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Sommaire

Ma these est centrée sur I'introduction de ’asymétrie dans les modeles d'évaluation d’actifs
financiers et dans le choix de portefeuille. Dans le premier chapitre, nous examinons comment
l’équilibre d'un marché financier révele, 3 la fois par les quantités détenues & I'équilibre et par
les prix, les préférences des investisseurs pour trois types de caractéristique des rendements : leur
espérance, leur variance et leur asymétrie. Dans le deuxiéme chapitre, en prenant en compte
I’asymétrie, nous déterminons une nouvelle borne sur la variance de tout facteur d’actualisation
stochasticue (SDF) qui valorise correctement les rendements d’actifs financiers et les gains de pro-
duits dérivés qui sont des fonctions cuadraticues des gains d’actifs risqués. Dans le troisieme
chapitre, nous construisons une économie ot les préférences des investisseurs et leur consommation
dépendent d’une variable d’état qui suit un processus de type Markovien a deux états et montrons
que ce modele économicue produit et explique les énigmes de I’aversion pour le risque et du SDF
mises en évidence par Jackwerth (2000, RFS). Dans le quatrieme chapitre, nous proposons une ap-
proche pour I'évaluation de produits dérivés par les arbres lorsqu'une variable d’état non observable
affecte le processus de prix du sous-jacent.!

Dans le premier chapitre, nous examinons comment !’équilibre d'un marché financier révéle, a
la fois par les quantités détenues & I’équilibre et par les prix, les préférences des investisseurs pour
trois types de caractéristique des rendements : leur espérance, leur variance et leur asymétrie. Deux
types d’approche sont utilisés pour cela. D’abord, en considérant une situation au voisinage de la
non-incertitude (expansion en petit bruit), on calcule les demandes des agents pour différents types
d’actifs risqués. L’idée est de considérer un actif en offre non nulle, représentatif du portefeuille de
marché, et des actifs dérivés en offre nette nulle mais dont les gains sont des fonctions non linéaires
du portefeuille de marché. On s’apercoit alors que la demande d’actifs dérivés est précisément
justifiée par le gout des investisseurs pour ’'asymétrie. Au niveau des prix, la rémunération du risque
dépend non seulement du beta de marché, comme dans un contexte moyenne-variance classique,

mais aussi d’'un coefficient de coasymétrie par rapport au marché. Les conclusions obtenues par

!Le premier chapitre de cette thése a été écrit en collaboration avec Dietmar Leisen et Eric Renault. Le deuxiéme,

troisiéme et le quatridme chapitre ont été écrits en collaboration avec René Garcia et Eric Renault.



Iexpansion en petit bruit peuvent ensuite etre retrouvées dans des contextes plus généraux grace
4 la définition d'un facteur d’actualisation stochastique adapté. Cette double approche peut etre
ensuite étendue & un marché & deux périodes ot d’autres phénomenes d’asymétrie doivent etre pris
en compte dans la dépendance temporelle des rendements d’une période a l'autre.

L’objet du deuxiéme chapitre est 'extension de 1’approche des bornes de variance proposée par
[Tansen et Jagannathan (1991, JPLE). Alors que IHansen and Jagannathan (1991, JPE) caractérisent
la variance minimale cue doit avoir un facteur d’actualisation stochastique (SDF) susceptible de
valoriser correctement un ensemble donné d’actifs primitifs, nous considérons 'effet sur cette borne
de variance de I’ajout de contraintes imposées par ’évaluation correcte des fonctions quadraticues
des gains de ces actifs primitifs. Nous approchons ainsi le probleme de I’évaluation d’actifs dérivés
dont les gains sont par définition des fonctions non linéaires des gains des actifs sous-jacents.
Il est alors éclairant de décrire la nouvelle frontiére de variance ainsi obtenue dans un espace a
trois dimensions mettant en jeu non seulement les rendements espérés et leur variance mais aussi
leur coeflicient d’asymétrie. De meme que la frontiére de variance de Ilansen and Jagannathan
(1991, JPE) présente une relation de dualité avec la {rontiére efficiente moyenne-variance du choix
optimal de porteleuille au sens de Markowitz (1952, JI'), la frontiére que nous proposons peut
etre interprétée en termes de choix de portefeuille par minimisation du risque sous contrainte non
seulement de cout et de rendement espéré, mais aussi d’une contrainte qui dépend de 'asymétrie du
portefeuille. Nous montrons que la solution du probléme de minimisation du risque sous contrainte
de cout, du rendement espéré et d’asymétrie du portefeuille proposée par de Athayde et Flores
(2004, JEDC) est un cas particulier de notre probléeme de choix de portefeuille. En ce sens, notre
travail donne un nouvel éclairage a la question du choix de portefeuille en présence de rendements
asymétricques.

Dans le troisieme chapitre, nous présentons un modeéle économique avec changements de
régime qui produit et explicue les énigmes de 1'aversion pour le risque et du SDF mises en évidence
dans Jackwerth (2000, RF'S). Nous construisons un modele ol les préférences des investisseurs et
leur consommation dépendent d'une variable d’état cui suit un processus de type Markovien a deux

états et simulons les prix d’options d’achat européennes. [n utilisant la méthodologie proposée par
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Jackwerth (2000, RFS), nous déduisons la fonction d’aversion absolue pour le risque et du SDF
pour chacque valeur de la richesse. Ces fonctions présentent les memes énigmes cue celles observées
par Jackwerth (2000, RFS). Lorsque nous appliquons la meme méthodologie dans chaque état de
I'économie, I'énigme de ’aversion absolue pour le risque disparait. Nos résultats suggerent cue ce
modele rationalise et explique ’énigme de I'aversion pour le risque et du SDF mises en évidence
par Jackwerth (2000, RFS).

Dans le quatriéme chapitre, nous présentons un modele d’évaluation des produits dérivés par la
méthode d’arbre lorsque le processus du prix du sous-jacent est affecté par une variable d’état non
observable. Ce modéle généralise les modeles d’arbre existants : Cox, Ross et Rubinstein (1979)
et Boyle (1988). Dans ce modele, la variable d’état non observable capture les faits marquants
mis en évidence par 'observation des prix d’options, en particulier ’asymétrie et la dynamique de

I’asymeétrie présentes dans les actifs dérivés.

Mots clés: variable d’état, modeéle d’arbre, choix de portefeuille, énigme de 1’aversion pour le
risque, énigme du facteur d’actualisation stochasticque, asymétrie, facteur d’actualisation stochas-

tique.
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Summary

My thesis focuses on the introduction of asymmetry in asset pricing models and portfolio se-
lection. In the first chapter, we use a small noise expansion approach to investigate how the market
equilibrium discloses, through quantities and prices, investors’ preferences for three characteristics
of asset returns: expected return, variance and skewness. In the second chapter, taking into ac-
count asset higher moments, we find a new bound on the volatility of any admissible stochastic
discount factor (SDF) that prices correctly a set of primitive asset returns and derivatives which
payolls are a quadratic function of the same primitive assets. We further propose a method for
portfolio selection which accounts for higher moments, in particular skewness. In the third chapter,
we develop a utility-based economic model with state dependence in fundamentals and preferences
which rationalizes and explains the risk aversion and pricing kernel puzzles put forward in Jack-
werth (2000, RFS). Chapter four proposes a lattice-based model for valuing derivatives when the
underlying process is affected by an unobservable state variable.

The first chapter examines how the market equilibrium discloses, through quantities and prices,
investors’ preferences for three characteristics of asset returns: expected return, variance and skew-
ness. We use a small-noise expansion approach to compute heterogeneous agents' demands for
several risky assets. The idea is to consider a risky asset in positive net supply which represents
the market portfolio and derivatives assets in zero net supply which payoffs are nonlinear functions
of the market return. We observe that the demand for derivative assets comes from the fact that
investors have a preference for skewness. With regard to the equilibrium prices of derivative assets,
we find that the risk is priced through the market beta like in the standard mean-variance analysis
but also through an additional parameter which is the co-skewness of derivative assets with respect
to the market. These findings obtained under a small noise expansion approach can be found in a
more general context if we define an appropriate stochastic discount factor. This methodology can
be extended in a two-period market to see how other skewness effects should be taken into account
to explain temporal dependence between asset returns across time.

The second chapter extends the well-known [lansen and Jagannathan (1991, JPE) volatility

bound. Ilansen and Jagannathan characterize the volatility lower bound of any admissible SDF



that prices correctly a set of primitive asset returns. We characterize this lower bound for any
admissible SDF that prices correctly both primitive asset returns and quadratic payoffs of the same
primitive assets. In particular, we aim at pricing derivatives which payoffs are defined as nonlinear
functions of the underlying asset payoffs. We put forward a new volatility surface frontier in a
three-dimensional space by considering not only asset expected payoffs and variances, but also asset
skewness. Since there exists a duality between the [lansen and Jagannathan (1991, JPL) mean-
variance frontier and Markowitz (1952, JF) mean-variance portfolio frontier, our volatility surface
frontier can be interpreted in terms of portfolio selection by minimizing the portfolio risk subject to
portfolio cost and expected return as usual, but also to an additional constraint which depends on
the portfolio skewness. This approach which consists in finding the lower risk portfolio subject to
portfolio cost, expected return and skewness, embeds the mean-variance-skewness portfolio choice
of de Athayde and Flores (2004, JEDC). In this sense, our paper sheds light on portfolio selection
when asset returns exhibit skewness.

The third chapter examines the ability of economic models with regime shifts to rationalize and
explain the risk aversion and pricing kernel puzzles put forward in Jackwerth (2000, RFS). We build
an economy where state dependences are introduced either in investors' preferences or fundamen-
tals and simulate European call option prices. Following Jackwerth’s (2000, RFS) nonparametric
methodology, we recover the risk aversion and pricing kernel functions across wealth states. These
functions exhibit the same puzzle found in the data. Ilowever, when we apply the same method-
ology within each regime the puzzles disappear. Our findings suggest that state dependence in
preferences or fundamentals potentially explains the risk aversion puzzle.

The last chapter presents a lattice-based method for valuing derivatives when the underlying
process is affected by an unobservable state variable. This model generalizes the existing lattice
models: Cox, Ross and Rubinstein (1979) and Boyle (1988) trinomial pricing model. In this
model, an unobservable state variable captures the salient features of derivatives such as options,

in particular skewness and the dynamic effect of asset skewness.

Key words: lattice, portfolio choice, pricing kernel puzzle, risk aversion puzzle, skewness, state

variable, stochastic discount factor.
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Introduction générale

La validité des modeles d’évaluation d’actif financiers dépend de leur capacité a reproduire
les caractéristiques des prix observés sur le marché. Sous certaines conditions dont celle d’absence
d’opportunité d’arbitrage, [Iansen et Richard (1987) montrent cu'il existe un facteur d’actualisation
aléatoire qui sert & évaluer le prix de tous actif financier. De part sa nature aléatoire, ce facteur est
appelé facteur d’actualisation stochastique (SDF). I1ansen et Richard (1987) montrent que le prix
d’un actif financier s’écrit comme la valeur espérée du produit du SDF et du gain de cet actif. La
spécification de ce facteur dépend en général des hypothéses sur les préférences des investisseurs.
La ligne directrice de cette theése est I’étude parcimonieuse des différentes spécifications de ce SDF
et leur implication en terme d’évaluation d’actifs financiers, de produits dérivés, de préférence et
de choix de portefeuille.

Dans le premier essai de cette thése, nous examinons comment 1’équilibre d’un marché financier
révele, & la fois par les quantités détenues a 1'écuilibre et par les prix, les préférences des investis-
seurs pour trois types de caractéristique des rendements : leur espérance, leur variance et leur
asymétrie. Deux types d’approche sont utilisés pour cela. D’abord, en considérant une situation au
voisinage de la non-incertitude (expansion en petit bruit), on calcule les demandes des agents pour
différents types d’actifs risqués. L’idée est de considérer un actif en offre non nulle, représentatif du
portefeuille de marché, et des actifs dérivés en offre nette nulle mais dont les gains sont des fonc-
tions non linéaires du portefeuille de marché. En faisant une expansion en petit bruit au premier
ordre, on s’apercoit que la demande d’actifs dérivés est déterminée uniquement par ’aversion des
investisseurs pour la variance. Au niveau des prix, la rémunération du risque dépend du beta de
marché comme dans un contexte moyenne-variance (voir Markowitz (1952)). Le SDF impliqué par
ce modele est une fonction linéaire du rendement de marché. En d’autres termes une expansion en
petit bruit au premier ordre produit le modéle d’évaluation d’actifs financiers CAPM. Toutefois, de
nombreuses études empiriques ont souligné cue ce modele n’est pas pertinent en terme d’évaluation
d’actifs financiers. Ce qui nous a conduit a faire une expansion en petit bruit au deuxieme ordre.

Dans ce cas, on s'apercoit alors que la demande d’actifs dérivés est précisément justifiée par le
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gout des investisseurs pour 'asymétrie. Au niveau des prix, la rémunération du risque dépend
non seulement du beta de marché, comme dans un contexte moyenne-variance, mais aussi d’'un
coefficient de coasymétrie par rapport au marché. Le SDF impliqué par une expansion en petit
bruit au deuxiéme ordre est une fonction quadraticue du rendement de marché. Cette approche
peut etre étendue & un marché & deux périodes oli d’autres phénoménes d’asymétrie doivent etre
pris en compte dans la dépendance temporelle des rendements d’une période a 1'autre.

Une fois un facteur d’actualisation stochastique identifié, un des aspects importants est de le
comparer & un SDF de référence pour s’assurer de sa pertinence ou de sa validité. Différentes
méthodes sont proposées pour comparer les modeéles d’évaluation d’actifs financiers, tester leur
validité et s’assurer de leur pertinence. Bien souvent, ces méthodes utilisent comme référence le
SDF proposé par ITansen et Jagannathan (1991). Etant donné une série de rendements observés,
[lansen et Jagannathan (1991) déterminent la variance minimale que doit avoir un SDF pour
évaluer correctement les rendements d’actifs financiers. Le SDF de [Tansen et Jagannathan (1991)
dépend des deux premiers moments des rendements d’actifs financiers, donc ne prend pas en compte
I’asymétrie observée dans ces rendements. Pour les actifs fondamentaux comme les indices boursiers
et les indices obligataires qui servent & 1'‘évaluation des modeles, les moments d’ordre supérieur &
deux ne jouent pas en général un role déterminant. Toutefois, dans plusieurs études empiriques,
il est admis que ces deux premiers moments ne caractérisent pas entiérement la distribution des
rendements. Un des faits stylisés est que la distribution des rendements est souvent asymétrique.
Comme nous I'avons précisé dans le premier chapitre, I’asymétrie peut s’avérer importante pour la
prise de décisions d’investissement. D’abord, un investissement avec une distribution de cash-flows
fortement etalee a droite peut etre attractif meme si son ratio de Sharpe n’est pas tres eleve. Ensuite,
les contrats d’option d’achat ou de vente exhibent evidemment des payoffs tres assymetriques. Pour
toutes ces raisons, la frontiere proposee par Ilansen et Jagannathan (1991) dans le plan moyeene-
variance pour decrire les SDF admissibles ne met sans doute pas assez I'accent sur la remuneration
de I'assymetrie.

Dans le deuxieéme essai de cette thése, nous proposons un SDF de variance minimale parmi les



SDF qui évaluent correctement non seulement les rendements d’actifs financiers fondamentaux mais
aussi ceux de produits dérivés et de stratégies financiéres complexes telles que celles utilisées par les
fonds spéculatifs. Nous supposons que le gain de tout produit dérivé peut etre approximé par une
fonction quadratique des actifs primitifs. Intuitivement, nous augmentons I’ensemble des oppor-
tunités d’investissement des agents économicues en considérant non seulement les actifs financiers
mais aussi les produits dérivés qui sont fonction des actifs primitifs. Tout comme le SDF de Ilansen
et Jagannathan (1991), ce SDF est simple et facile & utiliser, il peut etre utilisé pour comparer les
modeles d’évaluation d’actifs financiers et pour tester leur validité. Il peut etre interprété comme
une simple extension du SDF de [lansen et Jagannathan (1991). Toutefois, sa particularité est cu’il
prend en compte les moments d’ordres supérieurs des rendements d’actifs, en particulier I’asymétrie
observée dans ces rendements. Le SDF proposé dans cet essai est une fonction quadratique des
rendements d’actifs primitifs. Récemment, de nombreux auteurs parmi lesquels [larvey et Siddique
(2000) et Barone-Adesi et al. (2004) ont souligné I'importance d’utiliser un SDF qui est une fonc-
tion quadratique du rendement de marché pour étudier I'impact de 'asymétrie sur les rendements
espérés d’actifs financiers. Par exemple, [larvey et Siddique (2000) montrent quun SDF fonction
quadratique du rendement de marché permet d’expliquer les variations en coupe transversale des
rendements espérés entre différents actifs. Tout comme le SDF de Ilansen et Jagannathan (1991),
nous montrons que le SDF proposé dans cet essai peut etre interprété en terme de choix de porte-
feuille en proposant une simple approche de choix de portefeuille sous asymétrie. Cette approche
est une simple extension de 1'approche moyenne-variance (voir Markowitz (1952)) et de I’approche
moyenne-variance-asymétrie (voir de Athayde et Flores (2004)). Cette derniére approche consiste
a chercher le portefeuille le moins risqué ( portefeuille ayant la plus petite variance) parmi tous les
portefeuilles ayant un meme coefficient d’asymétrie et une meme valeur espérée. [in terme de choix
de portefeuille, cet essal apporte deux contributions. Premiérement, nous généralisons le probléme
de choix de portefeuille résolu par de Athayde et Flores (2004). Deuxiémement, nous proposons
une approche simple qui permet de déduire facilement (sans une résolution numéricue) la solution

a ce probleme.



Dans une premiére application empirique, nous illustrons la perte d’information sur le SDF qui
résulte d’une utilisation du SDF de ITansen et Jagannathan (1991) lorsqu'il y a de forte présomptions
que I'asymétrie est évaluée sur le marché. Dans une deuxiéme application empiricue, nous utilisons
le SDF proposé dans cet essai pour vérifier si les modeéles basés sur la consommation explicuent
ou non I'énigme de la prime de risque mise en évidence par Mehra et Prescott (1983). Le SDF
proposé dans ce essai rend 1'énigme de la prime de risque encore plus difficile & expliquer. Dans une
troisitme application empirique nous montrons que les investisseurs ui ont une préférence pour
I’asymétrie choisissent un portefeuille autre cue celui proposé dans de Athayde et Flores (2004).
IIs ne choisissent le portefeuille proposé par de Athayde et Flores (2004) que sous des hypotheses
plus restrictives qui ne sont en général pas vérifiées empiriquement.

Dans le troisi®me essai, nous présentons un modele économique avec changements de régime
qui produit et explique les énigmes de ’aversion pour le risque et du SDF mises en évidence
dans Jackwerth (2000). En résolvant le probléme de choix de portefeuille de 'agent économicue
on s'apercoit que le SDF peut etre interpréié comme un taux marginal de substitution intertem-
porel. En admettant que la fonction d’utilité de ’agent économique est concave (pour un agent
économique averse au risque), le taux marginal de substitution intertemporel doit etre une fonc-
tion décroissante de la richesse de 1'agent économicue, tout comme d’ailleurs la fonction d’aversion
absolue pour le risque de ’agent économique doit également etre une fonction décroissante de sa
richesse. Toutefois, les études empiricues (voir Jackwerth (2000) et Ait Sahalia et Lo (2000)) mon-
trent que ni le SDF, ni la fonction d’aversion absolue pour le risque n’apparaissent comme des
fonctions décroissantes de la richesse. Pour expliquer ce paradoxe, nous construisons un modele
ol les préférences des investisseurs et leur consommation dépendent d'une variable d’état cui suit
un processus de type Markovien & deux états et simulons les prix d’options d’achat européennes.
En utilisant la méthodologie proposée par Jackwerth (2000), nous déduisons la fonction d’aversion
absolue pour le risque et le SDF pour chaque valeur de la richesse. Ces fonctions présentent les
memes énigmes que celles observées par Jackwerth (2000) et Ait Sahalia et Lo (2000). Lorscue nous

appliquons la meme méthodologie dans chaque état de I’économie, 1'énigme de 'aversion absolue



pour le risque disparait. Nos résultats suggérent que ce modéle rationalise et explique I’énigme de
I'aversion pour le risque et du SDF mises en évidence par Jackwerth (2000).

Dans le quatriéme chapitre, nous présentons un modéle d’évaluation des produits dérivés par
la méthode d’arbre lorsque le processus du prix du sous-jacent est aflecté par une variable d’état
non observable. Dans un modeéle de marché & une période, nous montrons cue ce modele est
observationnellement équivalent au modele proposé dans Boyle (1988). Sur deux périodes, nous
montrons cue ce modele généralise le modéle de Boyle (1988). Dans ce modele, la variable d’état
non observable capture les faits marquants mis en évidence par I'observation des prix d'options, en

particulier 'asymétrie et la dynamique de 'asymétrie présentes dans les actifs dérivés.
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Iinplications of Asymunetry Risk for Portfolio Analysis
and Asset Pricing
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1. Introduction

Asymmetric shocks are common on markets and will lead to payofls that are not normally
distributed and exhibit skewness. Moreover, even when the primitive assets have symmetric payoffs,
typical derivative assets display a high degree of skewness. The risk-return trade off on such payoffs
may not be captured well by mean-variance analysis. [lowever, Samuelson (1970) argued that
mean-variance analysis is still a valid approach to characterize the optimal portfolio problem in
general, i.e. even in those cases when the decision maker has a general concave von Neuman-
Morgenstern utility function and asset returns are not normally distributed. Ilis result is based on
the limit of portfolio holdings under infinitesimal risk. We argue, in the presence of “small” risks
it is necessary to study also the slope of portfolio holdings in the neighborhood of zero risk, and
thereby incorporate skewness risk into the analysis. This paper extends Samuelson’s analysis of
financial decision making to derive agents’ portfolio holdings and the equilibrium allocation under
mean-variance-skewness risk.

We characterize portfolio holdings using risk-tolerance and a term we call skew-tolerance which
contains the third derivative of an agent’s utility function. Risk-tolerance captures the mean-
variance trade-off and skew-tolerance the mean-variance-skewness trade-off. Using appropriately
defined “average” risk-tolerance and “average” skew-tolerance we show that such an “average” agent
sets prices while each heterogeneous agent’s holdings are proportional to the difference between the
agent’s skew-tolerance and that of the “average” agent. The proportionality factor is determined
through co-skewness with the market; two-fund separation theorems typically do not hold under
skewness risk. A related work is Judd and Guu (2001) where Samuelson’s analysis is also extended
to an asymptotically valid theory for the trade-off between one risky asset and the riskless asset in
single period setups. Ilowever, while their approach is based on bifurcation theory, our results are
based directly on limits of first order conditions.

Ouwr paper makes the following contributions

First, we generalize Samuelson’s analysis by not imposing that risk premia are locally propor-

tional to variance. By relaxing this restriction, we are able to characterize the price of skewness in



equilibrium. A significant result is that, although separation theorems do not hold under skewness
risk, it remains true that any risk is compensated only through its relationship with the market,
either through the standard market beta or through market co-skewness which is akin to a beta
with respect to the squared market return. In this respect, one may say that neither idiosyncratic
variance nor idiosyncratic skewness are compensated in equilibrium. We thereby provide a foun-
dation for empirical studies that extend the CAPM model using in an ad-hoc way the squared
market return as a second factor. Furthermore this paper provides a method to determine portfolio
holdings under skewness risk.

Second, we study extensively the pricing implications of a Stochastic Discount Factor ( SDF)
specification that is quadratic with respect to market return. Although motivated by the above
small risk analysis & la Samuelson (1970), this study is valid under very general settings and can
be compared to previous literature on the pricing implications of skewness risks. We revisit beta
pricing under skewness as already considered by Kraus and Litzenberger (1976), Barone-Adesi
(1985), Ilarvey and Siddique (2000), Dittmar (2002), and Barone-Adesi, Urga and Gagliardini
(2004) among others. For the purpose of derivative asset pricing, we also relate skewness pricing
to risk neutral variance ( Rosenberg(2000)) and price of volatility contracts ( Bakshi and Madan
(2000)). We shed more light on beta pricing relationships as proposed by I[larvey and Siddicue
(2000) by showing that they correspond to a limit case which is strictly speaking at odds with
a no-arbitrage requirement, namely the case of a zero risk-neutral variance of the market. We
put forward a more general beta pricing relationship which explicitly depends on the price of the
squared return on the market portfolio, or equivalently, on the market risk neutral variance.

Finally, while the statistical identification of a significantly positive skewness premium is gener-
ally considered to be a difficult task (Barone-Adesi, Urga and Gagliardini (2004)), we provide some
empirical evidence which suggests that such premia show up in a more manifest way when they
are considered from a conditional point of view. This evidence is documented from simulated data
calibrated on the GARCII factor model with in mean effects recently estimated by Bekaert and

Liu(2004). Moreover, this empirical evidence also shows that neglecting the market risk neutral
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variance as [larvey and Siddique (2000) beta pricing model does lead to a severe underestimation
of the skewness premium which may go so far as to invert its sign.

The remainder of the paper is organized as follows: the next section discusses portfolio choice
and asset pricing in the context of infinitesimal risks. Section 3 studies quadratic pricing kernels
in the conditional setup of Ilansen and Richard (1987). Section 4 makes an empirical assessment
of the order of magnitude of the various effects put forward in section 3. All proofs are postponed

to the appendix.

2. Static Portfolio Analysis in Terms of Mean, Variance and Skew-

ness

Samuelson (1970) argues that, for risks that are infinitely small, optimal shares of wealth invested in
each security coincide with those of a mean-variance optimizing agent. lowever Samuelson (1970)
also derives a more general theorem about higher order approximations. To further characterize
the way the optimal shares vary locally in the direction of any risk, that is their first derivatives at
the limit point of zero risk, one needs to push one step further the Taylor expansion of the utility
function; carrying this out will lead us to a mean-variance-skewness approach.

We start here from a slight generalization of Samuelson’s approximation theorem. Following
closely his exposition, let us denote respectively by R;, i = 1,...n, the return from investing $1 in
each of security i=1,...n. The random vector R = (R;),.,,, defines the joint probability distribution

of interest, which is specified by the following decomposition:
R;(0) = p+ d%a; (o) + oY (2.1)

Ilere, a; (o), i = 1,...n, are positive functions of ¢ and p is the gross return on the riskless (safe)
security. The o parameter characterizes the scale of risk that is crucial for our analysis. We are
typically interested in this section in local approximations in the neighborhood of ¢ = 0. The small
noise expansion (2.1) provides a convenient framework to analyze portfolio holdings and resulting

equilibrium allocations for a given random vector Y = (¥;),<;<, With £[Y] =0, and Var (Y) = X
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a symmetric and positive definite matrix!.

In equation (2.1), the term o2a; (¢) has the interpretation of the risk premium. Samuelson
(1970) restricts the function a; (o) to constants; under this assumption risk premia are proportional
to the squared scale of risk; we relax this restriction throughout since it would prevent us from

analyzing the price of skewness in equilibrium. Throughout we refer to a () = (a; (7)),

i-1...n 98

the vector of risk premia.

2.1 The individual investor problem

We consider an investor with Von Neumann-Morgenstern preferences, i.e. she derives utility from
date 1 wealth according to the expectation over some increasing and concave function u evaluated
over date 1 wealth; for given risk-level o she then seeks to determine portfolio holdings (w;); <<, €

IR™ of risky assets that maximize her expected utility.

o
1S™]
A —

n
BRI (05 SRLICE) (
Note that for the sake of notational simplicity, the initial invested wealth is normalized to one. The
solution of this program is denoted by (w; (¢)),.,, and depends on the given scale of the risk o.
The question we ask is then the following: to what extent does a Taylor approximation of u allow

us to understand well the local behavior of the shares w; (¢), ¢ = 1,...n, in the neighborhood of

zero risk, o = 0, that is to correctly characterize the two quantities:

w;i (0) = lim w; () and w; (0) = UE%. w; (o) (2.3)

g0+

for i=1...n7 Samuelson (1970) stresses that a third-order Taylor expansion of u is needed to do the
job. We slightly extend his result by showing that its remains valid even though the function a; (o)

are nol assumed to be constant.? Let us then consider a third order Taylor expansion of u in the

'Samuelson (1970) provides a heuristic explanation of (2.1) that is of interest for readers accustomed to continuous-

time finance models; he couches this terms of Brownian motion of time and identifies ¢ with the square root of time.
Let W(o) p+ 3.7  w.(R(0)—p) denote end of period wealth and note that 117 (0)  p. For the sake of

simplicity, we denote W (o) — W.
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neighborhood of the safe return g

1t

v () (W —p)®. (2.4)

) gy

Wt (W) = () +u' (o) W = ) + 252

Let us denote by (w} (0)),;<, the solution of the approximated problem:
n
max [Lu* | p+ Z wi (Ri (o) — 1) (2.5)
(wi)i<ci<a i—1

w? (0) and w}' (0), i=L1...n are defined accordingly by continuity extension as in (2.3). We prove:

Theorem 2.1 Under suitable smoothness and concavity assumptions, the solution to the general
problem (2.2) is related asymptotically to that of the 3-moment problem (2.5 ) by the tangency

equivalences:

w; (0) = w! (0) for all i=1,...,n.

This theorem states that third-order Taylor expansions give tangency equivalence. The intuition

behind this result is:

1. The optimal shares of wealth invested w; (0), i=0,...n, in the limit case o ~= 0 depend only on
its first two derivatives u () and ' (). Thus a second order Taylor expansion of u, that is

a mean-variance approach, provides a correct characterization of these shares.

1

The first derivatives with respect to o, w; (0) i=1,...,n of optimal shares, in the limit case
o ~ 0, depend on the utility function u only through its first three derivatives u (u), u' (1)
and u" (#). Thus a third order Taylor expansion of u, that is a mean-variance-skewness

approach, does the job.

As far as optimal shares are concerned, theorem 2.2 below confirms that they are conformable
to standard mean-variance formulas, that is formulas usually obtained with an assumption of joint

normality of returns:
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Theorem 2.2 The vector w (0) = (w; (0)) of shares of wealth invested in the limit case o ~~ 0

1<z2<n
is given by:
w(0) =75 'a(0),
where a(0) = (a; (0));c;<, s the vector of risk premia and T = —f,,%% is the risk tolerance
coefficient.

To see the equivalence with standard formulas commonly derived under an assumption of joint

normality, two remarks are in order:

1. While joint normality with a general utility function would lead to introduce a kind of average
risk tolerance coefficient (—Fu (W) / Bu (W) with W = p+ 377y w; (R — p), this actually

coincides with 7 in the limit case o ~~ 0.

b

Joint normality would imply, in equilibrium, constant functions a; (o) (see theorem 2.4 below).

In such a case, the formula of theorem 2.2 can be rewritten:
w(0) = 7 (VarR (o)) 'o’a,
where o2a defines the vector of risk premia.

Generally speaking, following theorem 2.2, if we see optimal shares of wealth invested w (o) as
equivalent to 7Y !a (o) in the neighborhood of o = 0, we get a Sharpe ratio for optimal portfolios
ecuivalent to:

Bl (@) (R(0) =1l _  pg),
(Var " (o) R(@)))}

where
P(0) = [a" (0) & 'a(0))? (2.6)

denotes, by unit of scaling risk o, the potential performance of the set R of returns as in traditional

mean variance analysis [see e.g. Jobson and Korkie (1982)]. Of course, the above analysis neglects
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the variation in equilibrium of the risk premium functions a (o). We are going to see in theorem
2.4 below that these functions will not be constant, even locally in the neighborhood of o = 0, as
soon as asset return joint probability distribution features some asymmetries.

These asymmetries will actually play a double role in the local behavior of optimal shares of
wealth invested. First, preferences for skewness would increase, ceteris paribus, asset demands in
the direction of positive skewness. Second, market equilibrium induced variations in risk premium
which potentially erase this effect. To see this, let us define the co-skewness of asset k in portfolio

W as:

Definition 2.3 The co-skewness of asset k in portfolio w is:

- Cov (Yk, (w"Y)Z)

Wil w
cx (w) = = b

VarlwY] — wilw’

(2.7)
where T'y = L [YYTYy| is the matrix of covariances between Yy, and cross product Y;Y;, i.j=1,...,n.

We will see in section 3 below that this notion of co-skewness is tightly related to a measure
put forward by Kraus and Litzenberger (1976) (see also Ingersoll (1987), p 100). For the optimal

portfolio w (0) characterized in theorem 2.2, we have ¢ (w (0)) = ¢ defined as:

ck = a” ()T 'y 1a(0). (2.8)

P2(0)
Typically, asymmetry in the joint probability distribution of the vector R of returns means that

at least some matrices I'y, k=1,...,n are non-zero. We get the following result:

Theorem 2.4 The slope w (0) of the vector w (0) of optimal shares of wealth invested in. the neigh-

borhood of 0 = 0 is given by:
w (0) =7 !|a' (0) + pP?(0) c] ,

is the vector of marginal risk premia. ¢ = (cx); <<, defined by (2.8)

where a' (0) = (a; (0))

is the vector of co-skewness coefficients and p =

1<i<n
e
T2 ¢

T is the skew tolerance coefficient.
i
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In other words, up to variations a' (0) of risk premiums in ecuilibrium, a positive co-skewness
of asset k will have a positive effect on the demand of this asset. This positive effect will be all
the more pronounced that the skew tolerance coefficient p is large. Of course, this interpretation

is based on two implicitly maintained assumptions:

e

1. The skew tolerance coeflicient is nonnegative (L;—,((#ﬂ)-)- > 0). This assumption conforms to both

the literature on prudence [Kimball (1990)] and the literature on preferences for high order

moments [Dittmar (2002), [Tarvey and Siddique (2000), Ingersoll (1987)]

N

The vector ¢(w) = (¢ (w)){<x<, represents a multivariate notion of skewness that investors

do like to get positive, componentwise. This assertion is justified by the fact that on average:

(WTY)
Z“”‘C’” w) Vc[zr [wTY]]

is positive if and only if the portfoho return is positively skewed. Of course, individual
prelerences for positive skewness will increase, ceteris paribus, the equilibrium price of assets
with positively skewed returns. This will actually appear in the equilibrium value a (0) of

risk premium slopes in the neighborhood of ¢ = 0.

2.2 [Equilibrium allocations and prices

Let us consider consider asset markets for risky assets i=1,2,...,n with agents s=1,...,S. Each agent
is characterized by a Von Neumann-Morgenstern utility functions w, and associated preference

coeflicients:

_m) g 5 = Tats (0
g (1) 2w

o (1)’

Note that for the sake of notational simplicity, we assume that the net supply of each risky asset

i=1,...,n is exogeneous and fixed to unity as a normalization. Then, in the limit case o ~~ 0, the

market clearing conditions can be written:

S
> Wl (0) = e, (2.9)
g1

S i
Y w0 = o
g1
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where w(® (0) = (ws; (0)),<;<,, and e, denotes the n-dimensional column vector, the components of
which are all equal to 1. Below, it will be convenient Lo consider an average investor characterized

by average holdings @, an average risk tolerance T and average skew tolerance p, where

S
1 1 S ZpsTs
— - — 1 :
W= Zen, T_ngs’ p—ss—. (2.10)
g1 ZTS
-1

If all individual were identical, each one would buy the average portfolio w. The link between the
two average preference coefficients 7 and ¢ and individual portfolios demands is characterized by

theorem 2.5.

Theorem 2.5 In equilibrium, in the limit case o ~ 0, the optimal shares of wealth invested wg (o)
by agents s = 1, ..., S is characterized by:

W (0) = g,

T

“’(S)I(O) = 75[ps =P P2(0)T c@) fors=1,...,S,

where P2 (0) = ?—I.JDTZG is the (squared) market Sharpe ratio and c(w) is the vector of the market

co-skewness coefficients.

In other words, in the limit case o ~ 0, the vector w(®) (o) of optimal shares of wealth invested
is as in a standard mean-variance separation theorem. All individuals buy a share of the market
portfolio e, the size of this share being determined by the comparison of individual risk tolerance
T with respect to average one. Preferences for skewness only play a role for the slopes w(®)' (0) of
the shares of wealth invested in the neighborhood of zero. A positive market co-skewness cj, (@)
will have a positive effect on the individual s demand of asset % if and only if his skew tolerance
coefficient is more than the average one 5. On the contrary, if p, < p, the positive effect of asset &
co-skewness on its market price is higher than required to compensate the investor’s preference for
skewness.

In order to characterize the asset pricing implications of risk tolerance and preference for skew-

ness, we deduce the local behavior of the risk premium in equilibrium:
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Theorem 2.6 In the limit case o ~ 0, the equilibrium risk premium vector a (o) is such that the

average portfolio W is optimal for the average investor:
w=7% 'a(0)
and its slope in the neighborhood of zero is given by:
2/ (0) = —pP* (0) ¢ (@),

where P2 (0) = -?%ETED is the (squared) market Sharpe ratio and c (W) is the vector of the market

co-skewness coefficients.

Note that, by comparison of theorems 2.4 and 2.6, the equilibrium slopes are precisely such
that the average agent would have no motive to deviate from the market portfolio w (w' (0) = 0 for
the average investor).

Theorem 2.6 gives as a new asset pricing model. While approximating risk premia by their
limit values a; (0) would clearly give the Sharpe-Lintner CAPM, approximating them by higher
order expansions a; (0) 4+ oa; (0) gives a new mean-variance-skewness asset pricing model. A con-
venient way to describe the implications of an asset pricing model is to characterize it through a
Stochastic Discount Factor (henceforth SDF), see e.g Cochrane (2001). By definition, a SDF m (o)

must be able to price correctly all available securities; here we therefore need: I'm (o) = % and

n
E [m(c) (1 + o%ai (0) + oY;)] =1 for i=1,...,n. We denote Ry (0) = Z R; (o) the market return.
i1
We are then able to translate theorem 2.6 in terms of a SDF"

Theorem 2.7 The random variable:

m (o) = i — L (Ru (o) = ERu () + L p

157 =7 | (Bnt (9) = BRu (0)" = E (Rut (0) = BFas (0))°

is o SDF consistent with variance-skewness risk premium defined by a (o) = a (0) + oa’ (0) where

a(0) and a' (0) are given by theorem 2.6.

The conjunction of theorems 2.6 and 2.7 summarizes what we have learnt so far about portfolio

choice and asset pricing in the context of mean-variance-skewness preferences:



17

1. Due to heterogeneity in preferences for skewness, the common two-fund CAPM separation

theorem is violated: different individuals may hold in equilibrium different risky portfolios.

2. ITowever, the pricing implications of a common separation theorem remain true in some
respect. Somewhat unexpectedly, the market return alone is still able to summarize the
pricing of risk. Of course, since not only market betas but also market co-skewness must be
taken into account, both the actual market return and its squared value enter linearly in the

pricing kernel.

Following, the seminal paper by Kraus and Litzenberger (1976), Ilarvey and Siddique (2000)
and Dittmar (2002) among others have recently studied the empirical implications of a SDF which
involves a quadratic function of market return. Theorem 2.7 above provides a theoretical basis for

doing so. Section 3 will elaborate more on the pricing implications of such a SDF.

3. Nonlinear Pricing Kernels

The pricing implications of a SDF formula that is quadratic with respect to the market return
are studied in this section, first with a linear beta pricing point of view and second in terms ol

derivative pricing.

3.1 Beta pricing

In their paper about conditional skewness in asset pricing tests, [Iarvey and Siddique (2000) start

with the maintained assumption that the SDF is quadratic in the market return:
M1 = vor + VieRarer + vac . (3.11)

It actually suffices to revisit our section 2 above with a conditional viewpoint to see theorem 2.7
as a theoretical justification of (3.11). Then, the coefficients v, v1; and vy, are functions of the

conditioning information [, at time t.
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From theorem 2.7, we interpret the factors coefficients as:

and

P

=———>0 3.12

Vot /Jtsq?Q > b ( )

vig = L Q—ﬁEt (Rarer1) <0. (3.13)
ST MSQ?z ’ ‘

It is worth characterizing the role of the two factors Rps4.1 and R'fm 41 in the SDF (3.11) in terms

of beta pricing relationships. Assuming the existence of a conditionally risk-free asset (with return

K¢), we can write for the net excess return 7449 = R; 1 — i, of any asset i

that is:

Bt [rigp1mis1) = 0,

1 2
‘LTEt [ritr1] + vieCovg [ritgr, Rareat] + varCovy [rir, Rapigr) =0
t

or, using the market net excess return, we get:

t

that is:

1
;Ez [rit41] + (vie + 2uvar) Covg [Tig1, Tare 1) + varClovg [7‘it+h"'12m |.1] =0,

By [rite1) = MeCovt [ricy1, T a1 — A2eCove [Tist1, Taper]

with:

Ae = —pg (Ve + 2p090) and Aoy = g0

If v1¢ and vy, are interpreted in terms of preferences of an average investor as in (3.12) and (3.13),

we deduce:

Ay =

1 25 p
& T (LeRaripr — 1) and Mg = 5272

Note that A9 is something like a structural invariant, only time varying through the value of

preference parameters computed from the derivatives of the utility function at g,. Mg should
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be non-negative and all the more positive that preference for skewness is high. Similarly, Ay is
expected to be positive and time varying insofar as the market risk premium (f5 Rareq1 — ) is.

. )
To summarize:

Theorem 3.1 Under the maintained assumption (3.11) of a quadratic SDF, net expected returns

are given by:
. 2
Eyriyr = AuCovy [rigg1, Tares1] — A2eCoug [Ti(.+l,"1\«1t,+1] .

If in addition, theorem 2.7 applies, Ay and Ay are non negative. Mgy = EZ%Q is determined by

average preferences for skewness while:

At = — + 22 B pri1
=5 +

Note that Aj; has two components which are both increasing with the average risk aversion,
first as 1/7 and second as the market risk premium 57z 1. When applying theorem 3.1 to the

market return itself (7341 = 7are+1), we get even more insight on what makes A, large:

Corollary 3.2 Under the assumptions of theorem 3.1

Lyrpreq \ Skew; (7 pre41)

A = Azt
Vargrares Varae

where Skews (Tar141) = Covy (7“Mt+1,7‘%.u+1) .

In particular, we can see that theorem 3.1 coincides with the standard Sharpe-Lintner CAPM
formula when A\y; = 0, that is the average preference for skewness is zero. DBy contrast, Ay is

augmented in the general case by an additive term which is proportional to both Ay and
Skew (rarr1) = Cove (Tarer1s Tagn) = Eerdpegy — (Biraner) (Berapegs) -

This notion of market co-skewness has already been put forward by Ilarvey and Siddique (2000)
and theorem 3.1 and corollary 3.2 correspond to their formulas (7). It is also worth rewriting the

pricing relationship of theorem 3.1 and corollary 3.2 in term of betas:

Errierr = (AeVarmue) Bim, — (MatVaroiet) Yime (3.14)



and
'Ef:ril-'i-l = (E{I‘]\n t J) IBzm!. - ’\21»Van'r12\IH-l ('Vi'm.t = ’7-mml;3i1nt) 1 (3'15)
where B = %M—“—] is the standard market beta while the beta coefficient with respect to

the squared market return: v;,,, = C—OI%[%%%I is tightly related to the measure of co-skewness
already introduced in section 2. More precisely, it is straightforward to see that the return decom-
position of section 2 gives: v;,,; = ﬁcim, (o) with cime (0) as introduced in definition 2.3. While we
had already seen in theorem 2.6 that risk premiums in equilibrium where influenced by skewness
preferences in proportion of the vector ¢ (w) of market co-skewness coefficients, the same vector
shows up in the beta pricing relationship (3.14) with ~;,,, = #cimt (c). Note that what Ilarvey
and Siddique (2000) call "market co-skewness” is actually Skew; ("art+1) = Ymme (Vanr% It +1).

The beta pricing model (3.14) with a second beta coefficient interpreted in terms of co-skewness
with the market is observationally equivalent to a conditional version of the three-moments CAPM
first proposed by Kraus and Litzenberger (1976) (see also Ingersoll (1987), p100). While they put
forward a measure of co-skewness defined as:

Cowy (Rﬂ-m, (Rig41 — ERit+1)2)

Couvy (RMI+1> (Rart+1 — ERMt+1)2) ’

6i'm.t —

we have preferred to remain true to a genuine notion of beta coefficient as v,.,,. Iowever, the
difference between the two is just a matter of normalization and is immaterial in terms of asset
pricing. In particular (3.15) enhances as formula (64) in Ingersoll (1987) that the beta pricing
relationship differs from Sharpe-Lintner CAPM by a factor proportional to the difference between
the two betas. It is however worth noticing that these authors derive this pricing relationship by
using a utility function directly defined over mean, standard deviation and skewness. The small
noise expansion approach of section 2 affords more theoretical underpinnings for doing so.
Normalization in terms of beta coefficient is usually convenient since it allows a direct interpre-

tation of beta loadings in terms of factor risk premium. For instance, when Ag; — 0, (3.14) applied
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It with

to the market gives the usual formula: Ay = PI(\

p Logrpge4
MU Varerares

It is. however, worth noticing that in general case, A;; and Ay can not be read as simple risk
premium associated respectively to the two payoffs 741 and r%,“ +1- LEven if we assume that
25 41 does correspond to a payoff of a portfolio available in the market with price 7,, the risk

premium on such a payoff:

2
r
M1
: un e

Var (_r?UH-] ) (3.16)
¢ Ny

2
Pg!g () =

will not coincide with (—Agm,). The difference comes from the fact that the two factors are not
orthogonal. A;; does depend on Ay (see corollary 3.2) and the expression of Ag; in function of the

equilibrium prices is more involved:

Theorem 3.3 If n, = [ [my 172 denotes the equilibrium price of a payoff 12, ., we have:
Ur FIT ALt 1 q p p MEr1

1 2
’Y'mmLPI&Iz - T,_I,PM (Tlt)

2 (- 2
1 —p (7 1"“+17’1\11+1)

?

where according to (3.16), Pﬁg (1,) is the risk premium on the asset with payoff5;, ., and p? (Taree1,m5041)

denotes the square (conditional) linear correlation coefficient between rppe41 and 7'12vu i1

It is worth considering the limit case when 72/, ., is almost worthless. From (3.16):

(2) 2
lim Py (1) _ Laryegs _ (3.17)
m0 Ty Vary (rie.1)
In this limit case, one gets:
1 Eyr3,,
Ve Pog) — #ﬂ—)
Azt — AfE4-1 (318)

L= p? ("aMea15Thyi4)

which actually coincides with the formula put forward by Ilarvey and Siddique (2000). [lowever,
this limit case appears to be at odds with a no-arbritage condition since n, = [ [m,+11',2m 4_1]
should be positive. Indeed, as shown in subsection 3.2 below, 0% = 1,4, may be interpreted as

the risk neutral variance of the market return.
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Besides the no-arbitrage condition, the fact that risk neutral variance is significantly positive is

of course an empirical question. Since, from (3.16):

2 *
P1£13 (7:) = Evripees — O (3.19)

m Vare (i)

one may expect that considering the limit case (3.17), that is 072 = 0 leads to overestimate ﬂ%(—m
and then to underestimate Ap;. The relevant empirical issue (see section 4) is then to decide if
considering only the limit case (3.18) leads to an economically significant underestimation of the
weight A\g; of coskewness in the two factors pricing relationship (3.13). If it is the case, we must
realize that Ay, actually depends on investors preferences for skewness as they show up either in the
(market) price of squared market return or, equivalently, in the risk neutral variance of the market

return.

3.2 Derivative pricing

The huge expansion of derivative asset markets, introducing asset payofls which are nonlinear and
often skewed functions of underlying primitive asset returns, has motivated the renewal of interest in
asset payofls skewness. For sake of notational simplicity, we consider in this subsection only options
written on the market return. [Towever, most of the results could be extended to other primitive
assets. Let us then consider the pricing issue for a payoff h¢ (.) of the market return, the definition
of which may depend on conditioning information. Maintaining, as we do in this section, the as-
sumption that a valid SDF is quadratic means that the price of the payoff h; (Ras.4+1) coincides with
the price of its (conditional) affine regression hﬁ“’ (Rare41) = Ly [h, (Rare1) | Rares1, B3y, " 1] on

Rpqeqr and R, )
- (L2)
E{, [m,_HhL (RI\/IH—I)] = E{ |:m1_+1h, (RI\IH-I) .

Besides this, understanding why a CAPM Sharpe-Lintner pricing does not accommodate well the

pricing of derivatives is akin to showing why the (conditional) affine regression

hﬁm) (Rares1) = LLe [he (Ragesn) | Rare ]



of he (Rase+1) on Rageyy does not summarize the risk which is compensated in ecuilibrium:

Ly [meg1he (Rare)) # B TnH-lhsLl) (Rare+1)] -

Starting with the simplest nonlinear payoff hy (Rajeq1) = R% 1t41: we are then led to study the

difference between the price
2
T = E{, [Tn(,_|_1 RI\’II»—I-I]

of the so-called "volatility contract” (see Bakshi, Kapadia and Madan (2003)) and the price of its

linear approximation:
L [mt+1ELt [R%1t+1|RMt+l]] .
To enhance the role of skewness it is first worth noticing that:

Lemma 3.4 The conditional linear regression of R% rt+1 01 Raqeyq is:

EL Ry | Baer1] = ERA 1 +2(ERart) (Rareer — BeRare) +

B (Rasein — BiRarenr)’? (Rprerr — By Rareqn) -

VarRarq1

Note that by contrast, the Taylor expansion of R%,” +1 arround Lo Rpgeqq
R = (ERar1)” +2(ERaes1) (Barest — BEeRagesr)

does not take into account the crucial role of the skewness term. This remark casts some doubts
on theories of higher moments pricing which are based on Taylor expansions. In that respect, the
small noise expansion appears to be more reliable.

In any case, it is worth relating the price of the volatility contract with risk neutral pricing

popular for derivative pricing. We have:
2 1 * 2
My = Ly [mep1 Rige] = ;Et [Risen]
t
where [4f denotes the conditional expectation with respect to a risk neutral probability measure.
By definition. I} [Rast41] = iy, so that

*2

omt = If (RI\It+1 == ,ut)2 = e (T — i) = ey



can be interpreted as a risk neutral variance (see Rosenberg (2000)).

As already noticed from theorem 3.3, we expect that higher is the price 7, of 1'% re4+1, the smaller
will be the premium Pﬁz and the larger will be price Ay of co-skewness. Therefore, one way to
assess the strength of preference for skewness is to describe the factors which tend to increase ceteris

*

paribus the risk neutral variance o2 = p,n,. For doing so, we first state a useful relation between

risk neutral variance o2, and historical one 02,, = Var; (Raret1)
Theorem 3.5
2
1 1 3
0':n2.t = 012nt <1 - Ufznc (P1$12) ) - Pﬁqut (RAM-H - EtRI\[L+1) + 1 Cou (mt+1, Et+1)

whereepyy = R2,, . —LL, [R2 Ry, denotes the residual of the (conditional) affine regression
+ Mt+1 t M1 M g

2
of Ryripq on Rareqa.

Note that theorem 3.5 is valid under the very general assumption that a positive SDF g is
able to price the asset of interest and in particular to define risk neutral conditional expectations
as ﬁ?EZ he (Rase41) = Ly [myg1he (Rpqee1)]- It is then worth revisiting skewness pricing by studying
the factors which may potentially increase the risk neutral variance. Theorem 3.5 basically puts
forward two factors. One factor is model dependent, through Couv; (m41,€141) while the other
terms can be directly observed from the market return. Typically, in the case of a positive return
skewness (L5 (Rare+1 — EtRMtH)B > 0), the risk neutral variance is inversely related to the risk
premium PISZ Intuitively, high risk neutral variance, that is high compensation for skewness, may
compensate a low risk premium P1(\}; By contrast, the effect encapsulated in Covt (miyt1,€t+1)
depends in general explicitly on the SDF specification, that is on the investor preferences. There is
however a case where the risk neutral variance is preference free, in the sense that it is completely
determined by the observation of the risk-free interest rate and the market risk premium. This is
the case of joint log normality which is an extension (see Garcia, Ghysels and Renault (2003)) of

the risk neutral valuation relationships first introduced by Brennan (1979):
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Theorem 3.6 If (logmy1,log Rareq1) is jointly noral given the conditioning information,

2
Tr = Ot [EtR'u—;nu] < Oy
Theorem 3.6 confirms in a particular case the above discussion of the difference between risk
neutral variance and historical one. While we expect the former to be smaller than the latter in
case of positive skewness, the difference between the two is inversely related to the market risk
premium.
In the general case, the role of investor preference for skewness in increasing the risk neutral

variance can be characterized from the following result:
Theorem 3.7 With a quadratic SDF,
Myy1 = Vor + VieRurer1 +vaRay, 10
the term Cou (m,,+1,e,,+1) is given by:
Covy (Mg, €41) = var (VariRigey) (1= o7 (Rarerns Rigeen)) -

Therefore, we do expect that this term increases the risk neutral variance, all the more that
Rpre+1 and R% 1141 are weakly correlated and the average skewness tolerance p = uzr,u,tS??Q is
large. The main message of this subsection is that empirical assessments of risk neutral variance
as recently proposed by Rosenberg (2000) from derivative asset prices may also be seen as a way

to characterize preferences for skewness.

4. Empirical Illustration
4.1 The general issue

The empirical relevance issue of the asset pricing model with coskewness as developed in previous

sections is encapsulated in the asset pricing equation (3.15):

L (7““ |'1) = (E['I‘]\“ I-l) ﬁiml ’\21‘/(7'7"7‘12\11 +1 (’7imt - Wm.nl.(ﬁi'm() . (420)
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The question is: does this asset pricing equation significantly deviate from standard CAPM?,
that is should we maintain a significantly positive skewness premium Ao?

It turn out that the statistical identification of this hypothesis is difficult since, as well noticed
by Barone-Adesi, Gagliardini and Urga (2004), covariance and coskewness with market tend to be
almost collinear across common portfolios, leading to hardly significant coskewness factors (7y;,,,
YmmiBime)- To shed more light on this identification issue, let us consider the (conditional) affine

regression of net return of asset i on market return:

Tit+1 = it + By Mt41 + Wit 1 (-1-21)

It is clear that asset i coskewness can be interpreted as the covariance between the residual of this

regression with squared market return:

(Van (T12v1t+1)) (Yimt — "/mmtﬁimt) = Cou, (Uit+1:7“§u+1) = Cou, (“it+1, R?\/Hl) . (4-22)

Therefore, a positive sign for A\y; can be identified only insofar as one can observe some asset
returns 7441 with positive (negative) coskewness Clou; (u,i,_|_1,r12\ H-H) and check that they com-
mand a lower (higher) expected return than explained by standard CAPM. The problem is that
Covy (uit+ 1,7*12\ It +1) will be more often than not close to zero since ;4 is by definition (condi-
tionally) uncorrelated with rps.41. Of course non correlation does not imply independence (except
in linear market models like the Gaussian one) and one may hope that some portfolios i exhibit
a significantly positive (or negative) covariance Cou, (Uit,*.l,'r%/[t +1). [Mowever, as long as a linear

approximation is valid, Couv; (‘lLit+1, T2 +1) is almost zero leading to:

2 ~ 2
Covt (Tit41,%141) = BimtCove (TMe41,T%re41)

almost collinear with f,,,, across portfolios.

To avoid such a perverse linearity effect, Barone-Adesi, Gagliardini and Urga (2004) focus on
a quadratic market model first introduced by Barone-Adesi (1983). Thanks to this specification,
they estimate a slightly significantly positive coefficient Ag;, at least when the risk free rate is a free
parameter, not assumed to be observed by the econometrician. [lowever, their approach is uncondi-

tional and this may explain the difficulty to identify the sign of Ao, in particular with respect to the
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risk free rate issue. To remedy that, we propose here to consider instead an asymmetric GARCII
in mean model recently estimated by Bekaert and Liu (2004). Since this model exhibits interesting
time-varying non-linearities in the consumption process, it may allow an accurate identification
of time varying conditional coskewness and in turn consumption-based preference for coskewness.
The superior identification power of such a conditional approach will actually be confirmed below

through a series of Monte Carlo simulations based on Bekaert and Liu (2004) parameters estimates.

4.2 The simulation set up:

Bekaert and Liu (2004) estimate a GARCII factor model with in mean effects for the trivariate
process of logarithm of consumption growth X;,;, logarithm of stock return Log (Rast41), and

logarithm of bond retwrn Log (p;4) :

t

Yet1 = [Yies1, Yats1, Yacpr] = [Xts1, Log (Rare1)  Log (key1)]

that is a model of the form:
Yit1 = + AY: + Qe ypq (4.23)

where the coefficient c;; of ¢;, i = 1,2,3, is an affine function of Var [Yir41] and all the time
variation in volatility is driven by time varying uncertainty in consumption growth: the conditional
probability distribution of e;y; given information I is normal with zero mean and a diagonal
covariance matrix , the coefficients of which are constant except the first one which follows an

asymmetric GARCII(1,1):
Varg[enr41] = 61 +a (eu)2 + BVary 1 [en] + & (Maz [0, —eu])2. (4.24)

To further limit parameter proliferation, they assume that all the off diagonal coefficients of the
matrix ) are zero except in the first column; in other words the consumption shock is the only
factor. For sake of normalization, the diagonal coefficients of §2 are fixed to the value 1. Table 1.1
gives the parameters estimates obtained by Bekaert and Liu (2004) on monthly US data. These
estimates will be considered below as true population values for simulating a sample path and we

don’t care about estimation errors.
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A convenient feature of the above model for our purpose is that, since it maintains a conditional
joint normality assumption for log-consumption and log-market return, it allows us to apply theorem
3.6 to assess the risk neutral variance without need of a preference specification. More precisely,
insofar as the log-pricing kernel is, given I;, a linear combination of the first two components of
Y;+1, as it is not only in the Lucas (1978) consumption based CAPM with isoelastic preferences
but also more generally in the Epstein and Zin (1991) recursive utility model, we are sure that
theorem 3.6 applies. Then, our simulation set up is as follows:

For a given simulated path of the process (Y:1), specifications (4.23) and (4.24) allow us to

compute corresponding paths of:
1 Compute 032 = o2, [,/ I (Rare41)]%,

2 Compute 1, = e/ py,

pl2)
3 Compute Payy(md) _ .
P e Var, (rf‘,“_“) ’

2 2
Eirfiei Ome

4 Compute —AL(W‘)
P My

1 2
"l'mmlplglz 7” [(\[{(T'L)

1 pl(rl\lt 17'1\“ 1) ’

5 Compute Ay =

By contrast, the limit case put forward by Ilarvey and Siddique (2000) corresponds to the

alternative formula:

2

(1 BTy
Ymmt Errg — = :
mmt Mt Vary "12m+1)

*
’\2t -

bl

2 2
1 —pf (TAIt'i'l"r]\/ft'i‘l)

the path of which is also easy to build from above simulations.

Of course, by introducing only one risky asset, this setting does not allow us to compare coskew-
ness across portfolios. [lowever, the focus of our interest here is to get time series of Aot and A,
in order to assess their sign and their differences both date by date and in average. Note moreover
that return skewness in this market is not as trivial as log-normality may lead to think. Over two
periods, temporally aggregated asset returns will feature some sophisticated skewness, first due to
the asymmetric effect in the variance dynamics and second due to time varying risk premium. A

detailed characterization of induced dynamic skewness pricing is beyond the scope of this paper.



4.3 Monte Carlo results

All the simulated paths considered correspond to 500 months. The main message conveyed by
these simulated series is well summarized by figure 1.1 where we plot on the same graph both the
path of Ay corresponding to our formula for the price of coskewness and of A}, corresponding to
[Tarvey and Siddique (2000) limit case. The conclusions draw from this graph are twofold:

First, while the series of Ay does show a positive price for coskewness as expected (4.23 in
average), the series A}, of displays some implausible huge negative price of coskewness (-67.82 in
average). This tends to prove that neglecting the price 1, of squared net returns (or ecuivalently
the risk neutral variance) leads to a severe understimation of coskewness price, so severe that it may
reverse the direction of the effect of coskewness in asset prices. The time series of 7, (figure 1.2) and
risk premium Pﬁz (n;) (figure 1.3) as well confirm that they are positive. Note also that while Ay
and A}, are stationary processes-in particular first order differences (Agy — Ag¢1) and (A3; — A3, 1)
have a zero time average - the former is more stable than the latter: the standard error of the
series (Agr — Ag¢ 1) is only 4.93 while it is 8.75 for (A3 — A3, ;). This give some support to our
interpretation of Ay, as a kind of preference-based structural invariant, which is time varying only
through the value of utility derivatives at point g,.

Second, our simulations confirm that the positive sign of the price for coskewness should be
hardly identifiable in an unconditional setting. While the series Ay does show a positive average
price of 4.25 for coskewness, it comes with a standard error of 4.06. This may explain why Barone-
Adesi, Gagliardini and Urga (2004) found it difficult to identify a positive price in an unconditional
setting. They actually get a t-statistic of 1.01, which has the same order of magnitude as our
informal assessment. Of course, a rigorous unconditional study should not be simply based on
time averages. By contrast, figure 1.1 shows that spot values of the process series Ag; may cover
the full interval between 0 and 20. making them likely significant for a number of dates. This
enhances the important contribution of Iarvey and Siddique (2000) who stress that coskewness
must be addressed in a conditional setting. [Towever, even an unconditional approach would not

make the simplified price series A}, meaningful since their standard error is only 7.45, which does
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not compensate their negative average of (-67.82).

Overall, we conclude that there should be a positive price for coskewness, but not so high and
hardly identifiable in an unconditional setting. One way to interpret the limited level of this price
is to realize that buying the squared net market return commands a positive risk premium (see
figure 1.3) which, by theorem 3.3 leads to lower the price Ay;. This does not mean that skewness is
worthless but only that, by lemma 3.4, a part of its value is already captured by the linear pricing
of squared return. In order word, a positive skewness implies a positive correlation between market
return and squared market return, so that the two components of asset prices cannot be interpreted
separately.

Finally, one ought to realize that quadratic pricing kernels cannot be more than local approxi-
mations of a true pricing kernel, for instance in the neighborhood of small risk as in section 2. In
particular, while a representative agent with a convex utility function would imply that the pricing
kernel is decreasing with respect to the market return, this cannot be the case on the [ull range
of returns with a quadratic function. More precisely, a quadratic pricing kernel as characterized
by (3.11), (3.12), and (3.13) with a positive coskewness price Ag; will become increasing when the
market returns exceeds its conditional expectation by more than (S7/2p). This kind of paradox-
ical increasing shape of pricing kernels for large levels of market return already showed up in the
empirical evidence documented by Dittmar (2002). Of course, a negative Ay as in the case of the
zero-price 7, approximation would produce an even weirder behavior with increasing pricing kernel
for any value of the market return below its expectation.

As far as Dittmar’s paradox is concerned, it does not mean that one should give up nonlinear
polynomial pricing kernels because their decreasing shape cannot be enforced on the whole range of
possible market returns. One must only remember that polynomial approximations are local and
ought to be used cautiously. For instance, it is clear that market information about risk neutral
variance or equivalently about the price n, of squared net market return may be helpful for a
better control of a quadratic pricing kernel on the range of interest. Since this information may

be in practice backed out of observed derivative asset prices, it is worth checking how it works
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on simulated paths. Figure 1.4 displays the pricing kernel surface as well as its time average as a
function of the net market return. This figure is obtained with our value of 1, (time average of 6.4
10 3) which determines the coefficients A; and Ay of the pricing kernel by application of corollary
3.2 and theorem 3.3. No paradoxical behavior of the pricing kernel is observed in this figure: on
the range of interest for the net market return, the pricing kernel is always decreasing. If now one
increases the value of 7,, by fixing somewhat arbitrarily the price of the squared market return at
the level 1.02, which in turns implies a time-varying n, (with a time average of 15.6 10 3), one gets
figure 1.5. Then, one may observe that, by contrast with figure 1.4, on the same range of values of
the market return, the aforementioned increasing shape of the pricing kernel for large returns may

show up.

5. Conclusion

This paper investigates the relevance of nonlinear pricing kernels both at the theoretical and em-
pirical levels. We first show that considering pricing kernels that are quadratic functions of the
market return is a well-founded approximation of actual expected utility behavior when one wants
to characterize locally the demand for risky asset in the neighborhood of zero risk. Such quadratic
pricing kernels disclose some pricing for skewness, but only through co-skewness with the market.
In other words, while taking heterogeneity of skewness preferences into account yields a violation
of common separation theorems in terms of asset demands, it remains true that idiosyncratic risk
is not priced, both in terms of variance and skewness.

While statistical identification of positive skewness premium may be difficult since covari-
ance and co-skewness tend to be almost collinear across common portfolios, we are able to show
through simulated data calibrated on actual estimation of a factor GARCII model of returns with
in mean effect that a conditional set up is much more informative to capture relevant nonlinearities
in pricing kernels. Such non linearities imply some level of risk neutral variance for the market
which cannot be neglected. This observation leads us to a generalization of the Harvey and Sid-

dique (2000) beta pricing model for skewness; by contrast with theirs, our model considers the
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price of the squared market return as a free parameter whose actual value might be backed out
from observed derivative asset prices.

Although conditional, our study is purely static in the sense that investors only maximize a
one-period utility function. As an intertemporal extension of this study is still work in progress,
it will point out the role of various kinds of asymmetries in a dynamic setting. Typically, while
only conditional skewness of asset returns shows up in the current paper, a multiperiod setting
will also enhance the role of dynamic asymmetry, that is some instantaneous correlation between
asset returns and their volatility process. Such an effect has been dubbed the leverage effect by
Black (1976) and specific leverage-based dynamic risk premia should be the result of non-myopic

intertemporal optimization behavior of investors with preferences for skewness.



6. Appendix: Proofs

PROOF. The solution w (o) = (w; (0));<;<, of problem (2.2) determines a terminal wealth

W o) = p 4 i (o) (B 1)
i1
according to the first order conditions:
B (W (0)) (R — 1) = 0.
These conditions could be written:
Ehi(o)=0
with
hi(0) = (W (9)) (0as (0) + Y7).

(6.2) implies

dh;
do

L

(o) =0.

which also implies

dh;
lim Lot o) =0.

ow0+ do

An easy calculation gives:

(A3) & zn:wi (0)Cov (Y;,Yy) = _M

1 a

s w(0)=3% 7ra(0).

The Sharpe ratio for optimal portfolio is equivalent to

E[wT (U) (R — N’)I] — O'P(O) .
(Varfwr (o) B])®

Then,

(B[ (0) (R—p)*

P (0) = Var [wT™ (o) R

(6.1)

(6.3)

k (0) -



L

®

and

Then

Similarly, (6.2) implies

(ra” (0) T lo?a (0))2
Ta” (0) L 1 (02%) ¥ 1ra(0)

2 (a7 (O F 'a(0))”
a” (0)X 1a(0)

o?P?(0) =

P(0) = [ (0)Z 'a(0)]?.

L dPhy
alir{)le L d?c (U) =0,
that is:
n n n
> wi(0)Cov (YY) = E37w2(0) BY?Ye+22 3 wi (0)w; (0) BY:Y;Yi +7a, (0) (64)
i1 il i<y
n
o 21: w, (0) Cou (Vi Yi) = 5%001} (@ @ R)? K] +70;.0),
where p = Iziﬁf))' We now define the co-skewness of asset & in portfolio w as:
Cov [(wTR)2 , Yk}
o (W) = Var [wT R]
Then,
Cov [(wT' (0) R)?, Yk]
WO = — oA
_a’ ()T 'IwE 'a(0)
- P2(0) '

(6.4) is equivalent to

w (0) =




Therefore
w (0) =7 1 |c(w(0)) pP?(0) +a (0) (6.5)

Now, we consider asset markets for risky assets i=1,...,n with s agents s=1,...,5. [lach agent is char-

acterized by a Von-Neuman Morgenstern utility function us and associated preference coefficients:

ug (1) 2y (1)
" d 8 - i .
() P =T

3

We also assume that the net supply in each risky asset i=1,...,n is exogeneous and fixed to unity

(normalization): Then in the limit case

S
ZW(S)(O) = 6
81

s !
DT
s=1

[l
e

We deduce:
w® (0) = = '7r5a(0).
Then
s

Z Y lrsa(0) =e

g=1
which implies

1
a(0) = ;EE. (6.6)
We rewritte the marginal shares of agent s
W (0) = 7,5 [c (@) p, P2 (0) +a (0)]

Taking the sum of this equation for s=1,...,S, we get

s , s
> @)=Y T ! [c@p,P(0) +a (0)] =0.

8=1
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This expression is equivalent to
a (0) = —pc (@) P2(0).
Then

a, (0) = —pex (@) P*(0)

= —pa’ (0)Z nz la(o)'

Since

a(0) = =5, (6.7)
we then have
' _ 1 .
a (0) = P 2¢ Lwe (6.8)
(Zm)
s -1
- L @)
=

From (6.5), we rewritte the marginal shares of agent s

W9 (0) = 7,3 He@)pP? (0) +4'(0)

= 7olp,—A P2(0) T 'e(®).
Therefore,
wl)' (0) = %Z Yp,—pJA fors=1,...,5.
A variable m is a valid SDF when risk premium of asset & is o [ak (0) + o’a;; (0)] if and only if:
Em (R — p) =0« Cov(m, Ry) = —%02 [ak (0) + oay, (0)] .

Note from (6.7) that:

olay (0) = ?'LSC'OU (i (cYs), RA.>

i=1
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and from (6.8),

2
—_ n
o®a, (0) = Cov _p ( (UYi)> s Ry

(TS)2 1
Therefore,
1 1 & P “ ’
—;az’ ay (0) + oa, (0)] =Cov | — Z (oY) + % < (UYi)) » By,
By Ts M(Zn) o
g1 g1

and to identify this covariance with Cov (m, Ry) it is suffices to choose:

n — n

m = a-— ; Z(MH%(Z(UK‘))
/-"ZTsi L /L<ZT> .

81

for some well chosen constant a.

Let us denote

n
Ry = ZRL"
i1

Then, we rewrite m

! _
m = a-— (Rar — ERar) + 42 (Rar — ERyp)?

s s
:U‘ETS /J'< Ts)
81 81
11 1 p 2
= a——=(Rp — ERy, —— = (Rar — ERpy)”.
a SM?( m — ERy) + 2H?2( m — ERyy)
Using the fact that
1
Irm = —,
1
we get
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and

1 1 P 2 2
=————(Ry— IR —— [(Rar — ER - I (Rpy — R .
me #57( M A1)+”S2_T_z (Rm ) (Rm M)]

PROOF OF THEOREM 3.3. We apply (3.15) to the asset net return:

2
TMt+1

Tit4+1 = — Hy-

t
We get:

2
Varrin

2 2 2 (r g
ELTA1t+1 — HTe = (EtTI\IH-l) TYmmt Va'r”‘]\]{,-{-] - /\2{ (VG‘TTA/U-H) (1 2 (7 Mt41,7 A/IH-I)) ’
that is:
(2)
y 1
_7;‘& = —ymm,PLg — A2 (1= pF (rareens Paresr)) -
t

This gives the announced value for Agy. [ |
PRrROOF OF LEMMA 3.4. The conditional linear regression of R% rep1 ©n Rareyr is of the form
LL, [R?m+1|RMt-|-1] == EtR?\!t'*'l + aFy41,
where
Fieyr = Ry — BiRageya.

The residual of the conditional linear regression of R% re41 00 Ragey, that is R%,” L [Rfm 1 RMH—I] ,

is orthogonal to Fi;y1. Consequently,
Couv; (R3j141 — EL, [R%1r+1|RMt+1] , Fiip1) = 0.

Solving this equation gives

Cou, (R12\u v Rarer)
Var: (Rare+1)

a —
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Then,

2
Cov, (Rz\«n b1 Baen)

ELi [R3j 41| Rastan] =
t [Riree1] Rasea] Vart (Raree1)

(Rart+1 — B Rare41) - (6.9)

But,

Covy (Raj141, Raes1) = Couy ((RMt—l—l — BiRatert + BuRaseyn)”, RMt+1)
= Cou ((Rz\«u+1 - ELRMH-I)2 + 2(Rares1 — EeRarear) BeRare 1y Rarey 1)
= Cou ((RMn+1 — BRpesn)? 7R1\1c+1) + 2E¢Rart11Vare (Raret1)

= Ly (Rpregr — BeRarey1)® + 2B Rage1Vare (Rager) -

Therefore,
Rasier — BeRasey1) By (Ranesr — BiRaren)’
EL,[R%,. IR = L,R? (
t [Rire1|Raeaa] tHarq1 + Vare (Rares1) +

2(Rpart41 — BrRare1) LeRarey 1
This ends the proof. |
ProoF OF THEOREM 3.5. Let us first note that

*2 2
orme = e Lot (Rarer — py)
where,
(Baresr — )’ = Ripy + 17 — 2Raneya - (6.10)

But the squared market return can be rewritten as
2 ; 2
Riei1 = ELi [Rireq|Rarer] + e
where,

Iyer1 = 0.
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We replace this last expression into (6.10) and get

(Rares1 — 1) = EL [Rari1| Raresn] + et + 1 — 2Rane p1py

(Rarir1 — EeRarenr) Br (Raresr — BeRpiegr)®
Vary (Rageq1)

. » i 2 .
2(Rare+1 — LrRppes1) BrRpgeg1 + o1 + 1y — 2Rage4 114

E(R‘f\[t,*.l + +

Therefore,
I (1 - EIL‘ELRMt+1) By, (Ruer1 — EiRannr)®
Vary (Ra41)

1
2p, (1 - #_ELRJ\/IL+1> EiRages1 + pCov (Mg, e041) — p2
t

*2 . 2
Omt = LiRypq +

+

1
= LRy — PI(VREt (Rpresr — BeRaren)® + 20 (1 - ;;EtRMtJrl) Ly Rpreyr +
1 Cov (Myy1, €041) — 1
- (Eﬂ'%nﬂ -2 (En7'1\1n+1)2) ~ PO B (Rugen — BiRaigr)® + 1 Cov (g1, €e41)

2
Ufm (1 - (Pﬁ?) U%u) - P1(\},)Et (Rares1 — ElRMt-H)3 + 1, Cov (myy1,€041) -

This ends the proof. |
PROOF OF THEOREM 3.6. Assume that the joint process (mi41, Rare41)" is conditionally lognor-
mal. Then,

Log (my41) /1 N Hmt U% Tmrt
t 3
LogRpri41 Hare Omrt  Oap

Let us denote

2
cmt = Eimiqp 1 Rypyq -

*2

The market return risk neutral variance o7, is

*2 * D2 2
Ot = L5 Riprqn — Bt
Where,

* 2 2
LF Ry = plaemur1 Ry



We know that:

Log (mu41 Ry, 1) = Log (may1) + 2Log (Rarei1) -

Therefore,
o) R? = 2 0.502% + 202, +2
140 41 eXP (tant + 24ep1e +0.507 + 2071, + 20mrt)
= : 2 : 2
= exp (—l"mz - 0-0‘712,) exp (2pepg; + 201\/1(,) exp (—2ppr — UM!.) x
= - 2
[exD (ptmt + fiare + 0.507 + 050751, + omere)]
But
EymRpi41 =1 < exp (fony + piare + 0.502 + 0.502;, + Umrt)
Therefore,
2 = : 5.2 : 2
Eymey 1Ry = €xXP (—fgnr — 0-05’12) exp (2par + 20°011) €xp (—2ptar — Uz\u)
7 2
y ERY 4y
" .
(ErRagi41)?
Consequently,
o P2 2
L LRy w2 = o? ( He ) <a?,.
mt t (EtRI\/IL-I 1)2 m EtRI\IH—l m
|

PROOF OF THEOREM 3.7. Assume that

2
M1 = Voo + ViR + vac Ry

Then,

CO’U{ (mt“, E{,_{_l) = V2{,C'O'UL (R‘IZ\“_{_I, E(+1) .

41



But

Couy (R%m-ua €tt1)

2 2
Couy (RMH.p Rireyr — Var (Rareq1)
Cov} (R3,,, 1 Raesr)
Var, (Rase+1)
L Covi (Riyyiy Rasesn)
Var, (R%m“) Vare (Rar+1)

Vary (Ra1) [1— pf (R340, Raer1)] -

(Bnseer = BiRpirn) Cove (R Rare I-1)>

Var, (Rz2\n+1) -

Va’r'( (R12\,1 t_l_ 1 )
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Table 1.1: Estimated results of the Factor GARCII in mean (see Bekaert and Liu (2004))

[Equations Coefficients
ct Yit Yo Ya
Yit41 0.0030 0.361 —0.029 0.008
(0.0005) (0.033) (0.022) (0.005)
Yor i1 0.0056-162.65 (e1;)>  —0.198 0.738 —0.0002
(0.0006) (0.0001) 0.031 (0.037) (0.0043)
Y3141 0.0188 — 58.02(ey)” —1.734 1.029 0.077
(0.0083) (0.0003) 0.005 (0.014) (0.034)
constant Q B 13
Var (e1z41) 0.000019 —0.0265 0.0008 0.2705
0.000018 (0.0807) (0.7898) (0.0426)
8y 0.000014 0 0 0
(0.000002)
03 0.006134 0 0 0
(0.00103)
13 = —0.0564 o1 = 3.182
(0.1425) (0.003)

Notes: In this table, we reproduce the results of the Factor GARCII in mean estimated by
Bekaert and Liu (2004). 63 = Var; (e2:11) and 83 = Varg (e341) -
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Figure 1.1: Price of coskewness: Price of coskewness inferred from simulated data according
to the Factor GARCH in mean estimated in Bekaert and Liu (2004). HS indicates the price of
coskewness corresponding to Harvey and Siddique (2000) limit case. CLR indicates the price of

coskewness corresponding to our formula.
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Figure 1.2: Price of squared net return: Price of squared net return inferred from simulated

data according to the Factor GARCH in mean estimated in Bekaert and Liu (2004).
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Figure 1.3: Risk premium on the squared net return: Risk premium on the squared net
return inferred from simulated data according to the Factor GARCH in mean estimated in Bekaert
and Liu (2004).
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Figure 1.4: Quadratic SDF: Quadratic SDF inferred from simulated data according to the Factor
GARCH in mean estimated in Bekaert and Liu (2004). In the left hand side graph, we plot the
pricing kernel mqy1 as a function of ¢ + 1 and ras¢4+1. In the right hand side, we plot the average

pricing kernel E'tr:l -,lfmpr].
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Figure 1.5: Quadratic SDF: Fixing the price of the squared market return at the level 1.02,
which in turns implies a time varying 7,, we infer the quadratic pricing kernel for simulated data
according to the Factor GARCH in mean estimated in Bekaert and Liu (2004). In the left hand
side graph, we plot the pricing kernel m¢;; as a function of ¢ +1 and 741 = z. In the right hand

side, we plot the average pricing kernel £7_, %mtﬂ.
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1. Introduction

[lansen and Richard (1987) introduced the concept of a stochastic discount factor (SDF') to
the financial econometrics literature and defined a stochastic discount factor as a random variable
that discounts payoffs differently in different states of the world. Since this seminal contribution,
it has become evident that the empirical implications of asset pricing models can be characterized
through their SDFs [Cochrane (1991)]. In this context, [lansen and Jagannathan (1991) address
the cuestion of what asset returns data may be able to tell us about the behavior of the SDF
volatility. They found a lower bound on the volatility of any admissible SDF that prices correctly a
set of asset returns. Their bound has been applied to a variety of financial issues. For example, the
Ilansen and Jagannathan (I1J) bound is used to test if a particular SDF implied by a model is valid
or not. Recently, Barone-Adesi et al. (2004) assume a quadratic specification of the SDF in terms
of the market return and test asset pricing models with co-skewness. They found evidence that
asset skewness (co-skewness) is priced in the market through the cost of the squared market return
even if the squared market return is not a traded asset. This line of thinking had been initiated
by Ingersoll (1987) and pursued more recently by Ilarvey and Siddique (2000) and Dittmar (2002).
They look at extensions of the CAPM framework by considering asset skewness. Assuming higher
skewness is preferred, Ingersoll (1987) shows that a decrease in co-skewness recuires an increase in
expected return to induce the same holding of the asset at the margin. Furthermore if we use a
Taylor series of derivatives’ payoff functions as quadratic functions of the underlying asset return,
we realize that the price of the derivatives is a function of the cost of the squared return and this
cost is tightly related to return skewness. The cost of the squared portfolio return is, therefore,
particularly relevant when pricing derivatives. Since the I1J volatility bound considers admissible
SDFs that price correctly only a set of asset returns, it appears useful to construct a new variance
bound for any admissible SDF that prices correctly not only a set of primitive assets but also the
squared returns of the same primitive assets.

The first contribution of this paper is to find such a lower bound. While I1J minimizes the SDI°

variance for a given SDF mean under the assumption that the admissible SDFs price correctly
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a set of primitive asset returns, we minimize the SDF variance for a given SDF mean under the
assumption that the admissible SDF's price correctly not only a set of primitive asset returns but
also the squared return of the same primitive assets. Our variance bound tightens the IIJ bound
by an additional quantity which is a function of the assets’ co-skewness and the cost of the squared
primitive asset returns. We derive necessary and sufficient conditions to get the well-known I1J
bound as a particular case. In this more general setting, our minimum variance SDF can be
rewritten as a quadratic function of asset returns. By this, we mean a linear combination of two
vectors: R and R() where R represents a vector of primitive asset returns and R is a vector of
the squared primitive asset returns whose components are of the form R;R; with i < j. When R
is the market return, we get a quadratic specification of the SDF in terms of the market return
which is often used to underline the importance of skewness (co-skewness) in asset pricing models
(Ingersoll (1987), [Tarvey and Siddique (2000), Dittmar (2002)]. We use the return on the Standard
and Poors 300 stock index and the commercial paper index from 1889 to 1994 to illustrate our SDF
volatility surface frontier. We also use the consumption on non-cdurables and services over the same
period to relate the CRRA and Epstein and Zin (1989) preference models to our volatility bound
for particular values of the relative risk aversion coefficient. We illustrate how our SDF variance
frontier tightens the I1J variance frontier and makes the equity premium puzzle even more difficult
to solve.

The second contribution of the paper is to offer a new approach for portfolio selection with
higher moments. This approach is based on factors that span our minimum variance stochastic
discount factor. The intuition behind our portfolio selection analysis is motivated by the duality
between the I1J minimum variance SDF and Markowitz mean-variance analysis [Campbell Lo and
Mc Kinlay (1997)]. Since we have found a minimum variance SDF that tightens the [1J minimum
variance SDF, it is of interest to also give a portfolio selection approach which is based on our
minimum variance SDF. Our approach consists in minimizing the portfolio risk subject to the
portfolio expected return and an additional constraint (cost of the squared portfolio return) which

depends on the portfolio skewness. The cuestion we thereafter ask is: under which conditions is
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our portfolio choice observationally equivalent to the standard portfolio selection under skewness?
We then generalize the standard portfolio selection approach under skewness which consists in
minimizing the portfolio risk subject to the portfolio expected return and skewness [see Lai (1991),
de Athayde and Flores (2004)]. Our more general approach is relevant since it first provides a
formal bridge between the SDF variance bound and the portfolio selection under higher moments.
Second, it shows that the standard approach of portfolio selection under skewness may overlook an
important factor.

We also provide an empirical illustration for portfolio selection. We use daily asset returns for
four individual firms. Our portfolio selection approach depends on the cost of the squared asset
returns. To compute this cost, we assume that the joint process of the SDF and asset returns
is lognormally distributed. The lognormal distribution is flexible and allows for skewness in asset
returns. Many asset pricing tests assume that the joint process of SDF-asset returns is conditionally
jointly lognormal. Moreover, diffusion models imply a locally lognormal distribution. Our results
suggest that the cost of the squared portfolio return and portfolio higher moments have a significant
impact on the portfolio mean-variance frontier.

The rest of the paper is organized as follows. Section 2 gives the theoretical background and
an empirical illustration for the generalized SDF variance bound. In Section 3, we offer a portfolio
selection approach based on factors that span our minimum variance SDF. Section 4 gives an

empirical illustration for portfolio selection under higher moments. The last section concludes the

paper.

2. The Minimum-Variance Stochastic Discount Factor

In this section, we first review the I1J bound and derive the SDF variance bound under higher
moments. In section 2.2, we provide conditions under which the cost of the squared returns affects
the variance bound and give some empirical implications of our new bound. Section 2.3 discusses

the variance bound when we restrict admissible SDF's to be positive.



2.1 The general framework

In this subsection we construct a new bound on the volatility of any admissible SDF which tightens
the I1J volatility bound. By a SDF, we mean a random variable that can be used to compute the
market price of an asset today by discounting payoffs differently in different states of the world in
the future. IIJ have proposed a way to find the lower bound on the volatility of any SDF that
prices correctly a set of primitive asset returns. Their approach treats the unconditional mean of
the stochastic discount factor as an unknown parameter 7. For each possible parameter 7, I1J
form a stochastic discount factor my; (7) as a linear combination of asset returns and show that
the variance of my; (M) represents a lower bound on the variance of any stochastic discount factor

that has mean m and satisfies:
IEmR =1,

where [ represents an N-vector with components unity and R is a set of N primitive asset returns.

Let Fi (M) denote the set of SDFs that have mean 7 and that price correctly 2. Therefore,

Fi(m)={meL?: Em=m, EmR=1}.
Thus, myy (M) is the solution to the problem:

Min o (m).
me JFy (ﬁ)

I1J show that

myy (M) =m+(l - mER) Q ' (R— ER)
and

Var [myy (M) = (1 -mER) Q' (I —-mER),

where €2 is the covariance matrix of the asset returns. Ilere, the IV assets are risky and no linear
combination of the returns in R is equal to one with probability one so that £ is nonsingular. Using

the I1J bound, it is then possible to derive an admissible region for mean and standard deviations of
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candidate SDF's using only asset returns data. By plotting these regions, the I1J approach provides
an appealing graphical technique through which to gauge the specification of many asset pricing
models. [lowever it appears important for any admissible SDF to price correctly not only a set
of primitive assets but also payoffs which are nonlinear functions of primitive assets’ payoffs. For
instance, a Taylor expansion series of derivatives’ payoffs around a benchmark return will imply, in
general, that the cost of squared portfolio returns is relevant when pricing derivatives.

Suppose 1, = w' R represents a portfolio return, where w = (w1, ws, ..w N), is a vector of portfolio
weights which satisfies w'l = 1 with [ = (1,1, ...1)’. The squared return of the portfolio can be

represented by:
! 2 ’
r2 = (w R) =(w®w) (R®R),
where @ stands for the Kronecker product. The cost of the squared portfolio return is therefore,

C (7'12,) = Em'rf,
(w®w) Em(R® R)

= w('l)lEmR(z),

where w(2) represents a column vector whose components are of the form,

25w ; ifi<yj
Wij —
w?ifi=j
and R(® represents a column vector, the components of which are of the form R;R; with 2 < j.
It can be observed that the cost of the squared portfolio return is a function of the cost of the
“squared” asset returns, R.! The cuestion we ask is whether we can we tighten significantly the
I1J volatility bound by considering any admissible SDF that correctly prices payoffs that can be

expressed as a quadratic function of the primitive assets. The idea is to consider a set of SDF's that

correctly price the N asset returns, R, and the “squared” asset returns R®. If F, (m, n) denotes

"For portfolio algebra using the inverse of covariance matrices, we prefer using R than R Q R since the latter

has a singular covariance matrix.



a set of SDFs that correctly price R and R(®), we have,
Fa(m,n) = {m cI?:Em=m, EmR =1, EmR? = 77} .

where 7 denotes the vector of prices of squared returns. Notice that F (7, 1) C F1 (7). Intuitively,
we exclude any admissible SDF that does not correctly price derivatives with payoffs that can be
written as a quadratic function of a set of primitive assets. We then treat the unconditional mean
m of the SDF and the cost n of the "squared” primitive asset, R®) as unknown parameters. For

each ™ and 7, we form a candidate SDF, m™"® (,7m), as a quadratic function of asset returns:
m™ (n,7) = & (M) + B (n, M) R+7(n,m) R (21)
with
& (n,m) =7~ 3(n,M) BR—~(n,m) ER?),

since Em™"* (n,m) = m. Therefore, we exploit the pricing formulas £ (Rm) =l and [/ (R(2)7n) =

to compute the parameters,

ﬂ(rlvm) 0 1([—mER)_Q IA’Y(l’%m)a

v m) = [B-Ae A ' [n—mER@)—A’Q l(l—mER)],
with,

S = ER® (R(”—ER(?))I,

1

A = E(R(2>—ER(2>) R.

Note that A is related to the notion of co-skewness [see Ingersoll (1987), [larvey and Siddique
(2000)]. The expansion ¥ = ¥ — A’ A denotes the residual covariance matrix in the regression
of R® on R. We assume that the matrix ¥ is nonsingular; that is, no squared returns are redundant
with respect to the primitive assets. This assumption will be maintained hereafter for the sake of

notational simplicity. A simple application of the I1J argument to the vector [R, (diag n) T R®
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of returns, (where diag n denotes the diagonal matrix with coefficients defined by the components

of n) ensures that m™"* (

7, ™) gives the volatility lower-bound in F3 (7, 7). That is, it solves:

min o (m).
me Fy(m.n)

To compare this minimum variance SDF to the IIJ minimum variance stochastic discount factor
associated with only the vector R of returns, we rewrite m™v®(n,7) as a function of the I1J

minimum variance SDF.

Proposition 2.1 The minimum variance stochastic discount factor among any admissible stochas-
tic discount factors that correctly price not only a set of primitive assets but also derivatives the

payoffs of which can be written as a quadratic function of the same primilive assets as follows:
mmwmmpﬂm”ma+ﬂmmyhw—EM”—NQlm—Em]
where,
' 1 f
ﬂmmL:F—AQIA] h—mEM”—AQIU—mEmy

We are now going to discuss the necessary and sullicient conditions to get the I1J minimum

variance SDF.

Proposition 2.2 The minimum variance stochastic discount factor, m™"? (n,mm), collapses to the

Hansen and Jagannathan minimum variance stochastic discount factor, my; (m), if and only if
n=mER® +A'Q ' (I —-TER).

PROOF. Of course, if v (n,m) = 0, we have m™"’ (n,m) — mpyy (M). Conversely, assume that

m'™¢ (n,m) = mpy (M) , thus it follows that
ﬂmmypm EM”—NQIW—Em]_Q
If we premultiply this equality by m™"® (n, 1), we get

y (n’ﬁi)r S (f}m) [R(Z) — ER® _ A’Q 1 (R ER)] = 0.



Taking the expectation of this quantity, it is easy to show that
n—mER® —A'Q ' (1-mER) = 0.

This implies that -y (n,7) = 0.
Note that propositions 2.1 and 2.2 have been derived under the maintained assumption that

squared returns are not redundant assets, that is R® does not coincide with its affine regression
R:

R® —ER® _A'Q Y(R- ER).
ITowever, when ever this residual has zero price, we see from proposition 2.2 that m™V® (n,7) and
mpy s () coincide, that is when its product by the SDF has a zero expectation.

Our volatility bound can be used to assess the specification of a particular asset pricing model

as is usually done with the I1J bound. But our bound is tighter:

o
o
e

o [m™ (n,m)] > o [myy (M) for all n. (2.

To see how our volatility bound can be used to check if a particular asset pricing model explains
asset returns, let us consider a proposed SDF, m (z), where x represents a set of relevant variables,
for example the ratio of consumption, x = gé,—‘*t‘—‘, or the first difference of consumption Cjy1—C;. To
gauge if the proposed SDF passes our volatility bound, we need to first compute n = IFm (z) R®
and Em (z) and then check if o [m (z)] > o [m™?® (n, Lm (z))]. If the proposed SDF passes the I1J
bound but not our variance bound, it means that the proposed SDF variance is too low so that
this SDF cannot correctly price derivatives, the payoffs of which are a quadratic function of the
primitive assets. Since the price of such derivatives can be written as a function of the cost of R
and that this cost is a function of asset skewness, the failure of the proposed SDF is akin to a

failure to price skewness correctly.

2.2 Why does the price of squared returns matter?

By the inequality (2.2), we realize that our variance bound is greater than the I1J bound. The first

question we then ask is: is there pricing condition(s) under which our variance bound coincides
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with the I[IJ bound? Under these conditions, the squared return cost does not matter and we have

failed to shed more light on the SDF variance bound. Proposition 2.3 summarizes this issue.

Proposition 2.3 Consider the linear regression of the squared returns, R®, on the return, R,

that is:
EL [R(2)|R] = ER® + A'Q (R ER).
and
n* =mER® + A'Q ' (1 —mER),
the price of this regression. Then, there exists n > 0 such that
o [m™* (n,m)] = o [mus ()]
if and only if n* > 0.

i 1 . . Pr—
PROOF. We have v (n,m) = [E —-AQ IA] [n —n*]. Then if n* > 0, n = n* implies v (n,m) = 0.
We, therefore, have o [m™* (n*,m)] = o [mp, (m)]. Conversely assume that there exists n > 0
such that o [m™s (n,7)] = o [my, (7)]. This implies that v (n, ™) [Z —A'Q IA] ~v(n,m) = 0.

But
Y (0.7) [B-A'Q Ay () = (1- ) [B- A A (=)

Therefore, (n — 17*)’ [E —A'Q IA] (n —n*) = 0. Since in this paper we assume that the matrix
¥ — A'Q? 'A is nonsingular, we conclude by the Cauchy-Schwarz inequality that ¥ — A A s
positive definite, then 7* =5 > 0.
In other words, when n* < 0, o [m™"* (n,m)| > o [mpuy (M)] for all > 0. Then taking into
account the cost of squared returns will always have a significant impact on the volatility bound.
Recently, Kan and Zhou (2003) proposed an alternative way to tighten the I[1J bound. They
assume that they can find a vector x of state variables such that the conditional expectation of

my . (M) given z coincides with its affine regression. Under this maintained assumption, they are
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able to show that any admissible SDF m (z) which is a deterministic function of z has a larger

volatility than a bound o2 [mkz| defined by:

o [m ()] > o? [my 5] = 3 L [my ., (M),

where p, . is the multiple linear correlation coefficient between mpy; (M) and z. By considering

T = [R, R(Q)], we can then claim that:
inf o [m™"¢ (n, )] > 02 [mgz] .
n

Therefore, the Kan and Zhou volatility bound does not make our bound irrelevant. The cost of
squared returns may matter significantly.

We now give empirical illustrations showing that squared return cost may be important. We
first consider the annual excess simple return of the Standard and Poors 500 stock index over the
commercial paper from 1889 to 1994. In this case, ¢ = 1 and our SDF variance bound is easy to
illustrate graphically. Figures 2.1 and 2.2 illustrate our variance bound surface and the [1J bound
respectively. It can be seen from these figures that the cost of the squared asset excess return
has a significant impact on the SDF mean-standard deviation frontier. For example, for a SDF
mean in the neighborhood of 1, the I[IJ SDF standard-deviation is about 0.3 whereas our SDF
standard deviation is greater than 0.6 for any positive value of the squared return cost. According
to proposition 2.3, this should be a case where the cost n* of the affine regression of R® on R
is negative. Furthermore, when the SDF mean in the neighborhood of 1, our minimum variance
SDF standard-deviation highly depends on the cost of the squared asset excess return. Thus the
squared returns cost is relevant for determining the SDF variance bound. Similarly to the II1J
volatility bound, our volatility bound can be used to illustrate if a particular asset pricing model
fails to explain a set of asset returns. To give this illustration, we consider several consumption-
based models. The first model assumes that there is a representative agent who maximizes a
time-separable power utility function, so that:

1 -«
Cl,—l»] —1

u(Cr1) = | a

bl
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where « is the coefficient of relative risk aversion and Cj; is the aggregate consumption. Therefore,

it can be shown that the representative agent optimization problem yields a SDF of the form:

- o (Ci41)
myyq1 — ﬁ ul (CL) 3

where 3 € (0,1) is a subjective discount parameter. For this CRRA preference model, we set
8 = .95. Using consumption on non durables and services over the same period, 1889 to 1994,
Campbell, Lo and Mc Kinlay (1997) show that the variance of m;1 enters in the I1J feasible region
if the relative risk aversion coefficient « is greater than 25. This can be seen through Figure 2.3.
Varying exogenously « from 0 to 27, the point (IZmy41,0 (my41)) does fall into the feasible region
until the coeflicient of the relative risk aversion reaches a value of 25.

Since our SDF variance bound is greater than the I1J variance bound, it is clear that for a < 24,
the point (Emgy1,0 (Mey1),n) with 7 = Emgy1R?) does not enter into our feasible region. We
need to check if any particular relative risk aversion @ > 25 produces a point (L'mi41,0 (mit1) ,7)
which enters our feasible region. To proceed to our graphical illustration, for a = 25 and a =
27, we compute 7 and find the corresponding feasible region. We check, thereafter, if the point
(Emg41, 0 (me41)) enters our feasible region. While Figure 2.4 shows that for various relative risk
aversion coeflicients, our variance bound never coincide with the IIJ bound, the two bounds give
nevertheless the same conclusion about the candidate SDF's produced by this model.

We repeat the same calibration exercise using the Epstein and Zin (1989) state-non-separable
preferences. Following Epstein and Zin (1989), we assume that the state-non-separable preferences
are given by V; = U [C}, [5;V;41] where
[a-pct P+B0+0-p)(1-a) V|77 -1

1-8)1-a) '

The elasticity of intertemporal substitution is 1/p. The representative agent SDF is
l-a
Ciy1 te R(}_Z)
C

mt-1 ’
where R4 is the return on the market portfolio. Figure 2.5 plots the bound and the representative

Ulc, V] =

B

mey1 =

agent SDF volatilities for Epstein and Zin (1989) consumption based model. For this consumption-

based model, the parameters used are § — 0.96. We use the same data set as in the CRRA case.
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Figure 2.5 reveals that for 8 = 0.96, (p,a) = (3.03,6.86) the point (Imyy1,0 (m41)) enters the
I1J feasible region, but this point does not enter our feasible region. This means that taking into
account the cost of quadratic derivatives makes the equity premium puzzle even more difficult to
solve. For reasonable value of the preference parameters, we also realize through Figure 2.5 that
owr variance bound never coincides with the I1J bound. This underlines why squared returns cost
should be taken into account in asset pricing models.

Next, we consider a model with state dependence in preferences. Several authors [see e.g.,
Gordon and St-Amour (2000), Melino and Yang (2003)] have pointed to countercyclical risk aversion
as a potential source of misspecification that may account for the equity premium puzzle. It is then
noteworthy to check if these models can explain this puzzle when using our variance bound on
admissible SDF. We consider Gordon and St-Amour (2000) and Melino and Yang (2003) state-
dependent preference model.

The Gordon and St. Amour (2000) stochastic discount factor is of the form

g 1= ﬁ C‘ 1 ( ) C['l ( l) Q(Ll-l)

where the coefficient of relative risk aversion depends on a latent state variable U; and % is the

ratio of next period’s level of consumption to a scale parameter . For the state variable, we set
the transition matrix to?

0.9909 0.0061
0.0091 0.9939

Since the frontiers are very close under the two bounds, we find that when the implied Gordon
and St-Amour SDF passes the IIJ bound it also passes our variance bound. We report here (see
Figure 2.6) only the case: a = (3.7,2.23), § = 12, 18. Melino and Yang (2003) generalize the
model of Epstein and Zin (1989) by allowing the representative agent to display state-dependent
preferences and show that these preferences can add to the explanation of the ecuity premium

puzzle. They consider several state-dependent preference cases: state-dependent Constant Relative

2In this matrix, the probability of staying in state 1 is 0.9909 and the probability of staying in sate 2 is 0.99309.
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Risk Aversion (CRRA), state-dependent Elasticity of Intertemporal Substitution (EIS) and state
dependent subjective discount parameter 8. Without loss of generality, we consider the Melino and

Yang (2003) stochastic discount factor when the EIS and the subjective discount parameter 3 are

constant:
1 a(ly)
C£+l P b (1 1u(u )) 1
meyy — ﬂ( C > Rm.(,-l—lp :
t

In Figure 2.7, we give two examples of SDF bounds. For fixed values of (8, p) = (0.98,3.58), the
first example shows that for the state-dependent preferences parameter a — (7.8,9.4), the state-
dependent implied SDF passes the I1J bound but does not pass our bound whereas in the second
example, o = (8.8,9.33) produces a SDF which passes both bounds. In the next subsection, we

provide insights on the SDF variance bound under a positivity constraint.

2.3 Positivity constraint on the SDF

So far we have ignored the arbitrage restriction that an acdmissible SDF must be nonnegative.
[1J show that when an unconditionally riskless asset exists, it is straightforward to find the I1J
minimum variance SDF with a nonnegativity constraint. But they show that this SDF may not
be unique. In our case, when the uncohditionally riskless asset exists, it can be shown that the

minimum variance SDF with positivity constraint is:
mus [, \+ TARY ~ .\ p(2) +
m ()t = (Bm) R+3(m) BR?)",

where zt = max (0, z) represents the nonnegative part of z. The parameters B(n) and 7 (n) can

be computed by solving the nonlinear equations:

ERm™vs (77)+ l,

ER(2)mmvs (77)+ =

These two ecuations are nonlinear in the parameter vectors ﬁ (n) and 7 (n) and the solution (,B (n,

¥ (7)) cannot be represented in terms of matrix manipulations. Similarly to I1J, it can be shown
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that this solution exists but may not be unique. Once this solution is found, however, it is easy to

show that m™"® (n)* has a minimum variance among any admissible. SDF in F5 (1) where
Fi(m) = {m €eL?:m>0, EmR=1, EmR® = 77} .

To understand this more clearly, consider any other nonnegative admissible SDF in .'F; (n) and

note that
Bl () ] = B |m (B0) R+ 70 29)|
> B(n) EmR+7(n) EmR®
() Bm™* ()* R+5 (n)’ Em™* (n)* R®)

[(mm™ )]

Il
™t

I
&

It follows that
Em?2> [ [(mmv“’ (n)'l")z]
and
o (m) > o (m™ (n)").
I1J find a similar inequality, but in their framework,
o(m) > o (mi,),

. +
for any admissible SDF in Ff = {m € L2 :m >0, EmR =1}, where m};, = (,BHJR> . Since

FS (n) C F, it is straightforward to show that:
o (m™ (m)*) > o (mi,).

Therefore, when the riskless asset exists and if we use a nonnegativity constraint on m, our variance
bound also tightens the [1J variance bound. Following the same idea as [lansen and Jagannathan
(1991), this result can be generalized to deal with the case in which there is no unconditionally

riskless asset. In the rest of this paper, we work without a positivity constraint on admissible SDFs.
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Motivated by the duality between the I1J frontier and the Markowitz mean-variance portfolio
frontier, we offer, in the next section, a portfolio selection approach based on our minimum variance

SDF surface frontier.

3. Portfolio Selection

Markowitz mean-variance analysis is the central tenet of portfolio selection in financial theory.
Since any asset pricing model can be represented by a SDF model, a number of papers establish
a connection between Markowitz mean-variance analysis and the [1J bound on the SDF volatility.
See for example, Campbell, Lo and Mc Kinlay (1997), Nijman and de Roon (2001) and Penaranda
and Sentana (2001). The leading assumption in Markowitz mean-variance analysis is that investors
are interested in three characteristics of their portfolio: expected payoff, cost, and variance. Under
these assumptions, it can be shown that the [1J minimumn variance SDF is spanned by two factors
and that the Markowitz optimization problem (which entails minimizing the (unit cost) portfolio
variance subject to the portfolio expected return) yields an optimal mean-variance portfolio which
can be written as a function of the same two flactors.

In this section, we assume that investors are not only interested in these three characteristics
of their portfolio but they are also interested in the cost of their squared portfolio return.

We first use these four characteristics to decompose the SDF as a function of factors which we
use to provide a portfolio selection approach. Our main contribution is to show that the recent

portfolio selection approach based on mean-variance-skewness may miss an important factor.

3.1 A SDF decomposition

Let Py be the set of payoffs which is given by the linear span of primitive assets and Gy be the
set of the payoffs which is given by the linear span of “squared” primitive assets R(?). The elements

of Py will be of the form

N
ZwiRi.
i1
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Similarly the elements of Gy will be of the form
N
Z winiR]- "
i<
Pn, Gn are closed linear subspaces of L2, where L? denotes the ITilbert space under the Mean-Square

2 with T,y

inner product defined as (x,y) = [zy and the associated mean-square norm (z,z)
€ L?. Assume that investors are interested at least in four characteristics of their portfolio p = w'R:
the (normalized) cost of their portfolio, their portfolio expected payoff value, the variance of their
portfolio payoff and the cost of their squared portfolio returns which are given by C'(p) = wl,
E(p) =w'v, V(p) = wwand C (p?) respectively.

For convenience, we denote

!

' = ERR,
r® — prOREA).
Under the law of one price, we can interpret both C'(.) , [7(.) as linear functionals that map the

elements of Py into the real line. In this sense, the Riesz representation theorem says that there

exists two unique elements of Py, p* and p*™, such that:

C(p)=E (p*p) Vpe Py,

with

pt =at' R, withat =1T 1, (3.3)
and

E(p) =L (p**p) Vpe Py, (3.4)
with

ptt =at YR, with ot =0T L.
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Similarly, C (.) can be viewed as a linear functional that maps the elements of Gy into the real
line. The Riesz representation theorem aigain implies that there exists a unique element of Gn

such that:
C(p)= E(p'p) VpEn, (3.3)
with
p* = a* R®),

where a* = n’ [F(Z)] ' The following theorem shows that these three vectors pt, pt* and p* are

able to span the minimum variance SDFs.

Theorem 3.1 For any n # n*, the minimum variance stochastic discount factor m™s (n,m) can

be decomposed as:

muvs (

m™® (n,m) = mpyy (M) + cF3,

with my y (M) = m + aFy + bFy where,

F = pt - Ep",
F, = ptt - EL [P++|F1],

F3 = p*—EL[p*'Fl,Fgl

and
I'T Y —mEpt
a = ——————
Var(pt)
(1/'[‘ . mEpH') Cov (Fy,p*+)
b - _ 1
Cov (Fy,ptt) aC'O'U (Fp,p*t+)
! 1 — *
o (O] nemEr) oo (R Cov(Fap)

Cov (F3,p*) " "Cov (F3,p*)  Cou(F3,p*)

The notation L |[.|F| indicates the linear regression on F.

We now use this SDF decomposition to provide a portfolio selection approach.
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3.2 Application to portfolio choice

It can be shown that the Markowitz portfolio selection approach which consists in minimizing the
(unit cost) portfolio risk subject to the portfolio expected return is based on factors pt and ptTt.

Markowitz minimizes the portfolio risk subject to the portfolio cost and expected payoff,

mi .
pn o (p)

s.t Ep = )u‘pa C(p) =1

If p™ denotes the optimal solution to the problem above, p™ is the only linear combination of pt
and p** satisfying the constraints. We consider now a portfolio selection approach based not only

on p* and p** but also on p*.

Definition 3.2 Given the portfolio expected return, the cost of the squared primitive asset n and
the cost of squared portfolio return, c*, the mean-variance-cost optimal portfolio is defined as the

solution to the following program.

min o (p) (3.6)

stBp = p, Cp)=1, 5’(172) = c*,
where C (p) represents the cost of the portfolio p and C (p®) the cost of the squared portfolio return.

The difference between our optimization problem and the Markowitz optimization problem
is that we minimize portfolio risk subject to an additional constraint which takes into account
the portfolio skewness. We first solve (3.6) and then show the relationship between our portfolio
selection approach and the standard portfolio selection under skewness. If p™"* denotes the optimal

solution for problem (3.6), we have,

P = aipt + coFs + a3k,
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where, oy, as and a3 are determined by equations below:

alEp"' + aglVFy + aslVF3

Hps
a5 (ptpt) + o (Fap*) + s (Fyp*) = 1,
o E (pTp*) + ap E(Fop*) + asll (F3p*) = c*.
The variance of p™¥* is
o? (c*, pp) = ofVar (p*) + a3Var (Fp) + ajVar (F3). (3.7)
To get the optimal portfolio weights, we have,
p"v = w;R = Rrwp.

Thus, premultiplying p™"® by R and taking the expectation, we deduce

wp = a1l 1B (Rp") + col’ 'B(RF) + a3l 'E(RF). (3.8)

We refer to £; as being the set

&1={(spr ¢’y 0 (™) 1 (prc”) €R?)},

where £; represents the mean-variance-cost surface frontier. For each portfolio p™"* in &;, we find

the corresponding portfolio skewness s, = _(T(c_pL If we refer £ as being the set
' p

&= {(ll';n Spy O (pmvs) : (ru‘p7 SP) € R2)} !

then & represents the mean-variance-skewness surface. Now, consider the payoff:

anvs _ m mUs (T’ m)
G (e (g, )
It follows that:
C (Rmvs) —1. (3'9)
If ¢%,,, denotes the cost of (R™*)?, it can be shown that,

Chwe = (T2 + o2 [m™ (7, n)]) E (R™*)°
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Using (3.9), we show that

i~ ) _ |1/m— BR™] _ o™ (m o) _ o (m)
I o B v T e

Vm € Fp (W, 7). (3.10)

Inequality (3.10) shows that no other portfolio with the same mean and same squared return cost

has smaller variance than R™¥¢, The return R™"® belongs to the mean-variance-cost surface &;.

Theorem 3.3 R™YS is mean-variance-cost efficient. That is no other portfolio with the same

squared portfolio cost and same mean has smaller variance.

If we consider the return associated with the I1J minimum variance SDF, that is:

Ry _ _MHI (m)

- C(mus(m))’
it can be shown that

1/m — ER™|  o[myy (m)]

O-(Rm-u) N Imyy (ﬁ) '
By proposition 2.1, we have:
o s ()] _ o [mm™ (7, )
Emyy (M) Em™vs (m,n)

Therefore, the following inequality holds,

[1/m — ER™| < |1/m — LR™Y*
o (Rmv) o (Rm™ws)

The left hand side of (3.10) represents the portfolio Sharpe ratio under the assumption that the
risk-free return exists. If the risk-free return (Rp) exists, that is Rp = 1/m, R™® has a higher
ratio than R™Y. In the light of this inequality and theorem 3.3, it is important to define in our

setting the mean-variance-cost tangency portfolio.

Definition 3.4 The mean-variance-cost tangency portfolio is the portfolio with the mazimum Sharpe

ratio of all possible portfolios with identical squared portfolio cost.
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We now investigate how the portfolio skewness aflects the squared portfolio cost. To see how

this cost is a function of the portfolio skewness, consider the linear regression of p? on p,

Cov (p, p2)

2 9
-
P P Var (p)

(p — Ep) +v.
The cost of the squared portfolio return can be written as:

ot = Emmvsp2
= mEp®+ (1 —Mp,) [21, + opsp] + Cov (v,m™*).

with s, = E pa: 3. Through this expression, the cost of the squared portfolio return is a function
of the portfolio skewness. Therefore it is reasonable to put forward the relationship between our
portfolio selection approach and the standard portfolio selection under skewness. The later consists
in minimizing the portfolio risk subject to the portfolio expected payoff and skewness. We formalize

the standard portfolio selection approach as follows:

min o(p), (3.11)
Cp) =1
Lp = pp

3
E{p “n!
o: — 5p

P

where s, represents the portfolio skewness. Apart from the two portfolio constraints: expected
return and portfolio cost, it can be observed that the difference between our optimization problem
and standard portfolio selection under skewness comes from the third constraint. In standard port-
folio selection under skewness approach, the third constraint is on the portfolio skewness whereas
in our approach, the third constraint is on the cost of the squared portfolio return. De Athayde
and Flores (2004) find a general solution to the problem (3.11). It is thus important to study the
relationship between the two problems in (3.6) and (3.11). We will say that problems (3.6) and
(3.11) are observationally equivalent if and only if any optimal solution to the problem (3.6) is also
optimal to the problem (3.11) and vice versa.

To derive necessary and sufficient conditions that make our portfolio selection approach obser-

vationally equivalent to standard portfolio selection under skewness, we first show:



Proposition 3.5 Consider a portfolio p and the linear regression of p* onp :
p? = EL [p’lp] +v.

Then, Cov (v,m™"®) = 0 for all portfolios p if and only if the components of the price, n =7, of

R® gre:
o _ B (R; - BR)® .
P ) 2 — ! ; 2 U ; —1,... .
Ny = mER; + (1 —mER;) |20R; + Var () fori=1,..,n
and
1
Ty = 5m (LR + ER? +2ER;R;) +
[1 — 1 (ER; + ER;) ] Cou ((R1- +R;), (R + Rj)2) L
[Var (R;) + Var (R;) + 2Cov (R;, Rj)) 2 (s +71j5)
fori##j.

Proposition 3.6 gives necessary and sufficient conditions to get standard portfolio selection under

skewness, that is a maximum skewness portfolio [see de Athayde and Flores (2004)].
Proposition 3.6 If u, # 1 /m, consider a portfolio p and the linear regression of p? onp:
» = L [2lp] +v.

Problem (3.11) and (3.6) are observationally equivalent if and only if Cov (v,m™"®) = 0 for any

portfolio p
PROOF. If Cov (v, m™"?) = 0 we have,
¢ =m(of+ p2) + (1 — mp,) (21, + opsp) - (3.12)
This ecuation is equivalent to
mag + opsp (1 — Mp,) + (Q;Lp - ﬁ,u% —c*)=0.

From (3.12), it is obvious to show that

E(p—pyp)°
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and
{p : bp = p,, and ] (pz) = c*}

are equivalent. Therefore problem (3.11) and (3.6) are observationally equivalent.

In other respects, assume that (3.6) and (3.11) are observationally equivalent. Thus problems
(3.6) and (3.11) produce an identical solution. This implies that problem (3.11) can be used to
compute the cost of the squared portfolio return. This is possible only if Cov (v, m™"¥) = 0. [ |

This proposition shows how our portfolio selection approach generalizes standard portfolio se-
lection under skewness and suggests that standard portfolio selection under skewness implicitly

™Y with v is null for any portfolio p.

assume that the covariance of m
We assume that p,, and s, are known and give a simple methodology to get a maximum skewness

portfolio solution to problem 3.11.

m'us)

e First, under the assumption: Cov (v, m = 0, compute the cost of R®, 5 = 7, using

proposition 3.5.

e Second, given the portfolio skewness and expected return, compute ¢* as folows: The dis-

criminant of equation (3.12) is

A=s2(1 —mpp)2 — 47 (2p, —mpl — ).

Assuming that A > 0, this equation produces two solutions:

—$p (1 —mp —\/Z —sp (1 —mp +\/Z
op=—2 ( Zmp) or oy = —2 ( 2mp) . (3.13)

From (3.13),

(57 (1~ ) + VA

(@m)’

[sp (1 —7mp,) — \/3]2

(zm)?

o2 (c* ) = or o2 (c*, ) = (3.14)

If (s, > 0 and 1 —7p, > 0) or (s, < 0 and 1 — 7, < 0), then according to (3.7), the

minimum variance portfolio is:

[SIJ (1 —mp,) - ‘/K] ’

(2m)’

o2 (¢ pp) = afVar (p") + adVar (Fy) + aVar (F3) = (3.13)



with,
Q] == l/C (p+) y
g — Al == AQC*,

ag = Asc" — Ay,

where Ay, Ay, Az and A4 are known parameters. Equation (3.15) is equivalent to

30 (L= ,) - vA]

(zm)?

= alvar (p+) + [Af + A2c*?. ‘2A1A2c*] Var (F3) + (3.16)

[A% + A%C*2 — 2A4A3C*] Var (Fg) .

This equation can be rewritten in terms of A. There might be more than one solution to this
equation. Choose the solution A that yields a smaller variance and use this A to compute
c*. The same methodology can be repeated if (s, < 0 and 1 — 7, > 0) or (s, > 0 and

1 —mp, <0).
e Once c* is computed, (3.16) gives the minimum variance to problem (3.11).

In the next section, we illustrate the portfolio selection and investigate empirically whether

Cov (u,m™*) # 0.

4. Portfolio Selection: Empirical Illustration

To give an empirical illustration of our portfolio selection approach, we need to know the
squared primitive assets cost. To compute this cost, we assume that the joint process of the SDF
and asset returns is lognormal. This distribution is flexible and allows for skewness. It is often
used to characterize asset probability models. For example, many asset pricing tests assume that
the process SDF-asset returns is conditionally jointly lognormal. Diffusion models imply a locally
lognormal distribution. The next proposition gives the squared primitive asset cost when the joint

process of the SDF and asset returns is lognormal.®

9See the proof of proposition 4.1 in the Appendix.
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Proposition 4.1 Given a stochastic discounl factor m, consider a set of N primitive assets. As-
sume that the joint process (Log (m), Log (R)) follows a multivariate normal distribution. thus the
components of n are of the form:

T]” = [ ('IIII?/L'R]')

_ i_—ER"'Rj Vi, g
T WMERER; 7

To gauge the empirical importance of squared portfolio cost in portfolio selection, we collect
daily asset returns from the Datastream data base for the sample period from January 2002 to June
2002. This data set consists of the daily returns of four highly liquid stocks: General Motors, Cisco
Systems, Boeing and Ford Motors. Over the same period, we extract the U.S. 3 month Treasury-
Bill rate (risk-free rate). The estimated U.S 3 month Treasury-Bill expected return is 1.0495.
Table 2.1 reveals that Boeing has the lowest expected return and highest positive skewness, while
Cisco Systems had a negative skewness. We use (3.6) to find the optimal portfolio. Figure 2.8
illustrates the Mean-Variance-Cost surface & and the associated Mean-Variance-Skewness surface
&s. Slicing the surface at any level of squared portfolio cost, we get the familiar positively sloping
portion of the mean-variance frontier. In the standard mean-variance analysis there is a single
efficient risky-asset portfolio, but in our setting, there are multiple efficient portfolios. The mean-
variance-skewness surfaces reveals that the squared portfolio cost and the portfolio skewness have
a significant impact on the portfolio mean-variance frontier (this can be seen more clearly in Figure
2.10). Figure 2.10 shows how small changes in the cost of the squared portfolio return have a great
impact on the portfolio mean-variance frontier. This indicates that the cost of the squared portfolio
will significantly impact the tangency portfolio. Notice that at any level of the squared portfolio
cost, we get the positively sloping portion of the mean-variance frontier. But at any level of the
portfolio skewness, see the M-V-S surface, we do not have the usual positively sloping portion of the
mean-variance frontier. This intuitively shows that our approach is not observationally equivalent
to standard portfolio selection under skewness. Ilowever, from proposition 3.6 our approach is
observationally equivalent to standard portfolio selection under skewness. Figure 2.9 illustrates

the mean-variance-skewness surface when Cov (m™?%,v) = 0. Through this Figure, at any level
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of the portfolio skewness, varying the portfolio mean produces the usual positively sloping portion
of the mean variance frontier. Figure 2.11 illustrates the implied covariance of the SDF with the
residuals obtained when regressing the squared portfolio on the portfolio itself. Figure 2.11 provides

empirical evidence that this covariance is different from zero and negative.

5. Conclusions and Extensions

In this paper, we derive a new variance bound on any admissible SDF that prices correctly a set
of primitive assets and quadratic payoffs of the same primitive assets. Our bound tightens the
[1J bound by an additional component which is a function of the squared primitive asset cost and
asset co-skewness. We give necessary and sufficient conditions to get the well-known [1J bound.
Using the Standard and Poors 500 stock index and commercial paper index from 1889 to 1994, we
illustrate our volatility bound and show empirically that when the SDF mean is in the neighborhood
of 1, our variance bound is twice as large as the IIJ bound. We also found that the SDF implied
from the consumption based models such as Epstein and Zin (1989) state non-separable preferences
model passes the I1J bound for a particular values of the relative risk aversion coefficient but does
not pass our variance bound making the equity premium puzzle even more difficult to solve.

Motivated by the duality between [1J bound and the Markowitz mean-variance analysis, we offer
a portfolio selection approach based on factors that span our minimum variance SDF. We show
that our portfolio selection approach generalizes standard portfolio selection under skewness which
consists in minimizing the portfolio risk subject to the portfolio expected payoff and skewness. We
use daily asset returns to illustrate empirically our findings. To proceed to our illustration, we
assume that the process SDF-asset returns is jointly lognormal. This allows us to compute the
squared primitive asset cost and then illustrate our portfolio selection approach. Empirical results
suggest that the cost of the squared portfolio return and the portfolio skewness have a significant
impact on the portfolio mean-variance frontier.

Since Bekaert and Liu (2004) and others use conditional information to tighten the [1J bound, it

“de Athayde and Flores (2004) use problem (3.11) to illustrate the Mean-Variance-Skewness surface.



would be of interest to examine how conditional information might be used to tighten our variance
bound. In light of [lansen and Jagannathan (1997), it appears natural to develop a SDF-based
distance measure for asset pricing models under this higher-moments framework. We leave these

issues for future research.
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6. Appendix: Proofs

PROOF OF THEOREM 3.1. If n = n*, m™"? (n,m) collapses to the [1J stochastic discount factor.
Let us assume that n # n* and assume that the minimum variance stochastic discount factor

m™Y¢ (n,m) can be decomposed as:

mme (n,m) =m+4al| +bFy + cF3

where,
Fl = p+ - Ep+7
By = ptt— BL[p*|R],
F3 = p* - EL[p*|F1.F2] .
First,

Cov (m™* (n,m) ,p*) = aCov (Fi,p*) =aVar (p').

Replacing p* by its expression (see (3.3)), we get:

Cov (m™* (n,) p*) = Bm™ (3,m)p" — Bm™ (1,7m) Ep*
= Il YU —mEp*.
Therefore,
. I'T Y —mEp*
~ Var(pt)
Second,

Cov (m™* (n,m) ,p**) = aCov (F1,p**) +bCov (F2,ptt).
Replacing p*+ by its expression (see (3.4)), we get

Cov (m™* (n, ) p'+) = Bm™* (n,7) p** — Em™* (,7m) Bp** = »'0 1 —mBptt.
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Consequently,
aCov (Fl,p++) + bCov (Fg,pF M= v U —mEbp*t,

which implies

(l/"l" L mEp”) —aCov (Fy,ptt)

b=
Cov (Fp,pt)

Third,
Cov (m™"* (n,m) ,p*) = aCov (Fy,p*) + bCouv (Fy,p*) + cCov (F3,p")
Replacing p* by its expression (see (3.5)), we get:
Cov (m™* (1, ) ,p*) = Em™"* (n,7) p* — mBp* =n [F(2)] 'y —mEp*

Consequently,

(77' [F(2)] ! n— mEp*) — aCov (Fy,p*) — bCouv (Fy, p*)
Cov (F3,p*) ’

c—

It is obvious to show that the I1J stochastic discount factor can be written as:
myy =m+ aly + bF.

This ends the proof. ||

PROOF OF PROPOSITION 3.5. The linear regression of r% on rp gives

2y Cov (rp,72)

" P Var (rp)

,2, (rp— Erp) +v

for any portfolio 1, = w'R. Therefore, the cost of the squared portfolio retwrn is

Cov (rp, r%)

* —mi 2
c miiry, + Vor (Tp)

(1 —=mLry) + Cov (v, m™"?).

If C'ov (v, m™"?) = 0, we have:

Cov (7',,, 1‘%)

* =72
c —mErp-{— Var ()

(1 —mLry) (A1)
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Then if w; = 1 and w; = 0 for j # i, equation (A1) implies

Cov (R;, R?)

7y = mER? + (1 —mER;
Mii m 1 + ( mDI?") Var (Rz)

for i=1,...,n.

For w; = %, wj =+ and wy = 0 for k # i and k # j. If we decompose the left hand side of (A1),

we have
. 1 1._\? ,
[} = Im 3R1 -+ 3Rj (A...)
1
= Sbm (R? + R? + 2R;R;)
1
= [BmR} + BmR] + 2EmR;R;)
1_ 1_ 1_
= gt gt 5
where

My = LmR;R;

We also decompose the right hand side of (A1) and equate the resulting expression with (A2) to

get

1
Ty = 3m(ER?+ER;+2ERR)) +

[1 - § (BR: + ER))m) Cov (R + Ry) (R + Ry)?)
Var (B) + Var (R;) +2Cov (B, B))]

1,_ _
5 (T +755)

EA

for ¢ # j. But,

¢t = Emm”srg
L N2

= [Im™"® (w R)

= [m™" (w(2)1R(2))

— @ pmmvs p(2)

— L@



Then,

Conenrd) e

* (2)'—_—E,2
¢ =wn=mbr, + Var (r5)

Conversely, let us assume that n = 7. We have,

¢t = Emm”srg
= Eanvsw(Z)'R@)
_ w(2)'ETnmvsR(2)

= w(2)’ﬁ.

But, we know that

Therefore,

Cov (rp,72)

* Tl 2
c mlury + Var (rp)

(1 —mDLry).

But we know that:

Cov (rp, rg)

* —mEk 2
¢ =mbry+ Var (rp)

(1 =mErp) + Cov (v, m™"?).

Consequently,

, 2
Cov (rp, o

Gow () =~ - ) (o ) =

PROOF OF PROPOSITION 4.1. Assume that the joint process (m, R) is lognormal. This means that

Log (m) n || Hm o2, T
Log (R) My Yomr  Xp
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We know that
IEmR; =1 Vi.
Let compute
ni; = EmR;R;.
Therefore,
Log (mR;R;) = Log (m) + Log (R;) + Log (R;)

Let p,, and o2, denote the first two moments of Log(m) and p; and o? denote the first two

moments of Log (R;). As result,

|

1
Nij exp |::U‘m +p g (U + U + U + 2055 + 205m + )Uym)]
1
= exp [um += o' +hit g a + a,m} exp [u] + = (cr + 20 + ‘)o’]m)]
. -
= (EmR;)exp [uj +35 (U_? + 20 + 203;,,,)

1 1 1
= €Xp |:/J'7 +3 (0 + )‘71] + )Urm) + fop + 30%} exXp |:_/J'1n. - ;Ugn]

[ 1

= exp [/Lm+oa +uit 3 U1+0'Jm] €Xp |5
1 1
= L (mR;)exp (70’,]) €XP |l — 50m

But IF (mR;) = 1. Consequently,

Mg =

¢
4
=l

1 1
[5 (20,~j)] exp [—,um — 30,2,,]

1 1
= %e p[—2 (QUij)]
1 1 1 1
= Lo fur+ e 2] o [ 3ot] o [~ ]
1 1
- [%E (R“'Rj)] [ER,-ER]}
_ 1E(RRj)
m LR,LR;
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Table 2.1: Asset company return moments

Asset Portfolio [Expected Variance

Company Variable w Return

General Motors  wy 1.0011 0.2853e 3
Cisco System woy 1.0044 0.3938¢ 3
Boeing w3 0.9999 0.3621¢ 3
Ford Motors wi 1.0049 0.3777e 3

Skewness

0.2835
—0.1244
0.6637
0.5045

Note: The skewness is measured by the third central moment

divided by the cube of the standard deviation.

87



SDF Surface Frontier for a Single Excess Asset Return

Standard-Deviation

0
Squared Excess Return Cost 0 SDF mean

Figure 2.1: SDF volatility surface frontier with a single excess return: We use our approach
to imply a Mean-Standard Deviation-Cost Surface for Stochastic Discount Factors using the excess
simple return of the Standard and Poors 500 stock index over the commercial paper. Annual US
data, from 1889 to 1994, are used to compute the SDF variance bound. The SDF feasible region is

above this surface.
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HJ Frontier for a Single Excess Asset Return
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Figure 2.2: HJ frontier with a single excess return: We use the II1J approach to imply a
Standard Deviation-Mean frontier for Stochastic Discount Factors using the excess simple return
of the Standard and Poors 500 stock index over the commercial paper. Annual data from 1889 to

1994 are used to plot this frontier. The SDF feasible region is above this frontier.
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Figure 2.3: HJ Volatility Frontier: We imply a Mean-Standard Deviation frontier for Stochastic
Discount Factors using the return of the Standard and Poors 300 stock index and the commercial
paper . Annual US data, from 1889 to 1994 are used to compute the I1J variance bound. The SDF
feasible region is above this frontier. With CRRA preferences we vary exogenously the relative risk
aversion coefficient and trace out the resulting pricing kernels in this two-dimensional space. These

pricing kernels are represented by the points *.
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Figure 2.4: SDF volatility frontier: [1J represents the ITansen and Jagannathan volatility fron-
tier and CY represents our volatility frontier. For each «, we find n = IEmR® and trace out the
point (7, o (m™? (M, 7))) in a two-dimensional space. We also plot the point (Emqy1,0 (Mmet1))
where my,; represents the SDF obtained in the investor optimization problem with CRRA prefer-
ences. We use the return of the Standard and Poors 500 stock index over the commercial paper.

Anmual US data, from 1889 to 1994, are used to compute the SDF variance bound.
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Figure 2.5: SDF volatility frontier: [1J represents the [Iansen and Jagannathan volatility fron-

tier and CY represents our volatility frontier. For each «a, we find n = EmR®) and trace out the

point (7, o (m™"* (M, 7n))) in a two-dimensional space. We also plot the point (Emey1,0 (mey1))

where my, represents the SDF obtained with Epstein and Zin (1989) state non-separable prefer-

ences. We use the return of the Standard and Poors 500 stock index over the commercial paper.

Annual US data, from 1889 to 1994, are used to compute the SDF variance bound.
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Figure 2.6: SDF volatility frontier: I1J represents the [lansen and Jagannathan volatility fron-
tier and CY represents our volatility frontier. For each a, we find n = EmR® and trace out the
point (M, o (m™"? (m,n))) in a two-dimensional space. We also plot the point (Em¢i1,0 (mis1))
where m; ., represents the SDF obtained with Gordon and St-Amour (2000) state dependent pref-
erences. We use the return on the Standard and Poors 500 stock index over the commercial paper.

Annual US data, from 1889 to 1994, are used to compute the SDF variance bound.
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Figure 2.7: SDF volatility frontier: [1J represents the [lansen and Jagannathan volatility fron-
tier and CY represents our volatility frontier. For each «, we find n = EmR® and trace out the
point (72, o (m™® (M, n))) in a two-dimensional space. We also plot the point (Lmyy1,0 (mey1))
where myy1 represents the SDF obtained with Melino and Yang (2003) state dependent preferences
with constant EIS, constant 3.and state dependent CRRA. We use the return of the Standard and
Poors 500 stock index over the commercial paper. Annual US data, from 1889 to 1994, are used to

compute the SDF variance bound.
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Figure 2.8: Mean-Variance-Cost (M-V-C) and Mean-Variance-Skewness (M-V-S) sur-
faces: Given the portfolio mean, u,, and squared portfolio cost, c*, we solve problem (3.6) and plot
in a three-dimensional space the optimal portfolio (,up, c* o (pm”s)). Then we vary exogenously p,
and ¢* and get the M-V-C surface. We then plot each optimal portfolio in a three-dimensional

space: mean-standard deviation-skewness (see the M-V-S surface).
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Mean-Variance-Skewness surface:Standard Approach Mean-Variance-Cost surface: Standard Approach (Cov(m,v)=0)
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Figure 2.9: Mean-Variance-Cost (M-V-C) and Mean-Variance-Skewness (M-V-S) sur-
faces: We assume C'ov (m™"*,v) = 0. Given the portfolio mean, p,, and squared portfolio cost, c*,
we solve problem (3.6) and plot in a three-dimensional space the optimal portfolio (u,,c*, o (P™*)).
Then we vary exogenously p, and ¢* and get the M-V-C surface. We thereafter plot each optimal

portfolio in a three-dimensional space: mean-standard deviation-skewness (see the M-V-S surface).
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Graph 1: Our Approach Graph 2: Standard Approach
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Figure 2.11: The residual price: For each portfolio p which belongs to the Mean-Variance-Cost
surface, &1, see Figures 2.8 and 2.9, we plot within Graph 1 the point (u,, Cov (m™%,v),c*) where
i, represents the portfolio mean, ¢* is the cost of the squared portfolio return and Cov (m™"%, v)
is the covariance of the SDF with the residuals obtained when regressing the squared portfolio on
the portfolio itself. Graph 2 represents this covariance when the standard portfolio selection under

skewness is used.



99

Chapter 3

State Dependence in Fundamentals and Preferences
Explains the Risk Aversion Puzzle
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1. Introduction

Recently, Jackwerth (2000) and Ait-Sahalia and Lo (2000) have proposed nonparametric ap-
proaches to recover risk aversion functions across wealth states from observed stock and option
prices. In a complete market economy, which implies the existence of a representative investor,
absolute risk aversion can be evaluated for any state of wealth by comparing the historical and risk
neutral distributions.

To obtain the historical distribution, Jackwerth (2000) applied a nonparametric kernel density
approach to a time series of returns on the S&P 500 index. The risk neutral distribution is recovered
from prices on European call options written on the S&P3500 index by applying a variation of the
nonparametric method introduced in Jackwerth and Rubinstein (1996). The basic idea of this
method is to search for the smoothest risk-neutral distribution, which at the same time explains
the option prices.

Using simultaneously option prices and realized returns, Jackwerth (2000) and Jackwerth and
Rubinstein (2001) find estimated values for absolute risk aversion that are nearly consistent with
economic theory before the 1987 crash. Ilowever, for the post crash-period, Jackwerth (2000)
finds that the implied absolute risk aversion function is negative around the mean wealth level
and increasing for larger wealth levels. This empirical feature, called the risk aversion puzzle by
Jackwerth (2000), has also been documented by Ait Sahalia and Lo (2000). Another way to express
this puzzling result is through the pricing kernel across wealth states. A pricing kernel puzzle is
observed when the ratio of the state price density to the historical density increcases with wealth [see
Brown and Jackwerth (2000)]. After looking at several potential explanations, Jackwerth (2000)
concludes that these puzzling results are most probably due to the mispricing of some options by
the market.

In this paper, we propose another explanation based on the existence of state dependence in
preferences or in economic fundamentals. Garcia, Luger and Renault (2001) proposed a general
pricing model where the pricing kernel depends on some latent state variables. observed only by the

investor. This phenomenon can be understood in two possible ways. Either as in Melino and Yang
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(2003), investors’ preferences are state dependent. Or, as in Garcia, Luger and Renault (2003) the
joint process of consumption and dividends follows a Markov switching regime distribution such
that the current regime is only known to the investors. In this paper, we use the models developed
in Garcia, Luger and Renault (2003) and Melino and Yang (2003) to generate artificial prices for
stocks and oplions. To recover the risk neutral distribution, we develop a simple simulation method
to create a bid-ask spread around option prices and apply the same nonparametric methodology as
Jackwerth and Rubinstein (1996). The historical distribution is estimated based on a mixture of
lognormals. In our model, by construction, the risk aversion functions are consistent with economic
theory within each regime if we pool the data across regimes. [lowever, as in Jackwerth (2000), we
obtain negative estimates of the risk aversion function in some states of wealth. The pricing kernel
function across wealth states, calculated from data pooled across regimes, also exhibits a puzzle
even though this function is decreasing within each regime. We therefore provide another potential
explanation for the puzzles put forward by Jackwerth (2000).

The remainder of this paper is organized as follows. In section 2, we present Jackwerth’s (2000)
approach for recovering the absolute risk aversion function across wealth states. In section 3, we
build a utility-based economic model with state dependence in preferences and endowments and
describe how to simulate artificial option and stock prices in this economy. In section 4, we recover

the risk aversion and pricing kernel functions across wealth states.

2. The Pricing Kernel and Risk Aversion Puzzles

In this section, we recall the puzzles put forward by Jackwerth (2000) as well as the method-

ology used to exhibit these puzzles.

2.1 Theoretical underpinnings

Under very general non arbitrage conditions ([Iansen and Richard (1987)), the time ¢ price of

an asset which delivers a payoff g;1 at time (¢ + 1) is given by:

pe = B [mey1ge41] (2.1)
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where [5;[.] denotes the conditional expectation operator given investors’ information at time &.
Any random variable m; 1 conformable to (2.1) is called an admissible Stochastic Discount Factor
(SDF). Among the admissible SDF's, only one denoted by m},, is a function of available payoffs. It
is the orthogonal projection of any admissible SDF on the set of payoffs. If some rational investor

is able to separate her utility over current and future values of consumption:

U [Ct, Crqa] = w(Ct) + Pu(Cry)

—~
!\3
(3]

~—

The first-order condition for an optimal consumption and portfolio choice will imply that mg,,
coincides with the projection of ,Bu—:‘(-,%‘l—;—l on the set of payoffs. Therefore, through a convenient
aggregation argument, concavity of utility functions should imply that mj,, is decreasing in current
wealth.

Moreover, as shown by ITansen and Richard (1987), no arbitrage implies almost sure positivity
of m},,. Therefore, mf,,/I;ym}, | can be interpreted as the density function of the risk neutral

probability distribution with respect to the historical one. In case of a representative investor with

preferences conformable to (2.2), we deduce:

Therefore:

BLogmiy _ u' (Cisr)
BCHI w (Ct+1)

is the negative of the Arrow-Pratt index of absolute risk aversion (ARA) of the investor.

2.2 The puzzles

For sake of simplicity, it is convenient to analyze these puzzles in a finite state space framework.
If =1, --- ,n denote the possible states of nature, we get the density function of the risk neutral

distribution probability with respect to the historical one as:

= P in state j (24)
Limiy  pi ’

*
777,”1
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where p;- is the risk neutral probability across wealth states j = 1,--- ,n and p; is the corresponding
historical probability. Brown and Jackwerth (2000) use formula (2.4) to empirically derive the
pricing kernel function from realized returns on the SNP 500 index and option prices on the index
over a post-1987 period. For the center wealth states (over the range of 0.97 to 1.03 with wealth
normalized to one), they found a pricing kernel function which is increasing in wealth. This is the
so-called pricing kernel puzzle.

As explained in section 2.1 above, the increasing nature of function (2.1) in wealth is puzzling
because it is akin to a convex utility function for a representative investor, which is obviously
inconsistent with the general assumption of risk aversion. From (2.3), the ARA coefficient can
actually be computed through a log-derivative of the pricing kernel. By using (2.4) we deduce:

u' (Corr) _ P PF (2.5)

ARA = —
' (Ci1) P P

where p’j and p;’ are of the derivatives of p; and pj with respect to aggregate wealth in state j.
Jackwerth (2000) observes that the absolute risk aversion functions as computed from (2.5)
dramatically change shape around the 1987 crash. Prior to the crash, they are positive and de-
creasing in wealth which is consistent with standard assumptions made in economic theory about
investors’ preferences. After the crash, they are partially negative and increasing (see figure 3 in
Jackwerth (2000)). This result is called the risk aversion puzzle. One component of it is tantamount
to the pricing kernel puzzle: ARA should be positive as the pricing kernel should be decreasing
in aggregate wealth. Moreover, even when there is no pricing kernel puzzle (positive ARA), there
remains a risk aversion puzzle when ARA is increasing in wealth. While the pricing kernel puzzle
is only observed for the center of wealth states, the risk aversion puzzle (increasing ARA) remains
for larger levels of wealth. Without any discretization of wealth states, Ait-Sahalia and Lo (2000)

documented similar empirical puzzles for implied risk aversion.

2.3 Statistical methodology

Several statistical methodologies are possible to recover the historical distribution of future

returns (on the underlying index) given current ones. As emphasized by Jackwerth (2000), the
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choice of a particular estimation strategy should not have any impact on the documented puzzles.
For instance, a kernel estimation will be valid under very general stationarity and mixing conditions.

While historical probabilities p; are recovered from a time series of underlying index returns,
risk neutral probabilities p} will be backed out in cross section from a set of observed option prices
written on the same index. Concerning this issue, a pioneering work was Rubinstein (1994) who

recommends to solve the following quadratic program:

n

min Y (¢} ~p3)”

j=1
n
i=1
* 1 §
C} = R—pr; max [0, S; — Kj], (2.6)
j—1

1,
T D PiSi =S,
% < Cr < CF for i=1,...m and Sy < Sp < Sq,

where C};, (C%,) represents the call option bid (ask) price with strike price K;. The bid and ask
stock prices are respectively Sy and S,. In other words, the implied risk neutral probabilities p; are
the closest to the prior p; that result in option and underlying asset values that fall between the
respective bid and ask prices. As stressed by Jackwerth and Rubinstein (1996), this methodology
has the virtue that general arbitrage opportunities do not exist if and only if there is a solution.
This remark is still valid when considering alternative quadratic programs based on other distances.
For instance, Jackwerth and Rubinstein (1996) put forward the goodness of fit approach:
n ( t_p 2
. Pj ~ f') .

min JZ; - (2.7)

while, following I[lansen and Jagannathan (1997), one may prefer:

2

n (p".‘—p~)
minz-’_’_ (2.8)
pt 4

71

Dy



since, with obvious notations, the objective function (2.8) can be seen as I5;(my,, — T, 1)2

However, Jackwerth and Rubinstein (1996) observe that the implied distributions are rather
independent of the choice of the objective function when a sufficiently high number of options is
available.!

Since we are to going to focus in this paper on a simulation exercise, we will choose 50 options
in cross section in order to be sure that the solution is determined by the constraints (options and
underlying asset values between bid and ask prices) and not by the objective function. In particular,
the choice of the prior is immaterial and, as noticed by Jackwerth and Rubinstein (1996), even a

pure smoothness criterion independent of any prior would do the job. They consider in particular:

n
. P 2 ‘
min > (P 1 +Pje1 — 2p5) (29)
P
when the states j = 1,2--- ,n are ranked in order of increasing wealth. lowever, to remain true to

the traditional approach, we are going to use in the simulation section 4 the goodness of fit criterion.
Prior risk neutral probabilities p; will be computed, according to the Breeden and Litzenberger
(1978) methodology, from second order derivatives of option prices with respect to the strike price.
Note that a necessary source of difference between p;- and p; is the discretization of the state space

performed to define ;.

3. Economies with regime shifts

In this section, we construct economies with regime shifts in endowments or preferences to

simulate artificial stock and option prices.

!They notice that “as few as 8 option prices seem to contain enough information to determine the general shape of

the implied distribution” and that “at the extreme, the constraints themselves will completely determine the solution”
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3.1 The general framework

Consider an [uropean call option with maturity T and strike price K. A straightforward

multiperiod extension of (2.1) gives it’s time ¢ price as:
= It [mt+1mt+2 --mg (ST — K)+] . (3.1)

Garcia, Luger and Renault (2001) provide a convenient set of general assumptions about the bi-

tﬂ) which allow them to give closed-form formulas for the expectations

Sy

(3.1) while encompassing the most usual option pricing models (see also Garcia, Ghysels and Re-

variate process (mt +1,

nault(2003)). The maintained assumptions are:

Assumption Al

Sri1

The variables (mTH, 5 are condionally independent given the path U] = (Up);cper 1

)1<T<.T 1
of a vector U, of state variables.

Assumption Al expresses that the dynamics of the returns is driven by the state variables. It
is similar in spirit to common stochastic volatility models (the stochastic volatility process being

the state variable) when standardized returns are assumed to be independent.

Assumption A2

The process (mt, S—f’—l) does not Granger-cause the state variables process (Ut).

This assumption states that the state variables are exogenous. For common stochastic volatility
or hidden Marlov processes, such an exogeneity assumption is usually maintained to make the
standard filtering strategies valid. It should be noted that this exogeneity assumption does not

preclude instantaneous causality relationships such as a leverage effect.

Assumption A3 The conditional probability distribution of (log My, l0g %J:";‘-) given Ult+1 is

a bivariate normal

2
log gtt+1 UL A Font Tmt  Tmast

t41 1 \ 9
10g St Hgt Omst Ot
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Assumption A3 is a very general version of the mixture of normals model. A maintained assumption
will be that investors observe U; at time ¢, so that the conditioning information in the expectation

operator (3.1) is
L =0 ms, Sr,Ur, 7 <0t]. (3.2)

In our simulation exercise, the mixing variable U1 will be a two-state Markov chain with a

transition matrix:

1 —_
P _ pOU pOO ) (3.3)
I1—pu pu

Indeed, following Garcia, Luger and Renault (2001), a general option pricing formula can be stated

for any Markov process (U;) conformable to A1, A2 and A3.

Proposition 3.1 Under assumptions Al, A2 and A3

Ly R T . B(t,T) z
gt = 71'1(11;() = E[ {Q7ns (t,f)(l)((ll(’l,‘t)) - —B (t’ T)e D (Cl2 (’B())}

T-1
where x; = log K—B‘S&,—T), B(tT) = I (H mr H) is the time t price of a bond maturing at time
Tt
T, and
T o T 1 B (t, T)]
di(x) = + —= 4+ lo s (6, T) = ,
1(@) ot T 2 our 8 [Qms( )B(t,T)
dy(z) = di(z)—opr,
T1
U?vT —
Tt
and

T-1

) T 1 1
B (ta T) — €&Xp (Z Hmr H 5 Z Ty)
"t
Qms (t,T) = T) exp (Z Tmsr+1 [—|U1 ]

As explicitly analyzed in Garcia, Ghysels and Renault (2003), this general option pricing formula

encompasses most of the common pricing formulas for Furopean options on equity.
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In order to consider economically meaningful regime shifts in the SDF, it is convenient to start

from a two-factor model as produced by Epstein and Zin (1989). Their recursive utility framework

()| =]

where p = 1 — —, o is the elasticity of intertemporal substitution and v = 2 with (1 — «) the index
o

leads them to the following SDF":

M1 =

of relative risk aversion. With a two-states mixing variable U1, logm1 appears as a mixture of
two normal distributions in two cases. In the first case of state dependent preferences, preference
parameters are functions of U4, while in the second case, there are regime shifts in fundamentals
and the joint probability distribution of (log C_au’ log Rmt+1) is a mixture of normals.

The case of state dependent-preferences has been analyzed recently by Melino and Yang (2003)

while Garcia, Luger and Renault (2001, 2003) focus on shifts in fundamentals.?

3.2 State-dependent preferences or fundamentals

Let us first assume as Melino and Yang (2003) that the three preference parameters 3, a, p are
all state-dependent and then denoted as 8 (U;),a (U;) and p(U;). While these values, known by
the investor at time ¢, define her time ¢ utility level, she does not know at this date the next coming
values 3 (Ugt+1) , @ (U1) and p (Up1). Therefore, the resulting SDF will be more complicated than
just replacing «, 8 and p in (3.4) by their state dependent value. Melino and Yang (2003) show

that the SDF is:

"(Ul) ’Y(UL) a(Us) 1 ally) Q(U”

C p(U)
Mot = ﬁ(Ut) < é.:l) P(Ul+1) RT;;I(:’J':.TI) Ptp(Ut_*_l) p(Ut) (3.5)

where v (Uy) = %(((UT}‘) and P; is the time t price of the market portfolio. When g (U;), o (Uy),

p(Ut) = p(Uiy1) are constants, this pricing kernel reduces to the Epstein and Zin SDF (3.4). By
definition:

P +Ci
IDI b

2See also Gordon and St Amour (2000) for an alternative way to introduce state dependence in preferences in a

CCAPM {ramework.

le.+1 -
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Asset prices P, and S; are then determined as

while the underlying asset return is S‘%LD"-

discounted values of future dividend flows by iteration of the following pricing formulas:
P = I [mt+1 (PH-I + Cy.H)] and Sy = I} ['an.l (S{+1 + Dt+l)] . (36)
Garcia, Luger and Renault (2001) show that assumptions Al and A2 are implied by similar

assumptions stated for the joint process (C—(‘/;*L‘—‘, D—I‘)'ti). Assumption A3 will then also be implied by
a similar assumption about fundamentals:
Assumption A3': The conditional probability distribution of (log g—é—;*t‘—‘,log DT*;I) given U™

1s a bivariate normal

2

log Suxt o Txv
g Cy IU{'§ 1 N /‘L‘YL. 1 Xt XY,t+1
Dy ' 2
10g De Hy, 41 U‘YY,t.}.l 0-Yl.+]

Proposition 3.2 bellow nests the results of Melino and Yang (2003) and Garcia, Luger, Renault

(2001) in a common setting.

Proposition 3.2 : Under assumptlions Al, A2 and A3, with myy1 given by (3.5), the conditional
probability distribution of (Logmt“, log S—g’t‘—‘) given U{'“ is jointly normal with mean and variances

defined in the Appendiz.

In the simulation exercises conducted in section 4 we consider first regime changes in funda-
mentals and then regime changes in several configurations of the preference parameters in order to
disentangle the respective roles of fundamentals and preferences. The general option pricing for-
mula, which can also accomodate the case where both fundamentals and preferences change with
the regime, is given in proposition 3.3 below:

First, it is worth noticing that the equilibrium model characterizes the asset prices F; and S;

as:

P &

Ft = A(U]) =L [mtl—l (1+/\(U{+l))%] :
t t

S Dyyq

HtL = (p(U{) = E{ [Tﬂ{+1 (1 +90 (UlH-])) I[)—It] .
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Then proposition 3.3 summarizes the option pricing implications of propositions 3.1 and 3.2 in

the simplest case of a unit time to maturity (T=t+1):
Proposition 3.3 Under (Al),(A2) and (A3) the European option price is given by:

m = By [SzQXy (Lt +1)®(d) - KB (t,t+1)® (clg)] ,

where,
Log [Sggutisy] 1
KB(t,t+1) 2 5 2 o
dy = ( T t3 (@¥en)®s dar=di = (0%41)°
()t 2
Yit+1
with,

- 1.
B(t,t+1) =a(Ui*!) exp ([a (Uerr) = gy, + 5 la Uega) = 17 U.2Y:+1>

~ Ut . Sty
Qxy (tLt+1) =B, t+1) bﬁﬂcp—(?ﬁ_ exp ([a (Ur41) = 1] pxyoxrovs) B l—‘H S|t 1]
¢ (UIM) Si

and,

_a(Uy)  a(U)

F auy)
a(U) = 'B(U‘);(%b1 (1= B(Up))resn) 790 ) (Ult)1 ) [14+A (U]

bt—{—l - 1 + ¥ (U{—*-l)
¢ ¢ (U})

PROOF. The proof is similar to the proof where a (U), B(Uy), and p (U;) are constants, which can
be found in Garcia, Luger and Renault (2003). I

If the preference parameters c, 3, and p are constants, proposition 3.3 collapses to the Garcia,
Luger and Renault (2001) option pricing formula. Note that the definition of A (Ult“) and ¢ (U{“)
is akin to

EQxy (tt+1)=1, and B (¢, t+1) =B (t,t+1).
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3.3 Simulating option and stock prices

First, we calibrate our economic models with regime shifts in the parameters describing pref-
erences or economic fundamentals. In the case of state dependent fundamentals, we choose values
that are close to those estimated in Garcia, Luger and Renault (2003) where preference parameters
are not state-dependent. For state-dependent preferences, we disturb these particular values. All
values are explicitly given in the figures. We then use proposition 3.3 to compute option prices
with different strike prices. To use the methodology described in (2.7), we need to develop a simple

technicue to create bid-ask spreads around the simulated prices. This is done in three steps:

e Step 1: Given the stock price, S;, we find a bid-ask spread sp by drawing in a lognormal

distribution:
log (sp) = N (aps 75p) »
where the parameter /i, and agp are chosen exogenously.

e Step 2: Given sp, we draw a real number z in the censored normal probability distribution

N(py,02) given 0 < z < sp.
e Step 3: We then compute the stock bid and ask prices:

ask price = Sp+ (sp—e%),

bid price = S;—¢&".

We apply a similar simulation methodology to create bid and ask prices for options. Based on
these bid and ask option prices and stock prices, we recover the risk neutral probabilities using
the nonparametric methodology described in section 2. It is important Lo note that our Monte-
Carlo approach gives us the historical return distribution. Therefore, we do not need to use any

nonparametric estimation technique to recover the historical distribution.
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The whole procedure must be applied for each state Uy € {0,1} of the economy. At date t,

given the state variable value, U; € {0,1} , we compute the call option prices:
7 (U) = B [SiQxy (4,4 +1) @ (dr) — KB (4, L+ 1) @ (d) U]

and perform steps 1, 2 and 3. We then use equations (2.4) and (2.5) to infer the conditional absolute
risk aversion and pricing kernel functions across states (given the state variable Uy).

By construction, these cuantities are computed from probabilities p; (U;) and P} (Ut) which
explicitly depend on the actual value of the latent state U;. By constrast, a statistician who does not
observe the state and performs a nonparametric estimation of the stationary historical distribution
which does not account for unobserved heterogeneity, will estimate marginal probabilities p; that

are averaged across states:
pi =P U =0)p; (0)+ P(U:=1)p; (1). (3.7)

As far as risk neutral probability p} are concerned, the issue is less clear. If we could be sure
that not only the agents have observed the states U; but also that the statistical observation of
asset prices is in synchronized with observations, then the p; computed from (2.6) and the real
data should be p; (Ut). However, any synchronization problem may push the implied p;‘. towards

their averaged values
p; = P(U:=0)p; (0)+ P(U:=1)p; (1) . (3.8)

For reasons made explicit below, we choose to compare the implied risk aversion and pricing
kernel computed state by state from (pj (Ue),p; (Ut)) with the fully marginalized ones, that is
computed from marginalized values (p]-, p;‘) given by (3.7) and (3.8) rather than using the possible

mixed approach (pj, P} (U;,)) .

4. Empirical Results

Without loss of generality, we treat the cases of state-dependence in fundamentals and in preferences

separately to illustrate our results.
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4.1 Regime shifts in fundamentals

We first assume that only the fundamentals are affected by the latent state variables. Based
on the prices generated with the procedures described in the previous sections, we follow the
methodology described in section 2 and recover the risk aversion and pricing kernel functions across
wealth states. The first graph in Figure 3.1 reveals that the unconditional pricing kernel increases
in the center wealth states (over the range of 0.9 to 1.1). This feature is highlighted in Jackwerth
and Brown (2001) as the kernel pricing puzzle. We use the term unconditional to emphasize that
the pricing kernel function across wealth states is computed using marginalized probabilities given
by (3.7) and (3.8). Also around the center wealth states, the unconditional absolute risk aversion
function is negative as in Jackwerth (2000). Ilowever, within each regime, the conditional pricing
kernel and absolute risk aversion function across wealth states are perfectly decreasing functions of
the aggregate wealth: the puzzles disappear. When regimes are (or not) observed, we confirm that
the results do not depend on the particular distance measure used. Figure 3.2 confirms the results
when regimes are not observed. The same features are exhibited with the alternative [lansen and

Jagannathan (1997) distance measure (2.8).

4.2 Regime shifts in preferences

We also consider state dependence in the investor’s preference parameters and investigate
several state-dependent preference cases. First, we assume a constant relative risk aversion (CRRA)
and a state-dependent elasticity of intertemporal substitution (EIS). Second, we assume a state-
dependent risk aversion and a constant EIS. Third, we assume cyclical CRRA and EIS and finally
we assume state-dependent time preferences. For all combinations of state-dependent preference
parameters, we get very similar results: both the unconditional pricing kernel and absolute risk
aversion function exhibit the aforementioned puzzies while the puzzles disappear within each regime.
Therefore, we only report the results for state-dependent relative risk aversion and constant LIS in
Figure 3.3. Around the center wealth states, we observe an increasing marginal utility on the left

panel while risk aversion shown in the right panel falls into negative values. Figure 3.4 confirms
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these results with the alternative distance measure (2.8).

4.3 General comments

The two above examples of regime shifts in fundamentals or in preferences lead us to the
same general conclusion. While implied risk aversion and implied pricing kernel computed from
marginalized probabilities (pj,p;‘-) display the same paradoxical features as in Ait-Sahalia and
Lo (2000) and Jackwerth (2000), it turns out that taking into account unobserved heterogeneity
through the state dependent probabilities (pj (Ue) v} (Ut)) solve the puzzle. In other words, our
results lead us to think that may be investors utility functions are not at odds with traditional
economic theory, but investors observe a latent state variable which artificially creates a paradox
when it is forgotten in the statistical procedure. As already mentioned, full observation (of states)
by agents, with perfect synchronization with our observation of option prices may lead to use
instead the probabilities (pj, p; (U,)). The implied risk aversion and pricing kernel observed with
such mixed probabilities appear, according to a complementary simulation study available upon
request, even wilder than the ones produced by marginal probabilities <p j,p";). Since the latter
look more conformable to the empirical evidence put forward by Jackwerth (2000), we have chosen

to focus on them in this paper.

5. Conclusion

This paper investigates the ability of economic models with regime shifts to produce and
solve the risk aversion and the pricing kernel puzzles put forward in Ait-Sahalia and Lo (2000) and
Jackwerth (2000). We show that models with regime shifts in fundamentals or investor’s preferences
can explain and rationalize these puzzles. The absolute risk aversion and pricing kernel functions
extracted from the simulated prices in these economies exhibit the same puzzling features as in
the original papers and are inconsistent with the usual assumptions of decreasing marginal utility
and positive risk aversion. [However, within each regime, the absolute risk aversion and pricing

kernel functions are consistent with economic theory: the investor utility is concave and her risk
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aversion remains positive. In other words, investors’ behavior is not at odds with economic theory
but depends on some factors that the statistician does not observe. We have also shown that this

conclusion is robust to the choice of the statistical estimation procedure.
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6. Appendix: Proofs

PROOF OF PROPOSITION 3.2. Rearranging ecuation (6.9) for the pricing kernel in Melino and
Yang (2003)), one obtain:

7¥(Ut)

U) _ely) afly) a(Up) a{ly)
Ct+1 P o(Upgr) p(U ! U

= t+1) p(Urgy) Pl
M1 = ﬁ(Ut)( C LA ’

a!Ug!
p(Ut)

p(Uiy1) and B(U;), «(Us), p(Up) are constants, this pricing kernel reduces to the Epstein and

where v (U;) = and P, is the equilibrium price of the market portfolio at time t. If p(U;) =
Zin (1989) pricing kernel. Let ¢ (U;) = % denote the price-dividend ratio and A (U;) = % the

price-earning ratio. The return on the market portfolio can be written as

_ P+ G (/\(Ufﬂ) +1> (Ct+1>

P A (Ut) Ct

R i1

and the stock return:

St41 _ ¥ (U{H) Dy
Sy <P(U1) D,

Let us assume that the conditional probability distribution of (log %i, log D—I‘)“r‘—) given U{"H is a

bivariate normal:

< 2
log =5+ o OXYt+1
4 DCL /UIT ~s N :u‘.Yu 1 , X1 XY, t+ ’ (6_1)
L1 , 2
log Dy Ky IXYi+1 Oy,

with Ut = (Uy)ycrcp 41 Taking the logarithm of my41, we get

/ t+41
e = v (% s (M)

a(Uy) a(Uy)
<,0 (UL+1) - P (Ut)> 10g (’\ (Ut) Ct) +

o) ) (%)

The logarithm of the stock return is

St ¢ (U) Dy
log: — log log .
8 St o8 e (Ur) +log Dy



Consecuently,
log m41 log %
Sy =A+D D NE
log =5 log =5+

where A = (aj,as)’ with

t+1
ap = '7(Ut)10gﬁ(Ut)+(p(Ut)— p(U1) >10g ()‘_(Ul_)+_1)+

p(Ut+1) A(UY)
o (Ur) _a'(Ut) o
<P(Uz+1) p(UL)>1 g(A(U) G,
e
ay = logm,

and D is a diagonal matrix with diagonal coefficients:

= [re (o~ %) + (e =)

by = 1.

Using (6.1), it is straightforward to show:

log my41 i . .
St /UlH1 ~s N gy B
log =¢f
with
Bx,,
p = A+DB R I
oy, oy
o%,.1  TXeaVen
Yms = B s ) B.
OXig1Yi4 Ty, .,

This completes the proof.
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Figure 3.1: Absolute Risk Aversion (ARA) and Pricing Kernel (PK) functions with state
dependence in fundamentals. The preference parameters are: 8 = 0.95, a = —5, p = —11.
The regime probabilities are: py; = 0.9, pgo = 0.6. For the economic fundamentals, the means
of the consumption growth rate are puy,,, = (0.0015,—0.0009), and the corresponding standard
deviations ox,,, = (0.0159,0.0341). For the dividend rate, the parameters are py, = (0,0),
Oy, = (0.02,0.12). The correlation coefficient between consumption and dividends is 0.6. The
number of options used is 50. The number of wealth states is n = 170. The left-hand panel contains
the conditional and unconditional PK functions across wealth states. The right-hand panel contains
the conditional and unconditional ARA functions across wealth states. The conditional ARA (PK)
function is the ARA (PK) function computed within each regime. The unconditional ARA (PK)
function is the ARA (PK) function computed when regimes are not observed.
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Figure 3.2: Absolute Risk Aversion (ARA) and Pricing Kernel (PK) functions with state

dependence in fundamentals: The preference parameters are: 8 = 0.95, a« = -5, p = —11.

The regime probabilities are: p;; = 0.9, pgop = 0.6. For the economic fundamentals, the means

of the consumption growth rate are py,, , = (0.0015,—0.0009), and the corresponding standard

deviations ox,,, = (0.0159,0.0341). For the dividend rate, the parameters are py, , = (0,0) ,

0v,.1 = (0.02,0.12). The correlation coefficient between consumption and dividends is 0.6. The

number of options used is 50. The number of wealth states is n = 170. The left-hand panel contains

the unconditional PK function across wealth states for the Goodness-of-fit and the Hansen and

Jagannathan (1997) distance measures. The right-hand panel contains the unconditional ARA

function across wealth states for the Goodness of Fit and the Hansen and Jagannathan (1997)
distance measures. The unconditional ARA (PK) function is the ARA (PK) function computed

when regimes are not observed.
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Figure 3.3: Absolute Risk Aversion (ARA) and Pricing Kernel (PK) functions with
state dependence in preferences. The preference parameters are § = 0.97, a = (—7,—4.8),
p = —10. The regime probabilities are p1; = 0.9, ppp = 0.6. For the economic fundamentals, the
means of the consumption growth rate is py,,, = 0.018 and the standard deviations ox, , = 0.037.
For the dividend rate Y;11, the parameters are iy, +1 = —0.0018 , oy,,, = 0.12. The correlation
coefficient between consumption and dividend is 0.6. The number of options used is 50. The
number of wealth states is n = 170. The left-hand panel contains the conditional and unconditional
PK functions across wealth states. The right-hand panel contains the conditional and unconditional
ARA functions across wealth states. The conditional ARA (PK) function is the ARA (PK) function
computed within each regime. The unconditional ARA (PK) function is the ARA (PK) function

computed when regimes are not observed.
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Figure 3.4: Absolute Risk Aversion (ARA) and Pricing Kernel (PK) functions with
state dependence in preferences. The preference parameters are g = 0.97, a = (=7, —4.8),
p = —10. The regime probabilities are p1; = 0.9, pgo = 0.6. For the economic fundamentals, the
means of the consumption growth rate is px,, , = 0.018 and the standard deviations o x,,, = 0.037.
For the dividend rate Y;;i, the parameters are Hy,,, = —0.0018 , oy,,, = 0.12. The correlation
coefficient between consumption and dividend is 0.6. The number of options used is 50. The
number of wealth states is n = 170. The left-hand panel contains the unconditional ARA function
across wealth states for the Goodness-of-fit and the Hansen and Jagannathan (1997) distance
measures. The right-hand panel contains the unconditional ARA function across wealth states for
the Goodness of Fit and the Hansen and Jagannathan (1997) distance measures. The unconditional
ARA (PK) function is the ARA (PK) function computed when regimes are not observed.
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1. Introduction

Since Black and Scholes (1973), the empirical option pricing literature about European options
on equity affords at least two kinds of extensions. First, while keeping the Black -Scholes and
Merton continuous time paradigm, some authors have focused on problem surrounding the volatility
parameter. While its is assumed to be constant in Black and Scholes initial geometric Brownian
motion model, [Tull and White (1987) considers that it actually follows a stationary process the
current value of which belongs to the investors’ information set. In this setting, the option price can
be written as an expectation of the Black-Scholes price where the volatility parameter is replaced
by the square root of a time average of the squared volatility process over the lifetime of the
option and the expectation is conditional to the current value of the volatility process. Renault
and Touzi(1996) and Renault (1997) have shown that this setting implies a symmetric volatility
smile when implied Black and Scholes (BS) volatilities are backed out from observed option prices.
Several extensions including leverage eflect, multi-factors volatility process, long memory or jumps
have addressed the issue of fitting better the observed volatility surfaces along the two dimensions
of strike price and maturity. Irrespective of the detailed specification, a common feature of all these
option pricing models is that there are some latent volatility factors the current value of which is
assumed to be known to investors while not observed by the econometrician.

A second strand of literature, following the Cox, Ross and Rubinstein binomial reinterpretation
of Black and Scholes, replaces the continuous time setting by a binomial tree. Generally speaking,
the lattice kind of approach is more flexible than the diffusion model to accommodate complicated
payoffs schedules. Of course, the simplest binomial tree is nothing but a discrete time approximation
of the geometric Brownian motion and the states can be calibrated to ensure that the lattice option
pricing model converges towards Black and Scholes when the time interval between two binomial
draws goes to zero. Moreover, Boyle (1988) and Kamrad and Ritchken (1991) have shown that
by considering multinomial trees, one can accommodate higher dimensions of uncertainty; market
incompleteness as captured by a latent volatility risk that precludes the perfect hedge of an option

contract by replicating it with a portlolio on the underlying asset and the risk-free asset can also
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be captured in a lattice framework with trinomial trees. [Towever, the trinomial approach differs
from the continuous time stochastic volatility model a la [Tull and White (1987) by the fact that
it erases the informational role of option prices as revealing the market assessment of unobserved
current, volatility.

The main goal of this paper is to bridge this gap. We will show that this is an important
issue, not only for the econometric use of volatility assessments backed out from option prices, but
also for option pricing and hedging itself. Actually, while our lattice based option pricing model
will not differ from the trinomial one over one period, the difference will matter as soon as one is
interested in pricing longer term options. The basic intuition is the following: if investors know
something about the latent state that the econometrician does not know, they take advantage of
this knowledge to forecast the future state better than the econometrician does and the resulting
option prices are influenced by this knowledge.

To formalize this idea, we refer to the Markov switching literature do describe the latent uncer-
tainty by a two-state Markov chain. When this binomial state interacts with a binomial tree, it will
produce a lattice which is at first sight observationally equivalent to a trinomial or quadrinomial
lattice. But over to periods, there is an important difference: when the investor knows the current
realization of the state, he knows which binomial tree among two possible ones will be drawn. Over
one period, this always defines a world with three or four possible sates. But, over two periods, the
persistence of the Markov chain can be exploited to make better assessments of the probabilities
of the various branches of the tree. This is the reason why the maintained assumption that the
investor can eventually observe the realization of the state is important. Note that we are not the
first to assume that the state is known to investors but not to econometricians. This is of course
the case with state dependent preferences ( Melino and Yang (2003)) and this is also the setting
of option pricing models considered by Garcia , Luger and Renault (2001), (2003). Generally
speaking, the motivation behind Markov switching regimes is that when the economic environment
changes, the data generating process of the related financial variables also changes. One example

is that the period of high volatility of the US short term interest rate coincides with change in the
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economic and political environments due to the October 1987 stock market crash, see for instance
[Tamilton (1990) and Gray (1996). Latent state variables models seek to capture such discrete
shifts in the behavior of the financial variables by allowing the parameters of the underlying data
generating process to take on different values in different time periods. While several papers have
already addressed the issue of option pricing with Markov switching regimes, see Bollen (1998)
among others, it turns out that the focus on the information content of option prices has still not
be sufficiently put in the general framework of lattice pricing as it has been done for continuous
time models. This paper bridges this gap.

The paper makes three contributions. First, we revisit Boyle’s (1988) option pricing approach
with the stochastic discount factor (hereafter SDF). By a stochastic discount factor, we mean a
random variable that can be used to compute the market price of an asset today by discounting
payofls differently in the futures states of the world. Without building any replicating strategies,
we show how the SDF can be used to derive the underlying risk neutral probabilities across wealth

states. To do this, we use a fundamental valuation equation
IImg =7,

where g is the payoff of a traded derivative, m is the price of g and m is known as a stochastic
discount factor [see e.g., [lansen and Richard (1987)]. The underlying asset risk neutral probabilities
derived with a SDF coincides with the Boyle (1988) risk-neutral probabilities when the difference
between the underlying historical and risk-neutral variance is null. We term this difference the
risk neutral variance premium. This premiwn can be intuitively interpreted as the market price of
variance risk. Guo (1998) provides an empirical investigation of the risk-neutral variance process
and the market price of variance risk implied in the foreign-currency options market. Assuming
that the joint process of the asset return-SDF is lognormally distributed, this premium is not null,
we show that the risk neutral probabilities are sensitive to small changes in the risk neutral variance
premium.

Second, we develop a lattice trinomial tree to handle the situation in which the payoff from

derivatives is affected by one latent state variable through the underlying asset (it is possible to
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extend this work to situation involving a higher number of state variables). Conditionally on this
variable, we also assume (for simplicity) that the underlying asset follows a two-point jump process.
We then provide the way to price derivatives and give under what condition (s), our pricing approach
is observationally ecuivalent to Boyle (1988) option pricing approach. We, thereafter, extend our
pricing approach in two-period (we have three dates, 0, 1 and 2).

The plan of the rest of the paper is as follows. Section 2 of the paper describes Boyle’s (1988)
approach to getting the underlying risk-neutral probabilities across wealth states and shows how
these probabilities can be obtained in a stochastic discount factor framework. We, thereafter,
propose a trinomial tree with state variable and show (in one-period) that this tree is equivalent to
Boyle’s (1988) trinomial tree. Section 3 of the paper extends the result of Section 2 in two-period
and investigate under what conditions the TTSV is equivalent to Boyle (1988) trinomial tree. The

last section concludes the paper.

2. One-Period Tree

In this section, the underlying asset follows a three-point jump process. Using this assumption,
we characterize the structure of the SDF and derive the underlying-asset risk-neutral probabilities
across wealth states. We, thereafter, propose an alternative trinomial tree where an unobservable
state variable affects the underlying process and show that this tree is observationally equivalent

to Boyle’s (1988) trinomial tree (hereafter BTT).

2.1 Revisiting the Boyle trinomial model with a SDF

Over a small time interval, Boyle (1988) approximates the underlying return process by a three-

point jump process:

St :
o=l e Fdlag (2.1)
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with u > d. Without loss of generality, we assume that £ = 0. The underlying probabilities across

wealth states are represented by:

Moves Assel Values Probabilities of [vents

Up .S} D1
Ilorizontal St D2
Down d.S¢ p3

The probabilities of events p;, pa and p3 can be computed if the underlying expected return and
variance are known. Let p], p5 and p} represent the probabilities of events in a risk neutral world.
Boyle (1988) imposes three conditions to solve for these probabilities in terms of « and other

variables:
(i) the risk neutral probabilities sum to one,

(ii) under the risk neutral world, the mean of the discrete distribution, . is equal to the mean

of the continuous lognormal distribution:

5'
E,*[ f;l] = i, and
t

(iii) under the risk neutral world, the variance of the discrete distribution, o}2 = Var} [%—‘f—l], is
equal to the historical variance, o7, of the continuous lognormal distribution

ot~ o2,

So that the first two moments of the variable’s return implied by the lattice match the first two
moments implied by the underlying distribution. Boyle (1988) uses these equalities to compute the

risk-neutral probabilities across wealth states:

v (o2 4p? p)u—(u-1)

T i
o (obtn? pu? ) 9.9
p3 = (v D@2 1) ’ (22)

Py =1-p]—np3
Therefore, to compute the price of derivatives in BTT, we need the underlying historical variance
(0?). Before we stress the implications of this restriction when valuing derivatives, we give an

alternative way to price derivatives.
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Consider a derivative, of which payoff is g (Si+1). This payoff is quadratic in the underlying-
asset because the underlying-asset follows a three-point jump process as specified in (2.1). We

rewrite this payoff as:
9(Sti1) = go + 915141 + 92571,

where, go, g1, and gy are functions of the information set that investors use in buying or selling

derivatives at date t. Of course, the coefficients go, g1, and gy are solution to:

1 wS: u’S? go g (u.St)
1 S S g1 | = | 9(5)
1 d.St cletZ as g (dSt,)

According to the ITansen and Richard (1987) framework, the price of g (S¢y1) is:

T =I5 [mt.+19 (St—}-l)] )

where 4.1 represents the SDF. We, therefore, rewrite this expression as:

me = I [mfﬂg (5t+1)] : (2.3)

with m}, | = I [my41|St41]. Using either my,; or My leads to the same pricing formula, since

B, [(mer1 —miyq) 9(Siq1)] = 0.

The random variable mj,, can be interpreted as a SDF. This SDF follows a three-point jump
because the underlying-asset also follows a three-point jump process. Thus, it seems reasonable to

write my, | as a quadratic function in Si4q:
miyy = a* +b* Sy + c*SEy. (2.4)

From equation (2.4), the coefficient c* could be interpreted as a skewness parameter. [Marvey
and Siddicue (2000), Dittmar (2002) among others demonstrate that a quadratic SDF introduces
skewness in asset pricing. They show that asset skewness (co-skewness) is an important factor that

explains asset expected returns. For instance, Harvey and Siddique (2000) show that investors are
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willing to accept negative expected return in presence of high positive skewness. Expression (2.4)
shows how the skewness premium enters the trinomial tree. [lowever, expression (2.4) can be used

to price only derivatives of Sy1. Substituting g (S;41) in (2.3) gives

b
ot
o

me=go(1+75) '+ 1St + g2 [m]y 1 SH] - (:

with g = 1 4 74, rf is the risk free rate. For sake of notational convenience, we use the following

notation
2 2
I [m:a 15u1] = nS¢,

where the parameter 77 can be rewritten as:

12
My Sul] _ 02‘2
Em},, S? (1+7))

U—(EmZ+1)E‘[ + (1 +7y),

where the specification of the risk-neutral measure d@ through the SDF change of measure is

%?—CIP, dP represents the historical measure. If (p},p3) denotes the solution to equations
t+1

, 1 " * * ¥
= i GRS S (151~ 59)S)

and

1 * * * *
1t =y (P (807 45 (050" + (L= 91 —99) (507),

equation (2.3) can be rewritten as
m=go(1+77) ' + 1S+ ganSt = (L+77) " B lg (Sen)], (2.6)

where [5; (g) represents the expectation of g with respect to the underlying-asset risk-neutral prob-

abilities (p¥, 3, p3):

. (a'f—sz n 5)u (n 1)

b1 —( (@ Dz 1) ’
 (ofp? p8)u? W1 9
Py =@ D@ ) ’ 27

* __ * *
Py =1-pi —p3,
where § = 0? — o}? represents the risk-neutral variance premium. These risk-neutral probabilities

are obtained without building any replicating portfolio strategy. The same technique can be applied
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to the well-known Cox, Ross and Rubinstein (1979) binomial model by assuming that the underlying
assel follows a two-point jump process. Comparing our risk-neutral probabilities to the Boyle risk-
neutral probabilities, we conclude that both the probabilities across wealth states are equal if
and only if § = 0. This will certainly introduce errors in the computation of the true risk-neutral
probabilities if 6 # 0. One example is that if the joint process underlying return-stochastic discount

factor is conditionally lognormally distributed, the price of the squared underlying return is:'

1 E{ (Rt2— 1)
= L, [m}, R%,] = o
n A [mHl H—l] Emg, (Ef,Rt+1)2

with Ry = st,—:‘ This last equality can be used to compute the underlying-asset risk-neutral

variance:
2
o
o} = ) £, (2.8)
where A = 1 + M In that case,
(1 +1‘,)

§=a? [1 - %] .
If A # 1, the risk-neutral variance premium § is not null. When the underlying return-stochastic
discount factor is conditionally lognormally distributed, it follows that the underlying marginal
distribution is also lognormally distributed. Over a small time interval, this return can be approx-
imated by a three-point jump process [see Boyle (1988)]. Therefore, over a small time interval,
equation (2.8) is still valid when the underlying return is approximated by a three-point jump
process.

To compute the risk-neutral probabilities, recall that Cox, Ross and Rubinstein (1979) use
U = exp [a{ \/ﬁ] .

When this last expression is used to compute (2.2), the risk-neutral probabilities are sometime
negative [see e.g., Boyle (1988)]. Instead of using this last ecuation to compute the risk-neutral

probabilities, Boyle (1988) assumes

U = exp [/\UZ \/7_] ,

!See Chabi-Yo, Garcia and Renault (2003).
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where h is the length of one time step (in this article, without loss of generality, we assume h — 1),
and A > 1. Boyle's intuition can be argued as follows: under the historical underlying-asset measure,
approximating the lognormal distribution by a three-point jump process over a small time interval

involves considering
U = exp |:0'(, h] .

From this last expression, if we replace the underlying historical variance, o, by its expression
given in (2.8), we get © = exp [m\/ﬁ] = exp [/\U;‘\/I_z]. [Towever in Boyle (1988), the parameter
A is exogenous. From the above example, explicit formula for A is given when the joint process
of underlying asset return-stochastic discount factor is lognormally distributed. In that case, the
parameter A depends on the underlying asset risk premium, 5 (R4.1) — (1 + 7). Iligh underlying
risk premium implies high value for A. For example, suppose 0* = 0.2, r;y = 0.1, h = 1, Table 4.1
displays the values of « and the corresponding probabilities for a range of values of the underlying
risk premium. Zero risk premium is not realistic when the joint process underlying asset return
is lognormally distributed. This explains why the probability pj is negative. It can be observed
through Table 4.1 that the risk neutral probabilities highly depend on the underlying risk premium.
In the next subsection, we propose a lattice model with an unobservable state variable and give

conditions under which this model is equivalent to BTT.

2.2 Trinomial tree with state variable

We assume the underlying-asset process is affected by an unobservable variable namely Us1.
This variable is not observed by investors at date ¢ = 0 but is disclosed to them at date ¢ + 1.
Without loss of generality, we assume that this unobservable variable follows a two-point jump
process, that is, Uy 41 = 0 or 1. We also assume Up = 1. The random process (U;) which affects the
underlying process is a discrete first order homogeneous Markov chain with a transition matrix of
the form:

anr l—-an

1 —ago Qoo
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Given Uy, we also assume that the underlying process follows a two-point jump process:

Regime 1 (U =1|Up = 1) Regime 0 (U; = 0|Up = 1)

Moves Asset Values Probabilities Asset Values Probabilities

Up u(1).S; P11 1(0).S; P10
Down d(1).S; 1—pn d(0).5, 1—pio

Assuming u(1) = u, d(1) = 1 = u(0) and u(0) = d(0), the underlying process follows a three-point
jump process and the underlying probabilities across wealth states are characterized by equations

below:

puP (U1 =1Up=1) = py,

(1-po) P(U1=0Up=1) = ps,

(1—pu) P(U1=1Up=1) + p1oP (U1 = 0[Up = 1) D2

The tree implied by this unobservable state variable will be referred to as a Trinomial Tree with
State Variable (TTSV). The difference between this tree and the BTT is that, at date 1, investors
are informed about the value of U; whereas in the BTT, investors are not informed. The TTSV
and BTT produce identical wealth states. Although, it is important to investigate under what
conditions the TTSV is observationally equivalent to BTT. To address this issue, we first compute

the price of g (S7) using the TTSV.

Theorem 2.1 In one-period, the price of a derivative with payoff g (S1) is:
mo = L*[C(U1)],

with

Q(1~U1) (0’ 1)

1
= Ly, (g (51)],
B(].Ul) (O? 1) ]

cU) =

where 5(1.U1) (0, 1) = E() [ml Ul] and Q(I.U1) (0, 1) = E() [ﬂl[%ﬂ;_U]] ’



o [7*(.) represents the expectation operator under the risk-neultral transition probability:
P*(Ur=ilUs = 1) = Qusy (0,1) P(U1 = ilUg = 1) fori =0, 1.

e 5% (.) represents the expectation operator under the pseudo-risk-neutral probability (piy,,1 — iy, ) :
U p 10U, U

Q(1,u4)(0,1)
L (U
B(1,u,)(0.1) C( 1)

P = w(Uy) —d(Uy)

fori=0,1,

L Q,upH)(0,1)
with =L > d(Uq).
B(1,up)(0,1) d(th)

From Theorem 2.1, the ratio Q1) (0, 1) shows that there exits a risk premium associated to the
state variable U/;. This premium is measured through changes in this ratio. The next proposition

shows that the TTSV is observationally equivalent to BTT.
Proposition 2.2 In a one-period, the TTSV is observationally equivalent to BTT.

In section 3, we extend the results of section 2 in two-period and derive conditions under which

this model is observationally ecuivalent to BTT.

3. Two-Period Extension

This section extends the TTSV into two-period and provides a procedure for valuing derivatives.
In this two-period, the state variable process (U;) captures the salient features of derivatives such
as options, in particular skewness and the dynamic effect of asset skewness. We describe conditions

under which the TTSV is observationally ecuivalent to BTT.

3.1 The trinomial lattice description

We assume there is 3 dates, 0, 1 and 2. In BTT, at date t+1, the underlying asset return S‘s_l,l

takes on 3 values: u, 1 and d whereas in the TTSV, given the conditioning variable Uiyq, the
underlying asset return takes on two values w (U 1) and d (Up41) . If J; denotes the information set

that investors use in buying or selling derivatives at date ¢ in BTT,

Jp = U{(TH’T7:S_T),T < L} .
57‘ 1
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Within the TTSV, the relevant information set is

I = 0{(m7-,i,UT),T < t}.
S‘r 1

It is straightforward to see that J; C Iy which means that investors are more informed in the TTSV
than in BTT. In this sense, the TTSV allows investors to be fully informed about the trajectory of
the state variable process (U;) whereas in BTT, investors are not informed about this trajectory.

Figure 4.1 describes the TTSV in two-period. To value derivatives, we need two assumptions:

o Assumption Al: The variables <mT_|.1, Szl

5 ) are conditionally serially independent
T Ji<r<i4l

given the path Uit = (Ur),, 1 <r<iq0 Of & vector Uy of state variables,

Sr+l

e Assumption A2: The process |mr41, 5 does not cause the process (Ut).
-+ S,

)t<T<L+l

Under assumptions A1l and A2, the state variables summarize the dynamic effect of the

underlying-asset skewness. To see this, let 741 denotes Log (Ri41)- It follows that
Coug (7‘1,7'3) — [5 [('O’U() (r1, 1.§|U12)] + Coup (I5 (r1|U12) ) (r%lUlz)) )

Under assumptions A1l and A2, it follows that Couvg (Tl,r%) = Clovg (E (m|th), E (7%|U12)) the
TTSV captures the salient features of derivatives, in particular skewness and the dynamic effect
of asset skewness. In section 3.2, we provide a procedure for valuing derivatives in the TTSV and

give under what conditions the TTSV is observationally equivalent to Boyle’s trinomial tree.

3.2 Valuation of derivatives

Consider a derivative with payoff g (Sz) at date 2. Theorem 3.1 gives the price of g(S2) at date 0.

Theorem 3.1 In two-period, under assumnptions A1 and A2, the price of a derivative with payoff

g(S2) is:

™ = I, (C'lg (52)])
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with
Olo(52)] = [g”f ( 2;

where EUf (1,2) = Iy ["77.2|U12] , QUi;_ (1,2) = I [ng% U12] and I5}, (.} is the expectation under the

Qu.uy (0,1)
B, (0,1)

1
B, B (9 (52))]

N

3

1,
Uiz (17‘
risk-neulral probabilities:

P Uy =i,Uy=jlUg=1]=P*Uy=ilUy =34 x P*[Uy =jUs=1] Vi j=0,1,

with

P*[U = i|Uy = j]
2 (1,2) =
Qv (1:2) = B, =i =)

where 57, (.) is the expectation under the pseudo-risk-neutral probabilities:
1

Qua(l? .
_ By»(12) (@)

. |52 002 7
T ow(i)—d@)

Prg = u(@)|UE = (j,i)

Ly, () is defined in theorem 2.1.
Now, we state under what conditions the TTSV is observationally equivalent to BTT.

Proposition 3.2 Under assumptions A1 and A2, if the the conditioning distribution of (my, Sy)
given the set (m1,S1,U1) equals the conditioning distribution of (ma,S2) given Sy, the TTSV is

observationally equivalent to BTT.

4. Conclusion

This paper develops a lattice for valuing derivatives when the underlying process is affected
by an unobservable state variable. This model generalizes the existing lattice models by Cox. Ross
and Rubinstein (1979) and Boyle'’s (1988) trinomial pricing model. In a future research, we intend
to establish price convergence from this discrete framework to the case of continuous underlying

asset.
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5. Appendix: Proofs

PROOF OF THEOREM 2.1. At date 0, the price of g (5) is

o = Lo [mig (S1)] = Lo [Ep [mag (S1) |Uil]

But,
o [mig (S1)|U1] = Bo[Lo [mag (S1) [Ur, $1]|UL] = Eo [g (1) Fo [ma|U1, S1] |Un]
Consequently,
TF()—E() [E() (TTLI (U1,5'1)g(5'1) |U1)], (59)
with
* r 1 Sl
mi (U1, 1) = Iig m1|U1. 81 = a (Ur) + b (Uh) Sy’
where,
Cg(l.u])(o-l) N <§L|U1)
~ B(1,u,(0.1) So
b(U1) = Buu,)(0,1) 3
Varg (g(ﬂU])
- S
a(Uh) = Bauw(0,1)=b(Uh) Lo (S_'(I]|U1>
and

)
Quuy(01) = Fo [m; (Ul,sos—;wl] ,

By (0,1) = Lo[mi (U1, 51)|Ud] .

Given the conditioning variable Uy, the underlying S; follows a two-point jump process. In that

case

g(S1) = go (U1) + g1 (U1) S1.

This last equality is plugged in Iy (mf (U1, S1) g(S1) |Uy), we then get:

* ' 1 “ , Q \ 071
Lo [m3 (U1, 81) g (S1) |U1] = By (0,1) {90 (U1) + g1 (UI)SOT(‘IU—I)(‘—) .
B1.0,)(0,1)
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Q[I.Ul](oll) U
(@) Qu,up(0.1)

B(l_ul)((),l) . . . . S
WO Aoy With B o)(@.1) > d(Uy). This last expression can be rewritten

If we denote pjy;, =

as

Bo [m (U1, 51) 9.(50) 1U1) = By (0,1) [ B 0 (9 (51)

where L7, (g) represents the expectation of g under the pseudo risk-neutral probability (p}*Ul 1 —piy, )

We plug this last expression in (3.9) and get:
mo = ¥ [C (Uh)) (5.10)

with

Q(I.Ul) (O’ 1)

Ey (g (S
Bewon (0, 1)> o, L9 (S)]

CU) = (

E* (g) represents the expectation of g under the risk-neutral transition probabilities

P Uy = i|Up = 1]
PU, = iUy = 1]

Q1.4 (0,1) = for+ =0, 1.

PROOF OF PROPOSITION 2.2. Let mgrr [g(S1)] be the price at date 0 of ¢g(S1) in the BTT and
mrrsv [g(51)] be the price at date 0 of g (S1) in the TTSV. For sake of notational convenience, we
denote P[U; = i|Up = j] = aj: and P* [U1 = i|Up = j] = af;. BTT is equivalent to the TTSV if

and only if:

7err [9 (51)] = Trrsv (9 (S1)] (5.11)

To investigate if the TTSV and BTT are equivalent, we equate (5.10) and (2.7). Let assume that
the right hand side of (5.11) is known, if g(S1) = Sy and g(S1) = S?, equation (5.11) can be
used to compute the underlying risk-neutral probabilities across wealth states in BTT. To see this,

notice that

ngrr [g(51)] = B (0,1) [pig (w.So) + p3g (1.50) + p3g (d.So)] -
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This last expression in plugged in (5.11),
mrrsv [9(S1)] = B (0,1) [pig (w.So) + p3g (1.S0) + pig (d-S0)] .
Using g (S1) = Si, this last equation reduces to:
So = mrrsv [S1] = B (0,1) [pju.So + p3So + p3d.So .
If g(S1) = S2, we also have:
18§ = mrrsv [S}] = B(0,1) [PI (w.50)* + p5 (1.50)* + p§ (d-So)?

with p; = 1 — p] — p3. Solving the last two equations produces the underlying risk-neutral proba-
bilities across wealth states (p},p3, p3)-
Conversely if the left hand side of (5.11) is known, using g (S1) = 5%, g(S1) = S; and expanding

the right hand side of (5.11) gives:

* o \2 * " \2
2 ) N re2 . P11 (-50)" + (1 = piy) (So)
nSq = merrlg(S1)] = mrrsv [S7] = ol P =T 1

(So)* + (1 = plo) (d-So)*
pio(l—d)+d

+

p*
(1 —ajy) 10

' « PIyeSo+ (1 —p3y) S
So = merrlg(S1)] = mrrsy [Si] = afy L 191‘10(uE 1) ili) :

pIOSO + (1 — pfo) d.Sg
Plo(1—d)+d

(1-aiy)

Fixing aj;, the above two equations can be solved for p}, and p},. For this particular value al;

the BTT and TTSV are equivalent. This ends the proof.
PROOF OF THEOREM 3.1. At date 0, the price of g (S3) is
7o = Lp [mimag (S2)] .
where mmy is a two-period SDF. This last expression can be decomposed to:

Ep [mimag (S2)] = o [mlEo [ng(Sg) Ulz,Sl,ml]] .
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with
L [mag (S2) |UL, S1,m1] = Lo [mag (S2) [UZ, S1,m4],
But,
o [mag (S2) |UT, S1,mi] = Io [ [m3 (U7, S2) g(S2) [UZ, Sa, S1,mu] [UF],
where

my (U127 Sy) = L [7712|U12’ S, 5'1,7711] )

Under Assumption Al,

S
m3 (U2, 55) = a (U2) + b (U2) s—f
and

E() ['m.; (UIQ, 52) g (52) |U12, SQ, Sl, ml] = E(] [m§ (U12, SQ) g (52) |U12, Sz]

[Towever, it can be shown that:

Lo [Eo [m3 (UF, S2) g(S2) UL, Sa] [U}] = EU% (1,2) L2 (g (52)]

with,
Qu2(1.2)
am — Bo (21U7)
2 ~ P Ulz( ) )
b(Uf) = By:(1,2) ;
1 U S2702
Varg (Sl ]Ul)
~ ‘ . S
o(UD) = Bup 1,2 ~0(02) 1o (2103
where

- , . S
By (1,2) = Fo [m (U7, 52) |U2] and Quz (1,2) = Lo [m; (U2, S2) S—jwf]

: (*ﬂ () represents the expectation under the pseudo risk-neutral probability:
1

Qu'l (1'2)

s T

BU;Z (1.2)

w(Up) —d(Up)’

— d(Us)

P* [isﬁ = u(Ug)|U12] =
S



Therefore,
r0 = [ [mlﬁU% (1,2) B2 [g (52)]]
— o [B [muBy; (1,2) B [ (S2)) U7
= o [Bup (1,2) E [mi By lg (2] U7
[Towever,

B 050 = o) P[22 ~u(iv? = .9)| +
9 (810(0) P* [ 32 = sV = .7
This last quantity only depends on Sj, similarly to theorem 2.1, we have:
I [mlE;}iz (9 (S2)] |U12] = B [mu|UT] L, [ o2 g (52)]] :
Under assumption A2, o [mi|UZ] = Lo [m}|U1, S1]. Consequently,

mo = I [Eu;l (1a2)§(1.ul) 0,1) By, [ '(*Jiz g (5'2)]”

QU2 (112) i Q(lU)(O,l) 1
= [ 1 (1, 1 - ’*2 <
' <BU? (1’2)) (B(l,Ul)(O,l) o [ vz (o 2))]

I}, (.) represents the expectation under the risk-neutral probabilities:
P*Uy=i,U =jlUp=1]=P[Uy=ilUy =] P*[U1=3jlUs=1] V4i,j=0,1

with:

_ P U =ity = 4]
PUp=iUi=j]

QU‘f (1) 2)
and L (.) is defined in theorem 2.1. This ends the proof.

PROOF OF PROPOSITION 3.2. Let mprr.r (9(St42)) be the price of g(Ss) in BTT at date 7 and
nrrsvr (g(Stre)) the price of g(S2) in the TTSV. In a two-period, the BTT and TTSV are

equivalent if and only if:

7 err.0 |9 (S2)] = Trrsve (g (S2)] .
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Under Al and A2, Theorem 3.1 gives:

1
Q(I.Ul) (071):| I

QUf (1,2)
"~ U -
B,y (0,1) '

mrrsvo lg (S2)] = I, By2 (1,2)
Ug\h =

} B2 (9(52)

This last equation can be rewritten as:

1
Q(I,Ul) (07 1) o Er
- U‘ U U
B, (0,1) 2l '

QUI( 2)

Trrsvalg(S2)] = E* BUZ (1,2)

] Lz (9(52))

where, [£* is the expectation under the risk neutral transition probabilities:
P*[Uy =ilUp = j].

and E(*j2 Uy is the expectation under the risk neutral transition probabilities:
P*[Uy = ilUy = j].

It is obvious to see that:

1 M r q -1
Qu'z (1,2) Qu‘z (1,2)
Bgyu || By | | == | B (9(52) = B | |5 Li2(9(5)
21Uy 1 BU;z (1’2) Ui 21Ul __BUE (1,2)- 1
[ 7 1
Quz (1’2)
= I,y = 9(52)
o i BU;2 (1’2)_
= 7rrsv.[g(S2)]
Therefore,

1

Quuyy (0,1 . :
~(1'U—l)(l Lf (mrrsva [g(S2)]) |

mrrsvolg (S2)] = B
B0,y (0,1

But,

Trrsva [9 (S2)] = F [mag (S2) Ii]

Assuming the conditioning distribution of (mg, S3) given the the set (m1, S1,U;) equals the condi-

tioning distribution of (ma, Sy) given Sy, we have

I [mag (S2) |I1] = E[mag (S2) |S1] = h(S1) .
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where h is a positive function. This last expression can be viewed as the payoff of a traded derivative.

In BTT, we recall that the price of g(S3) at date 1 can written as

mrra [9(S2)] = I [meg (S2) |S1] = h (S1)

In that case,

1

Qoo OV e sy)] (5.12)

mrrsvo lg(S2)] = IF
B(l,U]) (07 1)

Applying proposition 2.2 to (5.12),
Trrsvolg(S2)] = L{mih(S1)]
= Elmmprralg(S2))]-

The proof is completed. Il Hl
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Table 4.1: Jump amplitudes and jump probabilities

o*=0.2,7r;, =003 h=1

Underlying Risk Premium
0

0.03

0.05

0.06

0.07

0.08

1.2354
1.2378
1.2402

*

Pi

0.5784
0.5473
0.5280
0.5187
0.5097
0.5009

P3

0.4306
0.4034
0.3866
0.3785
0.3706
0.3630

2
-0.0090
0.0492
0.0854
0.1028
0.1197
0.1362
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Note: In this table, we compute the risk neutral jump probabilities for different values of the

underlying risk premium.
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Figure 4.1: Trinomial Tree with a State Variable
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Conclusion générale

Dans cette thése, nous analysons différentes spécifications du SDF et ses implications en fi-
nance. Les différents sujets abordés ont pour théme commun la spécification du SDF.

Dans le premier essai nous analysons comment la préférence des agents économiques pour
I'asymétrie affecte la demande et les prix des produits observés sur le marché. IZn considérant une
situation au voisinage de la non-incertitude (expansion en petit bruit), on calcule les demandes
des agents pour différents types d’actifs risqués. L’idée est de considérer un actif en offre non
nulle, représentatif du portefeuille de marché, et des actifs dérivés en offre nette nulle mais dont les
gains sont des fonctions non linéaires du portefeuille de marché. On s’apergoit alors que la demande
d’actifs dérivés est précisément justifiée par le gout des investisseurs pour I'asymétrie. Au niveau des
prix, la rémunération du risque dépend non seulement du beta de marché, comme dans un contexte
moyenne-variance classicue, mais aussi d'un coefficient de coasymétrie par rapport au marché.
Les conclusions obtenues par l'expansion en petit bruit peuvent ensuite etre retrouvées dans des
contextes plus généraux grace & la définition d’un facteur d’actualisation stochastique adapté. Cette
double approche peut etre étendue a un marché & deux périodes ou d’autres phénomenes d’asymétrie
doivent etre pris en compte dans la dépendance temporelle des rendements d’une période a I'autre.

Le deuxiéme essai propose un SDI* de référence qui & de nombreuses applications en finance
notamment. Il peut servir notamment & comparer les modeéles d’évaluation des actifs financiers ou &
tester leur validité. Notre but est de présenter un SDI de référence qui prend en compte I'asymétrie
observée dans les rendements des actifs financiers. Notre contribution est double. Premieérement
nous présentons un SDF de référence simple et facile & utiliser. Deuxiémement, nous interprétons
ce SDF en terme de choix de portefeuille sous asymétrie. Nous démontrons que notre approche
de choix de portefeuille est une simple extension de I’approche moyenne variance (voir Markowitz
(1952)) et de I'approche moyenne-variance-asymétrie (voir de Athayde et al. (2004)).

Dans une premiére application empiricue, nous illustrons la perte d’information qui résulte de
l'utilisation du SDF de ITansen et Jagannathan (1991). Dans une deuxieme application, en utilisant

le SDF proposé dans cet essai, on s'apergoit que I'énigme de la prime de risque mis en évidence
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par Mehra et Prescott (1985) est encore plus difficile & expliquer. Dans une troisiéme application,
nous illustrons le choix de portefeuille sous asymétrie et montrons qu’on perd de I'information sur
le portefeuille choisi lorsque ’approche moyenne-variance-asymétrie proposée dans de Athayde et
al. (2004) est utilisée. |

Le troisiéme essai présente un modele économicue avec changement de régimes qui produit et
explique les énigmes de ’aversion pour le risque et du SDF mises en évidence dans Jackwerth (2000)
et Ait Sahalia et Lo (2000). Nous construisons un simple modele ot les préférences des investisseurs
et leur consommation dépendent d’une variable d’état qui suit un processus de type Markovien
a deux états et simulons les prix d’options d’achat ewropéennes. [En utilisant la méthodologie
proposée par Jackwerth (2000), nous déduisons la fonction d’aversion absolue pour le risque et le
SDF pour chaque valeur de la richesse. Ces fonctions présentent les memes énigmes que celles
observées par Jackwerth. (2000) Lorsque nous appliquons la meme méthodologie dans chaque état
de ’économie, ’énigme de ’aversion absolue pour le risque disparait. Nos résultats suggerent cue
ce modele rationalise et explique I’énigme de 'aversion pour le risque et du SDF mises en évidence
par Jackwerth et Ait Sahalia et Lo (2000).

Le quatriéme essai présente un modele d’évaluation des produits dérivés par la méthode d’arbre
lorsque le processus du prix du sous-jacent est affecté par une variable d’état non observable. Ce
modéele généralise les modeles d’arbre existants: Cox, Ross et Rubinstein (1979) et Boyle (1988).
Dans ce modéle, la variable d’état non observable capture les faits marquants mis en évidence par
I'observation des prix d’'options, en particulier 'asymétrie et la dynamique de "asymétrie présentes

dans les actifs dérivés.



