)

u (p) — u (R’’) Emtmt’8 (, r) 13m

hieciuality (3.10) shows that no other portfolio with the sanie niean anci same squared retmn cost

has srnaller variance than The retnrrr H7e belongs to the mean-variance-cost surface
.

Theorem 3.3 Hf’8 is mean-variance-cosi efficient:. That is no other portfotio with tue saine

squared port folio cost ami saine mean lias smalter variance.

If we consider the return associateci with the IIJ minimum variance SDF, that is:

= rnIU ()
C (mHj (in))

it can be shown that

— ERrr?U
— u {TTiHJ Q7)]

u(R’) — EmH]()

By proposition 2.1, we have:

u [m (Yi)] u [mm’2 ( )]
13HJ (1h) Enirnvs (1h, ij)

Therefore, the following ineciuality holds,

1 /lit — 1/ — ER8
u(Rrrtj < u(Rmvs)

The left hand side of (3.10) represents the portfolio Sharpe ratio under the assumption that the

risk—free return exists. If the risk—free return (13f) exists, that i Rp 1/ has a higher

ratio than In the light of this inequality and theorem 3.3, it is important to defirie in our

setting the mean-variance-cost tangency portfolio.

Definition 3.4 The mean-variance-cost tan gency por[folio is the port folio with the ma.rimion Sharpe

ratio of ail possbie port folios with identicai sqnared portfolio cost.
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‘Ne now investigate liow the portfolio skewness affects the sciuarecl portfolio cost. To see how

this cost is a fraction of the portfolio skewness. consider the linear regression of p2 on p.

2 2 C’ot’(p.p2)
p = Ep + (p — Ep) + e.

ar (p)

The cost of the sciuared portfolio return cari Le written as:

=

= 1Ep2 + (1 — JTijt) t2 -1- os]
-

Cav (e, mfltS)

with s
=

Through this expression, the cost of the sciuared portfolio return is a frmction

of the portfolio skewness. Therefore it is reasonable to put forward the relationship between our

portfobo selection approach and the standard portfoiio selection under skewness. The later consists

in minirnizing the portfolio risk subject to the portfolio expected payoff anti skewness, We forrnalize

the standard portfolio selection approach as foilows:

min (p), (3.11)

C(p) 1

Ep
=

_________

—

—‘p

where s represents the portfolio skewness. Apart froin the two portfolio constraints: expected

return and portfolio cost, it can be observed that the difference between our optirnization problein

and standard portfolio selection uirder skewrtess cornes frorn the third constraint. In standard port-

folio selection tinder skewness approach, the third constraint is on the portfoiio skewness whereas

in oui approach, tire third constraint is on tire eost of the sciuared portfolio return. De Athayde

and flores (2004) finci a general solution to the problem (3.11). It is thus important to stuciy the

relationship between tire two problems in (3.6) and (3.11). We wiH say tuaI probierns (3.6) aiid

(3.11) are observatiorially eciuivalent if anti only if anv optimal solution to tire problem (3.6) is also

optimal to the problem (3.11) and vice versa.

b derive necessarv and sufficient conditions that make our portfolio selection approach obser

vationali ecituvalent to standard portfolio seiection uncler skewness, we first show:
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Proposition 3.5 Consider u port folio p and (he Ïinear regress’ioii of p2 on p

p2 = EL {p2Ip] + r.

Then, Coe (r, rn1îs) O for alt port folios p if and oniy if the components o ihe price. ri = 1j, of

R(2 are

E(R -ERj)3
ij =1TiER +(1 —1ïER) 2ER +

(R)
for i=1.....n.

and

ii (ER+ER+2ERR1)+

[1_(ERj+ERI)]Cov((Ri+R),(Ri+R1)2)
i_ —

[Var (Ri) + Var (R1) + 2Cov (Ri, R1)] 2
+ )]

for i j.

Proposition 3.6 gives necessarv and sufficient conditions to get standard portfolio selection uncler

skewness, that is a niaxinmm skewness portfolio [sec de Athayde and Flores (2004)].

Proposition 3.6 If[i 1/, consider a portfoiio p aiïd the iineaî’reginssion of p2 on p

p2 = EL [p2p] + r.

Probtem (3.11) and (3.6) are obseruationatty equivatent if and onty if Cor (r. nzW) O for any

port folio p

PROOF. If Cou (n mm) = O we have,

c =
(2 + p) + (1

— t’) [2p + us] . (3.12)

ibis ecluation is eciilivalent to

Ti1u + usp (1 — Titt) -I- (2,tt —

— c) O.

From (3.12), it is obvions to show that

3
E(p—[t){. Ep = and = sr}
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arid

{p: Ep
=

p and (p2) = ct }
are ecluivalent. Therefore problem (3.11) and (3.6) are observationali eciuivalent.

In other respects, assume that (3.6) and (3.11) are ohservationally ecjuivalent. Thus problems

(3.6) and (3.11) produce an identical solution. This implies tirat problem (3.11) cari be used to

compute the cost of the sciuared portfolio return. This is possible only if Coi’ (e, n LB)
= O. •

This proposition sliows how our portfolio selection approach generalizes standard portfolio se

lection under skewness and suggests that standard portfolio selection tmder skewness irnplicitly

assume that the covariance of mmvs with e is null for any portfolio p.

We assume that and s are known and give a simple methodology to get a maximum skewness

portfolio solution to problem 3.11.

• First, under the assurnption: Cov (e, mYT?Js) = O, compute the cost of =

proposition 3.5.

• Second, given the portfolio skewness arict expected return, compute c as folows: The dis

crirninant of equation (3.12) is

= 2( _)2 — (22 —i — c*)

Assuming that > O, this ecluation produces two solutions:

=
— (1 — or u2

= —s (1 —) + V
(3.13)

2m 2m

From (3.13),

2 * [ (1 — +
2

2 * [ (1 — 2) —
2

u2 (c , ‘) 2 or u2 (c ) (97)2
. (3.14)

If (s > O and 1 — > O) or (s < O md 1
—

< O), then according to (3.7), the

minimum variance portfolio is:

r
82(1 —p) —

u (c*,[12) = cnl7ar () + crVar (f2) + ciVar (1)
2

(3.15)
(2m)



ID

with,

n1 = 1/C (pt)

(12 = A1 —

(13 A3c*
— A4,

where A1, A2, A3 and A4 are known parameters. Equatiori (3.15) is eciuivalent to

[ (1 )
—

2
= afVar (pj + [A + Ac*2 — 2A1A2c*] Var (F) + (3.16)

(2m)

[A + Ac*2 — 2A4A3c*] Var (F3).

This equation can be rewritten in terms of A. There might be more than one solution to this

eqnation. Choose the solution A that yields a smaller variance and use this A to compute

c*. The saine methodology can he repeated if (s < O and 1
—

> O) or (s > O and

I —PIp < O).

• Once c* is computed, (3.16) gives the nbnimurn variance to prohlem (3.11).

In the next section, we illustrate tue portfolio selection and investigate empirically whether

Coi, (u, mm) o.

4. Portfolio Selection: Empirical Illustration

b give an empirical illustration of our portfolio selection approach, we need to know the

squared primitive assets cost. To compute this cost, we assume that the joint process of the SDF

and asset returns is lognormal. This distribution is flexible and allows for skewness. It is often

used to characterize asset probability models. For example, many asset pricing tests assume that

tEe process SDF—asset returns is conditionally joiutly lognormal. Diffusion models imply a locally

lognormal distribution. The next proposition gives the squared primitive asset cost when the joint

process of the SDF and asset returns is lognormal.3

3See the proof of proposition 4.1 in the Appendix.
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Proposition 4.1 Givra a stoch-astic discount factoi m. consider a set of N primitive assets. As—

saine that tue joint process (Log (ni) Log (R)) ottows a inuitivariate nonn.at dtstributon. thus the

cornponeitts ot ij are o the form:

E (ntR R1)

1ER.jRj

ERER

To gauge the empirical importance of scjuarect portfolio cost in portfolio selection, we collect

daily asset returns from the Datastream data base for the sample period frorn Januar 2002 to June

2002. This data set consists of die dail returns of four highlv liciuid stocks: General Motors. Cisco

Systems, Boeing arici Ford Motors. Over the sanie period, we extract the U.S. 3 moiith Treasury—

fui rate (risk-free rate). The estimated U.S 3 month Treasury-Biii expecteci return is 1.0195.

Table 2.1 reveals that Boeing has the lowest expected return and highest positive skewness, wliile

Cisco Systems had a negative skewness. \Ve use (3.6) to find the optimal portfolio. Figure 2.8

illustrates the Mean-Varianee—Cost surface anti the associated Mean—Variance-Skewness surface

2• Siicing the surface at anv level of squared portfolio cost. we get the familiar positiveiy sioping

portion of the mean—variance frontier. In the standard mean—variance analysis there is a single

efficient risky—asset portfoho. but in our setting. there are multiple efficient portfolios. The mean

variance-skewness surfaces reveals that the sciuared portfolio cost and the portfolio skewness have

a significant impact on the portfolio mean-variance frontier (this can be seen more clearly in Figure

2.10). Figure 2.10 shows how small changes in the cost of the sciuarecl portfolio return have a great

impact on the portfolio mean—variance froritier. This indicates that the cost of the sctuarcd portfoiio

will significantly impact the tangency portfolio. Notice that at any level of the squared portfolio

cost. we get the posit.ively sioping portion of the meail—variance frontier. But at any level of the

portfoho skewness, sec the M—V—S surface, we do not have the usual positively sioping portion of the

mean-variance frontier. This irituitively shows that our approach is not observationally equivalent

to standard portfolio selection uncler skewness. llowever. from proposition 3.6 our approach is

ohservationallv equivalent to standard portfolio selection under skewness. Figure 2.9 illustrates

the mean—variance-skewness surface when Goy (mms. t’) = 0. Through this Figure. at any level
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of the rnean variance frontier.4 Figure 2.11 ilinstrates the irnplied covariance of tIre SDF with the

residuals ohtaineclwhen regressing tIre squared portfolio on the portfobo itself. Figure 2.11 provides

empirical evidence that this covariance is rhiferent from zero and negative.

5. Conclusions and Extensions

hi this paper we derive a new variance bormd on anv admissible SDF that prices correctly a set

of primitive assets and qnacfratic payoffs of the sanie primitive assets. Our bound tightens the

IIJ bonnd by an adffitional component which is a frmction of the sqnared primitive asset cost ami

asset co-skewness. We give necessary and snfflcient conditions to get tire well-known IIJ bonnd.

Using tire Standard and Foors 500 stock index and commercial paper index froni 1889 to 1994, we

illustrate our volatility bound and show empirically that when the SDF mean is in tire neighborhood

of 1, our variance bonnd is twice as large as the ITJ bonnd. We also fomrd that tire SDF implied

from tire consnniption based models sndh as Epstein and Zin (1989) state non—separable preferences

model passes tlie f IJ bonnd for a particalar values of tlie relative risk aversion coefficient but does

not pass onr variance bonnd making the eqnity premium puzzle even more difflcult to solve.

Motivated by the dnality betwecn HJ bound and the Markowitz mean-variance analysis, we offer

a portfolio selection approach based on factors that span our minimum variance SDF. We show

that onr portfolio selection approach generalizes standard portfolio selection under skewness which

consists in minimizing the portfolio risk subject to tire portfolio expected payoff and skewness. We

use dailv asset returns to iliustrate empiricailv mn’ fmdings. To proceed to our illustration, we

assume tirat the process SDF-asset returus is jointlv iogriormai. This aliows us to compute tire

squared primitive asset cost and tlren illustrate our portfolio selection approach. Empirical resuits

suggest that the cost of tire squared portfolio return and tire portfolio skewness have a significant

impact on tire portfolio mean-variance frontier.

Since Bekaert and Lin (2004) and others use couditionai information to tighten tire IIJ hound. it

‘de Aihayde and flores (2001) use prohiem (3.11) lu illustrate the Meau-Variance-Skewness surface.
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woiild he of interest to examine how conditional information might he used to tighten onr variance

bonnd. In light of llansen and Jagannathan (1997), it appears natural to develop a SDF-hased

distance measure for asset pricing models under this higher—moments frainework. We leave these

issues for future research.
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6. Appendix: Proofs

PROOF 0F THEOREM 3.1. If rj = r, mmts (î?,Yï) collapses to the lU stochastic’ discount factor.

Let us assume that $ and assume that the minimum variance stodhastie discount factor

TTflVS (î, ) eau be deconiposed as:

Trim (n7J7) = + aF1 + bF2 + cf3

where.

fi =

F2 =
p++—ELp+fFi],

F3 = ?*_EL[p*Ifi,f21.

First.

Goy (rnmV5 ( j)
p+)

= cC ‘ou (Fi, = aVai (p1 )

Replacing p+ hy its expression (sec (3.3)). we geL:

Cou (mm 7) p+) = Em’n8 (ii, i1) p-
— Eriim ( ) fp+

= i’F’t—lEp.

Therefore,

1f 1t—ïiEp

— Va, (pi)

Second,

COL’ (mmus (‘) ,pj = aCov (F1 p+*) + (f2p++)

Replacmg p11 by its expression (sec (3.4)). we get

Cou (rnT8 (î,)
p++) Ernm (r,) — E,,1rnus (rï,) EP f 11 —



$0

Corisequeiitly,

aC’ou(Fy,p) +bC’ou(F2.p) = v’F1i —Ep11.

which irnplies

(v’ft — — aCou (Fi.p)

— (‘ou (f2.p)

T1iircl,

Cou (mtm”8
p*)

= aCm’ (F1 p*)
+ bCov (f2,p*)

+ cCou (F3,p)

Replacing p by its expression (see (3.5)), we geL:

Cou (m”'8 (,) p*)
= Emm” ( ) *

— = ‘ [r(2)]
1

—

Consecluently,

(r,’ [1(2)]
1

— fp*)
— oCor (F1, p*)

— bCou (F2. p*)

— Cot (f3,p*)

IL is obvions to show Chat the IIJ stochastic discount factor can be writtcn as:

= Ti + aF’ + 6f9.

This ends Lhe proof. •

PROOF 0F PROPOSITION 3.5. The linear regTession of r on r gives

Coe (7. 7.2)

= Er2 + (r — fr) + e

for any portfolio r iR. Therefore, the cost of Clic squarecl portfolio return is

Cor (r ,7.2)

c = iEr + (1 — TfEr) + Cor ,72rnUS)

li Cor (n’. ,1m US)
= U, have:

(‘ou (r r2)
c f,.2 + (1 —ïEr) (Ai)
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Then if = 1 and .‘j = O for j 1, equation (Ai) implies

=ER? + (1 —ER)
c (R

for j1
ar (Ri)

Fbr ‘j
. = and w O for i. anci h ). [f we decompose the Ieft hand side of (Ai),

we have

fm(R+%Ri) (A2)

= Em (R + R + 2RR1)

= [ErnR + EmR + 2EmRRj]

=

where

EmRR

\Ve also decompose the right hand side of (Ai) and eciliate the resuldng expression with (A2) Io

geL

= (ER + ER + 2ERR1) +

[i — (fR + ER1) ] Goy ((Ri + R) (Ri + R)2)

{Var (Ri) + VGT (Ri) + 2Gov (Ri, R1)] —

1
( +)

for j j. But,

= Ernr

/
= fmrms R)

f,11ms (2’R2)

= ,(2)’ f,11rnuf(2)
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Then,

CoL (r . r2)
c W2 = Er + (1 — Er).

Conversely, let us assume that ïy 7. We have,

* - mes 2
C = ‘In T13

= EmTm3,..’(2)’R(2)

=

But, we know that

Cor (‘r r2)
= Er + (1 — Er13).

Therefore.

Cou (r13, r2)
C — mEï +

Vor tr13
(1 — Er13)

But we know that:

= Er +
Cor (r13,r)

t — Er13) + Cor (y, rnrnv*)

Consecuently,

Cor (r13 r2)
Cou (mTi3, r) =

— ïiEr
— Va’r

(1 Er13) = O.

PROOF 0F PRoPosITIoN 4.1. Assume that the joint process (m. R) is lognormal. This means that

Log (m)
N

[m n mr

Log (R) [L,. mr r
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\Ve know that

EmR = 1 Vi.

Let compute

= EînRR1.

Therefore

Log(rnRR1) LogQn) + Log(Rj) + Log(R).

Let /L7 and u denote the first two moments of Log (rn) anci anci o denote the first two

moments of Log (Ri). As resuit,

l7j

exp [[1m + +t + + exp [Pi + ( + 2i; + 2m)]

= (Em1?) exp [Pi + (u + 2u1 + 2im)]

= exp + (u + 2jj + 2jm) + [Lm + exp [_m
—

= exp [[1m + + + + uim] exp [ (2u)] exp [_ttrn
—

= E(mR)exp [ exp
—

But E (mR1) 1. Consequently,

exp [ (2uii)] exp [_[Lm
—

n]

= exp [ (2ii)]

= exp [[ii + [L + (u + + 2i)] exp
—

exp [_
—

= [E(RiR)] []
— 1E(RiR)

—
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Table 2.1: Asset company retuin moments

Asset Portfolio Expecteci Variance Skewriess

Company Variable Retuin

General Motors 1.0011 0.2853e3 0.2835

Cisco System ‘2 1.0044 0.3938c3 —0.1241

Boeing 0.9999 0.3621e3 0.6637

Ford Motors 1.0049 0.3777e3 0.5045

Note: The skewness is measnred by the thirct central moment

divided by the cttbe of the standard deviat ion.
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Figm’e 2.1: SDF volatility surface froutier witlr a siugle excess returu: We use our approacli

to imply a Mean-Standarci Deviatiori-Cost Surface for Stochastic Discount Pactors using the excess

simple reti.trn of the Standard and Poors 500 stock index over the coimnercial paper. Annual US

data, from 1889 to 1991, are used to compute the SDF variance bound. The SDF feasible region is

ahove this surface.
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HJ Frontier fora Single Excess Asset Return
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Figure 2.2: HJ frontier with a single excess return: We use the IIJ approach to irnply a

Standard Deviation-Mean frontier for Stochastic Discount Factors using the excess simple return

of the Standard and Poors 500 stock index over the commercial paper. Annual data from 1889 to

1994 are used to plot this frontier. The SDF feasible region is above this frontier.
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Figure 2.3: HJ Volatility Froritier: We implv a Mean-Standarci Deviation frontier for Stochastic

Discount Factors using the return of the Standard and Poors 500 stock index and the commercial

paper . Annual US data, from 1889 to 1994 are used to compute the HJ variance bound. The SDF

feasible region is above this frontier. With CRRA preferences we vary exogenously the relative risk

aversion coefficient and trace out the resulting pricing kernels in this two-dimensional space. These

pricing kernels are represented by the points .
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Figure 2.4: SDF volatility frontier: IIJ represents the llansen and Jagannathan volatility fron

tier and Y represents our volatility frontier. For each c, we find r = ErnR2 and trace ont the

point (Pi, u (mm)8 (1, ri))) in a two-dimensional space. We also plot the point (Ernt+i, J(mt11))

where represents the SDF obtained in the investor optiniization prohiem with CRRA prefer

ences. We use the return of the Standard and Poors 500 stock index over the commercial paper.

Annual US data. from 1889 to 1991. are used to compute the SDF variance bounci.
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Figure 2.5: SDF volatility frontier: IIJ represents the Ilansen and Jagannathan volatility fron

tier and CY represents our volatility frontier. For each a, we flnd ïj = ErnR2 arrd trace ont the

point (, u (mtmVS (, n))) in a two-dimensional space. We also plot the point (Emt+i, u(mt+1))

where rnt+1 represents the SDF obtained with Epstein and Zin (1989) state non-separable prefer

ences. We use the return of the Standard and Poors 500 stock index over the commercial paper.

Annual US data, from 1889 to 1994, are iisecl to compute the SDF variance bound.
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Figuie 2.6: SDF volatility frontier: IIJ represents the Hansen and Jagannathan volatility fron

tier and CY represents our volatility frontier. For each c, we fincl ij EmR2 and trace out the

point (, o (mtm u (, ii))) in a two-dimensional space. We also plot the point (EmtHri, o(mti-1))

where rnt represents the SDF obtained with Gordon and St-Amour (2000) state clepenclerit pref

erences. We use the return on the Standard and Poors 500 stock index over the commercial paper.

Annual S data, from 1889 to 1994, are used to compute the SDF variance bound.
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Figure 2.7: SDF volatility frontier: IIJ represents the llansen and Jagannathan volatilit fron

tier and CY represents our volat.ilitv frontier. Foi’ each o, we find r = frnRf2 anc[ trace out tire

point (, u (m7’ (. ri))) in a two—climensional space. \‘Ve also plot the point (Ernt+i, u (mi f 1))

where mtt1 represents the SDF obtained with Melino and Yang (2003) state clependent preferences

witli constant EIS, constant /3.ancl state clependent CRRA. X\Te use the return of the Standard and

Foors 500 stock index over the commercial paper. Annual [S data, frorn 1889 to 1994, are used to

compute the SDF variance bounci.
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Mean-Variance-Skewness surface:Ou r approach
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Figure 2.8: Meau-Variance-Cost (M-V-C) and Memi-Variaice-Skewness (JVI-V- S) sur

faces: Given flic portfolio mean, and squared portfolio cost, et. wc solve probleni (3.6) and plot

in a f lirec-chrnensional spacc flic optimal porffolio (p.
et, u (pmvj) Then we vary exogenously

ji

and et and get tlie M-V-C’ surface. Wc then plot cadi optimal port folio in a tluce-dimcnsional

space: incan-standard deviation-skewncss (sec flic M-V-S surface).
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Figure 2.9: Mean-Variaa-ice-Cost (M-v-c) and Mean-Variance-Skewness (M-V-S) sur

faces: We assume Cov (mL9, L’) = O. Given the portfolio mean, jr, and squared portfolio cost, c,

solve problem (3.6) and plot in a three-dimensional space the optimal portfolio (p. c,
(panes)).

Then we varv exogenously p. and c atid get the M_V_C surface. \Ve thereafter plot each optimal

portfolio in a three—dimensional space: mean—stanclard cleviation-skewness (sec the M—V—S surface).
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Figrn-e 2.10: Mean-Variance frontier: We first plot Markowitz Mean-Variance (M-V) portfolio

froritier, then our Mean-Variance portfolio frontier (CY) for c =0.95 and 1.
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Graph 1: Our Approach Graph 2: Standard Approach
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Figure 2.11: The residuai price: For each portfolio p which belongs to the Mean-Variance-Cost

surface, t’i, see Figures 2.8 and 2.9, we plot within Grapil t the point Cou (rnT8, y) c*) where

represents the portfolio mean, c is the cost of the squared portfolio return and Cou (rnm’5. o)

is the covariarice of the SDF with the residuals obtained when regressing the squared portfolio on

the portfolio itself. Graph 2 represents this covariance when the standard portfolio selection under

skewness is used.
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$tate Depeiicïeiice iii FuiiciaiiieiitaÏs auci Prefere.iices
Explains the Risk Aversioii Puzzle
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1. Introduction

Recently, Jackwerth (2000) and Aït—Sahalia and Lo (2000) have prOpOSed nouparanietric ap

proaclies to recover risk aversion frmnctions across wealth states from observed stock arid option

prices. In a complete rnarket economy, which imphies the existence of a representative investor,

absolute risk aversion can be evaluated for any state of wealth by comparing the historical and risk

neittral distributions.

To obtain the historical distribution, Jackwerth (2000) applied a nonpararnetric kernel density

approach to a turne series of rettniis on the S&P 500 index. The risk neutral distribution is recovered

from prices on European eau options written on the SP500 index by applying n variation of the

nonpararnetric methoci introdiiced in Jackwerth and Riibinstein (1996). The basic idea of this

rnethod is to search for tue smnoothest risk—neutral distribution, which at the saine time explains

the option prices.

Using sirnmiltaneously option prices and realizcd returns, Jackwerth (2000) amnd Jackwerth arid

Rubinstein (2001) frnd estimated values for absolute risic aversion that are nearly consistent witli

economic theorv before the 1987 crash. llowever, for the post crash-period, Jackwerth (2000)

finds that the implied absolute risk aversion fnrnction is negative aronmncl the mean wealth level

and increasing for larger wealth levels. This empirical feature, called the risk aversion puzzle by

Jackwerth (2000). bas also been docrnnerited by Alt Sahalia and Lo (2000). Another way to express

this puzzling resnilt is through the pricing kernel across wealth states. A pricing kernel puzzle is

observed when the ratio of the state price density to the historical density increases with wealth [sec

Browim anci Jackwerth (2000)1. After looking at several potential explanations, ]ackwerth (2000)

cortclnmdes that these puzzling resnilts are rnost probably due to the mispricing of sorne options by

the rnarket.

In tIns paper, we propose another explanation hased on the existence of st.ate dependence in

preferences or in econornic funclarnentals. Garcia, Luger and Renault (2001) proposecl n general

pricing model where the pricing kernel clepencis on sorne latent state variables. observed only by the

investor. TIns phenomerion cnn be understooct in two possible ways. Eitlier as in Meino and Yang
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(2003), investors’ preferences are state dependent. Or, as in Garcia, Luger and Renault (2003) tLe

joint proeess of consumption and ffividends follows a Markov switebng reginie distribution such

that the eurrent regime is onlv known to the investors. In this paper. we use the models developed

in Garcia. Luger and Renault (2003) and Melino and Yang (2003) to generate artificial priees for

stocks and options. To recover the risk neutral distribution. we develop a simple simulation method

to ereate a bid-ask spread aroimd option priees and appl the sarne nouparametric methodology as

Jackwerth and Rubinstein (1996). The historical distribution is estimated based on a mixture of

lognormals. In our model, by construction, the risk aversion fuuctious are consistent with eeonornie

theory within cadi regime if we pool the data aeross regimes. However, as in Jaekwerth (2000), we

obtain negative estiuiates of the risk aversion ftmetion in some states of wealth. The priciug kernel

funetion aeross wealth states, calcrilated from data pooled aeross regimes, also exhibits a puzzle

even though this ffinction is deereasing withiu each regime. We therefore provide another potential

explauation for tic puzzles put forward hy Jaclcwerth (2000).

The remainder of tus paper is organized as follows. In section 2, ive present Jackwerths (2000)

approaeh for recovering the absolute risk aversion function aeross wealth states. lu section 3. we

build a utilit —based economic model with state dependence in preferenees and endowments and

describe how to simulate artificial option aud stock prices in this economy. In section 4, we recover

the risk aversion and pricing kernel ftmctions across wealth states.

2. fle Pricing Kernel and Risk Aversion Puzzles

In tus section, ive recall the puzzles put forward hy Jackwerth (2000) as well as the method—

ology used to exbibit these puzzles.

2.1 Theoretical underpinnings

lulder verv general non arbitrage conditions (Ilansen and Richard (1987)). the time t price of

an asset which delivers a pavoif at time (t + 1) is given hy:

pt E [7ntigti]. (2.1)
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where E [•1 denotes the conclitional expectation operator given investors’ information at tirne t.

Any random variable rni+1 conformable to (2.1) is called an admissible Stochastic Discount Factor

(SDF). Among the admissible SDFs, only one denoted by rn is a fnnction of available payoifs. It

is the orthogonal projection of any admissible SDF on the set of payoffs. If some rational investor

is able to separate her utility over current and future values of consumption:

U [G, C’] = u(C) + u (C+), (2.2)

The first-order condition for an optimal consnmption and portfolio choice will irnply that

coincides with the projection of on the set of payoffs. Therefore, through a convenient

aggvegatiou argument, concavity of ntility functions should imply that is decreasing in current

wealth.

Moreover, as shown by Hansen and Richard (1987), no arbitrage implies almost sure positivity

of rn(1. Therefore, m11/Etm÷i can be interpreted as the density fnnction of the risk neutral

prohability distribution with respect to the ldstorical one. In case of a representative investor with

preferences conformable to (2,2), we deduce:

_______

— u’ (CiE1)

—
E1u’ (C1+i)’

Therefore:

ni * 11fr’unogrn1 — U
(9 3)

— u’(C+1) -.

is the negative of the Arrow-Pratt index of absolute risk aversion (ARA) of the investor.

2.2 The puzzles

For sake of simplicity, it is convenient to analyze these puzzles in a fuite state space frarnework.

if j = 1, . . ‘ri clenote the possible states of nature, we get the density function of the risk neutral

distribution probability with respect to the historical one as:

1 = in state j, (2.4)
E1m111 p
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where p is the risk neutral probabulitv across wealth states j = 1. , n anci p is the corresponding

historical probahihty. Brown anci Jackwerth (2000) use formula (2.1) t.o empirically derive Lie

pricing kernel function from realized returns 011 the SNF 500 index and option prices on the index

over a post—1987 period. For the center wealth st.ates (over the range of 0.97 to 1.03 with wealth

normaiized to one), they fourid n pricing kernel function which is increasing in wealth. This is Lie

so-called pricing kernel puzzle.

As explained in section 2.1 above, the increasing nature of function (2.1) in wealth is puzzling

because it is akin to a convex utility ftmction for a representative investor, which is obviously

inconsistent with the general assumption of risk aversion. From (2.3), the ARA coefficient

actually be computed through a log-derivative of the pricing kernel. By using (2.4) we decluce:

ARA=_1t,t+1) =_z_% (2.5)
(C1) p

where p and p’ are of the derivatives of p and p with respect to aggregate wealth in state j.

Jackwertli (2000) observes that the absolute risk aversion fmictions as computeci from (2.5)

cframatically change shape around the 1987 crash. Prior to t.he crash, tliev are positive and de

creasing in wealth which is consistent with standarc[ assmnptions made in ecoflomic theory about

investors’ preferences. After the crash, thev are partially negative and increasing (sec figure 3 in

Jackwerth (2000)). This resuit is called the risk aversion puzzle, One component of it is tantamount

to the pricing kernel puzzle: ARA should be positive as the pricing kernel should be decreasing

in aggregate wealth. Moreover, even when there is no pricing kernel puzzle (positive ARA), there

remains a risk aversion puzzle when ARA is increasing in wealth. While the pricing kernel puzzle

is only observed for tue center of wealtli states, the risk aversion puzzle (imicreasing ARA) remains

for larger levels of wealth. Without any discretization of wealth states, Ait—Sahalia and Lo (2000)

documented similar empirical puzzles for i mplied risk aversion.

2.3 Statistical methodology

Several statistical methoclologies are possible Lo recover the historical distribution of future

returns (on tic underlying index) given current olies. As emphasized by Jackwerth (2000), the
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choice of a particular estimation strategy should not have any impact on the docnmented puzzles.

For instance, a kernel estimation will be valid under ver’ general stationaritv and mixing conditions.

While historical probabiiities P•j are recovered from a time series of underlying index returns,

risk neutrai probabilities p will be backecl ont in cross section from a set of obsenred option prices

written on the saine index. Concerning this issue, a pioneering work ivas Rubinstein (1994) who

recomniends to solve the foilowing quadratic program:

min Z (p — Pi)2

ZPN1, p>O,

Çt niax [0. S1 — Kjj, (2.6)

ji

= 50.

< Çt C for i=1 ni and b Sj Si,

where Ç (Ç7) represents the cali option bid (asic) price with strike price K. The hid and asic

stock prices are respectively 5b and 8a• In other words, the impiied risk neutrai probabilities p are

the ciosest to the prior pj that resrilt in option and underlying asset values that fali between the

respective hid and asic prices. As stressed by Jackwerth and Rubinstein (1996), this methodoiogy

has tire virtue that generai arbitrage opportunities do not exist if and only if there is a solution.

This remaric is stili valid when considering alternative cjuadratic programs based on other distances.

For instance, Jackwerth and Rubinstein (1996) put forward tire goodness of fit approach:

‘ (;
)2 . -

irnnZ (L)
Pi

while, following Ilaiisen and Jagannathan (1997), one may prefer:

/
ii

—

rninZ
‘

(2.8)
P.i
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since, with obvions notations, tire objective function (2.8) cari he scen as
—

Ilowever, Jackwerth anci Rubinstein (1996) observe that the implieci distributions are rather

inciependent of the choice of the objective function when a sufficientiy high number of options is

avaiiableJ

$ince we are to going to focus in this paper 011 a simulation exercise, we will choose 50 options

in cross section in order to be sure that the solution is determineci by the constraints (options and

imderiying asset values between bid anci ask prices) and not by the objective ftmction. In particular,

tire choice of the prior is immaterial and, as noticed by Jackwerth and Ruhinstein (1996), even a

pure smoothness criterion mdependent of any prior wonilcl do the job. They consider in particnilar:

min (p + Pi
- 2p)2 (2.9)

when the states j = 1, 2••• , n are ranked in order of increasing weaith. 1-Iowever, to remain true to

the traditiontal approach, we are going to use in the simulation section 4 the goodness of fit criterion.

Fnior risk nieutrai probabilities J5j will be computed, according to the flreeden anci Litzenberger

(1978) methoclology, from second orcler derivatives of option prices with respect to tire strike price.

Note that a necessary source of difference between and is tire ciscretization of the state space

performed to define p.

3. Economies with regime shifts

In tIns section, we construct economies with regirne shifts in endowrnents or preferences to

simulate artificial stock anci option prices.

‘They notice that “as few as 8 option prices seem to contain enough inlbr;nation to determine the general shape of

the iinplied distribution” ancl that “nt the extreme, the constraints themselves will cornpletely cletermine the solution”
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3.1 The general framework

Consider an European cail option with maturity T anci strike pnce K. A straightforward

multiperiod extension of (2.1) gaves it’s Urne I price as:

= E [mt+imt+2 (ST — K)+]
. (3.1)

Garcia, Luger and Renault (2001) provide a convenient set of general assumptions abollt the bi

variate process (mt+l which allow them to give closed-form formulas for the expectations

(3.1) while encompassing the rnost usual option pricing models (sec also Garcia, Ghysels and Re

naultQ 003)). The maintained assumptions are:

Assurnptioir Al

ï T17;e variables •) 1<T<T
are condionally indepenclent gwen the path U1 = (Uj)l<t<T_l

of a vector U of state variabtes.

Assumption Al expresses that the dynarnics of the retuins is driven by the state variables. It

is similar in spirit to common stochastic volatility models (the stochastic volatility process being

the state variable) when standardllzed returns are assumed to be indepenclent.

Assumption A2

(mi,) does not Granger-cause the state variabtes process (U1)

This assumption states that the state variables are exogenous. For cominon stochastic volatility

or hidden Marlov processes, such an exogeneity assumption is usiially maintained to make the

standard filtering strategies valici. It shoiild be noted that this exogeneity assumptiori does not

preclude instantaneous causality relationships such as a leverage effect.

Assumption A3 i7ie conditionat probabitity distribution of (10g mt+ilog) given u’ is

a bivariate normal

log Tt.÷1 4 11Tflt f nt rr?3t

H
2log — \ /1 J \ Ornst Ost
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Assumption A3 is a very generai version of the mixture of normais model. A inaintaineci assumption

will be that investors observe U at time t, so that the conditioning information in the expectation

operator (3.1) is:

I = u[m-, Sr, U, T < t]. (3.2)

lii our simulation exercise, the mixing variable U4 will be a two-state Markov chain with a

transition matrix:

P00 1
— P00

(33)
1—Pn Pli

liideed, following Garcia, Luger and Renault (2001), a general option pricing formula cari be stated

for any Markov process (Ui) conformable to Ai, A2 and A3.

Proposition 3.1 Under assumptions Ai, A2 and A3

= t.(Xt) = {rns (t, T) (di(:rt)) — e ((12 (x))}

where t = iog KB(.T)’ B (t, T) = E1 fl mT+1) is the ti?ne t price of a bond mnatur’iig ai time

T, and

=

t,T 2 J1 3(1, T)

c12 (ï) d (ï)
— tT,

—2
t,T —

and

(t,T) =

Qrns(t,T) (t,T) exp (‘msr+i) E[UT]

As explicitly anaiyzed in Garcia, Ghyseis and Renault (2003), Ibis general option pricing formula

encompasses rnost of the common pricing formulas for European options on eciuity.
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In order to consider economicaliy meaningftil regime shifts in the SDF, it is convenient to start

frorn a two—factor model as produced by Epstein anci Zin (19$9). Their recursive utility frarnework

leads thern to tite foliowing SDF:

C 1 1—7

7fl = (‘) ] [1+1]

(3.1)

where p 1— , u is the elasticity of intertemporal substitution and with (1 — n) the index
u p

of relative risk aversion. With a two—states mixing variable U+i, iog r’i-i appears as a mixture of

two normal distributions in two cases. In the first case of state dependent preferences, preference

parameters are functions of U1-1 while in the second case, there are regime shifts in fundamentals

joint probability distribution of (10g 1,10g R70+i) is a mixture of normais.

The case of state dependent-preferences has been analyzed recently by Mehno and Yang (2003)

while Carcia. Luger and Renault (2001, 2003) focus on shifts in ftrndamentals.2

3.2 State-dependent preferences or fundamentals

Let us first assume as Mehno and Yang (2003) that tbe three preference parameters 3. n. p are

ail state—dependent ami then denoted as 5 ((‘i) , n (Ui) and p(Ut). While these values, known by

the investor at time t, demie her time t utility level, she does not know at thas date the next coming

values 5 (U1) n (Ut+1) and p(U+i). Therefore, the resulting SDF willl be more complicated than

just replacing n, 5 and p in (3.4) by their state dependent value. Melino and Yang (2003) show

that the SDF is:

p(V1) 7(Ut)
a(U) ajfl

rnt+1 5 (Ut) R’ pP(½1) p(Ut)
(3)

where (D,.)
=

and P is the time t price of the rnarket portfoho. \X’hen 5 (L’,.). n ((‘5.

p (U,.) = p (U,+1) are constants, this pricing keruel reduces to the Epsteiri and Zin SDF (3.4). By

defluition:

Pt-tl + C+l
Rinr÷i

=

2See aise Gordon and Fit Amour (2000) for an alternative way te introduce state dependence in preferences in

CCAPM framnework.
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while the unclerlying asset return is 8t1 --D11 Asset puces P aiicl S are then cletermineci as

discounted values of future cUvidend fiows by iteration of the following pricing formulas:

= Et [rnt+1 (+i + C+i)] and S = E [rnt+1 (S+i + D+i)]. (3.6)

Garcia. Luger and Renault (2001) show that assumptions Al arid A2 are implied by similar

assumptioirs stated for the joint process Assmnption A3 will then also he implied by

a similar assump tiorr about ftmclamentals:

Assuinption A3’: The conditional pmbability distribution of (10g, iog given u’

is a bivariate normal

1 c÷1 t \ t 2og—-—
U-’ —s N t j cTx+1 ox+i

D1log —- ) \ uxy,t+y

Proposition 3.2 bellow nests the resuits of 1’vlelino and Yang (2003) and Garcia, Luger, Renault

(2001) in a common setting.

Proposition 3.2 : Under assumptiuts A], AS and AS, with mt+1 given by (3.5), the conditionat

pmbabitity distribution of (Lornt+i, log given uf1 is jointty nonnat tuit/i mean and variances

de[ined in the Appendix.

In the simulation exercises conducted in section 4 we consider first regime changes in funda

mentals and then regime changes in several configurations of the preference parameters in order to

disentangle the respective roles of fundamentals and preferences. The general option pricing for

mula, which can also accomodate the case where both furidamentals and preferences change with

the regime, is given in proposition 3.3 below:

First, it is worth noticing that the equilibrium moclel cliaracterizes the asset prices P auci S

as:

= \ (ufl = [÷ (1 + \ (L/t+i)) i]

= (tïf) = E [rnt+i (1 + (U1))
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Tiien proposition 3.3 surnrnarizes the option pricing implications of propositions 3.1 and 3.2 in

the simplest case of a unit time to maturitv (T=t+1):

Proposition 3.3 Under (Ai), (A2) and (A3) [lie EnTopean option price is given by:

= E, [StQx (t. t + 1) (tti) — KB(t. f + 1)

where,

L FStQx (t.t+I)1og
K(t.t+1) J + (u?’+i). d di

— (+
-

with,

É (t, t + 1) = n (Uf’) exp ([ (Ucfl) — 1] jt + [(Ut1) — 1]2

Q- (t, f. + 1) = É (t. t + 1) b+1
((fl) exp ([ (U+1) 1] PVYXTJYT) E, [t1U1]

and,

LL1
o (Ut)

1—
(Un’) = B (U,) P(Ut) (1 — t3 (U,)) p(Uti) ,\ (Ui) p(Ut) [1 +À (tï)]

btfl — 1 + (rJ)
t

— (tJ)

PROOF. The proof is similar to the proof where c (U,), 3 (U,) and p (Ut) are constants, which can

be founci in Garcia, Luger and Renault (2003).

If the preference parameters c, /3, and p are constants, proposition 3.3 collapses to the Garcia,

Luger and Renault (2001) option pricing formula. Note that the definition of ,\ (Uf) and (Uf)

is akin to

EtQyy(t,t+1) 1, and E,É(t,t+1) =B(t,t+1).
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3.3 Simulating option and stock prices

First. we calibrate our econornic models with regime shifts in die pararneters describing pref—

erences or economic fundamentals. L the case of state dependent ftrndamentals. we choose values

that are close to those estimated in Garcia. Luger and Renault (2003) where preference parameters

are not state-dependent. For state—depenclent preferences. we disturb these particular values. Ah

values are exphicitiy given in the figures. We then use proposition 3.3 to compule option prices

with different strike prices. To use the methodology describecl in (2.7), we neecl to develop a simple

technique to create bid-ask spreads around die simulated prices. This is clone in tluee steps:

• Step 1: Given the stock price, S, we find a bid-ask spreacl sp by cfrawirig in a lognormal

distribution:

log (sp) ‘ N (p, 4),

where the paranieter p and are ehosen exogenouslv.

• Step 2: Given sp. we draw a real mmiber r in the censored normal probability distribution

TV(y u) given O <r < sp.

• Step 3: We then compute the stocic hid and asic prices:

ask price = St + (sp — 3),

bici price =
— 3.

We apply a similar simulation methodology to create bid and ask prices for options. Based on

these bid and ask option prices ancl stock prices. we recover the risk neutrai probabihities using

the nonparametric methodology described in section 2. It is important to note that onr Monte

Carlo approacli gives us the historical return distribution. Therefore, we do not need to use any

nonparametric estimation technique to recover the historical distribution.
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The whole procedure nmst be applied foi’ each state U1 e {O, 1} of the economy. At date t.

given the state variable value, U1 E {O, 11 , we compute the eau option prices:

t (U1) = E [StQxv (t, t + 1) (ci1) — KB (t., t + 1) (c12) U1]

and perform steps 1, 2 and 3. We then use ecluations (2,4) and (2.5) to infer the conclitional absolute

risk aversion and pricing kernel ftmctions across states (given the state variable U1).

By construction, these cpiantities are computed from probabilities p (U1) and p (U1) which

explicitly depend on the actual value ofthe latent state U1. By constrast, a statistician who does not

observe the state and performs a nonpararnetric estimation of the stationary historical distribution

which does not account for unobserved heterogeneity, will estimate marginal probabilities pj that

are averaged across states:

p =P(Ut=O)p1(O)+P(Ut= 1)p(l). (3.7)

As far as risk neutral probability p are concerned, the issue is less clear. If we could be sure

that not only the agents have observed the states U1 but also that the statistical observation of

asset prices is in synchronized with observations, then the p computed from (2.6) and the real

data should be p (U1). Ilowever, any synchronization problem may push the implied p towards

their averaged values

p =P(Ut=O)p(O)+P(Ut= 1)p(l). (3.8)

For reasons made explicit below, we choose to compare the implied risk aversion and pricing

kernel computed state by state from (Pi (U1) , p (U1)) with the ftilly marginalizeci 011es, that is

computed from marginalized values (Pi. given by (3.7) and (3.8) rather thari using the possible

approach (Pi p (U1)).

4. Empirical Resuits

Without loss of generality, we treat the cases of state—depenclence in funclamentals and in preferences

sepa;’ately to illustrate our results.
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4.1 Regime shifts in fundamentals

\Ve flrst assume that only the fundamentals are affected by the latent state variables. Based

on the prices generated witb the procechires descrihed in the previous sections, we follow the

methodology descrihed in section 2 ami recover the risk aversion and pricing kernel ftmctions across

wealth states. ihe first graph in Fig-rire 3.1 reveals that the nnconditional pricing kernel increases

in the center wealth states (over the range of 0.9 to 1.1). This feature 55 higlilighted in Jackwerth

and Brown (2001) as the kernel pricing puzzle. We nse the terrn irncondlltional to ernphasize that

the pricing kernel hmction across wealth states is computed using marginalized probabilities given

by (3.7) and (3.8). Also around the center wealth states, the nnconcbtional absolute risk aversion

function is negative as in Jackwerth (2000). llowever, within each regime, the conditional pricing

kernel and absolute risk aversion frmnction across wealth states are perfectly decreasing fmictions of

the aggregate wealth: the puzzles cisappear. When regimes are (or not) observed, we confirm that

the resnlts do not c[epend on the particular distance measure used. Figure 3.2 confirms the results

when regimes are not observeci. The same features are exhibited with the alternative Ilansen and

Jagannathan (1997) distance measure (2.8).

4.2 Regime shifts in preferences

We also consider state dependence in the investor’s preference parameters and investigate

several state-dependent preference cases. First, we assume a constant relative risk aversion (CRRA)

and a state-dependent elasticity of intertemporal substitution (FIS). Second, we assume a state

dependent risk aversion aiid a constant FIS. Tlurd. we assume cyclical CRRA and FIS and finafly

we assnme state-dependent time preferences. For alI combinations of state-dependent preference

parameters, we get very similar resuits: both the unconchtional pricing kernel anci absolute risk

aversion frmction exhibit the aforernentioned puzzles while the puzzles disappear within each regirne.

Therefore. we only report the resuhs for state—dependent relative risk aversion and constant FIS in

Figure :3.3. Around the center wealtlm states. we observe an increasing marginal utility on the left

panel while risk aversion shown in the right panel falls into negative values, Figure 3.1 confirms
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tbese resuits with the alternative distance measnre (2.8).

4.3 General comments

The two above examples of regime shifts in fundamentals or in preferences lead ns to the

same general conclusion. While implied risk aversion and implied pricing kernel computed from

marginalized probabiilties (Pi’ ;) display the same paradoxical featnres as in

Lo (2000) and Jackwerth (2000), it turns out that taking into account unohserved heterogeneity

through the state dependent probabilities (Pi (tIf) ,p (Ut)) solve the puzzle. In other words, our

resuits lead us to think that inay be investors ntility frmctions are not at odds with traditional

economic theory, bnt investors observe a latent state variable which artificially creates a paradox

when it is forgotten in the statistical procedure. As already mentioned, full observation (of states)

by agents, with perfect synchronization with our observation of option priees may lead to use

probabilities (Pi’ p; (Ui)). The implied risk aversion anci pricing

snch mixed probabilities appear, according to a complementary simulation stnd available upon

request, even wilder than the ones produceci by marginal probahilities (Pi’ r;). Since the latter

look more conformable to the empirical evidence put forward by Jackwerth (2000), we have chosen

to focns on them in this paper.

5. Conclusion

This paper investigates the ability of economic models with regime shifts b produce and

solve the risk aversion and the pricing kernel puzzles put forward in Ait-Sahalia and Lo (2000) and

Jackwerth (2000). We show that models with regime shifts in fundamentals or investor’s preferences

can explain and rationalize these puzzles. The absolute risk aversion and pricing keruel functions

extracted from the sinmlated prices in these economies exhibit the same puzzling features as in

the original papers and are inconsistent with tire usual assmuptions of decreasing marginal utility

and positive risk aversion. llowever, within each regirne, the absolute risk aversion and pricing

kernel functions are consistent with econornic theory: the investor utility is concave anti her risk
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aversion remains positive. In other words. investors’ behavior is not at odds with eeononiie theorv

bnt depeixis on sorne factors that the statistician does not observe. ‘Ne have also shown that this

conclusion is robust to the cboice of tire statisticai estimation procedure.
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6. Àppendix: Proofs

PRoof 0f PRoPosITIoN 3.2. Rearranging equation (6.9) for the priciiig kernel in Melino and

Yang (2003)), one obtahi:

p()

______

—1

Tflt1 H (U,)
(c+i) Pt+1)] RP1) f3P(Ut+f) ptVt)

where y (U,) = and Pt is the equflibrium price of the market portfolio at time t. If p (U,)

p(U,+y) and 13 (Ut) o (U,) . p(U,.) are constants, this pricing kernel rectuces to the Epstein ami

Zin (1989) pricing kernel. Let (U,) = - clenote tue price-dividend ratio and \ (U,) = Clic

price-earning ratio. The return on the market portfolio cari 5e written as

r +c,1 — (\ (U’) + 1 (C,1
I?,j_y — — i

Pt \\ \(U,) )\cf

and the stock return:

— (U1) Dci
5, — p(U,.) D,

Let us assume Chat Clic conditional probability distribution of (10g iog given U’ is a

bivari ate normal:

[ 10g ] ,, [( i-’x+i ) ( °-‘‘ )] (6.1)
1og— Pyt XY.t-I-1 0Yi

with U1 = (UT)1<-T<,÷1. Taking die logarithm of mt+i, we get

1ogm,i = (U,)1og13(U,)+
_1)

10g
(\ u+L)+l) +

t o(U,) a(tÏ,)

r — r J Ïog(\(Ut)Gt) +
p (Li,.) p(t’) i

[(U) ((Ut
fl(Ut))

+ ( n(U,)
_i)] log (‘).p (L’tfi) p (Lqi) (t

The logaritiirri of the stock ietru’n is

iog% =iogt”) +log2a’.
5, (U,) D,
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Conseciuently,

log m1. log‘
A+B

S11 D1
log—— log—

where A (ai, 02)’ with

\ U’’
al (U,) 1og (U,) + ( (LI,)

- p(Uf ) iog (‘ ‘) ) +

f n (U,) û(LJ,)’
j — jlog(À(UjCi).
\p(U,i) p(U,.) j

p (L1)
= log

p(U,)

and B is a diagonal matrix with diagonal coefficients:

b1, = [7(u) ((LJt)
— fl(Ut))

+ ( a(LJ,,)
—

p(U,+,) p(U,i)

1)22 = 1.

Using (6.1). it is straightforward to show:

10g
/U’4 N [pj. Z]

10g

with

[L

\

Z 3 X,-i - --1 t-.-1

2
\

This conipletes the proof. •
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Figure 3.1: Absolute Risk Aversion (ARA) and Pricing Kernel (PK) functions with state

dependence in fundamentals. The preference parameters are: fi = 0.95, a = —5, p = —11.

The regime probabilities are: Pli = 0.9, P00 = 0.6. For the economic fundamentals, the means

of the consumption growth rate are = (0.0015, —0.0009), and the corresponding standard

deviations ay1 = (0.0159, 0.0341). For the dividend rate, the parameters are = (0, 0)

= (0.02, 0.12). The correlation coefficient between consumption and dividends is 0.6. The

number of options used is 50. The number of wealth states is n = 170. The 1eR-hand panel contains

the conditional and unconditional PK fimctions across wealth states. The right-hand panel contains

the conditional and unconditional ARA functions across wealth states. The conifitional ARA (PK)

function is the ARA (PIC) function computai within each regime. The unconditional ARA (PIC)

fimction is the ARA (PIC) hmction computed when regimes are not observed.

Condftionol cnd U”co-.drfloncl < conitrv,,o, ond UcondWonol ARA

Return Return
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UncondWoncl ARA

Figure 3.2: Absointe Risk Aversion (ARA) aud Pricing Kernel (PK) functions with state

dependence in fnndamentals: The preference parameters are: = 0.95, ù = —5, p = —11.

The regime probabilities are: Vii = 0.9, pyj = 0.6. For the economic fundamentals, the means

of the consumption growth rate are py.÷1 = (0.0015, —0.0009), and the corresponding standard

dex4ations Xt+i = (0.0159, 0.0341). For the dividend rate, the parameters are = (0,0)

= (0.02, 0.12). The correlation coefficient between consumption and dividends is 0.6. The

number of options used is 50. The number of wealth states is n = 170. The 1eR-hand panel contains

the unconditional PK function across wealth states for the Goodness-of-fit and the Hansen and

Jagannathan (1997) distance measures. The right-hand panel contains the unconditional ARA

fonction across wealth states for the Goodness of Fit and the Hansen and Jagannathan (1997)

distance measures. The unconditional ARA (PIC) fonction is the ARA (PIC) function computed

when regimes are not observed.

UnconoPttoncl Prorg Rernel

1.0 1.1

Return Re tu r n
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Figure 3.3: Absolute Risk Aversion (ARA) and Pricing Kernel (PK) functions with

state dependence in preferences. The preference parameters are 3 = 0.97, c = (—7, —4.8),

p = —10. The regime probabilities are Pli = 0.9, pjtj = 0.6. For the economic fundamentals, the

means of the consmnption growth rate is = 0.018 and the standard deviations °Xt+i = 0.037.

For the dividend rate Y4, the parameters are /i = —0.0018 = 0.12. The correlation

coefficient between consumption and dividend is 0.6. The number 0f options used is 50. The

number of wealth states is n = 170. The left-hand panel contains the conditional and unconditional

PK finictions across wealth states. The right-hand panel contains the conditional and unconditional

ARA funet ions across wealth states. The conditional ARA (PK) function is the ARA (PK) function

computed withiri each regime. The unconditional ARA (PIC) fiinction is the ARA (PIC) function

computed when regimes are not observed.

Unccndtcioncl ond Co,,dWono I UncanditionOl Ond Conditionol ARA

Return Return
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Figure 3.4: Absolute Risk Aversion (ARA) and Pricing Kernel (PK) functions with

state dependence in preferences. The preference parameters are 3 = 0.97, c = (—7, —4.8),

p = —10. The regime probabilities are Fil = 0.9, P00 = 0.6. For the economic fundamentals, the

means of the consumption growth rate is = 0.018 and the standard deviations = 0.037.

For the dividend rate Yt+i, the parameters are = —0.0018 = 0.12. The correlation

coefficient between consumption and dividend is 0.6. The number of options used is 50. The

number of wealth states is n = 170. The left-hand panel contains the imconditional ARA function

across wealth states for the Goodness-of-fit and the Hansen and Jagannathan (1997) distance

measures. The right-hand panel contains the imconditional ARA function across wealth states for

the Goodness of Fit and the Hansen and Jagannathan (1997) distance measures. The uiiconditional

ARA (PIC) function is the ARA (PIC) fimct.ion computed when regimes are not observed.
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1. Introduction

Since Black and Scholes (1973). the empirical option pricing literature about Em’opean options

on equity affords at least two kinds of extensions. First. whule keeping the Black —Scholes and

Merton continuous time paradigm, some authors have focused on problem surrounding the volatilitv

parameter. \Vhile its is assumed to be constant in Black and Scholes initial geonietric Brownian

motion model, Iluil ancl WThite (1987) considers that it actuallv follows a stationary process the

current value of which belongs to the investors’ information set. hi this setting, the option price can

be written as an expectation of the Black-Scholes price where the volatility parameter is replaced

by the square root of a time average of the squared volatility process over the lifetime of the

option and the expectation is conditional to the current value of the volatility process. Renault

and Touzi(1996) and Renault (1997) have shown that this setting implies a synuuetrie volatility

smile when implied Black and Scholes (BS) volatilities are backed ont from observed option prices.

Several extensions inchiding leverage effect, multi—factors volatility process. long memorv or jumps

have addressed Pie issue of fitting better the observed volatilitv surfaces along the two dimensions

of strike price and maturity. Irrespective of the detailed specification, a coimnon fea turc of all these

option pricing moclels is that there are some latent volatilitv factors the cmrent value of whidb is

assumed to be known to investors while not obsen’ed by tbe econometrician.

A second strand of literature, following the Cox, Ross and Rubinstein binomial reinterpretation

of Black and Scholes, replaces the continuons time setting by a binomial tree. Generally speaking,

the lattice kind of approach is more flexible than the diffusion model to accommodate complicated

payoffs schedules. 0f course, the simplest binomial tree is nothing but a discrete tirne approximation

of the geometric Brownian motion and the states can be calibrated to en sure that the lattice option

pricing model converges towards Black and Scholes when the time inten’al between two binomial

draws goes to zero. Moreover, Boyle (1988) and Kamrad ami RitcNcen (1991) have shown that

by considering multinoniial trees. one can accoinmodate higher dimensions of uncertaintv: markct

iucompleteness as captm’ed by a latent volatflity risk that prechides the perfect hedge of an option

contract bv replicating it with a portfolio 011 tlie underlving asset and the risk—free asset can also
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be captured in a lattice framework with trinomial trees. llowever, the trinomial approach differs

from the coutinuous time stochastic volatility nioclel a la 1h11 and White (1987) by the fact that

it crases the informational role of option prices as revealing tbe market assessment of unobserved

current volatility

The niain goal of this paper is to bridge dûs gap. We will show that this is ail important

issue. not onhr for the econometric use of volatility assessrnents backed out from option prices. but

also for option pricing and hedging itself. Actually. wbile our lattice based option pricing model

will not chifer from the trinornial one over one period, the dilference will maLter as soon as one is

interested in pricing longer term options. The basic intuition is the following: if investors know

sornething about the latent state that the econometrician does not know, they taire advantage of

this knowledge to forecast the future state hetter thau the econometrician does and the resulting

option prices are influenced by this knowledge.

To formalize this idea. we refer to die Markov switching ilterature do descrihe the latent uncer—

taintv hv a two—state Markov chain. When Ibis binomial state interacts with a binonùal tree. it will

produce a lattice which is at first sight observationallv equivalent to a trinomial or quadrinomial

lattice. But over to periods, there is an important clifference: when the investor knows the current

realization of the state, he knows which binomial tree among two possible ones will be ch’awn. Over

oue period, this always demies a world with three or four possible sates. But, over two periods, the

persistence of the Markov chain can be exploited to maire better assessments of the probabilities

of the varions branches of the tree. This is the reason why the maintained assumption that the

investor can eventualiy observe the realization of the state is important. Note tbat we are not die

first to assume that the state is known to imestors but not to econometricians. This is of course

the case with state dependent preferences ( Melino and Yang (2003)) and this is also the setting

of option pricing models considered by Garcia , Luger and Renault (2001), (2003). Generally

speaking, the motivation behind Markov switching regimes is that when thc economic environment

changes. the data generating process of the related financial variables also changes. One example

is that the period of high volatility of the 1S short term interest rate coincicles with change in tue
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economic and political environments due to the October 1987 stock market crash, sec for instance

Ilarnilton (1990) ancl Cray (1996). Latent state variables moclels seek to capture such cliscrete

shifts in the hebavior of the financial variables by allowing the parameters of the nnclerlying data

generating process to take on difl&ent values in different time periods. While several papers have

afready adffi’essed the issue of option pricing with Markov switching regimes, see Bollen (1998)

among others, it turns out that the foeus on the information content of option prices lias still not

be snfficiently put in the general framework of lattice pricing as it has been clone for continuons

tbne models. This paper bridges this gap.

The paper makes three contributions. First, we revisit Boyle’s (1988) option pricing approach

with the stochastic discmmt factor (hereafter SDF). By a stochastic discount factor, we mean a

random variable that can be used to compute the market price of an asset today by discounting

payoffs differently in the futures states of the world. Withont building any replicating strategies,

we show how the SDF can be nsecl to clerivc the underlying risk neutral probabilities across wealth

states. To do this, ive use a fmiclamental valuation ediuation

Emg = ii-,

where g is the payoff of a traded derivative, ir is the price of g and ni is known as a stochastic

discount factor [sec e.g., Hansen and Richard (1987)]. The nnderlying asset risk nentral prohabilities

derived with a SDF coincides with the Boyle (1988) risk-neutral probabilities when the difference

between the underlying historical and risk-nentral variance is null. We term this dhiference the

risk nentral variance premium. This premimn can be intuitively interpreted as the market price of

variance risk. Cuo (1998) provides an empirical investigation of the risk-neutral variance process

and the market price of variance risk impliecl in the foreign-currency options market. Assnming

that the joint process of the asset return—SDF is lognormally distribnted, this premium is not mill,

we show that the risk neutral probabilities are sensitive to small changes in the risk neutral variance

prenihmi.

Second, we clevelop a lattice trinonnal tree to hanclle the situation in which the payoff from

clerivatives is affectecl by one latent state variable tbrough the nnclerlying asset (it is possible to
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extend this work to situation involving a higher mrnll)er of state variables). Conditionaliy on this

variable. ve also assume (foi- simplicity) that the underiving asset follows a two—point jUlflp pr0ccS.

W’e then provicle the wav to price derivatives and give uncler what conc[it ion (s). our pricing approach

is observationally eciuivalent to Boyle (1988) option pricing approach. We. thereafter. extend

pricing approach in twcperiod (we have tlnee dates. 0, 1 and 2).

The plan of the rest of the paper is as follows. Section 2 of the paper clescribes Bovles (1988)

approach to getting the rnicterlying risk—ïieutral probabiilties across wealth states and shows how

these probabilities cnn be obtained in a stocliastic discount factor framework. We, thereafter,

propose a trinomial tree with state variable ami sIiow (in one-period) that this tree is ecluivalent to

Boyle’s (1988) trinomial tree. Section 3 of the paper extends the resuit of Section 2 in two-periocl

and investigate under what conditions the TTSV is eciuivalent to Boyle (1988) trinornial tree. The

last section concludes the papei.

2. One-Period Tree

In this section, the underlying asset follows n three—point jump process. Using this assumption,

we characterize the structure of the SDF and clerive the underlying—asset risk—neutral prohabilities

across wealth states. We, thereafter, propose an alternative trinornial tree where an unobservable

state variable affects the underlying process and show that this tree is ohservationally equivalent

to Boyle’s (1988) trinomial tree (hereafter BTT).

2.1 Revisiting the Boyle trinomial model with a SDF

Over n srnall time inter-val, Boyle (1988) approxirnates the underlying return process by a three

point jump process:

= tt1s + + ct1s. (2.1)
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with u > cL Without loss of geirerality, we assmrre that f = O. Tire underlying probabilities across

weaith states are represented by:

iVIouc-s Asset Vatues Pr obabtiities oj Events

Up u.S Pi

horizontal P2

DOWn (l.5t P3

The probabilities of events Pi P2 and p3 cari be coinputed if the underlying expected retiirn and

variance are known. Let p p and p represent the probabilities of events in a risk neutral world.

Boyle (1988) imposes three conditions to solve for these probabilities in terms of u anci other

variables:

(j) the nisk neutral probabilities sum to one,

(ii) under the nisk neutral world, the rnean of the dliscrete distribution, p,, is eclual to the mean

of the contimtous loguormal distribution:

E [] = i, anci

(iii) under the risk neutral world, the variance of the cliscrete distribution, = ar , is

eclual to the historical variance, ?, of tire contirruous logiiormal distribution

So that the first two moments of the variahle’s retmn implied by the lattice match the first two

moments implieci by the unclerlying distribution. Boyle (1988) uses these equalities to compute the

risk-neutral probabilities across weal.th states:

*
tu?+o2_o)u_(o 1)

= (u Ï)(u2 1)

*
(2 2

o) u2 -u3(/i— t) ( 9
— (i fl(u2 -1) ‘

1
— p —

p.

Therefore, to compute the price of clerivatives in BTT, we need the unclerlying historical variance

(o). Before we stress the implications of this restriction when vahting clerivatives, we give an

alternative way to price derivatives.
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Consider a derivative, of which payoff is g (S+). This payoff is quaciratic in the underlying—

asset because the uriderlying-asset follows a three—point jlirnp process as specified in (2.1). \‘Ve

rewrite this payoff as:

g (S-ri) = Yo + yiS11 + y2S1,

where, g, gi, ancl 92 are functions of the information set that investors use in buying or selling

derivatives at date L. 0f course, tue coefficients go, gi, and g are solution to:

1 uS1 u2S go g (U.St.)

1 S. 5? g’ g (Si.)

1 ct.St d25’? g2 g (ci.S)

According to the llansen and Richard (1987) frarnework, the price of g (S) is:

= E [rnt1g (5+i)].

where rny represents the SDF. V’.ïe. therefore, rewrite this expression as:

E [mig(St+i)], (2.23)

with m7 1 = E [mt+1 hsing either or mt+1 leads to the sanie pricing formula. sinc’e

E [(mt — m1) g (S+i)] = 0.

The random variable rn eau 5e interpretect as a $DF. Titis SDF follows a three-point jump

because the underiving—asset also follows a three-point unip process. Thus, it seems reasonable to

write rn as a ciuadiatic ftinction in Sti:

= a* +b*5t+l +c*S?+i. (2.1)

From equation (2.4), the coefficient c’ could 5e interpreted as a skewncss pararneter. Ilarvey

anci Sidclicgie (2000). Dittmar (2002) among others demonstrate that a ciuadratic SDP introduces

skewiiess in asset pricing. Tiiev show that asset skewitess (co_skewriess) is an Hportant factor that

explains asset expected returns. For instance, Ilarvev and Siddiciue (2000) show that investors are
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willing to accept negative expecteci return preseixe of higli positive skewness. Expression (2.4)

shows how tEe skewness preniirnn enters the trinornial trce. Ilowever, expression (2.1) eau be used

to price oiilv derivatives of SjfY. Substitirting g (S+) in (2.3) gives

go (1 + rj) + giS + g2E [rniS?+i]. (2.5)

with p. 1 + r1, li is the risk free rate. For sake of notational convenience. we use the foflowing

notation

it * 2 ]_ 2
kit j’1t-i- 1-’t+1j —

where the pararneter g eau be rewritteu as:

g = (Ern’) E
[Eni ‘] = (1 +rf)

+ (1 + rj),

where the specification of the risk—neutral measure dQ through the SDF change of measure is

ctP. ctP represents tEe historicaÏ measure. 1f (p. p) cÏenotes the solution to equations

1 (p*tt5t+p*fL5+(1 —p—p)8t)
1 + ij

and

= 1 ( (i.St)2 +p (cLS)2 + (1 *) (St)2).
1 + 7

ecluation (2.5) eau be rewritten as

(2.6)

where E (g) represents the expectation of g with respect to tEe uncleriying—asset risk-neutral prob

abilities (p<,

*
—

—,,—

)t—
—

1)

— (u 1)(u2 1)

*
— (a2±,2_p_)u2_ u3(p 1) 7)P3
— (u i)(u2 1)

= 1
— — p.

where = — o2 represents tEe risk-ueutrai variance prernium. These risk-neutral probabilities

are obtained without building auy rephcating portfolio strategv. Tire saine technique cari he apphed
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to he well—known Cox, Ross anci Rubinstein (1979) binomial model by assuming that the iinderlying

asset follows a two—pomt jurnp process. Comparing oui risk—neutral probabilities to the Boyle risk—

rieutral probabilities, we concliide that both tue probabilities across wealth states are ecinal if

anci only if O. This will certainly iritrochice errors in the compiitation of die truc risk—neutral

probabilities if 5 O. One example is that if the joint: process underlying retmn-stocliastic discount

factor is conditionally logiiormally clisl;ributed, the price of the sciuarecl unclerlying return is: 1

r Et(R? )
= E [rn1R1]

= E * 2’
“+i (ER+i)

with RH = Tus last eciuality eau be useci to co;npute the unclerlying-asset risk-neiitral

variance:

(2.8)

E,(R,1)— (i+rj)
where ,‘\ = 1 + . In that case

(I+rf)

=cr[1_Ï.
If ). 1, the risk—neutral variance premium is not nuli. \‘Vhen the underlying returri-stochastic

discount factor is conditionally lognorrnally distributect, it follows that the unclerlying marginal

distribution is also lognormally clistributed. Over a sinail tinie interval, this return can be approx

irnated by a three-point jump process [see Boyle (1988)]. Therefore, over a small time interval,

equation (2.8) is stiil valid when the underlying return is approximated by a three-point jurnp

process.

To compute the risk—neutral probabilities, recail that Cox, Ross and Rubinstein (1979) use

u = exp [u v’7].

When this last expression is useci to compute (2.2), the risk-.neutral probabilities are sometime

negative [sec e.g., Boyle (1988)]. Instead of using this last eqtiation to compute the risk—neutral

probabihties, Boyle (1988) assumes

u = exp [/\V’i]

‘Sec Chabi-Yo, Garcia and Renault (2003).
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where h is the length of one Unie step (in this article, without loss of generality, we assume h = 1),

and \ > 1. Boyle’s intuition can be argued as follows: under the historical underlying—asset measure,

approxhoating the lognormal distribution hy a tbree—poiut jump process over a small time interval

involves considering

u = exp [ut]
From this last expression, if we replace the underlying ifistorical variance, ut, by its expression

given in (2.8), we getu = exp [utV7] = exp [/\uTv’7]. Tlowever in Boyle (1988), the parameter

\ is exogenous. From the above example, explicit formula for À is given when the joint process

of underlying asset returu—stocbastic discount factor is loguormally distributed. In that case, the

parameter À depends on the underlyiug asset risk premium, E, (R,+i) — (1 + rj). Iligh underlying

risk prernium implies high value for À. For example, suppose u = 0.2, r1 = 0.1, h 1, Table 4.1

cbsplays the values of u and the corresponcbng probabilities for a range of values of the unclerlying

risk premium. Zero risk premium is not realistic wben the joint process underlying asset return

is lognormally distributed. Tbis explaius why the prohability p is negative. It can be observeci

through Table 1.1 that the risk neutral probahilities highly depend on the uuderlying risk premimn.

In the next subsectiou, we propose a lattice model with au uuobservable state variable and give

conditions under wbich this model is eciuivalent to BfT

2.2 Trinomial tree with state variable

We assume the underlying-asset process is affected by au unobservable variable namely U,+i.

This variable is not observeci by investors at date t = O but is cliscloseci to tbem at date t + 1.

Without loss of generality, we assmne that tbis unobservable variable follows a two-point jurnp

process, that is, U,1 = O or 1. bYe also assume (10 = 1. The random process (U,) which affects tbe

uuderlying process is a discrete fiust order homogeueous Markov chain with a transition matrix of

the form:

aj 1—a11

1 — o’oo nue
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Given Ut+i we also assume that the unclerlying process follows a two-point jump process:

Regirne 1 (U1 = 11U0 1) Regirne 0 (Uï 0U0 = 1)

Moves Asset Values Probabitities Asset Values Proba&iiibies

Up u(1).Si Pli u(0).St Pit)

Doit’n. ct(1).St 1
— Pli ct(0).St 1

— P10

Assurning u(1) = u, ct(1) = 1 u(0) and u(0) = d(0), the unclerlying process follows a three—poillt

jlimp process and the underlying prohahilities across wealtli states are characterized by eciilations

below:

piiP(Uy=1Uo=1) = Pi,

(1 —pio)P(Ui OUo = 1) =

(1—p11)P(U1=1Uo=1)+p1oP(U=0Uo=1) p2.

The tree iiiphed by this unobservable state variable will he referred to as a Trinornial Tree with

State Variable (TTSV). The difference between this tree and the BTT is that, at date 1, investors

are informeci about the value of U1 whereas in the BTT, investors are iiot informed. The TTSV

and BTT prodice identical wealth states. Although, it is important to investigate under what

conditions the TTSV is observationally ecluivalent to BTT. b acldress this issue, we first compute

the price of g (Si) using the TTSV.

Theorem 2.1 In one-period. [11e price of n deriuatiue witÏi payoff g (S1) is:

f* [C(U1)]

icitk

C (U1)
= [Q0.011 (0, f*

[g (5)]
B(iu1) (0, 1)

where (l(T) (0,1) E0 [rniUi] and Q(l.ui) (0,1) = E0 [rniUi]



135

• E* (.) represents [lie eipect.ation opera for iiader [lie risk-nent rai transi[ion prnbabiiiiy:

P*(U1 U0 = 1) Q(l)(0,1)P(Ul =riU0 = 1) fori 0.1.

• E (.) TepTeSen[S [lie evpeci.ation operator i iider [lie pseudo-risk-neîfrat probahiiity (Pu1’ 1
—

Q(l,u1 (0.1)
— ci (U1)

* — f1 V1)(°l)
— 0 1Piu1

— u(Ui) —d(U1)

wi[h
Qfl,u1)(01)

> cÏ(U1).
5f lu1) (0 1)

From Theorem 2.1, the ratio Q(i) (0, 1) shows that there exits a risk premium associateci to the

state variable U1. This premium is rneasurect through changes in this ratio. The next proposition

shows that the TTSV is observationallv ecluivalent to BTT.

Proposition 2.2 In n one-period, [lie TTSV is observa[ionatiy equivatent fo BTT.

In section 3, we extend the results of section 2 in two-period ancl derive conditions under which

this model is observationally ecluivalent to BIT.

3. Two-Period Extension

This section extends the TTSV into two-period anci provides a procedure for valuing clerivatives.

In this two-period, the state variable process (Ui) captttres the salient features of derivatives such

as options, in particular skewness and the dynarnic effect of asset skewness. We descrihe conditions

under which the TTSV is observationally equivalent to BTT.

3.1 The trinomial lattice description

We assume there is 3 dates, 0, 1 and 2. In BIT, at date t+1, the unclerlying asset return

takes on 3 values: u, 1 and cl whereas in the TTSV, given the conclitioning variable U1, the

imder1ying asset return takes on two values u (U11) and ci (tf+i) . If i clenotes the information set

that investors use in huying or selling clerivatives at date t in BTT,

t
JttT,7—),Tt

2T—i
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\Vitirin the TTSV, the relevant information set is

‘t
— J{(71lT tÏ)r

<
f }.

R is straightforward to sec that J C It whicli means that investors are more informed in the TTSV

than in BIT. Li this sense. the TTSV allows investors to be fully informed about the trajectory of

the state variable process (Ui,) whereas in BTT, investors are not informed about this trajectory.

Figure 4.1 describes the TTSV in two-period. To value derivatives, we neecl two assumptions:

• Assumptioii Ai: The variables (mr+i, ‘) are conditionail serially independent.
t<r<t-1-1

given die path D (LZT)t+l<<t2 of a vector U of state variables,

• Assuinption A2: The process (mT+1 does not cause the process (Ui).
‘ t<T<t+i

Under assumptions Ai and A2. the state variables summarize the dynamic effect of the

uiiderlying—asset skewness. To sec this, let tt+1 cleiiotes Log(R1.i). It fobows tliat

Cor0 (ri, r) E0 [Coco (r1, rIU?)] + Cou0 (E (riU?) , E (rU)).

iJnder assumptions Ai anti A2. it follows that Cou0 (ry. r) = Cou0 (E (riIUj ) . E (rIU?)): the

TTSV captures the salient features of derivatives, in particular skewness and the clynarnic effect

of asset skewness. In section 3.2, we provide a procedure for valuing clerivatives in the TTSV anti

give under what conditions t.he TTSV is observationally equivalent to Bovles trinonilal tree.

3.2 Valuation of derivatives

Consider n derivative with payoff g (S2) at date 2. Theorern 3.1 gives the price of g(S) at date O.

Theorein 3.1 In lwo-period. under assumpbons Al an d A2. [lie J TICC of a deriuatiue u’itJt payofj

g(S) s:

7r =Er(C{Cj(S2)]),
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with.

C [g (52)]
QU?

(1,2)
1

Q(lU1) (0, 1)
[i (g (S2))]

B (1,2) B(1u1) (0, 1) 1

where (1,2) E0 [m2U?]. QU2 (1,2) E0 [m2U?] and E (.) is the eipectation under the

risk—neut rat pTobabIii(ies:

p* [u2 = ,U1 =jU0 = 1] = *
[(12 U1 =] X Pt [U1 =jU0 = 1] V i,j =0,1,

witk

p* [u iUy = J]
QU?

(1,_)
P[U2 =iRIi =i]

where lZ’r2 (.) i. the eipectation under the psendo—risk—neut.rat pro bahilities:

Q (12)

[52
uQVÏ? u, i)]

= (ï 1()

f- (.) is defined in theorenz 2. 1.

Now, we state uiider what conditions the TTSV is observationally equivalent to BTT.

Proposition 3.2 Under assumptions Al and A2, if the the condztzon’tng distribution of (012. 52)

given the set (Ff1, S’y, U1) eqnats (lie conditioning distribution of (1n2, 52) given S1, the TTSV is

obseroationaÏiy equivatent to B TT.

4. Conclusion

This paper c[evelops a latt.ice for valuing clerivatives when the uncicriving process is affectect

bv an unobservable state variable. This model generalizes the existing lattice models by Cox. Ross

anci Riibinstein (1979) and Boyles (1988) trmomial pricmg model. In a future research. we intend

to estaNish price coilvergeilce froi this discrete frarnework to the case of continuons underlying

asset.
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5. Appendix: Proofs

PR.00F 0F THEOREM 2.1. At date 0. the price of g (Si) is

110 = E0 [rng (Si)Ï = E [Eo [în1g (Si) Uil]

But,

Eo [‘iiig (Si) U1] = E0 [Eo [mig (Si) U1, S1] U1] = E0 [g (S’y) Eo [miUi, S] U1]

Consequently,

110 = E0 [E0 (m (U1, Si) g (Si) Ui)], (5.9)

with

m (U1. Si) = L1 [mi U1 S] = a (U1) + b (U1)

wiiere.

QliJ1)(OE1)
— E0

B (01) \Su
b (U1) B(lu1) (0, 1)

7aro (Lii)

(U1) = (1ui) (0.1) — b (U1) E0 (Ui)

and

Q(i,u1) (0,1) E0 [m (U1, Si) LJi] n

3(l.Ui) (On 1) = E0 [m (U1,51) U1].

Giveri the conchtioning variable U1. the underlyiitg Si follows a two—point junip process. In that

case

g (Si) = go (Ui) + gi (U1 ) Si.

This last equalitv is plugged in f0 (m (U1, S) g (Si) Lï1). we theii get:

Eo [rn ((ri, S) g (Si) U1] (1u) (O, 1) [o (U1) + gi (U1)
(iIi)

‘ ]•
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If we clenote = with > ct(tIy). This last expression can 5e rewritten

Lo [m (U1, S1) g (Si) U1] = B(Lu1) (0, 1) [E(U) (g (5))]

where E1 (g) represents the expectation of g mider the pseudo risk-neutral probahulity (pu1’ I
—

We plug tus last expression in (5.9) and get:

E [C(Ui)] (5.10)

with

C(U1)=
(Q(i.ui)(O1)

E [g(Si)]
B(Iu1) (0, 1)

* (g) represents the expectation of g uncler the risk—neiitral transition probabilities

J3* [U = iU0 = 1]
Q(i,z) (0,1)

= P [U1 = iU0 1]
for z 0,1.

PROOF 0F PROPOSITION 2.2. Let 7TBTT [g (Si)] 5e the price at date O of g (Si) in the BTT and

TTSU [g (Si)] be the price at date O of g (S’) in the TTSV. For sake of notationa convenience, we

denote P [U1 iUo j] p* [U1 = iU0 = j] ci. BTT is eciilivalent to the TT$V if

and only if:

BTT [g (Si)] = 7rTTSV [g (S’)] (5.11)

To investigate if the TTSV and BTT are eciuivalent, we ecpiate (5.10) and (2.7). Let assmire that

the right hand side of (5.11) is knowri, if g(S) = Si and g(Sj) =
equation (5.11) cari 5e

used to compute the underying risk—nerttral probabilities across wealth states in BTT. To see this,

notice that

BTT [g (Si)] = B (0, 1) [pg (uSo) + pg (i.5) + pg (ct.So)].
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This last expression in phtgged in (5.11),

TTSV [g (Si)] = B (0, 1) [pg (uSo) + pg (l.S) +pg (ci.Sj)].

Using g (Si) = Si, this last equation reduces to:

So = TTSV[5’1] = B(0, 1) [pSo +pSo +pd.Sj].

if g (Si) = S?, we also have:

= TTSV [s?] = B (0, 1) [p (uSo)2 + p (1.So)2 + p (cÏ.5o)2]

with p = 1
— —

p. Solving the last two eciuations produces the unclerlying risk-neutral proba

bilities across wealth states (p, p, p).

Conversely if the left hand sicle of (5.11) is known, using g (Si) = S?, g (Si) = Si and expanding

the right hand side of (5.11) gives:

= BTT [g (Si)] = TTSV [S?] = ni’
(S0)2 +

(1
— °i)

o
(9)2

+ (1
— p0) (cLS0)2

p0 (1 — d) + ct

So BTT [g (Si)] = TTSV [Si] = i10(
1 S’o

+

* poSo+(1 —p)d.So
(1—n1)

p0 (1 — cl) + cl

Fixing a, the above two ecluations can be solved for p and py. For this particular value a’,

the BTT and TTSV are ecluivalent, This ends the proof. •

PROOF 0F THEOREM 3.1. At date 0, the price of g (S2) is

ro E0 [mim2g (52)]

where rïi1ri;2 is n two—peniocl SDF. This last expression cari be ctecoiniposecl to:

E0 [mi ni2g (52)] = Eo [mi E0 [m2g (S2) U?, S, mi]].



111

with

E0 [m2g (52) U?, Si mi] E0 [m2g (52) u?, Si, mi],

But,

E0 [nl2g (52) u?, Si, mi] = E0 [E0 [m (u?. 52) g (32) U?, 52, Sï, mi] u?],

where

m (U?,52) E0 [m2U?, 5’2.51,mi],

Under Assumption Ai,

m (U?, 32) a (u?) + b (u?)

and

E0 [m (u?. 32) g (32) u?, 52,51, mi] E0 [ri4 (u?. 32) g(32) u?.s2]

However, it cari be shown that:

E0 [Eo [rï4 (U?, 32) g (32) tJ?, 32] u?] = (1,2) E2 [g (32)],

with,

1 -E01U2
BU2(i.2) \Si

b(U?) = Bu2(1,2)
v (‘u?)

(U?) (1,2) - b (U?) Eo ( u?)

where

13u (1,2) = E0 [rn (U?, 32) u?] and Q (1,2) = E0 [m (u?, 32) 2U?]

E (.) represerits the expectation urider the pseuclo risk-neutral probabulity:

QL2 (12)
1

— ct(U2)
52 3L2(12)[ = U?]

= (U2) — ci (U2)
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Tlicref&e,

= [m1t; (1,2) E [g (52)]]

E0 [E [flhiU (1,2) E2 [g(S’)] u?]]

= E0 [ï2 (1,2) E [mi E2 [g (52)] t’?]]

t Iowever

E2() [g (52)] = g (Sïu (i)) P*
= uQ1HLJ? = (i. J)] +

g (S1c1 (i)) p [ u(i)IU = (iJ)].

This last cluantity only depends on S, similarly to theorem 2.1, wc have:

E0 [mlET2 [g (52)1 u?] = Eo [mi u?] f [E [g (52)]].

Under assumption A2. E0 [ml U?] = E0 [m]U1 S1]. (‘onsequently,

= E0 [ (1,2)(1u) (0,1) E1 [E2 [g(52)]]]

= r
(Qu (1,2)

-‘
(Q(i.ul)

-1

f1 (E2 (g (52))]
\\3cJ2(1,2)! \\B(l,Ul)(0,1)j

1

Er (.) represents the expectation uncler the risk—neutral probabilities:

P*[LJ2=i.Ui=JUo=1]=P*[U2=iLTy=J]P*[Ui=JIUo=1] Vi,J=0.1

with:

p*[uju_J]

P [U2 = iUi =

auJ ET1 (.) is definecl in theorem 2.1. This encis the proof.

PROOF 0F PRoPosITIoN 3.2. Let 7TBTT.T (g (St+2)) be the price of g(S) in BTT at date r and

1TTSi”j (g (5+2)) the price of g (S2) in the TTSV. In a two-period. the BTT and TTSV are

ecluivalent if anti only if:

BTT.0 [g (32)] 7CTTS o [g (S2)].
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Incler Al anci A2, Theorem 3.1 gives:

TTSV,O [g (82)] E [[ E [[ ‘

E (g

This Iast equation cari be rewritten as:

TTSV.O [g(S)] f* [[ E1 [(E [[: 1

E ((82))])]]

where, E* is the expectation under the risk neutral transition probabilities:

P* [U1 iIUo = j]

and is the expectation uncler the risk neutral transition probabilities:

* [U2 = iU1

—

j].

It is obvious to see that:

t Q(1,2)
1

Qu2(1,2)
ET1 [; (L 2)]

E1 (g (52)) ) = [ (1,2)]
E72 (g(S2))

QU2 (1,2)
= E21

‘
(1.9)]

g (82)

= TTSÇJ [g (52)]

Therefore,

TT.%O [g (5’2] =
[[Q(l.u1 (O, I)]

E1 [g (82)])]
3(1.U1) (0. 1)

But,

TTSiJ [g (52)] E [7)129 (82) I]

Assuming the condlltionurig distribution of (rn2, 82) given the the set (m1, Si. U) equals the condi—

tioning distribution of (‘n2 52) given 8, we have

E[îii2g(S2)Ii]= E[m2g(S2)5’i]=1(8i),
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where h isa positive ftmction. This lest expression eau be viewed as the payoffo! a traded derivative.

In Bfl. we recafl that the prie o! g(S2) at date 1 eau written as

= E[m2g(S2)Si] = h(Si)

In that case.

wflgv.oEg(82)] = E [o.uid0t1)] (,(s» . (5.12)
(LU1) (0,1)

Applying proposition 2.2 to (5.12),

rnw,o [g (82)] = E Imih (Si)]

=

The procf la completed. ••
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Table 4.1: Jurnp amplitudes and jump probabilities

= 0.2. 77 0.Oo. k 1

tlncterttjinq Risk Piemi uni. u p

0 1.2214 0.5784 0.4306 -O.Ot)90

0.03 1.2284 0.5473 0.4034 0.0492

0.05 1.2331 0.5280 0.3866 0.0851

0.06 1.2354 0.5187 0.3785 0.1028

0.07 1.2:378 0.5097 0.3706 0.1197

0.08 1.2402 0.5009 0.3630 0.1362

Note: In this table, we compute the risk neutral jmnp probabilities for clifferent values of the

mi.derlying risk preiuiumn.
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U=O

Figure 4.1: Trinomial Trec with a State Variable
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Conclusion générale

Dans cette thèse, nous analysons différentes spécifications du SDF et ses implications cii fi—

nance. Les différents sujets abordés ont pour thème commun la spécification du SDF.

Dans le premier essai nous analysons comment la préférence des agents économiques pour

l’asymétrie affecte la demande et les prix des produits observés srn’ le marché. En considérant une

situation au voisinage de la non-incertitude (expansion en petit bruit), on calcule les demandes

des agents pour différents types cfactifs risqués. L’idée est de considérer mi actif en offre non

nulle, représentatif du portefeuille de marché, et des actifs dérivés en offre nette nulle mais dont les

gains sont des fonctions non linéaires du portefeuille de marché. On s’aperçoit alors que la demande

d’actifs dérivés est précisément justifiée par le goût des investisseurs pour l’asymétrie. Au niveau des

prix, la rémunération du risque dépend non seulement du bêta de marché, comme dans mi contexte

moyenne-variance classique, mais aussi d’un coefficient de coasymétrie par rapport au marché,

Les conclusions obtenues par l’expansion en petit bruit peuvent ensuite être retrouvées dans des

contextes plus généraux griice à la définition d’un facteur d’actualisation stochastique adapté. Cette

double approche peut être étendue à un marché à deux périodes où d’autres phénomènes d’asymétrie

doivent être pris en compte dans la dépendance temporelle des rendements d’une période à l’autre.

Le deuxième essai propose un SDF de référence qui à de nombreuses applications eu finance

notamment. Il peut servir notammeut à comparer les modèles d’évaluation des actifs financiers ou à

tester leur validité. Notre but est de présenter mm SDP de référence qui prend en compte l’asymétrie

observée dans les rendements des actifs financiers. Notre contribution est double. Premièrement

nous présentons mi SDF de référence simple et facile à utiliser. Deuxièmement, nous interprétons

ce SDF en terme de choix de portefeuille sous asymétrie. Nous démontrons que notre approche

de choix de portefeuille est une simple extension de l’approche moyenne variance (voir Markoxvitz

(1952)) et de l’approche mnoyeime-variance-asymétrie (voir de Athayde et al. (2001)).

Dans une première application empirique, nous illustrons la perte d’information qui résulte de

l’utilisation du SDF de llansen et Jagaunathan (1991). Dans une deuxième application, en utilisant

le SDF proposé dans cet essai, on «aperçoit que l’énigme de la prime de risque nds en évidence
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par Mchra et Prescott (1985) est encore plus difficile à explicuer. Dans une troisième application,

nous illustrons le choix de portefeuille sous asymétrie et montrons clu’on perd de l’information sur

le portefeuille choisi lorscjue l’approche nioyenne—variaiice-asyrnétrie proposée clans de Athaycle et

al. (2001) est utilisée.

Le troisième essai présente un modèle écollomiclue avec changement de régimes qui produit et

explique les énigmes de l’aversion pour le risclile et du SDF mises en évidence dans Jackwerth (2000)

et Ait Sahalia et Lo (2000) Nous construisons un simple modèle où les préférences des investisseurs

et leur consommation dépendent d’une variable d’état qui suit un processus de type Markovien

à deux états et simulons les prix d’options d’achat européennes. En utilisant la méthodologie

proposée par Jackwerth (2000), nous déduisons la fonction d’aversion absolue pour le risque et le

SDF pour chaque valeur de la richesse. Ces fonctions présentent les mêmes énigmes que celles

observées par Jackwerth. (2000) Lorsque nous appliquons la même méthodologie dans chaque état

de l’économie, l’énigme de l’aversion absolue pour le risque dlisparaït. Nos résultats suggèrent que

ce modèle rationalise et explique l’énigme de l’aversion pour le risque et du SDF mises en évidence

par Jackwerth et Ait Sahalia et Lo (2000).

Le quatrième essai présente un modèle cl’évahtation des produits dérivés par la méthode d’arbre

lorsque le processus du prix du sous-jacent est affecté par une variable d’état non observable. Ce

modèle généralise les modèles d’arbre existants: Cox, Ross et Rubinstein (1979) et Boyle (198$).

Dans ce modèle, la variable d’état non observable capture les faits marquants mis en évidence par

l’observation des prix d’options. en particulier l’asymétrie et la dynamique de l’asymétrie présentes

dans les actifs dérivés.


