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Résumé

Les changements dans la composition de la matrice extracellulaire et la membrane

basale surviennent lors de la croissance folliculaire, possiblement par l’intemédiaire des

cascades d’enzymes protéolytiques, incluant les activateurs du plasminogène (PA) et

leurs inhibiteurs. Un tel inhibiteur est la protéine nexine-1 (PN-1), une protéine secrétée

par les cellules de la granulosa (GC). Notre connaissance sur la régulation et sur

l’expression des PA et la PN-1 dans les GC est très limitée. L’objectif général de cette

étude était de tester l’hypothèse que l’expression de PN-1 est régulée par des

gonadotrophines et les facteurs de croissance au cours de la croissance folliculaire.

L’expression des PA et de la PN-1 a été étudiée dans des GC bovine non

lutéinisée. L’activité de PA de type tissulaire (tPA) était plus élevée dans les GC issues

de petits follicules comparée aux follicules plus gros, et le taux de sécrétion du PN-1 était

plus élevé dans les GC de gros follicules. Dans les cellules provenant de petits follicules,

les taux de sécrétion de tPA et PN-1 augmentaient en fonction du temps de culture. Dans

les cellules provenant de gros follicules, l’activité de tPA augmentait de façon

significative en fonction du temps de culture, alors que la sécrétion de PN- 1 diminuait.

Dans les GC en culture, la FSH stimulait l’expression du gène codant pour la PN

1, ainsi que la sécrétion de PN-1. La FSH augmentait de façon dose-dépendante

l’expression de l’ARNm de la tPA mais n’a pas affecté le taux de sécrétion de la protéine.

L’IGF-l a stimulé l’ARNm codant pour la PN-1, et la sécrétion d’uPA mais a diminué la

sécrétion de la tPA et le taux de son ARNm. La protéine morphogénétique osseuse 7

(BMP-7) a augmenté la sécrétion de PN-1 des cellules stimtilées à l’IGF-l ou la FSH et a
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augmenté la sécrétion de tPA par des cellules stimulées à l’IGF-l. Le facteur de

croissance fibroblastique-2 (FGF-2) était généralement inhibiteur, diminuant la sécrétion

de tPA des cellules stimulées à l’IGF-l ou à la FSH, et diminuant la sécrétion de PN-1

des cellules stimulées à l’IGf-l. Les effets d’EGF étaient variés puisque la sécrétion de

PN-1 était inhibée mais la sécrétion de tPA était augmentée.

Finalement, nous avons examiné l’expression génique de PN-1 dans les follicules

à divers stades de développement. Dans les follicules périovulatoires, le taux de l’ARNm

pour la PN-l était stimulé par hCG, tout comme ceux pour les tPA et uPA.

Deuxièmement, les follicules prélevés à l’abattoir ont été classifiés comme étant

oestrogénique ou non-oestrogénique basé sur la concentration d’oestradiol dans le liquide

folliculaire (FF). La concentration de PN-l dans le FF et l’expression de l’ARNm de PN

1 dans les CG étaient significativement plus élevées dans les follicules possédant les

concentrations d’oestradiol élevées. Finalement, la concentration de PN-1 dans le FF des

follicules dominants durant la déviation de la première vague folliculaire n’a démontré

aucun changement significatif, suggérant que le PN-1 n’est pas un bon indicateur du

processus de la sélection folliculaire.

En résumé, l’expression et la sécrétion de PN-1 des CG bovines sont sous

contrôle hormonale. Il est probable que PN-1 joue un rôle physiologique dans le

remodelage tissulaire au cours de la croissance folliculaire et de la rupture de la paroi

folliculaire au moment de l’ovulation.

Mots-clés protéase nexine- 1, activateur du plasminogène, follicule, cellule de la

granulosa, matrice extracellulaire, remaniement tissulaire, FSH, facteur de croissance.
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ABSTRACT

Understanding follicle development leads to practical control of reproduction in

agriculturally important species sucli as cattie. Changes in the composition of the

extracellular matrix (ECM) and the basement membrane occur during follicle growth,

likely through proteolytic enzyme cascades, including plasminogen activators (PA) and

their inhibitors. One such inhibitor is protease nexin-1 (PN-1), a granulosa ceil-specific

secreted protein. Regulation and expression of PN-1 and the PAs in granulosa ceils is

poorly understood.

The expression of PAs and PN-1 was examined in a non-luteinizing bovine

granulosa ceils culture model. Secreted tPA activity was higher in cultures of ceils from

small follicles compared to large follicles, and secreted PN- 1 levels were higher in

cultures of celis from large follicles. In cultures of celis from small follicles, secreted tPA

and PN-l levels increased with time of culture. In cultures of granulosa ceils from large

follicles, tPA activity increased significantly with tirne of culture, whereas PN-1 rnRNA

and protein levels decreased. Cell-associated uPA activity decreased with tirne in ceils

from medium and large follicles.

To study the regulation of PN-1, granulosa ceils were cultured with doses of FSH

and growth factors. PN-l mRNA and protein levels and uPA secretion by cultured GCs

were stirnulated by fSH in a biphasic manner, with maximum levels at Ing. FSH caused

a dose-dependent increase in tPA gene expression but not secreted enzyme activity. IGF-I

stirnulated PN-l and uPA secretion. However, IGF-I decreased secreted tPA activity and

tPA gene. In addition, bone morphogenetic protein 7 (BMP-7) increased PN-l secretion
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in FSH- and IGF-I stimulated ceils, and secreted tPA activity in IGf-I stimulated but flot

FSH stimulated celis. In contrast, fibroblast growth factor 2 (FGF-2) was generally

inhibitory, decreasing tPA secretion in FSH- and IGF-I- stirnulated celis, and decreasing

PN-1 secretion in IGF-I stimulated but flot FSH stimulated ceils. The effects ofEGF were

diverse, as PN-l secretion were inhibited, but secreted tPA activity was increased.

As PN-1 secretion differs with follicle stage, we examined PN-l gene expression

levels in follicles at defined stages in vivo. firstly, the regulation of PN-l gene during

ovulation was measured following administration of hCG. There was an initial

upregulation of gene expression, followed by a marked inhibition nearer the expected

time of ovulation. Secondly, follicles collected from the abattoir were classified as

nonatretic or atretic based on ff estradiol content. PN-1 protein in FF and PN-1 mRNA

expression in GC was significantly higher in nonatretic than atretic follicles. In contrast,

FF plasmin activity was correspondingly higher in the atretic follicles. finally, No

significant changes in PN-l levels in FF were observed during the growth of pre

deviation follicles early in a follicle wave, suggesting PN-1 is not a good marker for the

process of follicle selection. These resuits indicate that PN-1 may be involved in the

process of atresia in nonovulatory dominant follicles and the prevention of precocious

proteolysis in periovulatory follicles.

In summary, PN-1 expression and secretion from bovine granulosa celis is under

hormonal regulation. PN-l likely plays a physiological role in growing follicles and the

process of follicle wall rupture at ovulation.

Key words: protease nexin-l, plasminogen activator, follicle, granulosa cell,

extracellular matrix, tissue remodelling, FSH, growth factor
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INTRODUCTION

Ovarian follicular development begins with the initial recruitment of primordial

follicles into the pool ofgrowing follicles (Fortune et al., 2000). follicles that are destined

to ovulate pursue their development into the preantral and antral phases, become selected

as the dominant follicle (deviation) (Ginther et al., 1996; Fortune et aÏ., 2001), then

undergo ovulation (Richards et al., 2002) and luteinization (Murphy, 2004). However, most

follicles degenerate by atresia throughout the antral phase (Markstrôrn et al., 2002). The

mechanisms for the recruitment, deviation and ovulation of follicles are flot fully

understood (Fortune et al., 2001).

In cattie, follicles typically increase in size 400-fold between preantral and

preovulatory stages (Lussier et al., 1987). The surface area of preovulatory follicles

doubles 19 tirnes compared with primordial follicles (Rodgers et al., 1999). During follicle

growth, there is expansion of basal lamina and changes in composition of follicular

extracellular matrix (ECM) (Rodgers et aÏ., 2003). The follicular basal lamina is formed of

specialized sheets of ECM, which separates the epithelial cells (membrana granulosa) from

adjoining stroma (including theca interna and externa, and vasculature). Previous studies

suggest that the follicular basal lamina is extremely dynamic during follicular development;

the follicular basal lamina becornes less collagenous and more larninin rich, such that it

becomes more expandable to meet the requirement for follicle enlargernent (Rodgers et al.,

2000). These changes likely occur through proteolytic enzyme cascades, such as the

plasminogen activators (PA) and their inhibitors (Ny et al., 2002).
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Plasminogen activators are serine proteases that convert the abundant extracelluiar

zymogen piasminogen into piasmin, an active protease that promotes degradation of

components of the ECM as well as activating the matrix metalloproteinase (MMP) protease

cascade (reviewed by Ny et al., 2002; Liu, 2004). The PA system contains the proteolytic

enzymes plasmin, tissue type (tPA) and urokinase type (uPA) piasminogen activators, and

regulatory components including inhibitors, cofactors, ccii surface receptors and binding

proteins. The activity ofproteoiytic enzymes is regulated by inhibitors such as plasminogen

activator inhibitor-1 (PAl-1), piasminogen activator inhibitor-2 (PAl-2), protease nexin-1

(PN-1) (Kruithof, 1988; Roberts et al., 1995), and the plasmin specific inhibitor Œ2-

antiplasmin (a2-AP). PAl-1, PAl-2, PN-1, and Œ2-AP ail belong to the serine protease

inhibitor (SERP1N) superfamily (Silverman et al., 2001). PN-1, also referred to as serine

protease inhibitor-E2 (SERPIN-E2), and giia-derived nexin (GDN), is a secreted 43 kDa

giycoprotein, and is a broad spectrum, trypsin-like inhibitor that rapidly inhibits a number

of target proteases inciuding uPA, tPA, plasmin, trypsin, and thrornbin (Siiverman et al.,

2001).

The expression and regulation of PN-1 during foiiicie deveioprnent is poorly

understood. In the ovary, PAl-1 (SERPIN-El) mRNA and activity are predorninantly

synthesized by theca-interstitial ceiis in the rodent (Liu et al., 19$7b; Hggiund et al.,

1996), cattie (Dow et aL, 2002b) and monkey (Liu et al., 2004). Stimulation with hCG

upreguiated PAT-1 expression in theca celis, and induced PAl-1 mRNA expression in GC

in rats (Chun et al., 1992). In contrast to PAl-I, PN-1 is exclusively expressed in GC in

mammals including mice (Hagglund et cil., 1996), rats (Hasan et al., 2002) and catt]e

(Bédard et al., 2003). Furthennore, studies show that the ievel of PN-l mRNA is high in
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GC throughout the periovulatory period, and decrease in ovulated follicles of mice

(Higg1und et aÏ., 1996) and rats (Hasan et aÏ., 2002). The expression of PN-1 mRNA is

also demonstrated in bovine GC, and is regulated in a spatio-temporal pattem with highest

steady state levels in GC of growing dominant bovine follicles cornpared with small

follicles (Bédard et al., 2003). However, the physiological role of PN-1 during follicle

growth, follicle deviation and ovulation is unknown.

Ovarian follicular growth and development are integrated processes controlled by

both extraovarian signais, such as gonadotropins, and intraovarian factors. Follicle

stimulating honrione (fSH) is an essential factor in the regulation of follicle development

from primary follicles through to dominant preovulatory follicles. A number of growth

factors are also involved in follicle deveioprnent, including insulin-like growth factor-I

(IGF-I), bone morphogenetic proteins (BMPs), fibroblast growth factors (FGF) and

epidenrial growth factor (EGF). However, littie is known that whether or not these growth

factors regulate PAs and their inhibitors in GC, in particular, nothing is known about their

regulation of PN- 1.

Using a non-luteinizing bovine GC culture model, as well as in vivo approaches, we

performed a number of studies to elucidate the regulation ofPN-1 expression and secretion

in ovarian GC. Our findings provided new insiglits on the role of PN-1 during antral

follicle growth and ovulation.
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LITERATURE REVIEW

FOLLICULAR DEVELOPMENT AND STEROIDOGENESIS

The release of an ovum that is ready for fertilization is one of the major functions of

ovarian follicular development. Ovarian follicular growth and development are integrated

processes controlled by both extraovarian signais such as gonadotropins and metabolic

hormones, and intraovarian factors. Follicular developrnent is classified into gonadotropin

independent and gonadotropin-dependent phases (Webb et al., 1999).

In mammals, follicles develop continuously from the pool of primordial follicles

throughout the reproductive lifespan of the animal. The development of follicles involves

the recruitment of primordial follicles from the resting pool (follicle activation), the

continued growth from primary follicies to small antral (Fortune, 2003; McNatty et al.,

1999; Webb et al., 1999), selection ofa dominant follicle (deviation) (Ginther et aï., 1996;

Fortune et aL, 2001; Zeleznik, 2001; Fortune et al., 2004), ovulation (Richards et al., 2002)

and luteinization (Murphy, 2004). Foilicular development is illustrated in Figure 1.

Morphological changes in follicular development

Follicular development is morphologicaily characterized by an increase in the

diameter of the oocyte, and a synchronous proliferation of GC, resulting in multiple layers

of cells that surround each oocyte. The earliest stage of foilicular growth is initiaiiy

characterized by the transition of GC from flattened to cuboidal cells. This phase of
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Fig 1. The follicular growth continuum
Schematic representation ofthe requirement for growth factors, such as the TGFB and IGF
families, and gonadotropins at different stages of ovarian follicle development in cattie.
Growth factors seem to be important in both the initiation of and in early follicle growth,
whereas gonadotropins are essential for the final stages of follicle growth. In this regard,
the dominant follicle switches its requirernent from FSH to LH. There is also increasing

evidence that gonadotropins can influence follicle development before antrum formation

and growth factors can influence follicle development throughout the follicular growth
cofltifluuiTl.

(Modified from Webb R. et al., 2004. J Anim Sci. 82:63-74)
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preantral growth is relatively slow, comprising about 85% of the total duration of follicle

growth in some species (Vanderhyden, 2002). The regulation of primordial follicle and

preantral growth in cattie bas been well reviewed (McNatty et al., 1999; fortune et al.,

2000; Fortune, 2003).

During preantral (primordial, primary, and secondary) follicular growth, although

theca ceils remain separated from GC by a basement membrane, they become associated

with the growing follicle in this stage. Continued growth features both an increase in

oocyte diameter and proliferation of granulosa ceils. Granulosa celis of preantral follicles

are a relatively homogenous population of proliferating ceils that acquire receptors for

follicle-stimulating hormone (FSH) and steroid hormones (Oxberry & Greenwald, 1982;

Richards, 1975). Under the influence ofFSH, cyclin D2 expression is induccd in granulosa

celis (Sicinski et al., 1996) and the follicle continues to grow.

Transition to an antral follicle is associated with the formation of a fluid-fflled

cavity, and the granulosa cells differentiate into two sub-populations: cumulus granulosa

cells, which are those most closely associated with the oocyte and are ovulated with it; and

mural granulosa celis, which form a multi-layered wall against the basement membrane and

acquire differentiated functions, including steroidogenesis (Zlotkin et al., 1986) and the

expression of luteinizing hormone (LH) receptors (Oxbeny & Greenwald, 1982; Bortolussi

et al., 1979).

In cattie, follicular antrum formation begins at a diameter of 0.2 mm, and there is a

large pooi of mostly healthy, growing follicles from 0.2 to 2 mm in size (Lussier et al.,

1987). A critical physiological stage is reached at 3 to 4 mm diarneter in size, when most

follicles are lost by atresia (Lussier et al., 1987). In the absence of sufficient FSH, or by the
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natural process of follicle selection, most follicles will fail to reach ovulatory size and will

undergo apoptosis or atresia (Lussier et al., 1994; Gong et al., 1996; Murdoch, 2000;

Asselin et al., 2000). Jndeed, more than 99% of ovarian follicles present at birth neyer

reach ovulation due to follicular atresia (Ireland, 1987).

Atresia is reguÏated by endocrine factors, notably fSH and LH, and mediated by

intraovarian factors such as IGF-I (insulin-like growth factor-I), EGf (epidermal growth

factor) and fGf-2 (fibroblast growth factor-2) (Markstn5m et al., 2002). The fate of follicle

development versus atresia largely depends on the crosstalk between oocyte and granulosa

ceils and theca ceils. For example, oocyte secreted factors including bone morphogenetic

protein 15 (BMP-15) and growth differentiation factor 9 (GDF-9) act on the granulosa ceils

to enhance follicle development in mice and the inhibition of luteinization, in tum,

granulosa celis produce Kit Ligand (KL) that acts through Kit receptors to promote oocyte

growth (Vanderhyden, 2002; Gilchrist et al., 2004).

Follicular dynarnics in the cow

Follicular growth occurs in distinct waves in cattie (Ireland et al., 2000; Mihm et al.,

2002). Early studies suggest that two waves of follicular growth occur during the cycle, the

first wave emerging a few days after estms, and the second follicular wave beginning

around day 12-14 of the estrous cycle (Rajakoski, 1960). The two-wave hypothesis is not

tested for more than 20 years. Studies involving measurements of follicles and steroid

assays of blood and follicular fluid, lead to the conclusion that there are three follicular

waves (Ireland & Roche, 1983). Monitoring of antral follicles in cattle by transrectal

ultrasonic imaging technology (Pierson & Ginther, 1987) show that most (81%) estrous
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cycles consist of two follicular waves (Ginther et aÏ., 1989). This technology is exploited

by other groups, who find mostiy (80%) three-wave cycles (Savio et aÏ., 1988; Sirois &

Fortune, 1988). The number of follicle waves can change from one estrous cycle to the next

in Hoistein heifers (Price & Carrière, 2004). Most recently, evidence shows that numbers

of antral follicles during follicular waves in cattle are highly variable among animais, very

highly repeatable in individuals, and are inversely associated with serum FSH

concentrations (Bums et aÏ., 2005).

The appearance and regression of follicle waves is termed follicular dynamics. It is

characterized by the initiation of growth of a cohort of 3-6 srnall antrai follicles (2-4 mm),

which are recruited from the pool of smaller antral follicles (<2 mm in diameter) (Lucy et

al., 1992). Selection is the process by which the appropriate number of follicles is seiected

from a cohort of growing follicles to develop to ovulatory competence. In monovular

species such as cattle, a single follicle is selected to continue growth affer recruitment and

has the potential to achieve ovulation (Fortune, 1994). Foilicular dominance is the process

by which a single selected follicle exerts an inhibitory effect on the other follicles of the

wave, which cease growing and undergo atresia (Lucy et al., 1992; Fortune, 1994). The

dominant follicle also inhibits the recruitment of a new cohort of follicles (Ireland, 1987).

Foiiicie waves aiso occur during pregnancy (Ginther et al., 1989) and during the prepuberal

period (Adams et ai., 1994). When the dominant follicle coincides with the presence of an

active corpus luteum, the fate of this follicle is usually atresia, and a new follicular wave

emerges. If luteal regression occurs when there is a dominant follicle present, this follicle

will usually ovulate.



9

Follicular Steroidoenesis

Steroid production is one of the most important functions for ovarian follicles.

According to the biological activity and the numbers of carbon atoms, steroid hormones

can be classified into progestins, androgens and estrogens, comprising 21, 19 and 17

carbons respectively, also designated as C21, Ci9 and C17 steroids. They comprise a ring

compex, forrned of three cyclohexane rings (A, B, C) and a cyclopentane ring (D) (Gore

Langton & Armstrong, 1994). Steroidogenesis invoives a long and complex biosynthetic

pathway. The biosynthesis of steroids is mediated by steroidogenic enzymes, with each

enzyme responsible for the conversion of one steroid to another. The major enzymes

include three enzyme cytochrome P450s, inciuding P450 cholesterol side-chain cleavage

(P450scc or CYP1 lAi), P450 17Œ hydroxylase (P450170H or CYP17) and P450 aromatase

(P45Oarom or CYP19A1), and two hydroxysteroid dehydrogenase (HSD) enzymes e.g. 3f3-

HSD (or HSD3B2) and 17Ç3-HSD (or HSD17B1). Most of these enzymes have essential

co-enzyrnes as electron donors or acceptors (Gore-Langton & Armstrong, 1994).

The precursor of ail steroids is cholesterol. Cholesterol is imported into the ccii

through internalization of blood-bome lipoproteins. The predominant foi-ni used for

steroidogenesis appears to be tow-density-lipoprotein (LDL), which binds to the LDL

receptor on foliicle ceils. Within the cell, cholesterol is maintained within lipid droplets as

cholesterol esters. The enzyme choiesterol ester hydrolase converts the cholesterol esters to

free cholesterol, which is intensely hydrophobic (Murphy & Silavin, 1989). free

cholesterol within the cytoplasm is mobilized to the mitochondria, and then intemalized.

This internalization of cholesterol by the mitochondria is the rate-lirniting step for the

general steroidogenic pathway, and is mediated by steroidogenic acute regulatory protein



10

(StAR) (Stocco & Clark, 1996). The major ligand-regulated step in luteal and theca celis is

StAR. This protein is acutely regulated by LH in these ccli types. The application of LH

causes a rapid and transient production of StAR rnRNA and protein. Once the protein is

forrned in the cytosol, it is rapidly directed to the mitochondria where it binds to a

recognition site on the outer mitochrondial membrane. Whiie StAR is bound to the

mitochondria, there is a transfer of cholesterol from the cytosol to the inside of the

mitochondria (Stocco et aÏ., 2001). Once inside the mitochondria, cholesterol is converted

to pregnenolone by the enzyme cytochrome P45Oscc.

Pregnenolone is the first steroid in the pathway and is the common precursor for ail

species and ail tissues, and from this point the converted cholesterol is committed to

becoming a steroid. Pregnenolone in the microsornes can then be rnetaboiized using two

different pathways, either converting to progesterone by the enzyme 33-HSD (A4 pathway),

or to 17Œ-hydroxypregnenolone by P45O17.oH (g pathway) (Gore-Langton & Armstrong,

1994). It bas been suggested there are differences between species in the utilization of

steroidogenic pathways, and that the g pathway is the preferred pathway in ruminants

(Zuber et al., 1986). In cattie, as in other ruminants, the five separate enzymes mentioned

above are required for the production of estradiol.

In bovine luteal and granulosa celis, the enzyme P450170H is flot expressed, and so

steroidogenesis goes through to progesterone; this progesterone is not metaboiized further,

and is secreted. In theca ceils, however, there is abundant P45017-OH activity, and so

pregnenolone is converted to 17a hydroxypregnenolone. This 17a-hydroxypregnenoione

then undergoes sequentiai conversion to androstenedione by P450170H and 3-HSD

activities (Bosc & Nicolle, 1998). Bovine theca celis convert iimited amounts of
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androstenedione to testosterone with the enzyme 1 7f3-HSD and both androstenedione and

testosterone are secreted. A good portion of these secreted androgens are absorbed by the

neighbouring granulosa celis and are further converted to estrogens. Bovine granulosa ceils

prefer to metabolize androstenedione to estrone by the enzyme cytochrome P45Oarorn, and

then the estrone is rnetabolized to estradiol by 17-HSD (Conley & Bird, 1997).

Alternatively, testosterone can be metabolized to estradiol by P45Oarom (Conley & Bird,

1997). The major steroidogenic pathways inespective of species and tissues are illustrated

in the Figure 2.

The expression of the steroidogenic enzymes is regulated. The enzymes expressed

in luteal and theca celis are in general regulated by LH, as these celis possess LH receptors.

Thus it is fairly well recognized (mainly in rodent but in sorne ruminant models) that LH

stimulates expression!activity of P45Oscc, P450170H and 173-HSD. LH also acutely

upregulates StAR gene expression and LDL receptor mRNA levels (Sekar et al., 2000). In

granulosa celis of smaller follicles, only the FSH receptor is expressed, although both

gonadotropin receptors are expressed in follicles >$rnm diameter in cattie. In granulosa

celis, FSH stirnulates LDL receptor levels, P45Oscc and P45Oarom activity (Soumano &

Price, 1997). In addition, FSH upregulates aromatase (Silva & Price, 2002) and 17f3-HSD

(Sahrni et al., 2004). As consequences, LH stirnulates progesterone secretion from luteal

ceils and androgen secretion from theca celis, whereas FSH stimulates progesterone and

estradiol secretion from granulosa celis (Mihrn & Bleach, 2003).

The gonadotropins are not the only regulators of steroidogenesis, as a number of

growth factors also alter steroid production (Armstrong & Webb, 1997). Insulin and/or

IGF-1 stirnulate progesterone and estradiol secretion from bovine granulosa ceils in vitro,
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and increase expression of P45Oarom mRNA in bovine granulosa ceils (Gutiérrez et al.,

1997; Silva & Price, 2002), and stimulate progesterone and androstenedione secretion from

theca celis (Allegrucci et al., 2003). Components of the insulinllGF system also act as

modulators of follicular ceil responses to gonadotropins. Another major group of growth

factors is the transforming growth factor-t3 (TGF-) family. TGF-E3 enhances gonadotropin

stirnulated steroidogenesis (Ke et al., 2004). Two other growth factors have the opposite

effect on steroidogenesis: the epidermal growth factor (EGF) and fibroblast growth factor 2

(FGF-2) inhibit steroidogenesis (Armstrong & Webb, 1997).

Biochemical changes in follicular development

Steroidogenic activity changes during follicle developrnent. Estradiol concentration

is a key biochemical marker for the degree of healthlatresia of follicles. Data from the older

literature shows that morphologically healthy ruminant follicles contain higlier estradiol

and lower progesterone concentrations than atretic follicles (Ireland & Roche, 1982;

Sunderland et al., 1994; Price et aÏ., 1995). It is now known that small follicles contain

relatively littie estradiol, and that follicular fluid estradiol concentrations increase with

follicle size in healthy growing follicles. Estradiol concentrations decrease in subordinate

follicles while the dominant follicle is growing. Once the dominant folticle reaches

maximum diameter, follicular fluid estradiol concentrations fali dramatically, and decrease

further once the follicle starts regressing (Price et al., 1995; Mihm et al., 2000).

The secretion of one steroid can be affected by a number of steps in the

steroidogenic cascade, which limit or increase precursor supply. To determine which point

in the pathway is responsible for increased or decreased estradiol secretion by follicles, a
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number of studies have examined steroidogenic enzyme mRNA levels in bovine follicles at

different stages ofdevelopment (Bao & Garverick, 1998).

Preantral foliicles express FSH receptor mRNA, but other aspects of the

steroidogenic rnachinery do flot appear until early antral stage. In early antral follicles, the

theca celis start to express mRNA coding for LH receptors, P45Oscc, P45O170H and 33-

HSD, thus these celis are able to make progesterone and androgens in rats (Zlotkin et al.,

1986). Granulosa celis continue to express only fSH receptors, and are thus

steroidogenically inactive. As small antral follicles are recruited into a follicle wave,

granulosa celis express P45Oscc and P45Oarom, and are thus able to synthesize

pregnenolone and to convert androstenedione to estrone. They cannot in principle convert

pregnenolone to progesterone as they lack 3f3-HSD at this stage. The theca ceils of these

srnall recruited follicles continue to express mRNA for ail thecal steroidogenic enzymes,

and also start to express StAR. These celis are thus fully and actively steroidogenic (Bao et

al., 1998).

As a growing follicle becomes a dominant follicie, a key change occurs in

granulosa ceils. They start to express mRNA for LH receptors and 3f3-HSD. The ceils are

thus able to convert pregnenolone to progesterone, and are able to respond to LH,

considered to be essential for dominant follicle maturation. As the dominant follicÏe grows,

there are also increases in rnRNA for P450 arom in granulosa celis and for StAR in theca

celis (Bao et al., 1998). The subordinate follicles regress, and this is associated with

decreases in ail steroidogenic enzymes in granulosa celis. If the dominant follicie also

undergoes atresia, the first changes in steroidogenesis occur as the follicle reaches the

‘static’ phase of its growth phase. There is a reduction in mRNA for P450scc, P45017.OH
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and LH receptor in theca celis, and P45Oscc in granulosa ceils. These follicles secrete

significantly less estradiol than growing follicles, although there are no changes in

P45Oarom mRNA (Bao & Garverick, 1998). The decrease in estradiol secretion is most

likely due to the decrease in theca P45O170H and LH receptor levels, thus reducing

androgen precursor supply to GC. There is no ftirther loss of mRNAs encoding

steroidogenic enzymes in the theca as the dominant follicle starts to regress, but GC suffer

a loss ofP45Oscc, P45Oarom, LH receptor and 3f3-HSD mRNA (Bao & Gaiwerick, 1998).

The growth of bovine follicles from primordial to preovulatory stage is

characterized by an approximately 360,000-fold increase in surface area, and several

hundred-fold increase in follicle size (Lussier et al., 1987). Ovarian follicular growth and

development involves extensive tissue rernodeling (Smith et al., 1999). Overali, normal

ovarian function depends on cyclical rernodeling ofthe ECM. The next section will discuss

the composition, the changes and the roles ofECM in the mammalian ovary.

EXTRACELLULAR MATRIX IS DYNAMIC N FOLLICULAR DEVELOPMENT

During follicle growth there is extensive cellular proliferation and remodeling of

the ECM. This process is characterized by proliferation of GC, differentiation of the

granulosa and theca cornpartments, and the deposition of a basement membrane separating

the avascular granulosa ceils from the vascularized theca layer (Ny et al., 2002).

The extracellular matrix has many different roles (Rodgers et al., 2000; Rodgers et

al., 2003; Rodgers et al., 1999). First, the ECM affects celi shape and behavior, such as

migration, division, differentiation, cell death and cell anchorage. All these behaviors occur
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in follicle development. Second, the ECM can play a role in the fluid dynamics ofa tissue,

either providing osmotic forces or filtering soluble materials including nutrients and

hormones. Third, the ECM can provide rigid or elastic mechanical support for tissues.

Fourth, follicular growth factors can bind to the ECM directly or indirectly. For instance,

FGF-2 can directly bind to the ECM, and IGF-I or activin can indirectly bind to the matrix

through their binding proteins IGFBP-2 and -5, or follistatin, respectively. Collectively, the

ECM defines or provides a specialized microenvironment for ceils and tissues.

Col1aen and laminin are structural proteins in ECM components

The ECM provides a structural tissue support, and forms barriers between tissue

cornpartrnents. The matrix is known to contain three major fibre forming proteins—

collagen, elastin, and fibronectin, which are interwoven in a hydrated gel formed by a

network of glycosaminoglycans (GAG) dornains. All of these macromolecules are locally

secreted by the celis in contact with the matrix (Alberts, 1983). The collagens are ropelike,

triple-stranded, helical molecules that aggregate in long cable-like fibrils or sheets in the

extracellular space. Elastin molecules form an extensive cross-linked network of fibres and

sheets that can stretch and recoil, imparting elasticity to the matrix. fibronectin molecules

fonri fibres that prornote ceil adhesion, and the GAGs are a heterogeneous group of long,

negative charged polysaccharide chains (except for hyaluronic acid) covalently linked to

protein to fomi proteoglycan (Alberts, 1983). Follicular growth requires the ECM to be

rernodeled to incorporate the increasing volume of tissue and follicular fluid. hi ovarian

follicles, there are a number of different compartments and extracellular matrices. These
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include the follicular basal lamina, the membrana granulosa, and theca interna and extema

(Rodgers et aÏ., 2000).

11e follicular basal lamina is forrned of specialized sheets of ECM, which separate

the epithelial cells (membrana granulosa) from adjoining stroma (including theca interna

and externa, and vasculature). The basal lamina is composed of a lattice-type network of

collagen type IV interwound with a network of laminin. This structure is stabilized by the

binding of entactin or nidogen to the collagen and laminin. The heparin sulphate

proteoglycan perlecan (HSPG) and other molecules such as fibronectin are associated with

the collagen type W-laminin backbone (Rodgers et al., 2003). Furthermore, each molecule

of collagen type IV comprises three u chains; there are six different chains (cil- u6) of

collagen type IV (Rodgers et aï., 199$). Sirnilarly, each laminin molecule is composed of

three chains, the u, (3, & -y chain, there are five different u chains, three (3 chains and one y

chain, thus, many potential different combinations of collagen type IV and larninin are

possible, and many of these combinations have been observed in nature (van Wezel et al.,

199$). The ECM undergoes cyclic changes in its composition (Greenwald, 1994);

(Moirniaux et al., 1997). Interestingly, the composition of follicular basal lamina changes

during follicle development. Cyclic expression pattems of the mRNA encoding type III, IV,

and VI collagens as well as the proteoglycans have been observed in mouse ovary,

suggesting that the ovarian ECM changes during follicular growth (Oksjoki et al., 1999).

For instance, in cattie collagen type IV u3, u4, u5 and u6 levels are lower in antral follicles

cornpared to primordial and preantral follicles, and larninin cii, (32 and -y1 are higher in

antral follicles than in primordial and preantral follicles (Rodgers et al., 2003). Thus,

during follicle development, the follicular basal lamina becornes less collagenous and more
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laminin rich, such that it becomes more expandable to meet the requirement for follicle

enlargernent. In addition, perlecan and nidogen are absent in primordial follicles, but

become components of the follicular basal lamina in antral follicles, and atretic but not

healthy antral follicle express laminin a2 (van Wezel et al., 1998). In the sheep, laminin 1

(Œ1f31-yl structure) and different collagen I chains have been irnmunolocalized in the basal

lamina, and the levels of type I collagen increase in granulosa layers during terminal

follicular growth (Huet et al., 1997). Ail these studies suggest that the follicular basal

lamina is extremely dynamic during follicular development (Rodgers et al., 2000).

ECM components in theca layers (named the theca matrix) slightly differ from

those in the follicular basal lamina. Even though laminin 1 components (al or f32 or y1)

(van Wezel et al., 1998) and collagen W ai, a2 (Rodgers et al., 1998) are present in bovine

follicles throughout the theca interna, other structural proteins such as collagen type 1(2 al

and 1 a2) (Luck et al., 1995; Zhao & Luck, 1995) and collagen type VI (Iwahashi et al.,

2000) have been identified in the theca interna.

Other ECM components

Apart from collagen and laminin described above, there are a number of other

extraceltular matrix proteins in ovarian follicles such as gelatin, elastin, fibronectin,

integrins, vitronectin, and proteoglycans including versican, hyaluronan.

Gelatin contains a large number of glycine, proline and 4-hydroxyproline residues.

Gelatin is a heterogeneous mixture of single or multi-stranded polypeptides, each with

extended left-handed proline helix conformations and containing between 300 - 4000

arnino acids (Alberts, 1983). Type I collagen can be used as a source for gelatin. There are
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two types of gelatin, acid pretreatment (type A gelatin) and aikaline treatment (type B

gelatin) dependent on whether or flot the preparation involves an aikaline pretreatment.

Elastin molecules forrn an extensive cross-linked network of fibres and sheets that

can stretch and recoil, imparting elasticity to the matrix (Alberts, 1983). Elastin and

collagen forrns a cross-link structure in the ECM. Lysyl oxidase (LOX) initiates cross-link

formation of the collagen and elastin, and therefore has a crucial foie fl the regulation the

formation and maintenance of the ECM in the ovary (Henmi et al., 2001; Harlow et al.,

2003).

Fibronectin is a common ECM compound in stroma and it is important for ccli

migration, which occur in theca expansion during follicular development (Rodgers et al.,

2003). Due to alternative spiicing of mRNA at three separate sites, there are at least 20

different isofornis of fibronectin in humans (De Candia & Rodgers, 1999). Fibronectin

exists as a homo- or heterodirner ofthese spiice variants, a number ofthe spiice variants are

expressed in bovine foilicles in vivo (De Candia & Rodgers, 1999). Fibronectin is

mitogenic in granulosa celis in vitro (Colman-Lerner et al., 1999), and fibronectin synthesis

by granulosa celis can be upregulated by FGF-2 (Rodgers et al., 1996). further

experiments are needed to assess the physiological importance of the different fibronectin

isoforms, as well as the respective roles of the soluble forms present in follicular fluid and

the insoluble fonTis deposited in basal lamina and on celi membranes.

Integrins are ECM receptors on the celi surface. Ceils interact with the matrix

through celi-surface adhesion receptors including the integrins. Integrins are heterodimeric

glycoproteins composed of Œ and [3 subunits. Over 17 ci and 8 f3subunits can make over 23

different heterodimeric combinations (Belkin & Stepp, 2000). Only a few integrins have
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been localized to granulosa ceils: Œ6131 in non-luteinized granulosa ceils (Fujiwara et al.,

1997; Le Beliego et al., 2002) and u2 and Œ5 in luteinizing celis (Yamada et al., 1999).

Moreover, the a6f3lintegrin serves as a larninin receptor, the a5f3lintegrin serves as a

fibronectin receptor, and the Œ2f3 1 integrin serves as a collagen type I receptor in various

species such as mouse (Fujiwara et al., 199$), human (Nardo et al., 2003; Yamada et al.,

1999), and sheep (Le Bellego et al., 2002).

Versican (also named chondroitin sulfate proteoglycan-2, CSPG2) is a soluble ECM

molecule. Granulosa ceils in antral follicles are bathed in follicular fluid containing

proteoglycans. Proteoglycans consist of a core protein with attached GAGs. Belonging to

the proteoglycan family, versican is Hkely to be synthesized in the granulosa cells (and also

theca). Versican was identified in human follicular fluid (Eriksen et al., 1999) and in ail

follicular layers in small bovine follicies (McArthur et aÏ., 2000), and may participate in

celi-matrix and celi-celi interactions. Versican plays a key role in cumulus oocyte

expansion and fertility (Russeli et al., 2003), together with tumour necrosis factor u

stimulated gene 6 (TSG-6) (Mukhopadhyay et al., 2001; Ochsner et al., 2003), inter-u

trypsin inhibitor (Carrette et al., 2001; Ochsner et al., 2003), and hyaluronan (Mahoney et

al., 2001). There are four isofoms ofversican (VO, Vi, V2, and V3), ofwhich VO and VI

expression is localized to granulosa ceils (Russeli et al., 2003). Versican VO and Vi rnRNA

are differentially expressed in GC of actively growing dominant follicles compared to

small follicies (2-4mm) in cattie (Fayad et al., 2004b). In addition, a disintegrin and

metalloproteases with thrombospondin motifs (ADAMTS- 1) can proteolytically cleave

versican (Sandy, 2001).
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Hyaluronan (HA), a glycosaminoglycan polymer, is synthesized by cumulus celis

surrounding oocytes before ovulation. Along with other factors, hyaluronan makes a

gelatinous matrix, and plays a role in cumulus expansion (Salustri et aÏ., 1999; Mahoney et

al., 2001).

Interaction of ECM proteins and granulosa celi function

In terms of their origins, most components of the follicular basal lamina are

probably synthesized by GC. Both fibronectin and laminin yl chain are expressed by GC in

rats (Camegie, 1990) and cows (Zhao & Luck, 1995). Luteinized granulosa cells in culture

express ECM proteins (collagen I and collagen IV) and their regulators, matrix

metalloproteinase 9 (MMP-9) and tissue inhibitors of metalloproteinases (TIMP-1) (Zhao

& Luck, 1996). Bovine GC in culture can also synthesize a basal lamina containing

collagen IV and fibronectin (Rodgers et al., 1995; Rodgers et al., 1996), providing a

possible model to study the origin of ECM proteins and as well as the interaction of ECM

proteins and GC function. furthermore, TGFa stimulates the production and deposition of

fibronectin by chicken GC (Asem & Novero, 1994).

In vitro studies show that the ECM modulates GC function in various mammalian

species. For example, ECM stirnulates bovine GC proliferation and progesterone secretion

in response to FSH (Savion et aÏ., 1981). Similarly, rat and human luteinized GC require

ECM in order to retain their structural and functional characteristics in culture (Amsterdam

et al., 1998). To test the role of ECM proteins in GC survival, proliferation and

steroidogenesis, Huet and colleagues carry out an experirnent in which various pure ECM

components (type I collagen, fibronectin and laminin) are added to ovine GC in vitro. They
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observe that coflagen I is able to maintain estradiol secretion in GC derived from large

follicles (4-7 mm in diameter), whereas fibronectin and larninin dramatically increase the

proliferation rate and enhance survival ofGC from both small (1-3 mm) and large follicles

(Huet et al., 2001). In addition, the authors also report that heparin treatment changes ccli

morphology (induces celi rounding), reduces celi proliferation, enhances estradiol but

inhibits progesterone secretion (Huet et al., 2001). However, it rernains to be determined

whether changes in GC function resulting from heparin treatment are directed by the

change in celi shape, or invoïve other rnechanisms. One possible explanation is that the

addition of excess heparin to the cultured celis likely disturbs the action of endogenous

heparin-binding growth factors such as FGf-2, by regulating its bioavaiiability (Ruosiahti

& Yarnaguchi, 1991). Immunostaining studies show that laminin and fibronectin are

mainly localized to vascular walls, the outer layer of GC, and the basement membrane of

the rat ovary (Akkoyuniu et al., 2003). Taken together, these data indicate ECM proteins,

together with growth factors, are invoived in follicle deveiopment during the estrous

(menstntal) cycle. In conclusion, the ECM influences basic cellular process such as

proliferation, differentiation, migration and adhesion, are invoived in the control of ovarian

follicular deveiopment, and modulate interactions between growing foilicies and

surrounding connective tissue.

PROTEASES AND THER IMUBITORS REGULATE ECM REMODELING

Proteases and their inhibitors are regulators of ECM remodeling during follicular

development. Based on their evolutionary structure, proteases and their inhibitors can be
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classified into three grotips (three proteolytic systems), the plasminogen activator (PA)

system (Liu, 1999; Liu et al., 2004), the matrix metalloproteinase (MMP) system (Ny et al.,

2002; Curry & Osteen, 2003) and the cysteine protease system (Sriraman & Richards,

2004). This review will focus on the plasminogen activator system (see the PA section in

detail), and describe briefty the MMP system and cysteine protease system.

The MMP system

Currently, the MMP family encompasses at least 25 reÏated proteolytic enzymes

that include four broad classes: collagenases, gelatinases, strornelysins, and membrane type

enzymes (MT-MMPs) (reviewed by Curry & Osteen, 2003). Common features ofthe MMP

family include: 1) the presence of zinc in the active site of the catalytic dornain; 2)

synthesis of the MMPs as preproenzymes that are secreted in an inactive form; 3)

activation of the latent zyrnogen in the extracellular space; 4) recognition and cleavage of

the ECM by the catalytic domain of the enzyme; and 5) inhibition of enzyme action by

metalloproteinase inhibitors in the extracellular environment (Curry & Osteen, 2003).

Although simiÏarities exist in the structure of the MMPs, there are also distinct differences

in the recognition and specificity for the ECM components (Nagase & Woessner, 1999);

(Murphy et al., 1999b). for instance, collagenases (MMP-l, MMP-8, MMP-13) cleave

fibrillar collagens sucli as collagen types I, II, III, V, and XI, as well as nonfibrillar

collagens. Cleavage of the triple helical collagen by collagenases resuits in denaturation of

collagen molecules into gelatin by changing the stability and solubility of collagen. The

gelatinases (MMP-2 and MMP-9) contain a fibronectin-like sequence within their catalytic

domain, which results in a potent ability for these MMPs to bind and cleave gelatin. The



24

stromelysins (MMP-3, MMP-7, MMP-10 and MMP-11) act on a diverse array of ECM

substrates, including collagen type IV, laminin, and fibronectin. The MT-MMPs (Mil or

MMP-14, Mi-2 or MMP-15, MT-3 or MMP-16, and MT-4 or MMP-17) contain a

transmembrane domain near their C-terminal region, and their extracellular region contains

the catalytic domain (Curry & Osteen, 2003). One important role of the MT-MMPs is

activation of MMP-2 (Strongin et al., 1995). In addition to degrading ECM, MMPs and

especially strornelysins exhibit activity toward other MMPs, growth factors, and cytokines

such as IGF binding proteins, epidermal growth factor (EGF), TNF-a, and substance P

(Sternlicht & Werb, 2001), and subsequently modulate celi growth. The regulatory action

on cell growth occurs either directly by controlling ceil-matrix interactions or indirectly by

controlling growth factor bioavailability.

Apart from the MMPs discussed above, there are a number of family members that

are classified outside of the four broad classes of MMPs. ADAMTS-1 is a member of the

ADAMTS family of metalloproteinases (termed the adamalysins, a different

metalloproteinase farnily) that degrades members of the lectican family of proteoglycans

(Kuno & Matsushima, 199$). In the ovary, ADAMTS-1 is involved in ovulation (Robker et

aï., 2000a).

MMP activity in the extracellular environment is rigorously controlled by MMP

inhibitors. Two major classes of MMP inhibitors are generally distinguished, serum-bome

and tissue-derived inhibitors (reviewed by Gomez et al., 1997; Brew et al., 2000). Alpha 2-

macroglobulin (a2-M), a 720 kDa tetrameric glycoprotein, belongs to serum-bome

inhibitor of metalloproteinases, and ct2-M is present in hurnan follicular fluid whereas a2-

M rnRNA is virtually undetectable in GC (Curry et al., 1990). The tissue inhibitors of
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metalloproteinase (TIMP) are locally produced and specifically inhibit MMPs, and are

highly expressed and hormonally regulated in reproductive tissues. The abiÏity of TIMPs to

inhibit MMP action occurs through the interaction of the N-terminal dornain of TIMP with

the active site on the catalytic domain ami the substrate-binding groove of the MMP.

TIMPs act selectively on different MMPs (Gomez et al., 1997). Currently, there are four

TllvIP members. TIMP-1 is a secreted glycoprotein, which preferentially binds to MMP-9

but caimot act on MT1-MMP (MMP-14). TIMP-2 is also a secreted glycoprotein, and has a

high affinity for MMP-2 (Gomez et al., 1997). Unlike TIMP-1 or TIMP-2, TEvfP-3 is

secreted and then bound to the ECM, and has been suggested to act as an additional

regulatory stop point as opposed to being free in the extracellular fluid. TEVIP-3 also

exhibits a differentiai preference for the MMPs, having a high affinity for MMP-9 ami

being able to inhibit MT1-MMP (Leco et al., 1994). TIIvIP-4 is cloned and expressed in

reproductive tissues (Leco et al., 1997). TIMP-4 also acts on nurnerous MMPs (Stratmann

et al., 2001), suggesting that this TIMP may be a good non-specific inhibitor for ah classes

ofMMPs.

The regulation of MMP and TIMP synthesis and activation in ovarian follicular

development and ovulation are reviewed ($mith et al., 1999; Curry & Osteen, 2003). Most

studies in different species show that MMP and TIMP mRNA leveis or protein activities

are increased during ovulation (Srnith et al., 1999). For example, in the rat, mRNA levels

ofMMP-1, MMP-2 (Reich et al., 1991), MMP-13 (Balbin et al., 1996) and MT1-MMP (Jo

et aï., 2002b) ail increase after the endogenous LH surge or hCG administration, similar to

previous reports for enzyme activity (Smith et al., 1999). The gene expression ofTLMP-1

and TIMP-3 also increases (Reich et al., 1991), whereas TIMP-4 expression decreases in
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rat ovarian follicles during ovulation (Sirnpson et aÏ., 2003). Although there are many

similarities in expression patterns of MMPs between the rat and mouse, there are

differences in MMP-2 and MMP-9 expression. In the rat, MMP-9 mRNA does flot change,

whereas MMP-2 mRNA increase during ovulation (Curry et al., 2000). In contrast to the

rat, MMP-9 mRNA increases after LH stimulus in the mouse, whereas MMP-2 is

unchanged (Robker et al., 2000b). After investigation of eleven different MMPs during the

periovulatory period in mice ovaries (Higglund et al., 1999), only MMP-19 mRNA

increases. The other MMP members are either unchanged or undetectable. TIMP-1 and

TIMP-3 mRNA expression increases in the mouse, whereas TIMP-2 is unchanged as in the

rat (Higg1und et al., 1999; Inderdeo et al., 1996). The parallel up-regulation ofMMPs and

their inhibitors is postulated to maintain proteolytic homeostasis (Nagase & Woessner,

1999), and therefore act to regulate the location and extent of ECM remodeling of the

follicular apex during ovulation.

There are potentially important species differences in rnRNA expression pattems of

the MMP system during ovulation. hi the rat, MT1-MMP mRNA levels increase (Jo et al.,

2002a), but TIMP-2 mRNA levels do not change (Curry & Nothnick, 2000). hi cattle, the

expression of mRNA for MTY-MMP and TEVIP-2 increases at 24 h and 6 h after the

preovulatory LH surge, respectively (Bakke et al., 2002). However, MMP-2 mRNA in

follicular tissue and enzyme activity in follicular fluid is unchanged. The MT1-MMP

mRNA is localized prirnarily to the theca layer before the gonadotropin surge but is

expressed in GC at 12 h and 24 h after the surge (Bakke et al., 2002), suggesting that this

enzyme is required more for follicle wall degradation in bovine. In sheep, MMP-2 appears

a pivotai MMP member in ovulation, as the injection of MMP-2 antibody into the antral
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cavity of preovulatory follicles in the ewe resuit in the formation of luteinized, unruptured

follicles (Gottsch et aÏ., 2002).

There is considerable evidence that the MMPs and TIIVIPs function at earlier stages

of follicular growth. In the neonatal rat ovary, MMP-2 is immunostained in GC and the

surface epithelium, whereas MMP-9 is absent at earlier stages of follicular development

(Bagavandoss, 199$). In the same study, follicular growth induced by PMSG increases the

cellular expression of MMP-2 and MMP-9, which is consistent with protein expression

pattems (Bagavandoss, 1998). The cellular activity of the MMPs rneasured by in-situ

zymography dernonstrate a pattern of gelatinolytic activity that corresponds with the

oca1ization ofMMP-2 and MMP-9 mRNA around developing foïlicles (Curry et aÏ., 2001).

MMP-2 and MMP-9 activity also increases during follicular growth in sheep, pigs, cattie,

horses and hurnans (reviewed by Curry & Osteen, 2003).

The ernerging data for TIMP mRNA expression pattems during follicular growth

suggest that the expression ofTEVIP-I parallels changes in MMPs. Curry and Osteen (2003)

summarized that TIMP-1 mRNA levels increase after PMSG administration, but TIMP-2

rnRNA does not change, and TTMP-3 rnRNA level even decline slightly in the rat (Curry

& Osteen, 2003). However, the mRNA and protein for TIMP-4 increase after PMSG

treatment (Simpson et al., 2003). Thus, the parallel regulation of MMPs and TIIVIP-1 and

TIIvIP-4, as well as the basal expression of TLMP-2, and TIIVIP-3, may act to maintain a

proteolytic balance during follicular growth that provides localized control of ECM

degradation, thereby regulating the location and extent of follicular remodeling (Curry &

Osteen, 2003).
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In surnrnary, the MMPs would facilitate remodeling of the granulosa ceil basement

membrane and the theca ECM and allow follicular expansion. The THVIPs may provide

control for the location and extent of MMP action. It is readily clear that the MMPs and

TIMPs are in the appropriate cellular compartments, and are regulated by the hormonal

signais that regulate follicular developrnent and atresia.

The cysteine proteases

There are lirnited studies on cysteine proteases cornpared to other major protease

farnilies. Cysteine proteases are lysosornal enzymes that act at acid pH, whereas most

serine proteases and the metalloproteinases act at neutral pH. The best-known cysteine

proteases are cathepsin B and cathepsin L (Salamonsen, 1999). Cathepsin L is a lysosomal

cysteine protease expressed in many endocrine tissues and celi types including granulosa

celis (Oksjoki et al., 2001; Robker et al., 2000a). Cathepsin L is a secreted protein

indicating that this protease functions at both intracellular and extracellular sites (Ishidoh &

Kominami, 199$). In the ovary, cathepsin L is expressed in GC of follicles at different

stages of growth suggesting that this protease may play diverse roles in this tissue. Along

with other proteases, cathepsin L may impact the extensive rernodeling of the ECM during

ovulation (Robker et al., 2000a). Specifically, since cathepsin L is activated when

cornpïexed with glycosaminoglycans (GAG) present in follicular fluid, and since it can

degrade coilagen (I and W), elastin and fibronectin, cathepsin L is likely a modifier of

ECM in preovulatory follicles (Salustri et al., 1999; Robker et aï., 2000a). Although no

endogenous cysteine protease inhibitor has been identified, TIMP- I forms a complex with

procathepsin L in steroidogenic ceils, including Leydig cefls and ovarian GC, indicating
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that the complex is a potent activator of steroidogenesis and may regulate germ ccii

deveioprnent in both males and femaies (Boujrad et aÏ., 1995).

PLASMINOGEN ACTIVATOR SYSTEM

Plasminogen activators (PA) are serine proteases that convert the abundant

extracellular zymogen plasminogen into plasmin, an active protease that, directiy or

indirectiy, prornotes degradation of ail components of the ECM (Blasi et aÏ., 1987).

Initially, plasmin degrades fibrin into soluble products in the circulation (reviewed by

(Lijnen, 2002). In addition, there are severai other ECM proteins that are degraded by

plasmin, including gelatin, fibrinogen, type W collagen, fibronectin, laminin, elastin and

proteoglycans (reviewed by Liu et al., 2004). The targeted ECM degradation generated by

PAs affects a wide variety of physiological and pathological processes (Liu, 1999),

inciuding ovulation, iuteal regression, sperm maturation, fertilization, ernbryo implantation

and uterus involution (Sappino et aÏ., 1989).

The PA system is proposed to activate pro-MMPs at the ccli surface (Murphy et aï.,

1999a). Thus, the activation of MMPs can be regulated by a balance between serine

proteases such as uPA, and the plasminogen activator inhibitors (Nagase & Woessner,

1999; Murphy et aï., 1999b).

The PA system contains not oniy the proteolytic enzymes, but aiso reguiatory

components including inhibitors, cofactors, cdl surface receptors and binding proteins

(reviewed by Liu, 1999; Ny et al., 2002; Liu, 2004). Two forms ofpiasminogen activator,

tissue type (tPA) and urokinase type (uPA), are characterized in mammals (Macchione et
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al., 2000). Plasminogen activation mediated by tPA plays an important role in the

dissolution of fibrin in the circulation (Carmeliet & Collen, 199$), whereas the main role of

uPA appears to be in pericellular proteolysis via the degradation of matrix components or

via activation of latent proteinases or growth factors (Lijnen, 2002). A celi surface uPA

binding protein, the uPA receptor (uPAR) is identified in some celi types (Andreasen et al.,

1990; Vassalli & Pepper, 1994). Urokinase PA binds to its specific celluiar receptor

resulting in enhanced activation of celi-bound pÏasminogen, hence, the proteolytic activity

becomes localized to the ceil surface or to the vicinity of these celis (Ny et al., 2002).

Other identified proteins of the PA system include the specific and fast-acting plasminogen

activator inhibitor- 1 (PAl-1), plasminogen activator inhibitor-2 (PAl-2), the broad inhibitor

protease nexin-1 (PN-1) (Kruithof 19$$; Roberts et al., 1995), and the plasmin inhibitor

a2-antiplasmin (Œ2-AP). Inhibition of the PA system may occur either at the level of the PA

by specific PAIs, or at the level ofplasmin, mainÏy by a2-AP (Lijnen, 2002). PAl-1, PAl-2,

PN-1, and a2-AP ail belong to the SERine Protease INhibitor superfarnily, termed

SERPIN (Potempa et aÏ., 1994). The Serpins are a huge superfamily of proteins that fold

into a conserved structure and employ a unique suicide substrate-like inhibitory

rnechanism. A Serpin nomenclature committee re-named PAl-1, PAT-2, PN-1, and Œ2-AP

as SERPll’-E1, SERPIN-B2, SERPII\T-E2, and SERP1N-F2, respectively (Silverman et al.,

2001).

Plasminogen

The proteases of the PA system are characterized by their reactive pocket, which

contains the catalytic triad of histidine (His), asparagine (Asp) and serine (Ser) residues
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(Kraut, 1977). Plasminogen is a single-chain glycoprotein containing 790 arnino acids with

a moiecular weight of approximately 92 kDa. Native plasminogen is referred to as Glu

plasminogen since it bas a glutamic acid at its aminoterminus (N-terminus). The Glu

plasminogen is cleaved by plasmin at Lys76-Lys77 to produce Lys-plasminogen (Wiman

& Wallen, 1977). Both the Glu- and the Lys-plasminogen are activated to pÏasmin by a

single PA-catalyzed cleavage at the Arg560-Va1561 bond, which resuits in a two-chain

protein beld by two disulfide bonds (Sottrup-Jensen et al., 1975). Because plasminogen is

present in ail body fluids, piasminogen activation needs to be restricted, as loss of exquisite

control of plasminogen activation leads to extensive and often destructive degradation of

ECM.

Plasmin

Plasmin is a protease with a broad trypsin-like activity. Plasmin can directly

degrade basement membrane ECM components including collagen IV, proteoglycans,

laminin and fibronectin (Mignatti et al., 1986). Plasmin may assist in cumulus expansion

by terminating oocyte-cumulus ccli communication (Liu et aÏ., 1986). Plasmin is the most

likely physiological activator of uPA (Biirnema et al., 1991). Furthermore, plasmin can

activate downstream proteases suci as proMMP-3, proMMP-9, leading to the ECM

remodelling indirectly by both MMP-3 and MMP-9 as weil as by itself directly (Hahn

Dantona et aÏ., 1999). A cascade involving uPA, uPAR and plasminogen is proposed to

activate MMPs at the celi surface (Murphy et al., 1999a). In addition, plasmin is able to

process or release ECM bound growth factors such as TGF-f3 (Pedrozo et al., 1999), VEGF
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(Park et al., 1993), and FGF-2 (Whitelock et al., 1996), which can contribute to ovarian

function.

Tissue type plasminogen activator

Both tPA and uPA are released from ceils as single-chain forms with no (uPA) or

low (tPA) activity, with cleavage of a polypeptide bond leading to fully active forms.

Tissue type PA is synthesized in endotheliai celis (Binder, 1995) and many other ccli types.

Mature tPA is a single-chain glycoprotein of 530 amino acids (70 kDa in MW). Human

tPA gene is localized to chromosome $ (Degen et al., 1986).

The rat tPA promoter contains a cAMP-responsive element (CRE) (TGACGTCA)

at position -17$ to -185, nuclear factor 1 (NF 1) and SPi binding sites, and a GC box

binding factor. Ail the factors play a role in constitutive expression as weli as cAl\4P

activation ofthe tPA gene. The first 621 nucleotides ofthe 5’-ftanking region ofthe rat tPA

gene is sufficient to confer both the basal and the FSH-induced promoter activity to a

reporter gene construct when transfected into primary GC cultures (Feng et al., 1990;

Ohlsson et al., 1993; Leonardsson & Ny, 1997).

Urokinase plasminogen activator

Urokinase PA is synthesized and secreted from celis as a proenzyme with little or

no activity (pro-uPA). The hurnan uPA gene, 6.4 kb in length, is iocated on chromosome

10. It contains 11 exons and gives rise to a 2.5-kb-long rnRNA, which encodes a single

chain glycosylated polypeptide of 50 kDa. Singie-chain pro-uPA (scuPA) is converted by

the iimited proteolysis into an active 50 kDa enzyme uPA consisting of two polypeptide
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chains held together by one disulfide bond. The 33 kDa form of uPA is a partial

degradation product, and does flot interact with the receptor (Blasi et al., 1987).

uPA receptor

uPAR is a 45-65 kDa glycoprotein (31 .5 kDa of non-glycosylated uPAR) that is

localized to the outer layer of the plasma membrane of ceils, via a glycosyl

phosphatidylinositol linkage (GPI anchor) and does flot possess a transmembrane domain.

uPAR is comprised of three domains with structural homology based on the spacing of the

disulfide bonds (Ploug et aï., 1991). Domain 1 contains most ofthe determinants required

for bïnding to uPA, and additional determinants in either domain 2 or domain 3 are

required to realize the full affinity of the binding (Behrendt et al., 1991). Despite the lack

of a transmembrane domain in uPAR, adaptor molecules must exist and be capable of

coupling uPA-uPAR binding to signal transduction. Various candidate integrins are

proposed to act as this adaptor, and uPAR appears to play a central role in integrin

mediated signal transduction and cell-cell adhesion (Tami et al., 2001; Mazar, 2001). for

example, co-localization studies demonstrate an association of uPAR with a51 integrin for

human tumor celi survival (Aguirre Ghiso et al., 1999). Most recently, Jo et al. suggest that

uPAR functions in concert with co-receptors, including integrins and epidermal growth

factor receptor (EGfR), to initiate cell signalling, and the EGfR selectively cooperates

with uPAR to mediate mitogenesis in MCf-7 ceils (a breast cancer ccli line) (Jo et al.,

2005). However, the interaction of uPAR, integrins and EGFR in ECM remodelling of

ovarian follicle lias flot been studied yet. In addition, low-density lipoprotein (LDL)

receptors are important for intemalization of proteases and protease-inhibitor complexes
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(Strickiand et aÏ., 2002). For example, uPAR recycling is dependent on the LDL receptor

related protein (LRP) or the very-low-density lipoprotein (VLDL) receptor. PAT-1 can bind

to a uPAR-uPA complex, which in tum binds tightly to LRP which leads to LRP-dependent

endocytosis of the uPAR-uPA complex, followed by recycling of uPAR back to the celi

surface (Nykjaer et al., 1997).

Plasminogen activator inhibitor-1

PAl-1 is a single-chain glycoprotein of approximate 50 kDa molecular weight

consisting of 379 amino acids. The target proteases of PAl-1 include uPA, tPA, plasmin,

and thrornbin (Silverman et al., 2001). The reactive centre of the inhibitor

(Arg346/Met347) is contained within the exposed ‘strained loop’ region at the carboxy

tenninus of the molecule, and serves as a pseudo-substrate for the target serine proteases

(Loskutoff, 1993). The lack of cysteine residues (and hence disulfide bonds) may in tum

account for its biological instability in solution. It appears to be synthesized in the active

forrn by cultured ceils but is unstable in solution and rapidly decays into the inactive forrn

upon secretion into serum-free ceil culture media (Loskutoff, 1993). The binding of PAT-1

to the adhesive glycoprotein vitronectin stabilizes the inhibitor in its active conformation,

thus increasing its biological haif-life. Vitronectin is the prirnary PAT-1 binding protein in

the ECM (Seiffert et aÏ., 1990). The hurnan PAT-1 gene is approximately 12.2 kilobase

pairs in length, contains 9 exons and 8 introns and is located on the long arm of

chromosome 7. It encodes two distinct transcripts approxirnately 2.3 and 3.2 kb in length,

differing only in their 3’ untranslated regions (Andreasen et al., 1990). The 5’—flanking

region of the hurnan PAl-1 gene was shown to contain the transcription initiation site and a
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TATA box, suggesting that this region contains the PAl-1 promoter and is important for

PAT-1 gene expression (Lewin, 1990). Most interestingly, one upstrearn region of the

human PAl-1 gene (-1520 to -1008) lias high liomology with hurnan tPA gene, raising the

possibility that two genes may be co-ordinately regulated under some circumstances

(Bosma et aÏ., 1988).

Plasminogen activator inhibitor-2

PAl-2 is also a secreted protein of approximately 60 kDa, containing 415 amino

acids. PAT-2 is a major product of macrophages and monocytes in response to

inflammatory conditions (Schwartz et al., 1988; Gyetko et al., 1992). The two different

forrns (extracellular and intracellular) of PAT-2 in monocytes probably have distinct

functions. The extracellular fonri inhibits uPA activity, whereas the predorninant

intracellular forrn inhibits turnor necrosis factor a (TNF-Œ)-directed apoptosis (Dickinson et

al., 1995). The target protease of PAT-2 includes uPA (Silverman et al., 2001). PAl-2 is a

relatively poor tPA inhibitor compared to PAl-1. Among the serpins, PAl-2 shares only

26% homology with PAl-1. Like PAl-1, PAT-2 also forrns equimolar complexes with uPA

and tPA, and is present in biological samples in such complexes. The complexes are at least

partially SDS-resistant. In plasminogen activator inhibitor assays, PAT-1 and PAT-2

activity can be distingushed by tlie fact that only PAT-1 is detectable by reverse

zyrnography. Unlike PAl-1, PAl-2 does not appear to be able to resume an active

confirmation after SDS denaturation (Andreasen et al., 1990). The secretion rnechanisms of

PAT-l and PAT-2 are different. PAl-1 has an amino-terminal 2 1-23 signal peptide that is

cleaved in the mature protein, which is common to most secreted proteins (Ny et al., 1986),
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while the secretion of PAl-2 relies on an internai signal sequence, which is flot cleaved

during transiocation to the endoplasmic reticulum (ER) (Ye et al., 1988). The human PAl-2

gene, present on chromsorne 18, is transcribed into a 2 kb mRNA (Andreasen et al., 1990).

Œ2-antipIasmin

a2-AP is a 70 kDa single chain Serpin with a peptide bond Arg-Met as reactive site.

It is a piasmin-specific inhibitor, which forrns an inactive 1:1 stoichiornetric complex. The

high reaction rate requires the presence of a ftee active site and free lysine-binding site(s)

in plasmin. Homozygous cc2-AP deficient mice display normal fertility, viability and

developrnent (Lijnen, 2001), suggesting its role in foliicie development is flot essential.

A schernatic proteolytic cascade is illustrated in Fig 3.
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Fig 3. A schematic Proteolytic Cascade
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PROTEASE NEXTN-1: MOLECULAR AND BIOCHEMICAL CHARACTERISTICS

PN- 1, also referred to serine protease inhibitor-E2 (SERP1N-E2), and glia-derived

nexin (GDN), is a secreted 43 kDa glycoprotein, and is a broad spectrum, trypsin-like

serine protease inhibitor that rapidly inhibits a number of target proteases including trypsin,

thrombin, uPA, tPA, and plasmin (Silverman et al., 2001). PN-1 slowly inhibits factor Xa

and the ‘ subunit of nerve growth factor but does flot inhibit chymotrypsin-like proteases or

leukocyte elastase (Scott et al., 1985). Apart from its role as a soluble protease inhibitor,

PN-1 is also a component of the ECM and rnight control its proteolysis (Farreil et al.,

198$). PN-1 inhibits plasminogen activation-induced apoptosis of adherent cells via the

formation of inhibitory complexes with plasmin and tPA, indicating PN-1 may be an

important anti-apoptotic factor for adherent ceils (Rossignol et al., 2004). PN-1 is

expressed and secreted by several ceil types or organs, including neurons (Mansuy et al.,

1993; Citron et al., 1996; Kury et aÏ., 1997), rat aortic smooth muscle cells (Richard et al.,

2004), endothelial ceils and fibroblasts (Baker et al., 1980), seminal vesicle in mice

(Vassalli et al., 1993), and human placenta (White et al., 1993), suggesting PN-1 has a role

in these celis or organs. PN-1 expression and secretion as well as its regulation in the

ovary will be described in the next section.

PN-1 acts as a pseudo-substrate to forrn 1:1 stable complexes with its target

proteases, and once formned, the complex binds to the cell surface where it is quickly

internalized and degraded. Further studies show that the PN-1-uPA complex is internalized

and degraded through a mechanism that requires both uPAR and a2-rnacroglobulin

receptor (a2- MR) in two human and murine cell unes (Conese et al., 1994).
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Previous studies show that PN-1 can be regulated in terms of activity, specificity,

and localization by glycoprotein or ECM co-factors. PN-i binds tightly to and is regulated

by the ECM. Once secreted, it binds tightly to collagen Type IV, regulating both its activity

and its target protease specificity. Donovan et al. report that PN-1 inhibits thrombin even

when bound to collagen IV, but has less inhibitory effect on uPA and plasmin (Donovan et

al., 1994). However, Crisp et al. find that PN-1 remains a potent uPA inhibitor in the

presence of collagen IV (Crisp et aÏ., 2002), and suggests that the disagreement between

studies resuits from the PN-i purification protocol (Donovan et al., 1994), which affects

PN-1 allosteric interaction with collagen IV, leading to altered protease specificity.

Moreover, PN-1 has a heparin-binding site, heparin greatly accelerates the rate of linkage

between soluble PN-1 and its substrate thrombin (Baker et aÏ., 1980).

Gaining insight into how the PN-1 gene is regulated at the molecular level shoufd

lead to a better understanding of the physiological control of PN-1. The PN-1 gene has

been cloned and studied in several species. The rat PN-1 promoter is highly GC rich, and

methylation of these sequences is thought to play a role in suppressing PN-1 transcription

(Erno & Monard, 1993).

The human PN-i gene, localized on chromosome 2, contains nine exons spanning

more than 40 kb. The 5’ end of the human PN-1 gene closely resembles the genomic

structure of its rat counterpart (Carter et al., 1995). The human PN-1 promoter contains an

activation domain at position -199 to -45, which contains multiple putative Spi binding

sites. Multiple Spi proteins bind the PN-i promoter and they act synergistically to

stirnulate PN-1 transcription most likely through the TATA-binding protein-associated

factors that are part ofthe TfIID complex (Courey et al., 1989; Pugh & Tjian, 1990; Pascal
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& Tjian, 1991). A siiencer elernent upstream of position -480 may exert negative regulation

of PN-1 gene expression (Guttridge & Cuirningham, 1996). Transcriptional regulation by

Spi, which is a ubiquitously expressed transcription factor, is often associated with

housekeeping genes. PN-1 gene may not be a traditional housekeeping gene (Emo &

Monard, 1993), therefore Sp-i functions to ensure a steady-state level of PN-1 gene

expression. Furthemiore, Sp-1 is suggested to play a significant role in regulation ofPN-1

in the nervous system (Mansuy et al., 1993). Therefore, we speculate that a spatially and

temporaiiy regulatory mechanisrn for PN-1 gene expression and activity might exist during

other events such as follicle development.

The bovine PN-1 mRNA is 2096 bp in length and contains 174 bp of 5’-

untranslated region (UTR), 1191 bp of open reading frarne (ORF), and a 731 bp 3’-UTR

that inciude two signais of rnRNA instability (ATTTA) and two poly-adenylation signais

foilowed by a po1y(A) tau (Bédard et al., 2003). This gene encodes a 397 amino acid (AA)

protein of 43.8 kDa with an isoelectric point (IP) of 9.9. The bovine PN-l shares 91.4%,

83.9%, and 83.1% identity of hurnan, rat, and mouse PN-1 ortholog, respectiveiy. Bovine

PN-i is 42% identicai to bovine PAT-1 paralog.

Restricted information is available about PN-1 function in male and female

reproductive systems. Mouse PN-1 is expressed in a wide variety of tissues (Mansuy et al.,

1993), but in the aduit the highest leveis are under androgen controi in the seminal vesicle

(Vassalli et al., 1993). FurthenTlore, PN-1 exhibits male-specific expression prior to overt

gonad differentiation, suggesting a possible role in mammalian sexual development

(Grimmond et al., 2000). In fernales, high levels of PN-1 mRNA and antigen were

expressed by mice GC in periovuiatory follicles (Higg1und et al., 1996). As PN-1 can
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neutralize severai proteases, including PAs and plasmin (Scott et al., 1985), it could play a

foie in regulating PA activity. Although the level ofPN-1 mRNA is high, it is flot reguiated

by gonadotropins (Htgglund et al., 1996). functionai studies using a PN-1 knock-out (KO)

approach show that PN- 1 deficient male mice are infertile, but female mice are fertile

(Murer et al., 2001). In homozygous male mice, absence of PN-1 resuits in altered semen

protein composition, and leads to inadequate semen coagulation and deficient vaginal plug

formation UOfl copulation, and integrity of the seminai gland is flot maintained duo to the

increased and uncontrolled proteolytic activity (Murer et aÏ., 2001). The data demonstrate

that the level of extraceliular proteolytic activity regulated by PN-1 is a critical element in

controiling male fertiiity in mice. PN-1 KO female mice are fertile, indicating that PN-1 is

not essential for female reproduction, and other protease inhibitors likely play a

compensatory role in regulating proteolysis in PN-1 deficient animais.

EXPRESSION ANI) REGULATION 0F THE PA SYSTEM IN OVARIAN FOLLICLE

Biosynthesis and secretion ofPA system in ovarian follicle

Plasminogen activators are synthesized in ovarian follicles of several mammalian

species. However, species differences exist in the expression and secretion of the PAs. Rat

GC secrete predominantly tPA in response to gonadotropins (Canipari & Strickland, 1985;

Canipari & Strickland, 1986), whereas the sanie hormonal stimulation induces uPA

expression or secretion in mouse GC (Canipari et aï., 1987; Hgglund et aÏ., 1996). uPA

contributes 70% of the total ovarian PA activity in PMSG/hCG treated motise model (Liu

et al., 1989). In the chicken, uPA is the predominant PA type present in GC during early
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follicular development (Lafrance et al., 1993a), whereas tPA is the principle PA in

preovulatory follicles (Politis et al., 1 990a). These latter data suggest the synthesis and

secretion of tPA and uPA also differs in different follicle stages in the same species. Littie

is known about the synthesis and secretion of the PA system in humans. Human GC

collected from preovulatory follicles contain little or no tPA or uPA mRNA (Jones et aï.,

1988), nevertheless, low level tPA activity is detected in the FF of human preovulatory

follicles (Joncs et al., 1989). Tri the monkey, Liu and colleagues have systematically

investigated the roles of the PA system in ovulation. They find that GC conditioned media

contains predominantly tPA and some uPA activity (Liu et al., 2004). The ovaries of

rabbits, cats, hamsters, and giant pandas also contain mainly tPA activity, which is

regulated by gonadotropins (reviewed by Liu, 2004). Pig GC also secrete predominantly

tPA in response to gonadotropins (Politis et al., 1990b). Bovine follicular cumulus layer

produces tPA in cultured oocyte-cumulus complexes (Yarnada et al., 1996). Furthermore,

tPA (mostly expressed in granulosa layer) and uPA (both granulosa and theca layer)

mRNA are localized in bovine preovulatory follicles, and both activities are detected in

bovine follicular homogenates after GnRH injection (Dow et aï., 2002a).

One mechanism for regulation of plasminogen activation, and hence plasmin

activity, is through production of specific plasminogen activator inhibitors. In the rat, PAl-

1 mRNA and activity are synthesized predorninantly by theca-interstitial celis (Tis) (Liu et

al., 1987b; Liu & Feng, 1992) and PAl-1 is secreted into follicular fluid (Peng et al., 1993).

A similar expression pattem occurs in mice (Leonardsson et al., 1995), rnonkey (Liu et aï.,

2004) and cattie (Dow et al., 2002b). Stimulation with hCG upregulates PAl-1 expression

in theca ceils, and induces PAT-1 mRNA expression in GC in rats (Chun et aï., 1992). In
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mice the expression of PAT-1 mRNA is also localized to theca layer (Leonardsson et al.,

1995; HiggÏund et al., 1996). PAl-2 mRNA expression in mice is localized primarily to a

few individual cells that may be macrophages in the theca layer (HLgg1und et al., 1996), in

contrast, PAT-2 mRNA is localized specifically to the granulosa celi layer in cattle (Dow et

aï., 2002b).

The gene expression and regulation ofPN-1 has been exarnined in ovarian follicles.

In contrast to PAT-l, PN-1 is exclusively expressed in GC in mice (Hgg1und et aÏ., 1996),

rats (Hasan et al., 2002) and cattle (Bédard et ctï., 2003). furtherrnore, studies show that the

level of PN-l rnRNA is high in GC throughout the periovulatory period, and decrease in

ovulated follicles ofrnice (Hgg1und et aï., 1996) and rats (Hasan et al., 2002). in cattie,

PN-l mRNA is expressed in GC of small follicles and reaches the highest levels in growing

dominant folÏicles (Bédard et cii., 2003; Fayad et aï., 2004b). Moreover, PN-1 mRNA

expression in granulosa celis is not regulated by gonadotropins in mice (Higglund et al.,

1996), but may be regulated by anticoagulant heparan sulfate proteoglycans (aHSPGs) at

the protein level, as aHSPGs are colocalized with PN-1 in rat follicles (Hasan et al., 2002).

Taken together, biosynthesis and secretion of PA system in ovarian follicle may be

regulated in a species-specific, ceil-specific, and stage-dependent manner.

Ovulation reguires coordinated expression ofPAs and PAIs in ovary

Ovulation, triggered by a LH surge, is an essential prerequisite for fertilization and

subsequent embryonic development. A mature follicle destined to ovulate usually protrudes

rnarkedly from the surface of the ovary. For the egg to escape from a follicle, extensive

breakdown and remodelling of basement membranes and connective tissus that constitute
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the follicular wall is required (Richards et al., 2002; Curry et al., 2001). Ovulation is a very

complex event that involves localized digestion of ECM components, including laminin,

proteoglycans, and type IV collagen in the basement membrane and different types of

collagen in the connective tissue. There are growing indications that the PA system

cooperates with the MMP system to activate a proteolytic cascade leading to the follicle

wall rupture (Palotie et aï., 1987; Woessner et al., 1989). As the different ECM

components of basement membrane need to be sequentially degraded, a network between

the two proteases systems is suggested. This section will focus on the PA system.

Early studies using in vitro approach suggest that the production of plasminogen

activators by Graafian follicles may be essential for gonadotropin-induced ovulation. for

example, a pioneer study demonstrates that rat GC from preovulatory follicles contain

plasminogen activator activity that reaches a maximum level prior to ovulation (Beers et

al., 1975). Ten years later, secreted tPA, uPA amd PAl-1 are identified by

immunoprecipitation in cultured rat GC (Ny et al., 1985). Furthermore, inhibitors of serine

proteases block gonadotropin-induced ovulation (Reich et aï., 1985). Canipari and

$trickland (1985) find that cultured rat GC produce exclusively tPA, and theca ceils

secreted uPA, suggesting that ovulation requires both types ofPA and the neighbouring GC

and theca cells cooperate to stirnulate follicle wall rupture (Canipari & Strickiand, 1985).

However, separated celi culture experiments reveal that both compartments produce both

types ofPA, even though GC contribute rnost ofthe follicular PA (Reich et al., 1986). To

analyze the interaction between tPA produced by GC and PAT-1 synthesized by theca ccli

in rats, the two celi types are obtained from ovaries at various time points after PMSG/hCG

treatment, and are incubated together. Net tPA activity in the conditioned media is
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remarkably inhibited 8 h after hCG, but increases at 12 h after hCG, despite the presence of

high level of PAl-1 in the conditioned media (Liu, 1988).

In vivo studies in rats show that ovulation is preceded by a transient and ceil

specific increase in both tPA and PAT-1 expression (Liu et aÏ., 1991; Peng et al., 1993).

The rnRNA level and activity of GC-derived tPA and theca PAl-1 mRNA increase with

time following PMSG/hCG injection, however PAl-1 drarnatically decline at about 4 h

prior to ovulation, which allows an increase in net tPA activity immediately prior to

ovulation (Liu et al., 1991; Peng et al., 1993; Shen et al., 1997). Furthermore, anti-tPA and

anti-uPA administration immediately before hCG treatment significantly block ovulation

rate in rats (Macchione et ai., 2000). A similar event occurs in mice, although the main PA

is uPA and the major inhibitor appears to be GC-derived PN-1 (Higglund et al., 1996).

Furthermore, Haggiund and colleagues (1996) find a cornplementary gene expression

between uPA and PN- 1 in different subpopulations of mouse GC in periovulatory follicles.

Mural GC localized next to the basement membrane express high levels of uPA mRNA and

low levels ofPN-1 rnRNA. In contrast, cumulus ceils localized close to the oocyte express

high levels of PN-1 mRNA and low levels of uPA mRNA (Higg1und et al., 1996). The

author suggests that such an expression pattem provides a shift toward inhibition of

proteolytic activity around the COC.

Using non-rodent models, messenger RNAs for tPA, uPA, and uPAR (Dow et aï.,

2002a), as well as PAl- 1 and PAl-2 (Dow et al., 2002b) increase in bovine preovulatory

follicles within 24 h foïlowing GnRH induction of LH surges. Activities for tPA and

plasmin, but not PAT-1 and -2 increase in follicular fluid or follicle homogenates within 12

h after gonadotropin surge. Interestingly, the increase in tPA activity in the follicle base
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(non-ovulatory region of follicle) is transient, whereas the increased activity in the follicle

apex (the site of ovulation) is maintained through the 24 h time point, indicating tPA

activity is differentially regulated in the follicle apex versus the base (Dow et al., 2002a).

uPA activity is increased in foHicle homogenates ofthe basal and apical regions within 12

h after gonadotropin surge and remains elevated through the 24 h time point. However,

uPA activity in Ff is not detectable (Dow et aï., 2002a). Thus, the authors concluded that

increased tPA, uPA, and plasmin activities may contribute to follicle rupture in cattie.

However, the differential up-regulation of tPA activity in the follicular apex versus base

seems unlikely to be a resuit of regional differences in up-regulation of PAl activity in

response to the gonadotropin surge. The contribution of both tPA and uPA to follicle wall

rupture, and PAl-1 and PAl-2 mRNA regulation by gonadotropin during ovulation are

different from previous reports in rodents. In addition, in cattle the expression of PN-1

mRNA in GC decreases in dominant follicles following hCG injection (Bédard et al.,

2003).

functional studies using knock-out (KO) mice provide further evidence for the role

of PA during ovulation. Mice lacking tPA, uPA or PAT-1 expression have normal

reproduction, but mice with combined deficiencies of tPA and uPA are significantly less

fertile (Carmeliet et al., 1994). Ovulation efficiency is normal in mice with a single

deficiency of tPA or uPA but reduced by 26% in mice lacking both physiological PAs

(Leonardsson et al., 1995). In mice lacking either tPA or PAl-1, plasmin activity in the

ovary prior to ovulation is similar to that of wild-type mice, whereas the ovarian extract

prepared from uPA-deficient mice contain only 10% or less plasmin activity of the normal

wild-types, indicating that rnost of the plasmin activity in the mouse ovary is generated by
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uPA (Ny et al., 1997). Using casein in situ zymography, Haggiund et al. (1996) report that

a plasminogen-dependent proteolytic activity appears mainly at the surface of the ovary

and around large preovulatory follicles. In mice that lack the uPA gene, tPA produces a

lytic activity (Fliiggiund et al., 1996). These data indicate that the amount of plasmin

generated by PAs before ovulation in wild-type mice greatly exceeds the amount required

for efficient ovulation, thereby providing functionally redundant mechanisrns for plasmin

formation during ovulation. $urprisingly, ovulation is flot delayed in plasminogen-deficient

mice dtiring gonadotropin-induced ovulation, which suggests that plasmin is flot required

for efficient follicle waïl rupture or for activation of other proteases involved in this

process, although there is a trend toward slightly reduced (13%) ovulation efficiency in

plasminogen-deficient mice (Bugge et al., 1995; Ny et al., 1999). However, whether the

phenomena obtained from mice is the case for other species is unknown. Nevertheless,

these data imply that (1) a potential compensatory rnechanism arnong PAs may be

involved, by which the loss of an individual PA appears to be functionally compensated for

by the rernaining PA; (2) a functionally redundant mechanisrn for plasmin formation may

be present during gonadotropin-induced ovulation; (3) the PA system together with other

proteases such as MMPs play a role in ovulation (Smith et al., 1999); and (4) a potential

compensatory rnechanism between the PAs and the MMPs can be speculated, by which

MMPs and/or other proteases efficiently degrade follicular wall during ovulation if plasmin

is absent. Moreover, the PA contribution to ovulation occurs at the initial steps, since

plasmin can activate pro-MMP-2 and pro-MMP-9 to their active forms MMP-2 and MMP

9, subsequently contributes ovultion via MMPs activation (Mazzieri et al., 1997; Ramos

DeSimone et al., 1999; Murphy et al., 1999a). Further investigations are required to
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elucidate the precise physiological roles of the interactions between the PAs and MMPs

during ovulation.

Expression and regulation ofPA and PAIs in the small growing follicles

It is likely that tissue remodelling in follicular growth is distinct from that occurs

during follicle wall rupture in ovulation. Ovulation involves an extensive breakdown and

degradation of basement membrane and connective tissue, and is a transient but vigorous

process. Follictilar growth, however, involves a chronic but comparatively mild tissue

rernodelling of ECM and ccli migration. During follicuiar growth, the foilicular cavity

becomes progressively large, which requires the follicle wall to expand but not break.

Thus, follicular growth seems to need a good balance between proteases and their

inhibitors, to ensure limited and localized proteolysis. Therefore, a coordinated expression

and regulation of PAs and PAIs are also suggested in follicular growth as shown in

ovulation. However, littie is known about the PA system and its contribution to ECM

remodelling in the earlier stages of follicular development.

uPA mRNA and protein levels are highest at the earliest stage of follicular growth

and they decrease dramatically before the expected time of ovulation in rats (Li et al.,

1997b). Evidence from other studies indicates that uPA may be important in ECM

remodelling during early follicular growth (Tilly & Johnson, 1987; Karakji & Tsang,

1 995a; Shen et ctl., 1997). PAl-1 and PAl-2 are low in the developing follicles, whereas

PN-1 is highly expressed in small growing follicles in the rodent, where it accumulates

until the onset of ovulation (Haggiund et al., 1996; Hasan et al., 2002). The expression of

PN-l rnRNA in bovine GC increases as follicles grow from small antral to dominant
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follicles (Bédard et al., 2003; Fayad et al., 2004b). Combined with the previous finding that

uPA is co-localized with PN-1 in GC in growing follicles ofmice (Higg1und et al., 1996),

it is reasonable to propose that PN-1 may be a major inhibitor of uPA and both are

coordinately expressed to regulate tissue rernodelling during follicular growth and/or

follicle wall rupture.

ROLES 0F PA SYSTEM IN CORPUS LUTEUM AND OVARIAN ANGIOGENSIS

The corpus luteum (CL), a temporary endocrine organ, is transformed from the

residual GC and theca celis of the ovulated follicle. CL formation involves dramatic

morphological and biochemical changes involving invasion of the capillary network from

the theca tissue into the granulosa layers, and the transformation of the granulosa and theca

ceils into large or srnall luteal ceils, respectively. The functional CL secretes progesterone

for maintenance of pregnancy, which primes the uterus for implantation and early fetal

development. However, if fertilization does not occur, or if implantation is unsuccessful,

the functional phase ofthe CL is tenriinated and luteolysis is initiated (Murphy, 2004). This

involves a rapid loss of progesterone production (functional luteolysis) followed by

degradation of the luteal tissue into small fibrous remnants (structural luteolysis) in days

(Auletta & Flint, 1988). Therefore, matrix-degrading proteases including PAs and MMPs

are thought to play important roles in CL formation and regression.

The regulatory and functional roles of the PA system in the CL have been widely

studied for the last decade (reviewed by Smith et al., 1999; Ny et aÏ., 2002; Liu, 2004). In

the rat, proteolytic activities mediated by tPA and regulated by its inhibitor PAl-1 are
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important for CL formation and regression (Liu et al., 1995; Liu et al., 1996b). h rhesus

monkeys higli levels of uPA and PAl-1 mRNA are simultaneously expressed in functional

CL, indicating that the interplay ofuPA and PAl-1 may be necessary for CL formation and

ftïnctional maintenance (Liu et aï., 1997a). furthermore, uPA, but not tPA, is the only

active PA identified in the early CL (Liu et al., 2003b), suggesting a role for uPA in tissue

rernodelling and angiogenesis during CL formation. However, a substantial elevation in

tPA rnRNA and protein is observed in monkey CL during luteolysis, when serum

progesterone levels and StAR (a key regulator of CL function and a rnarker of

steroidogenesis in many species) mRNA expression in the CL decline dramatically (Liu et

aï., 2003a). Moreover, tPA and PAl-1 mRNAs and proteins show a coordinated expression

in the regressing monkey CL, suggesting a role for tPA and PAT-1 in tissue degradation

during CL regression, and PAl-1 regulated tPA activity might be important during the

initiation of luteolysis (feng et aï., 1993). If we compare the roles of the PA system of

follicles with CL, we discover that uPA mainly involves tissue remodelling (a chronic and

rnild process) such as follicular growth or CL formation, whereas tPA mainly involves

tissue degradation (a transient but vigorous process) such as ovulation or CL regression.

The ovary is a highly vascularized organ in which the formation and regression of

blood vessels are required during growth and development of follicles and CL. In the

developing CL, both uPA and PAT-1 are expressed in the ovary during neo-vascularization

of growing follicles, and in the early stages of CL development (Bacharach et aï., 1992).

After ovulation, uPA is dramatically expressed in the developing CL mainly in the

capillary sprouts of vessels (Liu et al., 2003b). PAl-1 is aÏso expressed during early CL

development stage, mainly in the vicinity of uPA expressing capillary-like structures
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(Bacharach et ctl., 1992; Gospodarowicz & Thakral, 1978). This observation suggests that

there is a functional interplay between uPA and PAT-1 in CL vascularization, the presence

of PAl- 1 in the capillary-like structures may protect neovascularized tissues from excessive

proteolysis during angiogenesis in developing CL.

The expression and regulation of the different PA system members during CL

formation and regression and during angiogenesis remain to be investigated in non-rodent

models.

HORMONAL REGULATION ON THE PA SYSTEM IN GRANULOSA CELLS

Most of the available information concerning the regulation of PAs in GC is

obtained using in vitro approaches. Cultured GC are an excellent in vitro model for studies

on the hormonal regulation of celi differentiation (Hsueh et al., 1984). Using celi culture

models, a number of hormones and growth factors have been shown to be involved in

regulating PA and PAl gene expression and activity in rodents and other species.

Gonadotropins

To test the effects of gonadotropins on the expression andlor secretion of PAs and

inhibitors in GC, many experiments have been done use cultured rat GC. FSH or the

combination of FSH and dihydrotestosterone (DHT) increase tPA activity in a dose

dependent manner, while LH has no effect on the activators in undifferentiated GC (Ny et

al., 1985). When GCs are primed with low concentration ofFSH (20 ng!ml) for two days to

induce functional LH receptors, both fSH and LH increase tPA activity. Interestingly, uPA
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is more prominent in undifferentiated ceils and decreases upon prolonged culture.

furtherrnore, both FSH and LH suppress the synthesis and /or activity of PAl-1 (Ny et al.,

1985). Other studies show that both FSH and LH induce tPA mRNA and protein secretion

in cultured rat GC, but the time cotirses of their effects are different and the effect of LH on

tPA production is later and longer than FSH (Canipari & Strickland, 1986; O!Connell et al.,

1987). An FSH agonist stimulates (Inaba et al., 1998), but FSH antagonist inhibits (Tirnossi

et aï., 1998) tPA activity by cultured rat GC in a dose-dependent manner. furthermore,

Forskolin or cAMP (an activator ofPKÀ) induces ovarian tPA activity in vitro (Liu et al.,

1986). Botli fSH and cAMP have divergent effects on secreted tPA (increased) and uPA

(decreased) in cultures of rat GC (Macchione et al., 2000).

The action ofFSH on tPA expression is rapid and coincides with increased levels of

intracellular cAMP (Kolena & Chaiming, 1972). tPA mRNA levels are enhanced in

response to the phosphodiesterase inhibitor, 1 -methyl-3-isobutylxanthine (MIX),

suggesting that FSH activates the tPA gene through the cAMP-dependent protein kinase A

pathway, leading to phosphorylation of the cAMP-responsive elernent binding protein

(CREB) and activation of the promoter containing a cAMP-responsive element (CRE)

(Cornb et al., 1986). tPA gene regulation by cAMP differs between rats, mice and humans,

and the difference is related to a one-nucleotide substitution in the CRE of the promoters.

At the position where the rat tPA promoter contains a consensus CRE, the mouse and

human counterparts contains a CRE variant, which drastically reduces the binding affinity

for CREB (Holmberg et aï., 1995).

In other species, FSH has no stirnulatory effect on plasminogen activator production

by cultured porcine GCs, while hCG stimulates enzyme activity (Shaw et aï., 1985). This is
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Iikely due to the absence of FSH receptors in granulosa celis, but the presence of LH

receptors as porcine GC luteinize in culture (Pescador et al., 1999). In the avian ovary, the

granulosa layer is the site of rnRNA and protein regulation of PA production by LH. PA

mRNA, protein and activity are high before the LH surge and low after the LH surge

(Tischkau et al., 1996).

GnRH

GnRH and its agonist (GnRHa) are known to stimulate tPA expression in cultured

rat GCs (Ny et al., 1987). GnRHa stimulates the induction of tPA (but not uPA) activity in

GC in a tirne-dependent mariner as hCG does in vivo, reaching a maximum before

ovulation. However, administration of GnRH antagonist blocks GnRHa, but not hCG

induced ovulation in vivo, indicating GnRH and hCG induce ovulation through different

receptor pathways (Hsueh et ctÏ., 1988b). Further studies indicate that GnRH induces tPA

rnRNA and activity in GC through the protein kinase-C (PKC) pathway, whereas FSH and

LH induce tPA mRNA and activity through protein kinase-A (PKA) pathway (Hsueh et al.,

1988a), and PMA (phorbol myristate acetate, an activator of PKC) is able to induce tPA

rnRNA in rat GC in vitro (Liu et aÏ., 1986; Ohisson et aÏ., 1988). The combined effect of

FSH and GnRH on the stimulation of tPA gene expression and secretion is additive (Ny et

ctÏ., 1987). hi contrast to FSH, GnRH-induced tPA mRNA is blocked by cyclohexirnide,

indicating that the synthesis of an intermediate protein is required for the effect of GnRH

(Ohlsson et al., 1988).

Recently, two forms of GnRH and two types of GnRH receptors have been reported

in mammalian reproductive tissues (reviewed by Kang et al., 2003; Pawson et al., 2003). It
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is proposed that GnRH-II is a potent regulator of ovarian function in baboons (Siler-Khodr

et al., 2003). GnRH-I and GnRH-II increase uPA rnRNA and protein expression in human

decidual stromal celis in vitro in a dose- and time-dependent manner (Chou et al., 2003). In

contrast, GnRH-I increases, whereas GnRH-II decreases PAl-1 rnRNA and protein

expression in these celis (Chou et al., 2003). These data suggest GnRH-I and GnRH-II

differentially regulate the balance between uPA and PAT-1 expression levels, possibly via

distinct receptor-mediated signal pathways. Messenger RNA of type-I and type-II GnRH

receptors but not their respective proteins are detected in bovine GC (Rarnakrishnappa et

al., 2003). Although up-reguÏation oftPA, uPA mRNA and activity by GnRH (-I) injection

in bovine GC is reported in vivo (Dow et al., 2002a), the actions of GnRH in vivo seems to

be through stimulating preovulatory surges ofFSH and LH.

Growth factors

Transforming growth factor-alpha (TGFa), and the closely related epidernial

growth factor (EGF) bind to EGF receptors and stirnulate the secretion of tPA activity in

cultured rat GC in dose-and time-dependent maimers, through receptor tyrosine kinase

intracellular pathways (Galway et al., 1989). TGFŒ increases basal tPA activity in both

undifferentiated and differentiated rat GC, but inhibits uPA activity in undifferentiated GC

(uPA activity is undetectable in differentiated celis), irrespective of the presence of FSH

(Karakji & Tsang, 1995a). In cultured avian GC, TGfŒ stimulates uPA activity, TGff3

enhances TGFŒ-induced PA activity in GC from F3-6 but not Fi follicles, whereas LH

attenuates TGFa-induced PA activity in GC from Fi-3 but net F5-6 follicles (Lafrance et
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al., 1993a; Lafrance et aï., 1993b; Li et aï., 1997a). EGF enhances uPA secretion ftom

bovine cumulus celis in vitro (Park et al., 1999).

TGFf3 is produced in granulosa and theca celis and oocytes. In other ceil types, such

as WI-38 hurnan lung fibroblasts, TGFI3 decreases extracellular proteteolytic activity

through stirnulating PAT-l gene transcription and protein synthesis and decreasing uPA and

tPA activities (Lund et aï., 1987). In cultured avian GC, other growth factors including

IGF-I, EGF, and platelet-derived growth factor (PDGF) stimulate secreted and celi

associated PA activity (Lafrance et aï., 1 993a).

Basic fi1rob1ast growth factor (FGf-2) stimulates tPA mRNA and enzyme activity

in cultured rat GC, in a tirne- and dose-dependent manner, suggesting that fGF-2 acts as an

intraovarian inducer oftPA gene expression in GC (LaPoit et al., 1990). In cultured bovine

GC, FGF-2 and aFGF show a potent stimulation of ceil proliferation and TIMP-1 mRNA

expression and protein production, while insulin stimulates ceil growth but inhibits Tll\4P-1

mRNA levels (Hoshi et cil., 1995).

Other factors

A number ofother factors also affect PA secretion, but their physiological relevance

is unclear. Glucocorticoid agonist dexamethasone (DEX) or androgen agonist R1881

increases tPA secretion and rnRNA levels in rat GC, but addition of diethylstilbestrol

(DES, an estrogen agonist) has no effect on tPA levels in rat GC (Jia et al., 1990). Estradiol

has a modest stimulatoiy effect on tPA mRNA expression and activity in a human breast

adenocarcinoma celi une (MCF-7 ceils) while concomitant treatment with laminin

increases tPA mRNA but decreases PAT mRNA levels (Sonohara et al., 1998).
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Vasoactive intestinal peptide (VIP), originally considered to be a hormone in the

digestive system, increases tPA activity in GC and COC of rats (Liu et al., 19$7a), and

domestic chickens (Johnson & Tilly, 1988). This may be related to the ability of VIF to

induce ovulation (Schrnidt et aÏ., 1990). Pituitary adenylate cyclase-activating polypeptide

(PACAP), a member of the VIP /secretin /glucagon /growth honnone-releasing hormone

farnily, stirnulates steroidogenesis and increases cAMP Jevels in cultured rat GC (Zhong &

Kasson, 1994). PACAP acts synergistically with relaxin to stirnulate secretion of 63 kDa

gelatinase (MMP- 1 or active MMP-2) in rat GC and 71 kDa gelatinase (MMP-2) in theca

interstitial celis, respectively. PACAP alone has no effect on MMP-2 secretion in theca

celis (Teng et al., 2000). In addition, cAMP signalling mediators (choiera toxin, activator

of stimulatory G protein; forskolin; 8-Br-cAMP, cAMP analog) act similarly to PACAP on

gelatinase secretion in rat ovarian celis, suggesting PACAP acts through the cAMP

signalling pathway, whereas relaxin does not (Teng et al., 2000). Relaxin increases

secreted PA and MMP-1 activity in rat GC (Too et al., 1984), and different major

gelatinases including MMP-2 from rat GC and thecal-interstitial ceils (Hwang et aÏ., 1996).

The cytokine interleukin-1 beta (IL-1f3) is involved in modulating GC progression

from a proliferative to a differentiated state. In vitro treatment ofboth undifferentiated and

differentiated rat GC with fSH elicited a significant increase in secreted and cell-associated

PA activities, which is inhibited by IL-1f3 (Karakji & Tsang, 1995b). The inhibitory effect

of IL-1f3 is accornpanied by an increase in PAl activity, irrespective of the stage of

follicular development. Basal PAs activities are stimulated in cultures of undifferentiated

GC by IL-l f3 but attenuated in differentiated ones (Karakji & Tsang, 1995b).
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Prolactin (PRL) is a pituitary hormone mainly involved in stirnulating milk

production. In vitro studies demonstrate that both tPA and uPA activities in mouse GC are

down-regulated by PRL in a dose-dependent fashion (Hu & Liti, 1993). PRL inhibits LH

and fSH-induced tPA mRNA and activity in rat GC but stimulates PAT-1 gene expression,

and decreases secreted tPA activity and increases secreted PA-PAI complexes (Liu et al.,

1998). PRL decreases PA activity of the mature rabbit follicles (Yoshimura et aÏ., 1990)

and inhibits plasmin generation in preovulatory follicles (Yoshimura et al., 1992). Injection

of PRL in the rat inhibits hCG-induced ovulation in a dose-dependent manner by disturbing

the normal coordinated expression of tPA and PAT-1 leading to ovulation (Liu et al.,

1997b). Similarly, the N-terminal fragment ofPRL (16K PRL), an antiangiogenic factor,

inhibits FGF-2-induced uPA activity by activation of PAT-1 gene expression and

subsequent increase in PAl-1 protein in bovine capillary endothelial cells (BCEC) (Lee et

aÏ., 1998).
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OVERALL HYPOTHESIS & SPECIFIC OBJECTIVES

As PN-1 would appear to be the only potent PA inhibitor expressed in GC, we

hypothesize that the expression of PN-1 in bovine GC is developrnentally and horrnonally

regulated during follicular growth and ovulation.

The objectives ofthis study were:

1). b measure PN-l, tPA and uPA expression and secretion from cultured bovine GC at

different stages of follicle development;

2). To examine the regulation ofPN-l, tPA and uPA expression and secretion from bovine

cultured GC by FSH and growth factors incitiding IGf-I, BMP-7, FGF-2 and EGF;

3). To determine PN-1 mRNA expression in GC and examine secreted PN-1 protein and

PA activity in FF collected from follicles at defined stages ofdevelopment.
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ABSTRACT
Remodeling of the extracellular matrix (ECM) occurs during

antral follicle growth, and the plasminogen activators (PA) have
been implicated in this process in rodents. In the present study,
we measured the expression and secretion of PA and the PA
inhibitor protease nexin-J (SerpinE2) in antral and basal bovine
granulosa celis from small (<6 mm), medium (6—8 mm), and
large follicles (>8 mm) during 6 days of culture in serum-free
medium. Casein zymography revealed that the cells secreted
predominantly tissue-type PA (tPA) with urokinase (uPA) being
associated mainly with celi lysates, and Western blot demon
strated that the cells secreted SerpinE2. Overall, secreted tPA
activity was higher in cultures of cells from small follicles com
pared with large follicles, and secreted SerpinE2 levels were
higher in cultures of cells from large follicles. In cultures of cells
from small follicles, secreted tPA levels increased with time of
culture for antral but not basal cells, and SerpinE2 levels in
creased with time for basal but not antral ceils. In cultures of
granulosa ceils from large follicles, tPA activity increased signif.
icantly with time of culture, whereas SerpinE2 levels decreased.
CeII-associated uPA activity decreased with time in cells from
medium and large follicles. Reverse-transcription polymerase
chain reaction and Northern blot analysis showed that SerpinE2
secretion was regulated largely at the transcriptional level,
whereas tPA secretion was not. The data suggest stage-depen
dent regulation of granulosa celi PA and SerpinE2 production,
consistent with a role in ECM remodeling during follicle growth.
follicle, granulosa cells, ovary

INTRODUCTION
Ovarian follicuÎar growth and development involve ex

tensive tissue remodeling, ceTi proliferation, and differen
tiation [1]. Tissue remodeling involves a number of prote
ase enzyme cascades, including the matrix metafloprotei
nases (MMP) and plasminogen activators (PA). Plasmino
gen activators are serine proteases that convert the abundant
extracellular zymogen plasminogen into plasmin, an active
protease that degrades components of the extracellular ma
trix (ECM) [21. Two forms of PA, tissue type (tPA) and
urokinase (uPA), have been described in mammals [3] and
are products of the Plat and Plan genes, respectively. The
type of PA secreted is species- and ceil-specific. Although
rat [4—6] and pig [7] granulosa ceils secrete predominantly
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tPA, uPA secretion is predominant in mice anti chicken
granulosa cells [8—10]. In bovine preovulatory follicles,
Plat mRNA was localized primarily in granulosa celis,
whereas Plan mRNA was detected in granulosa and in the
ca cells [11, 12].

One mechanism for the regulation of plasminogen acti
vation is through the production of PA inhibitors (PAl). The
three major inhibitors are PAl-1, PAl-2, and protease nexin
1 (PN-1) [13, 14], encoded by the serine protease inhibitor
(Serpin) family of genes [15]. In rodents and cattie, Ser
pute] (encoding PAT-1) is expressed predominantly by the
ca-interstitial cells [16—18]. Serpinb2 encodes the weak in
hibitor, PAl-2, and is expressed at Iow levels in the theca
layer of hCG-treated rats and in cumulus and granulosa
lutein ceils of hCG-stimulated human ovaries [19, 201. In
contrast to Seipinel and Serpinb2, the gene encoding PN
1, Seipine2, is strongly expressed in granulosa cells of rats
and cattle [9, 21, 22].

The PAs and Serpins are widely considered to be im
portant during the process of ovulation when proteolytic
degradation of the follicle wall occurs. During final pre
ovulatory growth in rats and monkeys, there are concomi
tant increases in granulosa ceil Plat expression/tPA secre
tion and thecaT Serpine] expressionlsecretion. However, a
few hours prior to ovulation there is a significant decrease
in Serpine] mRNA and protein levels, presumably resulting
in an increase in net tPA activity that initiates the proteo
lytic cascade necessary for the degradation of the follicle
wall [23, 24]. Periovulatory increases in PA activity/mRNA
have also been described for pigs, sheep, and cattle [12,
25, 26].

Tissue remodeling is also important for the growth and
development of small follicles, as bovine fotiicles typically
increase in size several hundred-fold between preantral and
preovulatory stages. Studies in rats have shown that uPA
is the predominant PA in small growing follicles, whereas
tPA is predominant in preovulatory follicles [27, 28], sug
gesting a role for uPA in early follicle growth. It is not
clear if or how PA activity is regulated by inhibitors at this
stage of follicle development, although available evidence
suggests that SerpinEl and SerpinB2 are not involved. In
rats, Serpinel expression was low in small growing follicles
and increased as follicles differentiated [28], consistent with
the role in ovulation described above. Seipinb2 expression
was not readily detected in bovine preovulatory follicles
before the induction of ovulation by GnRH [1$]. Interest
ingly, Serpine2 is highly expressed in small growing folli
des in rats [9, 21] and in preantral and growing antral fol
licles in cattie [22].

As SerpinE2 would appear to be the major PA inhibitor
expressed in granulosa celis and in small growing follicles,
we hypothesize that this member of the Serpin family plays
a role in the remodeling of the membrana granulosa during

887
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ABSTRACT

Rernodeling of the extracellular matrix (ECM) occurs during antral follicle growth, and the

plasminogen activators (PA) have been implicated in this process in rodents. In the present

study, we measured the expression and secretion of PA and the PA inhibitor protease

nexin-l (SerpinE2) in antral and basal bovine granulosa celis from small (<6 mm), medium

(6-8 mm) and large follicles (>8 mm) during 6 days of culture in serum-ftee medium.

Casein zymography revealed that the ceils secreted predominantly tissue-type PA (tPA)

with urokinase (uPA) being associated mainly with celi lysates, and Western blot

demonstrated that the ceils secreted SerpinE2. Overall, secreted tPA activity was higher in

cultures of ceils from small follicles cornpared to large follicles, and secreted SerpinE2

levels were higher in cultures of cells from large follicles. In cultures of cells from srnall

follicles, secreted tPA levels increased with time of culture of antral but not basal celis, and

SerpinE2 levels increased with time for basal but flot antral celis. In cultures of granulosa

cells from large follicles, tPA activity increased significantly with time of culture, whereas

SerpinE2 levels decreased. Cell-associated uPA activity decreased with time in ceils from

medium and large follicles. RT-PCR and Northem blot showed that SerpinE2 secretion was

regulated Ïargely at the transcriptional level, whereas tPA secretion was not. The data

suggest stage-dependent regulation of granulosa celi PA and SerpinE2 production,

consistent with a role in ECM remodeling during follicle growth.
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INTRODUCTION

Ovarian follicular growth and developrnent involve extensive tissue remodeling,

ccli proliferation and differentiation (Srnith et al., 1999). Tissue remodeling involves a

number of protease enzyme cascades, including the matrix metalloproteinases (MMP) and

plasminogen activators (PA). Plasminogen activators are serine proteases that convert the

abundant extracellular zyrnogen plasminogen into plasmin, an active protease that degrades

components of the extracellular matrix (ECM) (Blasi et al., 1987) . Two forms of PA,

tissue type (tPA) and urokinase (uPA), have been described in mammals (Macchione et al.,

2000), and are products ofthe Plat and Plau genes, respectively. The type ofPA secreted is

species- and celi-specific. While rat (Canipari & Strickiand, 1985), (Canipari & Strickiand,

1986), (Gaiway et al., 1989) and pig (Politis et al., 1990b) granulosa celis secrete

prcdominantly tPA, uPA secretion is predominant in mice and chicken granulosa ceils

(Canipari et al., 1987), (Haggiund et al., 1996), (Lafrance et al., 1993a). In bovine

preovulatory follicles, Plat rnRNA was localized primarily in granulosa ceils whereas Plati

rnRNA was detected in granulosa and in theca celis (Yarnada et al., 1996), (Dow et al.,

2002a).

One rnechanisrn for the regulation of plasminogen activation is tÏwough the

production of PA inhibitors (PAT). The three major inhibitors are PAl-1, PAl-2 and

protease nexin-1 (PN-1) (Kruithof, 1988), (Roberts et al., 1995), encoded by the serine

rotease inhibitor (Serpin) family of genes (Silverman et al., 2001). In rodents and cattie,

Seipine] (encoding PAl- 1) is expressed predominantly by theca-interstitial celis (Liu et al.,

19$7b), (Chun et al., 1992), (Dow et al., 2002b). Seipinb2 encodes the weak inhibitor,



64

PAT-2, and is expressed at low levels in the theca layer of hCG-treated rats and in cumulus

and granulosa-lutein cells of hCG-stirnulated human ovaries (Piquette et al., 1993),

(Leonardsson et al., 1995). In contrast to Serpine] and Serpinb2, the gene encoding PN-1,

Serpine2, is strongly expressed in granulosa ceils of rats and cattie (Hagglund et al., 1996),

(Hasan et al., 2002), (Bedard et al., 2003).

The PAs and Serpins are widely considered to be important during the process of

ovulation, when proteolytic degradation of the follicle wall occurs. During final

preovulatory growth in rats and monkeys, there are concomitant increases in granulosa ceil

Plat expressionltPA secretion and thecal Seipine] expressionlsecretion. However, a few

hours prior to ovulation there is a significant decrease in Serpine] mRNA and protein

levels, presurnably resulting in an increase in net tPA activity which initiates the proteolyic

cascade necessary for the degradation of the follicle wall (Peng et al., 1993), (Liu et al.,

2003c). Periovulatory increases in PA activity/mRNA have also been described for pigs,

sheep and cattie (Smokovitis et al., 1988), (Colgin & Murdoch, 1997), (Dow et al., 2002a).

Tissue rernodeling is also important for the growth and developrnent of small

follicles, as bovine follicles typically increase in size several hundred fold between

preantral and preovulatory stages. Studies in rats have shown that uPA is the predorninant

PA in srnall growing follicles, whereas tPA is predominant in preovulatory follicles

(Karakji & Tsang, 1995a), (Li et al., 1997b), suggesting a role for uPA in early follicle

growth. It is not clear if or how PA activity is regulated by inhibitors at this stage of

follicle development, although available evidence suggests that SerpinEl and SerpinB2 are

flot involved. hi rats, Seipine] expression was low in small growing follicles, and increased

as follicles differentiated (Li et al., 1 997b), consistent with the role in ovulation described
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above. Seipinb2 expression was flot readily detected in bovine preovulatory follicles before

the induction of ovulation by GnRH (Dow et aï., 2002b). Interestingly, Seipine2 is highly

expressed in small growing foilicies in rats (Haggiund et al., 1996), (Hasan et al., 2002)

and in preantral and growing antrai follicles in cattie (Bedard et al., 2003).

As SerpinE2 would appear to be the major PA inhibitor expressed in granulosa celis

and in small growing foilicles, we hypothesize that this member of the Serpin family plays

a foie 111 the rernodeling of the membrana granulosa during foiiicie growth by regulating

PA activity, rnainly uPA. The objective of the present study was to measure Serpine2, Plau

and Plat expression and protein secretion from bovine granulosa ceils at different stages of

deveiopment. To do so, we employed an established ceil culture system that pennits long

term estradiol secretion in vitro and maintains the follicular phenotype of the celis

(Gutierrez et aï., 1997), (Manuel Silva & Price, 2000).

MATERIALS AND METUODS

Celi culture

The celi culture system was based on that described by Gutiérrez et al. (Gutierrez et

al., 1997), with slight modifications (Manuel Silva & Price, 2000). AlI materials were

obtained from Invitrogen Life Technologies (Burlington, ON, Canada) except where

otherwise stated. Briefly, bovine ovaries were collected from adult cows, irrespective of

stage of the estrous cycle, at a local abattoir and were transported to the laboratory in PBS

at 35°C containing penicillin (100 IU/rnl), streptomycin (100 tg/ml) and fungizone (1
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tg/ml). Follicles were dissected from the ovaries, and those with obvious signs of atresia

(avascular theca, debris in antrum) were discarded. Lightly adherent ‘antrai’ granuiosa celis

from srnall (2-5 mm in diameter), medium (6-8 mm) and large (>8 mm) follicles were

released by dissection or aspiration; and the adherent ‘basal’ granuiosa cells were

subsequentiy coliected by repeatedly passing the foilicie wali through a pipette. Cells were

washed twice by centrifugation at 980 x g for 20 min each and suspended in x-MEM,

containing Hepes (20 mM), sodium bicarbonate (10 mM), sodium selenite (4 ng/ml), BSA

(0.1%; Sigma-Aldrich Canada, Oakvilie, ON, Canada), penicillin (100 RJ/ml),

streptomycin (100 tg/ml), transferrin (2.5 %g/rnl), non-essential amino acid mix (1.1 mM),

androstenedione (i0 M), insulin (10 ng/mi), 1 ng/rnl FSH (AFP-5332B, NTDDK), and

hurnan recombinant insulin-like growth factor- 1 (IGF- 1, 10 ng/ml). Ccli viability was

estimated with 0.4% Trypan Blue Stain. Celis were seeded into 24-well tisstie culture plates

(Corning Glass Works, Corning, NY) at a density of 1 06/welÏ in 1 ml medium. Cultures

were rnaintained at 37°C in 5% CO2 in air, with 700 fl medium being replaced every 2

days. Medium and ceils were recovered on day 2, day 4 or day 6 of culture. Medium

samples were stored at -20°C until assay, while celis were collected in Trizol and stored at -

70°C until RNA, DNA, and protein extraction.

RNA, DNA ami protein extraction and quantification

Total RNA, DNA and protein were extracted using Trizol according to the

manufacturer’s instructions. Total RNA was quantified by absorbance at 260 nm. Total

DNA was quantified in duplicate by measuring fluorescence in the presence of
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bisbenzirnide (Hoechst 33258) and compared with a caif thymus DNA standard (Sigma

Aldrich) curve. Total protein vas rneasured by the Lowry assay (Lowry, 1951), using BSA

(Sigma-Aldrich) as standard.

Casein zymography

Casein zymography was used to measure tPA and uPA activity in culture medium

and granulosa celi extracts (Dow et al., 2002a). Briefly, samples were subjected to

electrophoresis at 120 V for 90 min in 10% non-denaturing polyacrylamide gels containing

0.2% casein (Sigma-Aldrich), 0.1% SDS and 3.75 mU/ml bovine plasminogen (Sigma

Aldrich). After electrophoresis, gels were washed once in 2.5% Triton X-100 for 45 min to

rernove SDS, and placed in incubation buffer (50 mM Tris, 0.1 M NaC1 , pH 7.6) at 37°C

for 16 h with gentie shaking. The gels were then stained using 0.05% Coornassie blue in

10% acetic acid, 40% methanol for 2 h, destained in 10% acetic acid, 40% methanol, and

then fixed in 10% glycerol. The identity of the enzymatic activities was investigated by

comparing molecular size with human tPA (Calbiochem, Darmstadt, Germany) and uPA

(NIBSC, Hertfordshire, UK) standards. Amiloride (lmM), a specific inhibitor of uPA, was

included in sorne gels. Plasrninogen-free gels were used to confirm that the activity

detected was plasminogen dependent. Bands of activity were visualized as clear zones

where casein degradation occurred, against a dark (blue) background. The volume of

medium analyzed was corrected for celi number (total DNA). To colTect for gel-to-gel

variation, all samples were expressed relative to a control sample (spent medium from a

culture of celis from srnall follicles) that was included in every gel.
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Western blot

SerpinE2 protein abundance was analyzed by Western blot. Media samples were

concentrated by lyophilization (Dura-Dry TM MP Corrosion Resistant Freeze-Dryer, Stone

Ridge, NY) and the volume analyzed was adjusted to colTect for ce!! number. Samples

were subjected to e!ectrophoresis at 120 V for 90 min in 10% denaturing po!yacrylamide

gels. Proteins were then e!ectrotransferred onto nitrocellulose membrane (0.45 tm) (Bio

Rad, Hercules, CA) at 22 V overnight at 4°C in transfer buffer (39 mM glycine, 48 mM

Tris-base, 0.037% SDS and 20% methanol, pH 8.3). After blocking for 1 h in TTBS (0.2%

Tween 20, 10 mM Tris-HC1, 150 mM NaC!), blots were incubated with 1:5000 rabbit anti-

bovine SerpinE2 (Bedard et al., 2003) for 4 h with agitation, fo!lowed by three washes (10

min each) with 0.2% TTBS. The blots were then incubated with 1:2500 a!kaline

phosphatase-linked anti-rabbit IgG (Sigma-Aldrich) for 1.5 h with agitation, fo!!owing by

three washes (10 min each) with 0.2% TTBS. Finally, the blots were incubated with

NBT/BCLP solution (Roche Diagnostics, Indianapolis, IN). RainbowTM Co!oured Protein

Molecular Weight Marker (Pharmacia, Piscataway, NJ) was used to estimate molecu!ar

size ofthe target protein, and bovine fo!licular fluid (2 d) was used as positive contro!.

Semi-guantitative RT-PCR

PÏau, Plat and $erpine2 mRNA were assayed by reverse-transcription polymerase

chain reaction (RT-PCR). Total RNA (1 jig) was reverse transcribed in the presence of 0.2

mM oligo(dT) primer and 200 U SuperScript II (Invitrogen Life Technologies), 2.5 mM
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MgC12, 0.5 mM dideoxy-nucleotide triphosphate (dNTPs) mix, 10 mM dithiothreitol (DTT)

in a volume of 50 t1. The RNA samples were heated to 70°C for 10 min and added to the

prewarmed (42°C) reaction mixture. The reaction was incubated for 50 min at 50°C, then

for 15 min at 70°C. Residual RNA was rernoved by incubating 20 min at 37°C with 1 d of

RNase H.

A duplex reaction was performed for Serpine2 in which both Serpine2 primers and

primers for glyceraldehyde-3-phosphate dehydrogenase (Gapdh) were amplified together

for each sample, whereas Plau and Plat primers and Gapdh primers were amplffied

separately for each sample. The primers used were: Fiait sense: 5’-

GTCTGGTGAATCGAACTGTGGC-3’, antisense: 5’ -GGCTGCAAACCAAGGCTG-3’

(Balcerzak et al., 2001); Plat sense: 5’-AAGGTTGCAGAAGAAGATGG-3’, antisense:

5’-GTGAGGCGGGTACCTCTCCTGGAA-3 (Macchione et al., 2000); Serpine2 sense: 5’-

TCCGTGACGTTGCCCTCTGTG-3’, antisense: 5’-CCGTGATCTCCACAÀACCCTT-3’

(Bedard et al., 2003); Gapdh sense: 5’-TGTTCCAGTATGATTCCACC-3’, antisense: 5’-

TCCACCACCCTGTTGCTG-3’ (Tsai et al., 1996).

An aliquot (0.4 j’!) of the reverse transcription reaction was amplified by PCR using

0.2 j’1 (2.5 U) Taq Polymerase (Arnersham Pharmacia Biotech Inc., Oakville, ON, Canada)

in a 20-jil PCR buffer (Amersham Pharmacia Biotech Inc.) containing 0.1 mM dNTP mix,

and 0.2 j’M specific primers. Target cDNA was amplified under the following conditions:

1) an initial denaturation step for 3 min (Plat) and 5 min (Serpine2, Plau) at 94°C; 2)

amplification cycles with denaturation at 94°C for 30 sec, annealing for 45 sec at 65°C

(Plau), 55°C (Plat) and 62°C (Serpine2), and elongation at 72°C for 1 mm; and 3) final

elongation at 72°C for 5 min.
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Serniquantitative RT-PCR was validated for each gene product. Preliminary

experirnents verified that PCR product increased with amount of RNA in the RT reaction.

Reactions were perfomied for 30 cycles for Ptau, 26 cycles for Plat and Gapdh, and for 24

cycles for Seipine2. The PCR products were separated on 1% agarose gels with 0.001%

ethidium bromide, and visualized under LIV. Quantification of hand intensity was

perforrned with NIH Image software. Target gene nRNA abundance was expressed

relative to Gapclh mRNA abundance.

Northern blot

To verify the RT-PCR results, we performed Northern hybridizations on a subset of

samples, where the arnount of RNA available permitted. The complete Seipine2 cDNA

(Bedard et al., 2003) was subcloned into pBK-CMV phagernid and digested by EcoRI and

)GioI restriction endonuclease to generate radioactive probes. To prepare Plat and Gapdh

cDNA probes, PCR products (see above) were cloned into pGEM-T Easy Vector

(Promega, Madison, WI) and digested by EcoRI enzyme for Plat and by PvuII enzyme for

Gapdh respectively. The cDNA probes were labeled with [32P]dCTP (DuPont NEN

Research Products, Boston Massachusetts, USA) using the Random Primed DNA Labeling

Kit (Roche Diagnostics, Indianapolis, IN, USA), and purified by centrifugation through a

Microspan S-200 HR Colurnn (Pharmacia, Piscataway, NJ).

Electrophoresis of 15 ig total RNA, performed through a 1% denaturing

fonnaldehyde-agarose gel, vas followed by overnight capillary transfer onto a nylon

membrane (Hybond-N; Arnersham Pharmacia Biotech Inc.). Membranes were LIV cross

linked in a commercial LIV chamber (Bio-Rad, Mississauga, ON, Canada) and incubated
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for 2 h at 65°C in prehybridization solution containing 5X saline-sodium phosphate-EDTA

buffer (SSPE), 5X Denhardt’s solution, 0.5% SDS, 10% dextran sulfate, and 1% herring

spem DNA (10 mg/ml). Upon adding the purified probe, hybridization was carried out in

hybridization buffer at 65°C overnight. After hybridization, membranes were washed in 2X

SSPE-0.l% SDS twice at room temperature and twice at 65°C (15 min each). The labeled

membranes were exposed to Kodak X-Ornat film at -70°C in the presence of an

intensifying screen.

Statistics

Each experiment was carried out at least three times. Data are presented as means ±

SEM. The data were analyzed by ANOVA with follicle size, day of culture, cdl

subpopulation and culture replicate as main effects. Where main effects and/or interactions

involving follicle size were found, effects of celi subpopulation and/or day of culture on

antral and basal ceils were analyzed separately. Data were transforrned to logarithms when

not norrnally distributed. Means comparisons were performed with the Tukey-Kramer HSD

test. Ail analyses were perforrned with 1M? software (SAS Institute, Cary, NC).

RESULTS

To confirm the identity of PA activities observed, activities were examined in

bovine granulosa celi lysates by zymography. Bovine tPA migrated siightly less (approx

70 kDa) than the human standard (66 kDa) and was not inhibited by amiloride (Fig 1).
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Bovine uPA activity migrated at approx 45 kDa (compared to 53 kDa for the human

standard) and was attenuated by amiloride. No proteolytic activity was observed in

plasrninogen-free gels (Fig 1). Granulosa cells secreted predominantly tPA, with low and

variable amounts of uPA being detected (fig 2). Although it appeared that celis from small

follicles secreted low amounts of uPA throughout the culture period and that ceils from

medium and large follicles secreted uPA mainly during the first two days of culture (see

zymograph in fig 2C), the proteolytic hands were too weak or too often absent for accurate

quantification and analysis.

There were significant effects (P<O.001) of follicle size and day of culture on

secreted tPA activity. Overall, secreted tPA activity was higher from cells of small follicles

compared to ceils of medium and large follicles, and was higher on Day 6 of culture

compared to Day 2. When tPA secretion from cells of small, medium and large follicles

were analyzed separately, there was a significant effect of cell subpopulation and an

interaction between cdl subpopulation and day of culture (P<O.05) for celis from small

follicles. Secreted tPA activity increased with time for antral cells, but there was no

significant increase with time for basal cells (Fig 2A). On day 2 of culture, basal cells

secreted significantly more tPA than did antral celis, whereas on day 6, antral celis secreted

slightly (P=O.06) more tPA compared to basal ceils. There were significant effects of time

in culture (P<O.05) but flot of cell subpopulation in cultures of cells from medium and large

follicles (fig 23, C).

There were no main effects of culture or follicle size on cellular tPA activity, but

significant effects of time in culture and of follicle size for cellular uPA activity (Fig 3).
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Cellular uPA was significantly lower on day 6 of culture than on day 2 for ceils from

medium and large follicles (P<0.01), but not from srnall follicles. There xvas no effect of

ceil subpopulation.

Abundance of Plat expression was measured by semiquantitative RT-PCR. There

were no significant effects of follicle size, ceil population or time in culture (data not

shown). RT-PCR results were verified by performing Northern analysis on two replicates

of cultures from medium follicles (as there was sufficient RNA); there was a significant

correlation between Northem and PCR data (r 0.6, P<0.05, n=12). We could flot detect

Plait mRNA in samples from cultured granulosa cells after 30 cycles of PCR, although the

positive control (uterus) provided a strong hand at the expected size.

Granulosa celis from all follicle size groups secreted SerpinE2 as detected by

Western blotting. There were significant main effects of cell population and follicle size,

and an interaction between day of culture and follicle size (P<0.0l). Overail, celis from

large follicles secreted more SerpinE2 cornpared to celis from small and medium follicles.

SerpinE2 secretion from basal but flot antral ceils of small and of medium follicles

increased with tirne in culture (fig 4 A, B; P<0.05), whereas SerpinE2 secretion from antral

(and not basal) cells of large follicles decreased with time in culture (Fig 4C; P<0.01).

There were significant effects of time in culture and follicle size on Seipine2

mRNA levels, and an interaction between time and follicle size (P<0.001). When data from

different follicle sizes were analyzed separately, there were no main effects of time or cell

population on Serpine2 rnRNA levels in ceils from srnall or medium follicles, but there was
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a significant decrease (P<0.01) in Serpine2 mRNA with time in culture in ceils of large

follicles (Fig 5). RT-PCR resuits were verified by performing Northem analysis on two

replicates of cultures from medium follicles (as there was sufficient RNA); there was a

significant correlation between Northem and PCR data (r= 0.65, P<0.05, n=12). Overall,

there was a significant colTelation between SerpinE2 protein and mRNA levels (r= 0.5;

P<0.01); when the data from different follicle sizes were analyzed separately there was a

correlation between protein and mRNA for large (r=O.6, P<0.01) but not small or medium

follicles.

Estradiol secretion was significantly affected by follicle size, with interactions

between follicle size and time, and between follicle size and cell population. For cells of

srnall follicles, estradiol secretion increased with time in culture for antral but not basal

cells, whereas for medium follicles estradiol secretion increased with time for basal and flot

for antral cells (Fig 6). Estradiol secretion from cells of large follicles decreased

significantly with time in culture (Fig 6; P<0.01). There was a main effect of time in

culture on progesterone secretion, and no main effects of follicle size or cell population;

progesterone concentrations were consistently higher on day 4 and 6 of culture compared to

day 2 (Fig 6; P<0.05).

DISCUSSION

This is, to our knowledge, the first study to describe the secretion ofmembers of the

PA system from granulosa cells at different stages of development in a non-rodent mammal.

Bovine granulosa cells secreted predominantly tPA in culture, with very low amounts of
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uPA secreted. This is consistent with measurements ofPA activity in bovine follicular fluid

(Dow et al., 2002a). In rats, uPA lias been described as a major secreted PA in some studies

(Macchione et al., 2000), whereas it is low or absent in other studies (Gaiway et al., 1989),

(Liu et al., 1991). The present data show that, overail, secreted tPA activity was higher

from ceils of smalÏ and less differentiated follicles compared with that of the more

differentiated medium and large follicles. This is in contrast to the lower level of tPA

activity in undifferentiated versus differentiated rat follicles (Karakji & Tsang, 1995a), and

presents an important species difference in PA secretion at these stages of follicle growth.

A species difference in tissue uPA and tPA activity between rodents and cattle has been

described for the periovulatory period (Dow et al., 2002a).

Also novel is the measurement of secreted SerpinE2 from granulosa ceils. Serpine2

mRNA and protein has previously been localized in rat (Hagglund et aÏ., 1996), (Hasan et

al., 2002) and bovine (Bedard et al., 2003) granulosa cells by in-situ techniques, and has

been detected by Western blotting in bovine follicular fluid (Bedard et al., 2003). During

the first 2 days of culture particularly, granulosa ceils of large follicles secreted more

SerpinE2 than did celis from small follicles, in agreement with the relative intensity of

immunostaining described in rat and cow follicles (Hasan et al., 2002), (Bedard et al.,

2003). As Plat or Plau expression would flot be expected in bovine granulosa cells until

after the LH surge (Dow et al., 2002b), SerpinE2 is a candidate for the regulation of PA

activity within the membrana granulosa of growing follicles.

The pattem of changes of secreted tPA and SerpinE2 differed. Secretion of tPA

from antral cells of small follicles increased with time of culture, whereas SerpinE2

secretion did flot change. Conversely, tPA secretion from basal cells did not change but
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SerpinE2 secretion increased. This difference may reflect the needs of the sublayers of

granulosa ceils. Although the separation of ‘antral’ and ‘basal’ may be simplistic, the basal

cells are nearer the basal lamina and more firrnly attached to ECM components than are

antral cells. In sheep, there are immunocytochemical differences in the intensity of staining

for fibronectin and collagen between antral and basal granulosa celis (Huet et al., 1997). A

difference between cell subpopulations was not seen in cells of medium and large follicles

in the present study, potentially reflecting the changes in the basal lamina ECM that occur

with follicle growth (reviewed in (Rodgers et al., 2003)).

The most striking divergence between tPA and SerpinE2 secretion occurred with

cells of large follicles, for which tPA secretion increased with time of culture and SerpinE2

secretion decreased. This would result in a net increase in extracellular PA activity. This is

consistent with increases in Plat expression and protein secretion observed with rat

granulosa ceils (Galway et al., 1989). The relationship between tPA and SerpinE2 is related

to stage of follicle development, as tPA secretion from ceils of medium follicles increased

with time of culture in a manner very similar to that of large follicles, but SerpinE2

secretion did flot decrease from cell of medium follicles. The rnost likely explanation is

that the celis of large follicles undergo at least partial luteinization in culture, whereas those

of medium follicles do flot. This is indicated by the steroid data, which show that estradiol

secretion decreases with time of culture from cells of large but flot medium follicles, as

previously observed with this cdl model (Gutierrez et al., 1997). This is supported in part

by data from studies of rats, which show increased Plat expression and enzyme activity

during early development of the corpus luteum, and in granulosa celis following the

ovulatory LH surge (Macchione et al., 2000), (Liu et al., 1996a); it is possible that some of
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the large follicles may have been periovulatory follicles, and thus exposed to elevated

concentrations of LH in vivo. Further, there was increased expression of genes encoding

collagen and the MMP inhibitor TEVIP-1 during in vitro luteinization of bovine granulosa

celis (Zhao & Luck, 1996), demonstrating that changes to the ECM occur during

luteinization.

Another explanation is a change in the ECM that occurs during follicle growth, that

may in consequence alter the amount and/or type of protease activity secreted and

granulosa steroidogenesis. It has been shown that collagen type 1 levels within the

granulosa cell layer increase significantly during follicle development in sheep (Huet et al.,

1997), and that estradiol secretion from ovine granulosa ceils of large follicles is inhibited

when cultured in the absence of collagen (Huet et al., 2001). Thus, the celis of large

follicles in the present study may have an increased requirement for collagen type 1 which

was not met by the culture conditions, resulting in reduced estradiol (but not progesterone)

secretion ((fluet et al., 2001), present study). The cellular response to this collagen

deprivation may therefore be a reduction in the normally high secretion of $erpinE2, in

order to increase extracellular protease activity and alter the local ECM structure.

Steady-state levels of $erpine2 mRNA largely reflected secreted protcin levels.

Over the first 2 days of culture, Seipine2 mRNA levels were higher in cells of large

follicles cornpared to those of small and medium follicles, consistent with data from

Northem analysis in cattie (Bedard et aÏ., 2003; Fayad et al., 2004a). Similarly, the

decrease in SerpinE2 secretion observed during culture of ceils from large follicles was

tightly coordinated with a decline in Se.’pine2 mRNA levels. Thus we conclude that

SerpinE2 secretion is controlled at the transcriptional level, at least in vitro. This does not
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appear to be the case for PA however, as consistent increases in secreted tPA activity were

not colTelated with Plat mRNA levels. AÏthough the measurement of tPA activity may be

confounded by inhibitor activity, we do flot believe this to be the case in the present study

for the following reasons. First, when SerpinEl inhibits tPA activity, a reversible protein

protein complex is formed which is visible by zyrnography as an additional high molecular

mass lytic zone [34]. Second, potential complexes between SerpinE2 and PA should also

be visible on Western blots as an additional high molecular mass band. As we did not

observe lytic or protein bands corresponding to a PA-inhibitor complex, we conclude that

the majority of the PA activity and SerpinE2 protein measured in culture medium occurs in

a ‘free’ non-complexed state. Collectively, this data suggest that secreted tPA

concentrations are controled at the post-translational level, possibly involving regulation of

secretory mechanisms.

We were unable to detect Plau gene expression in bovine granulosa ceils in vitro,

and uPA was a minor secretory product. Most of the uPA activity was detected in celi

lysates, most likely bound to the cell surface [3]. This is agreement with the readily

detectable uPA activity in cell lysates of bovine follicle wall [12]. The decrease in secreted

and cell-associated uPA in cells of medium and large bovine follicles in vitro is consistent

with the developmental decrease seen in rats (Li et al., 1997b). In cultures of ceils from

medium and large follicles, cell-associated uPA activity decreased with time of culture

whereas secreted tPA activity increased. It is flot clear what effect this change would have

on net PA activity in the ECM immediately surrounding the ceil, nor the impact of altered

SerpinE2 concentrations on local tPA and uPA activity.
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In conclusion, we have demonstrated that secretion of tPA and SerpinE2 from

granulosa ceils and cell-associated uPA activity are regulated in a follicular stage

dependent manner in cattie. There appear to be several differences between rodents and

cattle in terms of PA secretion, which makes generalization difficuit, but a common theme

is a decrease in granulosa celi uPA content as follicles develop. During the first 2 days of

culture, this decrease in cell-associated uPA activity occurred as SerpinE2 secretion

increased, suggesting a functional link between these two proteins during follicle

developrnent. As SerpinE2 is the only known PA inhibitor secreted by the granulosa ceil

layer, it may play an important role in tissue remodeling of this follicular compartrnent

during earÏy follicle growth.
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FIG 1. Zymographic dernonstration ofPA activity in bovine granulosa ceils cultured for 6

days in senirn-free medium. PA activity in granulosa ceil lysate (bGC) was compared

with hurnan (hum) tPA and uPA standards. These samples were mn in a 10% non

denaturing PAGE gel. Specificity of PA activity was tested by running a ceil lysate

sample in a 10% gel in the absence (-AM) or presence of 1 mM amiloride (+AM) and in

a plasminogen-free gel (-PL). Molecular weight markers (MW x 1 0) are shown.
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FIG 2. Secreted PA activity from cultured bovine granulosa ceils from (A) small (2 — 5

mm diameter), (B) medium (6-8 mm) and (C) large (>$mm) follicles. Antral (open bars)

and basal (solid bars) granulosa celis were cultured with 1 ng/ml bFSH, 10 ng/ml insulin

and 10 ng/mÏ IGF-1 for 2, 4 or 6 days. A control medium sample was used to normalize

the variation between gels. The loading volume was adjusted to correct for celi number.

Inserts show representative zymographs. Data are least-squares means (relative units) ±

SEM. Bars with different letters within follicle size group are significantly different. M,

molecular weight markers.
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FIG 3. Cellular PA activity from cuÏtured bovine granulosa ceils from (A) small (2 — 5

mm diarneter), (B) medium (6-8 mm) and (C) large (>8mrn) follicles. Antral (open bars)

and basal (solid bars) granulosa celis were cultured with 1 ng/ml bfSH, 10 ng!ml insulin

and 10 ng/ml IGF-I for 2, 4 or 6 days. A control medium sample was used to nonrialize

the variation between gels. Inserts show representative zyrnographs. Data are least

squares means (relative units) ± SEM. Asterisks indicate means significantly different

from day 2.
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FIG 4 Western analysis of secreted protease nexin-l (SerpinE2) from cultured bovine

antral (open bars) and basal (solid bars) granulosa celis from (A) small (2 — 5 mm

diameter), (B) medium (6-8 mm) and (C) large (>8mrn) follicles. Granulosa ceils were

cultured with 1 ng/ml bFSH, 10 ng/ml insulin and 10 ng/rnl IGF-1 for 2, 4 or 6 days. A

control sample (follicular fluid) was used to normalize the variation between blots. The

loading volume was adjusted to correct for ceIl number. Inserts show representative blots.

Data ai-e least-squares means (relative units) ± SEM. Asterisks indicate differences

betwecn means (P<0.05).
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FIG 5. Serpine2 rnRNA levels in cultured bovine antral (open bars) and basal (solid bars)

granulosa ceils from (A) small (2 — 5 mm diarneter), (B) medium (6-8 mm) and (C) large

(>$mm) follicles. Granulosa cells were cultured with 1 ng/rnl bFSH, 10 ng/ml insulin and

10 ng/rnl IGF-l for 2, 4 or 6 days. Serpine2 mRNA was expressed relative to Gapdh.

Inserts show representative agarose gels. Data are least-squares means ± SEM. Bars with

different letters are significantly different (P<0.05). Note the difference in scale ofthe y-

axis for large follicles.
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FIG 6. Culture medium estradiol and progesterone concentrations after culture of bovine

antral (open bars) and basal (solid bars) granulosa celis from (A) small (2 — 5 mm

diarneter), (B) medium (6-8 mm) and (C) large (>8mm) follicles. Granulosa celis were

cultured with I ng/rnl bFSH, 10 ng!rnl insulin and 10 ng/rnl IGF-1 for 2, 4 or 6 days. Data

are least-squares means ± SEM. Within follicle size, bars with different letters are

significantly different (P<0.05).
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Abstract

During antral follicle growth, there is expansion of the basal lamina and changes

in composition of the follicular extracellular matrix (ECM). These changes likely occur

through proteolytic enzyme cascades, sucli as the plasminogen activators (PA) and their

inhibitors, including serpin-E2. In this study, we hypothesized that PA and serpin-E2

expressionlsecretion by non-luteinizing bovine granulosa celis are regu!ated by FSH and

growth factors (IGF-I, BMP-7, FGF-2 and EGF). Serpin-E2 mRNA and protein levels,

tPA gene expression and uPA secretion were stimulated by FSH, but F$H had no effect

on secreted tPA activity or uPA gene expression. IGf-I stimulated serpin-E2 secretion

and uPA activity, and decreased secreted tPA activity and tPA gene expression. BMP-7

had a stirnulatory effect overali, increasing ccli proliferation, estradiol production &

serpin-E2 secretion in fSH- and IGf-T stirnulated ceils, and increasing secreted tPA

activity in IGF-I- but flot fSH-stirnulated celis. li contrast, FGF-2 was generally

inhibitory, decreasing estradiol and tPA secretion in FSH- and IGF-I stimulated celis, and

decreasing serpin-E2 secretion in IGF-I stirnulated but flot FSH stimuiated ceils. EGF

inhibited ce!! pro!iferation, and estradiol and serpin-E2 secretion, but increased secreted

tPA activity. In conclusion, the coordinated regulation of uPA and serpin-E2

expression!secretion by FSH and IGf-I supports a foie for these proteins in foiiicle

development.
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Introduction

Understanding follicle growth leads to irnproved control of reproduction in

monovular species such as humans and cattie. During folliculogenesis follicles increase

in diarneter, necessitating the expansion of the basal lamina and changes in the follicular

extracellular matrix (ECM) [1]. These changes likely occur through proteolytic enzyme

cascades involving plasmin and matrix metalloproteinases (MMP). These cascades start

with the conversion of the abundant extracellular zyrnogen plasminogen into plasmin by

plasminogen activators (PA). Plasmin is an active protease that promotes degradation of

components ofthe ECM as well as activating MMPs [2, 3].

In cattie, tissue-type plasminogen activator (tPA) synthesis occurs mainly in the

granulosa layer, whereas urokinase plasminogen activator (uPA) is expressed in

granulosa and theca layers [4]. Granulosa celis but not theca celis express the PA

inhibitor serpin-E2 (also known as protease nexin-1) [5], but not other inhibitors [6, 7].

Serpin-E2 is a potent inhibitor oftPA, uPA and plasmin activity [8]. We have suggested

that the interplay between PA and serpin-E2 may be important for follicle growth in

cattie, as expression and secretion of these proteins in granulosa ceils is dependent on

stage of follicle developrnent [9].

The regulation of the PAs and their inhibitors is poorly understood. FSH is an

essential factor in the regulation of follicle development from primary follicles through to

dominant preovulatory follicles. In rodents, tPA secretion from granulosa ceils was

upregulated by fSH [10-12], whereas in cultured pig granulosa celis, FSH did not alter

tPA production [13]. Both FSH and cAMP decreased uPA secretion from cultured rat

granulosa ceils [12].
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A number of growth factors are also involved in follicle development, including

IGF-I, bone morphogenetic protein-7 (BMP-7), basic fibroblast growth factor (FGF-2)

and epidermal growth factor (EGF). Bovine granulosa celis express type-I IGF receptors

[14], and IGF-I is known to stirnulate ceil proliferation and steroidogenesis in cattie [15,

16], rats [17-19] and pigs [20-22].

BMP-7, a member of the transforming growth factor-3 (TGF-) superfamily, is

expressed in theca celis [23-25], and its receptors are expressed in granulosa celis in rats

[26], chickens [24], sheep [27] and cattie [25]. In vitro studies dernonstrated that BMP-7

enhanced granulosa estradiol production and ceil proliferation, but reduced progesterone

production [23, 25, 28]. FGF-2 belongs to a farnily ofheparin-binding growth factors and

is produced by many tissues including granulosa ceils [29]. FGF-2 and its receptors have

been identified and Iocalized in the follicle [30, 31]. FGF-2 stimulated granulosa ceil

proliferation in several mammals including cattie [32, 33], and inhibited FSH-induced

estrogen production in rat [34-36] and bovine granulosa cells [37]. EGf promoted ceil

proliferation [38] and was associated with a loss of differentiated function such as

estradiol production in vitro [39-4 1] and in vivo [42].

However, little is known about the regulation of PAs by these growth factors.

FGF-2 stirnulated tPA mRNA and enzyme activity in cultured rat granulosa cells [43].

EGF stimulated the secretion of tPA in cultured rat granulosa cells [44] and uPA from

bovine cumulus cells [45]. Despite the different effects of various growth factors on

granulosa celi proliferation, nothing is known about their regulation of serpin-E2

expression or secretion. The objective of the present study was to investigate the
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regulation of PA and serpin-E2 secretion and expression by fSH, IGF-I, BMP-7, FGF-2,

and EGF in non-luteinizing bovine granulosa ccli in vitro.

Materials and Methods

Ceit culture

The ccli culture system xvas based on that described by [46], with slight

modifications [47]. Ail materiais were obtained from hivitrogen Life Technologies

(Burlington, ON, Canada) except where otherwise stated. Briefty, bovine ovaries were

collected from aduit cows, irrespective of stage of the estrous cycle, at a local abattoir,

and were transported to the laboratory in PBS at 35°C containing peniciilin (100 IU/ml),

streptomycin (100 ig/ml) and fungizone (I tg!mi). follicles (2 — 5 mm diameter) were

dissected from the ovaries, and those with obvious signs of atresia were discarded. Ceils

were collected by repeatedly passing bisected follicle walls through a pipette, were

washed twice by centrifugation at 219 x g for 20 min each, and suspended in Œ-MEM,

containing Hepes (20 mM), sodium bicarbonate (10 mM), sodium selenite (4 ng/ml),

BSA (0.1%; Sigma-Aldrich Canada, Oakviile, ON, Canada), penicillin (100 Ru/ml),

streptomycin (100 g/rnl), transferrin (2.5 ig!m1), non-essential arnino acid mix (1.1

mM), androstenedione (1 0 M at start of culture, and 106 M at each medium change) and

insulin (10 ng/ml). Ccli viability was estimated with 0.4% Trypan Blue Stain.

Treatments and sample collection
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In the first series of cultures, ceils were cultured in the presence of fSH (AFP

5332B, NIDDK) or IGF-1 analog (LR3; Sigma-Aldrich Canada) at the doses given in

Results. Celis wcre seeded into 24-weIl tissue culture plates (Sarstedt, Montreal, QC) at a

density of 1 x 106 viable cells per well in 1 ml medium. Cultures were maintained at

37°C in 5% C02 in air for up to 6 days, with 700 tl medium being replaced every 2 days.

Medium samples were collected on day 6, and stored at -20°C until assay, and cells were

collected in Trizol and stored at -70°C until RNA extraction. Total RNA, DNA and

protein were extracted using Trizol according to the manufacturer’s instructions. Total

RNA was quantified by absorbance at 260 nm. Total DNA was determined by measuring

fluorescence in the presence ofbisbenzirnide (Hoechst 3325$, Sigma) [4$] and cornpared

with a calf thymus DNA (Sigma-Aldrich) standard curve. Total protein was measured by

using BSA (Sigma-Aldrich) as standard [49]. FSH and IGF-I treatments were performed

as separate experiments on different pools of cells, and all cultures were performed three

times.

In the second series of cultures, the effects of growth factors on FSH- & IGf-I

treated cells were determined. Cells were seeded into 4$-well tissue culture plates

(Falcon, Lincoin Park, NJ) at a density of 2.5x105 cells/well in 500 jil medium. Cultures

were maintained at 37°C in 5% C02 in air for 4 days, with 350 tl medium being replaced

on day 2. In the presence of FSH (1 ng!ml) or IGF-I analog (10 ngJml), ceils were

cultured with graded doses (indicated in Resuits) of recombinant human BMP-7 (R&D

Systems, Miirneapolis, MN), fGf-2 (Sigma-Aldrich) or recombinant human EGF (R&D

Systems). Vehicles for the reconstitution of each growth factor (4 mM HC1 with 0.1%

BSA for BMP-7; buffered saline with 0.5% BSA for FGf-2; lOmM acetic acid with 0.1%
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BSA for EGF) were used as controls. Medium samples were coiiected and stored at -

20°C until assay. Ceils were lysed with 100 pi of 1 N NaOH for 2 h and neutralized with

100 il of 1 N HCI, and total ceil protein was measured by the Bradford protein assay

(Bio-Rad, Mississauga, ON, Canada). The effect of each growth factor (on both FSH

and IGF-I-stimulated ceils) was tested in separate cultures, and ail experiments were

perfonned on three independent cultures.

CeÏl prohferation assav

To measure cell proliferation, cells were seeded into 48-well tissue culture plates

(falcon, Lincoln Park, NJ), at a density of2.5x105 cells/well in 500 j.il medium. At the

medium change on day 2, lj.tCi of [3H]-thymidine (Amersham Biosciences, Baie d’Urfé,

QC) was added to each well, and cells were incubated for a further 23 hr. Cells were then

scraped from the wells, pelleted by centrifugation and washed twice with 0.5m1 of ice

cold PBS. Centrifugation vas performed at 100 g for 5 min at 4°C for ceil pellet and

wash. The cells were fixed by adding 0.5 mi ice-cold methanol/acetic acid (3:1) for 15

mm, folÏowed by two washes with 0.5m1 of methanol/acetic acid. Centrifugation was

performed at 3000 g for 5 min. Celi pellets were stored at -20°C before assay. The ceil

pellets were lysed in 0.25m1 of 0.1 N NaOH for 2 hr at room temperature, neutralized

with 0.25m1 of 0.1 N HCI, and transferred to scintillation vials. The incorporated [3H]-

thymidine was measured by liquid scintillation counting. Celi proliferation was expressed

as DPM.
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Casein zvinography

Casein zymography was used to measure tPA and uPA activity in culture medium

[4], and validated for bovine granulosa ceil conditioned medium [9]. Briefly, samples

were subjected to electrophoresis at 120 V for 90 min in 10% non-denaturing

polyacrylamide gels containing 0.2% casein (Sigma-Aldrich), 0.1% SDS and 3.75 rnU/ml

bovine plasminogen (Sigrna-Aldrich). Afier electrophoresis, gels were washed once in

2.5% Triton X-100 for 45 min to rernove SDS, and placed in incubation buffer (50 mM

Tris, 0.1 M NaCI , pH 7.6) at 37°C for 16 h with gentie shaking. The gels were then

stained using 0.05% Coomassie blue in 10% acetic acid, 40% methanol for 2 h, destained

in 10% acetic acid, 40% methanol, and then fixed in 10% glycerol. Bands of activity

were visuaiized as clear zones where casein degradation occurred, against a dark (blue)

background. The volume ofmedium analyzed was corrected for celi number (total DNA).

To colTect for gel-to-gel variation, ail samples were expressed relative to a control sample

(spent granulosa ceil medium) that was included in every gel.

Western blot

Serpin-E2 protein abundance was analyzed by Western blot [9]. Medium samples

were concentrated by lyophilization and the volume analyzed was adjusted to correct for

ccli number. Samples were subjected to electrophoresis at 120 V for 90 min in 10%

denaturing polyacrylami de gels. Proteins were then electrotransferred onto nitrocellulose

membrane (0.45 im) (Bio-Rad, Hercules, CA) at 22 V ovemight at 4°C in transfer buffer

(39 mM glycine, 4$ mM Tris-base, 0.037% SDS and 20% methanol, pH 8.3). After
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blocking for 1 h in TTBS (0.2% Tween 20, 10 mM Tris-HC1, 150 mM NaC1), blots were

incubated with 1:5000 rabbit anti-bovine serpin-E2 [5] for 4 h with agitation, followed by

three washes (10 min each) with 0.2% TTB$. The blots werc then incubated with 1:2500

aikaline phosphatase-linked anti-rabbit IgG (Sigma-Aldrich) for 1.5 h with agitation,

followed by three washes (10 min each) with 0.2% TTBS. Finally, the blots were

incubated with NBT/BCTP solution (Roche Diagnostics, Indianapolis, IN). Rainbow

colored protein molecular weight markers (Amersharn) was used to estimate molecular

size of the target protein, and bovine follicular fluid (2 jd) was used as positive control.

Nucleic acid extraction & semi-guantitative RT-PC’R

Gene expression was assayed by RT-PCR essentially as described [9]. Total RNA

(1 tg) was first treated with 1 U DNase (Promega, Madison, WI) at 37°C for 30 min to

digest any contaminating DNA, followed by adding 1 tI of EDTA stop buffer at 65 oc for

10 min. The RNA was reverse transcribed in the presence of 1 mM oligo(dT) primer and

4 U Omniscript RTase (Omniscript RT Kit, Qiagen, Mississauga, ON), 0.25 mM

dideoxy-nucleotide triphosphate (dNTP) mix, and 19.33 U RNase Inhibitor (Amersham

Biosciences, Baie D’Urfé, QC) in a volume of 20 d at so°c for 2 h. The reaction was

terrninated by incubation at 93°C for 5 min.

Bovine-sp ecific primers for uPA (sense: 5’ -GTCTGGTGAATCGAACTGTGGC

3’, antisense: 5’-GGCTGCAAACCAAGGCTG-3’ [50], tPA (sense: 5’-

AAGGTTGCAGAAGAAGATGG-3’, antisense: 5’-

GTGAGGCGGGTACCTCTCCTGGAA-3’ [12], and serpin-E2 (sense: 5’-

TCCGTGACGTTGCCCTCTGTG-3’, antisense: 5 ‘-CCGTGATCTCCACAAACCCTT
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3’ [5] were used as described [9]. Variability in mRNA amounts was assessed by

amplifying the housekeeping gene histone H2a (H2a) with published primers (sense: 5’-

GTCGTGGCAAGCAAGGAG -3’, antisense: 5’-GATCTCGGCCGTTAGGTACTC -3’

[51]. An aliquot (0.4 tl) ofthe cDNA template was amplified by PCR using 0.2 tl (2.5 U)

Taq Polyrnerase (Amersham Pharmacia Biotech Inc., Oakvilie, ON, Canada) in a 20-tl

PCR buffer (Amersharn Pharmacia Biotech Inc.) containing 0.1 mM dNTP mix, and 0.2

1iM specific primers. After an initial denaturation step for 3 min at 94°C, target cDNA

xvas amplified with a denaturation step at 94°C for 15 sec (serpin-E2), 30 sec (tPA &

uPA), or 45 sec (H2a), annealing for 45 sec at 65°C (uPA), 55°C (tPA) and 62°C (serpin

E2), or at 55°C for 30 sec (H2a), and elongation at 72°C for 1 min. Ail reactions were

terminated with a final elongation at 72°C for 5 min.

Semiquantitative RT-PCR was validated for each gene product [9]. Preliminary

experiments verified that PCR product increased with amount ofRNA in the RT reaction.

Reactions were performed for 30 cycles for uPA and H2a, 26 cycles for tPA, and for 24

cycles for serpin-E2. The PCR products were separated on 1% agarose gels with 0.00 1%

ethidium bromide, and visualized under DV light. Quantification of band intensity was

performed with NIH Image software. Target gene mRNA abundance was expressed

relative to H2a mRNA abundance.

Steroid Assay

Estradiol was measured in conditioned medium in duplicate with the RIA

described by Bélanger et al. (1990), without solvent extraction. Intra- and inter-assay
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coefficients of variation were 8.5% and 6.3%, respectively. Progesterone was rneasured

in duplicate as described [52] with mean intra- and inter-assay coefficients of variation

were 7.2% and 18%, respectively. The sensitivity ofthese assays were 10 pg and 4 pg per

tube for estradiol and progesterone, equivalent to 0.3 and 20 ng/JLg DNA or jtg protein,

respectively.

Statisticat analysis

Data are presented as means ± SEM. The data were analyzed by ANOVA with

dose of hormones and growth factors as main effects, and culture replicate was included

in the model as a random effect. Data were transformed to logarithms when not norrnally

distributed (Shapiro-Wilk test). Means comparisons were performed with the Tukey

Kramer HSD test. Ail analyses were performed with JMP software (SAS Institute, Cary,

NC).

Resuits

EfJect oJFSH on granulosa cett steroidogenesis, prolferation and on FA and serpin-E2

secretion and expression

FSH stimulated both estradiol (Fig. lA; P<0.01) and progesterone (Fig lB;

P<0.05) secretion by granulosa ceils in a dose-dependent manner. F$H enhanced

granulosa ceil proliferation, but only at a dose of lOng (Fig 1C; P<0.05). Zymography

demonstrated that both tPA and uPA are secreted by cultured celis in the absence of FSH

(Fig 2 A&3), and that FSH increased uPA (P<0.05) but not tPA activity (Fig 2A&B). In
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contrast, tPA but flot uPA mRNA levels were up-regulated by FSH (Fig 2A, P<O.O1).

Both serpin-E2 protein secretion measured by Western blot and serpin-E2 rnRNA

detected by RT-PCR (Fig 2C) were stimulated by FSH in a biphasic manner (P<OE05),

with maximal responses observed with ing ofFSH.

Effect ofIGf-I oit granutosa ceÏl steroidogenesis, prolferation and on FA and se,pin-E2

secretion and expression

IGF-I stimulated estradiol secretion (Fig 3A; P<O.05) by granulosa celis in a dose

dependent manner, but had no effect on progesterone secretion (Fig 33). IGF-I had a

dose-dependent effect on ceIl proliferation (Fig 3C; P<O.O1). IGF-I exerted a divergent

effect on tPA and uPA secretion. As shown in Fig 4A, tPA activity and gene expression

were inhibited by IGF-I, whereas uPA activity but not mRNA levels were stimulated by

IGF-I (Fig 43). IGF-I stirnulated serpin-E2 protein secretion but not mRNA levels (Fig

4C).

EfJect oJBMF-7 on granulosa ceit steroidogenesis, prolferation and on FA and serpin

£2 secretion

Based on the regulation of PA and serpin-E2 secretion by IGF-I, we examined

also the effects of other growth factors kiown to regulate granulosa celis. Celis were

cultured with FSH or IGF-I, in combination with graded doses of growth factors. 3MP-7

stirnulated estradiol secretion in IGF-I-stimulated celis in vitro (Fig 5A, P<O.05), and had
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a modest effect on fSH-stirnulated celis (P0.08 at 5Ong/ml). BMP-7 stimulated ce!!

proilferation in FSH- but not IGF-I-stirnulated ce!ls (Fig 5B, P<O.05). BMP-7 stimulated

tPA secretion from IGF-I-stimulated celis (Fig 5C; P<O.O1) but not from FSH-stimulated

ceils. uPA secretion was not changed by BMP-7 (Fig 5C, insert). BMP-7 increased

serpin-E2 secretion in FSH-stirnulated celis, and had a biphasic effect on IGF-I

stirnulated ceils, inhibiting at lower concentrations and stirnulating at higher

concentrations (Fig 5D; P<O.05).

In the absence of BMP-7, celi proliferation and serpin-E2 were higher in IGF-I

stirnulated compared to FSH-stimulated celis (P<O.05), whereas tPA was !ower (Fig 5).

Effect offGf-2 011 granuÏosa ceÏl steroidogenesis, prolferation and on FA and seipin

E2 secretion

FGF-2 inhibited estradiol secretion from both FSH- and IGF-I-stirnu!ated celis in

a dose-dependent manner (Fig 6A, P<O.O1), but had no effect on celi proliferation either

in fSH- or in IGF-I-stimulated ceils (Fig 6B). FGF-2 had no effect on progesterone

production by granu!osa ce!!s (data not shown). FGF-2 decreased tPA secretion from

FSH- and TGF-I-stimulated ceils at the higbest dose used (Fig 6C, P<O.O1), and inhibited

serpin-E2 secretion by celis cu!tured in the presence of IGF-I (Fig 6D; P<O.05) but not in

the presence ofFSH.

In the absence of FGF-2, celi proliferation and serpin-E2 were higher in IGf-I

stirnu!ated cornpared to FSH-stimulated ceils (P<O.05; Fig 6).
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Effect ofEGf on granulosa celi steroidogenesis, prolferation and on FA and serpin-E2

secretion

EGF inhibited estradiol secretion in both FSH- and IGF-I-stirnulated ceils (Fig

7A), but had no effect on progesterone production (data not shown). EGf inhibited celi

proliferation in FSH- and IGF-I-stimulated celis (Fig 7B, P<O.O1). Secreted tPA activity

increased with EGF treatment in IGF-I-stirnulated celis (Fig 7C, P<O.O1) but flot in F$H

stirnulated celis. In FSH-stimulated ceils, lower doses of EGF stimulated serpin-E2

secretion (P<O.001), but a high dose (lOng) was ineffective (Fig 7D). In IGF-I-stimulated

ceils, serpin-E2 secretion was inhibited by EGF in a dose-dependent manner (P<O.05; Fig

7D).

In the absence of EGF, ceil proliferation and serpin-E2 were higher in IGF-I

stimulated compared to FSH-stimulated celis (P<O.05), whereas tPA secretion was lower

(Fig 7).

Discussion

Plasminogen activators initiate a wide range ofproteolytic cascades, therefore PA

inhibitors play potentially important roles in tissue remodeling. Within the ovarian

follicle, the predominant inhibitor expressed in granulosa celis is serpin-E2 [5, 6], which

is not expressed in theca ceils. This is, to our knowledge, the first study to describe

growth factor regulation of serpin-E2 expression and/or secretion in granulosa celis. We

have previously shown that serpin-E2 and PA production by granulosa ceil is dependent
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on stage of follicle deveiopment [9], consistent with iocalized remodeling of the ECM as

follicles grow and ceils muitiply. Here we report that serpin-E2 and PA production are

regulated by FSH, IGF-I, BMP-7, fGF-2 and EGF, providing novel insights into the

regulatory function of FSH and growth factors for ECM remodeling during foilicular

growth.

Two major stimulators of granuÏosa ccli function are FSH and IGF-I. Both

increased estradiol production and celi proliferation in non-luteinizing bovine granuiosa

ceils as previously reported [16, 46, 47]. Both hormones also stimulated uPA and serpin

E2 secretion. Although tPA is the major PA in follicular fluid and secreted from

granulosa celis in cattie [4, 9], uPA activity is higher in small compared with large

follicles in rats and cattic [9, 10, 53] suggesting that extracellular uPA activity may be

important for earlier stages of antral follicle growth. Consistent with this hypothesis, uPA

but not tPA activity was upregulated by fSH in celis from smaii antrai follicles in the

present study. Further, IGf-I not oniy stimulated secreted uPA activity but also inhibited

tPA activity. As FSH and IGf-I are important for eariy antral follicie growth (reviewed in

[54]), the present data suggest that uPA and serpin-E2 are also invoived in this process at

this stage of development.

These data differ from those obtained with rodent granulosa ceils, as FSH

upregulated tPA mRNA and tPA secretion [10-12] and decreased uPA secretion [12]. li

pigs, FSH did flot alter tPA production in cuitured granuiosa ceils (Shaw et ai., 1985),

likely due to the absence of fSH receptors on luteinized porcine granulosa ccli [55]. In

rodents, serpin-E2 protein levels or gene expression do not change during the estrous

cycle and are not reguiated by gonadotropins [6, 56], whereas in the present study FSH
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clearly stirnulated serpin-E2 protein secretion and gene expression. IGF- 1 also stimulated

protein secretion, but did flot alter gene expression. There is therefore a major difference

between rats and cattie in the regulation of granulosa celi PAs and serpin-E2 expression.

Other growth factors also regulate granulosa celi proliferation and differentiation.

EGF, FGF-2 and BMP-7 have ail been reported to stimulate granulosa celi proliferation,

but to have different effects on steroidogenesis. In the prescrit study, BMP-7 stimulated

estradiol production and ccli proliferation in cultured ceils, as has been shown in rats [23,

28] and in cattie [25]. BMP-7 did flot affect progesterone secretion, whereas others have

reported a decrease [23, 25, 28]. This discrepancy maybe related to the presence or

absence ofFSH, as BMP-7 did flot affect granulosa ceil steroidogenesis in the absence of

FSH in the rat [23]. FGF-2 and EGF decreased estradiol secretion, as previously reported

in rodent and bovine granulosa cells [16, 36, 37]. However, FGf-2 did flot affect ccli

proliferation in the present study, and EGF inhibited proliferation. Previous studies have

shown that FGF-2 was ineffective in modulating celi proliferation in cultured rat [33] or

porcine granulosa ceils [57], but stimulated proliferation in bovine ceils [33]. However,

the effect of FGF-2 on ccli proliferation in cattie may oniy become evident after periods

of culture longer than used here [58]. These earlier studies were also performed with

serLlrn-contaimng culture medium, which alters cell responsiveness to honnones

(discussed by [46]). EGF moderately increased celi number in serum-free bovine

granulosa cell culture [16], whereas it inhibited celi proliferation in the present study. The

reason for this discrepancy is unclear, as celis were cultured under similar conditions in

the two studies.
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EGF and FGF2 have been reported to stirnulate tPA secretion from cultured rat

granulosa celi [43, 44], whereas in the present study FGF2 markedly inhibited sccreted

tPA activity in FSH- and IGF-1-treated bovine celis and EGf stimulated tPA activity in

IGF-I treated celis. Again, this is likely to reflect the difference between cattle and

rodents in PA secretion (see above). The effects of BMP-7 on tPA activity were very

sirnilar to those of EGF (stimulation in IGF-I and not FSH-treated cells), despite the

opposing effects of these two ligands on estradiol secretion and celi proliferation. This

suggests that changes in extracellular tPA activity are not simple sequelae of cell

proliferation, but are specifically regulated by hormones.

These growth factors also regulated serpin-E2 secretion from bovine granulosa

ceils. The effects of BMP-7 and FGF-2 on serpin-E2 secretion largely mi;Tored the

effects of these ligands on tPA secretion. BMP-7 increased both tPA and serpin-E2 in

IGF-1 stimulated ceils, and FGF-2 decreased tPA and serpin-E2 in IGF-I stirnulated ceils.

It is therefore possible that serpin-E2 secretion changes to counter a corresponding

change in net extracellular PA activity, or vice versa. However, there were discordant

changes in tPA and serpin-E2 secretion in the present study, as FGF-2 inhibited

extracellular tPA activity in FSH-stimulated cells but did not affect serpin-E2 secretion.

Further, EGF increased extracellular tPA activity and decreased serpin-E2 secretion in

IGF-I treated celis. In the latter case, it is possible that EGF increased net tPA activity by

decreasing the amount of inhibitor present, rather than altering expression!secretion of

tPA protein. Most interestingly, EGF had a biphasic effect on serpin-E2 secretion from

FSH-stimulated celis, which did flot impact extracellular tPA activity. To our knowledge,

there are no other reports of growth factor regulation of serpin-E2 secretion.



117

A discrepancy between enzyme activities and corresponding mRNA levels was

observed in the present study. These data indicated that secreted tPA and uPA activity are

regulated at a post-transcriptional level, possibly involving regulation of secretory

rnechanisms, in agreement with our previous report [9]. Redistribution of uPA ftom

secreted to the celi-bound fraction in celis of rat preovulatory follicles has been suggested

[12], and this redistribution may be rnodified by FSH or growth factors.

It is of interest to compare the effect of FSH and IGF-I on granulosa celi function

in present study. Ceil proliferation and serpin-E2 secretion were consistently lower in

FSH-treated ceils than in IGF-I-treated ceils, whereas tPA secretion was higher in FSH

treated ceils than in IGF-I-treated ceils. Importantly, extracellular tPA activity was

altered in IGF-1 stimulated celis by BMP-7 and EGF, whereas these two ligands did not

affect extracellular tPA activity in FSH-stimulated ceils. As future dominant follicles

grow, they become critically dependent on IGF-I stimulation [54], thus we propose that

growth factors play an important role in modulating the PA system at this stage of

developrnent.

In summary, the present study provides comprehensive evidence for the

regulation by FSH and a number of growth factors of gene expression and secretion of

members of the plasminogen activator system by bovine granulosa celis in vitro. Overali,

FSH, IGF-I and BMP-7 had a stimulatory effect on celi proliferation, estradiol

production, and PA and serpin-E2 secretion. In contrast, FGF-2 had an inhibitory effect

on estradiol production, and on tPA and serpin-E2 secretion. EGF inhibited estradiol

production, ccli proliferation and serpin-E2 secretion but enhanced tPA secretion. These
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data support a foie for these proteins in follicie development, especially during the IGf-I

dependent process of foiiicie selection and estabiishment of dominance.
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FIG. 1. Dose-dependent stimulation of A) estradiol and B) progesterone production, and

C) celi proliferation by FSH in bovine granulosa ceils cultured in serum-free medium.

Granulosa ceils were cultured in the absence or presence of FSH for 6 days (for steroid

measurement) or 4 days (for ceil proliferation assay). Steroid concentrations were

corrected for ceil number (total DNA). Resuits shown represent the mean ± SEM of at

least three separate experiments. Bars with different letters are significantly different

(P<O.05).
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FIG. 2. Effect of FSH on A) secreted tPA activity and gene expression, B) secreted uPA

activity and gene expression, and C) serpin-E2 protein secretion and gene expression in

bovine granulosa ceils cultured in sercirn-free medium. Inserts show a representative

zymograph for enzyme activity, a Western blot for serpin-E2 secretion, and agarose gels

showing resuits of RT-PCR assays. Secreted tPA, uPA activity and serpin-E2 protein

levels are expressed relative to a control sample (CtrÏ; spent medium from celis cultured

with FSH) included in every gel. The control (FF) in Western blots is a follicular fluid

sample collected from a follicle at 8 mm in diameter. Resuits shown represent the mean ±

SEM of at least three separate experirnents. Bars with different letters are significantly

different (P<O.05).
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FIG. 3. Dose-dependent stimulation of A) estradiol and B) progesterone production, and

C) ceil proliferation by IGF-I analog (LR3) in bovine granulosa celis cultured in serum

free medium for 6 days (for steroid measurement) or 4 days (for ceil proliferation assay).

Steroid concentrations were corrected for celi number (total DNA). Results shown

represent the mean + SEM of at least three separate experiments. Bars with different

letters are si gnificantly di fferent (P<O. 05).
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FIG. 4. Effect ofIGF-I analog (LR3) on A) secreted tPA activity and gene expression, B)

secreted uPA activity and gene expression, and C) serpin-E2 protein secretion and gene

expression. Granulosa ceils were cultured in senirn-free condition in the presence of the

doses of GF-I shown for 6 days. Inserts show a representative zymograph for enzyme

activity, a Western blot for serpin-E2 secretion, and agarose gels showing resuits of RT

PCR assays. Secreted tPA, uPA activity and serpin-E2 protein levels are expressed

relative to a control sample included in every gel. The control (fF) in Western blots is a

follicular fluid sample collected from a follicle at 8 mm in diameter. Resuits shown

represent the mean + SEM of at least three separate experirnents. Bars with different

letters are significantly different (P<O.05).



Se
cr
et
ed

se
rp
in
-E
2

(r
el
at
iv
e
un
its
)

L’
J

4S
.

uP
A
ac
tiv
ity

(r
el
at
iv
e
un
its
) M

(M =

o

-H

(I

-n (Q
(-‘
J

[
(M (M

tr
i

-

__
__
__
_

C

tP
A
ac
tiv
ity

(r
el
at
iv
e
un
its
)

P (M
=

(M

—
1

Z

H
C
-

-
C C
- C
-

o

C
—

se
rp
in
-E
2/
H
2a

ra
tio

C (t
I

uP
A
/H
2a

ra
tio

(M
=

o

Ii -
(M o

a
i

tP
A
/H
2a

ra
tio

(M
o

(M
o

o
o

o (M

-I
C

(M

_
_
_
_

o

o

“J



127

FIG. 5. Effect of BMP-7 on A) estradiol secretion, B) ce!! proliferation, C) secreted PA

activity and D) serpin-E2 secretion from bovine granulosa cells cultured in serum-free

medium in the presence of lng/ml FSH (open bars) or lOng/ml IGF-I LR3 (solid bars).

Ceil proliferation was assayed by [3HJ-thymidine incorporation. Secreted tPA activity

and serpin-E2 protein levels are expressed relative to a control sample (C) inc!uded in

every gel. Inserts show a representative zyrnograph for enzyme activity, and a Western

blot for serpin-E2 secretion. Bars with different letters within FSH- or IGF-1 treated

groups are significantly different (P<O.05). Asterisks identify significant differences

between FSH and IGF-l treatments in the absence of BMP-7 (P<O.Ol). Resu!ts shown

represent the mean ± SEM ofthree separate experiments.
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FIG. 6. Effect of fGf-2 on A) estradiol secretion, B) ceil proliferation, C) secreted PA

activity and D) serpin-E2 protein secretion from granulosa ceils cultured in serum-free

medium in the presence of lng/ml FSH (open bars) or lOng/ml IGF-I LR3 (solid bars).

Ccli proliferation was assayed by [3H]-thymidine incorporation. Secreted tPA activity

and serpin-E2 protein levels are expressed relative to a control sample (C) included in

every gel. Inserts show a representative zymograph for enzyme activity, and a Western

blot for serpin-E2 secretion. Bars with different letters within fSH- or IGF-l treated

groups are significantly different (P<O.05). Asterisks identify significant differences

between FSH and IGF-1 treatments in the absence of FGF-2 (P<O.O1). Resuits shown

represent the mean ± SEM ofthree separate experiments.
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FIG. 7. Effect of EGF on A) estradiol secretion, B) ccli proliferation, C) secreted PA

activity and D) serpin-E2 protein secretion from granulosa celis cultured in sernrn-ftee

medium in the presence of lng/ml FSH (open bars) or lOng/ml IGF-I LR3 (solid bars).

Celi proliferation was assayed by {3H]-thymidine incorporation. Secreted tPA activity

and serpin-E2 protein levels are expressed relative to a control sampie (C) included in

every gel. Inserts show a representative zyrnograph for enzyme activity, and a Western

blot for serpin-E2 secretion. Bars with different letters within FSH- or IGF-l treated

groups are significantly different (P<O.05). Asterisks identify significant differences

between FSH and IGF-1 treatments in the absence of EGF (P<O.O1). Resuits shown

represent the mean + SEM ofthree separate experiments.
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Abstract

Extracellular matrix (ECM) remodeling occurs during ovarian follicular

developrnent, mediated by plasminogen activators (PA) and PA inhibitors including

protease nexin-1 (PN-1). In the present study we measured expressionlactivity ofthe PA

system in bovine follicles at different stages of development by timed collection of

ovaries during the first follicle wave and during the periovulatory period, and in follicles

collected from an abattoir. The abundance of mRNA encoding PN-1, tissue-type PA

(tPA), urokinase (uPA) and PA inhibitor-1 (PAT-1) were initially up-regulated by hCG in

bovine preovulatory follicle wall hornogenates. PN- 1, PAl- 1 and tPA mRNA expression

then decreased near the expected time of ovulation, whereas uPA mRNA levels remained

high. PN- 1 concentration in follicular ftuid (FF) decreased and reached the lowest level at

the tirne of ovulation, whereas plasmin activity in FF increased significantly after hCG.

Follicles collected from the abattoir were classified as nonatretic, early-atretic or atretic

based on FF oestradiol and progesterone content: PN-1 protein levels in FF were

significantly higher in nonatretic than in atretic follicles, and plasmin activity was

correspondingly higher in the atretic follicles. No changes in PN-1 levels in FF were

obseiwed during the growth of pre-deviation follicles early in a follicle wave. These

results indicate that PN-1 may be involved in the process of atresia in nonovulatory

dominant follicles and the prevention ofprecocious proteolysis in periovulatory follicles.
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Introduction

The growth of bovine follicles from the primordial to the preovulatory stage is

characterized by the proliferation of ceils and considerable increase in size of the foliicle

(Lussier et aÏ. 1987). The granulosa and theca celi layers are separated by the basal

lamina, and the theca ceils are enclosed in a dense extracellulai matrix (ECM).

Rernodeling of the basai lamina and ECM occurs as follicles expand, and changes in the

chemical composition of the basal lamina have been described during follicle

development (Rodgers et aÏ. 2003). Extensive brcakdown and remodeling of the basal

lamina and connective tissue of the follicular wall is required for ovulation (CuiTy et al.

2001, Richards et cil. 2002).

The plasminogen activator (PA) system has been irnplicated as one of the

important mediators ofECM remodeling and follicle rupture at ovulation (Ny et al. 2002,

Liu 2004). The PA system consists oC the ubiquitous proenzyme, plasminogen, that is

converted to an active enzyme, plasmin, by the tissue-type (tPA) and urokinase (uPA)

plasminogen activators. The activity of PA is regulated in part by inhibitors, including

plasminogen activator inhibitor-1 (PAT-1) and protease nexin-1 (PN-i, atso known as

serine protease inhibitor E2, Serpine2). PN-l is a secreted glycoprotein, and is a broad

and rapid inhibitor of a number of serine and cysteine proteases including tPA, uPA, and

plasmin (Silverman et al. 2001). The expression and regulation oC PN-i has been

examined in ovarian follicles. In contrast to PAT-1, which is predorninantly expressed in

thecal-interstitial ceIl layers, PN-l was exclusively expressed in granulosa cells in mice

(Wigglund et aÏ. 1996), rats (Hasan et al. 2002) and cattle (Bédard et al. 2003).
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Previous studies indicate that ovulation requires coordinated expression of the

plasminogen activators ami their inhibitors. In rats and monkeys, there is an upregulation

of tPA and PAl-1 expression by human choionic gonadotrophin (hCG) during the

periovulatory period, followed by a rnarked decrease in PAl-1 expression just before

ovulation. This may allow a naiiow window of increased tPA activity that resuits in

follicie rupture and ovulation (Liu et al. 1987, Shen et al. 1997, Liu 2004). PN-1 is aiso

expressed in preovulatory follicles, although its role is not clear. PN-l expression

decrcased following an ovulatory dose of hCG in rats (Hasan et al. 2002) but not in mice

(Higglund et al. 1 996). How the proteolytic cascade is controlled in cattie is not well

understood, as tPA activity increases prior to ovulation whereas PAT-i activity does not

change (Dow et al. 2002a, 2002b). The potential role of PN-1 during the periovulatory

period in cattie rernains to be deterrnined.

The PA system may also be involved in tissue remodeling at earlier stages of

folliculogenesis. In rats, there is a switch from uPA to tPA activity during follicle growth

(Karakji & Tsang 1 995). In cattle, follicle growth occurs in waves, during which the

dominant, potential ovulatory fo lii de undergoes rapid growth and the subordinate

follicles become atretic (Fortune et ctÏ. 2001, Ginther et al. 2001b). The PA system may

be invoÏved in the growth of the dominant foilicle, as cellular uPA activity was higher in

granulosa celis from small antral foliicles compared to those from large follicles, and PN

1 secretion and expression was lower in granulosa celis from small follicles compared to

those of large follicles of rodents and cattie (Hiigglund et al. 1996, Bédard et aÏ. 2003,

Cao et al. 2004). Follicle regression may also involve PA activity, as plasminogen

activation markedly decreased attachrnent of Chinese hamster ovary fibroblasts to ECM
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components in vitro, resulting in detachrnent—induced ccli death (anoikis) (Rossignol et al.

2004). lritcrestingly, PN-l inhibited PA-induced anoikis in these celis (Rossignol et aï.

2004).

The objective of this study xvas to determine if celi-specific and temporal

regulation ofPN-l and PA expression and secretion contribute to follicular developrnent

and ovulation in cattie. We assessed the role ofPN-i as a candidate for regulation ofPA

activity in bovine follicles at three stages of folliculogenesis: 1) the periovulatory period,

2) in healthy, early atretic and atretic dominant follicles classified on biochemical criteria,

and 3) during the flrst foilicie wave before and during foilicie deviation.

Materials and Methods

Experiments 1 and 3 were performed with crossbred heifers aged between 1.5 and

3 years. The animais were housed indoors on the University of Montreal farm for the

duration of the experiment and were fed concentrate and hay twice daily. Water was

available ad libitum. Ail animal experimentation was approved by the Animal Care

Cornrnittee ofthe Faculty of Veterinary Medicine, University ofMontreal, and perforrned

in accordance with Canadian Council of Animal Care Guidelines.

Experiment 1. hCG-induced periovulatory follicles

Experimental design

Ten heifers were induced to ovulate as described (Bédard et aï. 2003). The animaIs

were synchronized with one injection of prostaglandin F2Œ (PGf2Œ) (25 mg, im;

Lutalyse, Upjohn, Kalamazoo, MI), and behavioural oestrus was monitored at 12 hr
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intervals, from 48 to 96 hr following PGF2Œ injection. Ovarian follicle developrnent was

monitored by daily transrectal ultrasonography performed with a real-tirne linear

scanning ultrasound system (LS-300; Tokyo Keiki Co, Ltd, Tokyo, Japan) equipped with

a 7.5-MHz transducer (Lussier et aï. 1994). Preovulatory follicles were obtained

foflowing a second injection of 25 mg PGf2Œ seven days after oestrus to induce

luteoiysis, thereby aflowing the development of the dominant follicle ofthe first foliicle

wave into a preovulatory follicie (Sirois 1994). An ovulatory dose ofhCG (3000 lU; APL,

Ayerst Lab, Montreal, Quebec, Canada) was injected 36 h after the induction ofluteolysis,

and ovaries bearing the preovulatory follicle were collected by ovariectomy at 0, 6, 12,

1 8, and 24 h afler hCG injection.

Follicular fluid (Ff) vas aspirated from the follicles with a 21G needle, centrifuged

(3,000g for 2 min at 4°C) and stored at -20°C foi- PN-J and PA assay. The follicle walls

were then homogenized in lysis buffer (4 M guanidium isothiocyanate, 0.5% Na-N

laurylsarcosine, 25 mM sodium citrate, pH 7) (Chomczynski & Sacchi 1987), and total

RNA was sedirnented on a cesium chloride cushion by centrifugation (Ndiaye et cd.

2005). The concentration of total RNA was evaluated by optical density at 260 nm, and

quality was estirnated by visualizing the 28S and 18S ribosornal bands following

electrophoretic separation on a formaldehyde-agarose gel in the presence of ethidium

bromide.

Grancdosa celis were collected from individual follicles at 0, 12 and 24 h following

hCG injection for protein extraction. Ceils were homogenized in M-PER Reagent (Pierce,

Rockford IL) supplemented with Complete Protease Inhibitor Cocktail (Roche Applied

Science, Lavai QC). Lysis of cells was achieved by repeated passage through a 25 gauge



147

needle attached to a 3 mL syringe. Ceil lysates were centrifuged (16,000 g for 15 min at

4C) and supernatant was stored at -80C until analysis ofPN-1 and PA activity.

Messenger RNA reverse transcriptase ami semiquantitative RT-PCR

One microgram of total RNA was reverse transcribed and amplifled for 15 cycles

with die SMART PCR cDNA synthesis kit (BD Biosciences Clontech, Mississauga, ON,

Canada) as described (Ndiaye et ctÏ. 2005). The resulting cDNA pool was diluted to 50 tl

in TE bucfer (10 mM Tris pH 8, 1 mM EDTA), and 1 pi of the a]iquot was used in a

secondary 100 pi PCR reaction for 1$ cycles using the Advantage 2 DNA Polymerase

Mix (BD Biosciences Clontcch, Mississauga, ON, Canada) and the PCR primer

AAGCAGTGGTAACAACGCAGAGT.

Complernentary DNA from die secondary PCR reactions were diluted 1 0-fold in

TE buffer, and were used as template in subsequent semi-quantitative RT-PCR for the

target genes PN-l, PAT-1, tPA and ctPA. Table I summarizes the gene-specific PCR

primers used and PCR conditions. GAPDH was used as the housekeeping control

(Ndiaye et al. 2005). Briefly, an aliquot of 2 pi of the diiuted c.DNA was amplffied using

Advantage 2 DNA polyrnerase (0.6 pi) in a 25-pi PCR reaction containing 0.4 mM dNTP

mix, and 0.8 jaM specific primers (except for GAPDH, 0.4 tM). Target cDNA was

arnplified in a PCR thermal cycler (Applied Biosystems, Gene AMP® PCR System 9700,

Foster City, CA) under the following conditions: 1) an initial denaturation step for 1 min

at 95°C; 2) amplification cycles with denaturation at 95°C for 30 sec, aimealing for 45

sec at the temperatures indicated in Table 1 for each gene, and elongation at 68°C for 1.5

min. The number oC PCR cycles was optimized for each gene to be anaiyzed (sec Table
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1). The amplicons were separated on 1% agarose gel containing ethidium bromide, and

visualized under UV light. Quantification of band intensity was performed with NIH

Image software. Target gene mRNA abundance was normalized to GAPDH mRNA

abundance.

Experirnent 2. Healthy & atretic dominant follicles

Tissue collection

Ovaries were obtained from an abattoir local to the Sio Paulo State University

campus in Botucatu, and transported to the laboratory in saline on ice. Follicles ? 9 mm

in diarneter (and therefore post-deviation) were dissected from the ovaries, and follicular

fluid was aspirated, centrifuged and frozen for steroid, PN- 1 and PA assay. The antral

cavity was flushed repeatedly with cold saline and granulosa celis recovered by

centrifugation at 1200 g for 1 minute, and pooled with the follicular fluid celi pellet. The

rernaining granulosa ceils adhering to the follicle wall were removed by gently scraping

with a blunt Pasteur pipette, and pooled with the flushed cells. The theca layer was then

removed with forceps and washed in saline by passing repeatedly through a lrnL syringe.

Granulosa and theca ceil were collected into Trizol (Invitrogen; So Paulo, Brazil) and

hornogenized with a Polytron. Total RNA was extracted immediately according to the

Trizol protocol.

Follicles containing > 1 OOng oestradiol/ml and < 1 OOng progesterone/ml were

classified as nonatretic, those containing < 4Ong oestradiol/ml and < lOOng

progesterone/ml were classified as early atretic, and those containing < 4Ong

oestradiol/ml and > lOOng progesterone/ml were classified as atretic. These represent



149

mature dominant growing, static and regressing follicles, respectively (Price et al. 1995).

Cross-contamination of theca and granulosa ceils was tested by detection of mRNA

encoding cytochromes P450 aromatase (Cypl9) and 17Œ-hydroxylase (Cypl7) in each

sample by PCR (Buratini et al. 2005). OnÏy granulosa ceil samples negative for Cypl7,

and only thecal samples negative for Cyp 19 amplicons were included in the analysis.

Semiquantitative RT-PCR

PN-1, tPA, and uPA mRNA expression in granulosa ceils, and PAl-1, tPA, and

uPA mRNA expression in theca ceils were measured by semiquantitative RT-PCR.

Briefly, for both theca and granulosa cells, total RNA (1ig) was incubated with DNAse I

(Invitrogen) and reverse transcribed with SuperScript II (Invitrogen) and oligo-d(T)

primer (Buratini et al. 2005). An aliquot (0.4 pJ) ofthe cDNA template was amplified by

PCR using 0.2 il (2.5 U) Taq Polymerase (Amersham Pharmacia Biotech Inc., Oakville,

ON, Canada) in a 20-tl PCR buffer (Amersham Phanriacia Biotech Inc.) containing 0.1

mM dNTP mix, and 0.2 iM specific primers (Cao et al. 2004). Target cDNA was

arnplified under the following conditions: 1) an initial denaturation step for 3 min at 94°C,

except uPA which was for 5 min at 95°C; 2) amplification cycles with denaturation at

94°C for 15 sec (PN-1), 30 sec (uPA, tPA, PAT-1 and GAPDH) or 45 sec (H2a),

annealing for 30 sec for H2a and 45 sec for ail other genes, at the temperatures indicated

in Table 1, and elongation at 72°C for 1 mm; and 3) final elongation at 72°C for 5 min.

The number of cycles is given in Table 1.

Serniquantitative RT-PCR was validated for each gene product (Cao et al. 2004).

The PCR products (10 d) were separated on 1% agarose gels containing ethidium

bromide, and visualized under DV light. Quantification of band intensity was perfonned
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with NIH Image software. Target gene mRNA abundance was expressed relative to H2a

mRNA abundance in granulosa cells, and to GAPDH rnRNA abundance in theca celis.

Experiment 3. before and during follicle deviatïon
Experimentctl design

Seven heifers were first synchronized with two injections of PGF2Œ given 11

days apart. Ovulation and follicular development was rnonitored daily or twice daily by

transvaginal ultrasonography, and follicles were punctured as described (Ouellette et al.

2005) when the largest foïlicle of the first wave had reached 6.5, 7.5, 8.5 or 9.5 mm

internaI diarneter (referred to as ‘follicle stage’), corresponding to approximately 1, 1.5, 2

and 2.5 days after wave emergence (Ginther et al. 2001b). follicle deviation is expected

to occur when the largest follicle reaches 8.5 — 9 mm diameter (Beg et al. 2001).

Follicular fluid (FF) from the largest three follicles (Fi, F2 and f3) was collected

separately for each follicle (‘follicle rank’). Each animal was used once during a follicle

wave, and 5 to 6 days after follicular puncture each animal received a single injection of

PGf2cx to initiate ovulation and a new first follicle wave. Each animal was in this manner

sampled on four consecutive oestrous cycles. Only clear FF samples without blood

contamination were used. The FF was centrifuged for 15 min at 2000 g and the

supernatant frozen at -20°C until assayed for steroid concentrations, PN-1 content and PA

activity.

Casein zymography
Casein zymography was used to measure plasmin, tPA and uPA activity in

follicular fluid and ceil extracts as described (Cao et al. 2004). Briefly, 2 d of follicular
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fluid or 30ig celi protein were subjected to electrophoresis in 10% non-denaturing

polyacrylamide gels containing 0.2% casein (Sigma), 0.1% SDS and 3.75 mU/ml bovine

plasminogen (Sigma). After electrophoresis, gels were washed once in 2.5% Triton X-

100 for 45 min to remove SDS, and placed in incubation buffer (50 mM Tris, 0.1 M

NaC1 , pH 7.6) at 37°C for 16 h with gentle shaking. The gels were then stained using

0.05% Coomassie blue in 10% acetic acid, 40% methanol for 2 h, destained in 10% acetic

acid, 40% methanol, and then fixed in 10% glycerol. The identity of the enzyrnatic

activities was investigated by comparing molecular size with human tPA (Calbiochem,

Dannstadt, Germany) and uPA (NIBSC, Hertfordshire, UK) standards. Plasminogen-free

gels were used to confirrn that the activity detected was plasminogen dependent. Bands of

plasmin activity were visualized as clear zones where casein degradation occurred,

against a dark (blue) background. To correct for gel-to-gel variation, ail samples were

expressed relative to a control sample (conditioned medium) that was included in every

gel.

Western Blot

PN-1 protein abundance in follicular fluid and cell lysates was analyzed by

Western blot as described (Cao et al. 2004). Samples were subjected to electrophoresis in

10% denaturing polyacrylamide gels. Proteins were then electrotransferred onto

nitrocellulose membrane (0.45 m) (Bio-Rad, Hercules, CA) at 22 V overnight at 4°C in

transfer buffer (39 mM glycine, 4$ mM Tris-base, 0.037% SDS and 20% methanol, pH

8.3). After blocking for 1 h in TTBS (0.2% Tween 20, 10 mM Tris-HC1, 150 mM NaC1),

blots were incubated with 1:5000 rabbit anti-bovine PN-1 (Bédard et al. 2003) for 4 h
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with agitation, followed by three washes (10 min each) with 0.2% TTBS. The blots were

then incubated with 1:5000 alkaline phosphatase-linked anti-rabbit IgG (Sigma) for 1.5 h

with agitation, followed by three washes (10 min each) with TTBS. Finally, the blots

were incubated with NBT/BCIP solution (Roche Diagnostics, Indianapolis, IN). Rainbow

coloured protein molecular weight markers (Pharmacia, Piscataway, NI) were used to

estirnate molecular size of the target protein, and a bovine follicular fluid sample (2 d)

was used as positive control in all blots.

Steroid assays

Oestradiol and progesterone in FF fiom Experirnent 2 were assayed by

radioimmunoassay (RIA) using iodinated tracers and antibodies furnished in the 3rd

Generation Estradiol RIA (DSL 39100) and the DSL-3400 Progesterone RIA kits

(Diagnostic Systems Laboratories, Inc., Webster, Texas). The standard curves were

prepared from crystalline steroids (Signia Chemical Co) in PBS-gelatin (0.02 M sodium

phosphate, 0.15 M sodium chloride, 0.1% gelatin, 0.01% sodium azide, pH 7.5). The

assay protocols were as described in the kits, except that the oestradiol antibody and

tracer were each diluted 1:1 with PBS-gelatin before use, and the progesterone antibody

and tracer were diluted 3:2 and 7:3, respectively. FF samples were diluted in PBS-gelatin

before assay. Intra- and inter-assay coefficients of variation were 7.4 and 13.5%,

respectively for oestradiol, and 6.8 and 7% respectively for progesterone. The

sensitivities of the assays were 0.OSng!ml for oestradiol (at 1:25 dilution of FF) and

0.2ng/ml for progesterone (at 1:10 dilution).
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Concentrations of oestradiol in FF from Experiment 3 were analysed by RIA

using double antibody precipitation and charcoal absorption rnethods, respectively, as

validated for use with bovine FF (Carrière & Lee 1994, Price et al. 1995). Spiking fF

samples with 2pg/tube and 5 pg/tube of oestradiol gave 81% and 107% recovery,

respectively. Spiking FF samples with lOOpg/tube and 500 pg/tube of progesterone gave

115% and 97% recovery, respectively. Intra- and inter-assay coefficients of variation

were 5% and 10% for oestradiol, and 7% and 8% for progesterone, respectively.

Statistics
Data are presented as least-squares means ± SEM. Data were transformed to

logarithms when they were flot normally distributed (Shapiro-Wilk test). Ail analyses

were performed with JMP software (SAS Institute, Cary, NC). The data from

Experirnents 1 and 2 were analysed by ANOVA for effect of time (Expt 1) or follicle

class (Expt 2), with gel or blot included as random effect terms where samples were

analysed in several gels/blots. Where main effects were found, means comparisons were

perforrned by the Tukey-Kramer HSD test. In Experiment 3, data were analysed by 2-

way ANOVA with follicle stage & rank as main effects. Owing to the lack of normal

distribution of the oestradiol data, log oestradiol values were analysed for effect of

follicle rank within foïlicle stage. The time of follicie deviation was defined as the

earliest change in diameter between the largest follicle (Fi) and the second largest follicle

(F2). Correlations between PA activity or PN-1 secretion and FF steroid concentration or

follicle diarneter were assessed with Pearson’s product-moment correlation coefficient (r).
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Resuits

Experiment 1. hCG-induced periovulatory follicles

PN- 1, PAl-1, tPA, and uPA mRNA expression were determined in follicle wall

homogenates by RT-PCR. Abundance of mRNA encoding PN-1, PAl-1 and tPA ail

increased transiently after hCG injection (P<O.05; Fig. 1), reaching maximal values at 6h

after hCG, and returning to pretreatment levels by 24 h after hCG injection. The pattem

of uPA mRNA abundance differed from the other genes examined, as mRNA levels

increased following hCG administration and remained elevated at 24 h after hCG

injection (P<O.05; Fig. 1C).

To support the gene expression data, PN-1 protein and PA activities in granulosa

ceil lysates were measured. A major immunoreactive hand corresponding to PN-1 was

detected by Western blot in granulosa cdl lysates, and abundance of this protein hand did

not differ between 0, 12 or 24 h after hCG injection (Fig. 2A). Zymography demonstrated

an increase in proteolytic activity corresponding to plasmin (approxirnately 82 kDa) and

uPA (approximately 45 kDa) in preovulatory granulosa celi lysates after hCG injection

(P<0.05; Fig. 23), whereas tPA activity was weak to undetectable (Fig. 23).

Follicular fluid PN-1 protein content decreased with time after hCG injection,

reaching the lowest levels at 24 h after hCG (F<0.05; Fig. 3A). Plasmin activity in FF

increased after hCG (F<O.05; Fig. 3B) whereas uPA activity decreased (Fig 3B).

Proteolytic activity corresponding to tPA was flot detected in FF ofpreovulatory follicles.
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Experirnent 2. Healthy & atretic dominant follicles

Oestradiol and progesterone concentrations and diameters of the follicles in cadi

class are given in Table 2. Nonatretic and early-atretic differed by oestradiol content but

not by progesterone content or diameter; nonatretic and atretic follicles differed by

oestradiol and progesterone content, but flot by follicle diameter. Plasmin activity in FF

collected from nonatretic follicles was significantly lower than that in early-atretic and

atretic follicles (P<O.05; fig. 4A). uPA activity in ff did not differ between groups (Fig.

4A). tPA activity was not detectable in any the follicles examined. PN-1 protein

abundance in ff of nonatretic follicles was significantly higher than that of early-atretic

and atretic follicles (F<O.05; fig. 4B). Plasmin activity in FF was negatively correlated

with PN-1 content (r=r -0.6, P<0.05) but not with uPA activity (P>0.05).

Messenger RNA for tPA, uPA, and PN-1 were detected in granulosa celis. PN-1

rnRNA levels were lower in granulosa cells of early-atretic follicles than in those of

nonatretic and atretic follicles (P<O.05; Fig. SA), but there were no differences in tPA or

uPA mRNA levels. Messenger RNA for tPA, uPA, and PAT-1 were detected in theca

celis, and message levels did not differ significantly between groups (fig. 5B).

Overali, granulosa cell PN-1 mRNA abundance and Ff PN-1 protein abundance

were positively conelated with FF oestradiol concentrations (r=0.73 & 0.62, respectively;

P<0.01). Plasmin activity in fF was negatively correlated with ff oestradiol

concentration (r -0.65, P<0.01). Follicle diameter was correlated with granulosa celi

tPA mRNA abundance (r= 0.57, F<0.05) but with no other variable.



156

Experiment 3. before and during fotilcie deviation
Mean diameters and oestradiol and progesterone concentrations in the Fi, F2 and

F3 follicles are summarized in Table 3. A significant difference in diameter between the

largest (Fi) and second-largest (F2) follicle occurred when the Fi had reached 9.5 mm.

Oestradiol concentrations did not differ between the three largest follicles of a wave

when the Fi was 6.5 mm diarneter, but was significantly lower in the F3 compared to FI

at ail subsequent stages. Differences in oestradiol between Fi and F2 occurred only after

fotticle deviation. Progesterone concentrations did not differ between follicles at any

stage ofthe wave.

A single band corresponding to PN-i was detected in FF by immunoblotting, and

PN- 1 abundance did not significantly change with stage of the follicle wave or between

Fi, F2 or F3 follicles (Fig. 6A). Plasmin and uPA (but not tPA) activities were detected

in FF, and no differences was observed between follicle stages or rank (Fig. 6B).

However, uPA activity was correlated with FF oestradiol concentration and the

oestradiol:progesterone ratio in subordinate (F2: r = 0.65, F<0.00i; F3: r = 0.73, P<0.001,

for oestradiol:progesterone ratio) but not in dominant (Fi) follicles.

Discussion

The pattem of expression and potential role of PN- 1 during follicle growth is not

well known. In the present study, we measured PN-l and PA activity in bovine foiiicles

at three stages of follicle development. We dernonstrate that during the periovulatory

period the expression of PN-l is initially up-rcgulated by hCG, and then declines in a

pattern sirnilar to the expression oF PAl-l and tPA. Ibis profile of PN-1 expression

appears to differ from that observed in rodents, where no change in expression was
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observed until the onset of ovulation (H.gglund et al. 1996, Hasan et al. 2002), although

these are in situ studies that do flot lend thernselves well to quantification. We also

dernonstrate a potential role for PN-i in dominant follicle growth, as follicular protein

levels are higlier in nonatretic than in early-atretic and atretic foliicles.

We first measured the pattern of expression of PA system members in the follicle

wall in response to an ovulatory dose ofhCG, as the ovarian PA system is best known for

its role during ovulation. Follicular tPA, uPA, PAl-1 and PN-1 rnRNA abundance

increased sharply by 6 h after hCG, and mRNA levels declined thereafter except for uPA

rnRNA which remained high until the expected tirne of ovulation. Overali, these resuits

support previous studies in cattie (Dow et aï, 2002a, 2002b) in which tPA, uPA and PAl-

1 mRNA leveis were upregulated by an induced gonadotrophin surge. This is in contrast

to that observed in other species, in which only one PA was increased in response to the

gonadotrophin surge. for instance, oniy tPA in rats (Li et aÏ. 1997) and monkeys (Liu et

al. 2004) or uPA in mice (Macchione et al. 2000) and sheep (Colgin & Murdoch 1997)

was upregulated during ovulation. The specific time points when mRNA abundance

increased and then decreased is siightly different between the present study and the

previous studies (Dow et ctt. 2002a, 2002b), possibiy caused by the different rnethods of

inducing ovulation (hCG vs GnRH).

Changes in periovulatory PN-1 expression have not previously been described in

ruminants. in mice, granulosa ccli PN-1 expression generally did not vary throughout the

periovulatory period (Hgglund et al. 1996), although a decrease in immunostaining was

observed 12 h after hCG injection in PMSG-stimulated rats (Hasan et aï. 2002). The

present data clearly show a transient upregulation ofPN-1 expression within 6 h ofhGC
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treabnent, indicaling that PN-1 regulation in catie is different front that ofmdafl The

only comparable work in ruminants is a gene-profiling study that descnbed lower PN-l

expression in periovulatory follicles 24 h after hCG injections compaed to dominant

non-ovulatory fofficles on day 5 of die oesfrous cycle (Bédard et aL 2003). k rats, a

model was proposed kw the light regulalion of proteolylic aclivity in periovulatory

follicles, in which both œA and PAl-1 expression increase infflafly W generate high

levels of inhibited enzyme within the ffihlicle walI (Liu et aL 1987, Shen et aL 1997).

According to titis model, PAl-1 but not A expression then decreases, thus triggering

activation of accumulated tPA and degradation of the follicle wall. In cade, a modified

version of titis model can be proposed, in which there is an initial upregulation oftPA,

uPA, PAl-1 and PN-l, foliowed by a decrease in tPA, PAl-1 and PN-l expression while

maintaining uPA expression. The activation of accumulated PA in theca (owing to

reduced PAl-l expression) and granulosa (owing to reduced PN-1 expression) cells

would confribute to die proteolylic cascade at ovulation in titis species. fle ceil-specific

expression of PA inhibitors is physiologically relevant, as tPA expression is localized

predominandy W the granulosa layer in bovine follicles (Dow et aL 2002a), thus

regulalion of PN-1 expression is likely important to prevent precocious proteolytic

activity on die anfral side ofdie basal lamina

This model for die control of die proteolytic cascade at ovulation in cade is

supported by die increased uPA and pinsmin aclivity in granulosa ccli lysates observed

12—24 h afier hCG, at a lime when granulosa ccli PN-l protein levels were not different

from pretreahnent controls (sec Fig. 2). fle increase in plasmin acdvity in granulosa

cdils was reflected by an increase in FF plamnin acfivity. This is consistent widi die
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plasmin activity detected in sheep follicle walls (Murdoch 1998), but in contrast to a

previous study in cattie (Dow et aï. 2002a) in which fF plasmin activity increased in

GnRH-treated anirnas, but vas flot detected in the lysates of whoe follicle wall. The

reason for this discrepancy is unknown but may be related to the methods used to prepare

lysate samples and/or the tise of whole follicle wall compared to granulosa ceils. We also

observed an increase in uPA activity in granulosa cd lysates after hCG but a decrease in

activity in FF. This discrepancy may be caused by a redistribution of uPA to the ceil

surface or the ECM (Macchione et aï. 2000), specific regulation ofprotein secretion or a

consequence of theca secretion ofuPA.

The expression ofPN-i has been detected in srnall antrai fofficles (Haggiund et aï.

1996, Hasan et aï. 2002, Bédard et al. 2003) suggesting that it might play a role in follicle

growth prior to the preovulatory period. We explored this by measuring PN-i and PA

activity/expression in nonatretic and atretic dominant follicles, and during follicle

deviation early in the follicle wave. Changes in PN-1 or PA activity in FF were flot

detected during the growth of the follicle cohort before deviation, even though ff

oestradiol content increased in the largest follicle and decreased in smaller follicles of the

cohort. Interestingly, uPA activity in ff was positively correlated with follicle oestradiol

content in subordinate follicles early in a follicle wave but flot in the largest, presumably

dominant follicle of the cohort. This suggests that the oestrogenic subordinate follicles

may be growing or have the potential to grow, and thus have different requirements for

ECM remodeling and uPA activity than the less-oestrogenic subordinate follicles whose

growth may have ceased. In support of this, it has been demonstrated that larger

subordinate follicles have the capacity to develop into dominant follicles if the existing
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dominant follicle is ablated (Ginther et al. 2001a). The dominant follicle is actively

growing and therefore would be expected to undergo constant ECM remodeling

irrespective of oestradiol content, which might explain the absence of a correlation

between oestradiol and uPA in the dominant follicle. The absence of changes in PN-1

protein or expression in pre-deviation follicles suggests that PN-1 may not be tightly

regulated prior to deviation, or may not play a role at this stage of developrnent.

In dominant follicles, however, PN-1 may be regulated and/or play a more

important role. follicle fluid PN-1 content was lower in early-atretic and atretic follicles

compared to nonatretic follicles, and FF plasmin activity was correspondingly higher in

the early-atretic and atretic follicles. Plasmin activity in Ff appears to be regulated by

PN-1, as plasmin activity was correlated with PN-1 but flot uPA, and uPA activity did flot

change significantly with follicle health. Decreased PN-1 expression and increased

plasmin activity in early-atretic follicles may be related to ECM remodeling during the

onset of atresia. Also, PN- 1 bas been suggested as an anti-apoptotic factor in adherent

celÏs, as it inhibited plasminogen activation-induced anoikis in these celis (Rossignol et al.

2004). Atresia in dominant bovine follicles is characterized by apoptosis and detachrnent

of granulosa celis near the antrum (Irving-Rodgers et ctl. 2001). Therefore it is possible

that certain endocrine or paracrine signais may inhibit PN-1 synthesis and or secretion

from dominant foflicles at the end oftheir growth phase, and these lowered PN-l levels

may initiate or facilitate the onset of atresia in the membrana granulosa.

In summary, PN-1 expressionlsecretion changes in a mairner dependent on stage

of follicle development. Specifically, no changes in PN-1 or PA activity were observed

during the growth of follicles early in the follicle wave before follicle deviation occurred,
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suggesting a minor role if any for these proteins before foliicle deviation. In dominant

foliicles however, PN-1 levels in FF were lower in atretic compared to nonatretic

dominant follicles, and was inverseiy correlated with follicle plasmin activity. We

suggest that PN-1 may be involved in the onset of atresia in nonovulatory dominant

foilicles. In periovulatory follicles, PN-1, PAl-1, tPA and uPA mRNA levels were

transiently upregulated by hCG, and ail decreased at the expected time of ovulation

except for uPA which remains elevated. These data support a role for PN-1 in preventing

precocious proteolysis in the granulosa cell layer before ovulation.
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Table II. Oestradiol and progesterone concentrations, and mean diarneters of follicles in

nonatretic, early-atretic and atretic follicles in Experiment 2.

Follicle class Diameter
Oestradiol Progesterone

mm (range) ng/rnl (range) ng/rnl (range)

Nonatretic 11.6±0.8 a 1392+687a 33±2a

(10-14) (396-4084) (28—38)

Early-atretic 97±06a 1306b 34±6a

(9- 13) (0.6—4.6) (18—63)

Atretic 10.0±0.6a 20786b

(9-11) (0.4—31.0) (106—465)
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Table III Mean (± SEM) diameter and follicular fluid steroid content ofthe dominant (fi) and

the two largest subordinate follicles (F2, F3) collected early in a follicle wave, when the

dominant foïlicle reached approximately 6.5, 7.5, 8.5 or 9.5 mm diameter (Expt 3).

Follicle stage follïcle Diameter
Oestradiol Progesterone

(mm) rank (mm) (ng/ml)t (ng/ml)

6.5 F1 6.5±0.1 114±33 29±6

F2 6.1±0.3 68±17 30±8

F3 5.6±0.3 40±18 61±41

7.5 F1 7.4±0.1 226±42a 37±8

f2 6.5±0.1 127±51 ah 29±6

f3 5.7±0.2 32±6 b 23±5

8.5 Fi 8.2±0.5 423±i24a 30±6

F2 6.8±0.6 168±68a 26±4

f3 6.4±0.6 1410b 60±28

9.5 F1 9.7±0.1 * 682±45 a 46±6

F2 6.8±0.3 3±1 b

F3 6.1±0.1 118b 19±5

tWithin follicle stage group, different superscripts denote differences between Fi, F2 and F3

follicles (P<0.05). * Fi follicle was significantly differerent from F2 follicle.
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Figure 1 Analysis of A) PN-1, B) PAT-1, C) uPA, and D) tPA mRNA expression in follicular

wall lysates of preovulatory follicles by RT-PCR (experiment 1). Total RNA was extracted

from bovine preovulatory follicle walls collected at 0, 6, 12, 18, and 24 hours after hCG

injection, and was ernployed in mRNA expression analyses as described in Materials and

Methods. GAPDH was used as a control gene, and showed no significant difference in

expression levels between samples (shown in panel A). Data are least-squares means (relative

units) + SEM of two animals. Different letters denote means that are significantly different

(P<0.05).
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Figure 2 Analysis of A) PN-1 protein content and B) proteolytic enzyme activities in

granulosa ceil lysates from periovulatory bovine follicles at 0, 12, and 24 hours after hCG

(experirnent 1). For PN-1, samples (5Oig ceil protein) were subjected to SDS-PAGE followed

by blotting with an antibody raised against bovine PN-1. PA activity was measured in aliquots

of 3Otg ce!! protein by casein zymography. The zymograph presented in pane! B shows lytic

zones produced by human recombinant uPA standard (uPA) and samples collected at 0, 12 and

24 h after hCG injection. Location ofplasrnin, tPA and uPA activities are indicated to the right

of the zymograph. Different contrast and brightness settings were used for uPA and plasmin

image capture, and a!though the data are plotted on the same axis, uPA activity was

significant!y weaker than plasmin activity. Data are !east-squares mean densitometry units +

SEM of two anima!s. For each enzyme, different letters denote means that are significant!y

different (P<0.05).
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Figure 3 Analysis of A) PN-1 protein content and B) proteolytic enzyme activity in follicle

fluid collected from periovulatory follicles at 0, 6, 12, 18, and 24 hours after hCG (experiment

1). The representative Western blot (for PN-1) and composite zyrnograph (for uPA and

plasmin activity) presented show data for one animal at each time point, plus the control (Ctrl)

sample (follicle fluid) used in Western blotting. Iniage capture parameters for plasmin and uPA

activity were different owing to the significantly weaker uPA activity. Results shown represent

least-squares means + SEM densitometry units of two animais. For each enzyme, bars with

different letters are significantly different (P<0.05); * mean different from time O (P<0.05).
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figure 4 Plasmin and uPA enzyme activities (A) and PN-1 protein (B) in follicle fluid from

nonatretic (n=7), early-atretic (n=7) and atretic (n=4) follicles (experiment 2). follicle

classification is described in Materials and Methods. Inserts are zymographs (A) and Western

blots (B) showing raw data for ail follicles. Lanes rnarked ‘C’ are control samples used to

correct for variation between gels. Data are least-squares means (relative units) ± SEM. Bars

with different letters are significantly different (P<O.05).
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Figure 5 RT-PCR analysis of rnRNA expression of PA and PA inhibitors in (A) granulosa and

(B) theca ceils from nonatretic (n=7), early-atretic (n=7) and atretic (n=4) follicles (experiment

2). Follicle classification is described in Materials and Methods. Inserts are composite images

of agarose gels showing all samples. Data are least-squares means (relative units) ± SEM.

Group means that differed are indicated by an asterisk (P<O.05).
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Figure 6 PN-1 protein (A) and uPA enzyme activity (B) in follicular fluid samples collected

from growing dominant (Fi) and subordinate (F2, F3) follicles during the first follicle wave

(experirnent 3). Follicle fluid was collected by ultrasound-guided aspiration when the dominant

follicie reached approximately 6.5, 7.5, 8.5 and 9.5 mm diameter (follicle stage). Inserts are

representative Western blots (A) and zyrnographs (B). Data are least-squares means (relative

units) + SEM of seven animais at each follicle stage.
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GENERAL DISCUSSION

Interaction ofPN-i with EC’M conîponents.- biologiccil i-ole oJPN-]

Together with the literature, die present study suggests that PN-1 may contribute to

follicle development through modulating proteolytic enzyme activity during follicle growth.

Furthermore, as PN-l is a broad-spectrum serine protease inhibitor of tPA, uPA, plasmin,

trypsin and thrornbin, it may be an important specific regulator of proteases activities in the

peri-cellular environment, although the biological role ofPN-1 has not yet been defined.

Previous studies show that PN-1 can be regulated in terms of activity, specificity and

localization by ECM associated proteins. Secreted PN-1 binds tightly to proteins present in

ECM such as collagen IV and heparan sulfate (Donovan et al., 1994), which regulate both its

activity and its target protease specificity. At the cell surface, PN-1 forms SDS-stable

equimolecular complexes with its target proteases (Baker et al., 1980). Once formed, the

complexes are rapidly internalized and degraded (Low et al., 1981). In this study, multiple

bands (see Appendix) are immunostained with bovine PN-1 antibody in GC lysates from small

follicles and large growing follicles by Western analysis, whereas a single band (approximately

47 kDa, secreted fonri) is detected in GC lysates from preovulatory foïlicles (Fig 2, Study 3).

Multiple bands likely refer to different cell-associated forms of PN- 1, corresponding to the

complex of PN-1 and its substrate (148 kDa), putative degradation products of this complex

(88 kDa, 58 kDa and 52 kDa), secreted PN-l (45 kDa) and a possible degraded protein (36

kDa). We speculate that hCG may affect PN-1 redistribution within cells. The intracellular

localization ofPN-1 needs to be further examined.

Donovan et al. report that PN-1 inhibits thrombin even when bound to collagen W, but

has less inhibitory effect on uPA and plasmin (Donovan et al., 1994). However, Crisp et al.
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find that PN-1 remains a potent uPA inhibitor in the presence of collagen W (Crisp et al.,

2002), and suggest that the disagreement between studies results from the PN-1 purification

protocol (Donovan et al., 1994), by which PN- 1 is eluted from a monoclonal antibody column

where exposed to acidic conditions, that affects PN- 1 allosteric interaction with collagen IV,

and leads to alter protease specificity.

Moreover, PN-1 has a heparin-binding site, heparin greatly accelerates the rate of

linkage between soluble PN-1 and its substrate thrombin (Baker et al., 1980). Binding ofPN-1

to heparin-like GAG accelerates its interaction with thrombin by 1 000-fold, making PN- 1 a

more efficient inhibitor of thrombin than uPA and plasmin (Crisp et al., 2002). Recently,

thrombin lias been shown to down-regulate PN-1 expression in a dose- and time-dependent

manner in rat aortic smooth muscle ceils, and this effect is mediated via the interaction of

thrornbin with its receptor protease activated receptor (PAR-1) (Richard et al., 2004).

In addition, bovine GC possess thrornbin receptor (PAR-1) rnRNA, and celis from

srnall follicles possess more PAR-1 mRNA than cells from large follicles (Roach et ciL, 2002).

Thromhin induces cellular responses in both vascular and avascular tissues, therefore, a

functional thrombin system bas been suggested in bovine ovarian follicle. The high and co

localized expression ofPN-i and PAR-1 in GC ofhealthy growing follicles suggest that PN-l

may be a modulator of ovarian Ff coagulation cascade (Gentry et al., 2000) via inhibiting

thrornbin activity, together with PAR-i.

Ceil culture model

The serum-free estrogenic GC culture model developed in cattle (Gutiérrez et al., 1997)

provides us a tool to study GC proliferation & differentiation, and hormonal regulation of cell
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function as well. F$H and insulin are essential for inducing and maintaining ccii viability and

estradiol production in this culture system, and IGF-I also induces! stimulates cell proliferation

and estradiol production (Gutiérrez et al., 1997). FSH in the presence of insulin stimulates

estradiol production and ccli proliferation in a dose-dependent manner as previously observed

(Gutiérrez et al., 1997; Glister et al., 2001). Furthermore, the induction of celiular

differentiation and re-estabiishrnent of ceil-ceil communication (celi ‘clump’ formation) in

culture is obtained by increased FSHr and type I IGF receptor in the presence of FSH and IGF

I (Marsters et al., 2003). Based on this understanding, we test FSH and LR3-IGF-I dose

responses separateiy in GC from smaii antral foliicles. However, in the present study, the effect

of FSH on estradiol secretion does not follow the biphasic pattem previousiy described

(Gutiérrez et al., 1997; Siiva & Price, 2000; Glister et al., 2001). Gutiérrez et al. find that

lng/mi FSH stimulates maximal estradiol production whereas lOng/ml FSH stirnulates

maximal ccli proliferation (Gutiérrez et al., 1997). Glister et al. report that 0.33ng/mi FSH

stimulates maximal estradiol production and that 3ng/ml FSH stimulates maximal ceil

proliferation (Glister et al., 2001). In the present study, lOng/ml stimulates cell proliferation,

whereas maximal estradiol secretion occurs with a high dose of FSH. Obviousiy, the different

culture conditions result in these differences. One possible expianation is that different cell

densities are used. Cell density plating in culture is suggested to be a criticai determinant for

celi response (Marsters et al., 2003). We plate 1 million viable celis in 1 ml media per well in

24-weii plate, with a density of around 500 x i0 ceiis per cm2, which is more than double of

that used (50-75 X i0 ceils in 250ti media per weii in 96-well plate) in the previous studies

(Gutiérrez et al., 1997; Giister et al., 2001). Androstenedione, a precursor of estradioi, is

suggested to increase estradiol accumulation in cuitured bovine GC (Hamel et al., 2005).

Therefore, another possible reason is that we increase androstenedione in culture medium 10-
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fold from Day 2 of culture compared to the previous studies (Gutiérrez et al., 1997; Glister et

al., 2001). In terrns of celi proliferation, different methodologies are used to measure celi

growth (DNA synthesis in present study vs. celi numbers in previous studies). Progesterone is

also stimulated by FSH in the present study and Glister’s study, whereas Gutiérrez and

colleagues do flot show their progesterone data (Gutiérrez et al., 1997).

Do GC ut culture need EC’Mproteins?

The ECM provides a structural tissue support, and forms barriers between tissue

compartrnents. Adhesion to ECM regulates the survival, proliferation and differentiation of

numerous ceil types in many tissues (Streuli & Gilmore, 1999). In the ovary, changes in ECM

that occurs during follicle growth may in consequence alter the amount and/or type of protease

activity secreted and granulosa steroidogenesis. In vitro studies have previously shown that

ECM can modulate GC function, for example, ECM stimulates bovine GC proliferation and

progesterone secretion in response to FSH (Savion et al., 1981). Bovine GC in culture can also

synthesize a basal lamina, which at least contains collagen IV and fibronectin (Rodgers et al.,

1995; Rodgers et ctl., 1996), providing a possible model to study the origin of ECM proteins

and as well as the interaction of ECM proteins and GC function.

It has been shown that collagen type I levels within the GC layer increase significantly

during follicÏe development in sheep (Huet et al., 1997) and that estradiol secretion from ovine

GC of large follicles is diminished when cultured in the absence ofcollagen (Huet et al., 2001).

Thus, the cells of large follicles in the present study may have an increased requirement for

collagen type I which is flot met by the ctilture conditions, resulting in reduced estradiol (but

not progesterone) secretion (present study). The cellular response to this collagen deprivation
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may therefore be a reduction in the normalÏy high secretion of PN-1, in order to increase

extracellular protease activity and alter the local ECM structure.

The addition of heparin to cultured GC reduces ceil proliferation and progesterone

secretion but enhances estradiol secretion in sheep (Huet et al., 2001). However, it remains to

be determined whether the change in GC function resulting from heparin treatment is directed

by the change in cell shape, or involves other mechanisms. One possible explanation is that the

addition of excess heparin to the cultured cells likely disturbs the action of endogenous

heparin-binding growth factors such as fGf-2, which inhibits estradiol production by

regulating its bioavailability (Ruoslahti & Yamaguchi, 1991).

Although the role of growth factors in regulating the ovarian cell proliferation and

differentiation has been extensively examined, the mechanisrns controlling the bioavailability

and activity of growth factors are less well understood. Growth factors are often secreted and

sequestered in the ECM in an inactive form or in associated with their specific binding

proteins, and can be subsequently released by proteolysis of ECM (Flaurnenhaft & Rifldn,

1992; Logan & Hill, 1992). MMPs are shown to release bioactive fGF molecules bound to

HSPGs in the ECM (Tamura et al., 1996). It is of interest to test if PN-1 and PAs regulate the

bioavailability and activity of growth factors, including FGF-2 and IGF-I.

Collectively, ECM proteins influence basic cellular process such as proliferation,

differentiation, migration and adhesion, they are involved in the control of ovarian follicular

development, and modulate interactions between growing follicles and surrounding connective

tissue.
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Growth factor & follicle growth. BMP- 7 as an exampÏe

Antral follicle growth is under gonadotropic control (Campbell et al., 2003). A number

of locally produced growth factors are known to modulate follicle development. These growth

factors include the IGF system, the TGFI3 superfamily including BMPs, the fGf family, and

EGF/TGfŒ. In cattie, growth of follicles from 2 mm to approximately 5 mm in diameter

(recntitment) and above is characterized by induction of nRNA expression for P45Oscc and

P45Oarom in GC, and around the time of selection ofthe dominant follicles (approximately 8-9

mm in diameter) LHr and 3f3-H$D mRNA expressions can be detected in GC (Bao &

Garverick, 1998). In the present study, we do flot examine steroidogenic enzyme mRNA and

protein expression, but measure steroid secretion and celi proliferation instead. We also report

that the proteolytic enzymes, the PAs and their specific inhibitor PN-1 are differentially

regulated by FSH, IGF-I, BMP-7, FGF-2 and EGf. Overail, these resuits indicate that

intraovarian factors, acting in concert with FSH, play a role in follicular growth. However, the

exact mechanisms through which these factors operate and degree of redundancy and! or

compensation need to be elucidated in the future.

The abitity of growth factors to influence PA activity in ovarian ceils is poorly

docurnented. Here I present BMP-7 as an example to discuss the functional link between a

growth factor and follicle development. A previous study shows that BMP-7 can promote the

recruitment of primordial follicles into the growing follicle pooi in rats (Lee et al., 2001).

BMP-7 derived from adjacent larger follicles may stimulate this transition through enhancing

GC mitosis, as rat primordial follicles do not express BMP-7. Theca-interstitial cells of

secondary follicles start to express BMP-7, in particular those celis near the basal lamina ofthe

growing antral and dominant follicles (Erickson & Shimasaki, 2003; Glister et al., 2004).

Granulosa ceils of this stage of follicle express BMP type II receptor (BMPR-II) and activin
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type II receptor (ActR-II) required for BMP-7 action on GC (Shimasaki et al., 1999; Souza et

al., 2002; Glister et al., 2004). Therefore, a functional BMP system is suggested during follicle

development. We report here that BMP-7 stimulated tPA and PN-1 secretion in GCs, providing

a new insight on the functional role of the intrinsic ovarian BMP system. Together with others,

we speculate that BMP-7 might be a stimulator of follicle growth, at least in part, through

increasing tPA and PN-1 secretion by GC.

A wotking inoclel: FA’—] & FA in ovulation ancifoïticle gmwth

Ovulation is associated with a number of spatially and temporaliy expressed genes

including specific proteases that degrade the follicle wall (Robker et ctl., 2000a). Over the years,

several unes of indirect evidence suggest that both MMPs and the PA system are important for

generating the proteolytic activity required for ovulation (Curry & Osteen, 2003). However,

ftmctional studies using KO mice suggest the PA system is less important for ovulation

(Carmeliet et ciL, 1994; Leonardsson et al., 1995; Murer et al., 2001). Interestingly, the PA

system is proposed to activate pro-MMPs at the ceil surface (Murphy et aï., 1999a). The

activation of MMPs can be regulated by a balance between serine proteases such as uPA and

the PAis (Nagase & Woessner, 1999; Murphy cl al., 1999b). The coordinated expression of

tPA and PAl-i is docurnented in preovulatory follicies in rats and rnonkey (Liu et al., 1987b;

Shen et aÏ., 1997; Liu et aÏ., 2004), but not in cattie (Dow et aï., 2002a; Dow et ctl., 2002b).

Results in the present study indicate that PAl-1 and PN-l, tPA and uPA may participate in

proteolysis and subsequent follicular wall degradation during ovttlation in cattie.

Ovulation, like other acute inflarnmatory reactions, is cornplicated by paradoxical

metabolic process that sirnultaneously causes tissue damage and repair. Espey and Richards

(2002) consider that protein products of genes expressed in granulosa layer might be
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responsible prirnarily for destruction of the follicle wall, whereas the products of genes

transcribed in the theca tissue and ovarian stroma might be more relevant to the healing process

(Espey & Richards, 2002). Our data, together with others (Higglund et al., 1996; Hasan et al.,

2002; Bédard et al., 2003) challenge this consideration, as granulosa PN-1 and theca PAT-1

provide a “two-layer protection system”. The “protection concept” is also supported by the

statement that protease inhibitor such as PAT-1, expressed in theca celis possibly act as a

protective shield to ensure that toxic levels ofcornpounds do flot reach the GC or the oocyte at

an inopportune time (Richards et cii., 2002).

Tissue remodeling is also important for the growth and developrnent of small follicle.

In nature, there must be interactions between two PAs and two PAIs to mediate proteolysis that

tissue remodeling requires during follicular development. Stimulation of plarninogen activators

enzymatic activity restiits in an increase in proteolysis and subsequent ECM degradation,

whereas stimulation of plarninogen activator inhibitors result in localizing or lirniting the

region where proteolysis take place; as plasminogen is present in ail body fluids, plasminogen

activation needs to be restricted. in contrast, inhibition of PAIs facilitates proteolysis. The role

oC PA and PN-1 in follicle growth is unknown. In the present study, increasing tPA activity

may facilitate proteolysis, whereas increasing PN- 1 in non-luteinizing GC may prevent

unrestrained tissue degradation and localize the proteolysis to the follicular basement

membrane that are required for follicle growth.

furtherrnore, there is a switch from uPA to tPA activity during follicle growth (Karakji

& Tsang, Ï995a), suggesting tiPA and tPA may differently contribute to foilicle development.

If we compare the roles of the PA system in follicles and with that in CL, we find that uPA

mainly involves in tissue remodelling (a chronic and mild process) such as follicular growth or

CL formation, whereas tPA mainly involves in tissue degradation (a transient but vigorous
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process) such as ovulation or CL regression. This concept is supported by the findings in the

present study, in which GC uPA content decrease as follicles develop (study 1), and uPA is

present in growing follicles and decrease after hCG injection (study 3). AÏthough follicular

devetopment is complex, to sirnplify this question, we hypothesize that two PAs (tPA and

uPA), two PAIs (PAl-l and PN-1), two ccli types (granulosa and theca celis), and two

partnerships (uPA regulated by PN-l and tPA regulated by PAl-l) are systemica]Iy involved in

this process. The working models on the PA system during follicular growth and ovulation are

illustrated in Fig 1 and Fig 2, respectively.
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PAs PAIs

FSH would stimulate GC proliferation and estradiol secretion (path a), which in turn stimulate

tPA & uPA secretion (path b), and regulate the expression ofPN-1 in GC and PAl-1 in thecal

ceils (path e). The PA activities would facilate remodeling of the thecal ECM and expansion of

the basement membrane as the GC proliferate (path c). In addition to directiy control ECM

remodeling, the PA system may act to regulate the bioavaiiabiiity of growth factors such as

IGFs, reieased from IGFBPs degradation (path d) to further stimulate foilicular growth.

Whereas PN-1 in GC and PAl-1 in theca celis provide control for the extent PA action (path f).
Possibly, changes in PN-1 expression may be correlated with ccli proliferation or

steroidgenesis during follicular growth (path g). Note GC PN-1 and theca PAl-1 may provide a

“two-layers” protection system in foilicie growth.

(Modfiedfrom tue illustration on MMP systein by

Curry & Osteen, 2003. Endocrine Reviews, 24: P442)

Fig 1. A working model for the PA system in follicular growth.
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Fig 2. A working model for the PA system during ovulation.

LH initiates a series ofbiochemical events (path a) that stimulate progesterone (P4) and PGs

(path b). These mediators induce tPA & uPA production (jath d) in granulosa and theca (path

c), and initially upregulate and followed an inhibition ofthe expression PN-1 in GC and PAT-1

in theca ceils (path f). PA convert plasminogen to plasmin, its action would degrade the

follicular apex (path e) allowing oocyte release. PN-1 and PAT-1 may act to control PA activity

at the follicular apex (path g) while protecting the basal portion ofthe follicle (path h).

(Modifiedfront the illustration on MMP system by

Curiy & Osteen, 2003. Endorme Reviews, 24: P436,)

PA PAl

+tPAuPA

PN-1
PAt-1



192

FUTURE STUDY

The present study provides a number of new insights into our understanding of the

physiological function of PN- 1 during follicle growth and ovulation. Further studies need to be

calTied out in the following issues:

1) The molecular mechanism ofFSH and growth factor action on PN-1 expression in

GC;

2) Intracellular PN-1 localization and redistribution in GC from periovulatory follicles

by irnmunocytochemistry (1CC) andlor irnmunohistochemistry (IHC); and/or PN- 1

rnRNA localization in these celis by in situ hybridization;

3) Improvement of celi culture model, such as adding oocytes in the current GC

culture system to investigate the effect of crosstalk between oocyte and GC on PN- 1

expression and secretion, as well as the effect of PN-1 on in vitro oocyte

maturation. Previous studies demonstrated that oocytes secreted tPA (Liu et al.,

1986), and contained PN-1 in mice (Higglund et al., 1996).

4) Co-culture granulosa-theca to elucidate the interactions between them;

5) Use ECM components such as collagen I, IV, fibronectin, heparin, thrombin to

study their interaction with PN- 1.
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GENERAL CONCLUSSION

We have demonstrated that secretion of tPA and PN-1 from GC and ce!1-associated

uPA activity are regulated in a follicular stage dependent manner in cattle. There appear to be

several differences between rodents and cattie in terms ofPA secretion, but a common theme is

a decrease in GC uPA content as follicles develop. During the first 2 days of culture, this

decrease in cell-associated uPA activity occur as PN-1 secretion increased, suggesting a

functional link between these two proteins during follicle development. As PN-1 is the only

known PA iiihibitor secreted by the GC layer, it may play an important role in tissue

rernodeling ofthis follicular compartment during early follicle growth.

The present study provides comprehensive evidence for the regulation by FSH and a

number of growth factors on gene expression and secretion of members of the plasminogen

activator system by bovine GC in vitro. Overali, fSH, IGf-I and BMP-7 had a stirnulatory

effect on ce!! proliferation, estradiol production, and PA and PN-1 secretion. In contrast, FGF

2 had an inhibitory effect on estradio! production, and on tPA and PN-1 secretion. EGf

inhibited estradio! production, cell proliferation and PN-1 secretion but enhanced tPA

secretion. These data support a role for these proteins in follicle development. The divergent

effect of those hormones and growth factors on PA activity suggests mechanisms for precise

control for ECM rernodelling in proliferating and differentiating GC during follicu!ar growth.

We report that the rnRNA abundance of PN-1 was initial!y upregulated following an

inhibition by hCG in follicu!ar wall of bovine preovulatory follic!es. Gene expression and PN

1 concentration in FF decreased in ovulatory follicles at the tirne of ovulation. In addition, PN

1 is expressed in GC throughout follicular deveÏopment but is flot a good marker for fol!icle

deviation. Although PN-1 is flot an essentia! factor in ovulation, as mice lacking this gene are
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fertile or subfertile, GC PN-1 together with theca PAl-1 may provide two layers of protection

against excessive plasmin formation during follicle growth and ovulation.

Collectively, the hormonal regulation of the PA system in GC is complex. The

expression of PN-1 in bovine GC is developrnentally and hormonally regulated during

follicular growth and ovulation. As the estrogenic cultured GC mimics a “follicular” phenotype

under the serum-free conditions, we conclude that fSH, IGf-I, and other growth factors

examined in this study coordinately control net PA activity through a balance of stimulation or

inhibition in GC, which subsequently modulate tissue remodeling during follicular growth and

ECM degradation during ovulation.



195

General References

Adams, G. P., Evans, A. C. & Rawlings, N. C. (1994). Follicular waves and circulating
gonadotrophins in 8-month-old prepubertal heifers. JReprod fertil 100, 27-33.

Aguirre Ghiso, J. A., Kovalski, K. & Ossowski, L. (1999). Tumor domancy induced by
downregulation of urokinase receptor in human carcinoma involves integrin and MAPK
signa]ing. J Ceit Bio! 147, 89-104.

Akkoyunlu, G., Demir, R. & Ustunel, I. (2003). Distribution pattems ofTGF-alpha, laminin
and fibronectin and their relationship with folliculogenesis in rat ovary. Acta Histocheni 105,
295-301.

Alberts, B. (1983). Molecular biology ofthe ce!!. New York and London: Garland Publishing

Inc.

Allegrucci, C., Hunter, M. G., Webb, R. & Luck, M. R. (2003). Interaction of bovine

granulosa and theca ceils in a novel serum-free co-culture system. Reproduction 126, 527-53 8.

Amsterdam, A., Dantes, A., Hosokawa, K., Schere-Levy, C. P., Kotsuji, F. & Aharoni, D.

(1998). Steroid regulation during apoptosis ofovarian follicular celis. $teroids 63, 314-318.

Andreasen, P. A., Georg, B., Lund, L. R., Riccio, A. & Stacey, S. N. (1990). Plasminogen

activator inhibitors: hormonally regulated serpins. Mol Ce!! Endocrinol 68, 1-19.

Armstrong, D. G. & Webb, R. (1997). Ovarian follicular dominance: the role ofintraovarian

growth factors and novel proteins. Rev Reprod 2, 139-146.

Asem, E. K. & Novero, R. P. (1994). Stimulation of fibronectin production and deposition by

chicken granulosa celis in vitro by epideniial growth factor and transforming growth factor

alpha. J Reprod Ferti! 101, 375-384.



196

Asselin, E., Xiao, C. W., Wang, Y. F. & Tsang, B. K. (2000). Mammalian follicular

deveiopment and atresia: role ofapoptosis. Biol Signais Recept 9, 87-95.

Auletta, F. J. & Flint, A. P. (1988). Mechanisms controlling corpus luteum function in sheep,

cows, nonhuman primates, and women especially in relation to the time of luteolysis. Endocr

Rev 9, $8-105.

Bacharach, E., Itin, A. & Keshet, E. (1992). In vivo pattems of expression ofurokinase and

its inhibitor PAl-1 suggest a concerted foie in regulating physiologicai angiogenesis. Froc Nati

AcadSci USA 89, 10686-10690.

Bagavandoss, P. (1998). Differentiai distribution of gelatinases and tissue inhibitor of

rnetaiioproteinase-1 in the rat ovary. JEndocrinoi 158, 221-228.

Baker, J. B., Low, D. A., Simmer, R. L. & Cunnïngham, D. D. (1980). Protease-nexin: a

cellular component that iinks thrombin and plasminogen activator and mediates their binding

to celis. Ceii 21, 37-45.

Bakke, L. J., Dow, M. P., Cassar, C. A., Peters, M. W., Pursley, J. R. & Smith, G. W.

(2002). Effect ofthe preovulatory gonadotropin surge on matrix metaiioproteinase (MMP)-14,

MMP-2, and tissue inhibitor ofmetalioproteinases-2 expression within bovine periovuiatory

follicular and luteai tissue. Biol Reprod 66, 1627-1634.

Balbin, M., Fueyo, A., Lopez, J. M., Diez-Itza, I., Velasco, G. & Lopez-Otin, C. (1996).

Expression of collagenase-3 in the rat ovary during the ovulatory process. JEndocrinoi 149,

405-415.

Balcerzak, D., Querengesser, L., Dixon, W. T. & Baracos, V. E. (2001). Coordinate

expression ofmatrix-degrading proteinases and their activators and inhibitors in bovine

skeletal muscle. JAnini Sci 79, 94-107.



197

Bao, B. & Garverick, H. A. (1998). Expression of steroidogenic enzyme and gonadotropin
receptor genes in bovine follicles during ovarian follicular waves: a review. JAnim Sci 76,
1903-1921.

Bao, B., CaMer, M. D., Xie, S., Smith, M. F., Salfen, B. E., Youngquist, R. S. & Garverick,

H. A. (1998). Expression of steroidogenic acute regulatory protein messenger ribonucleic acid
is limited to theca of healthy bovine follicles collected during recruitment, selection, and
dominance of follicles of the first follicular wave. Biol Reprod 59, 953-959.

Bedard, J., Bruie, S., Price, C. A., Siiversides, D. W. & Lussier, J. G. (2003). Serine

protease inhibitor-E2 (SERPINE2) is differentially expressed in granulosa celis of dominant

follicle in cattie. Mol ReprodDev 64, 152-165.

Bédard, J., Brûlé, S., Price, C. A., Silversides, D. W. & Lussïer, J. G. (2003). Serine

protease inhibitor-E2 (SERPINE2) is differentially expressed in granulosa celis of dominant

follicle in cattie. Mol ReprodDev 64, 152-165.

Beers, W. H., Strickiand, S. & Reich, E. (1975). Ovarian plasminogen activator: relationship

to ovulation and hormonal regulation. Ceil 6, 387-394.

Belirendt, N., Plong, M., Pattliy, L., Houen, G., Blasi, F. & Dano, K. (1991). The ligand

binding domain ofthe ce!! surface receptor for urokinase-type plasminogen activator. JBiol

Chem 266, 7842-7847.

Beikïn, A. M. & Stepp, M. A. (2000). Integrins as receptors for laminins. Microsc Res Tech

51, 280-301.

Binnema, D. J., Dooijewaard, G. & Turïon, P. N. (1991). An analysis ofthe activators of

single-chain urokinase-type plasminogen activator (scu-PA) in the dextran sulphate euglobulin

fraction of normal plasma and of plasmas deficient in factor XII and prekallikrein. Thromb

Haemost 65, 144-148.



192

Blasi, F., Vassalli, J. D. & Dano, K. (1987). Urokinase-type plasminogen activator:

proenzyme, receptor, and inhibitors. J Ce!! Bio! 104, 801-804.

Bortolussi, M., Marini, G. & Reolon, M. L. (1979). A histochemical study of the binding of
1251-HCG to the rat ovary throughout the estrous cycle. Ceti Tissue Res 197, 2 13-226.

Bosc, M. J. & Nicolle, A. (1998). Androstenedione and progesterone production in vitro by
the inner or the outer theca ceils in preovulatory follicles of gonadotropin stimulated calves.

AnimReprodSci5l, 1-13.

Bosma, P. J., van den Berg, E. A., Kooistra, T., Siemieniak, D. R. & Slightom, J. L. (1988).
Human plasminogen activator inhibitor-1 gene. Prornoter and structural gene nucleotide

sequences. JBio! Chem 263, 9129-9141.

Bouj rad, N., Ogwuegbu, S. O., Garnier, M., Lee, C. H., Martin, B. M. & Papadopoulos, V.
(1995). Identification of a stimulator of steroid hormone synthesis isolated from testis. Science

268, 1609-1612.

Brew, K., Dinakarpandian, D. & Nagase, 11. (2000). Tissue inhibitors ofmetalloproteinases:

evolution, structure and function. Biochini Biophys Acta 1477, 267-283.

Bugge, T. H., Flick, M. J., Daugherty, C. C. & Degen, J. L. (1995). Plasminogen deficiency

causes severe thrombosis but is compatible with development and reproduction. Genes Dey 9,

794-807.

Burns, D. S., Jimenez-Krassel, F., Ireland, J. L., Knight, P. G. & Ireland, J. J. (2005).

Numbers of antral follicles during follicular waves in cattie: evidence for high variation among

animais, very high repeatability in individuals, and an inverse association with serum follicle

stimulating hormone concentrations. Bio! Reprod 73, 54-62.

Campbell, B. K., Souza, C., Gong, J. G., Webb, R., Kendail, N., Marsters, P., Robinson,

G., Mitcheli, A., Telfer, E. E. & Baird, D. T. (2003). Domestic ruminants as models for the



199

elucidation of the mechanisms controlling ovarian follicle development in humans.

Reproduction: Reproduction in Dornestic Ruminants V 61 (suppi.), 429-443.

Canipari, R. & Strickiand, S. (1985). Plasminogen activator in the rat ovary. Production and
gonadotropin regulation ofthe enzyme in granulosa and thecal celis. JBiol Chem 260, 5121-

5125.

Canipari, R. & Strickiand, S. (1986). Studies on the hormonal regulation ofplasminogen

activator production in the rat ovary. Endocrinology 118, 1652-1659.

Caniparï, R., O’Connell, M. L., Meyer, G. & Strickiand, S. (1987). Mouse ovarian

granulosa celis produce urokinase-type plasminogen activator, whereas the corresponding rat

ceils produce tissue-type plasminogen activator. J Ce!! Bio! 105, 977-981.

Carmelïet, P. & Collen, D. (1998). Development and disease in proteinase-deficient mice:

role ofthe plasminogen, matrix metalloproteinase and coagulation system. Throntb Res 91,

255-285.

Carmeliet, P., Schoonj ans, L., Kieckens, L., Ream, B., Degen, J., Bronson, R., De Vos, R.,

van den Oord, J. J., Collen, D. & Mulligan, R. C. (1994). Physiological consequences of

loss ofplasminogen activator gene function in mice. Nature 368, 419-424.

Carnegïe, J. A. (1990). Secretion of fibronectin by rat granulosa ceils occurs primarily during

early follicular development. JReprodfertit 89, 579-589.

Carrette, O., Nemade, R. V., Day, A. J., Brickner, A. & Larsen, W. J. (2001). TSG-6 is

concentrated in the extracellular matrix of mouse cumulus oocyte complexes through

hyaluronan and inter-aipha-inhibitor binding. Bio! Reprod 65, 301-308.

Carter, R. E., Cerosaletti, K. M., Burkin, D. J., Fournier, R. E., Jones, C., Greenberg, B.

D., Citron, B. A. & Festoff, B. W. (1995). The gene for the serpin thrombin inhibitor (P17),



200

protease nexin I, is located on human chromosome 2q33-q35 and on syntenic regions in the

mouse and sheep genomes. Genomics 27, 196-199.

Chou, C. S., MacCalman, C. D. & Leung, P. C. (2003). Differential effects ofgonadotropin

releasing hormone I and II on the urokinase-type plasminogen activator/plasminogen activator

inhibitor system in human decidual strornal celis in vitro. J Clin Endocrinol Metab 88, 3 806-

3815.

Chun, S. Y., Popliker, M., Reicli, R. & Tsafriri, A. (1992). Localization ofpreovulatory

expression ofplasminogen activator inhibitor type-1 and tissue inhibitor ofmetalloproteinase

type-1 mRNAs in the rat ovary. Biol Reprod 47, 245-253.

Citron, B. A., Ratzlaff, K. T., Smirnova, I. V. & Festoff, B. W. (1996). Protease nexin I

(PNI) in mouse brain is expressed from the same gene as in seminal vesicle. JMol Neurosci 7,

183-191.

Colgin, D. C. & Murdoch, W. J. (1997). Evidence for a role ofthe ovarian surface epithelium

in the ovuÏatory mechanism ofthe sheep: secretion ofurokinase-type plasminogen activator.

Anim Reprod Sci 47, 197-204.

Colman-Lerner, A., Fiscliman, M. L., Lanuza, G. M., Bïssell, D. M., Kornblihtt, A. R. &

Baranao, J. L. (1999). Evidence for a role ofthe altematively spliced ED-I sequence of

fibronectin during ovarian follicular development. Endocrinology 140, 2541-2548.

Comb, M., Birnberg, N. C., Seashoitz, A., Herbert, E. & Goodman, H. M. (1986). A cyclic

AMP- and phorbol ester-inducible DNA element. Nature 323, 353-356.

Conese, M., Oison, D. & Blasi, F. (1994). Protease nexin-1-urokinase complexes are

internalized and degraded through a mechanism that requires both urokinase receptor and alpha

2-macroglobulin receptor. JBiol Oiem 269, 17886-17892.



201

Conley, A. J. & Bird, I. M. (1997). The role of cytochrome P450 17 aipha-hydroxylase and 3
beta-hydroxysteroid dehydrogenase in the integration of gonadal and adrenal steroidogenesis

via the delta 5 and delta 4 pathways of steroidogenesis in mammals. Biol Reprod 56, 789-799.

Courey, A. J., Holtzman, D. A., Jackson, S. P. & Tjian, R. (1989). $ynergistic activation by

the glutamine-rich dornains of human transcription factor Spi. Ce!! 59, 827-836.

Crisp, R. J., Knauer, M. F. & Knauer, D. J. (2002). Protease nexin 1 is a potent urinary

plasminogen activator inhibitor in the presence of collagen type IV. JBioÏ Chem 277, 47285-

47291.

Curry, T. E., Jr. & Osteen, K. G. (2003). The matrix metalloproteinase system: changes,

regulation, and impact throughout the ovarian and uterine reproductive cycle. Endocr Rev 24,

428-465.

Curry, T. E., Jr., Song, L. & Wheeler, S. E. (2001). Cellular localization ofgelatinases and

tissue inhibitors ofmetalloproteinases during follicular growth, ovulation, and early luteal

formation in the rat. Bio! Reprod 65, 855-865.

Curry, T. E., Jr., Mann, J. S., Estes, R. S. & Jones, P. B. (1990). Alpha 2-macroglobulin

and tissue inhibitor ofmetalloproteinases: collagenase inhibitors in human preovulatory

ovaries. Endocrino!ogy 127, 63-68.

Curry, T. E., Jr., & Nothnick, W. B. (2000). Changes in ovarian TIMP expression during

follicular growth, ovulation, and the luteal period in the rat. In Tissue inhibitors of

metal!oproteinases in devetopment and disease, pp. 119-126. Edited by S. P. Hawkes, D. R.

Edwards & R. Khokha. Amsterdam: Harwood Academic Publishers.

Curry, T. E., Jr.,, Komar, C., Burns, P. D. & Nothnick, w. B. (2000). periovulatory changes

inovarian metalloproteinases and tissue inhibitors ofmetalloproteinases (TIMPs) following

indomethacin treatment. In Ovu!ation: evoïving scientfic and clinicaÏ concepts, pp. 265-276.

Edited by E. Y. Adashi. New York: Springer verlag.



202

De Candïa, L. M. & Rodgers, R. J. (1999). Characterization ofthe expression ofthe
alternative splicing of the ED-A, ED-B and V regions of fibronectin mRNA in bovine ovarian
follicles and corpora lutea. ReprodFertilDev 11, 367-377.

Degen, S. J., Rajput, B. & Reich, E. (1986). The human tissue plasminogen activator gene. J
Biol Cheni 261, 6972-6985.

Dickinson, J. L., Bates, E. J., Ferrante, A. & Antalis, T. M. (1995). Plasminogen activator
inhibitor type 2 inhibits tumor necrosis factor alpha-induced apoptosis. Evidence for an
alternate biological function. JBiol Chem 270, 27894-27904.

Donovan, F. M., Vaughan, P. J. & Cunningliam, D. D. (1994). Regulation ofprotease

nexin-1 target protease specificity by collagen type IV. JBiol Chem 269, 17199-17205.

Dow, M. P., Bakke, L. J., Cassar, C. A., Peters, M. W., Pursley, J. R. & Smith, G. W.

(2002a). Gonadotropin surge-induced up-regulation ofthe plasminogen activators (tissue

plasminogen activator and urokinase plasminogen activator) and the urokinase plasminogen

activator receptor within bovine periovulatory follicular and luteal tissue. Biol Reprod 66,

1413-1421.

Dow, M. P., Bakke, L. J., Cassar, C. A., Peters, M. W., Pursley, J. R. & Smith, G. W.

(2002b). Gonadotrophin surge-induced upregulation ofmRNA for plasminogen activator

inhibitors 1 and 2 within bovine periovulatory follicular and luteal tissue. Reproduction 123,

711-719.

Erickson, G. F. & Shimasaki, S. (2003). The spatiotemporal expression pattem ofthe bone

morphogenetic protein farnily in rat ovary cell types during the estrous cycle. Reprod Bio!

Endocrinol 1, 9.



203

Eriksen, G. V., Carlstedt, I., Morgelin, M., Uldbjerg, N. & Malmstrom, A. (1999).
Isolation and characterization ofproteoglycans from human foïlicular ftuid. Biochem J340 (Pt
3), 613-620.

Erno, H. & Monard, D. (1993). Molecular organization ofthe rat glia-derived nexin!protease

nexin-1 promoter. Gene Expr 3, 163-174.

Espey, L. L. & Richards, J. S. (2002). Temporal and spatial pattenis ofovarian gene

transcription following an ovulatory dose of gonadotropin in the rat. Biol Reprod 67, 1662-
1670.

Farreil, D. H., Wagner, S. L., Yuan, R. H. & Cunningliam, D. D. (1988). Localization of

protease nexin-1 on the fibroblast extracellular matrix. J Celi Physiol 134, 179-188.

Fayad, T., Levesque, V., Sirois, J., Silversides, D. W. & Lussïer, J. G. (2004a). Gene

expression profiling of differentially expressed genes in granulosa ceils of bovine dominant

follicles using suppression subtractive hybridization. Biol Reprod 70, 523-533.

Fayad, T., Lévesque, V., Sirois, J., Silversides, D. W. & Lussier, J. G. (2004b). Gene

expression profihing of differentially expressed genes in granulosa celis of bovine dominant

follicles using suppression subtractive hybridization. Biot Reprod 70, 523-533.

Feng, P., Ohisson, M. & Ny, T. (1990). The structure of the TATA-less rat tissue-type

plasminogen activator gene. Species-specific sequence divergences in the promoter predict

differences in regulation of gene expression. JBiol Cheni 265, 2022-2027.

Feng, Q., Liu, K., Hu, Z. Y., Zou, R. J., Yang, S. C. & Liu, Y. X. (1993). The possible

involvement of tissue type plasminogen activator in luteolysis ofrhesus monkey. Hum Reprod

8, 1640-1644.

flaumenhaft, R. & Rifkin, D. B. (1992). The extracellular regulation of growth factor action.

Mol Biol Ceil 3, 1057-1065.



204

Fortune, J. E. (1994). Ovarian foïlicular growth and development in mammals. Biol Reprod
50, 225-232.

Fortune, J. E. (2003). The early stages offollicular development: activation of primordial
follicles and growth ofpreantral follicles. Anim ReprodSci 78, 135-163.

Fortune, J. E., Rivera, G. M. & Yang, M. Y. (2004). Follicular development: the role ofthe
follicular microenvironment in selection of the dominant follicle. Anim Reprod Sci 82-83, 109-
126.

Fortune, J. E., Cusliman, R. A., WahI, C. M. & Kito, S. (2000). The primordial to primary

follicle transition. Mol Ccli Endocrinol 163, 53-60.

Fortune, J. E., Rivera, G. M., Evans, A. C. & Turzillo, A. M. (2001). Differentiation of

dominant versus subordinate follicles in cattle. Biol Reprod 65, 648-654.

Fujiwara, H., Honda, T., Ueda, M., Nakamura, K., Yamada, S., Maeda, M. & Mon, T.
(1997). Larninin suppresses progesterone production by human luteinizing granulosa cells via

interaction with integrin alpha 6 beta 1. J Clin Endocrinol Metab 82, 2122-2128.

Fujiwara, H., Kataoka, N., Honda, T., Ueda, M., Yamada, S., Nakamura, K., Suginami,

H., Mon, T. & Maeda, M. (1998). Physiological roles ofintegrin alpha 6 beta lin ovarian

functions. Horni Res 50 Suppl 2, 25-29.

Gaiway, A. B., Oikawa, M., Ny, T. & Hsueh, A. J. (1989). Epidermal growth factor

stirnulates tissue plasminogen activator activity and messenger ribonucleic acid levels in

cultured rat granulosa cells: mediation by pathways independent ofprotein kinases-A and -C.

Endocrinology 125, 126-135.



205

Gentry, P. A., Plante, L., Schroeder, M. O., LaMarre, J., Young, J. E. & Dodds, W. G.

(2000). Human ovarian follicular fluid has functional systems for the generation and

modulation ofthrombin. Fertil Steril 73, 848-854.

Gilchrist, R. B., Ritter, L. J. & Armstrong, D. T. (2004). Oocyte-somatic ceil interactions

during follicle development in mammals. Anim Reprod Sci 82-83, 43 1-446.

Ginther, O. J., Knopf, L. & Kastelïc, J. P. (1989). Temporal associations among ovarian

events in cattle during oestrous cycles with two and three follicular waves. JReprod fertil 87,
223-230.

Ginther, O. J., Wiltbank, M. C., Fricke, P. M., Gïbbons, J. R. & Kot, K. (1996). Selection

of the dominant follicle in cattle. Bio! Reprod 55, 1187-1194.

Glister, C., Kemp, C. F. & Knight, P. G. (2004). Bone morphogenetic protein (BMP) ligands

and receptors in bovine ovarian follicle cells: actions ofBMP-4, -6 and -7 on granulosa celis

and differential modulation of Smad-1 phosphorylation by follistatin. Reproduction 127, 239-

254.

Glister, C., Tannetta, D. S., Groome, N. P. & Knight, P. G. (2001). Interactions between

follicle-stirnulating hormone and growth factors in modulating secretion of steroids and

inhibin-related peptides by nonluteinized bovine granulosa celis. Bio! Reprod 65, 1020-1028.

Gomez, D. E., Alonso, D. F., Yoshiji, H. & Thorgeirsson, U. P. (1997). Tissue inhibitors of

metalloproteinases: structure, regulation and biological functions. Eur J Ce!! Bio! 74, 111-122.

Gong, J. G., Campbell, B. K., Bramley, T. A., Gutierrez, C. G., Peters, A. R. & Webb, R.

(1996). Suppression in the secretion of follicle-stimulating hormone and luteinizing hormone,

and ovarian follicle development in heifers continuousÏy infused with a gonadotropin-releasing

hormone agonist. Bio! Reprod 55, 68-74.



206

Gore-Langton, R. E. & Armstrong, U. T. (1994). Follicular steroidogenesis and its control.

In The Physiology ofReproduction, pp. 571-628. Edited by Knobil E. & Neili J. New York:

Raven Press.

Gospodarowicz, U. & Thakral, K. K. (1978). Production a corpus luteum angiogenic factor

responsible for proliferation of capillaries and neovascularization of the corpus luteum. Froc

NatlAcadSci USA 75, $47-851.

Gottsch, M. L., Van Kirk, E. A. & Murdoch, W. J. (2002). Role ofmatrix metalloproteinase

2 in the ovulatory folliculo-luteal transition ofewes. Reproduction 124, 347-352.

Greenwald, G. S. (1994). Enzymatic dissociation ofthe mammalian ovary to recover

primordial and pre-antral follicles. Hum Reprod 9, 973-974.

Grïmmond, S., Van ilateren, N., Siggers, P., Arkell, R., Larder, R., Soares, M. B., de

Fatima Bonaldo, M., Smith, L., Tymowska-Lalanne, Z., Wells, C. & Greenfield, A. (2000).

Sexually dimorphic expression ofprotease nexin-1 and vanin-i in the developing mouse gonad

prior to overt differentiation suggests a role in mammalian sexual development. Hum Mol

Genet 9, 1553-1560.

Gutierrez, C. G., Campbell, B. K. & Webb, R. (1997). Development ofa long-term bovine

granulosa celi culture system: induction and maintenance of estradiol production, response to

follicle-stimulating hormone, and morphological characteristics. Biol Reprod 56, 608-616.

Gutiérrez, C. G., Campbell, B. K. & Webb, R. (1997). Development ofa long-term bovine

granulosa cdl culture system: induction and maintenance of estradiol production, response to

follicle-stimulating hormone, and morphological characteristics. Biol Reprod 56, 60$-616.

Guttridge, U. C. & Cunningliam, U. U. (1996). Characterization ofthe human protease

nexin-1 promoter and its regulation by Spi through a G/C-rich activation domain. J

Neurochem 67, 498-507.



207

Gyetko, M. R., Shollenberger, S. B. & Sïtrin, R. G. (1992). Urokinase expression in

mononuclear phagocytes: cytokine-specific modulation by interferon-gamma and tumor

necrosis factor-aipha. JLeukoc Biol 51, 256-263.

Haggiund, A. C., Ny, A., Lin, K. & Ny, T. (1996). Coordinated and celi-specific induction of

both physiological plasminogen activators creates functionally redundant mechanisms for

plasmin formation during ovulation. Eitdocrinology 137, 5671-5677.

Haggiund, A. C., Ny, A., Lin, K. & Ny, T. (1996). Coordinated and ceil-specific induction of

both physiological plasminogen activators creates functionally redundant mechanisrns for

plasmin formation during ovulation. Endocrinotogy 137, 5671-5677.

Ihiggiund, A. C., Ny, A., Leonardsson, G. & Ny, T. (1999). Regulation and localization of

matrix metalloproteinases and tissue inhibitors ofmetalloproteinases in the mouse ovary during

gonadotropin-induced ovulation. Endocrinology 140, 4351-4358.

Hahn-Dantona, E., Ramos-DeSïmone, N., Sipley, J., Nagase, H., French, D. L. & Quigley,

J. P. (1999). Activation ofproMMP-9 by a plasminlMMP-3 cascade in a turnor celi model.

Regulation by tissue inhibitors ofmetalloproteinases. Anii N YAcad Sci 878, 372-3 87.

Hamel, M., Vanselow, J., Nicola, E. S. & Price, C. A. (2005). Androstenedione increases

cytochrorne P450 aromatase messenger ribonucleic acid transcripts in nonluteinizing bovine

granulosa cells. Mol ReprodDev 70, 175-183.

Harlow, C. R., Rae, M., Davidson, L., Trackman, P. C. & Hillier, S. G. (2003). Lysyl

oxidase gene expression and enzyme activity in the rat ovary: regulation by follicle-stirnulating

hornone, androgen, and transforming growth factor-beta superfamily members in vitro.

Endocrinology 144, 154-162.

Hasan, S., Hosseini, G., Princivalle, M., Dong, J. C., Birsan, D., Cagide, C. & de Agostini,

A. I. (2002). Coordinate expression of anticoagulant heparan sulfate proteoglycans and serine



208

protease inhibitors in the rat ovary: a potent system ofproteolysis contro!. BioÏ Reprod 66, 144-
158.

Havelock, J. C., Rainey, W. E. & Carr, B. R. (2004). Ovarian granulosa ce!! unes. Mol Ceil
Endocrinol 228, 67-78.

Henmi, H., Endo, T., Nagasawa, K., Hayashi, T., Chida, M., Akutagawa, N., Iwasakï, M.,
Kitajima, Y., Kiya, T., Nishikawa, A., Manase, K. & Kudo, R. (2001). Lysy! oxidase and
MMP-2 expression in dehydroepiandrosterone-induced po!ycystic ovary in rats. Biol Reprod
64, 157-162.

Holmberg, M., Leonardsson, G. & Ny, T. (1995). The species-specific differences in the

cAMP regulation of the tissue-type plasminogen activator gene between rat, mouse and human

is caused by a one-nucleotide substitution in the cAMP-responsive element ofthe prornoters.

Fur JBiochem 231, 466-474.

Hoshï, H., Konno, S., Kikuchi, M., Sendai, Y. & Satoh, T. (1995). fibroblast growth factor

stimulates the gene expression and production of tissue inhibitor ofrnetalloproteinase-1 in

bovine granulosa ceils. In Vitro Ccli DevBiolAnim 31, 559-563.

Hsueh, A. J., Adashi, E. Y., Jones, P. B. & Welsh, T. H., Jr. (1984). Honnonal regu!ation of

the differentiation of cultured ovarian granu!osa celis. Eizdocr Rev 5, 76-127.

Hsueh, A. J., Lin, Y. X., Cajander, S. B. & Ny, T. (1988a). Mo!ecu!ar rnechanisrns in the

hormonal regulation ofplasminogen activator activity in ovarian granu!osa ce!!s and cumulus-

oocyte complexes. Frog Clin Biol Res 267, 227-25 7.

Hsueh, A. J., Liu, Y. X., Cajander, S., Peng, X. R., Dahi, K., Kristensen, P. & Ny, T.

(1 988b). Gonadotropin-re!easing hormone induces ovulation in hypophysectomized rats:

studies on ovarian tissue-type p!asminogen activator activity, messenger ribonucleic acid

content, and cellular localization. Endocrinology 122, 1486-1495.



209

Hu, Z. Y. & Liu, Y. X. (1993). [Prolactin inhibits gonadotropin-induced increase in ovarian

plasminogen activator activity and ovulation in mouse]. Sheng Li Xue Bao 45, 510-516.

Huet, C., Monget, P., Pisselet, C. & Monniaux, D. (1997). Changes in extracellular matrix

components and steroidogenic enzymes during growth and atresia of antral ovarian follicles in

the sheep. Bio! Reprod 56, 1025-1034.

iluet, C., Pisselet, C., Mandon-Pepin, B., Monget, P. & Monniaux, D. (2001). Extracellular

matrix regulates ovine granulosa ceil survival, proliferation and steroidogenesis: relationships

between celi shape and function. JEndocrinol 169, 347-360.

Uwang, J. J., Lin, S. W., Teng, C. H., Ke, F. C. & Lee, M. T. (1996). Relaxin modulates the

ovulatory process and increases secretion of different gelatinases from granulosa and theca

interstitial celis in rats. Bio! Reprod 55, 1276-1283.

Inaba, T., Mon, J., Ohmura, M., Tani, H., Kato, Y., Tomizawa, K., Kato, T., Ihara, T.,

Sato, I. & Ueda, S. (1998). Recombinant porcine follicle stimulating hormone produced in

baculovirus-insect cells induces rat ovulation in vivo and gene expression of tissue

plasminogen activator in vitro. Res Vet Sci 64, 25-29.

Inderdeo, D. S., Edwards, D. R., Han, V. K. & Khokha, R. (1996). Temporal and spatial

expression of tissue inhibitors ofmetalloproteinases during the natural ovulatory cycle ofthe

mouse. Biot Reprod 55, 498-508.

Ireland, J. J. (1987). Control of follicular growth and development. JReprod ferti! Supp! 34,

39-54.

Ireland, J. J. & Roche, J. F. (1982). Development ofantral follicles in cattle after

prostaglandin-induced luteolysis: changes in senim hormones, steroids in follicular fluid, and

gonadotropin receptors. Endocrino!ogy 111, 2077-2086.



210

Ireland, J. J. & Roche, J. F. (1983). Growth and differentiation of large antral follicles after

spontaneous luteolysis in heifers: changes in concentration of hormones in follicular fluid and

specific binding of gonadotropins to follicles. JAnim Sci 57, 157-167.

Ireland, J. J., Mihm, M., Austin, E., Diskin, M. G. & Roche, J. F. (2000). Historical

perspective of turnover of dominant follicles during the bovine estrous cycle: key concepts,

studies, advancements, and terms. JDaby Sci 83, 1648-1658.

Ishidoh, K. & Kominami, E. (1998). Gene regulation and extracellular functions of

procathepsin L. Biol Chem 379, 13 1-135.

Iwahashi, M., Muragaki, Y., Ooshima, A. & Nakano, R. (2000). Type VI collagen

expression during growth ofhuman ovarian follicles. fertiÏ Steril 74, 343-347.

Jïa, X. C., Ny, T. & Hsueh, A. J. (1990). Synergistic effect of glucocorticoids and androgens

on the hormonal induction of tissue plasminogen activator activity and messenger ribonucleic

acid levels in granulosa cells. Mol CellEndocrinol 68, 143-15 1.

Jo, M., Kizer, L. E., Simpson, K. S. & Curry, T. E., Jr., (2002a).Spatioternporal pattern of

expression ofmRNA for membrane-type 1 MMP during the preovulatory and luteal period in

the rat. In Froc VIX Ovarian Workshop. Baltimore, MD.

Jo, M., Thomas, K. S., Somlyo, A. V., Somlyo, A. P. & Gonias, S. L. (2002b). Cooperativity

between the Ras-ERK and Rho-Rho kinase pathways in urokinase-type plasminogen activator

stimulated cdl migration. JBioÏ Chem 277, 12479-12485.

Jo, M., Thomas, K. S., Marozkina, N., Amin, T. J., Silva, C. M., Parsons, S. J. & Gonias,

S. L. (2005). Dynamic assembly ofthe urokinase-type Plasminogen activator signaling

receptor complex determines the mitogenic activity of urokinase-type Plasminogen activator. J

Biol Chem.



211

Jolinson, A. L. & Tilly, J. L. (1988). Effects ofvasoactive intestinal peptide on steroid

secretion and plasminogen activator activity in granulosa celis ofthe hen. Bio! Reprod 38, 296-

303.

Jones, P. B., Muse, K. N., Wilson, E. A. & Curry, T. E., Jr. (1988). Expression of

plasminogen activator (PA) and a PA inhibitor in human granulosa celis from preovulatory

follicles. J Clin Endocrinol Metab 67, 857-860.

Joues, P. B., Vernon, M. W., Muse, K. N. & Curry, T. E., Jr. (1989). Plasminogen activator

and plasminogen activator inhibitor in human preovulatory follicular fluid. J Clin Endocrinol

Metab 68, 1039-1045.

Kang, S. K., Chol, K. C., Yang, H. S. & Leung, P. C. (2003). Potential role of

gonadotrophin-releasing hormone (GnRH)-I and GnRH-II in the ovary and ovarian cancer.

EndocrReÏat Cancer 10, 169-177.

Karakji, E. G. & Tsang, B. K. (1995a). Follicular stage-dependent regulation of rat granulosa

cell plasminogen activator system by transforming growth factor-aipha in vitro. Bio! Reprod 52,

411-418.

Karakji, E. G. & Tsang, B. K. (1995b). Regulation of rat granulosa celi plasminogen

activator system: influence ofinterleukin-1 beta and ovarian follicular development. Bio!

Reprod 53, 1302-1310.

Ke, F. C., Chuang, L. C., Lee, M. T., Chen, Y. J., Lin, S. W., Wang, P. S., Stocco, D. M. &

Hwang, J. J. (2004). The rnodulatory role oftransforming growth factor betal and

androstenedione on follicle-stirnulating horrnone-induced gelatinase secretion and

steroidogenesis in rat granulosa celis. Bio! Reprod 70, 1292-1298.

Kolena, J. & Channing, C. P. (1972). Stirnulatory effects ofLH, fSH and prostaglandins

upon cyclic 3’,S’-AMP levels in porcine granulosa celis. Endocrino!ogy 90, 1543-1550.



212

Kraut, J. (1977). Serine proteases: structure and mechanism of catalysis. Annu Rev Biochem
46, 331-358.

Kruithof, E. K. (1988). Plasminogen activator inhibitors--a review. Enzyme 40, 113-121.

Kuno, K. & Matsushima, K. (1998). ADAMTS-1 protein anchors at the extracellular matrix
through the thrombospondin type I motifs and its spacing region. JBi01 Cheni 273, 139 12-
13917.

Kury, P., Schaeren-Wiemers, N. & Monard, D. (1997). Protease nexin-1 is expressed at the

mouse met-/mesencephaiic junction and fGf signaling regulates its promoter activity in

primary met-/mesencephaiic celis. Development 124, 1251-1262.

Lafrance, M., Croze, F. & Tsang, B. K. (1993a). Influence ofgrowth factors on the

plasminogen activator activity of avian granulosa ceils from foliicles at different maturational

stages of preovulatory development. JMo1 Endocrinol 11, 291-304.

Lafrance, M., Zhou, L. & Tsang, B. K. (1993b). Interactions oftransforming growth factor

alpha and -beta and luteinizing hormone in the regulation ofpiasminogen activator activity in

avian granulosa celis during follicular developrnent. Endocrinology 133, 720-727.

LaPoit, P. S., Yamoto, M., Veljkovic, M., Sincich, C., Ny, T., Tsafriri, A. & flsueh, A. J.

(1990). Basic fibroblast growth factor induction of granulosa celi tissue-type plasminogen

activator expression and oocyte maturation: potentiai foie as a paracrine ovarian hormone.

Endocrinotogy 127, 2357-2363.

Le Bellego, F., Pisselet, C., fluet, C., Monget, P. & Monniaux, D. (2002). Laminin

alpha6betal integrin interaction enhances survival and proliferation and modulates

steroidogenesis of ovine granuiosa celis. JEndocrinol 172, 45-59.



213

Leco, K. J., Khokha, R., Pavloff, N., Hawkes, S. P. & Edwards, D. R. (1994). Tissue

inhibitor ofmetalloproteinases-3 (TIMP-3) is an extracellular matrix-associated protein with a

distinctive pattem of expression in mouse cells and tissues. JBiol Chem 269, 9352-9360.

Leco, K. J., Apte, S. S., Taniguchi, G. T., llawkes, S. P., Khokha, R., Schultz, G. A. &

Edwards, D. R. (1997). Murine tissue inhibitor ofmetalloproteinases-4 (Timp-4): cDNA

isolation and expression in aduit mouse tissues. fEBSLett 401, 213-217.

Lee, H., Struman, I., Clapp, C., Martial, J. & Weiner, R. I. (1998). Inhibition ofurokinase

activity by the antiangiogenic factor 16K prolactin: activation ofplasminogen activator

inhibitor 1 expression. Endocrinology 139, 3696-3703.

Lee, W. S., Otsuka, F., Moore, R. K. & Shimasaki, S. (2001). Effect ofbone morphogenetic

protein-7 on folliculogenesis and ovulation in the rat. Bio! Reprod 65, 994-999.

Leonardsson, G. & Ny, T. (1997). Characterisation ofthe rat tissue-type plasminogen

activator gene promoter -- identification of a TAAT-containing promoter element. fur J

Biocheni 248, 676-683.

Leonardsson, G., Peng, X. R., Liu, K., Nordstrom, L., Carmelïet, P., Mulligan, R., Collen,

D. & Ny, T. (1995). Ovulation efficiency is reduced in mice that lack plasminogen activator

gene function: functional redundancy among physiological plasminogen activators. Froc Nail

AcadSci USA 92, 12446-12450.

Lewin, B. (1990). Commitrnent and activation at pol II prornoters: a tail ofprotein-protein

interactions. Ccii 61, 1161-1164.

Li, J., Croze F., Yan W., Hache R. J. & Tsang B.K. (1997a). Up-regulation ofurokinase

plasminogen activator messenger ribonucleic acid and protein in hen granulosa cells by

transforning growth factor alpha in vitro during follicular development. Biol Reprod 56, 1317-

1322.



214

Li, M., Karakji, E. G., Xing, R., Fryer, J. N., Carnegie, J. A., Rabbani, S. A. & Tsang, B.

K. (1997b). Expression ofurokinase-type plasminogen activator ami its receptor during
ovarian follicular developrnent. Endocrinology 13$, 2790-2799.

Lïjnen, H. R. (2001). Gene targeting in hemostasis. Alpha2-antiplasmin. Front Biosci 6,
D239-247.

Lijnen, H. R. (2002). Matrix metalloproteinases and cellular fibrinolytic activity. Biocheinist,y

(Mosc) 67, 92-98.

Liu, K., Wahlberg, P., HaggLund, A. C. & Ny, T. (2003a). Expression pattern ami functional

studies ofrnatrix degrading proteases and their inhibitors in the mouse corpus luteum. Mot Ce!!

FnclocrinoÏ 205, 13 1-140.

Liu, K., Brandstrom, A., Liu, Y. X., Ny, T. & Seistam, G. (1996a). Coordinated expression

of tissue-type plasminogen activator and plasminogen activator inhibitor type 1 during corpus

luteum formation and luteolysis in the aduit pseudopregnant rat. Endocrinology 137, 2 126-

2132.

Liu, K., Brandstrom, A., Liu, Y. X., Ny, T. & Seistam, G. (1996b). Coordinated expression

of tissue-type plasminogen activator and plasminogen activator inhibitor type 1 during corpus

luteum formation and luteolysis in the aduit pseudopregnant rat. Endocrino!ogy 137, 2 126-

2132.

Liu, K., Lin, Y. X., Hu, Z. Y., Zou, R. Y., Chen, Y. J., Mu, X. M. & Ny, T. (1997a).

Temporal expression of urokinase type plasminogen activator, tissue type plasminogen

activator, plasminogen activator inhibitor type 1 in rhesus monkey corpus luteum during the

luteal maintenance and regression. Mol Cet! Endocrino! 133, 109-1 16.

Liu, K., Feng, Q., Gao, U. J., [lu, Z. Y., Zou, R. J., Li, Y. C. & Liu, Y. X. (2003b).

Expression and regulation of plasminogen activators, plasminogen activator inhibitor type-1,



215

and steroidogenic acute regulatory protein in the rhesus monkey corpus luteum. Endocrinoiogy

144, 3611-3617.

Liii, Y. X. (1988). Interaction and regulation ofplasrninogen activators and their inhibitor in

rat follicles during periovulatory periods. Sci 5m [B] 31, 47-57.

Lin, Y. X. (1999). Regulation of the plasminogen activator system in the ovary. Bio! Signais

Recept8, 160-177.

Liu, Y. X. (2004). Plasminogen activator/plasminogen activator inhibitors in ovarian

physiology. Front Biosci 9, 3356-3373.

Lïu, Y. X. & Feng, Q. (1992). [Hormonal regulation of PAT-1 secretion by cultured rat ovarian

celis]. ShengLiXue Bao 44, 282-289.

Lin, Y. X., Peng, X. R. & Ny, T. (1991). Tissue-specific and time-coordinated hormone

regulation ofplasminogen-activator-inhibitor type I and tissue-type plasminogen activator in

the rat ovary during gonadotropin-induced ovulation. Eur JBiochern 195, 549-555.

Liu, Y. X., Kasson, B. G., Dahi, K. D. & Hsueh, A. J. (1987a). Vasoactive intestinal peptide

stimulates plasminogen activator activity by cultured rat granulosa ceils and cumulus-oocyte

complexes. Feptides 8, 29-33.

Lin, Y. X., Feng, Q. A., Liii, J. C. & Un, Z. Y. (1989). [Plasminogen activator activity in

mouse ovaries during periovulatory period]. Sheng Li Xue Bao 41, 284-290.

Liu, Y. X., Chen, Y. X., Shi, F. W. & Feng, Q. (1995). Studies on the role ofplasminogen
activators and plasminogen activator inhibitor type-1 in rat corpus luteum ofpregnancy. Biol

Reprod53, 1131-1138.



216

Liu, Y. X., Ny, T., Sarkar, D., Loskutoff, D. & Hsueh, A. J. (1986). Identification and

regulation of tissue plasminogen activator activity in rat cumulus-oocyte complexes.

EndocrinoÏogy 119, 1578-1587.

Liu, Y. X., Cajander, S. B., Ny, T., Kristensen, P. & Hsueh, A. J. (1987b). Gonadotropin

regulation of tissue-type and urokinase-type plasminogen activators in rat granulosa and theca

interstitial celis during the periovulatory period. Mol Ceil Eizdoci-inol 54, 22 1-229.

Lïu, Y. X., Peng, X. R., Chen, Y. J., Carrico, W. & Ny, T. (1997b). Prolactin delays

gonadotrophin-induced ovulation and down-regulates expression of plasminogen-activator

system in ovary. Hum Reprod 12, 2748-275 5.

Liu, Y. X., Peng, X. R., Liu, H. Z., Chen, Y. J. & Ny, T. (199$). Prolactin regulation of

tissue type plasminogen activator and plasminogen activator inhibitor type-I gene expression in

eCG-prirned rat granulosa celis in culture. Biol Reprod 59, 409-416.

Lin, Y. X., Liu, K., Feng, Q., Nu, Z. Y., Liu, H. Z., Fu, G. Q., Li, Y. C., Zou, R. J. & Ny, T.

(2003c). Tissue-type Plasminogen Activator and Its Inhibitor Plasminogen Activator Inhibitor

Type 1 Are Coordinately Expressed during Ovulation in the Rhesus Monkey*. EndocrinoÏogy.

Liu, Y. X., Liu, K., Feng, Q., Nu, Z. Y., Liu, H. Z., Fu, G. Q., Li, Y. C., Zou, R. J. & Ny, T.

(2004). Tissue-type plasminogen activator and its inhibitor plasminogen activator inhibitor

type 1 are coordinately expressed during ovulation in the rhesus rnonkey. Endocrinotogy 145,

1767-1775.

Logan, A. & Hill, D. J. (1992). Bioavailability: is this a key event in regulating the actions of

peptide growth factors? JEndocrinol 134, 157-161.

Loskutoff, D. J. (1993). A suce of PAl. J Clin Invest 92, 2563.



217

Low, D. A., Baker, J. B., Koonce, W. C. & Cunningliam, D. D. (1981). Released protease

nexin regulates cellular binding, intemalization, and degradation of serine proteases. Froc Nati

AcadSci USA 78, 2340-2344.

Lowry (1951). (01-L 195] #43}.

Luck, M. R., Zliao, Y. & Silvester, L. M. (1995). Identification and localization ofcollagen

types I and IV in the ruminant follicle and corpus luteum. JReprod Fertil Suppi 49, 517-521.

Lucy, M. C., Savio, J. D., Badinga, L., De La Sota, R. L. & Thatcher, W. W. (1992).

Factors that affect ovarian follicular dynamics in cattie. JAnim Sci 70, 36 15-3626.

Lund, L. R., Riccio, A., Andreasen, P. A., Nïelsen, L. S., Kristensen, P., Laiho, M.,

Saksela, O., Blasi, F. & Dano, K. (1987). Transforming growth factor-beta is a strong and fast

acting positive regulator ofthe level of type-1 plasminogen activator inhibitor mRNA in WI-38

human lung fibroblasts. Embo J6, 1281-1286.

Lussier, J. G., Matton, P. & Dufour, J. J. (1987). Growth rates of follicles in the ovary ofthe

cow. JReprodFertil 81, 301-307.

Lussier, J. G., Matton, P., Guilbault, L. A., Grasso, F., Mapletoft, R. J. & Carruthers, T.

D. (1994). Ovarian follicular development and endocrine responses in follicular-fluid-treated

and hemi-ovariectomized heifers. J Reprod Fertil 102, 95-105.

Macchione, E., Epifano, O., Stefanini, M., Belin, D. & Canipari, R. (2000). Urokinase

redistribution from the secreted to the celi-bound fraction in granulosa celis of rat preovulatory

follicles. Biol Reprod 62, 895-903.

Mahoney, D. J., Aplin, R. T., Calabro, A., Hascali, V. C. & Day, A. J. (2001). Nove!

rnethods for the preparation and characterization ofhyaluronan oligosaccharides ofdefined

length. Glycobiology 11, 1025-1033.



218

Mansuy, I. M., van der Putten, H., Schmid, P., Meins, M., Botteri, F. M. & Monard, D.
(1993). Variable and multiple expression ofProtease Nexin-1 during mouse organogenesis and
nervous system development. Devetopment 119, 1119-1134.

Manuel Silva, J. & Price, C. A. (2000). Effect of follicle-stimulating hormone on steroid

secretion and messenger ribonucleic acids encoding cytochromes P450 aromatase and

cholesterol side-chain cleavage in bovine granulosa celis in vitro. BioÏ Reprod 62, 186-191.

Markstrom, E., Svensson, E., Shao, R., Svanberg, B. & Billig, 11. (2002). Survival factors

regulating ovarian apoptosis -- dependence on follicle differentiation. Reproduction 123, 23-30.

Marsters, P., Kendail, N. R. & Campbell, B. K. (2003). Temporal relationships between

F$H receptor, type 1 insulin-like growth factor receptor, and aromatase expression during

fSH-induced differentiation of bovine granulosa cells maintained in senirn-ftee culture. Mot

Ce!! Endocrinol 203, 117-127.

Mazar, A. P. (2001). The urokinase plasminogen activator receptor (uPAR) as a target for the

diagnosis and therapy of cancer. AnticancerDrugs 12, 387-400.

Mazzieri, R., Masiero, L., Zanetta, L., Monea, S., Onisto, M., Garbisa, S. & Mignatti, P.

(1997). Control of type IV collagenase activity by components ofthe urokinase-plasmin

system: a regulatory rnechanism with cell-bound reactants. Embo J 16, 2319-2332.

McArthur, M. E., Irving-Rodgers, H. F., Byers, S. & Rodgers, R. J. (2000). Identification

and immunolocalization of decorin, versican, perlecan, nidogen, and chondroitin sulfate

proteoglycans in bovine small-antral ovarian follicles. Bio! Reprod 63, 9 13-924.

McNatty, K. P., Heath, D. A., Lundy, T., Fidier, A. E., Quirke, L., O’Connell, A., Smith,

P., Groome, N. & Tisdall, D. J. (1999). Control ofearly ovarian follicular development. J

Reprod fertil SttppÏ 54, 3-16.



219

Mignatti, P., Robbïns, E. & Rifkin, D. B. (1986). Tumor invasion through the human

amniotic membrane: requirement for a proteinase cascade. Ce!! 47, 487-49 8.

Mihm, M. & Bleacli, E. C. (2003). Endocrine regulation ofovarian antral follicle

development in cattie. Anim Reprod Sci 78, 217-237.

Milim, M., Crowe, M. A., Knight, P. G. & Austin, E. J. (2002). Follicle wave growth in

cattie. Reprod Domest Anim 37, 191-200.

Mihm, M., Austïn, E. J., Good, T. E., Ireland, J. L., Knight, P. G., Roche, J. F. & Ireland,

J. J. (2000). Identification ofpotential intrafollicular factors involved in selection of dominant

follicles in heifers. Bio! Reprod 63, 811-819.

Monnïaux, D., fluet, C., Besnard, N., Clement, F., Bosc, M., Pisselet, C., Monget, P. &

Mariana, J. C. (1997). follicular growth and ovarian dynamics in mammals. JReprod ferti!

Suppi 51, 3-23.

Mukhopadhyay, D., Hascali, V. C., Day, A. J., Salustri, A. & Fulop, C. (2001). Two

distinct populations oftumor necrosis factor-stimulated gene-6 protein in the extracellular

matrix of expanded mouse cumulus cell-oocyte complexes. Arch Biochem Biophys 394, 173-

181.

Murdoch, W. J. (2000). Proteolytic and cellular death mechanisms in ovulatory ovarian

rupture. Biol Signais Recept 9, 102-114.

Murer, V., Spetz, J. F., Hengst, U., Altrogge, L. M., de Agostini, A. & Monard, D. (2001).

Male fertility defects in mice lacking the serine protease inhibitor protease nexin- 1. Froc Nat!

Acac!Sci USA 98, 3029-3033.

Murphy, B. D. (2004). Luteinization. In The Ovary, pp. 185-199. Edited by Leung P. C. K. &

Adashi E. Y.: Elsevier Academic Press.



220

Murphy, B. D. & Silavin, S. L. (1989). Luteotrophic agents and steroid substrate utilization.
OxfRevReprodBiol 11, 179-223.

Murphy, G., Stanton, H., Coweil, S., Butier, G., Knauper, V., Atkinson, S. & Gavrïlovic,
J. (1999a). Mechanisms for pro matrix metalloproteinase activation. Aprnis 107, 3 8-44.

Murphy, G., Knauper, V., Coweil, S., Hembry, R., Stanton, H., Butier, G., Freije, J.,
Pendas, A. M. & Lopez-Otin, C. (1 999b). Evaluation of some newer matrix

metalloproteinases. Ami N YAcad $ci 878, 25-39.

Nagase, H. & Woessner, J. F., Jr. (1999). Matrix metalloproteinases. JBiol Chem 274,

21491-21494.

Nardo, L. G., Nikas, G., Makrigiannakis, A., Sinatra, F. & Nardo, F. (2003). Synchronous

expression ofpinopodes and alpha y beta 3 and alpha 4 beta 1 integrins in the endornetrial

surface epithelium ofnormally menstruating women during the implantation window. J

Reprod Mcd 4$, 355-361.

Ny, A., Nordstrôm, L., Carmeliet, P. & Ny, T. (1997). Studies ofmice lacking plasminogen

activator gene function suggest that plasmin production prior to ovulation exceeds the amount

needed for optimal ovulation efficiency. Eur J3iochein 244, 487-493.

Ny, A., Leonardsson, G., Haggiund, A. C., Haggiof, P., Ploplis, V. A., Carmeliet, P. & Ny,

T. (1999). Ovulation in plasminogen-deficient mice. Endocrinology 140, 5030-503 5.

Ny, T., Wahlberg, P. & Brandstrom, I. J. (2002). Matrix rernodeling in the ovary: regulation

and functional role ofthe plasminogen activator and matrix metalloproteinase systems. Mol

Ccli Endocrinol 187, 29-3 8.

Ny, T., Bjersing, L., Hsueh, A. J. & Loskutoff, D. J. (1985). Cultured granulosa cells

produce two plasminogen activators and an antiactivator, each regulated differently by

gonadotropins. Endocrinology 116, 1666-1668.



221

Ny, T., Sawdey, M., Lawrence, D., Millan, J. L. & Loskutoff, D. J. (1986). Cloning and

sequence of a cDNA coding for the human beta-migrating endothelial-celi-type plasminogen

activator inhibitor. Froc Nati Accu! Sel U S A 83, 6776-6780.

Ny, T., Liu, Y. X., Ohisson, M., Jones, P. B. & Hsneh, A. J. (1987). Regulation of tissue-

type plasminogen activator activity and messenger RNA levels by gonadotropin-releasing

hormone in cultured rat granulosa ceils and cumulus-oocyte complexes. JBio! Chem 262,

11790-11793.

Nykjaer, A., Conese, M., Christensen, E. L, Oison, D., Cremona, O., Giiemann, J. & Blasi,

F. (1997). Recycling ofthe urokinase receptor upon intemalization ofthe uPA:serpin

complexes. Embo J 16, 26 10-2620.

Ochsner, S. A., Day, A. J., Rugg, M. S., Breyer, R. M., Gomer, R. H. & Richards, J. S.

(2003). Disrupted function oftumor necrosis factor-alpha-stimuÏated gene 6 blocks cumulus

cell-oocyte complex expansion. Endocrinology 144, 4376-4384.

O’Connell, M. L., Canipari, R. & Strickiand, S. (1987). Hormonal regulation of tissue

plasminogen activator secretion and mRNA levels in rat granulosa ceils. J Bio! Chent 262,

2339-2344.

Ohisson, M., Hsueh, A. J. & Ny, T. (1988). Honnonal regulation of tissue-type plasminogen

activator messenger ribonucleic acid levels in rat granulosa celis: mechanisrns of induction by

follicle-stimulating hormone and gonadotropin releasing hormone. Mot Endocrinot 2, 854-861.

Ohisson, M., Leonardsson, G., Jia, X. C., Feng, P. & Ny, T. (1993). Transcriptional

regulation of the rat tissue type plasminogen activator gene: localization ofDNA elements and

nuclear factors mediating constitutive and cyclic AMP-induced expression. Mot Ce!! Bio! 13,

266-275.



222

Oksjoki, S., Sallinen, S., Vuorio, E. & Anttila, L. (1999). Cyclic expression ofmRNA

transcripts for connective tissue components in the mouse ovary. Mol Hum Reprod 5, $03-808.

Oksjoki, S., Soderstrom, M., Vuorio, E. & Anttila, L. (2001). Differential expression

pattems ofcathepsins B, H, K, L and S in the mouse ovary. Mol Hum Reprod 7, 27-34.

Oxberry, B. A. & Greenwald, G. 5. (1982). An autoradiographic study of the binding of 125

I-labeled follicle-stimulating hormone, human chorionic gonadotropin ami prolactin to the

hamster ovary throughout the estrous cycle. BioÏ Reprod 27, 505-516.

Palotie, A., Salo, T., Vihko, K. K., Peltonen, L. & Rajaniemi, 11. (1987). Types I and IV

collagenolytic and plasminogen activator activities in preovulatory ovarian follicles. J CeÏl

Biochent 34, 101-112.

Park, J. E., Keller, G. A. & Ferrara, N. (1993). The vascular endothelial growth factor

(VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and

bioactivity of extracellular matrix-bound VEGF. Mol Bio! Ceil 4, 13 17-1326.

Park, K. W., Choi, S. H., Song, X. X., Funahashi, H. & Niwa, K. (1999). Production of

plasminogen activators (PAs) in bovine cumulus-oocyte complexes during maturation in vitro:

effects of epidermal growth factor on production ofPAs in oocytes and cumulus cells. Biol

Reprod 61, 298-3 04.

Pascal, E. & Tjian, R. (1991). Different activation domains of Spi govem formation of

multirners and mediate transcriptional synergisnt Genes Dey 5, 1646-1656.

Pawson, A. J., Morgan, K., Maudsley, S. R. & Millar, R. P. (2003). Type II gonadotrophin

releasing honnone (GnRH-II) in reproductive biology. Reproduction 126, 27 1-278.

Pedrozo, H. A., Schwartz, Z., Robinson, M., Gomes, R., Dean, D. D., Bonewald, L. F. &

Boyan, B. D. (1999). Potential mechanisms for the plasmin-mediated release and activation of



223

latent transforming growth factor-betal from the extracellular matrix of growth plate

chondrocytes. Endocrinology 140, 5806-5816.

Peng, X. R, Usueli, A. J. & Ny, T. (1993). Transient and celi-specific expression of tissue-

type plasminogen activator and plasminogen-activator-inhibitor type 1 results in controlÏed and

directed proteolysis during gonadotropin-induced ovulation. Eur JBiochenz 214, 147-156.

Pescador, N., Stocco, D. M. & Murphy, B. D. (1999). Growth factor modulation of

steroidogenic acute regulatory protein and luteinization in the pig ovary. Bio! Reprod 60, 1453-

1461.

Pierson, R. A. & Ginther, O. J. (1987). Ultrasonographic appearance ofthe bovine uterus

during the estrous cycle. JAm VetMedAssoc 190, 995-1001.

Piquette, G. N., Crabtree, M. E., el-Danasouri, I., Miiki, A. & Polan, M. L. (1993).

Regulation ofplasminogen activator inhibitor-1 and -2 messenger ribonucleic acid levels in

human cumulus and granulosa-luteal cells. J Clin Endocrinol Metab 76, 518-523.

Ploug, M., Behrendt, N., Lober, D. & Dano, K. (1991). Protein structure and membrane

anchorage ofthe cellular receptor for urokinase-type plasminogen activator. Semin Thromb

Henzost 17, 183-193.

Politis, I., Wang, L., Turner, J. D. & Tsang, B. K. (1990a). Changes in tissue-type

plasminogen activator-like and plasminogen activator inhibitor activities in granulosa and

theca layers during ovarian follicle development in the domestic hen. Bio! Reprod 42, 747-754.

Politis, I., Srikandakumar, A., Turner, J. D., Tsang, B. K., Ainsworth, L. & Downey, B. R.

(1990b). Changes in and partial identification ofthe plasminogen activator and plasminogen

activator inhibitor systems during ovarian foïlicular maturation in the pig. Bio! Reprod 43, 636-

642.



224

Potempa, J., Korzus, E. & Travis, J. (1994). The serpin superfamily ofproteinase inhibitors:

structure, function, and regulation. JBiol Chem 269, 15957-15960.

Price, C. A. & Carrière, D. C. (2004). Alternative two- and three-follicle wave interovulatory

intervals in Hoistein heifers monitored for two consecutive estrous cycles. Can JAnim Sci $4,

145-147.

Price, C. A., Carriere, P. D., Bhatia, B. & Groome, N. P. (1995). Comparison of hormonal

and histological changes during follicular growth, as measured by ultrasonography, in cattle. J

Reprodfertil 103, 63-68.

Pugh, B. F. & Tjian, R. (1990). Mechanism oftranscriptional activation by Spi: evidence for

coactivators. Ceil 61, 1187-1197.

Rajakoski, E. (1960). The ovarian follicular system in sexually mature heifers with special

reference to seasonal, cyclical, end left-right variations. Acta Endocrinol (C’openh,) 34(Suppl

52), 1-68.

Ramakrishnappa, N., Giritharan G., AaIIi M., Madan P. & Rajamahendran, R. (2003).

GnRH receptor messenger ribonucleic acid expression in bovine ovary. Can JAnim Sci 83,

823-826.

Ramos-DeSimone, N., Hahn-Dantona, E., Sipley, J., Nagase, H., French, D. L. & Quigley,

J. P. (1999). Activation ofmatrix metaÏÏoproteinase-9 (MMP-9) via a converging

plasminlstromelysin-i cascade enhances tumor celi invasion. JBiol Chem 274, 13066-13076.

Reich, R., Miskin, R. & Tsafriri, A. (1985). Follicular plasminogen activator: involvement in

ovulation. Endocrinology 116, 516-521.

Reich, R., Miskin, R. & Tsafriri, A. (1986). hitrafollicular distribution ofplasminogen

activators and their hormonal regulation in vitro. Endocrinotogy 119, 1588-1593.



225

Reich, R., Daphna-Iken, D., Chun, S. Y., Popliker, M., Siager, R., Adelmann-Grill, B. C.

& Tsafriri, A. (1991). Preovulatory changes in ovarian expression ofcollagenases and tissue

metalloproteinase inhibitor messenger ribonucleic acid: role of eicosanoids. Endocrinology 129,

1869-1875.

Richard, B., Arocas, V., Guillin, M. C., Michel, J. B., Jandrot-Perrus, M. & Bouton, M. C.

(2004). Protease nexin-l: a cellular serpin down-regulated by thrombin in rat aortic smooth

muscle cells. J Celi Physiol 201, 138-145.

Richards, J. S. (1975). Estradiol receptor content in rat granulosa celis during follicular

development: modification by estradiol and gonadotropins. Endocrinology 97, 1174-1184.

Richards, J. S., Russeil, D. L., Ochsner, S. & Espey, L. L. (2002). Ovulation: new

dimensions and new regulators ofthe inflammatory-like response. Annu Rev Physiot 64, 69-92.

Roach, L. E., Petrik, J. J., Plante, L., LaMarre, J. & Gentry, P. A. (2002). Thrombin

generation and presence ofthrombin receptor in ovarian follicles. BiolReprod 66, 1350-1358.

Roberts, R. M., Mathialagan, N., Duffy, J. Y. & Smith, G. W. (1995). Regulation and

regulatory role ofproteinase inhibitors. Crit Rev Eztkaiyot Gene Expr 5, 385-436.

Robker, R. L., Russeil, D. L., Espey, L. L., Lydon, J. P., O’Malley, B. W. & Richards, J. S.

(2000a). Progesterone-regulated genes in the ovulation process: ADAIVITS-1 and cathepsin L

proteases. Froc Nati Acad Sci U S A 97, 4689-4694.

Robker, R. L., Russell, D. L., Yoshioka, S., Sharma, S. C., Lydon, J. P., O’MalIey, B. W.,

Espey, L. L. & Richards, J. S. (2000b). Ovulation: a multi-gene, multi-step process. Steroids

65, 559-570.

Rodgers, H. F., Lavranos, T. C., Vella, C. A. & Rodgers, R. J. (1995). Basal lamina and

other extracellular matrix produced by bovine granulosa ceils in anchorage-independent culture.

Ceil Tissue Res 282, 463-471.



226

Rodgers, H. F., Irvïne, C. M., van Wezel, I. L, Lavranos, T. C., Luck, M. R., Sado, Y.,

Ninomiya, Y. & Rodgers, R. J. (1998). Distribution ofthe aiphal to alpha6 chains of type IV

collagen in bovine follicles. BiolReprod 59, 1334-1341.

Rodgers, R. J., Irving-Rodgers, H. F. & van Wezel, I. L. (2000). Extracellular matrix in

ovarian follicles. Mot Ccli Endocrinol 163, 73-79.

Rodgers, R. J., Irving-Rodgers, H. F. & Russeli, D. L. (2003). Extracellular matrix ofthe

developing ovarian follicle. Reproduction 126, 415-424.

Rodgers, R. J., Vefla, C. A., Rodgers, H. F., Scott, K. & Lavranos, T. C. (1996). Production

of extracellular matrix, fibronectin and steroidogenic enzymes, and growth of bovine granulosa

ceils in anchorage-independent culture. Reprod Fertil Dcv 8, 249-257.

Rodgers, R. J., van Wezel, I. L., Irving-Rodgers, H. F., Lavranos, T. C., Irvine, C. M. &

Krupa, M. (1999). Roles ofextracellular matrix in follicular developrnent. JReprodFertii

Sttppi 54, 343-352.

Rossignol, P., Ho-Tïn-Noe, B., Vranckx, R., Bouton, M. C., Meilhac, O., Lijnen, H. R.,

Guillin, M. C., Michel, J. B. & Angles-Cano, E. (2004). Protease nexin-1 inhibits

plasminogen activation-induced apoptosis ofadherent celis. JBioi Chein 279, 10346-10356.

Ruoslahti, E. & Yamaguchi, Y. (1991). Proteoglycans as modulators ofgrowth factor

activities. Ccii 64, 867-869.

Russeli, D. L., Doyle, K. M., Ochsner, S. A., Sandy, J. D. & Richards, J. S. (2003).

Processing and localization ofADAMTS-1 and proteolytic cleavage of versican during

cumulus matrix expansion and ovulation. JBiol Chein 278, 42330-42339.



227

Sahmi, M., Nicola, E. S., Silva, J. M. & Price, C. A. (2004). Expression of l7beta- and

3beta-hydroxysteroid dehydrogenases and steroidogenic acute regulatory protein in non

luteinizing bovine granulosa celis in vitro. Mol Ce!! Endocrinot 223, 43-54.

Salamonsen, L. A. (1999). Role ofproteases in implantation. Rev Reprod 4, 11-22.

Satustri, A., Camaionï, A., Di Gïacomo, M., Fulop, C. & ilascali, V. C. (1999). Hyaluronan

and proteoglycans in ovarian follicles. Hum Reprod Update 5, 293-301.

Sandy, J. D. (2001). Proteoglycan core proteins and catabolic fragments present in tissues and

fluids. Methods Mot Bio! 171, 335-345.

Sappino, A. P., Huarte, J., Belin, D. & Vassalli, J. D. (1989). Plasminogen activators in

tissue remodeling and invasion: mRNA localization in mouse ovaries and implanting embryos.

JCe!l Bio! 109, 2471-2479.

Savio, J. D., Keenan, L., Boland, M. P. & Roche, J. F. (1988). Pattem of growth of dominant

follicles during the oestrous cycle ofheifers. JReprodFerti! 83, 663-671.

Savion, N., Lui, G. M., Laherty, R. & Gospodarowicz, D. (1981). Factors controlling

proliferation and progesterone production by bovine granulosa ceils in serum-free medium.

Endocrinology 109, 409-420.

Schmidt, G., Jorgensen, J., Kannisto, P., Liedberg, F., Ottesen, B. & Owman, C. (1990).

Vasoactive intestinal polypeptide in the PM$G-primed immature rat ovary and its effect on

ovulation in the isolated rat ovary perfused in vitro. JReprod Fertil 90, 465-472.

Schwartz, B. S., Monroe, M. C. & Levin, E. G. (1988). Increased release ofplasminogen

activator inhibitor type 2 accompanies the human mononuclear ce!! tissue factor response to

lipopolysaccharide. BÏood 71, 734-741.



22$

Scott, R. W., Bergman, B. L., Bajpai, A., Hersh, R. T., Rodrïguez, H., Joncs, B. N.,

Barreda, C., Watts, S. & Baker, J. B. (1985). Protease nexin. Properties and a modified

purification procedure. JBiol Chem 260, 7029-7034.

Seiffert, D., Mimuro, J., Schleef, R. R. & Loskutoff, D. J. (1990). Interactions between type

1 plasminogen activator inhibitor, extracellular matrix and vitronectin. Ccli D/jr Dey 32, 287-

292.

Sekar, N., Garmey, J. C. & Veldhuïs, J. D. (2000). Mechanisms underlying the steroidogenic

synergy ofinsulin and luteinizing hormone in porcine granuiosa celis: joint amplification of

pivotai sterol-regulatory genes encoding the low-density lipoprotein (LDL) receptor,

steroidogenic acute reguiatory (stAR) protein and cytochrome P450 side-chain cieavage

(P45Oscc) enzyme. Mot Ccli Endocrinol 159, 25-35.

Shaw, K. J., Campeau, J. D., Roche, P. C. & dïZerega, G. S. (1985). Porcine granuiosa ceil

production ofplasminogen activator: disparity between the effects ofhCG and pFSH. Exp Clin

Endocrinol 86, 26-34.

Shen, X., Minoura, H., Yoshïda, T. & Toyoda, N. (1997). Changes in ovarian expression of

tissue-type plasminogen activator and plasminogen activator inhibitor type-l messenger

ribonucleic acids during ovulation in rat. EndocrJ44, 341-34$.

Shimasaki, S., Zachow, R. J., Li, D., Kim, II., lemura, S., Ueno, N., Sampath, K., Chang,

R. J. & Erickson, G. F. (1999). A functional bone morphogenetic protein system in the ovary.

Froc Nati Acad Sci U S A 96, 7282-7287.

Sicinski, P., Donaher, J. L., Geng, Y., Parker, S. B., Gardner, H., Park, M. Y., Robker, R.

L., Richards, J. S., McGinnis, L. K., Biggers, J. D., Eppig, J. J., Bronson, R. T., Elledge, S.

J. & Weinberg, R. A. (1996). Cyclin D2 is an F$H-responsive gene involved in gonadal cell

proliferation and oncogenesis. Nature 384, 470-474.



229

Siler-Khodr, T. M., Grayson, M. & Eddy, C. A. (2003). Action ofgonadotropin-releasing

hornione II on the baboon ovary. BiolReprod 68, 1150-1156.

Silva, J. M. & Price, C. A. (2002). Insulin and IGF-I are necessary for fSH-induced

cytochrorne P450 aromatase but not cytochrome P450 side-chain cleavage gene expression in

oestrogenic bovine granulosa celis in vitro. JEndocrinol 174, 499-5 07.

Silva, M. J. & Prïce, C. A. (2000). Effect of follicle-stimulating hormone on steroid secretion

and messenger ribonucleic acids encoding cytochrornes P450 aromatase and cholesterol side

chain cleavage in bovine granulosa ceils in vitro. BiolReprod 62, 186-191.

Silverman, G. A., Bird, P. I., Carreli, R. W., Churcli, F. C., Coughlin, P. B., Gettins, P. G.,

Irving, J. A., Lomas, D. A., Luke, C. J., Moyer, R. W., Pemberton, P. A., Remold

O’Donnell, E., Salvesen, G. S., Travis, J. & Whisstock, J. C. (2001). The serpins are an

expanding superfamily of structurally similar but functionally diverse proteins. Evolution,

mechanisrn of inhibition, novel functions, and a revised nomenclature. JBiol chem 276,

33293-33296.

Sïmpson, K. S., Komar, C. M. & Curry, T. E., Jr. (2003). Localization and expression of

tissue inhibitor ofmetalloproteinase-4 in the immature gonadotropin-stimulated and aduit rat

ovary. BiolReprod 68, 214-221.

Sïrois, J. & Fortune, J. E. (1988). Ovarian follicular dynamics during the estrous cycle in

heifers monitored by real-time ultrasonography. Biol Reprod 39, 308-317.

Smith, M. F., Mclntush, E. W., Ricke, W. A., Kojima, F. N. & Smith, G. W. (1999).

Regulation of ovarian extracellular matrix remodelling by metalloproteinases and their tissue

inhibitors: effects on follicular development, ovulation and luteal function. JReprod Fertil

$upplS4, 367-381.



230

Smokovitïs, A., Kokolis, N. & Ploumis, T. (1988). Great variation in the response of tissue

plasminogen activator activity, plasminogen activator inhibition and plasmin inhibition to

endotoxin, aspirin and endotoxin after administration of aspirin. Thromb Res 50, 495-505.

Sonohara, S., Mira-y-Lopez, R. & Brentani, M. M. (1998). Laminin and estradiol regulation

ofthe plasminogen-activator system in MCF-7 breast-carcinoma celis. Int J Cancer 76, 77-85.

Sottrup-Jensen, L., Zajdel, M., Claeys, H., Petersen, T. E. & Magnusson, S. (1975).

Amino-acid sequence of activation cleavage site in plasminogen: homology with !pro!! part of

prothrombin. Froc NatlAcad Sci USA 72, 2577-2581.

Soumano, K. & Price, C. A. (1997). Ovarian follicular steroidogenic acute regulatory protein,

low-density lipoprotein receptor, and cytochrome P450 side-chain cleavage messenger

ribonucleic acids in cattie undergoing superovulation. Biol Reprod 56, 516-522.

Souza, C. J., Campbell, B. K., McNeiIIy, A. S. & Baird, D. T. (2002). Effect ofbone

morphogenetic protein 2 (BMP2) on oestradiol and inhibin A production by sheep granulosa

ceils, and localization ofBMP receptors in the ovary by immunohistochemistry. Reproduction

123, 363-369.

Sriraman, V. & Richards, J. S. (2004). Cathepsin L gene expression and prornoter activation

in rodent granulosa celis. Endocrinology 145, 582-591.

Sternlicht, M. D. & Werb, Z. (2001). How matrix metalloproteinases regulate ccli behavior.

Annu Rev CeÏlDevBiol 17, 463-5 16.

Stocco, D. M. & Clark, B. J. (1996). Role ofthe steroidogenic acute regulatory protein (StAR)

in steroidogenesis. Biochem Pharmacot 51, 197-205.

Stocco, D. M., Clark, B. J., Reinhart, A. J., Willïams, S. C., Dyson, M., Dassi, B., Walsh, L.

P., Manna, P. R., Wang, X. J., Zeleznik, A. J. & OrIy, J. (2001). Elements involved in the

regulation ofthe StAR gene. Mol CetÏ Endocrinol 177, 55-59.



231

Stratmann, B., Farr, M. & Tschesche, H. (2001). MMP-TIMP interaction depends on

residue 2 in TIMP-4. fEBSLett 507, 285-287.

Streuli, C. H. & Gilmore, A. P. (1999). Adhesion-mediated signaling in the regulation of

mammary epithelial celi survival. JManîmaiy GÏandBiolNeopÏasia 4, 183-191.

Strickiand, D. K., Gonias, S. L. & Argraves, w. s. (2002). Diverse roles for the LDL
receptor family. Trends Endocrinol Metab 13, 66-74.

Strongïn, A. Y., Collier, I., Bannikov, G., Marmer, B. L., Grant, G. A. & Goldberg, G. I.

(1995). Mechanism ofcell surface activation of72-kDa type IV collagenase. Isolation ofthe

activated form ofthe membrane metalloprotease. JBiol Chem 270, 533 1-5338.

Sunderland, S. J., Crowe, M. A., Boland, M. P., Roche, J. F. & Ireland, J. J. (1994).

Selection, dominance and atresia of follicles during the oestrous cycle of heifers. JReprod

Fertil 101, 547-555.

Tamura, T., Nakanishi, T., Kimura, Y., Hattori, T., Sasaki, K., Norimatsu, H., Takahashi,

K. & Takigawa, M. (1996). Nitric oxide mediates interleukin-1-induced matrix degradation

and basic flbroblast growth factor release in cultured rabbit articular chondrocytes: a possible

mechanism ofpathological neovascularization in arthritis. Endocrinotogy 137, 3729-3737.

Tarui, T., Mazar, A. P., Cines, D. B. & Takada, Y. (2001). Urokinase-type plasminogen

activator receptor (CD87) is a ligand for integrins and mediates celi-ceil interaction. JBiol

Chem 276, 3983-3990.

Teng, C. H., Ke, F. C., Lee, M. T., Lin, S. W., Chen, L. & Hwang, J. J. (2000). Pituitary

adenylate cyclase-activating polypeptide acts synergistically with relaxin in modulating

ovarian celi function in rats. JEndocrinol 167, 6 1-69.



232

Tilly, J. L. & Johnson, A. L. (1987). Presence and hormonal control ofplasminogen activator

in granulosa celis ofthe domestic hen. Bio! Reprod 37, 1156-1164.

Timossi, C. M., Barrios de Tomasi, J., Zambrano, E., Gonzalez, R. & UIloa-Aguirre, A.
(1998). A naturally occurring basically charged human follicle-stimulating hormone (FSH)

variant inhibits FSH-induced androgen aromatization and tissue-type plasminogen activator

enzyme activity in vitro. Neuroendocrino!ogy 67, 153-163.

Tischkau, S. A., Jackson, J. A., Finnïgan-Bunick, C. & Balir, J. M. (1996). Granulosa layer:

primary site ofregulation ofplasminogen activator messenger ribonucleic acid by luteinizing

hormone in the avian ovary. Bio! Reprod 55, 75-79.

Too, C. K., Bryant-Greenwood, G. D. & Greenwood, F. C. (1984). Relaxin increases the

release ofplasminogen activator, collagenase, and proteoglycanase from rat granulosa cells in

vitro. Endocrino!ogy 115, 1043-1050.

Tsai, J. S., Curran, B. H., Sternick, E. S. & Engler, M. J. (1996). The measurement oflinear

accelerator isocenter motion using a three-micrometer device and an adjustable pointer. Int J

Radiat Oncol Bio! Phys 34, 189-195.

van Wezel, I. L., Rodgers, H. F. & Rodgers, R. J. (1998). Differential localization oflaminin

chains in bovine follicles. JReprodFertit 112, 267-278.

Vanderhyden, B. (2002). Molecular basis ofovarian development and function. front Biosci

7, d2006-2022.

Vassalli, J. D. & Pepper, M. S. (1994). Tumour biology. Membrane proteases in focus.

Nature 370, 14-15.

Vassalli, J. D., Huarte, J., Bosco, D., Sappino, A. P., Sappino, N., Velardi, A., Wohlwend,

A., Erno, H., Monard, D. & Belin, D. (1993). Protease-nexin I as an androgen-dependent

secretory product ofthe murine seminal vesicle. Embo J12, 1871-1878.



233

Webb, R., Campbell, B. K., Garverick, H. A., Gong, J. G., Gutiérrez, C. G. & Armstrong,

D. G. (1999). Molecular mechanisms regulating follicular recruitment and selection. JReprod

fertit SztppÏ 54, 3 3-48.

White, E. A., Baker, J. B., McGrogan, M. & Kitos, P. A. (1993). Protease nexin 1 is

expressed in the hurnan placenta. Throntb Haenzost 69, 119-123.

Whitelock, J. M., Murdocli, A. D., Iozzo, R. V. & Underwood, P. A. (1996). The

degradation ofhurnan endothelial cell-derived perlecan and release ofbound basic fibroblast

growth factor by stromelysin, collagenase, plasmin, and heparanases. JBioÏ Cheni 271, 10079-

10086.

Wiman, B. & WalIen, P. (1977). The specific interaction between plasminogen and fibrin. A

physiological role ofthe lysine binding site in plasminogen. Thromb Res 10, 213-222.

Woessner, J. F., Jr., Morioka, N., ZIiu, C., Mukaïda, T., Butier, T. & LeMaire, W. J.

(1989). Connective tissue breakdown in ovulation. $teroids 54, 49 1-499.

Yamada, M., Horiuchî, T., Oribe, T., Yamamoto, S., Matsushita, H. & Gentry, P. A.

(1996). Plasminogen activator activity in the bovine oocyte-cumulus complex and early

embryo. J Vet lied Sci 58, 3 17-322.

Yamada, S., Fujiwara, H., Honda, T., Higuchi, T., Nakayama, T., moue, T., Maeda, M. &

Fujii, S. (1999). Human granulosa celis express integrin alpha2 and collagen type W: possible

involvement ofcollagen type IV in granulosa ccli luteinization. Mol Httm Reprod 5, 607-6 17.

Ye, R. D., Wun, T. C. & Sadier, J. E. (1988). Mammalian protein secretion without signal

peptide removal. Biosynthesis ofplasminogen activator inhibitor-2 in U-937 celis. JBiol Chem

263, 4869-4875.



234

Yoshimura, Y., Maruyama, K., Shiraki, M., Kawakami, S., Fukushïma, M. & Nakamura,

Y. (1990). Prolactin inhibits plasminogen activator activity in the preovulatory follicles.

Endocrinology 126, 63 1-636.

Yoshimura, Y., Nakamura, Y., Oda, T., Ando, M., Ubukata, Y., Koyama, N., Karube, M.

& Yamada, 11. (1992). Effects ofprolactin on ovarian plasmin generation in the process of

ovulation. Biot Reprod 46, 322-327.

Zeleznik, A. J. (2001). Follicle selection in primates: “many are called but few are chosen”.

Biol Reproci 65, 655-659.

Zhao, Y. & Luck, M. R. (1995). Gene expression and protein distribution ofcollagen,

fibronectin and laminin in bovine follicles and corpora lutea. JReprodfertil 104, 115-123.

Zliao, Y. & Luck, M. R. (1996). Bovine granulosa celis express extracellular matrix proteins

and their regulators during luteinization in culture. Reprod fertil Dcv 8, 25 9-266.

Zhong, Y. & Kasson, B. G. (1994). Pituitary adenylate cyclase-activating polypeptide

stimuÏates steroidogenesis and adenosine 3’,5’-monophosphate accumulation in cultured rat

granulosa celis. EndocrinoÏogy 135, 207-2 13.

Zlotkin, T., Farkash, Y. & Orly, J. (1986). Cell-specific expression ofimmunoreactive

cholesterol side-chain cleavage cytochrome P-450 during follicular development in the rat

ovary. EizcÏocrinoÏogy 119, 2809-2820.

Zuber, M. X., John, M. E., Okamura, T., Simpson, E. R. & Waterman, M. R. (1986).

Bovine adrcnocortical cytochrome P-450(17 alpha). Regulation ofgene expression by ACTH

and elucidation ofprimary sequence. JBiol CItein 261, 2475-2482.



Appendix

148 kDa—

SF D5

— PN-1-substrate
complex

I

: } putative degradation
products of this
complex

Multiple bands are immunostainned with bovine PN-1
antibody in GO lysates from small and large growing follicles.

88 kDa—

58 kDa—

52 kDa —

45 kDa —

36 kDa—

:
— secreted PN-1

— degraded PN-1



I ACCORD ET PERMISSION DES COAUTEURS D’UN ARTICLE1 t

IDENTIFICATION DE L’ETUDIÀNT

‘Nom de l’étudiant Code permanent
Minju Cao
Sigle du programme Titre du programme Option
Ph.D. Sciences vétérinaires Reproduction

DESCRIPTION DESARTICLES

Auteurs
Mingju Cao, Maffia Sahmi, Jacques G. Lussier and Christopher A. Price

Titre
Plasminogen Activator and Serine Protease Inhibitor-E2 (Protease Nexin-1) Expression by Bovine
Granulosa Ceils in Vitro

Reuc Date de publicatton

Biology of Reproduction Sept 2004

Auteurs
Mingju Cao, Edmir Nicola and Christopher A. Price

Titre
Regulation of Protease Nexin- 1 and Plasminogen Activators Expression and Secretion by Bovine
Granulosa Celis in Vitro

Revue Date de publication
à soumettre

Auteurs
Mingju Cao, Jacques G. Lussier, Iosé Buratini, Paul D. Carrière and Christopher A. Price

Titre
The Coordinated Expression of Protease Nexin- 1, Plasminogen Activator Inhibitor- 1, and Plasminogen
Activators in Bovine Antral and Preovulatoiy follicles

Revue Date de publication
à soumettre

‘Annexe II du Guide de présentation et d’évaluation des mémoires de maîtrise et des thèses de doctorat, mars 2001
. .



(J

D




