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Sommaire

L objectif de cette thése est d’étudier divers problémes d’économétrie des séries
chronologiques et de la finance. Le théme qui relie les différents essais est la malédic-
tion de 1a dimension qui est intrinséque de 1’étude des séries chronologiques multiva-
riées.

Dans le premier essai, nous considérons le probléme de la modélisation des modeles
VARMA par des méthodes simples qui ne requiérent que des régressions linéaires.
Dans ce but, nous utilisons une méthode d’estimation proposée par Hannan et Rissanen
(1982, Biometrika) pour les modéles ARMA univariés. Nous dérivons les propri€tés
asymptotiques de ces estimateurs sous des hypothéses faibles a propos des innovations
(non corrélées et mélangeantes fortes) afin d’élargir la classe de modeles auxquels ils
peuvent étre appliqués.

Pour faciliter 1’utilisation des modéles VARMA, nous présentons des nouvelles re-
présentations identifiées, la forme équation diagonale MA et la forme équation finale
MA, ol les opérateurs MA sont respectivement diagonaux et scalaires. Nous présentons
également un critére d’information modifi€ qui donne des estimations convergentes
des ordres de ces différentes représentations. Pour démontrer I’importance des modeles
VARMA dans I’étude des séries chronologiques multivariées, nous comparons les co-
efficients d’impulsion générés par des modéles VARMA et VAR.

Dans le deuxiéme essai, nous proposons un nouveau modele pour la variance entre
plusieurs séries chronologiques, le modele Regime Switching Dynamic Correlation.
Nous décomposons les covariances en corrélations et écarts types. La matrice de cor-
rélation suit un modeéle a changement de régime : elle est constante a 'intérieur d’un
régime mais différente entre les régimes. Les transitions entre ceux-ci sont déterminées
par une chaine de Markov. Ce modele ne souffre pas d’une malédiction de la dimen-
sion et permet le calcul analytique d’espérances conditionnelles sur plusieurs horizons
de la matrice de variance. Nous présentons également une application empirique qui
illustre que notre modele peut obtenir une meilleure performance interéchantillon que
le modele Dynamic Conditional Correlation proposé par Engle (2002, JBES).

Dans le troisieme essai, nous examinons des méthodes pour tester des hypotheses

de non-causalité a différents horizons, tel qu’ils sont définis dans Dufour et Renault
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(1998, Econometrica). Nous étudions en détail le cas des modéles VAR et nous propo-
sons des méthodes linéaires basées sur I’estimation d’autorégressions vectorielles a dif-
férents horizons. Méme si les hypothéses considérées sont non linéaires, ces méthodes
ne requiérent que des techniques de régression linéaire de méme que la théorie distribu-
tionnelle asymptotique gaussienne habituelle. Dans le cas des processus intégrés, nous
avons recours des méthodes de régression étendue qui n’exigent pas de théorie asymp-
totique non standard. Les méthodes sont appliquées 4 un modéle VAR de I’économie
américaine.

Dans le quatriéme essai, nous proposons des nouveaux tests statistiques pour I’éva-
luation des modeles de risque financier utilisés pour le calcul des Valeurs-a-Risque
(VaR), tel que le modele dont il est question dans le deuxi€me essai. Ces tests sont
basés sur la durée en jours entre les violations de la VaR. Les résultats de nos simu-
lations Monte Carlo montrent que pour des situations réalistes, les tests basés sur les
durées donnent de meilleures propriétés en matieére de puissance que ceux précédem-

ment avancés.

Mots clés : équation forme finale, critére d’information, représentation faible, co-
efficients d’impulsion, corrélation dynamique, chaine de Markov, causalité indirecte,

autorégression vectorielle, GARCH, évaluation de modele de risque.
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Summary

The objective of this thesis is to study various problems in time series and finan-
cial econometrics. The common thread of the various parts is the intrinsic curse of
dimensionality underlying the study of multivariate time series.

In the first essay, we consider the problem of modelling VARMA models by rel-
atively simple methods which require linear regressions. For that purpose, we con-
sider the regression-based estimation method proposed by Hannan and Rissanen (1982,
Biometrika) for univariate ARMA models. The asymptotic properties of the estimator
are derived under weak hypotheses for the innovations (uncorrelated and strong mix-
ing) so as to broaden the class of models to which it can be applied.

To further ease the use of VARMA models we present new identified VARMA
representations, diagonal MA equation form and final MA equation form, where the MA
operators are diagonal and scalar respectively. We also present a modified information
criterion which gives consistent estimates of the orders of these representations. To
demonstrate the importance of using VARMA models to study multivariate time series
we compare the impulse-response functions generated by VARMA and VAR models.

In the second essay, we propose a new model for the variance between multiple time
series, the Regime Switching Dynamic Correlation model. In this model, we decom-
pose the covariances into correlations and standard deviations. The correlation matrix
follows a regime switching model: it is constant within a regime but different across
regimes. The transitions between the regimes are governed by a Markov chain. This
model does not suffer from a curse of dimensionality and it allows analytic computation
of multi-step ahead conditional expectations of the variance matrix. We also present an
empirical application which illustrates that our model can have a better in-sample fit
of the data than the Dynamic Conditional Correlation model proposed by Engle (2002,
JBES).

In the third essay, we discuss methods for testing hypothesis of non-causality at
various horizons, as defined in Dufour and Renault (1998, Econometrica). We study in
detail the case of VAR models and we propose linear methods based on running vector
autoregressions at different horizons. While the hypotheses considered are nonlinear,

the proposed methods only require linear regression techniques as well as standard
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Gaussian asymptotic distributional theory. For the case of integrated processes, we
propose extended regression methods that avoid nonstandard asymptotics. The meth-
ods are applied to a VAR model] of the U.S. economy.

In the fourth essay, we propose new statistical tests for backtesting financial risk
models used for computing Value-at-Risk (VaR), like the model we proposed in the
second essay. These tests are based on the duration in days between the violations of
the VaR. Our Monte Carlo results show that in realistic situations, the new duration-
based tests have considerably better power properties than the previously suggested

tests.

Key words: final equation form, information criterion, weak representation,
impulse-response functions, dynamic correlation, Markov chain, indirect causality,

vector autoregression, GARCH, risk model evaluation.
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Introduction

Un des problémes intrinséques de 1’étude des séries chronologiques multivari€es
est la malédiction de la dimension. Bien souvent, la complexité et le nombre de pa-
ramétres des modéles que I’on tente d’utiliser augmentent avec le nombre de séries
chronologiques, ce qui rend I’analyse de telles séries tres difficile, voire impossible. La
ligne directrice de cette thése est I’étude de méthodes permettant de contourner cette
malédiction de la dimension, pour les séries tant macroéconomiques que financiéres.

Pour étudier la dynamique des séries chronologiques macroéconomiques, les éco-
nomistes se servent la plupart du temps des modéles VAR. Le grand attrait de ces mo-
deles est que leur estimation ne requiert que des régressions linéaires, ce qui les rend
tres faciles d’utilisation.

En revanche, I'utilisation des modéles VAR a deux grands défauts. Le premier est
le manque de parcimonie. Tout comme il est admis que les modeéles ARMA sont plus
parcimonieux que les modeles AR pour les séries univariées, les modéles VARMA ont
le potentiel d’étre plus parcimonieux que les modeles VAR, surtout lorsqu’on remarque
que des modeles VAR avec des ordres tres élevés sont nécessaires pour de nombreuses
séries macroéconomiques.

Le deuxie¢me défaut est que la spécification d’'un modele VAR est trés arbitraire
puisque cette classe de modeles n’est pas robuste a I’agrégation temporelle et a la mar-
ginalisation. Si un vecteur suit un processus VAR, des sous-vecteurs ne suivent pas
typiquement des modéles VAR (mais des processus VARMA). De la méme fagon, siun
processus VAR est observé a une fréquence différente, alors la série obtenue ne suit pas
un modéle VAR mais un processus VARMA. Par opposition, I’agrégation temporelle
ou la marginalisation d’un processus VARMA demeure un processus VARMA.

Les économistes persistent tout de méme 2 utiliser seulement les modeles VAR au
lieu d’envisager les modéles VARMA, ce qu’on peut expliquer par deux raisons. La
premiére est que la représentation VARMA identifiée privilégiée par la littérature éco-
nométrique, i.e. la forme échelon, est difficile 2 manipuler. L’utilisateur doit spécifier
les indices de Kronecker (le nombre d’indices est €gal au nombre de séries), et les

ordres des polyndmes composant les opérateurs AR et MA sont fonction de leur po-



sition relativement a la diagonale. La seconde raison est que la méthode d’estimation
habituellement proposée pour les modéles VARMA est le maximum de la vraisem-
blance. Les modéles VARMA sont plus parcimonieux que les modéles VAR mais le
nombre de paramétres peut étre élevé, ce qui rend trés compliquée la maximisation de
la vraisemblance.

Dans le premier essai de cette thése, nous présentons une méthode pour la modéli-
sation des modéles VARMA qui franchit ces deux obstacles. Dans un premier temps,
nous introduisons deux nouvelles représentations VARMA identifiées, la forme équa-
tion diagonale MA et la forme équation finale MA, ot les opérateurs MA sont respec-
tivement diagonaux et scalaires. Ces représentations ont de nombreux avantages. Elles
peuvent étre interprétées comme de simples extensions du modeéle VAR. Contrairement
a la forme échelon, elles imposent une forme trés simple sur la partie MA, celle qui
complexifie I’utilisation des modéles VARMA. Les ordres des polyndmes qui compose
la partie MA ne sont pas reliés entre eux, contrairement a la forme échelon.

Dans un second temps, nous proposons une méthode d’estimation qui ne requiert
que trois régressions linéaires. Cette méthode est une généralisation de celle proposée
par Hannan et Rissanen (1982) pour les modéles ARMA. Les estimateurs de la troi-
sieme régression ont les mémes propriétés asymptotiques que ceux obtenus par maxi-
mum de vraisemblance sous I’hypothése que les innovations sont gaussiennes. Avec
cette méthode d’estimation, nous combinons un critére d’information qui donne des
estimations convergentes des ordres des polyndmes AR et MA.

Pour I’étude des séries financiéres, la malédiction de la dimension force les éco-
nomistes a utiliser des modeles aux dynamiques tres simples. Les généralisations mul-
tivariées directes des modeéles GARCH univariés, tel que le modele BEKK de Engle
et Kroner (1995), ne peuvent étre appliquées a plus de quatre ou cinq séries sans quoi
la maximisation de la vraisemblance devient prohibitive [voir Ding et Engle (2001)].
Une avenue intéressante pour la spécification des modeles de volatilité multivari€s est
la décomposition des covariances en corrélations et écarts types. Le chercheur spécifie
ensuite des modeéles pour les écarts types et un modele pour la matrice de corrélation.
On se débarrasse ainsi de la malédiction de la dimension puisqu’on peut estimer le

modele deux étapes : d’abord pour les écarts types puis ensuite pour la matrice de cor-



rélation en utilisant les résidus standardisés. Le premier a utiliser cette décomposition
a été Bollerslev (1990), en posant I’hypothése que les corrélations sont constantes.

L’hypothese selon laquelle la matrice de corrélation est constante n’étant pas tou-
jours appuyée par les données, de nouveaux modeles ont été proposés au cours des
derniéres années. Les modeles Dynamic Conditional Correlations de Engle (2002) et
Multivariate GARCH de Tse et Tsui (2002) avancent plutdét une dynamique de type
GARCH pour la matrice de corrélation : la matrice de corrélation est aujourd’hui une
fonction des matrices de corrélation passées et des produits croisés des innovations
standardisées passées.

On préfere ces modeles a ceux qui ont une matrice de corrélation constante, mais
une dynamique de type GARCH pour la matrice de corrélation n’est pas entiérement
satisfaisante. Le fait que les produits croisés des innovations standardisées ne soit pas
borné par -1 et 1 est un probléme, puisque cela implique qu’aucun élément de la matrice
de corrélation n’est borné par -1 et 1. Par conséquent, on doit remettre a I’échelle les
matrices obtenues afin de vraiment aboutir & des matrices de corrélation, mais ces mises
a I’échelle introduisent des non-linéarités qui ont pour effet d’empécher les calculs ana-
lytiques d’espérance conditionnelle pour les covariances et corrélations. On s’apergoit
qu’un modele qui ne tient pas directement compte des caractéristiques d’une matrice
de corrélation n’est pas satisfaisant.

Dans le deuxie¢me essai, nous proposons un nouveau modele de volatilité multiva-
rié, le modele Regime Switching Dynamic Correlation. Nous décomposons €galement
les covariances en corrélations et écarts types, mais la matrice de corrélations suit un
modéle a changement de régime : elle est constante a I’intérieur d’un régime mais dif-
férente entre régimes. Les transitions entre régimes sont déterminées par une chaine de
Markov. Ce modéle ne souffre pas d’une malédiction de la dimension puisqu’on peut
I’estimer en deux étapes, tout comme les modéles de Bollerslev (1990), Engle (2002),
Tse et Tsui (2002). Notre modele a aussi I’avantage de permettre le calcul analytique
d’espérance conditionnelle sur plusieurs horizons de la matrice de corrélation, et de la
matrice de variance si un modele approprié pour les écarts types est employé [le modele
ARMACH de Taylor (1986)]. Nous présentons également une application empirique

qui montre que notre modele peut avoir une meilleure performance inter-échantillon



que celui d’Engle (2002).

Les tests de causalité a plusieurs horizons, tel que définis dans Dufour et Re-
nault (1998), présentent également des problémes associés a I’étude des séries ma-
croéconomiques multivariées. Méme dans les modeles VAR, les hypothéses de causa-
lité & plusieurs horizons sont non linéaires et prennent la forme de contraintes sur des
transformations multilinéaires des parametres du modele VAR. L’application des tests
statistiques habituels, de type Wald, par exemple, pourrait générer des matrices de cova-
riance asymptotiquement singuliéres, avec comme résultat que la théorie asymptotique
standard ne s’appliquerait pas a ces statistiques.

C’est pourquoi nous présentons, dans le troisi¢me essai, des méthodes de test
simples pour tester les hypotheses de non-causalité a plusieurs horizons dans les mo-
deles VAR d’ordre fini qui ne requicrent que des méthodes de régression linéaire.
Celles-ci méthodes sont basées sur des autorégressions vectorielles a multiples hori-
zons ol on peut estimer les paramétres au moyen de méthodes linéaires. En utilisant
cette approche, on peut tester les restrictions de non-causalité a divers horizons en uti-
lisant des critéres de type Wald ou Fisher, une fois que I’on tient compte de la structure
moyenne mobile des erreurs (qui sont orthogonales aux régresseurs).

Une des raisons d’étre des modeles de volatilité multivariés tels que celui que nous
présentons dans le deuxiéme essai est de prédire la distribution de rendements futurs
d’un portefeuille. Ces prédictions sont nécessaires pour le calcul de la Valeur-a-Risque
(VaR) d’un portefeuille d’actifs financiers. La VaR d’un portefeuille est tout simple-
ment un quantile de la distribution des rendements futurs du portefeuille. C’est une
mesure du risque d’un portefeuille : plus ses rendements sont volatils, plus la variance
est élevée, et plus les petits quantiles sont éloignés de la moyenne. Les institutions fi-
nancieres sont maintenant tenues de calculer ces VaR par, notamment, les Accords de
Basle.

Dans le quatrieéme essai, nous présentons de nouveaux tests statistiques pour évaluer
st le mode¢le utilisé pour calculer la VaR est correctement spécifié. Si aujourd’hui la
VaR pour demain et pour un niveau de couverture de 1 % est 10 0003, cela signifie
que demain, la probabilité que ce portefeuille perde plus que 10 000$ est égale a 1 %.

L’évaluation des modeles utilisés pour calculer les VaR est basée sur la comparaison



des VaR (ex-ante) et des pertes effectives (ex-post). On crée ainsi une séquence binaire
I, : on marque un 1 pour les jours ot les pertes excédent la VaR et un 0 pour les jours
ol la VaR n’excede pas les pertes.

Si la VaR est calculée de facon optimale, il devrait étre impossible de prévoir a
quel moment elle sera violée (quand les pertes vont excéder la VaR), ce qui implique
que la séquence I; devrait étre indépendante. Si on calcule une VaR avec un niveau de
couverture de p%, alors on devrait excéder la VaR p % des jours. Donc, ce qui nous
intéresse, c’est de vérifier si la séquence I, est i.i.d. Bernoulli(p). Des tests basés sur
I’hypothése alternative d’une chaine de Markov pour décrire la séquence I; ont été
avancés par Christoffersen (1998).

Dans cet essai, nous proposons des nouveaux tests statistiques qui sont basés sur
la durée en nombre de jours entre les violations de la VaR. Si le modéle utilisé pour
calculer lIa VaR est optimale, alors ces durées devraient €tre i.i.d. exponentielles de
moyenne 1/p. S’il est impossible de prévoir quand la VaR sera violée, il ne peut y
avoir d’effet de mémoire et si la VaR est excédée p % du temps, on devra attendre
1/p jours en moyenne entre les violations. Pour tester cette hypothése, nous proposons
deux alternatives qui englobent le cas i.i.d. exponentiel : la distribution Weibull et le
modele EACD de Engle et Russel (1998). A I’aide de simulations Monte Carlo, nous
montrons que pour des situations réalistes, ces tests ont plus de puissance que ceux

proposés précédemment.



Chapter 1: Linear estimation of weak
VARMA models with a

macroeconomic application

1. Introduction

In time series analysis and econometrics, VARMA models are scarcely used to repre-
sent multivariate time series. VAR models are much more widely employed because
they are easier to implement: the latter models can be estimated by least squares meth-
ods, while VARMA models typically require nonlinear methods (such as maximum
likelihood).

VAR models, however, have important drawbacks. First, they are typically much
less parsimonious than VARMA models. Second, the family of VAR models is not
closed under marginalization and temporal aggregation. If a vector satisfies a VAR
model, subvectors do not typically satisfy VAR models (but VARMA models). Simi-
larly, if the variables of a VAR process are observed at a different frequency, the result-
ing process is not a VAR process. In contrast, the class of (weak) VARMA models is
closed under such operations. We say that a VARMA model is strong if the innovations
are independent, and it is weak if they are merely uncorrelated.

It follows that VARMA models appear to be preferable from a theoretical view-
point, but their adoption is complicated by identification issues and estimation difficul-
ties. The direct multivariate generalization of ARMA models does not give an identified
representation. It follows that a one has to decide on a set of constraints to impose so
as to gain identification. Standard estimation methods for VARMA models (maximum
likelihood, nonlinear least squares) require nonlinear optimization which may not be
feasible as soon as the model involves a few time series, because the number of param-
eters can increase quickly.

In this paper, we consider the problem of estimating VARMA models by relatively

simple methods which only require linear regressions. For that purpose, we consider



a generalization by Hannan and Kavalieris (1984a) of the regression-based estimation
method proposed by Hannan and Rissanen (1982) for univariate ARMA models. Their
method is performed in three steps. In a first step a long autoregression is fitted to
the data. In the second step, the lagged innovations in the ARMA model are replaced
by the corresponding residuals from the long autoregression and a regression is per-
formed. In a third step, the data from the second step are filtered so as to give estimates
that have the same asymptotic covariance matrix than one would get with the maximum
likelihood [claimed in Hannan and Rissanen (1982), proven in Zhao-Guo (1985)]. Ex-
tension of this innovation-substitution method to VARMA models was also proposed
by Koreisha and Pukkila (1989), but these authors did not provide a detailed asymptotic
theory for their proposed extension.

Here, we first provide such a theory by showing that the linear regression-based esti-
mators are consistent under weak hypotheses on the innovations and how filtering in the
third step gives estimators that have the same asymptotic distribution as their nonlinear
counterparts (maximum likelihood if the innovations are independent and identically
distributed (i.i.d.), or nonlinear least squares if they are merely uncorrelated). In the
non i.i.d. case, we consider strong mixing conditions [Doukhan (1995), Bosq (1998)],
rather than the usual martingale difference sequence (m.d.s.) assumption. By using
weaker assumptions for the process of the innovations we broaden the class of models
to which our method can be applied.!

Second, in order to avoid identification problems and to further ease the use of
VARMA models, we introduce three new identified VARMA representations, the diag-
onal MA equation form, the final MA equation form and the diagonal AR equation form.
Under the diagonal MA equation form (diagonal AR equation form) representation, the
MA (AR) operator is diagonal and each lag operator may have a different order ¢; (p;).
Under the final MA equation form representation the MA operator is scalar, i.e. the the
operators are equal across equations. The diagonal and final MA equation form repre-
sentations can be interpreted as simple extensions of the VAR model, which should be

appealing to practitioners who prefer to employ VAR models due to their ease of use.

!For univariate ARMA models Francq and Zakoian (1998) presents numerous cases where the rep-
resentation is only weak.



The identified VARMA representation that is the most widely employed in the litera-
ture is the echelon form. Specification of VARMA models in echelon form does not
amount to specifying the order p and g as with ARMA models. Under this representa-
tion, VARMA models are specified by as many parameters, called Kronecker indices,
as the number of time series studied. These indices determine the order of the elements
of the AR and MA operators in a non trivial way. The complicated nature of the ech-
elon form representation might be a reason why practitioners are not using VARMA
models, so the introduction of a simpler identified representation is interesting. The
proposed representations may be less parsimonious than the echelon form but since our
estimation method only involve regressions we can afford it.

Thirdly, we suggest a modified information criterion to choose the orders of
VARMA models under these representations. This criterion is to be minimized in the
second step of the estimation method over the orders of the AR and MA operators and
gives consistent estimates of these orders. Our criterion is a generalization of the infor-
mation criterion proposed by Hannan and Rissanen (1982), which was corrected later
on in Hannan and Rissanen (1983, 1984b), for choosing the orders p and g in ARMA
models. The idea of generalizing this information criterion is mentioned in Koreisha
and Pukkila (1989) but a specific generalization and theoretical properties are not pre-
sented.

Fourth, the method is applied to U.S. macroeconomic data previously studied by
Bernanke and Mihov (1998) and McMillin (2001). To illustrate the impact of using
VARMA models instead of VAR models to study multivariate time series we compare
the impulse-response functions generated by each model. We show that we can ob-
tain much more precise estimates of the impulse-response function by using VARMA
models instead of VAR models.

The rest of the paper is organized as follows. Our framework and notation are in-
troduced in section 2. The new identified representations are presented in section 3.
In section 4, we present the estimation method. In section 5, we describe the infor-
mation criterion used for choosing the orders of VARMA models under the represen-
tation proposed in our work. Section 6 contains results of Monte Carlo simulations

which illustrate the properties of our method. Section 7 presents the macroeconomic
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application where we compare the impulse-response functions from a VAR model and
VARMA models. Section 8 contains a few concluding remarks. Finally, proofs are in

the appendix.

2. Framework

Consider the following K -variate zero mean VARMA(p,q) model in standard represen-

tation:

14 q
Vo= AY i+ U= Bl @1
i=1 j=1
where U is a sequence of uncorrelated random variables defined on some probability
space ({2, A, P). The vectors Y; and U, contain the K univariate time series: Y; =
[¥:(1), %:(2), ..., %(K)] and U, = [u(1), ue(2), . .., u(K)]'. We can also write the

previous equation with lag operators:

A(L)Y; = B(L)U, (2.2)

where
A(L) = Igp—AL—----— ApLP, (2.3)
B(L) = Iyx-— BL—-...— B,L. 24)

Let H, be the Hilbert space generated by (Y;, s < t). The process (U;) can be

interpreted as the linear innovation of Y;:
U, =Y, — EL[Y;|H,]. (2.5)

Also assume that Y; is a strictly stationary and ergodic sequence and that the process
{U:} has common variance (Var[U,] = X) and finite fourth moment (Eflu(5)[*7%] <

oo for some § > 0). We make the zero mean-mean hypothesis only to simplify the



notation.

Assuming that the process {Y;} is stable,

det[A(z)] #0for |z} <1,

and invertible,

det [B(z)] #0for |z| <1,

it, can be represented as an infinite VAR

oLy, = U,
where
(L) = B(L)A(L) = Ik - ) ILL,
i=1
or an infinite VMA
Y, = ¢,
where

U(L)y = AL)'B(L) =Ig - ilpjy‘.

10

(2.6)

2.7)

The matrices II; and ¥; could be zero past a finite order if det[B(L)] or det[A(L))

respectively is a non-zero constant. We will denote by a;;(L) the polynomial in row :

and column j of A(L), and the row ¢ or column j of A(L) by

Ai.(L) == [a,-l(L), - ,a,-K(L)],
A.j(L) = [alj(L), ceey aKj(L)]'.

(2.8)

2.9)
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The diag operator creates a diagonal matrix,

diaglaii(L)] = diaglai(L),...,axk(L))
ai (L) s 0
_ SR , (2.10)

0 aKK(L)

where
aii(L) =1 —a; L — - — a; , L7 (2.11)

The function deg[a(L)] returns the degree of the polynomial a(L) and the function
dim(+y) gives the dimension of the vector .

We need to impose a minimum of structure on the process {U;} because saying that
it is uncorrelated is not enough to get any significant results. The typical hypothesis
that is imposed in the time series literature is that the U,’s are either independent and
identically distributed (i.i.d.) or a martingale difference sequence (m.d.s.). In this work
we do not impose such strong assumptions because we want to broaden the class of
models to which it can be applied. We only assume that it satisfies a strong mixing
condition [Doukhan (1995), Bosq (1998)]. Let {U.} be a strictly stationary process,

then its a-mixing coefficient of order A is defined as

alh)=sup |Pr(BNC)-Pr(B)Pr(C)| , h>1. (2.12)
Ceolls itk

The strong mixing condition that we impose is

> a(h)¥®) < 00 for some &> 0. (2.13)

o]
h=1

This is a fairly minimal condition that will be satisfied by many processes of interest.
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3. Diagonal VARMA representations

It is important to note that we cannot work with the standard representation (2.1) be-
cause it is not identified. To help us gain intuition on the identification of VARMA
models we can consider a more general representation where Ay and By are not iden-

tity matrices:
AYy =AY+ -+ AY, p+ BoU, — B0,y +--- + BqUt—q- (3.1)
By this specification, we mean the well-defined process
i = (Ao— A L—---—ALP)"Y(By+ B,L+---+ B,LO)U(¢).

But we can see that such process has a standard representation if Ay and B, are

non-singular. To see this we left-multiply (3.1) by A" and define U; = Ay~ BoU;:

Y, = A'AYe 4+ ATTAY, , + U(t) —
Ao—lBlBo_—leUt_l —ee— AO_quBO_lAOUt—q-

Redefining the matrices we get a representation of the type (2.1). With this example
we see that as long as Ay and B, are non-singular we can transform a non-standard
VARMA into a standard one.

We say that two VARMA representations are equivalent if A(L)™"B(L) results in
the same operator ¥(L). Thus, to insure uniqueness of a VARMA representation we
must impose restrictions on the AR and MA operators such that for a given ¥(L) there
is one and only one set of operators A(L) and B(L) that can generate this infinite MA
representation.

A first restriction that we impose is a multivariate equivalent of the coprime prop-
erty in the univariate case. We don’t want elements of A(L) and B(L) to “cancel
out” when we take A(L)_IB(L). We call this the left-coprime property [see Han-
nan (1969), Liitkepohl (1993a)]. It may be defined by calling the matrix operator
W[A(L), B(L)] = A(L) ' B(L) left-coprime if the existence of operators D(L), A(L),
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and B(L) satisfying
D(L)ZIA(L), B(L)] = Y[A(L), B(L)] (3.2)

implies that D(L) is unimodular, that is det D(L) is a nonzero constant. To obtain
uniqueness of left-coprime operators we have to impose restrictions ensuring that the
only feasible unimodular operator D(L) in (3.2) is D(L) = Ix. There exist more
than one representation which guarantee the uniqueness of the left-coprime operators.
The predominant representation in the literature is the echelon form [see Deistler and
Hannan (1981), Hannan and Kavalieris (1984b), Liitkepohl (1993a), Liitkepohl and
Poskitt (1996a)].

Definition 3.1 (Echelon form) The VARMA representation in (2.1) is said to be in
echelon form if the AR and MA operators A(L) = [a;;j(L));j=1,..x and B(L) =
[bij(L))i j=1,..x satisfy the following conditions: all operators a;;j(L) and b;;(L) in

the i-th row of A(L) and B(L) have the same degree p; and have the form

23
ai(L) = 1- Z aiimL™, fori=1,...,K
m=1

Di
ay(L) = = D aymL™, forj#i

m=p;—pij+1

p‘l.
bij(L) = Y bymL™ fori,j=1,...,K, with By= Ap.

m=0

Further, in the VAR operator a;;(L),

min(p; +1,p;) fori>j
pij={ it Leg) J ’ L,j=1,..., K.

min(p;, p;) fori<j

i.e., p;; specifies the number of free coefficients in the operator a;j(L) for j # i. The row
orders (p1, ..., pk) are the Kronecker indices and their sum Zfil p; is the McMillan

degree. For the VARMA orders we have in general p = ¢ = maz(p,, - .., Dk)-

We see that dealing with VARMA models in echelon form is not as easy as dealing

with univariate ARMA models where everything is specified by choosing the value of



14

p and gq. The number of Kronecker indices is bigger than two (if K is bigger than
two) and when choosing p;; we have to consider if we are above or below the diagonal.
Having a summation subscript in the operator a;;, m = p; — p;; + 1, different across
rows and columns also complicates the use of this representation. The task is far from
being impossible but it is more complicated than for ARMA models. Specification
of VARMA models in echelon form is discussed in Hannan and Kavalieris (1984b),
Liitkepohl and Claessen (1997), Poskitt (1992), Nsiri and Roy (1992), Nsiri and Roy
(1996), Liitkepohl and Poskitt (1996b), Bartel and Liitkepohl (1998). This might be a
reason why practitioners are reluctant to employ VARMA models. Who could blame
them for sticking with VAR models when they probably need to refer to a textbook to
simply write down an identified VARMA representation?

In this work, to ease the use of VARMA models we present new VARMA repre-
sentations which can be seen as a simple extensions of the VAR model. To introduce
them, we first review another identified representation, the final equation form, which
will refer to as the final AR equation form, under which the AR operator is scalar [see

Zellner and Palm (1974), Hannan (1976), Wallis (1977), Liitkepohl (1993a)].

Definition 3.2 (Final AR equation form) The VARMA representation (2.1) is said to
be in final AR equation form if A(L) = a(L)Ix, where a(L) =1 —a;L —--- — a,LP

is a scalar polynomial with a,, # 0.

To see how we can obtain a VARMA model with a final AR equation form repre-

sentation, we can proceed as follows. By standard linear algebra, we have

A*(L)A(L) = A(L)A(L)* = det [A(L)] Ix

where A*(L) is the adjoint matrix of A(L). On multiplying both sides of (2.2) by
A*(L), we get:

det[A(L)]Y; = A(L)*B(L)U,.

This representation may not be attractive for several reasons. First, it is quite far

from usual VAR models by excluding lagged values of other variables in each equation
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[e-g-, the AR part of the first equation include lagged values of v:(1) but no lagged val-
ues of 4¢(2), . .., y,(K)]. Further, the AR coefficients are the same in all the equations,
which will require a polynomial of higher order (p K). Second, the interaction between
the different variables are modeled through the MA part of the model, which may have
to be quite complex.

We can obtain our new representations with analogous manipulations. Upon multi-

plying both sides of (2.2) by B*(L), we get:
B(L)*A(L)Y; = det [B(L)] U, (3.3)

where B(L)* is the adjoint matrix of B(L). We refer to VARMA models in (3.3) as
being in final MA equation form.

Definition 3.3 (Final MA equation form) The VARMA representation (2.1) is said to
be in final MA equation form if B(L) = b(L)Ix, where (L) =1-=bL—---—b,LC

is a scalar operator with b, # 0.

The same criticism regarding the parsimony of the final equation form would apply
but it is possible to get a more parsimonious representation by looking at common
structures across equations. Suppose there are common roots across rows for some

columns of B(L), so that starting from (2.1) we can write

A(L)Y; = B(L)D(L)U,
B(LY*A(L)Y, = det [B(L)] D(L)U, (3.4)

where D(L) = diag[d;(L), ..., dx(L)] and d;(L) is a polynomial common to b;;(L),
Vi=1,..., K. We see that allowing non-equal diagonal polynomials in the moving
average as in equation (3.4) may give a more parsimonious representation than in (3.3).

We will call the representation (3.4) diagonal MA equation form representation.

Definition 3.4 (Diagonal MA equation form) The VARMA representation (2.1) is
said to be in diagonal MA equation form if B(L) = diag[b;;(L)] = Ig — BiL — - - —
Bqu where bn(L) =1- bii,lL — = bii'qqui, bii,ql 7& O, and q= maxlSiSK(q,-).
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This representation is interesting because contrary to the echelon form it is easy to
specify. We don’t have to deal with rules for the orders of the off-diagonal elements in
the AR and MA operators. The fact that it can be seen as a simple extension of the VAR
model is appealing. Practitioners are comfortable using VAR models, so simply adding
lags of u;(t) to equation 7 is a natural extension of the VAR model which could give
a more parsimonious representation. It also has the advantage of putting the simple
structure on the MA part, the part which complicates the estimation, instead of on the
AR part as in the final AR equation form. Notice that in VARMA models, it is not
necessary to include lags of all the innovations u;(t), - - ,uk(t) in every equations.
This could entice practitioners to consider VARMA models if it is combined with a
simple regression-based estimation method. For this representation to be useful, it
needs to be identified. This is demonstrated in Theorem 3.11 below under the following

assumptions and using Lemma 3.8 below

Assumption 3.5 The matrices A(z) and B(z) have the following form:

A(z) = Ix —Az—---— AP
B(z) = Igx—Byz—---— By2*

Assumption 3.6 B(z) is diagonal:
B(z) = diag [b;(2)]

with bii(Z) =1- bii’lz —_—e — bii,inq", bii,q,- 7é 0.

Assumption 3.7 For each i = 1,..., K, there are no roots common to A;,(z) and

bii(2), i.e. there is no value z* such that A;.(z*) = 0 and b;;(2*) = 0.

Lemma 3.8 Let [A(2), B(2)] and [A(z), B(2)] be two pairs of polynomial matrices

which satisfy the assumptions 3.5 to 3.7. If Ry is a positive constant such that

det [A(z)] # 0,det[B(z2)] #0
det [A(z)] # 0,det [B(z)] #0
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for0 < |z| < Ry, and

for0 < |z| < Ry, then
A(z) = A(z) and B(z) = B(z),Vz
Remark 3.9 In Lemma 3.8, the condition
A(2)"'B(z) = A(2) 1 B(z2)
could be replaced by
B(z)7'A(z) = B(2)'A(2)

since by assumption the inverse of B(z) and B(z) exist.

Remark 3.10 The assumptions 3.5 to 3.7 and conditions in Lemma 3.8 allow

det[A(2)] and det[B(2)] to have roots on or inside the unit circle |z| = 1.

PROOF OF LEMMA 3.8  Clearly, A(0) = B(0) = Ik and det[A(0)] = det[B(0)] =
1 # 0. The polynomials det[A(2)] and det[B(z)] are different from zero in a neigh-
borhood of zero. In particular, we can choose Ry > 0 such that det[A(z)] # 0 and
det[B(2)] # 0 for 0 < |2| < Rp. It follows that the matrices A(z) and B(z) are
invertible for 0 < 2| < Ry.

Let

Co={z€C|0<|2| < Ro}

and



18

for z € Cy. Since

-1 _ 1 *
A(z) 255115(55111 (2),

-1 __ 1 *
B(Z) det[B(z)]B (Z),

where A*(z) and B*(z) are matrices of polynomials, it follows that, for z € Cp, each
element of A(z)~! and B(z)™! is a rational function whose denominator is different
from zero. Thus, for z € Cp, A(z)™! and B(z)~! are matrices of analytic functions. It

follows that the function
¥(z) = A(z)"'B(2)
is analytic in the circle 0 < |z| < Ry. Hence, it has a unique representation of the form
U(z) = id'/kzk, z € Cy.
k=0

By assumption,

for z € Cy. Hence, for z € Cy,

A(2)A(z)'B(z) = B(2)
A(2)A(z)™! = B(2)B(2)7! = A(2) (3.5)

where A(z) is a diagonal matrix because B(z) and B(z) are both diagonal,
A(z) = diag [6:(2)],

where

bi(z) = ff(z), bii(0) = 1, 6:(0) = b(0), i =1,..., K. (3.6)
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From (3.6), it follows that each §;;(z) is rational with no pole in Cj such that §;;(0) = 1,

S0 it can be written in the form

ei(z)

ba(z) = fi(2)

where e;(z) and f;(z) have no common roots, f;(z) # 0 for z € Cp and 6;;(0) =
e,—i(O) =1.
From (3.5), it follows that for: =1, ..., K,

bii(z) = 5ii(z)bii(z)a
ﬁij(z) = 5,-,—(z)a,~j(z), _] = 1, ey K,

for z € C.

We first show that é;;(z) must be a polynomial. If f;(z) # 1, then its order cannot be
greater than the order ¢; = deg[b;(2)] for otherwise b;;(2) would not be a polynomial.
Similarly, if f;(z) # 1 and is a polynomial of order less or equal to g;, then all its roots
must be roots of b;(2) and a;;(z), for otherwise by;(2) or @;;(z) would be a rational
function. If ¢; > 1, these roots are then common to b;(2) and a;;(2), j = 1,..., K,
which is in contradiction with Assumption 3.7. Thus the degree of f;(z) must be zero,
and 6;;(2) is a polynomial.

If §;;(2) is a polynomial of degree greater than zero, this would entail that b;(z) and
a;;(z) have roots in common, in contradiction with Assumption 3.7. Thus ¢;;(z) must

be a constant. Further, §;;(0) = 1sothatfori=1,..., K,

bii(z) = bii(z)y
aij(z) = ai(z), j=1...,K,

and
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It should be noted that Assumption 3.7 is weaker than the hypothesis that det[A(L)]
and det[B(L)] have no common roots, which would be a generalization of the usual

identification condition for ARMA models.

Theorem 3.11 IDENTIFICATION OF DIAGONAL MA EQUATION FORM REPRESEN-
TATION. Under Assumptions 3.5, 3.6, 3.7, and the assumption that the VARMA process

is invertible, VARMA models in diagonal MA equation form are identified.

PROOF OF THEOREM 3.11  Under the assumption that the VARMA process is invert-

ible, we can write

B(L)A(L)Y; = U;

Now suppose by contradiction that there exist operators A(L) and B(L), with B(L)
diagonal and invertible, and A(L) # A(L) or B(L) # B(L), such that

B(L)'A(L) = B(L)™'A(L)
If the above equality hold, then it must also be the case that
B(2)7'A(z) = B(z)*A(2), Vze€ Cy

where Cp = {z € C | 0 < |z| < Ry} and Ry > 0. By Lemma 3.8, it follows that

Hence, the representation is unique. O

Similarly, we can demonstrate that the final MA equation form representation is

identified under the following assumption.
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Assumption 3.12 There are no roots common to A(z) and b(z), i.e. there is no value

2* such that A(z*) = 0 and b(z*) = 0.

Theorem 3.13 IDENTIFICATION OF FINAL MA EQUATION FORM REPRESENTA-

TION. Under Assumption 3.12, VARMA models in final MA equation form are identi-
fied.

PROOF OF THEOREM 3.13  The proof can be easily adapted from the proof of Theo-

rem 3.11 once we replace Assumption 3.7 by Assumption 3.12.

O

Looking at equation (3.3), we see that it is always possible to obtain a diagonal
MA equation form representation starting from any VARMA representation. One case
where we would obtain a diagonal and not final MA representation is when there are
common factors across rows of columns of B(L) as in (3.4).

One strong appeal of the diagonal and final MA equation form representations is
that it is really easy to get the equivalent (in term of autocovariances) invertible MA
representation of a non-invertible representation. With ARMA models, we simply have
to invert the roots of the MA polynomial which are inside the unit circle and adjust
the standard deviation of the innovations (divide it by the square of these roots), see
Hamilton (1994, Section 3.7). The same procedure could be applied to VARMA models
in diagonal or final MA equation form.

For VARMA representations where no particular simple structure is imposed on the
MA part, at the moment we are not aware of an algorithm to go from the non-invertible
to the invertible representation tough theoretically this invertible representation exist
and is unique as long as det[B(z)] # O for |z| = 1 [see Hannan and Deistler (1988,
chapter 1, section 3)]. So it might be troublesome to use a nonlinear optimization with
these VARMA representations since we don’t know how to go from the non-invertible
to the invertible representation.

We can also consider the following natural generalization of the final AR equation

form, where we simply replace the scalar AR operator by a diagonal operator.

Definition 3.14 (Diagonal AR equation form) The VARMA representation (2.1) is
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said to be in diagonal AR equation form if A(L) = diagla;;(L)] = Ix — AL —
e — Apr Where G,ii(L) = ]. — a,-,-,lL — e — aﬁ,pin" andp = ma.xls,-SK(pi).

Assumption 3.15 For each i = 1,..., K, there are no roots common to a;;(z) and

Bi«(2), i.e. there is no value z* such that a;;(z*) = 0 and B;(2*) = 0.

Theorem 3.16 IDENTIFICATION OF DIAGONAL AR EQUATION FORM REPRESEN-
TATION. Under Assumption 3.15, VARMA models in diagonal AR equation form are
identified.

From Theorem 3.11 we can see that one way to ensure identification is to impose
constraints on the MA operator. This is an alternative approach to the ones developed
for example in Hannan (1971, 1976) where the identification is obtained by restricting
the autoregressive part to be lower triangular with deg[a;;(L)] < deg[ay(L)] for j > 1,
or in the final AR equation form where A(L) is scalar. It may be more interesting
to impose constraints on the moving average part instead because it is this part which
causes problems in the estimation of VARMA models. Other identified representations
which do not have a simple MA operator include the reversed echelon canonical form
[see Poskitt (1992)] where we permute the rows of the VARMA model in echelon
form so that the Kronecker indices are ordered from smallest to largest, and the scalar
component model [see Tiao and Tsay (1989)] where we study contemporaneous linear
transformations of the vector process. A general treatment of algebraic and topological

structure underlying VARMA models is given in Hannan and Kavalieris (1984b).

4. Estimation Method

We next introduce elements of notation for the parameters of our model. First, irrespec-
tive of the VARMA representation employed we split the whole vector of parameters -y

in two parts <y, (the parameters for the AR part) and -y, (MA part):

v = [l
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For a VARMA model in diagonal MA equation form, -y, and -y, are

Y1 = [alo,l, c-eyQlepy -3 AKe 1y - - '7aK0,p] ’ (4'1)

Yo = [bll,h ey bll,qu cey bKK,l) sy bKK,qK] 3 (4'2)

while for a VARMA model in final MA equation form, v, is

Yo = [b1,-..,bg). 4.3)
For VARMA models in diagonal AR equation form, we simply invert «y; and y,:

Y1 = [all,la <oy Qlipyy - AKK L - - - a’KK,pK] y (4'4)

Yo = [b1.,17"')blt,qy'"1bK.,11---,bK.,q]) (4.5)

while for a VARMA model in final AR equation form, -, is
1 = [a1, ..., a6, (4.6)

The estimation method is in three steps.
Step 1. Estimate a VAR(nr) to approximate the VARMA(p,q) and recuperate the

residuals that we will call U:

nr
U, =Y, =Y Ii(ng)Yey @.7)

=1

withT > 2 x K X ny.
Step 2. With the residuals from step 1, compute an estimate of the variance matrix
of U, & = ZinT +1 U,U!/T and estimate by GLS the following multivariate regres-

sion:

A(L)Y; = [B(L) - IK]U, + e
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to get estimates A(L) and B(L) of A(L) and B(L). The regression is

|

T ~ ~ ~
> 4 277,

t=l

.

T
S 75
t=l

4.8)

with { = nr + max(p, ¢) + 1. If we define the following vectors

Y
Ui
yi-1(k)
G;-1(k)

then the matrix Zt_l

7DMA
Zi~

7FMA
Zt—l

7DAR
Zt—-l

7FAR
Zt—-l

[ye-1(1), - - -, ye-1(K), - ..
[Ge-1(1), - .., Bg—1(K), - - -, Ug(L), - - -, Te_q(K)]
)

[yt—l(k ey t-—pk(k)]
[ﬁt—l(k)a MR ﬂt"‘]k(k)]

for the various representations is

Y - 00 (1)

0 - Y 0
Yi 0 d,-1(1)
0 Y1 0-1(K)
yt—l(l) 0 fjt—l
0 yer(K) 0
ye-1(1) U, 0
_Yt—l(K) 0 0 U,

) yt—P(1)7 .-

- Yep(K)]

0
;-1 (K)
0
0 U,

where DM A, FM A, DAR and F'AR respectively stands for Diagonal MA, Final MA,

Diagonal AR and Final AR equation form.
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Step 3. Using the second step estimates, we first form new residuals

p q
U, =Y, — Z/‘iiyt—i + Z BjUt—j
j=1

i=1

initiating with U, = 0, ¢ < max(p, g), and we define
q -~
X, = Y BiX,;+Y,
=1
q o~ —
W, = Y BW,_;+U.
j=1

initiating with X, = W; = 0 for ¢t < max(p, ¢). We also compute a new estimate of X,

L= Zl{:ma.x(p,q) +1 UU!/T. Then we regress by GLS U; + X; — W, on V;_; with

q
Vi = ZBth—j + Z

j=1

where Zt is just like Zt from step 2 except that it is computed with (Z instead of Ut to

obtain regression coefficients that we call A; and B;:

-1

T T
= > VL EWn > VLEO A+ X -W|. 49
t=max(p,q)+1 t=max(p,q)+1

The properties of the estimation method are summarized in the following three
theorems. Theorem 4.1 is a generalization of results from Lewis and Reinsel (1985)

where convergence is demonstrated for i.i.d. innovations. We denote the Euclidean

norm by ||B||2 = tr(B'B).

Theorem 4.1 VARMA FIRST STEP ESTIMATES. Under the above hypothesis on the
process {Y;} and if np grows at a rate faster than log T with np?/T — 0 then for the

first stage estimates 577, ||y (ny) — IT,]| &= 0.

Theorem 4.2 VARMA SECOND STEP ESTIMATES. Under the above hypothesis on
the process {Y:} and if nr grows at a rate faster than log T with np? /T — 0 then the

second stage estimates converge in quadratic mean to their true value.
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Their asymptotic distribution is given by
VT (7 —7) 5% N (0, j-lfj—l) (4.10)

with

1
I

. E [{ZtI—IZ_IUt} {Zé—l—jZ—IU“j}’]

j=—o0

J = E[Z,_,27'Z,,]

and Z,_, is equal to the matrix Zt_l where U} is replaced by U,.
Also, if m&/T — 0 with mqy — oo then the matrix I and J can be consistently

estimated in probability respectively by

Ir = T }: w(j, mz) Z {Zg1 lUt}{Zt’_l_jﬁ-lﬁt_j}' @.11)

j=—-mr t=l+|j|

T
- 1 A A oa
Jr = TE 2y X7, (4.12)

t=I
withw(j,mz) = 1 — |3/ (mz + 1)

Theorem 4.3 VARMA THIRD STEP ESTIMATES. Under the above hypothesis on
the process {Y;} and if nr grows at a rate faster than log T with np?/T — 0 then the
third stage estimates converge in quadratic mean to their true value.

Their asymptotic distribution is given by
VT (5 —v) 4 N (0, J-lij-l) (4.13)
with

= Y B[ e 0 ]

j=—co

J = EV,ZW,]

and V;,_, is equal to the matrix V,_, where U, is replaced by U,.



27

Also, if m%/T — 0 with mp — oo then the matrix I and J can be consistently

estimated in probability respectively by

A 1 & ~ o seip\ for geg V'

Ir = T w(j, mr) Z {th_lz lUt} {Vt’—l—jZ lUt—j} (4.14)
j=—mr t=l'+|j|

. 1 & o e

Jr = = Z V., 27V, (4.15)
t=max(p,q)+1

with ' = max(p, q) + 1 and U, are the filtered residuals computed with 4.

Notice the simplicity of this estimation method. Only three regressions are needed
so we can avoid all the caveats associated with nonlinear optimizations. This is an
important problem with VARMA models where we typically have to deal with a high
number of parameters and numerical convergence might be hard to obtain. This is
especially important when we consider the fact that the asymptotic distribution of our
estimators, on which we would base our inference, may be a bad approximation to
the finite-sample distribution in high-dimensional dynamic models. See for example
Dufour, Pelletier, and Renault (2002) where we see that even for VAR models the
asymptotic approximation may be unreliable. Because of this, an estimation procedure
which only requires linear methods is interesting since it suggest that simulation-based
procedures — bootstrap techniques for example — should be used, something that would
be impractical if the estimation is based on non-linear optimizations.

It is also important to mention that this procedure is not specific to the representa-
tions considered in this work. The expressions can be easily adapted to other identified
representation, e.g. the echelon form. Since our estimation method is only based on re-
gressions we can afford to use a less parsimonious representation whereas for nonlinear
method it is highly important to keep the number of parameters to a minimum.

For the estimation of VARMA models the emphasis has been on maximizing the
likelihood (minimizing the nonlinear least squares) quickly. There are two ways of do-

ing this. The first is having quick and efficient algorithm to evaluate the likelihood? [e.g.

2Expressions for the exact and approximate likelihood of VARMA model are presented in Hillmer
and Tiao (1979) and theoretical properties of maximum likelihood estimation of VARMA models under
the hypothesis that the innovations follow a m.d.s. is presented in Hannan, Dunsmuir, and Deistler
(1980).
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Lucefio (1994) and the reference therein, Mauricio (2002), Shea (1989)]. The second
is to find preliminary consistent estimates that can be computed quickly to initialize the
optimization algorithm.

We are not the first to present a generalization to VARMA models of the Hannan
and Rissanen (1982) estimation procedure for ARMA models [whose asymptotic prop-
erties are further studied in Zhao-Guo (1985) and Saikkonen (1986)]. A similar method
in three steps is also presented in Hannan and Kavalieris (1984a) where the third step
1s presented as a correction to the second step estimates. Further relevant results con-
cerning the approximation of a VARMA process by a long VAR are given in Lewis
and Reinsel (1985), Hannan and Kavalieris (1986), Paparoditis (1996), Huang and Guo
(1990), Wahlberg (1989). A third step to improve the efficiency of the estimators is
rarely employed, surely because these procedures are often seen as a way to get ini-
tial values to startup a nonlinear optimization [e.g. see Poskitt (1992), Koreisha and
Pukkila (1989), Liitkepohl and Claessen (1997)].

There are many variations around the innovation-substitution approach for the es-
timation of VARMA models. In some of them, we replace the lagged and current
innovations by the corresponding residuals and we do a GLS estimation [Koreisha and
Pukkila (1989) which is a multivariate generalization of Koreisha and Pukkila (1990a)
and Koreisha and Pukkila (1990b), Flores de Frutos and Serrano (2002)]. Another is
Spliid (1983), where in the first step a VAR of fixed length (for example p +- q) is fitted.
We then have to iterate the second step of the estimation to get consistent estimates.

Another approach to get estimators for VARMA models that do not require nonlin-
ear estimation is use the link that exist between the VARMA parameters and the infinite
VAR or VMA representation. This is an extension of a procedure proposed by Durbin
(1959, 1960a, 1960b). With this approach, using a VAR we can estimate VMA models
[see Galbraith, Ullah, and Zinde-Walsh (2000), which generalizes Galbraith and Zinde-
Walsh (1994) and Galbraith and Zinde-Walsh (1997)] and VARMA models [Koreisha
and Pukkila (1989)].
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4.1. Asymptotic efficiency

We can ask ourselves what is the cost of not doing the nonlinear estimation. For a given
sample size we will certainly lose some efficiency because of the first step estimation.
We can none the less compare the asymptotic variance matrix of our estimates with the
corresponding nonlinear estimates. We first can see that if the innovations are a m.d.s.,
then the asymptotic variance of our linear estimates is the same as the variance of max-
imum likelihood estimates under Gaussianity. The variance of maximum likelihood

estimates for i.i.d. Gaussian innovations is given in Liitkepohl (1993a):

T

_1 aU't

I= plz’m

=1

We can transform this expression so as to obtain an equation more closely related to
our previous results. First, we split «y in the same two vectors 7, (the AR parameters)

and -y, (the MA parameters), then we compute U, /8 and 0U,/d,. We know that

Ut = }/t - Al}ft—l — Ap)/t—p + B]_Ut_l +-.--+ BqUt—q'

So taking the derivative with respect to ;:

au, U, U,
= Zutgimve1+ Bt L. 4B
oy,  Trumenett Bgm et B
oU,
B(L)a_’)’llt = Zol:dim('yl),t—l
oU,
afy,lt = B(L)'Zav.dim(3,)t-1

where Z,1.4im(y,)¢-1 is the first dim(7;) columns of Z,_,. Similarly the derivative with

respect to -y is

U, OUes e
ovy Zodim{y,)+1:dim(y)t-1 + B 073 toet By 37';7

= B(L)_IZ.dim(71)+1:dim(7)rt—1
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Combining the two expressions we see that

oU,
o'

=V

so the variance matrix for maximum likelihood estimates I is equal to the matrix J
from the third step estimation. Moreover if U; is a m.d.s. we see that we have the
equality J = I so that the asymptotic variance matrix that we get in the third step of
our method is the same as one would get by doing the maximum likelihood.

If the innovations are merely uncorrelated then we can generalize the results of
Francq and Zakoian (1998) who prove the consistency of nonlinear least squares for
univariate weak ARMA model. The authors show that the asymptotic distribution of

the estimates are
VT (5= 79) =5 N (0,77

with

I = 4 Z Cov [ut% ; ut_kaut_k

ol oy oy
. aut aut
, = 2E[87 37’}

Without formally proving it we can generalize these expressions for the multivariate
case. Writing the multivariate nonlinear least squares problem and doing a first order
expansion of the first order condition we find that the expression for the asymptotic

covariance matrix of the estimates would again be J~IJ~! with

s aU, aU,_
_ -1 t . -1 t—k
I = 4k;wcov [Ut)] oy Uk 57 55
U’ au,
= 2E |t y-1 2t
/ [87 37’]

In our previous results we saw that U, /8" = V,_,. From this we see that J = 2.J,



31

I = 41 and our third-step estimator have the same asymptotic variance-covariance
matrix as maximum likelihood or non-linear least squares estimators depending on the
properties of the innovations. To get a feel for the loss of efficiency in finite samples
due to replacing the true innovations by residuals from a long VAR we perform Monte

Carlo simulations and report the results in section 6.

5. Estimation of orders in VARMA models

We still have unknowns in our model, the orders of the AR and MA operators. If
no theory specifies these parameters, we have to use a statistical procedure to choose
them. We propose the following information criterion method to choose the orders for
VARMA models in the different identified representations proposed in Section 3. In
the second step of the estimation we compute for all p; < P and ¢; < @ the following

information criterion:

(log T)1+6

log(det ) + dim(~) 7

0> 0. (5.1)

We then choose p; and §; as the set which minimizes the information criterion. We
assume that the upper bound P and () on the order of the AR and MA part are bigger
than the true values of p; and g¢; (or that they slowly grow with the sample size). The

properties of p; and §; are summarized in the following theorem.

Theorem 5.1 ESTIMATION OF THE ORDER p AND g IN VARMA MODELS. Under
the above hypothesis on the process {Y;} and if ny grows at a rate faster than log T
with np? /T — 0 then p; and §;, i = 1,..., K, converge in probability to their true

value.

This criterion is a generalization of the information criterion proposed by Hannan
and Rissanen (1982) which the authors acknowledged that it must in fact be modified

to provide consistent estimates of the order p and g. The original criterion was

(log T)°

l ~2
0gd” + (p+4q) T
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with § > 0. But in Hannan and Rissanen (1983) they acknowledged that 52 — o2
is O(nrT~1) and not O(T!) so the penalty (logT)®/T is not strong enough. The
authors proposed two possible modifications to their procedure. The simpler is to take
(log T')*+¢ instead of (log T')? in the information criterion so that the penalty on p + g
will dominate log &2 in the criterion. The second, which they favored and was used
in latter work [see Hannan and Kavalieris (1984b)], is to modify the first step of the
procedure. Instead of taking nt = O(logT') they used another information criterion
to choose the order of the long autoregression and they iterated the whole procedure
picking a potentially different p and q at every iteration. A similar approach is also
proposed in Poskitt (1987). In this work we prefer the first solution so as to keep the
procedure as simple as possible.

The literature on information criterion to choose the order p and ¢ in univariate
ARMA models is vast. The best known criterion are certainly the AIC [Akaike (1973)],
AICc [Sugiura (1978), Hurvich and Tsai (1989)], FPE [Akaike (1973)], Mallow’s Cp
[Mallows (1973)], SIC [Schwarz (1978)] and HQ [Hannan and Quinn (1979)]. Mc-
Quarrie and Tsai (1998) would be a good starting point for interested readers. Another
approach for choosing p and g is to check if the residuals are uncorrelated [see, e.g.,
Pukkila, Koreisha, and Kallinen (1990), Koreisha and Pukkila (1995)].

Much work has also been done on information criterion to choose the order of
VAR models. A good summary of the work in this field is Liitkepohl (1985) where
he studied the performance of nine different procedures. Methods based on testing for
uncorrelated residuals have also been developed [e.g., Koreisha and Pukkila (1999)].

For the identification of the order of VARMA models, it all depends on the repre-
sentation that is used. Although it was one of the first representation studied, not much
work has been done with the final AR equation form. People felt that this represen-
tation gives VARMA models with too many parameters. A complete procedure to fit
VARMA models under this representation is given in Liitkepohl (1993a): One would
first fit an ARMAC(p;, ¢;) model to every univariate time series, using maybe the pro-
cedure of Hannan and Rissanen (1982). To build the VARMA representation in final
AR equation form, knowing that the VAR operator is the same for every equation we

would take it to be the product of all the univariate AR polynomials. This would give
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a VAR operator of order p = Zfil pi. Accordingly, for the VMA part we would take
g = maxg[gy + S5 1.4 Pi]- It is no wonder that people feel that the final equation
form uses to many parameters.

There has been a lot more work done on the identification of Kronecker indices for
VARMA models in echelon form. The problem has been studied by, among others,
Hannan and Kavalieris (1984b), Poskitt (1992) and Liitkepohl and Poskitt (1996b).
Non-stationary or co-integrated systems are studied by Huang and Guo (1990), Bartel
and Liitkepohl (1998) and Liitkepohl and Claessen (1997). Additional references are
given in Liitkepohl (1993a, Chapter 8).

A complementing approach to specify VARMA models, which is based on Cooper
and Wood (1982), aims at finding simplifying structures via some combinations of the
different series to obtain more parsimonious models. It includes Tiao and Tsay (1989),

Tsay (1989a), Tsay (1989b), Tsay (1991), Nsiri and Roy (1992), Nsiri and Roy (1996).

6. Monte Carlo Simulations

To illustrate the performance of our estimation method we ran two types of simulations.
For the first type, strong VARMA models were simulated (VARMA models with i.i.d.
Gaussian innovations). The second type of simulations involves weak representations
where the innovations are not independent nor a m.d.s but merely uncorrelated. This
is done by time-aggregating a strong VARMA process with non-Gaussian innovations
or an ARCH process. All the simulated models are bivariate so the results are easier
to analyze. The results are generated using Ox version 3.30 on Linux [see Doornik

(1999)]. We performed 1000 simulations for each model.

6.1. Strong VARMA

For the simulations with a strong representation we report results for a sample size
of 250 which represent about 20 years of monthly data, a reasonable sample size
for macroeconomic data. Tables 1 and 2 gives results for VARMA models in fi-
nal MA equation form (VARMA(1,1) and VARMA(2,1) respectively), while results
for VARMA models in diagonal MA equation form are given in Tables 3 and 4



34

(VARMA(1,1) with ¢ = (1,1) and VARMA(2,1) with ¢ = (1, 1) respectively). We
present the results (mean, standard deviations, root mean square error, 5% quantile,
%95 quantile and median) for the second (when the number of parameters does not
exceed five) and third step estimates, and the maximum likelihood estimates. We em-
ployed the likelihood conditional on the initial observations, and maximized the like-
lihood using the true value of the parameters as initial values. Samples for which the
optimization algorithm did not converge were dropped (this happened for less than 1%
of the simulations).

Looking at the RMSE, a first thing to notice is that there can be sizable improvement
in doing the third step. Some of the third step RMSEs in Tables 1 and 3 are more than
50% smaller than for the second step. This is an interesting observation considering
that the third step basically involve only one extra regression. Comparing the third step
RMSEs and the RMSEs for the maximum likelihood estimates, we see that the former
are usually no more than 15% bigger. This is also an interesting observation. The
cost of avoiding a numerical optimization, which can become quite challenging as the
number of time series studied or order of the operators increases, appears to be small.

In the top part of these Tables we also present the results for the selection of the
order of the operators using our proposed information criterion. For models in final
MA equation form, we have to select the orders p and g, and for models in diagonal
MA equation, the selection is over p, ¢; and g,. Looking at Table 1 and 2, we see the
most frequently chosen orders are the true ones, and the criterion will tend to pick a
higher value for g than for p. This result might partially be skewed by the fact that the
simulated models have a highly persistent moving average (b; = 0.9). For VARMA
models in diagonal equation form (Tables 3 and 4), we get similar results. The orders
which are selected with the highest frequency are the true ones, but for some models
we pick the wrong orders more than 50% of the time.

These results for the information criterion are fairly sensitive to the value of § and
Co, more so for the model with a diagonal representation. This can be compared to non-
parametric regressions and the selection of the bandwidth parameter. The performance
of the information criterion with respect to these two parameters should be investigated

further.
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The results for models in final AR or diagonal AR equation form are presented in
Tables 5 and 6, and Tables 7 and 8 respectively. The results are similar. We can see
big improvements between the second step and third step estimates, and the RMSEs
for the maximum likelihood estimates are usually 15% smaller than for the third step
estimates. The performance of the information criterion is less satisfactory. We could
have expected the information criterion to give similar results since the simulated AR
equation form models are very much related to the MA equation form models (we
simply interchanged the AR and MA operators). What we instead see is that the true
order is chosen less often and in one case (Table 8) the true order is not the one selected
the most often. One symmetrical result we do observe is now a higher AR order tends

to be chosen more often than a higher MA order.

6.2. Weak VARMA

In this work we simulate weak VARMA models, where the innovations are uncor-
related but are not a m.d.s., by two different methods. Both methods are based on
time-aggregation of a strong process. The first approach is to simulate directly weak
innovations, from which we will build the simulated series Y;. The second approach is
to simulate a strong VARMA process and then time-aggregate it to obtain the series Y;.

From the results in Drost and Nijman (1993), we know that the temporal aggrega-
tion of a strong GARCH process (where the standardized innovations are i.i.d.) will

give a weak process. Suppose U, is given by the following bivariate ARCH model:

l?t = Htl/2€t
Ht = Q+a(7t_1(7t'_l

where ¢, is i.i.d. N(0, I,), Ht1 /2 is the Cholesky decomposition of H,; and « is a scalar.
If we consider U, as a stock variable, then temporal aggregation of U, over two periods,

ie.

Ut = fj2t
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will give a weak process. The series U; will be uncorrelated but not a m.d.s., its mean
will be zero and the variance will be 2(1 — a?)/(1 — a).

In these examples, because the innovations are not a m.d.s., we cannot do maxi-
mum likelihood. We instead employ nonlinear generalized least-squares (GLS), i.e. we
minimize the nonlinear least squares, compute an estimate of the variance matrix of the
innovations and then do nonlinear GLS. We did not operate this procedure, partly to
reduce the estimation time in our Monte Carlo study, partly because there is no asymp-
totic gain in iterating.

Using this method, we simulated weak version of the previously simulated VARMA
models in final MA (Tables 9 and 10), diagonal MA (Tables 11 and 12) and diagonal
AR equation form (Tables 13 and 14). We kept the same values for the orders p and g,
and the same values for the AR and MA parameters. The goal of these experiments is
to confirm that the properties of our method does not rely on having i.i.d. innovations.

In our simulations, we took

1.0 0.7
n =

0.7 1.0
a = 0.3.

As expected, we get the same results as for the cases where the innovations were
ii.d. Gaussian. We can get big reductions of the RMSEs by doing the third step of
the regression-based estimation method and the RMSEs of the third step estimates are
often slightly bigger than those obtained by nonlinear GLS. It appears that we don’t lose
much by doing only three regressions instead of doing the full non-linear minimization.
The performance of the information criterion with weak VARMA models is also similar
to cases where the VARMA models were strong.

Another easy and relevant way to simulate a weak VARMA model is by time ag-
gregating a strong one. For univariate time series it has been shown that if y; is a
strong ARMA(p,q) then y,,; (we observe the process y; every m periods) will be an
ARMA(p,p + [(g — p)/m]) where the brackets represent the integer part. But the inno-
vations of the aggregated process even tough they are uncorrelated they are not i.i.d. or

am.d.s. anymore. The temporal aggregation of ARMA processes has been extensively
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studied [Palm and Nijman (1984), Nijman and Palm (1990), Amemiya and Wu (1972),
Drost (1993)].

The generalization of these results to multivariate time series is straightforward.
The time aggregation of a strong VARMA will give a weak VARMA. For example,
take Y; a bivariate VARMAC(1,1) in final equation form with i.i.d. (0, X) innovations at
the monthly frequency. If we only have quarterly data then for the process Y3(;) we can

write:
Yae) = A3Y3-1) + Usy — (Br — A1)Usgy—1 — (A1B1 — AD)Usy—2 — A2B1Us(p—y
We can compute the first autocorrelation which give

ri) = E [Y3(t+1)Ysl(t)]
= E [{A?}/s(t) + Va1 } Yg(t)]
A3r(0) — A’B, %

where V3(t+1) = U3(t+1) —(B1— AI)U3(t+1)—1 —(A1By— A%)U3(t+1)—2 - A%Bl U3(t+1)- 3
and I'(0) =F I:Yg(t)}/é(t)jl . For the second autocorrelation we get

I@2) = E[YagnYsp)
= E[{AlYsern) + Vagrn } Vi)
= E[AYaein) Y] + E [Vaera Yao)
= A3r(1)

where the last term is zero because V3 ;) is a linear combination of Us (.2, Us(¢+2)-1,
Us(¢42)~2 and Us(z49)—3 and hence uncorrelated with Y3;). We then see that in general,
we have I'(h) — A3'(h — 1) = 0 for h > 1 which imply that Y3y is a VARMA(1,1)

and the AR coefficient is A3. We can then write
Y341y = A?Y3t + €3(¢41) — Ok

where the €3,’s are uncorrelated and E[es:e5,] = .. To find the value of © and X, we
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have to solve the following equations:

E[{53t - 653(t—1)}{53t - 8é'?3(t—1)}'] = E['U3tv:’3t]

E[{e3: — Oesp-1Hesp-1) — Ocsp-2}] = Elvavi_y]

which give the following system of equations

25 + 92581 = EU + (B1 - Al)Z(B]_ - Al), + (A131 — A12)2(A131 - Alz),
+(A:*B)) Z(A By
-0X., = —-A’BX.

Unlike in the univariate case we are not aware of any algorithm to solve this system of
equations for the general case. What we can do is solve these equations numerically
for a given value of A, By and X

In our example, we took the model described in Table 5 (an VARMA model in
final AR equation form) and assumed that Y; were monthly stock data and we time
aggregated them to the quarterly frequency. Instead of taking the innovations to be
Gaussian (which is a special case where the aggregated VARMA would be strong) we
take them to be a mixture of two Gaussian distributions with different means (but with
mean zero unconditionally). This will give skewed marginal distributions and we can
appeal to the results of Francq and Zakoian (1998, Section 2.2.1) to claim that the
resulting VARMA is only weak. We take U, to be

Ui = pu(1)+(1-p) w(2)

with
-1 1 0.7
u(l) ~ N ;
-1 0.7 1
0.25 1.75 1.3
ut(2) ~ N ;
0.25 1.3 1.75
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and Prlp = 1] = 0.2. The different parameters are chosen such that the unconditional
mean of U, is zero and the variance is the same as with the examples for the strong
VARMA models.

Solving the system of equations for © and X, we have four solutions, two complex
and two real. For the two real solutions, one gave a non-invertible MA operator and the

other an invertible MA operator. The invertible solution is:

o 0.0593618 —0.14134
0.20598  0.206472
. 2.64155 0.650962
) 0.650962 1.70611

Using these results we report one set of simulations. Table 15 contains results for
a sample size after aggregation of 200. For the selection of the order p and ¢ with a
sample size of 200 we get results similar to those in table 5. For the estimates of the
AR and MA parameters we get results similar to the cases of VARMA models with i.i.d
innovations. Again the RMSEs are smaller for the third step estimates compared to the
second step and just like in Table 6 the third step estimates and the nonlinear least-
squares have the same RMSEs. This is again an indication that we don’t necessarily

loose efficiency by not doing the nonlinear estimation.

7. Application to macroeconomics time series

To illustrate our estimation method and the gains that can be obtain by using a more par-
simonious representation, we fit VARMA and VAR models to six macroeconomic time
series and compute the impulse-response functions generated by each model. What
people typically do to get the impulse-response functions is first fit a VAR to their
multiple time series and then get the implied infinite VMA representation. If the time
series are not stationary this representation can’t be interpreted as a VMA representa-
tion but its coefficients can be computed none the less. The order of the VAR required
for macro series is usually high. For example, Bernanke and Mihov (1998) uses a

VAR(13) to model six monthly macroeconomic time series when about 30 years of
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data are available. The resulting standard errors for the impulse-response functions are
very large, like in most macroeconomic study. We can ask ourselves how much of this
is due to the fact that so many parameters are estimated. To try to answer this we will
study the impulse-response functions generated by VARMA models estimated on the
same data.

For this exercise we take the time series from Bernanke and Mihov (1998). They
consist of the log of the real GDP (gdpm), total bank reserves (¢r/), nonborrowed re-
serves (nbrecl), federal funds rate (fyff), log of the GDP deflator (pgdpmy), log of the
Dow-Jones index of spot commodity prices (psccom). These are monthly data and
cover the period January 1962 to December 1996. The monthly data for real GDP and
the GDP deflator were constructed by state space methods, using a list of monthly in-
terpolator variables and assuming that the interpolation error is describable as an AR(1)
process. Both total reserves and nonborrowed reserves are normalized by a 36-month
moving average of total reserves. The series are plotted in Figure 1.

Our example is based on McMillin (2001) who compare numerous identification
restrictions for the structural effects of monetary policy shocks using the same dataset
as Bernanke and Mihov (1998). One of the model studied is a VAR applied to the first
difference of the series, in order, gdpm, (psscom-pgdpm), fyff, nbrecl, trl, psscom.
With an argument based on Keating (2002), the author state that using this ordering of
the variables the Cholesky decomposition, based on long-run macroeconomic restric-
tions, which are described in an appendix, of the variance matrix of the innovations will
identify the structural effects of the policy variable nbrecl without imposing any con-
temporaneous restrictions among the variables. Since the model is in first difference,
the impulse-response at a given order is the cumulative shocks up to that order.

By fitting a VAR(12) to these series we get sensibly the same impulse-response
functions and confidence band as in McMillin (2001) *. They are plotted in figure 2.
The impulse-response function for the output and federal funds rate tends to zero as
the order increase which is consistent with the notion that a monetary variable does

not have a long term impact on real variables. The impulse response of the price level

3The magnitude of the IRF for gdpm is smaller and the confidence band for gdpm and fyff are tighter
than in McMillin (2001).



41

increase as we let the order grow and does not revert to zero.

We next estimate VARMA models for the four representations proposed in this
work. Selection of the orders for the two diagonal representations is more complicated
now that we are studying six time series. If we take the maximum order of the diagonal
operators to be ten, then we would have to perform the second step of the estimation
method more than one million times. We instead impose that the order of the diagonal
operators are equal, so we only have to minimize the information criterion over two
parameters.

The information criterion picked the following orders for the different representa-
tions: VARMA(1,7) for the final MA equation form (6 = 0.1,¢y = 1), VARMA(3,3)
for the diagonal MA equation form (§ = 0.1,¢o = 1/2), VARMA(12,1) for the final
AR equation form (0 = 0.1, ¢p = 2/3), VARMA(16,4) for the diagonal AR equation
form (0 = 0.1,¢o = 1/3). Looking at the impulse responses for VARMA models
with parameters p and q close to the above values for the respective representations,
the following orders give impulse-response functions closer to the ones generated by
the VAR(12): VARMA(S,5) for the final MA (Figure 3), VARMA(5,1) for the diago-
nal MA (Figure 4), VARMA(12,5) for the final AR (Figure 5), VARMA(12,5) for the
diagonal AR (Figure 6).

The behavior of the impulse-response function for the federal funds rate from the
VARMA models are similar to what we obtained with a VAR. The closest match is
given by the VARMA in final MA representation. We see an initial decrease in the
federal funds rate, followed by a return to the initial level. The VARMA models are
generating a smaller initial decrease -0.13 to -0.2 percentage point versus -0.32 for the
VAR.

For the price level the VARMA models are giving the same pattern as the VAR
model but the amplitude of the impact is smaller. The VARMA model in final AR
equation form gives the smallest impact.

The shape of impulse-response functions generated by the VARMA models for
the output variable are also similar to the one from the VAR model, except that the
amplitude is smaller. The initial impact is negative, then output goes up, and return to

it’s original level after reaching a peak. Of the four VARMA representations, the final
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MA equation form gives the result closest to the VAR model but the initial reduction is
more important and the impulse-response is peaking a few months earlier.

What is the most interesting is the behavior of the confidence bands for the
VARMA'’s impulse-response functions. For the output and the federal funds rate se-
ries, we see that the bands are much smaller for the VARMA models and they shrink
more quickly as the horizon increases compared to the VAR model. This result should
not be so surprising since we expect that there should be no long-term effect of the pol-
icy variable on these two variables so the uncertainty about the long term effect should
decrease as the horizon increases. The situation is different for the price level. For
this variable the confidence band grows with the order. Again this is not so surprising
because we expect that a change in the non-borrowed reserves should have a long-term
impact on the price level. With a non-dying impact it is natural that the uncertainty
about this impact can grow as time passes.

From this example, we see that VARMA models in final MA or diagonal MA equa-
tion form are giving results the closest to what we would obtain with a VAR model.
This result could be expected since these models are simple extensions of the VAR
approach. The introduction of a simple MA operator allows the reduction of the re-
quired AR order so we can get more precise estimates, which translate into more precise

impulse-response functions.

8. Conclusion

In this paper we propose a modeling and estimation method which ease the use of
VARMA model. We first propose new identified VARMA representations, the final
MA equation form and the diagonal MA equation form. These two representations are
simple extensions of the class of VAR models where we add a simple MA operator,
either a scalar or diagonal operator. The addition of a MA part can give more parsi-
monious representations, yet the simple form of the MA operators does not introduce
undue complications.

To ease the estimation we consider the problem of estimating VARMA models

by relatively simple methods which only require linear regressions. For that purpose,
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we consider a generalization of the regression-based estimation method proposed by
Hannan and Rissanen (1982) for univariate ARMA models. Our method is in three
steps. In a first step a long VAR is fitted to the data. In the second step, the lagged
innovations in the VARMA model are replaced by the corresponding lagged residuals
from the first step and a regression is performed. In a third step, the data from the
second step are filtered and another regression is performed. We show that the third step
estimators have the same asymptotic variance as their nonlinear counterpart (Gaussian
maximum likelihood if the innovations are i.i.d., or generalized nonlinear least squares
if they are merely uncorrelated). In the non i.i.d. case, we consider strong mixing
conditions, rather than the usual martingale difference sequence assumption. We make
these minimal assumptions on the innovations to broaden the class of models to which
this method can be applied.

We also propose a modified information criterion that gives consistent estimates of
the orders of the AR and MA operators of the proposed VARMA representations. This
criterion is to be minimized in the second step of the estimation method over a set of
possible values for the different orders.

Monte Carlo simulation results indicates that the estimation method works well
for small sample sizes and the information criterion picks the true value of the order
p and g most of the time. These results holds for sample sizes commonly used in
macroeconomics, i.e. 20 years of monthly data or 250 sample points. To demonstrate
the importance of using VARMA models to study multivariate time series we compare
the impulse-response functions generated by VARMA and VAR models when these
models are applied to the dataset of macroeconomic time series used by Bernanke and

Mihov (1998).



9. Appendix: Proofs

Lemma 9.1 DAvVYDOV (1968). Let U and V' be random variables measurable with

respect to F° o and F°, respectively. Let Ty, T4, T3 be positive numbers. Assume that
|Ullr, < coand V||, < co where ||U||, = (E[JU)Y". Ifrit + 75t 4131 = 1, then

there exists a positive constant C' independent of U, V and n, such that
|E[UV] — E[VIEV]| < CUr IV [Iry((n)) /7.

Lemma 9.2 IBRAGIMOV (1962). If the random process (y;) is strictly stationary

and satisfies the strong mixing condition (2.12), with

Elytl2+6 < 00
for some 6 > 0, and if
ia(j)é/(2+6) < 00,
j=1
then
0® = E [(y: — El)®] +2)  E (v — Elwa]) (wees — Elyeas])]-
j=1

Moreover, if 0 # 0 and Ely;] = O, then

1 z
Pr [u<z] L [ ey,

oVt T=eo or Jowo

Lemma 9.3 INFINITE VAR. If the VARMA model is invertible and if ny grows at a
rate faster then log T, then Z,K=1 > omenpit Tigml = o(T71) fori=1,... K.

PROOF OF LEMMA 9.3  The matrix B(L)~! can be seen has its adjoint matrix divided

by its determinant. Since Y; is invertible, the roots of det B(L) are outside the unit
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circle and so the elements of /1(L) = B(L) " A(L) decrease exponentially:
|7rij,m| S cpm7 VZ) .7

with ¢ > 0 and 0 < p < 1. From this

K T K T
Z Z |Tijm| < Z Z cp™

j=1l=np+1 Jj=1l=np+1
nr+1
= ¢k? .
1-p
If ny grows at a rate faster than log T then T'p"* will tend to zero since lp] < 1. O

Lemma 9.4 COVARIANCE ESTIMATION. [f the process {Y3} is a strictly stationary
VARMA process with (U,) uncorrelated, E [lu:(2)[*+2] < oo for some & > 0, a-mixing
with 3202 | a(h)?+0) < oo and if ng /T — O then

T
1 ’ ’ . 7
7 D Yr (K)o (K) = Blyemr (k)ys—s(K)] &5 0, VK, ¥
t=1

PROOF OF LEMMA 9.4

First notice that by stationarity,

E ,:% t=;;-1 yt—r(k)yt—s(k")] - E[yt—r(k)yt—g(k’)] =0

Now taking the variance,

Var [—;; ; Yi—r (k)ys-s (k')J

1TT

= 7T2 Z Z CO’U [yt_r(k)yt_s(k') ) yt'—r(k)yt’—s(kl)]
t=1 t'=1

- %Z Z Cov [yt—r(k)yt—s(kl); yt’—r(k)yt’—s(k,)]

t=1 t/=t+s5—-7+1
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T T
1
+ ﬁ Z Z CO’U [yt—r(k)yt—s(k,) ) yt’—r(k)yt’—s(kl)]
t'=1t=t'+s—7r+1
T~(s—1) t'+(s-7)

+ Z Z Cov [yt r k)yt 3( ) yt’—r(k)yt'—s(k,)]

t’ 1+(s—r) t=t'—(s—r1)
1 (s—r+1) t'4+(s-r1)

+ T2 Z Cov [ye—r(k)y1—s(K') 5 Yo —r(k)yp ()]
v=1 t=1
T t+(s—r)

+ %2 YooY Covlpr(B)ys(K); voor(B)pe—s(K)]  ©O.1)

t=T—(S-T‘) t'=t—(s_1-)

For the first two terms of equation (9.1), Using Davydov’s inequality (lemma 9.1), the

strong mixing hypothesis and the finite fourth moment we know that

T

> 1Cov [y (BYyems (') 5 Yr—r(k)yer—s(K)]]

t'=t+s—r+1
T

< D [ (R)ys (B lassllye —r (k)ye—s (K)l2es

t'=t+s—r+1
xa(t' —t —s+r — 1)7@+9)]

from which we conclude that the first two terms converge to zero at rate 1/7". For the
other three terms, since these covariances are finite, the sums divided by T? will also

converge to zero.

O
PROOF OF THEOREM 4.1
We first introduce some additional matrix norms:
U'B'Bl
1Bl = sup— 9.2)
1£0
|Bll: = 1{]<nZlb1]| (9.3)

Bl = l<1<n Z |35 94)
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where (9.2) is the largest eigenvalue of B'B. Useful inequalities relating these norms

are given in Horn and Johnson (1985, p. 313)

IABII* < [AIZIBI?,
IABI* < |AI%IBIS,

I1BlI; < 1Bl Bllc-

In the first step estimation, we regress

nr K
y(3) = Z Z TijaYe-1(3) + ex(3)
=1 j=1
when in fact
oo K
Ye(2) = Z Z TijaYe—1(7) + ue(2).
=1 j=1
Let
T
- Y, .Y,
B - il St
(nT) Z T - N7
t=np+1
Then OLS applied to (9.8) gives:
ﬁic(nT) = [7?1',0,11 sy ﬁi’,n'r]l
T .
- Y, ,v:(9)
_ -1 t-1Yt
= B(’I’lT) Z _—T .
t=nr+1
R i: Y, 55
= B(nT)_1 — TietYz—1 + Us(2)
t=np+1 T—nr =1
) T Y oo
Iiu(nr) + B(ng)™ ) ﬁ Y miedYeor + ue(s)
t=np+1 l=n7p+1

Rearranging the elements,

ﬁio(nT)_Hi (TLT) = B(TLT)_I Z Y;—l {

T —
t=nr+1 nT

E Tie 1Yt

9.5)
9.6)
9.7)

(9.8)

9-9)

} |
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3 Yl
T

t=nr+1

From which we get, using inequalities (9.5) to (9.7) and the fact that B(nz) is symmet-

ric,
M Lia(n) — Ma(ng)l| < 1B(ng) Hal[Vazl| + | B(nr) ]| Var
< ||B(nz) MlVarll + |1 B(ng) 11l Varll (910
where
1 T 00
Vir = T Z Y, ; Z Tie Yt
nT I=n7p+1
T
= i) — eq(3)]
T
Vor = t 1Ut
t=nr+1

Firstly, ||Vr||? can be expanded into

[Vor|* = (VTV2T)
T T
= m Z > wiur (@)Y Yo,

t=np+l1lt'= T+l

t=nT+1 t'=np+1 k=1 I=1
K np T T

= 7= TLT)2ZZ Z Z (1) (3) Y1 (k) ye 1 (k).

k=1 =1 t=nr+1t'=np+1
Taking the expectation,
K nr
E[IVarll?] = T ZZZ Z Z Cov (ur(8)ye—1(k); uer i)y -1 (k)

k=1 l=1 t=nr+1lt'=np+1

As in the proof of Lemma 9.4, using Davydov’s inequality, the strong

mixing hypothesis and the finite fourth moment, it can be shown that
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ZZWT +1 Cov (ug(2)ye—1(k); uy (4)yy —i(k)) is bounded by cg, with 0 < ¢p < o0, s0

that
KTLT
E[||[Verl?] <
[” 2T”] = T—’I’ZTCO
— 0
since ny is chosen such that ny /T — 0.
Similarly, for ||Vi7||?
||V1T||2
- [z Vi) — el Hz Vi -em}
t=np+1 t=nq+1

K nr

- T nm S Y S B ) — e a8 ) — o)

t=nr+1t'=np+1 k=1 I=1

SIS S VNP OB 5 MRCI b i ) B

t=nr+1t'=nr+1 k=1 I=1 =nr+1 j=1

yt'—t(k)[ Z Zﬂ'ij’,m"yt’—m’(jl)}

m’=nT+1j’ 1
K nrp [e) K 00

=D ND DN ID IS IS

t=nt+1t=nr+l k=1 l=1 m=nr+l j=1 m'=np+1 j'=1
9]

Tijm Mgt me Y-t (K )Yt m ()Y -1 (F) Y (5
Again is in the proof of Lemma 9.4, when taking the expectations of ||V;r||? using
Davydov’s inequality and the strong mixing hypothesis, we know that the sum over ¢/

is bounded so that for some cp, 0 < ¢y < 00,

Ellvirll <

[es} oo K K
E E E E CoTi5,mMij! m/
+1m/= 7j=13'=1

!

using the result from Lemma 9.3.
For ||B(nr)~!||, and || B(nz) ™|, the existence of B(ny)~! is guaranteed by a

lemma that can be found in Tiao and Tsay (1983). The argument is the following. It is
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clear that B(nT) is a symmetric non-negative definite matrix. To show that it is positive

definite take ¢ = [c1, . . . ¢k ]’ be any arbitrary vector and consider

) 1 T nr K 2
dB(nr)c = T2 Z (Z Z C(j—l)K+kyt—j(k))

t=nr+1 \j=1 k=1

If c’B(nT)c =0, then

nr K

Z Z ci-nk+k¥Yi—j(k) =0 for t=np+1,...,T

j=1 k=1
which since T' > 2K nq, is a system of linear equations of Kny unknowns and at least
K ny equations. Since Y; is continuous and non deterministic, this implies that ¢ = 0.
This proves that B(nr) is positive definite. Denoting by B(nz) the (Knr x K nr)
matrix of the corresponding covariances instead of the empirical covariances, we can
use a similar argument to show that B(nr) is also positive definite.

We next show that the sum of the elements along a row of B,,,. is uniformly bounded

in ny and the row number. If we take the sum along the row h = (i — 1)K + j

Knyp
> Bu(nr)
=1

K nr

= Z Z Elys—;(2)ye—i(k)]
(zzww,uut_,--m) (z z¢<>>]

u'=0v'=1

K o K
Z Z Z wiv,u"/)ku’,u'E [ut—j—u(v)ut—l—u’(vl)]

[0 e] K nr K
= _S_ : E :djkv’,u’ E : E :wiv,l+u’—12vv'
k=1 uv'=0v'=1 =1 v=1

which is bounded because the ¥’s decreases exponentially. This property also holds for
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B(nr)~. If it was not the case we would have

B(nT)_lB(nT) = -[nT

B(ng) ' B(nr)in, = in,

with i, an (K ng x 1) vector of ones. Since B(nr)in, gives a vector of bounded
elements, B(nz)~! must have the sum of elements bounded along any row.

From lemma 9.4 we know that each element of B (n7)— By, converges in quadratic
mean to zero and that || B(nz) — B |l < co(Knr)?/T. Hence, | B(ng)— Bl =20
and the sum of the elements along a row of B, is bounded. It follows that the two
terms on the right-hand side of equation (9.10) converge in quadratic mean to zero.

O

PROOF OF THEOREM 4.2 If we denote by Z,_, the equivalent of Zt_ 1 Which contains

the true innovations w;(k) instead of the residuals 4,(k),

T 11 [ T
¥ = Z Z—IZt—IJ ZZt 21 (Z:- 1’Y+Ut)J
: ; N e ;
= (> 2 8 i) ZZ{ P Zt_J7+
| t=l B

-1 ;
Z 2Py A (Z Zt—lﬁ_lUtJ

(=1 i I

- X (o) ()
= = lnT ZT: (H"T(L)LP( )Ut) ()'

}Z: (IK + (1" (L)&(L) — IK)]Ut) ( . _)’

=np+1

+
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B T—1 nr ti; 1 (1o + (21 () —mew) (-)
-7 _1 o tj:ﬂ ([Ut + ([T (L) - H(L))Yt]) ( . )
£z

using the results from Theorem 4.1 where we showed that || II"T (L) — IT DI o.
To show that 51, Z! | 512, /T converge to J = E[Z!_, 5~1Z,_,] in probabil-

ity, since & — X we only have to show that
© Yk (D%-1()/T — Elyer(D)yei (),
o Lo tes(@)e1(7)/T — Elues(i)uea(5)],
Y Y@ () = Elyer(@uei(5)).

The first is proved in lemma 9.4 and the second can be proved in a similar manner.
We can easily prove the third by using results for the previous two and Theorem 4.1.
Similarly, 7, Z!_, 517, _, /T converge also to J.
We next study Z;‘r:, Z, 1571, /T. Using similar calculus we see that it converge
in probability to zero. Combining all these results we can conclude that F—v 25 0.
For the asymptotic distribution, using Ibragimov’s central limit theorem we can

conclude that
1 I
= Nz, 5 LN (o, 1)

with

From this,
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From the preceding results, it is obvious that J can be consistently estimated by

T
1 N A
Joo= 5 Y G572

t=nr+1

and using theorem 2 of Newey and West (1987b), we know that fT £, I if we take

m4./T — 0 with my — oo. O

PROOF OF THEOREM 4.3

First we can rewrite X;, W; and V; as

S
I
=3
L)

|
&

We can also rewrite U, + X, — W, as

U +X.—W, = U,+B(L)™! [Yt — Ut]
= B(L)Y,+ U, - B(L)™'U,
= B(L)™'Z,_yy+ B(L)"'U, + U, — B(L)™'T,
= Viar+ [Ix + 0T ') U,

With this, the regression becomes

[ T 17T«
=Y VLS > VLE (O - W)
| t=max(p,q)+1 ] | t=max(p,q)}+1
[ T o] roor o
s wen] | e

| t=max(p,q)+1 ] | t=max(p,q)+1

T ] roor o

> VLETW, Yo VLETU| oY

| t=max(p,q)+1 ] | t=max(p,q)+1

just like in the proof of theorem 4.2 we see that 4 — v = O(T~/2). Using Ibragimov’s
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central limit theorem we conclude that
VT(H —7) -5 N (0, J—lij)

with

b~

= i E[{Veer 27U} {Vie1 327U}

j=—o0

J = EV,,5W,]

and just like in the proof of theorem 4.2 the matrix [ and J can be consistently estimated

respectively by
1 mr T _ o - -~
Ir = T Z w(j, mr) Z {Vt—lz‘j_lUt} {Vt-l—jE_IUt—j}
j=-mop t=max(p,q)+1+|jl
. I
Jr = T Z 289y 70
t=max(p,q)+1

PROOF OF THEOREM 5.1
Take the difference between the information criterion for given values of the orders

p and g, and its true value (for the true values py, gy and X))

(log T) 144

log(det 2) — log (det Z) + [dimy(p, g) — dim (po, 0)] 7

First, consider the case where p < py or ¢ < go. In this case, as T grows to
infinity, eventually log(det &) > log(det %) because of the left-coprime property. So
eventually we must have p > pg and g > g because the difference of the two criterions
will be positive. Second, consider the case where p > py or ¢ > qo. We will first study

the behavior of X for the case p = po and ¢ = qo. Dropping the inf after the first
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equality and using the subscript O for true values of a parameter we get:
> 1 - - -
¥ o=z > U

1 o | ) ,
= 7 Y |AY- B0 - 10 -]

1 - ) ,
=T > _A(L)Yt—(B(L)—IK)H(L)Yt] []

= = Y [aw- B - i vy]--]

- [ !
- % 2 _A(L)—(B(L)—IK)Bo(L)—lBO(L)fI(L)] Yth'[---]

- [ ’
- % > [X(L) = (BL) — L) Bo(L)*Cr(L) + Bo(L) ™ Aol L) YaY{ [ -] .

Py

where Cr(L) = Bo(L)II(L) — Ao(L) and x(L) = A(L) — B(L)Bo(L) 1 Ap(L). From

previous calculus we know that

LS (B AN} (B A DY

t=nr+l

1 T
= 7 ) LU
t=nr+1

= Zo+O0(T™?).

For the cross-product involving x(L) we see that

=Y DY KDYy

= 7 O {IAW) - BU)B(L) 4D} {[A(L) - BIL)B(L) Ao D).
= 13 (AL Bo(L) — BNV} {[AL)Ao(L) Bo(L) — BL)ULY
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because A(L)Ao(L) " By(L) — B(L) is O(T~/%). We have similar results for all the

remaining cross-product except for

LS (1B ~ B0 Cun (D%} {[B(D) — IelBo(D) - Cun (113
t"-’n.T+1
We saw previously that Y 1% [|IT;(ng) — IT|| = O(ngyT~'/2) so we have the same
result for Cpp.(L), ie. Y 107 Zj:l C™(i,7) = O(ngT~Y/2). Combining this with
the fact that 2 377 | V;¥/ — E[V;Y{] = O(T~"/?) we can conclude that

T Z {[B(L) = Ik]Bo(L) ' Corp(L)Y2} { -+ } = O(ngT 7).
t=nr+1
Combining these results we see that for p = pg and ¢ = ¢p, £ = Xy + O(nyT1)
and equivalently

det ' = det 5o + O(ngT 7).

For the case where p > pg, ¢ > g with either p or g greater then their true value,
even though the model might not be identified in this case, for the minimization of
det £ we can not do any worse than in the case where p = pgy, ¢ = o so the infimum

will yield the same result than for the case p = py and g = ¢o. So eventually

(log T) 1+

det = — det Xy + [dim y(p, ¢) — dim y(po, g0)] T

>0

because the penalty on the number of parameters will dominate. So if to select the

order p and ¢ we use an information criterion such as

(log T)1+5

log(det £) + (dim ) T

9.11)

where § > 0, we will get p — po, § — qo since log(det f))—log(det o) = O(nyT71).
O
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Table 1: Strong final MA equation form VARMA(1,1). The simulated model is a
strong VARMA(1,1) in final MA equation form with a;(1,1) = 0.5, a;(1,2) = —0.6,
a1(2,1) = 0.7, a1(2,2) = 0.3 and b; = 0.9, . The variance of the innovations is 1.0
and the correlation is 0.7. Sample size is 250, the length of the long AR is ny = 20,
the number of repetition is 1000. The parameter in the criterion is § = 0.3.

p\gq| © 1 2 3 4 5 6

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.565 0.109 0.054 0.011 0.001 0.000

0.000 0.060 0.190 0.040 0.013 0.004 0.002

0.000 0.000 0.015 0.050 0.000 0.000 0.000

0.002 0.000 0.000 0.000 0.000 0.000 0.000

0.001 0.000 0.000 0.000 0.000 0.000 0.000

0.001 0.000 0.000 0.000 0.000 0.000 0.000
Value Average Std.dev. RMSE 5% 95%  Median

Second step

a;(1,1) 0S5 04255 0.0596 0.0954 0.3282 0.5221 0.4287

AU A WIN -

a1(1,2) -0.6 -0.6385 0.0520 0.0647 -0.7247 -0.5539 -0.6397
a(2,1) 0.7 0.6686 0.0561 0.0643 0.5733 0.7592 0.6709
a:1(2,2) 0.3 02120 0.0555 0.1040 0.1201 03066 0.2131

b1 0.9 0.8127 0.0566  0.1041 0.7225 0.9046 0.8141

a;(1,1) 0.5 0.4985 0.0502  0.0502 04122 0.5810 0.4997
a1(1,2) -0.6 -0.5883 0.0471 0.0486 -0.6624 -0.5097 -0.5899
a1(2,1) 0.7 0.6825 0.0549 0.0576 0.5945 0.7657 0.6844
a1(2,2) 03 0.3130 0.0558  0.0573 0.2322 0.3921 0.3100

by 0.9 0.8964 0.0327  0.0329 0.8438 0.9480 0.8968

) 05 0.4945 0.0486 0.0489 04105 0.5718 0.4959
) -0.6  -0.6084 0.0440 0.0448 -0.6793 -0.5363 -0.6096
) 07 0.7002 0.0494 0.0494 0.6173 0.7787 0.7009
) 03 0.2887 0.0451 0.0465 0.2135 0.3630 0.2886
by 0.9 0.8868 0.0253  0.0285 0.8442 0.9272 0.8880
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Table 2: Strong final MA equation form VARMA(2,1). The simulated model is a
strong VARMA(2,1) in final MA equation form with a;(1,1) = 0.9, a;(1,2) = —0.5,
a1(2,1) = 0.3, a1(2,2) = 0.1, a2(1,1) = —0.1, ay(1,2) = —0.2, a5(2,1) = 0.1,
a2(2,2) = —0.15 and b; = 0.9. The variance of the innovations is 1.0 and the corre-
lation is 0.7. Sample size is 250, the length of the long AR is ny = 20, the number of
repetition is 1000. The parameter in the criterion is § = 0.3.

p\gf| © 1 2 3 4 5 6
0 0.000 0.001 0.059 0.131 0.027 0.001 0.001
1 0.000 0.012 0.075 0.033 0.010 0.001 0.000
2 0.000 0.343 0.166 0.104 0.019 0.001 0.001
3 0.000 0.001 0.011 0.002 0.001 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Value Average Std. dev. RMSE 5% 95%  Median

a;(1,1) 090 0918 0.1001 0.1018 0.7546 1.0774 0.9210
(1,2) -050 -0.4826 0.0905 0.0922 -0.6327 -0.3279 -0.4829
(2,1) 030 0.2843 0.0873 0.0887 0.1415 04247 0.2860
(2,2) 010 0.1461 0.1119 0.1210 -0.0391 0.3279 0.1458

ap(1,1) -0.10 -0.0815 0.0896 0.0914 -0.2281 0.0634 -0.0794
(1,2) -020 -0.1773 0.1103 0.1126 -0.3522 0.0099 -0.1833
(2,1) 0.10 0.0766 0.1020 0.1046 -0.0917 0.2401 0.0794
(2,2) -0.15 -0.0939 0.1235 0.1356 -0.2825 0.1182 -0.1005

090 09094 0.0759 0.0765 0.7814 1.0272 09116

090 08756 0.0843 0.0877 0.7382 1.0130 0.8777
-0.50 -04972 0.0876  0.0876 -0.6409 -0.3518 -0.4980
030 02964 0.0858 0.0859 0.1496 04376 0.2985
0.0792 0.0939  0.0962 -0.0749 0.2361 0.0810
-0.10  -0.0904 0.0836  0.0842 -0.2328 0.0452 -0.0893
-0.20 -0.2208 0.0961  0.0983 -0.3815 -0.0585 -0.2260
0.10 0.1209 0.0893  0.0917 -0.0300 0.2678 0.1230
-0.15  -0.1744 0.0997  0.1026 -0.3359 -0.0060 -0.1739
by 090 0.8811 0.0341 0.0390 0.8202 0.9312 0.8838

DN = DD = DN = DD =
e e N N N N N e
o
Pk
o
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Table 3: Strong diagonal MA equation form VARMA(1,1). The simulated model is a
strong VARMAC(1,1) in diagonal MA equation form with a;(1,1) = 0.5, a;(1,2) =
—0.6, a1(2,1) = 0.7, a1(2,2) = 0.3 and b;(1) = 0.9, b;(2) = 0.7. The variance of
the innovations is 1.0 and the correlation is 0.7. Sample size is 250, the length of the
long AR is nr = 20, the number of repetition is 1000. The parameter in the criterion is
0=0.3.

(P, 91,q2) | Frequency || (p, 1, gz) | Frequency

11,1 0.579 2,2,2 0.022
1,2,1 0.124 1,4,1 0.018
1,1,2 0.076 2,2,1 0.014
1,3,1 0.060 1,5,1 0.013
1,1,3 0.026 2,1,1 0.011

Value Average Std. dev. RMSE 5% 95%  Median

Second step
a;(1,1) 0.5 0.4282 0.0573 0.0919 0.3339 0.5172 0.4300
ai(1,2) -0.6 -0.6433 00507 0.0667 -0.7275 -0.5606 -0.6451
a;(2,1) 0.7 0.6734 0.0491  0.0559 0.5911 0.7524 0.6742
a:(2,2) 0.3 02312 0.0536  0.0872 0.1447 0.3204 0.2311
by(1) 0.9 0.8146 0.0681 0.1092 0.6985 0.9272 0.8142
b1(2) 0.7 0.6358 0.0695 0.0946 0.5184 0.7447 0.6375

Third step
a(1,1) 0.5 0.5069 0.0627 0.0630 0.4267 0.5819 0.5074
a1(1,2) -0.6 -0.5952 0.0490 0.0492 -0.6716 -0.5135 -0.5958
a;(2,1) 0.7 0.6967 0.0421 0.0422 0.6246 0.7663 0.6980
,2) 03 03017 0.0459 0.0459 0.2281 0.3798 0.2992
b1(1) 0.9 0.8882 0.0416 0.0433 0.8201 0.9526 0.8895
2)

by ( 0.7 0.6937 0.0520 0.0523 0.6107 0.7813 0.6936
MLE
a(1,1) 05 0.4967 0.0433  0.0434 04263 0.5638 0.5004
a1(1,2) -06 -0.6114 0.0446 0.0460 -0.6848 -0.5378 -0.6125
a(2,1) 0.7 0.6994 0.0419 0.0419 0.6301 0.7675 0.7006
a1(2,2) 0.3 0.2894 0.0432 0.0445 02159 03602 02875
bi1(1) 0.9 0.8878 0.0316 00339 0.8325 09378 0.8893
b1(2) 0.7 0.6937 0.0452 0.0457 0.6200 0.7652 0.6952
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Table 4: Strong diagonal MA equation form VARMA(2,1). The simulated model is a
strong VARMA(2,1) in diagonal MA equation form with a;(1,1) = 0.9, a;(1,2) =
—0.5,a1(2,1) = 0.3, 01(2,2) = 0.1, a5(1,1) = —0.1, a5(1,2) = —0.2, a5(2,1) = 0.1,
a(2,2) = —0.15 and b; (1) = 0.9, b;(2) = 0.7. The variance of the innovations is 1.0
and the correlation is 0.7. Sample size is 250, the length of the long AR is ny = 20,
the number of repetition is 1000. The parameter in the criterion is § = 0.2.

(p, q1,q2) | Frequency ” (p, q1,q2) | Frequency

2,1,1 0.263 2,1,0 0.047
1,2,1 0.224 2,40 0.031
2,3,0 0.068 0,3,1 0.025
1,3,1 0.055 1,4,1 0.018
2,31 0.054 23,2 0.018
Value Average Std.dev. RMSE 5% 95%  Median
Third step
a;(1,1) 090 09194 0.0997 0.1016 0.7548 1.0842 0.9185
a;(1,2) -0.50 -0.5094 0.0893 0.0898 -0.6603 -0.3665 -0.5104
ai1(2,1) 030 0.3033 0.0801 0.0801 0.1685 0.4306 0.3047
a1(2,2) 0.10 0.1122 0.1652  0.1657 -0.1433 0.3959 0.1080
ax(1,1) -0.10 -0.0724 0.0887 0.0930 -0.2180 0.0707 -0.0712
az(1,2) -020 -0.1927 0.1242  0.1244 -0.3875 0.0220 -0.1989
ax(2,1) 010 0.0961 0.1140 0.1141 -0.1122 0.2644 0.1095
as(2,2) -0.15 -0.1231 0.1426  0.1451 -0.3298 0.1417 -0.1365
b1(1) 090 0.8934 0.0784 0.0787 0.7620 1.0148 0.8982
b1(2) 0.70 0.7100 0.1455 0.1458 0.4807 0.9689 0.7063
MLE
a;(1,1) 090 0.8789 0.0841 0.0867 0.7432 1.0168 0.8804
ai1(1,2) -0.50 -0.4997 0.0879 0.0879 -0.6476 -0.3555 -0.4990
a1(2,1) 030 0.2960 0.0796 0.0797 0.1617 04238 0.2988
a1(2,2) 0.10 0.0739 0.1199 0.1227 -0.1341 02619 0.0768
ax(1,1) -0.10 -0.0827 0.0827 0.0845 -0.2225 0.0556 -0.0810
ax(1,2) -020 -0.2278 0.1084 0.1119 -0.4039 -0.0492 -0.2289
ax(2,1) 0.10 0.1206 0.0869 0.0893 -0.0303 0.2580 0.1225
a2(2,2) -0.15 -0.1754 0.1059 0.1089 -0.3471 0.0078 -0.1764
b1(1) 090 08875 0.0402 0.0421 0.8177 0.9468 0.8908
b1(2) 0.70 0.6794 0.0869 0.0893 0.5248 0.8079 0.6892
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Table 5: Strong final AR equation form VARMA(1,1). The simulated model is a strong
VARMAC(1,1) in final AR equation form with a; = 0.9, b(1,1) = 0.5, b(1,2) = —0.6,
b(2,1) = 0.7, b(2,2) = 0.3. The variance of the innovations is 1.0 and the correlation is
0.7. Sample size is 250, the length of the long AR is ny = 15, the number of repetition
is 1000. The parameter in the criterion is § = 0.2.

p\g| O 1 2 3 4

0 0.000 0.000 0.000 0.000 0.000
0.000 0.484 0.002 0.000 0.000
0.000 0.178 0.007 0.001 0.000
0.000 0.113 0.001 0.000 0.000
0.000 0.089 0.003 0.000 0.001
0.000 0.042 0.001 0.000 0.000
0.000 0.076 0.002 0.000 0.000
Value Average Std.dev. RMSE 5% 95%  Median

Second step

a; 0.9 0.8861 0.0298  0.0329 0.8326 0.9279 0.8907
b;(1,1) 05 0.4956 0.0979 0.0980 0.3413 0.6583 0.4938
b(1,2) -06 -0.6051 0.0976 0.0977 -0.7693 -0.4425 -0.6045
bi1(2,1) 0.7 0.7030 0.0980  0.0980 0.5481 0.8730 0.7005
b1(2,2) 0.3 0.2890 0.1002  0.1008 0.1302 0.4499 0.2877
Third step

ax 0.9 0.8932 0.0234 0.0244 08507 0.9261 0.8957
b1(1,1) 0.5 04978 0.0570 0.0570 0.4010 0.5878 0.4986
b:1(1,2) -0.6  -0.5945 0.0584 0.0587 -0.6853 -0.4999 -0.5963
bi1(2,1) 0.7 0.6988 0.0574 0.0574 0.6052 0.7913 0.7007
b1(2,2) 0.3 0.2998 0.0598  0.0598 0.2027 0.3947 0.2995
MLE

ay 0.9 0.8963 0.0220 0.0223 0.8570 0.9284 0.8990
bi(1,1) 0.5 0.4998 0.0496  0.0496 04165 0.5794 0.5006
bi1(1,2) -0.6 -0.5998 0.0496 0.0497 -0.6766 -0.5218 -0.6012
bi1(2,1) 0.7 0.7028 0.0484 0.0485 0.6224 0.7785 0.7054
bi1(2,2) 0.3 0.2988 0.0495 0.0495 0.2193 0.3806 0.2961

AN R WA
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Table 6: Strong final AR equation form VARMAC(1,2). The simulated model is a strong
VARMA(1,2) in final AR equation form with a; = 0.9, b;(1,1) = 0.9, 5,(1, 2) = —0.5,
b1(2,1) = 0.3, b:1(2,2) = 0.1, by(1,1) = —0.1, 5(1,2) = —0.2, by(2,1) = 0.1,
b2(2,2) = —0.15. The variance of the innovations is 1.0 and the correlation is 0.7.
Sample size is 250, the length of the long AR is ny = 15, the number of repetition is

1000. The parameter in the criterion is § = 0.5.

p\al| O 1 2 3 4 5
0 0.000 0.000 0.000 0.000 0.000 0.000
1 0.000 0.160 0.161 0.000 0.001 0.000
2 0.090 0.236 0.142 0.001 0.000 0.000
3 0.039 0.051 0.041 0.000 0.000 0.000
4 0.012 0.018 0.016 0.001 0.000 0.000
5 0.007 0.011 0.003 0.000 0.000 0.000
6 0.005 0.005 0.001 0.000 0.000 0.000
Value Average Std. dev. RMSE 5% 95%  Median
Third step
ay 0.90 0.8959 0.0262 0.0265 0.8456 0.9331 0.8994
bi1(1,1) 090 0.8955 0.0910 0.0911 0.7501 1.0495 0.8949
b1(1,2) -0.50 -0.5004 0.0860 0.0860 -0.6472 -0.3608 -0.5004
b1(2,1) 030 03000 0.0874 0.0874 0.1596 0.4458 0.2993
b1(2,2) 0.10 0.0950 0.0870 0.0871 -0.0448 0.2373 0.0944
b2(1,1) -0.10 -0.0953 0.0949 0.0950 -0.2477 0.0716 -0.0946
b2(1,2) -0.20 -0.2035 0.0995 0.0995 -0.3704 -0.0393 -0.1994
b2(2,1) 0.10 0.1016 0.0870 0.0870 -0.0315 0.2441 0.1012
b(2,2) -0.15 -0.1502 0.0917 0.0917 -0.3014 -0.0069 -0.1463
MLE
a) 090 0.8953 0.0258 0.0263 0.8484 0.9326 0.8987
b:1(1,1) 090 09049 0.0908 0.0909 0.7620 1.0572 0.9010
bi1(1,2) -0.50 -0.5042 0.0856 0.0857 -0.6510 -0.3646 -0.5033
bi1(2,1) 030 03032 0.0873 0.0874 0.1635 0.4501 0.3042
b1(2,2) 0.10 0.0972 0.0868 0.0869 -0.0424 0.2395 0.0961
bo(1,1) -0.10 -0.0991 0.0953 0.0953 -0.2536 0.0657 -0.1005
b2(1,2) -0.20 -0.2071 0.0988  0.0991 -0.3725 -0.0450 -0.2040
b2(2,1) 0.10 0.1050 0.0866 0.0868 -0.0286 0.2459 0.1050
b2(2,2) -0.15 -0.1568 0.0911 0.0914 -0.3139 -0.0162 -0.1507
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Table 7: Strong diagonal AR equation form VARMA(1,1). The simulated model is a
strong VARMA(1,1) in diagonal AR equation form with a,(1) = 0.9, a;(2) = 0.7,
b(1,1) = 0.5, b(1,2) = —0.6, b(2,1) = 0.7, b(2,2) = 0.3. The variance of the
innovations is 1.0 and the correlation is 0.7. Sample size is 250, the length of the long
AR is np = 15, the number of repetition is 1000. The parameter in the criterion is
0 =0.5.

(pl’p2;Q) | Frequency “ (P1,p2,Q) l Frequency

11,1 0.414 14,1 0.038
1,2,1 0.116 1,6,1 0.026
2,1,1 0.098 4,1,1 0.025
1,3,1 0.057 1,2,2 0.023
3,1,1 0.040 1,5,1 0.016

Value Average Std. dev. RMSE 5% 95%  Median

Second step
a;(1) 09 09243 0.0298  0.0385 0.8720 0.9666 0.9283
a:(2) 07 04898 0.0934 0.2300 0.3352 0.6347 04915

b(1,1) 0.5 0.5327 0.1031  0.1082 0.3663 0.7023 0.5324
b(1,2) -0.6 -0.6053 0.0975 0.0977 -0.7696 -0.4468 -0.6051
b:1(2,1) 0.7 0.7028 0.0976  0.0977 0.5469 0.8701 0.7010
b:1(2,2) 0.3 0.0916 0.1467  0.2549 -0.1585 0.3282 0.0917
Third step

ay(1 09 0.8964 00320 0.0322 0.8391 0.9414 0.9017

)
a(2) 0.7 0.7077 0.0851  0.0854 0.5608 0.8377 0.7117

bi(1,1) 0S5 0.4886 0.0875  0.0883 0.3557 0.6426 0.4821
b:1(1,2) -06 -05893 0.0695 0.0703 -0.7054 -0.4817 -0.5853
b:1(2,1) 0.7 0.6834 0.0676 0.0696 05718 0.7922 0.6873
b:1(2,2) 0.3 03109 0.1303  0.1307 0.0983 0.5167 0.3207
MLE

1) 09 0.8967 0.0301 0.0302 0.8404 0.9384 0.9012
a(2) 0.7 0.6772 0.0663  0.0701 0.5574 0.7691 0.6829
) 0.5 0.5167 0.0752 0.0770 0.4089 0.6444 0.5102
) 0.6 -0.6099 0.0597 0.0606 -0.7127 -0.5202 -0.6067
) 0.7 0.7119 0.0550 0.0563 0.6233 0.8000 0.7132
) 03 0.2745 0.1004 0.1036 0.1025 04177 0.2884



Table 8: Strong diagonal AR equation form VARMA(1,2). The simulated model is a
strong VARMA(1,2) in diagonal AR equation form with a;(1) = 0.9, a,(2) = 0.7,
bi(1,1) = 0.9, b,(1,2) = —0.5, b1(2,1) = 0.3, b1(2,2) = 0.1, by(1,1) = —0.1,
b2(1,2) = —0.2, b2(2,1) = 0.1, b»(2,2) = —0.15. The variance of the innovations is
1.0 and the correlation is 0.7. Sample size is 250, the length of the long AR is ny = 15,
the number of repetition is 1000. The parameter in the criterion is § = 0.1.

(1, P2,9) | Frequency ” (p1, P2, 9) l Frequency

2,1,1 0.316 11,1 0.043
3,1,1 0.136 2,1,2 0.034
4,1,1 0.106 6,1,1 0.025
1,1,2 0.083 2,1,0 0.020
5,1,1 0.047 3,1,2 0.016
Value Average Std. dev. RMSE 5% 95%  Median

Third step
a;(1) 090 0.8946 0.0242 0.0248 0.8491 0.9312 0.8971
a;(2) 070 0.6878 0.0773 0.0783 0.5534 0.8047 0.6897
b1(1,1) 0.90 0.8976 0.0907 0.0908 0.7546 1.0525 0.8947
b(1,2) -0.50 -0.5048 0.0871 0.0873 -0.6503 -0.3681 -0.5045

(

b1(2,1) 030 0.3001 0.0883 0.0883 0.1598 0.4538 0.2999
b1(2,2) 0.10 0.0854 0.1204 0.1213 -0.1177 0.2855 0.0811
b(1,1) -0.10 -0.0933 0.0964 0.0966 -0.2514 0.0674 -0.0939
b(1,2) -0.20 -0.2087 0.1001  0.1005 -0.3765 -0.0466 -0.2038
b2(2,1) 0.10 0.1056 0.0974 0.0976 -0.0527 0.2639 0.1028
b(2,2) -0.15 -0.1595 0.1181 0.1185 -0.3518 0.0415 -0.1620
MLE

a(1) 090 0.8944 0.0242 0.0249 0.8512 09302 0.8964
a;(2) 070 0.6819 0.0703 0.0726 0.5630 0.7882 0.6818
090 09104 0.0904 0.0910 0.7720 1.0623 0.9083
-0.50 -0.5103 0.0866  0.0872 -0.6544 -0.3712 -0.5076
030 03051 0.0880 0.0882 0.1671 0.4515 0.3062
0.10 0.0810 0.1131  0.1146 -0.1080 0.2663 0.0787
-0.10  -0.0974 0.0972 0.0973 -0.2515 0.0743 -0.0998
-0.20 -0.2104 0.1015 0.1021 -0.3824 -0.0408 -0.2072
0.10 0.1116 0.0964 0.0971 -0.0439 0.2689 0.1098
-0.15 -0.1702 0.1153  0.1170 -0.3592 0.0186 -0.1722

e N N N e N N N
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Table 9: Weak final MA equation form VARMAC(1,1). The simulated model is a
weak VARMA(L,1) in final MA equation form with a(1,1) = 0.5, a(1,2) = —0.6,
a(2,1) = 0.7, a(2,2) = 0.3 and b; = 0.9. The variance of the innovations is 1.3 and
the covariance is 0.91. Sample size is 250, the length of the long AR is ny = 20, the
number of repetition is 1000. The parameter in the criterion is § = 0.3.

p\g| © 1 2 3 4 5

0 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.736 0.101 0.024 0.007 0.003
0.000 0.002 0.107 0.013 0.003 0.003
0.000 0.000 0.000 0.001 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000
Value Average Std.dev. RMSE 5% 95%  Median
Second step
a;(1,1) 0.5 04255 0.0629 0.0975 0.3243 0.5307 0.4281
a1(1,2) -06 -0.6390 0.0515 0.0646 -0.7239 -0.5541 -0.6401
a:1(2,1) 0.7 0.6682 0.0586 0.0666 0.5677 0.7599 0.6686
a:(2,2) 0.3 0.2117 0.0551  0.1041 0.1195 0.3043 0.2129
by 0.9 0.8128 0.0593  0.1054 0.7148 0.9079 0.8139
Third step
a;(1,1) 0.5 0.5001 0.0505 0.0505 04174 0.5857 0.5006
a;(1,2) -0.6 -0.5896 0.0469 0.0481 -0.6685 -0.5154 -0.5899
ai1(2,1) 0.7 0.6859 0.0524 0.0543 0.6018 0.7682 0.6852
ai1(2,2) 03 0.3111 0.0494 0.0507 02341 03911 03101
b, 0.9 0.8978 0.0348  0.0349 0.8368 0.9494 0.9000
NLLS

ai(l,

WA WN =

0.5 04952 0.0504 0.0507 04120 0.5789 0.4962

1)
a1(1,2) -0.6 -0.6089 0.0432 00441 -0.6813 -0.5402 -0.6094
ai(2,1) 0.7 0.7017 0.0494  0.0494 0.6209 0.7810 0.7023
ai1(2,2) 03 0.2875 0.0460 0.0476 0.2138 0.3660 0.2868

b 0.9 0.8866 0.0282  0.0312 0.8378 0.9294 0.8884
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Table 10: Weak final MA equation form VARMA(2,1). The simulated model is a
weak VARMA(2,1) in final MA equation form with a;(1,1) = 0.9, a:(1,2) = —0.5,
a1(2,1) = 0.3, a1(2,2) = 0.1, as(1,1) = —0.1, a5(1,2) = —0.2, ay(2,1) = 0.1,
a2(2,2) = —0.15 and b; = 0.9, . The variance of the innovations is 1.3 and the covari-
ance is 0.91. Sample size is 250, the length of the long AR is ny = 20, the number of
repetition is 1000. The parameter in the criterion is § = 0.3.

p\g| O 1 2 3 4 5 6
0 [[0.000 0.001 0.050 0.114 0.022 0.007 0.003

1 0.000 0.013 0.084 0.035 0.006 0.002 0.001
2 0.000 0.318 0.180 0.116 0.021 0.003 0.002
3 0.000 0.003 0.015 0.002 0.002 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Value Average Std. dev. RMSE 5% 95%  Median
third step
a;(1,1) 090 09219 0.1021 0.1044 0.7565 1.0866 0.9229

)

) -050 -0.4865 0.0930 0.0940 -0.6407 -0.3358 -0.4330
) 030 02855 0.0871 0.0883 0.1396 04333 0.2872
) 0.10 0.1425 0.1153  0.1229 -0.0514 03292 0.1442
) -0.10 -0.0807 0.0956 0.0975 -0.2389 0.0726 -0.0799
) -020 -0.1803 0.1125 0.1142 -0.3645 0.0157 -0.1762
) 0.10 0.0802 0.1027 0.1046 -0.0924 0.2525 0.0825
) -0.15 -0.1010 0.1197 0.1293 -0.2976 0.0964 -0.1025
b, 090 09101 0.0737 0.0744 0.7836 1.0231 0.9125

a1(1,1) 090 0.8768 0.0912 0.0941 0.7300 1.0322 0.8774
ai(1,2) -050 -0.4996 0.0907 0.0907 -0.6474 -0.3518 -0.4981
ai1(2,1) 030 0.2969 0.0857 0.0857 0.1564 0.4349 0.2925
ai(2,2) 010 0.0762 0.1012 0.1039 -0.0953 0.2380 0.0824
ax(1,1) -0.10 -0.0879 0.0894 0.0903 -0.2360 0.0591 -0.0879
ax(1,2) -020 -0.2261 0.1000 0.1034 -0.3938 -0.0663 -0.2234
ax(2,1) 010 0.1250 0.0907 0.0941 -0.0215 0.2737 0.1230
a2(2,2) -0.15 -0.1826 0.0987 0.1039 -0.3428 -0.0224 -0.1814

by 090 038811 0.0340 0.0389 0.8226 0.9294 0.8840
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Table 11: Weak diagonal MA equation form VARMA(1,1). The simulated model is a
weak VARMAC(1,1) in diagonal MA equation form with a(1,1) = 0.5, a(1,2) = —0.6,
a(2,1) = 0.7, a(2,2) = 0.3, b)(1) = 0.9 and b;(1) = 0.7. The variance of the
innovations is 1.3 and the covariance is 0.91. Sample size is 250, the length of the long
AR is ny = 20, the number of repetition is 1000. The parameter in the criterion is
0 =0.3.

(p, q1,¢2) | Frequency || (p, ¢1,92) | Frequency

1,1,1 0.588 1,1,3 0.026
1,2,1 0.123 2,1,1 0.014
1,1,2 0.062 1,4,1 0.014
1,3,1 0.045 1,5,1 0.012
2,2,2 0.043 L1,5 0.010

Value Average Std. dev. RMSE 5% 95%  Median
Second step
a;(1,1) 0.5 04277 0.0601 0.0940 0.3284 0.5233 0.4303
ai1(1,2) -0.6 -0.6439 0.0507 0.0671 -0.7291 -0.5594 -0.6444
a(2,1) 0.7 0.6732 0.0514  0.0579 0.5863 0.7550 0.6729
a(2,2) 0.3 0.2314 0.0526 0.0865 0.1446 0.3193 0.2309
bi1(1) 0.9 0.8130 0.0707 0.1122 0.6976 0.9266 0.8150
b1(2) 0.7 0.6364 0.0708 0.0952 0.5185 0.7476 0.6393
Third step
a;(1,1) 05 05064 0.0469 0.0473 04324 05845 0.5062
a:(1,2) -0.6 -0.5960 0.0552 0.0554 -0.6762 -0.5183 -0.5969
a;(2,1) 0.7 0.6988 0.0418 0.0418 0.6314 0.7659 0.6997
a:(2,2) 03 0.3021 0.0469  0.0469 02272 0.3830 0.3032
bi1(1) 0.9 0.8885 0.0442 0.0456 0.8100 0.9531 0.8910
b1(2) 0.7 0.6967 0.0522  0.0523 0.6092 0.7843 0.6969
NLLS
a;(1,1) 05 04973 0.0453  0.0453 04222 05703 0.4972
a;(1,2) -0.6 -0.6116 0.0443 0.0458 -0.6864 -0.5371 -0.6114
a1(2,1) 0.7 0.7009 0.0411  0.0411 0.6334 0.7683 0.7006
ay 2 2)
)
)

(2, 0.3 0.2897 0.0441  0.0453 0.2185 0.3645 0.2893
bi(1 0.9 0.8874 0.0349 0.0371 0.8260 0.9385 0.8894
bi(2 0.7 0.6950 0.0446 0.0449 0.6198 0.7673 0.6955
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Table 12: Weak diagonal MA equation form weak VARMA(2,1). The simulated model
is a weak VARMA(2,1) in diagonal MA equation form with a,(1,1) = 0.9, a,(1,2) =
—-0.5,a1(2,1) = 0.3, a;1(2,2) = 0.1, a5(1,1) = —0.1, a2(1,2) = —0.2, a(2,1) = 0.1,
a2(2,2) = —0.15, b;(1) = 0.9, and b;(2) = 0.7. The variance of the innovations is 1.3
and the covariance is 0.91. Sample size is 250, the length of the long AR is ny = 20,
the number of repetition is 1000. The parameter in the criterion is § = 0.2.

(P, q1,¢2) | Frequency || (p, 1, ¢2) | Frequency

2,1,1 0.267 2,1,0 0.047
1,2,1 0.204 2,2,1 0.031
2,3,0 0.057 24,0 0.029
1,3,1 0.051 2,2,2 0.020
2,3,1 0.050 0,3,1 0.020
Value Average Std.dev. RMSE 5% 95%  Median
third step
a1(1,1) 090 0.9205 0.1016 0.1036 0.7554 1.0882 0.9204
a1(1,2) -050 -0.5137 0.0922 0.0932 -0.6643 -0.3620 -0.5142
a1(2,1) 030 03036 0.0802 0.0802 0.1737 04326 0.3020
a;(2,2) 010 0.1071 0.1666 0.1668 -0.1533 0.3802 0.1037
ax(1,1) -0.10 -0.0716 0.0937 0.0979 -0.2302 0.0781 -0.0715
a2(1,2) -020 -0.1976 0.1262 0.1262 -0.3995 0.0159 -0.1995
a»(2,1) 0.10 0.1014 0.1127 0.1127 -0.0969 0.2749 0.1111
a2(2,2) -0.15 -0.1326 0.1363  0.1374 -0.3462 0.1156 -0.1440
bi(1) 090 0.8917 0.0774 0.0778 0.7654 1.0079 0.8973
b1(2) 0.70 0.7084 0.1423 0.1426 04724 09397 0.7112
NLLS
a;(1,1) 090 0.8787 0.0914 0.0939 0.7254 1.0347 0.8799
ai1(1,2) -0.50 -0.5015 0.0918 0.0918 -0.6523 -0.3517 -0.5008
ai1(2,1) 030 0.2957 0.0801 0.0802 0.1665 0.4244 0.2927
a:1(2,2) 0.0 0.0715 0.1252  0.1284 -0.1412 0.2643 0.0748
a»(1,1) -0.10 -0.0815 0.0887  0.0906 -0.2250 0.0622 -0.0814
a»(1,2) -020 -0.2328 0.1144 0.1190 -0.4268 -0.0491 -0.2332
a2(2,1) 010 0.1243 0.0901 0.0933 -0.0216 0.2639 0.1278
a»(2,2) -0.15 -0.1831 0.1074 0.1124 -0.3522 -0.0050 -0.1826
b1 (1) 090 0.8861 0.0404 0.0427 0.8133 0.9448 0.8892
b1(2) 0.70 0.6789 0.0883  0.0908 0.5215 0.8065 0.6889
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Table 13: Weak diagonal AR equation form VARMA(1,1). The simulated model is
a weak VARMA(1,1) in diagonal AR equation form with a;(1) = 0.9, a,(2) = 0.7,
b1(1,1) = 0.5, b1(1,2) = —0.6, b:1(2,1) = 0.7, ;1(2,2) = 0.3. The variance of the
innovations is 1.3 and the covariance is 0.91. Sample size is 250, the length of the long
AR is ny = 15, the number of repetition is 1000. The parameter in the criterion is
0=0.2.

(p17p27q) I Frequency “ (plap21Q) | Frequency

11,1 0.428 1,2,2 0.039
1,2,1 0.091 14,1 0.034
2,1,1 0.088 1,5,1 0.023
1,3,1 0.064 4,1,1 0.019
3,1,1 0.044 2,22 0.019

Value Average Std.dev. RMSE 5% 95%  Median

Second step
a;(1) 09 09244 0.0318 0.0401 0.8662 0.9709 0.9268
a;(2) 0.7 04850 0.0894  0.2328 0.3211 0.6286 0.4853

b1(1,1) 0.5 0.5309 0.1093  0.1136 03520 0.7219 0.5294
b:1(1,2) -0.6 -0.6036 0.1008 0.1009 -0.7738 -0.4489 -0.6007
bi(2,1) 0.7 0.7036 0.1004  0.1004 0.5417 0.8661 0.7031
b1(2,2) 0.3 0.0880 0.1477  0.2584 -0.1642 0.3324 0.0875

) 09 0.8964 0.0332  0.0334 0.8395 0.9459 0.9000
) 0.7 0.7073 0.0960  0.0963 0.5444 0.8503 0.7096
1,1) 05 04864 0.0930 0.0940 03347 0.6391 0.4836
1,2) -0.6 -0.5847 0.0696 0.0712 -0.6988 -0.4690 -0.5871
bi(2,1) 0.7 0.6813 0.0698 0.0723 0.5659 0.7928 0.6815
2,2) 03 03136 0.140t  0.1407 0.0809 0.5505 0.3179

S

(1) 09 0.8961 0.0319  0.0322 0.8422 0.9415 0.9000
a1(2) 0.7 0.6762 0.0676 0.0717 0.5438 0.7735 0.6835

b (1,1) 0.5 05152 0.0767 0.0782 0.3996 0.6510 0.5117
b:(1,2) -06 -0.6070 0.0582 0.0586 -0.7070 -0.5143 -0.6032
b:1(2,1) 0.7 0.7112 0.0544 0.0555 0.6265 0.8020 0.7080
bi1(2,2) 0.3 0.2759 0.0977 0.1006 0.0968 0.4252 0.2843
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Table 14: Weak diagonal AR equation form VARMA(1,2). The simulated model is
a weak VARMAC(1,2) in diagonal AR equation form with a;(1) = 0.9, a;(2) = 07,
bi(1,1) = 0.9, b:(1,2) = —0.5, b1(2,1) = 0.3, b:(2,2) = 0.1, by(1,1) = —0.1,
b2(1,2) = —0.2, ba(2,1) = 0.1, b2(2,2) = —0.15. The variance of the innovations
is 1.3 and the covariance is 0.91. Sample size is 250, the length of the long AR is
nr = 15, the number of repetition is 1000. The parameter in the criterion is § = 0.1.

(p1,p2,9) | Frequency || (p1,2,9) | Frequency

2,1,1 0.306 51,1 0.045
3,1,1 0.133 6,1,1 0.031
4,1,1 0.089 2,1,2 0.026
1,1,2 0.083 2,1,0 0.024
11,1 0.050 2,20 0.023
Value Average Std.dev. RMSE 5% 95%  Median
Third step
ay(1 0.9 0.8953 0.0238  0.0242 0.8538 0.9297 0.8977

)
a(2) 07 0.6901 0.0771  0.0777 05653 0.8075 0.6935

b1(1,1) 0.5 0.8982 0.0976  0.0976 0.7368 1.0596 0.8973
b:(1,2) -0.6 -0.5040 0.0907 0.0908 -0.6568 -0.3589 -0.5043
bh(2,1) 07 03019 0.0894 0.0894 0.1604 0.4479 0.3006
bh(2,2) 03 0.0890 0.1244  0.1249 -0.1113 0.2933 0.0868
by(1,1) -0.1  -0.0930 0.0983  0.0985 -0.2466 0.0827 -0.0973
b,(1,2) -02 -02049 0.1002 0.1004 -0.3729 -0.0342 -0.2072
b2(2,1) 0.1 0.1011 0.0981  0.0982 -0.0563 0.2579 0.0995
b(2,2) -0.15 -0.1518 0.1135 0.1135 -0.3355 0.0315 -0.1533
NLLS '

1) 09 0.8950 0.0240 0.0245 0.8534 0.9292 0.8973
a;(2) 0.7 0.6822 0.0708 0.0730 0.5650 0.7901 0.6857

bi(1,1) 05 09110 0.0967 0.0973 0.7517 1.0691 0.9121
b:(1,2) -0.6 -0.5094 0.0898 0.0903 -0.6639 -0.3673 -0.5090
bi(2,1) 0.7 0.3067 0.0894  0.0896 0.1631 0.4474 0.3065
bi1(2,2) 03 0.0828 0.1192  0.1205 -0.1117 0.2787 0.0772
b(1,1) -0.1 -0.0978 0.0998 0.0998 -0.2538 0.0725 -0.0985
b(1,2) -02 -02065 0.1024 0.1026 -0.3753 -0.0278 -0.2081
b2(2,1) 0.1 0.1081 0.0991 0.0994 -0.0586 0.2645 0.1074
b(2,2) -0.15 -0.1646 0.1103 0.1113 -0.3415 0.0278 -0.1657
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Table 15: Weak final AR equation form VARMA(1,1). The simulated model is a
weak VARMA(1,1) in final AR equation form with a; = 0.729, b(1,1) = 0.0593618,
b(1,2) = —0.14134, b(2, 1) = 0.20598, b(2,2) = 0.296472. The variance of the inno-
vations is 2.64155 and 1.70611 and the covariance is 0.650962. Sample size is 200, the
length of the long AR is ny = 15, the number of repetition is 1000. The parameter in
the criterion is § = 0.2.

p\g| O 1 2 3 4 5

0 0.000 0.000 0.000 0.000 0.000 0.000
0.129 0.574 0.000 0.000 0.000 0.000
0.092 0.113 0.000 0.000 0.000 0.000
0.018 0.034 0.000 0.000 0.000 0.000
0.009 0.015 0.000 0.000 0.000 0.000
0.005 0.004 0.000 0.000 0.000 0.000
5 0.003 0.004 0.000 0.000 0.000 0.000
Value Average Std. dev. RMSE 5% 95%  Median
Second step
ax 0.7290  0.6962 0.0579 0.0665 0.6006 0.7827 0.7000
bi1(1,1) 0.0594 0.0254 0.0932  0.0992 -0.1250 0.1795 0.0215
b:1(1,2) -0.1413 -0.1272 0.1041 0.1051 -0.2969 0.0390 -0.1258
b1(2,1) 02060 0.1986 0.0679 0.0683 0.0836 0.3064 0.2004
b1(2,2) 02965 0.3005 0.1091 0.1091 0.1083 04721 0.3076
Third step
ay 0.7290 0.7205 0.0559 0.0566 0.6203 0.8024 0.7236

N s WM =

?

bi1(1,1) 00594 0.0451 0.0829 0.0841 -0.0899 0.1820 0.0445
b(1,2) -0.1413 -0.1265 0.0927 0.0938 -0.2827 0.0206 -0.1256
b1(2,1) 02060 0.1984 0.0567 00572 0.1026 0.2887 0.1983
b1(2,2) 02965 03178 0.0996 0.1018 0.1483 04760 0.3220
NLLS

a; 0.7290  0.7217 0.0557 0.0562 0.6268 0.8033 0.7242
b1(1,1) 0.0594 0.0488 0.0832 0.0839 -0.0883 0.1869 0.0508
bi1(1,2) -0.1413 -0.1291 0.0930  0.0938 -0.2921 0.0201 -0.1284
b1(2,1) 02060 0.2000 0.0570 0.0573 0.1065 0.2901 0.2002

(2,2) 02965 03206 0.0997 0.1026 0.1456 04757 03234
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Figure 1: Macroeconomic series.
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Figure 2: Impulse-response functions for VAR model. A VAR(12) is fitted to the first
difference of the six time series. The confidence band represent a one standard devi-
ation. The standard deviations are derived from Monte Carlo simulations with 1000
draws.
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Figure 3: Impulse-response functions for VARMA model in final MA equation form. A
VARMA(S,5) is fitted to the first difference of the six time series. The confidence band
represent a one standard deviation. The standard deviations are derived from Monte
Carlo simulations with 1000 draws.
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Figure 4: Impulse-response functions for VARMA model in diagonal MA equation
form. A VARMAG(,1) with ¢ = (1,1,1,1,1,1) is fitted to the first difference of the
six time series. The confidence band represent a one standard deviation. The standard

deviations are derived from Monte Carlo simulations with 1000 draws.
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Figure 5: Impulse-response functions for VARMA model in final AR equation form.
A VARMAC(12,5) is fitted to the first difference of the six time series. The confidence
band represent a one standard deviation. The standard deviations are derived from
Monte Carlo simulations with 1000 draws.
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Figure 6: Impulse-response functions for VARMA model in diagonal AR equation
form. A VARMA(12,5) with p = (12,12,12,12,12,12) is fitted to the first differ-
ence of the six time series. The confidence band represent a one standard deviation.
The standard deviations are derived from Monte Carlo simulations with 1000 draws.
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Chapter 2: Regime switching for

dynamic correlations

1. Introduction

It is a well known fact that the variance and covariance of most financial time series are
time-varying. Modeling time-varying variance is not just a statistical exercise where
someone tries to increase the value of the likelihood; it has important impacts in terms
of asset allocation, asset pricing, computation of Value-at-Risk (VaR). A lot of work
has been done to model univariate financial time series since the introduction of the
ARCH model by Engle (1982). However, we face additional problems when we try
to write a multivariate model of volatility. Not only must the variances be positive,
the variance matrix must also be positive semi-definite (PSD) at every point in time.
Another important problem is the curse of dimensionality. We want models that can
be applied to more than a few time series. This rules out the direct generalizations of
univariate GARCH models such as the BEKK model of Engle and Kroner (1995).

The most popular multivariate volatility model so far is certainly the Constant Con-
ditional Correlation (CCC) model of Bollerslev (1990). In this model, the covariances
of a vector of returns are decomposed into standard deviations and correlations. The
major hypothesis in this model is that the conditional correlations are constant through
time. With this hypothesis, it is easy to get PSD variance matrices because we only
have to ensure that the correlation matrix is PSD and that the standard deviations are
non-negative. It also breaks the curse of dimensionality because the likelihood can be
seen as a set of SURE equations, i.e. a two-step estimation procedure where univariate
volatility models are estimated in a first step that will yield consistent estimates. How-
ever, the hypothesis of constant correlations is not always supported by the data [e.g.
Engle and Sheppard (2001)].

In this work, we present a new multivariate volatility model, the Regime Switching
Dynamic Correlation (RSDC) model. We also decompose the covariances into standard

deviations and correlations, but these correlations are dynamic. The correlation matrix
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follows a regime switching model; it is constant within a regime but different across
regimes. The transitions between the regimes are governed by a Markov chain. The
CCC model is a special case of ours where we take the number of regimes to be one.

The RSDC model has many interesting properties. First, it is easy to impose that the
variance matrices are PSD. Second, it does not suffer from a curse of dimensionality
because it can be estimated with a two-step procedure. Third, when combined with the
ARMACH model [see Taylor (1986) and Schwert (1989)] for the standard deviations,
this correlation model allows analytic computation of multi-step ahead conditional ex-
pectations of the whole variance matrix. Fourth, it can produce smooth patterns for
the correlations. We also present an empirical application to exchange rate time series
which illustrates that it can have a better in-sample fit of the data than the Dynamic
Conditional Correlation (DCC) model recently proposed in Engle (2002).

The model of Engle (2002) and the model proposed in Tse and Tsui (2002) use
the same decomposition for the variance matrix as in Bollerslev (1990), but instead of
taking constant correlations they propose a GARCH-type dynamic. Because a correla-
tion must lie between -1 and 1, these models must include a rescaling that introduces
non-linearities. One side effect of this rescaling is that we can’t analytically compute
multi-step ahead conditional expectations of the correlation and variance matrices. We
can also ask ourselves if a GARCH-type model is appropriate for the correlations be-
cause the dynamic of a correlation can be intrinsically different than the behavior of a
covariance, e.g. a correlation is bounded from below and above while a covariance is
not.

Another approach for breaking the curse of dimensionality of the multivariate
GARCH is Ledoit, Santa Clara, and Wolf (2003)’s that proposes a flexible estimation
procedure for the Diagonal-Vech model of Bollerslev, Engle, and Wooldridge (1988).
The maximization of the likelihood of this model is not computationally feasible if the
number of time series is greater than five [see Ding and Engle (2001)]. They propose a
way to combine the estimates from univariate and bivariate model so as to get consis-
tent estimates of the parameters of the full multivariate Diagonal-Vech and insure that
the variance matrices are PSD. This procedure is only valid for the somewhat restrictive

Diagonal-Vech model.
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The paper is organized as follows. The second section presents the RSDC model
and its properties. Section three describes the estimation of this model and the theoret-
ical properties of the estimates. Section four outlines the computation of one-step and
multi-step ahead conditional expectations of the variance matrix. Section five presents
an application of the model to multiple exchange rates series. Section six contains a

few concluding remarks. Finally, proofs are in the appendix.

2. The RSDC model

In this section we present the Regime Switching Dynamic Correlation (RSDC) model.

Assume that the K -variate process Y; has the form:
Y, = U, @1

where U, is an i.i.d. (0, Ix) process. The time varying covariance matrix H; can be

decomposed into:
H, = SIS 2.2)

where S; is a diagonal matrix composed of the standard deviations sk, k = 1,..., K
and the matrix [} contains the correlations. Both S; and I are time varying. This
decomposition of the covariance matrix has previously been used by Bollerslev (1990),
Tse and Tsui (2002), Engle (2002) and Barnard, McCulloch, and Meng (2000). The
series Y; could be a filtered process.

With this decomposition the log-likelihood can be written

(K log(2r) + log(| Hy|) + Y/ H{'Y))
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where ﬁt = [dyg,-.- , Uk’ is a zero-mean process with covariance matrix I and
|Hy| = det(H). This is the first building block of our RSDC model: to model the full

covariance matrix we model the variances and the correlations separately.

2.1. Regime switching for the correlations

In this work we will argue for a regime switching model for the correlations. This can
be seen as a midpoint between the CCC model of Bollerslev (1990) and models such
as the DCC of Engle (2002) where the correlations change every period. This model
will have the appealing property of constant correlations within a regime but will still
have dynamic correlations because of the regime switching. More specifically, the

time-varying correlation matrix I; follows:

N
L=) 1=nl 24)

n=1

with A, an unobserved Markov chain process independent of U, which can take N
possible values (A; = 1,2,...,N). The symbol 1 is the indicator function. The
K x K matrices I, are correlation matrices (symmetric, PSD, ones on the diagonal,
off-diagonal elements between -1 and 1) with I;, # I, for n # n'. The probability
law governing A, is defined by its transition probability matrix, denoted by IT. The
probability of going from regime ¢ in period ¢ to regime j in period t + 1 is denoted
by m;; and the limiting probability of being in regime n is m,. The element on row
J and column ¢ of IT is m; ;. We make the standard assumptions on the Markov chain
[aperiodic, irreducible and ergodic. See Ross (1993, Chapter 4)].

Beside its very intuitive interpretation, this model has many appealing properties. It
18 easy to impose that I} is a correlation matrix because we only have to impose it for
every I,,. Imposing that the diagonal elements are equal to one and that the off-diagonal
elements are in [—1, 1] does not guarantee that I, is PSD. One way to impose that I},
will be a correlation matrix is to take its Choleski decomposition, i.e. I}, = P,P!
where P, is a lower triangular matrix, and to impose constraints on P, so that we get

ones on the diagonal. These constraints will automatically give off-diagonal elements
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between —1 and 1. Consider a trivariate example:

pa 0 0 P11 P21 P31
r = P21 D22 O 0 p22 P32
| P31 P32 P33 0 0 p33
Pi1 P11P2.1 P1,1P31
= | P1ap21 P31+ D52 D2,1P3,1 + D22D32
| P1,1P31 P21P3,1+ P22P32 P§,1 + p%,z + p%,s

Imposing the additional constraint that the elements on the diagonal P, are positive,

the restrictions becomes

Pi; =

j-1
1->"p%, (=1,...,K) 2.5)
i=1

where the sum is zero for j = 1. Equation (2.5) is restricting elements p;;, i =
1,...,7—1tobe inside a sphere of unit radius and these restrictions are easy to impose.

We could think that estimation of the RSDC model would be complicated by the
possibly high number of parameters coming from each I7,. Fortunately we will see later
on that we can use the EM algorithm [Dempster, Laird, and Rubin (1977)] as presented
in Hamilton (1994, chapter 22) so that increasing the number of time series, to which
the model is applied will not complicate the estimation.

This specification has three additional interesting properties. The first is that be-
cause this model for the correlations is basically linear due to the Markov chain we
are able to compute multi-step ahead conditional expectations of the correlation ma-
trix. Also, if we use an appropriate model for the standard deviations, we will also be
able to perform these computations for the whole variance matrix. We present such a
model in Section 2.3. This is in contrast to the models of Engle (2002) and Tse and
Tsui (2002) where the rescaling that is used to keep the correlations between -1 and 1
introduces non-linearities that forbid the computation of multi-step ahead conditional
expectations. The second property comes from the Markov chain. If there is some

general form of persistence in the chain (high probability of staying in a given regime
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for more than one period), then this will lead to smooth time-varying correlations. This
could have important impacts namely for the computation of VaR and dynamic port-
folio allocation because the benefits of portfolio diversification would be less volatile.
The third is that by having a regime switching for the correlations, the variances and co-
variances are not bounded which is the case when they are the ones following a regime

switching [e.g. see Geweke and Amisano (2001)]

2.2. A parsimonious model

We next present a restricted version of the general regime switching model which will
have a reduced number of parameters and will remain easy to estimate. For the matrix

I'; we propose the following form:

Iy = PMA) + Ix(1 - MAY)) (2.6)

where I' is a fixed correlation matrix, I is a K x K identity matrix, AM4:) € [0,1]
is a univariate random process governed by an unobserved Markov chain process A,
that can take NV possible values (A, = 1,2, ... ,N) and is independent of U,. The
probability law governing A, is defined by its transition probability matrix, denoted by
II.

The correlation matrix at time £ is a weighted average of two extreme states of
the world. In one state, the returns are uncorrelated [A(4:) = 0 Jand in the other
the returns are (highly) correlated [A(4:) = 1]. We then have regimes of generally
higher or lower correlations and the changes across correlations in a given regime are
proportional. The variable A(A;) can be related to the notion of common features and
factor models [Engle and Susmel (1993), Bollerslev and Engle (1993), King, Sentana,
and Wadhwani (1994), Diebold and Nerlove (1989), Engle, Ng, and Rothschild (1990),
Ng, Engle, and Rothschild (1992)] where the factor affects the variance matrix instead
of the correlation matrix.

Note that for the off-diagonal elements only the product of I" and A can be identified

(by construction the diagonal elements of I'; are equal to 1). To solve this identification
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problem we can consider two natural sets of constraints. The first is:
A1) =1, A1) > A(2), ..., A(N —1) > A(N), 27

In this case, fixing one of the A(n) to be one identifies the product of I" and \. We also
restrict the A(n)s to be a decreasing sequence to remove the possibility of relabelling

regime 7 as regime j and vice versa. An alternative identification assumption is:
m£x|11,j| =1 with 1> A1), 1) > A(2),...,A(N —1)> A(N). (2.8)
i#]

In this case, instead of fixing the highest value of A(n) to be one, we impose this
restriction on an off-diagonal element of I". The second identification scheme does
not impose that one correlation is equal to 1 or -1 because we multiply I" by A(4,).
Depending on the estimation scheme that we use, one of the two sets of constraints will
be more appropriate. We can prove that the matrix H, is positive semi-definite with

probability one for all £.

Proposition 2.1 PSD VARIANCE MATRIX. If the standard deviations Skt are non-
negative with probability one for all t, A\(n) € [0,1] forn=1,...,N and I is a PSD
correlation matrix then the variance matrix H, will be PSD with probability one for all

t.

It is tempting to allow A(A4,) to take negative values to allow the correlations to
change sign, however we don’t have a result for a lower bound on A(4;) that would
guarantee that I; is PSD. To understand the problem, consider the correlation matrix
of a trivariate time series. If all the correlations are 0.99 then the correlation matrix is

PSD; if all the correlations are —0.99, then it will not be PSD.

2.3. Univariate volatility models

To complete the RSDC model we have to specify the dynamic for the standard devia-
tions. The most common one for the volatility of univariate processes is certainly the

GARCH model of Bollerslev (1986) where the conditional variance at time ¢, Speisa
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linear function of past squared innovations and past conditional variances:

q D
She=w+ Y oyl i+ > Bst. . (2.9)
=1 j:l

where the k subscript on the GARCH parameters is removed.

We should notice that our RSDC model is not written in terms of variances but in
terms of standard deviations; a covariance is a correlation times the standard deviations.
By using a model such as the GARCH for the variance, the covariance becomes the
product of a correlation and the square-root of the product of two variances. The square-
root introduces non-linearities that will prohibit analytic computation of conditional
expectations.

One model for the volatility of univariate time series that would not have this prob-
lem is the GARCH in absolute innovations of Taylor (1986) and Schwert (1989). This
class of model is also referred to as ARMACH process in Taylor (1986). In these

models the conditional standard deviations follows:
q p
Skt = w+ Z ilYk,e—i| + Z BjSk,t—j (2.10)
i=1 =1

with &; = «a;/Eliy,|. The conditional standard deviations (instead of the conditional
variance) are a recursive function of absolute value of past innovations (instead of
squared innovations).

There are numerous reasons why a volatility model based on absolute values instead
of squared innovations could be a good thing. One reason can be linked to the least
absolute deviations versus least squares approach. As argued by Davidian and Carroll
(1987), the model could be more robust if we use the absolute value instead of the
squared innovation. However, we must reckon that the interpretation of an outlier in a
volatility model is not as straightforward as in a regression context. It could also be that
the absolute return is a better measure of risk than the squared return. This question is
studied by Granger and Ding (1993).

Using the ARMACH model for the volatility of univariate time series is not a pre-

requisite of our model. We consider this model because it allows the computation of
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multi-step ahead conditional expectations of the variance matrix. If conditional expec-
tations are not a point of interest or if the ARMACH gives a clearly inferior fit of the

data then another model could be used.

2.4. Review of multivariate GARCH models

To motivate why further work on multivariate volatility model is relevant, we can re-
view some of the existing models. The most straightforward multivariate generalization

of the univariate GARCH model can be written in the following way:

p q
vech(H;) = C + Z Avech(Y:_;Y, ;) + Z Bjvec(H;_;). (2.11)
i=1 j=1

where the operator vech stacks in a vector the elements on and below the diagonal of
each column of a matrix. This model is not really useful because it is very hard to
impose that the matrices H, are PSD, it is not parsimonious and it is hard to estimate
because of the high number of parameters. Engle and Kroner (1995) propose the BEKK
representation which guarantees that (2.11) will generate PSD variance matrices, but
the problem of simultaneous estimation of a high number of parameters is not solved.

The most popular multivariate variance model is certainly the CCC model of Boller-
slev (1990). As its name states, the correlations are constant, i.e. in equation (2.3) we
have I} = I', Vt. Standard univariate GARCH models are used for the conditional
variances. This model has many attractive properties. Interpretation of the parameters
is easy because of the correlations and standard deviations decomposition. We only
have to take I' to be PSD to obtain a variance matrix which is PSD. The model is also
easy to work with because we can perform the estimation in two steps: firstly, esti-
mate univariate GARCH models and secondly, compute a correlation matrix with the
standardized residuals.

To test the hypothesis that the conditional correlations are constant, Bollerslev com-
puted Portmanteau test statistics with the standardized residuals from the univariate
GARCH estimations. Under the null hypothesis of constant conditional correlations,
the cross-product of the standardized innovations from the univariate GARCH should

be i.i.d. Given the low value of these (Ljung-Box) tests he did not reject the null hy-
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pothesis. Since then, questions have been raised about the power of these tests [e.g. see
‘Hong (1996)]. To illustrate the lack of power, we repeated the work of Bollerslev by
fitting a GARCH(1,1) to the four exchange rate series that we will later use in section
5 and computed the autocorrelation function for each cross-product of the standardized
residuals. These are plotted in Figure 7 with the two standard deviations confidence
band (under the i.i.d. assumption). Looking at these we are tempted to conclude that
there is no dynamic in the cross-product of the standardized innovations, just as Boller-
slev (1990) did, and assume that the correlations are constant. The same argument is
used by Baillie and Bollerslev (1990). Another paper which favors constant correla-
tions is Schwert and Seguin (1990) who tried several specifications of the multivariate
GARCH model (2.11) for monthly stock returns and they could not find one that ob-
viously dominated the constant conditional correlations model. They don’t mention
which model they tried.

We can run simple Monte Carlo simulations to illustrate that the conclusion of con-
stant correlations could be erroneous. We simulate a multivariate volatility model with
a strong dynamic in the correlations, estimate the univariate volatility model and plot
the ACF of the cross-product of the standardized residuals. In our example we simu-
lated two models: our restricted model (Figure 8) and the DCC-GARCH (Figure 9) of
Engle (2002) which we review below. The parameter values are the estimates obtained
with the same exchange rates dataset. Looking at the two figures, we see that the re-
sults from the simulated sample and the true data are similar. This is certainly a reason
that would explain why there is little evidence in the literature that the conditional cor-
relations are not constant. One evidence is Andersen, Bollerslev, Diebold, and Labys
(2001) who gives strong proofs of important dynamics in the correlations by studying
realized volatilities computed with high frequency observations of exchange rates data.

More recently, Engle (2002) and Tse and Tsui (2002) introduced multivariate
GARCH models with dynamic correlations. Both of them employ the S,I}S, decom-

position of the variance matrix H;. In Engle (2002) the conditional correlation matrix
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I follows

q p q 4
L= (1= a-Y )+ a0l )+ > by, (212
i=1 j=1 i=1 =1

I, = DLt (2.13)

where D, is a diagonal matrix with 1/ I}(¢,%) on row % and column i, and a; and b;
are scalars. The intuition behind this model is to impose a GARCH-type dynamic for
the correlations. Since a correlation matrix must have ones on the diagonal and off-
diagonal elements between -1 and 1, we must rescale the correlation matrix [equation
(2.13)] because (Z_,-Ut’_i is not constrained to have elements between -1 and 1. The
theoretical and empirical properties of this model are developed in Engle and Sheppard
(2001).

The model of Tse and Tsui (2002) is similar to the one of Engle (2002) but the

rescaling is done differently:

I = (1-01=0)I +6:1 + 6294, (2.14)

M ~ ~
2 hey Uit—hlje—n
M ~9 M -9
\/ ( h=1ui,t—h) (Zh:l u‘j,t—h)

with M > K. We can see that both rescaling forbid even the analytic computation

W‘L,J,t—l

(2.15)

of multi-step ahead conditional expectation of the correlation matrix. It is unfortunate

because one reason why we study volatility is to be able to forecast it.

3. Estimation

The estimation of the RSDC model can in theory be done in one step but if we have
more than a few time series the high number of parameters will prohibit us from doing
so. Fortunately, we can use a two-step estimation procedure as in Engle (2002). In a
first step, we can estimate the univariate volatility models and in a second step, we can
estimate the parameters in the correlation matrix conditional on the first step estimates.

In the first subsection we review the theoretical properties of the one-step estimates
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and explain how the likelihood can be evaluated. In the following subsection we present
estimation methods which can greatly ease the estimation problem due to the high

number of parameters.

3.1. One-step estimation

To maximize the likelihood we need to evaluate

T
QL(6;Y) = log f(YilY,1), 3.1)
t=1
where Y;_; = {Y;-1,Yi-2,...} and O is the vector of parameter values. Since the
variable A, which drives the correlation matrix is unobserved it is not straightforward.
To do this we use Hamilton’s filter [Hamilton (1989), Hamilton (1994, chapter 22)]

which we adapt to our setup. Inference on the state of the Markov chain is given by the

following equations:
étlt _ (gf|t—1 O ny) , 3.2)
1'(ftit—1 ©n,)
ét+1lt = Hétltv (3.3)
f(YilYe1, A =1;0)
U 5 , (3.4)

f(YilYier, A = N; 6)

where Eﬂt is an (IV x 1) vector which contains the probability of being in each regime at
time ¢ conditional on the observations up to time ¢. The (N x 1) vector £ ¢+1)¢ 8ives these
probabilities at time ¢ + 1 conditional on observations up to time ¢. The n-th element of
the (IV x 1) vector 7, is the density of Y; conditional on past observations and being in
regime n at time ¢, 1 is an (IV x 1) vector of 1s, and © denotes elements-by-elements
multiplication. Given a starting value £ 1j0 and parameter values 6, one can iterate over

(3.2) and (3.3) for ¢ = 1,...,T. The likelihood is obtained as a by-product of this
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algorithm:

T
QL(9) = Z log (ll(étlt—l © m)) . (3.5)

Smoothing inference on the state of the Markov chain can also be computed using an
algorithm developed by Kim (1994). The probability of being in each regime at time ¢

conditional on observations up to time 7' is given by the following equation:

éﬂT = ét|t © {H’ [ét+1lT (_) éH-llt:l } (3.6)

where (=) denotes element-by-element division. One would start iterating over (3.6)
with ¢ = T', where §T|T is given by (3.2).

What remains is deciding how to start up the algorithm, i.e. specifying é1|o- One
approach would be to add this vector to the parameter space and estimate these initial
probabilities. This would add NV parameters, py,...,py > O withp, +---+py = 1.
Another approach would be to use the limiting probabilities (7, 7o, ..., my) of the
Markov process [Ross (1993, Chapter 4)]. These probabilities are the solution of the

following system of equations:

T 1

T~ TN
N

E ™ = L.

n=1

In the two-regime case the solution is

1 -9 1—m,
;o M= )
(L=m11) + (1 —map) 2T Q) + (1 —m2)

m =

In this work both approaches will be used, depending on the estimation method. As
we will see below, when using the EM algorithm there is an advantage in treating £y,
as unknown parameters. If we are not using the EM algorithm then we will use the

limiting probabilities of the Markov chain because in this case these extra parameters
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would complicate the estimation.

In the evaluation of the likelihood, notice that the correlation matrix can take N
possible values in our model so we only have to invert N times a K x K matrix. When
the number of time series is large this can be a computational advantage over models
such as Engle (2002) and Tse and Tsui (2002) where a different correlation matrix has
to be inverted for every observation. We are now ready to state the properties of the

maximum likelihood estimates.

Theorem 3.1 ONE-STEP MAXIMUM LIKELIHOOD ESTIMATION. If the assumptions
of proposition 2.1 and if the usual regularity assumptions for the validity of the OMLE
are satisfied then the maximum likelihood estimates are consistent and their asymptotic

distribution is given by:

with

82 log f
0006’

Olog f dlog f

Bl 06 o6 l

]7 I:E[

The matrices I and J can be consistently estimated by their plug-in estimates:

X 1 < 0 '
P 23 (Dosstivin) (G ee s0irinsd))

t=1
62 1 .
3090 (T;logf(ytléa 9)) -

PROOF OF THEOREM 3.1 See Newey and McFadden (1994). g

<
I

One-step estimation is not really practicable if the number of time series is more
than a few because of a curse of dimensionality. In this case, we need an estimation
method which only requires non-linear optimization of O(1) parameters at a time. This

is what we present in the next subsection.
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3.2. Two-step estimation

By splitting the model in two parts, standard deviations and correlations, we can esti-
mate the model in two steps as in Engle (2002). The first step involves the parameters
of the univariate volatility models and the second step involves the parameters of the
correlation model. We first begin by introducing elements of notation. The complete
parameter space 8 is split into @, for the parameters in the univariate volatility model
and 8, for the parameters in the correlation model. We denote by QL; the likelihood

where the correlation matrix is taken to be an identity matrix:

T

QL1(61;Y) = —‘;‘ Z (K log(2m) + 21og(|Se]) + U;U%) - (3.7

i=1
We denote by )L, the likelihood given @; where we have concentrate out S:

T

QLy(02;Y,0,) = (K log(2m) +log(|IL]) + U/T7'U,) . (3.8)
=1

[\.’JIP—‘

t=

Notice two important features of ()L,. Firstly, it is the sum of K univariate log-
likelihood so maximizing it is equivalent to maximizing each univariate log-likelihood
separately. Secondly, the evaluation of these log-likelihood is straightforward since it
does not involve the use of Hamilton’s filter. To maximize ()L, we again have to use
Hamilton’s filter since A; is unobserved. The procedure is the same as the one-step
case because the correlations are not a function of the standard deviations.

Because the number of parameters in the correlation model grows at a quadratic rate
with the number of time series, direct maximization of the likelihood is not practicable
if we analyze more than a few series. To bypass this problem, we present two estimation
methods, one for the non-restricted model and one for the restricted model, which do
not rely on the simultaneous non-linear maximization of all the parameters.

For the non-restricted model, it turns out that maximization of the likelihood ()L,
for the correlation model can be done with the EM algorithm. Using the results of
Hamilton (1994, chapter 22) we know that the MLE estimates of the transition proba-

bilities and the correlation matrices satisfy the following equations if the initial proba-
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bilities &110 are not a function of I and [;:

Stey PlA = 5, Ay = i|Ur; 8]

i — , 3.9
1o P [y = i|07; 65
A Zf=1(l7t(7£)P[At=nl&;92]. (3.10)

> i1 PlA: = n|Ur; 65)

. . e ~(0)
Starting with an initial value 6, for the vector 85, we can compute a new vector

9,(;) using equations (3.9) and (3.10). We then continue the iteration until the differ-

) and 9;m+1) is small. This estimation method

ence between successive vectors 9ém
is more efficient than blindly maximizing the likelihood with Newton-type algorithms
because more information on the structure of the problem is used. Notice also that
the dimension of I, (i.e. the number of time series) does not affect the complexity
of the estimation because we only have to take weighted sums of outer-products. We
should also mention that equation (3.10) cannot be used directly because typically it
does not provide correlation matrices, i.e. the elements on the diagonal of I, are not
imposed to be one. One should rescale these matrices as in equation (2.13) so they are
correlation matrices. By doing this transformation, the estimates obtained with these
equations will not exactly be the numerical maximum of the likelihood, but very close
to it. From our experience, a limited number of Newton-type iterations are necessary
to obtain the exact numerical maximum. For the vector of initial probabilities éuo’ it
is also shown that their MLE estimates are given by the smoothed probabilities of the
first observation.

For the restricted model we can estimate the matrix I, up to a scale factor, by doing

correlation targeting. This leaves O(1) parameters to be non-linearly estimated. To do

the correlation targeting notice that

E[L)=T)  An)mn+ I Y (1~ An))mn.

Therefore a correlation matrix computed with the standardized residuals from the first
step estimation will provide an estimate I” of I" up to the scale factor fol A(n)m,, for

the off-diagonal elements. The scale indetermination can be solved by using the con-
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straints on I" and A(n) described in equation (2.8). We would divide the off-diagonal
elements of I by the highest in absolute value, so as to get a 1 or —1 off the diagonal,
and we would take A(1) > 1. This leaves a number of parameters to be non-linearly es-
timated which increase with the number of regimes, not with the number of time series.

The properties of the two-step estimation are described in the following theorem.

Theorem 3.2 TWO-STEP MAXIMUM LIKELIHOOD ESTIMATION. If the assump-
tions of Theorem 3.1 are satisfied then the two-step estimates are consistent and their

asymptotic distribution is:

0 0
vl -] ] —=N@©OV
R 0,
with
v | CGu —GoiGoM™' | Tolnfdlnf]| Go —G5/GoM™
| oo M- 80 00" | | o ye
where
_ - [99(Y,04,02)] _ . [09(Y;64,62)] _ o [m(Y,62)
G"I_E[ 96, ] Gez—E[ 905  M=E 965’
Oln f(¥3|Y;_1) dln f(Y}]Y:o1)
Q(Kel,az)—T, m( ) 2)—T

The matrix V can be consistently estimated by their plug-in estimate:
A-1 A-1A A-1 A-1A  p '
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M = Z 30, 69,lnf (Y;Yi1,61,62),

T

P 0 ~” s !
Z( lnf YiI},t 11"'101702)) (aolnf(},tpft 1, 91702)) .
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I

The proof is in the appendix.

Using the general results summarized in Pagan (1986) on two-step estimation we
can compute efficient estimates from the two-step estimates by doing one step of a
Newton-Raphson estimation of the full likelihood using our two-step estimates as the
starting point. The properties of the estimates resulting from this procedure are de-

scribed in the following theorem.

Theorem 3.3 TWO-STEP EFFICIENT MAXIMUM LIKELTHOOD ESTIMATION. If the
assumptions of theorem 3.1 are satisfied then efficient estimates can be obtained by
doing one step of a Newton-Raphson estimation of the full likelihood using the two-

step estimates 0:

DI

- b- 8*QL] ' oQL
- 8666’ |, 96
VT (0 -6,) — N(0;J7'J7Y).

The matrices I and J can be constantly estimated by their plug-in estimate given in

Theorem 3.1.

Proof: See Pagan (1986). Notice that the computation of these estimates could be
costly in computing time when dealing with very large systems because of the need to
compute the matrix of second derivatives.

The remaining problem in this work is to specify the number of regimes in the
Markov chain. It is well known that testing for the number of regimes in a Markov chain
is a hard problem to tackle. We leave this problem for further work. The asymptotic
theory of an LR test of NV + 1 versus N regimes is complicated by the fact that some
parameters are not identified under the null hypothesis and we are testing parameter
values that are on the boundary of the maintained hypothesis [see Andrews (1999,

2001)]. The asymptotic properties of this test are unknown for the moment. A solution
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could be the use of Monte Carlo test procedures [see Dufour (2002)]. An alternative

procedure could be the specification tests presented in Hamilton (1996).

4. Multi-step ahead conditional expectations

In this section we study one-step and multi-step ahead conditional expectations of the
variance matrix. To compute these we must take the conditional expectations of the
product of a correlation and two standard deviations. We begin by introducing a nota-
tion for the matrix I} that covers both the restricted and unrestricted model. We will
denote by I'(A; = n) the value taken by I; when the chain is in regime n at time ¢. All
the calculus will be presented for the case where the univariate volatility model is an
ARMACH(1,1). Extension to a more general ARMACH(p,q) would not introduce new
difficulties.

One-step ahead conditional expectations are straightforward. Using the fact that
tomorrow’s conditional standard deviations are known, to compute E;[H;,;] we have

to compute

E, [Si,t+13j,t+1ﬂ,j(At+1)] = 3i,t+15j,t+1Et [Fi,j(At+l)]

= 3i,t+15j,t+1Fi,j,t+1|t

fori,j =1,2,..., K, where I jii11e = E:[I5;(Ass1)]- To compute this expectation
we use the fact that the Markov chain 4, is independent of U,. Given the information

up to time ¢, the probability of being in each regime at time ¢ + 1 is

§t+1|t = Hftlt-

From this we deduce that,
N
Iy = Z I'(Apy = ")fn,t+1|t-
n=1

We see that for the one-step ahead conditional expectations the choice of the model

for the standard deviations does not play a role when a GARCH-type model is used
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because tomorrow’s standard deviations are known.
To compute the d-step ahead conditional expectations E,[H,. 4] we have to compute

elements of the following form, fori,j =1,2,..., K,

Ey[sit4asjt+alij(Arva)l-

In the following, we assume that ¢ # j. If i = j, the correlation is always equal to
1 and the Markov chain does not play a role. At this point we see why we cannot
analytically compute multi-step ahead conditional expectations with a GARCH model
for the standard deviations. We would have to take conditional expectations of the
square root of a linear expression.

The ARMACH model described in equation (2.10) can be rewritten in an ARMA-
type representation and for an ARMACH(1,1) we get:

Ske = Wi+ (o + Br)Ski—1 + Sk t—10k -1 4.1)
where
- [Tk, e—1] )
ooy = | —okt=tl 4 4.2)
ot (Eluk,t—ll

is a martingale difference sequence. Using the fact that the Markov chain is independent
of the process U;, we can first compute the expectation conditional on the Markov chain

and then integrate it out:
Ef [E(sitrasjeralif(Aua)lA]] = Ef [1j(Avra) B [sisrasiaval Al

where EY[- - -|4] is the expectation with respect to the innovations U, conditional on
the present and future values of A, and EA[---] is the expectation with respect to
the process A;. We can now treat the correlations as known for the computation of

EY[- - -|A]. Before proceeding, we define the following elements:

fijard(na) = EtU['ai,t+d"7j,t+d|At+d = ny)
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1
— E | esall@ sral | Avra = 4.3
Bl ) Werdleralldua=nd 49

and

ahpra = EY [sk4alA]

;| wk Z(ak +B) + (o + Br) sk

d-1 T

Z o (a + B Skttt tra—t| A
=1
1— (ak +B,)%"

— d-1
= Wg 1— (ak n ,Bk) + (ak + ,Bk) Sk,t+1- (44)

+EY

For the expectation in (4.3), if we assume that the U;’s are jointly Gaussian then, it has
a closed-form solution which involves a hyper-geometric function with the correlation
between i; ;44 and 4; 44, Which is known, as an argument*:

z((1—n,j(nd)2)2+2ﬂ,j(nd)2HG( 2,3 M))

120 1-T; j(ng)?
i, g t+d\Td = )
fz]t+ ( ) 2./1 _Fi,j(nd)

k:
Ckk'

Ms

HG(a,b,c,z) =
k=0
where (z) = z(z + 1)---(z + k).

In the case where U, is not Gaussian and a closed-form solution cannot be found,
fijt+d(na) could be evaluated by numerical integration. However this would have to
be done only NV times because 74 can take only N possible values. In any case, for the
form of the distribution of Uj, a stronger stand must be taken than only saying that it
has mean zero and an identity matrix for the variance.

Using these expressions the d-step ahead conditional expectation becomes:

EtU [Si,t+d3j,t+d|A]
= EtU [ (wi + (04 + B;)Sit4d—1 + CiSit4d—1Ti t4d-1) X

(wj + (a5 + B;)85trd-1 + 038 14a1D504d-1) | 4]

4Computed with Mathematica.
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= wiwj +wi(ay + F;)a51a-1 + wj(ci + B;)aitra—1
+ {(ai + ﬂi)(aj + )8j) + Olia]fi,j,t+d—1(nd—1)} EtU [Si,t+d—15j,t+d—1|A]

= Qij+d-1 + bijra—1(Pa1) By [Sitra-18t+a-1|4]
where

Gijrrd-1 = wiwj+wi(e;+ B;)a5ra-1 + wjlai + B;)ai a1,

bijera-1(na-1) = (i +B;)(a; +B;) + aiajfi,j,§+d—1(nd—1)-

We can solve this expression recursively to get

d -1
EY [sit+asjerald] = Zai,j,t+d—l (H bi,j,t+d—m(nd—m))

-1
=1 m=1
d-1

+ H bi j,t+d—m{Td—m)Si,t+15j,t4+1
m=1

where H:il bi j t+d—m(Nd—m) is equal to one when [ = 1.
Keeping in mind that b; ; ;14 m(n4—r) depends on the state of the Markov chain at

time £ + d — m we next integrate out the Markov chain. Doing so we get

E, [Si,t+d3j,t+dFi,j ( At+d)]

N N
= EU[s- S |A]F~-(n)§ T e
- t |Pit+dogt+d 1,7 \4d /S ng,t|t T no,m1 nd—1,1d
ng=1  ng=l
N N d-1 I-1
= > >0 aijeract | | bigera-m(na-m)| Tij(na)
ng=1 no=1 I=1 m=1
ano,tltﬂ'no,nl T TMng_ymg +
N N d—1
E s E Sit4-155,t+1 H bi,j,t+d—m("d—m) Fi,.‘i (nd)
ng=1 np=1 m=1

XE o tftTnoms ** Mng_y,ng- 4.5)
The summations in the last equality can be rearranged so as to obtain

E, [Si,t+d5 j,t+dn,j (At+d)]
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d-1 N N
_ L5y
= Gijerat Y Tij(na) Y bigjera1(na1) PV ayyng o X
=1 ng=1 ng—1=1
N N
§ : 15a-1
bl:]’t‘*‘l(nl) { )71-711,712 €'ﬂ0,t|tﬂ-n01n1
ni=1 no=1
N N
+  Sit+1S5t+1 _S_ Fi,j (nd) E bi,j,t+d—1(nd—1)7fnd_1,n,, cee X
ng=1 ng_1=1
N N
Z bijt+1(11) Ty Z fno,tlt"rno,nr (4.6)
ni=1 no=1

We see that the sums over N%*! terms in equation (4.5) can be written as a sum over
(d +1)N terms.

We are able to compute multi-step ahead conditional expectations of the whole
variance matrix for two reasons. The first is that since our model for the correlation
matrix is linear, the conditional expectations of the correlation matrix are given by the
summation of a constant times a probability which is linearly updated. The second
is the use of a model for the conditional standard deviation (ARMACH) instead of the
variance. Note that the use of the ARMACH model is not required. If another univariate
model for the conditional volatility is obviously better and if analytic computation of
multi-step ahead conditional expectations are not of interest then this model should be
used.

It is not easy to design a multivariate volatility model that has a rich enough dynamic
but allows these analytic computations of multi-step ahead conditional expectations of
the variance matrix. For example, in the DCC model of Engle (2002) it is not even
possible to compute multi-step ahead conditional expectations of the correlation matrix

because the rescaling performed in equation (2.13) introduces non-linearities.

5. Application to exchange rate data

In this section we apply both the unrestricted and restricted version of the RSDC model
to the exchange rate dataset used by Harvey, Ruiz, and Shephard (1994) and Kim,
Shephard, and Chib (1998). This dataset contains four weekdays close exchange rates

(Pound, Deutschmark, Yen, Swiss-Franc all against the U.S. dollar) over the period
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1/10/81 to 28/6/85. The number of observation is 946. We first take 100 times the first
difference of the logarithm of each series, minus the sample mean, before applying di-
rectly our variance model (these are our filtered series). We employ this dataset because
Harvey, Ruiz, and Shephard (1994) use it to present a multivariate stochastic volatility
model] where they assume that correlations are constant through time. Using our model
we can check if their assumption was reasonable.

The results are generated using Ox version 3.30 on Linux [see Doornik (1999)]. The
estimation results that we present in the various tables are for full one-step maximum
likelihood estimation. We first do the two-step estimation (EM algorithm or correlation
targeting) and then use these values to initialize the full maximization. We can do it

because we have a limited number of time series in our example.

5.1. RSDC model with two regimes

We first present results for the models with two regimes. Models with three regimes
are studied in the following subsection. The results for the unrestricted models are pre-
sented in Tables 16 [ARMACH(1,1) for the standard deviations] and 17 [GARCH(1.1)
for the standard deviations]. The outputs for the restricted version of the model are in
Tables 18 [ARMACH(1,1)] and 19 [GARCH(1,1)]. For the restricted model we present
the correlation matrix in each regime and their standard deviations computed with the
Delta method instead of the matrix I” and the value of A(2) [we use the identification
scheme of equation (2.7) when doing the one-step estimation] so that the results are
directly comparable to those of the unrestricted model.

The results for the univariate volatility models are similar to the usual findings with
this type of financial series. The level of persistence for the univariate GARCH models
(o + B) are high but strictly lower than one. For an ARMACH(1,1) the degree of
persistence of the standard deviations are given by a + 3, not @ + . We also find that
the persistences are high but strictly lower than one. The impact on the likelihood of
replacing the ARMACH model by the GARCH model is an increase of about 15 points.

For the estimation of the regime switching model the first thing to notice is that
the results do not depend on the univariate model for the standard deviations. The

likelihood may be higher with the GARCH model but the parameters of the correlation
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model are basically the same in both cases. It is an indication that we can replace the
traditional GARCH by the ARMACH or that the correlation model is robust to the
specification of the univariate standard deviations.

Looking at the tables and the Figures 11 and 12 where we have plotted, for the
unrestricted and the restricted model, the smoothed probabilities of being in regime one
and the smoothed correlations at each point in time, we see that the correlations appear
to be dynamic. Figure 11 shows that we frequently move between both regimes and
there is little uncertainty about the regime we are in at each point in time. The process is
spending more time in regime one and spells in regime two are shorter on average than
in regime one. This is explained by the estimate of the transition probability matrix,
which is very similar across the various models with two regimes. The probability of
being in regime one at time ¢ + 1 conditional on being in regime one at time ¢, 7y 1, is
around 0.93. That means a high level of persistence in the Markov chain because the
probability of spending the next five days in regime one is 0.93% = 0.70. In comparison,
for regime two this probability is 0.67° = 0.14. This illustrates that 0.93 and 0.67,
although both high probabilities, are very different.

As for the value of the correlations in each regime, the results for the restricted
model are similar to those of the unrestricted model. Under the unrestricted model, the
magnitude of all the correlations in regime two is smaller than in regime one. So the
hypothesis of the restricted version of the model that there is an ordering in the mag-
nitude of the correlations across the different regimes seems plausible. The hypothesis
that they all decrease in the same proportion is less supported by the data. In the unre-
stricted model, the implied value for A(2) for each correlation is as low as 0.243 and as
high as 0.592 (for the ARMACH case). Since these two models are nested, we can use
an LR test for this hypothesis. Under the null hypothesis that the restricted model is the
reality, twice the difference in the log-likelihood should follow a Chi-square with five
degrees of freedom. The value of the test statistic is 27.2 and the 1% critical values is
15.09. We would reject the restricted version of the model at the 1% level.

We mentioned at the end of Section 3 that a LR test of one regime versus two does
not asymptotically follow a Chi-square distribution with degrees of freedom equal to

the number of extra parameters. Nonetheless, the increase in the likelihood by going
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from one regime [which is the CCC model of Bollerslev (1990)] to two regimes is so
high, more than 250 points, that we don’t need to perform a formal test to reject the
model with one regime. Table 26 contains the likelihood and the number of parameters

of all the models estimated in this work.

5.2. RSDC model with three regimes

We next allow a third regime in the Markov chain. The estimation results for the var-
ious models are presented in Tables 20 to 23. As expected, the estimates of univariate
volatility models are not affected by the addition of an additional regime. The increase
of the log-likelihood is about 40 points for the unrestricted model and 50 points for the
restricted model, while the third regime adds respectively eleven and five parameters.
Again, there is no impact on the estimates of the correlation model when going from
the GARCH to the ARMACH model. If we have in mind a likelihood ratio test to gauge
the increase in the likelihood we would compare 80 or 100 (twice the increase) to the
critical values of a Chi-square with eleven or five degrees of freedom (24.73 and 15.09
respectively), although it is not a valid procedure because the LR test is probably not
asymptotically Chi-square with these degrees of freedom.

The addition of a third regime now allows the data to identify two regimes with
high correlations and one regime of very low correlations. Again, we have in general
the same ordering of the magnitude of the correlations across the regimes with the
unrestricted model. The magnitude of the correlations in regime one is smaller than
in regime two, which is smaller than in regime three. We can again test the restricted
model versus the unrestricted. In this case, we compare twice the difference of the
likelihood, i.e. 8 for the ARMACH, to a Chi-square with ten degrees of freedom and
doing so we don’t reject the restricted model.

Looking at Figure 13, we see that the Markov chain is spending most of its time in
regimes of high correlations (regime two and three for the unrestricted model, regime
one and two for the restricted model). Very rarely does the chain goes in the regime
of low correlation. Again, we see that most of the time we have a strong idea about
which regime we are in at every point in time as the smoothed probabilities are close to

either zero or one most of the time. Examining more closely the correlation matrix for
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each regime, the smoothed probabilities and the smoothed correlations in Figure 14,
we see that with a third regime, the Markov chain is beginning to identify what could
be outliers. The chain is going very rarely in a regime which is very different from the

others. This could be seen as an indicator that three regimes is enough.

5.3. DCC

To evaluate the relative performance of our model to fit the data we estimate the DCC-
GARCH(1,1) of Engle (2002). To isolate the impact of not using the same model for
the standard deviations we also estimate a DCC-ARMACH(1,1). The results for the
DCC-GARCH are in Table 24 and the results for the DCC-ARMACH(1,1) are in Table
25. With both of these univariate volatility models we get similar estimates for the
matrix I” and for the parameters « and 3; again an indication that the correlation models
are robust to the univariate volatility model employed. The full maximum likelihood
estimates are reported.

What is interesting is to compare the log-likelihood of the different models. The
GARCH(1,1) appears to fit the data a bit better than the ARMACH(1,1) because the
likelihood increases by 28 points when we use the first of the two models. We also get
a similar increase in our regime switching model. But there is a big difference in the
level of the log-likelihood when we compare the RSDC model and the DCC model. For
our restricted model with two regimes (and GARCH model) the log-likelihood is 100
points higher than the DCC-GARCH while the regime switching model has only one
more parameter than the DCC-GARCH. The difference in the log-likelihood is 114.5
points between the unrestricted RSDC model with two regimes and the DCC-GARCH
at the cost of seven additional parameters.

Because our regime switching model and the DCC model are not nested we cannot
perform a likelihood ratio test to verify if the increase in the likelihood is significant.
One valid test for testing non-nested models is proposed by Rivers and Vuong (2002,

Section 4). With this test, we reject at the 10% level® the hypothesis that the DCC model

No parameter is treated as a nuisance parameter. We use the suggested Newey and West (1987b)
estimator for the variance. We tried a wide range of values for the truncation lag in the computation of
the variance.
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is as close to the true model as the RSDC model. Another approach for choosing one
model over the other could be the use of information criteria. Ultimately, we are not
interested in rejecting a model. A better solution would be to combine the forecasts
from these different models.

Another interesting comparison is the correlations extracted from both models. If
we compare the smoothed correlations from the unrestricted RSDC model with AR-
MACH models for the standard deviations (Figure 14) with the correlations from the
DCC-ARMACH (Figure 15), we see that the correlations are generally smoother with
the switching regime model. This is even more apparent when we take the smoothed
correlations from the restricted model for the comparison. The exception would be
the correlation between the Deutschmark and the Swiss-Franc where there is almost
no movement for the DCC-GARCH while the single factor imposes changes in this
correlation. One interesting implication of smoother patterns for the correlations is
for the computation of VaR and portfolio allocation. If the time-varying correlations
are smoother, then the gain from portfolio diversification will also be smoother which
might imply a smoother pattern for the VaR and portfolio weights.

It might be intriguing that the regime switching gives a higher value for the like-
lihood than the DCC because both models imply a VARMA dynamic for the outer-

product of the standardized innovations. The DCC equation (2.12) can be rewritten

as
s ~ max(p,q) L P
vech(UUy) = I+ ) (ai+bvech(UpsU,) + Ve — > biViy
i=1 j=1

where V; = vech(U,U!) — vech(I};). From this equation we see that both the AR and
MA operators are scalar.
The VARMA representation of the regime switching model for the correlations

presented in this work is derived in Dufour and Pelletier (2003):

N-1 N-1
H (1—e, L)vech((jt(:ft') =L+ V,+ Z B.V._,
n=1 n=1

with V; a white noise process and the e, s are the eigenvalues of the transition matrix
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different than 1. The matrices of parameters B,, are function of the correlation matrices
and the transition matrix. From this, we see that one reason why the regime switching

model can be doing better is because the MA operator is not restricted to be scalar.

5.4. Series associated to the Markov chain

An interesting exercise with regime switching models is identifying what is driving the
latent process A,. Our model is for the standardized innovations but we can nonetheless
check if periods of high correlations correspond to a particular pattern for the standard
deviations. We plot in Figure 16 the smoothed probabilities of being in the regime of
high correlations for the restricted model with two regimes and the standard deviations
from an ARMACH(1,1) for each series. At first glance we cannot discern a pattern. We
can also regress the smoothed probability on a constant and the standard deviations.
Doing so, we get a low R? coefficient (0.11) and, contrary to the prevailing intuition,
the regression coefficients are not all positive. The coefficient and ¢-stat for the pound
(—0.0824 and —1.3809), Yen (—0.3475 and —4.2725) and Swiss-Franc (—0.47776 and
—6.9474) are negative. Only the Deutschmark is positive (0.8013 and 7.8502). We get
similar results with the model with three regimes or with the filtered probabilities.

We can also look at series other than the standard deviations of each return. One
process which could drive the correlations of the various currencies is the return on the
stock market. Since all the currencies are expressed in term of U.S. dollars we can look
at the return on the Dow Jones index. The conditional variance from a GARCH(1,1)
fitted on this series over the same period as our exchange rates is plotted in Figure 17.
Compared to the smoothed probabilities in Figure 13 for the unrestricted model, we see
that the increase in the volatility after observation number 200 of the index corresponds
to a period where the process is in regime 1 (highest correlations) for a prolonged
period. This is far from a complete explanation because we cannot really discern a link
between this conditional variance and the rest of the smoothed probabilities.

If we believe that adding a third regime is equivalent to chasing outliers we can try
to see if something special happened in the days when the process went into that third
and infrequent regime. Looking again at the smoothed probabilities for the unrestricted

model in Figure 13, we see that around observation number 450 the process is spending
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five days in regime 3. These observations correspond to the July 11, 1983 to July 15,
1983 period. Reading newspapers from this period we see that over this week there
was a lot of uncertainty about what the Fed would do with the interest rates. At the
beginning of the week, Volcker sent a strong but noisy signal that something might
or might not happen to the interest rates (the process enters the regime of very low
correlations). Throughout the week, the Fed keeps sending this strong and noisy signal
(the process stays in this regime). Then at the end of the week, on July 15, Volcker
announces that the interest rates will go up. The uncertainty is resolved. The process
leaves the regime of very low correlations. Again, this is not a complete explanation
because similar event studies for the other periods where the process goes into the

regime of low correlations are not as satisfactory.

6. Conclusion

In this work we propose a new model for the variance between multiple time series, the
Regime Switching Dynamic Correlation (RSDC) model. We decompose the covari-
ances into correlations and standard deviations and both the correlations and the stan-
dard deviations are dynamic. For the correlation matrix, we propose a regime switching
model. It is constant within a regime but different across regimes. The transitions be-
tween the regimes are governed by a first order Markov chain. This property of constant
correlation could have important impacts, namely for the computation of Value-at-Risk
and for dynamic portfolio allocation. We also present a restricted version of our model
where the changes across correlations in a given regime are proportional. This regime
switching model can be seen as a mid-point between the CCC model of Bollerslev
(1990) where the correlations are constant and models such as the DCC model of En-
gle (2002) where the correlation matrix change at every point in time.

One appealing feature of this model for the correlations is that when combined with
the ARMACH model [Taylor (1986) and Schwert (1989)] for the conditional standard
deviations, it allows analytic computation of multi-step ahead conditional expectations
of the whole variance matrix. The ARMACH model is a GARCH-type model for the

conditional standard deviations instead of the conditional variance.
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The evaluation of the likelihood is done with Hamilton’s filter because of the un-
observed Markov chain. By decomposing the variance matrix into a diagonal matrix
of standard deviations and a correlation matrix, we can use a two-step estimation pro-
cedure as in Engle (2002). Combining this two-step estimation procedure with either
correlation targeting (for the restricted model) or the EM algorithm (for the unrestricted
model) breaks the curse of dimensionality, i.e. the number of parameters in every non-
linear estimation is not a function of the number of time series.

An application of this model to four major exchange rate series illustrates its good
behavior. A comparison of our regime switching model with the DCC model of Engle
(2002) shows that our model has a better in-sample fit. An interesting aspect of our
regime switching model is that we find strong persistence in the Markov chain, which
produces smoother time-varying correlations than the DCC model.

Possible extensions in future work includes the addition of relations between cor-
relations and standard deviations as the work of Andersen, Bollerslev, Diebold, and
Labys (2001) seems to indicate. Identification of the number of regimes in the Markov

chain is also an ongoing research project.
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7. Appendix: Proofs

PROOF OF PROPOSITION 2.1  We can first state that I is positive semi-definite for

all t. To prove this, consider a vector ¢ = [y, . . ., cx]’ € R¥:
clic = TeMA)+cde(1-XAA4)) >0

because I" is PSD and A(4;) € [0, 1]. If the standard deviations are non-negative then

the product S; IS, i.e. the variance matrix H;, will also be PSD. O

PROOF OF THEOREM 3.2

Scaling (3.7) by 1/T', the uniform strong law of large numbers implies that a.s. we

get
) K o2
L= _§EGO z (log27r+210gsk,t+ ;%)} (7.1)
k=1 kit

where Ej, is the expectation with respect to the true density. Similarly, scaling (2.3)
by 1/T, a.s. we get

K
Klog2m +log || + 2 Z log sy.¢ + Ui o, (7.2)

k=1

1
E = —EEQO

If we can show that both sets of first order conditions with respect to 8, are satisfied
for the same vector of parameters then we can conclude that the estimates from (3.7)
will converge to their true value.

Denoting by 8y ; one of the parameters in @ that appears in the expression of sy ;,

we can write the first order conditions for £; as

0Ly _ 90[ 1 Oskt .o 1 Ospy _o. (13)

- Up,t
30“— Skt E)Ok,j TSkt 89k,j
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While the first order conditions for £ are

0
oL 1 Osgs = 1 Osgy
= Eg, |—— UIT | gy, | — 2= =0 74
8¢9k'j %o Skt 69k i Lt Ukt Skt 60k‘j ( )
0
Using the trace operator we can easily see that U/I,*{0, . . ., @y, . . ., 0] is a ran-

dom variable with unit mean, just like iliyt. From this we see that the value of §j ; that
will solve equation (7.4) will also solve equation (7.3). For the rest of the proof see
Newey and McFadden (1994).

0
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Figure 7: ACF of the cross-product of the standardized residuals from a AR-

MACH(1,1).
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Figure 8: ACF of the cross-product of the standardized residuals with data simulated
from a regime switching model. Sample size is 1000.
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Figure 9: ACF of the cross-product of the standardized residuals with data simulated

from a DCC-GARCH. Sample size is 1000.
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Figure 10: Exchange rate series. The top and bottom figures are respectively the level

and the growth rate of each series.
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Table 16: Estimation results for the unrestricted model with two regimes and AR-
MACH. Standard errors are in parenthesis. The log-likelihood value is -2011.6.

l T Il T4 Ips T34 T34
Regime 1 | 0.8754 0.7656 0.8569 0.8471 0.9510 0.8617
(0.0292) (0.0363) (0.0283) (0.0181) (0.0061) (0.0184)
Regime 2 | 04011 0.1859  0.3255 04739 0.5626  0.3250
(0.0958) (0.0996) (0.1275) (0.0843) (0.1871) (0.1666)

I Regime 1 Regime 2
Regime 1 | 0.9291 0.3334

(0.0356)
Regime 2 | 0.0709 0.6666
(0.0605)
Series w a o' J5]
Pound 0.0245 0.1028 0.0795 0.8895

(0.0094) (0.0249) (0.0194) (0.0263)
Deutschmark | 0.0710 0.1286 0.1014  0.8078
(0.0197) (0.0295) (0.0179) (0.0330)
Yen 0.0049 0.0295 0.0225 0.9705
(0.0044) (0.0113) (0.0086) (0.0136)
Swiss-Franc 0.0874 0.1225  0.0928 0.7975
(0.0452) (0.0430) (0.0327) (0.0821)
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Table 17: Estimation results for the unrestricted model with two regimes and GARCH.
Standard errors are in parenthesis. The log-likelihood value is -1994.7.

| I I3 T4 Iys Io4 T34
Regime 1 | 0.8842  0.7805 0.8648 0.8567 09536 0.8696
(0.0264) (0.0321) (0.0275) (0.0191) (0.0091) (0.0169)
Regime2 | 04636 0.2484  0.3930 0.5217 0.6222  0.3953
(0.1015) (0.1149) (0.1329) (0.0833) (0.1748) (0.1792)

I Regime 1 Regime 2
Regime 1 | 0.9131 0.3206

(0.0392)
Regime 2 | 0.0869 0.6794
(0.0757)
Series w o' Jé]
Pound 0.0193 0.0895 0.8789

(0.0102) (0.0344) (0.0449)
Deutschmark | 0.0450 0.1136 0.8160
(0.0159) (0.0296) (0.0418)
Yen 0.0011  0.0181 0.9802
(0.0018) (0.0089) (0.0117)
Swiss-Franc 0.0798 0.1143  0.7646
(0.0486) (0.0592) (0.1209)
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Table 18: Estimation results for the restricted model with two regimes and ARMACH.

Standard errors are in parenthesis. The log-likelihood value is -2025.2.

l F1,2 Fl,3 F1,4 F2,3 F2,4 F3,4

Regime 1 | 0.8549 0.7274 0.8347 0.8334 09479 0.8477
(0.0233) (0.0400) (0.0241) (0.0227) (0.0069) (0.0221)

Regime2 | 0.3362 0.2861 0.3283 03278 03728 0.3334
(0.1327) (0.1138) (0.1296) (0.1294) (0.1469) (0.1316)

I Regime 1 Regime 2
Regime 1 | 0.9473 0.3318

(0.0254)
Regime 2 [ 0.0527 0.6682
(0.0635)
Series w & e I5)
Pound 0.0271  0.1068 0.0827 0.8826

(0.0102) (0.0265) (0.0207) (0.0285)
Deutschmark | 0.0739  0.1282  0.1010  0.8037
(0.0194) (0.0220) (0.0175) (0.0318)
Yen 0.0040 0.0276  0.0211  0.9731
(0.0038) (0.0097) (0.0074) (0.0115)
Swiss-Franc | 0.0866  0.1206  0.0913  0.7983
(0.0439) (0.0406) (0.0406) (0.0798)
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Table 19: Estimation results for the restricted model with two regimes and GARCH.

Standard errors are in parenthesis. The log-likelihood value is -2009.0.

| I Il

F1,4 F2,3 F2,4

Regime 1 | 0.8602 0.7377 0.8373 0.8420 0.9500
(0.0273) (0.0354) (0.0257) (0.0194) (0.0087) (0.0166)
Regime?2 | 04052 03475 03944 03966 04475
(0.1382) (0.1192) (0.1345) (0.1350) (0.1521) (0.1369)

II

Regime 1 Regime 2

Regime 1

Regime 2

Series

0.9381 0.3196
(0.0332)
0.0619 0.6804
(0.0583)
w Q I5)

Pound

Deutschmark

Yen

Swiss-Franc

0.0219 0.0933  0.8697
(0.0105) (0.0354) (0.0454)
0.0477 0.1098  0.8145
(0.0149) (0.0268) (0.0352)
0.0010 0.0176  0.9805
(0.0016) (0.0078) (0.0103)
0.0817 0.1204  0.7521
(0.0388) (0.0566) (0.1015)



117

Figure 11: Smoothed probabilities for the models with two regimes and ARMACH.
The top and bottom figures represent the smoothed probabilities of being in regime 1
for the unrestricted and restricted model respectively.
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Figure 12: Smoothed correlations for the models with two regimes case and ARMACH.
The top and bottom panel are for the unrestricted and restricted version of the model

respectively.

1 E— Correlation Pound/DM

of

1

E— Correlation Pound/Yen|

0

1 1

1 "
] 150

1
300
l
I

L 1 Y 1 1
450 600 750 900

0 -

1

—

A " 1 " 1 " 1 " 1
0 150 300 450 600 750 900

' a " 1

1 1 1 1
300 450 600 750 900

1

e i 1 " | i A
0 150 300 450 600 750 900
IV My I

1 Correlation Pound/SF

of
i L 1 L 1 I 1 L ! I 1 1 It
V] 150 300 450 600 750 900 0 150 300 450 600 750 900
1 F— Correlation Pound/DM 1 F— Correlation Pound/Yen]
of of
I " { " t 1 ! 1 i kL x L P " 1 N 1 1 1
0 150 300 450 600 750 900 0 150 300 450 600 750 900

Correlation DM/Yen

1
750 900

i 1
300 450 600

[0} 150 300 450 600 750 900

Cormrelation Yen/SF

WA meT e

1
0 150

1 i 1 1
300 450 600 750 900

L 1 1 1 1
0 150 300 450 600 750 900



l I Iz T4 Iy T4 I3,

Regime 1 | 0.1850 0.0855 0.0730 0.2048 0.2199  0.0620

(0.2592) (0.0819) (0.1263) (0.0410) (0.0989) (0.0830)

Regime2 | 0.6039 04189 0.5598 0.7222 0.8853  0.7238

(0.0697) (0.0831) (0.1307) (0.0381) (0.1341) (0.0590)

Regime 3 | 09491 0.8497 0.9298 0.8568 0.9251 0.8705

(0.0101) (0.0347) (0.0667) (0.0672) (0.2257) (0.0894)

I Regime 1 Regime2 Regime 3
Regime 1 | 0.6250 0.0000 0.0177
(0.0326)  (0.0502)
Regime 2 | 0.2479 0.8847 0.1248
(0.2045) (0.1168)
Regime 3 | 0.1271 0.1153 0.8575
(0.2189)  (0.0746)

Series w o Q I5]

Pound 0.0332 0.1135 0.0878  0.8615
(0.0445) (0.0469) (0.0364) (0.1205)
Deutschmark | 0.0543  0.1151  0.0907 0.8311
(0.0480) (0.0226) (0.0179) (0.0905)
Yen 0.0040 0.0313 0.0239  0.9694
(0.0053) (0.0253) (0.0193) (0.0251)
Swiss-Franc | 0.0718  0.1200 0.0908 0.8108
(0.0965) (0.0538) (0.0408) (0.1892)
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Table 20: Estimation results for the unrestricted model with three regimes and AR-
MACH. Standard errors are in parenthesis. The log-likelihood value is -1971.7.
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Table 21: Estimation results for the unrestricted model with three regimes and GARCH.
Standard errors are in parenthesis. The log-likelihood value is -1955.3.

| I Is I'ig Ins Iy, I3,
Regime 1 | 0.3074 0.1132 0.1101 0.2169 0.1582 -0.0474
(0.1106) (0.1491) (0.1561) (0.0949) (0.1728) (0.1383)
Regime 2 | 0.5992 04174 0.5559 0.7196 0.8863 0.7177
(0.0930) (0.0688) (0.0810) (0.0587) (0.1985) (0.0921)
Regime 3 | 0.9487 0.8524 0.9297 0.8567 0.9249 0.8718
(0.0260) (0.1190) (0.1433) (0.2012) (0.3846) (0.2039)

I Regime 1 Regime?2 Regime3
Regime 1 | 0.6759 0.0000 0.0172
(0.0537)  (0.0678)
Regime 2 | 0.2702 0.8835 0.1218
(0.4512) (0.0566)
Regime 3 | 0.0539 0.1165 0.8610
(0.2730)  (0.0698)

Series w « 6}
Pound 0.0290 0.1128  0.8203
(0.0470) (0.0742) (0.2500)
Deutschmark | 0.0344  0.1054  0.8258
(0.0419) (0.0333) (0.1277)
Yen 0.0015 0.0234 0.9721
(0.0044) (0.0381) (0.0407)
Swiss-Franc 0.0545 0.1038 0.7973
(0.0662) (0.0341) (0.2056)
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Table 22: Estimation results for the restricted model with three regimes and ARMACH.
Standard errors are in parenthesis. The log-likelihood value is -1975.7.

| I Iis T4 Ips In4 T34
Regime 1 | 0.8775 0.7348 0.8567 0.8550 0.9723 0.8649
(0.0160) (0.0275) (0.0183) (0.0143) (0.0038) (0.0141)
Regime2 | 0.7835  0.6561 0.7649 0.7634  0.8682  0.7723
(0.0225) (0.0285) (0.0236) (0.0212) (0.0195) (0.0172)
Regime 3 | 0.1508  0.1262 0.1472  0.1469 0.1670  0.1486
(0.0692) (0.0581) (0.0676) (0.0674) (0.0766) (0.0682)

I Regime 1 Regime2 Regime 3
Regime 1 | 0.9260 0.0797 0.0305
(0.0288) (0.1151)
Regime 2 | 0.0686 0.8787 0.4365
(0.0200) (0.1849)
Regime 3 | 0.0054 0.0416 0.5330
(0.0097)  (0.0203)

Series w & Q I5]
Pound 0.0311  0.1035 0.0801 0.8800
(0.0123) (0.0281) (0.0219) (0.0333)
Deutschmark | 0.0659 0.1101 0.0868  0.8270
(0.0187) (0.0212) (0.0169) (0.0339)
Yen 0.0043  0.0299 0.0228 0.9709
(0.0034) (0.0105) (0.0080) (0.0116)
Swiss-Franc 0.0964  0.1281 0.0970 0.7814
(0.0460) (0.0421) (0.0320) (0.0827)
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Table 23: Estimation results for the restricted model with three regimes and GARCH.
Standard errors are in parenthesis. The log-likelihood value is -1961.3.

‘ Iy Iis T4 Iy Ioa T34
Regime 1 | 0.8776  0.7347 0.8558 0.8545 09718 0.8645
(0.0166) (0.0282) (0.0191) (0.0148) (0.0036) (0.0144)
Regime2 | 0.7759 0.6495 0.7566  0.7555 0.8592  0.7643
(0.0245) (0.0299) (0.0255) (0.0232) (0.0220) (0.0232)
Regime 3 | 0.1444  0.1209 0.1408 0.1406  0.1599  0.1422
(0.0832) (0.0698) (0.0812) (0.0810) (0.0921) (0.0820)

I Regime 1 Regime 2 Regime 3
Regime 1 | 0.9134 0.1006 0.0138
(0.0396)  (0.0921)
Regime 2 | 0.0809 0.8555 0.4823
(0.0232) (0.1947)
Regime 3 | 0.0057 0.0439 0.5039
(0.0098) (0.0226)

Series w «a Jo]
Pound 0.0256 0.0941 0.8621
(0.0127) (0.0375) (0.0521)
Deutschmark | 0.0464  0.1058  0.8163
(0.0140) (0.0254) (0.0369)
Yen 0.0017 0.0226 0.9739
(0.0018) (0.0091) (0.0120)
Swiss-Franc 0.0789  0.1222  0.7555
(0.0346) (0.0351) (0.0764)
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Figure 13: Smoothed probabilities for the three-regime case with ARMACH. The top
and bottom figures represent the smoothed probabilities of being in each regime for the
unrestricted and restricted model respectively.
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Figure 14: Smoothed correlations for the three-regime case with ARMACH. The top
and bottom panel are for the unrestricted and restricted version of the model respec-

tively.
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Table 24: Estimation results for the DCC-GARCH(1,1). Standard errors are in paren-
thesis. The log-likelihood value is -2109.2

-~

Series w o4 I6]
Pound 0.0282 0.1338 0.8145
(0.0158) (0.0518) (0.0716)
Deutschmark | 0.0472  0.1689  0.7415
(0.0186) (0.0446) (0.0629)
Yen 0.0031  0.0306 0.9615
(0.0027) (0.0128) (0.0171)
Swiss-Franc | 0.0646 0.1823  0.7189
(0.0539) (0.1085) (0.1636)
1 0.7657 0.5896  0.7093
(0.0440) (0.0636) (0.0483)
1 07219  0.8639
r (0.0467) (0.0307)
1 0.6814
(0.0564)
1
a b
0.1235 0.7822
(0.0451) (0.0893)
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Table 25: Estimation results for the DCC-ARMACH(1,1). Standard errors are in paren-
thesis. The log-likelihood value is -2137.8

A

~

Series w a & I5)
Pound 0.0204 0.1120 0.0867 0.8841
(0.0082) (0.0288) (0.0224) (0.0294)
Deutschmark | 0.0562  0.1524  0.1201  0.7932
(0.0163) (0.0252) (0.0201) (0.0377)
Yen 0.0045  0.0325 0.0248 0.9677
(0.0031) (0.0153) (0.0117) (0.0152)
Swiss-Franc | 0.0882 0.1876 0.1420 0.7377
(0.0636) (0.0759) (0.0553) (0.1263)
1 0.7554 0.6036  0.6849
(0.0486) (0.0524) (0.0596)
1 0.7255  0.8682
I (0.0383) (0.0291)
1 0.6843
(0.0515)
1

a b

0.1088°  0.8083

(0.0344) (0.0571)
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Figure 15: Correlations for the DCC-ARMACH(1,1).
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Table 26: Likelihood value and number of parameters for various models.
Log-likelihood Nb. par.

Unrestricted 3-regime GARCH -1955.3 38
Restricted 3-regime GARCH -1961.3 26
Unrestricted 3-regime ARMACH -1971.7 38
Restricted 3-regime ARMACH -1975.7 26
Unrestricted 2-regime GARCH -1994.7 27
Restricted 2-regime GARCH -2009.0 21
Unrestricted 2-regime ARMACH -2011.6 27
Restricted 2-regime ARMACH -2025.2 21
DCC-GARCH(1,1) -2109.2 20
DCC-ARMACH(1,1) -2137.8 20
CCC-GARCH(1,1) -2272.1 18
CCC-ARMACH(1,1) -2301.8 18

Figure 16: Smoothed probabilities of being in the regime of high correlations for the
restricted model with two regimes and standard deviations from an ARMACH(1,1) for
each series.
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Figure 17: Conditional variance from a GARCH(1,1) for the return on the Dow Jones
index.
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Chapter 3: Short run and long run

causality in time series: inference

1. Introduction

The concept of causality introduced by Wiener (1956) and Granger (1969) is now a ba-
sic notion for studying dynamic relationships between time series. The literature on this
topic is considerable; see, for example, the reviews of Pierce and Haugh (1977), New-
bold (1982), Geweke (1984), Liitkepohl (1991) and Gouriéroux and Monfort (1997,
Chapter 10). The original definition of Granger (1969), which is used or adapted by
most authors on this topic, refers to the predictability of a variable X (t), where ¢ is an
integer, from its own past, the one of another variable Y (¢) and possibly a vector Z(*)
of auxiliary variables, one period ahead: more precisely, we say that Y causes X in
the sense of Granger if the observation of Y up to time ¢ (Y (7) : 7 < t) can help
one to predict X (¢ + 1) when the corresponding observations on X and Z are available
(X(7), Z(7) : 7 < t); a more formal definition will be given below.

Recently, however, Liitkepohl (1993b) and Dufour and Renault (1998) have noted
that, for multivariate models where a vector of auxiliary variables Z is used in addition
to the variables of interest X and Y, it is possible that Y does not cause X in this sense,
but can still help to predict X several periods ahead; on this issue, see also Sims
(1980) and Renault, Sekkat, and Szafarz (1998). For example, the values Y(7) up to
time ¢ may help to predict X (¢ + 2), even though they are useless to predict X (¢ + 1).
This is due to the fact that Y may help to predict Z one period ahead, which in turn has
an effect on X at a subsequent period. It is clear that studying such indirect effects can
have a great interest for analyzing the relationships between time series. In particular,
one can distinguish in this way properties of “short-run (non-)causality” and “long-run
(non-)causality”.

In this paper, we study the problem of testing non-causality at various horizons
as defined in Dufour and Renault (1998) for finite-order vector autoregressive (VAR)

models. In such models, the non-causality restriction at horizon one takes the form
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of relatively simple zero restrictions on the coefficients of the VAR [see Boudjellaba,
Dufour, and Roy (1992) and Dufour and Renault (1998)]. However non-causality re-
strictions at higher horizons (greater than or equal to 2) are generally nonlinear, taking
the form of zero restrictions on multilinear forms in the coefficients of the VAR. When
applying standard test statistics such as Wald-type test criteria, such forms can easily
lead to asymptotically singular covariance matrices, so that standard asymptotic theory
would not apply to such statistics. Further, calculation of the relevant covariance ma-
trices _ which involve the derivatives of potentially large numbers of restrictions _ can
become quite awkward.

Consequently, we propose simple tests for non-causality restrictions at various hori-
zons [as defined in Dufour and Renault (1998)] which can be implemented only through
linear regression methods and do not involve the use of artificial simulations [e.g., as in
Liitkepohl and Burda (1997)]. This will be done, in particular, by considering multiple
horizon vector autoregressions [called (p, h)-autoregressions] where the parameters of
interest can be estimated by linear methods. Restrictions of non-causality at differ-
ent horizons may then be tested through simple Wald-type (or Fisher-type) criteria af-
ter taking into account the fact that such autoregressions involve autocorrelated errors
[following simple moving average processes] which are orthogonal to the regressors.
The correction for the presence of autocorrelation in the errors may then be performed
by using an autocorrelation consistent [or heteroskedasticity-autocorrelation-consistent
(HAC)] covariance matrix estimator. Further, we distinguish between the case where
the VAR process considered is stable (i.e., the roots of the determinant of the asso-
ciated AR polynomial are all outside the unit circle) and the one where the process
may be integrated of an unknown order (although not explosive). In the first case, the
test statistics follow standard chi-square distributions while, in the second case, they
may follow nonstandard asymptotic distributions involving nuisance parameters, as al-
ready observed by several authors for the case of causality tests at horizon one [see
Sims, Stock, and Watson (1990), Toda and Phillips (1993, 1994), Toda and Yamamoto
(1995), Dolado and Liitkepoh! (1996) and Yamada and Toda (1998)]. To meet the
objective of producing simple procedures that can be implemented by least squares

methods, we propose to deal with such problems by using an extension to the case



132

of multiple horizon autoregressions of the lag extension technique suggested by Choi
(1993) for inference on univariate autoregressive models and by Toda and Yamamoto
(1995) and Dolado and Liitkepohl (1996) for inference on standard VAR models. This
extension will allow us to use standard asymptotic theory in order to test non-causality
at different horizons without making assumption on the presence of unit roots and coin-
tegrating relations. Finally, to alleviate the problems of finite-sample unreliability of
asymptotic approximations in VAR models (on both stationary and nonstationary se-
ries), we propose the use of bootstrap methods to implement the proposed test statistics.

In section 2, we describe the model considered and introduce the notion of autore-
gression at horizon h [or (p, h)-autoregression] which will be the basis of our method.
In section 3, we study the estimation of (p, h)-autoregressions and the asymptotic dis-
tribution of the relevant estimators for stable VAR processes. In section 4, we study the
testing of non-causality at various horizons for stationary processes, while in section 5,
we consider the case of processes that may be integrated. In section 6, we illustrate the
procedures on a monthly VAR model of the U.S. economy involving a monetary vari-
able (nonborrowed reserves), an interest rate (federal funds rate), prices (GDP deflator)

and real GDP, over the period 1965-1996. We conclude in section 7.

2. Multiple horizon autoregressions

In this section, we develop the notion of “autoregression at horizon A” and the relevant

notations. Consider a VAR (p) process of the form:

P
W) =pt)+> mW(t—k +a(t), t=1,...,T, 2.1)
k=1
where W (t) = (wlt, Woy, ... , wmt)' is an m X 1 random vector, u(t) is a deterministic

trend, and
Ela(s)a(t)] =0, ifs=t,
=0, ifs#t,

(2.2)

det(£2) # 0. (2.3)
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The most common specification for p(t) consists in assuming that () is a constant

vector, i.e.

ut) = p, (2.4)

although other deterministic trends could also be considered.
The VAR (p) in equation (2.1) is an autoregression at horizon 1. We can then also

write for the observation at time ¢ + h:

h-—1
W (t+ k) = p® t)+Z7r(h)W t+1—-k)}+> va(t+h—j),t=0,...,T—h,
k=1 i=0

where ¢y = I, and h < T'. The appropriate formulas for the coefficients 7r£h), pM(t)

and ), are given in Dufour and Renault (1998), namely:

h
7r§ch+1) = TMr4n+ Z 7rh_l+17r( ) = 7r,(€'f21 + 7r§h)7rk, (2.5)
=1
7r§0) = Im, ﬂfcl) =T, 2.6)
pM @) = Z'/r(k) t+h—k), ,=7" VE>0. 2.7)

The 1), matrices are the impulse response coefficients of the process, which can also

be obtained from the formal series:
P(z) =7w(2)t = I, + Z V2t w(z) = Zwkz (2.8)

Equivalently, the above equation for W (t + h) can be written in the following way:

P
WE+h) = p®E) +>S WE+1-k) 7™ +u® (¢4 h)
k=1
= 1M +W (¢, p) 7™ +u® (t+h), 2.9)

fort =0, ..., T — h and where

Witp) = W, Wit-1),..., Wt-p+1)],
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I3
O -

P

-1

u(h)(t-i—hl _ u(h)t+h,...,u(h)(t+h = at—}-h-—j,’l,b,u
1 m J

.
Il
o

It is straightforward to see that u®) (¢ 4+ h) has a non-singular covariance matrix.
We call (2.9) an “autoregression of order p at horizon h” or a “(p, h)-
autoregression”. In the sequel, we will assume that the deterministic part of each au-

toregression is a linear function of a finite-dimensional parameter vector, i.e.
p® () = y(h)D™(t) (2.10)

where y(h) is am x n coefficient vector and D*)(t) is a n x 1 vector of deterministic
regressors. If 4(t) is a constant vector, i.e. u(t) = u, then ™ (t) is simply a constant

vector (which may depend on h):

pM(t) = py, - (2.11)

To derive inference procedures, it will be convenient to consider a number of alter-
native formulations of (p, h)-autoregression autoregressions.

a) Matrix (p, h)-autoregression _ First, we can put (2.9) in matrix form, which yields:
wy () =W, (R)II™ + U, (h) , h=1,... , H, (2.12)

where wy, (k) and U, (k) are (T — k + 1) x m matrices and W, (k) isa (T — k+ 1) x
(n + mp) matrix defined as

W (0+h)

wn (k) = W(lfh)' i K)o wm (B B)], (213)

W (T —k+h)
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W, (k) = : , Wr(t)= , (2.14)

| W, (T — k)

nw = | 7" =[B.(R), Ba(R), .-, B ()], (2.15)

()

u® (04 h)’

u® '
Up (k) = (1:”‘) =[ur(h, k), ..., um(h k)], (2.16)

u™ (T -k + h)

wi (b, k) = 'ug”’(o+h),u§”’(1+h),...,u§"’(T—k+h)]'. @.17)

We shall call the formulation (2.12) a “(p, h)-autoregression in matrix form”.
b) Rectangular stacked (p, H)-autoregression _ To get the same regressor matrix on

the right-hand side of (2.12), we can also consider:
wy (H) =W, H)O® + U, (H), h=1, ..., H. (2.18)

This, however, involves losing observations. Using (2.18), we can also stack the H

systems above as follows:
wy =W, (H) Iy + Uy (2.19)

where wy and Uy are (T' —~ H + 1) x (mH) matrices and W}, (H) is an (mp) x (mH)

matrix such that

wy = [w(H), we(H), ..., wg(H)],
Iy = OO, 0%, .. 1],
UH = [UI(H)1U2(H)77UH(H)]

Since the elements of Uy are linear transformations of the random vectors a (t), ¢t =
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1, ..., T, which contain T'm random variables, it is clear that the vector vec (U,,) will

have a singular covariance matrix when
Tm < (T — HymH = TmH — mH?,

which will be the case when H > 2 and T'm > H.

c) Vec-stacked (p, H)-autoregression _ We can also write equation (2.9) as

wit+h) = [Ln®W, )] T" +a® (¢ +h)

= W,@) I® +a®™(t+h), t=0,...,T—h, (2.20)
p

where
6 ]
(h)
I® = yec(I™) = 2 ,
ﬁﬁ"
RACE o |
W, () - 0 ‘%ml 0 ’
|0 0 W, (t) |
which yields the linear model
Wy, = ZplI™® + @, @Q.21)
where
[ W(0+h)
o = W.(lf "1 vee [un ()],
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W, (0) I, ® Wy (0)
Wy (1) I @ W, (1)
Zh = . = . !
Wp (T - hY In @ W, (T —hY
u® (0 + h)
u™(1+h
Up = ( ) = vec [Ux ()] .
u™ (T)
It 1s also possible to stack together the models (2.21)forh =1, ..., H :
w(H)=Z(H)IIy +4(H) (2.22)
where
u—)l ’ELI ] Z1 0 0
w 7 0 Z 0
o) =| " |, am=| |, zmm=|
Wy Uy J 0 0 VA

d) Individual (p, H)-autoregressions _ Consider finally a single dependent variable
Wi (t+h) =W, (t) B, () +uP (t+h) , t=0,..., T - H, (2.23)
for1 < h < H, where 1 < i < m. We can also write:

Wi(t+H)=[Ia®@W, )] B (H) + @ (t+H) , t=0,..., T—H, (224
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where
 Wi(t+1) | [ w(t+1) | [ 5,(1) |
W04+ H) = Wi(t:—l—2) (s H) = u,-(t:+2) B (H) = ﬂ,-:(2) |
| Wi(t+H) _ui(t;LH)_ _ﬂ,-(.H)_
which yields the linear model
) ~ (2.25)

where
W0+ H) | 5.1 |
wan = | OO g | PO
| W@ | | B (H) |
Iy ® W, (0) “u; (0+ H)
G - 1,,@@,(1)' i iZ,l.+H)
_IH®W,,.(T—H)’_ | WD) |

In the sequel, we shall focus on prediction equations for individual variables and

the matrix (p, h)-autoregressive form of the system in (2.12).

3. Estimation of (p, h) autoregressions

Let us now consider each autoregression of order p at horizon h as given by (2.12):

wy () =W, (R) O™ + U, (h) , h=1,...,H. (3.1
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We can estimate (3.1) by ordinary least squares (OLS), which yields the estimator:

am = [W,(h) W, ((h)] W, (h) wx (k)
= 1™ 4 [W,(h) W, (k)] "W, (k) Un(R) ,

hence

L7, (k) Un (1)

VT - 1) = [ 27, 0 T, )] -

where

T—-h

1—— 1557 . ]- !
W (B) Wy (h) = T;Wp(t)w t
1 1 T—h
— W, Us(h) = W, () u™ (t + h
T p (R) Un (R) th » ( )
Suppose now that
1T—h
ngwp(t)wp(t)’ 7&; I, with det([})#0. (3.2)
t=

In particular, this will be the case if the process W (t) is second-order stationary, strictly

indeterministic and regular, in which case
E[W,(t)Wp(t)] =T, Vt. (3.3)

Cases where the process does not satisfy these conditions are covered in section 5.

Further, since
h-1

uP (t+h)=a(t+h)+ > Ya(t+h—k)
k=1

(where, by convention, any sum of the form Zk , with b < 2 is zero), we have:

E[W,(#)u™ (t+h)] =0, forh=1,2, ..,
V {vec [W, (t) u™ (t + h)']} = 4, (h) .
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If the process W (t) is strictly stationary with i.i.d. innovations a(t), we can write:
EW, (s) " (s + ) (¢ +B) W, (2] = Tiy(p, by t = 5) = Ty(p, by s — 1) (3.4)
where 1 <7< m, 1< j <m,with

Liy(p, b, 0) = E [Wy (0w (¢ + W) (t+ 0) W, (1)

=05 (R) E[W, (t) Wy ()] = 045 (R) I, (3.3)
Lyi(p, hyt—s)=0, if|t—s|>h. (3.6)

In this case,
Ap (h) =loi; (M) ) sy, m=Z(R)® I, 3.7

where X'(h) is nonsingular, and thus A, (k) is also nonsingular. The nonsingularity of

2 (h) follows from the identity

u(h)(t+h’)= [¢h—11 ¢h—21 -“)d}b Im] [a‘(t+1)lw a’(t+2)la LR a(t+h')l]l'

Under usual regularity conditions,

Z vec[W, (£) u™ (¢t + h)’'] 7:; N[0, 4, (h)] (3.8)
where A, (h) is a nonsingular covariance matrix which involves the variance and the
autocovariances of W), (t) u® (¢ 4 h)’ [and possibly other parameters, if the process

W (t) is not linear]. Then,

Tvec[ (h)]
- { ® | 775 (87, () } |, 0 0 )
- {ne [%Wp 0]} ey 000 4]
=5 N[0, (ln ® I} Ay (h) (In®@ I ] (3.9)

T—o0
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For convenience, we shall summarize the above observations in the following proposi-

tion.

Proposition 3.1 ASYMPTOTIC NORMALITY OF LS IN A (p,h) STATION-
ARY VAR. Under the assumptions (2.1), (3.2), and (3.8), the asymptotic
distribution of T vec[ﬁ W — ™) is N[0, Z(II™)], where Z(II®) =
(In® L) A, (h) (In @ I,Y) .

4. Causality tests based on stationary
(p, h)-autoregressions

Consider the i-th equation (1 < ¢ < m) in system (2.12):

@i (k) = Wy () B; (h) + 5 (h), 1< i <m, @.1)

where @; (h) = w; (h, h) and G; (h) = u; (h, h), where w; (h, h) and u; (h, h) are
defined in (2.13) and (2.16). We wish to test:

Ho(h) : RB;(h) =T 4.2)

where R is a ¢ X (n + mp) matrix of rank q. In particular, if we wish to test the
hypothesis that w;; does not cause w; at horizon h [i.e., using the notation of Dufour
and Renault (1998), w;, - w; | Iy, where I(;(t) is the Hilbert space generated by
the basic information set I(¢) and the variables wy,, w < 7 < t, k # j, w being an

appropriate starting time (w < —p + 1)], the restriction would take the form:

HY :all=0,k=1,...,p, (4.3)
where wﬁh) = [wfj’,l] , k =1,..., p. In other words, the null hypothesis
i, 7=1,...,m

takes the form of a set of zero restrictions on the coefficients of 3; (h) as defined in
(2.15). The matrix of restrictions R in this case takes the form R = R(j), where R(j) =

[01(3), 02(3), ---, 6,(F)) isap x (n + mp) matrix, 6¢(J) is a (n + pm) x 1 vector
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whose elements are all equal to zero except for a unit value at position n+ (k—1)m+j,

ie. (J) =01, n+(k—1)m+j),...,6(n+pm,n+(k—-1)m+3)] , k =
L,...,p, with 6(3, 5) = 1if ¢ = 5, and 6(3, j) = 0 if i # j. Note also that the
conjunction of the hypothesis H]( ,2,, h=1, , (m — 2)p + 1, is sufficient to obtain

noncausality at all horizons [see Dufour and Renault (1998, section 4)]. Non-causality
up to horizon H is the conjunction of the hypothesis H; M b= 1,...)H.

J-mid
We have:

. 1— o ,— 17t 1 &
Gl XORVAC R B AL AC] IS SUAUFLI
VT =
Under standard regularity conditions [see White (1999, chap. 5-6)],

VT [ (h) - 6:(W)] =5 N[0, V(3)]

T—o0

with det [V(8;)] # 0, where V(B;) can be consistently estimated:

N

Vr(B:) 2o V(B) -

T—»oo

More explicit forms for VT (,B,) will be discussed below. Note also that

1 — —
I, = plim — W, (h) W, (h) , det([}) #0.

T—o0 T
Let
1 T—h
Vip (T) = [ﬁ o ( ] —Var [ZW,, ul™ ( t+h)}
t=
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h—1 T-h

+ZZ [ (h)(t-{—h)u(h)( —T+h)W,(t—1)]

7=1 t=7+1

+E [W, (t —m)ul (t — 7 + h)ul™ (¢ + h) W, (t)']] }

Let us assume that

Vip (T) Vip , det (V; ( ip) #0, 4.4)

where V}, can be estimated by a computable consistent estimator V,, (T) :

Vo (T) = Vip. (4.5)
Then,
\/T[ﬂ( ) — ﬂ(h)] = N[0, IVl ]
so that V(B;) = I}, 'V;, I L. Further, in this case,

We can thus state the following proposition.

Proposition 4.1 ASYMPTOTIC DISTRIBUTION OF TEST CRITERION FOR NON-
CAUSALITY AT HORIZON h IN A STATIONARY VAR. Suppose the assumptions of
Proposition 3.1 hold jointly with (4.4) — (4.5). Then, under any hypothesis of the form
Hy(h) in (4.2), the asymptotic distribution of

WIHo(R)] = T [RB; (h) — r]' [RVz(B;) R "' [RB; (R) — 7] (4.6)

is x2(q). In particular, under the hypothesis H, (h) of non-causality at horizon h from

J-ﬁ»’l.
Wjt 10 Wi (w]— - w; | I(]-)), the asymptotic distribution of the corresponding statistic

WIHo(h)] is x* (p) -

The problem now consists in estimating V. Let u;(h) =

’
{ﬁgh) (t+h):t=0,...,T— h] be the vector of OLS residuals from the regression
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@.1), 3 (¢ +h) =W, () a™ (¢ + h) , and set

T—h
(h) 1 ~(h) () ,
: = — (t+h)g 4+ h— =0,1,2 ....
R‘l (T) T"‘h;gl ( + )g‘z ( + T)7T b b] b]
If the innovations are i.i.d. or, more generally, if (3.6) holds, a natural estimator of Vip,
which would take into account the fact that the prediction errors u® (¢ 4 k) follow an

MA(h — 1) process, is given by:

h-1
Vg7 (@) = BP0+ 3 [RP (1) + RY (1)] -

=1

Under regularity conditions studied by White (1999, Section 6.3),

AW
Ve (T) = Vip 5 0.
A problem with Vi;w) (T) is that it is not necessarily positive-definite.
An alternative estimator which is automatically positive-semidefinite is the one sug-
gested by Doan and Litterman (1983), Gallant (1987) and Newey and West (1987a):
m(T)~-1
Ve =RP O+ Yk m@) (BP0 +EP Y], @
T7=1
where £ (7, m) =1—[r/ (m +1)], Jim m(T) = oo, and Jim [m(T) /T =0.
— 00 —00
Under the regularity conditions given by Newey and West (1987a),

ip

VW) (T) -V, — 0.

Other estimators that could be used here includes various heteroskedasticity-
autocorrelation-consistent (HAC) estimators; see Andrews (1991), Andrews and Mon-
ahan (1992), Cribari-Neto, Ferrari, and Cordeiro (2000), Cushing and McGarvey
(1999), Den Haan and Levin (1997), Hansen (1992), Newey and McFadden (1994),
Wooldridge (1989).

The cost of having a simple procedure that sidestep all the nonlinearities associated

with the non-causality hypothesis is a loss of efficiency. There are two places where we
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are not using all information. The constraints on the wfch)’

s are giving information on the
%,’s and we are not using it. We are also estimating the VAR by OLS and correcting the
variance-covariance matrix instead of doing a GLS-type estimation. These two sources
of inefficiencies could potentially be overcome but it would lead to less user-friendly
procedures.

The asymptotic distribution provided by Proposition 4.1, may not be very reliable
in finite samples, especially if we consider a VAR system with a large number of vari-
ables and/or lags. Due to autocorrelation, a larger horizon may also affect the size an
power of the test. So an alternative to using the asymptotic distribution chi-square of
W/[H,(h)], consists in using Monte Carlo test techniques [see Dufour (2002)] or boot-
strap methods [see, for example, Paparoditis (1996), Paparoditis and Streitberg (1991),
Kilian (1998a, 1998b)]. In view of the fact that the asymptotic distribution of W[H,(h)]
is nuisance-parameter-free, such methods yield asymptotically valid tests when applied
to W[Ho(h)] and typically provide a much better control of test level in finite samples.
It is also possible that using better estimates would improve size control, although this
is not clear, for important size distortions can occur in multivariate regressions even
when unbiased efficient estimators are available [see, for example, Dufour and Khalaf

(2002)].

S. Causality tests based on nonstationary
(p, h)-autoregressions

In this section, we study how the tests described in the previous section can be adjusted
in order to allow for non-stationary possibly integrated processes. In particular, let us

assume that

W(t) = p)+n(), (5.1)

P
pt) = So+oit+---+57, n(t)=> mnt—k)+a(t), (52
k=1
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t=1, ..., T,where g, 0, ..., 6, are m X 1 fixed vectors, and the process 7 (t) is at
most I(d) where d is an integer greater than or equal to zero. Typical values for d are
0,1o0r2.

Under the above assumptions, we can also write:

14
W)= yo+mt+-+7t0+ > mWE—k) +a(t), t=1,...,T, (53)

k=1
where 7y, 71, - .-, 7, are m X 1 fixed vectors (which depend on 4y, 41, ... , d4, and
T1, ... , Tp); see Toda and Yamamoto (1995). Under the specification (5.3), we have:

P
W(t+h)=p®@)+ Y aW(t+1-k) +u® (¢t +h), t=0,...,T—h
k=1
(5.4)

where uM(t) = (h) +'y(h)t+ 749 and fy((,h), 75"), o, Y are m x 1 fixed vec-
tors. For h = 1, this equation is identical with (5.3). For h > 2, the errors u® (¢t 4 h)

follow a MA(h — 1) process as opposed to being i.i.d. . For any integer j, we have:

W(t+h) = p™( +Z7r(h) (t+1—k)—W(t+1-5)]
k#J
(Z n(")) t+1—35)+u™ (@t +h), (5.5)

P
W(t+h) -Wt+1-35) = p®E)+> 7P [W(E+1-k) - W(t+1-3)

k=1
k#3

(I —Zw(h)> Wt+1—7)+u®@E+h), 56

fort = 0,...,T — h. The two latter expressions can be viewed as extensions to
(p, h)-autoregressions of the representations used by Dolado and Liitkepohl (1996, pp.
372-373) for VAR(p) processes. Further, on taking 7 = p + 1 in (5.6), we see that

W(t+h)—W(t—p) = ﬂ<h>(t)+iA§f’AW(t+1—k)

k=1
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+BOW(t —p) +u® (¢t +h) (5.7)

where AW (t) = W(t)-W(t—1), Afch) = Z§=1 71';:‘) ,and B,(Ch) = Ag’) — I, . Equation
(5.7) may be interpreted as an error-correction form at the horizon h,with base W (t—p).

Let us now consider the extended autoregression

14
Wt+h) = g®)+ > aPW(t+1-k)

k=1
p+d
+ Y AWt +1—k) +u® (t+h), (5.8)
k=p+1

t =d, ..., T — h. Under model (5.3), the actual values of the coefficient matrices

7r,(,'531, e W,(Qd are equal to zero (7(1(,’21 =...= W;’lr)d = 0), but we shall estimate the
(p, h)-autoregressions without imposing any restriction on wz(,’fl, cee ”i;’jr)w

Now, suppose the process 7 (t) is either 7(0) or I(1), and we take d = 1 in (5.8).

Then, on replacing p by p + 1 and setting j = p in the representation (5.6), we see that

P

Wt+h) -W(t—p—1) = p®@)+> 7P [WE+1-k) -W(E—p-1)]
k=1
~BWW(t—p—1)+u® (t+n), (5.9)
where B, = (I, — 2 7™ I the latter e vation, 7\, ... 7™ all affect trend-
p+1 k=1Tk q 1 P

stationary variables (in an equation where a trend is included along with the other
coefficients). Using arguments similar to those of Sims, Stock, and Watson (1990),
Park and Phillips (1989) and Dolado and Liitkepohl (1996), it follows that the esti-

mates of wgh), e 7r§,h) based on estimating (5.9) by ordinary least squares (without

(h)

o ()
restricting B pt1

5+1) — OF, equivalently, those obtained from (5.8) without restricting

_ are asymptotically normal with the same asymptotic covariance matrix as the one
obtained for a stationary process of the type studied in section 4.° Consequently, the

] for testing the null hypothesis H"). of

jmi

asymptotic distribution of the statistic W[H )

Jmi

non-causality at horizon A from w; to w; (w; - w; | I;)), based on estimating (5.8),

SFor related results, see also Choi (1993), Toda and Yamamoto (1995), Yamamoto (1996), Yamada
and Toda (1998), and Kurozumi and Yamamoto (2000).
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is x2(p). When computing H'"). as defined in (4.3), it is important that only the coeffi-

Ji
gh), cey 7r§,h) are restricted (but not 7rg21).

cients of 7

If the process 7 (¢) is integrated up to order d, where d > 0, we can proceed sim-
ilarly and add d extra lags to the VAR process studied. Again, the null hypothesis is
tested by considering the restrictions entailed on 7r§h), ceey 7r§,h). Further, in view of the
fact the test statistics are asymptotically pivotal under the null hypothesis, it is straight-
forward to apply bootstrap methods to such statistics. Note finally that the precision of
the VAR estimates in such augmented regressions may eventually be improved with re-
spect to the OLS estimates considered here by applying bias corrections such as those
proposed by Kurozumi and Yamamoto (2000)]. Adapting and applying such correc-

tions to (p, h)-autoregressions would go beyond the scope of the present paper.

6. Empirical illustration

In this section, we present an application of these causality tests at various horizons to
macroeconomic time series. The data set considered is the one used by Bernanke and
Mihov (1998) in order to study United States monetary policy. The data set considered
consists of monthly observations on nonborrowed reserves (IVBR, also denoted w,),
the federal funds rate (7, w,), the GDP deflator (P, ws) and real GDP (GDP, w,). The
monthly data on GDP and GDP deflator were constructed by state space methods from
quarterly observations [see Bernanke and Mihov (1998) for more details]. The sample
goes from January 1965 to December 1996 for a total of 384 observations. In what
follows, all the variables were first transformed by a logarithmic transformation.
Before performing the causality tests, we must specify the order of the VAR model.
First, in order to get apparently stationary time series, all variables were transformed
by taking first differences of their logarithms. In particular, for the federal funds rate,
this helped to mitigate the effects of a possible break in the series in the years 1979-

1981.7 Starting with 30 lags, we then tested the hypothesis of K lags versus K + 1

"Bernanke and Mihov (1998) performs tests for arbitrary break points, as in Andrews (1993), and
don’t find significant evidence of a break point. They use a VAR(13) with two additional variables (total
bank reserves and Dow-Jones index of spot commodity prices and they normalize both reserves by a
36-month moving average of total reserves.)
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Table 27: Rejection frequencies using the asymptotic distribution and the simulated
procedure when the true DGP is an i.i.d. Gaussian sequence

a) 1.1.d. Gaussian sequence

h= 1 2 3 4 5 6 7 8 9 10 11 12
Asymptotic
5% level 270 27.8 324 361 357 426 479 485 510 557 59.7 63.6
10% level 374 394 422 465 478 520 58.1 593 603 663 692 725
Bootstrap
5% level 55 57 47 65 40 51 55 39 47 61 52 38

10% level 100 91 101 109 96 106 102 94 95 109 103 8.9
b) VAR(16) without causality up to horizon h

Asymptotic

5% level 241 279 358 375 559 443 523 559 541 601 62.6 720
10% level 355 383 466 472 651 550 647 646 648 698 720 79.0
Bootstrap

5% level 60 51 38 61 46 47 44 45 43 63 49 58
10% level 98 88 87 104 103 99 87 74 103 111 93 9.7

lags using the LR test presented in Tiao and Box (1981). This led to a VAR(16) model.
Tests of a VAR(16) against a VAR(K) for K = 17, ..., 30 also failed to reject the
VAR(16) specification, and the AIC information criterion [see McQuarrie and Tsai
(1998, chapter 5)] is minimized as well by this choice. Calculations were performed
using the Ox program (version 3.00) working on Linux [see Doornik (1999)].

Vector autoregressions of order p at horizon h were estimated as described in section
4 and the matrix Vi;NW), required to obtain covariance matrices, were computed using
formula (4.7) withm(T) —1=h — 1.

On looking at the values of the test statistics and their corresponding p-values at
various horizons it quickly becomes evident that the x2(q) asymptotic approximation
of the statistic W in equation (4.6) is very poor. As a simple Monte Carlo experiment,
we replaced the data by a 383 x 4 matrix of random draw from an N(0, 1), ran the same
tests and looked at the rejection frequencies over 1000 replications using the asymptotic
critical value. The results are in Table 27a. We see important size distortions even for
the tests at horizon 1 where there is no moving average part.

We next illustrate that the quality of the asymptotic approximation is even worse
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when we move away from an i.i.d. Gaussian setup to a more realistic case. We now
take as the DGP the VAR(16) estimated with our data in first difference but we impose
that some coefficients are zero such that the federal funds rate does not cause GDP
up to horizon h and then we test the r - GDP hypothesis. The constraints of non-

causality from j to 7 up to horizon h that we impose are:

'fr,-ﬂ = 0 for ISlSp, (61)

Tagw = 0 for 1<I<h, 1<k<m. 6.2)

Rejection frequencies for this case are given in Table 27b.
In light of these results we computed the p-values by doing a parametric bootstrap,
Le. doing an asymptotic Monte Carlo test based on a consistent point estimate [see

Dufour (2002)]. The procedure to test the hypothesis W - W; | I(;) is the following.

1. An unrestricted VAR(p) model is fitted for the horizon one, yielding the estimates
IT™ and £2 for IT™ and 02

2. An unrestricted (p, h)-autoregression is fitted by least squares, yielding the esti-
mate [T™) of [T,

3. The test statistic W for testing noncausality at the horizon h from w; to w;

[H; ™ w, - w; | I ;)] is computed. We denote by W) (0) the test statis-

J~i 7
tic based on the actual data.
4. N simulated samples from (2.9) are drawn by Monte Carlo methods, using
I® = [1® and 2 = (2 [and the hypothesis that a(t) is Gaussian]. We im-

pose the constraints of non-causality, fJ ,2 =0,k =1, ..., p. Estimates of the

impulse response coefficients are obtained from 17 through the relations de-

scribed in equations (2.5) and (2.6). We denote by w .(n) the test statistic for

J—p‘-bl

H™, based on the n-th simulated sample (1 <n < N).

J»i

5. The simulated p-value py [W( ) ;(0)] is obtained, where

Joi

pnlz] = {1 + ZI[WJ(’L)I ]} J(N +1),

I[z] =1if 2> 0and I[z] = 0if z < 0.
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Figure 18: Power of the test at the 5% level for given horizons. The abscissa (z axis)
represents the values of 4.

100 100 100 (=5
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T T o1 [yt —m T, = T = .,
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6. The null hypothesis H. ™ is rejected at level «v if py [W(O)

J-t Ji

(h)] < a.

From looking at the results in Table 27, we see that we get a much better size con-
trol by using this bootstrap procedure. The rejection frequencies over 1000 replications
(with N = 999) are very close to the nominal size. Although the coefficients ;s are
functions of the 7;’s we do not constrain them in the bootstrap procedure because there
is no direct mapping from 7r§ch) to 7 and 9;. This certainly produces a power loss
but the procedure remains valid because the 1?}1-’5 are computed with the 74, which are
consistent estimates of the true 7 both under the null and alternative hypothesis. To
illustrate that our procedure has power for detecting departure from the null hypothe-
sis of non-causality at a given horizon we ran the following Monte Carlo experiment.
We again took a VAR(16) fitted on our data in first differences and we imposed the
constraints (6.1) - (6.2) so that there was no causality from r to GDP up to horizon

12 (DGP under the null hypothesis). Next the value of one coefficient previously set

to zero was changed to induce causality from r to GDP at horizons 4 and higher:
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Table 30: Summary of causality relations at various horizons for series in first difference

h 1 2 3 4 5 6 7 8 9 10 11 12

NBR -» 7 Fok

r -» NBR
NBR -» P *ok ok Kk *

P —» NBR
NBR -» GDP
GDP -» NBR *

T —> P

P - r

r -» GDP * ok ok k  kk Ak hk kk kk Kk
GDP -» r *hk Ak kk kk Kk

P -» GDP
GDP -» P * *  x

h 13 14 15 16 17 18 19 20 21 22 23 24

NBR -» r

r -» NBR
NBR -» P

P -» NBR
NBR -» GDP
GDP -» NBR *

r -» P

P - r

T o GDP | & *k Hk Ak Kk Kk Kk  *
GDP -» r

P -» GDP
GDP -» P

Note _ The symbols * and *« indicate rejection of the non-causality hypothesis at the
10% and 5% levels respectively.

m3(1, 3) = 6. As 6 increases from zero to one the strength of the causality from 7 to
GDP is higher. Under this setup, we could compute the power of our simulated test
procedure to reject the null hypothesis of non-causality at a given horizon. In Figure
18, the power curves are plotted as a function of 6 for the various horizons. The level
of the tests was controlled through the bootstrap procedure. In this experiment we took
again N = 999 and we did 1000 simulations. As expected, the power curves are flat
at around 5% for horizons one to three since the null is true for these horizons. For
horizons four and up we get the expected result that power goes up as # moves from
zero to one, and the power curves gets flatter as we increase the horizon.

Now that we have shown that our procedure does have power we present causality
tests at horizon one to 24 for every pair of variables in tables 28 and 29. For every

horizon we have twelve causality tests and we group them by pairs. When we say that
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a given variable cause or does not cause another, it should be understood that we mean
the growth rate of the variables. The p-values are computed by taking N = 999. Table
30 summarize the results by presenting the significant results at the 5% and 10% level.

The first thing to notice is that we have significant causality results at short horizons
for some pairs of variables while we have it at longer horizons for other pairs. This is
an interesting illustration of the concept of causality at horizon h of Dufour and Renault
(1998).

The instrument of the central bank, the nonborrowed reserves, cause the federal
funds rate at horizon one, the prices at horizon 1, 2, 3 and 9 (10% level). It does
not cause the other two variables at any horizon and except the GDP at horizon 12
and 16 (10% level) nothing is causing it. We see that the impact of variations in the
nonborrowed reserves is over a very short term. Another variable, the GDP, is also
causing the federal funds rates over short horizons (one to five months).

An interesting result is the causality from the federal funds rate to the GDP. Over
the first few months the funds rate does not cause GDP, but from horizon 3 (up to 20) we
do find significant causality. This result can easily be explained by, e.g. the theory of
investment. Notice that we have the following indirect causality. Nonborrowed reserves
do not cause GDP directly over any horizon, but they cause the federal funds rate which
in turn causes GDP. Concerning the observation that there are very few causality results
for long horizons, this may reflect the fact that, for stationary processes, the coefficients
of prediction formulas converge to zero as the forecast horizon increases.

Using the results of Proposition 4.5 in Dufour and Renault (1998), we know that
for this example the highest horizon that we have to consider is 33 since we have a
VAR(16) with four time series. Causality tests for the horizons 25 through 33 were also
computed but are not reported. Some p-values smaller or equal to 10% are scattered
over horizons 30 to 33 but no discernible pattern emerges.

We next consider extended autoregressions to illustrate the results of section 5. To
cover the possibility that the first difference of the logarithm of the four series may not
be stationary, we ran extended autoregressions on the series analyzed. Since we used a
VAR(16) with non-zero mean for the first difference of the series a VAR(17), i.e. d = 1,

with a non-zero mean was fitted. The Monte Carlo samples with N = 999 are drawn
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in the same way as before except that the constraints on the VAR parameters at horizon
hisfrg.:-',z=0fork= 1,...,pandnotk =1, ..., p+d.

Results of the extended autoregressions are presented in Table 31 (horizons 1 to 12)
and 32 (horizons 13 to 24). Table 33 summarize these results by presenting the signifi-
cant results at the 5% and 10% level. These results are very similar to the previous ones
over all the horizons and variable every pairs. A few causality tests are not significant
anymore (GDP -» r at horizon 5, r -» GDP at horizons 5 and 6) and some causality

relations are now significant (r - P at horizon one) but we broadly have the same

causality patterns.

7. Conclusion

In this paper, we have proposed a simple linear approach to the problem of testing non-
causality hypotheses at various horizons in finite-order vector autoregressive models.
The methods described allow for both stationary (or trend-stationary) processes and
possibly integrated processes (which may involve unspecified cointegrating relation-
ships), as long as an upper bound is set on the order of integration. Further, we have
shown that these can be easily implemented in the context of a four-variable macroe-
conomic model of the U.S. economy.

Several issues and extensions of interest warrant further study. The methods we
have proposed were, on purpose, designed to be relatively simple to implement. This
may, of course, involve efficiency losses and leave room for improvement. For example,
it seems quite plausible that more efficient tests may be obtained by testing directly
the nonlinear causality conditions described in Dufour and Renault (1998) from the
parameter estimates of the VAR model. However, such procedures will involve difficult
distributional problems and may not be as user-friendly as the procedures described
here. Similarly, in nonstationary time series, information about integration order and
the cointegrating relationships may yield more powerful procedures, although at the
cost of complexity. These issues are the topics of on-going research.

Another limitation comes from the fact we consider VAR models with a known fi-

nite order. We should however note that the asymptotic distributional results established
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Table 33: Summary of causality relations at various horizons for series in first difference

with extended autoregressions

h 1 2 3 4 5 6 7 8 9 10 11 12

NBR -» r *

r -» NBR *
NBR -» P dk dk Ak *

P -» NBR
NBR -» GDP
GDP -» NBR

r -» P *

P -» r

r -» GDP * % *k kk Kk kk kk kk
GDP -» r dk dk Ak K

P -» GDP
GDP -» P * %

h 13 14 15 16 17 18 19 20 21 22 23 24

NBR -» r

r - NBR
NBR -» P

P -» NBR
NBR -» GDP
GDP -» NBR *

r - P

P - r

T s GDP | &k %k Hk H*k dk Kk Ak
GDP -» r

P -» GDP
GDP -» P

Note _ The symbols x and %% indicate rejection of the non-causality hypothesis at the
10% and 5% levels respectively.

in this paper continue to hold as long as the order p of the model is selected according

to a consistent order selection rule [see Dufour, Ghysels, and Hall (1994), Potscher

(1991)]. So this is not an important restriction. Other problems of interest would con-

sist in deriving similar tests applicable in the context of VARMA or VARIMA models,

as well as more general infinite-order vector autoregressive models, using finite-order

VAR approximations based on data-dependent truncation rules [such as those used by

Liitkepohl and Poskitt (1996¢) and Liitkepohl and Saikkonen (1997)]). These problems

are also the topics of on-going research.



Chapter 4: Backtesting Value-at-Risk:

a duration-based approach8

1. Motivation

Financial risk model evaluation or backtesting is a key part of the internal model’s
approach to market risk management as laid out by the Basle Committee on Banking
Supervision (1996). However, existing backtesting methods such as those developed
in Christoffersen (1998), have relatively small power in realistic small sample settings.
Methods suggested in Berkowitz (2001) fare better, but rely on information such as the
shape of the left tail of the portfolio return distribution, which is often not available.
By far the most common risk measure is Value-at-Risk (VVaR), which is defined as a
conditional quantile of the return distribution, and it says nothing about the shape of
the tail to the left of the quantile.

We will refer to an event where the ex-post portfolio loss exceeds the ex-ante VaR
measure as a violation. Of particular importance in backtesting is the clustering of vio-
lations. An institution’s internal risk management team as well as external supervisors
explicitly want to be able to detect clustering in violations. Large losses which occur in
rapid succession are more likely to lead to disastrous events such as bankruptcy.

In the previous literature, due to the lack of real portfolio data, the evaluation of
VaR techniques were largely based on artificial portfolios. Examples in this tradition
include Beder (1995), Christoffersen, Hahn, and Inoue (2001), Hendricks (1996), Ku-
piec (1995), Marshall and Siegel (1997), and Pritsker (1997). But recently, Berkowitz
and O’Brien (2002) have reported on the performance of actual Va R forecasts from six
large (and anonymous) U.S. commercial banks.? Figure 19 reproduces a picture from
their paper which shows the VaR exceedences from the six banks reported in standard

deviations of the portfolio returns. Even though the banks tend to be conservative—they

8This chapter has originally been published undert the title “Backtesting Value-at-Risk: A Duration-
Based Approach” in the Journal of Financial Econometrics, 2004, volume 2, number 1, pp. 84-108, by
permission of Oxford University Press.

9Barone-Adesi, Giannopoulos, and Vosper (2002) provides another example using real-life portfolio
returns.
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have fewer than expected violations—-the exceedences are large and appear to be clus-
tered in time and across banks. The majority of violations appear to take place during
the August 1998 Russia default and ensuing LTCM debacle. From the perspective of
a regulator worried about systemic risk, rejecting a particular bank’s risk model due to
the clustering of violations is particularly important if the violations also happen to be
correlated across banks.

The detection of violation clustering is particularly important because of the
widespread reliance on VaRs calculated from the so-called Historical Simulation (HS)
technique. In the HS methodology, a sample of historical portfolio returns using current
portfolio weights is first constructed. The VaR is then simply calculated as the uncon-
ditional quantile from the historical sample. The HS method thus largely ignores the
last 20 years of academic research on conditional asset return models. Time variability
is only captured through the rolling historical sample. In spite of forceful warnings,
such as Pritsker (2001), the model-free nature of the HS technique is viewed as a great
benefit by many practitioners. The widespread use of HS the technique motivates us to
focus attention on backtesting V aRs calculated using this method.

While alternative methods for calculating portfolio measures such as the VaR have
been investigated in for example Jorion (2001), and Christoffersen (2003), available
methods for backtesting are still relatively few. Our contribution is thus the exploration
of a new tool for backtesting based on the duration of days between the violations of
the risk metric. The chief insight is that if the one-day-ahead V aR model is correctly
specified for coverage rate, p, then, every day, the conditional expected duration until
the next violation should be a constant 1/p days. We suggest various ways of testing
this null hypothesis and we conduct a Monte Carlo analysis which compares the new
tests to those currently available. Our results show that in many realistic situations, the
duration based tests have better power properties than the previously suggested tests.
The size of the tests is easily controlled using the Monte Carlo testing approach of
Dufour (2002). This procedure is described in detail below.

We hasten to add that the sort of omnibus backtesting procedures suggested here
are meant as complements to—and not substitutes for—the statistical diagnostic tests

carried out on various aspects of the risk model in the model estimation stage. The
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tests suggested in this paper can be viewed either as a final diagnostic for an internal
model builder or alternatively as a feasible diagnostic for an external model evaluator
for whom only limited, aggregate portfolio information is available.

Our paper is structured as follows: Section 2 outlines the previous first-order
Markov tests, Section 3 suggests the new duration-based tests, and Section 4 discusses
details related to the implementation of the tests. Section 5 contains Monte Carlo ev-
idence on the performance of the tests. Section 6 considers backtesting of tail density

forecasts, and Section 7 concludes.

2. Extant Procedures for Backtesting Value-at-Risk

Consider a time series of daily ex-post portfolio returns, R;, and a corresponding time
series of ex-ante Value-at-Risk forecasts, VaR;(p) with promised coverage rate p, such
that ideally Pr;_; (R; < —VaR;(p)) = p. The negative sign arises from the convention
of reporting the VaR as a positive number.

Define the hit sequence of VaR; violations as

&~
l

0, else

Notice that the hit sequence appears to discard a large amount of information re-
garding the size of violations etc. Recall, however, that the VaR forecast does not
promise violations of a certain magnitude, but rather only their conditional frequency,
i.e. p. This is a major drawback of the VaR risk measure which we will discuss in
Section 6.

Christoffersen (1998) tests the null hypothesis that

I; ~4.i.d. Bernoulli(p)

against the alternative that

I ~ i.i.d. Bernoulli(r)
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and refers to this as the test of correct unconditional coverage (uc)

Hoye:m=p 2.2)

which is a test that on average the coverage is correct. The above test implicitly assumes
that the hits are independent an assumption which we now test explicitly. In order to
test this hypothesis an alternative is defined where the hit sequence follows a first order
Markov sequence with switching probability matrix
l—mo 7
= o1 To1 2.3)
1—myn
where 7;; 1s the probability of an 7 on day ¢ — 1 being followed by a j on day ¢. The

test of independence (ind) is then

Hying : To1 = m13. 2.4)

Finally one can combine the two tests in a test of conditional coverage (cc)

HO,cc Mo =M1 =7p (2.5)

The idea behind the Markov alternative is that clustered violations represent a signal
of risk model misspecification. Violation clustering is important as it implies repeated
severe capital losses to the institution which together could result in bankruptcy.

Notice however, that the Markov first-order alternative may have limited power
against general forms of clustering. The first point of this paper is to establish more
general tests for clustering which nevertheless only rely on information in the hit se-
quence. Throughout the paper we implicitly assume that the VaR is for a one-day
horizon. To apply this backtesting framework to an horizon of more than one day, we

would have to use non-overlapping observations.!°

10We implicitly assume that we observe the return process as least as frequently as we compute the
VaR.
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3. Duration-Based Tests of Independence

The above tests are reasonably good at catching misspecified risk models when the
temporal dependence in the hit-sequence is of a simple first-order Markov structure.
However we are interested in developing tests which have power against more general
forms of dependence but which still rely on estimating only a few parameters.

The intuition behind the duration-based tests suggested below is that the clustering
of violations will result in an excessive number of relatively short and relatively long
no-hit durations, corresponding to market turbulence and market calm respectively.
Motivated by this intuition we consider the duration of time (in days) between two

VaR violations (i.e. the no-hit duration) as
D=1t -t (3.6)

where t; denotes the day of violation number i.!!

Under the null hypothesis that the risk model is correctly specified, the no-hit du-
ration should have no memory and a mean duration of 1/p days. To verify the no
memory property note that under the null hypothesis we have the discrete probability

distribution

Pr(D=d) = (1-p)"'p.

A duration distribution is often best understood by its hazard function, which has
the intuitive definition of the probability of a getting a violation on day D after we have

gone D — 1 days without a violation. The above probability distribution implies a flat

HFor a general introduction to duration modeling, see Kiefer (1988) and Gouriéroux (2000).
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discrete hazard function as the following derivation shows

Pr(D =d)
M) = oy D =)
_ _a-p""p
1-3 50 (1-p)p

= p.

The only memory free (continuous)'? random distribution is the exponential, thus

we have that under the null the distribution of the no-hit durations should be

fexp (D;p) = pexp (—pD). (3.7

In order to establish a statistical test for independence we must specify a (parsi-
monious) alternative which allows for duration dependence. As a very simple case,

consider the Weibull distribution where
fw (D;a,b) = a®bD* ' exp (—(aD)?) . (3.8)

The Weibull distribution has the advantage that the hazard function has a closed

form representation, namely
= ¢’bD"! 3.9)

where the exponential distribution appears as a special case with a flat hazard, when
b = 1. The Weibull will have a decreasing hazard function when b < 1, which corre-
sponds to an excessive number of very short durations (very volatile periods) and an
excessive number of very long durations (very tranquil periods). This could be evidence
of misspecified volatility dynamics in the risk model.

Due to the bankruptcy threat from VaR violation clustering the null hypothesis

of independence is of particular interest. We therefore want to explicitly test the null

!2Notice that we use a continuous distribution even though we are counting time in days. This dis-
creteness bias will be acounted for in the Monte Carlo tests. The exponential distribution can also be
viewed as the continuous time limit of the above discrete time process. See Poirier (1995).
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hypothesis

HO,ind :b=1. (310)

We could also use the Gamma distribution under the alternative hypothesis. The

p.d.f. in this case is
abD*~lexp (—aD)
r(p)

fr(D;a,b)= (3.11)

which also nests the exponential when b = 1. In this case we therefore also have the

independence test null hypothesis as
Hoping:b=1. (3.12)

The Gamma distribution does not have a closed-form solution for the hazard func-
tion, but the first two moments are g and a% respectively, so the notion of excess disper-
sion which is defined as the variance over the squared expected value is simply % Note
that the average duration in the exponential distribution is 1/p, and the variance of du-
rations is 1/p?, thus the notion of excess dispersion is 1 in the exponential distribution.

The above duration tests can potentially capture higher order dependence in the
hit sequence by simply testing the unconditional distribution of the durations. Depen-
dence in the hit sequence may show up as an excess of relatively long no-hit durations
(quiet periods) and an excess of relatively short no-hit durations, corresponding to vi-
olation clustering. However, in the above tests, any information in the ordering of the
durations is completely lost. The information in the temporal ordering of no-hit dura-
tions could be captured using the framework of Engle and Russel (1998)’s Exponential
Autoregressive Conditional Duration (EACD) model. In the EACD(1,0) model, the

conditional expected duration takes the following form
Ei—l [Dz] = wi =w+ aD,-_l (313)

with a € [0,1) . Assuming an underlying exponential density with mean equal to one,
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the conditional distribution of the duration is

feaco (Dil;) = wiiexp (—%) : (3.14)

The null of independent no-hit durations would then correspond to
HO,i'n.d ca=0. (315)

Excess dispersion in the EACD(1,0) model is defined as

1

V[Di)/E[D;}* = 1952

(3.16)
so that the ratio of the standard deviation to the mean duration is above one if a > 0.
In our test specifications, the information set only contains past durations, but it
could be extended to include all the conditioning information used to compute the VaR
for example. This would translate into adding variables other than D;_; into the right-

hand side of equation (3.13).

4. Test Implementation

We will first discuss the specific implementation of the hit sequence tests suggested
above. Later, we will simulate observations from a realistic portfolio return process
and calculate risk measures from the popular Historical Simulation risk model, which

in turn provides us with hit sequences for testing.

4.1. Implementing the Markov Tests

The likelihood function for a sample of T" i.i.d. observations from a Bernoulli variable,

I;, with known probability p is written as

L(I,p)=p"(1-p)" ™" 4.17)
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where T3 is the number of ones in the sample. The likelihood function for an i.i.d.

Bernoulli with unknown probability parameter, 7, to be estimated is
L(I,m)=a"1—-m)" ", (4.18)

The ML estimate of 7, is
1 ="T1/T (4.19)

and we can thus write a likelihood ratio test of unconditional coverage as
LRy, =-2(InL(I,7#;)—InL(I,p)). (4.20)
For the independence test, the likelihood under the alternative hypothesis is
L(I,mo1,m11) = (1 = mo) ™ 7d®r (1 — ryy) 1 1T (4.21)

where T;; denotes the number of observations with a 5 following an ¢. The ML esti-

mates are

fo = To/To (4.22)
iy = Tu/T (4.23)

and the independence test statistic is
LRing=2(InL(I,7to1,711) — In L(I,71)). (4.24)
Finally the test of conditional coverage is written as
LR..=2(InL(I, %01, 711) —InL(I,p)). (4.25)

We note that al] the tests are carried out conditioning on the first observation. The
tests are asymptotically distributed as x2 with degree of freedom one for the uc and ind

tests and two for the cc test. But we will rely on finite sample p-values below.
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Finally, as a practical matter, if the sample at hand has T; = 0, which can easily
happen in small samples and with small coverage rates, then we calculate the first-order

Markov likelihood as
L(I,mop,m1) = (1 — moy) 70 21 (4.26)

and carry out the tests as above.

4.2. Implementing the Weibull and EACD Tests

In order to implement our tests based on the duration between violations we first need
to transform the hit sequence into a duration series D;. While doing this transformation
we also create the series C; to indicate if a duration is censored (C; = 1) ornot (C; = 0).
Except for the first and last duration the procedure is straightforward, we just count the
number of days between each violation and set C; = 0. For the first observation if
the hit sequence starts with 0 then D, is the number of days until we get the first hit.
Accordingly C} = 1 because the observed duration is left-censored. If instead the hit
sequence starts with a 1 then D, is simply the number of days until the second hit and
Ci=0.

The procedure is similar for the last duration. If the last observation of the hit
sequence is 0 then the last duration, Dy ry, is the number of days after the last 1 in the
hit sequence and Cn(ry = 1 because the spell is right-censored. In the same manner
if the last observation of the hit sequence is a 1 then Dy(ry = tner) — tnr)-1 and
Cney = 0.

The contribution to the likelihood of an uncensored observation is its corresponding
p.d.f. For a censored observation, we merely know that the process lasted at least D,
or Dy(r) days so the contribution to the likelihood is not the p.d.f. but its survival
function S(D;) = 1 — F(D;). Combining the censored and uncensored observations,
the log-likelihood is

N(T)-1

InL(D;0) = CilmS(Dy)+(1-C)lnf(D)+ > In(f(Dy))

+CN(T) ln S(DN(T)) + (1 — CN(T)) ll’l f(DN(T))- (427)
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Once the durations are computed and the truncations taken care of, then the likeli-
hood ratio tests can be calculated in a straightforward fashion. The only added com-
plication is that the ML estimates are no longer available in closed form, they must
be found using numerical optimization.!> For the unrestricted EACD likelihood this
implies maximizing simultaneously over two parameters, « and w. For the unrestricted
Weibull likelihood, we only have to numerically maximize it over one parameter since
for a given value of b, the first order condition with respect to a as an explicit solution:*

_ (N(T) =G - Oy \

4.3. Finite Sample Inference

While the large-sample distributions of the likelihood ratio tests we have suggested
above are well-known,'> they may not lead to reliable inference in realistic risk man-
agement settings. The nominal sample sizes can be reasonably large, say two to four
years of daily data, but the scarcity of violations of for example the 1% V a R renders the
effective sample size small. In this section, we therefore introduce the Dufour (2002)
Monte Carlo testing technique.

For the case of a continuous test statistic, the procedure is the following. We first
generate NV independent realizations of the test statistic, LR;, i = 1, ..., N. We denote
by LR, the test computed with the original sample. Under the hypothesis that the risk
model is correct we know that the hit sequence is i.i.d. Bernoulli with the mean equal to
the coverage rate in our application. We thus benefit from the advantage of not having
nuisance parameters under the null hypothesis.

We next rank LR;, ¢ = 0,..., N in non-decreasing order and obtain the Monte

BWe have also investigated LM tests which require less numerical optimization than do LR tests.
However, in finite sample simulations we found that the power in the LM tests were lower than in the
LR tests, thus we only report LR results below.

For numerical stability, we recommend working with a® instead of a, since b can take values close
to zero.

BTesting « = 0 in the EACD(1,0) model presents a potential difficulty asymptotically in that it is on
the boundary of the parameter space. However, the MC method we apply is valid even in this case. See
Andrews (2001) for more details.
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Carlo p-value py(LR,) where

NGN(L 1
pu(LRy) = NI X (429)
with
R 1
Gn(LRo) = ; 1(LR; > LRy) (4.30)

where 1 () takes on the value 1 if * is true and the value 0 otherwise.

When working with binary sequences the test values can only take a countable
number of distinct values. Therefore, we need a rule to break ties between the test
value obtained from the sample and those obtained from Monte Carlo simulation under
the null hypothesis. The tie-breaking procedure is as follows: For each test statistic,
LR;,© = 0,..., N, we draw an independent realization of a Uniform distribution on
the [0; 1] interval. Denote these draws by U;, 2 = 0, ..., N. The Monte-Carlo p-value

is now given by NG (LR
N +1

pn(LRoy) = NT1

(4.31)

with

N N
Gn(LRy) = 1—% Zl 1(LR; < LR0)+% Z; 1(LR; = LRo) 1 (U; > Up). (4.32)
There are two additional advantages of using a simulation procedure. The first is that
possible systematic biases arising from the use of continuous distributions to study
discrete processes are accounted for. They will appear both in LRy and LR;. The
second is that Monte-Carlo testing procedures are consistent even if the parameter value
is on the boundary of the parameter space. Bootstrap procedures on the other hand

could be inconsistent in this case.

S. Backtesting Vo Rs from Historical Simulation

We now assess the power of the proposed duration tests in the context of a Monte Carlo

study. Consider a portfolio where the returns are drawn from a GARCH(1, 1)-t(d) model
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with an asymmetric leverage effect, that is

Rt+1 = Or1V ((d - 2) /d)ZH.l, with
ot = wtao} (V@—2)/d)z—6) +po?

where the innovation z;,s are drawn independently from a Student’s ¢ (d) distribution.
Notice that the innovations have been rescaled to ensure that the conditional variance
of return will be o7, ;.

In the simulations below we choose the following parameterization

a = 0.1
6 = 0.5
B = 0.85

w = 3.9683e —6
d = 8

where w is set to target an annual standard deviation of 0.20. The parameters imply a
daily volatility persistence of 0.975, a mean of zero, a conditional skewness of zero,
and a conditional (excess) kurtosis of 1.5. This particular DGP is constructed to form a
realistic representation of an equity portfolio return distribution.'®

The risk measurement method under study is the popular Historical Simulation

(HS) technique. It takes the VaR on a certain day to be simply the unconditional

quantile of the past T, daily observations. Specifically

VaRy,, = —Percentile({R,}._,_r. ,, ,100p).

From the return sample and the above VaR, we are implicitly assuming that $1
is invested each day. Equivalently, the VaR can be interpreted as being calculated in
percent of the portfolio value.

In practice, the sample size is often determined by practical considerations such as

'8The parameter values are similar to estimates of this GARCH model on daily S&P500 returns (not
reported here), and to estimates on daily FX returns published in Bollerslev (1987).
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the amount of effort involved in valuing the current portfolio holdings using past prices
on the underlying securities. For the purposes of this Monte Carlo experiment, we set
T, = 250 or T, = 500 corresponding to roughly one or two years of trading days.

In practice the Va R coverage rate, p, is typically chosen to be either 1% or 5%, and
below we assess the power to reject the HS model using either of those rates. Figure 20
shows a return sample path from the above GARCH-t(d) process along with the 1% and
5% V aRs from the HS model (with 7, = 500). Notice the peculiar step-shaped VaRs
resulting from the HS method. Notice also the infrequent changes in the 1% VaR.!

The 1% VaR exceedences from the return sample path are shown in Figure 21
reported in daily standard deviations of returns. The simulated data in Figure 21 can
thus be compared with the real-life data in Figure 19, which was taken from Berkowitz
and O’Brien (2002). Notice that the simulated data shares the stylized features with the
real-life data in Figure 19. 18

Before calculating actual finite sample power in the suggested tests we want to give
a sense of the appropriateness of the duration dependence alternative. To this end we
simulate one very long realization (5 million observations) of the GARCH return pro-
cess and calculate 1% and 5% VaRs from Historical Simulation with a rolling set of
500 in-sample returns. The zero-one hit sequence is then calculated from the ex-post
daily returns and the ex-ante VaRs, and the sequence of durations between violations
is calculated from the hit sequence. From this duration sequence we fit a Weibull dis-
tribution and calculate the hazard function from it. We also estimate nonparametrically
the empirical hazard function of the simulated durations via the Kaplan-Meier product-
limit estimator of the survival function [see Kiefer (1988)]. These Weibull and em-
pirical hazards are estimated over intervals of 10 days so if there is a probability p of
getting a hit at each day then the probability that a given duration will last 10 days or

less 1s

10

S PD=4) = Y (1-p)p

i=1

"When T, = 250 and p = 1%, the VaR is calculated as the simple average between the second and
third lowest return.

18Note that we have simulated 1,000 observations in Figure 21, while Figure 19 contains between 550
and 750 observations per bank.
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= 1-(1-p).

For p equal to 1% and 5% we get a constant hazard of 0.0956 and 0.4013 respectively
over a 10-day interval.

We see in Figure 22 that the hazards are distinctly downward sloping which corre-
sponds to positive duration dependence. The relevant flat hazard corresponding to i.i.d.
violations is superimposed for comparison. Figure 22 also shows that the GARCH
and the Weibull hazards are reasonably close together which suggests that the Weibull
distribution offers a useful alternative hypothesis in this type of tests.

Figure 23 shows the duration dependence via simple histograms of the duration
between the violations from the Historical Simulation VaRs. The top panel again
shows the 1% VaR and the bottom panel shows the 5% VaR.

Data and other resource constraints often force risk managers to backtest their mod-
els on relatively short backtesting samples. We therefore conduct our power experiment
with samples sizes from 250 to 1,500 days in increments of 250 days. Thus our back-
testing samples correspond to approximately one through six years of daily returns.

Below we simulate GARCH returns, calculate HS VaR and the various tests in
5,000 Monte Carlo replications. We present three types of results. We first present the
raw power results, which are simply calculated as the frequency of rejections of the
null hypothesis in the simulation samples for which we can perform the tests. In order
to compute the p-values of the tests we simulate NV = 9999 hit sequence samples under
the null hypothesis that the sequences are distributed i.i.d. Bernoulli(p).

In the simulations, we reject the samples for which we cannot compute the tests. For
example, to compute the independence test with the Markov model, we need at least one
violation otherwise the LR test is equal to zero when we calculate the likelihood from
equation (4.26). Similarly, we need at least one non-censored duration and an additional
possibly censored duration to perform the Weibull'® and EACD independence tests.
This of course constitutes a nontrivial sample selection rule for the smallest sample
sizes and the 1% V a R coverage rate in particular. We therefore also present the sample

selection frequency, i.e. the fraction of simulated samples for which we can compute

YThe likelihood of the Weibull distribution can be unbounded when we have only one uncensored
observation. When this happens we discard the sample.
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each test. Finally we report effective power, which corresponds to multiplying the raw
power by the sample selection frequency.

The results of the Monte Carlo simulations are presented in Tables 1 through 6.
We report the empirical rejection frequencies (power) for the Markov, Weibull and
EACD independence tests for various significance test levels, VaR coverage rates, and
backtesting sample sizes. Table 1 reports power for a Historical Simulation risk model
with T, = 500 observations in the rolling estimation samples. Table 2 gives the sample
selection frequencies, that is, the fraction of samples drawn which were possible to to
use for calculating the tests. Table 3 reports effective power which is simply the power
entries from Table 1 multiplied by the relevant sample selection frequency in Table 2.
Tables 4 through 6 shows the results when the rolling samples for VaR calculation
contains T, = 250 observations. Notice that we focus solely on the independence tests
here because the historical simulation risk models under study are correctly specified
unconditionally.

The results are quite striking. The main result in Table 1 is that for inference sam-
ples of 750 days and above the Weibull test is always more powerful than the Markov
and EACD tests in rejecting the HS risk models. This result holds across inference sam-
ple sizes, Va R coverage rates and significance levels chosen. The differences in power
are sometimes very large. For example in Table 1 using a 1% significance level, the 5%
VaR in a sample of 1,250 observations has a Weibull rejection frequency of 69.2% and
a Markov rejection frequency of only 39.5%. The Weibull test clearly appears to pick
up dependence in the hit violations which is ignored by the Markov test.

For an inference sample size 500 the ranking of tests depends on the inference
sample size, VaR coverage rate and significance level in question. Typically either the
Markov or the EACD test performs the best.

For an inference sample size of 250, the power is typically very low in any of
the three tests. This is a serious issue as the backtesting guide for market risk capital
requirements uses a sample size of one year when assessing model adequacy.?’ The
EACD test is often the most powerful in the case of 250 inference observations, which

is curious as the performance of the EACD test is quite sporadic for larger sample sizes.

20We thank an anonymous referee for pointing out this important issue.
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Generally, the EACD appears to do quite well at smaller sample sizes but relatively
poorly at larger sample sizes. We suspect that the nonlinear estimate of the o parameter
is poorly behaved in this application.

Table 2 shows the sample selection frequencies corresponding to the power calcula-
tions in Table 1. As expected the sample rejection issue is the most serious for inference
samples of 250 observations. For inference samples of 500 and above virtually no sam-
ples are rejected.

Table 3 reports the effective power calculated as the power in Table 1 multiplied by
the relevant sample selection frequency in Table 2. Comparing Tables 1 and 3 it is clear
that test which has the highest power in any given case in Table 1 also has the highest
power in Table 3. But the levels of power are of course lower in Table 3 compared with
Table 1 but only dramatically so for inference samples of 250 observations.

Tables 4 shows the power calculations for the case when the VaR is calculated
on 250 in-sample observations rather than 500 as was the case in Tables 1 through 3.
The overall picture from Table 1 emerges again: The Weibull test is always best for
inference samples of 750 observations and above. For samples of 500 the rankings
vary case by case and for 250 observations, the power is generally very low.

Table 5 reports the sample selection frequencies corresponding to Table 4. In this
case the sample selection frequencies are even higher than in Table 2. For a VaR
coverage rate of 5% the rejection frequencies are negligible for all sample sizes.

Table 6 shows the effective power from Table 4. Again we simply multiply the
power in Table 4 with the sample selection frequency in Table 5. Notice again that the
most powerful test in Table 4 is also the most powerful test in Table 6. Notice also that
for most entries the power numbers in Table 6 are very similar to those in Table 4.

Comparing numbers across Tables 1 and 4 and across Tables 3 and 6, we note that
the HS VaR with T, = 500 rolling sample observations often has a higher rejection
frequency than the HS VaR with T, = 250 rolling sample observations. This result
is interesting because practitioners often work very hard to expand their data bases
enabling them to increase their rolling estimation sample period. Our results suggest
that such efforts may be misguided because lengthening the size of the rolling sample

does not necessarily eliminate the distributional problems with Historical Simulation.
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6. Backtesting Tail Density Forecasts

The choice of Value-at-Risk as a portfolio risk measure can be criticized on several
fronts. Most importantly, the quantile nature of the VaR implies that the shape of the
_return distribution to the left of the VaR is ignored. Particularly in portfolios with
highly nonlinear distributions, such as those including options, this shortcoming can
be crucial. Theoreticians have criticized the V a R measure both from a utility-theoretic
perspective (Artzner, Delbaen, Eber, and Heath (1999) and from a dynamic trading per-
spective [Basak and Shapiro (2000). Although some of these criticisms have recently
been challenged Cuoco, He, and Issaenko (2001)], it is safe to say that risk managers
ought to be interested in knowing the entire distribution of returns, and in particular the
left tail. Backtesting distributions rather than V a Rs then becomes important.
Consider the standard density forecast evaluation approach?! of calculating the uni-

form transform variable

Ut = Ft(Rt)

where F;(x) is the a priori density forecast for time ¢. The null hypothesis that the

density forecast is optimal corresponds to
Ui ~ i4.d. Uniform(0,1).

Berkowitz (2001) argues that the bounded support of the uniform variable renders
standard inference difficult. One is forced to rely on nonparametric tests which have
notoriously poor small sample properties. He suggests a simple transformation using

the inverse normal c.d.f.

Zt = ¢_1 (Ut)

after which the hypothesis
Zy ~ 1.3.d. Normal(0,1)

can easily be tested.

21See for example Diebold, Gunther, and Tay (1998).
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Berkowitz further argues that confining attention to the left tail of the distribution
has particular merit in the backtesting of risk models where the left tail contains the
largest losses that are most likely to impose bankruptcy risk. He defines the censored

variable

P Z, if Ry < VaR,
i &Y (VaR,), else
and tests the null that

Z; ~ Censored Normal(0,1,VaRy).

We note first that Berkowitz (2001) only tests the unconditional distribution of Z;.
The information in the potential clustering of the VaR exceedences is ignored.

Second, note that the censored variable complication is not needed. If we want to
test that the transforms of the 100p percent largest losses are themselves uniform, then
we can simply multiply the subset of the uniform by 1/p, apply the transformation and

test for standard normality again.?? That is

Ut/p, if Rt < VaRt
Else not defined

L
U =

We then have that
Z* =71 (U*) ~i4.d. Normal(0,1).

Note that due to the censoring there is no notion of time in the sequence Z*. We
might want to make a joint analysis of both Z}* and the duration between violations
D;. To do this we would like to write a joint density for these two processes under
the alternative. We know that under the null hypothesis that the risk model is correctly
specified the Z7* should be i.i.d. N(0,1), D; should be i.i.d. exponential with mean
1/p, and the processes should be independent. The question is how to write a joint

density for these two processes as the alternative hypothesis knowing that, for example,

22We are grateful to Nour Meddahi for pointing this out.
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the marginal p.d.f. of D; is a Weibull and some other p.d.f. for Z*? Copulas provide a
useful tool for doing so.
A (bivariate) copula is a function C from [0; 1] x [0; 1] to [0; 1] with the following

properties:

1. For every u, v in [0; 1],
C(u,0) =0=C(0,v)

and

C(u,1)=u and C(1,v)=w.

2. For every uy, us, v, Vs in [0; 1] such that u; < up and v; < vg,

C(‘UQ, ’02) — C('U,Q, ’Ul) — C’(ul, ’U2) + C’(ul, ’Ul) Z 0.
In order to explain how copulas can be used we apply Sklar’s theorem [Nelsen
(1998)], which states: Let H be a joint distribution function with margins F' and G.

Then there exists a copula C such that for all z, y in R,
H(z,y) = C(F(z), G(y))-

If F and G are continuous then C is unique. Conversely, if C is a copula and F'and G
are distribution functions then H is a joint distribution function with marginal densities
F and G.

So if we have two densities under the alternative (e.g. f(D;) and g(Z;*)) then
we can easily construct a joint density by applying a copula. Suppose the consid-
ered bivariate copula C(u, v; 8) is a function of a unique parameter # and that we have
C(u,v;8p) = uwv and C(u,v;6) # uv for 6 # 6. This gives us a basis for a test
because C(F(z), G(y); o) = F(z)G(y) means that z and y are independent.

An example of such a copula is the Ali-Mikhail-Haq family of copulas where

1-0(1—w)(1—v)

C(u,v;0) = 6 € [-1,1]
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and we have C(u,v;0) = uv if § = 0. A possible alternative hypothesis could be that
D; is i.i.d. Weibull(a, b), Z}* is i.i.d. N(u,0?) and C(u, v; ) is from the Ali-Mikhail-

Hagq family of copulas. We could then test

Hy : a=p,b=1,u=0,0=1,0=0

H; : atleast one of these equalities does not hold

in a likelihood ratio framework similar to the one considered for the VaR tests above.
Another useful approach could be the graphical procedure proposed by Fermanian and
Scaillet (2003). We plan to the pursue the implementation of this procedure in future

work.

7. Conclusions and Directions for Future Work

We have presented a new set of procedures for backtesting risk models. The chief
insight is that if the one-day V a R model is correctly specified for coverage rate, p, then,
every day, the conditional expected duration until the next violation should be a constant
1/p days. We suggest various ways of testing this null hypothesis and we conduct a
Monte Carlo analysis which compares the new tests to those currently available. Our
results show that in many of the situations we consider, the duration-based tests have
much better power properties than the previously suggested tests. The size of the tests
is easily controlled through finite sample p-values, which we calculate using Monte
Carlo simulation.

The majority of financial institutions use Va R as a risk measure, and many calculate
VaR using the so-called Historical Simulation approach. While the main focus of our
paper has thus been backtesting VaRs from Historical Simulation, we also suggest
extensions to density and density tail backtesting.

The immediate potential extensions to our Monte Carlo results are several. First, it
may be interesting to calculate the power of the tests with different GARCH specifica-
tions using for example Engle and Lee (1999) and Hansen (1994). Second, we could

consider structural breaks in the underlying return models, such as those investigated by
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Andreou and Ghysels (2002). Finally, Hamilton and Jorda (2002) have recently intro-
duced a class of dynamic hazard models. Exploring these for the purpose of backtesting
could be interesting.

We could also consider more complicated portfolios including options and other
derivatives. Examining the duration patterns from misspecified risk models in this case
could suggest other alternative hypotheses than the ones suggested here. We leaves
these extensions for future work.

Finally we stress that the current regulator practice of requiring backtesting on sam-
ples of only 250 daily observations is likely to prove futile as the power to reject mis-

specified risk models is very low in this case.
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Figure 19: Value-at-Risk exceedences from six major commercial banks [from
Berkowitz and O’Brien (2002)].
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Figure 20: GARCH-t(d) Simulated Portfolio Returns with 1% and 5% Value-at-Risk
from Historical Simulation with T, = 500.
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Figure 21: GARCH-t(d) simulated portfolio returns with exeedences of 1% VaRs from
Historical Simulation with T, = 500 reported in standard deviations of returns.
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Figure 22: Data-based and Weibull-based hazard functions of durations between VaR

violations. Historical Simulation risk model on GARCH-t(d) portfolio returns with
T, = 500.

1% Value—-at-Risk

1 1] I i 1 | T 1 1 1
— Long GARCH simulation
08k = = Weibull model |
) ++-+ Constant hazard
0.6 .
0.4
0.2+
o
o] 20 40 60 80 100 120 140 160 180 200
5% Value-at—Risk
1 T ) T T T T 1 1 I
— Long GARCH simulation
= = Weibull model |
0.81 - Constant hazard
0.6F
04
0.2
0 1 1 1 1 1 1 1 1 |

0 20 40 60 80 100 120 140 160 180 200



186
Figure 23: Histograms of duration between VaR violations GARCH-t(d) portfolio re-
turns Historical Simulation risk model with 7, = 500.
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Table 35: Sample selection frequency. Historical Simulation VaR calculated on 500

GARCH(1,1)-t(d) returns.

Test:
Sample size
250

500

750

1000

1250

1500

Coverage rate: 1%

0.778
0.956
0.998
1.000
1.000
1.000

Markov Weibull

0.589
0.891
0.987
0.999
1.000
1.000

EACD

0.598
0.896
0.986
0.997
1.000
1.000

Test:
Sample size
250

500

750

1000

1250

1500

Coverage rate: 5%

0.987
1.000
1.000
1.000
1.000
1.000

Markov Weibull

0.972
1.000
1.000
1.000
1.000
1.000

EACD

0.974
0.999
1.000
1.000
1.000
1.000
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Table 38: Sample selection frequency. Historical Simulation VaR calculated on 250

GARCH(1,1)-t(d) returns.

Test:
Sample size
250

500

750

1000

1250

1500

Coverage rate: 1%

0.877
0.994
1.000
1.000
1.000
1.000

Markov Weibull

0.695
0.975
0.999
1.000
1.000
1.000

EACD

0.706
0.976
0.999
1.000
1.000
1.000

Test:
Sample size
250

500

750

1000

1250

1500

Coverage rate: 5%

Markov Weibull

0.997
1.000
1.000
1.000
1.000
1.000

0.993
1.000
1.000
1.000
1.000
1.000

EACD

0.993
1.000
1.000
1.000
1.000
1.000
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Conclusions générales

Dans cette thése, nous avons étudié plusieurs problémes d’économétrie des séries
chronologiques et de la finance. Les différents sujets abordés ont pour théme commun
la malédiction de la dimension qui est intrinséque de I’étude des séries chronologiques
multivariées.

Dans le premier essai, nous étudions la modélisation de séries multivariées a I’aide
de modéles VARMA. Notre but est de présenter une méthode visant a simplifier 1’uti-
lisation de ces modeles. Notre contribution se fait en deux points. Premiérement, nous
introduisons deux nouvelles représentations VARMA identifiées qui ont la propriété
d’avoir une partie MA trés simple (dans un cas, I’opérateur est diagonal et dans 1’autre,
il est scalaire), ce qui peut faciliter leur utilisation. Deuxiémement, nous proposons
I’utilisation d’une méthode d’estimation qui ne nécessite que trois régressions linéaires.
Cette méthode est une généralisation de celle proposée par Hannan and Rissanen (1982)
pour les modeles ARMA univariés. Nous démontrons que cette méthode d’estimation
est valide sous des hypotheses faibles pour le processus qui gouverne les innovations
(non corrélées et fortement mélangeantes) et nous introduisons un critére d’informa-
tion modifi€é qui donne une estimation convergente des ordres des opérateurs AR et
MA pour nos représentations. Dans une application empirique, nous illustrons les gains
qu’on peut réaliser en utilisant des modeles VARMA plutdt que des modéles VAR pour
obtenir des coefficients d’impulsion.

Dans le deuxiéme essai, nous proposons un nouveau modéle de volatilité multivarié,
le modele Regime Switching Dynamic Correlation. Nous décomposons les covariances
en corrélations et €carts types. La matrice de corrélation suit un modele a changement
de régime : elle est constante a I’intérieur d’un régime, mais différentes d’un régime
a un autre. Les transitions entre les régimes suivent une chaine de Markov. Ce mo-
dele ne souffre pas d’une malédiction de la dimension et il permet le calcul analytique
d’espérance conditionnelle a plusieurs horizons pour la matrice de corrélation et la ma-
trice de variance. Nous illustrons également au moyen d’une application empirique que
ce modele peut avoir une performance inter-échantillon supérieure a celle du modele

Dynamic Conditional Correlation de Engle (2002).
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Dans le troisieme essai, nous présentons des méthodes afin de tester des hypothéses
de causalité a divers horizons, tel que défini dans Dufour et Renault (1998). Nous étu-
dions en détail le cas des modeles VAR et nous proposons des méthodes basées sur des
autorégressions a différents horizons. Bien que les hypothéses de non-causalité consi-
dérées soient non linéaires, ces méthodes ne requiérent que des méthodes de régression
linéaire et la théorie asymptotique gaussienne habituelle. Nous les appliquons 4 un mo-
dele VAR de I’économie américaine.

Dans le quatriéme essai, nous proposons une méthode de tests statistiques pour
I’évaluation des modeles utilisés pour calculer la Valeur-a-Risque d’un portefeuille.
Les modeles de volatilité, tels que celui dont il est question dans le deuxiéme essai,
servent notamment a construire la distribution des rendements d’un portefeuille pour
un nombre donné de périodes dans I’avenir. Cette distribution est I’ingrédient essentiel
aux calculs de la VaR et il est important d’évaluer si elle est bien spécifiée. Les tests que
nous proposons sont basés sur les durées, calculées en nombre de jours, entre les vio-
lations de la VaR. A I’aide de simulations Monte Carlo, nous montrons qu’en situation
réaliste, ces tests ont plus de puissance que les tests avancés précédemment, notamment
ceux de Christoffersen (1998).

L’étude des séries chronologiques multivariées et des problémes dus a la malédic-
tion de la dimension est un sujet de recherche intéressant. Les résultats présentés dans
les différents essais de cette thése ouvrent la voie a d’autres avenues de recherche. Par
exemple, nous pouvons revisiter avec la méthodologie VARMA présentée dans le pre-
mier essai de nombreux résultats obtenus en macroéconomie a I’aide de modéles VAR,
entre autre les tests de causalité a plusieurs horizons dans les modéles VARMA. On
pourrait améliorer les résultats présentés dans le deuxiéme essat, i.e. notre modele de
volatilité multivarié, en permettant un lien entre les corrélations et les écarts types. Le

défi est de le faire sans introduire une malédiction de la dimension.






