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Sommaire

L’objectif de cette thèse est d’étudier divers problèmes d’économétrie des séries

chronologiques et de la finance. Le thème qui relie les différents essais est la malédic

tion de la dimension qui est intrinsèque de l’étude des séries chronologiques multiva

nées.

Dans le premier essai, nous considérons le problème de la modélisation des modèles

VARMA par des méthodes simples qui ne requièrent que des régressions linéaires.

Dans ce but, nous utilisons une méthode d’estimation proposée par Hannan et Rissanen

(1982, Biometrika) pour les modèles ARMA univariés. Nous dérivons les propriétés

asymptotiques de ces estimateurs sous des hypothèses faibles à propos des innovations

(non corrélées et mélangeantes fortes) afin d’élargir la classe de modèles auxquels ils

peuvent être appliqués.

Pour faciliter l’utilisation des modèles VARMA, nous présentons des nouvelles re

présentations identifiées, la forme équation diagonale MA et la forme équation finale

MA, où les opérateurs MA sont respectivement diagonaux et scalaires. Nous présentons

également un critère d’information modifié qui donne des estimations convergentes

des ordres de ces différentes représentations. Pour démontrer l’importance des modèles

VARMA dans l’étude des séries chronologiques multivariées, nous comparons les co

efficients d’impulsion générés par des modèles VARMA et VAR.

Dans le deuxième essai, nous proposons un nouveau modèle pour la variance entre

plusieurs séries chronologiques, le modèle Regime Switching Dynamic C’orrelation.

Nous décomposons les covariances en corrélations et écarts types. La matrice de cor

rélation suit un modèle à changement de régime elle est constante à l’intérieur d’un

régime mais différente entre les régimes. Les transitions entre ceux-ci sont déterminées

par une chaîne de Markov. Ce modèle ne souffre pas d’une malédiction de la dimen

sion et permet le calcul analytique d’espérances conditionnelles sur plusieurs horizons

de la matrice de variance. Nous présentons également une application empirique qui

illustre que notre modèle peut obtenir une meilleure performance interéchantillon que

le modèle Dynamic Conditionat Correlation proposé par Engle (2002, JBES).

Dans le troisième essai, nous examinons des méthodes pour tester des hypothèses

de non-causalité à différents horizons, tel qu’ils sont définis dans Dufour et Renault
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(1998, Econometrica). Nous étudions en détail le cas des modèles VAR et nous propo

sons des méthodes linéaires basées sur l’estimation d’autorégressions vectorielles à dif

férents horizons. Même si les hypothèses considérées sont non linéaires, ces méthodes

ne requièrent que des techniques de régression linéaire de même que la théorie distribu

tionnelle asymptotique gaussÏenne habituelle. Dans le cas des processus intégrés, nous

avons recours des méthodes de régression étendue qui n’exigent pas de théorie asymp

totique non standard. Les méthodes sont appliquées à un modèle VAR de l’économie

américaine.

Dans le quatrième essai, nous proposons des nouveaux tests statistiques pour l’éva

luation des modèles de risque financier utilisés pour le calcul des Valeurs-à-Risque

(VaR), tel que le modèle dont il est question dans le deuxième essai. Ces tests sont

basés sur la durée en jours entre les violations de la VaR. Les résultats de nos simu

lations Monte Carlo montrent que pour des situations réalistes, les tests basés sur les

durées donnent de meilleures propriétés en matière de puissance que ceux précédem

ment avancés.

Mots clés : équation forme finale, critère d’information, représentation faible, co

efficients d’impulsion, corrélation dynamique, chaîne de Markov, causalité indirecte,

autorégression vectorielle, GARCH, évaluation de modèle de risque.

o
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C Summary

The objective of thïs thesis is to study various problems in time series and finan

cial econometrics. The common thread of the various parts is the intrinsic curse of

dimensionality underlying the study of multivariate time series.

In the first essay, we consider the problem of modelling VARMA models by rel

atively simple methods which require linear regressions. For that purpose, we con

sider the regression-based estimation method proposed by Hannan and Rissanen (1982,

Biornetrika) for univariate ARMA models. The asymptotic properties of the estimator

are derived under weak hypotheses for the innovations (uncorrelated and strong mix

ing) so as to broaden the class of models to which it can be applied.

To further ease the use of VARMA models we present new identified VARMA

representations, diagonal MA equationforrn andfinal MA equationforni, where the MA

operators are diagonal and scalar respectively. We also present a modified information

crïterion which gives consistent estimates of the orders of these representations. To

demonstrate the importance of using VARMA models to study multivariate time series

we compare the impulse-response functions generated by VARMA and VAR models.

In the second essay, we propose a new model for the variance between multiple tïme

series, the Regime Switching Dynamic Correlation model. In this model, we decom

pose the covariances into correlations and standard deviations. The correlation matrix

follows a regime switching mode]: it is constant within a regime but different across

regimes. The transitions between the regimes are governed by a Markov chain. This

model does not suffer from a curse of dimensionality and it allows analytic computation

of multi-step ahead conditional expectations of the variance matrix. We also present an

empirical application which illustrates that our model can have a better in-sample fit

of the data than the Dynamic Conditional Correlation model proposed by Engle (2002,

JBES).

In the third essay, we discuss methods for testing hypothesis of non-causality at

various horizons, as defined in Dufour and Renault (1998, Econometrica). We study in

detail the case of VAR models and we propose lineam methods based on running vector

autoregressions at different horizons. While the hypotheses considered are nonlinear,

the proposed methods only require linear regression techniques as well as standard
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Gaussian asymptotic dïstributional theory. For the case of integrated processes, we

propose extended regression methods that avoïd nonstandard asymptotïcs. The meth

ods are applied to a VAR model of the U.S. economy.

In the fourth essay, we propose new statistical tests for backtesting financial risk

models used for computing Value-at-Risk (VaR), like the model we proposed in the

second essay. These tests are based on the duration in days between the violations of

the VaR. Our Monte Carlo resuits show that in realistic situations, the new duration

based tests have considerably better power properties than the previously suggested

tests.

Key words: final equation form, information criterion, weak representation,

impulse-response functions, dynamic conelation, Markov chain, indirect causality,

vector autoregression, GARCH, risk model evaluation.
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C Introduction

Un des problèmes intrinsèques de l’étude des séries chronologiques multivariées

est la malédiction de la dimension. Bien souvent, la complexité et le nombre de pa

ramètres des modèles que l’on tente d’utiliser augmentent avec le nombre de séries

chronologiques, ce qui rend l’analyse de telles séries très difficile, voire impossible. La

ligne directrice de cette thèse est l’étude de méthodes permettant de contourner cette

malédiction de la dimension, pour les séries tant macroéconomiques que financières.

Pour étudier la dynamique des séries chronologiques macroéconomiques, les éco

nomistes se servent la plupart du temps des modèles VAR. Le grand attrait de ces mo

dèles est que leur estimation ne requièrt que des régressions linéaires, ce qui les rend

très faciles d’utilisation.

En revanche, l’utilisation des modèles VAR a deux grands défauts. Le premier est

le manque de parcimonie. Tout comme il est admis que les modèles ARMA sont plus

parcimonieux que les modèles AR pour les séries univariées, les modèles VARMA ont

le potentiel d’être plus parcimonieux que les modèles VAR, surtout lorsqu’on remarque

que des modèles VAR avec des ordres très élevés sont nécessaires pour de nombreuses

séries macroéconomiques.

Le deuxième défaut est que la spécification d’un modèle VAR est très arbitraire

puisque cette classe de modèles n’est pas robuste à l’agrégation temporelle et à la mar

ginalisation. Si un vecteur suit un processus VAR, des sous-vecteurs ne suivent pas

typiquement des modèles VAR (mais des processus VARMA). De la même façon, si un

processus VAR est observé à une fréquence différente, alors la série obtenue ne suit pas

un modèle VAR mais un processus VARMA. Par opposition, l’agrégation temporelle

ou la marginalisation d’un processus VARMA demeure un processus VARMA.

Les économistes persistent tout de même à utiliser seulement les modèles VAR au

lieu d’envisager les modèles VARMA, ce qu’on peut expliquer par deux raisons. La

première est que la représentation VARMA identifiée privilégiée par la littérature éco

nométrique, i.e. la forme échelon, est difficile à manipuler. L’utilisateur doit spécifier

s. les indices de Kronecker (le nombre d’indices est égal au nombre de séries), et les

ordres des polynômes composant les opérateurs AR et MA sont fonction de leur po
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sition relativement à la diagonale. La seconde raison est que la méthode d’estimation

habituellement proposée pour les modèles VARMA est le maximum de la vraisem

blance. Les modèles VARMA sont plus parcimonieux que les modèles VAR mais le

nombre de paramètres peut être élevé, ce qui rend très compliquée la maximisation de

la vraisemblance.

Dans le premier essai de cette thèse, nous présentons une méthode pour la modéli

sation des modèles VARMA qui franchit ces deux obstacles. Dans un premier temps,

nous introduisons deux nouvelles représentations VARMA identifiées, lafonne équa

tion diagonale MA et lafonne équation finale MA, où les opérateurs MA sont respec

tivement diagonaux et scalaires. Ces représentations ont de nombreux avantages. Elles

peuvent être interprétées comme de simples extensions du modèle VAR. Contrairement

à la forme échelon, elles imposent une forme très simple sur la partie MA, celle qui

complexifie l’utilisation des modèles VARMA. Les ordres des polynômes qui compose

la partie MA ne sont pas reliés entre eux, contrairement à la forme échelon.

Dans un second temps, nous proposons une méthode d’estimation qui ne requiert

que trois régressions linéaires. Cette méthode est une généralisation de celle proposée

par Hannan et Rissanen (1982) pour les modèles ARMA. Les estimateurs de la troi

sième régression ont les mêmes propriétés asymptotiques que ceux obtenus par maxi

mum de vraisemblance sous l’hypothèse que les innovations sont gaussiennes. Avec

cette méthode d’estimation, nous combinons un critère d’information qui donne des

estimations convergentes des ordres des polynômes AR et MA.

Pour l’étude des séries financières, la malédiction de la dimension force les éco

nomistes à utiliser des modèles aux dynamiques très simples. Les généralisations mul-

tivariées directes des modèles GARCH univariés, tel que le modèle BEKK de Engle

et Kroner (1995), ne peuvent être appliquées à plus de quatre ou cinq séries sans quoi

la maximisation de la vraisemblance devient prohibitive [voir Ding et Engle (2001)].

Une avenue intéressante pour la spécification des modèles de volatilité multivariés est

la décomposition des covariances en corrélations et écarts types. Le chercheur spécifie

ensuite des modèles pour les écarts types et un modèle pour la matrice de corrélation.

On se débarrasse ainsi de la malédiction de la dimension puisqu’on peut estimer le

modèle deux étapes d’abord pour les écarts types puis ensuite pour la matrice de cor-
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rélation en utilisant les résidus standardisés. Le premier à utiliser cette décomposition

a été Bollerslev (1990), en posant l’hypothèse que les corrélations sont constantes.

L’hypothèse selon laquelle la matrice de corrélation est constante n’étant pas tou

jours appuyée par les données, de nouveaux modèles ont été proposés au cours des

dernières années. Les modèles Dynamic Conditionat Corretations de Engle (2002) et

Multivariate GARCH de Tse et Tsui (2002) avancent plutôt une dynamique de type

GARCH pour la matrice de corrélation la matrice de corrélation est aujourd’hui une

fonction des matrices de corrélation passées et des produits croisés des innovations

standardisées passées.

On préfère ces modèles à ceux qui ont une matrice de corrélation constante, mais

une dynamique de type GARCH pour la matrice de corrélation n’est pas entièrement

satisfaisante. Le fait que les produits croisés des innovations standardisées ne soit pas

borné par -1 et 1 est un problème, puisque cela implique qu’aucun élément de la matrice

de corrélation n’est borné par -1 et 1. Par conséquent, on doit remettre à l’échelle les

matrices obtenues afin de vraiment aboutir à des matrices de corrélation, mais ces mises

à l’échelle introduisent des non-linéarités qui ont pour effet d’empêcher les calculs ana

lytiques d’espérance conditionnelle pour les covariances et corrélations. On s’aperçoit

qu’un modèle qui ne tient pas directement compte des caractéristiques d’une matrice

de corrélation n’est pas satisfaisant.

Dans le deuxième essai, nous proposons un nouveau modèle de volatilité multiva

né, le modèle Regime Switching Dynamic Corretation. Nous décomposons également

les covariances en corrélations et écarts types, mais la matrice de corrélations suit un

modèle à changement de régime elle est constante à l’intérieur d’un régime mais dif

férente entre régimes. Les transitions entre régimes sont déterminées par une chaîne de

Markov. Ce modèle ne souffre pas d’une malédiction de la dimension puisqu’on peut

l’estimer en deux étapes, tout comme les modèles de Bollerslev (1990), Engle (2002),

Tse et Tsui (2002). Notre modèle a aussi l’avantage de permettre le calcul analytique

d’espérance conditionnelle sur plusieurs horizons de la matrice de corrélation, et de la

matrice de variance si un modèle approprié pour les écarts types est employé [le modèle

ARMACH de Taylor (1986)]. Nous présentons également une application empirique

qui montre que notre modèle peut avoir une meilleure performance inter-échantillon
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que celui d’Engle (2002).

Les tests de causalité à plusieurs horizons, tel que définis dans Dufour et Re

nault (199$), présentent également des problèmes associés à l’étude des séries ma

croéconomiques multivariées. Même dans les modèles VAR, les hypothèses de causa

lité à plusieurs horizons sont non linéaires et prennent la forme de contraintes sur des

transformations multilinéaires des paramètres du modèle VAR. L’application des tests

statistiques habituels, de type Wald, par exemple, pourrait générer des matrices de cova

riance asymptotiquement singulières, avec comme résultat que la théorie asymptotique

standard ne s’appliquerait pas à ces statistiques.

C’est pourquoi nous présentons, dans le troisième essai, des méthodes de test

simples pour tester les hypothèses de non-causalité à plusieurs horizons dans les mo

dèles VAR d’ordre fini qui ne requièrent que des méthodes de régression linéaire.

Celles-ci méthodes sont basées sur des autorégressïons vectorielles à multiples hori

zons où on peut estimer les paramètres au moyen de méthodes linéaires. En utilisant

cette approche, on peut tester les restrictions de non-causalité à divers horizons en uti

lisant des critères de type WaId ou fisher, une fois que l’on tient compte de la structure

moyenne mobile des erreurs (qui sont orthogonales aux régresseurs).

Une des raisons d’être des modèles de volatilité multivariés tels que celui que nous

présentons dans le deuxième essai est de prédire la distribution de rendements futurs

d’un portefeuille. Ces prédictions sont nécessaires pour le calcul de la Valeur-à-Risque

(VaR) d’un portefeuille d’actifs financiers. La VaR d’un portefeuille est tout simple

ment un quantile de la distribution des rendements futurs du portefeuille. C’est une

mesure du risque d’un portefeuille: plus ses rendements sont volatils, plus la variance

est élevée, et plus les petits quantiles sont éloignés de la moyenne. Les institutions fi

nancières sont maintenant tenues de calculer ces VaR par, notamment, les Accords de

Basle.

Dans le quatrième essai, nous présentons de nouveaux tests statistiques pour évaluer

si le modèle utilisé pour calculer la VaR est correctement spécifié. Si aujourd’hui la

VaR pour demain et pour un niveau de couverture de 1 % est 10 000$, cela signifie

que demain, la probabilité que ce portefeuille perde plus que 10 000$ est égale à I %.

L’évaluation des modèles utilisés pour calculer les VaR est basée sur la comparaison
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des VaR (ex-ante) et des pertes effectives (ex-post). On crée ainsi une séquence binaire

‘t on marque un 1 pour les jours où les pertes excèdent la VaR et un O pour les jours

où la VaR n’excède pas les pertes.

Si la VaR est calculée de façon optimale, il devrait être impossible de prévoir à

quel moment elle sera violée (quand les pertes vont excéder la VaR), ce qui implique

que la séquence ‘t devrait être indépendante. Si on calcule une VaR avec un niveau de

couverture de p%, alors on devrait excéder la VaRp % des jours. Donc, ce qui nous

intéresse, c’est de vérifier si la séquence I est i.i.d. Bernoulli(p). Des tests basés sur

l’hypothèse alternative d’une chaîne de Markov pour décrire la séquence I ont été

avancés par Christoffersen (199$).

Dans cet essai, nous proposons des nouveaux tests statistiques qui sont basés sur

la durée en nombre de jours entre les violations de la VaR. Si le modèle utilisé pour

calculer la VaR est optimale, alors ces durées devraient être i.i.d. exponentielles de

moyenne l/p. S’il est impossible de prévoir quand la VaR sera violée, il ne peut y

avoir d’effet de mémoire et si la VaR est excédée p % du temps, on devra attendre

1/pjours en moyenne entre les violations. Pour tester cette hypothèse, nous proposons

deux alternatives qui englobent le cas i.i.d. exponentiel la distribution Weibull et le

modèle EACD de Engle et Russe! (199$). À l’aide de simulations Monte Carlo, nous

montrons que pour des situations réalistes, ces tests ont plus de puissance que ceux

proposés précédemment.



C Chapter 1: Linear estimation of weak

VARMA models with a

macroeconomic application

1. Introduction

In time series analysis and econometrics, VARMA models are scarcely used to repre

sent multivariate time series. VAR models are much more widely employed because

they are easier to implement: the latter models can be estimated by least squares meth

ods, while VARMA models typically require nonlinear methods (such as maximum

likelihood).

VAR models, however, have important drawbacks. First, they are typically much

less parsimonious than VARMA models. Second, the family of VAR models is flot

closed under marginalization and temporal aggregation. If a vector satisfies a VAR

model, subvectors do flot typically satisfy VAR models (but VARMA models). Simi

larly, if the variables of a VAR process are observed at a different frequency, the resuit

ing process is flot a VAR process. In contrast, the class of (weak) VARMA models is

closed under such operations. We say that a VARMA model is strong if the innovations

are independent, and it is weak if they are merely uncorrelated.

It follows that VARMA models appear to be preferable from a theoretical view

point, but their adoption is complicated by identification issues and estimation difficul

ties. The direct multivariate generalization of ARMA models does flot give an identified

representation. It follows that a one has to decide on a set of constraints to impose so

as to gain identification. Standard estimation methods for VARMA models (maximum

likeÏihood, nonlinear least squares) require nonlinear optimization which may not be

feasible as soon as the model ïnvolves a few time series, because the number of param

eters can increase quickly.

In this paper, we consider the problem of estimating VARMA models by relatively

simple methods which only require linear regressions. For that purpose, we consider
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a generalization by Hannan and Kavalieris (19$4a) of the regression-based estimation

method proposed by Hannan and Rissanen (1922) for unïvariate ARMA models. Their

method is performed in three steps. In a first step a long autoregression is fitted to

the data. In the second step, the lagged innovations in the ARMA model are replaced

by the corresponding residuals from the long autoregression and a regression is per

formed. In a third step, the data from the second step are filtered so as to give estimates

that have the same asymptotic covariance matrix than one would get with the maximum

likelihood [claimed in Hannan and Rissanen (1982), proven in Zhao-Guo (1985)]. Ex

tension of this innovation-substitution method to VARMA models was also proposed

by Koreïsha and Pukkila (1989), but these authors did not provide a detailed asymptotic

theory for their proposed extension.

Here, we first provide such a theory by showing that the linear regression-based esti

mators are consistent under weak hypotheses on the innovations and how filtering in the

third step gives estimators that have the same asymptotic distribution as their nonlinear

counterparts (maximum likelihood if the innovations are independent and identically

distributed (i.i.d.), or nonlinear least squares if they are merely uncorrelated). In the

non i.i.d. case, we consider strong mixing conditions [Doukhan (1995), Bosq (1998)],

rather than the usual martingale difference sequence (m.d.s.) assumption. By using

weaker assumptions for the process of the innovations we broaden the class of models

to which our method can be applied.’

Second, in order to avoid identification problems and to further ease the use of

VARMA models, we introduce three new identified VARMA representatÏons, the diag

onatMA equationfonn, thefinalMA equationform and the diagonalAR equationfonn.

Under the diagonal MA equation form (diagonal AR equation form) representation, the

MA (AR) operator is diagonal and each lag operator may have a different order qj (p).

Under the final MA equation form representation the MA operator is scalar, i.e. the the

operators are equal across equations. The diagonal and final MA equation form repre

sentations can be interpreted as simple extensions of the VAR model, which should be

appealing to practitioners who prefer to employ VAR models due to their ease of use.

‘For univariate ARMA models Francq and Zakoïan (1998) presents numerous cases where the rep
resentation is only weak.
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The identified VARMA representation that is the most widely employed in the litera

ture is the echelon fonn. Specification of VARMA models in echelon form does flot

amount to specifying the order p and q as with ARMA models. Under this representa

tion, VARMA models are specified by as many parameters, called Kronecker indices,

as the number of time series studied. These indices determine the order of the elements

of the AR and MA operators in a non trivial way. The complicated nature of the ech

elon form representation might be a reason why practitioners are not using VARMA

models, so the introduction of a simpler identified representation is interesting. The

proposed representations may be less parsimonious than the echelon form but since our

estimation method only involve regressions we can afford it.

Thirdly, we suggest a modified information criterion to choose the orders of

VARMA models under these representations. This criterion is to be minimized in the

second step of the estimation method over the orders of the AR and MA operators and

gives consistent estimates of these orders. Our criterion is a generalization of the infor

mation criterion proposed by Hannan and Rissanen (1982), which was corrected later

on in Hannan and Rissanen (1983, 1984b), for choosing the orders p and q in ARMA

models. The idea of generalizing this information criterion is mentioned in Koreisha

and Pukkila (1989) but a specific generalization and theoretical properties are flot pre

sented.

Fourth, the method is applied to U.S. macroeconomic data previously studied by

Bemanke and Mihov (1998) and McMillin (2001). To illustrate the impact of using

VARMA models instead of VAR models to study multivariate time series we compare

the impulse-response functions generated by each model. We show that we can ob

tain much more precise estimates of the impulse-response function by using VARMA

models instead of VAR models.

The rest of the paper is organized as follows. Our framework and notation are in

troduced in section 2. The new identified representations are presented in section 3.

In section 4, we present the estimation method. In section 5, we describe the infor

mation criterion used for choosing the orders of VARMA models under the represen

tation proposed in our work. Section 6 contains resuits of Monte Carlo simulations

which illustrate the properties of our method. Section 7 presents the macroeconomic



9

application where we compare the impulse-response functïons from a VAR model and
VARMA models. Section 8 contains a few concluding remarks. Finally, proofs are in
the appendix.

2. Framework

Consider the following K-variate zero mean VARMA(p,q) model in standard represen
tation:

Yt = + U
- (2.1)

where U is a sequence of unconeÏated random variables defined on some probability
space ($2, A, P). The vectors and U contain the K univariate time series: =

[yt(1), yt(2), . . .
, y(K)]’ and U = [u(1), ut(2), . . . zt(K)]’. We can also write the

previous equation with lag operators:

A(L)Y = B(L)U (2.2)

where

A(L) = ‘K — A1L — •.• — (2.3)

3(L) = IKB1L ““3qV. (2.4)

Let H be the Hilbert space generated by (Y, s < t). The process (Ui) can be
interpreted as the linear innovation of Y:

Ut=Y—EL[}’jHtJ. (2.5)

Also assume that is a strictly stationary and ergodic sequence and that the process

{U} has common variance (Var[UtJ = ) and finite fourth moment (E[Iu(i)I426} <

œ for some 5 > O). We make the zero mean-mean hypothesis only to simplify the
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notation.

Assuming that the process {} is stable,

det [A(z)] O for IzI < 1, (2.6)

and invertible,

det[3(z)J Oforlz <1, (2.7)

it, can 5e represented as an infinite VAR

H(L)Y = U,

where

H(L) = B(L)’A(L)=IK—ZHiL,

or an infinite VMA

=

where

1(L) = A(L)’B(L)=IK—ZPjL.
i=1

The matrices H and !P could be zero past a finite order if det[B(L)] or det[A(L)1

respectively is a non-zero constant. We will denote by a(L) the polynomial in row i

and column j of A(L), and the row i or coïumn j of A(L) by

A, (L) = [ail (L), .. . , aK(L)], (2.)

A.(L) = [ai(L),. . . ,aK(L)j’. (Z9)
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The diag operator creates a diagonal matrix,

diag[a(L)j = diag[aii(L),. . . ,

aii(L) O

= , (2.10)

O aKK(L)

where

a(L) = — — — (2.11)

The function deg[a(L)] returns the degree of the polynomial a(L) and the function

dirn(7) gïves the dimension of the vector
.

We need to impose a minimum of structure on the process {U} because saying that

it is uncorrelated is flot enough to get any significant results. The typical hypothesis

that is imposed in the time series literature is that the U’s are either independent and

identically distributed (i.i.d.) or a martingale difference sequence (m.d.s.). In this work

we do not impose such strong assumptions because we want to broaden the class of

models to which it can be applied. We only assume that it satisfies a strong mixing

condition [Doukhan (1995), Bosq (1998)]. Let {U} be a strictly stationary process,

then its c-mixing coefficient of order h is defined as

c(h) = sup I Pr(B n C) — Pr(B) Pr(C)I , h 1. (2.12)
5E rf Us ,s <t)

CE “f U5,s t+h)

The strong mixing condition that we impose is

<œ for some >0. (2.13)
h= 1

This is a fairly minimal condition that will be satisfied by many processes of interest.
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3. Diagonal VARMA representations

It is important to note that we cannot work with the standard representation (2.1) be

cause it is flot identified. To help us gain intuition on the identification of VARMA

models we can consider a more general representation where A0 and B0 are not iden

tity matrices:

A0 = A1Y1 + + ApYp + B0Û — B1Û1 + + BqUtq. (3.1)

By this specification, we mean the well-defined process

= (A0—A1L— ..._ALP)_l(B0+B1L±...+BL)Û(t).

But we can see that such process has a standard representation if A0 and B0 are

non-singular. To see this we left-multiply (3.1) by A0 and define Ut = A0’BoUt:

= A0’A1Y1 + + A0’A + U(t) —

A0’B1Bo’A0U1 — . — Ao’BqBo’AoUt_q.

Redefining the matrices we get a representation of the type (2.1). With this example

we see that as long as A0 and B0 are non-singular we can transform a non-standard

VARMA into a standard one.

We say that two VARMA representations are equivalent if A(L)’B(L) resuits in

the same operator !P(L). Thus, to insure uniqueness of a VARMA representation we

must impose restrictions on the AR and MA operators such that for a given !P(L) there

is one and only one set of operators A(L) and B(L) that can generate this infinite MA

representation.

A first restriction that we impose is a multivariate equivalent of the coprime prop

erty in the univariate case. We don’t want elements of A(L) and B(L) to “cancel

out” when we take A(L)’B(L). We cail this the Ïeft-coprirne property [see Han

nan (1969), Lûtkepohl (1993a)]. It may be defined by calling the matrix operator

P[A(L), 3(L)] = A(L)1B(L) Ieft-coprime if the existence of operators D(L), À(L),
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and (L) satisfying

D(L)[À(L), (L)] = !P[A(L), B(L)1 (3.2)

implies that D(L) is unimodular, that is det D(L) is a nonzero constant. To obtain

uniqueness of left-coprime operators we have to impose restrictions ensuring that the

only feasible unimodular operator D(L) in (3.2) is D(L) = ‘K There exist more

than one representation which guarantee the uniqueness of the left-coprime operators.

The predominant representation in the literature is the echeton form [see Deistier and

Hannan (1981), Hannan and Kavalieris (1984b), Ltitkepohl (1993a), Ltitkepohl and

Poskitt (1996a)].

Definition 3.1 (Echelon form) Tue VARMA representation in (2.1) is said to be in

echeton fonn tf Hie AR and MA operators A(L) = [a5(L)],=i K and 3(L)

[bjj (L)1,=i K satisfy the foitowing conditions: ail operators (L) and (L) in

the i-th row ofA(L) and 3(L) have Hie same degree p and have thefonn

a(L) 1_ajj,mLm, fori=l,..,K
m=1

a(L) = — aiLm, forj j
m=pj —p, + 1

(L) = bi,Ltm for i, j = 1, .. . , K, with B A0.
m=O

Furthe,; in Hie VAR operator ajj (L),

f min(pi + i,p) fori > j
Pij=

I min(p,p) fori<j

i.e., Pij specifies the nurnberoffree coefficients in the operatora(L)forj i. The row

orders (pi, .. . , pK) are the Kronecker indices and their sum pi is the McMittan

degree. For the VARMA orders we have in generai p = q = mar(py,. . . , pjç).

We see that dealing with VARMA models in echelon form is flot as easy as dealing

with univariate ARMA models where everything is specified by choosing the value of
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p and q. The number of Kronecker indices is bigger than two (if K is bigger than

two) and when choosing Pij we have to consider if we are above or below the diagonal.

Having a summation subscript in the operator a, m = p
— Pij + 1, different across

rows and columns also complicates the use of this representation. The task is far from

being impossible but it is more complicated than for ARMA models. Specification

of VARMA models in echelon form is discussed in Hannan and Kavalieris (1984b),

Ltitkepohl and Claessen (1997), Poskitt (1992), Nsiri and Roy (1992), Nsiri and Roy

(1996), Lûtkepohl and Poskitt (1996b), Bartel and Ltitkepohl (199$). This might be a

reason why practitioners are reluctant to employ VARMA models. Who could blame

them for sticking with VAR models when they probably need to refer to a textbook to

simply write down an identified VARMA representation?

In this work, to ease the use of VARMA models we present new VARMA repre

sentations which can be seen as a simple extensions of the VAR mode!. To introduce

them, we first review another identified representation, the final equationform, which

will refer to as the final AR equationfonn, under which the AR operator is sca!ar {see

Zel!ner and Pa!m (1974), Hannan (1976), Wa!!is (1977), Ltitkepohl (1993a)].

Definition 3.2 (Final AR equation form) The VARMA representation (2.1) is said to

be infinatAR equationfonn if 11(L) a(L)IK, where a(L) 1— a1L — ... — aL?

is a scatar polynomial with a O.

To see how we can obtain a VARMA mode! with a final AR equation form repre

sentation, we can proceed as follows. By standard linear algebra, we have

A*(L)A(L) = A(L)A(L)* det [11(L)] ‘K

where A*(L) is the adjoint matrix of 11(L). On muhiplying both sides of (2.2) by

A*(L), we get:

det [11(L)] Y = A(L)*B(L)Ut.

This representation may flot be attractive for severa! reasons. First, it is quite far

from usual VAR models by exciuding !agged values of other variables in each equation
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[e.g., the AR part of the first equation ïnclude lagged values of yt(1) but no lagged val
ues of yt(2),. . - , yt(K)]. Further, the AR coefficients are the same in ail the equations,
which wiil require a polynomial of higlier order (p K). Second, the interaction between
the different variables are modeled through the MA part of the model, which may have
to be quite complex.

We can obtain our new representations with analogous manipulations. Upon muiti
plying both sïdes of (2.2) by B*(L), we get:

B(L)*A(L)
= det [3(L)] Ut (3.3)

where B(L)* is the adjoint mati-ix of 3(L). We refer to VARMA models in (3.3) as
being in final MA equationfonn.

Definition 3.3 (Final MA equatïon form) The VARMA representation (2.1) is said to
hein final MA equationfonn if 3(L) = b(L)IK, where b(L) = 1 — b1L — ... — bqL1
is a scalar operator With bq O.

The same criticism regarding the parsimony of the final equation fonu would apply
but it is possible to get a more parsimonious rcpresentation by looking at common
structures across equations. Suppose there are common roots across rows for some
coiumns of 3(L), so that starting from (2.1) we can write

= È(L)D(L)U

= det [B(L)] D(L)U (3.4)

where D(L) = diag[di(L), . . . , dK(L)] and d(L) is a polynomial common to
Vi = 1,. . . , K. We see that aliowing non-equal diagonal polynomials in the moving
average as in equation (3.4) may give a more parsimonious representation than in (3.3).
We will cail the representation (3.4) diagonal MA equationform representation.

Q Definition 3.4 (Diagonal MA equatïon form) The VARMA representation (2.1) is
said to be in diagonal MA equationfonn if 3(L) diag[b(L)] = Ii — B1L — ... —

BqL” where b(L) 1 b,iL — ... — bji,qjL, bijq O, and q = maxl<j<K(qj).
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This representation is interesting because contrary to the echelon form it is easy to

specify. We don’t have to deal with mies for the orders of the off-diagonal elements in

the AR and MA operators. The fact that it can be seen as a simple extension ofthe VAR

model is appealing. Practitioners are comfortable usïng VAR models, so simply adding

lags of u(t) to equation j is a natural extension of the VAR model which could give

a more parsimonious representation. It also has the advantage of putting the simple

structure on the MA part, the part which complicates the estimation, instead of on the

AR part as in the final AR equation form. Notice that in VARMA models, it is flot

necessary to include lags of ail the innovations u1(t), , ujç(t) in every equations.

This couid entice practitioners to consider VARMA models if it is combined with a

simple regression-based estimation method. For this representation to be useful, it

needs to be identified. This is demonstrated in Theorem 3.11 below under the following

assumptions and using Lemma 3.8 below

Assumption 3.5 The matrices A(z) and 3(z) have thefoÏlowingfonn:

A(z) = IK—AlZ—»—AZ

3(z) = I_B1z__3qz

Assumption 3.6 B(z) is diagonal:

3(z) diag [b(z)j

with b(z) = 1 — biz —

bjjqjzi, biiqi O.

Assumption 3.7 For each j = 1, .. . K, there are no roots common to A.(z) and

b(z), i.e. there is no value z such that A.(z*) = O and bjj(z*) = O.

Lemma 3.8 Let [A(z), 3(z)] and [À(z). B(z)] be two pairs ofpolynomial matrices

which satisfy the asswnptions 3.5 to 3.7. If R0 is a positive constant such that

det[A(z)] O,det[3(z)]O

det {À(z)] O, det [B(z)] O
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forO < z <R0, and

A(z)’B(z) = À(z)’(z)

forO < IzI <R0, then

11(z) À(z) andB(z) = B(z),Vz

Remark 3.9 In Lemma 3.8, the conditïon

A(z)’B(z) = À(z)’(z)

could be replaced by

B(z)’A(z) = B(z)’À(z)

since by assumption the inverse of B(z) and B(z) exist.

Remark 3.10 The assumptions 3.5 to 3.7 and conditions in Lemma 3.8 allow

det[A(z)] and det[B(z)} to have foots Ofl or inside the unit circle z = 1.

PROOF 0F LEMMA 3.8 Clearly, 11(0) = 3(0) = ‘K and det[A(0)] = det[B(0)] =

1 0. The polynomials det[A(z)] and det[B(z)] are different from zero in a neigh

borhood of zero. In particular, we can choose R0 > O such that det[A(z)] O and

det[B(z)] O for O < zj < R0. It follows that the matrices A(z) and 3(z) are

invertible for O < Izl < R0.

Let

Co={zeCI0<zI<Ro}

and

O (z) = A(z)’B(z)
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for z E G0. Since

= det[A(z)]’

= det[B(z)j’

where A*(z) and B*(z) are matrices of polynomials, it follows that, for z E Go, each

element of A(z)’ and B(z)’ is a rational function whose denominator is different

from zero. Thus, for z é G0, A(z)1 and B(z)1 are matrices of analytic functions. It

follows that the function

!P(z) = A(z)’B(z)

is analytic in the circle O z <R0. Hence, it lias a unique representation of the form

(z)=kz’, zéG0.

By assumption,

(z) = A(z)1B(z) = À(z)’B(z)

for z E G0. Hence, for z E G0,

À(z)A(z)’B(z) = B(z)

À(z)A(z)’ = B(z)B(z)’ A(z) (3.5)

where L\(z) is a diagonal matrix because B(z) and B(z) are both diagonal,

A(z) = diag [6(z)],

where

G

_

= b(z)
b(O) = 1, 6(O) = b(O), j = 1,..., K. (3.6)
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From (3.6), it follows that each 6(z) is rational with no pole in C0 such that 6(O) = 1,

so it can be written in the form

6(z) =

____

where e(z) and f(z) have no common roots, f(z) O for z E Co and 6(O)

e(O) = 1.

From (3.5), ït follows that for j = 1, . . . , K,

=

= 6(z)a(z), j = 1,..., K,

for z E C0.

We first show that (z) must be a polynomial. If f(z) 1, then its order cannot be

greater than the order qi deg[b(z)J for otherwise i(z) would flot be a polynomial.

Similarly, if f(z) 1 and is a polynomial of order less or equal to qj, then all its roots

must be roots of b(z) and a(z), for otherwise b(z) or âj(z) would be a rational

function. If qj > 1, these foots are then common to b(z) and a(z), j = 1, . . . , K,

which is in contradiction with Assumption 3.7. Thus the degree of f(z) must be zero,

and 5(z) is a polynomial.

If 6 (z) is a polynomial of degree greater than zero, this would entai! that bjj (z) and

(z) have roots in common, in contradiction with Assumption 3.7. Thus (z) must

be a constant. Further, S(O) = 1 so that for j = 1,. . . , K,

bjj(z),

= a(z), j = 1. . . , K,

and

O B(z) =

À(z) A(z).
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It should be noted that Assumption 3.7 is weaker than the hypothesis that det[A(L)]

and det[B(L)J have no common roots, which would be a generalization of the usual

identification condition for ARMA models.

Theorem 3.11 IDENTIFICATION 0F DIAGONAL MA EQUATION FORM REPRESEN

TATION. UnderAssumptions 3.5, 3.6, 3.7, and the assumption that the VARMA process

is invertible, VARMA models in diagonal MA equationforni are identtfied.

PR00F 0F THE0REM 3.11 Under the assumption that the VARMA process is invert

ible, we can write

= U

Now suppose by contradiction that there exist operators À(L) and B(L), with B(L)

diagonal and invertible, and À(L) A(L) or (L) L B(L), such that

B(L)-1À(L) = B(L)’A(L)

If the above equality hold, then it must also be the case that

(z)’À(z) = B(z)’A(z), Vz E C0

where C0 = {z E C I O < zI <R0} and R0 > 0. By Lemma 3.8, it follows that

À(z) = A(z)

B(z) = B(z) Vz.

Hence, the representation is unique. D

() Similarly, we can demonstrate that the final MA equation form representation is

identified under the following assumption.
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Assumption 3.12 There are no roots common to A(z) and b(z), i.e. there is no value

z such that A(z*) = O and b(z*) = O.

Theorem 3.13 IDENTIFICATION 0F FINAL MA EQUATION FORM REPRESENTA

TION. UnderAssumption 3.12, VARMA modets in final MA equationform are identi

fied.

PR00F 0F THE0REM 3.13 The proof can be easily adapted from the proof of Theo

rem 3.11 once we replace Assumption 3.7 by Assumption 3.12.

LI

Looking at equation (3.3), we see that it is aiways possible to obtain a diagonal

MA equation form representation starting from any VARMA representation. One case

where we would obtain a diagonal and not final MA representation is when there are

common factors across rows of columns of 3(L) as in (3.4).

One strong appeal of the diagonal and final MA equation form representations is

that it is really easy to get the equivalent (in term of autocovariances) invertible MA

representation of a non-invertible representation. With ARMA models, we simply have

to invert the foots of the MA polynomial which are inside the unit cïrcle and adjust

the standard deviation of the innovations (divide it by the square of these roots), see

Hamilton (1994, Section 3.7). The same procedure could be applied to VARMA models

in diagonal or final MA equation form.

for VARMA representations where no particular simple structure is imposed on the

MA part, at the moment we are not aware of an algorithm to go from the non-invertible

to the invertible representation tough theoretically this invertible representation exist

and is unique as long as det[B(z)] O for z 1 [see Hannan and Deistier (1988,

chapter 1, section 3)]. So it might be troublesome to use a nonlinear optimization with

these VARMA representations since we don’t know how to go from the non-invertible

to the invertible representation.

We can also consider the following natural generaÏization of the final AR equation

form, where we simply replace the scalar AR operator by a diagonal operator.

Definition 3.14 (Diagonal AR equation form) The VARMA representation (2.1) is
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said to be in diagonal AR equation form if A(L) = diag[a(L)] = ‘K — A1L —

— API? where a(L) = 1 — a,1L — ... — andp = maxl<j<K(pj).

Assumption 3.15 For each j = 1, . . . , K, there are no roots common to a(z) and

B.(z), i.e. there is no value z such that ajj(z*) O and B.(z*) = O.

Theorem 3.16 IDENTIFICATION 0F DIAGONAL AR EQUATION FORM REPRESEN

TATION. Under Assumption 3.15, VARMA models in diagonal AR equation form are

identified.

From Theorem 3.11 we cari see that one way to ensure identification is to impose

constraints on the MA operator. This is an alternative approach to the ones developed

for example in Hannan (1971, 1976) where the identification is obtained by restricting

the autoregressive part to be lower triangular with deg[a(L)] deg[a(L)] for j > j,

or in the final AR equation form where A(L) is scalar. It may be more interesting

to impose constraints on the moving average part instead because it is this part which

causes problems in the estimation of VARMA models. Other identified representations

which do flot have a simple MA operator include the reversed echelon canonical form

[see Poskitt (1992)] where we permute the rows of the VARMA model in echelon

form so that the Kronecker indices are ordered from smallest to largest, and the scalar

component model [see Tiao and Tsay (1989)] where we study contemporaneous linear

transformations of the vector process. A general treatment of algebraic and topological

structure underlying VARMA models is given in Hannan and Kavalieris (1984b).

4. Estimation Method

We next introduce elements of notation for the parameters of our model. First, irrespec

tive of the VARMA representation employed we spiit the whole vector of parameters 7

in two parts 7 (the parameters for the AR part) and 72 (MA part):

cD 7 =
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For a VARMA model in diagonal MA equation form, ‘y and 72 are

7i = [ai.,i, . . . , a1.,,. . . , aK.,1,.. . , (4.1)

72 = [b11,1,. . - , bii,q1,. . . , - , (4.2)

while for a VARMA model in final MA equation form, 72

72 = [b1, . . . , bq}. (4.3)

For VARMA models in diagonal AR equation form, we simply invert ‘y and 72:

= [an;, - . . ,an,1, . . - , KK,i, - ,aKK,Pl (4.4)

72 = [b1.,, bi.,q, - , bK.,l, - - , bK.,ql , (4.5)

while for a VARMA model in final AR equation form, ‘y is

(4.6)

The estimation method is in three steps.

Step 1. Estimate a VAR(nT) to approxÏmate the VARMA(p,q) and recuperate the

residuals that we will cail Û:

= — ft1(nw (4.7)

withT> 2 x K x riT.

Step 2. With the residuals from step 1, compute an estimate of the variance matrix

of U, ÛÛ/T and estimate by GLS the following multivarïate regres

sion:

= [B(L)
— ‘K]Ût + et
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to get estimates Â(L) and.(L) of A(L) andB(L). The regression is

=

[>_-‘]

with t = T + max(p, q) + 1. If we define the following vectors

Y_1 = [y_y(i), .. . , yt_i(K),. . . , yt-(l),. . .
, y_(K)]

Û_1 = [û_1(1),. . . , ût_1(K), , t_q(1), , t_q(K)]

y_i(k) = [yt_l(k),...,yt_pk(k)Ï

û_1(k) [û_1(k), . . ,Ût_q(k)]

then the matrix Z_i for the various representations is

Yt—l O

O
•.. Yt_i

Yt_l O
FMA
Lit_1 —

O
•.. Y_i

Yt-i(l)
‘3’DAR
Lit_l —

O

Yt—i(1) Ût_l
5’FAR
Lit_l —

yt_i(K) O

(4.8)

DMA
Lit_l

Ût_i(1) O

O •.• û_1(K)

û_1(1)

û_1(K)

Ui_1 “. O

O O Ui_1

O

O Û_1

O

yt_i(K)

o
where DMA, FMA, DAR and FAR respectively stands for Diagonal MA, Final MA,

Diagonal AR and Final AR equation form.
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Step 3. Using the second step estimates, we first form new residuals

=
- +

initiating with U = O, t max(p, q), and we define

=

=

initiating with X W = O for t max(p, q). We also compute a new estimate of ,

t=max(p,q)+1 ÙÙ/T. Then we regress by GLS Ùt + X — W on with

=

where is just like 2 from step 2 except that it is computed with Ù instead of Û to

obtain regression coefficients that we cail Â and Ê:

—1

. (4.9)
t=max(p,q)+1 t=max(p,q)+1

The properties of the estimation method are summarized in the following three

theorems. Theorem 4.1 is a generalization of resuits from Lewis and Reinsel (1985)

where convergence is demonstrated for i.i.d. innovations. We denote the Euclidean

norm by 113112 = tr(B’B).

Theorem 4.1 VARMA FIRSI STEP ESTIMATES. Under the above hypothesis on Hie

process {}‘} and fnT grows at a rate faster than log T with nT2/T —÷ O then for the

first stage estirnates IlHt(n) — Hill O.

Theorem 4.2 VARMA SECOND STEP ESTIMATES. Under Hie above hypothesis on

the process {} and if riT grows at a rate faster than log T with nT2/T —* O then the

second stage estirnates converge in quadratic mean to their true value.
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Their asyinptotic distribution is given by

(—7) (4.10)

with

ï = E [{z1E-’u}

J E [z_1z-’z_1]

and Z_1 is equat to the matrix 2_i where Û is replaced by U.

Also, if m/T —* O with mT —* oc then the matrix I and J can be consistently

estimated in probability respectivety by

m1 T

ÏT = w(j,mT) (4.11)
tt+IjI

JT
=

(4.12)

with w(j, rnT) = 1 — j/(mT + 1).

Theorem 4.3 VARMA THIRD STEP ESTIMATES. Under the above hypothesis on

the process {Y} and ifnT grows at a rate faster titan log T with nT2/T —* O then the

third stage estimates converge in quadratic mean to tizeir true value.

Their asymptotic distribution is giveiz by

(-) (O,J’ÎJ1) (4.13)

with

Ï = E [{v1E-’u}
j=-œ

J =

and 4_ is equal to tÏte inatrix where Li is replaced by Ut.
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Atso, tf m/T — O with mT — œ tïteïz the matrix Î and J can be consistentÏy

estirnated in probability respectivety by

mT T

Î1 = > w(j,m) {1’û} (4.14)
j=—mr t=t’+j

j1 = (4.15)
t=max(p,q)+1

with t’ max(p, q) + 1 and U are thefiïtered residuats computed with 5’.

Notice the simplicity of this estimation method. Only three regressions are nceded

so we can avoid ail the caveats associated with nonlinear optimizations. This is an

important problem with VARMA models where we typically have to deal with a high

number of parameters and numerical convergence might be hard to obtain. This is

especially important when we consider the fact that the asymptotic distribution of our

estimators, on which we would base our inference, may be a bad approximation to

the finite-sample distribution in high-dimensional dynamic models. See for example

Dufour; Pelletier, and Renault (2002) where we see that even for VAR models the

asymptotic approximation may be unreliable. Because of this, an estimation procedure

which only requires linear methods is interesting since it suggest that simulation-based

procedures — bootstrap techniques for example — should be used, something that would

be impractical if the estimation is based on non-linear optimizations.

It is also important to mention that this procedure is flot specific to the representa

tions considered in this work. The expressions can be easily adapted to other identified

representation, e.g. the echelon form. Since our estimation method is only based on re

gressions we can afford to use a Iess parsimonious representation whereas for noniinear

method it is highly important to keep the number of parameters to a minimum.

For the estimation of VARMA models the emphasis has been on maximizing the

likelihood (minimizing the nonlinear least squares) quickly. There are two ways of do

ing this. The first is having quick and efficient algorithm to evaluate the likelihood2 [e.g.

C 2Expressions for the exact and approximate likelihood of VARMA mode! e presented in Hil!mcr
and Tiao (1979) and theoreticat properties of maximum Iikelihood estimation of VARMA models under
the hypothesis that the innovations follow a m.d.s. is presented in Hannan, Dunsmuir, and Deistlcr
(1980).



28

Luceiio (1994) and the reference therein, Mauiicio (2002), Shea (1989)1. The second

is to find prelimïnary consistent estimates that can be computed quickly to initialize the

optimization algorithm.

We are not the first to present a generalization to VARÏVIA models of the Hannan

and Rissanen (1982) estimation procedure for ARMA models [whose asymptotic prop

erties are further studied in Zhao-Guo (1985) and Saikkonen (1986)]. A similar method

in three steps is also presented in Hannan and Kavalieris (19$4a) where the third step

is presented as a correction to the second step estimates. further relevant resuits con

cerning the approximation of a VARMA process by a long VAR are given in Lewis

and Reinsel (1985), Hannan and Kavalieris (1986), Paparodïtis (1996), Huang and Guo

(1990), Wahlberg (1989). A third step to improve the efficiency of the estimators is

rarely employed, surely because these procedures are often seen as a way to get ini

tial values to startup a nonlinear optimization [eg. see Poskitt (1992), Koreisha and

Pukkila (1989), Liitkepohl and Claessen (1997)].

There are many variations around the innovation-substitution approach for the es

timation of VARMA models. In some of them, we replace the lagged and current

innovations by the corresponding residuals and we do a GLS estimation [Koreisha and

Pukkila (1989) which is a multivariate generalization of Koreisha and Pukkila (I 990a)

and Koreisha and Pukkïla (1990b), Flores de Frutos and Serrano (2002)]. Another is

Spliid (1983), where in the first step a VAR of fixed length (for example p + q) is fitted.

We then have to iterate the second step of the estimation to get consistent estimates.

Another approach to get estimators for VARMA models that do flot require nonlin

car estimation is use the link that exist between the VARMA parameters and the infinite

VAR or VMA representation. This is an extension of a procedure proposed by Durbin

(1959, 1960a, 1960b). With this approach, using a VAR we can estïmate VMA models

[see Galbraith, Ullah, and Zinde-Walsh (2000), which generalizes Galbraith and Zinde

Walsh (1994) and Galbraith and Zinde-Walsh (1997)1 and VARMA models [Koreisha

and Pukkila (1989)].
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4.1. Asymptotic efficiency

We can ask ourselves what is the cost of not doing the nonlinear estimation. For a given

sample size we will certainly lose some efficiency because of the first step estimation.

We can none the less compare the asymptotic variance matrix of our estimates with the

corresponding nonlinear estimates. We first can see that if the innovations are a m.d.s.,

then the asymptotic variance of our linear estimates is the same as the variance of max

imum likelihood estimates under Gaussianity. The variance of maximum likelihood

estimates for i.i.d. Gaussian innovations is gïven in Lûtkepohl (1993a):

1
T

au’ _1auI=ptzm ——-- —-

T1 &y

We can transform this expression so as to obtain an equation more closely related to

our previous resuits. First, we split y in the same two vectors Yi (the AR parameters)

and 72 (the MA parameters), then we compute 8U/a and aU/a-y. We know that

U = - - - App + B1U1 + + BqUtq.

So taking the derivative with respect to 7:

tU

____

8Ut_q
= Z.l:dim(yi),tl + B

a
+ + 3q

a
aut

Z.1:dim(yi),t_1
071

-13(L) Z.1:dim(yy),t_1
07

where Z.1:dzm(y1),t1 is the first dim(-y1) columns of Z_1. Similarly the derivative with

respect to 7 is

3U 8U_i 8Ut_q
= Z.djm(71)+1:djm(y),t_1 + + + 3q

= B(L) Z.dim(y1 )+1:dim(7),L—1
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Combining the two expressions we see that

au
97

so the variance matrix for maximum likelihood estimates I is equal to the matrix J
from the third step estimation. Moreover if U is a m.d.s. we see that we have the

equality J = Î so that the asymptotic variance matrix that we get in the third step of

our method is the same as one would get by doing the maximum Iikelihood.

If the innovations are merely uncorrelated then we can generalize the resuits of

francq and Zakoïan (1998) who prove the consistency of nonlinear Ieast squares for

univariate weak ARMA model. The authors show that the asymptotic distribution of

the estimates are

( -

(o, J’IJ’)

with

I = 4 Cou ut-—; ut_k .

k=—œ
07 07

J = 2E[
C87 7’

7 = {ai,...,a,bi,.. .,bq}.

Without formally proving it we can generalize these expressions for the multivariate

case. Writing the multivariate nonlinear least squares problem and doing a first order

expansion of the first order condition we find that the expression for the asymptotic

covariance matrix of the estimates would again be J’IJ’ with

I = 4 Cou [u ‘ Ut_k

J =

In our previous resuits we saw that aU/a7’ = from this we see that J = 2],
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I = 4Î and our third-step estïmator have the same asymptotic variance-covariance

matrix as maximum likelihood or non-linear least squares estimators depending on the

properties of the innovations. To get a feel for the loss of efficiency in finite sampies

due to replacing the tme innovations by residuais from a long VAR we perform Monte

Carlo simulations and report the resuits in section 6.

5. Estimation of orders in VARMA models

We stili have unknowns in our model, the orders of the AR and MA operators. If

no theory specifies these parameters, we have to use a statistical procedure to choose

them. We propose the following information criterion method to choose the orders for

VARMA models in the different identified representations proposed in Section 3. In

the second step of the estimation we compute for ail p P and qj < Q the foilowing

information criterion:

— lo T”1
log(det ) + dim(7)

T
, 6 > 0. (5.1)

We then choose 15j arid j as the set which minimizes the information criterion. We

assume that the upper bound P and Q on the order of the AR and MA part are bigger

than the true values of p and qj (or that they slowly grow with the sample size). The

properties of and are summarized in the foliowing theorem.

Theorem 5.1 EsTIMATIoN 0f THE ORDER p AND q IN VARMA MODELS. Under

the above hypothesis on the process {}‘} and tinT grows at a rate faster than logT

with nT2/T —* O then j3j and j, j 1,. . . , K, converge in probabitity to their truc

value.

This criterion is a generaiization of the information criterion proposed by Hannan

and Rissanen (1982) which the authors acknowledged that it must in fact be modified

to provide consistent estimates of the order p and q. The original criterion was

2 (log T)6
logu +(p+q)

T
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with > 0. But in Hannan and Rissanen (1983) they acknowledged that à2

is O(nTT—’) and flot O(T’) so the penalty (1ogT)/T is not strong enough. The

authors proposed two possible modifications to their procedure. The simpler is to take

(10g T)’ instead of (log T) in the information criterion so that the penalty on p + q

will dominate log &2 in the criterion. The second, which they favored and was used

in latter work [see Hannan and Kavalieris (1984b)], is to modify the first step of the

procedure. Instead of taking riT = O(logT) they used another information criterion

to choose the order of the long autoregression and they iterated the whole procedure

picking a potentially different p and q at every iteration. A similar approach is also

proposed in Poskitt (1987). In this work we prefer the first solution so as to keep the

procedure as simple as possible.

The literature on information criterion to choose the orderp and q in univariate

ARMA models is vast. The best known criterion are certainly the AIC [Akaike (1973)1,

AICc [Sugiura (1978), Hurvich and Tsai (1989)], FPE [Akaike (1973)], Mallow’s Cp

[Mallows (1973)], SIC [Schwarz (1978)] and HQ [Hannan and Quinn (1979)]. Mc

Quarrie and Tsai (1998) would be a good starting point for interested readers. Another

approach for choosing p and q is to check if the residuals are uncorrelated [see, e.g.,

Pukkila, Koreisha, and Kallinen (1990), Koreisha and Pukkila (1995)].

Much work has also been done on information criterion to choose the order of

VAR models. A good summary of the work in this field is Ltitkepohl (1985) where

he studied the performance of nine different procedures. Methods based on testing for

uncorrelated residuals have also been developed [e.g., Koreisha and Pukkila (1999)].

For the identification of the order of VARMA models, it ail depends on the repre

sentation that is used. Although it was one of the first representation studied, not much

work has been done with the final AR equation form. People felt that this represen

tation gives VARMA models with too many parameters. A complete procedure to fit

VARMA models under this representation is given in Lûtkepohi (1993a): One wouid

first fit an ARMA(p, qi) model to every univariate time series, using maybe the pro

cedure of Hannan and Rissanen (1982). To buiid the VARMA representation in final

AR equation form, knowing that the VAR operator is the same for every equation we

would take it to be the product of ah the univariate AR poiynomials. This would give



33

a VAR operator of order p = p. Accordingly, for the VMA part we would take

q = maxk[qk + Zj=1,jkPi1. It is no wonder that people feel that the final equation

form uses to many parameters.

There has been a lot more work done on the identification of Kronecker indices for

VARMA models in echelon form. The problem has been studied by, among others,

Hannan and Kavalieris (1984b), Poskitt (1992) and Ltitkepohl and Poskitt (1996b).

Non-stationary or co-integrated systems are studied by Huang aiid Guo (1990), Bartel

and Ltitkepohl (1998) and Ltitkepohl and Claessen (1997). Additional references are

given in Ltitkepohl (1993a, Chapter 8).

A complementing approach to specify VARMA models, which is based on Cooper

and Wood (1982), aims at finding simplifying structures via some combinations of the

different series to obtain more parsimonious models. It includes Tiao and Tsay (1989),

Tsay (1989a), Tsay (19$9b), Tsay (1991), Nsiri and Roy (1992), Nsiri and Roy (1996).

6. Monte Carlo Simulations

To illustrate the performance of our estimation method we ran two types of simulations.

For the first type, strong VARMA models were simulated (VARMA models with i.i.d.

Gaussian innovations). The second type of simulations involves weak representations

where the innovations are flot independent nor a m.d.s but merely uncorrelated. This

is doue by time-aggregating a strong VARMA process with non-Gaussian innovations

or an ARCH process. Ail the simuiated models are bivariate so the results are easier

to analyze. The resuits are generated using Ox version 3.30 on Linux [sec Doomik

(1999)]. We performed 1000 simulations for each model.

6.1. Strong VARMA

For the simulations with a strong representation we report results for a sample size

of 250 which represent about 20 years of monthly data, a reasonable sample size

for macroeconomic data. Tables 1 and 2 gives resuits for VARMA models in fi-

na! MA equation form (VARMA(1,1) and VARMA(2,l) respectively), while resuits

for VARMA models in diagonal MA equation form are given in Tables 3 and 4
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(VARMA(1,1) with q = (1, 1) and VARMA(2,1) with q = (1, 1) respectively). We

present the resuits (mean, standard deviations, root mean square error, 5% quantile,

%95 quantile and median) for the second (when the number of parameters does flot

exceed five) and third step estimates, and the maximum likelihood estimates. We em

ployed the likelihood conditïonal on the initial observations, and maximized the like

lihood using the truc value of the parameters as initial values. Samples for which the

optimization algorithm did flot converge were dropped (this happened for less than 1%

of the simulations).

Looking at the RMSE, a first thing to notice is that there can be sizable improvement

in doing the third step. Some of the third step RMSEs in Tables 1 and 3 are more than

50% smaller than for the second step. This is an interesting observation considering

that the third step basically involve only one extra regression. Comparing the third step

RIvISEs and the RMSEs for the maximum likelihood estimates, we sec that the former

are usually no more than 15% bigger. This is also an interesting observation. The

cost of avoiding a numerical optimization, which can become quite challenging as the

number of time series studied or order of the operators increases, appears to be small.

In the top part of these Tables we also present the results for the selection of the

order of the operators using our proposed information criterion. For models in final

MA equation form, we have to select the orders p and q, and for models in diagonal

MA equation, the selection is over p, q1 and q2. Looking at Table 1 and 2, we sec the

most frequently chosen orders are the truc ones, and the criterion will tend to pick a

higher value for q than for p. This result might partially be skewed by the fact that the

simulated models have a highly persistent moving average (b1 = 0.9). For VARMA

models in diagonal equation form (Tables 3 and 4), we get similar results. The orders

which are selected with the highest frequency are the truc ones, but for some models

we pick the wrong orders more than 50% of the time.

These results for the information criterion are fairly sensitive to the value of 6 and

c0, more so for the model with a diagonal representation. This can be compared to non

parametric regressions and the selection of the bandwidth parameter. The performance

of the information cri tenon with respect to these two parameters should be investigated

further.
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The resuits for models in final AR or diagonal AR equation form are presented in

Tables 5 and 6, and Tables 7 and 8 respectively. The resuits are similar. We can sec

big ïmprovements between the second step and third step estimates, and the RIvISEs

for the maximum likelihood estimates are usually 15% smaller than for the third step

estimates. The performance of the information criterion is less satisfactory. We could

have expected the information criterion to give similar resuits since the simulated AR

equation form models are very much related to the MA equation form models (we

simply interchanged the AR and MA operators). What we instead see is that the true

order is chosen less often and in one case (Table 8) the truc order is not the one selected

the most often. One symmetrical result we do observe is 110W a higher AR order tends

to be chosen more often than a higher MA order.

6.2. Weak VARMA

In this work we simulate weak VARMA models, where the innovations are uncor

related but are flot a m.d.s., by two different methods. Both methods are based on

time-aggregation of a strong process. The first approach is to simulate directly weak

innovations, from which we will build the simulated series Y. The second approach is

to simulate a strong VARMA process and then time-aggregate it to obtain the series Y.

From the resuits in Drost and Nijman (1993), we know that the temporal aggrega

lion of a strong GARCH process (where the standardized innovations are i.i.d.) will

give a weak process. Suppose Û is given by the following bivariate ARCH model:

=

= 2+cÛÛ1

where is i.i.d. N(O, 12), H112 is the Cholesky decomposïtion of H and ci is a scalar.

If we consider Û as a stock variable, then temporal aggregation of U over two periods,

i.e.

o Ut =
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will give a weak process. The series U will be uncorrelated but flot a m.d.s., its mean

will be zero and the variance wïll be (2(1 — a2)/(1 — o).

In these examples, because the innovations are flot a m.d.s., we cannot do maxi

mum likelihood. We instead employ nonlinear generalized least-squares (GLS), i.e. we

minimize the nonlinear least squares, compute an estimate of the variance matrix of the

innovations and then do nonlinear GLS. We did not operate this procedure, partly to

reduce the estimation time in our Monte Carlo study, partly because there is no asymp

totic gain in iterating.

Using this method, we sïmulated weak version of the previously simulated VARMA

models in final MA (Tables 9 and 10), diagonal MA (Tables 11 and 12) and diagonal

AR equation form (Tables 13 and 14). We kept the same values for the orders p and q,

and the same values for the AR and MA parameters. The goal of these experiments is

to confirm that the properties of our method does not rely on having i.i.d. innovations.

In our simulations, we took

1.0 0.7

0.7 1.0

= 0.3.

As expected, we get the same resuits as for the cases where the innovations were

i.i.d. Gaussian. We can get big reductions of the RMSEs by doing the third step of

the regression-based estimation method and the RMSEs of the third step estimates are

often slightly bigger than those obtained by nonlinear GLS. It appears that we don’t lose

much by doing only three regressions instead of doing the full non-linear minimization.

The performance of the information criterion with weak VARMA models is also similar

to cases where the VARI\4A models were strong.

Another easy and relevant way to simulate a weak VARMA model is by time ag

gregating a strong one. For univariate time series it bas been shown that if Yt is a

strong ARMA(p,q) then Ymt (we observe the process Yt every m periods) wiIl be an

ARMA(p,p + [(q — p)/m]) where the brackets represent the integer part. But the inno

vations of the aggregated process even tough they are uncorrelated they are flot i.i.d. or

a m.d.s. anymore. The temporal aggregation of ARMA processes bas been extensively
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studied [Paim and Nijman (1984), Nijman and PaIm (1990), Amemiya and Wu (1972),

Drost (1993)1.

The generalization of these resuits to multivariate time series is straightforward.

The time aggregation of a strong VARMA will give a weak VARMA. For example,

take Y a bivariate VARMA(1,1) in final equation form with i.i.d. (0, Z) innovations at

the monthly frequency. If we only have quarterly data then for the process Y3(t) we can

write:

Y3(t) = AY3(tl) + U3(t) — (B — — (A1B1 — — ABlU3(t_l)

We can compute the first autocorrelation which give

P(1) E

= E [{AY3(L) + V3(t+l)} (t)]

AP(0)-AB1Z

1-. 17 — TT (D A Tr tA D A2’TT i2D riwere v3(t+1) — U3(t+1) — —‘1 P11)U3(t+1)1 — P11L)1 P11)U3(t+1)_2 j1_)1U3(t+1)_3

and P(0) = E [Y3(t)Y(t)]. For the second autocorrelation we get

f(2) = E [Y3(t+2)(t)]

E [{AY3(t+l) + V3(t+2) I (t)]

= E [AY3(t+l)Y(t)] + E

= AP(1)

where the last term is zero because V3(t+2) is a linear combination of U3((+2), U3(t+2)_l,

U3(t+2)_2 and U3(t+2)_3 and hence uncorrelated with Y3(). We then see that in general,

we have f(h) — Af(h — 1) = O for h > 1 which imply that Y3(t) is a VARMA(l,1)

and the AR coefficient is A. We can then write

Y3(ti) = AY3 + E3(t+1)

where the E3t’S are uncorrelated and E[E3tE] = Ze. To find the value of e and Z we
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have to solve the following equations:

— e63(_l)}{63 — e63(t_l)}’Ï = E[v3tvt1

—
— = E[v3tv(t_i)]

which give the following system of equations

2E + ezEe’ = 2U + (B — A1)2(B1 - A1)’ + (A1B1 — A12)2(A1B1 - A2)’

-eEE = —A12312.

Unlike in the univariate case we are not aware of any algorithm to solve this system of

equations for the general case. What we can do is solve these equations numericafly

for a given value of A1, B1 and 2.

In our example, we took the model described in Table 5 (an VARMA model in

final AR equation form) and assumed that i’ were monthly stock data and we time

aggregated them to the quarterly frequency. Instead of taking the innovations to be

Gaussian (which is a special case where the aggregated VARMA would be strong) we

take them to be a mixture of two Gaussian distributions with different means (but with

mean zero unconditionally). This will give skewed marginal distributions and we can

appeal to the results of Francq and Zakoïan (1998, Section 2.2.1) to daim that the

resulting VARMA is only weak. We take U to be

Ut pu(1)+(l—p)u(2)

with

t —1 1 0.7
u(1) N(

—1 0.7 1

Q t 0.25 1.75 1.3
‘-‘s N(

0.25 1.3 1.75
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and Pr[p = 1} = 0.2. The different parameters are chosen such that the unconditional

mean of Ut is zero and the variance is the same as with the examples for the strong

VARMA models.

Solving the system of equations for e and Z we have four solutions, two complex

and two real. For the two real solutions, one gave a non-invertible MA operator and the

other an invertible MA operator. The invertible solution is:

0.0593618 —0.14134

0.20598 0.296472

2.64155 0.650962

0.650962 1.70611

Using these resuits we report one set of simulations. Table 15 contains resuits for

a sample size after aggregation of 200. For the selection of the order p and q with a

sample size of 200 we get resuits similar to those in table 5. For the estimates of the

AR and MA parameters we get resuits similar to the cases of VARMA models with i.i.d

innovations. Again the RMSEs are smaller for the third step estimates compared to the

second step and just like in Table 6 the third step estimates and the nonlinear least

squares have the same RMSEs. This is again an indication that we don’t necessarily

loose efficiency by flot doing the nonlinear estimation.

7. Application to macroeconomics time series

To illustrate our estimation method and the gains that can be obtain by using a more par

simonious representation, we fit VARMA and VAR models to six macroeconomic time

series and compute the impulse-response functions generated by each model. What

people typically do to get the impulse-response functions is first fit a VAR to their

multiple time series and then get the implied infinite VMA representation. If the time

series are not stationary this representation can’t be interpreted as a VMA representa

tion but its coefficients can be computed none the less. The order of the VAR required

for macro series is usually high. For example, Bernanke and Mihov (199$) uses a

VAR(13) to model six monthly macroeconomic time series when about 30 years of



40

data are available. The resulting standard errors for the impulse-response functions are

very large, like in most macroeconomic study. We can ask ourselves how much of this

is due to the fact that so many parameters are estimated. To try to answer this we will

study the impulse-response functions generated by VARMA models estimated on the

same data.

For this exercise we take the time series from Bernanke and Mihov (199$). They

consist of the log of the real GDP (gdprn), total bank reserves (tri), nonborrowed re

serves (nbreci), federal funds rate (fyff), log of the GDP defiator (pgdpm), log of the

Dow-Jones index of spot commodity prices (psccom). These are monthly data and

cover the period Januaiy 1962 to December 1996. The monthly data for real GDP and

the GDP deflator were constmcted by state space methods, using a list of monthly in

terpolator variables and assuming that the interpolation error is describable as an AR( 1)

process. Both total reserves and nonborrowed reserves are normalized by a 36-month

moving average of total reserves. The series are plotted in Figure 1.

Our example is based on McMillin (2001) who compare numerous identification

restrictions for the structural effects of monetary policy shocks using the same dataset

as Bernanke and Mihov (199$). One of the model studied is a VAR applied to the first

difference of the series, in order, gdpm, (psscorn-pgdpm), Jff, nbreci, tri, psscorn.

With an argument based on Keating (2002), the author state that using this orderirig of

the variables the Cholesky decomposition, based on long-run macroeconomic restric

tions, which are described in an appendix, of the variance matrix of the innovations wiIl

identify the structural effects of the policy variable nbrecl without imposing any con

temporaneous restrictions among the variables. Since the model is in first difference,

the impulse-response at a given order is the cumulative shocks up to that order.

By fitting a VAR(12) to these series we get sensibly the same impulse-response

functions and confidence band as in McMillin (2001) . They are plotted in figure 2.

The impulse-response function for the output and federal funds rate tends to zero as

the order increase which is consistent with the notion that a monetary variable does

flot have a long term impact on real variables. The impulse response of the price level

3The magnitude of the IRF for gdprn is smaller and the confidence band for gdpm andj5ff are tighter
than in McMillin (2001).
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increase as we let the order grow and does flot revert to zero.

We next estimate VARMA models for the four representations proposed in this

work. Selection of the orders for the two diagonal representations is more complicated

now that we are studying six time series. If we take the maximum order of the diagonal

operators to be ten, then we would have to peffonn the second step of the estimation

method more than one million times. We instead impose that the order of the diagonal

operators are equal, SO we only have to minimize the information criterion over two

parameters.

The information criterion picked the following orders for the dïfferent representa

tions: VARMA(1,7) for the final MA equation form (6 = 0.1, c0 = 1), VARMA(3,3)

for the diagonal MA equation fonn (6 = 0.1, c0 = 1/2), VARMA(12,1) for the final

AR equation form (6 = 0.1, c0 2/3), VARMA(l6,4) for the diagonal AR equation

form (6 = 0.1, c0 = 1/3). Looking at the impulse responses for VARMA models

with parameters p and q close to the above values for the respective representations,

the following orders give impulse-response functions doser to the ones generated by

the VAR(12): VARMA(5,5) for the final MA (Figure 3), VARTVIA(5,1) for the diago

nal MA (figure 4), VARMA(12,5) for the final AR (Figure 5), VARMA(12,5) for the

diagonal AR (Figure 6).

The behavior of the impulse-response function for the federal funds rate from the

VARMA models are similar to what we obtained with a VAR. The closest match is

given by the VARMA in final MA representation. We sec an initial decrease in the

federal funds rate, followed by a retum to the initial level. The VARMA models are

generating a smaller initial decrease -0.13 to -0.2 percentage point versus -0.32 for the

VAR.

For the price level the VARMA models are giving the same pattem as the VAR

model but the amplitude of the impact is smaller. The VARMA model in final AR

equation form gives the smallest impact.

The shape of impulse-response functions generated by the VARMA models for

the output variable are also similar to the one from the VAR model, except that the

amplitude is smaller. The initial impact is negative, then output goes up, and return to

it’s original level after reaching a peak. 0f the four VARMA representations, the final
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MA equation form gives the resuit closest to the VAR model but theinitial reduction is

more important and the impulse-response is peaking a few months earlier.

What is the most interesting is the behavior of the confidence hands for the

VARMA’s impulse-response functions. For the output and the federal funds rate se

ries, we see that the hands are much smaller for the VARMA models and they shrink

more quickly as the horizon increases compared to the VAR model. This resuit should

flot be so surprising since we expect that there should be no long-term effect of the p01-

icy variable on these two variables so the uncertainty about the long term effect should

decrease as the horizon increases. The situation is different for the price level. For

this variable the confidence band grows with the order. Again this is flot so surprising

because we expect that a change in the non-borrowed reserves should have a long-term

impact on the price level. With a non-dying impact it is natural that the uncertainty

about this impact can grow as time passes.

From this example, we see that VARMA models in final MA or diagonal MA equa

tion form are giving resuits the closest to what we would obtain with a VAR model.

This result could be expected since these models are simple extensions of the VAR

approach. The introduction of a simple MA operator allows the reduction of the re

quired AR order so we can get more precise estimates, which translate into more precise

impulse-response functions.

8. Conclusion

In this paper we propose a modeling and estimation method which ease the use of

VARMA model. We first propose new identified VARMA representations, the final

MA equation form and the diagonal MA equation form. These two representations are

simple extensions of the class of VAR models where we add a simple MA operator,

either a scalar or diagonal operator. The addition of a MA part can give more parsi

monious representations, yet the simple form of the MA operators does not introduce

undue complications.

To ease the estimation we consider the problem of estimating VARMA models

by relatively simple methods which only require linear regressions. For that purpose,
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we consider a generalization of the regression-based estimation method proposed by

flannan and Rissanen (1982) for univariate ARMA models. Our method is in three

steps. In a first step a long VAR is fitted to the data. In the second step, the lagged

innovations in the VARMA model are replaced by the conesponding lagged residuals

from the first step and a regression is performed. In a third step, the data from the

second step are filtered and another regression is performed. We show that the third step

estimators have the same asymptotic variance as their nonlinear counterpart (Gaussian

maximum likelihood if the innovations are i.i.d., or generalized nonlinear least squares

if they are merely uncorrelated). In the non i.i.d. case, we consider strong mixing

conditions, rather than the usual martingale difference sequence assumption. We make

these minimal assumptions on the innovations to broaden the class of models to which

thïs method can be applied.

We also propose a modifled information criterion that gives consistent estimates of

the orders of the AR and MA operators of the proposed VARMA representations. Ibis

criterion is to be minimized in the second step of the estimation method over a set of

possible values for the different orders.

Monte Carlo simulation resuits indicates that the estimation method works well

for small sample sizes and the information criterion picks the tme value of the order

p and q most of the time. These resuits holds for sample sizes commonly used in

macroeconomics, i.e. 20 years of monthly data or 250 sample points. b demonstrate

the importance of using VARMA models to study multivariate time series we compare

the impulse-response functions generated by VARMA and VAR models when these

models are applied to the dataset of macroeconomic time series used by Bemanke and

Mihov (1998).
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9. Appendïx: Proofs

Lemma 9.1 DAvYD0v (1968). Let U and V be random variables measurable witÏi

respect to F2t,c, and .F, respectivety. Let r1, r2, r3 be positive numbers. Assume that

IUIITÏ <ooandWVWT2 <oowhere = (E[UI1T)h/T. Jfr’+r’+r’ = 1, then

there exists a positive constant C independent of U, V and n, such that

IE[UVI - E[UIE[V1 <CU1 V2 ((n))/r

Lemma 9.2 IBRAGIMOV (1962). If the random process (y) is strictty stationary

and satisfies the strong mixing condition (2.12), with

for some 6 > O, and if

then

= E {(yt — E[ytl)2] + 2ZE[(yt — E[yt])(yt+ — E[yt+])J.
j=1

Moreovei f u O and E[yt] O, then

Y + + Yt > 1 [z
_212f <Z Tœ je U

Lemma 9.3 INHNITE VAR. If the VARMA model is invertible and if T gmws at a
K -1ratefasterthen logT, then >=, Zm=nr+i lTjj,mI o(T )forz = 1,..., K.

PRoof 0F LEMMA 9.3 The matrix B(L)’ can be seen has its adjoint matrix divided

by its determinant. Since i’ is invertible, the foots of det 3(L) are outside the unit

G
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circle and so the elements of 11(L) = B(L)’A(L) decrease exponentially:

7Tij,m) Cpm, Vi,j.

withc> OandO <p <1. fromthis

:; ?Tij,m

71 tflT+1 j1 tflT+l

pflT+l

=cK
l—p

If n grows at a rate faster than 10g T then TpflT wiIl tend to zero since p < 1. EJ

Lemma 9.4 C0vARIANcE ESTIMATION. If the process {} is a strictty stationary
VARMA process with (Ui) uncorrelated, E[Iut(i)14+261 < oofor some 6> 0, c-rnixing

with Z°° (h)2/(26) <œ and ifn/T —* O then

y_(k)y_5(k’) — E[yt_r(k)yt3(k’)1 0 Vk k’.

PR00F 0f LEMMA 9.4

First notice that by stationarity,

E Y_T(k)Yt_5(k’)] — E[yt_(k)yt_(k’)] = 0.
tflT+l

Now taking the variance,

Var
T

Yt_r(k)Yt_s(k’)]

= Goy [yt_r(k)y_s(k’); yi_(k)ytt(k’)]
t=1 t’=l

Q =
Goy [y(k)yt_(k’) ; ye_r(k)ytr_s(k’)]

t=1 t’=t+s—r+l
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+ Cou [yt_r(k) y5(k’) ; yttr(k)yt_3(k’)]
t’zl tt’+s—T+1

T—(s—T) t’+(s—r)

+ Goy [yt_r(k)y_s(k’); yt’_T(k)yt’_s(k’)l
t’=l+(s—r) t=t’—(s—r)

(s—r+1) t’+(s—r)

+ Cou [y_T(k)yt_S(k’); yt_r(k)yti_s(k’)]
t/=1 t=1

T t+(s—r)

+ Cou [yt_T(k)y_5(k’) ; yt’_r(k)yt_s(k’)] (9.1)
t=T—(s—r) t’=t—(s—r)

For the first two terms of equation (9.1), Using Davydov’s inequality (lemma 9.1), the

strong mixing hypothesis and the finite fourth moment we know that

Z Cou [y_r(k)yt_8(k’); yt’_T(k)yt’_s(k’)]i
t’=t+s—r+l

Z [C 1 (y(k)y8(k’) W2+6

t’=t+s—r+l

— t — $ + T —

<QQ

from which we conclude that the first two terms converge to zero at rate 1/T. For the

other three terms, since these covariances are finite, the sums divided by T2 will also

converge to zero.

E

PRoof 0F THE0REM 4.1

We first introduce some additional matrix norms:

2 tBBt
IBI2 = sup , (9.2)

tO LL

(9.3)

o
lBIIœ = maxIbj.? (9.4)
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where (9.2) is the largest eigenvalue of B’B. Useful inequalities relatïng these norms

are given in Horn and Johnson (1985, p. 313)

IIABl2 fIAWWBW2, (9.5)

ABI(2 IfAI2IBj, (9.6)

IIBII IIBIIiI1BlI. (9.7)

In the first step estimation, we regress

T K

Yt(i) = 1r,tyt_z(j) + et(i) (9.8)
1=1 j=1

when in fact

Yt(i) = ij,tYtt(j) +Ut(). (9.9)
t=1 j=1

Let

B(nT) =
_Ynt1.

t=nT + 1

Then OLS applied to (9.8) gives:

= [*i.,1,... ,

= B(nT)
t=ni+l

= B(nT)’
T—nT

{i.t_1 +Ut()}

tflT+l t1

= Hj.(nT) + B(nT)
T—nT { +

tflT+l lflT+l

Rearranging the elements,

Hi.(flT) — H.(nT) = Z T—nT { +
tflT+l tflT+l
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Ê(nTy’ Y_1u(i)

tflT+l

From which we get, using inequalities (9.5) to (9.7) and the fact that Ê(nT) is symmet

ric,

WHi.(nT) - IIÊ(nT)’W2IIV1TW + (TT)’I!2WV2TW

IJB(71T)’IIlI[VlTII + I (T)’II1 IV2TW (9.10)

where

T

ViT
T T

tflT+l t=nr+1

T-nT Z Y1[ut(i)-e(i)]
tflT+l

V2
= T—nT Z Y1n(i)

tflT+l

Firstly, IV22 can be expanded into

IIV2TII2 = tT(V2TV2T)

= (T —flT)2 Z Z u(i)n’(i)Y_1Y1_1
tflT+l t’flT+l

= (T—ni)2 Z Z t()t’() (Y_l(k)Yt1_t(k))
tflp+lt’=flT+l k=1 1=1

= (T —flT)2
Z Z

k=1 t=1 tflT+l t’flT+1

Taking the expectation,

E [I(V2Tl121
= (T nT)2 Z Z Z Cou

o — k=1 t1

As in the proof of Lemma 9.4, using Davydov’s inequality, the strong

mixing hypothesis and the finite fourth moment, it can be shown that
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C” Goy Qut(i)yt_t(k); u’(i)y’_1(k)) is bounded by co, with 0 < c0 < oc,

that

2 KnT
E [WV2TW ] T-nT

—*0

since riT ïs chosen such that nT/T —* 0.

Similarly, for V1TI2

rr 2
V

(T _nT)2 [ Z Y1[u(i) - et(i)]] [ Y1[u(i) - et(i)]]
tflr+l t=ni+l

= (T-nT)2 Z Z ytt(k) [t() - et(i)]ytt(k) [Ut’() - et’(i)]
t=nr+1 t’=flT+l k=1 1=1

= (T _nT)2 Z Z y-j(k) [ Z 7TiimYtm(J)]
t=flT+1t’flr+1k 11 m=nT+ljr=l

œ K

y_t(k)
m’=nr+l j’l

T T K T œ K K

= (TnT)2 Z Z ZZ Z Z Z Z
tflT+l t’flT+l k=1 1=1 m=nT+l j=1 m’=nr+l j’z1

ij,m7riy,mtYt_t (k)y_ (j)y’—1 t k) Yt’—rn’ (j’)

Again is in the proof of Lemma 9.4, when taking the expectations of IV1TW2 using

Davydov’s inequality and the strong mixing hypothesis, we know that the sum over t’

is bounded so that for some c9, O <c0 < oc,

œ K K

E [WV1TWÏ
T Z Z Z Z COlfij,mlCijt,m’

m=nT+ fll’=T17+1 j1 j’1

—*0

using the resuit from Lemma 9.3.

For WÊ(nT)’Wl and (nT)’D, the existence of Ê(nT)’ is guaranteed by a

lemma that can be found in Tiao and Tsay (1983). The argument is the following. It is
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clear that Ê(nT) is a symmetric non-negative definite matrix. To show that it is positive

definite take c = [ci, . . . Ck ]‘ be any arbitrary vector and consider

T /nT K

C’B(flT)C =

tflT+l j=i k=i

If c’Ê(n)c = 0, then

T K

C(J1)K+kyt_J(k) = O for t = T + 1, . . . , T
j=i k=i

which since T> 2KnT, is a system of linear equations of KnT unknowns and at least

KnT equations. Since is continuous and non deterministic, this implies that c = 0.

Ibis proves that Ê(nT) is positive definite. Denoting by B(nT) the (KnT X KnT)

matrix of the corresponding covariances instead of the empirical covariances, we can

use a similar argument to show that B(n1) is also positive definite.

We next show that the sum of the elements along a row of B1 is uniformly bounded

in n1 and the row number. If we take the sum along the row h = (i — 1)K + j

KnT

B(n)

K n’

= E[yt_(i)yt_t(k)]
k=i t=1

KnT 7cc K \fœ K

= Z>ZE (\Z1I)ivUnt_i_u(v)) (Z ZIJkV/Ufut_l_U(u’)

k=i 1=1 u=O v=1 zil=Ov’=l

K r co K cc K

= ,J)kV,,U,E [ut__(v)ut_t_’ (e’)]
k=i 1=1 u=O v=1 u’=Dv1

K T K cc K

= Z Z Z
k=1 1=1 v=i u’=Ov’=l

K cc K T K

= )Z hI3kv,u ) >
k1 ii’=O v’=i 1=1 v=i

which is bounded because the ï”s decreases exponentially. This property also holds Éor
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B(nT)’. If ït was flot the case we would have

B(nT)’B(nT) = I.

B(nT)1B(nT)iflT

with an (K nT x 1) vector of ones. Sïnce B(nT)i1 gives a vector of bounded
elements, B(nT)’ must have the sum of elements bounded along any row.

From lemma 9.4 we know that each element of B (riT) 3T converges in quadratic
2 TOO

mean to zero and that B(nT) — BflT <co(KnT) /T. Hence, IB(nT) — BII —* O
and the sum of the elements along a row of is bounded. It foÏlows that the two
terms on the right-hand side of equation (9.10) converge in quadratic mean to zero.

Li

PRoof 0F THE0REM 4.2 If we denote by Z1 the equivalent of Zt1 which contains
the truc innovations u(k) instead of the residuals û(k),

T -1 T

= [-] [1L’’ (Z17 + Ui)]

= [Z 1L’-’z1] +

[i’ti] [2L’1u]

Firstly, we show that L’ — Z:

T-n
UU

T

= T-nT
(nT(L)) (...)‘tflT+l

f T-n
(nT(L)(L)u)(...)’LJ

tflT+l

= T-nT
([IJ(+(nT(L)(L)_IK)]u) (...)‘tflr+l
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T-nT
([IK+(ftnT(L)_H(L))(L)ÏUt) (•••)‘

tflT + 1

= T-nT
([u+(ftnT(L)H(L))]) (...)‘

tflT+l

p

using the resuits from Theorem 4.1 where we showed that ((frT(L)
— H(L)II O.

To show that _1_12_1/T converge to J = E[Z1’Z_1] in probabil

ity, since —* we only have to show that

• Yt-k (i)Ytl (j)/T —* E[ytk (i)Ytt (i)1

• ûtk(i)Ut1(j)/T -÷

• YZ=i Ytk(Z)Utt(J) -

The first is proved in lemma 9.4 and the second can be proved in a similar manner.

We can easily prove the third by using resuits for the previous two and Theorem 4.1.

Similarly, 2_1L’—’Z_1/T converge also to J.
We next study 2_i_1Ut/T. Using similar caiculus we see that it converge

in probability to zero. Combining ail these resuits we can conclude that ‘ — ‘y —-+ O.

For the asymptotic distribution, using Ibragimov’s central iimit theorem we can

conclude that

(o,î)

with

ï ({z_1z’u} {z1z’u_}].

From this,

O _‘y)(0,J1ÏJ1).
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From the preceding resuits, it is obvious that J can be consistently estimated by

JT =

trflT+l

and using theorem 2 of Newey and West (198fb), we know that ÏT Ï if we take

i4/T —* O with mT oc. LI

PR00F 0F THE0REM 4.3

First we can rewrite X, W and as

T1/

=

We can also rewrite Û + X
— W as

=

= + Ê(L)’U + —

= + [1K + O(T’12)] u.

With this, the regression becomes

T
-1

T

= > (û + x - w)
t=max(pq)+t t=max(p,q)+1

—1

=

t=max(p,q)+1 t=max(p,q)+1

—1

L’U +O(T’)
t=max(p,q)+1 t=rnax(p,q)+1

just like in the proof of theorem 4.2 we see that’ —y = O(T’12). Using Ibragimov’s
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central limit theorem we conclude that

-) --÷ v (o, J-’ÎJ)

with

Î =

i=-oo

J E

andjust lïke in the proof of theorem 4.2 the matrix Î and J can be consistently estimated

respectively by

m1 T

ÎT w(j,mT) {‘û}
t=max(p,q)+1+Ij

JT= >
t=max(p,q)+1

PR00F 0F THE0REM 5.1

Take the difference between the information criterion for given values of the orders

p and q, and its true value (for the true values Po q0 and 2)

(b T)’
log(det ) — log (Jet + [dim 7(p, q) — dim 7(Po, qo)]

First, consider the case where p < Po or q < q0. In this case, as T grows to

infinity, eventually log (Jet ‘) > log(det 7) because of the left-coprime property. So

eventually we must have p Po and q> q0 because the difference of the two criterions

will be positive. Second, consider the case where p > p or q> q0. We will first study

the behavior of t’ for the case p = Po and q q0. Dropping the inf after the first
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equality and using the subscrïpt O for tme values of a parameter we get:

=zÛtÙ
tflT+l

= [A(L)_(B(L)_IK)Û] [...]‘
tflT + 1

= [A(L)-(B(L)_I1(L)] [...]‘
tflr+1

tflT+l

=
- (3(L) _IJ)B0(L)1B0(L)(L)] y’[...]’

tflT+l

= [xL-BL_IIBoL-’CTL+BoL’AoL]’[...j’.
t=n1 + 1

whereCT(L) = 30(L)fI(L)—A0(L) and(L) = A(L)—B(L)B0(L)’A0(L). From

previous calculus we know that

{B0(L)A0(L)} {B0(L)’A0(L)}’
tflT+l

= zUtUt,
flT+l

=

For the cross-product involving (L) vie see that

{(L)} {(L)}’
t=n1 + 1

= {[A(L) - B(L)B0(L)’A0(L)]} {[A(L)
- B(L)Bo(L)’A0(L)]}’

t=n1 + 1

= {[A(L)A0(L)’30(L)
- B(L)]U} {[A(L)A0(L)’30(L)

- 3(L)JU}’
tflT+l

= O(T)
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because A(L)A0(L)’B0(L) — B(L) is O(T—’/2). We have similar resuits for ail the

remaining cross-product except for

{[B(L)
- IK1Bo(L)1GflT(L)} {[B(L)

- IK1Bo(L)’GflT(L)}’.
t=flT+l

We saw previously that Bftt(nT) — Htjj = O(nTT12) so we have the same

resuit for CUT(L), i.e. = O(nTT/2). Combining this with

the fact that y’
— O(T—1/2) we can conclude that

{[3(L)
- IK]BO(L)GnT(L)} f... }‘ = O(nT’).

t=flT + 1

Combining these resuits we see that forp Po and q = q0, L’ = Zi. + O(nTT’)

and equivalently

det L’ det Z0 + O(nTT’).

For the case wherep > Po, q q0 with either p or q greater then their true value,

even though the model might flot be identified in this case, for the minimization of

det L’ we can not do any worse than in the case where p = Po q = q0 so the infimum

wiil yield the same resuit than for the case p Po and q = qo. So eventually

1o T’
det Z — det Z0 + [dirn7(p, q) — dim7(po, qo)]

g

because the penalty on the number of parameters wiÏl dominate. So if to select the

orderp and q we use an information criterion such as

1+s

log(detL’) +
(.)tloT)

(9.11)

where 6> 0, we will getj5
— Po —* q0 since log(det L’) —log(det Z0) O(TiTT’).

o D
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Table 1: Strong final MA equation form VARMA(l,l). The simulated model is a
strong VARMA(l,1) in final MA equation form with ai(1, 1) = 0.5, a1(1, 2) = —0.6,
ai(2, 1) = 0.7, ai(2, 2) = 0.3 and b1 = 0.9, . The variance of the innovations is 1.0
and the correlation is 0.7. Sample size is 250, the length of the long AR is riT = 20,
the number of repetition ïs 1000. The parameter in the criterion is = 0.3.

____

0 1 2 3 4 5 6
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.000 0.565 0.109 0.054 0.011 0.001 0.000
2 0.000 0.060 0.190 0.040 0.013 0.004 0.002
3 0.000 0.000 0.015 0.050 0.000 0.000 0.000
4 0.002 0.000 0.000 0.000 0.000 0.000 0.000
5 0.001 0.000 0.000 0.000 0.000 0.000 0.000
6 0.00 1 0.000 0.000 0.000 0.000 0.000 0.000
Value Average Std. dey. RMSE 5% 95% Median

Second step
a1(1, 1) 0.5 0.4255 0.0596 0.0954 0.3282 0.5221 0.4287
ai(1, 2) -0.6 -0.6385 0.0520 0.0647 -0.7247 -0.5539 -0.6397
ai(2, 1) 0.7 0.6686 0.0561 0.0643 0.5733 0.7592 0.6709
ai(2,2) 0.3 0.2120 0.0555 0.1040 0.1201 0.3066 0.2131

b1 0.9 0.8127 0.0566 0.1041 0.7225 0.9046 0.8141
Third step
ai(1, 1) 0.5 0.4985 0.0502 0.0502 0.4122 0.58 10 0.4997
ai(1, 2) -0.6 -0.5883 0.047 1 0.0486 -0.6624 -0.5097 -0.5899
ai(2, 1) 0.7 0.6825 0.0549 0.0576 0.5945 0.7657 0.6844
ai(2,2) 0.3 0.3130 0.0558 0.0573 0.2322 0.3921 0.3100

b1 0.9 0.8964 0.0327 0.0329 0.8438 0.9480 0.8968
MLI
a1(1, 1) 0.5 0.4945 0.0486 0.0489 0.4105 0.57 18 0.4959
a;(1, 2) -0.6 -0.6084 0.0440 0.0448 -0.6793 -0.5363 -0.6096
ai(2, 1) 0.7 0.7002 0.0494 0.0494 0.6173 0.7787 0.7009
a1(2, 2) 0.3 0.2887 0.045 1 0.0465 0.2135 0.3630 0.2886

b1 0.9 0.8868 0.0253 0.0285 0.8442 0.9272 0.8880
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Table 2: Strong final MA equation form VARMA(2, I). The simulated model is a
strong VARMA(2,1) in final MA equation form with ai(1, 1) = 0.9, a1(1, 2) = —0.5,
a1(2,1) = 0.3, ai(2,2) = 0.1, a2(1,1) = —0.1, a2(1,2) = —0.2, a2(2,1) = 0.1,
a2(2, 2) = —0.15 and b1 = 0.9. The variance of the innovations is 1.0 and the corre
lation is 0.7. Sample size is 250, the length of the long AR is T = 20, the number of
repetitïon is 1000. The parameter in the criterion is S = 0.3.

p\qII O J 2 3 4 5 6
0 0.000 0.001 0.059 0.131 0.027 0.001 0.001
1 0.000 0.012 0.075 0.033 0.010 0.001 0.000
2 0.000 0.343 0.166 0.104 0.019 0.001 0.001
3 0.000 0.001 0.011 0.002 0.001 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Value Average Std. dey. RMSE 5% 95% Median

Third step
ai(1,1) 0.90 0.9186 0.1001 0A018 0.7546 1.0774 0.9210
ai(1, 2) -0.50 -0.4826 0.0905 0.0922 -0.6327 -0.3279 -0.4829
ai(2, 1) 0.30 0.2843 0.0873 0.0887 0.1415 0.4247 0.2860
ai(2,2) 0.10 0.1461 0.1119 0.1210 -0.0391 0.3279 0.1458
a2(1, 1) -0.10 -0.0815 0.0896 0.0914 -0.2281 0.0634 -0.0794
a2(1, 2) -0.20 -0.1773 0.1103 0.1126 -0.3522 0.0099 -0.1833
a2(2, 1) 0.10 0.0766 0.1020 0.1046 -0.0917 0.2401 0.0794
a2(2,2) -0.15 -0.0939 0.1235 0.1356 -0.2825 0.1182 -0.1005

b1 0.90 0.9094 0.0759 0.0765 0.7814 1.0272 0.91 16
MLE
ai(1, 1) 0.90 0.8756 0.0843 0.0877 0.7382 1.0130 0.8777
ai(1, 2) -0.50 -0.4972 0.0876 0.0876 -0.6409 -0.35 18 -0.4980
a1(2, 1) 0.30 0.2964 0.0858 0.0859 0.1496 0.4376 0.2985
a(2, 2) OJO 0.0792 0.0939 0.0962 -0.0749 0.2361 0.08 10
a2(1, 1) -0.10 -0.0904 0.0836 0.0842 -0.2328 0.0452 -0.0893
a2(1, 2) -0.20 -0.2208 0.0961 0.0983 -0.3815 -0.0585 -0.2260
a2(2, 1) 0.10 0.1209 0.0893 0.0917 -0.0300 0.2678 0.1230
a2(2, 2) -0.15 -0.1744 0.0997 0.1026 -0.3359 -0.0060 -0.1739

b1 0.90 0.8811 0.0341 0.0390 0.8202 0.9312 0.8838
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Table 3: Strong diagonal MA equation form VARMA(1,1). The simulated model is a
strong VARMA(I,1) in diagonal MA equation form with ai(1, 1) 0.5, ai(1, 2)
—0.6, ai(2, 1) = 0.7, a1(2, 2) = 0.3 and b(1) = 0.9, b1(2) = 0.7. The variance of
the innovations is 1.0 and the correlation is OE7. Sample size is 250, the length of the
long AR is riT = 20, the number of repetition is 1000. The parameter in the criterion is
6 0.3.

(p, q1, q2) frequency (p, q1, q2) Frequency

1,1,1 0.579 2,2,2 0.022
1,2,1 0.124 1,4,1 0.018
1,1,2 0.076 2,2,1 0.014
1,3,1 0.060 1,5,1 0.013
1,1,3 0.026 2,1,1 0.011

Value Average Std. dey. RMSE 5% 95% Median
Second step
a1(1, 1) 0.5 0.4282 0.0573 0.0919 0.3339 0.5172 0.4300
ai(1,2) -0.6 -0.6433 0.0507 0.0667 -0.7275 -0.5606 -0.6451
a1(2, 1) 0.7 0.6734 0.0491 0.0559 0.5911 0.7524 0.6742
a1(2,2) 0.3 0.2312 0.0536 0.0872 0.1447 0.3204 0.2311

b1(1) 0.9 0.8146 0.0681 0.1092 0.6985 0.9272 0.8142
b1(2) 0.7 0.6358 0.0695 0.0946 0.5184 0.7447 0.6375

Third step
a1(1, 1) 0.5 0.5069 0.0627 0.0630 0.4267 0.58 19 0.5074
a1(1, 2) -0.6 -0.5952 0.0490 0.0492 -0.6716 -0.5 135 -0.5958
a1(2, 1) 0.7 0.6967 0.0421 0.0422 0.6246 0.7663 0.6980
a1(2, 2) 0.3 0.3017 0.0459 0.0459 0.2281 0.3798 0.2992

b1(1) 0.9 0.8882 0.0416 0.0433 0.8201 0.9526 0.8895
b1(2) 0.7 0.6937 0.0520 0.0523 0.6107 0.7813 0.6936

MLE
ai(1, 1) 0.5 0.4967 0.0433 0.0434 0.4263 0.5638 0.5004
a1(Î,2) -0.6 -0.6114 0.0446 0.0460 -0.6848 -0.5378 -0.6125
ai(2, 1) 0.7 0.6994 0.0419 0.0419 0.6301 0.7675 0.7006
a1(2, 2) 0.3 0.2894 0.0432 0.0445 0.2 159 0.3602 0.2875

b1(1) 0.9 0.8878 0.0316 0.0339 0.8325 0.9378 0.8893
b1(2) 0.7 0.6937 0.0452 0.0457 0.6200 0.7652 0.6952
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Table 4: Strong diagonal MA equation form VARMA(2, 1). The simulated model is a
strong VARMA(2,l) in diagonal MA equation form with ai(1, 1) = 0.9, ai(1,2) =

—0.5, a1(2, 1) = 0.3, a1(2, 2) 0.1, a2(1, 1) 0.1, a2(1, 2) = —0.2, a2(2, 1) = 0.1,
a2(2, 2) = —0.15 and b1(1) = 0.9, b1(2) = 0.7. The variance of the innovations is 1.0
and the correlation is 0.7. Sample size is 250, the length of the long AR is riT = 20,
the number of repetition is 1000. The parameter in the criterion is = 0.2.

(p,qi, q2) Frequency (p, q1, q) Frequency

2,1,1 0.263 2,1,0 0.047
1,2,1 0.224 2,4,0 0.031
2,3,0 0.068 0,3,1 0.025
1,3,1 0.055 1,4,1 0.018
2,3,1 0.054 2,3,2 0.018

Value Average Std. dey. RMSE 5% 95% Median
Third step
ai(1, 1) 0.90 0.9194 0.0997 0.1016 0.7548 1.0842 0.9185
a1(1, 2) -0.50 -0.5094 0.0893 0.0898 -0.6603 -0.3665 -0.5104
ay(2, 1) 0.30 0.3033 0.080 1 0.0801 0.1685 0.4306 0.3047
a;(2,2) 0.10 0.1122 0.1652 0.1657 -0.1433 0.3959 0.1080
a2(1, 1) -0.10 -0.0724 0.0887 0.0930 -0.2180 0.0707 -0.07 12
a2(1, 2) -0.20 -0.1927 0.1242 0.1244 -0.3875 0.0220 -0.1989
a2(2,1) 0.10 0.0961 0.1140 0.1141 -0.1122 0.2644 0.1095
a2(2,2) -0.15 -0.1231 0.1426 0.1451 -0.3298 0.1417 -0.1365

b1(1) 0.90 0.8934 0.0784 0.0787 0.7620 1.0148 0.8982
b1(2) 0.70 0.7100 0.1455 0.1458 0.4807 0.9689 0.7063

MLE
a1(1, 1) 0.90 0.8789 0.0841 0.0867 0.7432 1.0168 0.8804
a1(1, 2) -0.50 -0.4997 0.0879 0.0879 -0.6476 -0.3555 -0.4990
a1(2, 1) 0.30 0.2960 0.0796 0.0797 0.1617 0.4238 0.2988
ai(2, 2) 0.10 0.0739 0.1199 0.1227 -0.1341 0.2619 0.0768
a2(1, 1) -0.10 -0.0827 0.0827 0.0845 -0.2225 0.0556 -0.08 10
a2(1,2) -0.20 -0.2278 0.1084 0.1119 -0.4039 -0.0492 -0.2289
a2(2, 1) 0.10 0.1206 0.0869 0.0893 -0.0303 0.2580 0.1225
a2(2, 2) -0.15 -0.1754 0.1059 0.1089 -0.3471 0.0078 —0.1764

b1(1) 0.90 0.8875 0.0402 0.0421 0.8177 0.9468 0.8908
b(2) 0.70 0.6794 0.0869 0.0893 0.5248 0.8079 0.6892
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Table 5: Strong final AR equation form VARMA(1,1). The simulated model is a strong
VARJVIA(1,l) in final AR equation form with a1 = 0.9, b(1, 1) = 0.5, b(1, 2) —0.6,
b(2, 1) = 0.7, b(2, 2) = 0.3. The variance of the innovations is 1.0 and the correlation is
0.7. Sample size is 250, the length of the long AR ÏS nT = 15, the number of repetition
is 1000. The parameter in the criterion is 6 0.2.

p\q 0 1 2 3 4

0 0.000 0.000 0.000 0.000 0.000
1 0.000 0.484 0.002 0.000 0.000
2 0.000 0.178 0.007 0.001 0.000
3 0.000 0.113 0.001 0.000 0.000
4 0.000 0.089 0.003 0.000 0.00 1
5 0.000 0.042 0.001 0.000 0.000
6 0.000 0.076 0.002 0.000 0.000

Value Average Std. dcv. RMSE 5% 95% Median
Second step

a1 0.9 0.8861 0.0298 0.0329 0.8326 0.9279 0.8907
b1(1, 1) 0.5 0.4956 0.0979 0.0980 0.3413 0.6583 0.493$
b1(1, 2) -0.6 -0.605 1 0.0976 0.0977 -0.7693 -0.4425 -0.6045
b1(2, 1) 0.7 0.7030 0.0980 0.0980 0.548 1 0.8730 0.7005
b1(2, 2) 0.3 0.2890 0.1002 0.1008 0.1302 0.4499 0.2877
Third step

0.9 0.8932 0.0234 0.0244 0.8507 0.9261 0.8957
b1(1, 1) 0.5 0.4978 0.0570 0.0570 0.4010 0.5878 0.4986
b1(1, 2) -0.6 -0.5945 0.0584 0.0587 -0.6853 -0.4999 -0.5963
b1(2, 1) 0.7 0.698$ 0.0574 0.0574 0.6052 0.79 13 0.7007
b1(2, 2) 0.3 0.299$ 0.059$ 0.059$ 0.2027 0.3947 0.2995
MLE

a1 0.9 0.8963 0.0220 0.0223 0.8570 0.9284 0.8990
b1(1, 1) 0.5 0.4998 0.0496 0.0496 0.4165 0.5794 0.5006
b1(1, 2) -0.6 -0.5998 0.0496 0.0497 -0.6766 -0.521$ -0.6012
b1(2, 1) 0.7 0.7028 0.0484 0.0485 0.6224 0.7785 0.7054
b1(2, 2) 0.3 0.298$ 0.0495 0.0495 0.2193 0.3806 0.2961
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Table 6: Strong final AR equation form VARMA(l,2). The simulated model is a strong
VARMA(1,2) in final AR equation form with a1 = 0.9, b1(1, 1) = 0.9, b1(1, 2) = —0.5,
b1(2,1) = 0.3, b1(2,2) = 0.1, b2(1,1) —0.1, b2(1,2) = —0.2, b2(2,1) 0.1,
b2(2, 2) = —0.15. The variance of the innovations is 1.0 and the correlation is 0.7.
Sample size is 250, the length of the long AR is riT = 15, the number of repetition is
1000. The parameter in the criterion is 5 = 0.5.

p\q 0 1 2 3 4 5

0 0.000 0.000 0.000 0.000 0.000 0.000
1 0.000 0.160 0.161 0.000 0.001 0.000
2 0.090 0.236 0.142 0.001 0.000 0.000
3 0.039 0.051 0.041 0.000 0.000 0.000
4 0.012 0.018 0.016 0.001 0.000 0.000
5 0.007 0.011 0.003 0.000 0.000 0.000
6 0.005 0.005 0.00 1 0.000 0.000 0.000

Value Average Std. dey. RMSE 5% 95% Median
Third step

a1 0.90 0.8959 0.0262 0.0265 0.8456 0.9331 0.8994
b1(1,1) 0.90 0.8955 0.0910 0.0911 0.7501 1.0495 0.8949
b1(1, 2) -0.50 -0.5004 0.0860 0.0860 -0.6472 -0.3608 -0.5004
b1(2, 1) 0.30 0.3000 0.0874 0.0874 0.1596 0.4458 0.2993
b1(2, 2) 0.10 0.0950 0.0870 0.0871 -0.0448 0.2373 0.0944
b2(1, 1) -0.10 -0.0953 0.0949 0.0950 -0.2477 0.07 16 -0.0946
b2(1, 2) -0.20 -0.2035 0.0995 0.0995 -0.3704 -0.0393 -0.1994
b2(2,1) 0.10 0.1016 0.0870 0.0870 -0.0315 0.2441 0.1012
b2(2, 2) -0.15 -0.1502 0.0917 0.0917 -0.3014 -0.0069 -0.1463
MLE

0.90 0.8953 0.025$ 0.0263 0.8484 0.9326 0.8987
b1(i, 1) 0.90 0.9049 0.0908 0.0909 0.7620 1.0572 0.9010
b1(1,2) -0.50 -0.5042 0.0856 0.0857 -0.6510 -0.3646 -0.5033
b1(2, 1) 0.30 0.3032 0.0873 0.0874 0.1635 0.450 1 0.3042
b1(2,2) 0.10 0.0972 0.086$ 0.0869 -0.0424 0.2395 0.0961
b2(1,1) -0.10 -0.0991 0.0953 0.0953 -0.2536 0.0657 -0.1005
b2(1, 2) -0.20 -0.2071 0.0988 0.0991 -0.3725 -0.0450 -0.2040
b2(2, 1) 0.10 0.1050 0.0866 0.086$ -0.0286 0.2459 0.1050
b2(2,2) -0.15 -0.1568 0.0911 0.0914 -0.3139 -0.0162 -0.1507
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Table 7: Strong diagonal AR equation form VARMA(1,1). The simulated model is a
strong VARMA(1,1) in diagonal AR equation form with ai(1) 0.9, a(2) = 0.7,
b(1, 1) = 0.5, b(1, 2) = —0.6, b(2, 1) = 0.7, b(2, 2) = 0.3. The variance of the
innovations is 1.0 and the correlation is 0.7. Sample size ïs 250, the Iength of the long
AR is T = 15, the number of repetition is 1000. The parameter in the criterion is

= 0.5.

(P1,P2, q) frequency (P1,P2, q) J frequency

1,1,1 0.414 1,4,1 0.038
1,2,1 0.116 1,6,1 0.026
2,1,1 0.098 4,1,1 0.025
1,3,1 0.057 1,2,2 0.023
3,1,1 0.040 1,5,1 0.016

Value Average Std. dey. RMSE 5% 95% Median
Second step
ai(1) 0.9 0.9243 0.0298 0.0385 0.8720 0.9666 0.9283
ai(2) 0.7 0.4898 0.0934 0.2300 0.3352 0.6347 0.4915

b1(1, 1) 0.5 0.5327 0.1031 0.1082 0.3663 0.7023 0.5324
b1(1, 2) -0.6 -0.6053 0.0975 0.0977 -0.7696 -0.4468 -0.6051
b1(2, 1) 0.7 0.7028 0.0976 0.0977 0.5469 0.$701 0.7010
b1(2,2) 0.3 0.0916 0.1467 0.2549 -0.1585 0.3282 0.0917
Third step
ai(1) 0.9 0.8964 0.0320 0.0322 0.8391 0.9414 0.9017
ai(2) 0.7 0.7077 0.0851 0.0854 0.5608 0.8377 0.7117

b1(1, 1) 0.5 0.4886 0.0875 0.0883 0.3557 0.6426 0.482 1
b1(1, 2) -0.6 -0.5893 0.0695 0.0703 -0.7054 -0.4817 -0.5853
b1(2, 1) 0.7 0.6834 0.0676 0.0696 0.57 18 0.7922 0.6873
b1(2, 2) 0.3 0.3109 0.1303 0.1307 0.0983 0.5167 0.3207
MLE
a1(1) 0.9 0.8967 0.0301 0.0302 0.8404 0.9384 0.9012
a1(2) 0.7 0.6772 0.0663 0.0701 0.5574 0.7691 0.6829

b1(1, 1) 0.5 0.5 167 0.0752 0.0770 0.4089 0.6444 0.5 102
b1(1, 2) -0.6 -0.6099 0.0597 0.0606 -0.7127 -0.5202 -0.6067
b1(2, 1) 0.7 0.7119 0.0550 0.0563 0.6233 0.8000 0.7132
b1(2,2) 0.3 0.2745 0.1004 0.1036 0.1025 0.4177 0.2884
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Table 8: Strong diagonal AR equation form VARMA(1,2). The simulated model is a
strong VARMA(l,2) in diagonal AR equation form with ai(1) = 0.9, ai(2) = 0.7,
b1(1,1) 0.9, b(1,2) = —0.5, b1(2,1) = 0.3, b1(2,2) 0.1, b(1,1) —0.1,
b2(1, 2) = —0.2, b2(2, 1) = 0.1, b2(2, 2) = —0.15. The variance of the innovations is
1.0 and the correlation is 0.7. Sample size ïs 250, the length of the long AR is riT = 15,
the number of repetition is 1000. The parameter in the criterion is 6 = 0.1.

(P1,P2, q) { frequency II (pi,p, q) Frequency

2,1,1 0.316 1,1,1 0.043
3,1,1 0.136 2,1,2 0.034
4,1,1 0.106 6,1,1 0.025
1,1,2 0.083 2,1,0 0.020
5,1,1 0.047 3,1,2 0.016

Value Average Std. dey. RMSE 5% 95% Median
Third step
ai(1) 0.90 0.8946 0.0242 0.0248 0.8491 0.9312 0.8971
a1(2) 0.70 0.6878 0.0773 0.0783 0.5534 0.8047 0.6897

b1(1, 1) 0.90 0.8976 0.0907 0.0908 0.7546 1.0525 0.8947
b1(1, 2) -0.50 -0.504$ 0.0871 0.0873 -0.6503 -0.368 Ï -0.5045
b1(2, 1) 0.30 0.3001 0.0883 0.0883 0.1598 0.4538 0.2999
b1(2,2) 0.10 0.0854 0.1204 0.1213 -0.1177 0.2855 0.0811
b2(1, 1) -0.10 -0.0933 0.0964 0.0966 -0.25 14 0.0674 -0.0939
b2(1, 2) -0.20 -0.2087 0.1001 0.1005 -0.3765 -0.0466 -0.2038
b2(2, 1) 0.10 0.1056 0.0974 0.0976 -0.0527 0.2639 0.102$
b2(2,2) -0.15 -0.1595 0.1181 0.1185 -0.3518 0.0415 -0.1620
MLE
ai(1) 0.90 0.8944 0.0242 0.0249 0.8512 0.9302 0.8964
a1(2) 0.70 0.6819 0.0703 0.0726 0.5630 0.7882 0.6818

b1(1, 1) 0.90 0.9 104 0.0904 0.0910 0.7720 1.0623 0.9083
b1(1, 2) -0.50 -0.5 103 0.0866 0.0872 -0.6544 -0.3712 -0.5076
b1(2, 1) 0.30 0.305 1 0.0880 0.0882 0.1671 0.45 15 0.3062
b1(2,2) 0.10 0.0810 0.1131 0.1146 -0.1080 0.2663 0.0787
b2(1, 1) -0.10 -0.0974 0.0972 0.0973 -0.25 15 0.0743 -0.0998
b2(1, 2) -0.20 -0.2104 0.1015 0.1021 -0.3824 -0.040$ -0.2072
b2(2, 1) 0.10 0.1116 0.0964 0.0971 -0.0439 0.2689 0.1098
b2(2,2) -0.15 -0.1702 0.1153 0.1170 -0.3592 0.0186 -0.1722
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Table 9: Weak final MA equation form VARMA(1,1). The simulated model is a
weak VARMA(1,1) in final MA equation form with a(1, 1) = 0.5, a(1, 2) —0.6,
a(2, 1) = 0.7, a(2, 2) = 0.3 and b1 = 0.9. The variance of the innovations is 1.3 and
the covariance is 0.91. Sample size is 250, the length of the long AR is rir = 20, the
number of repetition is 1000. The parameter in the criterion is 5 = 0.3.

p\q 0 1 2 3 4 5
0 0.000 0.000 0.000 0.000 0.000 0.000
1 0.000 0.736 0.101 0.024 0.007 0.003
2 0.000 0.002 0.107 0.013 0.003 0.003
3 0.000 0.000 0.000 0.001 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000

Value Average Std. dey. RMSE 5% 95% Median
Second step
a1(1, 1.) 0.5 0.4255 0.0629 0.0975 0.3243 0.5307 0.4281
ai(1,2) -0.6 -0.6390 0.0515 0.0646 -0.7239 -0.5541 -0.6401
a1(2, 1) 0.7 0.6682 0.0586 0.0666 0.5677 0.7599 0.6686
a1(2,2) 0.3 0.2117 0.0551 0.1041 0.1195 0.3043 0.2129

b1 0.9 0.8128 0.0593 0.1054 0.7148 0.9079 0.8139
Third step
ai(1, 1) 0.5 0.5001 0.0505 0.0505 0.4174 0.5857 0.5006
ai(1, 2) -0.6 -0.5896 0.0469 0.0481 -0.6685 -0.5 154 -0.5899
ar(2, 1) 0.7 0.6859 0.0524 0.0543 0.6018 0.7682 0.6852
a1(2,2) 0.3 0.3111 0.0494 0.0507 0.2341 0.3911 0.3101

b1 0.9 0.8978 0.034$ 0.0349 0.8368 0.9494 0.9000
NLLS
ai(1, 1) 0.5 0.4952 OE0504 0.0507 0.4120 0.5789 0.4962
ai(1, 2) -0.6 -0.6089 0.0432 0.0441 -0.68 13 -0.5402 -0.6094
ai(2, 1) 0.7 0.7017 0.0494 0.0494 0.6209 0.7810 0.7023
a1(2,2) 0.3 0.2875 0.0460 0.0476 0.2138 0.3660 0.2868

b1 0.9 0.8866 0.0282 0.0312 0.8378 0.9294 0.8884
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Table 10: Weak final MA equation form VARMA(2,1). The simulated model is a
weak VARMA(2,1) in final MA equation form with ai(1, 1) = 0.9, ai(1, 2) = —0.5,
ai(2, 1) = 0.3, a1(2, 2) 0.1, a2(1, 1) = —0.1, a2(1, 2) = —0.2, a2(2, 1) = 0.1,
a2(2, 2) = —0.15 and b1 = 0.9,. The variance of the innovations is 1.3 and the covari
ance is 0.9 1. Sample size is 250, the length of the long AR is riT = 20, the number of
repetition is 1000. The parameter in the criterion is 6 0.3.

p\q 0 1 2 3 4 5 6

0 0.000 0.00 1 0.050 0.114 0.022 0.007 0.003
1 0.000 0.013 0.084 0.035 0.006 0.002 0.001
2 0.000 0.318 0.180 0.116 0.021 0.003 0.002
3 0.000 0.003 0.015 0.002 0.002 0.000 0.000
4 0.000 0.000 0.000 0.000 0.000 0.000 0.000
5 0.000 0.000 0.000 0.000 0.000 0.000 0.000
6 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Value Average Std. dey. RMSE 5% 95% Median

third step
a1(1, 1) 0.90 0.9219 0.1021 0.1044 0.7565 1.0866 0.9229
ai(1, 2) -0.50 -0.4865 0.0930 0.0940 -0.6407 -0.3358 -0.4880
a1(2, 1) 0.30 0.2855 0.087 1 0.0883 0.1396 0.4333 0.2872
ai(2,2) 0.10 0.1425 0.1153 0.1229 -0.0514 0.3292 0.1442
a2(1, 1) -0.10 -0.0807 0.0956 0.0975 -0.2389 0.0726 -0.0799
a2(1,2) -0.20 -0.1803 0.1125 0.1142 -0.3645 0.0157 -0.1762
a2(2, 1) 0.10 0.0802 0.1027 0.1046 -0.0924 0.2525 0.0825
a2(2,2) -0.15 -0.1010 0.1197 0.1293 -0.2976 0.0964 -0.1025

b1 0.90 0.9101 0.0737 0.0744 0.7836 1.0231 0.9125
NLLS
ai(1, 1) 0.90 0.876$ 0.09 12 0.0941 0.7300 1.0322 0.8774
ai(1,2) -0.50 -0.4996 0.0907 0.0907 -0.6474 -0.3518 -0.4981
ai(2, 1) 0.30 0.2969 0.0857 0.0857 0.1564 0.4349 0.2925
ai(2,2) 0.10 0.0762 0.1012 0.1039 -0.0953 0.2380 0.0824
a2(1, 1) -0.10 -0.0879 0.0894 0.0903 -0.2360 0.059 1 -0.0879
a2(1,2) -0.20 -0.2261 0.1000 0.1034 -0.3938 -0.0663 -0.2234
a2(2, 1) 0.10 0.1250 0.0907 0.0941 -0.0215 0.2737 0.1230
a2(2,2) -0.15 -0.1826 0.0987 0.1039 -0.342$ -0.0224 -0.1814

b1 0.90 0.8811 0.0340 0.0389 0.8226 0.9294 0.8840
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Table 11: Weak diagonal MA equation form VARMA( 1,1). The simulated model is a
weak VARMA(1,1) in diagonal MA equation form with a(1, 1) 0.5, a(1, 2) = —0.6,
a(2, 1) = 0.7, a(2, 2) = 0.3, b1(1) 0.9 and b1(1) = 0.7. The variance of the
innovations is 1.3 and the covariance is 0.91. Sample size is 250, the length of the long
AR is riT = 20, the number of repetition is 1000. The parameter in the criterion is
6 = 0.3.

(P, q1, q) Frequency (p, q, q2) Frequency

1,1,1 0.588 1,1,3 0.026
1,2,1 0.123 2,1,1 0.014
1,1,2 0.062 1,4,1 0.014
1,3,1 0.045 1,5,1 0.012
2,2,2 0.043 1,1,5 0.010

Value Average Std. dey. RMSE 5% 95% Median
Second step
ai(1, 1) 0.5 0.4277 0.0601 0.0940 0.3284 0.5233 0.4303
ai(1, 2) -0.6 -0.6439 0.0507 0.0671 -0.7291 -0.5594 -0.6444
a1(2, 1) 0.7 0.6732 0.05 14 0.0579 0.5863 0.7550 0.6729
a1(2,2) 0.3 0.2314 0.0526 0.0865 0.1446 0.3193 0.2309
b(1) 0.9 0.8130 0.0707 0.1122 0.6976 0.9266 0.8150
b(2) 0.7 0.6364 0.0708 0.0952 0.5185 0.7476 0.6393

Third step
ai(1, 1) 0.5 0.5064 0.0469 0.0473 0.4324 0.5845 0.5062
ai(1, 2) -0.6 -0.5960 0.0552 0.0554 -0.6762 -0.5 183 -0.5969
ai(2, 1) 0.7 0.6988 0.0418 0.0418 0.6314 0.7659 0.6997
a1(2,2) 0.3 0.3021 0.0469 0.0469 0.2272 0.3830 0.3032
b(1) 0.9 0.8885 0.0442 0.0456 0.8100 0.9531 0.8910
b1(2) 0.7 0.6967 0.0522 0.0523 0.6092 0.7843 0.6969

NLLS
ai(1, 1) 0.5 0.4973 0.0453 0.0453 0.4222 0.5703 0.4972
a1(1,2) -0.6 -0.6116 0.0443 0.0458 -0.6864 -0.5371 -0.6114
a1 (2, 1) 0.7 0.7009 0.0411 0.0411 0.6334 0.7683 0.7006
ai(2,2) 0.3 0.2897 0.0441 0.0453 0.2185 0.3645 0.2893

b1(1) 0.9 0.8874 0.0349 0.0371 0.8260 0.9385 0.8894
b1(2) 0.7 0.6950 0.0446 0.0449 0.6198 0.7673 0.6955
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Table 12: Weak diagonal MA equation foi-m weak VARMA(2,1). The simulated model
is a weak VARMA(2,1) in diagonal MA equation foi-m with ai(1, 1) = 0.9, ai(1, 2) =

—0.5, a1(2, 1) = 0.3, a1(2, 2) = 0.1, a2(1, 1) = 0.1, a2(1, 2) = —0.2, a2(2, 1) = 0.1,
a2(2, 2) = —0.15, b1(1) = 0.9, and b1(2) = 0.7. The variance of the innovations is 1.3
and the covariance is 0.91. Sample size is 250, the length of the long AR is riT = 20,
the number of repetition is 1000. The parameter in the criterion is 6 = 0.2.

(p, q1, q2) Frequency (p, q1, q2) Frequency

2,1,1 0.267 2,1,0 0.047
1,2,1 0.204 2,2,1 0.031
2,3,0 0.057 2,4,0 0.029
1,3,1 0.051 2,2,2 0.020
2,3,1 0.050 0,3,1 0.020

Value Average Std. dey. RMSE 5% 95% Median
third step
ai(1, 1) 0.90 0.9205 0.1016 0.1036 0.7554 1.0882 0.9204
a1(1, 2) -0.50 -0.5 137 0.0922 0.0932 -0.6643 -0.3620 -0.5 142
ai(2, 1) 0.30 0.3036 0.0802 0.0802 0.1737 0.4326 0.3020
a1(2, 2) 0.10 0.1071 0.1666 0.166$ -0.1533 0.3802 0.1037
a2(1, 1) -0.10 -0.07 16 0.0937 0.0979 -0.2302 0.0781 -0.07 15
a2(1,2) -0.20 -0.1976 0.1262 0.1262 -0.3995 0.0159 -0.1995
a2(2,1) 0.10 0.1014 0.1127 0.1127 -0.0969 0.2749 0.1111
a2(2,2) -0.15 -0.1326 0.1363 0.1374 -0.3462 0.1156 -0.1440

b1(1) 0.90 0.8917 0.0774 0.0778 0.7654 1.0079 0.8973
b1(2) 0.70 0.7084 0.1423 0.1426 0.4724 0.9397 0.7112

NLLS
a1(1, 1) 0.90 0.8787 0.0914 0.0939 0.7254 1.0347 0.8799
ai(1, 2) -0.50 -0.5015 0.0918 0.0918 -0.6523 -0.35 17 -0.5008
ai(2, 1) 0.30 0.2957 0.0801 0.0802 0.1665 0.4244 0.2927
a1(2,2) 0.10 0.0715 0.1252 0.1284 -0.1412 0.2643 0.0748
a2(1, 1) -0.10 -0.0815 0.0887 0.0906 -0.2250 0.0622 -0.0814
a2(1, 2) -0.20 -0.2328 0.1144 0.1190 -0.4268 -0.0491 -0.2332
a2(2, 1) 0.10 0.1243 0.0901 0.0933 -0.0216 0.2639 0.1278
a2(2, 2) -0.15 -0.1831 0.1074 0.1124 -0.3522 -0.0050 -0.1826

b1(1) 0.90 0.8861 0.0404 0.0427 0.8133 0.9448 0.8892
b1(2) 0.70 0.6789 0.0823 0.0908 0.5215 0.8065 0.6889
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Table 13: Weak diagonal AR equation form VARMA(1,1). The simulated model is
a weak VARMA(1,l) in diagonal AR equation form with ai(1) = 0.9, ai(2) = 0.7,
b1(1, 1) = 0.5, b1(1, 2) = —0.6, b1(2, 1) = 0.7, b1(2, 2) 0.3. The variance of the
innovations is 1.3 and the covariance is 0.91. Sample size is 250, the length of the long
AR is n1 = 15, the number of repetition is 1000. The parameter in the criterion is
S = 0.2.

(pi,p2,q) frequency (p1,p2,q) Frequency

1,1,1 0.42$ 1,2,2 0.039
1,2,1 0.091 1,4,1 0.034
2,1,1 0.08$ 1,5,1 0.023
1,3,1 0.064 4,1,1 0.019
3,1,1 0.044 2,2,2 0.019

Value Average Std. dey. RMSE 5% 95% Median
Second step
ai(1) 0.9 0.9244 0.0318 0.0401 0.8662 0.9709 0.9268
ai(2) 0.7 0.4850 0.0894 0.232$ 0.3211 0.6286 0.4853

b1(1, 1) 0.5 0.5309 0.1093 0.1136 0.3520 0.7219 0.5294
b1(1, 2) -0.6 -0.6036 0.100$ 0.1009 -0.7738 -0.4489 -0.6007
b1(2, 1) 0.7 0.7036 0.1004 0.1004 0.5417 0.8661 0.7031
b1(2,2) 0.3 0.0880 0.1477 0.25$4 -0.1642 0.3324 0.0875
Third step

ai(1) 0.9 0.8964 0.0332 0.0334 0.8395 0.9459 0.9000
ai(2) 0.7 0.7073 0.0960 0.0963 0.5444 0.8503 0.7096

b1(1, 1) 0.5 0.4864 0.0930 0.0940 0.3347 0.639 1 0.4836
b1(1, 2) -0.6 -0.5847 0.0696 0.07 12 -0.6988 -0.4690 -0.587 1
b1(2, 1) 0.7 0.6$ 13 0.0698 0.0723 0.5659 0.7928 0.6$ 15
b1(2,2) 0.3 0.3136 0.1401 0.1407 0.0809 0.5505 0.3179
NLLS
ai(1) 0.9 0.8961 0.0319 0.0322 0.8422 0.9415 0.9000
ai(2) 0.7 0.6762 0.0676 0.0717 0.5438 0.7735 0.6835

b1(1, 1) 0.5 0.5152 0.0767 0.0782 0.3996 0.6510 0.5117
b1(1, 2) -0.6 -0.6070 0.0582 0.0586 -0.7070 -0.5 143 -0.6032
b1(2, 1) 0.7 0.7112 0.0544 0.0555 0.6265 0.8020 0.7080
b1(2, 2) 0.3 0.2759 0.0977 0.1006 0.0968 0.4252 0.2843
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Table 14: Weak diagonal AR equation form VARMA(1,2). The simulated model is
a weak VARMA(1,2) in diagonal AR equation form with a1(1) = 0.9, a1(2) 07,
b1(1,1) = 0.9, b1(1,2) = —0.5, b1(2,1) = 0.3, b1(2,2) = 0.1, b2(1,1) = —OJ,
b2(1, 2) = —0.2, b2(2, 1) = 0.1, b2(2, 2) = —0.15. The variance of the innovations
is 1.3 and the covariance is 0.91. Sample size is 250, the length of the long AR is

= 15, the number of repetition is 1000. The parameter in the criterion is 5 0.1.

(p1,p2,q) Frequency (pi,p,q) Frequency

2,1,1 0.306 5,1,1 0.045
3,1,1 0.133 6,1,1 0.031
4,1,1 0.089 2,1,2 0.026
1,1,2 0.083 2,1,0 0.024
1,1,1 0.050 2,2,0 0.023

Value Average Std. dey. RMSE 5% 95% Medi
Third step
ai(1) 0.9 0.8953 0.023$ 0.0242 0.8538 0.9297 0.8977
ai(2) 0.7 0.6901 0.0771 0.0777 0.5653 0.8075 0.6935

b1(1, 1) 0.5 0.8982 0.0976 0.0976 0.7368 1.0596 0.8973
b1(1, 2) -0.6 -0.5040 0.0907 0.0908 -0.6568 -0.3589 -0.5043
b1(2, 1) 0.7 0.3019 0.0894 0.0894 0.1604 0.4479 0.3006
b1(2,2) 0.3 0.0890 0.1244 0.1249 -0.1113 0.2933 t)0S
b2(1, 1) -0.1 -0.0930 0.0983 0.0985 -0.2466 0.0827 -0.0)Z3
b2(1, 2) -0.2 -0.2049 0.1002 0.1004 -0.3729 -0.0342 -0.2072
b2(2, 1) 0.1 0.1011 0.0981 0.0982 -0.0563 0.2579 0.0995
b2(2,2) -0.15 -0.1518 0.1135 0.1135 -0.3355 0.0315 -0.1533
NLLS
ai(1) 0.9 0.8950 0.0240 0.0245 0.8534 0.9292 0.8973
ai(2) 0.7 0.6822 0.0708 0.0730 0.5650 0.7901 0.6857

b1(1, 1) 0.5 0.91 10 0.0967 0.0973 0.7517 1.0691 0.9121
b1(1, 2) -0.6 -0.5094 0.0898 0.0903 -0.6639 -0.3673 -0.5090
b1(2, 1) 0.7 0.3067 0.0894 0.0896 0.1631 0.4474 0.3065
b1(2,2) 0.3 0.0828 0.1192 0.1205 -0.1117 0.2787 0.0772
b2(1, 1) -0.1 -0.097$ 0.099$ 0.099$ -0.253$ 0.0725 -0.0985
b2(1, 2) -0.2 -0.2065 0.1024 0.1026 -0.3753 -0.0278 -0.2081
b2(2, 1) 0.1 0.1081 0.0991 0.0994 -0.0586 0.2645 0.1074
b2(2,2) -0.15 -0.1646 0.1103 0.1113 -0.3415 0.0278 -0.1657
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Table 15: Weak final AR equation form VARMA(1,1). The simulated model is a
weak VARMA(1,1) in final AR equation form with a1 = 0.729, b(1, 1) = 0.0593618,
b(1, 2) = —0.14134, b(2, 1) = 0.20598, b(2, 2) = 0.296472. The variance of the inno
vations is 2.64155 and 1.70611 and the covariance ïs 0.650962. Sample size is 200, the
length of the long AR is riT 15, the number of repetition is 1000. The parameter in
the criterion is 6 = 0.2.

p\q 0 1 2 3 4 5
0 0.000 0.000 0.000 0.000 0.000 0.000
1 0.129 0.574 0.000 0.000 0.000 0.000
2 0.092 0.113 0.000 0.000 0.000 0.000
3 0.018 0.034 0.000 0.000 0.000 0.000
4 0.009 0.015 0.000 0.000 0.000 0.000
5 0.005 0.004 0.000 0.000 0.000 0.000
5 0.003 0.004 0.000 0.000 0.000 0.000

Value Average Std. dey. RMSE 5% 95% Median
Second step

0.7290 0.6962 0.0579 0.0665 0.6006 0.7827 0.7000
b1(1, 1) 0.0594 0.0254 0.0932 0.0992 -0.1250 0.1795 0.0215
b1(1,2) -0.1413 -0.1272 0.1041 0.1051 -0.2969 0.0390 -0.125$
b1(2, 1) 0.2060 0.1986 0.0679 0.0683 0.0836 0.3064 0.2004
b1(2, 2) 0.2965 0.3005 0.1091 0.1091 0.1083 0.4721 0.3076
Third step

a1 0.7290 0.7205 0.0559 0.0566 0.6203 0.8024 0.7236
b1(1, 1) 0.0594 0.045 1 0.0829 0.0841 -0.0899 0.1820 0.0445
b1(1,2) -0.1413 -0.1265 0.0927 0.0938 -0.2827 0.0206 -0.1256
b1(2, 1) 0.2060 0.1984 0.0567 0.0572 0.1026 0.2887 0.1983
b1(2, 2) 0.2965 0.3178 0.0996 0.1018 0.1483 0.4760 0.3220
NLLS

0.7290 0.7217 0.0557 0.0562 0.626$ 0.8033 0.7242
b1(1, 1) 0.0594 0.048$ 0.0832 0.0839 -0.0883 0.1869 0.0508
b1(1, 2) -0.1413 -0.1291 0.0930 0.0938 -0.2921 0.0201 -0.1284
b1(2, 1) 0.2060 0.2000 0.0570 0.0573 0.1065 0.290 1 OE2002
b1(2, 2) 0.2965 0.3206 0.0997 0.1026 0.1456 0.4757 0.3234
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figure 2: Impulse-response functions for VAR model. A VAR(12) is fitted to the first
difference of the six time series. The confidence band represent a one standard devi
ation. The standard deviations are derived from Monte Carlo simulations with 1000
draws.

Figure 3: Impuïse-response functions for VARMA model in final MA equation forrn. /\

VARMA(5,5) is fitted to the first difference of the six time series. The confidence baud
represent a one standard deviation. The standard deviations are derived from Monte
Carlo simulations with 1000 draws.
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Figure 4: Impulse-response functions for VARMA model in diagonal MA equation
form. A VARIVIA(5,1) with q (1, 1, 1, 1, 1 1) is fitted to the first difference of the
six time series. The confidence band represent a one standard deviation. The standard
deviations are derived from Monte Carlo simulations with 1000 draws.
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Monte Carlo simulations with 1000 draws.
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Figure 6: Impulse-response functions for VARMA model in diagonal AR equation
form. A VARMA(12,5) with p = (12, 12, 12, 12, 12, 12) is fitted to the first dïffer
ence of the six time series. The confidence hand represent a one standard deviation.
The standard deviations are derived from Monte Carlo simulations with 1000 draws.
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• Chapter 2: Regime switching for

dynamic correlations

1. Introduction

It is a well known fact that the variance and covariance of most financial time series are

time-varying. Modeling time-varying variance is not just a statistical exercise where

someone tries to increase the value of the likelihood; it lias important impacts in terms

of asset allocation, asset pricing, computation of Value-at-Risk (VaR). A lot of work

lias been done to model univariate financial time series since tlie introduction of the

ARCH model by Engle (1982). However, we face additional problems wlien we try

to write a multivariate model of volatility. Not only must the variances be positive.

the variance matrix must also be positive semi-definite (PSD) at every point in time.

Another important problem is the curse of dimensionality. We want models that can

be applied to more than a few time series. This mies out the direct generalizations of

univariate GARCH models such as the BEKK mode! of Engle and Kroner (1995).

The most popular multivariate voiatility model so far is certainly the Constant Cfln

ditional Correlation (CCC) model of Bollerslev (1990). In this model, the covariances

of a vector of retums are decomposed into standard deviations and correlations. The

major hypothesïs in this model is that the conditional correlations are constant tlirough

time. Witli this hypothesis, it is easy to get PSD variance matrices because we only

have to ensure that the correlation matrix is PSD and that the standard deviations are

non-negative. It also breaks the curse of dimensionality because the likelihood can be

seen as a set of SURE equations, i.e. a two-step estimation procedure where univariale

volatility models are estimated in a flrst step that will yield consistent estimates. How

ever, the hypothesis of constant correlations is flot aiways supported by the data [e.g.

Engle and Sheppard (2001)].

In this work, we present a new multivariate volatility mode), the Regime Switchin

Dynamic Correlation (RSDC) model. We also decompose the covariances into standard

deviations and correlations, but these correlations are dynamic. The correlation matrix
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follows a regime switching model; it is constant within a regime but diiferent across

regimes. The transitions between the regimes are govemed by a Markov chain. The

CCC model is a special case of ours where we take the number of regimes to be one.

The RSDC mode! has many interesting properties. First, it is easy to impose that the

variance matrices are PSD. Second, it does not suifer from a curse of dimensïonality

because it can be estimated with a two-step procedure. Third, when combined with the

ARMACH model [see Taylor (1986) and Schwert (1989)] for the standard deviations,

this correlation mode! a!lows analytic computation of multi-step ahead conditional ex

pectations of the who!e variance matrix. Fourth, it can produce smooth pattems for

the correlations. We a!so present an empirical application to exchange rate time series

which illustrates that it can have a better in-sample fit of the data than the Dynamic

Conditional Correlation (DCC) model recently proposed in Engle (2002).

The model of Engle (2002) and the mode! proposed in Tse and Tsui (2002) use

the same decomposition for the variance matrix as in Bollerslev (1990), but instead of

taking constant corre!atïons they propose a GARCH-type dynamic. Because a conela

tion must lie between -1 and 1, these models must include a rescaling that introduces

non-linearities. One side eifect of this rescaling is that we can’t analytica!ly compute

mu!ti-step ahead conditional expectations of the correlation and variance matrices. We

can also ask ourse!ves if a GARCH-type model is appropriate for the correlations be

cause the dynamic of a conelation can be intrinsically different than the behavior of a

covariance, e.g. a correlation is bounded from below and above while a covariance is

flot.

Another approach for breaking the curse of dimensionality of the multivariate

GARCH is Ledoit, Santa Clara, and Wolf (2003)’s that proposes a flexible estimation

procedure for the Diagonal-Vech model of Bol!erslev, Engle, and Wooldridge (1988).

The maximization of the likelihood of this model is flot computationally feasible if the

number of time series is greater than five [see Ding and Eng!e (2001)]. They propose a

way to combine the estimates from univariate and bivariate model so as to get consis

tent estimates of the parameters of the full multivariate Diagonal-Vech and insure that

the variance matrices are PSD. This procedure is only valid for the somewhat restrictive

Diagonal-Vech model.
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The paper is organized as follows. The second section presents the RSDC model

and its properties. Section three describes the estimation of this mode! and the theoret

ical properties of the estimates. Section four outiines the computation of one-step and

multi-step ahead conditional expectations of the variance matrix. Section five presents

an application of the model to multiple exchange rates series. Section six contains a

few concluding remarks. Finally, proofs are in the appendix.

2. The RSDC mode!

In this section we present the Regime Switching Dynamic Correlation (RSDC) model.

Assume that the K-variate process Y has the form:

(2.1)

where U is an i.i.d. (O, ‘K) process. The time varying covariance matrix H can be

decomposed into:

STS (2.2)

where S is a diagonal matrix composed of the standard deviations 3k,t’ k = 1, . . . , K

and the matrix Tt contains the coffelations. Both $t and [t are time varying. This

decomposition of the covariance matrix has previously been used by Bollerslev (1990),

Tse and Tsui (2002), Engle (2002) and Bamard, McCulloch, and Meng (2000). The

series Yt could be a filtered process.

With this decomposition the log-Iikelihood can be written

L
=

(K1og(2) +log(H) +‘H’)

= _ (K1og(2) + log($S() +

_

(Kiog() + 21og(S) + log(Pt) + ù’ù) (2.3)
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where U = , n,]’ is a zero-mean process with covariance matrix T and

IHtl = det(H). This is the first building Nock of our RSDC model: to model the fufl

covariance matrix we model the variances and the correlations separately.

2.1. Regime switching for the correlations

In this work we will argue for a regime switching model for the conelations. This can

be seen as a midpoint between the CCC model of Bollerslev (1990) and models such

as the DCC of Engle (2002) where the correlations change every period. This model

will have the appealing property of constant conelations within a regime but will stiil

have dynamic correlations because of the regime switching. More specifically, the

time-varying correlation matrix f follows:

(2.4)

with /- an unobserved Markov chain process independent of U which can take N

possible values (Lit = 1, 2,. . . , N). The symbol 1 is the indicator function. The

K x K matrices f,, are correlation matrices (symmetric, PSD, ones on the diagonal,

off-diagonal elements between -1 and 1) with f,, f,,i for n n’. The probability

law goveming A is defined by its transition probability matrix, denoted by H. The

probability of going from regime i in period t to regime j in period t + 1 is denoted

by irj,j and the limiting probability of being in regime n is ira. The element on row

j and column i of H is 7T. We make the standard assumptions on the Markov chain

[aperiodic, irreducible and ergodic. See Ross (1993, Chapter 4)].

Beside its very intuitive interpretation, this model has many appealing properties. It

is easy to impose that T is a correlation matrix because we only have to impose it for

every f,,. Imposing that the diagonal elements are equal to one and that the off-diagonal

elements are in [—1, 11 does not guarantee that P,, is PSD. One way to impose that f,,

will be a conelation matrix is to take its Choleski decomposition, i.e. P,, = P,,P,

G where P,, is a lower triangular matrix, and to impose constraints on P,, so that we get

ones on the diagonal. These constraints will automatically give off-diagonal elements
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between —1 and 1. Consider a trivariate example:

Pr,i O O Pi,i P2,i ?3,i

P2,i P2,2 O O P2,2 P3,2

P3,r P3,2 P3,3 O O

2
Pi i Pi,i P2,i Pi,i P3,i

= Pi,i P2,i P,i + P,2 P2,i P3,i + P2,2 P3,2

Pi,1P3,1 P2,1P3,i +P2,2P3,2 P,i +P,2 +P,3

Imposing the additional constraint that the elements on the diagonal P are positive,

the restrictions becomes

i-1

Pj,j = 1
— (j 1, .. ., (2.5)

where the sum is zero for j = 1. Equation (2.5) is restricting elements Pj,i, i =

1,. . . ,j—1 to be inside a sphere of unit radius and these restrictions are easy to impose.

We cou!d think that estimation of the RSDC model would be complicated by the

possibly high number of parameters coming from each T’7. Fortunately we will see later

on that we can use the EM algorithm {Dempster, Laird, and Rubin (1977)] as presented

in Hamilton (1994, chapter 22) so that increasing the number of time series, to which

the model is applied will not complicate the estimation.

This specification has three additional interesting properties. The first is that be

cause this mode! for the correlations is basically linear due to the Markov chain we

are able to compute multi-step ahead conditional expectations of the correlation ma

trix. Also, if we use an appropriate mode! for the standard deviations, we will also be

able to perform these computations for the whole variance matrix. We present such a

mode! in Section 2.3. This is in contrast to the models of Engle (2002) and Tse and

Tsui (2002) where the rescaling that is used to keep the correlations between -1 and 1

introduces non-linearities that forbid the computation of multi-step ahead conditional

expectations. The second property comes from the Markov chain. If there is some

general form of persistence in the chain (high probability of staying in a given regime
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for more than one period), then this will lead to smooth time-valying correlations. This
could have important impacts namely for the computation of VaR and dynamic port-
folio allocation because the benefits of portfolio diversification would be less volatile.
The third is that by having a regime switching for the correlations, the variances and co
variances are flot bounded which is the case when they are the ones following a regime
switching [e.g. see Geweke and Amisano (2001)]

2.2. A parsimonious model

We next present a restricted version of the general regime switching model which wilI
have a reduced number of parameters and will remain easy to estimate. For the matrix

we propose the following form:

= f)(A) + IK(1
— (2.6)

where F is a fixed correlation matrix, ‘K is a K x K identity matrix, ).(Z\) e [0, 1]
is a univariate random process govemed by an unobserved Markov chain process A
that can take N possible values (A = 1, 2,. . . , N) and is independent of U. The
probability law goveming z is defined by its transition probabiÏity matrix, denoted by
H.

The correlation matrix at time t is a weighted average of two extreme states of
the world. In one state, the retums are uncorrelated [À(A) = O land in the other
the returns are (highly) conelated [).(L\) = 1]. We then have regimes of generally
higher or lower correlations and the changes across correlations in a given regime are
proportional. The variable )(A) can be related to the notion of common features and
factor modeÏs [Engle and Susmel (1993), Bollerslev and Engle (1993), King, Sentana,
and Wadhwani (1994), Diebold and Nerlove (1989), Engle, Ng, and Rothschild (1990),
Ng, Engle, and Rothschild (1992)] where the factor affects the variance matrix instead
of the correlation matrix.

r—.. Note that for the off-diagonal elements only the product of F and can be identified
(by construction the diagonal elements of T are equal to 1). To solve this identification
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problem we can consider two natural sets of constraints. The first is:

(1) = 1, (1) > (2), ..., (N— 1) > ;\(N), (2J)

In this case, fixing one of the ).(n) to be one identifies the product of f and ). We also

restrict the À(n)s to be a decreasing sequence to remove the possibility of relabelling

regime i as regime j and vice versa. An alternative identification assumption is:

max = 1 with 1 > )(1), À(1) > )(2),. . . , À(N — 1) > X(N). (2.8)

In this case, instead of fixing the highest value of ).(n) to be one, we impose this

restriction on an off-diagonal element of f. The second identification scheme does

not impose that one correlation is equal to 1 or -1 because we multiply f by À(A1).

Depending on the estimation scheme that we use, one of the two sets of constraints w ll

be more appropriate. We can prove that the matrix H1 is positive semi-definite with

probability one for ail t.

Proposition 2.1 PSD VARIANCE MATRIX. If the standard deviations 8k,t are non

negative with probabitity one for alt t, À(n) [0, 1]for n = 1,.. . , N and P is a PSD

corretation matrix then the variance matrix H1 will be PSD with pmbabitity oite for alt

t.

It is tempting to allow )(L\) to take negative values to allow the correlations to

change sign, however we don’t have a resuit for a lower bound on )(L\) that would

guarantee that f1 is PSD. To understand the probiem, consider the correlation matrix

of a trivariate time series. If ail the correlations are 0.99 then the correlation matrix is

PSD; if ail the correlations are —0.99, then it will flot be PSD.

2.3. Univariate volatility models

To complete the RSDC model we have to specify the dynamic for the standard devia

tions. The most common one for the volatility of tinivariate processes is certainly the

GARCH model of Bollerslev (1986) where the conditional variance at time t, s1, is a



83

linear function of past squared innovations and past conditional variances:

= w + _, + js,t-j. (2.9)

where the k subscript on the GARCH parameters is removed.

We should notice that our RSDC model is flot written in terms of variances but in

terms of standard deviations; a covariance is a correlation times the standard deviations.

By using a model such as the GARCH for the variance, the covariance becomes the

product of a correlation and the square-root of the product of two variances. The square

root introduces non-linearities that will prohibit analytic computation of conditional

expectations.

One model for the volatility of univariate time series that would flot have this prob

lem is the GARCH in absolute innovations of Taylor (1986) and Schwert (1989). This

class of model is also referred to as ARMACH process in Taylor (1986). In these

models the conditional standard deviations follows:

8k,t = W + Z iYk,t-i + ZjSk,t_j (2.10)

with 6 = o/EIktj. The conditional standard deviations (instead of the conditional

variance) are a recursive function of absolute value of past innovations (instead of

squared innovations).

There are numerous reasons why a volatility modcl based on absolute values instead

of squared innovations could be a good thing. One reason can be linked to the least

absolute deviations versus east squares approach. As argued by Davidian and Carroli

(1987), the model could be more robust if we use the absolute value instead of the

squared innovation. However, we must reckon that the interpretation of an outiier in a

volatility model is flot as straightforward as in a regression context. It could also be that

the absolute return is a better measure of risk than the squared return. This question is

studied by Granger and Ding (1993).

L Using the A4ACH mode! for the volatility of univariate time series is flot a pre

requisite of our model. We considcr this model because it allows the computation of
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multi-step ahead conditional expectations of the variance matrix. If conditional expec

tations are not a point of interest or if the ARIvIACH gives a clearly inferior fit of the

data then another model could be used.

2.4. Review of multivariate GARCH models

To motivate why further work on multivariate volatility mode! is relevant, we can re

view some of the existing models. The most straightforward multivariate generalization

of the univariate GARCH model can be written in the following way:

vech(Ht) = C + + Bvec(Ht_). (2.11)

where the operator vech stacks in a vector the elements on and below the diagonal of

each column of a matrix. This model is flot really useful because it is very hard to

impose that the matrices H are PSD, it is not parsimonious and it is hard to estimate

because of the high number ofparameters. Engle and Kroner (1995) propose the BEKK

representation which guarantees that (2.11) will generate PSD variance matrices, but

the problem of simuïtaneous estimation of a high number of parameters is not solved.

The most popular multivariate variance model is certainly the CCC mode! of Bolier

slev (1990). As its name states, the correlations are constant, i.e. in equation (2.3) we

have T = F, Vt. Standard univariate GARCH mode!s are used for the conditionai

variances. This model has many attractive properties. Interpretation of the parameters

is easy because of the correlations and standard deviations decomposition. We on!y

have to take P to be PSD to obtain a variance matrix which is PSD. The model is aiso

easy to work with because we can perform the estimation in two steps: firstly, esti

mate univariate GARCH models and secondly, compute a corre!ation matrix with the

standardized residuais.

To test the hypothesis that the conditional correlations are constant, Boilerslev com

puted Portmanteau test statistics wïth the standardized residuals from the univariate

GARCH estimations. Under the nuil hypothesis of constant conditional correlations,

the cross-product of the standardized innovations from the univariate GARCH shou!d

be i.i.d. Given the low value of these (Ljung-Box) tests he did not reject the nuli hy
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pothesis. Since then, questions have been raised about the power of these tests [e.g. see

Hong (1996)]. To illustrate the lack of power, we repeated the work of Bollerslev by

fitting a GARCH(1,1) to the four exchange rate series that we will later use in section

5 and computed the autocorrelation function for each cross-product of the standardized

residuals. These are plotted in Figure 7 with the two standard deviations confidence

hand (under the i.i.d. assumption). Looking at these we are tempted to conclude that

there is no dynamic in the cross-product of the standardized innovations, just as Bolier

slev (1990) did, and assume that the correlations are constant. The same argument is

used by Baillie and Boilerslev (1990). Another paper which favors constant correla

tions is Schwert and Seguin (1990) who tried several specifications of the multivariate

GARCH mode! (2.11) for monthly stock returns and they could flot find one that ob

viously dominated the constant conditional conelations mode]. They don’t mention

which model they tried.

We can mn simple Monte Carlo simulations to iliustrate that the conclusion of con

stant correlations could be erroneous. We simulate a multivariate vo!atility mode! with

a strong dynamic in the correlations, estimate the univariate volatility mode! and plot

the ACF of the cross-product of the standardized residuals. In our example we simu

lated two models: our restricted model (Figure $) and the DCC-GARCH (Figure 9) of

Eng!e (2002) which we review below. The parameter values are the estimates obtained

with the same exchange rates dataset. Looking at the two figures, we see that the re

suits from the simulated sample and the tme data are similar. This is certainiy a reason

that would exp!ain why there is iitt!e evidence in the literature that the conditional cor-

relations are flot constant. One evidence is Andersen, Bollerslev, Diebold, and Labys

(2001) who gives strong proofs of important dynamics in the corre!ations by studying

realized volatilities computed with high frequency observations of exchange rates data.

More recently, Engle (2002) and Tse and Tsui (2002) introduced mukivariate

GARCH models with dynamic correlations. Both of them emp!oy the SfS decom

position of the variance matrix H. In Engle (2002) the conditional conelation matrix
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T follows

(lb)F+a(ÛÛ’)+bf (2.12)

= (2.13)

where D is a diagonal matrïx with i) on row i and column i, and a and b

are scalars. The intuition behind this model is to impose a GARCH-type dynamic for

the correlations. Since a correlation matrix must have ones on the diagonal and off-

diagonal elements between -1 and 1, we must rescale the correlatïon matrix [equation

(2.13)] because U_U_ is flot constrained to have elements between -1 and 1. The

theoretical and empirical properties of this model are developed in Engle and Sheppard

(2001).

The model of Tse and Tsui (2002) is similar to the one of Engle (2002) but the

rescaling is donc differently:

= (l—O1—O2)f+O1T_1+O2!P_1, (2.14)

ZM -T — h=1
L’i,j,t1 —

___________________________________________

()(ù)

with M > K. We can sec that both rescaling forbid even the analytic computation

of multi-step ahead conditional expectation of the correlation matrix. It is unfortunate

because one reason why we study volatility is to be able to forecast it.

3. Estimation

The estimation of the RSDC model can in theory be donc in one stcp but if wc have

more than a fcw time scries the high number of parameters wilI prohibit us from doing

so. Fortunately, we can use a two-step estimation procedure as in Englc (2002). In a

first step, we can estimate the univariate volatility models and in a second step, we can

estimate the parameters in the correlation matrix conditional on the first step estimates.

In the first subsection we review the theoretical properties of the one-step estimates
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and explain how the likelihood can be evaluated. In the following subsection we present

estimation methods which can greatly ease the estimation problem due to the high

number of parameters.

3.1. One-step estimation

To maximize the likelihood we need to evaluate

QL(O;Y) logf(Ii), (3.1)

where = {Y.1, .
. .} and O is the vector of parameter values. Since the

variable L\t which drives the correlation matrix is unobserved it is flot straightforwarci

b do this we use Hamilton’s filter [Hamilton (1989), Hamilton (1994, chapter 2)j

which we adapt to our setup. Inference on the state of the Markov chain is given by the

following equations:

— (t1t_i®rit)
3 )

— 1’(_ o
TI, (3.3)

f(YjY,A — 1;O)

(3.4)

f(I-i, A N; O)

where is an (N x 1) vector which contains the probability of being in each regime at

time t conditional on the observations up to time t. The (N x 1) vector gives these

probabilities at time t + 1 conditional on observations up to time t. The n-th element of

the (N x 1) vector is the density of conditional on past observations and being in

regime n at time t, 1 is an (N x 1) vector of is, and O denotes elements-by-elements

multiplication. Given a starting value and parameter values O, one can iterate over

(3.2) and (3.3) for t = 1, . . . , T. The likelihood is obtained as a by-product of his
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algorithm:

QL(O) = log (1’(tIt_1 0 rn)). (3.5)

Smoothing inference on the state of the Markov chain can also be computed using an

algorïthm developed by Kim (1994). The probability of being in each regime at time t

conditional on observations up to time T is given by the following equation:

tIT = tIt ® {H’ [t+1IT (±) } (3.6)

where (÷) denotes element-by-element division. One would start iterating over (3.6)

with t = T, where TIT is given by (3.2).

What remains is deciding how to start up the algorithm, i.e. specifying
.

One

approach would be to add this vector to the parameter space and estimate these initial

probabilities. This would add N parameters, p’,.. . , PN > O with p, + ... + PN = 1.

Another approach would be to use the limiting probabilities (fr,, 7r2,. .. , 7TN) of the

Markov process [Ross (1993, Chapter 4)j. These probabilities are the solution of the

following system of equations:

=11

?TN 7TN

N

=1.

In the two-regime case the solution is

—

___________________

. — 1—ir1,1
ic1

(1—ici,,)+(1—ic2,2)
‘ ic2_

(1—icii)+(1—ic22)

In this work both approaches will be used, depending on the estimation method. As

we will see below, when using the EM algorithm there is an advantage in treating

as unknown parameters. If we are not using the EM algorithm then we will use the

limiting probabilities of the Markov chain because in this case these extra parameters
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would complicate the estimation.

In the evaluation of the likelihood, notice that the correlation matrix can take N

possible values in our model so we only have to invert N times a K x K matrix. When

the number of time series is large this can be a computational advantage over models

such as Engle (2002) and Tse and Tsui (2002) where a different correlation matrix has

to be inverted for every observation. We are now ready to state the properties of the

maximum likelihood estimates.

Theorem 3.1 ONE-STEP MAXIMUM LIKELIHOOD ESTIMATION. If the assumptions

ofproposition 2.1 and if the usuat regularity assumptionsfor the validity ofthe QMLE

are satisfied then the maximum tikelihood estimates are consistent and their asymptotic

distribution is given by:

vT (ê — o) —* N (0; J’iJ’)

with

— E
log f1

— Ef3
log f8 log f

— aoao’ ‘
— ao ao’

The matrices I and J cati be consistentty estimated by theirptug-in estimates:

î =

= ao’

PROOF 0F THEOREM 3.1 See Newey and Mcfadden (1994). D

One-step estimation is not really practicable if the number of time series is more

than a few because of a curse of dimensïonality. In this case, we need an estimation

method which only requires non-linear optimization of 0(1) parameters at a time. This

is what we present in the next subsection.
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3.2. Two-step estimation

By splittïng the model in two parts, standard deviations and correlations, we can esti

mate the mode! in two steps as in Engle (2002). The first step involves the parameters

of the univariate volatility models and the second step involves the parameters of the

correlation model. We first begin by introducing elements of notation. The compiete

parameter space O is spiit into O for the parameters in the univariate volatility model

and 02 for the parameters in the correlation model. We denote by QL1 the likelihood

where the correlation matrix is taken to be an identity matrix:

QL1(0i; Y) = — (Klog(2) + 2 log($t) + UU). (3.7)

We denote by QL2 the likelihood given 0 where we have concentrate out $t:

QL2(02; Y, 01) = —
(K1og(2) + 1og() + UPF’Ut). (3.8)

Notice two important features of QL1. Firstly, it is the sum of K univariate log

likelihood so maximizing it is equivalent to maximizing each univariate log-likelihood

separately. Secondly, the evaluation of these log-likelihood is straightforward since it

does flot involve the use of Hamilton’s filter. To maximize QL2 we again have to use

Hamilton’s filter since A is unobserved. The procedure is the same as the one-step

case because the correlations are flot a function of the standard deviations.

Because the number of parameters in the correlation model grows at a quadratic rate

with the number of time series, direct maximization of the likelihood is flot practicable

if we analyze more than a few scries. To bypass this problem, we present two estimation

methods, one for the non-restricted mode! and one for the restricted model, which do

flot rely on the simultaneous non-linear maximization of ail the parameters.

For the non-restricted model, it tums out that maximization of the iikelihood QL2

for the correlation mode! can be donc with the EM algorithm. Using the resuits of

Hamilton (1994, chapter 22) we know that the MLE estimates of the transition proha

bilities and the conelation matrices satisfy the following equations if the initial proba
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bilities are not a function of H and f:

Z2 = j, Ai_1 = iUT; 021
= , (3.9)

Zt=2 P [‘_ = iU1; 02]

1(ÛtÛ’)P[LXt = nUT; 02]
(3 10)n

P[L\ = flUT 02]

Starting with an initial value for the vector 02, we can compute a new vector
-(i) . . . .

02 using equations (3.9) and (3.10). We then continue the iteration until the differ
-(m) (m+i) .

ence between successive vectors °2 and °2 is small. This estimation method

is more efficient than blindly maximizing the likelihood with Newton-type algorithms

because more information on the structure of the prob]em is used. Notice also that

the dimension of f (i.e. the number of time series) does flot affect the complexity

of the estimation because we only have to take weighted sums of outer-products. We

should also mention that equation (3.10) cannot be used directly because typically it

docs flot provide correlation matrices, i.e. the elements on the diagonal of f’ are flot

imposed to be one. One should rescale these matrices as in equation (2.13) so they are

correlation matrices. By doing this transformation, the estimates obtained with these

equations will not exactly be the numencal maximum of the likelihood, but very close

to it. From our experience, a limited number of Newton-type iterations are necessary

to obtain the exact numerical maximum. For the vector of initial probabilities it

is also shown that their MLE estimates are given by the smoothed probabilities of the

first observation.

For the restricted mode] we can estimate the matrix T, up to a scale factor, by doing

correlation targeting. This ]eaves 0(1) parameters to be non-linearly estimated. To do

the correlation targeting notice that

E[P] = T À(n) + Ii (1
—

n=1

Therefore a correlation matrix computed with the standardized residuals from the first

step estimation will provide an estimate f’ of T up to the scale factor )(n)ir for

the off-diagonal elements. The scale indetermination eau be solved by using the con-
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straints on F and )(n) described in equation (2.8). We would divide the off-diagonal

elements of f’ by the hïghest in absolute value, so as to get a 1 or —1 off the diagonal,

and we would take )(1) > 1. This leaves a number of parameters to be non-linearly es

timated which increase with the number of regimes, flot with the number of time series.

The properties of the two-step estimation are described in the following theorem.

Theorem 3.2 TwO-STEp MAXIMUM LIKELIHOOD ESTIMATION. If the assump

dons of Theorem 3.1 are satisfied then the two-step estimates are consistent and their

asymptotic distribution is:

Oi —
0

N(O;V)

\ 0 02 J
with

y
— G1’ —GG02M’

E tain f 0m f G —GG82M’

— O M-’ O M-’

where

t0gO’,0l,02) . 01, 02)] . t8mO’02)G01 = E , G02 = E
002’ j, M = E

002’

0inftYtIY;) 81nf(YtIY_i)
g(Y, O, 02)

=
; m(Y 02)

002

The matrix V can be consistently estimated by theirptug-in estimate:

= G91 -G01G02M
Î

-G91G02M

O JÇI—’ o

where

(D = Z80080i1nf(IY,,Ôi,2),

G02
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T
82

M =

Î =

The proof is in the appendix.

Using the general resuits summarized in Pagan (1986) on two-step estimation we

can compute efficient estimates from the two-step estimates by doing one step of a

Newton-Raphson estimation of the full likelihood using our two-step estimates as the

starting point. The properties of the estimates resulting from this procedure are de

scribed in the following theorem.

Theorem 3.3 Two-STEp EFFICIENT MAXIMUM LIKELIHOOD ESTIMATION. If the

assumptions of theorem 3.1 are satisfied then efficient estimates can be obtained by

doing one step of a Newton-Raphson estimation of the full ÏikeÏihood tcsing the two

step estimates O:

—
t82QL1_8QL

— t6030’] 80 è’

v’ ( — 0) —* N (0; J’IJ’).

The matrices I and J can be constantty estimated by their plug-in estimate given in

Theorem 3.1.

Proof: See Pagan (1986). Notice that the computation of these estimates could be

costly in computing time when dealing with very large systems because of the need to

compute the matrix of second derivatives.

The remaining problem in this work is to specify the number of regimes in the

Markov chain. It is well known that testing for the number of regimes in a Markov chain

is a hard problem to tackie. We leave this problem for further work. The asymptotic

theory of an LR test of N + 1 versus N regimes is complicated by the fact that some

parameters are flot identified under the nuli hypothesis and we are testing parameter

values that are on the boundary of the maintained hypothesis [sec Andrews (1999,

200 1)1. The asymptotic properties of this test are unknown for the moment. A solution
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could be the use of Monte Carlo test procedures [see Dufour (2002)1. An alternative

procedure could be the specification tests presented in Hamilton (1996).

4. Multi-step ahead conditional expectations

In this section we study one-step and multi-step ahead conditional expectations of the

variance matrix. To compute these we must take the conditional expectations of the

product of a correlation and two standard deviatïons. We begin by introducing a nota

tion for the matrix f that covers both the restricted and unrestricted model. We wjll

denote by F(A = n) the value taken by f when the chain is in regime n at time t. Ail

the calculus will be presented for the case where the univariate volatility model is an

ARMACH(1,1). Extension to a more general ARMACH(p,q) would flot introduce new

difficulties.

One-step ahead conditional expectations are straightforward. Using the fact that

tomorrow’s conditional standard deviations are known, to compute Et[Ht+i1 we have

to compute

E [s,t+is,t+iT,5(At+i)1 = [L,i (A1)J

=

for j, j = 1, 2, . . . , K, where T,j,t+1It E [f,V’+1)1. To compute thïs expectation

we use the fact that the Markov chain A is independent of U. Given the information

up to time t, the probability of being in each regime at time t + 1 is

t+1jt = 11tIt•

From this we deduce that,

Ft+iit
=

ftt÷i =

We see that for the one-step ahead conditional expectations the choice of the mode!

for the standard deviations does flot play a role when a GARCH-type model is used
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because tomorrow’s standard deviations are known.

To compute the d-step ahead conditional expectations Et[Ht+d] we have to compute

elements of the following form, for j, j = 1, 2,. . . , K,

E [s,t+dsj,t+dT,j (L\t+d)].

In the following, we assume that j j. If j = j, the correlation is aiways equal to

1 and the Markov chain does flot play a role. At this point we see why we cannot

analytically compute multi-step ahead conditional expectatÎons with a GARCH mode!

for the standard deviations. We would have to take conditional expectations of the

square foot of a linear expression.

The ARMACH model described in equation (2.10) can be rewritten in an ARMA-

type representation and for an ARMACH( 1,1) we get:

Sk,t = Wk + (k + /k)Sk,t—1 + ÙkSk,t_lVk,t_1 (4.1)

where

Vk,t_1
= ( flk,t1I

— (4.2)
Euk,_l J

is a martingale difference sequence. Using the fact that the Markov chain is independent

of the process U, we can first compute the expectation conditional on the Markov chain

and then integrate it out:

E’ [E [s,t+ds,t÷dT,J (A+u) = E {T,j (At+d)EY [s,t+ds,t+d I A]]

where E’[. . fA] is the expectation with respect to the innovations U conditiona! on

the present and future values of A, and E[...] is the expectation with respect to

the process A. We can now treat the correlations as known for the computation of

lA]. Before proceeding, we define the following elements:

f,j,t+d(nu) E’[i3t+di3Jt+dlAt+d = Tid]
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=
tIfi,t+dHui,t+dILXt+d = Tid] (4.3)

and

— Ur
ak,L+d = E tsk,t+d

= E [Wk (k + k)1 + (k + k)d1SkL+l]

+E k(k + k)h18k,t+d_1vk,t+d_t]

= Wk
1k)

+ (ak + k)dlSk,t+l. (4.4)

For the expectation in (4.3), if we assume that the U’s are jointly Gaussian then, it has

a closed-form solution which involves a hyper-geometric function with the correlation

between Ui,t+d and which is known, as an argument4:

2 ((1
—

Fj(nd)2)2 + 2,(nd)2HG (, 2, , ‘2))

f,j,t+d(nd)
= 22/1

—

HG(a, b, c, z)
=

where (X)k = X(X + 1) . (z + k).

In the case where U is not Gaussian and a closed-form solution cannot be found,

fi,j,t+d(nd) could be evaluated by numerical integration. However this would have to

be done only N times because d can take only N possible values. In any case, for the

form of the distribution of U, a stronger stand must be taken than only saying that it

has mean zero and an identity matrix for the variance.

Using these expressions the d-step ahead conditional expectation becomes:

E [st+dsjt+djA]

= E [ (w + (j + )s,t+d—1 + i3i,t+d_1Vi,t+d_1) x

(w + (j + )s,t+d_1 + jSj,t+d_1Vj,t+d1) ]
4Computed with Mathematica.
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= ww + wj(j + )a,+d_1 + w(ai + )a,t+d_1

+ {(ùi + /3)(c + + E’[sj,t+d_1sj,t+d_1IL\]

L / \rUf
= + Uj,j,t+d1fld_1)EJt {8i,t+d—lSj,t+d—1

where

= + w(aj + )aJ,+d_1 + w(aj + )a,t+d1,

= (cj + 3)(aj + i3) +

We cari solve this expression recursively to get

E (s,t+dsJ,t+dl] = aJ,_1 (n biJ+d_m(fld_m))

t=1 m=1

+ II bi,j,t+d_m(fld_m)Si,t+lSj,t+1

m=1

where J[ bi,j,t+dm(fldm) is equal to one when t = 1.

Keeping in mmd that bj,j,t+d_m(fld_m) depends on the state of the Markov chain at

time t + cl — m we next integrate out the Markov chain. Doing so wc get

E [s,t+dsj,t+dfi,j (L\t÷d)l

= E[s,t+dsJ,t+dI]
nd=l n0=1

= [ bit+dm(fldm)] ,j(fld)

d=’ n0=1 1=1 m=1

nOtItflO,fll d-1,d +

8i,t+18j,t+1 [ biJt+d_m(fld_m)] TiJ(nd)

d1 iio=1 rn=1

notItflO,fll (4.5)

The summations in the last equality can be rearranged so as to obtain

E [st+dsjt+dfiJ (L\t+d)1
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= Z f,(nu) 1>’nd_1,nd” X

11 d—11

N N

Ttl>d—1}b,t÷1(n1) 2....
T’i =1

+ sj,+isj,+1 Z ,J(nd) Z bi,j,t+d_1(nd_1)n_1,n*» X

d1

Z Z no,tItno,ni (4.6)
flil flol

We see that the sums over N1 terms in equation (4.5) can be written as a sum over

(d+ 1)Nterms.

We are able to compute multi-step ahead conditional expectations of the whole

variance matrix for two reasons. The first is that since our mode! for the corre1aton

matrix is linear, the conditional expectations of the correlation matrix are given by the

summation of a constant times a probability which is linearly updated. The second

is the use of a model for the conditional standard deviation (ARMACH) instead of the

variance. Note that the use of the ARMACH model is not required. If another univariate

mode! for the conditional vo!atility is obviously better and if analytic computation of

multi-step ahead conditional expectations are not of interest then this mode! should be

used.

It is not easy to design a multivariate vo!atility model that has a rich enough dynamic

but allows these analytic computations of multi-step ahead conditional expectations of

the variance matrix. For example, in the DCC model of Engle (2002) it is flot even

possible to compute multi-step ahead conditional expectations of the correlation matrix

because the resca!ing performed in equation (2.13) introduces non-linearities.

5. Application to exchange rate data

In this section we apply both the unrestricted and restricted version of the RSDC model

to the exchange rate dataset used by Harvey, Ruiz, and Shephard (1994) and Kim,

Shephard, and Chib (1998). This dataset contains four weekdays close exchange rates

(Pound, Deutschmark, Yen, Swiss-Franc a!l against the U.S. dollar) over the period
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1/10/81 to 28/6/85. The number of observation is 946. We first take 100 times the first

difference of the logarithm of each series, minus the sample mean, before applying di

rectly our variance model (these are our filtered series). We employ this dataset because

Harvey, Ruiz, and Shephard (1994) use it to present a multivariate stochastic volatility

model where they assume that correlations are constant through time. Using our model

we can check if their assumption was reasonable.

The resuits are generated using Ox version 3.30 on Linux [see Doornik (1999)]. The

estimation resuits that we present in the various tables are for full one-step maximum

likelihood estimation. We first do the two-step estimation (EM algorithm or conelation

targeting) and then use these values to initialïze the full maximization. We can do it

because we have a limited number of time series in our example.

5.1. RSDC mode! with two regimes

We first present results for the models with two regimes. Models with three regimes

are studied in the following subsection. The results for the unrestricted models are pre

sented in Tables 16 [ARMACH( 1,1) for the standard deviations] and 17 [GARCH( 1 .1)

for the standard deviations]. The outputs for the restricted version of the model are in

Tables 18 [ARMACH( 1,1)] and 19 [GARCH( 1,1)]. For the restricted model we present

the conelation matrix in each regime and their standard deviations computed with the

Delta method instead of the matrix P and the value of )(2) [we use the identification

scheme of equation (2.7) when doing the one-step estimation] so that the results are

directly comparable to those of the unrestricted model.

The resuils for the univariate volatility models are similar to the usual findings with

this type of financial series. The level of persistence for the univariate GARCH models

(c + /3) are high but strictly lower than one. For an ARMACH( 1,1) the degree of

persistence of the standard deviations are given by a + /3, flot 3 + /3. We also find that

the persistences are high but strictly lower than one. The impact on the likelihood ot

replacing the ARMACH model by the GARCH model is an increase of about 15 points.

For the estimation of the regime switching model the first thing to notice is that

the resuits do flot depend on the univariate model for the standard deviations. The

likelihood may be higher with the GARCH model but the parameters of the correlation
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mode! arc basically the same in both cases. It is an indication that we can replace the

traditional GARCH by the ARMACH or that the conelation model is robust to the

specification of the univariate standard deviations.

Looking at the tables and the Figures 11 and 12 where we have plotted, for the

unrestricted and the restricted model, the smoothed probabilities of being in regime one

and the smoothed coi-relations at each point in time, we see that the correlations appear

to be dynamic. Figure 11 shows that we frequently move between both regimes and

there is littie uncertainty about the regime we are in at each point in time. The process is

spending more time in regime one and spelis in regime two are shorter on average than

in regime one. This is explained by the estimate of the transition probability matrix,

which is very similar across the various models with two regimes. The probability of

being in regime one at time t + 1 conditional on being in regime one at time t, 7rH, is

around 0.93. That means a high level of persistence in the Markov chain because the

probability of spending the next five days in regime one is 0.93 0.70. In comparison,

for regime two this probability is 0.67 = 0.14. This illustrates that 0.93 and 0.67,

although both high probabilities, are very different.

As for the value of the coi-relations in each regime, the resuits for the restricted

model are similar to those of the unrestricted model. Under the unrestricted model, the

magnitude of ah the conelations in regime two is smaller than in regime one. So the

hypothesis of the restricted version of the mode! that there is an ordering in the mag

nitude of the coi-relations across the different regimes seems plausible. The hypothesis

that they ail decrease in the same proportion is less supported by the data. In the unre

stricted mode!, the implied value for )(2) for each correlation is as low as 0.243 and as

high as 0.592 (for the ARMACH case). Since these two models are nested, we can use

an LR test for this hypothesis. Under the nuil hypothesis that the restricted mode! is the

reahty, twice the difference in the log-Jikelihood should follow a Chi-square with five

degrees of freedom. The value of the test statistic is 27.2 and the 1% critical values s

15.09. We would reject the restricted version of the model at the 1% level.

We mentioned at the end of Section 3 that a LR test of one regime versus two does

flot asymptotically follow a Chi-square distribution with degrees of freedom equal to

the number of extra parameters. Nonetheless, the increase in the likelihood by going
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from one regime [which is the CCC model of Bollerslev (1990)1 to two regimes is so

high, more than 250 points, that we don’t need to perform a formai test to reject the

model with one regime. Table 26 contains the likelihood and the number of parameters

of ail the modeis estimated in this work.

5.2. RSDC model with three regimes

We next ailow a third regime in the Markov chain. The estimation resuits for the var

ious models are presented in Tables 20 to 23. As expected, the estimates of univariate

volatility models are not affected by the addition of an additional regime. The increase

of the log-likelihood is about 40 points for the unrestricted mode! and 50 points for the

restricted model, while the third regime adds respectively eleven and five parameters.

Again, there is no impact on the estimates of the corre!ation mode! when going from

the GARCH to the ARMACH mode!. If we have in mmd a likelihood ratio test to gauge

the increase in the likelihood we would compare 80 or 100 (twice the increase) to the

critical values of a Chi-square with eleven or five degrees of freedom (24.73 and 15.09

respectively), although it is flot a va!id procedure because the LR test is probabiy not

asymptotically Chi-square with these degrees of freedom.

The addition of a third regime 110W ailows the data to identify two regimes with

high correlations and one regime of very iow correlations. Again, we have in general

the same ordering of the magnitude of the correlations across the regimes with the

unrestricted model. The magnitude of the correiations in regime one is smalier than

in regime two, which is smailer than in regime three. We can again test the restricted

model versus the unrestricted. In this case, we compare twice the difference of the

!ikelihood, i.e. 8 for the ARMACH, to a Chi-square with ten degrees of freedom and

doing so we don’t reject the restricted mode!.

Looking at Figure 13, we see that the Markov chain is spending most of its time in

regimes of high correlations (regime two and three for the unrestricted mode!, regime

one and two for the restricted model). Very rareiy does the chain goes in the regime

of low corre!ation. Again, we see that most of the time we have a strong idea about

which regime we are in at every point in time as the smoothed probabiiities are close to

either zero or one most of the time. Examining more c!oseiy the correiation matrix for
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each regime, the smoothed probabilitïes and the smoothed correlations in Figure 14,

we see that with a third regime, the Markov chain is beginning to identify what could

be outiiers. The chain is going very rarely in a regime which is very different from the

others. This cou!d be seen as an indicator that three regimes is enough.

5.3. DCC

To evaluate the relative performance of our model to fit the data we estimate the DCC

GARCH(1,1) of Engle (2002). To isolate the impact of flot using the same model for

the standard deviations we also estimate a DCC-ARMACH(1,1). The resuits for the

DCC-GARCH are in Table 24 and the resuits for the DCC-ARMACH(1,1) are in Table

25. With both of these univariate volatility models we get similar estimates for the

matrix T and for the parameters c and /3; again an indication that the conelation models

are robust to the univariate volatility model employed. The full maximum like!ihood

estimates are reported.

What is interesting is to compare the log-!ikelihood of the different models. The

GARCH( 1,1) appears to fit the data a bit better than the ARMACH( 1,1) because the

likelihood increases by 28 points when we use the first of the two models. We also get

a similar increase in our regime switching model. But there is a big difference in the

level of the log-!ikelihood when we compare the RSDC mode! and the DCC mode!. For

our restricted model with two regimes (and GARCH mode!) the log-likelihood is 100

points higher than the DCC-GARCH while the regime switching model bas only one

more parameter than the DCC-GARCH. The difference in the log-like!ihood is 114.5

points between the unrestricted RSDC model with two regimes and the DCC-GARCH

at the cost of seven additiona! parameters.

Because our regime switching mode! and the DCC mode! are flot nested we cannot

perform a !ikelihood ratio test to verify if the increase in the likelihood is significant.

One va!id test for testing non-nested models is proposed by Rivers and Vuong (2002,

Section 4). With this test, we reject at the 10% leve!5 the hypothesis that the DCC model

5No parameter is treated as a nuisance parameter. We use the suggested Newey and West (19$7b)
estimator for the variance. We tried a wide range of values for the truncation Iag in the computation of
the variance.
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is as close to the true model as the RSDC model. Another approach for choosing one

model over the other could be the use of information criteria. Ultimately, we are flot

interested in rejecting a mode!. A better solution wou!d be to combine the forecasts

from these different models.

Another interesting comparison is the correlations extracted from both models. If

we compare the smoothed correlations from the unrestricted RSDC model with AR

MACH models for the standard deviations (Figure 14) with the correlations from the

DCC-ARMACH (Figure 15), we see that the correlations are generally smoother with

the switching regime model. This is even more apparent when we take the smoothed

correlations from the restricted model for the comparison. The exception would be

the conelation between the Deutschmark and the Swiss-Franc where there is almost

no movement for the DCC-GARCH while the single factor imposes changes in this

correlation. One interesting implication of smoother pattems for the correlatïons is

for the computation of VaR and portfolio allocation. If the time-varying correlations

are smoother, then the gain from portfolio diversification will also be smoother which

might imply a smoother pattern for the VaR and portfolio weights.

It might be intriguing that the regime switching gives a higher value for the like

lihood than the DCC because both models imply a VARMA dynamic for the outer

product of the standardized innovations. The DCC equation (2.12) can be rewritten

as

max(p,q) p

vech(ÙtÙ’) = P1 + (a + b)vech( LT_U ) + 14 — >
i=1 j=1

where 14 = vech(ÙÛ) — vech(f). From this equation we see that both the AR and

MA operators are scalar.

The VARMA representation of the regime switching model for the correlations

presented in this work is derived in Dufour and Pelletier (2003):

11(1 — e L)vech(ÛÙ) = 2 + 14+

with 14 a white noise process and the es are the eigenvalues of the transition matrix
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different than 1. The matrices of parameters B7 are function of the correlation matrices

and the transition matrix. From this, we see that one reason why the regime switching

model can be doing better is because the MA operator is flot restricted to be scalar.

5.4. Series associated to the Markov chain

An interesting exercise with regime switching models is identifying what is driving the

latent process A. Our mode! is for the standardized innovations but we can nonetheless

check if periods of high conelations correspond to a particular pattem for the standard

deviations. We plot in Figure 16 the smoothed probabilitïes of being in the regime of

high conelations for the restricted mode! with two regimes and the standard deviations

from an ARMACH(1,1) for each series. At first glance we cannot discem a pattem. We

can also regress the smoothed probability on a constant and the standard deviations.

Doing so, we get a low R2 coefficient (0.11) and, contrary to the prevailing intuition,

the regression coefficients are flot ail positive. The coefficient and t-stat for the pound

(—0.0824 and —1.3809), Yen (—0.3475 and —4.2725) and Swiss-Franc (—0.47776 and

—6.9474) are negative. Oniy the Deutschmark is positive (0.8013 and 7.8502). We get

similar resuits with the mode! with three regimes or with the fiitered probabilities.

We can also look at series other than the standard deviations of each retum. One

process which could drive the correlations of the various currencies is the retum on the

stock market. Since ail the currencies are expressed in term of U.S. dollars we can look

at the retum on the Dow Jones index. The conditional variance from a GARCH(1,1)

fitted on this series over the same period as our exchange rates is plotted in Figure 17.

Compared to the smoothed probabilities in Figure 13 for the unrestricted model, we see

that the increase in the voiatiiity after observation number 200 of the index corresponds

to a period where the process is in regime 1 (highest correlations) for a proionged

period. This is far from a comp!ete explanation because we cannot reaiiy discem a link

between this conditional variance and the rest of the smoothed probabilities.

If we believe that adding a third regime is equivalent to chasing outliers we can try

to see if something special happened in the days when the process went into that third

and infrequent regime. Looking again at the smoothed probabiiities for the unrestricted

mode! in figure 13, we see that around observation number 450 the process is spending
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five days in regime 3. These observations correspond to the July 11, 1983 to July 15,

1983 period. Reading newspapers from this period we see that over this week there

was a lot of uncertainty about what the Fed would do with the interest rates. At the

beginning of the week, Volcker sent a strong but noisy signal that something might

or might not happen to the interest rates (the process enters the regime of very low

conelations). Throughout the week, the Fed keeps sending this strong and noisy signal

(the process stays in this regime). Then at the end of the week, on July 15, Voicker

announces that the interest rates will go up. The uncertainty is resolved. The process

leaves the regime of very Iow correlations. Again, this is flot a complete explanation

because similar event studies for the other periods where the process goes into the

regime of low correlations are flot as satisfactory.

6. Conclusion

In this work wc propose a new mode! for the variance between multiple time series, the

Regime Switching Dynamic Correlation (RSDC) model. We decompose the covari

ances into correlations and standard deviations and both the correlations and the stan

dard deviations are dynamic. For the correlation matrix, we propose a regime switching

model. It is constant within a regime but different across regimes. The transitions be

tween the regimes are governed by a first order Markov chahi. This property of constant

correlation could have important impacts, namely for the computation of Value-at-Risk

and for dynamic portfolio allocation. We also present a restricted version of our mode]

where the changes across correlations in a given regime are proportional. This regime

switching model can be seen as a mid-point between the CCC mode! of Bollerslev

(1990) where the correlations are constant and models such as the DCC model of En

gle (2002) where the conelation matrix change at every point in time.

One appealing feature of this model for the conelations is that when combined with

the ARMACH mode! [Taylor (1986) and Schwert (1989)1 for the conditional standard

deviations, it allows analytic computation of multi-step ahead conditional expectations

of the whole variance matrix. The ARMACH model is a GARCH-type mode! for the

conditional standard deviations instead of the conditiona! variance.
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The evaluatjon of the likelihood is done with Hamilton’s filter because of the un

observed Markov chain. By decomposing the variance matrix into a diagonal matrix

of standard deviafions and a correlation matrix, we can use a two-step estimation pro

cedure as in Engle (2002). Combining this two-step estimation procedure with either

correlatïon targeting (for the restricted model) or the EM algorithm (for the unrestricted

model) breaks the curse of dimensionality, i.e. the number of parameters in every non

linear estimation is not a function of the number of time series.

An application of this model to four major exchange rate series illustrates its good

behavior. A comparison of our regime switching model with the DCC model of Engle

(2002) shows that our model has a better in-sample fit. An interesting aspect of our

regime switching model is that we find strong persistence in the Markov chain, which

produces smoother time-varying correlations than the DCC model.

Possible extensions in future work includes the addition of relations between cor

relations and standard deviations as the work of Andersen, Bollerslev, Diebold, and

Labys (2001) seems to indicate. Identification of the number of regimes in the Markov

chain is also an ongoing research project.
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7. Appendix: Proofs

PROOF 0F PROPoSITION 2.1 We can first state that f is positive semi-definite for

ail t. To prove this, consider a vector c = [cy, ... , CK]’ e RK.

c’fc c’Fc )(L\) + c’c (1 — )(4)) > O

because f is PSD and (A) E [0, 1. If the standard deviations are non-negative then

the product i.e. the variance matrix H, wili also be PSD. E

PRoof 0F THE0REM 3.2

Scaling (3.7) by 1/T, the uniform strong iaw of large numbers implies that a.s. we

get

= —E80
[

(1o21r + 2logs + (7.1)

where E80 is the expectation with respect to the true density. Similarly, scaling (2.3)

by 1/T, a.s. we get

L = —E00 [K1o2 + 1og + 2 1ogs + (7.2)

If we can show that both sets of first order conditions with respect to 01 are satisfied

for the same vector of parameters then we can conclude that the estimates from (3.7)

will converge to their true value.

Denoting by 8k,j one of the parameters in 01 that appears in the expression of 3k,t

we can write the first order conditions for L as

_____

F 1 8kt -2 1 aSk,
= E80 — — H- = 0. (7.3)

L Sk,t UUk.j 8k,t UUk,j
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While the first order conditions for L are

O

= E00 —

___

+
1 8k,t

= (7.4)
Sk,t aok, 5k,t 88k,j

O

Using the trace operator we can easily see that . , ù,,. . . , 0]’ is a ran

dom variable with unit mean, just like From this we see that the value of °k,j that

will solve equation (7.4) will also solve equation (7.3). For the rest of the proof see

Newey and McFadden (1994).

D
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figure 8: ACf of the cross-product of the standardized residuals with data simulated
from a regime switching model. Sample size is 1000.
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Figure 9: ACF of the cross-product of the standardized residuals with data simulated
from a DCC-GARCH. Sample size is 1000.
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Figure 10: Exchange rate series. The top and bottom figures are respectively the level
and the growth rate of each series.
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Table 16: Estimation resuits for the unrestricted model with two regimes and AR
MACH. Standard errors are in parenthesis. The log-likelihood value is -2011.6.

____________

[‘1,2 T’l,3 [‘1,4 T’2,3 [‘2,4

Regime 1 0.8754 0.7656 0.8569 0.8471 0.95 10 0.8617
(0.0292) (0.0363) (0.0283) (0.0181) (0.0061) (0.0184)

Regime2 0.4011 0.1859 0.3255 0.4739 0.5626 0.3250
(0.0958) (0.0996) (0.1275) (0.0843) (0.1871) (0.1666)

H Regime 1 Regime 2
Regime 1 0.9291 0.3334

(0.0356)
Regime 2 0.0709 0.6666

(0.0605)

Series w /3
Pound 0.0245 0.1028 0.0795 0.8895

(0.0094) (0.0249) (0.0194) (0.0263)
Deutschmark 0.0710 0.1286 0.1014 0.8078

(0.0197) (0.0295) (0.0179) (0.03 30)
Yen 0.0049 0.0295 0.0225 0.9705

(0.0044) (0.0113) (0.0086) (0.0136)
Swiss-Franc 0.0874 0.1225 0.0928 0.7975

(0.0452) (0.0430) (0.0327) (0.0821)
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Table 17: Estimation resuits for the unrestricted model with two regimes and GARCH.
Standard errors are in parenthesis. The log-likelihood value is -1994.7.

___________

T1,2 T1,3 T1,4 T2,3 T2,4 f3,4

Regime 1 0.8842 0.7805 0.8648 0.8567 0.9536 0.8696
(0.0264) (0.0321) (0.0275) (0.0191) (0.0091) (0.0169)

Regime2 0.4636 0.2484 0.3930 0.5217 0.6222 0.3953
(0.1015) (0.1149) (0.1329) (0.0833) (0.1748) (0.1792)

H Regime 1 Regime 2
Regime 1 0.9131 0.3206

(0.0392)
Regime 2 0.0869 0.6794

(0.0757)

Series w

Pound 0.0193 0.0895 0.8789
(0.0102) (0.0344) (0.0449)

Deutschmark 0.0450 0.1136 0.8 160
(0.0159) (0.0296) (0.0418)

Yen 0.0011 0.0181 0.9802
(0.0018) (0.0089) (0.0117)

Swiss-franc 0.0798 0.1143 0.7646
(0.0486) (0.0592) (0.1209)
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Table 18: Estimation resuits for the restricted model with two regimes and ARMACH.
Standard errors are in parenthesis. The log-likelihood value is -2025.2.

___________

F1,2 F1,3 F1,4 F2,3 F2,4 [3,4

Regime 1 0.8549 0.7274 0.8347 0.8334 0.9479 0.8477
(0.Û233) (0.0400) (0.024 1) (0.0227) (0.0069) (0.022 1)

Regime2 0.3362 0.2861 0.3283 0.3278 0.372$ 0.3334
(0.1327) (0.113$) (0.1296) (0.1294) (0.1469) (0.1316)

H Regime 1 Regime 2
Regime 1 0.9473 0.33 18

(0.0254)
Regime 2 0.0527 0.6682

(0.0635)

Series w a
Pound 0.0271 0.1068 0.0827 0.8826

(0.0102) (0.0265) (0.0207) (0.0285)
Deutschmark 0.0739 0.1282 0.1010 0.8037

(0.0194) (0.0220) (0.0175) (0.03 1$)
Yen 0.0040 0.0276 0.0211 0.9731

(0.003$) (0.0097) (0.0074) (0.0 1 15)
Swiss-Franc 0.0866 0.1206 0.0913 0.7983

(0.0439) (0.0406) (0.0406) (0.0798)
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Table 19: Estimation resuits for the restricted model with two regimes and GARCH.
Standard errors are in parenthesis. The log-likelihood value is -2009.0.

____________

F1,2 [‘1,3 [‘1,4

Regime 1 0.8602 0.7377 0.8373 0.8420 0.9500 0.8545
(0.0273) (0.0354) (0.0257) (0.0194) (0.0087) (0.0166)

Regïme 2 0.4052 0.3475 0.3944 0.3966 OE4475 0.4025
(0.1382) (0.1192) (0.1345) (0.1350) (0.1521) (0.1369)

H Regime 1 Regime 2
Regime 1 0.9381 0.3196

(0.0332)
Regime 2 0.06 19 0.6804

(0.0583)

Series w /3
Pound 0.0219 0.0933 0.8697

(0.0105) (0.0354) (0.0454)
Deutschmark 0.0477 0.1098 0.8145

(0.0 149) (0.0268) (0.0352)
Yen 0.0010 0.0176 0.9805

(0.0016) (0.0078) (0.0103)
Swiss-Franc 0.0817 0.1204 0.7521

(0.0388) (0.0566) (0.1015)
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Figure 11: Smoothed probabilities for the models with two regïmes and ARMACH.
The top and bottom figures represent the smoothed probabilities of being in regime 1
for the unrestricted and restricted model respectïvely.
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figure 12: Smoothed conelations for the models with two regimes case and ARMACH.
The top and bottom panel are for the unrestricted and restricted version of the model
respectively.
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Table 20: Estimation resuits for the unrestricted model with three regimes and AR
MACH. Standard errors are in parenthesis. The log-likelihood value is -1971.7.

____________

T1,2 T1,3 fi,4

Regime 1 0.1850 0.0855 0.0730 0.2048 0.2199 0.0620
(0.2592) (0.0819) (0.1263) (0.0410) (0.0989) (0.0830)

Regime 2 0.6039 0.4189 0.5598 0.7222 0.8853 0.7238
(0.0697) (0.0831) (0.1307) (0.0381) (0.1341) (0.0590)

Regime 3 0.9491 0.8497 0.9298 0.8568 0.9251 0.8705
(0.0101) (0.0347) (0.0667) (0.0672) (0.2257) (0.0894)

H Regime 1 Regime 2 Regime 3
Regime 1 0.6250 0.0000 0.0177

(0.0326) (0.0502)
Regime2 0.2479 0.8847 0.124$

(0.2045) (0.1168)
Regime3 0.1271 0.1153 0.8575

(0.2 189) (0.0746)

Series w /3
Pound 0.0332 0.1135 0.0878 0.8615

(0.0445) (0.0469) (0.0364) (0.1205)
Deutschmark 0.0543 0.1151 0.0907 0.8311

(0.0480) (0.0226) (0.0179) (0.0905)
Yen 0.0040 0.0313 0.0239 0.9694

(0.005 3) (0.0253) (0.0 193) (0.0251)
Swiss-Franc 0.0718 0.1200 0.0908 0.8108

(0.0965) (0.0538) (0.0408) (0.1892)
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Table 21: Estimation resuits for the unrestricted model with three regimes and GARCH.
Standard errors are in parenthesis. The log-Iikelihood value is -1955.3.

____________

T1,2 fi,3 fi,t T2,3 T2,4 f3,4

Regimel 0.3074 0.1132 0.1101 0.2169 0.1582 -0.0474
(0.1106) (0.1491) (0.1561) (0.0949) (0.1728) (0.1383)

Regime 2 0.5992 0.4174 0.5559 0.7196 0.8863 0.7177
(0.0930) (0.0688) (0.0810) (0.0587) (0.1985) (0.0921)

Regime 3 0.9487 0.8524 0.9297 0.8567 0.9249 0.87 18
(0.0260) (0.1190) (0.1433) (0.2012) (0.3846) (0.2039)

H Regime 1 Regime 2 Regime 3
Regime 1 OE6759 0.0000 0.0172

(0.0537) (0.0678)
Regime2 0.2702 0.8835 0.1218

(0.45 12) (0.0566)
Regime3 0.0539 0.1165 0.8610

(0.2730) (00698)

Series w 41
Pound 0.0290 0.1128 0.8203

(0.0470) (0.0742) (0.2500)
Deutschmark 0.0344 0.1054 0.8258

(0.0419) (0.0333) (0.1277)
Yen 0.0015 0.0234 0.9721

(0.0044) (0.038 1) (0.0407)
Swiss-Franc 0.0545 0. 1038 0.7973

(0.0662) (0.0341) (0.2056)
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Table 22: Estimation resuits for the restricted model with three regimes and ARMACH.
Standard errors are in parenthesis. The log-likelihood value is -1975.7.

___________

f1,2 T’1,3 fi,4 f2,3 113,4
Regime 1 0.8775 0.734$ 0.8567 0.8550 0.9723 0.8649

(0.0160) (0.0275) (0.0183) (0.0143) (0.003$) (0.0141)
Regime 2 0.7835 0.6561 0.7649 0.7634 0.8682 0.7723

(0.0225) (0.0285) (0.0236) (0.0212) (0.0195) (0.0172)
Regime 3 0.150$ 0.1262 0.1472 0.1469 0.1670 0.1486

(0.0692) (0.0581) (0.0676) (0.0674) (0.0766) (0.0682)

H Regime 1 Regime 2 Regime 3
Regime 1 0.9260 0.0797 0.0305

(0.0288) (0.1151)
Regime 2 0.0686 0.8787 0.4365

(0.0200) (0.1849)
Regime 3 0.0054 0.0416 0.5330

(0.0097) (0.0203)

Series w
Pound 0.0311 0.1035 0.0801 0.8800

(0.0123) (0.0281) (0.0219) (0.0333)
Deutschmark 0.0659 0.1101 0.0868 0.8270

(0.0187) (0.0212) (0.0169) (0.0339)
Yen 0.0043 0.0299 0.0228 0.9709

(0.0034) (0.0105) (0.0080) (0.0116)
Swiss-Franc 0.0964 0.1281 0.0970 0.7814

(0.0460) (0.042 1) (0.0320) (0.0827)
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Table 23: Estimation resuits for the restricted model with three regimes and GARCH.
Standard errors are in parenthesis. The log-likelihood value is -1961.3.

____________

f1,2 fi,3 fi,4 f2,3 f2,4 f3,4

Regime 1 0.8776 0.7347 0.8558 0.8545 0.9718 0.8645
(0.0166) (0.0282) (0.0191) (0.014$) (0.0036) (0.0144)

Regime 2 0.7759 0.6495 0.7566 0.7555 0.8592 0.7643
(0.0245) (0.0299) (0.0255) (0.0232) (0.0220) (0.0232)

Regime3 0.1444 0.1209 0.1408 0.1406 0.1599 0.1422
(0.0832) (0.069$) (0.0812) (0.0810) (0.0921) (0.0820)

H Regime 1 Regime 2 Regime 3
Regime 1 0.9134 0.1006 0.0138

(0.0396) (0.092 1)
Regime 2 0.0809 0.8555 0.4823

(0.0232) (0.1947)
Regime 3 0.0057 0.0439 0.5039

(0.0098) (0.0226)

Series w /3
Pound 0.0256 0.0941 0.8621

(0.0127) (0.0375) (0.0521)
Deutschmark 0.0464 0.1058 0.8163

(0.0140) (0.0254) (0.0369)
Yen 0.0017 0.0226 0.9739

(0.0018) (0.0091) (0.0120)
Swiss-Franc 0.0789 0.1222 0.7555

(0.0346) (0.035 1) (0.0764)
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Figure 13: Smoothed probabilities for the three-regime case with ARMACH. The top
and bottom figures represent the smoothed probabilities of being in each regime for the
unrestricted and restricted model respectively.
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Figure 14: Smoothed correlations for the three-regime case with ARMACH. The top
and bottom panel are for the unrestricted and restricted version of the model respec
tively.
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Table 24: Estimation resuits for the DCC-GARCH(1,1). Standard errors are in paren
thesis. The log-likelihood value is -2109.2

Series û
Pound 0.0282 0.1338 0.8145

(0.015$) (0.051$) (0.0716)
Deutschmark 0.0472 0.1689 0.7415

(0.0186) (0.0446) (0.0629)
Yen 0.0031 0.0306 0.9615

(0.0027) (0.012$) (0.0171)
Swiss-Franc 0.0646 0.1823 0.7189

(0.0539) (0.1085) (0.1636)
1 0.7657 0.5896 0.7093

(0.0440) (0.0636) (0.0483)
1 0.7219 0.8639

F (0.0467) (0.0307)
1 0.6814

(0.0564)
1

G

0.1235
(0.0451)

0.7822
(0.0893)

o
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Table 25: Estimation resuits for the DCC-ARMACH(1,1). Standard errors are in paren
thesis. The log-likelihood value is -21 37.2

Series &
Pound 0.0204 0.1120 0.0867 0.2241

(0.0082) (0.0288) (0.0224) (0.0294)
Deutschmark 0.0562 0.1524 0.1201 0.7932

(0.0163) (0.0252) (0.0201) (0.0377)
Yen 0.0045 0.0325 0.0248 0.9677

(0.0031) (0.0153) (0.01 17) (0.0152)
Swiss-Franc 0.0882 0.1876 0.1420 0.7377

(0.0636) (0.0759) (0.0553) (0.1263)
1 0.7554 0.6036 0.6849

(0.0486) (0.0524) (0.0596)
1 0.7255 0.8682

P (0.0383) (0.0291)
1 0.6843

(0.0515)
I

â
0.1088 0.8083

(0.0344) (0.057 1)

o



Figure 15: Conelations for the DCC-ARMACH(1,1).
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Table 26: Likelihood value and number of parameters for various models.
Log-likelihood Nb. par.

Unrestricted 3-regime GARCH -1955.3 38
Restricted 3-regime GARCH -1961.3 26
Unrestricted 3-regime ARMACH -1971 .7 38
Restricted 3-regime ARMACH -1975.7 26
Unrestricted 2-regïme GARCH -1994.7 27
Restricted 2-regime GARCH -2009.0 21
Unrestricted 2-regime ARMACH -201 1.6 27
Restricted 2-regime ARMACH -2025.2 21
DCC-GARCH(1,1) -2109.2 20
DCC-ARMACH(1,1) -2137.8 20
CCC-GARCH(1,1) -2272.1 18
CCC-ARMACH(1,1) -2301.8 18

figure 16: Smoothed probabilities of beïng in the regime of high correlations for the
restricted model with two regimes and standard deviations from an ARMACH( 1,1) for
each series.
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figure 17: Conditional variance from a GARCH(1,1) for the retum on the Dow Jones
index.
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Chapter 3: Short run and long run

causality in time series: inference

1. Introduction

The concept of causality ïntroduced by Wiener (1956) and Granger (1969) is now a ba

sic notion for studying dynamic relationships between time series. The literature on this

topic is considerable; see, for example, the reviews of Pierce and Haugh (1977), New

bold (1982), Geweke (1984), Ltitkepohl (1991) and Gouriéroux and Monfort (1997,

Chapter 10). The original definition of Granger (1969), which is used or adapted by

most authors on this topic, refers to the predictability of a variable X(t), where t is an

integer, from its own past, the one of another variable Y(t) and possibly a vector Z(t)

of auxïliary variables, one period ahead: more precisely, we say that Y causes X in

the sense of Granger if the observation of Y up to time t (Y(T) : r t) can help

one to predict X(t + 1) when the corresponding observations on X and Z are available

(X(r), Z(r) r <t); a more formai definition will be given beiow.

Recently, however, Lfltkepohl (1993b) and Dufour and Renault (1998) have noted

that, for multivariate models where a vector of auxiliary variables Z is used in addition

to the variables of interest X and Y, it is possible that Y does not cause X in this sense,

but can stiil help to predïct X several periods ahead; on this issue, see also Sims

(1980) and Renault, Sekkat, and Szafarz (1998). For example, the values Y(r) up to

time t may help to predict X(t + 2), even though they are useless to predict X(t + 1).

This is due to the fact that Y may help to predict Z one period ahead, which in tum bas

an effect on X at a subsequent period. It is clear that studying such indirect effects can

have a great interest for analyzing the relationships between time series. In particular,

one can distinguish in this way properties of “short-mn (non-)causality” and “long-run

(non-)causality”.

In this paper, we study the problem of testing non-causality at various horizons

as defined in Dufour and Renault (1998) for finite-order vector autoregressive (VAR)

models. In such models, the non-causality restriction at horizon one takes the form



131

of relatively simple zero restrictions on the coefficients of the VAR [sec Boudjellaba,

Dufour, and Roy (1992) and Dufour and Renault (1998)]. Howcver non-causality re

strictions at higher horizons (greater than or equal to 2) are generaily nonlinear taking

the form of zero restrictions on multilinear forms in the coefficients of the VAR. When

appiying standard test statistics such as Waid-type test criteria, such forms can easily

lead to asymptotically singular covariance matrices, so that standard asymptotic theoiy

would flot apply to such statistics. Further, caiculation of the relevant covariance ma

trices — which invoive the derivatives of potentially large numbers of restrictions — can

become quite awkward.

Consequently, we propose simple tests for non-causality restrictions at various hori

zons [as defined in Dufour and Renault (199$)] which can be implemented only through

linear regressïon methods and do not involve the use of artificial simulations [e.g., as in

Lfltkepohl and Burda (1997)]. This will be done, in particular, by considering multiple

horizon vector autoregressions [caÏled (p, h)-autoregressions] where the parameters of

interest can be estimated by linear methods. Restrictions of non-causality at differ

ent horizons may then be tested through simple Wald-type (or Fisher-type) criteria af

ter taking into account the fact that such autoregressions involve autocorrelated errors

[following simple moving average processes] which are orthogonal to the regressors.

The correction for the presence of autocorrelation in the errors may then be performed

by using an autocorrelation consistent [or heteroskedasticity-autocorrelation-consistent

(HAC)] covariance matrix estimator. Further we distinguish between the case where

the VAR process considered is stable (i.e., the roots of the determinant of the asso

ciated AR polynomial are ail outside the unit circle) and the one where the process

may be integrated of an unknown order (although flot explosive). In the first case, the

test statistics follow standard chi-square distributions while, in the second case, they

may foliow nonstandard asymptotic distributions involving nuisance parameters, as ai

ready observed by several authors for the case of causality tests at horizon one [sec

Sims, Stock, and Watson (1990), Toda and Phillips (1993, 1994), Toda and Yamamoto

(1995), Dolado and Ltitkepohl (1996) and Yamada and Toda (1998)]. b meet the

objective of producing simple procedures that can be implemented by least squares

methods, we propose to deal with such problems by using an extension to the case
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of multiple horizon autoregressions of the lag extension technique suggested by Choi

(1993) for inference on univariate autoregressive models and by Toda and Yamamoto

(1995) and Dolado and Ltitkepohl (1996) for inference on standard VAR models. This

extension will allow us to use standard asymptotic theory in order to test non-causality

at different horizons without making assumption on the presence of unit foots and coin

tegrating relations. Finally, to alleviate the problems of finite-sample unreliability of

asymptotic approximations in VAR models (on both stationary and nonstationary se

ries), we propose the use of bootstrap methods to implement the proposed test statistics.

In section 2, we describe the model considered and introduce the notion of autore

gression at horizon h [or (p, h)-autoregression] which will be the basis of ouï method.

In section 3, we study the estimation of (p, h)-autoregressions and the asymptotic dis

tribution of the relevant estimators for stable VAR processes. In section 4, we study the

testing of non-causality at various horizons for stationary processes, whilc in section 5,

we consider the case of processes that may be integrated. In section 6, we illustrate the

procedures on a monthly VAR model of the U.S. economy involving a monetary vari

able (nonborrowed reserves), an interest rate (federal funds rate), prices (GDP deflator)

and real GDP over the period 1965-1996. We conclude in section 7.

2. Multiple horizon autoregressions

In this section, we develop the notion of “autoregression at horizon h” and the relevant

notations. Consider a VAR (p) process of the form:

W(t) = (t) + kW(t — k) +a(t), t = 1, ... , T, (2.1)

where W(t) = (Wit, W2t, is an m x 1 random vector, 1i(t) is a deterministic

trend, and

E (a(s) a(t)’] = 2, ifs t
(2.2)

=0, ifst,

det(2) 0. (2.3)
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The most common specification for ti(t) consists in assuming that jt(t) is a constant

vector, i.e.

(t) = u, (2A)

although other deterministic trends could also be considered.

The VAR (p) in equation (2.1) is an autoregression at horizon 1. We can then also

write for the observation at time t + h:

t=O, ...

where /) = 1m and h <T. The appropriate formulas for the coefficients ir, ,u(h’)(t)

and are given in Dufour and Renault (1998), namely:

h
(h+1) (1) (h) (h)

= ltk+h + 7th_t+llFk = k+1 + 7 k, (2.5)
1=1

(0) (1)
= ‘m, ?Tk = 7tk, (2.6)

(h)(t) = + h — k) h) Vh > 0. (2.7)

The bh matrices are the impulse response coefficients of the process, which can atso

be obtained from the formai series:

00 00

= ir(z)’ = 1m + ‘/‘k, r(z) = 1m —

qrkzk. (2.8)

Equivalently, the above equation for W(t + h) can be written in the foilowing way:

W (t + h)’ = (t)’ + W (t + 1— k)’’ + ( + h)’

= (t)’ + w (t, p)’ + (t + h)’, (2.9)

for t = 0, ..., T — h and where

0
, = [w (t)’, W (t — 1)’,..., W (t

—
p + 1)’],
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(h)
—

(h) (h)1’71
—

[7T1 •-•,1, j ‘

u (t + h)’
=

[u (t + h), ... , u (t + h)] = a (t + h
—

j)’•

It is straightforward to see that (t + h) has a non-singular covariance matrix.

We cal! (2.9) an “autoregression of order p at horizon h” or a “(p, h)

autoregression”. In the sequel, we will assume that the deterministic part of each au

toregression is a linear fiinction of a finite-dimensional parameter vector, i.e.

= y(h)D(h)(t) (2.10)

where 7(h) is a m x n coefficient vector and (t) is a n x 1 vector of deterministic

regressors. If p(t) is a constant vector, i.e. p.(t) u, then (t) is simply a constant

vector (which may depend on h):

(2.11)

To derive inference procedures, it will be convenient to consider a number of alter

native formulations of (p, h)-autoregression autoregressions.

a) Matrix (p, h)-autoregression — First, we can put (2.9) in matrix form, which yields:

wh(h) =Wp(h)H(h)+Uh(h), h= 1,..., H, (2.12)

where Wh (k) and U,, (k) are (T — k + 1) x m matrices and W,, (k) is a (T — k + 1) x

(n + mp) matrix defined as

W(0+h)’

W(1+h)’
w (k) = [w1 (h, k), ... , Wm (h, k)], (2.13)

W(T—k+h)’
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1’V (O)’

— 14/ (1)’
W(k) = p

, W(t)= , (2.14)
W(t,p)

W(T—k)’

= [‘] = [1(h), 2(h), ,m(h)1, (2.15)

(O + h)’

u (1 + h)’
t1h (k) = [u1 (h, k), ... , um (h, k)], (2.16)

t’) (T — k + h)’

u(h, k) = [u(O+h), u(i+h), ... , u(T—k+h)]’. (2.17)

We shah cail the formulation (2.12) a “(p, h)-autoregression in matrix form”.

b) Rectangular stacked (p, H)-autoregression — To get the same regressor matrix on

the right-hand side of (2.12), we can also consider:

wh(H)=Wp(H)H(lt)+Uh(H), h=1, ... , H. (2.18)

This, however, involves losing observations. Using (2.18), we can also stack the H

systems above as follows:

= W (H) 11H + U- (2.19)

where WH and U are (T — H + 1) x (mH) matrices and W (H) is an (mp) x (rnH)

matrix such that

WH = [w’ (H), w2 (H), ... , Wj (H)]

= [H(’), j(2) . . ,

c =

Since the elements of UH are linear transformations of the random vectors a (t), t =
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1,.... T, which contain Tm random variables, it is dear that the vector vec (Um) wilI

have a singular covariance matrix when

Tm<(T-H)mH=TmH-mH2,

which will be the case when H> 2 and Tm> H.

c) Vec-stacked (p, H)-autoregression — We can also write equation (2.9) as

‘W (t + h) = [1m ® Wp (t)’] fj-(h) + (h) ( + h)

= W(t)’1Ï(”) +P’(t+h), t=0, ... ,T—h, (2.20)

where

‘J’

(h)
fj(h)

= vec (H)
= 2

A(h)
f-’ m

T’V(t)’ O O

— o W(t)’ •.. O

$

p:

O O W(t)’

which yields the linear model

= ZhT1’ + th (2.2 1)

where

W(0+h)

W(1+h)
=vec[w,1(h)],

t4 (T)
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W (0)’ 1m ® Wp (0)’

Im®W,(1)’
Zh = =

Im®Wp(Th)’

(0 + h)

u(h) (1 + h)
h =

:
= vec [Uh (h)’]

u (T)

It is also possible to stack together the models (2.2 1) for h = 1, ... , H:

(H) Z (H) fIH + (H) (2.22)

where

Z1 0 0

11)9 0 Z2 O
= - , (H) = , Z(H) =

00 •••ZH

d) Individual (p, H)-autoregressions Consider finally a single dependent variable

l1’ (t + h) = W (t)’ (h) + (t + h) , t 0, ... , T — H, (2.23)

for 1 < h < H, where 1 < i < m. We can also write:

(t + H) = [1H ® W (t)’] (H) + (t + H), t = 0, ... , T — H, (2.24)
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which yields the linear model

where

Wç(H)= (2.25)

(O+H)

(1+H)

W(T)

IHØW(O)

‘H ® W (1)’

‘H ® W (T — H)’

i(1)

(O + H)

(1+H)

(T)

where

W(t+1)

W(t+2)

W(t+H)

‘ù (t + H) =

u(t+1)

u(t+2)

u (t + H)

(H) =

i3(1)

f3(H)

W(H) =

ZH=

In the sequel, we shah focus on prediction equations for individual variables and

the matrix (p, h)-autoregressive form of the system in (2.12).

3. Estimation of (p, h) autoregressions

Let us now consider each autoregression of orderp at horizon h as given by (2.12):

w(h) —W(h)]1(’) + Uh(h) , h 1, ... , H. (3.1)
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We can estîmate (3.1) by ordinary Ieast squares (OLS), which yields the estimator:

= [Wp(h)’Wp(h)]’Wp(h)’w,1 (h)

= ff(h) + [W (h)’ W (h)] ‘W (h)’ Uh (h)

hence

[ft(h)
— 11(h)] = [w vv (h)] =W (h)’ Uh (h)

where

(h)’W (h) = (t) W (t)’,

(h)’ Uh (h) = W (t) (t + h)’.

Suppose now that

f with det(F) #O. (3.2)
T T—ooto

In particular, this will be the case if the process W (t) is second-order stationary, sr!’lV

indeterministic and regular, in which case

E [w (t) W,, (t)’] = f, Vt. (3.3)

Cases where the process does flot satisfy these conditions are covered in section 5.

Further, since

u(h)(t+h)_a(t+h)+a(t+hk)

(where, by convention, any sum of the form with h < 2 is zero), we have:

E [W(t)u (t+h)’] = O, forh= 1,2,

V {vec [w (t) (h) (t + h)’] } =
A1, (h).
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If the process W(t) is strictly stationary with i.i.d. innovations a(t), we can write:

E[W (s)
1)

(s + h) t4’ (t + h) W, (t)’] = 1(p, h, t — s) = f(p, h, s — t) (3.4)

wherel<i<m,1<j<rn,with

F(p, h, 0) = E [w (t) (t + h) (h) (t + h) W (t)’]

= (h) E [i’V (t) W (t)’] = ujj (h) f, (3.5)

f(p, h, t—s) =0, if t—si> h. (3.6)

In this case,

4 (h) = [u (h) ‘P]i,j=l,.,m = ‘Ui) ® f (3.7)

where Z(h) is nonsingular, and thus 4 (h) is also nonsingular. The nonsingularity of

Z(h) follows from the identity

u (t + h)
= [h1’ h-2’ , i, 1m] [a (t + 1)’, a (t + 2)’, ... , a (t + h)’]’.

Under usual regularity conditions,

vec[W (t) u (t + h)’] N [o, 4(h)] (3.8)

where 4 (h) is a nonsingular covariance matrix which involves the variance and the

autocovariances of W (t) (t + h)’ [and possibly other parameters, if the process

W(t) is not linear]. Then,

v’Ïvec [ft(it) —

{im ® [w (h)’W (h)] ‘} vec [w (h)’ U,, (h)]

Q = {im® [w(h)’w(1l)f’}

N[0, (Im®Pp’)4(h) (ImøÇ’)]. (3.9)
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For convenience, we shah summarïze the above observations in the following proposi

tion.

Proposition 3.1 ASYMPT0TIc NORMALITY 0f LS IN A (p, h) STATION

ARY VAR. Under the assumptions (2.1), (3.2), and (3.8), the asymptotic

distribution of /vec[fI(h)
— is N[O, L’(ft(h))], where (ft(h)) =

(Im®Ç1)4(h)(Im®F’)

4. Causality tests based on stationary

(p, h)-autoregressions

Consider the i-th equation (1 <i <m) in system (2.12):

Dj(h)Wp(h)/3j(h)+Zj(h), l<i<m, (4.1)

where ‘ùJj (h) = w (h, h) and i, (h) = n (h, h), where w (h, h) and uj (h, h) are

defined in (2.13) and (2.16). We wish to test:

H0(h) : Rt3 (h) = r (4.2)

where R is a q x (n + mp) matrix of rank q. In particular, if we wish to test the

hypothesis that w does flot cause at horizon h [i.e., using the notation of Dufour

and Renault (1998), w - w I, where I()(t) is the Hilbert space generated by

the basic information set 1(t) and the variables WkT, w < r < t, k j, w being an

appropriate starting time (w —? + 1)1, the restriction would take the form:

(4.3)

[ir] , k 1, ... , p. In other words, the nul!
i, j1,..., TTl

Q
takes the form of a set of zero restrictions on the coefficients of /3 (h) as defined in

(2.15). The matrix of restrictions R in this case takes the form R = R(j), where R(j)

[1(j), 62(J), ...
, 5(j)]’ is ap x (n + mp) matrix, 6k(i) isa (n +prn) x 1 vector
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whose elements are ail equal to zero except fora unit value at position n+(k — 1)m+j,

Le. 6k(J) = [(1, n+(k—1)m+j), ... , 6(n+pm, n+(k—1)m+j)]’, k =

1,
...

,p, with (i, j) = 1 if j = j, and (i, j) O if i j. Note also that the

conjunction of the hypothesis h 1, ... , (rn — 2)p + 1, is sufficient to obtain

noncausality at ail horizons [see Dufour and Renault (199$, section 4)1. Non-causality

up to horizon H is the conjunctÏon of the hypothesis h = 1,.. . , H.

We have:

ji (h) = , (ii) + [W (h)’W (h)]’W (h)’ (h),

hence

[, (h) - , (h)] = [w (h)’ W (h)] W (t) (t + h).

Under standard regularity conditions [see White (1999, chap. 5-6)],

[ (h)
-

(h)] N[O, v()]

with det [v()] O, where can be consistently estimated:

f’\ P t’VT) V
T—oo

More explicit forms for (i) wiii be discussed below. Note also that

piim -- W, (h)’W (h), det (F) O.
T—œ T

Let

V (T) = Var [w (h)’ j (h)] = Var [W (t) u (t + h)]

=
E[W (t) (h) (t + h) (t + h) W (t)’]
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h—1 T—h

+ [E[117(t)u? (t+h)u (t—r+h)W(t—r)’]
T1 tT+1

+ E [w (t — T) u (t — T + h) u (t + h) I1’ (t)’]] }.
Let us assume that

V(T) — 1/, detÇ17)O, (4.4)
T—œ

where I4,, can be estimated by a computable consistent estimator 1% (T)

(T) —-* T/,. (4.5)

Then,

[, (h) - (h)] N [o, ç%ç’]

so that = P;’VjF;’. Further, in this case,

= ;‘ (T) 1;’ - v(),

= (t) W (t)’ = (h)’W (h) --* F.

We can thus state the following proposition.

Proposition 4.1 ASYMPT0TIc DISTRIBUTION 0F TEST CRITERION FOR NON

CAUSALITY AT HORIZON h IN A STATIONARY VAR. Suppose the assumptions of

Proposition 3.1 hold jointty with (4.4) — (4.5). Then, under any hypothesis ofthefonn

I-10(h) in (4.2), the asymptotic distribution of

W[H0(h)] T [R (h) - r]’{R()R’]
1
[R (h) - r] (4.6)

1$ 2 (q). In particutai under the hypothesis H4% of non-causality ai’ horizon hfrom

to w (w - w 1(J)), the asymptotic distribution of the corresponding statistic

/V[H0(h)] is x2 (i).

The problem now consists in estimating V13. Let (h) =

(t + h) t = O, ... , T — h]’ be the vector 0f OLS residuals from the regression
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(4.1), (t + h) = W (t) û (t + h), and set

R (r)
= T h

(t + h) h) (t + h — r)’, T = 0, 1, 2

If the innovations are i.i.d. or, more generally, if (3.6) holds, a natural estimator of V,

which wouid take into account the fact that the prediction errors (t + h) follow an

MAth — 1) process, is given by:

(W) (T) = R (0) + [R (T) + R (r)’].

Under regularity conditions studied by White (1999, Section 6.3),

(W)(T)V
-- o.p T—co

A probiem with W) (T) is that it is flot necessarily positive-definite.

An alternative estimator which is automaticaily positive-semidefinite is the one sug

gested by Doan and Litterman (1983), Gallant (1987) and Newey and West (1987a):

m(T)-1
NW) (T) = R (0) + t (T, m (T)) [R (T) + Rît) (T)’] , (4.7)

where(r, m) 1— [r/(m+1)], limm(T) = oo,and lim [m(T)/T’/4] = 0.
T—œ T—oo

Under the regularity conditions given by Newey and West (1987a),

(NW)
V (T)----+0.

p T—œ

Other estimators that couid be used here includes various heteroskedasticity

autocorrelation-consistent (HAC) estimators; see Andrews (1991), Andrews and Mon

ahan (1992), Cribari-Neto, Fenari, and Cordeiro (2000), Cushing and McGarvey

(1999), Den Haan and Levin (1997), Hansen (1992), Newey and McFadden (1994),

Wooldridge (1989).

The cost of having a simple procedure that sidestep ail the nonlinearities associated

with the non-causality hypothesis is a loss of efficiency. There are two places where we
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are flot using ail information. The constraints on the 7T’S are giving information on the

and we are flot using it. We are also estimating the VAR by OLS and correcting the

variance-covariance matrix instead of doing a GLS-type estimation. These two sources

of inefficiencies could potentially be overcome but it would lead to less user-friendly

procedures.

The asymptotic distribution provided by Proposition 4.1, may flot be very reliable

in finite samples, especially if we consider a VAR system with a large number of vari

ables andlor lags. Due to autocorrelation, a larger horizon may also affect the size an

power of the test. So an alternative to using the asymptotic distribution chi-square of

W[H0(h)], consists in using Monte Carlo test techniques [see Dufour (2002)] or boot

strap methods [see, for example, Paparoditis (1996), Paparoditis and Streitberg (1991),

Kilian (1998a, 1998b)J. In view of the fact that the asymptotic distribution ofV9[Ho(h)1

is nuisance-parameter-free, such methods yield asymptotically valid tests when applied

to W[H0(h)] and typically provide a much better control of test level in finite samples.

It is also possible that using better estimates would improve size control, although this

is not clear, for important size distortions can occur in multivariate regressions even

when unbiased efficient estimators are available [sec, for example, Dufour and KhalaC

(2002)].

5. Causality tests based on nonstationary

(p, h)-autoregressions

In this section, we study how the tests described in the previous section can be adjusted

in order to allow for non-stationary possibly integrated processes. In particular, let us

assume that

W(t) = 1i(t)+(t), (5.1)

(t) = o + 6t + + r (t) = 7i (t k) + a (t) , (5.2)
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t = 1, ... , T, where 6o, 6, ... , 6q are m x 1 fixed vectors, and the process (t) is at

most 1(d) where d is an integer greater than or equal to zero. Typical values for d are

0,1 or2.

Under the above assumptions, we can also wrïte:

W(t) = 7 + ‘yit + + 7qt + kW (t — k) + a (t) , t = 1, ... , T, (5.3)

where ‘y, 7, are n-i x 1 fixed vectors (which depend on 6, , , 6, and

see Toda and Yamamoto (1995). Under the specification (5.3), we have:

W(t + h) = (t) + W (t + 1 — k) + u (t + h) , t = 0, ... , T — h.

(5.4)

(h (h) (h) (h) (h) (h) (h)where (t) = ‘Yo + ‘y t+ + ‘yq
1q and 7o ‘ ‘xi , ...

, ‘yq are m x 1 fixed vec

tors. For h = 1, this equation is identical with (5.3). For h 2, the errors u(1) (t + h)

follow a MA(h — 1) process as opposed to being i.i.d.. For any integer j, we have:

T’V(t+h) = )(t)+Z[w(t+1_k)_w(t+1_j)]

kj

+ ( h)) W(t + 1
— j) + u (t + h), (5.5)

W(t + h) W(t + 1
—

= (t) + [w (t + 1 — k) — W(t + 1
— j)]

kj

—(1m — w(t+ 1j) +u (t+ h) , (5.6)

for t = 0, ... , T — h. The two latter expressions can be viewed as extensions to

(p, h) -autoregressions of the representations used by Dolado and Ltitkepohl (1996, pp.

372-373) for VAR(p) processes. Further, on taking j = p + 1 in (5.6), we see that

Q p

W(t+h)—W(t—p) = i(t)+ZALW(t+1—k)
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-f B1’V(t — p) + u (t + h) (5.7)

where LXW (t) = W(t) —W(t— 1), A = ,arni 31h) A 1m . Equation

(5.7) may be interpreted as an error-correction format the horizon h,with base W(t—p).

Let us now consider the extended autoregression

WQ + h) = (h)(t) + h)W (t + 1—k)

p+d

+ irW (t + 1 — k) + (t + h) , (5.8)
k=p+1

t = d. ... , T — h. Under model (5.3), the actual values of the coefficient matrices

are equal to zero (7r =
= -d = 0), but we shah estimate the

(p, h)-autoregressions without imposing any restriction on 7r, . -. ,

Now, suppose the process ij (t) is either 1(0) or 1(1), and wc take d = 1 in (5.8).

Then, on replacing p byp + 1 and setting j = p in the representation (5.6), we see that

W(t + h) — w(t
—

— 1) = (t) +
(h) [w (t + 1 — k) — W(t

—
p — 1)]

—B1 W(t
—

— 1) + (h) (t + h) , (5.9)

(h) p+i (h) . (h) (h)where B+1 (1m
— k=1 7fk ). In the latter equation, r1 , ... , ii-13 ail affect trend

stationary variables (in an equation where a trend is included along with the other

coefficients). Using arguments similar to those of Sims, Stock, and Watson (1990),

Park and Phillips (1989) and Dolado and Ltitkepohl (1996), it fohlows that the esti

mates of h)
based on estimating (5.9) by ordinary least squares (without

restricting B ) — or, equivalently, those obtained from (5.8) without restricting

— are asymptotically normal with the same asymptotic covariance matrix as the one

obtained for a stationary process of the type studied in section 4•6 ConsequentÏy, the

asymptotic distribution of the statistic W[H] for testing the nuli hypothesis HZ of

non-causality at horizon h from w to w (w -- w I()), based on estimating (5.8),

6For related resuits, see also Choi (1993), Toda and Yarnamoto (1995), Yamamoto (1996), Yamada
and Ioda (1998), and Kurozumi and Yamamoto (2000).
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is x2() When computing H as deflned in (4.3), it is important that only the coeffi

cients of ir, ...
, are restricted (but not

If the process î (t) is integrated up to order d, where U 0, we can proceed sim

ilarly and add U extra lags to the VAR process studied. Again, the nuli hypothesis is

tested by considering the restrictions entaiied on ir”, ... , ir. further, in view of the

fact the test statistics are asymptoticaÏly pivotai under the nuil hypothesis, it is straight

forward to appiy bootstrap methods to such statistics. Note finally that the precision of

the VAR estimates in such augmented regressions may eventuaily be improved with re

spect to the OLS estimates considered here by appiying bias corrections such as those

proposed by Kurozumi and Yamamoto (2000)]. Adapting and appiying such correc

tions to (p, h)-autoregressions would go beyond the scope of the present paper.

6. Empirical illustration

In this section, we present an application of these causalïty tests at various horizons to

macroeconomic time series. 11e data set considered is the one used by Bernanke and

Mihov (199$) in order to study United States monetary policy. The data set considered

consists of monthly observations on nonborrowed reserves (NBR, also denoted w1),

the federal funds rate (T, w2), the GDP deflator (P, w3) and real GDP (GDP, w4). The

monthly data on GDP and GDP deflator were constructed by state space methods from

quarterly observations [see Bemanke and Mihov (199$) for more details]. The sampie

goes from January 1965 to December 1996 for a total of 384 observations. In what

follows, ail the variables were flrst transformed by a logarithmic transformation.

Before performing the causality tests, we must specify the order of the VAR mode].

First, in order to get apparently stationary time series, ail variables were transformed

by taking flrst differences of their logarithms. In particuiar, for the federal funds rate,

this helped to mitigate the effects of a possible break in the series in the years 1979-

19$i. Starting with 30 iags, we then tested the hypothesis of K iags versus K + 1

7Bernanke and Mihov (1998) performs tests for arbitrary break points, as in Andrews (1993), and
don’t find significant evidence of a break point. They use a VAR( 13) with two additional variables (total
bank reserves and Dow-Jones index of spot commodity prices and they normalize both reserves by a
36-month moving average of total reserves.)



149

Table 27: Rejection frequencies using the asymptotic distribution and the simulated
procedure when the truc DGP is an i.i.d. Gaussian sequence

a) ï.i.d. Gaussian sequence

h= 1 2 3 4 5 6 7 $ 9 10 11 12

Asymptotic
5% level 27.0 27.8 32.4 36.1 35.7 42.6 47.9 48.5 51.0 55.7 59.7 63.6
10% level 37.4 39.4 42.2 46.5 47.8 52.0 58.1 59.3 60.3 66.3 69.2 72.5

Bootstiap
5% level 5.5 5.7 4.7 6.5 4.0 5.1 5.5 3.9 4.7 6.1 5.2 3.8
10% level 10.0 9.1 10.1 10.9 9.6 10.6 10.2 9.4 9.5 10.9 10.3 8.9

b) VAR(16) without causality up to horizon h

Asymptotic
5% level 24.1 27.9 35.8 37.5 55.9 44.3 52.3 55.9 54.1 60.1 62.6 72.0
10% level 35.5 38.3 46.6 47.2 65.1 55.0 64.7 64.6 64.8 69.8 72.0 79.0

Bootstrap
5% level 6.0 5.1 3.8 6.1 4.6 4.7 4.4 4.5 4.3 6.3 4.9 5.8
10% level 9.8 8.8 8.7 10.4 10.3 9.9 8.7 7.4 10.3 11.1 9.3 9.7

lags using the LR test presented in Tiao and Box (1981). This led to a VAR(16) model.

Tests of a VAR(16) against a VAR(K) for K 17, ... , 30 also failed to reject the

VAR(16) specification, anti the AIC information criterion [sec McQuarrie anti Tsai

(1998, chapter 5)] is minimized as well by this choice. Calculations were performed

using the Ox program (version 3.00) working on Linux [see Doomik (1999)1.

Vector autoregressions of orderp at horizon h were estimated as described in section

4 and the matrix required to obtain covariance matrices, were computed using

formula (4.7) with rn(T) — 1 = h — 1.

On looking at the values of the test statistics and their conesponding p-values at

various horizons it quickly becomes evident that the 2(q) asymptotic approximation

of the statistic W in equation (4.6) is very poor. As a simple Monte Carlo experiment,

we replaced the data by a 383 x 4 matrix of random draw from an N(0, 1), ran the same

tests and looked at the rejection frequencies over 1000 replications using the asymptotic

O critical value. The results are in Table 27a. We see important size distortions even for

the tests at horizon I where there is no moving average part.

We next illustrate that the qualïty of the asymptotic approximation is even worse
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when we move away from an i.i.d. Gaussian setup to a more realistic case. We now

take as the DGP the VAR( 16) estimated with our data in first difference but we impose

that some coefficients are zero such that the federal funds rate does flot cause GDP

up to horizon h and then we test the r - GDP hypothesis. The constraints of non

causality from j to i up to horizon h that we impose are:

‘îrjj O for 1 <1 <p, (6.1)

lCikt O for 1<1 <h, 1 <k <m. (6.2)

Rejection frequencies for this case are given in Table 27h.

In light of these resuits we computed the p-values by doing a parametric bootstrap,

i.e. doing an asymptotic Monte Carlo test based on a consistent point estimate [see

Dufour (2002)]. The procedure to test the hypothesis w -+ w I is the following.

1. An unrestricted VAR(p) model is fitted for the horizon one, yielding the estimates
fi(’) and f2 for H’ and f2.

2. An unrestricted (p, h)-autoregression is fitted by least squares, yielding the esti

mate ft(h) ofH(h1).

3. The test statistic W for testing noncausality at the horizon h from w to w,

w5 -‘- w 1(i)] is computed. We denote by W(0) the test statis

tic based on the actual data.

4. N simulated samples from (2.9) are drawn by Monte Carlo methods, using

H(h) = ft(h) and S? = f2 [and the hypothesis that a(t) is Gaussian]. We im

pose the constraints of non-causality, * = 0, k = 1, ... , p. Estimates of the

impulse response coefficients are obtained from ft(’) through the relations de

scribed in equations (2.5) and (2.6). We denote by W(n) the test statistic for

H4 based on the n-th simulated sample (1 n N).

5. The simulated p-value N[W5(0)] is obtained, where

15N[X}= {1+I[w(n)_xl}/(N+1)

I[z] = 1 if z>0 and I[z] O ifz <0.
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Figure 18: Power of the test at the 5% level for given horizons. The abscïssa (x axis)
represents the values of &.
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6. The nuil hypothesis is rejected at level c if J3N[W(h)] a.

From looking at the resuits in Table 27, we see that we get a much better size con

trol by using this bootstrap procedure. The rejection frequencies over 1000 replications

(with N 999) are very close to the nominal size. Although the coefficients b3’s are

functions of the rr ‘s we do flot constrain them in the bootstrap procedure because there

is no direct mapping from ir to rrk and ‘b3. This certainly produces a power loss

but the procedure remains valid because the Qj’s are computed with the rrk, which are

consistent estimates of the truc lrk both under the nuli and alternative hypothesis. To

illustrate that our procedure has power for detecting departure from the nuli hypothe

sis of non-causality at a given horizon we ran the following Monte Carlo experiment.

We again took a VAR(16) fitted on our data in first differences and we imposed the

constraints (6.1) - (6.2) so that there was no causality from T to GDP up to horizon

12 (DGP under the nuli hypothesis). Next the value of one coefficient previously set

to zero was changed to induce causality from r to GDP at horizons 4 and higher:
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Table 30: Summary of causality relations at various horizons for series in first difference

h 1 2 345 67 8 9101112
NBR-i-*r **

r-’NBR
NBR-P *

P-’+NBR
NBR -‘÷ GDP
GDP-÷NBR *

r-+P
P-’÷r
r - GDP * * * * ** ** ** ** ** *-*

GDP - r ** ** ** ** **

P-’÷GDP
GDP-i-P * * *

h 13 14 15 16 17 18 19 20 21 22 23 24
NBR-’-r

r-i-+NBR
NBR-÷P

P-’÷NBR
NBR - GDP
GDP-NBR *

r-P
P-’÷r
r - GDP ** ** ** ** ** ** * *

GDP-’÷r
P-’÷GDP

GDP-P

Note — The symbols * and ** indicate rejection of the non-causality hypothesis at the
10% and 5% Jevels respectively.

7r3(1, 3) 8. As O increases from zero to one the strength of the causality from r to

GDP is higher. Under this setup, we could compute the power of OUÏ simulated test

procedure to reject the nuil hypothesis of non-causality at a given horizon. In figure

18, the power curves are plotted as a function of O for the various horizons. The level

of the tests was controlled through the bootstrap procedure. In this experiment we took

again N = 999 and we did 1000 simulations. As expected, the power curves are flat

at around 5% for horizons one to three since the nuil is tnie for these horizons. For

horizons four and up we get the expected resuit that power goes up as O moves from

zero to one, and the power curves gets flatter as we increase the horizon.

Now that we have shown that our procedure does have power we present causality

tests at horizon one to 24 for every pair of variables in tables 28 and 29. for every

horizon we have twelve causality tests and we group them by pairs. When we say that
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a given variable cause or does flot cause another, it should be understood that we mean

the growth rate of the variables. The p-values are computed by taking N = 999. Table

30 summarize the resuits by presenting the significant resuits at the 5% and 10% level.

The first thing to notice is that we have significant causality resuits at short horizons

for some pairs of variables while we have it at longer horizons for other pairs. This is

an interesting illustration of the concept of causality at horizon h of Dufour and Renault

(1998).

The instrument of the central bank, the nonborrowed reserves, cause the federal

funds rate at horizon one, the prices at horizon 1, 2, 3 and 9 (10% level). It does

flot cause the other two variables at any horizon and except the GDP at horizon 12

and 16 (10% level) nothing is causing it. We see that the impact of variations in the

nonborrowed reserves is over a very short term. Another variable, the GDF is also

causing the federal funds rates over short horizons (one to five months).

An interesting resuit is the causality from the federal funds rate to the GDP. Over

the first few months the funds rate does flot cause GD but from horizon 3 (up to 20) we

do find significant causality. This resuit can easily be explained by, e.g. the theory of

investment. Notice that we have the following indirect causality. Nonborrowed reserves

do flot cause GDP directly over any horizon, but they cause the federal funds rate which

in tum causes GDP. Conceming the observation that there are very few causality resuits

for long horizons, this may refiect the fact that, for stationary processes, the coefficients

of prediction formulas converge to zero as the forecast horizon increases.

Using the resuits of Proposition 4.5 in Dufour and Renault (1998), we know that

for this example the highest horizon that we have to consider is 33 since we have a

VAR( 16) with four time series. Causality tests for the horizons 25 through 33 were also

computed but are not reported. Some p-values smaller or equal to 10% are scattered

over horizons 30 to 33 but no discernible pattern emerges.

We next consider extended autoregressions to illustrate the resuits of section 5. To

cover the possibility that the first difference of the logarithm of the four series may not

be stationary, we ran extended autoregressions on the series analyzed. Since we used a

VAR(16) with non-zero mean for the first difference of the series a VAR(17), i.e. cl = 1,

with a non-zero mean was fitted. The Monte Carlo samples with N = 999 are drawn
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in the same way as before except that the constraints on the VAR parameters at horizon

kis=Ofork=1,...,pandnotkzr1,...,p+d.

Resuits of the extended autoregressions are presented in Table 31 (horizons 1 to 12)

and 32 (horizons 13 to 24). Table 33 summarize these resuits by presenting the signifi

cant resuits at the 5% and 10% level. These resuits are very similar to the previous ones

over ail the horizons and variable every pairs. A few causality tests are flot significant

anymore (GDP -** r at horizon 5, r - GDP at horizons 5 and 6) and some causality

relations are now significant (r -** P at horizon one) but we broadly have the same

causality pattems.

7. Conclusion

In this paper, we have proposed a simple linear approach to the problem of testing non

causality hypotheses at various horizons in finite-order vector autoregressive models.

The methods described allow for both stationary (or trend-stationary) processes and

possibly integrated processes (which may involve unspecified coïntegrating relation

ships), as long as an upper bound is set on the order of integration. Further, we have

shown that these can be easily implemented in the context of a four-variable macroe

conornïc model of the U.S. economy.

Several issues and extensions of interest warrant further study. The methods we

have proposed were, on purpose, designed to be relatively simple to implernent. This

may, of course, involve efficiency losses and leave room for improvement. For example,

it seems quite plausible that more efficient tests may be obtained by testing directly

the nonlinear causality conditions described in Dufour and Renault (1998) from the

parameter estimates of the VAR model. However, such procedures wïll involve difficult

distributional problems and may flot be as user-friendly as the procedures described

here. Simïlarly, in nonstationary time series, infonnation about integration order and

the cointegrating relationships may yield more powerful procedures, although at the

cost of complexity. These issues are the topics of on-going research.

Another limitation cornes from the fact we consider VAR models with a known fi

nite order. We should however note that the asymptotic distributional results established
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Table 33: Summary of causality relations at various horizons for series in first difference
with extended autoregressions

h 1 2 3 4 5 6 7 8 9101112
NBR-i-*r *

r -,‘* NBR *

NBR-+P *

P-NBR
NBR -,+ GDP
GDP -,+ NBR

T -‘+ P *

P-r
r - GDP * * ** ** ** ** ** **

GDP -/ T ** ** ** *

P-+GDP
GDP - P * *

h 13 14 15 16 17 18 19 20 21 22 23 24
NBR-,-*r

r-,4NBR
NBR-P

P-N3R
NBR -,+ GDP
GDP-NBR *

r-P
P-r
r - GDP ** ** ** ** ** * **

GDP -“* T

P--GDP
GDP-P

Note — The symbols * and ** indicate rejection of the non-causality hypothesis at the
10% and 5% levels respectively.

in this paper continue to hold as long as the order p of the model is selected according

to a consistent order selection mie [see Dufour, Ghysels, and Hall (1994), Pôtscher

(1991)]. So this is flot an important restriction. Other problems of interest would con

sist in deriving simifar tests applicable in the context of VARMA or VARIMA models.

as weil as more general infinite-order vector autoregressive models, using finïte-order

VAR approximations based on data-dependent tmncatïon mies [such as those used by

Lûtkepohl and Poskitt (1996c) and LUtkepohl and Saikkonen (1997)]. These problems

are aiso the topics of on-going rescarch.



Chapter 4: Backtestïng Value-at-Risk:

a duration-based approach8

1. Motivation

Financial rïsk mode! evaluation or backtesting is a key part of the internai model’s

approach to market risk management as laid out by the Basle Committee on Banking

Supervision (1996). However, existing backtesting methods such as those developed

in Christoffersen (1998), have relatively small power in realistic small sampie settings.

Methods suggested in Berkowitz (2001) fare better, but rely on information such as the

shape of the left tau of the portfolio retum distribution, which is often not available.

By far the most common risk measure is Vaiue-at-Risk (VaR), which is defined as a

conditional quantile of the retum distribution, and it says nothing about the shape of

the tau to the ieft of the quantile.

We will refer to an event where the ex-post portfolio loss exceeds the ex-ante VaR

measure as a violation. 0f particular importance in backtesting is the clustering of vio

lations. An institution’s internai risk management team as weli as extemai supervisors

explicitly want to be able to detect ciustering in violations. Large iosses which occur in

rapid succession are more likely to lead to disastrous events such as bankruptcy.

In the previous literature, due to the lack of real portfolio data, the evaluation of

VaR techniques were largeiy based on artificiai portfolïos. Exampies in this tradition

include Beder (1995), Christoffersen, Hahn, and moue (2001), Hendricks (1996), Ku

piec (1995), Marshall and Siegel (1997), and Pritsker (1997). But recentiy, Berkowitz

and O’Brien (2002) have reported on the performance of actual VaR forecasts from six

large (and anonymous) U.S. commercial banks.9 Figure 19 reproduces a picture from

their paper which shows the VaR exceedences from the six banks reported in standard

deviations of the portfoiio retums. Even though the banks tend to be conservative—they

8lhis chapter has originally been published undert the titie “Backtesting Value-at-Risk: A Duration
Based Approach” in the Journal of Financial Econonietrics, 2004, volume 2, number 1, pp. 84-108, by
permission of Oxford University Press.

9Barone-Adesi, Giannopoulos, and Vosper (2002) provides another example using real-life portfolio
returns.
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have fewer than expected vïolations—the exceedences are large and appear to be dus

tered in time and across banks. The majority of violations appear to take place during

the August 1998 Russia default and ensuing LTCM debacle. From the perspective of

a regulator worried about systemic risk, rejecting a particular bank’s risk model due to

the clustering of violations is particularly important if the violations also happen to be

correlated across banks.

The detection of violation clustering is particularly important because of the

widespread reliance on VaRs calculated from the so-called Historical Simulation (HS)

technique. In the HS methodology, a sample of historical portfolio retums using current

portfolio weights is first constnicted. The VaR is then simply calculated as the uncon

ditionat quantile from the historical sample. The HS method thus largely ignores the

last 20 years of academic researcli on conditional asset retum models. Time variability

is only captured through the rolling historical sample. In spite of forceful warnings,

such as Pritsker (2001), the model-free nature of the HS technique is viewed as a great

benefit by many practitioners. The widespread use of HS the technique motivates us to

focus attention on backtesting VaRs calculated using this method.

While alternative methods for calculating portfolio measures such as the VaR have

been investigated in for example Jorion (2001), and Christoffersen (2003), avallable

methods for backtesting are still relatively few. Our contribution is thus the exploration

of a new tool for backtesting based on the duration of days between the violations of

the risk metric. The chief insight is that if the one-day-ahead VaR model is correctly

specified for coverage rate, p, then, every day, the conditional expected duration until

the next violation should be a constant l/p days. We suggest various ways of testing

this null hypothesis and we conduct a Monte Carlo analysis which compares the new

tests to those currently available. Our results show that in many realistic situations, the

duration based tests have better power properties than the previously suggested tests.

The size of the tests is easily controlled using the Monte Carlo testing approach of

Dufour (2002). This procedure is described in detail below.

We hasten to add that the sort of omnibus backtesting procedures suggested here

are meant as complements to—and not substitutes for—the statistical diagnostic tests

carried out on various aspects of the risk model in the model estimation stage. The
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tests suggested in this paper can be viewed either as a final diagnostic for an internai

model builder or aiternatively as a feasible diagnostic for an externai model evaiuator

for whom oniy limited, aggregate portfoiio information is avaiiabie.

Our paper is structured as follows: Section 2 outiines the previous first-order

Markov tests, Section 3 suggests the new duration-based tests, and Section 4 discusses

details reiated to the implementation of the tests. Section 5 contains Monte Carlo ev

idence on the performance of the tests. Section 6 considers backtesting of tail density

forecasts, and Section 7 concludes.

2. Extant Procedures for Backtesting Value-at-Risk

Consider a time series of daily ex-post portfoiio retums, R, and a corresponding time

series of ex-ante Value-at-Risk forecasts, VaR (p) with promised coverage rate p, such

that ideaily Pr1 (R < —VaR(p)) = p. The negative sign arises from the convention

of reporting the VaR as a positive number.

Define the hit sequence of VaRt violations as

f 1, if R < —VaRt (p)
It = . (2.1)

O, else

Notice that the hit sequence appears to discard a large amount of information re

garding the size of violations etc. Recaii, however, that the VaR forecast does flot

promise violations of a certain magnitude, but rather only their conditionai frequency,

i.e. p. This is a major drawback of the VaR risk measure which we will discuss in

Section 6.

Christoffersen (199$) tests the nuli hypothesis that

‘t «-‘ i.i.d. Bernoulti(p)

against the alternative that

‘t ‘—‘ i.i.d. Bernoutti(’ir)
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and refers to this as the test of correct unconditional coverage (uc)

1o,uc7t=P (2.2)

which is a test that on average the coverage is correct. The above test implicitly assumes

that the hits are independent an assumption which we now test explicitly. In order to

test this hypothesïs an alternative is defined where the hit sequence follows a first order

Markov sequence with switching probability matrix

= 1 — 7T01 O1
(2.3)

l—iCi ir11

where ir is the probability of an i on day t — 1 being followed by a j on day t. The

test of independence (md) is then

HO,ind 7F01 7t1. (2.4)

Finally one can combine the two tests in a test of conditional coverage (cc)

H,cc 7roi = p (2.5)

The idea behind the Markov alternative is that clustered violations represent a signal

of risk model misspecification. Violation clustering is important as it implies repeated

severe capital losses to the institution which together could result in bankruptcy.

Notice however, that the Markov first-order alternative may have limited power

against general forms of clustering. The first point of this paper is to establish more

general tests for clustering which nevertheless only rely on information in the hit se

quence. Throughout the paper we implicitly assume that the VaR is for a one-day

horizon. To apply this backtesting framework to an horizon of more than one day, we

would have to use non-overlapping observations.’0

‘°We implicitly assume that we observe the return process as least as frequently as we compute the
VaR.
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3. Duration-Based Tests of Independence

The above tests are reasonably good at catching misspecified risk models when the

temporal dependence in the hit-sequence is of a simple first-order Markov structure.

However we are interested in developing tests which have power against more general

forms of dependence but which stiil rely on estimating only a few pararneters.

The intuition behind the duration-based tests suggested below is that the clustering

of violations will resuit in an excessive number of relatively short and relatively long

no-hit durations, conesponding to market turbulence and market cairn respectively.

Motivated by this intuition we consider the duration of tirne (in days) between two

VaR violations (i.e. the no-hit duration) as

=
— (3.6)

where t denotes the day of violation number i.’1

Under the nuli hypothesis that the risk model is correctly specified, the no-hit du-

ration should have no memory and a mean duration of 1/p days. b verify the no

mernory property note that under the nuil hypothesis we have the discrete probability

distribution

Pr(Dr=1)
= p

Pr(D=2) = (l—p)p

Pr(D=2) = (1_p)2p

Pr(D=d)
= (1)d_1

A duration distribution is often best understood by its hazard function, which has

the intuitive definition of the probability of a getting a violation on day D after we have

gone D — 1 days without a violation. The above probability distribution implies a flat

11For a general introduction to duration modeling, see Kiefer(19$8) and Gouriéroux (2000).
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dïscrete hazard function as the following derivatïon shows

— Pr(D=d)
‘ ‘

— l—Z<Pr(D=j)
d—1(l—p) p

-

= p.

The only memory free (continuous)’2 random distribution is the exponential, thus

we have that under the nuil the distribution of the no-hit durations should be

fexp(-D;p) =pexp(—pD). (3.7)

In order to establish a statistical test for independence we must specify a (parsi

monious) alternative which allows for duration dependence. As a very simple case,

consider the Weibull distribution where

fw (D; a, b) = abbDb_l exp ((aD)b). (38)

The Weibull distribution has the advantage that the hazard function has a closed

form representation, namely

(1))
— 1

= abbD (3.9)

where the exponential distribution appears as a special case with a flat hazard, when

b = 1. The Weibull wilI have a decreasing hazard function when b < 1, which corre

sponds to an excessive number of very short durations (very volatile periods) and an

excessive number of very long durations (very tranquil periods). This could be evidence

of misspecified volatility dynamics in the risk model.

Due to the bankruptcy threat from VaR violation clustering the null hypothesis

of independence is of particular interest. We therefore want to explicitly test the nuil

C ‘2Notice that we use a continuous distribution even though we are counting time in days. This dis
creteness bias wiIl be acounted for in the Monte Carlo tests. The exponential distribution can also be
viewed as the continuous time limit of the above discrete time process. Sec Poirier (1995).
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hypothesis

b = 1. (3.10)

We could also use the Gamma distribution under the alternative hypothesis. The

p.d.f. in this case is
abDex (—aD)

f(b)
(3.11)

whïch also nests the exponential when b = 1. In this case we therefore also have the

independence test nuil hypothesis as

Ho,d: b = 1. (3.12)

The Gamma distribution does flot have a closed-form solution for the hazard func

tion, but the first two moments are and - respectively, so the notion of excess disper

sion which is defined as the variance over the squared expected value is simply . Note

that the average duration in the exponential distribution is l/p, and the variance of du-

rations is l/p2, thus the notion of excess dispersion is 1 in the exponential distribution.

The above duration tests can potentially capture higher order dependence in the

hit sequence by simply testing the unconditional distribution of the durations. Depen

dence in the hit sequence may show up as an excess of relatively long no-hit durations

(quiet periods) and an excess of relatively short no-hit durations, corresponding to vi

olation clustering. However, in the above tests, any information in the ordering of the

durations is completely lost. The information in the temporal ordering of no-hit dura

tions could be captured using the framework of Engle and Russel (1998)’s Exponential

Autoregressive Conditional Duration (EACD) model. In the EACD(1,0) model, the

conditional expected duration takes the following form

E_1 [Dj = w + ùD1 (3.13)

with ù E [O, Ï). Assuming an underlying exponentïal density with mean equal to one,
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the conditionai distribution of the duration is

fEAcD(DiIb) i-exp (_). (3.14)

The nuil of independent no-hit durations would then correspond to

Ho,d: = 0. (3.15)

Excess dispersion in the EACD(1,0) model is defined as

V[D]/E[D]2
= 1

(3.16)

so that the ratio of the standard deviation to the mean duration is above one if c> 0.

In our test specificatïons, the information set oniy contains past durations, but it

couid be extended to include ail the conditioning information used to compute the VaR

for example. This would translate into adding variables other than into the right

hand side of equation (3.13).

4. Test Implementation

We wilI first discuss the specific implementation of the hit sequence tests suggested

above. Later, we will simulate observations from a realistic portfolïo retum process

and calculate risk measures from the popular Historical Simulation risk model, which

in tum provides us with hit sequences for testing.

4.1. Implementing the Markov Tests

The likelihood function for a sampie of T i.i.d. observations from a Bernoulli variable,

‘t, with known probability p is written as

L(I,p)=pT1(l_p)TT1 (4.17)
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where T1 is the number of ones in the sample. The likelihood function for an i.i.d.

Bernoulli with unknown probability parameter, ir, to be estimated is

L (I, ir1) = 7rT’ (1 — K)Th1 (4.1$)

The ML estimate of ir1 is

= T/T (4.19)

and we can thus write a likelihood ratio test of unconditional coverage as

LR = —2(1llL(I,i) —lnL(I,p)). (4.20)

For the independence test, the likelihood under the alternative hypothesis is

L (I, roi, ii) = (1 — 01)To_Tol (1 — 11)rl_Tll (4.2 1)

where Tjj denotes the number of observations with a j following an i. The ML esti

mates are

= T01/T (4.22)

= T1/T (4.23)

and the independence test statistic is

LRjd =2(lnL(I,*01,*11) —lnL(I,*i)). (4.24)

Finally the test of conditional coverage is written as

LR = 2 (in L (I, *, *) — in L (I, p)). (4.25)

We note that ah the tests are canied out conditioning on the first observation. The

tests are asymptotically distributed as 2 with degree of freedom one for the uc and md

tests and two for the cc test. But we will rely on finite sample p-values below.
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Finally, as a practical matter, if the sample at hand bas T11 = 0, which can easily

happen in small samples and with small coverage rates, then we calculate the first-order

Markov likelihood as

L (I, ir01, 7Ti) (1 — 01)To_Tol ir’ (4.26)

and carry out the tests as above.

4.2. Implementing the Weibull and EACD Tests

In order to implement our tests based on the duration between violations we first need

to transform the hit sequence into a duration series D. While doing this transformation

we also create the series C to indicate if a duration is censored (C = 1) or flot (C = 0).

Except for the first and last duration the procedure is straightforward, we just count the

number of days between each violation and set C = 0. For the first observation if

the hit sequence starts with O then D1 is the number of days until we get the first hit.

Accordingly 01 = 1 because the observed duration is left-censored. If instead the hit

sequence starts with a 1 then D1 is simply the number of days until the second hit and

01=0.

The procedure is similar for the last duration. If the last observation of the hit

sequence is 0 then the Iast duration, DN(T), is the number of days after the Iast 1 in the

hit sequence and GN(T) = 1 because the speil is right-censored. In the same manner

if the last observation of the hit sequence is a 1 then DN(T) = tN(T) — tN(T)_1 and

CN(T) = 0.

The contribution to the likelihood of an uncensored observation is its corresponding

p.d.f. For a censored observation, we merely know that the process lasted at least D1

or DN(T) days so the contribution to the likelihood is not the p.d.f. but its survival

function S(D) = 1 — F(D). Combining the censored and uncensored observations,

the log-Iikelihood is

N(T)-1

lnL(D;e) = Ciln$(D1)+(1—C1)lnf(D1)+ Z 1n(f(D))

+CN(T)lnS(DN(T)) + (1— GN(T))111f(DN(T)). (4.27)
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Once the durations are computed and the truncations taken care of, then the likeli

hood ratio tests can be calculated in a straightforward fashion. The only added com

plication is that the ML estimates are no longer available in closed form, they must

be found using numerical optimization.13 For the unrestricted EACD likelihood this

implies maximizing simultaneously over two parameters, c and w. For the unrestricted

Weibull likelihood, we only have to numerically maximize it over one parameter since

for a given value of b, the first order condition with respect to a as an explicit solution:14

1/b
N(T) — G1

— CN(T)
(42$)

N(i)Db )
4.3. Finite Sample Inference

While the large-sample distributions of the likelihood ratio tests we have suggested

above are well-known,’5 they may not Ïead to reliable inference in realistic risk man

agement settings. The nominal sample sizes can be reasonably large, say two to four

years of daily data, but the scarcity of violations of for example the 1 % VaR renders the

effective sample size small. In this section, we therefore introduce the Dufour (2002)

Monte Carlo testing technique.

For the case of a continuous test statistic, the procedure is the following. We first

generate N independent realizations of the test statistic, LR, j = 1, . . . , N. We denote

by LR0 the test computed with the original sample. Under the hypothesis that the risk

model is correct we know that the hit sequence is i.i.d. Bernoulli with the mean equal to

the coverage rate in our application. We thus benefit from the advantage of flot having

nuisance parameters under the nul! hypothesis.

We next rank LR, i = 0,. . ., N in non-decreasing order and obtain the Monte

‘3We have also investigated 1M tests which require less numerical optimization than do LR tests.
However, in finite sample simulations we found that the power in the 1M tests were lower than in the
LR tests, thus we only report LR results below.

‘4for numerical stability, we recommend working with ah instead of a, since b can take values close
to zero.

15lesting a = O in the EACD(1,0) model presents a potential difficulty asymptotically in that it is on
the boundary of the parameter space. However, the MC method we apply is valid even in this case. See
Andrews (2001) for more details.
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Carlo p-value pN(LRO) where

N(LRO)
= Nâ(L) +1

(4.29)

with

GN(LRO) = 1 (LR > LR0) (4.30)

where 1 (*) takes on the value 1 if * is truc and the value 0 otherwise.

When working with binary sequences the test values can only take a countable

number of distinct values. Therefore, we need a rule to break ties between the test

value obtained from the sample and those obtained from Monte Carlo simulation under

the nul! hypothesis. The tie-breaking procedure is as follows: For each test statistic,

LR, j = 0,. . . , N, we draw an independent realization of a Uniform distribution on

the [0; 11 interval. Denote these draws by U, i = 0,. . . , N. The Monte-Carlo p-value

is now given by

PN(L&)
= NGN(LRO) +1

(4.3 1)

with

GN(LRO) 1 (LR <LR0)+
N

(LR = LR0) 1 (Ui > U0). (4.32)

There are two additional advantages of using a simulation procedure. The first is that

possible systematic biases arising from the use of continuous distributions to study

discrete processes are accounted for. They will appear both in LR0 and LR. The

second is that Monte-Carlo testing procedures are consistent even if the parameter value

is on the boundary of the parameter space. Bootstrap procedures on the other hand

could be inconsistent in this case.

5. Backtesting VaRs from Historical Simulation

E; We now assess the power of the proposed duration tests in the context of a Monte Carlo

study. Consider a portfolio where the retums are drawn from a GARCH( 1,1 )-t(d) model
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with an asymmetric leverage effect, that is

R+1 = — 2) /d)zt+i, with

= w + a ((( —2) /d)zt
— )2

+

where the innovation z1s are drawn independently from a Student’s t (U) distribution.

Notice that the innovations have been rescaled to ensure that the conditional variance

ofretum will be u.

In the simulations below we choose the following parameterization

c 0.1

O = 0.5

/3=0.85

w = 3.9683e—6

d=8

where w is set to target an annual standard deviation of 0.20. The parameters imply a

daily volatility persistence of 0.975, a mean of zero, a conditional skewness of zero,

and a conditional (excess) kurtosis of 1.5. This particular DGP is constnicted to form a

realistic representation of an equity portfolio retum distribution.’6

The risk measurement method under study is the popular Historical Simulation

(HS) technique. li takes the VaR on a certain day to be simply the unconditional

quantile of the past Te daily observations. Specifically

VaR, = —Percentite({RT}_T lOOp).

From the retum sample and the above VaR, we are implicitly assuming that $1

is invested each day. Equivalently, the VaR can be interpreted as being calculated in

percent of the portfolio value.

In practice, the sample size is often determined by practical considerations such as

‘6The parameter values are similar to estimates of this GARCH model on daily S&P500 returns (flot
reported here), and to estimates on daily FX returns published in Bollerslev (1957).
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the amount of effort involved in valuïng the current portfolio holdings using past prices

on the underlying securities. For the purposes of this Monte Carlo experiment, we set

Te = 250 or Te = 500 corresponding to roughly one or two years of trading days.

In practice the VaR coverage rate, p, is typically chosen to be either 1% or 5%, and

below we assess the power to reject the HS model using either of those rates. Figure 20

shows a retum sample path from the above GARCH-t(d) process along with the 1% and

5% VaRs from the HS model (with Te = 500). Notice the peculiar step-shaped VaRs

resulting from the HS method. Notice also the infrequent changes in the 1% VaR.17

The 1 % VaR exceedences from the return sample path are shown in Figure 21

reported in daily standard deviations of retums. The simulated data in Figure 21 can

thus be compared with the real-life data in Figure 19, which was taken from Berkowitz

and O’Brien (2002). Notice that the simulated data shares the stylized features with the

real-life data in Figure 19. ‘

Before calculating actual finite sample power in the suggested tests we want to give

a sense of the appropriateness of the duration dependence alternative. To this end we

simulate one very long realization (5 million observations) of the GARCH retum pro

cess and calculate 1% and 5% VaRs from Historical Simulation with a rolling set of

500 in-sample retums. The zero-one hit sequence is then calculated from the expost

daily retums and the ex-ante VaRs, and the sequence of durations between violations

is calculated from the hit sequence. From this duration sequence wc fit a Weibull dis

tribution and calculate the hazard function from it. We also estimate nonparametrically

the empirical hazard function of the simulated durations via the Kaplan-Meier product

limit estimator of the survival function [see Kiefer (1988)]. These Weibull and cm

pirical hazards are estimated over intervals of 10 days so if there is a probability p of

getting a hit at each day then the probability that a given duration will last 10 days or

less is

ZPr(D=i) =

C ‘7When Te = 250 and p = 1%, the VaR is calculated as the simple average between the second aiid
third Iowest return.

‘8Note that we have simulated 1,000 observations in Figure 21, while Figure 19 contains between 550
and 750 observations per bank.
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= 1—(1—p)’°.

forp equal to 1% and 5% we get a constant hazard of 0.0956 and 0.4013 respectively

over a lO-day interval.

We see in figure 22 that the hazards are distinctly downward sioping which corre

sponds to positive duration dependence. The relevant flat hazard corresponding to i.i.d.

violations is superimposed for comparison. figure 22 also shows that the GARCH

and the Weibull hazards are reasonably close together which suggests that the Weibull

distribution offers a useful alternative hypothesis in this type of tests.

Figure 23 shows the duration dependence via simple histograms of the duration

between the violations from the Historical Simulation VaRs. The top panel again

shows the 1% VaR and the bottom panel shows the 5% VaR.

Data and other resource constraints often force risk managers to backtest their mod

els on relatively short backtesting samples. We therefore conduct our power experiment

with samples sizes from 250 to 1,500 days in increments of 250 days. Thus our back

testing samples correspond to approximately one through six years of daily retums.

Below we simulate GARCH retums, calculate HS VaR and the various tests in

5,000 Monte Carlo replications. We present three types of resuits. We first present the

raw power resuits, which are simply calculated as the frequency of rejections of the

nuli hypothesis in the simulation samples for which we can perform the tests. In order

to compute the p-values of the tests we simulate N = 9999 hit sequence samples under

the nuli hypothesis that the sequences are distributed i.i.d. Bernoulli(p).

In the simulations, we reject the samples for which we cannot compute the tests. For

example, to compute the independence test with the Markov model, we need at least one

violation otherwise the LR test is equal to zero when we calculate the likelihood from

equation (4.26). Similarly, we need at least one non-censored duration and an additional

possibly censored duration to perform the Weibull’9 and EACD independence tests.

This of course constitutes a nontrivial sample selection mie for the smaflest sample

sizes and the 1 % VaR coverage rate in particular. We therefore also present the sample

selection frequency, i.e. the fraction of simulated samples for which we can compute

19The Iikelihood of the Weibull distribution can be unbounded when we have only one uncensored
observation. When this happens we discard the sample.
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each test. Finally we report effective power, which corresponds to multiplying the raw

power by the sample selection frequency.

The resuits of the Monte Carlo simulations are presented in Tables I through 6.

We report the empirical rejection frequencies (power) for the Markov, Weibull and

EACD independence tests for various significance test levels, VaR coverage rates, and

backtesting sample sizes. Table 1 reports power for a Historical Simulation risk model

with 7 = 500 observations in the rolling estimation samples. Table 2 gives the sample

selection frequencies, that is, the fraction of samples drawn which were possible to to

use for calculating the tests. Table 3 reports effective power which is simply the power

entries from Table 1 multiplied by the relevant sample selection frequency in Table 2.

Tables 4 through 6 shows the resuits when the rolling samples for VaR calculation

contains Te = 250 observations. Notice that we focus solely on the independence tests

here because the historical simulation risk models under study are correctly specified

unconditionally.

The results are quite striking. The main result in Table 1 is that for inference sam

ples of 750 days and above the Weibull test is aiways more powerful than the Markov

and EACD tests in rejecting the HS risk models. This resuit holds across inference sam

pie sizes, VaR coverage rates and significance levels chosen. The differences in power

are sometimes very large. For example ïn Table Ï using a 1% significance level, the 5%

VaR in a sample of 1,250 observations has a Weibull rejection frequency of 69.2% and

a Markov rejection frequency of only 39.5%. The Weibull test clearly appears to pick

up dependence in the hit violations which is ignored by the Markov test.

for an inference sample size 500 the ranking of tests depends on the inference

sample size, VaR coverage rate and significance level in question. Typically either the

Markov or the EACD test performs the bcst.

for an inference sample size of 250, the power is typically very low in any of

the three tests. This is a serious issue as the backtesting guide for market risk capital

requirements uses a sample size of one year when assessing model adequacy.2° The

EACD test is often the most powerful in the case of 250 inference observations, which

is curions as the performance of the EACD test is quite sporadic for larger sample sizes.

20We thank an anonymous referee for pointing out this important issue.
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Generally, the EACD appears to do quite well at smaller sample sizes but relatively

poorly at larger sample sizes. We suspect that the nonhinear estimate of the parameter

is poorly behaved in this application.

Table 2 shows the sample selection frequencies corresponding to the power calcula

tions in Table 1. As expected the sample rejection issue is the most serious for inference

samples of 250 observations. For inference samples of 500 and above virtualiy no sam

pies are rejected.

Table 3 reports the effective power calculated as the power in Table I multiplied by

the relevant sample selection frequency in Table 2. Comparing Tables 1 and 3 it is clear

that test which has the highest power in any given case in Table I also has the hïghest

power in Table 3. But the levels of power are of course iower in Table 3 compared with

Table 1 but only dramatically so for inference samples of 250 observations.

Tables 4 shows the power calculations for the case when the VaR is calculated

on 250 in-sample observations rather than 500 as was the case in Tables 1 through 3.

The overall picture from Table I emerges again: The Weibull test is always best for

inference samples of 750 observations and above. For samples of 500 the rankings

vary case by case and for 250 observations, the power is generally veiy low.

Table 5 reports the sample selection frequencies corresponding to Table 4. In this

case the sample selection frequencies are even higher than in Table 2. For a VaR

coverage rate of 5% the rejection frequencies are negligible for ail sample sizes.

Table 6 shows the effective power from Table 4. Again we simpiy multiply the

power in Table 4 with the sample selection frequency in Table 5. Notice again that the

most powerful test in Table 4 is also the most powerful test in Table 6. Notice also that

for most entries the power numbers in Table 6 are very similar to those in Table 4.

Comparing numbers across Tables I and 4 and across Tables 3 and 6, we note that

the HS VaR with Te = 500 roiling sample observations often has a higher rejection

frequency than the ilS VaR wïth 7 = 250 rolling sample observations. This result

is interesting because practitioners often work very hard to expand their data bases

enabling them to increase their rolling estimation sample period. Our results suggest

that such efforts may be misguided because lengthening the size of the rolling sample

does not necessarily ehiminate the distributional problems with Historical Simulation.
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6. Backtesting Tau Density Forecasts

The choice of Value-at-Risk as a portfolio risk measure can be criticized on several

fronts. Most importantly, the quantile nature of the VaR implies that the shape of the

retum distribution to the Ïeft of the VaR is ignored. Particularly in portfolios with

highly nonlinear distributions, such as those including options, this shortcoming can

be crucial. Theoreticians have criticized the VaR measure both from a utility-theoretic

perspective (Artzner, Delbaen, Eber, and Heath (1999) and from a dynamic trading per

spective [Basak and Shapiro (2000). Although some of these criticisms have recently

been challenged Cuoco, He, and Issaenko (2001)], it is safe to say that risk managers

ought to be interested in knowing the cntire distribution of returns, and in particular the

left tau. Backtesting distributions rather than VaRs then becomes important.

Consider the standard density forecast evaluation approach2’ of calculating the uni

form transform variable

U = F(R)

where F(*) is the a priori density forecast for time t. The nuil hypothesis that the

density forecast is optimal corresponds to

U i.i.d. Uriiform(0, 1).

Berkowitz (2001) argues that the bounded support of the uniform variable renders

standard inference difficuit. One is forced to rely on nonparametric tests which have

notoriously poor small sample properties. He suggests a simple transformation usîng

the inverse normal c.d.f.

= ‘ (Ui)

after which the hypothesis

Z ‘- i.i.d. NormaÏ(0, 1)

can easily be tested.

21See for example Diebold, Gunther, and Tay (1998).
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Berkowitz further argues that confining attention to the left tau of the distribution

lias particular ment in the backtesting of risk models where the left tau contains the

largest losses that are most likely to impose bankruptcy risk. He defines the censored

variable

f Zt,ifR<VaRt
z=<

(VaR) , else

and tests the nuil that

Z Censored Normal(0, 1, VaRt).

We note first that Berkowitz (2001) only tests the unconditional distribution of Z.

The information in the potential clustening of the VaR exceedences is ignored.

Second, note that the censored variable complication is not needed. if we want to

test that the transforms of the lOOp percent largest losses are themselves uniform, then

we can simply multiply the subset of the uniform by i/p, apply the transformation and

test for standard normality again.22 That is

f U/p, if R <

Else flot defined

We then have that

Z = P’ (U**) t- i.i.d. Normat(0, 1).

Note that due to the censoning there is no notion of time in the sequence Z. We

might want to make a joint analysis of both Z and the duration between violations

D. To do this we would like to wnite a joint density for these two processes under

the alternative. We know that under the nuil hypothesis that the nisk model is correctly

specified the Z should be i.i.d. N(0, 1), D should be i.i.d. exponential with mean

l/p, and the processes should be independent. The question is how to write a joint

C densïty for these two processes as the alternative hypothesis knowing that, for example,

22We are grateful to Nour Meddahi for pointing this out.
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the marginal p.d.f. of D is a Weibull and some other p.d.f. for ZC*? Copulas provide a

useful tool for doing so.

A (bivariate) copula is a function G from [0; 1] x [0; 1] to [0; 1] with the following

properties:

1. For every u, y in [0; 1],

G(u, O) = O = C(O, y)

and

CQu,1)=u and C(1,v)=v.

2. For every u1, u2, y1, u2 in [0; 1] such that u u2 and y1 <u2,

C(u2, u2) — C(u2, u1) — G(u1, u2) + G(ui, u1) 0.

In order to explain how copulas can be used we appiy Sklar’s theorem [Nelsen

(1998)1, which states: Let H be a joint distribution function with margins F and G.

Then there exists a copula G such that for ail x, y in R,

H(x, y) = C(F(x), G(y)).

If F and G are continuous then G is unique. Conversely, if G is a copula and F and G

are distribution functïons then H is ajoint distribution function with marginai densities

FandG.

So if we have two densities under the alternative (e.g. f(D) and g(Z*)) then

we can easiiy construct a joint density by appiying a copula. Suppose the consid

ered bivariate copula C(u, u; 8) is a function of a unique parameter 8 and that we have

G(u, u; 8) = nu and G(u, u; 8) uv for 8 8. This gives us a basis for a test

because C(F(x), G(y); 8) = F(x)G(y) means that x and y are independent.

An example of such a copula is the Ali-MikhaiÏ-Haq family of copulas where

‘au
G(u,v;0)

= 1—0(1—u)(1—u)’
0e [—1,1]
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and we have C(u, u; O) = uv if O = 0. A possible alternative hypothesis could be that

D is i.i.d. Weibull(a, b), Z is i.id. N([i, u2) and C(u, u; O) is from the Ati-Mikhail

Haq family of copulas. We could then test

Ho : a=p,b=1,p=0,u=1,O=0

H1 : at least one of these equalities does flot hold

in a lïkelihood ratio framework sïmilar to the one considered for the VaR tests above.

Another useful approach could be the graphical procedure proposed by Fermanian and

Scaillet (2003). We plan to the pursue the implementation of this procedure in future

work.

7. Conclusions and Directions for Future Work

We have presented a new set of procedures for backtesting risk models. The chief

insight is that if the one-day VaR model is correctly specified for coverage rate, p, then,

every day, the conditional expected duration until the next violation shouÏd be a constant

l/p days. We suggest various ways of testing this nuli hypothesis and we conduct a

Monte Carlo analysis which compares the new tests to those currently available. Our

results show that in many of the situations we consider, the duration-based tests have

much better power properties than the previously suggested tests. The size of the tests

is easily controlled through finite sample p-values, which we calculate using Monte

Carlo simulation.

The majority of financial institutions use VaR as a risk measure, and many calculate

VaR using the so-called Historical Simulation approach. While the main focus of our

paper has thus been backtesting VaRs from Historical Simulation, we also suggest

extensions to density and density tau backtesting.

The immediate potential extensions to our Monte Carlo resuits are several. First, it

may be interesting to calculate the power of the tests with different GARCH specifica

tions using for example Engle and Lee (1999) and Hansen (1994). Second, we could

consider structural breaks in the underlying retum models, such as those investigated by



o

181

Andreou and Ghysels (2002). Finally, Hamilton and Jorda (2002) have recently intro

duced a class of dynamic hazard models. Exploring these for the purpose of backtesting

could be interesting.

We could also consider more complicated portfolios including options and other

derivatives. Examining the duration pattems from misspecified risk models in this case

could suggest other alternative hypotheses than the ones suggested here. We leaves

these extensions for future work.

Finally we stress that the cunent regulator practice of requiring backtesting on sam

pies of only 250 daily observations is likely to prove futile as the power to reject mis

specified risk models is very low in this case.
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Figure 19: Value-at-Risk exceedences from six major commercial banks [from
Berkowitz and O’Brien (2002)J.
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Figure 20: GARCH-t(d) Simulated Portfolio Retums with 1% and 5% Value-at-Risk
from Historical Simulation with Te = 500.
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o

Figure 21: GARCH-t(d) simulated portfolio returns with exeedences of 1% VaRs from
Historical Simulation with Te = 500 reported in standard deviations of retums.
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Figure 22: Data-based and Weibull-based hazard functions of durations between Vafi
violations. Historical Simulation risk model on GARCH-t(d) portfolio retums with
Te500.
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Figure 23: Hïstograms of duration between VaR violations GARCH-t(d) portfolio re
tums Historical Simulation risk model with Te 500.
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Table 35: Sample selection frequency. Historical Simulation VaR calculated on 500
GARCH(1 , 1)-t(d) retums.

Coverage rate: 1% Coverage rate: 5%
Test: Markov Weibull EACD Test: Markov Weïbull EACD

Sample size Sample size
250 0.778 0.589 0.598 250 0.987 0.972 0.974
500 0.956 0.891 0.896 500 1.000 1.000 0.999
750 0.998 0.987 0.986 750 1.000 1.000 1.000

1000 1.000 0.999 0.997 1000 1.000 1.000 1.000
1250 1.000 1.000 1.000 1250 1.000 1.000 1.000
1500 1.000 1.000 1.000 1500 1.000 1.000 1.000
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Table 3$: Sample selection frequency. Historical Simulation VaR calculated on 250
GARCH( 1,1 )-t(d) returns.

Coverage rate: 1% Coverage rate: 5%
Test: Markov WeibuÏl EACD Test: Markov Weibull EACD

Sample size Sample size
250 0.877 0.695 0.706 250 0.997 0.993 0.993
500 0.994 0.975 0.976 500 1.000 1.000 1.000
750 1.000 0.999 0.999 750 1.000 1.000 1.000

1000 1.000 1.000 1.000 1000 1.000 1.000 1.000
1250 1.000 1.000 1.000 1250 1.000 1.000 1.000
1500 1.000 1.000 1.000 1500 1.000 1.000 1.000
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Conclusions générales

Dans cette thèse, nous avons étudié plusieurs problèmes d’économétrie des séries

chronologiques et de la finance. Les différents sujets abordés ont pour thème commun

la malédiction de la dimension qui est intrinsèque de l’étude des séries chronologiques

multivariées.

Dans le premier essai, nous étudions la modélisation de séries multivariées à l’aide

de modèles VARMA. Notre but est de présenter une méthode visant à simplifier l’uti

lisation de ces modèles. Notre contribution se fait en deux points. Premièrement, nous

introduisons deux nouvelles représentations VARMA identifiées qui ont la propriété

d’avoir une partie MA très simple (dans un cas, l’opérateur est diagonal et dans l’autre,

il est scalaire), ce qui peut faciliter leur utilisation. Deuxièmement, nous proposons

l’utilisation d’une méthode d’estimation qui ne nécessite que trois régressions linéaires.

Cette méthode est une généralisation de celle proposée par Hannan and Rissanen (1982)

pour les modèles ARMA univariés. Nous démontrons que cette méthode d’estimation

est valide sous des hypothèses faibles pour le processus qui gouverne les innovations

(non corrélées et fortement mélangeantes) et nous introduisons un critère d’informa

tion modifié qui donne une estimation convergente des ordres des opérateurs AR et

MA pour nos représentations. Dans une application empirique, nous illustrons les gains

qu’on peut réaliser en utilisant des modèles VARMA plutôt que des modèles VAR pour

obtenir des coefficients d’impulsion.

Dans le deuxième essai, nous proposons un nouveau modèle de volatilité multivarié,

le modèle Regirne Switching Dynamic Corretation. Nous décomposons les covariances

en corrélations et écarts types. La matrice de corrélation suit un modèle à changement

de régime elle est constante à l’intérieur d’un régime, mais différentes d’un régime

à un autre. Les transitions entre les régimes suivent une chaîne de Markov. Ce mo

dèle ne souffre pas d’une malédiction de la dimension et il permet le calcul analytique

d’espérance conditionnelle à plusieurs horizons pour la matrice de corrélation et la ma

trice de variance. Nous illustrons également au moyen d’une application empirique que

ce modèle peut avoir une performance inter-échantillon supérieure à celle du modèle

Dynamic Conditional Corretation de Engle (2002).
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Dans le troisième essai, nous présentons des méthodes afin de tester des hypothèses

de causalité à divers horizons, tel que défini dans Dufour et Renault (199$). Nous étu

dions en détail le cas des modèles VAR et nous proposons des méthodes basées sur des

autorégressions à différents horizons. Bien que les hypothèses de non-causalité consi

dérées soient non linéaires, ces méthodes ne requièrent que des méthodes de régression

linéaire et la théorie asymptotique gaussienne habituelle. Nous les appliquons à un mo

dèle VAR de l’économie américaine.

Dans le quatrième essai, nous proposons une méthode de tests statistiques pour

l’évaluation des modèles utilisés pour calculer la Valeur-à-Risque d’un portefeuille.

Les modèles de volatilité, tels que celui dont il est question dans le deuxième essai,

servent notamment à construire la distribution des rendements d’un portefeuille pour

un nombre donné de périodes dans l’avenir. Cette distribution est l’ingrédient essentiel

aux calculs de la VaR et il est important d’évaluer si elle est bien spécifiée. Les tests que

nous proposons sont basés sur les durées, calculées en nombre de jours, entre les vio

lations de la VaR. À l’aide de simulations Monte Carlo, nous montrons qu’en situation

réaliste, ces tests ont plus de puissance que les tests avancés précédemment, notamment

ceux de Christoffersen (199$).

L’étude des séries chronologiques multivariées et des problèmes dus à la malédic

tion de la dimension est un sujet de recherche intéressant. Les résultats présentés dans

les différents essais de cette thèse ouvrent la voie à d’autres avenues de recherche. Par

exemple, nous pouvons revisiter avec la méthodologie VARMA présentée dans le pre

mier essai de nombreux résultats obtenus en macroéconomie à l’aide de modèles VAR,

entre autre les tests de causalité à plusieurs horizons dans les modèles VARMA. On

pourrait améliorer les résultats présentés dans le deuxième essai, i.e. notre modèle de

volatilité multivarié, en permettant un lien entre les corrélations et les écarts types. Le

défi est de le faire sans introduire une malédiction de la dimension.
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