Synthetic Approach to Room Temperature Luminescent Ruthenium(II) Complexes With Tridentate Ligands

presented by
Jianhua Wang

Département de chime
Faculté des arts et des sciences

A thesis presented to Faculté des études supérieures for the degree of Master of Science in Chemistry

Montréal, Quebéc, Canada

$$
\text { April, } 2005
$$

© Jianhua Wang 2005

$$
\begin{aligned}
& \text { QD } \\
& 3 \\
& U 54 \\
& 2005 \\
& 1.017
\end{aligned}
$$

Direction des bibliothèques

AVIS

L'auteur a autorisé l'Université de Montréal à reproduire et diffuser, en totalité ou en partie, par quelque moyen que ce soit et sur quelque support que ce soit, et exclusivement à des fins non lucratives d'enseignement et de recherche, des copies de ce mémoire ou de cette thèse.

L'auteur et les coauteurs le cas échéant conservent la propriété du droit d'auteur et des droits moraux qui protègent ce document. Ni la thèse ou le mémoire, ni des extraits substantiels de ce document, ne doivent être imprimés ou autrement reproduits sans l'autorisation de l'auteur.

Afin de se conformer à la Loi canadienne sur la protection des renseignements personnels, quelques formulaires secondaires, coordonnées ou signatures intégrées au texte ont pu être enlevés de ce document. Bien que cela ait pu affecter la pagination, il n'y a aucun contenu manquant.

NOTICE

The author of this thesis or dissertation has granted a nonexclusive license allowing Universite de Montréal to reproduce and publish the document, in part or in whole, and in any format, solely for noncommercial educational and research purposes.

The author and co-authors if applicable retain copyright ownership and moral rights in this document. Neither the whole thesis or dissertation, nor substantial extracts from it, may be printed or otherwise reproduced without the author's permission.

In compliance with the Canadian Privacy Act some supporting forms, contact information or signatures may have been removed from the document. While this may affect the document page count, it does not represent any loss of content from the document.

Université de Montréal

Faculté des arts et des sciences

Thesis titled:

Synthetic Approach to Room Temperature Luminescent

 Ruthenium(II) Complexes With Tridentate Ligandspresented by
Jianhua Wang
was evaluated by the committee composed of the following persons:

1. Prof. Christian Reber, committee president
\qquad
2. Prof. Garry S. Hanan, research supervisor
\qquad
3. Prof. Frank Schaper, committee member

Master's thesis

Title: Synthetic approach to room temperature luminescent ruthenium(II) complexes with tridentate ligands
Author: Jianhua Wang

Corrections:

$1^{\text {st }}$ corrections:
General corrections:

1. Removal of the blanks in the lifetime data.
2. Addition of the relative percentage of ESI-MS as well as the common solvents for MS samples.
3. Addition of elemental analysis of compound in Chapter 3 and Chapter 5 with comments for unsatisfactory results.
4. Addition of standard counteranion exchange procedure in Chapter 1, General experimental section.
5. Addition of residue solvent peaks in ${ }^{13} \mathrm{C}$ NMR general experimental.
6. Addition of R1 and wR2 factors in all XRD data, separation of target molecules with solvents in the molecular formula for XRD data.
7. Correction of names in the acknowledgements.
8. Addition of comments on the agreement of the isotope patterns in HRMS.
9. Correction of NMR discussion in Chapter 2, Chapter 3 and Chapter 5 and ${ }^{1} H$ NMR of ligand Cl -pm-tpy in $\mathrm{CD}_{3} \mathrm{CN}$ was added in Chapter 2 and 3 for reference.

Other specific corrections:

1. Cover: addition of committee members'name.
2. Page numbers of Table of contents and all the lists for tables, figures, schemes, charts.
3. p3: Addition of more details about the thermal-deactivation hypothesis. Revised discussion about the ligand field strength and the activation energy for crossing from the ${ }^{3} \mathrm{MLCT}$ to the ${ }^{3} \mathrm{MC}$ state.
4. p9-11: Experimental section: (i) solvent peaks in ${ }^{13} \mathrm{CNMR}$; (ii) standard counteranion exchange procedure; (iii) isotope agreement comments for HRMS; (iv) radiation sources for XRD.
5. p26: Figure 2.1 assignments of the proton NMR.
6. p29: 2-D COSY NMR.
7. p35 and 36: round the distances.
8. p56: Explanation of the luminescence quenching mechanism of complex $\mathrm{Ru}(\mathrm{tpy}$ -

An) $)^{2+}$ in ref 20 in Chapter 2.
9. p68: discussion of unsatisfactory refinement of complex $\mathbf{3 b}$.
10. p83-89: elemental analysis results.
11. p108: revised structure discussion.
12. pl10: more data for Table 4.4 and revised discussion for complex 2d.
13. p138: Ligand 1a-c ${ }^{\mathrm{l}} \mathrm{H}$ NMR in $\mathrm{CD}_{3} \mathrm{CN}$ and revised discusson.
14. p139: discussion of the symmetry of ligand 1a.
15. p142: discussion of unusual Z number of complex $\mathbf{3 b}$.

16: p150: last sentence, revised discussion.
17: p192: change "could also give rise to" to "has opened the gate to".
18: A1: Synlett. 2005, 8,1251 and the annexed real paper.
19. A2-8: Addition of supplementary data for complex 2b in Chapter 5.

Explanations for unchanged suggestions:

1. The styles of reporting values of LRMS and J values of ${ }^{1} \mathrm{H}$ NMR. The reporting styles follow the conventional reporting styles for publication in our journals of choice.
$2^{\text {nd }}$ corrections:

General corrections:

1. Change of the numbering schemes of single crystal structures to match the numbers in the supplementary data.
2. Addition of all the fractional atomic coordinates and equivalent isotropic displacement parameters for XRD supplementary data.
3. Correction of the discussion of solid structure symmetry of ligand 1a in Chapter 5.

Summary

Abstract

In my research thesis, the different synthetic approaches to prolong the excited state lifetime of $\mathrm{Ru}(\mathrm{II})$ complexes with deliberately designed tridentate ligands are presented. Initially, the "chemistry-on-the-complex" method was used to build up dimetallic $\mathrm{Ru}(\mathrm{II})$ species with multi-chromophoric approach (Chapter 2). The bimetallic $\mathrm{Ru}(\mathrm{II})$ complexes were efficiently synthesized through palladium(0)-catalyzed homocoupling reactions. These newly synthesized $\mathrm{Ru}(\mathrm{II})$ species had intriguing photophysical properties.

Even though the approach used in Chapter 2 has been proven to be an efficient strategy to optimize the photophysical properties of $\mathrm{Ru}(\mathrm{II})$ terpyridine complexes, their syntheses also depend on sequential reactions in order to incorporate two chromophores into the same ligand. The optimized multi-chromophoric approach is then presented in Chapter 3. In this new approach, the 9-anthryl chromophore (the energy reservoir) is grafted onto the tpy moiety not involved in the ${ }^{3}$ MLCT emitting state level, while the 2-pyrimidyl-tpy subunit is involved in extended electron delocalization.

The introduction of electron-donating or -accepting 4'-substituents onto $\mathrm{Ru}(\mathrm{tpy}){ }_{2}{ }^{2+}$ has several advantages over multi-chromophoric species due to their easier syntheses and simpler monoexponential decay. In this approach, $\mathrm{Ru}(\mathrm{II})$ complexes of 4'-
cyano-tpy, which were not accessible from a classical approach, were first synthesized through palladium(0)-catalyzed cyanation reactions(Chapter 4). The introduction of the strongly electron-withdrawing cyano group has yielded exceptional photophysical properties in $\mathrm{Ru}(\mathrm{II})$ complexes, with prolonged rt luminescence lifetimes as well as relatively high quantum yields as compared to $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$.

Due to the importance of ligand design in coordination chemistry, the exploration of new ligands as well as the new methodology to synthesize known ligands is a major concern in inorganic chemistry. In Chapter 5, a new family of tridentate ligands, 2,6-bis(pyrimid-2'-yl)pyridines, were convergently synthesized with high yields. The application of this new family of ligands to $\mathrm{Ru}(\mathrm{II})$ coordination chemistry has proven the strongly π-electron accepting nature of these ligands.

Since 4'-aryl-tpy ligands have been used as ubiquitous ligands in coordination chemistry, new synthetic method to obtain these ligands is in great need. The new synthetic methodology to sterically hindered and non-hindered 4'-aryl-tpy ligands is shown in Chapter 6. This one-pot method has several advantages over previous reported methods: (i) milder reaction conditions; (ii) higher yields and (iii) easier purification. In this method, even the sterically hindered 9-anthryl group can be incorporated into the tpy moiety in one step.

Keywords

excited state lifetime, ligand design, ${ }^{3}$ MLCT, ruthenium, terpyridine

Sommaire

Résumé

Dans mon mémoire de maîtrise sont présentés des différentes approches de prolonger la durée de vie de l'état excité des complexes de ruthénium(II) avec des ligands tridentates. Dans une première étape, la méthode «chimie-sur-complexe» a été utilisée pour construire des espèces multi-chromophoriques dimétalliques de Ru (II) (Chapitre 2). Les complexes bimétalliques de $\mathrm{Ru}(\mathrm{II})$ ont été efficacement synthétisés par une réaction de homocouplage, en utilisant palladium(0) comme catalyseur. Ces nouvelles espèces de ruthénium ont démontré des propriétés photophysiques très intéressantes.

Bien que l'approche utilisée dans le Chapitre 2 soit révélé utile pour optimiser les propriétés photophysiques des complexes de $\mathrm{Ru}(\mathrm{II})$ avec des ligands terpyridines, leur synthèse dépendent aussi sur des réactions consécutives, pour que deux chromophores soient incorporés dans le même ligand. L'approche multi-chromophore optimisée est ensuite présentée dans le Chapitre 3. Dans cette nouvelle approche, le chromophore 9anthryle (le réservoir d'énergie) est greffé sur la partie tpy qui n'est pas impliquée dans l'état émetteur ${ }^{3} \mathrm{MLCT}$, tandis que la sous-unité 2-pyrimidyle-tpy est entrainée dans la délocalisation électronique.

L'introduction de substituents accepteurs ou donneurs d'électrons dans la position 4' du ligand dans les complexes $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ présente des avantages par comparaison aux espèces multi-chromophoriques, grâce à leur synthèse facile et le déclin monoexponentielle simple. Par cette approche, des complexes de Ru(II) avec des ligands de type 4'-cyano-tpy ont été synthétisés pour la première fois par l'intermède d'une
réaction de cyanuration catalysée par $\operatorname{Pd}(0)$ (Chapitre 4). La présence du groupement cyano, très fort accepteur d'électron, a amené des propriétés photophysiques exceptionnelles aux complexes de $\mathrm{Ru}(\mathrm{II})$, avec des longues durées de vie, aussi que des grands rendements quantiques comparés aux $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$.

L'importance de la nature du ligand dans la chimie de coordination mène vers l'exploration des nouveaux ligands, aussi que vers des nouvelles méthodes de synthèse des ligands déjà connus. Dans le Chapitre 5, une nouvelle famille des ligands tridentates, 2,6-bis(pyrimid-2'-yl)pyridines, a été synthétisée avec des bons rendements. L'application de cette nouvelle famille sur la chimie de coordination du $\operatorname{Ru}(I I)$ a démontré la capacité forte accepteuse de ces ligands.

Les résultats exceptionnels obtenus par l'utilisation des ligands de type 4'-aryletpy dans la chimie de coordination ont démontré la nécessité de trouver des nouvelles méthodes de synthétiser ces ligands. Ainsi, une nouvelle méthodologie de synthèse des ligands de type 4'-aryle-tpy encombrant et non-encombrant stérique est présentée dans le Chapitre 6. La méthode présente quelques avantages par rapport à celles présentées jusqu'à maintenant: (i) des conditions de réactions pas trop drastiques; (ii) grands rendements; (iii) très facile purification. Par cette méthode, même le groupement encombrant 9-anthryle peut être incorporé dans le ligand tpy dans une seule étape.

Mots clé

durée de vie de l'état excité, design de ligand, ${ }^{3}$ MLCT, ruthénium, terpyridine

Table of Contents

Summary i
Sommaire iii
Table of Contents v
List of Tables xiii
List of Figures xv
List of Schemes. xvii
List of Charts xix
Abbreviations xx
Acknowledgements xxiii
Chapter 1
Introduction 1
1.1 Ruthenium polypyridyl complexes 1
1.2 Ligand design in coordination chemistry 6
1.3 General experimental 9
1.4 References 12
Chapter 2
The Multi-chromophore Approach to Prolonged Room Temperature Luminescence
Lifetimes in Ru(II) Complexes Based on Tridentate Polypyridine Ligands 16
Abstract 16
2.1 Introduction 17
2.2 Results and discussion 20
2.2.1 Synthesis 20
2.2.2 ${ }^{1} \mathrm{H}$ NMR spectroscopy 26
2.2.3 Crystallography 30
2.2.4 Electrochemistry 36
2.2.5 Spectroscopic properties 38
2.2.6 Photophysical properties[gshl] 40
2.3 Conclusion 42
2.4 Experimental 43
2.4.1 General methods 43
2.4.2 X-Ray crystallography 43
2.4.3 Synthesis 45
(AnPmtpy)Ru(tpy) $\left(\mathrm{PF}_{6}\right)_{2}$ (3a) 45
(AnPmtpy)Ru(tpyPmAn) $\left(\mathrm{PF}_{6}\right)_{2}(3 b)$ 46
(AnPmtpy)Ru(tpyPmCl) $\left(\mathrm{PF}_{6}\right)_{2}(3 \mathrm{c})$ 47
$[($ tpy $) \mathrm{Ru}($ tpy PmPmtpy$) \mathrm{Ru}($ tpy $)]\left(\mathrm{PF}_{6}\right) 4$ (4a) 49
[(AnPmtpy)Ru(tpyPmPmtpy)Ru(tpyPmAn)]((%5Cleft.%5Cmathrm%7BPF%7D_%7B6%7D%5Cright)_{4}\) (4b) 50
2.5 References 52

Chapter 3

Luminescent Ruthenium(II) Complexes of 4'-(9-Anthryl)-2,2':6',2"-Terpyridine:
Equilibrating Organic Chromophore and ${ }^{3}$ MLCT Over Large Distance
Abstract 57
3.1 Introduction 58
3.2 Results and discussion 61
3.2.1 Synthesis 61
3.2.2 NMR spectroscopy 63
3.2.3 Crystal structure determination 67
3.2.4 Electrochemistry 71
3.2.5 Spectroscopic properties 72
3.2.6 Photoluminescence measurements 74
3.3 Conclusion 77
3.4 Experimental 78
3.4.1 General methods 78
3.4.2 X-Ray crystallography 79
3.4.3 Ligands synthesis 80
4'-(Pyrimid-2-yl)-2,2':6',2"-terpyridine (2a) 80
4'-(5-Chloro-pyrimid-2-yl)-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (2b) 81
4’-(5-Phenyl-pyrimid-2-yl)-2,2':6',2"-terpyridine (2c) 81
4'-(5-p-Bromo-phenyl-pyrimid-2-yl)-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (2d) 82
3.4.4 Metal complexes preparation 83
(An-tpy) RuCl_{3} (4) 83
$[(\mathrm{An}-\mathrm{tpy}) \mathrm{Ru}(\mathbf{2 a})]\left(\mathrm{PF}_{6}\right)_{2}(\mathbf{3 a})$ 83
$[(A n-t p y) R u(2 b)]\left(\mathrm{PF}_{6}\right)_{2}$ (3b) 85
$[(A n-t p y) R u(2 c)]\left(\mathrm{PF}_{6}\right)_{2}(3 c)$ 86
$[($ An-tpy $) \mathrm{Ru}(\mathbf{2 d})]\left(\mathrm{PF}_{6}\right)_{2}$ (3d) 87
$[(A n-t p y) R u(t p y)]\left(\mathrm{PF}_{6}\right)_{2}(\mathbf{3 e})$ 88
3.5 References 90
Chapter 4
Synthesis and Properties of the Elusive Cyano-complexes: Facile Palladium- Catalyzed Cyanation on the Ru(II) Terpyridine Complexes 94
4.1 Introduction 94
4.2 Result and discussion 100
4.2.1 Synthesis 100
4.2.2 NMR spectroscopy. 105
4.2.3 Crystal structure determination 106
4.2.4 Electrochemistry 109
4.2.5 Absorption and emission measurements 110
4.3 Conclusion 115
4.4 Experimental 116
4.4.1 General methods 116
4.4.2 Materials 116
4.4.3 Syntheses 117
Synthesis of 1,5-di-2-pyridylpentane-1,3,5-trione (6) 117
Synthesis of 2,6-bis(2'-pyridyl)-4-pyridone (7) 118
Synthesis of 4'-chloro-2,2':6',2''-terpyridine (4, Cl-tpy) 118
Synthesis of 4^{\prime}-cyano-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (5, NC-tpy) 118
$[(\mathrm{NC}-\mathrm{tpy}) \mathrm{Ru}(\mathrm{tpy})]\left(\mathrm{PF}_{6}\right)_{2} \mathbf{(2 a)}$ 119
$[(\mathrm{NC}-\mathrm{pm}-\mathrm{tpy}) \mathrm{Ru}(\mathrm{tpy})]\left(\mathrm{PF}_{6}\right)_{2}(2 \mathrm{c})$ 120
[(NC-ph-pm-tpy)Ru(tpy)]((%5Cleft.%5Cmathrm%7BPF%7D_%7B6%7D%5Cright)_{2}(2 d)\) 121
$\left[(\mathrm{NC}-\mathrm{tpy})_{2} \mathrm{Ru}\right]\left(\mathrm{PF}_{6}\right)_{2}(2 b)$ 122
4.5 References 124
Chapter 5
Synthesis of 2,6-bis(5'-Substituted-pyrimid-2'-yl)pyridine Ligands and Their
Ruthenium(II) Complexes 129
Abstract 129
5.1 Introduction 130
5.2 Results and discussion 134
5.2.1 Syntheses 134
5.2.2 NMR spectroscopy 137
5.2.3 Solid state structure 139
5.2.4 Electrochemistry 146
5.2.5 UV-vis spectroscopy 148
5.3 Conclusion 154
5.4 Experimental 155
5.4.1 General methods 155
5.4.2 X-Ray crystallography 156
5.4.3 Syntheses of Ligands 1a-c 157
2,6- pyridine-bisamidine $\cdot 2 \mathrm{HCl}$ (6) 157
2,6-bis(pyrimyd-2'-yl)pyridine (1a) 157
2,6-bis(5'-chloro-pyrimyd-2'-yl)pyridine (1b) 158
2,6-bis(5'-phenyl-pyrimyd-2'-yl)pyridine (1c). 158
5.4.3 Syntheses of complexes 2a-c and 3a-c 159
$\mathrm{Ru}(\mathbf{1 a})_{2}\left(\mathrm{PF}_{6}\right)_{2}(\mathbf{2 a})$ 159
$\mathrm{Ru}(\mathbf{1 b})_{2}\left(\mathrm{PF}_{6}\right)_{2}(\mathbf{2 b})$ 160
$\mathrm{Ru}(\mathbf{1 b})(\mathbf{1 b}) \mathrm{Cl}\left(\mathrm{PF}_{6}\right)_{2}\left(\mathbf{2 b}{ }^{\mathbf{}}\right)$ 160
$\mathrm{Ru}(\mathbf{1 c})_{2}\left(\mathrm{PF}_{6}\right)_{2}(\mathbf{2 c})$ 161
$\mathrm{Ru}(1 \mathrm{a})($ tpy $)\left(\mathrm{PF}_{6}\right)_{2}$ (3a) 162
$\mathrm{Ru}(\mathbf{1 b})($ tpy $\left.)\left(\mathrm{PF}_{6}\right)_{2} \mathbf{(3 b}\right)$ 163
$\mathrm{Ru}(1 \mathrm{c})(\mathrm{tpy})\left(\mathrm{PF}_{6}\right)_{2}(3 \mathrm{c})$ 163
5.5 References 165
Chapter 6
A Facile Route to the Sterically Hindered and Non-hindered 4'-Aryl-2,2':6',2"-
Terpyridines 170
Abstract 171
6.1 Introduction 172
6.2 Results and discussion 174
6.3 Conclusion 178
6.4 Experimental 170
6.4.1General methods 179
6.4.2 Materials 179
4'-phenyl-2,2':6', $2^{\prime \prime}$-terpyridine (1) 179
4'-p-Tolyl-2,2':6',2"-terpyridine (2) 180
p-Cyanophenyl-2,2':6',2"-terpyridine (3) 181
p-Hydroxyphenyl-2,2':6',2"-terpyridine (4) 181
p-bromophenyl-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (5) 182
p-(N, N-dimethylaminophenyl) $-2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (6) 182
p-nitrophenyl-2,2':6',2"-terpyridine (7) 183
p-methoxyphenyl-2,2':6',2"-terpyridine (8) 183
4'-(2,3-dimethoxyphenyl)-2,2':6',2"-terpyridine (9) 184
4'-(4-diphenyl)-2,2':6',2"-terpyridine (10) 184
4'-(1-naphthyl)-2,2':6',2"-terpyridine (11) 185
4'-(9-anthryl)-2,2':6',2"-terpyridine (12) 185
4'-(2-furyl)-2,2':6',2"-terpyridine (13). 186
4'-(4-pyridyl)-2,2':6',2"-terpyridine (14) 187
6.5 References 188
Chapter 7
Conclusions and Future Proposals 191
7.1 Conclusions 191
7.2 Future proposals 193
7.2.1 Tridentate ligands 193
7.2.2 Complexes. 194
7.2.3 Synthetic methodology 195
7.3 References and notes.. 198
Appendix A1
A-1 Papers published Al
A-2 Supplementary data of single crystal structures A2

List of Tables

Table 1.1 Major approaches to prolong the room temperature excited state lifetimes of ruthenium(II) polypyridyl complexes based on tridentate ligands.

Table 2.1 Effect of catalyst and temperature variation on the mono-coupling reaction....

Table 2.2 ${ }^{1} \mathrm{H}$ NMR chemical shifts for $\mathrm{Ru}(\mathrm{II})$ complexes $\mathbf{3 a - c}, \mathbf{4 a - b}, \mathbf{2 a - b}$ and ligand $\mathbf{1 .}$.
\qquad
Table 2.3 Selected bond lengths and bond angles for complexes 3a and 3b.34
Table 2.4π-Stacking distances in the two stacked motifs. 36
Table 2.5 Electrochemical redox potentials for complexes 3a-c, 4a-b and 5 37
Table 2.6 Electronic spectra data of complexes 3a-c, 4a-b and 5. 40
Table 2.7 Luminescence data of complexes 3a-c and 4a-b. 41
Table 2.8 Crystallography data for complexes 3a and 3b. 44
Table 3.1 Chemical shifts of ${ }^{1} \mathrm{H}$ NMR signals of complexes 3a-e. 65
Table 3.2 Selected bond lengths and angles for complexes 3b and 3d 68
Table 3.3 Cyclic voltammetric potentials of complexes 3a-e. 72
Table 3.4 Electronic absorption spectra for complexes 3a-e. 73
Table 3.5 Luminescence data of complex 3a-e. 76
Table 3.6 Crystallography data for complexes 3b and 3d. 79
Table 4.1 ${ }^{1} \mathrm{H}$ NMR data of complex 1a-e and complexes 2a-e. 105
Table 4.2 Crystallography data for complex 2c. 108
Table 4.3 Selected bond lengths and angles in complex 2 c 109
Table 4.4 Electrochemical data of complexes 2a-e. 110
Table 4.5 Absorption spectra data of complexes 2a-d. 113
Table 4.6 Luminescence data of complexes 2a-e. 114
Table 5.1 ${ }^{1} \mathrm{H}$ NMR resonances for ligands $\mathbf{1 a - c}$. 138
Table 5.2 ${ }^{\mathrm{I}} \mathrm{H}$ NMR resonances for complexes 2a-c and 3a-c. 139
Table. 5.3 Selected bond lengths and bond angles for complexes 2a-b and 3b. 146
Table 5.4 Half-wave potentials for complexes 2a-c and 3a-c. 148
Table 5.5 Absorption spectra data of ligands 1a-c. 150
Table 5.6 Absorption spectra data of complexes 2a-c, 3a-c. 153
Table 5.7 Crystallography data for complexes 2a-b and 3b. 156

Table 6.1 Reaction conditions and yields of 4^{\prime}-aryl-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridines compared with the methods previously reported.176

List of Figures

Figure 1.1 Octahedral structures of $\mathrm{Ru}(\mathrm{bpy})_{3}{ }^{2+}$ and $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ complexes with their energy diagrams of photo-excited states... 2

Figure 1.2 Schematic representations of $\mathrm{M}(\mathrm{bpy}){ }_{3}{ }^{\mathrm{n+}}$ and $\mathrm{M}(\mathrm{tpy})_{2}{ }^{\mathrm{n}+}$ complexes and of their disubstituted derivatives 3

Figure 1.3 Schematic representations of two approaches to synthesize metal complexes with newly designed ligands: (A) ligand approach; (B) "chemistry-on-the-complex"
\qquad

Figure 2.1 ${ }^{1} \mathrm{H}$ NMR spectrum of complex $\mathbf{4 b}$ with proton labelling.26

Figure 2.2 2-D COSY spectrum of complex 3 b with labelling and schematic representation of the deshielding effect of 9 -anthryl group to the chemical shifts of $\mathrm{T}_{3 ; 5}$ and $\mathrm{Pm}_{4,6}$
\qquad
Figure 2.3 Two ORTEP plots of the X-ray crystal structure of complex 3a................. 32
Figure 2.4 Two ORTEP plots of the X-ray crystal structure of complex 3b................. 33
Figure 2.5 Two intramolecular π-stacking motifs observed in complex 3b. 35
Figure 2.6 Electronic absorption spectra for 3a-c and 4b.. 39
Figure 2.7 Schematic representation of the luminescence quenching mechanism of homoleptic Ru(tpy-An) 2^{2+} complex.. 56

Figure 3.1 ${ }^{1}$ H NMR spectra of complexes 3a-e. ... 67
Figure 3.2 ORTEP plots of the X-ray crystal structure of complex 3b. 70
Figure 3.3 ORTEP plots of the X-ray crystal structure of complex 3d. 71
Figure 3.4 Electronic absorption spectra for 3a-e. 74
Figure 4.1 Energy diagram of the frontier orbitals of $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ complexes. 96
Figure 4.2 A recent example of di-ruthenium system 98
Figure 4.3 ORTEP plots of the X-ray crystal structure of complex $\mathbf{2 c}$ 107
Figure 4.4 Absorption and emission spectra of $\mathbf{2 b}$. 111
Figure 4.5 UV-vis spectra of complexes 2a (solid line), 2c (dashed line) and 2d (dottedline) in acetonitrile solution.112
Figure 5.1 Dynamic Behavior of [bppy]PdR complexes. 131
Figure 5.2 Proposed structure of complex 2b' 136
Figure 5.3 ORTEP plot of the X-ray crystal structure of $1 \mathrm{a} \cdot 2 \mathrm{H}_{2} \mathrm{O}$. 140
Figure 5.4 ORTEP plots of the three-dimensional structure of $\mathbf{1 a} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ viewed from Z-
axis (top) and viewed along Z-axis (bottom). 141
Figure 5.5 ORTEP plots of the X-ray crystal structure of complex 2a. 143
Figure 5.6 ORTEP plot of the X-ray crystal structure of complex 2b. 144
Figure 5.7 ORTEP plots of the X-ray crystal structure of complex 3b. 145
Figure 5.8 Absorption spectra of ligands 1a-c. 149
Figure 5.9 Absorption spectra of complexes 2a-c. 151
Figure 5.10 Absorption spectra of complexes 3a-c. 152

List of Schemes

Scheme 2.1 Synthesis of complexes 3a-b 21
Scheme 2.2 Palladium-catalyzed mono-coupling reaction on the $\mathrm{Ru}\left(\right.$ tpy-pm-Cl) 2^{2+} complex 2b 23
Scheme 2.3 Palladium-catalyzed homo-coupling reaction on complexes 2a and 3c. 25
 61
Scheme 3.2 Synthesis of the ruthenium complexes 3a-d. 63

Scheme 4.1 Possible intramolecular electron-transfer processes taking place after light excitation of the mixed-valent $\mathrm{Ru}(\mathrm{II})-\mathrm{Ru}(\mathrm{III})$ dimer.98
Scheme 4.2 Original synthesis of 4^{\prime}-cyano- $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine ligand. 100
Scheme 4.3 Synthesis of 4^{\prime}-cyano- $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine through palladium(0)-catalyzedcyanation of 4^{\prime}-chloro- $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine.101Scheme 4.4 Classical approach to the $\mathrm{Ru}(\mathrm{II})$ 4-cyano-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine complex....102
Scheme 4.5 Palladium-catalyzed cyanation of $\mathrm{Ru}(\mathrm{II})$ complexes of 4'-chloro-2,2':6',2"-
terpyridine. 103
Scheme 4.6 Palladium catalyzed cyanation on $\mathrm{Ru}(\mathrm{II})$ complexes $\mathbf{1 c - d}$. 104
Scheme 5.1 Reported synthesis of bppy ligand. 133
Scheme 5.2 Synthesis of 2,6-bis(5'-R-pyrimid-2'-yl)pyridine ligands (Rbppy) 1a-c. 134

Scheme 5.3 Synthesis of $\left[(\mathrm{Rbppy})_{2} \mathrm{Ru}\right]\left(\mathrm{PF}_{6}\right)_{2}$ complexes 2a-c.
 135

Scheme 5.4 Synthesis of heteroleptic [(Rbbpy)Ru(tpy)]((%5Cleft.%5Cmathrm%7BPF%7D_%7B6%7D%5Cright)_{2}\) complexes 3a-c. 136
Scheme 6.1 Facile one-pot synthesis of 4^{\prime}-aryl-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine. 174

Scheme 7.1 Target ligand, 4'-(oligo-2,5-pyrimidine)-tpy ligand with unsuccessful attempts to synthesize oligo-2,5-pyrimidine.196

List of Charts

Chart 3.1 Numbering scheme for complex $[(a n-t p y) R u(t p y-p m-R)]\left(\mathrm{PF}_{6}\right)_{2}$ 3a-d
 66

Chart 5.1 Tridentate ligands: $2,2^{\prime}: 6^{\prime}: 2^{\prime \prime}$-terpyridine (tpy) and tpy analogues A-F. 131

Chart 7.1 Proposed target ligands for ligand approach in coordination chemistry. 194

Abbreviations

2-D	two-dimensional
abs	absolute
Ac	acetyl
An	9 -anthryl
Ar	aryl
bppy	2,6 -bis(pyrimid-2'-yl)pyridine
bpy	calculated
Calcd	correlated spectroscopy
COSY	cyclic voltammetry
CV	doublet (NMR)
d	dibenzylideneacetone
dba	doublet of doublets (NMR)
dd	electron
ddd	N, N-dimethylacetamide of doublet of doublet
DMA	N, N-dimethylformamide
DMF	dimethyl sulfoxide
DMSO	esi-MS

Et	ethyl
FAB-MS	fast atom bombardment mass spectrometry
GS	ground state
h	hour
HOMO	highest occupied molecular orbital
Hz	hertz
J	spin coupling constant
L	ligand
LC	ligand centered
LC-MS	liquid chromatography mass spectrometry
LUMO	lowest unoccupied molecular orbital
m	multiplet (NMR)
M	metal
MC	metal-centered (transition)
Me	methyl
mL	milliliter
MLCT	metal-to-ligand charge transfer (transition)
mmol	millimole
mol	mole
mp	melting point
MS	mass spectrometry
m / z	mass to charge
${ }^{n} \mathrm{Bu}$	n-butyl

NMR	nuclear magnetic resonance
nm	nanometer
ns	nanosecond
$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$	tris(dibenzylideneacetone)dipalladium chloroform complex
$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$	tetrakis(triphenylphosphine)palladium
Ph	phenyl
pm	pyrimidine
ppm	parts per million
Py	pyridine
RC	reaction center
Rf	retention factor
rt	room temperature
s	singlet (NMR)
SCE	siliver chloride electrode
SHE	standard hydrogen electrode
t	triplet (NMR)
${ }^{t} \mathrm{Bu}$	tert-butyl
td	triplet of doublets (NMR)
Tf	triflate
THF	tetrahydrofuran
TLC	thin-layer chromatography
tpy	2,2':6',2''-terpyridine
UV-vis	ultraviolet and visage spectrascopy

To my mother, Suzhen Li
To my wife, Yuan Zhang

Acknowledgements

First of all, I'd like to thank my supervisor, Prof. Dr. Garry S. Hanan, for his endless support on my research projects. It's he who helped me to restore the interests on the chemistry when I felt depressed on the scientific research. His enthusiasm, encouragement, diligence and guidance have taught me a lot and made my research have more pleasure as it should have. I should also thank Garry for the generous financial aid as well as his help on the application for the waiver of international student fees.

I would like to thank the Hanan team: Michael W. Cooke, Elaine A. Medlycott, Elena Ioachim and all the undergraduates. All of them made my life wonderful in Canada. And also I thank the former Hanan team members, especially Yuan-Qing Fang for his research advices. Helps and joys from other groups such as André Beauchamp's, Christian Reber's, Davit Zargarian's, André Charette's and Hélène Lebel's are also highly appreciated. The combined helps from these groups gave me a lot of convenience in my research. The financial aid of a TA scholarship from Département de chimie, Université de Montréal is also greatly acknowledged.

Prof. Dr. S. Campagna's group at Università di Messina is also acknowledged for the photophysical measurements. I would also like to thank Elaine and Francine Bélanger-Gariépy in Université de Montréal, Dr. Constandin A. Udachin in NRC (Ottawa, Canada) for their great work on the crystal structures. Dr. Alexandre Furtos and Dr.

Dalbir Singh Sekhon are thanked for their excellent work on the high resolution mass spectra and ESI-MS, respectively.

I'd like to send my acknowledgements to Dr. Claudio F. Sturino and Dr. Zhaoyin Wang in Merck Frosst, Canada for their constant helps on my road to be a synthetic chemist.

I would like to express my gratefulness to my wife, Yuan Sabrina Zhang, who has shared all the happiness and depression with me. I am indebted to my families (my sister, my father and my family-in-law) for their constant support.

Finally I want to dedicate this thesis to my mother, Suzhen Li, who passed away during my master's studies. It is my mother who made me fearless on the future.

Chapter 1

Introduction

1.1 Ruthenium polypyridyl complexes

One of the main topics in coordination chemistry is the study of luminescence and redox properties of ruthenium(II) complexes due to their rich photophysical properties, which can be used as potential photosensitisers in artificial light-harvesting devices. ${ }^{1}$

Among these complexes, the prototype, $\mathrm{Ru}(\mathrm{bpy}))_{3}{ }^{2+}\left(\mathrm{bpy}=2,2^{\prime}\right.$-bipyridine $)$, is one of the most simple, yet interesting, systems due to its potential application in lightharvesting devices (Figure 1.1). ${ }^{2}$ Due to the strong ligand field strength of bpy (activation energy, $\Delta E=4000 \mathrm{~cm}^{-1}$), the metal-centered triplet state of the $\mathrm{Ru}(\mathrm{bpy}){ }_{3}{ }^{2+}$ is not easily accessible from the ${ }^{3}$ MLCT emitting state ${ }^{2}$ and complexes based on $\mathrm{Ru}(\mathrm{bpy})_{3}{ }^{2+}$ have relatively longer lifetimes than their $\mathrm{Ru}(\text { tpy })_{2}{ }^{2+}$ analogues, which give rise to their wide applications.

However, $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]^{2+}$ complexes suffer from a stereochemical disadvantage when used to build up multimetallic supramolecular arrays due to the presence of Δ and Λ enantiomers that exist in D_{3}-symmetrical $\mathrm{Ru}\left(\mathrm{L}_{2}\right)_{3}$ complexes (L_{2} : bpy-type bidentate ligand) (Figure 1.2). ${ }^{\text {la }}$ Moreover, asymmetric substituents on the bpy ligands can give rise to fac- and mer- geometrical isomers for $\operatorname{Ru}\left(L^{\prime}\right)_{3}$ complexes (LL' $=$ unsymmetrical bidentate ligand, Figure 1.2).

In recent years, research work concerning Ru(II) polypyridyl complexes has focused on $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$-type complexes (tpy $=2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine) since complexes based on the tridentate tpy ligand offered several structural and synthetic advantages as compared to those based on the bidentate bpy ligand. ${ }^{\text {1a, If }}$ The substituents on the 4^{\prime} position of the $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ complexes maintain a C2-axial symmetry and, thus, make the purification and characterization of these C2-symmetric molecules easier than those of $\mathrm{Ru}(\mathrm{bpy}){ }_{3}{ }^{2+}$ complexes. Subsequently, it's much easier to use the functionalities on the 4 'position of tpy ligands to build up linear polymetallic arrays or dendrimers for their application in artificial light-harvesting devices.

Figure 1.1 Octahedral structures of $\mathrm{Ru}(\mathrm{bpy}))_{3}{ }^{2+}$ and $\mathrm{Ru}(\mathrm{tpy}){ }_{2}{ }^{2+}$ complexes with their energy diagrams of photo-excited states. ${ }^{\text {la,If }}$

In rigid matrix at $77 \mathrm{~K} \mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ has a strong, long-lived luminescence characteristic of $\mathrm{a}^{3} \mathrm{MLCT}$ emitter. However, on increased temperature, the $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ luminescence intensity and lifetime decreased, attributed to the equilibration of ${ }^{3}$ MLCT state with high-spin metal-based dd state. ${ }^{3} \mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$-type complexes (Figure 1.1) exhibit pseudo-octahedral coordination, which is extremely distorted from idealized octahedral configuration. ${ }^{4}$ The ligand field strength of tpy with this geometry is much smaller than that of bpy and subsequently has a lower ${ }^{3} \mathrm{MC}$ excited state energy and a smaller separation between the ${ }^{3} \mathrm{MLCT}$ and ${ }^{3} \mathrm{MC}$ states, as estimated from the smaller activation energy $\left(\Delta E=1500 \mathrm{~cm}^{-1}\right)$ for crossing between the two states in $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$. Therefore, the ${ }^{3} \mathrm{MLCT}$ state of $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ can access the ${ }^{3} \mathrm{MC}$ state at rt through a Boltzmann distribution. Subsequently, $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ complexes have an extremely short excited state lifetime ($<0.25 \mathrm{~ns}$), which is far from useful for practical applications at rt. ${ }^{6}$

$m(\text { bpy })_{3}^{n+}$

M(tpy) $)_{2}^{n+}$

A-M(tpy) $)_{2}^{n+D}$

Figure 1.2 Schematic representations of $\mathrm{M}(\mathrm{bpy})_{3}{ }^{\mathrm{nt}}$ and $\mathrm{M}(\mathrm{tpy}){ }_{2}{ }^{\mathrm{n+}}$ complexes and of their disubstituted derivatives. ${ }^{\text {1a }}$

To be applied in a practical device, it would be convenient if $\mathrm{Ru}(\mathrm{II})$ tpy complexes had relatively long-lived excited states at rt. A variety of strategies have been employed to prolong the rt excited state lifetimes of $\mathrm{Ru}(\mathrm{II})$ complexes based on tridentate ligands. ${ }^{\text {If }}$ Several major approaches to improve the luminescence lifetime of ruthenium bis-tridentate complexes have been summarized in Table 1.1. The first two approaches are based on fine-tuning the separation in the excited energy levels of the complexes in order to minimize the population of the ${ }^{3} \mathrm{MC}$ state from the ${ }^{3} \mathrm{MLCT}$ state, which is the main deactivation process in $\mathrm{Ru}($ tpy $){ }_{2}{ }^{2+}$ complexes. ${ }^{7}$ A great number of tpy derivatives have been incorporated into the $\mathrm{Ru}(\mathrm{II})$ coordination sphere in order to tune the relative energy of the excited states in an aim to prolong the rt lifetimes of their complexes. Through the introduction of electron-rich tridentate ligands, the longest lifetime, 3100 ns , was acquired in the $\mathrm{Ru}(\mathrm{II})$ bis-carbene complex in water with bromides as counteranions. ${ }^{8}$

Recently, a third approach, namely a multi-chromophoric approach, has appeared as a successful strategy to prolong the rt excited state lifetime of $\mathrm{Ru}(\mathrm{II})$ polypyridine chromophores through the introduction of an energy storage element into the system to delay the non-radiative decay by excited state energy equilibration. ${ }^{10}$ The efficient energy equilibration between the ${ }^{3}$ MLCT of $\mathrm{Ru}(\mathrm{II})$ polypyridyl chromophore and an isoenergetic triplet state of the organic chromophore (${ }^{3} \mathrm{OC}$) delayed the luminescent ${ }^{3} \mathrm{MLCT}$ radiative decay to the GS and resulted in biexponential decay in bichromophoric species, which have two lifetimes attributed to ${ }^{3}$ MLCT radiative decay and the ${ }^{3}$ MLCT equilibrated with ${ }^{3} \mathrm{OC}$ state, respectively. ${ }^{10 \mathrm{f}}$ Previous research in our lab has showed that the homoleptic $\left[\mathrm{Ru}(\mathrm{tpy}-\mathrm{pm}-\mathrm{an})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}$ complex has a rt excited state lifetime as long as $1.8 \mu \mathrm{~s} .{ }^{10 \mathrm{f}}$

Table 1.1 Major approaches to prolong the room temperature excited state lifetimes of ruthenium(II) polypyridyl complexes based on tridentate ligands.

mechanisms	approaches	representative complex, $\lambda_{\max }$, r.t. lifetime $^{\text {[a] } \mid \text { b] }}$
lowering the energy of the ${ }^{3}$ MLCT state	electron withdrawing group approach	$\left[\left(4^{\prime}-\mathrm{MeSO}_{2} \text {-tpy }\right) \mathrm{Ru}(\text { tpy })\right]^{2+}, 679 \mathrm{~nm}, 75 \mathrm{~ns}^{\text {'b }}$
	π-accepting group approach	$\begin{gathered} {[(\mathrm{R}-\mathrm{pm}-\mathrm{tpy}) \mathrm{Ru}(\mathrm{tpy})]^{2+}, 669-713 \mathrm{~nm}, 8-200 \mathrm{~ns}^{9 \mathrm{9a}} ;} \\ \quad\left[\left(6^{\prime}-\mathrm{ph}-\mathrm{trz}\right) \mathrm{Ru}(\mathrm{tpy})\right]^{2+}, 740 \mathrm{~nm}, 9 \mathrm{~ns}^{\mathrm{gb}} ; \end{gathered}$
increasing the energy of the ${ }^{3} \mathrm{MC}$ state	cyclometallation approach	[(bpb)Ru(tpy) ${ }^{+}, 784 \mathrm{~nm}, 4.5 \mathrm{~ns}{ }^{\text {9c }}$;
	σ-donor heterocycles	$[(t t z) R u(t p y)]^{2+}, 680-702 \mathrm{~nm}, 24-77 \mathrm{~ns}{ }^{\text {gd }}$
	carbene approach	$\left[(\mathrm{NHC})_{2} \mathrm{Ru}\right] \mathrm{Br}_{2}, 532 \mathrm{~nm}, 3100 \mathrm{~ns}{ }^{8 / \mathrm{c}]}$
energy equilibration	bichromophoric approach	$[(\text { pyrene-CH }=\mathrm{CH}-\mathrm{tpy}) \mathrm{Ru}(\text { tpy })]^{2+}, 698 \mathrm{~nm}, 580 \mathrm{~ns}^{9 e}$ $\left[(a n-p m-t p y)_{2} R u\right]^{2+}, 675 \mathrm{~nm}, 1806 \mathrm{~ns}^{10 \mathrm{f}}$.

[a] Unless stated otherwise, $\lambda_{\max }$ and lifetime were measured at rt in acetonitrile. [b] trz = 2,4-bis(pyrid-2-yl)-1,3,5-triazine, bpb $=1,3-\mathrm{bi}($ pyrid-4-yl)benzene, $\mathrm{ttz}=2,6-\mathrm{bis}(1,2,3,4-$ tetrazol-5-yl)pyridine, NHC = 2,6-bis(1-methylimidazolium-3-yl)pyridine. [c] Measured at it in $\mathrm{H}_{2} \mathrm{O}$ as bromide salt.

However, the chemistry of $\mathrm{Ru}(\mathrm{II})$ tridentate complexes is a developing area, in which some of the main challenges still remain. The optimization of the photophysical properties of $\mathrm{Ru}(\mathrm{II})$ complexes based on tridentate ligands is still a promising research area. The possible improvements are: (1) to simplify the syntheses of the tridentate
ligands as well as the complexes; (2) to increase the quantum yields of the luminescent $\mathrm{Ru}(\mathrm{II})$ species; (3) to prolong the rt excited state lifetimes to an extent at which practical applications become feasible. The synthetic approach to optimize the photophysical properties of $\mathrm{Ru}(\mathrm{II})$ species with tridentate ligands is the main aim of this research thesis.

1.2 Ligand design in coordination chemistry

The nature of coordination chemistry is to explore the interactions between metals and ligands, as well as the aftermaths from the interactions. Two distinctive approaches to novel complexes prevail in the literature. The first approach, namely a ligand approach, is the application of a variety of ligands to a specific metal cation, whose complexes have the novel properties derived from the interaction with the ligands. Application of a specific family of ligands to a variety of metals can be named as a metal approach, which focuses on the deliberate selection of metal cations. ${ }^{11}$ Nonetheless, in the two different approaches, ligands play crucial roles. The elegant design of ligands is one of the main topics in coordination chemistry nowadays. ${ }^{12}$ Ligand design has been widely used: in bioinorganic chemistry to mimic the enzymes, such as zinc based carbonic anhydrase and liver dehydrogenase; ${ }^{13}$ in material science for the invention of new materials and devices; ${ }^{11}$ in environmental chemistry for the recovery of heavy metals; ${ }^{14}$ as well as in organic chemistry in the pursuit of novel catalysts. ${ }^{15}$

In the sub-area of ruthenium chemistry, the ligand can still contribute significantly to the pursuit of novel complexes with novel properties. ${ }^{1}$ The desired optical properties of $\mathrm{Ru}(\mathrm{II})$ complexes can be afforded through the fine-tuning of the energy of the ${ }^{3}$ MLCT state. One successful ligand design in $\mathrm{Ru}(\mathrm{II})$ polypyridyl chemistry is the synthetic
approach to black MLCT chromophores which exhibit significant absorption throughout the visible region. ${ }^{16}$ The systematic application of the rigidity and delocalization was deliberately directed by theoretical calculation of the acceptor ligand on MLCT excited state decay. ${ }^{17}$

Considering the importance of ligand design in coordination chemistry, the exploration of new family of ligands for $\mathrm{Ru}(\mathrm{II})$ coordination chemistry is one of the concerns in this thesis. The approaches to deliberately designed tridentate ligands were mainly accomplished either through the syntheses of new families of ligands (A in Figure 1.3) or through the "chemistry-on-the-complex" approach (B in Figure 1.3). ${ }^{18}$ The "chemistry-on-the-complex" approach has been used to: (1) activate function group for chemical modification; ${ }^{4 a}(2)$ selectively create new binding site for the syntheses of mixed-polymetallic complexes ${ }^{19}$ and (3) introduce sensitive functionalities onto metal complexes. ${ }^{20}$ In some case, the functionality introduced "on-the-complex" may only be possible through a "chemistry-on-the-complex" approach.

Figure 1.3 Schematic representations of two approaches to synthesize metal complexes with newly designed ligands: (A) ligand approach; (B) "chemistry-on-the-complex" approach.

1.3 General experimental

All the synthetic procedures were carried out at Département de chimie, Université de Montréal.

All the dry solvents for the reactions were pre-purified and dried by the Pure-Solv Solvents Purification System (Innovative Technology Inc.) in Organic Lab, Université de Montréal.

Nuclear magnetic resonance (NMR) spectra were recorded at room temperature on a Bruker AV 400 spectrometer at 400 MHz or AV 300 spectrometer at 300 MHz for ${ }^{1} \mathrm{H}$ NMR and at 100 MHz or 75 MHz for ${ }^{13} \mathrm{C}$ NMR, respectively. Chemical shifts are reported in part per million (ppm) relative to residual protonated solvents () and the carbon resonance of the solvents (40.3 ppm for $\mathrm{DMSO}_{-} \mathrm{d}_{6}, 77.5 \mathrm{ppm}$ for chloroform-d and 118.3 ppm for acetonitrile- d_{3}).

Analytical thin layer chromatography (TLC) was performed on Kieselgel $60 \mathrm{~F}_{254}$ plastic plate precoated with a 0.20 mm thickness of silica gel and aluminium oxide 60 F_{254} plastic plate precoated with a 0.25 mm thickness of neutral aluninium oxide gel. The TLC plates were visualized with UV light and/or by staining with ferrous ammonium sulfate in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (1:1) (for tpy ligands). Column chromatography was performed using Kieselgel 60 (230-400 mesh) silica gel or neutral aluninium oxide gel $\left(5-8 \% \mathrm{H}_{2} \mathrm{O}\right.$ deactivated) with the eluents indicated.

Counteranion exchanges for $\mathrm{Ru}(\mathrm{II})$ complexes from their chloride salts or nitrate salts to the corresponding hexafluorophosphate salts were achieved through the general procedure: Aqueous $\mathrm{NH}_{4} \mathrm{PF}_{6}$ solution $(\sim 0.01 \mathrm{~g} / \mathrm{mL}, 30 \mathrm{~mL})$ was added to metal complex chloride salt or nitrate salt in acetonitrile ($\sim 50 \mathrm{~mL}$) and the resultant solution was
equilibrated for 5 min followed by the addition of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\sim 5 \mathrm{~mL})$. The acetonitrile phase was separated and washed two times with aqueous $\mathrm{NH}_{4} \mathrm{PF}_{6}$ solution $(\sim 0.01 \mathrm{~g} / \mathrm{mL}$, 30 mL), followed by washing with $\mathrm{H}_{2} \mathrm{O}(\sim 50 \mathrm{~mL})$. Removal of the solvent, acetonitrile, yielded metal complex hexafluorophosphate salt.

Melting points were measured on an Electrothermal Mel-Temp 1101D without correction.

Fast-atom bombardment (FAB, positive mode) spectra were recorded on a ZAB-HF-VB-analytical apparatus in an m-nitrobenzylalcohol (m-NBA) matrix and Ar atoms were used for the bombardment (8 KeV). ESI-MS were measured in the Quebec Combinatorial Chemistry Consortium in Chemistry Department, Université de Montréal. ESI-MS samples of ligands and complexes were prepared as $\sim 1 \mathrm{mg} / \mathrm{mL}$ solution in CHCl_{3} and $\mathrm{CH}_{3} \mathrm{CN}$, respectively. MALDI-TOF spectra were measured in the Mass Spectroscopy Facilities in Département de chimie, Université de Montréal. All the observed isotope patterns of the reported MALDI-TOF results in this thesis agreed the calculated isotope patterns.

Electrochemistry data was collected in Ar-purged acetonitrile with 1.0 M ${ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ on a BAS CV-50W Voltammetric Analyzer. Redox potentials were corrected by the internal reference to ferrocence (395 mV).

Single crystal X-ray diffraction structure determination was carried out by Francine Bélanger-Gariépy and Elaine A. Medlycott in Université de Montréal or by Dr. Constandin A. Udachin in NRC, Ottawa. Unless stated otherwise, the radiation sources for the single crystal structure determination were $\mathrm{Cu} K \alpha$ radiation.

Elemental analyses were done in the Elemental Analyses Lab in Département de chimie, Université de Montréal.

Routine absorption spectra and emission spectra were measured in spectroscopic quality acetonitrile at it on a Cary 500 i UV-vis-NIR Spectrophotometer and a Cary Eclipse Fluorescence Spectrophotometer, respectively.

Lifetime measurements were accomplished by the collaborators in Prof. Dr.
Sebastiano Campagna's group in Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Università di Messina, Italy.

1.4 References

1
(a) Sauvage, J. P.; Collin, J. P.; Chambron, J. C.; Guillerez, S.; Coudret, C.;

Balzani, V.; Barigelletti, F.; De Cola, L.; Flamigni, L. Chem. Rev. 1994, 94, 993.
(b) Maestri, M.; Armaroli, N.; Balzani, V.; Constable, E. C.; Thompson, A. M. W. C. Inorg. Chem. 1995, 34, 2759. (c) El-Ghayoury, A.; Harriman, A.; Khatyr, A.; Ziessel, R. Angew. Chem. Int. Ed. 2000, 39, 185. (d) Barigelletti, F.; Flamigni, L.

Chem. Soc. Rev. 2000, 29, 1. (e) Encinas, S.; Flamigni, L.; Barigelletti, F.;
Constable, E. C.; Housecroft, C. E.; Schofield, E. R.; Figgemeier, E.; Fenske, D.;
Neuburger, M.; Vos, J. G.; Zehnder, M. Chem. Eur. J. 2002, 8, 137. (f) Medlycott, E. A.; Hanan, G. S. Chem. Soc. Rev. 2005, 34, 133.

Juris A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Besler, P.; Von Zelewsky, A.
Coord. Chem. Rev. 1988, 84, 85.
Fink, D. W.; Ohnesorge, W. E. J. Am. Chem. Soc. 1969, 91, 4995.
(a) Constable, E. C.; Cargill Thompson, A. M. W.; Tocher, D. A.; Daniels, M. A.
M. New J. Chem. 1992, 16, 855. (b) Pyo, S.; Perez-Cordero, E.; Bott, S. G.;

Echegoyen, L. Inorg. Chem. 1999, 38, 3337.
Hacker, C. R.; Gushurst, A. K. I.; McMillin, D. R. Inorg. Chem. 1991, 30, 538.
Winkler, J. R.; Netzel, T. L.; Creutz, C.; Sutin, N. J. Am. Chem. Soc. 1987, 109, 2381.

Calvert, J. M.; Caspar, J. V.; Binstead, R. A.; Westmoreland, T. D.; Meyer, T. J. J. Am. Chem. Soc. 1982, 104, 6620.

Son, S. U.; Park, K. H.; Lee, Y.-S.; Kim, B. Y.; Choi, C. H.; Lah, M. S.; Jang, Y. H.; Jang, D.-J.; Chung, Y. K. Inorg. Chem. 2004, 43, 6896.
(a) Fang Y.-Q.; Taylor, A. J.; Hanan, G. S.; Loiseau, F.; Passalacqua, R.;

Campagna, S.; Nierengarten, H.; Van Dorsselaer, A. J. Am. Chem. Soc. 2002, 124, 7912. (b) Polson, M. I. J.; Medlycott, E. A.; Hanan, G. S.; Mikelsons, L.; Taylor, N. J., Watanabe, M.; Tanaka, Y.; Loiseau, F.; Passalacqua, R.; Campagna, S. Chem. Eur. J. 2004, 10, 3640. (c) Beley, M.; Chodorowski, S.; Collin, J.-P.; Sauvage, J.-P.; Flammigni, L.; Barigelletti, F. Inorg. Chem. 1994, 33, 2543. (d)

Duati, M.; Tasca, S.; Lynch, F. C.; Bohlen, H.; Vos, J. G.; Stagni, S.; Ward, M. D. Inorg. Chem. 2003, 42, 8377. (e) Harriman, A.; Mayeux, A.; De Nicola, A.; Ziessel, R. Phys. Chem. Chem. Phys. 2002, 4, 2229.
(a) Ford, W. E.; Rodgers, M. A. J. J. Phys. Chem. 1992, 96, 2917. (b) Wilson, G. J.; Launikonis, A.; Sasse, W. H. F.; Mau, A. W.-H. J. Phys. Chem. A 1997, 101, 4860. (c) Simon, J. A.; Curry, S. L.; Shemehl, R. H.; Schatz, T. R.; Piotrowiak, P.; Jin, X.; Thummel, R. P. J. Am. Chem. Soc. 1997, 119, 11012. (d) Tyson, D. S.;

Luman, C. R.; Zhou, X.; Castellano, F. N. Inorg. Chem. 2001, 40, 4063. (e)
Maubert, B.; McClenaghan, N. D.; Indelli, M. T.; Campagna, S. J. Phys. Chem. A 2003, 107, 447. (f) Passalacqua, R.; Loiseau, F.; Campagna, S.; Fang, Y.-Q.; Hanan, G. S. Angew. Chem. Int. Ed. 2003, 42, 1608. (g) McClenaghan, N. D.; Leydet, Y.; Maubert, B.; Indelli, M. T.; Campagna, S. Coord. Chem. Rev. 2005, in press.

11 Ioachim, E. Master's Thesis 2005, Département de Chimie, Université de Montréal, Montréal, Canada.

Elsevier, C. J.; Reedijk, J.; Walton, P. H.; Ward, M. D. J. Chem. Soc., Dalton Trans. 2003, 1869. and reference therein.
(a) Trosch, A.; Vahrenkamp, H. Inorg. Chem. 2001, 40, 2305. (b) Seebacher, J.;

Shu, M. H.; Vahrenkamp, H. Chem. Commun. 2001, 1026. (c) Walz, R.;
Vahrenkamp, H. Inorg. Chim. Acta 2001, 314, 58. (d) Kimblin, C.; Bridgewater, B. M.; Churchill, D. G.; Parkin, G. Chem. Commun. 1999, 2301.

Smith, A. G.; Tasker, P. A.; White, P. J. Coord. Chem. Rev. 2003, 241, 61.
See examples of ligand design in organic synthesis: (a) Dai, L.-X.; Tu, T.; You, S.-L.; Deng, W.-P.; Hou, X.-L. Acc. Chem. Res. 2003, 36, 659. (b) Desimoni, G.;

Faita, G.; Quadrelli, P. Chem. Rev. 2003, 103, 3119. (c) McManus, H. A.; Guiry, P. J. Chem. Rev. 2004, 104, 4151.

Anderson, P. A.; Strouse, G. F.; Treadway, J. A.; Keene, F. R.; Meyer, T. J. Inorg. Chem. 1994, 33, 3863.

Treadway, J. A.; Loeb, B.; Lopez, R.; Anderson, P. A.; Keene, F. R.; Meyer, T. J. Inorg. Chem. 1996, 35, 2242.
(a) Chodorowski, S.; Beley, M.; Collin, J.-P.; Sauvage, J.-P. Tetrahedron Lett. 1996, 37, 2963. (b) Tzalis, D.; Tor, Y. Chem. Commun. 1996, 1043. (c) Hissler, M.; Ziessel, R. New J. Chem. 1997, 21, 843. (d) Coudret, C.; Fraysse, S.; Launay, J.-P. Chem. Commun. 1998, 663. (e) Osawa, M.; Hoshino, M.; Horiuchi, S.; Wakatsuki, Y. Organometallics 1999, 18, 112. (f) Kelch, S.; Rehahn, M. Macromolecules 1999, 32, 5818. (g) Storrier, G. D.; Colbran, S. B. Inorg. Chim. Acta 1999, 284, 76. (h) Aspley, C. J.; Gareth Williams, J. A. New J. Chem. 2001, 25, 1136. (i) Harriman, A.; Hissler, M.; Khatyr, A.; Ziessel, R. Eur. J. Inorg. Chem. 2003, 955.
(a) Johansson, K. O.; Lotoski, J. A.; Tong, C. C.; Hanan, G. S. Chem. Commun. 2000, 819. (b) Fang, Y.-Q.; Polson, M. I. J.; Hanan, G. S. Inorg. Chem. 2003, 42, 5.

For example as the introduction of the cyano group into $\mathrm{Ru}(\text { tpy })_{2}{ }^{2+}$ complexes:
Wang, J.; Fang, Y.-Q.; Hanan, G. S.; Loiseau, F.; Campagna, S. Inorg. Chem. 2005, 44, 5.

The Multi-chromophoric Approach to Prolonged Room Temperature Luminescence Lifetimes in Ru (II)

 Complexes Based on Tridentate Polypyridine Ligands

 Complexes Based on Tridentate Polypyridine Ligands}

Abstract

Synthetic approaches to a new series of ruthenium(II) complexes with multichromophoric behaviours are presented based on a "chemistry-on-the-complex" approach. Complexes 3a and 3b were synthesized through the Pd-catalyzed Suzuki coupling reaction between 9 -anthrylboronic acid and the chloro-ligands on $\mathbf{2 a}$ and $\mathbf{2 b}$, respectively. The mono-coupling product $\mathbf{3 c}$ was also synthesized as the starting complex for a dimetallic complex under optimized Suzuki coupling conditions. The palladium(0)catalyzed homocoupling reaction on complexes $\mathbf{2 a}$ and $\mathbf{3 c}$ led to dimetallic $\mathrm{Ru}(\mathrm{II})$ species $\mathbf{4 b}$ and $\mathbf{4 a}$, respectively. The newly synthesized complexes were extensively studied with a variety of physical measurements. The solid structures of complexes 3a-b were characterized by single crystal X-ray diffraction. The lifetime measurements of complexes 3a-c and $\mathbf{4 b}$ showed that multi-chromophoric behaviours exist in these species, which have 9 -anthryl groups as energy storage elements for the repopulation of the ${ }^{3}$ MLCT state. The rt lifetimes of the monometallic complexes 3a-b have been significantly prolonged to 402 ns and 1806 ns , respectively, with the introduction of the secondary chromophore(s), anthracene, as an energy storage element.

2.1 Introduction

Luminescent multicomponent systems (LMS) are important targets in supramolecular chemistry as they play important roles in fields connected to solar energy conversion and storage of light and/or electronic information at the molecular level. ${ }^{1}$ Although their synthesis normally requires elaborate procedures, recent advances in the 'chemistry-on-the-complex' methodology has facilitated the development of an important class of LMS based on ruthenium(II) polypyridine complexes. ${ }^{\text {Ii }}$ For example, multinuclear complexes with up to $22 \mathrm{Ru}(\mathrm{II})$ centres were prepared by a series of protection/deprotection sequences. ${ }^{2}$ These light-harvesting complexes were shown to channel excited energy based on the substitution pattern of the dendrimers. ${ }^{3}$ More recently, new binding sites were created in metal complexes by organometallic coupling reactions catalyzed by nickel $(0)^{4}$ and palladium $(0) .{ }^{5}$ These new building blocks could be exploited for further metal ion coordination or as ion sensors. ${ }^{6}$
$\mathrm{Ru}(\mathrm{bpy}){ }_{3}{ }^{2+}$ (bpy $=2,2^{\prime}$-bipyridine) complexes have been widely used for building up polymetallic complexes because they show a much sought after combination of chemical stability, and suitable redox and photophysical properties. ${ }^{7}$ However, $\left[\mathrm{Ru}(\text { tpy })_{2}\right]^{2+}\left(\right.$ tpy $=2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine) complexes have stereochemical advantages when incorporated in multinuclear supramolecular arrays due to the absence of Δ and Λ enantiomers that exist in D_{3}-symmetrical $\mathrm{Ru}(\mathrm{bpy})_{3}{ }^{2+}$ complexes. ${ }^{8}$ Unfortunately, $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ complexes are practically non-luminescent at room temperature (rt) and have a short rt excited state lifetime ($<0.25 \mathrm{~ns}$). ${ }^{80}$ With such a short excited-state lifetime, energy transfer from the triplet metal-to-ligand charge transfer (${ }^{3}$ MLCT) state of the
ruthenium complexes to other suitable acceptor molecules is difficult to study and to apply.

Prolonging the rt excited state lifetimes of $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ complexes is still a major challenge, and as a result the chemistry of $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ complexes is far less developed than that of $\mathrm{Ru}(\mathrm{bpy}){ }_{3}{ }^{2+}$. Several strategies have recently been employed to prolong the room temperature excited-state lifetime of ruthenium complexes with tridentate polypyridyl ligands, ${ }^{69}$ including the use of (i) electron deficient ligands, ${ }^{9}$ (ii) strongly electron-donating ligands, ${ }^{8 m-n}$ (iii) electron withdrawing and/or donor substituents on terpyridine, ${ }^{8 o-\mathrm{p}}$ and (iv) ligands with extended acceptor orbitals. ${ }^{10}$ The first three strategies increase the energy gap between the ${ }^{3} \mathrm{MLCT}$ and ${ }^{3} \mathrm{MC}$ excited states, thereby minimizing the thermally-activated surface crossing which in turn lowers the extent of MLCT deactivation processes. The last strategy is based on modification of the FrankCondon factors for non-radiative decay. Quite recently, an approach to increase the luminescence lifetime of metal polypyridine complexes has emerged: the combination of metal complexes and organic chromophores which have triplet excited states at similar energies. ${ }^{11}$ The prolonged excited state lifetimes were attributed to the energy equilibrium between ${ }^{3}$ MLCT and triplet states of the secondary chromophores, which served as energy storage elements in the LMS.

An alternative approach to prolonged rt excited state lifetime of $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ was based on complexes by introducing a coplanar pyrimidyl (pm) substituent on the tpy ligands to increase electron delocalization and enlarge the ${ }^{3} \mathrm{MLCT}_{-}{ }^{3} \mathrm{MC}$ energy gap. ${ }^{10 \mathrm{e}}$ Through this approach the rt excited state lifetime of $\mathrm{Ru}(\mathrm{tpy}-\mathrm{pm}-\mathrm{R})_{2}{ }^{2+}\left(\right.$ tpy-pm-R $=4^{\prime}-(5-$ substituted-2-pyrimidyl)-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine) complexes can be prolonged up to 200 ns .

Following these encouraging results, $\mathrm{Ru}(\mathrm{tpy}-\mathrm{pm}-\mathrm{R})_{2}{ }^{2+}$ complexes based on the fusion of two approaches were prepared, that is, the coupling of ligands with extended π^{*} orbitals and an organic chromophore with a triplet state energy level similar to the ${ }^{3}$ MLCT state of the metal complex. The energy level of the ${ }^{3} \mathrm{MLCT}$ emitting state of $\mathrm{Ru}(\mathrm{tpy}-\mathrm{pm}-\mathrm{R})_{2}{ }^{2+}$ complexes (between 1.83 eV and 1.87 eV with various 5-substituents on pm) can be tuned to the energy level of the non-emissive triplet state of an anthracene subunit (${ }^{3}$ An, $\left.\mathrm{E}^{00}=1.85 \mathrm{eV}\right),{ }^{12}$ which acts as the storage element in the bichromophoric approach.

Herein we present our synthetic approach to incorporate anthracene subunits into $\mathrm{Ru}(\text { tpy-pm-R })_{2}{ }^{2+}$-based complexes and the extraordinary results of these newly synthesized $\mathrm{Ru}(\mathrm{II})$ multichromophoric species.

2.2 Results and Discussion

2.2.1 Synthesis

Complexes 3a and 3b were synthesized using the "chemistry-on-the-complex" methodology, in which the 4^{\prime}-(5-(9-anthryl)pyrimid-2-yl))-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (an-pmtpy) ligands were synthesized while directly attached to the metal ion. This approach is particularly powerful when used in conjugation with organometallic catalysts to form carbon-carbon bonds. Previous work has shown that the chloro substituent in the 5position of a pyrimidine group is relatively inert to Stille coupling reactions since it is meta to both nitrogen atoms. ${ }^{13}$ However, the ruthenium cations in 2a and $\mathbf{2 b}$ effectively activates the 5-chloro group on the conjugated pyrimidine ring by an inductive effect. ${ }^{14}$ Thus, ruthenium complexes $\mathbf{2 a}$ and $\mathbf{2 b}$ were allowed to react with 9-anthryl boronic acid ${ }^{18}$ under Suzuki coupling conditions at elevated temperatures to afford complexes 3a and 3b, respectively (Scheme 2.1). ${ }^{15}$

2a
3a

3b

Scheme 2.1 Synthesis of complexes 3a-b through palladium-catalyzed cross-coupling reaction. Reagents and conditions: a) excess 9-anthryl boronic acid, $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, DMF, $110^{\circ} \mathrm{C}, 12 \mathrm{~h}$. b) excess 9 -anthryl boronic acid, $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}$, DMF, 140 ${ }^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

The synthesis of the heteroleptic complex, $[(\mathrm{Cl}-\mathrm{pm}-\mathrm{tpy}) \mathrm{Ru}(\mathrm{tpy}-\mathrm{pm}-\mathrm{an})]\left(\mathrm{PF}_{6}\right)_{2}(3 \mathrm{c})$, was initially attempted using the standard approach used to construct 5 -substituted pyrimidyl groups in the R-pm-tpy ligands. We envisioned the formation of the an-pm-tpy ligand through a pyrimidine ring forming condensation reaction between 2-(9-anthryl)-1,3-bis(dimethylamino)trimethinium hexaflurophosphate and 2,2':6',2"-terpyrid-4'ylamidine hydrochloride. However, conversion of 9 -anthraceneactic acid ${ }^{16}$ to the vinamidine hexaflurophosphate salt under various reaction conditions failed, ${ }^{17}$ presumably due to the sterically hindered 9-anthryl group.

Then a "chemistry-on-the-complex" approach, in which a palladium-catalyzed cross-coupling was adopted to incorporate the bulky anthryl group into the $\mathrm{Ru}(\operatorname{tpy})^{2+}$ moiety was attempted. ${ }^{15}$ Treatment of complex $\mathbf{2 b}$ with 9 -anthryl boronic acid ${ }^{18}$ under optimized Suzuki coupling reaction (Table 2.1) conditions afforded mono-coupling product, complex 3c, which was purified by silica chromatography (Scheme 2.2). In surveying suitable catalysts and reaction conditions, reactions catalyzed by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ at $90^{\circ} \mathrm{C}$ were found to show the best activity and selectivity for the mono-coupling reaction with 83% yield after recovering starting complex $\mathbf{2 b}$ (Table 2.1, Entry 5). A slightly lower temperature and an optimized reaction time were preferred for control of the monocoupling reaction. Pre-reduced palladium catalyst, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, afforded a better yield than $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$, due to the inefficient transmetallation of the latter with bulky 9anthrylboronic acid.

Scheme 2.2 Palladium-catalyzed mono-coupling reaction on the $\mathrm{Ru}(\text { tpy- } \mathrm{pm}-\mathrm{Cl})_{2}{ }^{2+}$ complex 2b. Reagents and conditions: 9-anthrylboronic acid, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}$, $110^{\circ} \mathrm{C}, 16 \mathrm{~h}$.

The syntheses of bimetallic $\mathrm{Ru}(\mathrm{II})$ species were achieved through palladiumcatalyzed homocoupling reactions on the appropriate chlorides in the monometallic complexes, $\mathbf{3 c}$ and $\mathbf{2 a}$, respectively. Treatment of complex $\mathbf{3 c}$ with the $\operatorname{Pd}(0)$ catalyst, generated in situ by the combination of $\operatorname{Pd}(\mathrm{OAc})_{2}$ with 2-(di-t-butylphosphino) biphenyl, led to the homo-coupled bimetallic complex $\mathbf{4 b}$ (Scheme 2.3). Treatment of complex 2a under the same homo-coupling conditions yielded bimetallic complex $\mathbf{4 a}$. It is interesting to note that the standard Ni-catalyzed reaction normally used to homocouple two fragments failed to generate $\mathbf{4 a - b}$ under a variety of conditions. ${ }^{4}$

Table 2.1 Effect of catalysts and temperature variation on the mono-coupling reaction. ${ }^{a}$

${ }^{a}$ Reaction with 1.0 equiv. 2b, 1.2 equiv. 9 -anthryl boronic acid, 2.0 equiv. $\mathrm{K}_{2} \mathrm{CO}_{3}$, DMF.
${ }^{b}$ Isolated yield for mono-coupling complex $3 \mathbf{c}$ without recovering starting complex 2b. ${ }^{c}$ HPLC yield for mono-coupling complex 3c without recovering starting complex $\mathbf{2 b}{ }^{d}{ }^{d}$ 83% yield based on recovering starting material $\mathbf{2 b}$.

Scheme 2.3 Palladium-catalyzed homo-coupling reaction on the Ru (II) tpy complexes 2a and 3c. Reagents and conditions: 1.0 equiv. 2a or $\mathbf{3 c}, 15 \mathrm{~mol} \% \mathrm{Pd}(\mathrm{OAc})_{2}, 30 \mathrm{~mol} \%$ $t \mathrm{Bu}_{2} \mathrm{P}($ biph $), 2.0$ equiv. $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{DMF}, 110^{\circ} \mathrm{C}, 24 \mathrm{~h}$.

2.2.2 ${ }^{1} \mathrm{H}$ NMR spectroscopy

All of the newly synthesized complexes 3a-c and 4a-b were characterized by ${ }^{1} \mathrm{H}$ NMR spectroscopy. The ${ }^{1} \mathrm{H}$ NMR chemical shift data for complexes $\mathbf{3 a - c}$ and $\mathbf{4 a - b}$ and reference complexes 2a-b are compiled in Table 2.2. In the ${ }^{1} \mathrm{H}$ NMR spectra of the complexes, although there are more than 20 protons at the chemical shift range of 7-10 ppm , all of the signals are well separated and assignable with the assistance of twodimensional experiments, such as COSY experiments (for example Figure 2.1 for complex 4b)

Figure 2.1 ${ }^{\text {b }} \mathrm{H}$ NMR spectrum of complex $\mathbf{4 b}$ with proton labelling (See experimental for labelling scheme). Spectrum was recorded at rt in $\mathrm{CD}_{3} \mathrm{CN}$ at 400 MHz .

Comparison between the chemical shift of the free ligand 1 and the complexes gives some interesting information. Upon coordination of the ligand with the ruthenium metal cation, the changes of the chemical shift on the ligand are quite significant, showing the electronic and conformational changes induced by metal ion coordination.

The $H_{P m 4,6}$ and $H_{3^{\prime}, 5}$, signals shift 0.14 ppm and 0.25 ppm downfield, respectively, which can be justified as coordination delocalizes the charge of $\mathrm{Ru}(\mathrm{II})$ to the whole complex.

All the $\mathrm{H}_{3 ; 5}$. in the complexes with pyrimidine substituents shifted around 0.6 0.9 ppm downfield compared with reference complex $\mathbf{6}, \mathrm{Ru}(\mathrm{tpy}-\mathrm{Ph})_{2}{ }^{2+}$, due to the deshielding effects of the hydrogen boding between N lone pair in pyrimidine ring and H 3,5 protons.

Upon coupling with an anthryl group, the proton signals from the $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ moieties of complexes 3 and 4 are slightly shifted to lower field by about 0.1 ppm , indicating slightly deshielding of $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ when coupling with non-conjugated chromophore(s).

Interestingly, complex 3c, which has electron withdrawing ligand Cl-pm-tpy instead of the tpy ligand of complex 3a, displayed significant downfield shifts in the $\mathrm{T}_{3^{\prime}, 5^{\prime}}$ and $\mathrm{T}_{3,3^{\prime \prime}}$ resonances due to the deshielding from the pyrimidine lone pairs with T 3, 5 ,shifting downfield by 0.88 ppm . A slight deshielding effect was also observed for T ${ }^{3}, 5$ and $\mathrm{Pm}_{4,6}$ protons in complex 3b with the an-pm-tpy ligand. The orthogonal 9anthryl group in 3b creates a deshielding shielding plane to the neighbouring $\mathrm{Pm}_{4,6}$ and H $3^{3}, 5^{5} \cdot{ }^{19}$ A roughly quantified effect of anthracene subunit to $\mathrm{Pm}_{4,6}$ and $\mathrm{H}_{3,5}$, was obtained as 0.11 ppm and 0.17 ppm downfield, respectively, from the comparison of complex 3a with complex 7a, (tpy)Ru(tpy-pm) $)^{2+}$, which has a proton at the 5 -position of the pyrimidine ring.

Dramatic chemical shifts were found in complexes $\mathbf{4 a - b}$, which have the back-toback tpy-pm-pm-tpy ligand bridging the two $\mathrm{Ru}(\mathrm{II})$ centers. Complex $\mathbf{4 b}$ has two sets of
$\mathrm{Ru}(\text { tpy-pm })_{2}{ }^{2+}$ moieties along with two anthracene chromophores. The H signals from the back-to-back pyrimidyl group ($\mathrm{H}_{\text {в } 4,6}$) are shifted to lower field by 0.53 ppm from the starting complex 3c (cf. Table 2.2), in accord with the strong electron-withdrawing effect of two $\mathrm{Ru}(\mathrm{II})$ cations in complex $\mathbf{4 b}$. Other signals from the $\mathrm{Ru}(\text { tpy-pm })_{2}{ }^{2+}$ moieties are all shifted to lower field by $0.4-0.8 \mathrm{ppm}$, due to the deshielding effect of the dimetallic $\mathrm{Ru}(\mathrm{II})$ centers. The proton signals from complex $4 \mathbf{a}$ follow the same trend as those in complex $\mathbf{4} \mathbf{b}$, only there is more electron density on the tpy-pm-pm-tpy ligand due to the absence of electron-withdrawing pm group on the back of tpy ancillary ligands.

Figure 2.2 2-D COSY spectrum of complex 3b with labelling and schematic representation of the deshielding effect of 9-anthryl group to the chemical shifts of $\mathrm{T}_{3,5}$ and $\mathrm{Pm}_{4,6}$ protons.

It should be noted that the H signals from anthracene chromophores in complex 3a-c and 4b were nearly unchanged upon coupling with the $\mathrm{Ru}(\text { tpy-pm })_{2}{ }^{2+}$ moieties, indicating that the chromophores are not conjugated in these complexes. Combined with the solid state structure data ($c f$. X-ray single crystal structures), the more favourable perpendicular configuration of the anthracene chromophores minimizes the electronic interaction with $\mathrm{Ru}(\text { tpy-pm })_{2}{ }^{2+}$ moieties.

Table 2.2 ${ }^{1} \mathrm{H}$ NMR chemical shifts for $\mathrm{Ru}(\mathrm{II})$ complexes 3 and 4, 2a-b and ligand $1(\mathrm{Cl}-$ pm-tpy). ${ }^{.}$

Cpd	3,3"	4,4"	5,5"	6,6"	$3^{\prime}, 5^{\prime}$	$\begin{gathered} \mathrm{T} \\ 3,3^{\prime \prime} \end{gathered}$	$\begin{gathered} \mathrm{T} \\ 4,4^{\prime \prime} \end{gathered}$	$\begin{gathered} \mathrm{T} \\ 5,5^{\prime \prime} \end{gathered}$	$\begin{gathered} \mathrm{T} \\ 6,6^{\prime \prime} \end{gathered}$	$\begin{gathered} \mathrm{T} \\ 3^{\prime}, 5^{\prime} \end{gathered}$	$\text { T } 4^{\prime}$	A4, 6^{b}	$\begin{gathered} \text { B } \\ 4,6 \end{gathered}$	$\begin{gathered} \text { An } \\ 10 \end{gathered}$	$\begin{aligned} & \text { An } \\ & 1,8 \end{aligned}$	$\begin{aligned} & \mathrm{An} \\ & 3,6 \end{aligned}$	$\begin{aligned} & \mathrm{An} \\ & 4,5 \end{aligned}$	$\begin{aligned} & \text { An } \\ & 2,7 \end{aligned}$
3a	8.76	7.98	7.23	7.47	9.86	8.54	7.96	7.20	7.42	8.80	8.47	9.26	---	8.82	7.82	7.65	8.25	7.59
3b	8.83	8.04	7.29	7.57	9.92							9.31	---	8.86	7.85	7.68	8.29	7.62
$7 \mathrm{a}^{\prime \prime}$	8.69	7.96	7.21	7.41	9.69	8.51	7.92	7.15	7.39	8.78	8.45	9.15						
3c	8.79	8.00	7.25	7.52	9.89	8.75	8.00	7.21	7.48	9.68		9.27	9.18	8.83	7.82	7.62	8.26	7.62
4a	8.53	7.95	7.15	7.44	8.80	8.76	8.00	7.24	7.41	9.79	8.47		9.66					
4b	8.83	8.05	7.29	7.58	9.93	8.83	8.05	7.29	7.54	9.86		9.31	9.71	8.86	7.85	7.65	8.29	7.65
$5{ }^{\text {c }}$	8.50	7.42	7.17	7.34	8.76	8.50	7.42	7.17	7.34	8.76								
$2 a^{\text {d }}$	8.69	7.93	7.21	7.40	9.63	8.51	7.69	7.15	7.39	8.78	8.45	9.15						
$2 \mathrm{~b}^{\text {d }}$	8.71	7.97	7.19	7.44	9.66							9.16						
6^{f}	8.64	7.95	7.18	7.43	9.01							$8.21{ }^{f}$						
$1{ }^{\text {d }}$	8.65	7.86	7.34	8.75	9.40							8.84						
1^{g}	8.74	8.01	7.50	8.79	9.41							9.02						

${ }^{a}$ In acetonitrile- $\mathrm{d}_{3}, 400 \mathrm{MHz}$. Assignments of the signals were assisted by twodimensional experiments, NOESY or COSY. See the experimental section for proton labeling scheme. ${ }^{b} \mathrm{H}_{\mathrm{Pm} 4,6}$ for complex 3a-d. ${ }^{c}$ From reference $80,5=\mathrm{Ru}($ tpy $){ }_{2}{ }^{2+} .{ }^{d} \mathrm{In}$ CDCl_{3}, from reference $10 \mathrm{e} .{ }^{e} 4^{\prime}$-proton in tpy moiety. ${ }^{f}$ From reference $8 \mathrm{o}, 6=\mathrm{Ru}($ tpy $\mathrm{Ph})_{2}{ }^{2+}, \mathrm{A} 4,6=\mathrm{Ph} 4,6 .{ }^{g} \mathrm{In} \mathrm{CD}_{3} \mathrm{CN} .{ }^{h}$ From reference $10 \mathrm{e}, 7 \mathrm{a}=(\mathrm{tpy}) \mathrm{Ru}(\mathrm{tpy}-\mathrm{pm})^{2+}$.

2.2.3 Crystallography

The solid-state structures of the complexes $\mathbf{3 a}$ and $\mathbf{3 b}$ were determined by single crystal X-ray crystallography. The ORTEP diagrams of the cations of complexes 3a and 3b are shown in Figure 2.3 and Figure 2.4, respectively, while selected bond parameters are listed in Table 2.3.

The bond lengths and bond angles are typical $\mathrm{Ru}(\mathrm{tpy}){ }_{2}{ }^{2+}$ moieties, which adopt a pseudo-octahedral coordination sphere. The pm rings in the two complexes are nearly coplanar (dihedral angles of 7.8° in $\mathbf{3 a}, 4.0^{\circ}$ and 12.4° in $\mathbf{3 b}$, respectively) to the tpy moieties. The coplanar pyrimidyl rings serve to extend the electron delocalization, which is crucial to develop the bichromophoric behaviour. The secondary chromophores, anthracenes, have large dihedral angles to the pm-tpy moieties (dihedral angles of 75° in 3a, 55° and 64° in $\mathbf{3 b}$, respectively), which diminishes conjugation, thus allowing the subunits to maintain their independent properties in the complexes. The combination of the coplanar pyrimidyl ring and perpendicular anthracene chromophore is crucial to the enhancement of the rt luminescence lifetimes (c.f. photophysical properties).

Figure 2.3 Two ORTEP plots of the X-ray crystal structure of complex 3a exposing the tpy ligand (top) and, after a 90° rotation, the 4^{\prime}-(5-(9-anthryl)-pyrimid-2-yl)-tpy ligand (bottom). Thermal ellipsoids are set at 50% probability with the counteranions, solvent and hydrogen atoms omitted for clarity.

Figure 2.4 Two ORTEP plots of the X-ray crystal structure of complex 3b exposing the 4'-(5-(9-anthryl)pyrimid-2-yl)-tpy ligand (top) and, after a 90° rotation, the other 4^{\prime}-(5-(9-anthryl)pyrimid-2-yl)-tpy ligand (bottom). Thermal ellipsoids are set at 50% probability with the counteranions, solvent and hydrogen atoms omitted for clarity.

Table 2.3 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for complexes 3a and 3b.

Bond distances (\AA) for 3a	Bond distances (\AA) for 3b
Ru N54 2.093(3)	Ru N114 2.064(4)
Ru N48 1.983(3)	Ru N18 1.993(4)
Ru N41 2.068(3)	Ru N11 2.070(3)
Ru N14 2.081(3)	Ru N21 2.087(4)
Ru N8 1.978(3)	Ru N28 1.981(5)
Ru N1 2.084(3)	Ru N214 2.086(4)
Bond angles (${ }^{\circ}$) for 3a	Bond angles (${ }^{\circ}$) for 3b
N54 Ru N2 78.78(13)	N114 Ru N18 79.05(15)
N54 Ru N41 157.59(13)	N114 Ru N11 157.88(14)
N48 Ru N41 78.84(14)	N18 Ru N11 78.86(16)
N48 Ru N8 178.9(2)	N18 Ru N28 178.2(2)
N14 Ru N8 78.90(18)	N21 Ru N28 79.13(17)
N14 Ru N6 157.89(12)	N21 Ru N214 157.96(14)
N8 RuN1 79.05(17)	N28 Ru N214 78.86(16)

In both complexes, the molecules are distorted to a bow-shaped form by more favorable intermolecular forces in the solid states. This is exemplified in Figure 2.5 where the two molecules of $\mathbf{3 b}$ are stacked one beside the other with two different stacking forces: (1) intramolecular tpy-tpy stacking and (2) intramolecular anthraceneanthracene stacking. The atom distances in the two stacking motifs are compiled in Table 2.4.

Figure 2.5 Two intramolecular π-stacking motifs observed in complex 3b: (1) tpy-tpy (motif 1, left, centroid-to-centroid distance: $4.02 \AA$); (2) anthryl-anthryl (motif 2, right, centroid-to-centroid distance: $4.07 \AA$).

Table 2.4π-Stacking distances in the two stacked motifs in complex $\mathbf{3 b}$.

motif 1			motif 2		
A B	distances (\AA)	A B	distances (\AA)		
N1-1 C3-2	4.41	$1-1$	$7-2$	4.16	
C1-1 C2-2	4.25	$2-1$	$8-2$	3.90	
C2-1 C1-2	4.17	$7-1$	$9-2$	3.90	
C3-1 N1-2	3.90	$8-1$	$14-2$	3.97	
C4-1 C5-2	3.65	$9-1$	$1-2$	4.16	
C5-1 C4-2	3.71	$14-1$	$2-2$	4.32	

2.2.4 Electrochemistry

The electrochemical data for complexes 3 and 4 are listed in Table 2.5. In all of the complexes with anthracene substituents, only quasi-reversible oxidation of $\mathrm{Ru}(\mathrm{II})$ to Ru (III) were found. In all cases, the 4'-pyrimidine substituents on the tpy have very little effect on $\mathrm{Ru}(\mathrm{tpy})^{2+}$ moiety, showing that the pyrimidines have negligible effect on the metal-centered d_{π} orbitals, and only lower the ligand-based π^{*} orbitals without disturbing the metal-based d_{π} orbitals to a great extent. The oxidation potentials have shifted to slightly more positive potentials by $25-50 \mathrm{mV}$ as compared with reference complex $\mathbf{5}$, $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+},(+1.30 \mathrm{~V}$ vs SCE$)$, due to a slight stablization of the metal-based orbitals by the electron accepting pyrimidine substituents on the tpy ligands.

Table 2.5 Electrochemical redox potentials for complexes 3a-c, 4a-b and reference complex 5 in argon-purged acetonitrile solutions. ${ }^{a}$

Compd	Potential/V			
	$\begin{gathered} E_{l / 2 a \mathrm{x}}(\mathrm{~V}) \\ \left(\Delta E_{p}(\mathrm{mV})\right) \end{gathered}$	$E_{1 / 2 \mathrm{red}}(\mathrm{V})\left(\Delta E_{p}(\mathrm{mV})\right)$		
3a	1.32	-1.10 (65)	-	-
3b	1.36	-1.06(70)	-	-
3 c	1.35 (65)	-1.11 (84)	-1.32 (ir)	-1.68 (ir)
4a	1.31 (70)	-1.06 (70)	-1.25 (ir)	
4b	1.34 (80)	-1.05 (70)	-. 125 (ir)	
$5^{\text {b }}$	1.30	-1.24	-1.49	

${ }^{a}$ Scan rate 100 mV s - $. E_{1 / 2}=1 / 2\left(E_{\mathrm{pa}}+\mathrm{E}_{\mathrm{pc}}\right)$, where E_{pa} and E_{pc} are the anodic and cathodic peak potential respectively. $\Delta E_{\mathrm{p}}=E_{\mathrm{pa}}-E_{\mathrm{pc}}$. ir $=$ irreversible. Potentials are corrected by internal reference to ferrocene $(395 \mathrm{mV}) ;{ }^{b} 5=\mathrm{Ru}(\mathrm{tpy}){ }_{2}{ }^{2+}$, from ref 6 n .

Heteroleptic complex 3a is slightly easier to oxidize than homoleptic complex 3b, which has two pyrimidine rings on each sides, as it has more electron density donated from the $\mathrm{Ru}(\mathrm{tpy})^{2+}$ moiety. Complex $\mathbf{3 c}$ has an oxidation potential between that of $\mathbf{2 b}$ and $\mathbf{3 b}$, in accordance with the presence of an electron-withdrawing Cl group.

Upon homo-coupling, the dimetallic complex $\mathbf{4 b}$ becomes easier to oxidize than its starting complex $\mathbf{3 c}$, due to the substitution of the electron withdrawing chloride atom with a non-conjugated back-to-back pyrimidine. The two metal centers in complex $\mathbf{4 b}$ are homogeneous without any pronounced interaction since the oxidation potential is nearly the same as that of complex $\mathbf{3 b}$. In the reference bimetallic complex $\mathbf{4 a}$, which has nearly
the same oxidation potential as that in complex 3a, the oxidation potential is less positive than that in complex $\mathbf{4 b}$, due to the electron-donating tpy ligands. The anthryl groups on the pyrimidines have no effect on the metal-based d_{π} orbitals due to their nonconjugated perpendicular configuration to the $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ centers.

The reduction processes of the newly synthesized complexes have dramatically changed to more positive potentials as compared with $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$. In the reduction processes, usually more than one reversible reduction process can be observed with only the first process being reversible. The reduction patterns are different for the homoleptic and heteroleptic complexes. For the heteroleptic complexes, the first single-electron reduction is assigned to the pyrimidyl-substituted ligand and the second is on the nonsubstituted tpy moiety. Compared to the heteroleptic complexes, the first single-electron reduction of the homoleptic complexes occurs at almost the same potential (slightly higher by $40-50 \mathrm{mV}$) than that of their heteroleptic analogue. The second reduction processes are less negative than that in heteroleptic counterparts.

2.2.5 Spectroscopic properties

The UV-vis spectra of the newly synthesized complexes $\mathbf{3}$ and $\mathbf{4}$ are dominated by spin-allowed MLCT bands in the visible and by spin-allowed polypyridine ligand centered (LC) bands in the UV region (Figure 2.6, Table 2.6).

Complexes 3a-c and 4b all have anthracene signatures due to the population of the ${ }^{1} \mathrm{~L}_{\mathrm{a}}$ state in 350-400 nm region and the population of the ${ }^{1} \mathrm{~B}_{\mathrm{a}}$ state around 254 nm . As expected the molar absorptivities of the anthracene based absorption bands in $\mathbf{3 b}$ and $\mathbf{4 b}$ are larger than those in $\mathbf{3 a}$ and $\mathbf{3 c}$, respectively. It can be noted that the ${ }^{1}$ MLCT bands of
complexes 3a-c and 4b are red-shifted to lower energy (498~505 nm) as compared with the prototypical $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}(474 \mathrm{~nm})$ complex (Table 2.6). The lowering in energy of the absorption band can be attributed to the extended acceptor orbital since the 9-anthryl group has little electronic interaction with tpy-pm moieties due to its orthogonal arrangement. This delocalization is crucial to the prolonged lifetime as compared to $\mathrm{Ru}(\text { tpy }-\mathrm{an})_{2}{ }^{2+}$ (tpy-an $=4^{\prime}$-(9-anthryl) $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine), in which the excited state is totally quenched by the non-emissive ${ }^{3}$ An state. ${ }^{20}$

Figure 2.6 Electronic absorption spectra for $\mathbf{3 a}$ (solid line), 3b (dashed line), 3c (dotted line), $\mathbf{4 b}$ (intermittent line). The spectra were recorded at rt in acetonitrile.

Table 2.6 Electronic spectra data of complexes 3a-d, 4b and Ru(tpy) ${ }_{2}{ }^{2+}(5) .{ }^{a}$

Compd	$\lambda_{\text {max }}(\mathrm{nm})\left(\varepsilon\left(10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)\right.$
3 a	489 (22.9); 308 (48.3); 274 (56.5); 254 (152.8)
3b	499 (39.6); 319 (46.3); 277 (85.8); 254 (292.6)
3c	498 (38.1); 319 (54.4); 278 (98.6); 254 (195.7)
4b	505 (65.7); 308 (99.2); 286 (125.7); 254 (278.5)
$5^{\text {b }}$	476 (10.4), 309 (46.2), 270 (28.1)
Data w	collected in spectroscopic quality aceto

2.2.6 Photophysical properties[gsh1]

The luminescence data are compiled in Table 2.7. The rt emission spectra of 3a-b are typical of MLCT emitters with prolonged rt luminescence lifetimes. The enhancement in the luminescence lifetimes of $\mathbf{3 a - b}$ is attributed to the presence of ${ }^{\mathbf{3}} \mathrm{An}$ state in addition to the effect of the extended π^{*} orbitals. Due to the lowered energy state of the ${ }^{3}$ MLCT resulting from the conjugated pyrimidine ring, the bichromophoric behaviour became possible in the newly synthesized species. The equilibration between the ${ }^{3} \mathrm{MLCT}$ and the triplet anthracene states (by Boltzmann distribution) results in the significant increase of the rt ${ }^{3} \mathrm{MLCT}$ luminescence lifetime.

Table 2.7 Luminescence data

Compd	$298 \mathrm{~K}^{\text {a }}$			$77 \mathrm{~K}^{\text {b }}$	
	$\lambda_{\text {max }}(\mathrm{nm})$	τ (ns)	Φ	$\lambda_{\max }(\mathrm{nm})$	$\tau(\mathrm{ms})$
3a	680	5.5; 402	1.3×10^{-4}	692	3.5
3b	675	5.8; 1806	1.8×10^{-4}	694	3.5

2.3 Conclusion

The secondary chromophores, anthracene subunits, were successfully incorporated into the $\mathrm{Ru}(\text { tpy })_{2}{ }^{2+}$ framework with a delocalizating pyrimidyl group through palladium-catalyzed Suzuki cross-coupling reactions. The palladium(0)catalyzed homocoupling reaction on complexes $\mathbf{2 a}$ and $\mathbf{3 c}$ led to dimetallic $\mathrm{Ru}(\mathrm{II})$ species $\mathbf{4 a}$ and $\mathbf{4 b}$, respectively. The fusion of two design strategies, extending the acceptor orbital and a bichromophoric approach, afforded long-lived luminescence in Ru (II) complexes at rt In particular, the multichromophoric approach proved to be very efficient and allowed novel species 3a-c to be obtained, which displayed impressive long-lived MLCT luminescence lifetimes at room temperature.

2.4 Experimental Section

2.4.1 General

All reactions were performed under a dry argon atmosphere using standard Schlenk or glove box techniques. All the reactions with anthryl were protected from full lab light. Solvents for the reaction were pre-dried using Pure-Solv Solvent Purification System (Innovative Technology Inc.). Catalytic palladium catalysts and ligands were purchased from STREM. All other chemicals, except where stated otherwise, were purchased from Sigma-Aldrich and used as received.

Nuclear magnetic resonance (NMR) spectra were recorded in CDCl_{3} or $\mathrm{CD}_{3} \mathrm{CN}$ at room temperature (rt) on a Bruker AV400 spectrometer at 400 MHz for ${ }^{1} \mathrm{H}$ NMR and at 100 MHz for ${ }^{13} \mathrm{C}$ NMR. Chemical shifts are reported in part per million (ppm) relative to residual solvents proton and the carbon resonance of the solvents. ESI-MS was done by the Service de spectrométrie de masse at the Université de Montréal. Routine absorption spectra and emission spectra were measured in deaerated acetonitrile at rt on a Cary 500 i UV-Vis-NIR Spectrophotometer and a Cary Eclipse Fluorescence Spectrophotometer, respectively. Electrochemistry data were collected in deaerated acetonitrile with 0.1 M ${ }^{n} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ on a BAS CV-50W Voltammetric Analyzer. Redox potentials were corrected by the internal reference ferrocence (395 mV vs SCE).

2.4.2 X-Ray crystallography

Recrystallization of 3a and 3b from acetonitrile solution by slow diffusion of diethyl ether vapour provided red single crystal suitable for X-ray crystallography.

Crystal parameters and details of the data collection and refinement for $\mathbf{3 a}$ and $\mathbf{3 b}$ are given in Table 2.8.

Table 2.8 Crystallography data for complexes $\mathbf{3 a}, \mathbf{3 b}$.

Compd	3a	3b
Molecular formula	$\begin{gathered} \mathrm{C}_{48} \mathrm{H}_{32} \mathrm{~N}_{8} \mathrm{Ru}\left(\mathrm{PF}_{6}\right)_{2} \\ \cdot \mathrm{CH}_{3} \mathrm{CN} \end{gathered}$	$\begin{gathered} \mathrm{C}_{66} \mathrm{H}_{42} \mathrm{~N}_{10} \mathrm{Ru}\left(\mathrm{PF}_{6}\right)_{2} \\ \cdot 2 \mathrm{CH}_{3} \mathrm{CN} \end{gathered}$
M	1152.88	1448.21
Crystal system	monoclinic	monoclinic
a / \AA	8.9632 (1)	13.1378 (2)
b / \AA	8.7648 (1)	12.1410 (2)
c / \AA	30.6115 (4)	39.3588 (6)
$\alpha 1^{\circ}$	90	90
$\beta 1^{\circ}$	92.1247 (8)	92.449 (1)
γ°	90	90
U / \AA^{3}	2403.21 (5)	6272.23 (17)
Space group	P21	Cc
Z	2	4
$D c / \mathrm{Mg} \mathrm{m}^{-3}$	1.593	1.534
Temperature/K	220 (2)	220 (2)
RI	0.0401	0.0493
wR2	0.0973	0.1224

2.4.3 Synthesis

Pyrimidyl-tpy ligands were synthesized from terpyridylamidine hydrochloride and vinamidium hexaflurophosphate salt. ${ }^{17}$ Complexes $\mathbf{2 a - b}$ were synthesized as we previously reported. ${ }^{10 e} 9$-Anthrylboronic acid ${ }^{18}$ was prepared following the literature methods.

Complex 3a: (an-pm-tpy)Ru(tpy) $\left(\mathrm{PF}_{6}\right)_{2}$

Complex [(Cl-pm-tpy)Ru(tpy)]((%5Cleft.%5Cmathrm%7BPF%7D_%7B6%7D%5Cright)_{2}(\mathbf{2 a}, 0.100 \mathrm{~g}, 0.10 \mathrm{mmol})\), 9-anthryl boronic acid ($0.100 \mathrm{~g}, 0.46 \mathrm{mmol}$), $\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}(8.0 \mathrm{mg}, 10 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.140 \mathrm{~g}, 1.0 \mathrm{mmol})$ were added into anhydrous DMF (10 mL). The reaction mixture was heated to $110^{\circ} \mathrm{C}$ for 12 hours under argon. The mixture was then poured into deaerated aqueous $\mathrm{NH}_{4} \mathrm{PF}_{6}$ and filtered through celite. The residue was chromatographed on silica gel with 7:1 acetonitrile and aqueous saturated KNO_{3} solution as eluent. After anion exchange to hexafluorophosphate with $\mathrm{NH}_{4} \mathrm{PF}_{6}$, pure red product $3 \mathrm{a}\left(0.095 \mathrm{~g}, 85 \%\right.$) was isolated. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 9.86\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\left.3^{\prime}, 5^{\prime}\right),} 9.26\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{P}} 3^{\prime}, 5^{\prime}\right), 8.82\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{An}}\right.\right.$
$\left.{ }_{10}\right), 8.80\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{T} 3^{\circ}} 5^{\circ}\right), 8.76\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3,3^{\circ}}\right), 8.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{H}_{\mathrm{T} 3}, 3^{\bullet}\right), 8.47\left(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{T} 4}\right), 8.25\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{An} 4}, 5\right), 7.98\left(\mathrm{td}, J^{\mathrm{t}}\right.$ $\left.=8.2 \mathrm{~Hz}, J^{\mathrm{d}}=1.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\left.4,4^{*}\right)}\right) 7.96\left(\mathrm{td}, J^{\mathrm{t}}=7.8 \mathrm{~Hz}, J^{\mathrm{d}}=1.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{T}} 4,4^{\bullet}\right), 7.82(\mathrm{~d}$, $\left.J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\text {An }} 1,8\right), 7.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\text {An } 3,6}\right), 7.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{An} 2,7}\right), 7.47(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}_{6,6^{*}}$), $7.42\left(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{T} 6,6^{\prime}}\right), 7.23\left(\mathrm{ddd}, J=7.4,5.7,1.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{5,5^{\prime \prime}}\right.$),
 $159.9,158.0,158.0,156.2,155.2,152.7,152.6,144.6,138.3,138.2,136.3,132.9,131.4$, $130.7,128.9,128.9,128.3,127.7,127.6,127.0,125.9,125.5,124.9,124.6,123.9,121.7$ (br). Anal. Calcd for $\mathrm{C}_{48} \mathrm{H}_{32} \mathrm{~F}_{12} \mathrm{~N}_{8} \mathrm{P}_{2} \mathrm{Ru} \cdot 1.5 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 50.62 ; \mathrm{H}, 3.10 ; \mathrm{N}, 9.84$. Found: C, 50.78; H, 2.73; N, 9.56. ESI-MS: $411.2\left(\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}, 100 \%\right)$.

Complex 3b:(an-pm-tpy) ${ }_{2} \mathrm{Ru}\left(\mathrm{PF}_{6}\right)_{2}$

Complex (Cl-pm-tpy) ${ }_{2} \mathrm{Ru}\left(\mathrm{PF}_{6}\right)_{2}(\mathbf{2 b}, 0.080 \mathrm{~g}, 0.074 \mathrm{mmol})$, 9 -anthryl boronic acid (0.090 $\mathrm{g}, 0.41 \mathrm{mmol}),\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{PdCl}_{2}(11.0 \mathrm{mg}, 20 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.065 \mathrm{~g}, 0.47 \mathrm{mmol})$ were added into dry anhydrous DMF (10 mL). The mixture was heated at $140{ }^{\circ} \mathrm{C}$ for 12 h under argon and poured into deaerated aqueous $\mathrm{NH}_{4} \mathrm{PF}_{6}$ and filtered through celite. The residue was chromatographed on silica gel with $10: 1$ acetonitrile and aqueous saturated KNO_{3} solution as eluent. After anion exchange to hexafluorophosphate with $\mathrm{NH}_{4} \mathrm{PF}_{6}$, pure red product $3 \mathrm{~b}(0.061 \mathrm{~g}, 60 \%)$ was isolated. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 9.92(\mathrm{~s}$,
 $8.29\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{An}} 4,5\right), 8.04\left(\mathrm{td}, J^{t}=7.9 \mathrm{~Hz}, J^{\mathrm{d}}=1.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{4}, 4^{\bullet}\right), 7.85(\mathrm{~d}, J$ $\left.=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{An} 1}, 8\right), 7.68\left(\mathrm{~m}, 4 \mathrm{H}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{An} 3,6}\right), 7.62\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{An} 2,7}\right), 7.57(\mathrm{dd}, J=5.6$, $0.6 \mathrm{~Hz}, 4 \mathrm{H}^{2} \mathrm{H}_{6,6^{\prime \prime}}$), 7.29 (ddd, $J=7.5,5.7,1.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{5}, 5^{\prime \prime}$). ${ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}\right): \delta 160.5,160.0,158.0,156.0,152.8,145.0,138.4,133.0,131.4,130.7,128.9$, $128.3,127.8,127.4,127.0,125.9,125.5,125.1,121.8$. Anal. Calcd for $\mathrm{C}_{66} \mathrm{H}_{42} \mathrm{~F}_{12} \mathrm{~N}_{10} \mathrm{P}_{2} \mathrm{Ru} \cdot 2 \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 56.54 ; \mathrm{H}, 3.31 ; \mathrm{N}, 9.99$. Found: C, $56.66 ; \mathrm{H}, 3.15 ; \mathrm{N}, 10.17$. ESI/LR-MS: $1221.1\left(\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}, 64 \%\right) ; 538.5\left(\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}, 100 \%\right)$.

Complex 3c: (an-pm-tpy)Ru(tpy-pm-Cl) $\left(\mathrm{PF}_{6}\right)_{2}$

Complex (Cl-pm-tpy $)_{2} \mathrm{Ru}\left(\mathrm{PF}_{6}\right)_{2}(\mathbf{2 b}, 0.087 \mathrm{~g}, 0.080 \mathrm{mmol}), 9$-anthryl boronic acid (0.022 $\mathrm{g}, 0.099 \mathrm{mmol}),\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{Pd}(9.0 \mathrm{mg}, 0.008 \mathrm{mmol}, 10 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.027 \mathrm{~g}, 0.20$ mmol) were added into anhydrous DMF (10 mL). The mixture was heated at $90^{\circ} \mathrm{C}$ for 24 h under argon and poured into deaerated aqueous $\mathrm{NH}_{4} \mathrm{PF}_{6}$ and filtered through celite. The residue was chromatographed on silica gel with 15:1 acetonitrile and aqueous saturated KNO_{3} solution as eluent. After anion exchange to hexafluorophosphate with $\mathrm{NH}_{4} \mathrm{PF}_{6}$, pure red product $\mathbf{3 c}(0.039 \mathrm{~g}, 49 \%, 83 \%$ after recovery of starting material $\mathbf{2 b}$) was isolated. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 9.89\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{3^{\prime}, 5^{5}}\right.$), $9.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{T} 3^{\prime}, 5}\right.$), 9.27
 $8.75\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\left.\mathrm{T} 3,3^{\prime \prime}\right)}, 8.26\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{An} 4,5}\right), 8.00(\mathrm{t}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}\right.$, $\left.\mathrm{H}_{4,4^{\prime \prime}, \mathrm{T}^{4}, 4^{*}}\right), 7.82\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}^{2}, \mathrm{H}_{\mathrm{An}} 1,8\right), 7.62\left(\mathrm{~m}, 4 \mathrm{H}^{2} \mathrm{H}_{\mathrm{An} 2,3,6,7}\right), 7.52(\mathrm{~d}, J=5.7$ $\left.\mathrm{Hz}, 2 \mathrm{H}_{,} \mathrm{H}_{6,6^{\prime \prime}}\right), 7.48\left(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{T} 6}, 6^{\circ}\right), 7.25\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{5,5^{\prime \prime}}\right), 7.21(\mathrm{t}, J$ $\left.=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{T} 5,5^{\prime \prime}}\right)$. ESI-MS: $467.0\left(\left[\mathrm{M}_{-2} \mathrm{PF}_{6}\right]^{2+}, 100 \%\right)$.

Complex 4a: [(tpy)Ru(tpy-pm-pm-tpy)Ru(tpy)]((%5Cleft.%5Cmathrm%7BPF%7D_%7B6%7D%5Cright)_{4}\)

Complex $[($ tpy $) \mathrm{Ru}($ tpy- $\mathrm{pm}-\mathrm{Cl})]\left(\mathrm{PF}_{6}\right)_{2}(\mathbf{2 a})(31.1 \mathrm{mg}, 0.032 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(1.1 \mathrm{mg}$, $0.005 \mathrm{mmol}, 15 \mathrm{~mol} \%$), $\mathrm{tBu}_{2} \mathrm{P}(\mathrm{biph})(2.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 30 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(11.0$ $\mathrm{mg}, 0.80 \mathrm{mmol}$) were added into anhydrous DMF (5 mL). The mixture was heated at $110{ }^{\circ} \mathrm{C}$ for 24 h under argon and poured into deaerated aqueous $\mathrm{NH}_{4} \mathrm{PF}_{6}$ and filtered through celite. The residue was chromatographed on silica gel with $7: 1 \mathrm{CH}_{3} \mathrm{CN}$ and aqueous saturated KNO_{3} solution as eluent. After anion exchange to hexafluorophosphate with $\mathrm{NH}_{4} \mathrm{PF}_{6}$, pure red product $\mathbf{4 a}(22.5 \mathrm{mg}, 0.012 \mathrm{mmol}, 75 \%)$ was isolated. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{CN}\right) \delta 9.79\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\left.\mathrm{T} 3^{\prime}, 5^{\prime}\right)}\right.$, $9.66\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{Pm} 4,6}\right), 8.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.\mathrm{H}_{3^{\prime}, 5^{\circ}}\right), 8.76\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}^{2}, \mathrm{H}_{\mathrm{T} 3,3^{\prime}}\right), 8.53\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{3,3^{\prime}}\right), 8.47(\mathrm{t}, J=8.2$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{4^{*}}\right), 8.00\left(\mathrm{td}, J^{t^{t}}=7.8 \mathrm{~Hz}, J^{\mathrm{d}}=1.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{T}} 4,4^{\cdot}\right), 7.95\left(\mathrm{td}, J^{*}=7.8 \mathrm{~Hz}, J^{\mathrm{d}}=1.3\right.$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{4,4^{\bullet}}$), $7.44\left(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 4 \mathrm{H}^{2} \mathrm{H}_{6,6^{\circ}}\right.$), $7.41\left(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{6} .6^{\circ}\right), 7.24$
 NMR can not be obtained due to the small molar concentration in $\mathrm{CD}_{3} \mathrm{CN}$. ESI-MS: $322.0,\left[\mathrm{M}-4 \mathrm{PF}_{6}\right]^{4+} ; 478.4,\left[\mathrm{M}-3 \mathrm{PF}_{6}\right]^{3+} ; 789.6,\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}$.

Complex 4b: [(an-pm-tpy)Ru(tpy-pm-pm-tpy)Ru(tpy-pm-an)]((%5Cleft.%5Cmathrm%7BPF%7D_%7B6%7D%5Cright)_{4}\)

Complex (an-pm-tpy)Ru(tpy-pm-Cl)($\left.\mathrm{PF}_{6}\right)_{2}(\mathbf{3 c})(42.4 \mathrm{mg}, 0.031 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(1.1$ $\mathrm{mg}, 0.005 \mathrm{mmol}, 15 \mathrm{~mol} \%$), $t \mathrm{Bu}{ }_{2} \mathrm{P}(\mathrm{biph})(2.9 \mathrm{mg}, 0.010 \mathrm{mmol}, 30 \mathrm{~mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($18.5 \mathrm{mg}, 0.13 \mathrm{mmol}$) were added into anhydrous DMF (10 mL). The mixture was heated at $110^{\circ} \mathrm{C}$ for 24 h under argon and poured into deaerated aqueous $\mathrm{NH}_{4} \mathrm{PF}_{6}$ and filtered through celite. The residue was chromatographed on silica gel with 7:1 ACN and aqueous saturated KNO_{3} solution as eluent. After anion exchange to hexafluorophosphate with $\mathrm{NH}_{4} \mathrm{PF}_{6}$, pure red product $\mathbf{4 b}(12.5 \mathrm{mg}, 49 \%, 62 \%$ after recovery of starting material 3c) was isolated. ${ }^{\prime} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 9.93\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{3}{ }^{\prime}, 5^{\prime}\right), 9.86\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{T} 3}{ }^{\prime}\right.$, 5), $9.71\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{B} 4.6}\right), 9.31\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{A} 4.6}\right), 8.86\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{An} 10}\right), 8.83(\mathrm{dd}, J=8.2 \mathrm{~Hz}$,
 $7.85\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}_{,} \mathrm{H}_{\mathrm{An}} 1,8\right), 7.65\left(\mathrm{~m}, 8 \mathrm{H}_{,} \mathrm{H}_{\text {An }} 2,3,6,7\right), 7.58\left(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{6}\right.$, $\left.6^{\prime \prime}\right), 7.54\left(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{T} 6,6^{\prime \prime}}\right), 7.29\left(\mathrm{dt}, \mathrm{J}=6.7 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{H}_{\left.5,5^{\prime \prime}, \mathrm{T} 5,5^{\prime \prime}\right)}{ }^{13} \mathrm{C}\right.$ NMR can
not be obtained due to the small molar concentration in $\mathrm{CD}_{3} \mathrm{CN}$. ESI-MS: 450.2 ([M$\left.\left.4 \mathrm{PF}_{6}\right]^{4+}, 86 \%\right) ; 648.2\left(\left[\mathrm{M}-3 \mathrm{PF}_{6}\right]^{3+}, 87 \%\right) ; 1045.0\left(\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}, 100 \%\right)$.

2.5 References

(a) V. Balzani, F. Scandola, Supramolecular Photochemistry, Horwood,, Chichester, 1991; (b) G. L. Closs, J. R. Miller, Science 1988, 240, 440. (c) M. R. Wasielewski, Chem. Rev. 1992, 92, 435; (d) K.D. Jordan, M. N. Paddon-Row, Chem. Rev. 1992, 92, 395; (e) V. Balzani, L. De Cola, Supramolecular Chemistry, Vol. 371, Kluwer, Dordrecht 1992; (f) D. Gust, T.A. Moore, A.L. Moore, Acc. Chem. Res. 1993, 26, 198; (g) K.P. Ghiggino, T.A. Smith, Prog. React. Kinetics 1993, 18, 375; (h) R. A. Bissel, A. P. de Silva, H. Q. N. Gunaratne, P. L. M.

Lynch, G. E. M. Maguire, C. P. McCoy, K. R. A. S. Sandanayake, Topics Curr.
Chem. 1993, 168, 223; (i) V. Balzani, A. Juris, M. Venturi, S. Campagna, S.
Serroni, Chem. Rev. 1996, 96, 759; (j) V. Balzani, F. Scandola, In: D.N.
Reinhoudt, Editor, Comprehensive Supramolecular Chemistry, Vol. 10, Pergamon,, Oxford (1996), 1.
(a) S. Serroni, G. Denti, S. Campagna, A. Juris, M. Ciano, V. Balzani, Angew. Chem. Int. Ed. Engl. 1992, 31, 1493. (b) S. Campagna, G. Denti, S. Serroni, A. Juris, M. Venturi, M. Ricevuto, V. Chem. Eur. J. 1995, 1, 211.
V. Balzani, S. Campagna, G. Denti, A. Juris, S. Serroni, M. Venturi, Acc. Chem. Res. 1998, 31, 26. 819.
K. O. Johansson, J. A. Lotoski, C. C. Tong, G. S. Hanan, Chem. Commun. 2000,
Y.-Q. Fang, M. I. J. Polson, Garry S. Hanan, Inorg. Chem. 2003, $42,5$.
F. Loiseau, R. Passalacqua, S. Campagna, M. I. J. Polson, Y.-Q. Fang, G. S. Hanan, Photochem. Photobiol. Sci. 2002, 1, 982.
(a) T. J. Meyer, Pure Appl. Chem. 1986, 58, 1193; (b) A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, A. von Zelewsky, Coord. Chem. Rev. 1988, 84, 85; (c) K. Kalyanasundaram, Photochemistry of Polypyridine and Porphyrin Complexes, Academic Press, London, 1991; (d) V. Balzani, F. Barigelletti, L. De Cola, Topics Curr. Chem. 1990, 158, 31; (e) G. J. Karvanos, Photoinduced Electron Transfer, VCH, New York, 1993.
(a) E.C. Constable, Prog. Inorg. Chem. Vol. 42, Wiley, New York, 1994, 67; (b)
E. M. Kober, J. L. Marshall, W. J. Dressick, B. P. Sullivan, J. V. Caspar, T. J.

Meyer, Inorg. Chem. 1985, 24, 2755; (c) C. R. Hecker, A. K. I. Gushurst, D. R. McMillin, Inorg. Chem. 1991, 30, 538; (d) E. Amouyal, M. Mouallem-Bahout, G. Calzaferri, J. Phys. Chem. 1991, 95, 7641; (d) C. R. Arana, H. D. Abruña, Inorg. Chem. 1993, 32, 194; (e) J.-P. Collin, S. Guillerez, J.-P. Sauvage, F. Barigelletti, L. De Cola, L. Flamigni, V. Balzani, Inorg. Chem. 1991, 30, 4230; (f) J.-P. Collin, S. Guillerez, J.-P. Sauvage, F. Barigelletti, L. De Cola, L. Flamigni, V. Balzani, Inorg. Chem. 1992, 31, 4112 ; (g) V. Grosshenny, R. Ziessel, J. Chem. Soc., Dalton Trans. 1993, 817; (h) V. Grosshenny, R. Ziessel, J. Organomet. Chem. 1993, 453, C19; (i) A. Harriman, R. Ziessel, Chem. Commun. 1996, 1707; (j) F. Barigelletti, L. Flamigni, V. Balzani, J.-P. Collin, J.-P. Sauvage, A. Sour, E. C. Constable, A. M. W. Cargill Thompson, J. Chem. Soc., Chem. Commun. 1993, 942; (k) F. Barigelletti, L. Flamigni, V. Balzani, J.-P. Collin, J.-P. Sauvage, A. Sour, E. C. Constable, A. M. W. Cargill Thompson, J. Am. Chem. Soc. 1994, 116, 7692; (1) F. Barigelletti, L. Flamigni, V. Balzani, J.-P. Collin, J.-P. Sauvage, A. Sour, New J. Chem. 1995, 19, 793; (m) J.-P. Sauvage, J.-P. Collin, J.-C.

Chambron, S. Guillerez, C. Coudret, V. Balzani, F. Barigelletti, L. De Cola, L. Flamigni, Chem. Rev. 1994, 94, 993. (n) S. U. Son, K. H. Park, Y.-S. Lee, B. Y. Kim, C. H. Choi, M. S. Lah, Y. H. Jang, D.-J. Jang, Y. K. Chung, Inorg. Chem. 2004, 43, 6896. (o) M. Maestri, N. Armaroli, V. Balzani, E. C. Constable, A. M. W. Cargill Thompson, Inorg. Chem. 1995, 34, 2759; (p) J. Wang, Y.-Q. Fang, G. S. Hanan, F. Loiseau, S. Campagna, Inorg. Chem. 2005, 44, 5-7; (q) E. A. Medlycott, G. S. Hanan, Chem. Soc. Rev. 2005, 34, 133.
M. I. J. Polson, E. A. Medlycott, G. S. Hanan, L. Mikelsons, N. J. Taylor, M. Watanabe, Y. Tanaka, F. Loiseau, R Passalacqua, S. Campagna, Chem. Eur. J. 2004, 10, 3640.
(a) A. El-ghayoury, A. Harriman, A. Khatyr, R. Ziessel, Angew. Chem. 2000, 112, 191; (b) A. Harriman, R. Ziessel, Chem. Comm. 1996, 1707; (c) A. C. Benniston, A. Harriman, V. Grosshenny, R. Ziessel, New. J. Chem. 1997, 21, 405; (d) A. Elghayoury, A. Harriman, A. Khatyr, R. Ziessel, J. Phys. Chem. A 2000, 104,1512;
(e) Y.-Q. Fang, N. J. Taylor, G. S. Hanan, F. Loiseau, R. Passalacqua, S.

Campagna, H. Nierengarten, A. Van Dorsselaer, J. Am. Chem. Soc. 2002, 124, 7912.
(a) W. E. Ford, M. A. J. Rodgers, J. Phys. Chem. 1992, 96, 2917; b) G. J. Wilson,
A. Launikonis, W. H. F. Sasse, A. W.-H. Mau, J. Phys. Chem. A 1997, 101, 4860;
c) J. A. Simon, S. L. Curry, R. H. Schmehl, T. R. Schatz, P. Piotrowiak, X. Jin, R. P. Thummel, J. Am. Chem. Soc. 1997, 119, 11012; d) D. S. Tyson, C. R. Luman, X. Zhou, F. N. Castellano, Inorg. Chem. 2001, 40, 4063; e) B. Maubert, N. D.

McClenaghan, M. T. Indelli, S. Campagna, J. Phys. Chem. A, 2003, 107, 447; e) J.
Wang, G. S. Hanan, F. Loiseau, S. Campagna, Chem Comm. 2004, 2068.

Suzuki, Pure Appl. Chem. 1985, 57, 1749; (c) A. Suzuki, Pure Appl. Chem. 1991, 63, 419; (d) A. R. Martin, Y. Yang, Acta Chem. Scand. 1993, 47, 221; (e) A.

Suzuki, Pure Appl. Chem. 1994, 66, 213; (f) N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457; (g) S. P. Stanforth, Tetrahedron 1998, 54, 263; (h) N. Miyaura, Advances in Metal-organic Chemistry Libeskind, L. S., Ed.; Jai: London, 1998, 6, 187-243; (i) A. J. Suzuki, Organomet. Chem. 1999, 576, 147; (j) A. Suzuki, In Organoboranes for Syntheses. ACS Symposium Series 783; P. V. Ramachandran, H. C. Brown, Eds.; American Chemical Society: Washington, DC, 2001; pp 8093.

16 (a) E. J. Ciganek, Org. Chem. 1980, 45, 1497. (b) R. A. Gardner, J.-G. Delcros, F. Konate, F. Breitbeil III, B. Martin, M. Sigman, M. Huang, O. Phanstiel IV, J. Med. Chem. 2004, 47, 6055.
I. W. Davies, J.-F. Marcoux, J. Wu, M. Palucki, E. G. Corley, M. A. Robbins, N. Tsou, R. G. Ball, P. Dormer, R. D. Larsen, P. J. Reider, J. Org. Chem. 2000, 65, 4571.
Z. H. Li, M. S. Wong, Y. Tao, M. D'Iorio, J. Org. Chem. 2004, 69, 921.

A similar effect was reported previously: R. P. Thummel, Y. Jahng, Inorg. Chem. 1986, 25, 2527.
G. Albano, V. Balzani, E. C. Constable, M. Maestri, D. R. Smith, Inorg. Chim. Acta 1998, 277, 225. See schematic representation below for the quenching mechanism:

$$
\mathrm{Ru}(\text { tpy })_{2}{ }^{2+} \mathrm{An}
$$

Figure 2.7 Schematic representation of the luminescence quenching mechanism of homoleptic $\mathrm{Ru}(\mathrm{tpy}-\mathrm{An})_{2}{ }^{2+}$ complex. MLCT $=$ metal-to-ligand charge transfer, ${ }^{1} \mathrm{LC}=$ ligand-centered singlet state, $\mathrm{GS}=$ ground state, $\mathrm{S} 0=$ ground state of An, ${ }^{3} \mathrm{An}=$ non-emissive triplet state of $\mathrm{An}, 1 \mathrm{An}=$ singlet excited state of An .

Chapter 3

Luminescent Ruthenium(II) Complexes of 4'-(9-Anthryl)2,2': $\mathbf{6}^{\prime}, 2^{\prime \prime}$-Terpyridine: Equilibrating Organic Chromophore and ${ }^{3}$ MLCT Over Large Distance*

Abstract

A new series of ruthenium(II) complexes, based on 4^{\prime}-(9 -anthryl)- $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (an-tpy), has been synthesized from the $\mathrm{Ru}(\mathrm{III})$ precursor (an-tpy) RuCl_{3} (4). These new $\mathrm{Ru}(\mathrm{II})$ complexes, [(an-tpy)Ru(tpy-pm-R)] (R=H, 3a; Cl, 3b; phenyl, 3c; pbromophenyl, 3d), with extended π-conjugation through the 4 '-substituted pyrimidyl group, have been characterized by analytical and spectroscopic methods, and X-ray single crystal structure determination for $\mathbf{3 b}$ and $\mathbf{3 d}$. Lifetime measurements have shown that the anthryl chromophore has greatly increased the room temperature (r.t.) excitedstate lifetimes of the complexes, even though it is not directly connected to the ligand involved in the metal-to-ligand charge transfer ($\left.{ }^{3} \mathrm{MLCT}\right)$ emitting state. An equilibrium exists between the anthryl triplet state and the ${ }^{3}$ MLCT state even though the two are physically separated by more than one nanometer.

3.1 Introduction

Ruthenium complexes based on polypyridines are one of the main topics of research in the field of coordination chemistry due to their potential application in lightharvesting devices and molecular electronics. ${ }^{1}$ The prototype, $\mathrm{Ru}(\mathrm{bpy}){ }_{3}{ }^{2+}\left(\mathrm{bpy}=2,2^{\prime}-\right.$ bipyridine), has been well-studied and used in several photosensitizers because of its relative long room temperature (r.t.) excited-state lifetime (up to $1 \mu \mathrm{~s}$). ${ }^{2 \mathrm{a}, 3}$ However, the application of this type of complex in polynuclear light-active arrays is compromised by their structural disadvantages: (i) $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]^{2+}$ is a mixture of Δ and Λ enantiomers; (ii) mono-substitution of bpy ligands introduces fac and mer isomerism; (iii) a linear arrangement of such chromophores, useful for the design of molecular wires and, consequently, vectorial energy and electron migration, is difficult to obtain.

In order to overcome the structural disadvantages and subsequent problems in the synthesis and characterization of $\mathrm{Ru}(\mathrm{bpy})_{3}{ }^{2+}$ based complexes, more focus has been applied to the inherently achiral $\mathrm{Ru}(\text { tpy })_{2}{ }^{2+}$ motif (tpy $=2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine) in the last decade. However, $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ has a very short r.t. excited-state lifetime, less than 250 ps , which is not useful for practical applications since the non-radiative decay from the triplet metal-to-ligand charge transfer state $\left({ }^{3} \mathrm{MLCT}\right)$ to the triplet metal-centered state $\left({ }^{3} \mathrm{MC}\right)$ quenches the r.t. luminescence before energy or electron transfer can take place. To be applied in a practical device, it would be convenient if these complexes had relatively long-lived room temperature (r.t.) excited states. ${ }^{\text {If }}$ Approaches based on the chemical modification on the 4^{\prime}-position of tpy in $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ have been widely adopted to prolong its r.t. lifetime as well as to retain its structural advantages. A linear arrangement could be easily obtained by adding substituents on the 4'-position of the tpy
ligands in the $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ motif. The approaches include the incorporation of various structural modifications to tpy: cyclometallating groups ${ }^{4}$, electron-donating and/or accepting substituents ${ }^{5}$ and delocalization of π-system ${ }^{6}$. All of these modifications work by increasing the energy gap between the ${ }^{3} \mathrm{MLCT}$ and ${ }^{3} \mathrm{MC}$ excited states, thereby minimizing the thermally-activated surface crossing which dominates the MLCT deactivation processes.

Recently, the multi-chromophore approach has emerged as a very efficient tool to increase the excited-state lifetime of metal polypyridine complexes: the combination of metal complexes and organic chromophores, which have long-lived triplet excited states due to their strongly forbidden deactivation processes, at energies close to that of the ${ }^{3}$ MLCT state of the metal chromophore. ${ }^{7}$ This requires the synthesis of multichromophoric species, in which the various metal- and organic-based chromophores are only weakly interacting, so that their individual properties are essentially maintained in the multichromophoric complex. We have previously reported that $\mathrm{Ru}(\mathrm{II})$ complexes of a tpy with a coplanar pyrimidine and a 9 -anthryl chromophore have greatly increased luminescence lifetimes due to bichromophoric effect, in which the ${ }^{3} \mathrm{MLCT}$ is in equilibrium with the anthracene triplet state ($\left.{ }^{3} \mathrm{An}\right)$, which acts as an excited-state energy storage element. ${ }^{7 f}$ In all the case in which bichromophoric states are known for Ru (II) polypyridine complexes, the organic chromophore used as the energy storage element is incorporated into the polypyridine ligand which is directly involved in the ${ }^{3}$ MLCT emitting state. These complexes display exceptional properties; however, their syntheses also depend on several sequential reactions in order to incorporate the two chromophores into the same ligand. Herein we report on a new series of $\mathrm{Ru}($ tpy $)$-type complexes in
which the excited-state storage element (an anthracene subunit) is linked to a ligand which is not involved in the ${ }^{3}$ MLCT emitting level, and demonstrate that the multichromophoric approach is still effective in spite of the large (nanometric) spatial separation between the subunits.

3.2 Results and Discussion

3.2.1 Synthesis

The substituent pyrimidyl tpy ligands 2a-d were synthesized through basecatalyzed ring-forming reaction between ($2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyrid-4-yl)amidium hydrochloride and vinamidine hexafluorophosphate salt 1a-d (Scheme 3.1). These ligands were isolated as off-white to yellow solid in moderate to high yields and fully characterized by NMR spectroscopy as well as satisfactory microanalysis results.

Scheme 3.1 Synthesis of 5-R-pyrimid-2-yl-2,2': $6^{\prime}, 2^{\prime \prime}$-terpyridine ligands 2a-d from terpyridyl amidium chloride and vinamidine hexaflurophosphate salt $\mathbf{1 a - d}(\mathrm{R}=\mathrm{H}, \mathbf{1 a} ; \mathrm{Cl}$, 1b; $\mathrm{Ph}, \mathbf{1 c}$; p-bromo- $\mathrm{Ph}, 1 \mathbf{1 d}$). Reagents and conditions: $\mathrm{MeONa}, \mathrm{MeOH}$, reflux, 12 h .

For the sake of convergence, we chose to introduce the an-tpy ligand into $\mathrm{Ru}(\mathrm{II})$ coordination sphere to obtain the $\mathrm{Ru}(\mathrm{III})$ precursor 4, (an-tpy) RuCl_{3}, for the synthesis of heteroleptic complexes 3a-d (Scheme 3.2). Thus, treatment of an-tpy ligand and $\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ with excess lithium chloride in anhydrous DMF at reflux afforded (an-
tpy) RuCl_{3} (4) with 84% yield without the formation of the byproduct, homoleptic complex, $\left[(\operatorname{an}-\mathrm{tpy})_{2} \mathrm{Ru}\right]_{2}{ }^{2+}$. The formula of complex 4 was confirmed by the satisfactory results from positive FAB-MS and microanalysis.

The reaction of each of ligands $\mathbf{2 a}$ ad with one equivalent of 4 , in the presence of three equivalent of dechlorinating reagent, in anhydrous DMF at reflux readily afforded heteroleptic complexes 3a-d in good yields (Scheme 3.2). Reference heteroleptic complex 3e, $[(\text { an-tpy }) R u(t p y)]^{2+}$, was also synthesized from 4 and tpy ligand with similar procedure. The pure complexes 3a-e were afforded through silica chromatography and counteranion exchange with ammonium hexafluorophosphate. The formulae of the complexes were confirmed by NMR spectroscopy, ESI-MS, MALDI-TOF MS and elemental analysis. However, satisfied elemental analysis results for complexes 3a, 3d-e can not be obtained, presumably due to the incomplete counteranion exchange.

Scheme 3.2 Synthesis of the ruthenium complexes $\mathbf{3 a - d} \mathbf{(3 a}, \mathrm{R}=\mathrm{H} ; \mathbf{3 b}, \mathrm{R}=\mathrm{Cl} ; \mathbf{3 c}, \mathrm{R}=$ phenyl; 3d, $\mathrm{R}=p$-bromophenyl). Reagents and conditions: (a) $\mathrm{RuCl}_{3} \mathrm{xH}_{2} \mathrm{O}$, excess LiCl , DMF, reflux, 8 h ; (b) tpy-pm-R 2a-d, AgNO_{3}, DMF, reflux, 2-3 h.

3.2.2 NMR spectroscopy

The newly synthesized complexes 3a-e have been characterized by the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy (Figure 3.1). The ${ }^{1} \mathrm{H}$ NMR spectroscopic data of complex 3a-e in $\mathrm{CD}_{3} \mathrm{CN}$ are compiled in Table 3.1. The assignments of the ${ }^{1} \mathrm{H}$ NMR signals were assisted by two-dimensional COSY spectra.

Through the comparison of the ${ }^{1} \mathrm{H}$ NMR spectra of newly synthesized complexes 3a-d, we note that the anthryl fragment in these complexes is kept independent from the R-pm-tpy ligand. Another interesting point is that upon coordination of the ligands with the ruthenium cation, the changes of the chemical shift on the ligand are quite significant, showing the electronic and conformational changes induced by coordination to the metal
ion. For example, the $\mathrm{H}_{3^{3}, 5^{\prime}}$ signals in $\mathrm{Cl}-\mathrm{m}$-tpy ligand shift around 0.29 ppm downfield (Table 3.1), which can be justified by the hydrogen bonding with nitrogen lone pair in pyrimidine rings. ${ }^{11}$ Dramatic chemical shift change is seen on the $H_{6,6^{\circ}}$ protons in the side pyridine rings between the free ligands and the complexes. The $H_{6,6^{\prime \prime}}$ shifts significantly upfield (1.1 ppm). From the crystal structure of the complexes (Figure 3.2 and Figure 3.3), $\mathrm{H}_{6,6^{\prime \prime}}$ protons are located in the anisotropically shielding zone produced by the ring current of the pyridine rings from the other ligand. ${ }^{13}$ A similar, but weaker result is observed for $\mathrm{H}_{5,5^{\prime \prime}}$, which is slightly shielded and has the lowest chemical shift. Surprisingly, $\mathrm{H}_{3}{ }^{\prime}, 5^{\prime}$ shows little shift (0.29 ppm). This is presumably due to the opposite effects of conformational change (downfield) and newly produced $\mathrm{H} \cdots \mathrm{H}$ steric hindrance (upfield) during coordination, which offsets each other.

Table 3.1 Chemical shifts of ${ }^{1} \mathrm{H}$ NMR signals of complexes 3a-f and ligand 2a. ${ }^{a}$

Complex	t3,3'	T3,3"	t4,4"	T4,4"	t5,5"	T5,5"	t6,6"	T6,6"	t3',5'	T3',5'	A10	A4,5	A1,8	A2,3,6,7	P4,6	R
3 a	8.76	8.44	8.05	7.89	7.37	7.18	7.68	7.49	9.74	8.94	8.90	8.32	8.19	7.68	9.18	7.68(P5)
3b	8.76	8.45	8.05	7.89	7.38	7.19	7.69	7.49	9.70	8.95	8.90	8.32	8.20	7.69	9.19	---
3 c	8.80	8.45	8.06	7.90	7.38	7.20	7.68	7.52	9.80	8.96	8.92	8.33	8.20	7.68	9.46	7.98, 7.68
3d	8.79	8.47	8.07	7.88	7.40	7.22	7.70	7.55	9.79	8.96	8.90	8.32	8.22	7.70	9.42	7.88
3 e	8.46	8.56	7.88	7.98	7.19	7.33	7.42	7.65	8.80	8.91	8.89	8.31	8.18	7.65		
$3 \mathrm{f}^{\text {b }}$		8.48		7.93		7.32		7.68		8.96	8.91	8.31	8.20	7.68		
2b	8.74		8.01		7.50		8.79		9.41						9.02	
$5 \mathbf{b}^{\text {c }}$	8.69	8.51	7.96	7.93	7.21	7.15	7.39	7.40	9.63	8.78					9.15	

${ }^{a}$ Spectra were recorded in $\mathrm{CD}_{3} \mathrm{CN}$ at r.t. at 400 MHz . T-signals from tpy moiety in antpy ligand, t-signals from tpy moity in R-pm-tpy ligand (from tpy moiety for 3e), Asignals from anthryl moiety, P-pyrimidyl signals, R-other signals from R. See Chart 3.1 for naming scheme. ${ }^{b} \mathbf{3 f}=\mathrm{Ru}(\mathrm{tpy}-\mathrm{an})_{2}{ }^{2+}$, data from ref. 9a. ${ }^{c} \mathbf{5 b}=[(\mathrm{Cl}-\mathrm{pm}-$ tpy) $R u($ tpy $)]\left(\mathrm{PF}_{6}\right)_{2}$, data from reference 5 e .

Chart 3.1 Numbering scheme for complexes $[(a n-t p y) R u(t p y-p m-R)]\left(\mathrm{PF}_{6}\right)_{2}$ 3a-d. The prefixes $\mathrm{P}, \mathrm{t}, \mathrm{T}$ and A represent pyrimidyl, tpy of R-pm-tpy, tpy of an-tpy and anthryl moieties, respectively.

The proton signals from anthracene moieties in this new series of complexes are nearly the same as those in the reference complex $\mathbf{3 e}$ (Table 3.1), indicating that the chemical environments of the anthracene groups in these complexes are nearly the same. The pyrimidyl substituent on the other side tpy ligand has no effect on the anthracene group, which is perpendicular to the tpy (c.f. crystal structure).

Figure $3.1{ }^{1} \mathrm{H}$ NMR spectra of complexes 3a-e (from top to bottom) between 10.0 ppm and 7.0 ppm . Spectra were recorded in $\mathrm{CD}_{3} \mathrm{CN}$ at r.t. on a Bruker AV400 spectrometer at 400 MHz . See Table 3.1 for assignments.

3.2.3 Crystal structure determination

The ORTEP diagrams of the cation of complexes $\mathbf{3 b}$ and $3 \mathbf{d}^{\$}$ are showed in Figure 3.2 and Figure 3.3, respectively, while selected bond parameters are listed in Table 3.2.

Table 3.2 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for complexes $\mathbf{3 b}$ and $3 \mathbf{d}$.

3b			
$\mathrm{Ru}-\mathrm{N} 214$	2.071(7)	$\mathrm{N} 214-\mathrm{Ru}-\mathrm{N} 28$	79.6(3)
$\mathrm{Ru}-\mathrm{N} 28$	1.978(7)	$\mathrm{N} 214-\mathrm{Ru}-\mathrm{N} 21$	158.1(3)
$\mathrm{Ru}-\mathrm{N} 21$	2.060(7)	$\mathrm{N} 28-\mathrm{Ru}-\mathrm{N} 21$	78.5(3)
$\mathrm{Ru}-\mathrm{N} 11$	2.074(8)	$\mathrm{NI} 1-\mathrm{Ru}-\mathrm{N} 18$	78.9(3)
$\mathrm{Ru}-\mathrm{N} 18$	$1.970(8)$	$\mathrm{N} 11-\mathrm{Ru}-\mathrm{N} 114$	158.8(3)
$\mathrm{Ru}-\mathrm{N} 114$	$2.091(8)$	$\mathrm{N} 18-\mathrm{Ru}-\mathrm{N} 114$	79.9(3)
Cl12-C47	7 1.753(11)	$\mathrm{N} 28-\mathrm{Ru}-\mathrm{N} 18$	178.1(3)
3d			
$\mathrm{Ru}-\mathrm{N} 1$	2.070(4)	$\mathrm{N} 1-\mathrm{Ru}-\mathrm{N} 279$.	(2)
$\mathrm{Ru}-\mathrm{N} 2$	$1.947(5)$	N1-Ru-N3 157	.7(2)
$\mathrm{Ru}-\mathrm{N} 3$	2.079(4)	$\mathrm{N} 2-\mathrm{Ru}-\mathrm{N} 378$.	(2)
$\mathrm{Ru}-\mathrm{N} 4$	2.080(4)	$\mathrm{N} 4-\mathrm{Ru}$ - N5 78.	(2)
Ru - N5	$1.933(4)$	N4-Ru-N6 157	.8(2)
Ru-N6	2.085(4)	N 5 - Ru-N6 79.	(2)
$\mathrm{C} 52-\mathrm{Br}$	1.871(8)	$\mathrm{N} 2-\mathrm{Ru}-\mathrm{N} 5179$.2(2)

The R_{1} factor and $w R_{2}$ of the single crystal structure determination of complex $\mathbf{3 b}$ is 0.1359 and 0.4025 , although there is no disorder in the single molecules. The unsatisfied refinement of the structure is probably due to the quality of the crystals.

The Ru-to-N bond lengths and internal pyridine angles in complexes $\mathbf{3 b}$ and $\mathbf{3 d}$ are similar to those found in $\mathrm{Ru}(\mathrm{II})$ complexes of modified tpy-like tridentate ligands. ${ }^{8}$ The 9-anthryl subunit in $\mathbf{3 b}$ and $\mathbf{3 d}$ lies at a 76.8° and an 82.3° angle, respectively, to the N1-N3 terpyridine plane which diminishes its conjugation to the pyrimidyl-tpy unit (Figure 3.2 and Figure 3.3), which allowing the subunits to maintain their independent properties in the complexes. The pyrimidyl group lies virtually co-planar to the N4-N6 terpyridine (7.7° and 6.2° angles, respectively), whereas the 5-pyrimidyl substituted p bromophenyl group in $\mathbf{3 d}$ is twisted at a 27.3° angle with respect to the pyrimidine (Figure 3.3). The co-planar nature of the pyrimidine-tpy sub-unit favors π-conjugation and is crucial for the enhanced photophysical properties of these complexes (cf., photophysics).

Figure 3.2 ORTEP plots of the X-ray crystal structure of complex 3b exposing the an-tpy ligand (top) and, after a 90° rotation, the $5-\mathrm{Cl}-$ pyrimid-2-yl ligand (bottom). Thermal ellipsoids are set at 30% probability with hydrogen atoms and counteranions omitted for clarity.

Figure 3.3 ORTEP plots of the X-ray crystal structure of complex 3d exposing the an-tpy ligand (top) and, after a 90° rotation, the 5-(p-bromophenyl)pyrimid-2-yl ligand (bottom). Thermal ellipsoids are set at 30% probability with hydrogen atoms and counteranions omitted for clarity.

3.2.4 Electrochemistry

The electrochemical data of complexes 3a-e are listed in Table 3.3. The redox potentials of each new complexes are similar to that of $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ with a single oneelectron metal-based oxidation and a series of ligand-based reductions, of which the first reduction process is reversible. The oxidation potentials have slightly shifted to more positive potentials by $25-50 \mathrm{mV}$ compared with reference complex $\mathbf{3 e},(+1.30 \mathrm{~V}$ vs SCE), due to the greater stablization of the metal-based orbitals by the pyrimidyl-tpy
substituents. The 9-anthryl group has little electronic effect on the complexes as the redox potentials of 3a-d are nearly the same as those of their non-anthryl counterparts, $\left([(\right.$ tpy $) \mathrm{Ru}($ tpy -pm$)]\left(\mathrm{PF}_{6}\right)_{2}(5 \mathbf{a}) .{ }^{5 \mathrm{e}}$

Table 3.3 Cyclic voltammetric potentials of complexes 3a-e at r.t. in Ar-purged acetonitrile ($0.1 \mathrm{M} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$) at a platinum electrode. ${ }^{a}$

Comp	$E_{1 / 2} / \mathrm{V}\left(\Delta E_{\mathrm{p}} / \mathrm{mV}\right)$					
	Oxidation	Reduction				
3 a	+1.33(70)	$-1.09(60)$	-1.46(70)	-1.72	-1.88	
3b	+1.32 (80)	$-1.10(70)$	-1.45	-1.75	-1.88	-2.05
3 c	+1.36(90)	$-1.19(60)$	-1.53		-1.89	
3d	+1.34 (80)	-1.11(70)	-1.43			
3 e	+1.30(70)	-1.31(70)	-1.95			
$5 a^{b}$	+1.32(80)	-1.13(70)	-1.48(80)			

[^0]
3.2.5 Spectroscopic properties

The newly synthesized complexes 3a-e were characterized by UV-vis spectroscopy in deaerated acetonitrile at r.t..

The absorption spectra of complexes 3a-e are showed in Figure 3.4 and the absorption data are compiled in Table 3.4. In the UV region, the spectra are dominated by the $\pi-\pi^{*}$ transitions of the tpy and anthracene moities. In the visible region, the spinallowed ${ }^{\prime}$ MLCT bands of complexes 3a-d have shifted to lower energy as compared to that of complex $\mathbf{3 e}$ due to the extended delocalization of the pyrimidyl-tpy moiety. The absorption spectra of complexes 3a-d are similar to the sum of the spectra of ruthenium pyrimidyl-tpy moieties and anthracene, indicating that the 9 -anthryl group contributes independently to the electronic spectra of the complex.

Table 3.4 Electronic absorption spectra for complexes 3a-e. ${ }^{a}$

Complex	$\lambda_{\max } / \mathrm{nm}\left(\varepsilon / 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$			
3a	$490(18.9)$	$309(37.5)$	$275(55.0)$	$254(116.0)$
3b	$492(35.7)$	$308(71.0)$	$276(110.2)$	$254(220.0)$
3c	$494(15.3)$	$309(33.8)$	$276(31.9)$	$254(65.0)$
3d	$494(23.7)$	$309(51.2)$	$275(47.4)$	$254(120.6)$
3e	$482(11.0)$	$308(41.3)$	$270(37.8)$	$254(104.6)$

[^1]

Figure 3.4 Electronic absorption spectra for 3a (solid line), 3b (dashed line), 3c (dotted line), 3d (intermittent line) and $\mathbf{3 e}$ (double intermittent line). The spectra were recorded at room temperature in argon-purged acetonitrile.

3.2.6 Photoluminescence measurements

At room temperature, the emission spectra of new complexes are typical of MLCT emitters. The luminescence data collected in Table 3.5 confirm our interpretation by showing that the introduction of the two independent chromophores significantly enhances the lifetime as compared to complex 3 e , in which the ${ }^{3}$ MLCT luminescence has been totally quenched by the ${ }^{3} \mathrm{An}$ state, as well as to complex $[(\operatorname{tpy}) \mathrm{Ru}($ tpy $-\mathrm{pm}-\mathrm{R})]\left(\mathrm{PF}_{6}\right)_{2}$ 5a, in which multichromophoric behaviour cannot be obtained.

The emission data (Table 3.5) clearly showed that in all the complexes 3a-d the energy level of the emitting ${ }^{3}$ MLCT state has been lowered to a region comparable to that of the non-emissive anthracene triplet state $\left({ }^{3} \mathrm{An}\right)\left(\mathrm{E}^{00}=1.85 \mathrm{eV}, 671 \mathrm{~nm}\right)^{12}$ definitely not involved in the tpy-Pm-R ligands. The ${ }^{3}$ MLCT state of complexes 3a-d is therefore close enough in energy to the ${ }^{3} \mathrm{An}$ state to make equilibration between the two states possible, thus accounting for the enhancement of the excited state lifetimes of the new complexes (Table 3.5). As expected, the emission spectra of complexes 3a-d exhibit biexponential decay (Table 3.5). The first shorter lifetime is attributed to the decay of the initially formed ${ }^{3}$ MLCT state. The second lifetime results from the equilibration between the emitting ${ }^{3}$ MLCT level and the ${ }^{3}$ An state. The experimental results at 77 K (in particular, lifetimes and emission spectra) allow the low temperature emission to be attributed to the anthracene triplet. The additional increases in the luminescence lifetimes of the new species are necessarily related to the presence of the anthracene triplet not involved in ${ }^{3}$ MLCT emitting state.

Table 3.5 Luminescence data of complexes 3a-e.

Complex	$298 \mathrm{~K}^{a}$	
	$\lambda_{\max } / \mathrm{nm}$	τ / ns (contribution)
3a	669	>1000
3b	680	$10(5 \%), 698(95 \%)$
3c	670	$25(20 \%), 1052(80 \%)$
3d	670	$28(10 \%), 1040(90 \%)$
3e	----	$-\cdots--$
5a	675	8
a In		

[^2]
3.3 Conclusions

A new series of r.t. luminescent $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ species have been designed and synthesized, incorporating a pyrimid-2-yl-tpy subunit for extended electron delocalization and an independent organic chromophore, 9 -anthryl subunit, as an energy reservoir for the emissive ${ }^{3}$ MLCT state. Importantly, prolonged luminescence lifetimes via excited-state equilibration have been obtained by grafting the excited-state storage element onto a ligand which does not act as the acceptor ligand of the ${ }^{3}$ MLCT emitting level. Separation of the two chromophoric subunits onto different ligands greatly simplifies the synthetic procedure while maintaining long-lived excited state lifetimes at r.t.. This approach enables the design and synthesis of the ruthenium terpyridine moiety and the organic chromophore subunit independently and can open the way to a new class of compounds with predetermined photophysical properties.

3.4 Experimental

3.4.1 General methods

All reactions were performed under a dry argon atmosphere using standard Schlenk techniques. Solvents for the reaction were pre-dried using Solvent Purification System. All chemicals, except where stated otherwise, were purchased from SigmaAldrich and used as received.

Nuclear magnetic resonance (NMR) spectra were recorded in CDCl_{3} or $\mathrm{CD}_{3} \mathrm{CN}$ at room temperature (r.t.) on a Bruker AV400 spectrometer at 400 MHz for ${ }^{1} \mathrm{H}$ NMR and at 100 MHz for ${ }^{13} \mathrm{C}$ NMR. Chemical shifts are reported in part per million (ppm) relative to residual solvents proton (7.23 ppm for chloroform-d and 1.93 ppm for acetonitrile- d_{3}) and the carbon resonance of the solvents. Melting points were measured on an Electrothermal Mel-Temp 1101D without correction. Fast-atom bombardment (FAB, positive mode) spectra were recorded on a ZAB-HF-VB-analytical apparatus in an m-nitrobenzylalcohol (m-NBA) matrix and Ar atoms were used for the bombardment (8 KeV). ESI-MS and MALDI-TOF MS were done by the Mass Spectrometry Facility at Universite de Montréal. Microanalysis was done in the Elemental Analysis Laboratory, Université de Montréal. Column chromatography was performed on Kiesegel 60 (230-400 mesh) silica gel. Routine absorption spectra and emission spectra were measured in deaerated acetonitrile at r.t. on a Cary 500i UV-Vis-NIR Spectrophotometer and a Cary Eclipse Fluorescence Spectrophotometer, respectively. Electrochemistry data were collected in deaerated acetonitrile with $0.1 \mathrm{M}^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ on a BAS CV-50W Voltammetric Analyzer. Redox potentials were corrected by the internal reference ferrocence (395 mV vs SCE).

3.4.2 X-Ray crystallography

The solid-state structures of the complexes $\mathbf{3 b}$ and $\mathbf{3 d}$ were determined by X-ray crystallography. Recrystallization of 3b and 3d from acetonitrile solution, respectively, by slow diffusion of diethyl ether vapor provided dark-red single crystal suitable for Xray crystallography. Crystal parameters and details of the data collection and refinement for 3b and 3d are given in Table 3.6.

Table 3.6 Crystallography data for complexes 3b and 3d.

Complex	3b	3d
Molecular formula	$\mathrm{C}_{48} \mathrm{H}_{31} \mathrm{ClN}_{8} \mathrm{Ru}^{\prime}\left(\mathrm{PF}_{6}\right)_{2}$	$\mathrm{C}_{54} \mathrm{H}_{35} \mathrm{BrN}_{8} \mathrm{Ru}\left(\mathrm{PF}_{6}\right)_{2}$
M	1146.27	1266.82
Crystal system	triclinic	monoclinic
a / \AA	$10.4037(6)$	$25.1776(18)$
b / \AA	$12.2062(7)$	$11.4829(8)$
c / \AA	$21.9324(12)$	$23.2866(15)$
$\alpha /^{\circ}$	$80.801(3)$	90
$\beta /^{\circ}$	$85.840(3)$	$104.716(3)$
μ°	$80.360(3)$	90
U / \AA^{3}	$2719.5(3)$	$6511.6(8)$
Space group	$\mathrm{P}-1$	$\mathrm{P} 21 / \mathrm{c}$
Z	2	4
$D c / \mathrm{Mg} \mathrm{m}^{-3}$	1.400	1.292
μ / mm^{-1}	4.059	3.765
Temperature/K	$100(2)$	$220(2)$
R 1	0.1359	0.0550
wR2	0.4025	0.0992

3.4.3 Ligands synthesis

An-tpy ligand was prepared following literature method ${ }^{9 \mathrm{a}}$ or as we reported recently. ${ }^{9 b}$ Vinamidium hexaflurophosphate salts $\mathbf{1 a - d}$ were prepared following literature method. ${ }^{10}$ Ligands 2a-d were synthesized by following a general procedure outlined below for 2a. ${ }^{11}$

4'-(Pyrimid-2-yl)-2,2':6',2"-terpyridine (2a)

Vinamidine salt 1a ($0.160 \mathrm{~g}, 0.71 \mathrm{mmol}$), 4'-terpyridylamidine hydrochloride (0.205 g , $0.66 \mathrm{mmol})$ and sodium methoxide $(0.042 \mathrm{~g}, 0.78 \mathrm{mmol})$ were heated at reflux overnight in dry methanol $(30 \mathrm{~mL})$. The mixture was filtered, washed with chilled methanol $(2 \times 5$ $\mathrm{mL})$ and dried in vacuum to obtain a white crystalline product $(0.108 \mathrm{~g}, 0.35 \mathrm{mmol}$, 53%). mp 287.5-288.5 ${ }^{\circ} \mathrm{C}$ (methanol). ${ }^{\mathrm{I}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.42\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{3}{ }^{\prime}, 5^{\prime}\right)$, $8.89\left(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{P} 4,6}\right), 8.74\left(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{6,6^{\circ}}\right), 8.63(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{H}_{3,3^{\prime}}\right), 7.84\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{4,4^{\prime \prime}}\right), 7.38\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{5,5^{*}}\right), 7.29(\mathrm{t}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{P} 5}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.2,157.5,156.5,156.2,149.4,147.2$, 136.9, 123.9, 121.3, 120.6, 119.7. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{5}: \mathrm{C}, 73.30 ; \mathrm{H}, 4.21 ; \mathrm{N}, 22.49$. Found: C, 73.36; H, 4.13; N, 22.61.

4'-(5-Chloro-pyrimid-2-yl)-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (2b)

Yield 76\%.mp 231.5-233 ${ }^{\circ} \mathrm{C}$ (methanol). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.40\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{3}\right.$,
 $7.86\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}^{2} \mathrm{H}_{4}, 4^{\prime \prime}\right), 7.34\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{5}, 5^{\prime}\right) .{ }^{\mathrm{t}} \mathrm{H}$ NMR (400 MHz ,
 $\left(\mathrm{d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3,3^{\prime}}\right), 8.01\left(\mathrm{td}, J^{t}=7.8 \mathrm{~Hz}, J^{\mathrm{d}}=1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{4,4^{\circ}}\right), 7.50\left(\mathrm{td}, J^{t}=\right.$ $\left.7.7, J^{\mathrm{d}}=1.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H} 5,5^{\bullet}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.0,156.6,156.0,156.0$, 149.4, 145.9, 136.9, 131.0, 124.0, 121.3, 119.5. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{ClN}_{5}: \mathrm{C}, 66.00 ; \mathrm{H}$, $3.50 ;$ N, 20.25. Found: C, 66.14; H, 3.45; N, 20.43 .

4'-(5-Phenyl-pyrimid-2-yl)-2,2':6',2"-terpyridine (2c)

Yield 85% mp $246-247^{\circ} \mathrm{C}$ (methanol). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.49\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{3}\right.$, $\left.5^{\prime}\right), 9.10\left(\mathrm{~s}, 2 \mathrm{H}^{\prime}, \mathrm{H}_{\mathrm{P} 4,6}\right), 8.76\left(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}^{2}, \mathrm{H}_{6,6^{\prime \prime}}\right), 8.66\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}^{\prime}, \mathrm{H}_{3,3^{\prime \prime}}\right)$, $7.87\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{4,4^{*}}\right), 7.65\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}} 3.5\right), 7.51\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}} 2,4,6\right)$, $7.34\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{5}, 5^{י}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.9,156.5,156.2$, 155.4, 149.4, 146.9, 136.8, 134.4, 133.2, 129.5, 129.1, 127.1, 123.9, 121.3, 119.6. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~N}_{5}: \mathrm{C}, 77.50 ; \mathrm{H}, 4.42 ; \mathrm{N}, 18.08$. Found: C, $77.31 ; \mathrm{H}, 4.40 ; \mathrm{N}, 18.17$.
4^{\prime}-(5-p-Bromo-phenyl-pyrimid-2-yl)-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (2d)

Yield 58%. mp $251-252^{\circ} \mathrm{C}$ (methanol). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.53\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{3}\right.$, $\left.5^{\circ}\right), 9.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{P}} 4,6\right), 8.82\left(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}^{2}, \mathrm{H}_{6,6^{\prime \prime}}\right), 8.73\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3,3^{\prime \prime}}\right)$, $7.94\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{4,4^{\prime}}\right), 7.70\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}, 5\right), 7.56(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{H}_{\mathrm{Ph}} 2,6$), $7.41\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{5}, 5^{\prime \prime}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 162.1, 156.7, $156.3,155.5,149.6,146.9,144.4,136.8,133.2,129.5,129.5,128.3123 .9,121.4,119.7$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{BrN}_{5}: \mathrm{C}, 64.39 ; \mathrm{H}, 3.46 ; \mathrm{N}, 15.02$. Found: C, $64.24 ; \mathrm{H}, 3.42 ; \mathrm{N}$, 15.14 .

3.4.4 Metal complexes preparation

Reference complex 5a-e were prepared as we reported previously. ${ }^{5 \mathrm{e}}$
(An-tpy) $\mathrm{RuCl}_{3}(4)$

Ligand an-tpy ($0.41 \mathrm{~g}, 1.0 \mathrm{mmol}$), ruthenium trichloride hydrate $(0.23 \mathrm{~g}, 1.0 \mathrm{mmol})$ and lithium chloride $(0.20 \mathrm{~g}, 5.0 \mathrm{mmol})$ were heated at reflux in anhydrous DMF $(50 \mathrm{~mL})$ for 8 h . Then the solution was cooled down and the solvent was removed under reduced pressure. The residue was sonicated in ethanol $(50 \mathrm{~mL})$ for 30 minutes. Filtration through celite gave pure product $(0.52 \mathrm{~g}, 0.84 \mathrm{mmol}, 84 \%)$. FAB-MS: $616.5[\mathrm{M}]^{+}, 581.5[\mathrm{M}-\mathrm{Cl}]^{+}$, $546.6\left[\mathrm{M}-2 \mathrm{Cl}^{+}, 510.6[\mathrm{M}-3 \mathrm{Cl}]+\right.$. Anal. Calc. for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{O}\left(4 \cdot \mathrm{H}_{2} \mathrm{O}\right): \mathrm{C}, 54.86 ; \mathrm{H}, 3.33$; N, 6.62. Found: C, 54.33; H, 3.37; N, 6.98.
$[(A n-t p y) R u(2 a)]\left(\mathrm{PF}_{6}\right)_{2}(\mathbf{3 a})$

All the complexes 3a-d were synthesized by following a general procedure outlined below for 3a. Complex $4(0.039 \mathrm{~g}, 0.063 \mathrm{mmol}), 4^{\prime}$ '(pyrimid-2-yl)-terpyridine $(0.031 \mathrm{~g}$, $0.080 \mathrm{mmol})$ and silver nitrate ($0.032 \mathrm{~g}, 0.19 \mathrm{mmol}$) were heated at reflux in anhydrous DMF (20 mL) for 2 h . The mixture was filtered through celite and the filtrate was evaporated to dryness. The residue was then chromatographed on a silica gel column with 7:1 acetonitrile and saturated aqueous KNO_{3}. Counteranion exchange with $\mathrm{NH}_{4} \mathrm{PF}_{6}$ gave pure red product $(0.054 \mathrm{~g}, 0.045 \mathrm{mmol}, 72 \%)$. Care was taken in order to avoid full laboratory light over the reaction vessel. Purification was accomplished in dim light. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 9.74(\mathrm{~s}, 2 \mathrm{H}), 9.18(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.94(\mathrm{~s}, 2 \mathrm{H}), 8.90(\mathrm{~s}$, $1 \mathrm{H}), 8.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.32(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.19(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.05(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.68(\mathrm{~m}, 7 \mathrm{H}), 7.49(\mathrm{~d}, J$ $=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{CN}\right): \delta 161.5,158.8,158.5,158.4,156.4,155.8,153.3,153.1,147.8,145.3,138.7$, $138.6,132.4,131.8,130.3,129.4,129.3,128.2,127.9,127.4,126.9,126.5,126.3,125.2$, 125.1, 122.4, 122.0. ESI-MS: $411.1\left(\left[\mathrm{M}_{2}-2 \mathrm{PF}_{6}\right]^{2+}, 100 \%\right) ; 967.1,\left(\left[\mathrm{M}_{-} \mathrm{PF}_{6}\right]^{+}, 42 \%\right)$. Calc.
for $\mathrm{C}_{48} \mathrm{H}_{32} \mathrm{~N}_{8} \mathrm{Ru}\left(\mathrm{M}_{-2} \mathrm{PF}_{6}\right)^{2+}, 411.0891$; observed, 411.0890. Calc. for $\mathrm{C}_{48} \mathrm{H}_{32} \mathrm{~N}_{8} \mathrm{RuPF}_{6}$ $\left(\mathrm{M}-\mathrm{PF}_{6}\right)^{+}, 967.1429$; observed, 967.1420 . Anal. Calc. for $\mathrm{C}_{48} \mathrm{H}_{32} \mathrm{~N}_{8} \mathrm{RuP}_{2} \mathrm{~F}_{12}$: $\mathrm{C}, 51.85 ; \mathrm{H}$, $2.90 ;$ N, 10.08. Found: C, $38.42 ;$ H, 2.53; N, 6.47.
$[($ An-tpy $) \mathrm{Ru}(\mathbf{2 b})]\left(\mathrm{PF}_{6}\right)_{2}$ (3b)

Yield $82 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 9.70(\mathrm{~s}, 2 \mathrm{H}), 9.19(\mathrm{~s}, 2 \mathrm{H}), 8.95(\mathrm{~s}, 2 \mathrm{H}), 8.90$ $(\mathrm{s}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.32(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.20$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.05(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~m}, 6 \mathrm{H}), 7.49$ $(\mathrm{d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right): \delta 159.5,158.5,158.3,157.3,156.5,155.7,153.3,153.1,147.8,143.9$, 138.7, 138.6, 132.5, 132.4, 131.8, 130.3, 129.3, 129.2, 128.2, 127.9, 127.4, 126.9, 126.5, 126.3, 125.3, 125.2, 122.0. ESI-MS: 428.1 ($\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}, 100 \%$); $1001.3\left(\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}, 21 \%\right)$. Calc. for $\mathrm{C}_{48} \mathrm{H}_{31} \mathrm{~N}_{8} \mathrm{RuCl}\left(\mathrm{M}_{2} \mathrm{PF}_{6}\right)^{2+}, 428.0696$; observed, 428.0695. Calc. for
$\mathrm{C}_{48} \mathrm{H}_{31} \mathrm{~N}_{8} \mathrm{RuClPF}_{6}\left(\mathrm{M}_{\left.-\mathrm{PF}_{6}\right)^{+}, \quad 1001.1040 \text {; observed, 1001.1033. Anal. Calc. for }}\right.$ $\mathrm{C}_{48} \mathrm{H}_{31} \mathrm{~N}_{8} \mathrm{RuClP}_{2} \mathrm{~F}_{12}: \mathrm{C}, 50.29 ; \mathrm{H}, 2.73 ; \mathrm{N}, 9.78$. Found: C, 50.13; H, 2.56; N, 9.64.
$[(A n-t p y) R u(2 c)]\left(\mathrm{PF}_{6}\right)_{2}(3 \mathbf{c})$

Yiled 72\%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 9.80(\mathrm{~s}, 2 \mathrm{H}), 9.46(\mathrm{~s}, 2 \mathrm{H}), 8.96(\mathrm{~s}, 2 \mathrm{H}), 8.92$ (s, 1H), $8.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.20$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}), 7.68(\mathrm{~m}, 9 \mathrm{H}), 7.52(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{t}, J=6.4 \mathrm{~Hz}$, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 160.1,158.6,158.4,156.5,156.4,155.8,153.3$, $153.1,147.7,144.8,138.7,138.6,134.3,134.2,131.8,130.3,130.0,129.3,128.2,128.0$, 127.7, 127.4, 126.9, 126.5, 126.4, 132.5, 129.3, 128.1, 125.3, 125.2, 121.9. ESI-MS: $449.0\left(\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}, 86 \%\right), 1043.4\left(\left[\mathrm{M}^{2}-\mathrm{PF}_{6}\right]^{+}, 100 \%\right)$. Calc. for $\mathrm{C}_{54} \mathrm{H}_{36} \mathrm{~N}_{8} \mathrm{Ru}\left(\mathrm{M}-2 \mathrm{PF}_{6}\right)^{2+}$,
449.1048; observed, 449.1040. Calc. for $\mathrm{C}_{54} \mathrm{H}_{36} \mathrm{~N}_{8} \mathrm{RuPF}_{6}\left(\mathrm{M}-\mathrm{PF}_{6}\right)^{+}, 1043.1742$; observed, 1043.1738. Anal. Calc. for $\mathrm{C}_{54} \mathrm{H}_{36} \mathrm{~N}_{8} \mathrm{RuP}_{2} \mathrm{~F}_{12}$: C, $54.60 ; \mathrm{H}, 3.05 ; \mathrm{N}, 9.43$. Found: C , 54.45; H, 2.84; N, 9.81.
$[($ An-tpy $) \mathrm{Ru}(\mathbf{2 d})]\left(\mathrm{PF}_{6}\right)_{2}(\mathbf{3 d})$

Yield 70%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 9.79$ (s, 2 H), 9.42 ($\mathrm{s}, 2 \mathrm{H}$), $8.96(\mathrm{~s}, 2 \mathrm{H}), 8.90$ (s, 1H), 8.79 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.47$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.32(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.22$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}$), $8.07(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~m}, 6 \mathrm{H}), 7.70(\mathrm{~m}, 6 \mathrm{H}), 7.55(\mathrm{~d}, J=$ $5.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta 160.4,158.5,158.4,156.4,156.4,155.8,153.3,153.1,147.8,144.7,138.7$, 138.6, 133.4, 133.2, 133.0, 132.5, 131.8, 130.3, 129.6, 129.4, 129.3, 128.2, 128.0, 127.4, 127.0, 126.5, 126.4, 125.3, 125.2, 123.9, 121.9. ESI-MS: 488.9 ([M-2PF $\left.\left.{ }_{6}+\mathrm{H}\right]^{2+}, 100 \%\right)$.

Calc. for $\mathrm{C}_{54} \mathrm{H}_{35} \mathrm{~N}_{8} \mathrm{RuBr}\left(\mathrm{M}-2 \mathrm{PF}_{6}\right)^{2+}$, 488.0601; observed, 488.0602. Calc. for $\mathrm{C}_{54} \mathrm{H}_{35} \mathrm{~N}_{8} \mathrm{RuBrPF}_{6}\left(\mathrm{M}-\mathrm{PF}_{6}\right)^{+}$, 1121.0847; observed, 1121.0852. Anal. Calc. for $\mathrm{C}_{54} \mathrm{H}_{35} \mathrm{~N}_{8} \mathrm{RuBrP}_{2} \mathrm{~F}_{12}$: C, 51.20; H, 2.78; N, 8.85. Found: C, 61.41; H, 5.75; N, 6.51 .
$[($ An-tpy $) R u($ tpy $)]\left(\mathrm{PF}_{6}\right)_{2}(3 \mathrm{e})$

Complex 3 e was prepared from ruthenium tpy trichloride and an-tpy ligand following the general procedure for 3a. Yield $84 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 8.91(\mathrm{~s}, 2 \mathrm{H}), 8.89$ $(\mathrm{s}, 1 \mathrm{H}), 8.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.46(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.42$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.18(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.98(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.88(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~m}, 6 \mathrm{H}), 7.42(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.19(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 158.6,158.4,156.0$, $155.8,153.3,153.0,147.3,138.6,138.4,136.3,132.5,131.8,130.2,129.3,129.2,128.0$, $127.9,127.4,126.8,126.5,126.3,125.1,124.8,124.2$. ESI-MS: $372.1\left(\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}\right.$, 100%); $889.1\left(\left[\mathrm{M}_{-1} \mathrm{PF}_{6}\right]^{+}, 72 \%\right)$. Calc. for $\mathrm{C}_{44} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{Ru}\left(\mathrm{M}-2 \mathrm{PF}_{6}\right)^{2+}, 372.0782$; observed, 372.0730. Calc. for $\mathrm{C}_{44} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{RuPF}_{6}\left(\mathrm{M}-\mathrm{PF}_{6}\right)^{+}$, 889.1211; observed, 889.1195. Anal.

Calc. for $\mathrm{C}_{44} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{RuP}_{2} \mathrm{~F}_{12}$: C, 51.12; H, 2.93; N, 8.13. Found: C, 49.99; H, 2.99; N, 8.08 .

3.5 References

* Part of this work has been published as a communication: J. Wang, G. S. Hanan, F. Loiseau, S. Campagna Chem. Commun. 2004, 2068.
\$ CCDC 235987. See http://www.rsc.org/suppdata/cc/b4/b405619a/ for crystallographic data for 3d in .cif or other electronic format.

1
(a) J. P. Sauvage, J. P. Collin, J. C. Chambron, S. Guillerez, C. Coudret, V. Balzani, F. Barigelletti, L. De Cola, L. Flamigni Chem. Rev. 1994, 94, 993. (b) M. Maestri, N. Armaroli, V. Balzani, E. C. Constable, A. M. Cargill Thompson Inorg. Chem. 1995, 34, 2759. (c) F. Barigelletti, L. Flamigni Chem. Soc. Rev. 2000, 29, 1. (d) A. El-ghayoury, A. Harriman, A. Khatyr, R. Ziessel Angew. Chem. Int. Ed. 2000, 39, 185. (e) S. Encinas, L. Flamigni, F. Barigelletti, E. C. Constable, C. E. Housecroft, E. R. Schofield, E. Figgemeier, D. Fenske, M. Neuburger, J. G. Vos, M. Zehnder Chem. Eur. J. 2002, 8, 137. (f) E. Baranff, J.-P. Collin, L. Flamigni, J.-P. Sauvage Chem. Soc. Rev. 2004, 33, 147.
(a) V. Balzani, A. Juris, M. Venturi, S. Campagna, S. Serroni Chem. Rev. 1996, 96, 956., and refs. therein. (b) A. Hagfeldt, M. Graetzel Acc. Chem. Res. 2000, 33, 269. (c) L. Sun, L. Hammarström, B. Akermark, S. Styring Chem. Soc. Rev. 2001, 30, 36. (d) R. Ballardini, V. Balzani, A. Credi, M. T. Gandolfi, M. Venturi Acc. Chem. Res. 2001, 34, 445. (e) D. Pomeranc, V. Heitz, J.-C. Chambron, J.-P. Sauvage J. Am. Chem. Soc. 2001, 123, 12215. (f) C. J. Kleverlaan, M. T. Indelli, C. A. Bignozzi, L. Pavanin, F. Scandola, G. M. Hasselman, T. J. Meyer J. Am.

Chem. Soc. 2002, 122, 2840. (g) G. Benkö, J. Kallioinen, J. E. I. KorppiTommola, A. P. Yartsev, V. Sundström J. Am. Chem. Soc. 2002, 124, 489.
(a) T. J. Meyer Pure Appl. Chem. 1986, 58, 1193. (b) A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, A. von Zelewsky Coord. Chem. Rev. 1988, 84, 85., and refs. therein.
(a) M. Beley, J.-P. Collin, R. Louis, B. Metz, J.-P. Sauvage J. Am. Chem. Soc. 1991, 113, 851. (b) J.-P. Collin, M. Beley, J.-P. Sauvage, F. Barigelletti Inorg. Chim. Acta. 1991, 186, 91. (c) M. Beley, J.-P. Collin, J.-P. Sauvage Inorg. Chem. 1993, 32, 4539. (d) E. C. Constable, A. M. W. Cargill Thompson, J. Cherryman, T. Liddiment Inorg. Chim. Acta 1995, 235, 165.
(a) E. C. Constable, A. M. W. Cargill Thompson, N. Ararmoli, V. Balzani, M. Maestri Polyhedron 1992, 11, 2707. (b) M. T. Indelli, C. A. Bignozzi, F. Scandola, J.-P. Collin Inorg. Chem. 1998, 37, 6084. (c) M. Maestri, N. Armaroli, V. Balzani, E. C. Constable, A. M. W. Cargill Thompson Inorg. Chem. 1995, 34, 2759. (d) F. Barigelletti, L. Flamigni, M. Guardigli, A. Juris, M. Beley, S. Chodorowski-Kimmes, J.-P. Collin, J.-P. Sauvage Inorg. Chem. 1996, 35, 136. (e) Y.-Q. Fang, N. J. Taylor, G. S. Hanan, F. Loiseau, R. Passalacqua, S. Campagna, H. Nierengarten, A. van Dorsselaer J. Am. Chem. Soc. 2002, 124, 7912. (f) J. Wang, Y.-Q. Fang, G. S. Hanan, F. Loiseau, S. Campagna Inorg. Chem. 2005, 44, 5.
(a) L. Hammarström, F. Barigelletti, L. Flamigni, M. T. Indelli, N. Armaroli, G. Calogero, M. Guardigli, A. Sour, J.-P. Collin, J.-P. Sauvage J. Phys. Chem. A

1997, 101, 9061. (b) L. M. Vogler, K. J. Brewer Inorg. Chem. 1996, 35, 818. c) A. Harriman, R. Ziessel Chem. Commun. 1996, 1707. (c) A. C. Benniston, A. Harriman, V. Grosshenny, R. Ziessel New J. Chem. 1997, 21, 405. (d) A. Elghayoury, A. Harriman, A. Khatyr, R. Ziessel J. Phys. Chem. A 2000, 107, 1512.
(a) W. E. Ford, M. A. J. Rodgers J. Phys. Chem. 1992, 96, 2917. (b) G. J. Wilson, A. Launikonis, W. H. Sasse, A. W.-H. Mau J. Phys. Chem. A 1997, 101, 4860. (c) J. A. Simon, S. L. Curry, R. H. Schmehl, T. R. Schatz, P. Piotrowiak, X. Jin, R. P. Thummel J. Am. Chem. Soc. 1997, 119, 11012. (d) D. S. Tyson, C. R. Luman, X. Zhou, F. N. Castellano Inorg. Chem. 2001, 40, 4063. (e) B. Maubert, N. D. McClenaghan, M. T. Indelli, S. Campagna J. Phys. Chem. A 2003, 107, 447. (f) R. Passalacqua, F. Loiseau, S. Campagna, Y.-Q. Fang, G. S. Hanan Angew. Chem. Int. Ed. 2003, 42, 1608. (g) J. Wang, G. S. Hanan, F. Loiseau, S. Campagna Chem. Commun. 2004, 2068. (h) N. D. McClenaghan, Y. Leydet, B. Maubert, M. T. Indelli, S. Campagna Coord. Chem. Rev. 2005, in press.
(a) G. S. Hanan, C. R. Arana, J.-M. Lehn, D. Fense Angew. Chem. Int. Ed. Engl. 1995, 34, 1122. (b) G. S. Hanan, C. R. Arana, J.-M. Lehn, D. Fense Chem. Eur. J. 1996, 2, 1292.
(a) G. Albano, V. Balzani, E. C. Constable, M. Mastri,D. R. Smith Inorg. Chim. Acta 1998, 277, 225. (b) J. Wang, G. S. Hanan Synlett 2005, in press.
I. W. Davies, J.-F. Marcoux, J. Wu, M. Palucki, E. G. Corley, M. A. Robbins, N. Tsou, R. G. Ball, P. Dormer, R. D. Larsen, P. J. Reider J. Org. Chem. 2000, 65, 4571.

11 Y.-Q. Fang Master's thesis. Department of Chemistry, University of Waterloo, Canada. 2002.

12 S. L. Murov, I. Carmichael, G. L. Hug, In: Handbook of Photochemistry, Marcel Dekker, New York, 1993.

13 A similar effect was reported previously: R. P. Thummel, Y. Jahng, Inorg. Chem. 1986, 25, 2527.

Chapter 4

Synthesis and Properties of the Elusive Cyanocomplexes: Facile Palladium-Catalyzed Cyanation on the Ru(II) Terpyridine Complexes*

4.1 Introduction

Since the tridentate ligand 2,2':6',2"-terpyridine (tpy) was first prepared over 70 years ago, ${ }^{1}$ the coordination chemistry of tpy based ligands has been widely studied. ${ }^{2}$ Areas of the research include the application of tpy complexes as protein labels, ${ }^{3}$ reagents for enantioselective synthesis, ${ }^{4}$ modifiers for porphyrins, ${ }^{5}$ catechols, ${ }^{6}$ and macrocycles, ${ }^{7}$ in solar energy devices based on modified nanocrystalline TiO_{2} surface ${ }^{8}$ and in supramolecular chemistry to build up the linear multinuclear assemblies for energy and/or electron transfer process at molecular level. ${ }^{9}$
$\mathrm{Ru}(\mathrm{II})$ complexes based on polypyridyl ligands have rich photophysical properties. ${ }^{2 \mathrm{f}}$ Indeed, ruthenium(II) polypyridyl complexes play outstanding roles in fields connected to solar energy conversion and the storage of light and/or electronic information at the molecular level. The $\mathrm{Ru}(\mathrm{II})$ complexes based on the 2,2'-bipyridine ligand are most commonly used due to their favorable photophysical properties, which have relative long room temperature (rt) excited state lifetimes $\left(\mathrm{Ru}(\mathrm{bpy}){ }_{3}{ }^{2+}, \tau=1 \mu \mathrm{~s}\right) .{ }^{10}$ However, the chirality inherent to the $\mathrm{Ru}(\mathrm{II})$ bpy complex hindered their application in linear assemblies for vectorial energy and/or electron transfer. These problems, inherent to the $\mathrm{Ru}(\mathrm{bpy}){ }_{3}{ }^{2+}$ structural motif, can indeed be overcome by the use of tridentate tpy-
type polypyridine ligands. ${ }^{11}$ The chemical modification on the 4'-position of tpy ligand will maintain the $C 2$ axe in the complex, which can make the synthesis and purification of a linear arrangement easier. However, $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ and derivatives have far less useful photophysical properties than $\mathrm{Ru}(\mathrm{bpy})_{3}{ }^{2+}$, essentially due to a short excited-state lifetime ($<250 \mathrm{ps}$) at room temperature. ${ }^{2 \mathrm{f}}$ These unfavorable photophysical properties are due to proximity (in energy) between the lowest-lying triplet metal-to-ligand charge transfer $\left({ }^{3} \mathrm{MLCT}\right)$ and metal-centered $\left({ }^{3} \mathrm{MC}\right)$ states, with the latter governing the excited-state decay dynamics by thermally-activated surface crossing.

Approaches to extend the excited state lifetime of $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ complexes have mainly focused on: (1) the manipulation of the energy of the emitting ${ }^{3}$ MLCT, including cyclometalating ligands, ${ }^{12}$ electron-donating (D) and -accepting (A) substituents (Figure 4.1), ${ }^{13} \sigma$-donor lgands ${ }^{14}$ and π-delocalization ${ }^{15}$; (2) the introduction of secondary organic chromophores (OC) to develop the energy equilibrium between ${ }^{3} \mathrm{MLCT}$ and ${ }^{3} \mathrm{OC}$ state. ${ }^{16}$

(A-tpy)Ru(tpy-A) (A-tpy)Ru(tpy-D)

Figure 4.1 Energy diagram of the frontier orbitals (HOMO $\left(\pi_{M}\right)$, LUMO $\left(\pi_{\mathrm{L}}{ }^{*}\right)$ and $\left(\sigma_{\mathrm{M}}{ }^{*}\right)$ of $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ complexes effected by electron accepting and donating substituents $(\mathrm{A}=$ electron accepting substituent, $\mathrm{D}=$ electron donating substituent). ${ }^{13 \mathrm{c}}$

For the strategy based on electron withdrawing and/or donor substituents, electron withdrawing substituents stabilize the LUMO π^{*} ligand orbital more than the HOMO $\pi\left(\mathrm{t}_{2 \mathrm{~g}}\right)$ metal orbital without interfering with the anti-bonding σ^{*} orbital, thereby increasing the energy gap between ${ }^{3} \mathrm{MLCT}$ and ${ }^{3} \mathrm{MC}$ excited state and minimizing the thermally-activated surface crossing which dominates the ${ }^{3}$ MLCT deactivation processes. It has been shown that 4 '-sulfonyl-tpy based complexes have proponged r.t. lifetimes $\left(\left[\left(\mathrm{MeSO}_{2}-\mathrm{tpy}\right)_{2} \mathrm{Ru}\right]\left(\mathrm{PF}_{6}\right)_{2}, 25.0 \mathrm{~ns} ;\left[\left(\mathrm{MeSO}_{2}\right.\right.\right.$-tpy $) \mathrm{Ru}($ tpy- OH$\left.\left.)\right]\left(\mathrm{PF}_{6}\right)_{2}, 50.0 \mathrm{~ns}\right) .{ }^{13 \mathrm{c}}$ This approach featured facile synthesis of the ligands and their complexes. In addition, monoexponential decay of the excited-state renders them relatively easier to study as compared
to bichromophoric systems with non-emissive triplet organic states. Thus, the synthetic procedure for the synthesis of polynuclear arrays based on 4'-substituted tpy is greatly simplified.

We envisioned that coordination of 4'-cyano-tpy with a Ru(II) center should provide a very large effect on the energy state and increase the energy gap between ${ }^{3} \mathrm{MLCT}$ and ${ }^{3} \mathrm{MC}$ state, thereby prolonging the rt lifetime of the complexes. Moreover, due to the strong coordination capacity of the cyano group, the metal complexes containing cyano groups can act as building blocks to build up linear polymetallic units. ${ }^{17}$ Katz has reported a new mononuclear complex $\left(\left[\mathrm{Ru}(\mathrm{bpy})_{2}(5-\mathrm{CNphen})\right]^{2+}, \mathrm{bpy}=2,2^{\prime}-\right.$ bipyridine; $5-\mathrm{CNphen}=5$-cyano-1,10-phenanthroline) as a precursor for polynuclear molecular entities that may engage in light-induced electron-transfer processes. ${ }^{17 \mathrm{~b}}$ In particular, 5-cyano-1,10-phenanthroline can bridge two ruthenium atoms to build mixedvalent di-ruthenium system $\left(\left[\mathrm{Ru}^{\text {II }}(\mathrm{bpy})_{2}(5-\mathrm{CNphen}) \mathrm{Ru}^{\text {III }}\left(\mathrm{NH}_{3}\right)_{5}\right]\left(\mathrm{PF}_{6}\right)_{5}\right.$, Figure 4.2) with a slight electronic coupling at a considerable distance. The redox asymmetry and the moderate reorganization energy results in a charge recombination process close to the barrierless region. The mixed-valent system described in the work is thus a good model for testing current electron-transfer theories (Scheme 4.1).

Figure 4.2 A recent example of di-ruthenium system, which has a slight electronic coupling, using 5-cyano-1,10-phenanthroline ligand as the bridging ligands. ${ }^{17 \mathrm{~b}}$
$\left[(\mathrm{bpy})_{2} \mathrm{Ru}^{\mathrm{II} \mathrm{\prime}}(5-\mathrm{CNphen}) \mathrm{Ru}^{1 \mathrm{II}}\left(\mathrm{NH}_{3}\right) \mathrm{s}\right]^{5+}$

$\left[(\mathrm{bpy})_{2} \mathrm{Ru}^{\mathrm{II}}(5-\mathrm{CNphen}) \mathrm{Ru}^{\mathrm{II} \mathrm{\prime}}\left(\mathrm{NH}_{3}\right)\right)_{5}{ }^{5-}$
Scheme 4.1 Possible intramolecular electron-transfer processes taking place after light excitation of the mixed-valent $\mathrm{Ru}(\mathrm{II})-\mathrm{Ru}(\mathrm{III})$ dimer. ${ }^{\text {17b }}$

However, the efficient way to introduce the cyano groups onto an activated position (which has direct interaction with metal center) of the ligands upon coordination to the metal center has not been published previously. A synthetic approach to introduce the cyano group(s) into the $\mathrm{Ru}(\mathrm{II})$ complexes was developed using an efficient palladium-
catalyzed cyanation reaction ${ }^{18}$ on the complexes based on the "chemistry-on-thecomplex" concept. ${ }^{19}$

4.2 Results and Discussion

4.2.1 Synthesis

Originally, the synthetic method of 4'-cyano-tpy ligand (NC-tpy) was developed through sequential reactions (Scheme 4.2). ${ }^{20}$ However, this long sequence suffered from (1) low overall yield; (2) the emission of highly toxic methylthiol; (3) inefficient cyanation with high load of potassium cyanide.

Scheme 4.2 Original synthesis of 4^{\prime}-cyano-2,2':6',2"-terpyridine ligand. ${ }^{20}$

The optimization of the synthesis of NC-tpy started with 4^{\prime}-chloro- $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}-$ terpyridine ligand (Cl-tpy), which was used as the substrate for the transition-metal catalyzed cyanation reaction. Cl-tpy is commercially available from Sigma-Aldrich or is easily synthesized in 50 mmol scale following reported methods. ${ }^{21}$ After surveying the efficient cyanation conditions, the reaction conditions reported by Jin and Confalone ${ }^{22}$ seemed promising with very high yields. The palladium(0)-catalyzed cyanation reaction
on Cl-tpy proceeded smoothly to give 95% yield of NC-tpy under modified conditions (0.6 equiv. $\mathrm{Zn}(\mathrm{CN})_{2}$, $2 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3}, 4 \mathrm{~mol} \% \mathrm{dppf}, 12 \mathrm{~mol} \% \mathrm{Zn}$ dust (325 mesh) in DMA at $120^{\circ} \mathrm{C}$ for 6 h, Scheme 4.3). This improvement features (1) high efficiency and high yield; (2) low catalyst load ($2 \mathrm{~mol} \% \mathrm{Pd}(0)$); (3) less toxicity $\mathrm{Zn}(\mathrm{CN})_{2}$ as cyanation reagent; (4) column free purification; (5) short reaction time.

Scheme 4.3 Synthesis of 4^{\prime}-cyano- $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine through palladium(0)-catalyzed cyanation of 4^{\prime}-chloro- $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine. Reagents and conditions: 0.6 equiv. $\mathrm{Zn}(\mathrm{CN})_{2}, 1 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3}, 2 \mathrm{~mol} \% \mathrm{dppf}, 6 \mathrm{~mol} \% \mathrm{Zn}$ dust (325 mesh) in DMA at $120^{\circ} \mathrm{C}$ for 6 h .

With the facile approach to NC-tpy in hand, the incorporation of NC-tpy ligand into $\mathrm{Ru}(\mathrm{II})$ complexes was then attempted. Our initial approach to the $\mathrm{Ru}(\mathrm{II})$ complexes with cyano group(s) adopted the classical way to synthesis the complex from 4'-cyanotpy ligand (Scheme 4.4). Various complexation conditions have been surveyed to find a convenient way to synthesize the elusive cyano complexes. However, the complexation starting from 4'-cyano-tpy ligand always ended up with carboximide complexes, which resulted from the attack of the cyano group by nucleophiles (trace $\mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}$ or EtOH) under the relatively harsh reaction conditions for the synthesis of $\mathrm{Ru}(\mathrm{II})$ complexes of 4'-
cyano-tpy. The strong activation of the cyano group to nuclear attack upon coordination with the $\mathrm{Ru}(\mathrm{II})$ metal center has kept these complexes veiled.

Scheme 4.4 Classical approach to the Ru(II) 4'-cyano-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine complex. Reagent and conditions: 1.0 equiv. $\mathrm{Ru}(\mathrm{tpy}) \mathrm{Cl}_{3}, 3.0$ equiv. $\mathrm{AgNO}_{3}, \mathrm{MeOH}$ or EtOH or DMF, reflux, 2-16 h.

In order to bypass the possible destruction of the cyano group upon coordination, we turned our focus onto the "chemistry-on the-complex" concept through the transition metal catalyzed cyanation on the $\mathrm{Ru}(\mathrm{II})$ complexes. In order to elucidate this methodology to perform the cyanation on the complexes, we first choose two $\mathrm{Ru}(\mathrm{II})$ terpyridine complexes, homoleptic 1a and hetereoleptic 1b (Scheme 4.5), as our starting materials. After several unsuccessful attempts to perform $\mathrm{Ni}(0)$ catalyzed cyanation ${ }^{23}$ (1.0 equiv. $\mathrm{KCN}, 10 \mathrm{~mol} \% \mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Br}, 10 \mathrm{~mol} \% \mathrm{Zn}, 20 \mathrm{~mol} \% \mathrm{PPh}_{3}$, DMF or acetonitrile, $60^{\circ} \mathrm{C}$) on these complexes, we turned to perform $\mathrm{Pd}(0)$ catalyzed-cyanation on the complexes. ${ }^{22}$ Then we applied slightly modified conditions to complexes $\mathbf{1 a}$ and $\mathbf{1 b}$ (Scheme 4.5). Reaction of the heteroleptic complex 1 a with 0.6 equiv. $\mathrm{Zn}(\mathrm{CN})_{2}, 5 \mathrm{~mol} \%$ $\mathrm{Pd}_{2}(\mathrm{dba})_{3}, 10 \mathrm{~mol} \% \mathrm{dppf}, 30 \mathrm{~mol} \% \mathrm{Zn}$ dust (325 mesh) in DMA at $120^{\circ} \mathrm{C}$ for 6 h
afforded cyano-complex 2a quantitively. For the homoleptic complex 1b, modification of the stoichemistry of the reagents and longer reaction time gave out the same full conversion to homoleptic cyano-complex $\mathbf{2 b}$. The full conversion of the chloride to the cyanide was secured by the strong activation effect from the $\mathrm{Ru}(\mathrm{II})$ cations.

1a

1b

2a

Scheme 4.5 Palladium-catalyzed cyanation of $\mathrm{Ru}(\mathrm{II})$ complexes of 4^{\prime}-chloro- $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$ terpyridine. Reagents and conditions: a) 0.6 equiv. $\mathrm{Zn}(\mathrm{CN})_{2}, 5 \mathrm{~mol}^{2} \mathrm{Pd}_{2}(\mathrm{dba})_{3}, 10 \mathrm{~mol} \%$ dppf, $30 \mathrm{~mol} \% \mathrm{Zn}$ dust (325 mesh), DMA, $120^{\circ} \mathrm{C}, 6 \mathrm{~h}$; b) 1.2 equiv. $\mathrm{Zn}(\mathrm{CN})_{2}, 5 \mathrm{~mol} \%$ $\mathrm{Pd}_{2}(\mathrm{dba})_{3}, 10 \mathrm{~mol} \% \mathrm{dppf}, 30 \mathrm{~mol} \% \mathrm{Zn}$ dust (325 mesh), DMA, $120^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

With the satisfactory results from the $\operatorname{Pd}(0)$-catalyzed cyanation of complexes $\mathbf{1 a}$ and $\mathbf{1 b}$, we then applied the optimized reaction conditions (1.2 equiv. $\mathrm{Zn}(\mathrm{CN})_{2}, 10 \mathrm{~mol} \%$ $\mathrm{Pd}_{2}(\mathrm{dba})_{3}, 20 \mathrm{~mol} \% \mathrm{dppf}, 60 \mathrm{~mol} \% \mathrm{Zn}$ dust (325 mesh), $\mathrm{DMA}, 120^{\circ} \mathrm{C}, 12 \mathrm{~h}$.) to the other substrates, complexes $\mathbf{1 c} \mathbf{c} \mathbf{d}$ (Scheme 4.6). For the complexes $\mathbf{1 c} \mathbf{c} \mathbf{d}$, the reactions under the optimized conditions have yielded nearly full conversion of the starting materials (more than 90% isolated yields). The optimized conditions for the cyanation of $\mathrm{Ru}(\mathrm{II})$ complexes are extremely powerful, even the nonactivated bromide 1d was obtained in quantitative yield, despite the distant separation from $\mathrm{Ru}(\mathrm{II})$ center.

Scheme 4.6 Palladium catalyzed cyanation on $\mathrm{Ru}(\mathrm{II})$ complexes $\mathbf{1 c} \mathbf{c}$ d. Reagents and conditions: 0.6 equiv. $\mathrm{Zn}(\mathrm{CN})_{2}, 5 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3}, 10 \mathrm{~mol} \% \mathrm{dppf}, 30 \mathrm{~mol} \% \mathrm{Zn}$ dust (325 mesh), DMA, $120^{\circ} \mathrm{C}, 6 \mathrm{~h}$.

4.2.2 NMR spectroscopy

The newly synthesized complexes 2a-d have been verified by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. The ${ }^{1} \mathrm{H}$ NMR spectroscopic data of complexes $\mathbf{2 a - d}$ in $\mathrm{CD}_{3} \mathrm{CN}$ are compiled in Table 4.1.

Table 4.1 ${ }^{\text {i }} \mathrm{H}$ NMR data of complexes 1a-d and complexes 2a-d with $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ as reference. ${ }^{a}$

Complex	chemical shifts δ / ppm												
	3,3"	4,4"	5,5"	6,6"	3',5'	3,3 "	4,4"	5, $\underline{5}^{\prime \prime}$	6,6"	3', 5 '	$4{ }^{\prime}$	Pm	Ph
$3^{\text {b }}$	8.48	7.91	7.15	7.33	8.74						8.40		
1a	8.46	7.92	7.16	7.34	8.82	8.46	7.89	7.12	7.33	8.72	8.40		
2a	8.52	8.00	7.26	7.42	9.06	8.50	7.93	7.16	7.29	8.78	8.49		
1b	8.50	7.97	7.21	7.41	8.87								
2b	8.53	8.00	7.33	7.58	9.02								
1 c	8.69	7.96	7.21	7.40	9.63	8.51	7.93	7.15	7.40	8.78	8.45		
2 c	8.72	7.98	7.24	7.41	9.70	8.51	7.98	7.15	7.41	8.80	8.48	9.46	
1d	8.69	7.94	7.19	7.40	9.70	8.49	7.94	7.15	7.37	8.75	8.43	9.37	7.94
2d	8.74	8.01	7.23	7.44	9.75	8.53	8.01	7.17	7.41	8.80	8.47	9.46	8.118 .01

${ }^{a}$ All the spectra were collected in $\mathrm{CD}_{3} \mathrm{CN}$ at r.t. at 400 MHz . The assignments of the ${ }^{\mathrm{I}} \mathrm{H}$ NMR signals were assisted by two-dimensional COSY spectra. The proton signals from the tpy moieties are underlined. ${ }^{b}$ Data from ref. $1 \mathrm{~g}, 3=\mathrm{Ru}(\text { tpy })_{2}{ }^{2+}$

Through the comparison of the ${ }^{1} \mathrm{H}$ NMR spectra of newly synthesized complexes 2a-d with their respective starting materials 1a-d, we noted that the introduction of a cyano group onto the ligands through the $\mathrm{Pd}(0)$-catalyzed cyanation reaction has greatly
changed the chemical environments of the neighbouring protons. The proton chemical shift of the rings to which the cyano groups were attached have been deshielded with about $0.1-0.3 \mathrm{ppm}$ due to the electron withdrawing effects of cyano groups. In the case of complexes 2a-b, even the proton signals from the tpy moieties have been shifted to lower field due to the direct connection of the cyano groups. Due to the coplanarity of the pyrimidine ring in complex $\mathbf{2 c}$, the cyano groups still have a notable effect to the chemical environments of tpy moieties with a slight deshielding effect in the NMR spectra. It is noteworthy that the strong effect from the cyano group can be seen in complex 2d, in which the cyano group is separated from (tpy) $\mathrm{Ru}(\mathrm{tpy}-\mathrm{pm})^{2+}$ moiety with nonplanar phenyl linker. The long distance electron withdrawing effect is crucial to the photophysical properties (c.f. photophysical data) due to the strong electron withdrawing effect of the cyano group, which can increase the energy gap between ${ }^{3} \mathrm{MC}$ and ${ }^{3} \mathrm{MLCT}$ and in turn prolong the lifetimes as well as increase the quantum yields.

4.2.3 Crystal structure determination

The solid-state structures of the complexes $\mathbf{2 c}$ was determined by X-ray crystallography. Recrystallization of 2c from acetonitrile solution through slowly dispersed diethyl ether vapor provided dark-red single crystal suitable for X-ray crystallography. Crystal parameters and details of the data collection and refinement are given in Table 4.2. The ORTEP diagrams of the cation of complexes $\mathbf{2 c}$ is showed in Figure 4.3. Selected bond lengths and angles are given in Table 4.3.

The Ru-to- N bond lengths and internal pyridine angles are similar to those found in the parent systems. ${ }^{24}$ The pyrimidyl group lies virtually co-planar to the N4-N6
terpyridine (2.0° torsion angle, Figure 4.3). Due to the co-planarity of the pyrimidine ring to the tpy moiety, the strong electron withdrawing effect from the cyano group can extend to the tpy moiety through the conjugation. The co-planar nature of the pyrimidinetpy sub-unit favours π-conjugation and is crucial for the enhanced photophysical properties of these complexes (c.f., photophysics).

Figure 4.3 ORTEP plots of the X-ray crystal structure of complex 2c exposing the tpy-$\mathrm{pm}-\mathrm{CN}$ ligand (top) and, after a 90° rotation, the tpy ligand (bottom). Thermal ellipsoids are set at 30% probability with hydrogen atoms and counteranions omitted for clarity.

The bond length and bond angle of the cyano group are of a typical triple bond (N9-C35, 1.11 \AA). The $\mathrm{N} 9-\mathrm{C} 35-\mathrm{C} 33$ angle is 177.5°, a nearly perfect linear $\mathrm{C}-\mathrm{C} \equiv \mathrm{N}$ bond, which also confirmed the introduction of the elusive cyano group onto the complex 2c.

Table 4.2 Crystallography data for complexes $\mathbf{2 c}$.

Complex	2c
Molecular formula	$\mathrm{C}_{35} \mathrm{H}_{23} \mathrm{~N}_{9} \mathrm{Ru}$
M	670.69
Crystal system	Triclinic
a / \AA	$8.6272(4)$
b / \AA	$8.8957(3)$
c / \AA	$28.2782(11)$
$\alpha /{ }^{\circ}$	$81.425(2)$
$\beta /{ }^{\circ}$	$86.118(2)$
$\gamma /{ }^{\circ}$	$86.135(2)$
U / \AA^{3}	$2137.29(15)$
Space group	$\mathrm{P}-1$
Z	2
$\mathrm{Dc} / \mathrm{Mg} \mathrm{m}^{-3}$	1.042
μ / mm^{-1}	3.202
$\mathrm{Temperature} / \mathrm{K}$	$100(2) \mathrm{K}$
R 1	0.0996
wR2	0.2812

Table 4.3 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ in complexes $2 c$.

bond lengths (\AA)						
Ru	N 21	$2.068(7)$	N 21	Ru	N 28	$77.7(3)$
Ru	N 28	$1.996(6)$	N 21	Ru	N 214	$157.8(3)$
Ru	N 214	$2.037(7)$	N 28	Ru	N 214	$80.2(3)$
Ru	N 114	$2.083(6)$	N 28	Ru	N 18	$178.7(3)$
Ru	N 18	$1.993(6)$	N 114	Ru	N 18	$79.0(3)$
Ru	N 11	$2.066(6)$	N 114	Ru	N 11	$158.0(3)$
N 126	C 125	$1.106(12)$	N 18	Ru	N 11	$79.2(3)$
		N 126	Cl 125	C 122	$177.5(1)$	

4.2.4 Electrochemistry

Electrochemical data also showed that the introduction of the cyano into the complexes destabilized the $\mathrm{Ru}(\mathrm{III})$ state and increased the potential of the $\mathrm{Ru}(\mathrm{II}) / \mathrm{Ru}(\mathrm{III})$ couple (Table 4.4).

The half wave potentials of metal-centered oxidation of $\mathbf{2 a}$ and $\mathbf{2 b}$ have increased by more than 80 mV compared to $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}(3)$. The ligand-centered reductions are facilitated as a result of the electron withdrawing nature of the cyano group.

The shifts of half wave potentials of metal-centered oxidation of 2c and 2d are nearly the same as that of $\mathbf{3}$, in accordance with the effects in Ru (II) 5-R-pyrimid-2-yl-tpy complexes. ${ }^{20}$ The first and the second one-electron reductions are assigned to the R-pmtpy ligand and tpy ligand, respectively. The ligand-centered reductions of $\mathbf{2 c}$ and $\mathbf{2 d}$ shifted to more positive values as the combined results of the electron-withdrawing cyano group and π-accepting ability of pyrimidine. It is noteworthy that the strong electron-
withdrawing effect from the cyano group on the reduction potential of complex 2d diminishes when cyano group and (tpyRu(tpy-pm) ${ }^{2+}$ moiety is separated by a phenyl spacer.

Table 4.4 Electrochemical data of complexes 2a-d. ${ }^{a}$

complex	$\mathrm{E}_{\mathrm{ox}} / \mathrm{V}\left(\Delta \mathrm{E}_{\mathrm{p}} / \mathrm{mV}\right)$	$\mathrm{E}_{\mathrm{red}} / \mathrm{V}\left(\Delta \mathrm{E}_{\mathrm{p}} / \mathrm{mV}\right)$
$\mathbf{1 a}$	$+1.33(70)$	$-1.16(65),-1.46(80)$
2a	$+1.42(64)$	$-1.15(70),-1.44(70),-1.81(60)$
$\mathbf{1 b}$	$+1.40(70)$	$-1.27(65),-1.46(80)$
2b	$+1.49(65)$	$-0.88(70),-1.15(\mathrm{ir}),-1.63(\mathrm{ir})$
$\mathbf{1 c}$	$+1.33(90)$	$-1.09(60),-1.46(70),-1.73(\mathrm{ir})$
2c	$+1.34(75)$	$-0.92(70),-1.34(70),-1.60(80)$
$\mathbf{1 d}$	$+1.30(80)$	$-1.11(70),-1.46(80),-1.79(90)$
2d	+1.32	$-1.07(70),-1.42(70),-1.59(\mathrm{ir})$
$\mathbf{3}^{b}$		

[^3]
4.2.5 Absorption and emission measurements

The absorption spectra of the new species are dominated by spin-allowed MLCT bands in the visible region (Table 4.5). The absorption and emission spectra of complex 2b are showed in Figure 4.4. We noted that the cyano-substitution on the 4'-position or on the conjugated pyrimidyl has an strong electron withdrawing effect on the metal
center. The ${ }^{1}$ MLCT bands of $\mathbf{2 a}$ and $\mathbf{2 b}$ (Figure 4.4 and Figure 4.5) have red-shifted to 489 nm and 505 nm , respectively. Compared with that of $\left[\mathrm{Ru}(\mathrm{tpy})_{2}\right]\left(\mathrm{PF}_{6}\right)_{2}(4)$ at 476 nm , the introduction of cyano group on the 4'-position of the tpy moiety has lowered the ${ }^{1}$ MLCT state. In complex 2d, the phenyl spacer between the cyano group and conjugated system diminishes the electron withdrawing effect on the metal center, presenting only a 2 nm red-shift compared to the ($\mathrm{Ph}-\mathrm{pm}$-tpy) $\mathrm{Ru}(\mathrm{tpy})\left(\mathrm{PF}_{6}\right)_{2}{ }^{5 \mathrm{~d}}$ moiety. In order to lower ${ }^{1}$ MLCT energy state as well as ${ }^{3}$ MLCT energy state, directly connection of the cyano group with MLCT emitting state is needed.

Figure 4.4 Absorption (-) and emission (---) spectra of $\mathbf{2 b}$ in acetonitrile solution.

Figure 4.5 UV-vis spectra of complex $\mathbf{2 a}$ (solid line), 2c (dashed line) and 2d (dotted line) in acetonitrile solution.

Table 4.5 Absorption spectra data of complexes 2a-d. ${ }^{a}$

complex	$\lambda_{\text {max }} / \mathrm{nm}\left(\varepsilon / 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$
5 (NC-tpy)	$336(6.9)$
1a	$478(14.5)$
2a	$489(15.7), 307(55.4), 272(55.2)$
1b $^{\text {c }}$	$480(16.0)$
2b	$490(22.4)$,
1c	
2c	$487(23.7)$
1d	$497(31.3), 307(76.5), 274$ (96.3)
2d	$489(24.4)$
$\mathbf{3}^{\text {c }}$	$491(14.1), 307(44.7), 273$ (40.2)

$\overline{{ }^{a}}$ Data were collected in deaerated acetonitrile at $\mathrm{rt} .{ }^{b}$ Data from ref. $13 \mathrm{e} .{ }^{c} 3=\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$,
Data from ref. 1 g .

Luminescence data of the newly synthesized complexes $\mathbf{2 a} \mathbf{- d}$ are compiled in Table 4.6. The rt emission spectra showed that the energy of the ${ }^{3}$ MLCT state is also lowered with the introduction of a cyano group. The corresponding emission maxima (λ ${ }_{\max }$) for 2a and 2b (see Figure 4.4) have red-shifted to 701 and 680 nm , respectively, due to the greater lowering of the ligand-based LUMO energy (π_{L}) over the metal-based HOMO energy $\left(\pi_{M}\right)$. Since the introduction of the cyano group has less effect on the metal-based orbitals, the energy gap between ${ }^{3} \mathrm{MC}$ and ${ }^{3} \mathrm{MLCT}$ increases. As a consequence, the efficiency of the thermally activated surface crossing process from the ${ }^{3} \mathrm{MLCT}$ state to the ${ }^{3} \mathrm{MC}$ state decreases, thus prolonging the rt luminescence lifetime and significantly increasing quantum yields.

Table 4.6 Luminescence data of complexes 2a-d.

complex	emission $298 \mathrm{~K}^{\text {a }}$		
	$\lambda_{\text {max }} / \mathrm{nm}$	τ / ns	Φ
5 (NC-tpy)	353	1.2	3×10^{-4}
1 a	651	0.7	4×10^{-5}
2a	701	75	2×10^{-3}
$1 \mathbf{b}^{\text {b }}$	653	0.2	$\leq 1 \times 10^{-5}$
2b	680	50	2×10^{-3}
$1 c^{d}$	684	21	2.4×10^{-4}
2c	713	200	8.9×10^{-4}
$3{ }^{\text {c }}$	629	<0.25	$\leq 1 \times 10^{-6}$

${ }^{a}$ Data were collected in deaerated acetonitrile. ${ }^{b}$ Data from ref. $13 \mathrm{e} .{ }^{c} 3=\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$, data from ref. 1g.

4.3 Conclusion

A highly efficient palladium-catalyzed reaction to introduce cyano group(s) onto transition metal complexes, which are inaccessible from a traditional way, was developed. The introduction of the strongly electron withdrawing cyano group(s) onto the 4'-position of the $\mathrm{Ru}(\mathrm{tpy}) 2_{2}{ }^{2+}$ moieties has profound influence on their redox potentials and photophysical properties. Lifetime measurements have shown that the introduction of cyano group(s) has greatly increased their rt lifetimes. The substitution of the cyano group on $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ causes dramatic changes to its photophysical properties. Prolonged rt excited-state lifetimes compared to the prototype $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ species are achieved, due to the increased energy gap between ${ }^{3} \mathrm{MLCT}$ and ${ }^{3} \mathrm{MC}$ states induced by the electronwithdrawing cyano group. The luminescence quantum yields are also significantly increased.

4.4 Experimental

4.4.1 General methods

All reactions were performed under a dry argon atmosphere using standard Schlenk techniques. Solvents for the reaction were pre-dried using Pure-Solv Solvent Purification System (Innovative Technology Inc.). All chemicals were purchased from Sigma-Aldrich and used as received.

Nuclear magnetic resonance (NMR) spectra were recorded at room temperature (r.t.) on a Bruker AC-400 spectrometer at 400 MHz for ${ }^{1} \mathrm{H}$ NMR and at 100 MHz for ${ }^{13} \mathrm{C}$ NMR. Chemical shifts are reported in part per million (ppm) relative to residual solvents (1.94 ppm for acetonitrile- d_{3}) and the carbon resonance of the solvents. ESI-MS was done by the Mass Spectrometry Facility at Université de Montreal. Routine absorption spectra and emission spectra were measured in argon-purged acetonitrile at r.t. on a Cary 500i UV-vis-NIR Spectrophotometer and a Cary Eclipse Fluorescence Spectrophotometer, respectively. Electrochemical data were collected in Ar-purged acetonitrile with 1.0 M ${ }^{n} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ on a BAS CV-50W Voltammetric Analyzer. Redox potentials were corrected by internal reference to ferrocence (395 mV vs SCE).

4.4.2 Materials

$\mathrm{RuCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ was purchased from Precious Metal Online (PMO). Cl-tpy was prepared by the modified literature methods. ${ }^{22}$ All other chemicals were purchased from SigmaAldrich and were used as received. [(4'-Cl-tpy) $\left.\mathrm{Ru}\left(\mathrm{tppy}^{\prime}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}$ (1a), $\left[\left(4^{\prime}-\mathrm{Cl}-\right.\right.$ tpy $\left.)_{2} \mathrm{Ru}\right]\left(\mathrm{PF}_{6}\right)_{2}$ (1b) were prepared by the literature methods. ${ }^{13 \mathrm{c}}$ [(5-Cl-pyrimid-2-yl-
tpy $) R u(t p y)]\left(\mathrm{PF}_{6}\right)_{2}(\mathbf{1 c}),\left[(5-p\right.$-bromophenylpyrimid-2-yl-tpy $\left.) \mathrm{Ru}\left(\mathrm{tpy}^{2}\right)\right]\left(\mathrm{PF}_{6}\right)_{2}(\mathbf{1 d})$ was prepared as previous reported. ${ }^{20}$

4.4.3 Syntheses

Ligands:

3-step synthesis of 4 '-chloro- $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$ '-terpyridine (4, Cl-tpy)

1) Synthesis of 1,5-di-2-pyridylpentane-1,3,5-trione (6):

A solution of acetone ($2.90 \mathrm{~g}, 50 \mathrm{mmol}$) and ethyl picolinate ($22.7 \mathrm{~g}, 150 \mathrm{mmol}$) in dry THF (100 mL) was added dropwise to a suspension of $\mathrm{NaH}(6.0 \mathrm{~g} \times 60 \%, 150 \mathrm{mmol})$ in dry THF (150 mL) under reflux in an argon atmosphere over 4 h . After an additional reflux for 2 h , the THF was removed under reduced pressure and the remaining orange paste was carefully treated with $\mathrm{H}_{2} \mathrm{O}$ (Caution!). The resultant orange solution was filtered through celite and the filtrate was neutralized by the addition of acetic acid. The yellow precipitate was collected and washed thoroughly with $\mathrm{H}_{2} \mathrm{O}$, followed by drying
under vacuum to yield trione $6(\sim 10 \mathrm{~g}, 37 \mathrm{mmol}, 74 \%)$. Trione 6 holds water tenaciously and wet trione 6 can be used in the next step without compromise of the yield.
2) Synthesis of 2,6-bis(2'-pyridyl)-4-pyridone (7):

Trione $6(\sim 10 \mathrm{~g}, 37 \mathrm{mmol})$ and ammonium acetate $(35.8 \mathrm{~g}$, excess) were added to absolute EtOH (300 mL) and the mixture was heated at reflux for 6 h . The EtOH solution was concentrated to 50 mL and cooled down to ambient temperature. The resultant white precipitate was collected by filtration and washed with diethyl ether ($10 \mathrm{~mL} \times 2$), followed by drying under vacuum to yield pyridone 7 ($9.11 \mathrm{~g}, 36.5 \mathrm{mmol}, 98 \%$).
3) Synthesis of 4^{\prime}-chloro- $2,2^{\prime}: 6^{\prime}, 2^{\prime}$ '-terpyridine (4):

A mixture of pyridone $7(9.11 \mathrm{~g}, 36.5 \mathrm{mmol})$ and PCl_{5} in $\mathrm{POCl}_{3}(200 \mathrm{~mL})$ was heated at reflux for 12 h , after which time the solvent was distilled off. The concentrated solution ($\sim 30 \mathrm{~mL}$) was treated cautiously with $\mathrm{H}_{2} \mathrm{O}$ (Caution!) and the resultant acidic solution was neutralized cautiously with NaOH (s) (Caution!). The resultant white suspension was extracted with $\mathrm{CHCl}_{3}(50 \mathrm{~mL} \times 5)$ and the combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$, dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (s) and filtered through celite. Removal of the solvent yielded brown residue, which was recrystallized from MeOH to yield Cl -tpy $4(5.08 \mathrm{~g}, 19.0$ $\mathrm{mmol})$. The MeOH filtrate was concentrated to yield another crop of $4(1.71 \mathrm{~g}, 6.4 \mathrm{mmol})$. Combined 4 (25.4 mmol) yields, 69%. Overall yield from acetone, 51%. All the characterizations were identical with those reported previously. ${ }^{22}$

Synthesis of 4'-cyano-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (5, NC-tpy):

A flame-dried 100 mL round-bottomed flask was charged with Ar. Then Cl-tpy 4 (2.67 g , $10 \mathrm{mmol}), \mathrm{Zn}(\mathrm{CN})_{2}(0.70 \mathrm{~g}, 6.0 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(0.20 \mathrm{~g}, 0.20 \mathrm{mmol}), \operatorname{dppf}(0.12 \mathrm{~g}, 0.40$ mmol) and Zn dust (325 mesh, $0.078 \mathrm{~g}, 1.2 \mathrm{mmol}$) were added into the flask, which was evacuated and recharged with Ar. Then DMA (40 ml) was added and the resultant mixture was heated up to $120^{\circ} \mathrm{C}$ with stirring for 6 h . After cooling down to ambient temperature, $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$ was added and the suspension was extracted with CHCl_{3} (30 $m L \times 5$). The combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$, dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$ (s) and decolored by filtering through alumina (30 g). Removal of the solvent yielded paleyellow residue, which was recrystallized from EtOH to yield NC-tpy $5(2.46 \mathrm{~g}, 9.5 \mathrm{mmol}$, 95%). All the characterizations were identical with those reported previously. ${ }^{20}$

General procedure for the preparation of heteroleptic complexes $\mathbf{2 a}, \mathbf{2 c}$ and $\mathbf{2 e}$.

 $[(N C-t p y) R u(t p y)]\left(\mathrm{PF}_{6}\right)_{2}(\mathbf{2 a})$

A flame-dried 25 mL round-bottomed flask was charged with Ar. Then [(4'-Cl-
tpy $) R(t p y)]\left(\mathrm{PF}_{6}\right)_{2}(236 \mathrm{mg}, 0.26 \mathrm{mmol}), \mathrm{Zn}(\mathrm{CN})_{2}(18.4 \mathrm{mg}, 0.16 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(10.8$
$\mathrm{mg}, 0.011 \mathrm{mmol}$), $\operatorname{dppf}(11.5 \mathrm{mg}, 0.022 \mathrm{mmol})$ and Zn dust ($325 \mathrm{mesh}, 2.1 \mathrm{mg}, 0.032$ mmol) were added into the flask, which was evacuated and recharged with Ar. Then DMA (10 ml) was added and the resultant mixture was heated up to $120^{\circ} \mathrm{C}$ with stirring for 6 h . After cooling down to ambient temperature, the reaction mixture was filtered through celite and the solvent in the filtrate was removed under reduced pressure. The resultant residue was redisolved in 5 ml acetonitrile and the red solution was loaded onto a small silica gel column ($3.0 \times 11.8 \mathrm{~cm}$), which was eluted by $7: 1 \mathrm{CH}_{3} \mathrm{CN} / \mathrm{KNO}_{3}$ (aq., saturated). The red band was collected and counter-anion exchanged with $\mathrm{NH}_{4} \mathrm{PF}_{6}$. Recrystallization of the acetonitrile solution from diethyl ether yielded dark-red product 2a (232 mg, 0.26 mol , isolated yield $>99 \%) .{ }^{\mathrm{I}} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 9.06(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{H}_{3^{\prime}, 5^{\prime}}\right), 8.78\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\underline{3^{\prime}} 5^{\prime}}\right), 8.52\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{3,3^{\prime \prime}}\right), 8.50(\mathrm{~d}, J=8.2$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{3,3^{\prime}}\right), 8.49\left(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 8.00\left(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{4}, 4^{*}\right), 7.93(\mathrm{t}, J=$ $\left.8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{4.4^{*}}\right), 7.42\left(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{6,6^{\prime \prime}}\right), 7.29\left(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{6.6^{\prime \prime}}\right), 7.26(\mathrm{t}$, $\left.J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{5,5^{\prime \prime}}\right), 7.16\left(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\underline{5.5^{\prime \prime}}}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): δ $158.1,153.2,153.1,152.9,144.3,138.9,138.8,138.6,128.6,127.9,127.8,126.0,125.4$, 125.1, 124.4. ESI-MS: $296.5\left(\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}, 100 \%\right), 737.9\left(\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}, 37 \%\right)$.
$[($ NC-pm-tpy $) R u(t p y)]\left(\mathrm{PF}_{6}\right)_{2}(\mathbf{2 c})$

Isolated yield, $95 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 9.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{3^{3}, 5^{5}}\right.$), $9.46(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}$ Pm 4, 6), $8.80\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3}{ }^{\prime}, 5^{\prime}\right), 8.72\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3}, 3^{\prime}\right), 8.51(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{3.3^{\prime \prime}}$), $8.48\left(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}_{4} \mathrm{H}_{4}\right), 7.98\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{4}, 4^{4}, 4.4^{\prime}\right), 7.41(\mathrm{dd}, J=5.7$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{6,6^{\prime}, \underline{6}, 6^{\prime \prime}}, 4 \mathrm{H}\right), 7.24\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{5,5^{*}}\right), 7.15\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\underline{5.5^{\prime \prime}}}\right)$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 162.6,161.4,157.9,157.8,156.3,155.0,152.7,152.5$, $142.5,138.4,138.3,136.5,127.8,127.5,125.0,124.6,123.9,122.1,114.9,109.4$. ESIMS: $335.7\left(\left[\mathrm{M}_{\left.\left.-2 \mathrm{PF}_{6}\right]^{2+}, 79 \%\right), 815.9\left(\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}, 100 \%\right) .}\right.\right.$
$[($ NC-ph-pm-tpy $) \mathrm{Ru}($ tpy $)]\left(\mathrm{PF}_{6}\right)_{2}(\mathbf{2 d})$

Isolated yield $98 \%{ }^{\prime} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 9.75\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{3^{\prime}}, 5^{\prime}\right), 9.46\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Pm} 4}\right.$, $\left.{ }_{6}\right), 8.80\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\underline{3^{\prime}} .5^{\circ}}\right), 8.74\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3,3^{\prime \prime}}\right), 8.53(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{H}_{\underline{3}, 3^{\prime \prime}}\right), 8.47\left(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4}\right), 8.11\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph} 3}, 5\right), 8.01\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{4,4^{\prime \prime}, 4}\right.$ 4", Ph2, 6), $7.44\left(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{6,6^{\prime \prime}}\right), 7.41\left(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{6.6^{\prime \prime}}\right), 7.23(\mathrm{t}, J=6.6 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \mathrm{H}_{5,5^{\prime \prime}}\right), 7.17\left(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{5,5^{\prime \prime}}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): δ 158.3, 156.9, $155.5,153.0,152.9,142.0,138.7,138.6,133.7,128.7,128.5,128.3,128.1,127.9,125.3$, 124.9, 124.8, 124.2, 121.9. ESI-MS: $374.1\left(\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}, 100 \%\right), 892.9\left(\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}, 33 \%\right)$.
$\left[(\mathrm{NC}-\mathrm{tpy})_{2} \mathrm{Ru}\right]\left(\mathrm{PF}_{6}\right)_{2}(\mathbf{2 b})$

A flame-dried 25 mL round-bottomed flask was charged with Ar. Then [(4'- $\mathrm{Cl}-$ tpy $\left.)_{2} \mathrm{Ru}\right]\left(\mathrm{PF}_{6}\right)_{2}(21.5 \mathrm{mg}, 0.023 \mathrm{mmol}), \mathrm{Zn}(\mathrm{CN})_{2}(3.24 \mathrm{mg}, 0.028 \mathrm{mmol}), \mathrm{Pd}_{2}(\mathrm{dba})_{3}(2.4$ $\mathrm{mg}, 0.0023 \mathrm{mmol})$, dppf ($2.6 \mathrm{mg}, 0.0046 \mathrm{mmol}$) and Zn dust ($325 \mathrm{mesh}, 0.5 \mathrm{mg}, 0.077$ mmol) were added into the flask, which was evacuated and recharged with Ar. Then DMA (10 ml) was added and the resultant mixture was heated up to $120^{\circ} \mathrm{C}$ with stirring for 12 h . After cooling down to ambient temperature, the reaction mixture was filtered through celite and the solvent in the filtrate was removed under reduced pressure. The resultant residue was redisolved in 5 ml acetonitrile and the red solution was loaded onto a small silica gel column ($3.0 \times 12.5 \mathrm{~cm}$), which was eluted by $7: 1 \mathrm{CH}_{3} \mathrm{CN} / \mathrm{KNO}_{3}$ (aq., saturated). The red band was collected and counteranion exchanged with $\mathrm{NH}_{4} \mathrm{PF}_{6}$. Recrystallization of the acetonitrile solution from diethyl ether yielded dark-red product 2b ($20.5 \mathrm{mg}, 0.023 \mathrm{~mol}$, isolated yield 99%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$): $\delta 9.02(\mathrm{~s}, 4 \mathrm{H}$, $\left.\mathrm{H}_{3^{\prime}}, 5^{\prime}\right), 8.53\left(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{3,3^{*}}\right), 8.00\left(\mathrm{t}, J=7.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{4,4^{*}}\right), 7.58(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $\left.4 \mathrm{H}, \mathrm{H}_{6,6^{\prime \prime}}\right), 7.33\left(\mathrm{t}, J=5.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{5}, 5^{\circ}\right) .{ }^{13} \mathrm{C}$ NMR can not be obtained due to the poor solubility in acetonitrile. ESI-MS: $309.1\left(\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}, 100 \%\right), 764.9\left(\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}, 34 \%\right)$.

4.5 Reference

* Part of this work has been published as a communication: Wang, J.; Fang, Y.-Q.;

Hanan, G. S.; Loiseau, F.; Campagna, S. Inorg. Chem. 2005, 44, 5.
1 Morgan, G. T.; Burstall, F. H. J. Chem. Soc. 1932, 20.
2 (a) Balzani, V.; Barigelletti, F.; Belser, P.; Bernhard, S.; De Cola, L.; Flamigni, L. J. Phys. Chem. 1996, 100, 16786. (b) Constable, E. C. Prog. Inorg. Chem. 1994, 42, 67. (c) Chodorowski-Kimmes, S.; Beley, M.; Collin, J.-P.; Sauvage, J.-P.

Tetrahedron Lett. 1996, 37, 2963. (d) Cargill Thompson, A. M. W. Coord. Chem. Rev. 1997, 160, 1. (e) Constable, E. C.; Davies, J. E.; Phillips, D.; Raithby, P. R. Polyhedron 1998, 17, 3989. (f) Sauvage, J.-P.; Collin, J.-P.; Chambron, J.-C.; Guillerez, S. Coudret, C.; Balzani, V.; Barigelletti, F.; De Cola, L.; Flamigni, L. Chem. Rev. 1994, 94, 993. (g) Constable, E. C.; Cargill Thompson, A. M. W.;

Tocher, D. A.; Daniels, M. A. M. New J. Chem. 1992, 16, 855.
3 Mukkala, M.; Helenius, M.; Hemmila, I.; Kankare, J.; Takalo, H. Helv. Chim. Acta 1993, 76, 1361.
(a) Chelucci, G. Synth. Commun. 1993, 23, 1897. (b) Chelucci, G.; Saba, A.;

Vignola, D.; Solinas, C. Tetrahedron 2001, 57, 1099.
(a) Collin, J.-P.; Heitz, V.; Sauvage, J.-P. Tetrahedron Lett. 1991, 32, 5977. (b)

Chambron, J. C.; Collin, J.-P.; Dalbavie, J.-O.; Dietrich-Buchecker, C. O.; Heitz, V.; Odobel, F.; Solladié, N.; Sauvage, J.-P. Coord. Chem. Rev. 1998, 178, 1299.
(c) Collin, J.-P.; Harriman, A.; Heitz, V.; Odobel, F.; Sauvage, J.-P. Coord. Chem.

Rev. 1996, 148, 63. (d) Kimura, M.; Hamakawa, T.; Hanabusa, K.; Shirai, H.;
Kobayashi, N. Inorg. Chem. 2001, 40, 4775. (e) Flamigni, L.; Barigelletti, F.;

Armaroli, N.; Ventura, B.; Collin, J.-P.; Sauvage, J.-P.; Williams, J. A. G. Inorg. Chem. 1999, 38, 661. (f) Collin, J.-P.; Harriman, A.; Heitz, V.; Odobel, F.; Sauvage, J.-P. J. Am. Chem. Soc. 1994, 116, 5679.
(a) Whittle, B.; Everest, N. S.; Howard C.; Ward, M. D. Inorg. Chem. 1995, 34, 2025. (b) Storrier, G. D.; Takad, K.; Abruna, H. D. Inorg. Chem. 1999, 38, 559.
(a) Tsukube, H.; Hamada, T.; Tanaka, T.; Uenishi, J. Inorg. Chim. Acta 1993, 214, 1. (b) Loiseau, F.; Di Petrio, C.; Serroni, S.; Campagna, S.; Licciardello, A.; Manfredi, A.; Pozzi, G.; Quici, S. Inorg. Chem. 2001, 40, 6901. (c) Haider, J. M.; Chavarot, M.; Weidner, S.; Sadler, I.; Williams, R. M.; De Cola, L.; Pikramenou, Z. Inorg. Chem. 2001, 40, 3912.
(a) Pechy, P.; Rotzinger, F. P.; Nazeeruddin, M. K.; Kohle, O.; Zakeeruddin, S.
M.; Humphry-Baker, R.; Grätzel, M. J. Chem. Soc., Chem. Commun. 1995, 65. (b) Liang, Y. W.; Schmehl R. H. J. Chem. Soc., Chem. Commun. 1995, 1007. (c)

Rice, C. R.; Ward, M. D.; Nazeeruddin, M. K.; Grätzel, M. New J. Chem. 2000, 24, 651. (d) Islam, A.; Sugihara, H.; Arakawa, H. J. Photochem. Photobiol. A: Chem. 2003, 158, 131. (e) Bauer, C.; Boschloo, G.; Mukhtar, E.; Hagfeldt, A. J. Phys. Chem. B 2002, 106, 12693.
(a) Zeng, F.; Zimmerman, S. C. Chem. Rev. 1997, 97, 1681. (b) Constable, E. C.; Housecroft, C. E.; Neuburger, M.; Schneider, A. G.; Springler, B.; Zehnder, M. Inorg. Chim. Acta 2000, 300, 49. (c) Flamigni, L.; Barigelletti, F.; Armaroli, N.; Collin, J.-P.; Dixon, I. M.; Sauvage, J.-P.; Gareth Williams, J. A. Coord. Chem. Rev. 1999, 190, 671 . (d) Collin, J. P.; Gillerez, S.; Sauvage, J.-P.; Barigelletti, F.; Flamigni, L.; De Cola, L.; Balzani, V. Coord. Chem. Rev. 1991, 111, 291. (e)

Johansson, O.; Borgstrom, M.; Lomoth, R.; Palmblad, M.; Bergquist, J.;
Hammarström, L.; Sun, L.; Åkermark, B. Inorg. Chem. 2003, 42, 2908. (f) Collin, J.-P.; Dietrich-Buchecker, C.; Gavina, P.; Jimenez-Molero, M. C.; Sauvage, J.-P. Acc. Chem. Res. 2001, 34, 477.

Juris, A., Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; von Zelewsky, A. Coord. Chem. Rev. 1998, 84, 85.

1 Sauvage, J.-P.; Collin, J.-P.; Chambron, J.-C.; Guillerez, S.; Coudret, C.; Balzani, V.; Barigelletti, F.; De Cola L.; Flamigni, L. Chem. Rev. 1994, 94, 993.
(a) Constable, E. C.; Cargill Thompson, A. M. W.; Cherryman J.; Liddiment, T. Inorg. Chim. Acta 1995, 235, 165. (b) Collin, J.-P.; Beley, M.; Sauvage, J.-P.; Barigelletti, F. Inorg. Chim. Acta 1991, 186, 91. (c) Beley, M.; Chodorowski, S.; Collin, J.-P.; Sauvage, J.-P.; Flamigni, L.; Barigelletti, F. Inorg. Chem. 1994, 33, 2543.
(a) Constable, E. C.; Cargill Thompson, A. M. W.; Ararmoli, N.; Balzani, V.; Maestri, M. Polyhedron 1992, 11, 2707. (b) Indelli, M. T.; Bignozzi, C. A.; Scandola, F.; Collin, J.-P. Inorg. Chem. 1998, 37, 6084. (c) Maestri, M.; Armaroli, N.; Balzani, V.; Constable, E. C.; Cargill Thompson, A. M. W. Inorg. Chem. 1995, 34, 2759. (d) Barigelletti, F.; Flamigni, L.; Guardigli, M.; Juris, A.; Beley, M.; Chodorowski-Kimmes, S.; Collin, J.-P.; Sauvage, J.-P. Inorg. Chem. 1996, 35, 136. (e) Fang, Y.-Q.; Taylor, N. J.; Hanan, G. S.; Loiseau, F.; Passalacqua, R.; Campagna, S.; Nierengarten, H.; van Dorsselaer, A. J. Am. Chem. Soc. 2002, 124, 7912.
(a) Duati, M.; Fanni, S.; Vos, J. G. Inorg. Chem. Commun. 2000, 3, 68. (b) Duati, M.; Tasca, S.; Lynch, F. C.; Bohlen, H.; Vos, J. G.; Stagni, S; Ward, M. D. Inorg. Chem. 2003, 42, 8377. (c) Indelli, M. T.; Bagnozzi, C. A.; Scandola, F.; Collin, J.P. Inorg. Chem. 1998, 37, 6084.
(a) Hammarström, L.; Barigelletti, F.; Flamigni, L.; Indelli, M. T.; Armaroli, N.;

Calogero, G.; Guardigli, M.; Sour, A.; Collin, J.-P.; Sauvage, J.-P. J. Phys. Chem. A 1997, 101, 9061 . (b) Vogler, L. M.; Brewer, K. J. Inorg. Chem. 1996, 35, 818.
(a) Ford, W. E.; Rodgers, M. A. J. J. Phys. Chem. 1992, 96, 2917. (b) Wilson, G. J.; Launikonis, A.; Sasse, W. H.; Mau, A. W.-H. J. Phys. Chem. A 1997, 101, 4860. (c) Simon, J. A.; Curry, S. L.; Schmehl, R. H.; Schatz, T. R.; Piotrowiak, P.; Jin, X.; Thummel, R. P. J. Am. Chem. Soc. 1997, 119, 11012. (d) Tyson, D. S.; Luman, C. R.; Zhou, X.; Castellano, F. N. Inorg. Chem. 2001, 40, 4063. (e) Maubert, B.; McClenaghan, N. D.; Indelli, M. T.; Campagna, S. J. Phys. Chem. A 2003, 107, 447. (f) Passalacqua, R.; Loiseau, F.; Campagna, S.; Fang, Y.-Q.; Hanan, G. S. Angew. Chem. Int. Ed. 2003, 42, 1608. (g) Wang, J.; Hanan, G. S.; Loiseau, F.; Campagna, S. Chem. Commun. 2004, 2068.
(a) Bignozzi, C. A.; Schoonover, J. R.; Scandola, F. Prog. Inorg. Chem. 1997, 44, 1 and references therein; (b) Mellace, M. G.; Fagalde, F.; Katz, N. E.; Crivelli, I. G.; Delgadillo, A.; Leiva, A. M.; Loeb, B.; Garland, M. T.; Baggio R. Inorg. Chem. 2004, 43, 1100.

Recent review: Sundermeier, M.; Zapf, A.; Beller, M. Euro. J. Inorg. Chem. 2003, 3513. 1996, 37, 2963. (b) Tzalis, D.; Tor, Y. Chem. Commun. 1996, 1043. (c) Hissler, M.; Ziessel, R. New J. Chem. 1997, 21, 843. (d) Coudret, C.; Fraysse, S.; Launay, J.-P. Chem. Commun. 1998, 663. (e) Osawa, M.; Hoshino, M.; Horiuchi, S.; Wakatsuki, Y. Organometallics 1999, 18, 112. (f) Kelch, S.; Rehahn, M. Macromolecules 1999, 32, 5818. (g) Storrier, G. D.; Colbran, S. B. Inorg. Chim. Acta 1999, 284, 76. (h) Aspley, C. J.; Gareth Williams, J. A. New J. Chem. 2001, 25, 1136. (i) Harriman, A.; Hissler, M.; Khatyr, A.; Ziessel, R. Eur. J. Inorg. Chem. 2003, 955.
(a) Chodorowski, S.; Beley, M.; Collin, J.-P.; Sauvage, J.-P. Tetrahedron Lett.

Fang Y.-Q. Master's Thesis, Department of Chemistry, University of Waterloo, Canada. 2002.

Jin, F.; Confalone, P. N. Tetrahedron Lett. 2000, 41, 3271.
(a) Potts, K. T.; Konwar, D. J. Org. Chem. 1991, 56, 4815. (b) Constable, E. C.; Ward, M. D. J. Chem. Soc., Dalton Trans. 1990, 1405.
(a) Takagi, K.; Okmoto, T.; Sakakibara, Y.; Ohno, A.; Oka, S.; Hayama, N. Bull. Chem. Soc. Jpn. 1975, 48, 3298. (b) Sakakibar, Y.; Okuda, F.; Shimobayashi, A.; Kirino, K.; Sakai, M.; Uchino, N.; Takagi, K. Bull. Chem. Soc. Jpn. 1988, 61, 1985.

Lashgari, K.; Kritikos, M.; Norrestam, R.; Norrby, T. Acta Crystallogr. Sect. C 1999, C55, 64.

Chapter 5

Synthesis of 2,6-bis(5'-Substituted-pyrimid-2'-yl)pyridine Ligands and Their Ruthenium(II) Complexes

Abstract

A convergent and efficient synthetic approach to a new family of ligands 1a-c, 2,6-bis(5'-R-pyrimyd-2'-yl)pyridine (Rbppy, $\mathrm{R}=\mathrm{H}, \mathbf{1 a} ; \mathrm{Cl}, \mathbf{1 b} ; \mathrm{Ph}, \mathbf{1} \mathbf{c}$), was developed. The two peripheral pyrimidine rings were constructed from 2,6-pyridine-bisamidinium dichloride (6) and 2-substituted- N, N^{\prime}-(dimethylamino)trimethinium hexaflurophosphate in the presence of NaOMe . Application of these ligands to the coordination sphere of Ru (II) metal center led to a new series of $\mathrm{Ru}(\mathrm{II})$ complexes $2 \mathrm{a}-\mathrm{c}$ and $\mathbf{3 a - c}$. The solid state structures of ligand 1a, complexes $\mathbf{2 a - b}$ and $\mathbf{3 b}$ were characterized by single crystal Xray diffraction. The UV-vis and electrochemical results indicated that the Rbppy ligands act as electron deficient ligands, whose low energy ligand-based $\pi_{\mathrm{L}}{ }^{*}$ orbital stabilizes the metal-based π_{M} orbital.

5.1 Introduction

The tridentate ligand 2,2':6',2"-terpyridine (tpy) was first prepared over 70 years ago ${ }^{1}$ and since then the coordination chemistry of tpy-based ligands has been widely studied. ${ }^{2}$ Several areas of the research have evolved for the application of tpy complexes: as protein labels; ${ }^{3}$ as reagents for enantioselective synthesis; ${ }^{4}$ as modifiers for porphyrins, ${ }^{5}$ catechols, ${ }^{6}$ and macrocycles; ${ }^{7}$ and in solar energy devices based on nanocrystalline TiO_{2} surfaces. ${ }^{8}$ They have also been used in supramolecular chemistry to build up linear multinuclear assemblies for energy and/or electron transfer processes at the molecular level. ${ }^{9}$

Considering the importance of tpy in coordination chemistry, one of its main areas of research has been concerned with the syntheses of tpy and its analogues. Several different tridentate tpy analogues have been reported (Chart 5.1): 1) 2,4-bis(pyrid-2'yl)triazines (A); ${ }^{10}$ 2) 6-phenyl-2,2'-bipyrdines (B); ${ }^{11}$ 3) 1,3-di(pyrid-2'-yl)benzene (C); ${ }^{12}$ 4) 6-(2'-picolyl)-2,2'-bipyridine (D); ${ }^{13}$ 5) 2,6-bis(pyrimid-4'-yl)pyridines (E); ${ }^{14}$ 6) 2,6 -bis(pyrimid-2'-yl)pyridine (F). ${ }^{15}$ The main strategy has been to keep the tridentate coordination ability while exploring the electronic properties of the ligands by introducing electron rich \mathbf{C} donors (cyclometallated $\mathbf{B}^{11}, \mathbf{C}^{12}$), or electron deficient donors $\left(\mathbf{A}^{10}, \mathbf{E}^{14}, \mathbf{F}^{15}\right)$. An alternative strategy has been to relieve the steric strain around the metal center in order to increase ligand field strength of the ligand $\left(\mathbf{D}^{13}\right)$. The coordination chemistry of these tpy analogues with a variety of transition metals has been extensively explored in the area of supermolecules, catalysts and polymers. Some of the experiments showed that the substitution of tpy with these analogues in $M(t p y)_{m}{ }^{n+}$ complexes can give rise to a variety of novel or improved properties. ${ }^{10-13}$

tpy

A

B

C

Chart 5.1 Tridentate ligands: $2,2^{\prime}: 6^{\prime}: 2^{\prime \prime}$-terpyridine (tpy) and tpy analogues $\mathbf{A}-\mathbf{F}$.

2,6-bis(Pyrimid-2'-yl)pyridine (bppy) and its palladium complexes have been reported previously. ${ }^{15}$ The palladium complexes with this novel tridentate nitrogen ligand display dynamic behavior due to the exchange of the coordinated and uncoordinated pyrimidyl nitrogen atoms (Figure 5.1). Methyl- and acyl-palladium complexes containing the novel tridentate nitrogen ligand, bppy, show dynamic behaviour due to exchange of the pyrimidyl nitrogen atoms. The mechanism of this process involves nitrogen dissociation, which may be initiated by chloride, solvent or CO coordination, subsequent rotation about the $\mathrm{C}-\mathrm{C}$ bond and reformation of the nitrogen-palladium bond (Figure 5.1). ${ }^{15}$

Figure 5.1 Dynamic behavior of $[b p p y] P d R$ complexes. $\mathrm{R}=\mathrm{Me}, \mathrm{Y}=\mathrm{Cl}-$, solvent or CO. ${ }^{15}$

Due to the myriad applications of luminescent $\mathrm{Ru}(\mathrm{II})$ tpy complexes, ${ }^{16-17}$ the exploration of new types of tridentate ligands and their $\mathrm{Ru}(\mathrm{II})$ complexes play a key role in our research. First, since the bppy can initiate dynamic behavior at a metal center, we envision that the bppy ligand could have the same dynamic behavior while coordinated to a $\mathrm{Ru}(\mathrm{II})$ center, which could introduce a binding site for $\mathrm{H}_{2} \mathrm{O}$ in its potential oxidative or reductive cleaving into O_{2} and H_{2}, respectively. Secondly, the initial synthesis of the bppy ligand followed a classic two-step approach to tpy ligand (Scheme 5.1), which features harsh conditions and low overall yield in the formation of the central pyridine ring. Based on our research on the construction of the pyrimidine ring on the 4'-position of the tpy ligand, ${ }^{18}$ we proposed to synthesize the bppy ligand in the other direction, namely construction of the pyrimidine rings from amidinium chloride and vinamidium hexaflurophosphate salt. The new approach should have better yields, mild conditions and be convergent in order to introduce the different substituents onto the 5-position of the pyrimidine rings.

In this chapter, we report the syntheses of a new family of Rbppy ligands and their applications in $\mathrm{Ru}(\mathrm{II})$ chemistry.

Scheme 5.1 Reported synthesis of bppy ligand. Reagents and conditions: (a) $\mathrm{Me}_{2} \mathrm{NCH}(\mathrm{OMe})_{2}$, toluene, reflux, 92%. (b) $\mathrm{KO}^{t} \mathrm{Bu}, 2$-acetylpyridine, $\mathrm{THF}, \mathrm{rt}$; $\mathrm{NH}_{4} \mathrm{OAc}$, acetic acid, reflux, $23 \%{ }^{15}$

5.2 Results and Discussion

5.2.1 Syntheses

The new approach to the bppy ligands with a variety of substituents in the 5position of the pyrimidine rings started from 2,6-pyridine-bisamidinium dichloride (6), ${ }^{21}$ which is easily accessible from commercial available 2,6-dicyanopyridine (Scheme 5.2). The condensation reaction of 6 with 2 -substituted- N, N^{\prime}-(dimethylamino)trimethinium hexaflurophosphate in the presence of NaOMe formed the two pyrimidine rings to give ligands 1a-c. The overall yields, higher than the reported approach, ranged from 48% to 52% with the different substituents. All the Rbppy ligands were characterized by ${ }^{1} \mathrm{H}$ NMR spectroscopy (Table 5.1), ESI-MS, MALDI-TOF MS and elemental analysis.

6
(b)

Scheme 5.2 Syntheses of 2,6-bis(5'-R-pyrimid-2'-yl)pyridine ligands Rbppy 1a-c. Reagents and conditions: (a) (i) $\mathrm{NaOMe}, \mathrm{MeOH}$, r.t., 24 h ; (ii) $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{MeOH}$, r.t., 48 h , 73% over two steps. (b) NaOMe , vinamidium PF_{6} salt, MeOH , reflux, $16 \mathrm{~h} . \mathrm{R}=\mathrm{H}, 1 \mathrm{a}$, 66%; Cl, 1b, 68\%; Ph, 1c, 70%.

The $\mathrm{Ru}(\mathrm{II})$ complexes with Rbppy ligand were synthesized through a classic approach. The addition of two equivalent of the Rbppy ligands 1a-c, respectively, to $\mathrm{RuCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}$ with a dechlorinating reagent, AgNO_{3}, led to the formation of the homoleptic complexes $\mathbf{2 a - c}$, which were purified by silica chromatography followed by the counteranion metathesis (Scheme 5.3). For ligands 1 a and $1 \mathbf{c}$, the coordination to the $\mathrm{Ru}(\mathrm{II})$ center proceeded smoothly to give the homoleptic complexes as the only product. However, for ligand 1b, Clbppy, the complexation reaction yielded complex $\mathbf{2 b}$ ' as the major product (Figure 5.2) with homoleptic complex 2b as minor product. The reluctance of ligand $\mathbf{1 b}$ to coordinate to the $\mathrm{Ru}(\mathrm{II})$ center may come from the strong electron withdrawing effect of the chloride, which removes electron density away from the nitrogen atoms in the pyrimidine ring, which in turn weakens its coordination capacity to the metal center.

Scheme 5.3 Syntheses of $\left[(\mathrm{Rbppy})_{2} \mathrm{Ru}\right]\left(\mathrm{PF}_{6}\right)_{2}$ complexes 2a-c $(\mathrm{R}=\mathrm{H}$, 2a; phenyl, 2c). Reagents and conditions: (a) $\mathrm{RuCl}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}, 3.0$ equiv. $\mathrm{AgNO}_{3}, \mathrm{EtOH}$, reflux, 2-4 h .

Figure 5.2 Proposed structure of complex 2b'.

The heteroleptic $\mathrm{Ru}(\mathrm{II})$ complexes 3a-c were also synthesized from the complexation of the Rbppy ligands with (tpy) RuCl_{3} under standard reaction conditions (Scheme 5.4). The ligands 1a-c can be easily converted to their corresponding heteroleptic complexes and the partially coordinated product has not been noticed in the complexation leading to the heteroleptic complexes.

All the complexes were confirmed by ${ }^{1} \mathrm{H}$ NMR (Table 5.2), ESI-MS and MALDI-TOF MS.

Scheme 5.4 Syntheses of heteroleptic (Rbbpy) $\mathrm{Ru}(\mathrm{tpy})\left[\left(\mathrm{PF}_{6}\right)_{2}\right]$ complexes $\mathbf{3 a - c}(\mathrm{R}=\mathrm{H}, \mathbf{3 a}$; $\mathrm{Cl}, \mathbf{3 b}$; phenyl, 3c). Reagents and conditions: (a) $\mathrm{Ru}(\mathrm{tpy}) \mathrm{Cl}_{3}, 3.0$ equiv. $\mathrm{AgNO}_{3}, \mathrm{EtOH}$, reflux, 2-4 h.

5.2.2 NMR spectroscopy

The newly synthesized ligands 1a-c and complexes 2a-c, 3a-c have been characterized by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy. The ${ }^{1} \mathrm{H}$ NMR spectroscopic data of ligands 1a-c in CDCl_{3} are compiled in Table 5.1. The ${ }^{1} \mathrm{H}$ NMR spectroscopic data of complexes 2a-c and 3a-c in $\mathrm{CD}_{3} \mathrm{CN}$ are compiled in Table 5.2. The assignments of the ${ }^{1} H$ NMR signals were according to the specific coupling constants from pyridine ring and pyrimidine rings.

Compared with the ligand tpy, the ligands $\mathbf{1 a - c}$, which have their CH group in tpy substituted with nitrogen atoms, display large chemical shifts in their ${ }^{1} \mathrm{H}$ NMR spectra, indicating that the pyrimidine rings have an important effect on the electronics of the ligands. The ${ }^{1} H$ NMR signals from the central pyridine have shifted to lower field and are deshielded $0.12-0.23 \mathrm{ppm}$ for $\mathrm{H}_{\mathrm{Py} 3,5}$ and $0.07-0.13 \mathrm{ppm}$ for $\mathrm{H}_{\mathrm{Py} 4}$ by the nitrogen lone pairs of the neighboring pyrimidine rings. It is noteworthy that the biggest shifts come from ligand 1c, which has phenyl substituents on the 5 -position of the pyrimidine rings, which lead to further deshielding. The ${ }^{1} \mathrm{H}$ NMR signals from the peripheral pyrimidine rings have the same trend and shift to lower field compared with those from the tpy peripheral pyridine rings. The overall effects of the pyrimidine rings in the newly synthesized ligand 1a-c are the increase electron delocalization produced by the coplanar pyrimidine rings.

Table 5.1 ${ }^{\text {T}} \mathrm{H}$ NMR resonances for ligands $1 \mathrm{a}-\mathrm{c} .{ }^{a}$

Solvent	Cpd	Py 3,5	Py 4	Pm 4,6	R groups b
	1a	8.60	8.06	8.94	7.32
CDCl_{3}	1b	8.60	8.06	8.91	---
	1c	8.71	8.12	9.21	$7.71,7.60-7.49$
	1a	8.59	8.13	8.99	7.48
$\mathrm{CD}_{3} \mathrm{CN}$	1b	8.59	8.15	8.99	---
	1c	8.68	8.18	9.27	$7.85,7.64-7.53$

[^4]Through the comparison of the ${ }^{1} \mathrm{H}$ NMR spectra of the newly synthesized complexes, we note that upon coordination of the ligands with the ruthenium cation, the changes of the chemical shift on the ligand are quite significant, showing the electronic and conformational changes induced by coordination to the metal ion. Comparison between the chemical shift of the ligands and the complexes gives some interesting information. Upon coordination, the proton signals $H_{P y 3,5}$ and $H_{P y}$, from the pyridine ring have all shifted to lower field with about 0.40 ppm , indicating the protons have been more deshielded when coordinated to the $\mathrm{Ru}(\mathrm{II})$ center. The chemical shifts of $\mathrm{H}_{\mathrm{Pm} 4}$ on coordination are nearly the same as those of free ligands. However, the $\mathrm{H}_{\mathrm{Pm}} 6$ shifted about $1.20 \mathrm{ppm}(1.50 \mathrm{ppm}$ for complexes $\mathbf{2 c}$ and $\mathbf{3 c}$ due to extra shielding effect from phenyl ring current) due to strong shielding effects from the pyrimidine rings on the other orthogonal ligand. ${ }^{22}$

In the heteroleptic complexes 3a-c, when tpys are used as support ligands on the other side, all the proton signals from the Rbppy ligands have the same trend. Compared
with their homoleptic counterparts $\mathbf{2 a - c}$, the protons in the Rbppy ligands have shifted slightly to higher field due to the better electron-donating ability of tpy ligand

Table 5.2 ${ }^{1} \mathrm{H}$ NMR resonances for complexes. ${ }^{a}$

Cpd	$3,3^{\prime \prime}$	4, 4'	$5,5^{\prime \prime}$	6,6"	3', 5'	Py 3,5	Py 4	Pm 4	Pm 6	R	R'
2a						9.00	8.54	8.88	7.74	7.23	
2b						8.98	8.56	8.92	7.76	---	
2 c						9.03	8.56	9.14	7.85	$\begin{aligned} & 7.46- \\ & 7.44 \end{aligned}$	
3a	8.50	7.95	7.18	7.38	8.75	9.00	8.51	8.86	7.71	7.18	8.45
3b	8.52	7.98	7.21	7.36	8.76	8.99	8.52	8.87	7.73	---	8.48
3c	8.49	7.94	7.21	7.42	8.75	9.03	8.53	9.11	7.74	$\begin{aligned} & 7.46- \\ & 7.40 \end{aligned}$	8.44
$4^{\text {b }}$	8.51	7.92	7.17	7.35	8.76		8.42				

${ }^{a}$ In $\mathrm{CD}_{3} \mathrm{CN}$ at r.t., see reaction schemes for ${ }^{1} \mathrm{H}$ assignments. In complexes 3a-c, $\mathrm{R}{ }^{\prime}=\mathrm{H}_{\mathrm{T} 4}$. ${ }^{b} 4=R u(t p y){ }_{2}{ }^{2+}$, from ref. 160.

5.2.3 Solid state structure

Colorless single crystals of ligand 1a suitable for X-ray crystallography were grown from $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ (1:1) solution by slowly evaporation of MeOH . The single crystal structure of ligand 1a is shown in Figure 5.3.

Solid structure of ligand 1a has one mirror plane, crossing the $\mathrm{C} 7-\mathrm{N} 3$ atoms and perpendicular to the plane created by the molecule. Interestingly, the single crystal of ligand 1a incorporated $\mathrm{H}_{2} \mathrm{O}$ molecules in it with $1: 2$ ratio of $\mathbf{1 a}: \mathrm{H}_{2} \mathrm{O}$. The three dimensional structure of $\mathbf{1 a} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ was showed in Figure 5.4. The ligand molecules are
stacked in a zigzag mode along the Z -axis, while the two molecules of $\mathrm{H}_{2} \mathrm{O}$ are heterogeneous. One of the two $\mathrm{H}_{2} \mathrm{O}$ molecules is coplanar to 1a with two H -bonding with N1 and N4 atoms. The other one, perpendicular to the plane of $\mathbf{1 a}$, extends along Z-axis through intramolecular H -bonding between O_{a} and H_{b} (Figure 5.4). The H -bonding network is build up through $\mathrm{N} \cdots \mathrm{H}-\mathrm{O}-\mathrm{H} \cdots \mathrm{O} \cdots \mathrm{H}-\mathrm{O}-\mathrm{H}$ interactions. Since this interesting host-guest interaction could have the potential application in the storage of hydrides, other X-ray crystallography studies towards ligands 1a-c are still under way.

Figure 5.3 ORTEP plot of the X-ray crystal structure of $1 \mathrm{a} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ with atom labelling. Thermal ellipsoids are set at 50% probability. H-bonding distances: N2-H1 1, $1.99 \AA$; O1H21, $1.94 \AA$. See Appendix A2 for crystal data.

Figure 5.4 ORTEP plots of the three dimensional structure of $1 \mathbf{a} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ viewed from Zaxis (top) and viewed along Z-axis (bottom). Thermal ellipsoids are set at 50% probability.

Red single crystals of complexes 2a, 2b and 3b suitable for X-ray crystallography were grown from the acetonitrile solution by slow diffusion of diethyl ether, respectively. The single crystal structures of complexes 2a, 2b and 3b are showed in Figure 5.5, Figure 5.6 and Figure 5.7, respectively, with selected bond lengths and bond angles in

Table 5.3.

The solid state structures of complexes $\mathbf{2} \mathbf{a}-\mathbf{b}$ and $\mathbf{3} \mathbf{b}$ all adopt symmetric distorted octahedral configurations. The $\mathrm{Ru}-\mathrm{N}$ bond lengths and internal bond angles (Table 5.3) are similar to those found in other $\mathrm{Ru}(\mathrm{II})$ polypyridine complexes. ${ }^{19}$ The N1-N4 bite angles in complexes $\mathbf{2 a}, \mathbf{2 b}$ and $\mathbf{3 b}$ are $157.1^{\circ}, 157.0^{\circ}$ and 158.8°, respectively. All the bite angles are smaller than that of $\mathrm{Ru}(\mathrm{tpy}) 2^{2+}$ prototype $\left(168.3^{\circ}\right)$, indicating that the complexes are more distorted from idealized octahedral configurations which account for the weak ligand field strength of Rbppy ligands. It is noteworthy that each unit cell in single crystal of complex $\mathbf{3 b}$ has an unusual Z number, 16 , indicating molecules have an unusual stacking mode. Further research concerning on this stacking mode is still under way to clarified the effect.

Figure 5.5 ORTEP plot of the X-ray crystal structure of complex 2a with atom labelling. Thermal ellipsoids are set at 50% probability with the counteranions and solvent have been omitted for clarity.

Figure 5.6 ORTEP plot of the X-ray crystal structure of complex $\mathbf{2 b}$ with atom labelling. Thermal ellipsoids are set at 50% probability with the counteranions and solvent have been omitted for clarity.

Figure 5.7 ORTEP plots of the X-ray crystal structure of complex 3b exposing the Clppy ligand (top) and, after a 90° rotation, the tpy ligand (bottom). Thermal ellipsoids are set at 50% probability with tpy hydrogen atoms and counteranions omitted for clarity.

Table. 5.3 Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ for complexes $\mathbf{2 a - b}$ and $\mathbf{3 b}$.

5.2.4 Electrochemistry

The electrochemistry of the newly synthesized $\mathrm{Ru}(\mathrm{II}) \mathrm{Rbppy}$ complexes was examined to obtain a quantitative effect of the Rbppy ligands on the energy state of the complexes. The electrochemical data were obtained and compiled in Table 5.4. The oxidation processes in all of the complexes are metal centered, whereas reduction processes are ligand centered, which are very typical for ruthenium polypyridyl complexes.

Compared with the oxidation potential of $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$, the substitution of tpy with Rbppy have shifted the oxidation potentials of complexes $\mathbf{2 a - c}$ and $\mathbf{3 a - c}$ to more positive
values (harder to oxidize) due to the greater π-accepting character of the Rbppy ligands as compared to tpy. The Rbppy-based reduction potentials have also shifted to more positive value (easier to reduce), indicating the lowering effect of the ligand-based π^{*} orbitals.

Comparing the homoleptic complexes $\mathbf{2 a - c}$ with the heteroleptic complexes $\mathbf{3 a - c}$, the same effect exists since the tpy ligand is a better electron donor than are Rbppy ligands.

As far as the substituents are concerned, their electronic properties have quite a strong effect on the HOMO orbital and the oxidation potentials related to the bppy moieties, as compared to their effect on the metal center. Electron withdrawing chloride substituents in complexes $\mathbf{2 b}$ and $\mathbf{3 b}$ showed the largest inductive effect on the metalbased oxidation process as well as the ligand-based reduction processes.

Table 5.4 Half-wave potentials for $\mathrm{Ru}(\mathrm{II})$ complexes 2a-c, 3a-c. ${ }^{a}$

cmpd	$E_{1 / 2}$ (oxidn)	$E_{1 / 2}($ redn $)$	
2a	$1.53(84)$	$-1.04(56)$	$-1.26(\mathrm{ir})$
2b	$1.68(82)$	$-0.96(36)$	$-1.15(\mathrm{ir})$
2c	$1.54(76)$	$-0.96(68)$	$-1.15(\mathrm{ir})$
3a	$1.40(70)$	$-1.13(76)$	$-1.49(\mathrm{ir})$
3b	$1.54(70)$	$-1.03(80)$	$-1.42(\mathrm{ir})$
3c	$1.41(66)$	$-1.04(\mathrm{ir})$	$-1.41(\mathrm{ir}),-1.62(\mathrm{ir})$
4		-1.27	-1.52

${ }^{a}$ Potentials are in volts vs SCE for acetonitrile solutions, 0.1 M in TBAP at r.t. at a sweep rate of $100 \mathrm{mV} / \mathrm{s}$. The difference between cathodic and anodic peak potentials (mV) is given in parentheses. ir $=$ irreversible. ${ }^{b} \mathbf{4}=\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$, data from ref. 160.

5.2.5 UV-vis spectroscopy

The UV-vis absorption spectra of ligands 1a-c (Figure 5.8, Table 5.5) are dominated by $\pi-\pi^{*}$ and $n-\pi^{*}$ transitions. The lowest $\pi-\pi^{*}$ transition energy absorption bands of ligands 1 a-c appeared below 277 nm , lower than that of the analogous tpy ligand (279.5 nm in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$), indicating the substitution of CH with nitrogen atom in these new family of ligands stabilize the 2,6-bis(pyrimid-2'-yl)-pyridine-based $\pi_{1 \mathrm{a}}$ orbital to a greater extent than the $2,6-$ bis(pyrimid-2'-yl)pyridine-based $\pi^{*}{ }_{1 \mathrm{a}}$ orbital. The $\pi \rightarrow \pi^{*}$ absorption band of ligand $\mathbf{1 b}$ has a red-shifted compared to the absorption band of ligand 1a, due to the fact that chloro substituents stabilize the π^{*} orbital to a greater extent than
π orbital. Ligand 1c, which has two phenyl substituents, has two $\pi \rightarrow \pi^{*}$ transitions. The higher energy transition can be assigned to the transition from low-lying π_{ph} orbital to 2,6-bis(pyrimid-2'-yl)pyridine-based $\pi^{*}{ }_{1 \mathrm{a}}$ orbital, while the other one to the $\pi_{1 \mathrm{a}} \rightarrow \pi^{*}{ }_{1 \mathrm{a}}$ transition. The phenyl substituents in ligand $1 \mathbf{c}$, which has the lowest $\pi_{1 \mathrm{a}} \rightarrow \pi^{*}{ }_{1 \mathrm{a}}$ transition energy, stabilize the $\pi^{*}{ }_{1 \mathrm{a}}$ to the greatest extent in the newly synthesized ligand 1a-c due to their strong π-accepting ability.

Figure 5.8 Absorption spectra of ligands 1a (solid line), 1b (dashed line) and 1c (dotted line) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature.

Table 5.5 Absorption spectra data of ligands $1 \mathrm{a}-\mathrm{c} .{ }^{a}$

ligand	$\lambda(\mathrm{nm}) ; \varepsilon\left(10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$	
	$\pi \rightarrow \pi^{*}$	$\mathrm{n} \rightarrow \pi^{*}$
1a	$233(25.3)$	$292(9.57)$
1b	$245(33.4)$	$300(13.1)$
1c	$225(11.7), 277(18.0)^{b}$	$312(13.4)$
tpy c	$280(20.0)$	

${ }^{a}$ In $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature. ${ }^{b} \pi_{\mathrm{ph}} \rightarrow \pi^{*}{ }_{1 \mathrm{a}}$ and $\pi_{1 \mathrm{a}} \rightarrow \pi_{1 \mathrm{a}}{ }^{*}$, respectively. ${ }^{c}$ From ref 20.

The absorption spectra of homoleptic complexes 2a-c and heteroleptic complexes 3a-c are shown in Figure 5.9 and Figure 5.10, respectively, with the data compiled in Table 5.6. Since the ligands Rbppy have a better stabilization effect on metal-based π_{M} orbitals than the tpy ligand. The ${ }^{1}$ MLCT bands of the homoleptic complexes 2a-c are shifted to higher energy compared with $\mathrm{Ru}(\text { tpy })_{2}{ }^{2+}$ (4). The ${ }^{1}$ MLCT bands of the heteroleptic complexes 3a-c are shifted to higher energy compared with their homoleptic counterparts, due to the better electron donating ability of the tpy ligand.

Figure 5.9 Absorption spectra of complexes 2a (solid line), 2b (dashed line) and 2c (dotted line) in $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature.

Figure 5.10 Absorption spectra of complexes 3a (solid line), 3b (dashed line) and 3c (dotted line) in $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature.

The substituents on the pyrimidine rings in Rbppy ligands have very little effect on the ${ }^{1}$ MLCT of the complexes, since the substituents have the same effect on the metalbased π_{M} orbital and ligand-based $\pi_{\mathrm{L}}{ }^{*}$.

Table 5.6 Absorption spectra data of complexes 2a-c, 3a-c. ${ }^{a}$

	Absorption
cpd	$\lambda_{\text {max }}, \mathrm{nm}\left(\varepsilon, 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$
2a	468 (6.24), 347 (5.03), 300 (24.9), 252 (32.6), 230 (27.2)
2b	466 (10.3), 359 (9.43), 311 (59.3), 259 (79.8)
2 c	474 (8.67), 328 (81.8), 278 (74.3), 232 (65.6)
3 a	471 (10.3), 356 (5.63), 331 (15.0), 303 (48.5), 271 (29.9), 256 (45.3),
	231 (43.5)
3b	469 (5.33), 382 (4.02), 331 (11.8), 304 (29.4), 263 (36.5), 243 (23.3)
3 c	474 (8.08), 373 (5.79), 331 (43.9), 302 (50.7), 272 (47.3), 231 (38.2)
4^{b}	474(10.4)

5.3 Conclusion

A new synthetic approach to the tridentate ligands, 2,6 -bis(5^{\prime} 'R-pyrimyd-2'yl)pyridine $(\mathrm{R}=\mathrm{H}, \mathbf{1 a} ; \mathrm{Cl}, \mathbf{1 b} ; \mathrm{Ph}, \mathbf{1 c}$.), was developed. Application of these ligands to the coordination sphere of $\mathrm{Ru}(\mathrm{II})$ led to a new family of $\mathrm{Ru}(\mathrm{II})$ complexes $\mathbf{2 a - c}$ and 3a-c. The single crystal structural data of complexes $\mathbf{2 a} \mathbf{a} \mathbf{b}$ and $\mathbf{3 b}$ showed that the complexes adopted more distorted octahedral configurations which result in the weak ligand field strength of Rbppy ligands. The coordination of Rbppy ligands to the Ru(II) metal center has lowered (stabilized) the metal-based π_{M} orbital and ligand-based $\pi_{\mathrm{L}}{ }^{*}$. Better stabilization effects were observed on metal-based π_{M} orbital in homoleptic complexes 2a-c. In heteroleptic complexes 3a-c, the stabilization effects were in the same extent that the ${ }^{1}$ MLCT bands were kept nearly the same as that in $R u(t p y){ }_{2}{ }^{2+}$.

5.4 Experimental Section

5.4.1 General methods

All reactions were performed under a dry argon atmosphere using standard Schlenk techniques. Solvents for the reaction were pre-dried using Pure-Solv Solvent Purification System (Innovative Technology Inc.). All chemicals were purchased from Sigma-Aldrich and used as received.

Nuclear magnetic resonance (NMR) spectra were recorded at room temperature (r.t.) on a Bruker AC- 400 spectrometer at 400 MHz for ${ }^{1} \mathrm{H}$ NMR and at 100 MHz for ${ }^{13} \mathrm{C}$ NMR. Chemical shifts are reported in part per million (ppm) relative to residual solvents (2.50 ppm for $\mathrm{DMSO}_{-} \mathrm{d}_{6}, 7.26 \mathrm{ppm}$ for chloroform-d and 1.94 ppm for acetonitrile- d_{3}) and the carbon resonance of the solvents. Melting points were measured on a Mel-Temp 1101 D (Electrothermal, USA) without correction. ESI-MS and MALDI-TOF MS were done by the Mass Spectrometry Facility at Université de Montréal. Elemental analyses were done in the Elemental Analyses Lab in Département de chimie, Université de Montréal. Routine absorption spectra and emission spectra were measured in argonpurged acetonitrile at r.t. on a Cary 500i UV-vis-NIR Spectrophotometer and a Cary Eclipse Fluorescence Spectrophotometer, respectively. Electrochemical data were collected in Ar-purged acetonitrile with $1.0 \mathrm{M}^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{NPF}_{6}$ on a BAS CV-50W Voltammetric Analyzer. Redox potentials were corrected by internal reference to ferrocence (395 mV vs SCE).

5.4.2 X-Ray crystallography

The solid-state structures of the complexes $\mathbf{2 a - b}$ and $\mathbf{3 b}$ were determined by Xray crystallography. Recrystallization of $\mathbf{2 a - b}$ and $\mathbf{3 b}$ from acetonitrile solution, respectively, by slow diffusion of diethyl ether vapor provided dark-red single crystals suitable for single crystal X-ray diffraction. Crystal parameters and details of the data collection and refinement for 2a-b and 3b are given in Table 5.7.

Table 5.7 Crystallography data for complexes 2a-b and 3b. ${ }^{a}$

Complex	2a	2b	3b
Molecular formula			
$\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~F}_{12} \mathrm{~N}$	$2.5\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right) \quad \mathrm{C}$	$\mathrm{C}_{26} \mathrm{H}_{14} \mathrm{Cl}_{4} \mathrm{~F}_{12} \mathrm{~N}_{10} \mathrm{P}_{2} \mathrm{Ru} \cdot 2\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right) \cdot 2\left(\mathrm{H}_{2} \mathrm{O}\right)$	$\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{C}_{12} \mathrm{~N}_{8} \mathrm{Ru} \cdot 2\left(\mathrm{PF}_{6}\right) \cdot 2\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)$
M	964.15	1117.42	1010.52
Crystal system	triclinic	monoclinlic	orthorhombic
a / \AA	12.9633(18)) 11.877(3)	$16.3846(2)$
b / \AA	14.844(2)	10.666(2)	62.8985(8)
c / \AA	19.220(3)	17.361(3)	14.5581(2)
$\alpha 1^{\circ}$	87.483(3)	90	90
$\beta 1^{\circ}$	88.590(2)	119.990 (11)	90
$\gamma^{\prime \prime}$	78.648(2)	90	90
U / \AA^{3}	3622.1(9)	1904.8(7)	15003.1(3)
Space group	P-1	P2/c	Fdd2
Z	4	2	16
$D c / \mathrm{Mg} \mathrm{m}^{-3}$	1.768	1.948	1.790
μ / mm^{-1}	0.629	0.887	6.435
Temperature/K	125(2)	125(2)	100(2)
R1	0.0464	0.1066	0.277
wR2	0.1158	0.2791	0.0685

${ }^{a}$ Radiation sources for the structure determination of complexes 2a-b were Mo source.

5.4.3 Syntheses of Ligands 1a-c

2,6-pyridine-bisamidine $\cdot 2 \mathrm{HCl}(6)^{21}$:

2,6-Pyridinedicarbonitrile ($0.39 \mathrm{~g}, 3.0 \mathrm{mmol}$) and $\mathrm{MeONa}(0.42 \mathrm{~g}, 7.8 \mathrm{mmol})$ were added to anhydrous $\mathrm{MeOH}(25 \mathrm{~mL}$) and the solution was stirred at room temperature for 24 h . Solid $\mathrm{NH}_{4} \mathrm{Cl}(0.80 \mathrm{~g}, 15 \mathrm{mmol})$ was added and the mixture was stirred at room temperature for 48 h . Diethyl ether (200 mL) was added to the mixture and the resultant white solid was collected by filtration, washed with diethyl ether $(10 \mathrm{~mL} \times 3)$ and dried under vacuum to give $6^{21}(0.53 \mathrm{~g}, 2.2 \mathrm{mmol}, 73 \%)$. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6}, 400 \mathrm{MHz}$): δ 9.11 (s, br, $4 \mathrm{H}, \mathrm{H}_{\mathrm{N}-\mathrm{H}}$), 8.91 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\text {Py }}, 5$), $8.53\left(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {Py }} 4\right.$). ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, 100 \mathrm{MHz}$): $\delta 161.4,144.9,141.6,128.2$. ESI-MS: 237.1, $[\mathrm{M}+\mathrm{H}]^{+}$.

Ligands 1a-c: General procedure for the synthesis of ligands $\mathbf{1 a - c}$. 2,6-bis(pyrimid-2'-yl)pyridine (1a):

Compound $6(0.47 \mathrm{~g}, 2.0 \mathrm{mmol})$, $\mathrm{MeONa}(0.27 \mathrm{~g}, 5.0 \mathrm{mmol})$ and vinamidine hexaflurophophate salt ($1.24 \mathrm{~g}, 4.0 \mathrm{mmol}$) were added into anhydrous $\mathrm{MeOH}(25 \mathrm{~mL}$) and the resultant mixture was heated at reflux for 16 h . The solvent was removed under reduced pressure and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL} \times 3)$. The combined organic phases were washed with $\mathrm{H}_{2} \mathrm{O}$ and the solvent was removed under reduced
pressure. Recrystallization of the residue from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ afforded colorless crystalline product $(0.31 \mathrm{~g}, 1.32 \mathrm{mmol}, 66 \%) . \mathrm{mp}$: 222.8-223.1. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}): \delta 8.94\left(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{Pm} 4,6}\right), 8.60\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Py}} 3,5\right), 8.06(\mathrm{t}, J=$ $\left.7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Py}} 4\right), 7.32\left(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Pm} 5}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right): \delta 8.99$ $\left(\mathrm{d}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{Pm}} 4,6\right), 8.59\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Py}} 3,5\right), 8.13(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}$ Py 4), $7.48\left(\mathrm{t}, J=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Pm} 5}\right) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 164.1,158.1,155.6$, 138.4, 125.1, 120.8. ESI-MS: $236.2\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right)$. Calculated for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{5}, 236.0931$, $[\mathrm{M}+\mathrm{H}]^{+}$; found, 236.0933. Calc. for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{5}: \mathrm{C}, 66.37 ; \mathrm{H}, 3.86 ; \mathrm{N}, 29.77$. Found: C, 65.40; H, 3.73; N, 29.49.

2,6-bis(5'-chloro-pyrimid-2'-yl)pyridine (1b):

Yield, 68\%. mp: 220.3-221.2. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.91$ (s, 4H, $\mathrm{H}_{\mathrm{Pm} 4,6}$), 8.60 $\left(\mathrm{d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Py}} 3,5\right), 8.08\left(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Py}} 4\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right):$ $\delta 8.99\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{Pm} 4,6}\right), 8.59\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\text {Py }} .5\right), 8.15\left(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {Py }}\right)$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 161.7,156.7,154.7,138.6,131.4,125.4$. ESI-MS: 304.2 ([M] ${ }^{+}, 100 \%$). Calculated for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{~N}_{5}, 304.0154,[\mathrm{M}+\mathrm{H}]^{+}$; found, 304.0151. Calc. for $\mathrm{C}_{13} \mathrm{H}_{7} \mathrm{Cl}_{2} \mathrm{~N}_{5}$: C, 51.34; H, 2.32; N, 23.03. Found: C, 53.47; H, 2.18; N, 20.58.

2,6-bis(5'-phenyl-pyrimid-2'-yl)pyridine (1c):

Yield, 70%. mp: 234.1-234.7. ${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 9.21\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{Pm} 4,6}\right), 8.71$ $\left(\mathrm{d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Py}} 3,5\right), 8.12\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Py}} 4\right), 7.71\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}\right.$ ${ }_{2,6}$), 7.60-7.49 (m, 6H, H $\mathrm{Ph}_{3,4,5}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right): \delta 9.27\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{Pm}} 4,6\right)$, $8.68\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Py}} 3.5\right), 8.18\left(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Py} 4}\right), 7.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{Ph} 2,6}\right), 7.64-7.53\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}} 3,4.5\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 162.0,155.3,154.6$, $137.7,133.9,132.6,129.1,128.7,126.6,124.3$. ESI-MS: $388.3\left([\mathrm{M}+\mathrm{H}]^{+}, 100 \%\right)$. Calculated for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~N}_{5}, 388.1556$, $[\mathrm{M}+\mathrm{H}]^{+}$; found, 388.1567. Calc. for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~N}_{5}$: C, $77.50 ;$ H, 4.42 ; N, 18.08. Found: C, 65.09; H, 4.15; N, 15.01.

5.4.4 Synthesis of complexes 2a-c and 3a-c

Complexes 2a-c: General procedure for homoleptic complexes 2a-c.
Bis[2,6-bis(pyrimid-2'-yl)pyridine] ruthenium(II) hexaflurophosphate (2a):

Ligand 2,6-bis(pyrimyd-2yl)pyridine (2a, $94 \mathrm{mg}, 0.40 \mathrm{mmol}$), ruthenium trichloride hydrate ($45 \mathrm{mg}, 0.20 \mathrm{mmol}$) and silver nitrate ($102 \mathrm{mg}, 0.60 \mathrm{mmol}$) were heated to reflux in anhydrous ethanol (20 mL) for 12 h . The mixture was filtered through celite and the
filtrate was evaporated to dryness under reduced pressure. The residue was then chromatographed on a silica gel column with $7: 1$ acetonitrile and saturated aqueous KNO_{3} as eluent. Anion exchange with $\mathrm{NH}_{4} \mathrm{PF}_{6}$ gave pure product $3 \mathrm{a}(0.113 \mathrm{~g}, 66 \%) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right): \delta 9.00\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{Py}} 3,5\right), 8.88(\mathrm{dd}, J=4.7,1.0 \mathrm{~Hz}$, $4 \mathrm{H}_{\mathrm{P}} \mathrm{H}_{\mathrm{Pm}}$) , $8.54\left(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Py}} 4\right), 7.74\left(\mathrm{dd}, J=5.7,1.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{Pm}} 6\right), 7.23(\mathrm{t}$, $\left.J=5.3,4 \mathrm{H}, \mathrm{H}_{\mathrm{Pm} 5}\right) \cdot{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 100 \mathrm{MHz}\right): \delta 164.9,160.9,157.5,154.1,137.0$, 127.2, 122.5. ESI-MS: 285.8 ($\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}, 100 \%$); 716.2 ($\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}, 48 \%$). Calculated for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{~N}_{10} \mathrm{RuP}_{2} \mathrm{~F}_{12}, 717.0401,\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}$; found, 717.0396.

Bis[2,6-bis(5'-chloro-pyrimid-2'-yl)pyridine] ruthenium(II) hexaflurophosphate (2b):

Yield, $20 \%{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right): \delta 8.98\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{Py}} 3,5\right), 8.92(\mathrm{~d}, J$ $\left.=2.4 \mathrm{~Hz}, 4 \mathrm{H}_{\mathrm{P}} \mathrm{H}_{\mathrm{Pm}}\right), 8.56\left(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Py} 4}\right), 7.76\left(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{Pm} 6}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 100 \mathrm{MHz}\right): \delta 163.8,160.7,157.1,154.4,138.5,132.2,128.6$. ESI-MS: $355.0\left(\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}, 100 \%\right) ; 854.9\left(\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}, 17 \%\right)$. Calculated for $\mathrm{C}_{26} \mathrm{H}_{14} \mathrm{Cl}_{4} \mathrm{~N}_{10} \mathrm{RuP}_{2} \mathrm{~F}_{12}$, 852.8842, $\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}$; found, 852.8837.

Unknown complex 2b': Proposed structure.

Yield, $76 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right): \delta 10.18(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 9.30(\mathrm{~d}, \mathrm{~J}=2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 8.93(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.92(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.42(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.35$ $(\mathrm{s}, 2 \mathrm{H}), 8.25(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.08-8.00(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{dd}, \mathrm{J}=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{CN}, 100 \mathrm{MHz}\right): \delta 163.7,163.1,160.0,158.6,156.3,156.2,155.8,155.7$, $155.6,153.6,138.1,137.7,134.2,132.1,131.4,131.2,128.8,127.9,126.5,125.3$. ESIMS: $355.1 \quad\left(\left[\mathrm{M}-\mathrm{PF}_{6}-\mathrm{Cl}\right]^{2+}, \quad 7 \%\right) ; \quad 744.9 \quad\left(\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}, \quad 100 \%\right)$. Calculated for $\mathrm{C}_{26} \mathrm{H}_{14} \mathrm{Cl}_{5} \mathrm{~N}_{10} \mathrm{RuPF}_{6}, 742.8890$, [M-PF $]^{+}$; found, 742.8884 .

Bis[2,6-bis(5'-chloro-pyrimid-2'-yl)pyridine] ruthenium(II) hexaflurophosphate (2c):

Yield, $68 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}$): $\delta 9.14\left(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{Pm} 4}\right), 9.03(\mathrm{~d}, \mathrm{~J}=$ $\left.8.1 \mathrm{~Hz}, 4 \mathrm{H}_{\mathrm{P}}, \mathrm{H}_{\text {Py } 3,5}\right), 8.56\left(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\text {Py } 4}\right), 7.85\left(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{Pm}} 6\right)$, 7.46$7.44\left(\mathrm{~m}, 10 \mathrm{H}, \mathrm{H} \mathrm{Ph}^{2}\right) \cdot{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 100 \mathrm{MHz}\right): \delta 163.4,158.0,155.1,154.1,137.0$, $135.0,131.3,129.7,129.0,127.2,127.1$. ESI-MS: $438.1\left(\left[\mathrm{M}_{-2} \mathrm{PF}_{6}\right]^{2+}, 100 \%\right) ; 1021.2$ ([M-PF $\left.]_{6}\right]^{+}, 46 \%$). Calculated for $\mathrm{C}_{50} \mathrm{H}_{34} \mathrm{~N}_{10} \mathrm{RuP}_{2} \mathrm{~F}_{12}, 1021.1653$, $\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}$; found,
1021.1648.

Complexes 3a-c: General procedure for heteroleptic complexes 3a-c.
[2,6-bis(pyrimid-2'-yl)pyridine](2,2':6',2%22-terpyridine) ruthenium(II) hexaflurophosphate (3a):

Ligand 2,6-bis(pyrimyd-2yl)pyridine ($1 \mathrm{a}, 56 \mathrm{mg}, 0.24 \mathrm{mmol}$), ruthenium terpyridine trichloride ($110 \mathrm{mg}, 0.25 \mathrm{mmol}$) and silver nitrate $(0.128 \mathrm{~g}, 0.75 \mathrm{mmol})$ were heated to reflux in anhydrous DMF (15 mL) for 4 h . The mixture was filtered through celite and the filtrate was evaporated to dryness under reduced pressure. The residue was then chromatographed on a silica gel column with $7: 1$ acetonitrile and saturated aqueous KNO_{3}. Anion exchange with $\mathrm{NH}_{4} \mathrm{PF}_{6}$ gave pure product ($0.132 \mathrm{~g}, 64 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right): \delta 9.00\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Py}}{ }^{2}, 5\right), 8.86(\mathrm{dd}, J=4.8,2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}$ $\left.{ }^{\mathrm{Pm}} 4\right), 8.75\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}^{2}, \mathrm{H}_{3}{ }^{\prime}, 5^{\prime}\right), 8.53-8.45\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{3}, 3^{3}, 4^{\top}\right.$, Py 4$), 7.95\left(\mathrm{td}, J^{t}=7.9\right.$ $\left.\mathrm{Hz}, J^{\mathrm{d}}=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{4}, 4^{*}\right), 7.71\left(\mathrm{dd}, J=5.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Pm} 6}\right), 7.38(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{H}_{6,6^{\prime \prime}}\right), 7.23-7.17\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{5,5 ", \operatorname{Pm} 5}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 100 \mathrm{MHz}\right): \delta 165.0,160.0$, $157.5,157.2,155.0,154.0,152.9,138.0,136.3,136.2,127.2,127.1,124.0,123.4,122.5$. ESI-MS: $285.4\left(\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}, \quad 100 \%\right) ; 715.0$ ([M-PF6] $\left.]^{+}, \quad 67 \%\right)$. Calculated for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{~N}_{8} \mathrm{RuP}_{2} \mathrm{~F}_{12}, 715.0496,\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}$; found, 715.0491. hexaflurophosphate (3b):

Yield, $65 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right): \delta 8.99\left(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\text {Py }} 3,5\right), 8.87(\mathrm{~d}, J$ $\left.=2.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Pm}} 4\right), 8.76\left(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}^{2} \mathrm{H}_{3^{\prime}} 5^{\prime}\right), 8.53-8.45\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{3,3^{\prime \prime}, 4^{\prime}, \mathrm{Py} 4}\right)$,
 $\left.=5.6,0.6 \mathrm{~Hz}, 2 \mathrm{H}^{2} \mathrm{H}_{6}, 6^{\prime \prime}\right), 7.21\left(\mathrm{td}, J^{t}=6.6 \mathrm{~Hz}, J^{\mathrm{d}}=1.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{5}, 5^{\circ}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 100 \mathrm{MHz}\right): \delta 162.9,158.6,157.7,156.0,155.1,153.4,153.2,138.2,136.8$, $136.3,131.6,127.3,127.1,124.2,123.8$. ESI-MS: $319.0\left(\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}, 100 \%\right) ; 783.0$ ([M$\left.\mathrm{PF}_{6}\right]^{+}, 56 \%$). Calculated for $\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{~N}_{8} \mathrm{Cl}_{2} \mathrm{RuP}_{2} \mathrm{~F}_{12}, 782.9711,\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}$; found, 782.9705.
[2,6-bis(5-phenyl-pyrimid-2-yl)pyridine] $\left(2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}\right.$-terpyridine)
ruthenium(II) hexaflurophosphate (3c):

Yield, $62 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right): \delta 9.11\left(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Pm}} 4\right), 9.03(\mathrm{~d}, J=$

$\left(\mathrm{d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3,3^{\prime \prime}}\right), 8.44\left(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{4^{\prime}}\right), 7.94\left(\mathrm{td}, J^{\mathrm{t}}=7.9 \mathrm{~Hz}, J^{\mathrm{d}}=1.5 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{H}_{4,4^{\prime \prime}}$), $7.74\left(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Pm}} 6\right.$), 7.46-7.40($\mathrm{m}, 12 \mathrm{H}, \mathrm{H}_{6,6} 6^{\prime \prime}$, Ph $\left.2,3,4,5,6\right), 7.21$ $\left(\mathrm{td}, J^{t}=6.7 \mathrm{~Hz}, J^{\mathrm{d}}=1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\left.5,5^{\prime \prime}\right) .}{ }^{13} \mathrm{C}\right.$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 100 \mathrm{MHz}\right): \delta 164.0,158.5$, $157.7,155.9,155.8,154.6,153.5,138.7,137.0,136.9,135.9,132.1,130.5,129.7,127.9$, 127.8, 127.6, 125.1, 124.5. ESI-MS: $361.4\left(\left[\mathrm{M}-2 \mathrm{PF}_{6}\right]^{2+}, 100 \%\right) ; 867.0\left(\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}, 99 \%\right)$. Calculated for $\mathrm{C}_{40} \mathrm{H}_{28} \mathrm{~N}_{8} \mathrm{RuP}_{2} \mathrm{~F}_{12}, 867.1122$, $\left[\mathrm{M}-\mathrm{PF}_{6}\right]^{+}$; found, 867.1117.

5.5 References

1. G. T. Morgan, F. H. Burstall. J. Chem. Soc. 20 (1932).
2. (a) V. Balzani, F. Barigelletti, P. Belser, S. Bernhard, L. De Cola, L. Flamigni. J. Phys. Chem. 100, 16786 (1996). (b) E. C. Constable. Prog. Inorg. Chem. 42, 67 (1994). (c) S. Chodorowski-Kimmes, M. Beley, J.-P. Collin, J.-P. Sauvage. Tetrahedron Lett. 37, 2963 (1996). (d) A. M. W. Cargill Thompson. Coord. Chem. Rev. 160, 1 (1997). (e) E. C. Constable, J. E. Davies, D. Phillips, P. R. Raithby. Polyhedron 17, 3989 (1998). (f) J.-P. Sauvage, J.-P. Collin, J.-C. Chambron, S. Guillerez, C. Coudret, V. Balzani, F. Barigelletti, L. De Cola, L. Flamigni. Chem. Rev. 94, 993 (1994).
3. M. Mukkala, M. Helenius, I. Hemmila, J. Kankare, H. Takalo. Helv. Chim. Acta 76, 1361 (1993).
4. (a) G. Chelucci. Synth. Commun. 23, 1897 (1993). (b) G. Chelucci, A. Saba, D. Vignola, C. Solinas. Tetrahedron 57, 1099 (2001).
5. (a) J.-P. Collin, V. Heitz, J.-P. Sauvage. Tetrahedron Lett. 32, 5977 (1991). (b) J. C. Chambron, J.-P. Collin, J.-O. Dalbavie, C. O. Dietrich-Buchecker, V. Heitz, F. Odobel, N. Solladié, J.-P. Sauvage. Coord. Chem. Rev. 178, 1299 (1998). (c) J.-P. Collin, A. Harriman, V. Heitz, F. Odobel, J.-P. Sauvage. Coord. Chem. Rev. 148, 63 (1996). (d) M. Kimura, T. Hamakawa, K. Hanabusa, H. Shirai, N. Kobayashi. Inorg. Chem. 40, 4775 (2001). (e) L. Flamigni, F. Barigelletti, N. Armaroli, B. Ventura, J.-P. Collin, J.-P. Sauvage, J. A. G. Williams. Inorg. Chem. 38, 661 (1999). (f) J.-P. Collin, A. Harriman, V. Heitz, F. Odobel, J.-P. Sauvage. J. Am. Chem. Soc. 116, 5679 (1994).
6. (a) B. Whittle, N. S. Everest, C. Howard M. D. Ward. Inorg. Chem. 34, 2025 (1995). (b) G. D. Storrier, K. Takad, H. D. Abruna. Inorg. Chem. 38, 559 (1999).
7. (a) H. Tsukube, T. Hamada, T. Tanaka, J. Uenishi. Inorg. Chim. Acta 214, 1 (1993). (b) F. Loiseau, C. Di Petrio, S. Serroni, S. Campagna A. Licciardello, A. Manfredi, G. Pozzi, S. Quici. Inorg. Chem. 40, 6901 (2001). (c) J. M. Haider, M. Chavarot, S. Weidner, I. Sadler, R. M. Williams, L. De Cola, Z. Pikramenou. Inorg. Chem. 40, 3912 (2001).
8. (a) P. Pechy, F. P. Rotzinger, M. K. Nazeeruddin, O. Kohle, S. M. Zakeeruddin, R. Humphry-Baker, M. Grätzel. J. Chem. Soc., Chem. Commun. 65 (1995). (b) Y. W. Liang, R. H. Schmehl. J. Chem. Soc., Chem. Commun. 1007 (1995). (c) C. R. Rice, M. D. Ward, M. K. Nazeeruddin, M. Grätzel. New J. Chem. 24, 651 (2000). (d) A. Islam, H. Sugihara, H. Arakawa. J. Photochem. Photobiol. A: Chem. 158, 131 (2003). (e) C. Bauer, G. Boschloo, E. Mukhtar, A. Hagfeldt. J. Phys. Chem. B 106, 12693 (2002).
9. (a) F. Zeng, S. C. Zimmerman. Chem. Rev. 97, 1681 (1997). (b) E. C. Constable, C. E. Housecroft, M. Neuburger, A. G. Schneider, B. Springler, M. Zehnder. Inorg. Chim. Acta 300, 49 (2000). (c) L. Flamigni, F. Barigelletti, N. Armaroli, J.P. Collin, I. M. Dixon, J.-P. Sauvage, J. A. Gareth Williams. Coord. Chem. Rev. 190, 671 (1999). (d) J. P. Collin, S. Gillerez, J.-P. Sauvage, F. Barigelletti, L. Flamigni, L. De Cola, V. Balzani. Coord. Chem. Rev. 111, 291 (1991). (e) O. Johansson, M. Borgstrom, R. Lomoth, M. Palmblad, J. Bergquist, L. Hammarström, L. Sun, B. Åkermark. Inorg. Chem. 42, 2908 (2003). (f) J.-P. Collin, C. Dietrich-Buchecker, P. Gavina, M. C. Jimenez-Molero, J.-P. Sauvage.

Acc. Chem. Res. 34, 477 (2001).
10. M. I. J. Polson, E. A. Medlycott, G. S. Hanan, L. Mikelsons, N. J. Taylor, M. Watanabe, Y. Tanaka, F. Loiseau, R. Passalacqua, S. Campagna. Chem. Eur. J. 10, 3640 (2004).
11. (a) E. C. Constable, R. P. G. Henney, T. A. Leese, D. A. Tocher. J. Chem. Soc., Dalton Trans. 2, 443 (1990). (b) J.-P. Collin, M. Beley, J.-P. Sauvage, F. Barigelletti. Inorg. Chim. Acta 186, 91 (1991).
12. (a) M. Beley, J.-P. Collin, R. Louis, B. Metz, J.-P. Sauvage. J. Am. Chem. Soc. 113, 8521 (1991). (b) D. J. Cardenas, A. M. Echavarren, M. C. Ramirez de Arellano. Organometallics 18, 3337 (1999). (c) J. A. G. Williams, A. Beeby, E. S. Davies, J. A. Weinstein, C. Wilson. Inorg. Chem. 42, 8609 (2003).
13. (a) H. Wolpher, O. Johansson, M. Abrahamsson, M. Kritikos, L. Sun, B. Akermark. Inorg. Chem. Commun. 7, 337 (2004). (b) M. Abrahamsson, H. Wolpher, O. Johansson, J. Larsson, M. Kritikos, L. Eriksson, P.-O. Norrby, L. Sun, B. Akermark, L. Hammarström. Inorg. Chem. 44, 3215 (2005).
14. E. Bejan, H. A. Haddou, J. C. Daran, G. G. A. Balavoine. Synthesis 8, 1012 (1996).
15. J. H. Groen, P. W. N. M. van Leeuwen, K. Vrieze. J. Chem. Soc., Dalton Trans. 1, 113 (1998).
16. (a) E.C. Constable. Prog. Inorg. Chem. Vol. 42, Wiley, New York 67 (1994). (b) E. M. Kober, J. L. Marshall, W. J. Dressick, B. P. Sullivan, J. V. Caspar and T. J. Meyer. Inorg. Chem. 24, 2755 (1985). (c) C. R. Hecker, A. K. I. Gushurst and D. R. McMillin. Inorg. Chem. 30, 538 (1991). (d) E. Amouyal, M. Mouallem-Bahout
and G. Calzaferri. J. Phys. Chem. 95, 7641 (1991). (e) C. R. Arana and H. D. Abruña. Inorg. Chem. 32, 194 (1993). (f) J.-P. Collin, S. Guillerez, J.-P. Sauvage, F. Barigelletti, L. De Cola, L. Flamigni and V. Balzani. Inorg. Chem. 30, 4230 (1991). (g) J.-P. Collin, S. Guillerez, J.-P. Sauvage, F. Barigelletti, L. De Cola, L. Flamigni and V. Balzani. Inorg. Chem. 31, 4112 (1992). (h) V. Grosshenny and R. Ziessel. J. Chem. Soc., Dalton Trans. 817 (1993). (i) V. Grosshenny and R. Ziessel. J. Organomet. Chem. 19, 453 (1993). (j) A. Harriman and R. Ziessel. Chem. Commun. 1707 (1996). (k) F. Barigelletti, L. Flamigni, V. Balzani, J.-P. Collin, J.-P. Sauvage, A. Sour, E. C. Constable and A. M. W. Cargill Thompson. J. Chem. Soc., Chem. Commun. 942 (1993). (l) F. Barigelletti, L. Flamigni, V. Balzani, J.-P. Collin, J.-P. Sauvage, A. Sour, E. C. Constable and A. M. W. Cargill Thompson. J. Am. Chem. Soc. 116, 7692 (1994). (m) F. Barigelletti, L. Flamigni, V. Balzani, J.-P. Collin, J.-P. Sauvage and A. Sour. New J. Chem. 19, 793 (1995). (n) J.-P. Sauvage, J.-P. Collin, J.-C. Chambron, S. Guillerez, C. Coudret, V. Balzani, F. Barigelletti, L. De Cola and L. Flamigni. Chem. Rev. 94, 993 (1994). (o) M. Maestri, N. Armaroli, V. Balzani, E. C. Constable and A. M. W. Cargill Thompson. Inorg. Chem. 34, 2759 (1995). (p) J. Wang, G. S. Hanan, F. Loiseau, R. Passalacqua, S. Campagna. Inorg. Chem. 44, 5 (2005). (q) E. A. Medlycott,G. S. Hanan. Chem. Soc. Rev. 34, 133 (2005).
(a)A. Juris, V. Balzani, F. Barigelletti, S. Campagna, P. Belser, and A. Von Zelewsky. Coord. Chem. Rev. 84, 85 (1988); (b) J. A. Treadway, B. Loeb, R. Lopez, P. A. Anderson, F. R. Keene and T. J. Meyer. Inorg. Chem. 35, 2242 (1996); (c) X.-Y. Xian, A. Del Guerzo and R. H. Schemehl. J. Photochem.

Photobiol., C 5, 55 (2004); (d) E. Baranoff, J.-P. Collin, L. Flamigni and J.-P. Sauvage. Chem. Soc. Rev. 33, 147 (2004).
Y.-Q. Fang, A. J. Taylor, G. S. Hanan, F. Loiseau, R. Passalacqua, S. Campagna, H. Nierengarten, A. Van Dorsselaer. J. Am. Chem. Soc. 124, 7912 (2002).
(a) E. C. Constable, A. M. W. Cargill Thompson, D. A. Tocher, M. A. M. Daniels. New J. Chem. 16, 855 (1992). (b) S. Pyo, E. Perez-Cordero, S. G. Bott, L. Echegoyen. Inorg. Chem. 38, 3337 (1999). (c) G. S. Hanan, C. R. Arana, J.-M. Lehn, D. Fense. Angew. Chem. Int. Ed. Engl. 34, 1122 (1995). (d) G. S. Hanan, C. R. Arana, J.-M. Lehn, D. Fense. Chem. Eur. J. 2, 1292 (1996). (e) K. Lashgari, M. Kritikos, R. Norrestam, T. Norrby. Acta Crystallogr. Sect. C C55, 64 (1999).
T. Mutai, J.-D. Cheon, S. Arita and K. Araki. J. Chem. Soc., Perkin Trans. 21045 (2001).
H. Takalo, V. M. Mukkala. PCT Int. Appl. 78. WO 9311433 Al 19930610 (1993).

A similar effect was reported previously: R. P. Thummel, Y. Jahng. Inorg. Chem. 25, 2527 (1986).

Chapter 6

A Facile Route to Sterically Hindered and Non-hindered 4'-Aryl-2,2':6',2"-Terpyridines

Article

Jianhua Wang, Garry S. Hanan

SynLett. 2005, 8, 1251-1254.

Abstract

A facile one-pot synthesis of 4^{\prime}-aryl- $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridines from aryl aldehydes and 2acetylpyridine is presented. The synthesis of terpyridines incorporating sterically hindered aryl groups, such as the 9 -anthryl group, can also be readily synthesized using this method.

Key words

nitrogen ligands, heterocycles, substituted terpyridines, one-pot reactions

6.1 Introduction

Transition metal complexes of polypyridyl ligands have long been a target in coordination chemistry due to their potential utility in a range of applications, such as luminescent chemosensors, photocatalysts, components of devices for the conversion of light into electrical energy, and new electroluminescent materials. ${ }^{1-3}$ The prototypical 2,2'-bipyridine (bpy) and 2,2':6',2"-terpyridine (tpy) ligands have been employed in a large number of these studies, usually binding as bidentate and tridentate ligands, respectively. The advantage of the latter ligand is that structurally simple achiral bis-tpy complexes are obtained with octahedrally coordinating metal ions, which can in turn be used to build up stereochemically discrete polynuclear arrays, as opposed to the racemic mixtures derived from bpy. Moreover, the achirality of tpy complexes is retained upon the chemical modification of the tpy by introducing functional groups into its 4'-position, which necessarily arranges them in a trans configuration along a $C 2$ axis.

Introducing aryl substituents at the 4'-position of tpy can also have a profound influence on the photophysical properties of bis-tpy metal complexes and this effect has been investigated in some detail. ${ }^{4}$ More recently, the photophysical properties of uncomplexed terpyridines have also begun to attract interest due to their potential application in photophysical devices. ${ }^{5-8}$ Strategies for the incorporation of aryl substituents into the 4'-position of the terpyridine core are of considerable interest with respect to many of the applications discussed above.

The classical approach to 4 '-aryl-tpy are based on the synthesis of a pyridine, involving the condensation of two equivalents of 2 -acetylpyridine with the appropriate aryl aldehyde, with formation of the central pyridine ring from the reaction of the
diketone intermediate with ammonia (or a source thereof) at elevated temperatures. ${ }^{9}$ A number of variations have been reported, some involving isolation of the intermediate enone or diketone, others employing mild or solvent-free conditions for parts of the synthesis, but almost all relying on a common step in which the central pyridine ring is formed. ${ }^{10}$ In particular, the approach involving the reaction of 2-pyridyl enaminone and 2-acetylpyridine with a strong base, tBuOK , has been widely employed for the synthesis of the parent tpy ligand. Distinctly different synthetic approaches, in which all three pyridine rings are present in the starting materials, include the reaction of 2,2'-bipyridine with 2-pyridyl-lithiums, the Stille coupling of 2,6-dibromopyridines with 2trialkylstannyl pyridines, ${ }^{11}$ and the Suzuki cross-coupling of 4'-bromo-tpy with arylboronic acid/ester. ${ }^{12}$ However, these approaches feature relatively long reaction times, harsh conditions and the necessity to purify the products by column chromatography. As part of our research with $\mathrm{Ru}(\mathrm{II})$ complexes of tridentate tpy ligands, a mild and efficient synthesis of a variety of 4^{\prime}-aryl-tpy ligands was required. ${ }^{13}$ Herein we report the facile one-step synthesis of a variety of tpy-based ligands with aromatic substituents in their 4'position, which greatly improves the one-pot synthesis for 4'-aryl-tpy ligands previously reported. ${ }^{14}$

6.2 Results and discussion

Our optimization of the one-step reaction started from readily available aryl aldehydes ${ }^{15}$ and 2-acetylpyridine (Scheme 6.1). The reaction conditions and yields of the various ligands are gathered in Table 6.1. The enolate of 2-acetylpyridine can be generated by KOH under mild conditions. The following aldol condensation and Michael addition proceeded smoothly at room temperature. The soluble diketone intermediate was then allowed to form the central pyridine ring with an aqueous ammonia nitrogen source. The synthesis of the phenyl-based tpy ligands, 1-9, was very straightforward using these mild conditions. Typically, the ligands precipitated from the reaction mixture as finely dispersed solids, which were easily separated by filtration. For 4, after 24 h reaction, the ligand was separated from the reaction mixture by acidification with AcOH , extraction with DCM and recrystallization from EtOH.

Scheme 6.1 Facile one-pot synthesis of 4^{\prime}-aryl- $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine.

The encouraging results for the synthesis of ligands 1-9 led us to apply these mild conditions to introduce organic chromophores into the tpy moiety, which is a critical step to prolong the r.t. luminescence lifetime of $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ complexes by the bichromophore approach. ${ }^{16}$ The 4'-biphenyl and 1-naphthyl groups were introduced into 4'-position of tpy to give ligand $\mathbf{1 0}$ and $\mathbf{1 1}$ by stirring at r.t. for 4 h . However, the synthesis of ligand $\mathbf{1 2}$
with the bulkier 9-anthryl group was problematic due to the insolubility of the intermediate, 2-(1-(9-anthryl)-3-oxo-3-prop-2-enyl] pyridine, in EtOH. Treatment of the same starting materials at reflux kept the enone intermediate in solution leading to a onestep synthesis of 4'-(9-anthryl)-tpy. It is noteworthy that this is the first example of a onestep synthesis of tpy-based ligands with bulky substituents in the 4'-position.

To survey the scope of the reaction conditions for heteroatom aromatic aldehydes, the 2-furyl-tpy (13) and 4-pyridyl-tpy (14) were also synthesized in moderate yield.

Table 6.1 Reaction conditions and yields of 4^{\prime}-aryl-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridines compared with the methods previously reported. ${ }^{\text {a }}$

Ligand, R	Rxn time, h; Yield (\%) ${ }^{\text {b }}$	Yield, $\%$; ${ }^{\text {c }}$ (steps ${ }^{\text {d }}$)
	2; (53)	$<5 ;(4)^{[6] \mathrm{e}}$
	2; (49)	19; (4) ${ }^{[5]}, 46 ;(1)^{[13]}$
	4; (42)	36; $(5)^{[6] e}$
	12; (43)	40; (2) ${ }^{[17]}$
	2; (56)	70; (2) ${ }^{[5]}$
	12; (25)	17; (4) ${ }^{[5]}, 29 ;(4)^{[6] e}$
	4; (51)	65; (2) ${ }^{[5]}, 34 ;(5)^{[6] \mathrm{e}}$
$8_{8}^{\text {меO- }}$	12; (20)	20; (4) ${ }^{[5]}$
	24; (27)	new
10	4; (48)	42; (1) ${ }^{[6] \mathrm{T}}$
	4; (32)	no yield available ${ }^{[18]}$
	$24^{\text {b }}$; (27)	$59 ;(2)^{[4 \mathrm{c}]}$
13	4; (24)	69; $(2)^{[19]}$
	4; (42)	$69 ;(2)^{[20]}$

${ }^{\text {a }}$ Reaction condition: 1.0 equiv. aryl aldehyde, 2.0 equiv. 2 -acetyl pyridine, 2.0 equiv. $\mathrm{KOH}, 2.5$ equiv. $\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}, \mathrm{rt}$.
${ }^{\mathrm{b}}$ Isolated yield of first crop of precipitate in our work.
${ }^{c}$ Isolated overall yields as previously reported.
d Number of reaction steps from commercial available starting materials.
${ }^{\mathrm{e}}$ In ref.[6], from 4^{\prime}-TfO-2,2':6',2"-terpyridine (TfO-tpy, 45% overall yield over 3 steps) or 4^{\prime}-bromo- $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (45% overall yield over 4 steps).
${ }^{\mathrm{f}}$ Starting from 4 '-p-bromophenyl-2, $2^{\prime}: 6^{\prime}, 2{ }^{\prime \prime}$-terpyridine.
${ }^{\mathrm{g}}$ Reaction condition: 1.0 equiv. 9-anthryl aldehyde, 2.0 equiv. 2-acetyl pyridine, 2.5 equiv. $\mathrm{NH}_{3} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}$, reflux, 24 h .

6.3 Conclusion

In conclusion, we have developed mild reaction conditions for the synthesis of 4'aryl and 4^{\prime}-heteroaryl substituted tpys. These reaction conditions are compatible with various functional groups and provide an efficient route to tridentate $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}-$ terpyridine-based ligands.

6.4 Experimental

6.4.1 General methods

Nuclear magnetic resonance (NMR) spectra were recorded at room temperature (r.t.) on a Bruker AV400 spectrometer at 400 MHz for ${ }^{1} \mathrm{H}$ NMR and at 100 MHz for ${ }^{13} \mathrm{C}$ NMR. Chemical shifts are reported in part per million (ppm) relative to residual protonated solvents and the carbon resonance of the solvents. Fast-atom bombardment (FAB, positive mode) spectra were recorded on a ZAB-HF-VB-analytical apparatus in an m nitrobenzylalcohol (m-NBA) matrix and Ar atoms were used for the bombardment (8 KeV). Microanalysis was done in the Microanalysis Laboratory, Universite de Montreal.

6.4.2 Materials

All chemicals were purchased from Sigma-Aldrich, AnaChemia and BDH and were used as received. Solvents for reaction were purchased from Fisher and used as received.

6.4.3 Ligands: General method for 1-11, 13-14:

4'-phenyl-2,2':6',2"-terpyridine (1)

2-Acetylpyridine ($4.84 \mathrm{~g}, 40 \mathrm{mmol}$) was added into a solution of benzaldehyde (2.12 g , $20 \mathrm{mmol})$ in ethanol (100 mL). KOH pellet ($3.08 \mathrm{~g}, 85 \%, 40 \mathrm{mmol}$) and aqueous ammonium ($58 \mathrm{~mL}, 29.3 \%, 50 \mathrm{mmol}$) were then added to the solution. The solution was stirred at room temperature for 2 h . The pale-green solid was collected by filtration, washed with ethanol ($10 \mathrm{~mL} \times 3$). Recrystallization from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ afforded white crystalline solid ($3.24 \mathrm{~g}, 10.5 \mathrm{mmol}, 53 \%)$: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.76(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}$ $\left.3^{\prime} .5^{\circ}\right), 8.74\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}_{,} \mathrm{H}_{6,6^{\prime}}\right), 8.68\left(\mathrm{~d}, J=8.0,2 \mathrm{H}, \mathrm{H}_{3,3^{\prime}}\right), 7.92(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{Ph} 2,6}\right), 7.90\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{4,4^{\prime \prime}}\right), 7.52\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph} 3,5}\right), 7.46(\mathrm{t}, J=6.9$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}} 4\right), 7.37\left(\mathrm{dd}, J=7.5,5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\left.5,5^{\prime \prime}\right)}{ }^{13} \mathrm{C} \mathrm{NMR}^{\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): ~} \delta\right.$ $156.5,156.2,150.8,149.4,138.8,137.4,129.5,129.3,127.8,124.3,121.9,119.4$. Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{3}$: C, 81.53; H, 4.89; N, 13.58. Found: C, 81.15; H, 4.98; N, 13.50.

4'-p-Tolyl-2,2':6',2"-terpyridine (2)

${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.76$ (s, br, $\left.4 \mathrm{H}^{2}, \mathrm{H}_{3}{ }^{\prime}, 5^{\prime}, 6,6^{\prime \prime}\right) \delta 8.70\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3}\right.$, $\left.3^{\prime \prime}\right), 7.90\left(\mathrm{td}, J=7.9,1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{4,4^{*}}\right), 7.85\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}} 2,6\right), 7.39-7.32(\mathrm{~m}$, $\left.4 \mathrm{H}, \mathrm{H}_{5,5}{ }^{\bullet}, \mathrm{Ph} 3,5\right), 2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{CH} 3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 156.8,156.3,150.6$, $149.5,139.5,137.3,135.9,130.1,127.6,124.2,121.8,119.1,21.7$. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{3}$: C, 81.71; H, 5.30; N, 12.99. Found: C, 81.79; H, 5.35; N, 13.19.

p-Cyanophenyl-2,2':6',2"-terpyridine (3)

Yield, 42%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.74\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{3}{ }^{\prime}, 5^{\circ}\right), 8.73(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{H}_{6,6^{\prime \prime}}\right), 8.00\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}} 2,6\right), 7.90\left(\mathrm{td}, J=7.5,2.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{4,4^{\prime \prime}}\right), 7.82(\mathrm{~d}, J=$ $\left.9.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}} 3,5\right), 7.32$ (ddd, $J=6.0,5.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\left.5,5^{\prime \prime}\right)}{ }^{13} \mathrm{C}^{\mathrm{N}} \mathrm{NR}\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): ~ \delta 156.3,155.7,148.3,143.2,137.1,132.6,128.0,124.1,121.4,118.8,118.6$, 112.6. FAB-MS: $334.3,[\mathrm{M}]^{+}$.

p-Hydroxyphenyl-2,2':6',2"-terpyridine (4)

Yield, $43 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 400 \mathrm{MHz}\right): \delta 8.75\left(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{6,6}{ }^{\prime \prime}\right), 8.65(\mathrm{~m}$,
 $\left.J=6.0,4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{5,5^{\prime \prime}}\right), 6.95\left(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}}^{3,5}\right.$) ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{DMSO}_{\mathrm{d}}\right.$, 100 $\mathrm{MHz}): ~ \delta 158.9,155.5,155.2,149.3,137.4,128.2,127.9,124.4,120.9,117.1,116.2$.

FAB-MS: 325.2, $[\mathrm{M}]^{+}$.

p-bromophenyl-2,2':6',2"-terpyridine (5)

Yield, $56 \% .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta 8.76$ (ddd, $J=4.8,1.5,0.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{6,6 "}$),
 (dt, $J=8.6,2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}} 2,6$), $7.56\left(\mathrm{dt}, J=8.6,2.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph} 3,5}\right), 7.39$ (ddd, $J=6.7$, $5.2,1.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\left.5,5^{\circ}\right) .}{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 156.0,149.6,149.1,138.0,137.5$, $132.6,131.9,131.4,129.4,124.5,122.1,119.3$. FAB-MS: $388.2[\mathrm{M}+1]^{+}$.
p-(N, N-dimethylaminophenyl) $-2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (6)

Yield, $25 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.76\left(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{6,6^{\circ}}\right), 8.74(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{H}_{3^{\prime}, 5^{\circ}}\right), 8.69\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}^{2}, \mathrm{H}_{3,3^{\prime \prime}}\right), 7.89-7.87\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{4,4^{\prime \prime} . \mathrm{Ph} 2,6}\right), 7.36(\mathrm{td}, J=5.1$, $\left.1.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{5,5} \mathrm{~s}^{\prime}\right), 6.84\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}} 3,5\right), 3.05\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{H}_{\mathrm{N}-\mathrm{CH} 3}\right),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 156.3,155.3,151.1,150.1,148.8,137.2,128.1,125.0,123.7,121.5$, 117.7, 112.4, 40.4. FAB-MS: 352.2, [M] $]^{+}$. Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{4}: \mathrm{C}, 78.38 ; \mathrm{H}, 5.72$; N, 15.90. Found: C, 77.71; H, 5.88; 15.50.

p-nitrophenyl-2,2':6',2"-terpyridine (7)

Yield, $51 \% .^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.76\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{3}{ }^{\prime} 5^{\prime}\right), 8.73(\mathrm{dd}, J=4.8,1.6 \mathrm{~Hz}$, $2 \mathrm{H}^{2} \mathrm{H}_{6,6^{\prime}}$), $8.68\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3}, 3^{\prime}\right), 8.35\left(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}} 2,6\right.$), 8.04 (d, $J=$
 $\mathrm{H}_{5,5^{\prime \prime}}$). ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 156.6,155.9,151.3,150.3,149.2,137.1,128.2$, 125.8, 124.2, 121.4, 117.8, 118.9. FAB-MS: $355.4,[\mathrm{M}+1]^{+}$.

p-methoxyphenyl-2,2':6',2"-terpyridine (8)

Yield: 20%, ${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.71\left(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{6,6}{ }^{\prime \prime}\right), 8.69(\mathrm{~s}, 2 \mathrm{H}$, $\left.\mathrm{H}_{3^{\prime}, 5^{\circ}}\right), 8.65\left(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}^{2}, \mathrm{H}_{3,3^{\prime}}\right), 7.84-7.87\left(\mathrm{~m}, 4 \mathrm{H}^{\prime} \mathrm{H}_{4,4^{\prime \prime}}, \mathrm{Ph} 2,6\right), 7.33(\mathrm{ddd}, J=$ $\left.7.5,5.0,1.0 \mathrm{~Hz}, 2 \mathrm{H}^{2}, \mathrm{H}_{5}, 5^{\prime \prime}\right), 7.01\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}} 3,5\right), 3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{O}-\mathrm{CH} 3}\right) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 160.1,156.0,155.4,149.4,148.7,136.5,130.3,128.2,123.4$,
121.0, 117.9, 113.9, 55.0. FAB-MS: 339.7, [M] ${ }^{+}$. Anal. Calcd. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}: \mathrm{C}, 77.86$; H, 5.05; N, 12.38. Found: C, 77.08; H, 5.09; N, 12.42.

4'-(2,3-dimethoxyphenyl)-2,2':6',2"-terpyridine (9)

Yield, 27%. ${ }^{1} \mathrm{H}^{\mathrm{N}} \mathrm{NR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.72\left(\mathrm{dt}, J=6.7,0.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{6,6}\right), 8.70(\mathrm{~s}$, $2 \mathrm{H}^{2}, \mathrm{H}_{3^{\prime}, 5^{\circ}}$), $8.68\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3,3^{\prime}}\right), 7.88\left(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{4,4^{*}}\right), 7.34$ (ddd, $\left.J=7.4,4.8,0.8 \mathrm{~Hz}, 2 \mathrm{H}_{5} \mathrm{H}_{5,5^{\prime \prime}}\right), 7.18-7.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Ph}} 5,6\right), 7.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ph} 4}\right)$, $3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{CH} 3}\right), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{CH} 3}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 156.8,155.8$, $153.5,149.6,148.7,147.3,137.2,134.2,124.6,124.1,122.8,122.0,121.7,113.3,61.5$, 56.4. FAB-MS: $370.4,[\mathrm{M}+1]^{+}$. Anal. Calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, $74.78 ; \mathrm{H}, 5.18 ; \mathrm{N}, 11.37$. Found: C, 74.26; H, 5.15; N, 11.09.

4'-(4-diphenyl)-2,2':6',2"-terpyridine (10)

Yield, $48 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.80\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{3}{ }^{\prime}, 5^{\prime}\right), 8.74(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{H}_{6,6^{\prime \prime}}\right), 8.69\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3,3^{\prime \prime}}\right), 8.01\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{A} 2,6}\right), 7.89(\mathrm{td}, J=7.6$, $\left.1.7 \mathrm{~Hz}, \mathrm{H}_{4,4^{\prime \prime}}\right), 7.75\left(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{A}} 3,5\right), 7.68\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\text {в }}, 6\right.$), $7.49(\mathrm{t}$, $\left.J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\text {в }}, 5\right), 7.39\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\text {в }}\right), 7.37\left(\mathrm{dd}, J=6.6,4.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{5}\right.$, $\left.{ }^{5 \prime \prime}\right) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 156.6,156.3,150.1,149.5,142.2,140.8,137.6,137.2$, 129.7, 129.2, 128.1, 128.0, 127.5, 124.2, 121.7, 119.1. FAB-MS: $385.8,[M]^{+}$.

4'-(1-naphthyl)-2,2':6',2"-terpyridine (11)

Yield, $32 \% .^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.76\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3,3^{\prime \prime}}\right), 8.71(\mathrm{~d}, J=$
 $\mathrm{H}_{\text {nap }}$), $7.37\left(\mathrm{t}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{5,5^{\prime \prime}}\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{Cl}, 400 \mathrm{MHz}\right): \delta 156.7,155.9$, $151.3,149.6,138.4,137.3,134.1,131.4,129.1,128.8,127.5,127.0,126.4,126.0,125.7$, 124.3, 122.8, 121.8. FAB-MS: 359.1, $[\mathrm{M}]^{+}$. Anal. Calcd. for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~N}_{3}: \mathrm{C}, 83.54 ; \mathrm{H}, 4.77$; N, 11.69. Found: C, 83.27; H, 4.79; N, 11.61.

2-Acetylpyridine $(0.61 \mathrm{~g}, 5.0 \mathrm{mmol})$ was added into a solution of 9-anthraldehyde $(0.52 \mathrm{~g}$, $2.5 \mathrm{mmol})$ in ethanol (25 mL). KOH pellet ($0.39 \mathrm{~g}, 85 \%, 5.0 \mathrm{mmol}$) and aqueous ammonium ($7.5 \mathrm{~mL}, 29.3 \%, 6.3 \mathrm{mmol}$) were then added to the solution. The solution was heated to reflux for 24 h . After cooling down to ambient temperature, the solution was evaporated to dryness under reduced pressure. Recrystallization of the residue from $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ afforded yellow crystalline solid $(0.28 \mathrm{~g}, 0.68 \mathrm{mmol}, 27 \%){ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.82\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3,3^{\prime}}\right), 8.66\left(\mathrm{~d}, J=0.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{6,6^{\circ}}\right)$, $8.63\left(\mathrm{~s}, 2 \mathrm{H}^{2}, \mathrm{H}_{3^{3}}, 5^{\circ}\right), 8.57\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\text {An } 10}\right), 8.09\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}^{2} \mathrm{H}_{\text {An } 1,8}\right), 7.95(\mathrm{t}, J=7.5$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{4}, 4^{\circ}\right), 7.73\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{An} 2,7}\right), 7.49\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\text {An } 3,6}\right), 7.39-$ 7.36 (m, 4H, H $\left.5,5^{\prime \prime}, \operatorname{An} 4,5\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{Cl}, 400 \mathrm{MHz}\right): \delta 156.5,156.0,150.0,149.6$, $137.4,134.7,131.6,129.9,128.8,127.8,126.8,126.3,125.6,124.3,124.3,121.9$. FABMS: 409.5, $[\mathrm{M}]^{+}$. Anal. Calcd. for $\mathrm{C}_{29} \mathrm{H}_{19} \mathrm{~N}_{3}$: C, 85.06; H, 4.68; N, 10.26. Found: C, 85.27; H, 4.65; N, 10.08 .

4'-(2-furyl)-2,2':6',2"-terpyridine (13)

Yield, 24\%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 8.77\left(\mathrm{dt}, J=4.0,0.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{6,6}\right), 8.74$ (s, $\left.2 \mathrm{H}, \mathrm{H}_{3^{\prime}, 5^{\prime}}\right), 8.66\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3,3^{\prime \prime}}\right), 7.89\left(\mathrm{td}, J=7.7,0.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{4}, 4^{\circ}\right), 7.61(\mathrm{~d}$, $\left.J=0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Fu}}\right)$), $7.37\left(\mathrm{ddd}, J=7.4,4.8,1.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{5,5} 5^{\prime}\right), 7.14(\mathrm{dd}, J=3.2,0.4$ $\left.\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Fu}} 5\right), 6.59\left(\mathrm{dd}, J=3.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Fu}} 4\right) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{Cl}, 400 \mathrm{MHz}\right): \delta$ $156.5,156.3,152.3,149.5,144.0,139.9,137.2,124.2,121.6,115.5,112.5,109.5$. FABMS: 300.1, $[\mathrm{M}+1]^{+}$.

4'-(4-pyridyl)-2,2':6',2"-terpyridine (14)

Yield, 42%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.87\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{3}{ }^{\prime}, 5\right.$) , $8.83(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{H}_{6,6^{\prime \prime}}\right), 8.78\left(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{Py} 2,6}\right), 8.73\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3,3^{\prime \prime}}\right), 8.01(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{\text {Py } 3,5}$), $7.96\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}_{4,4^{\prime \prime}}\right), 7.45\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\left.5,5^{\prime \prime}\right)}\right){ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 156.7,155.6,149.4,148.7,147.0,137.9,124.8,122.9,122.0$, 119.3. FAB-MS: $311.2,[\mathrm{M}+1]^{+}$. Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{4}$: C, $77.40 ; \mathrm{H}, 4.55 ; \mathrm{N}, 18.05$. Found: C, 77.68; H, 4.49; N, 17.68.

6.5 Reference

1
(a) Demas, J. M.; DeGra, B. A. Coord. Chem. Rev. 2001, 211, 317; (b) for a recent example: Kimura, M.; Takahashi, A.; Sakata, T.; Tsukahara, K. Bull. Chem. Soc. Jpn. 1998, 71, 1839; (c) Péchy, P.; Rotzinger, F. P.; Nazeeruddin, M. K.; Kohle, O.; Zakeeruddin, S. M.; Humphry-Baker, R.; Grätzel,M. J. Chem. Soc., Chem. Commun. 1995, 65. (d) Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Nature 2000, 403, 750; (e) Ziessel, R. J. Inclusion Phenom. Macrocyclic Chem. 1999, 35, 369.

Constable, E. C.; Cargill Thompson, A. M. W.; Tocher, D. A.; Daniels, M. A. M. New J. Chem. 1992, 16, 855.

Sauvage, J.-P.; Collin, J.-P.; Chambron, J.-C.; Guillerez, S.; Coudret, C.; Balzani, V.; Barigelletti, F.; De Cola, L.; Flamigni, L. Chem. Rev. 1994, 94, 993.
(a) Maestri, M.; Armaroli, N.; Balzani, V.; Constable, E. C.; Cargill Thompson, A. M. W. Inorg. Chem. 1995, 34, 2759; (b) Hammarström, L.; Barigelletti, F.;

Flamigni, L.; Indelli, M. T.; Armaroli, N.; Calogero, G.; Guardigli, M.; Sour, A.;
Collin, J.-P.; Sauvage, J.-P. J. Phys. Chem. A 1997, 101, 9061 ; (c) Albano, G.;
Balzani, V.; Constable, E. C.; Maestri, M.; Smith, D. R. Inorg. Chim. Acta 1998, 277, 225.

Mutai, T.; Cheon, J.-D.; Arita, S.; Araki, K. J. Chem. Soc., Perkin Trans. 2 2001, 1045.

Goodall, W.; Williams, J. A. G. Chem. Commun. 2001, 2514.
Roberto, D.; Tessore, F.; Ugo, R.; Bruni, S.; Manfredi, A.; Quici, S. Chem. Commun. 2002, 846.

Alcock, N. W.; Barker, P. R.; Haider, J. M.; Hannon, M. J.; Painting, C. L.;
Pikramenou, Z.; Plummer, E. A.; Rissanen, K.; Saarenketo, P. J. Chem. Soc., Dalton Trans. 2000, 1447.

9 2,2':6',2"-terpyridine was reported: Vaduvescu, S.; Potvin, P. G. Eur. J. Inorg. Chem. 2004, 1763.
A comprehensive review of methods up to 1995 is provided by: Cargill Thompson, A. M. W. Coord. Chem. Rev. 1997, 160, 1.
(a) Kröhnke, F. Synthesis 1976, 1. (b) Constable, E. C.; Ward, M. D.; Corr, S. Inorg. Chim. Acta 1988, 141, 201; (c) Frank, R. L.; Riener, E. F. J. Am. Chem. Soc. 1950, 72, 4182; (d) Korall, P.; Börje, A.; Norrby, P.-O.; Åkermark, B. Acta Chem. Scand. 1997, 51, 760; (e) Cave, G. W. V.; Raston, C. L. Chem. Commun. 2000, 2199.
(a) Cardenas; D. J.; Sauvage, J.-P. Synlett 1996, 916; (b) Hanan, G. S.; Schubert, U. S.; Volkmer, D.; Riviere, E.; Lehn, J.-M.; Kyritsakas, N.; Fisher, J. Can. J. Chem. 1997, 75, 169; (c) Fallahpour, R.-A.; Neuberger, M.; Zehnder, M. New J. Chem. 1999, 23, 53; (d) Fallahpour, R.-A. Eur. J. Inorg. Chem. 1998, 1205. Goodall, W.; Wild, K.; Arm, K. J.; Williams, J. A. G. J. Chem. Soc., Pekins Trans. 2 2002, 1669.

During the preparation of this paper, a similar approach to synthesize 4'-p-tolyl-

4 Collin, J. P.; Guillerez, S.; Sauvage, J. P.; Barigelletti, F.; De Cola, L.; Flamigni, L.; Balzani, V. Inorg. Chem. 1991, 30, 4230.

Most of the starting aryl aldehydes were purchased from Aldrich. Aldehydes that were not commercial available were synthesized from the corresponding aryl bromides by lithiation and then formylation with dimethylformamide.

Wang, J.; Hanan, G. S.; Loiseau, F.; Campagna, S. Chem. Commun. 2004, 2068. Yoo, D.-W.; Yoo, S.-K.; Kim, C.; Lee, J.-K. J. Chem. Soc., Dalton Trans. 2002, 3931.

Michalec, J. F.; Bejune, S. A.; Cuttell, D. G.; Summerton, G. C.; Gertenbach, J. A.; Field, J. S.; Haines, R. J.; McMillin, D. R. Inorg. Chem. 2001, 40, 2193.

Husson, J.; Beley, M.; Kirsch, G. Tetrahedron Lett. 2003, 44, 1767.
Persaud, L.; Barbiero, G. Can. J. Chem. 1991, 69, 315.

Chapter 7

Conclusions and Future Proposals

7.1 Conclusions

In conclusion, we have optimized the photophysical properties of Ru (II) polypyridyl complexes based on separated approaches.

In Chapter 2, the multi-chromophoric approach has been demonstrated as an efficient approach to delay ${ }^{3}$ MLCT decay and to prolong the rt lifetimes of the complexes. The "chemistry-on-the-complex" approach to deliberately design the ligands on complexes has been shown as a powerful way to introduce the new functionalities onto the complexes and as the only efficient way to obtain the desired compound. The optimization of the syntheses of the multi-chromophoric species has been realized in the work depicted in Chapter 3. The independent chromophore approach can also initiate the multi-chromophoric behaviour even the two equilibrating triplet states have been separated more than one nanometer. Since this method gives separated chromophores on different ligands, it may allow special design of the $\mathrm{Ru}(\mathrm{II})$ tpy moiety and the organic chromophore, and could result in compounds with specific photophysical properties.

The palladium(0)-catalyzed cyanation reactions on the complexes have successfully introduced the complexation-sensitive cyano group(s) into $R u(t p y)_{2}{ }^{2+}$ moieties (Chapter 4). It is noteworthy that the introduction of strongly electronwithdrawing cyano group into the complexes has significantly enhanced their
photophysical properties. Through this approach, the excited state lifetime of [(NCtpy) $\mathrm{Ru}($ tpy $)]^{2+}$ has been increased to 75 ns with highest quantum yield. The advantage of cyanation on the complexes method is that it could offer an alternative way to afford sensitive functionalities, which could not be obtained in a classical way, onto the metal complexes. The efficient incorporation of cyano group has opened the gate to the polymetallic array using the cyano group as the bridging ligand.

For the ligand design and synthetic method exploration in Chapter 5, we have efficiently and convergently synthesized a new family of ligands, Rbppy using a pyrimidine-ring formation reaction. The application of these newly synthesized ligands to $\mathrm{Ru}(\mathrm{II})$ coordination chemistry has proved their strong π-accepting nature. The facile onepot syntheses of 4'-aryl-tpy ligands in Chapter 6 is a great optimization of the synthetic methods reported previously. In this one-pot synthesis of tpy ligands, a variety of functionalities can endure the mild conditions we adopted and a variety of 4'-aryl-tpy ligands can be afforded with reasonable yields and column-free purifications.

However, there is no limit for scientific research. The optimization of the photophysical properties of $\mathrm{Ru}(\mathrm{II})$ complexes for the practical application is still under way. Some of the promising and challenging research directions will be presented as future proposals for incoming researchers.

7.2 Future proposals

7.2.1 Tridentate ligands:

Based on the previously reported results and the research carried on during my master's studies, the ligands shown in Chart 7.1 could serve as target ligands for application in $\mathrm{Ru}(\mathrm{II})$ polypyridyl complexes to get the optimized photophysical properties.

Since Chung and coworkers reported the longest rt excited state lifetime of $\mathrm{Ru}(\mathrm{II})$ complexes with tridentate carbene ligands, ${ }^{1}$ the exploration of new carbene ligands with different conformation and electronic properties should be one of the concerns in our research. The proposed carbene ligands (A in Chart 7.1) could also act as the building block to form supermolecular structures such as grids and helice.

The ligands B in Chart 7.1 are proposed because of their strongly electron withdrawing abilities. Previous work showed that the 4'-cyano-tpy ligand on the $\mathrm{Ru}(\mathrm{II})$ complexes can significantly increase the rt excited state lifetime with relatively high quantum yield. ${ }^{2}$ The incorporation of $4,4^{\prime}, 4^{\prime \prime}$-trichloro-tpy ligand ${ }^{3}$ and $4,4^{\prime}, 4^{\prime \prime}$-tricyanotpy ligand into $\mathrm{Ru}(\mathrm{II})$ coordination sphere should give the best ever result in the electron withdrawing approach to enhance its photophysical properties.

Constructing the polymetallic arrays with bridging ligands with phenyl spacer has a problem: the non-coplanar phenyl ring diminishes the electronic interaction of metal cations. ${ }^{4}$ Ligand \mathbf{C} in Chart 7.1 have the 1,2,4,5-tetrazine as the spacers, which are coplanar to the peripheral binding site (4-pyridine or tpy) due to the existence of H -bonds between the nitrogen atoms in tetrazine and neighbouring hydrogens. ${ }^{5}$ The synthesis of \mathbf{C} and their incorporation into metal complexes can produce bimetallic complexes with direct electronic interactions.

A:

\qquad

B:

C:

Chart 7.1 Proposed target ligands for ligand approach in coordination chemistry.

7.2.2 Complexes:

We have synthesized a new family of tridentate ligands, 2,6-bis(5'-R-pyrimyd-2'yl)pyridine ($\mathrm{Rbppy}, \mathrm{R}=\mathrm{H}, \mathrm{Cl}, \mathrm{Ph}$), in the previous work. ${ }^{6}$ However, the complexes obtained from the application of the ligands to the $\mathrm{Ru}(\mathrm{II})$ chemistry were nonluminescent, sine the ${ }^{3} \mathrm{MC}$ state is too close to the ${ }^{3} \mathrm{MLCT}$ state because of the weak ligand field strength of Rbppy ligands. ${ }^{7}$ The application of these ligands to other transition metals, such as platinum, iridium, osmium, through metal approach should
obtain some promising results. The complexes obtained should have novel photophysical properties, as well as potential dynamic behavior.

Another potential area in $\mathrm{Ru}(\mathrm{II})$ chemistry towards the rt emitter is the expansion of the multi-chromophoric approach. S. Buchwald, one of the pioneers in transition metal catalyzed cross-coupling reaction, has recently reported a series of new ligands for sterically hindered substrates in Suzuki-Miyaura coupling reaction. ${ }^{8}$ The ligand, 2-(2',6'dimethoxybiphenyl)dicyclohexylphosphine, has been demonstrated to be the most powerful one so far for this type of reactions. The application of this ligand as well as the reported reaction conditions in our systems should be promising, since one of the challenges we met in the synthesis of multi-chromophoric species is the incorporation of sterically bulky 9 -anthryl group into tpy-containing ligands or complexes. ${ }^{9}$ The cross coupling reaction could open the door to the multi-chromophoric species with heterogeneous energy storage elements.

7.2.3 Synthetic methodology:

Since the adoption of conjugated pyrimidine to enhance the photophysical properties of $\mathrm{Ru}(\mathrm{II})$ complexes, ${ }^{10}$ the synthesis of oligo-2,5-pyrimidines is important in our pursuit to improve the rt luminescence properties of the $\mathrm{Ru}(\mathrm{II})$ complexes. The syntheses of oligo-2,5-pyrimidines have been reported previously. ${ }^{11}$ However, the incorporation of the oligo-2,5-pyrimidines into tpy ligand is challenging. I have tried several methods to approach the oligo-2,5-pyrimidines (Scheme 7.1). In approach \mathbf{A}, one of the problems I met is the deliberate choice of solvents for the reaction as well as the following purification. Switch to the standard reaction conditions for the conversion of
methyl to vinamidinium perchlorate also failed (approach B). Approach \mathbf{B} should have the priority in the attempt to synthesize the oligo-2,5-pyrimidine, since the instalment of the tpy ligand can be put in the final stage, which, in turn, facilitates the purification for the poor solubility of tpy ligands in alcohol solvents ($\mathrm{MeOH}, \mathrm{EtOH}$).

Target ligands: $R=H, P h, C N \ldots$

A

B

Scheme 7.1 Target ligand, 4’-(oligo-2,5-pyrimidine)-tpy ligand with unsuccessful attempts to synthesize oligo-2,5-pyrimidine.

With the successful exploration of the synthesis of oligo-2,5-pyrimidine in hand, the incorporation of oligo-2,5-pyrimidine into tpy ligands through pyrimidine-ring forming reaction or transition-metal catalyst cross coupling ${ }^{12}$ reaction could be promising
if combine with all the previous research work, such as head-to-head 5,5'-bipyrimidine bridged ligand ${ }^{9 \mathrm{~b}}$ and pm-pm-tpy ligand. ${ }^{10}$

7.3 References and Notes

1 Son, S. U.; Park, K. H.; Lee, Y.-S.; Kim, B. Y.; Choi, C. H.; Lah, M. S.; Jang, Y.
H.; Jang, D.-J.; Chung, Y. K. Inorg. Chem. 2004, 43, 6896.

2 Wang, J.; Fang, Y.-Q.; Hanan, G. S.; Loiseau, F.; Campagna, S. Inorg. Chem. 2005, 44, 5.
(a) Wieprecht, T.; Xia, J.; Heinz, U.; Dannacher, J.; Schlingloff, G. J. Mol. Cat. A:

Chemical 2003, 203, 113. (b) Hobert, S. E.; Carney, J. T.; Cummings, S. D. Inorg. Chim. Acta 2001, 318, 89.

Vaduvescu, S.; Potvin, P. G. Eur. J. Inorg. Chem. 2004, 1763.
Wang, J. Lab notebooks. Attempts to synthesize the 1,2,4,5-tetrazine bridged ligands, unpublished data.

See Chapter 5 for details.
Wang J.; Medlycott, E. A.; Hanan, G. S.; Udachin, C. A. Can. J. Chem. 2005, manuscript in preparation.

Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4685.
(a) Passalacqua, R.; Loiseau, F.; Campagna, S.; Fang, Y.-Q.; Hanan, G. S. Angew.

Chem. Int. Ed. 2003, 42, 1608. (b) Wang, J.; Fang Y.-Q.; Bourget-Merle, L.;
Polson, M. I. J.; Hanan, G. S.; Passalacqua, R.; Loiseau, F.; Campagna, S. Chem. Eur. J. 2005, manuscript in preparation.

Fang Y.-Q.; Taylor, A. J.; Hanan, G. S.; Loiseau, F.; Passalacqua, R.; Campagna, S.; Nierengarten, H.; Van Dorsselaer, A. J. Am. Chem. Soc. 2002, 124, 7912.

11 Gompper, R.; Mair, H. J.; Polborn, K. Synthesis 1997, 6, 696.

Fang, Y.-Q. Master's thesis. Department of Chemistry, University of Waterloo, Canada. 2002, pll1.

Appendix

A1 Papers published during Master's studies.
A1-1. Wang, J.; Hanan, G. S.; Loiseau, F.; Campagna, S. Chem. Commun. 2004, 2068.

A1-2. Wang, J.; Fang, Y.-Q.; Hanan, G. S.; Loiseau, F.; Campagna, S. Inorg. Chem. 2005, 44, 5.

A1-3. Wang, J.; Hanan, G. S. Synlett 2005, 8, 1251.

A2 Supplementary data of single crystal structures.
A2-1 Complex 3a in Chapter 2.
A2-2Complex 3b in Chapter 2.

A2-3 Complex 3b in Chapter 3.
A2-4 Complex 3d in Chapter 3.
A2-5 Complex 2c in Chapter 4.
A2-6 Ligand 1a in Chapter 5.
A2-7 Complex 2a in Chapter 5.
A2-8 Complex 2b in Chapter 5.
A2-9 Complex 3b in Chapter 5.

Prolonged luminescence lifetimes of $\mathbf{R u}(\mathrm{II})$ complexes via the multichromophore approach: the excited-state storage element can be on a ligand not involved in the MLCT emitting state \dagger

Jianhua Wang, ${ }^{a}$ Garry S. Hanan, ${ }^{* a}$ Frédérique Loiseau ${ }^{b}$ and Sebastiano Campagna* ${ }^{\boldsymbol{b}}$
" Département de chimie, Université de Montréal, Montréal, Québec, Canada H3T 1 J4. Fax: + 1514343 7586; Tel: +1 514343 7056; E-mail:
${ }^{h}$ Dipartimento di Chimica Inorganica, Chimica Analitica e Chimica Fisica, Università di Messina, 98166 Messina, Italy. E-mail: photochem@chem.unime.it; Fax: +39 090-393756

Received (in Columbia, MO, USA) 16th April 2004, Accepted 30th June 2004
First published as an Advance Article on the web 13th August 2004

A novel series of ruthenium terpyridine complexes with bichromophoric units separated by more than 1 nm display an extraordinary enhancement of their luminescence lifetimes when compared to the parent $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ chromophore (tpy $=2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine).

Ruthenium complexes based on the bidentate ligand 2,2'-bipyridine (bpy) have been incorporated into several different types of photoactive devices due to their outstanding photophysical properties. ${ }^{1}$ One of the few drawbacks of the Ru(bpy) ${ }_{3}{ }^{2+}$ chromophore is its chirality, which generates diastereomers when light-harvesting polymetallic complexes are applied in a device. ${ }^{2}$ The $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ chromophore, on the other hand, is achiral when substituted in the 4 '-position and has recently been used to build up multinuclear complexes structures. ${ }^{3}$ To be applied in a practical device, however, it would be convenient if these complexes had relatively long-lived excited states at room temperaure (r.t.). As the parent $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ chromophore has a very short excited-state lifetime at r.t. $(<250 \mathrm{ps}),{ }^{4}$ several attempts have been made to prolong the r.t. luminescence lifetime of the $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ moieties. ${ }^{57}$
We have previously reported that $\mathrm{Ru}(I I)$ complexes of a tpy with a coplanar pyrimidine and a 9 -anthryl chromophore have greatly increased luminescence lifetimes due to the bichromophoric effect, in which the triplet metal-to-ligand charge-transfer state (${ }^{3}$ MLCT) is in equilibrium with the anthracene triplet state (${ }^{3} \mathrm{An}$), which acts as an excited-state storage element. ${ }^{7}$ In all cases in which bichromophoric states are known for $\mathrm{Ru}(\mathrm{II})$ polypyridine complexes, the organic chromophore used as the energy storage element is incorporated into the polypyridine ligand which is directly involved in the ${ }^{3}$ MLCT emitting state. ${ }^{8}$ These complexes display exceptional properties, however, their syntheses also depend on several sequential reactions in order to incorporate the two chromophores into the same ligand. Herein we report on a new series of Ru(tpy)type complexes in which the excited-state storage element (an anthryl subunit) is linked to a ligand which is not involved in the ${ }^{3}$ MLCT emitting level. and demonstrate that the multichromophoric approach is still effective in spite of the large (nanometric) spatial separation between the subunits.
In order to simplify the synthetic procedure, we connected the 9 -anthryl chromophore directly into the 4 -position of the tpy moiety (Chart 1). \dagger Although 4^{\prime}-(9-anthryl)-2,2: $: 6,2^{\prime \prime}-$ tpy (An-tpy)
complexes of $R u(11)$ are non-emissive due to energy transfer from the ${ }^{3} \mathrm{MLCT}$ of $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ to the non-emissive triplet anthracene state (${ }^{3} \mathrm{An}$), ${ }^{9}$ we reasoned that lowering the ${ }^{3}$ MLCT state of $R u(t p y)_{2}{ }^{2+}$ by way of a 2 -pyrimidyl substituent could initiate bichromophoric behaviour.

Red single crystals of 3 suitable for X-ray crystallography were grown from an acetonitrile solution by diffusion of diethylether (Fig. 1). \ddagger The $\mathrm{Ru}-\mathrm{N}$ bond lengths and internal pyridine angles are similar to those found in other Ru(n) polypyridine complexes. The 9 -anthryl subunit lies at an 82.3° angle to the $\mathrm{N} 1-\mathrm{N} 3$ terpyridine plane which diminishes conjugation (Fig. 1), thus allowing the subunits to maintain their independent properties in the complexes. The pyrimidyl group lies virtually coplanar to the N4-N6 terpyridine (6.2° angle), whereas the 5 -pyrimidyl substituted p-bromophenyl group is twisted at a 27.3° angle with respect to the pyrimidine (Fig. 1). The coplanar nature of the pyrimidineterpyridine sub-unit favours π-conjugation and is crucial for the enhanced photophysical properties of these complexes (cf., photophysics).

The electrochemistry of complexes $\mathbf{1 - 3}$ is similar to that of $R u(t p y)_{2}{ }^{2+}$ with a single one-electron metal-based oxidation $(+1.32,+1.35$ and +1.34 V vs. SCE for $\mathbf{1 - 3}$, respectively), and a series of ligand-based reductions, of which the first reduction process is reversible $(-1.10 \mathrm{~V},-1.19 \mathrm{~V}$ and -1.10 V is. SCE, respectively). The oxidation potentials have shifted to more positive potentials by $25-50 \mathrm{mV}$ compared with reference complex 4 , $[(A n-t p y) R u(t p y)]\left(P_{6}\right)_{2}(+1.30 \mathrm{~V}$ vs. SCE), due to the greater stablization of the metal-based orbitals by the pyrimidyl-tpy substituents. The 9 -anthryl group has little electronic effect on the complexes as the redox potentials of 1 are nearly the same as those

Fig. 1 Two ORTEP plots of the X-ray crystal structure of complex 3 exposing the An-tpy ligand (top) and, after a 90 rotation, the R-pm-tpy ligand (R -pm-tpy $=4^{\prime}$-(5-R-pyrimid-2-yl)-tpy, with $\mathrm{R}=p$-bromophenyl) (bottom). Thermal ellipsoids are set at 30% probability with hydrogen atoms and counteranions omitted for clarity.

Fig. 2 Electronic absorption spectra for 1 (solid line), 2 (dashed line), 3 (dotted line) and 4 (intermittent line). The spectra were recorded at room temperature in argon purged acetonitrile.

Table 1 Spectroscopic data for $\mathbf{1 - 5}$ in deaerated $\mathrm{CH}_{3} \mathrm{CN}$ solution

Complex	Absorption \qquad $2 / \mathrm{nm}$ $\left(a / \mathrm{mol}^{-1} \mathrm{~L}^{-1} \mathrm{~cm}^{-1}\right)$	Luminescence 298 K	
		$\begin{aligned} & i_{\text {max }} / \\ & \mathrm{nm} \end{aligned}$	t/ns ("/\% contribution)
1	492 (35700)	680	$10(5 \%)$; $698(95 \% / 4)$
2	494 (15300)	670	25 (20\%\%); 1052 (80\%\%)
3	494 (23700)	670	$28(10 \%) ; 1040$ (90\%)
4	482 (11000)	-	-
$5^{\prime \prime}$	487 (23700)	684	21
" Data from rel. 10			

of 5 ([(tpy)Ru(Cl-pm-tpy)] $\left(\mathrm{PF}_{6}\right)_{2}\left(E_{\text {ox }}=+1.33 \mathrm{~V}\right.$ and $E_{\text {rud }}=$ -1.09 V is. SCE) (Cl-pm-tpy $=4^{\prime}$-(5-chloro-pyrimid-2-yl)-tpy).
The absorption spectra and spectroscopic data of complexes 1-4 are showed in Fig. 2 and Table 1 respectively. In the UV region, the spectra are dominated by the $\pi-\pi^{*}$ transitions of the tpy and anthracene moities. In the visible region, the 'MLCT bands of complexes 1-3 have shifted to lower energy as compared to that of complex 4 due to the extended delocalization of the pyrimidyl-tpy moiety, as expected. ${ }^{10}$ The absorption spectra of complexes 1-3 are similar to the sum of the spectra of ruthenium pyrimidyl-tpy moicties and anthracene, indicating that the 9 -anthryl group contributes independently to the electronic spectra of the complex.

The emission data clearly show that in all the new complexes the energy level of the emitting ${ }^{3}$ MLCT state has been lowered to a region comparable to the energy level of the non-emissive anthracene triplet state ($\left.{ }^{3} \mathrm{An}\right)\left(E^{0}=1.85 \mathrm{eV}, 671 \mathrm{~nm}\right){ }^{1!}$ and definitely involves the tpy-pm-R ligands (Table I). ${ }^{10}$ The ${ }^{3}$ MLCT state of complexes 1,2 and $\mathbf{3}$ is therefore close enough in energy to the 'An state to make equilibration between the two states possible, thus accounting for the enhancement of the excited state lifetime of the new complexes (Table 1).

The luminescence data collected in Table 1 confirm our interpretation, by showing that the introduction of the two independent chromophores significantly enhances the lifetime as compared to
complex 4, in which the ${ }^{3}$ MLCT luminescence has been totally quenched by the ${ }^{3}$ An state, as well as compared to complex 5 , in which multichromophoric behaviour cannot be obtained. As expected, ${ }^{7}$ the emission spectra of complexes $1-3$ exhibit biexponential decay (Table 1). The first shorter lifetime is attributed to the decay of the initially formed ${ }^{3} \mathrm{MLCT}$. The second lifetime results from the equilibration between the emitting ${ }^{3}$ MLCT level and the ${ }^{3}$ An state.
In conclusion, we have designed and synthesized a new series of r.t. luminescent $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ species incorporating a 2 -pyrimidyl-tpy subunit for extended electron delocalization and an independent organic chromophore, a 9 -anthryl subunit, as an energy reservoir for the emissive ${ }^{3}$ MLCT state. Importantly, prolonged luminescence lifetimes via excited-state equilibration have been obtained for the first time by grafting the excited-state storage element onto a ligand which does not act as the acceptor ligand of the ${ }^{3} \mathrm{MLCT}$ emitting level. Separation of the two chromophoric subunits onto different ligands greatly simplifies the synthetic procedure while maintaining long-lived excited states at r.t. This approach enables the design and synthesis of the ruthenium terpyridine moiety and the organic chromophore subunit independently and can open the way to a new class of compounds with predetermined photophysical properties. Further work is in progress to fully characterize the excited-state and redox properties of the complexes.

This work was supported by NSERC (Canada), the Universite de Montréal, and MIUR (Italy). E. Medlycott and F. BélangerGariepy are thanked for the X-ray structural analysis of $\mathbf{3}$.

Notes and references

\ddagger CCDC 235987. See http://www.rsc.org/suppdata/ce/b4/b405619a/ for crystallographic data for 3 in .cif or other electronic format.

1 V. Balzani and F. Scandola. Supramolecalar Photochemistry, Ellis Horwood, Chichester, UK, 1991.
2 V. Balzani, A. Juris, M. Venturi, S. Campagna, G. Denti and S. Serroni, Chem. Rev., 1996, 96, 759.
3 J. P. Sauvage, J. P. Collin, J. C. Chambron, S. Guillerez. C. Coudret, V. Balzani, F. Barigelletti, L. DeCola and L. Flamigni. Chem. Rev., 1994. 94, 993.
4 J. R. Winkler, T. L. Netzel. C. Creutz and N. Sutin, J. Am. Chem. Soc: 1987. 109. 2381.

5 M . Maestri, N. Armanoli, V. Balzani, E. C. Constable and A. M. W. C. Thompson, Inorg. Chem. 1995, 34. 2759.

6 (a) M. Beley, J. P. Collin, R. Louis, B. Metz and J. P. Sauvage, J. Am. Chem Soc., 1991, 113, 8521; (b) E. C. Constable, A. M. W. C. Thompson and S. Greulich, J. Chem. Soc., Chem. Commun, 1993, 1444.
7 R. Passalacqua, F. Loiseau, S. Campagna. Y.-Q. Fang and G. S. Hanan, Angew Chem. Int. Edl, 2003, 42, 1608.
8 D. S. Tyson, C. R. Luman, X. Zhou and F. N. Castellano, Inorg. Chem. 2001, 40, 4063 and refs therein.
9 G. Albano, V. Balzani, E. C. Constable, M. Maestri and D. R. Smith. Inorg. Chim Acta. 1998, 277, 225.
10 Y.-Q. Fang, N. J. Taylor, G. S. Hanan, F. Loiseau, R. Passalacqua, S. Campagna, H. Nierengarten and A. Van Dorsselaer, J. Am. Chems Soc, 2002, 124, 7912.
11 S. L. Murov, I. Carmicheal and G. L. Hug. Handlow of Photochemistry, Marcel Dekker, New York, 1993

Synthesis and Properties of the Elusive Ruthenium(II) Complexes of 4^{\prime}-Cyano-2,2':6', $2^{\prime \prime}$-terpyridine

Jianhua Wang, ${ }^{\dagger}$ Yuan-Qing Fang, ${ }^{\ddagger}$ Garry S. Hanan, ${ }^{\text {,t } \dagger}{ }^{\dagger}$ Frédérique Loiseau, ${ }^{\S}$ and Sebastiano Campagna*,5
Département de Chimie, Université de Montréal, Montréal. Québec, Canada H3T IJ4. Department of Chemistry, University of Waterloo. Waterloo, Ontario, Canada N2L 3G1, and Dipartimento di Chimica Inorganica. Chimica Analitica e Chimica Fisica, Unitersità di Messina, 9,9166 Messina, Italy

Received August 12, 2004

The heteroleptic and homoleptic ruthenium(II) complexes of 4^{\prime}-cyano- $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine are synthesized by palladium catalyzed cyanation of the corresponding Ru(II) complexes of 4^{\prime}-chloro$2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine. The introduction of the strongly electronwithdrawing cyano group into the $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ moiety dramatically changes its photophysical and redox properties as well as prolongs its room temperature excited-state lifetime.

In the last two decades, ruthenium(II) complexes have become widely studied within the field of inorganic chemistry.' Indeed, Ru(II) polypyridine complexes play outstanding roles in fields connected to solar energy conversion and the storage of light and/or electronic information at the molecular level. ${ }^{2}$ The prototype of this class of compounds, $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]^{2-}\left(\mathrm{bpyy}=2,2^{\prime}\right.$-bipyridine $)$, has been one of the most studied metal-containing species. ${ }^{2 a .3}$ However, compared with achiral $R u(t p y)_{2}{ }^{2+}$ complexes based on the

[^5]tridentate polypyridyl ligand 2,2':6', $2^{\prime \prime}$-terpyridine (tpy), $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]^{2+}$ has two main structural disadvantages: the Δ and Λ enantiomers of $\left[R u(b p y)_{3}\right]^{2+}$ give rise to many diastereomers in polynuclear complexes and $\mathrm{Ru}(\mathrm{II})$ complexes of monosubstituted bpy ligands are mixtures of fac and mer isomers. These problems, inherent to the $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]^{2+}$ structural motif, can be overcome by the use of tridentate, tpy-type polypyridyl ligands. However, $\left[\mathrm{Ru}(\mathrm{tpy})_{2}\right]^{2+}$ and its derivatives have far less useful photophysical properties as compared to $\left[\mathrm{Ru}(\mathrm{bpy})_{3}\right]^{2+}$. This is essentially due to a shorter excited-state lifetime ($<250 \mathrm{ps}$) at room temperature (rt) resulting from the population of a nonemissive metal-centered triplet (${ }^{3} \mathrm{MC}$) state from the potentially emissive metal-to-ligand charge transfer (${ }^{3}$ MLCT) state. ${ }^{4}$ Nevertheless, this shortcoming may be overcome if new ligands are designed which enhance the rt luminescence lifetimes of Ru(II) complexes of tridentate ligands. ${ }^{5}$

Several strategies have been employed to prolong the it excited-state lifetime of ruthenium(II) complexes with tridentate polypyridyl ligands, including the use of (a) electron withdrawing and/or donor substituents on tpy. ${ }^{\text {Id }}$ (b) cyclometalating ligands, ${ }^{\text {te }}$ (c) ligands with extended acceptor orbitals, ${ }^{\text {lc }}$ and (d) bichromophoric complexes. ${ }^{6}$

The first strategy was based on the introduction of electronwithdrawing and/or donor substituents into the 4^{\prime}-position

[^6]
COMMUNICATION

of tpy. The electron-withdrawing substituents stabilize the LUMO $\pi \pi^{*}$ ligand orbital more than the HOMO $\pi\left(\mathrm{t}_{2 \mathrm{~g}}\right)$ metal orbital, thereby increasing the energy gap between ${ }^{3}$ MLCT and ${ }^{3} \mathrm{MC}$ excited state and minimizing the thermally activated surface crossing which dominates the MLCT deactivation process. ${ }^{4}$ It has been shown that 4^{\prime}-(methyl-sulfonyl)-tpy based complexes have prolonged rt luminescence lifetimes ([($\left.\left.\mathrm{McSO}_{2}-\mathrm{tpy}\right)_{2} \mathrm{Ru}_{1}\right]\left(\mathrm{PF}_{0}\right)_{2}, 25.0 \mathrm{~ns} ;\left[\left(\mathrm{McSO}_{2}-\mathrm{tpy}\right) \mathrm{Ru}(\mathrm{tpy}-\mathrm{OH})\right]-$ $\left.\left(\mathrm{PF}_{6}\right)_{2}, 50.0 \mathrm{~ns}\right)$ due to the strong electron-withdrawing ability of the methyl-sulfonyl group. ${ }^{\text {.t }}$ One of the advantages of this strategy is the facile synthesis of the ligands and their complexes: thus, the synthetic procedure for building up the polynuclear arrays based on 4 '-substituted tpy should be simplified. In addition, monoexponential decay of the excited state renders these complexes relatively easy to study as compared to bichromophoric systems based on an equilibrium between a nonemissive triplet organic state and the ${ }^{3}$ MLCT state of the metal complex, which on the other side does not allow an increase in luminescence quantum yields. ${ }^{5}$ In this context, we envisioned that coordination of 4'-cyano-tpy with a $\mathrm{Ru}(\mathrm{II})$ center should provide a very large effect on the ligand-based LUMO and increase the energy gap between the ${ }^{3}$ MLCT and ${ }^{3}$ MC states, thereby prolonging the it luminescence lifetime (and increasing quantum yields) of the complexes. Moreover, cyano-complexes can act as building blocks to build up linear polymetallic units due to the strong coordination capacity of the cyano group. ${ }^{7}$ However, until now no successful synthesis of the $4^{\prime \prime}$-cyanotpy Ru(II) complexes has been reported. Herein we report the synthesis of the heteroleptic and homoleptic $\mathrm{Ru}(\mathrm{II})$ complexes of 4'-cyano-tpy and the effect that the cyano group has on their photophysical and redox properties.

The difficulty in the preparation of $\mathrm{Ru}(\mathrm{II})$ complexes of 4'-cyano-tpy results from the activation of the cyano group toward nucleophilic attack by the electron withdrawing Ru(II) metal center. In order to bypass the possible destruction of the cyano group, we shifted our focus toward a "chemistry-on-the-complex" approach, ${ }^{\text {, }}$ that is, the transitionmetal catalyzed cyanation of appropriately functionalized $\mathrm{Ru}(\mathrm{II})$ complexes.

In order to clucidate the methodology for cyanation on the complex, we chose two Ru(II) terpyridine complexes, 1 and 2, as our starting materials (Scheme 1). After several unsuccessful attempts to perform $\mathrm{Ni}(0)$ catalyzed cyanation of 1 and 2 (1.0 equiv of $\mathrm{KCN}, 10 \mathrm{~mol} \% \mathrm{Ni}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Br}$. $10 \mathrm{~mol} \% \mathrm{Zn}, 20 \mathrm{~mol} \% \mathrm{PPh}_{3}$, DMF, or acetonitrile, $\left.60{ }^{\circ} \mathrm{C}\right),{ }^{4}$ we turned to the $\mathrm{Pd}(0)$-catalyzed-cyanation of the

[^7]Scheme 1. Palladium-Catalyzed Cyanation of Ru(II) Complexes of 4^{\prime}-Chloro-tpy ${ }^{\prime \prime}$

b) $>99 \%$

${ }^{a}$ Reagents and conditions: (a) 0.6 cquiv $\mathrm{Zn}(\mathrm{CN})_{2}, 5 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3}$. $10 \mathrm{~mol} \% \mathrm{dppf}, 30 \mathrm{~mol} \% \mathrm{Zn}$ dust (325 mesh), DMA, $120^{\circ} \mathrm{C}, 6 \mathrm{~h}$; (b) 1.2 equiv $\mathrm{Zn}(\mathrm{CN})_{2}, 10 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3}, 20 \mathrm{~mol} \% \mathrm{dppf}, 60 \mathrm{~mol} \% \mathrm{Zn}$ dust (325 mcsh), DMA, $120^{\circ} \mathrm{C}, 12 \mathrm{~h}$.
complexes. Previously reported reaction conditions for purely organic systems seemed promising with very high yields. ${ }^{10}$ We applied slightly modified conditions to complexes 1 and 2 in order to synthesize cyano complexes 3 and 4 (Scheme 1).

The reaction of heteroleptic complex 1 with 0.6 equiv of $\mathrm{Zn}(\mathrm{CN})_{2}, 5 \mathrm{~mol} \% \mathrm{Pd}_{2}(\mathrm{dba})_{3}, 10 \mathrm{~mol} \% \mathrm{dppf}$, and $30 \mathrm{~mol} \%$ Zn dust (325 mesh) in DMA at $120^{\circ} \mathrm{C}$ for 6 h afforded cyano-complex 3 quantitatively. For homoleptic complex 2 , modification of the stoichiometry of the reagents and a longer reaction time afforded the same full conversion to homoleptic complex 4. The full conversion of the 4^{\prime}-chloro-tpy complexes to the cyano-complexes was secured by the strongly activating $\mathrm{Ru}(\mathrm{II})$ cations.

The electrochemical data indicates that the introduction of the cyano group into the $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+1}$ moiety stabilizes the metal center as it is more difficult to oxidize (Table 1). The half-wave potentials of metal-centered oxidation of 3 and 4 have increased by more than 80 mV compared to $\mathrm{Ru}(\mathrm{tpy})_{2^{2+}}{ }^{2+}$ (5). In addition, the ligand-centered reductions are facilitated as a result of the electron-withdrawing nature of the cyano group.

The absorption spectra of the new species (see Figure 1) are dominated by spin-allowed 'MLCT bands in the visible region. We note that the cyano-substitution on the 4'-position of tpy has an strong electron-withdrawing effect on the tpy ligand, and, consequently, the metal center. The 'MLCT

[^8]Table 1. Electrochemical Putential Data ${ }^{6}$

complex	$E_{0 .} V$	$E_{\text {red }} / V$
$\mathbf{1}^{\prime}$	1.33	$-1.16,-1.46$
$\mathbf{2}^{k}$	1.40	$-1.27,-1.46$
3	$1.42(6,4)$	$-1.15(70) .-1.44(70) .-1.81(60)$
4	$1.49(65)$	$-0.88(70) .-1.15$ (ir),-1.63 (ir)
$\mathbf{5}^{\prime}$	1.32	$-1.27 .-1.52$

"V is SCE. Data were collected in deacrated acctonitrile with 0.1 M supporting electrolyte, Bu NPFF. Working electrode, platinum wire. Redox potentials were corrected by internal reference to ferracenc. ${ }^{\circ}$ Data from ref If: $5=$ Rutpyez ${ }^{2+}$.

Figure 1. Absorption (-) and emission (--) spectra of 4 in acctonitrilc solution.
bands of 3 and 4 have red-shifted (to 489 and 490 nm , respectively) as compared to their counterparts in I and 2 (Table 2). The introduction of the cyano group on the 4^{\prime}-position of tpy lowers the energy of 'MLCT state significantly as compared to 5 .

The it emission spectra showed that the energy of the ${ }^{3}$ MLCT state was also lowered with the introduction of cyano group. The corresponding emission maxima ($\lambda_{\text {max }}$) for 3 and 4 (see Figure 1) have red-shifted compared to 5 to 701 and 680 mm , respectively, due to the greater lowering of the ligand-based LUMO energy ($\pi^{*} \mathrm{~L}$) over the metal-based HOMO encrgy (π_{M}). Since the introduction of the cyano group has less effect on the metal-based orbitals, the energy

Table 2. Absorption Spectra and Luminescence Data ${ }^{\text {" }}$

compd	$\begin{gathered} \text { abs } 298 \mathrm{~K} \\ \lambda / \mathrm{nm} \\ \left(\epsilon / 10^{3} \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) \end{gathered}$	em 298 K		
		$\lambda_{\text {max }} / \mathrm{mm}$	τ / ns	Ф
4'-cyano-tpy	336 (6.9)	353	1.2	3×10^{-4}
1	478 (14.5)	651	0.7	4×10^{-5}
$2^{\text {b }}$	480 (16.0)	653	0.2	$\leq 1 \times 10^{-5}$
3	489 (15.7)	701	75	2×10^{-3}
4	490 (22.4)	680	50	2×10^{-3}
$5{ }^{\text {b }}$	474 (10.4)	629	<0.25	$\leq 1 \times 10^{-6}$

${ }^{a}$ Data were collected in deacrated acetonitrilc. ${ }^{b}$ Data from ref $1 \mathrm{~d}: \mathbf{5}=$ $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$.
gap between ${ }^{3} \mathrm{MC}$ and ${ }^{3} \mathrm{MLCT}$ increases. As a consequence, the efficiency of the thermally activated surface crossing process from the ${ }^{3} \mathrm{MLCT}$ state to the ${ }^{3} \mathrm{MC}$ state decreases, thus prolonging the rt luminescence lifetime and significantly increasing quantum yields.

In conclusion, we have introduced a cyano group onto the 4^{\prime}-position of $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ complexes via a palladium-catalyzed cyanation reaction. This approach enables the synthesis of $\mathrm{Ru}(\mathrm{II})$ complexes of 4^{\prime}-cyano-tpy from the corresponding 4^{\prime}-chloro-tpy complexes. The substitution of the cyano group on $\mathrm{Ru}(\mathrm{tpy})_{2^{2}}{ }^{2+}$ causes dramatic changes to its photophysical properties. Prolonged rt excited-state lifetimes and significantly higher luminescence quantum yields compared to the prototype $\mathrm{Ru}(\mathrm{tpy})_{2}{ }^{2+}$ species are achieved, due to the increased energy gap between ${ }^{3}$ MLCT and ${ }^{3} \mathrm{MC}$ states induced by the electron-withdrawing cyano group. Intensive work on the generality of this cyanation methodology and full characterization of new $\mathrm{Ru}(\mathrm{II})$ species will be described at a later date.

Acknowledgment. This work was financially supported by NSERC (Canada), the Université de Montréal, and MIUR (Italy).

Supporting Information Available: Experimental details for the synthesis of $\mathbf{3}$ and 4 . This material is available free of charge via the Internet at http://pubs.acs.org.
IC048891P

A Facile Route to Sterically Hindered and Non-Hindered 4'-Aryl-2,2': $\mathbf{6}^{\prime}, 2^{\prime \prime}$ Terpyridines

Jianhua Wang, Garry S. Hanan*
Département de Chimie, Université de Montréal, Montreal, Québec H3T 1J4, Canada Fax +1 (514)3437586; E-mail:
Received 11 February 2005

Abstract

A facile one-pot synthesis of 4^{\prime}-aryl-2,2 $2^{\prime}: 6^{\prime} .2^{\prime \prime}$-terpyridines from aryl aldehydes and 2 -acetylpyridine is presented. The synthesis of terpyridines incorporating sterically hindered aryl groups, such as the 9 -anthryl group, can also be readily synthesized using this method.

Key words: nitrogen ligands, heterocycles, substituted terpyridines, one-pot reactions

Transition metal complexes of polypyridyl ligands have long been a target in coordination chemistry due to their potential utility in a range of applications, such as luminescent chemosensors, photocatalysts, components of devices for the conversion of light into electrical energy, and new electroluminescent materials. ${ }^{1-3}$ The prototypical $2,2^{\prime}$-bipyridine (bpy) and 2,2':6, $\mathbf{2}^{\prime \prime}$-terpyridine (tpy) ligands have been employed in a large number of these studies, usually binding as bidentate and tridentate ligands, respectively. The advantage of the latter ligand is that structurally simple achiral bis-tpy complexes are obtained with octahedrally coordinating metal ions, which can in turn be used to build up stereochemically discrete polynuclear arrays, as opposed to the racemic mixtures derived from bpy. Moreover, the achirality of tpy complexes is retained upon the chemical modification of the tpy by introducing functional groups into its 4^{\prime}-position, which necessarily arranges them in a trans configuration along a C2 axis.
Introducing aryl substituents at the 4'-position of tpy can also have a profound influence on the photophysical properties of bis-tpy metal complexes and this effect has been investigated in some detail. ${ }^{4}$ More recently, the photophysical properties of uncomplexed terpyridines have also begun to attract interest due to their potential application in photophysical devices. ${ }^{5-8}$ Strategies for the incorporation of aryl substituents into the 4^{\prime}-position of the terpyridine core are of considerable interest with respect to many of the applications discussed above.
The classical approach to 4^{\prime}-aryl-tpy are based on the synthesis of a pyridine, involving the condensation of two equivalents of 2 -acetylpyridine with the appropriate aryl aldehyde, with formation of the central pyridine ring from the reaction of the diketone intermediate with ammonia

SYNLETT 2005, No. 8, pp 1251-1254
Advanced online publication: 21.04.2005
DOI: $10.1055 / \mathrm{s}-2005-868481$; Art ID: S01605ST
(c) Georg Thieme Verlag Stuttgart • New York
(or a source thereof) at elevated temperatures. ${ }^{9}$ A number of variations have been reported, some involving isolation of the intermediate enone or diketone, others employing mild or solvent-free conditions for parts of the synthesis, but almost all relying on a common step in which the central pyridine ring is formed. ${ }^{10}$ In particular, the approach involving the reaction of 2-pyridyl enaminone and 2acetylpyridine with a strong base, t - BuOK , has been widely employed for the synthesis of the parent tpy ligand. Distinctly different synthetic approaches, in which all three pyridine rings are present in the starting materials, include the reaction of $2,2^{\prime}$-bipyridine with 2-pyridyl-lithiums, the Stille coupling of 2,6-dibromopyridines with 2trialkylstannyl pyridines, ${ }^{11}$ and the Suzuki cross-coupling of 4^{\prime}-bromo-tpy with aryl-boronic acid/ester. ${ }^{12}$ However, these approaches feature relatively long reaction times, harsh conditions and the necessity to purify the products by column chromatography. As part of our research with $\mathrm{Ru}(\mathrm{II})$ complexes of tridentate tpy ligands, a mild and efficient synthesis of a variety of 4^{\prime}-aryl-tpy ligands was required. ${ }^{13}$ Herein we report the facile one-step synthesis of a variety of tpy-based ligands with aromatic substituents in their 4^{\prime}-position, which greatly improves the one-pot synthesis for 4^{\prime}-aryl-tpy ligands previously reported. ${ }^{14}$
Our optimization of the one-step reaction started from readily available aryl aldehydes ${ }^{15}$ and 2-acetylpyridine (Scheme 1). The reaction conditions and yields of the various ligands are gathered in Table 1. The enolate of 2acetylpyridine can be generated by KOH under mild conditions. The following aldol condensation and Michael addition proceeded smoothly at room temperature. The soluble diketone intermediate was then allowed to form the central pyridine ring with an aqueous ammonia nitrogen source. The synthesis of the phenyl-based tpy ligands, $1-9$, was very straightforward using these mild conditions. Typically, the ligands precipitated from the reaction mixture as finely dispersed solids, which were easily separated by filtration. For 4, after 24 hours reaction, the ligand was separated from the reaction mixture by acidification with AcOH , extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and recrystallization from EtOH.

Scheme 1 Facile one-pot synthesis of 4^{\prime}-aryl-2,2':6', $2^{\prime \prime}$-terpyridine

Table 1 Reaction Conditions and One-Step Yields of 4^{\prime}-Aryl-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridines as Compared with Previously Reported Methods ${ }^{\text {a }}$

Ligand	R	Reaction time (h), yield (\%) ${ }^{\text {b }}$	Reported yield (\%), ${ }^{\text {c }}$ (steps $)^{\text {d }}$
1		2. (53)	$<5,(4)^{\text {fe }}$
2		2, (49)	19,(4) ${ }^{5} ; 46(1)^{13}$
3		4, (42)	36, (5) ${ }^{\text {fic }}$
4		12, (43)	40, (2) ${ }^{17}$
5		2, (56)	70. (2) ${ }^{5}$
6		12, (25)	17, (4) ${ }^{5} ; 29 .(4)^{6 c}$
7		4, (51)	65, $(2)^{5} ; 34,(5)^{\text {Gc }}$
8		12, (20)	20, (4) ${ }^{5}$
9		24, (27)	New
10		4, (48)	42, (1) ${ }^{68}$
11		4, (32)	No yield available ${ }^{18}$
12		$24,{ }^{5}$ (27)	59, $(2)^{\text {d }}$
13		4, (24)	$69,(2)^{19}$
14		4, (42)	69.(2) ${ }^{20}$

${ }^{4}$ Reaction conditions: 1.0 equiv aryl aldehyde, 2.0 equiv 2 -acetyl pyridine, 2.0 equiv $\mathrm{KOH}, 2.5$ equiv $\mathrm{NH}_{4} \mathrm{OH}, \mathrm{EtOH}$, r.t.
${ }^{\mathrm{b}}$ Isolated yield of first crop of precipitate in our work.
' Isolated overall yields as previously reported.
${ }^{\text {d }}$ Number of reaction steps from commercially available starting materials.
${ }^{\prime}$ In ref. ${ }^{6}$, from 4^{\prime}-TfO-2, $2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (TfO-tpy, 45% overall yield over 3 steps) or 4^{\prime}-bromo- $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (45% overall yield over 4 steps).
${ }^{\text {f }}$ Starting from 4^{\prime}-p-bromophenyl- $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine.
${ }^{*}$ Reaction conditions: 1.0 equiv 9 -anthryl aldehyde, 2.0 equiv 2 -acetyl pyridine, 2.0 equiv $\mathrm{KOH}, 2.5$ equiv $\mathrm{NH}_{4} \mathrm{OH}, \mathrm{EtOH}$, reflux, 24 h .

The encouraging results for the synthesis of ligands 1-9 led us to apply these mild conditions to introduce organic chromophores into the tpy moiety, which is a critical step to prolong the room temperature luminescence lifetime of
$\mathrm{Ru}(\mathrm{tpy})_{2}{ }_{2}{ }^{2+}$ complexes by the bichromophore approach. ${ }^{16}$ The 4'-biphenyl and 1 -naphthyl groups were introduced into 4^{\prime}-position of tpy to give ligand 10 and 11 by stirring at room temperature for four hours. However, the syn-
thesis of ligand 12 with the bulkier 9 -anthryl group was problematic due to the insolubility of the intermediate, 2-[1-(9-anthryl)-3-oxo-3-prop-2-enyl] pyridine, in EtOH. Treatment of the same starting materials at reflux kept the enone intermediate in solution leading to a one-step synthesis of 4^{\prime}-(9-anthryl)-tpy. It is noteworthy that this is the first example of a one-step synthesis of tpy-based ligands with bulky substituents in the 4^{\prime}-position.
To survey the scope of the reaction conditions for heteroatom aromatic aldehydes, the 2-furyl-tpy (13) and 4-py-ridyl-tpy (14) were also synthesized in moderate yield.
In conclusion, we have developed mild reaction conditions for the synthesis of 4^{\prime}-aryl and 4^{\prime}-heteroaryl substituted tpys. These reaction conditions are compatible with various functional groups and provide an efficient route to tridentate $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine-based ligands.

Representative Procedure for Ligands 1-11, 13-16

Synthesis of 1

2-Acetylpyridine ($4.84 \mathrm{~g}, 40 \mathrm{mmol}$) was added into a solution of benzaldehyde ($2.12 \mathrm{~g}, 20 \mathrm{mmol}$) in $\mathrm{EtOH}(100 \mathrm{~mL}) \mathrm{KOH}$ pellets $(3.08 \mathrm{~g} .85 \%, 40 \mathrm{mmol})$ and aq $\mathrm{NH}_{3}(58 \mathrm{~mL}, 29.3 \%, 50 \mathrm{mmol})$ were then added to the solution. The solution was stirred at r.t. for 4 h . The off-white solid was collected by filtration and washed with $\mathrm{EtOH}(3 \times 10 \mathrm{~mL})$. Recrystallization from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ afforded white crystalline solid $1(3.24 \mathrm{~g}, 10.5 \mathrm{mmol}, 53 \%)$. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.76\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{3^{\prime}, s^{\prime}}\right), 8.74(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{H}_{66^{\prime \prime}}\right), 8.68\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3,5^{\prime}}\right), 7.92\left(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{P}}\right)$, $\left.7.90\left(\mathrm{t}_{,}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{4.4}\right)^{-}\right), 7.52\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{lh}_{2}, 6}\right), 7.46$ $\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{p} \mathrm{p}_{3} .5}\right), 7.37\left(\mathrm{dd}, J=7.5,5.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{5, s^{\prime \prime}}\right) .{ }^{L^{4} .3} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=156.5,156.2,150.8,149.4,138.8$, 137.4, 129.5, 129.3, 127.8, 124.3, 121.9. 119.4. Anal. Calcd for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{3}: \mathrm{C}, 81.53 ; \mathrm{H}, 4.89 ; \mathrm{N}, 13.58$. Found: C, $81.15 ; \mathrm{H}, 4.98 ; \mathrm{N}$, 13.50 .

4'-(2,3-Dimethoxyphenyl)-2,2':6',2"-terpyridine (9)
Yield $27 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.72$ (dt. $J=6.7,0.7$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{H}_{6, \mathrm{r}^{\prime}}\right), 8.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{3^{\prime}, 5^{\prime}}\right), 8.68\left(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3,3^{\prime \prime}}\right)$, 7.88 (td. $J=7.7,1.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{4.4}$), 7.34 (ddd, $J=7.4,4.8,0.8 \mathrm{~Hz}$. $2 \mathrm{H}, \mathrm{H}_{55^{-}}$), 7.18-7.16(m, $\left.2 \mathrm{H}, \mathrm{H}_{\mathrm{Phs} .6}\right), 7.02\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{Ph} 4}\right), 3.95(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{H}_{\mathrm{Cl13}}$), 3.73 (s. $3 \mathrm{H}, \mathrm{H}_{\mathrm{Cl13}}$). ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(} 100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $156.8,155.8,153.5,149.6,148.7,147.3,137.2,134.2,124.6,124.1$, $122.8,122.0,121.7,113.3,61.5,56.4$. FAB-MS: $370.4[\mathrm{M}+1]^{+}$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 74.78; H, 5.18: N, 11.37. Found: C, 74.26; H. 5.15; N, 11.09.
4^{\prime}-(1-Naphthyl)-2,2': $6^{\prime}, 2^{\prime \prime}$-terpyridine (11)
Yield 32%. 'H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.76(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2$ $\mathrm{H}, \mathrm{H}_{3} 3^{\circ}$). $8.71\left(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{6,6^{\prime \prime}}\right), 8.68\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{H}_{3^{\prime}, 5^{\circ}}\right), 8.01-$ $7.90\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}_{4,4 \text {.nap }}\right) .7 .63-7.49\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{\text {nap }}\right), 7.37(\mathrm{t}, \mathrm{J}=5.6 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{H}_{5.5}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}$): $\delta=156.7,155.9,151.3$, $149.6,138.4,137.3,134.1,131.4,129.1,128.8,127.5,127.0,126.4$, 126.0, 125.7. 124.3, 122.8, 121.8. FAB-MS: 359.1 [M] ${ }^{+}$. Anal. Calcd for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~N}_{3}$: C, 83.54; H, 4.77; N, 11.69. Found: C, 83.27; H. 4.79; N, 11.61.

4'-(9-Anthryl)-2,2':6',2"'terpyridine (12)

Ligand 12
2-Acetylpyridine (0.61 g .5 .0 mmol) was added into a solution of 9 anthraldehyde $(0.52 \mathrm{~g}, 2.5 \mathrm{mmol})$ in $\mathrm{EtOH}(25 \mathrm{~mL}) . \mathrm{KOH}$ pellets ($0.39 \mathrm{~g}, 85 \%, 5.0 \mathrm{mmol}$) and aq $\mathrm{NH}_{3}(7.5 \mathrm{~mL}, 29.3 \%, 6.3 \mathrm{mmol})$ were then added to the solution. The solution was heated at reflux
for 24 h . After cooling down to ambient temperature, the solution was evaporated to dryness under reduced pressure. Recrystallization of the residue from $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ afforded a yellow crystalline solid ($0.28 \mathrm{~g}, 0.68 \mathrm{mmol}, 27 \%$). ${ }^{i} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $8.82\left(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{3,3^{-}}\right) .8 .66\left(\mathrm{~d}, J=0.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{6.6^{-}}\right), 8.63$ (s, $2 \mathrm{H}, \mathrm{H}_{3,5}$), $8.57\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{An} 10}\right), 8.09\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{An} 18}\right)$, $7.95\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{4, \mathrm{~s}^{\prime}}\right), 7.73\left(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\text {An } 2.7}\right), 7.49$ $\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{An}_{3}, 3}\right), 7.39-7.36\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}_{5,5^{\prime \prime}, \text { An } 4.5}\right) .{ }^{13} \mathrm{C}$ C NMR $\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{Cl}\right): \delta=156.5,156.0,150.0,149.6,137.4,134.7$, $131.6,129.9,128.8,127.8,126.8,126.3,125.6,124.3,124.3,121.9$. FAB-MS: 409.5 [M] ${ }^{+}$. Anal. Caled for $\mathrm{C}_{29} \mathrm{H}_{19} \mathrm{~N}_{3}: \mathrm{C}, 85.06: \mathrm{H}, 4.68$; N, 10.26. Found: C, 85.27; H, 4.65; N, 10.08 .

Acknowledgment

The authors thank the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Université de Montréal for financial support.

References

(1) (a) Demas, J. M.; DeGra, B. A. Coord. Chem. Rev. 2001, 2/l, 317. (b) For a recent example: Kimura, M.; Takahashi, A.; Sakata, T.; Tsukahara, K. Bull. Chem. Soc. Jpn. 1998, 71, 1839. (c) Pèchy, P.; Rotzinger, F. P.; Nazeeruddin, M. K.; Kohle, O.; Zakeeruddin, S. M.; Humphry-Baker, R.; Grätzel, M. J. Chem. Soc., Chem. Commım. 1995, 65. (d) Baldo, M. A.; Thompson, M. E.; Forrest, S. R. Nature 2000, 403. 750. (e) Ziessel, R. J. Inclusion Phenom. Macrocyclic Chem. 1999, 35, 369.
(2) Constable, E. C.; Cargill Thompson, A. M. W.: Tocher, D. A.; Daniels, M. A. M. New' J. Chem. 1992, 16, 855.
(3) Sauvage, J.-P.; Collin, J.-P.; Chambron, J.-C.; Guillerez. S.; Coudret, C.; Balzani, V.; Barigelletti. F.; De Cola, L.; Flamigni, L. Chem. Rev. 1994, 94, 993.
(4) (a) Maestri, M.; Armaroli, N.; Balzani, V.; Constable, E. C.; Cargill Thompson, A. M. W. Inorg. Chem. 1995, 34, 2759. (b) Hammarström, L.; Barigelletti, F.; Flamigni, L.; Indelli, M. T.; Armaroli, N.; Calogero, G.; Guardigli, M.; Sour, A.; Collin, J.-P.; Sauvage, J.-P. J. Phys. Chem. A 1997, 101. 9061. (c) Albano, G., Balzani, V.; Constable, E. C.; Maestri, M.; Smith, D. R. Inorg. Chim. Acta 1998, 277, 225.
(5) Mutai, T.; Cheon, J.-D.; Arita, S.; Araki, K. J. Chem. Soc., Perkin Trans. 2 2001, 1045.
(6) Goodall, W.; Williams, J. A. G. Chem. Commun. 2001. 2514.
(7) Roberto, D.; Tessore, F.; Ugo, R.; Bruni, S.; Manfredi, A.; Quici, S. Chem. Commin. 2002, 846.
(8) Alcock, N. W.; Barker, P. R.; Haider, J. M.; Hannon, M. J.; Painting, C. L.; Pikramenou. Z.; Plummer. E. A.; Rissanen, K.; Saarenketo, P. J. Chem. Soc., Dalton Trans. 2000, 1447.
(9) A comprehensive review of methods up to 1995 is provided by: Cargill Thompson, A. M. W. Coord. Chem. Rev. 1997, 160, 1.
(10) (a) Kröhnke, F. Synthesis 1976, 1. (b) Constable, E. C.; Ward, M. D.; Corr, S. Inorg. Chim. Acta 1988, 141, 201. (c) Frank, R. L.; Riener, E. F. J. Am. Chem. Soc. 1950, 72, 4182. (d) Korall, P.; Börje, A.; Norrby, P.-O.; Åkermark, B. Acta Chem. Scand. 1997. 51, 760. (e) Cave, G. W. V.: Raston, C. L. Chem. Commun. 2000, 2199.
(11) (a) Cardenas, D. J.; Sauvage, J.-P. Synlett 1996, 916. (b) Hanan, G. S.; Schubert, U. S.; Volkmer, D.; Riviere, E.; Lehn, J.-M.; Kyritsakas, N.; Fisher, J. Can. J. Chem. 1997. 75, 169. (c) Fallahpour, R.-A.; Neuberger, M.: Zehnder, M. New'J. Chem. 1999, 23, 53. (d) Fallahpour, R.-A. Eur. J. Inorg. Chem. 1998, 1205.
(12) Goodall. W.: Wild. K.: Arm, K. J.: Williams, J. A. G. J. Chem. Soc., Perkin Trans. 2 2002, 1669.
(13) During the preparation of this paper, a similar approach to synthesize 4^{\prime} - p-tolyl- $2.2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine was reported: Vaduvescu, S.; Potvin, P. G. Eur. J. Inorg. Chem. 2004, 1763.
(14) Collin, J.-P.; Guillerez, S.; Sauvage, J.-P.; Barigelletti, F.: De Cola, L.; Flamigni, L.; Balzani, V. Inorg. Chem. 1991, 30.4230.
(15) Most of the starting aryl aldehydes were purchased from Aldrich. Aldehydes that were not commercial available were synthesized from the corresponding aryl bromides by lithiation and then formylation with dimethylformamide.
(16) Wang, J.; Hanan, G. S.; Loiseau, F.; Campagna, S. Chem. Commum. 2004, 2068.
(17) Yoo, D.-W.; Yoo, S.-K.; Kim, C.; Lee, J.-K. J. Chem. Soc., Dalton Trans. 2002, 3931.
(18) Michalec, J. F.; Bejune, S. A.; Cuttell, D. G.; Summerton, G. C.; Gertenbach, J. A.; Field, J. S.; Haines, R. J.; McMillin, D. R. Inorg. Chem. 2001, 40, 2193.
(19) Husson, J.; Beley, M.; Kirsch, G. Tetrahedron Lett. 2003, 44, 1767.
(20) Persaud, L.; Barbiero, G. Can. J. Chem. 1991, 69, 315.

A2-1 Supplementary data of single crystal structure of complexes 3a in Chapter 2.

Acta. Cryst. (2002). C00, 000-000

Structure of gary 11

Garry Hanan and Francine Bélanger-Gariépy
Département de Chimie, Université de Montréal. C.P. 6128. Succ. Centre-ville. Montréal. Québec,
Canada H3C 3J7. E-mail:

Abstract

The crystal stucture of the title compound, recrystallized from ...

Comment

comment

Experimental

Small details about the preparation of the compound.

Crystal data
$\mathrm{C}_{48} \mathrm{H}_{32} \mathrm{~N}_{8} \mathrm{RU} .2\left(\mathrm{~F}_{6} \mathrm{P}\right) . \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N} \quad$ Cell parameters from 8042 reflections
$M_{r}=1152.88$
Monoclinic
$P 2_{1}$
$a=8.96320(10) \AA$
$b=8.76480(10) \AA$
$c=30.6115(4) \AA$
$\beta=92.1247(8)^{\circ}$
$V=2403.21(5) \AA^{3}$
$Z=2$
$D_{x}=1.593 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
$\mathrm{Cu} K a$ radiation
$\lambda=1.54178 \AA$
$\theta=2.89-72.65^{\circ}$
$\mu=4.104 \mathrm{~mm}^{-1}$
$T=220(2) \mathrm{K}$
Block
Red
$0.46 \times 0.25 \times 0.15 \mathrm{~mm}$
Crystal source: synthesized by the authors.
See text

Data collection
Bruker AXS Smart 2K/Platform diffractom-
eter
ω scans
Absorption correction:
multi-scan Sadabs (Sheldrick, 1996)
$T_{\text {min }}=0.4500, T_{\max }=0.6500$
29130 measured reflections
8123 independent reflections
7427 reflections with
$>2 \operatorname{sigma}(I)$
$R_{\text {int }}=0.040$
$\theta_{\max }=72.86^{\circ}$
$h=-11 \rightarrow 11$
$k=-9 \rightarrow 10$
$l=-37 \rightarrow 37$
232 standard reflections
every? reflections
intensity decay: none

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0401$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.712$ e \AA^{-3}
$w R\left(F^{2}\right)=0.0973$
$S=1.004$
8123 reflections
668 parameters
H -atom parameters constrained $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0678 P)^{2}+0.0000 P\right]$ where $P=\left(F_{o}^{2}+2 F_{r}^{2}\right) / 3$
$\Delta \rho_{\min }=-0.352$ e \AA^{-3}
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)
Absolute structure: Flack H D (1983), Acta
Cryst. A39, 876-881
Flack parameter $=-0.013(7)$

Table 1. Selected geometric parameters $\left(\bar{A},{ }^{\circ}\right)$

$\mathrm{R} \cdot \mathrm{m}-\mathrm{N} 8$	1.978 (3)	$\mathrm{C} 0-\mathrm{Cl} 3$	1.162 (6)
R.11-N48	1.981 (3)	C10-C11	1.392 (7)
R.11-N11	2.069 (3)	C11-C12	1.380 (i)
$\mathrm{Rn}-\mathrm{N} 11$	2.081 (3)	C11-C19	1.181 (5)
$\mathrm{Rn}-\mathrm{Ni}$	2.081 (3)	C13-N14	1.369 (5)
Ru-N51	2.093 (3)	C13-C18	1.391 (6)
N1-C2	1.328 (5)	N14-C15	1.341 (5)
N1-C6	1.367 (5)	C15-C16	1.382 (6)
$\mathrm{C} 2-\mathrm{C} 3$	1.385 (6)	C16-C17	1.379 (6)
C3-C4	1.382 (6)	C17-C18	1.373 (7)
$\mathrm{Cl}-\mathrm{C} 5$	1.379 (7)	C19-N20	1.320 (7)
$\mathrm{C5}-\mathrm{Co}$	1.386 (6)	C19-N24	1.315 (7)
C6-C7	1.167 (6)	N20-C21	1.330 (6)
C7-N8	1.362 (6)	C21-C22	1.375 (7)
$\mathrm{C} 7-\mathrm{C} 12$	1.382 (5)	C22-C23	1.386 (6)
N8-C9	1.344 (6)	C22-C25	1.487 (6)
$\mathrm{CO}-\mathrm{Cl} 0$	1.302 (5)	C23-N24	1.327 (5)

Supplementary data

The tables of data shown below are not normally printed in Acta Cryst. Section C but the data will be available electronically via the online contents pages at
http://journals.iucr.org/c/journalhomepage.html
Table S1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2})

$U_{\mathrm{cq}}=(1 / 3) \Sigma_{1} \Sigma_{j} U^{i j} a^{1} a^{j} \mathbf{a}_{1} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Ru	0.69083 (3)	0.15050 (4)	0.168202 (8)	0.02668 (7)
N1	0.7738 (3)	0.3644 (4)	0.18633 (10)	0.0287 (7)
C2	0.8376 (4)	0.4671 (5)	0.16114 (14)	0.0362 (9)
H2	0.8451	0.4459	0.1312	0.043
C3	0.8937 (5)	0.6041 (5)	0.17719 (15)	0.0421 (11)
H3	0.9396	0.6737	0.1586	0.051
C4	0.8809 (5)	0.6369 (7)	0.22104 (14)	0.0435 (10)
H4	0.9168	0.7298	0.2326	0.052
C5	0.8147 (5)	0.5314 (5)	0.24758 (14)	0.0389 (9)
H5	0.8054	0.5517	0.2775	0.047
C6	0.7620 (4)	0.3954 (5)	0.22981 (12)	0.0303 (8)
C7	0.6944 (4)	0.2749 (5)	0.25582 (13)	0.0307 (8)
N8	0.6542 (3)	0.1504 (6)	0.23152 (8)	0.0271 (5)
C9	0.5891 (4)	0.0282 (5)	0.24930 (12)	0.0299 (8)
C10	0.5582 (5)	0.0275 (5)	0.29351 (13)	0.0339 (9)
H10	0.5126	-0.0576	0.3061	0.041
Cli	0.5956 (4)	0.1546 (8)	0.31890 (11)	0.0339 (7)
C12	0.6647 (5)	0.2784 (5)	0.29980 (13)	0.0346 (9)
H12	0.6913	0.3642	0.3168	0.042
C13	0.5590 (4)	-0.0945 (5)	0.21785 (13)	0.0309 (8)
N14	0.5992 (3)	-0.0655 (4)	0.17594 (10)	0.0284 (7)
C15	0.5783 (4)	-0.1751 (5)	0.14579 (14)	0.0344 (9)
H15	0.6078	-0.1562	0.1171	0.041
C16	0.5152 (5)	-0.3147 (5)	0.15503 (15)	0.0423 (12)
H16	0.5029	-0.3896	0.1332	0.051
Cl 7	0.4706 (4)	-0.3419 (8)	0.19696 (13)	0.0428 (8)
H17	0.4245	-0.4348	0.2038	0.051
C18	0.4937 (5)	-0.2328 (5)	0.22867 (14)	0.0378 (9)
H18	0.4656	-0.2514	0.2575	0.045
C19	0.5517 (4)	0.1609 (8)	0.36516 (12)	0.0395 (8)
N20	0.4639 (5)	0.0507 (5)	0.37850 (12)	0.0500 (10)
C21	0.4129 (6)	0.0679 (6)	0.41876 (16)	0.0524 (13)
H21	0.3535	-0.0102	0.4300	0.063
C22	0.4425 (5)	0.1935 (5)	0.44456 (14)	0.0425 (12)
C23	0.5438 (5)	0.2957 (6)	0.42793 (14)	0.0441 (11)
H23	0.5748	0.3787	0.4455	0.053
N24	0.5993 (4)	0.2827 (5)	0.38851 (12)	0.0435 (9)
C25	0.3658 (6)	0.2194 (6)	0.48617 (15)	0.0476 (11)
C26	0.4446 (6)	0.1979 (5)	0.52635 (15)	0.0506 (13)
C27	0.5955 (6)	0.1524 (10)	0.52993 (16)	0.0617 (12)
H 27	0.6491	0.1364	0.5045	0.074
C28	0.6645 (9)	0.1313 (9)	0.5701 (2)	0.084 (2)
H28	0.7655	0.1022	0.5719	0.101
C29	0.5875 (9)	0.1523 (11)	0.60835 (17)	0.0850 (19)
H29	0.6368	0.1359	0.6356	0.102
C30	0.4434 (10)	0.1960 (7)	0.60681 (19)	0.081 (2)
H30	0.3939	0.2088	0.6331	0.097
C31	0.3638 (8)	0.2233 (7)	0.56632 (17)	0.0628 (15)
C32	0.2181 (8)	0.2707 (8)	0.5636 (2)	0.0741 (19)
H32	0.1680	0.2867	0.5896	0.089
C33	0.1425 (7)	0.2956 (8)	0.5247 (2)	0.0707 (17)

C34	-0.0075 (10)	0.3485 (12)	0.5217 (3)	0.102 (3)
H34	-0.0580	0.3654	0.5476	0.122
C35	-0.0796 (8)	0.3753 (12)	0.4833 (4)	0.110 (3)
H35	-0.1778	0.4131	0.4830	0.132
C36	-0.0114 (8)	0.3480 (10)	0.4439 (3)	0.092 (2)
H36	-0.0638	0.3653	0.4172	0.111
C37	0.1326 (7)	0.2957 (8)	0.4445 (2)	0.0685 (16)
H37	0.1779	0.2775	0.4178	0.082
C38	0.2166 (6)	0.2676 (7)	0.48455 (18)	0.0548 (13)
N 41	0.9057 (4)	0.0646 (4)	0.16744 (12)	0.0329 (7)
C42	0.9950 (5)	0.0305 (6)	0.20213 (16)	0.0427 (10)
H42	0.9606	0.0489	0.2303	0.051
C43	1.1367 (5)	-0.0314 (6)	0.19799 (19)	0.0533 (13)
H43	1.1980	-0.0530	0.2228	0.064
C44	1.1848 (5)	-0.0602 (7)	0.1564 (2)	0.0575 (15)
$\mathrm{H}_{4} 4$	1.2781	-0.1065	0.1527	0.069
C45	1.0967 (5)	-0.0211 (6)	0.12088 (18)	0.0490 (12)
H45	1.1306	-0.0375	0.0926	0.059
C46	0.9560 (4)	0.0433 (5)	0.12654 (15)	0.0360 (9)
C47	0.8556 (5)	0.0926 (5)	0.09049 (14)	0.0347 (9)
N48	0.7249 (3)	0.1472 (6)	0.10455 (9)	0.0299 (6)
C49	0.6160 (4)	0.1983 (4)	0.07654 (13)	0.0334 (9)
C50	0.6387 (5)	0.1962 (5)	0.03206 (14)	0.0421 (11)
H50	0.5644	0.2321	0.0122	0.051
C51	0.7724 (5)	0.1404 (9)	0.01725 (13)	0.0492 (11)
H51	0.7889	0.1386	-0.0129	0.059
C52	0.8815 (5)	0.0873 (6)	0.04640 (15)	0.0446 (11)
H52	0.9718	0.0484	0.0364	0.054
C53	0.4835 (4)	0.2531 (5)	0.09864 (13)	0.0331 (9)
N54	0.4891 (3)	0.2402 (4)	0.14298 (10)	0.0278 (7)
C55	0.3713 (5)	0.2840 (5)	0.16518 (14)	0.0343 (9)
H55	0.3743	0.2719	0.1957	0.041
C56	0.2447 (5)	0.3465 (6)	0.14504 (16)	0.0412 (11)
H56	0.1641	0.3779	0.1617	0.049
C57	0.2385 (5)	0.3622 (6)	0.10010 (16)	0.0449 (11)
H57	0.1536	0.4040	0.0857	0.054
C58	0.3596 (5)	0.3151 (5)	0.07652 (15)	0.0411 (10)
H58	0.3578	0.3251	0.0459	0.049
P1	0.78459 (12)	0.6433 (2)	0.03999 (3)	0.0407 (2)
F11	0.6580 (3)	0.7718 (4)	0.03506 (10)	0.0571 (8)
F12	0.8475 (3)	0.7267 (4)	0.08318 (10)	0.0595 (8)
F13	0.9102 (4)	0.5151 (4)	0.04580 (13)	0.0770 (10)
F14	0.7207 (5)	0.5602 (4)	-0.00293 (10)	0.0750 (10)
F15	0.6765 (4)	0.5448 (4)	0.06906 (10)	0.0648 (8)
F16	0.8894 (4)	0.7448 (4)	0.01105 (12)	0.0757 (11)
P2	0.20643 (16)	0.3805 (2)	0.28880 (4)	0.0602 (4)
F21	0.0507 (4)	0.3027 (7)	0.29438 (17)	0.1180 (18)
F22	0.2581 (5)	0.3344 (5)	0.33653 (11)	0.0839 (12)
F23	0.3632 (4)	0.4570 (7)	0.28222 (17)	0.124 (2)
F24	0.1574 (5)	0.4264 (7)	0.24030 (11)	0.1156 (19)
F25	0.1397 (6)	0.5353 (6)	0.30485 (15)	0.1135 (17)
F26	0.2720 (5)	0.2241 (6)	0.27176 (14)	0.1104 (16)
Cion	1.1147 (15)	0.953 (2)	0.3443 (4)	0.221 (9)
H10A	1.1584	0.8758	0.3635	0.331
H10B	1.0979	1.0455	0.3609	0.331
H10C	1.1823	0.9749	0.3211	0.331
C101	0.9749 (9)	0.8987 (10)	0.3257 (2)	0.091 (2)
N102	0.8743 (8)	0.8525 (9)	0.3110 (2)	0.105 (2)

Table S2. Anisotropic displacement parameters $\left(\AA^{2}\right)$

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
R.1	$0.02428(12)$	$0.02904(13)$	$0.02666(12)$	$0.00088(15)$	$0.00034(8)$	$-0.00020(16)$
N1	$0.0274(16)$	$0.0285(18)$	$0.0297(16)$	$-0.0008(13)$	$-0.0049(13)$	$0.0021(13)$
C2	$0.029(2)$	$0.044(3)$	$0.035(2)$	$0.0000(17)$	$-0.0038(16)$	$0.0069(18)$

A2-2 Supplementary data of single crystal structure of complexes 3b in Chapter 2.

Act.a Cryst. (2002). C00, 000-000

Structure of gary12

Garry Hanan and Francine Bélanger-Gariépy
Département. de Chimie, Université de Montréal. C.P. 6128. Succ. Centre-ville. Montréal. Québec. ${ }^{\boldsymbol{U}}$ Canada H3C 3J\%. E-mail:

Abstract

The crystal stucture of the title compound, recrystallized from ...

Comment

comment

Experimental

Small details about the preparation of the compound.

Crystal data
$\mathrm{C}_{66} \mathrm{H}_{12} \mathrm{~N}_{10} \mathrm{Ru} .2\left(\mathrm{~F}_{6} \mathrm{P}\right) .2\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right) \quad$ Cell parameters from 7613 reflections
$M_{r}=1448.21$
Monoclinic
Cc
$a=13.1378(2) \mathrm{A}$
$b=12.1410(2) \AA$
$c=39.3588(6) \AA$
$\beta=92.4490(10)^{\circ}$
$V=6272.23(17) \AA^{3}$
$\theta=3.37-72.92^{\circ}$
$\mu=3.293 \mathrm{~mm}^{-1}$
$T=220(2) \mathrm{K}$
Block
Orange
$0.28 \times 0.20 \times 0.14 \mathrm{~mm}$
Crystal source: synthesized by the authors.
See text
$Z=4$
$D_{x}=1.534 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
$\mathrm{Cu} K o$ radiation
$\lambda=1.54178 \AA$

Data collection.
Bruker AXS Smart 2K/Platform diffractom- 9468 reflections with

eter	>2 sigma ($~(~) ~$
ω scans	$R_{\mathrm{int}}=0.077$
	$\theta_{\text {max }}=72.92^{\circ}$
Absorption correction:	$h=-15 \rightarrow 12$
multi-scan Sadabs (Sheldrick,1996)	$k=-15 \rightarrow 15$
$T_{\min }=0.2900, T_{\max }=0.8500$	$l=-48 \rightarrow 48$
	282 standard reflections
75410 measured reflections	every? reflections
10112 independent reflections	intensity decay: none

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0493$
$w R\left(F^{2}\right)=0.1224$
$S=1.013$
10112 reflections
876 parameters
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0874 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{r}^{2}\right) / 3$

$$
>2 \operatorname{sigma}(I)
$$

$$
R_{\mathrm{int}}=0.07 \mathrm{7}
$$

$\theta_{\max }=72.92^{\circ}$
$h=-15 \rightarrow 12$
$k=-15 \rightarrow 15$
$l=-48 \rightarrow 48$
282 standard reflections
intensity decay: none
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=1.600 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\text {min }}=-0.971$ e \AA^{-3}
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)
Absolute structure: Flack H D (1983). Acta
Cryst. A39, 876-881
Flack parameter $=0.014(6)$

Table 1. Selected geometric parameters ($\bar{A} .^{\circ}$)

$\mathrm{R} 11-\mathrm{N} 28$	$1.981(5)$	$\mathrm{C} 19-\mathrm{C} 113$	$1.456(6)$
$\mathrm{R} 11-\mathrm{N} 18$	$1.993(4)$	$\mathrm{C} 110-\mathrm{C} 111$	$1.103(7)$
$\mathrm{R} 11-\mathrm{N} 111$	$2.061(4)$	$\mathrm{C} 111-\mathrm{C} 112$	$1.400(6)$
$\mathrm{R} 11-\mathrm{N} 11$	$2.070(3)$	$\mathrm{C} 111-\mathrm{C} 119$	$1.183(5)$
$\mathrm{R} 11-\mathrm{N} 211$	$2.086(4)$	$\mathrm{C} 113-\mathrm{N} 114$	$1.370(6)$
$\mathrm{R} 11-\mathrm{N} 21$	$2.087(4)$	$\mathrm{C} 113-\mathrm{C} 118$	$1.388(6)$
$\mathrm{N} 11-\mathrm{C} 12$	$1.310(6)$	$\mathrm{N} 114-\mathrm{C} 115$	$1.336(6)$
$\mathrm{N} 11-\mathrm{C} 16$	$1.381(5)$	$\mathrm{C} 115-\mathrm{C} 116$	$1.378(7)$
$\mathrm{C} 12-\mathrm{C} 13$	$1.385(7)$	$\mathrm{C} 116-\mathrm{C} 117$	$1.380(9)$
$\mathrm{C} 13-\mathrm{C} 11$	$1.382(7)$	$\mathrm{C} 117-\mathrm{C} 118$	$1.382(7)$
$\mathrm{C} 11-\mathrm{C} 15$	$1.387(7)$	$\mathrm{C} 119-\mathrm{N} 120$	$1.336(6)$
$\mathrm{C} 15-\mathrm{C} 16$	$1.381(6)$	$\mathrm{C} 110-\mathrm{N} 121$	$1.310(6)$
$\mathrm{C} 16-\mathrm{C} 17$	$1.478(6)$	$\mathrm{N} 120-\mathrm{C} 121$	$1.336(6)$
$\mathrm{C} 17-\mathrm{N} 18$	$1.319(6)$	$\mathrm{C} 121-\mathrm{C} 122$	$1.381(7)$
$\mathrm{C} 17-\mathrm{C} 112$	$1.376(6)$	$\mathrm{C} 122-\mathrm{C} 123$	$1.391(7)$
$\mathrm{N} 18-\mathrm{C} 10$	$1.360(6)$	$\mathrm{C} 122-\mathrm{C} 125$	$1.177(6)$
$\mathrm{C} 19-\mathrm{C} 110$	$1.361(6)$	$\mathrm{C} 123-\mathrm{N} 121$	$1.330(6)$

Supplementary data

The tables of data shown below are not normally printed in Acta Cryst. Section C but the data will be available electronically via the online contents pages at
http://journals.iucr.org/c/journalhomepage.html
Table S1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\hat{A}^{2})

$U_{\mathrm{eq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U^{i j} a^{\prime} a^{j} \mathrm{a}_{1} \cdot \mathrm{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
R.u	-0.009895 (17)	0.57642 (2)	0.934661 (9)	0.02674 (9)
N11	-0.0691 (3)	0.4200 (3)	0.92671 (9)	0.0272 (7)
$\mathrm{Cl2}$	-0.1122 (4)	0.3541 (4)	0.94928 (11)	0.0372 (10)
H12	-0.1174	0.3799	0.9717	0.045
C13	-0.1496 (4)	0.2500 (4)	0.94156 (13)	0.0415 (11)
H13	-0.1789	0.2062	0.9582	0.050
C14	-0.1426 (5)	0.2124 (4)	0.90859 (14)	0.0445 (12)
H14	-0.1659	0.1415	0.9026	0.053
C15	-0.1009 (4)	0.2798 (4)	0.88435 (12)	0.0391 (11)
H15	-0.0975	0.2557	0.8617	0.047
C16	-0.0644 (3)	0.3826 (4)	0.89370 (11)	0.0298 (9)
C17	-0.0169 (3)	0.4604 (4)	0.87022 (11)	0.0293 (8)
N18	0.0097 (3)	0.5569 (3)	0.88509 (10)	0.0277 (8)
C19	0.0562 (4)	0.6387 (4)	0.86793 (12)	0.0295 (9)
Cl10	0.0758 (4)	0.6237 (4)	0.83450 (12)	0.0323 (10)
H110	0.1056	0.6809	0.8223	0.039
C111	0.0518 (4)	0.5237 (4)	0.81815 (10)	0.0310 (9)
C112	0.0027 (4)	0.4423 (4)	0.83663 (11)	0.0317 (9)
H112	-0.0167	0.3756	0.8261	0.038
C113	0.0791 (3)	0.7341 (4)	0.88936 (11)	0.0314 (9)
N114	0.0543 (3)	0.7259 (3)	0.92271 (9)	0.0303 (8)
C115	0.0740 (4)	0.8113 (4)	0.94338 (12)	0.0399 (11)
H115	0.0578	0.8050	0.9663	0.048
C116	0.1169 (5)	0.9082 (4)	0.93268 (15)	0.0489 (14)
H116	0.1286	0.9669	0.9479	0.059
C117	0.1423 (5)	0.9169 (4)	0.89913 (17)	0.0523 (15)
H117	0.1720	0.9819	0.8912	0.063
C118	0.1237 (4)	0.8293 (4)	0.87731 (13)	0.0411 (11)
H118	0.1411	0.8342	0.8544	0.049
C119	0.0838 (4)	0.5007 (4)	0.78318 (11)	0.0328 (9)
N120	0.1307 (3)	0.5815 (3)	0.76695 (10)	0.0356 (9)
C121	0.1738 (4)	0.5517 (4)	0.73823 (11)	0.0372 (10)
H121	0.2084	0.6059	0.7262	0.045
C122	0.1705 (4)	0.4460 (4)	0.72512 (11)	0.0351 (10)
C123	0.1101 (4)	0.3736 (4)	0.74281 (11)	0.0383 (10)
H123	0.0983	0.3032	0.7335	0.046
N124	0.0680 (3)	0.3975 (4)	0.77203 (10)	0.0395 (9)
C125	0.2268 (4)	0.4079 (4)	0.69562 (12)	0.0353 (10)
C126	0.2148 (4)	0.4606 (4)	0.66367 (11)	0.0364 (10)
C127	0.1458 (4)	0.5502 (4)	0.65735 (13)	0.0428 (11)
H127	0.1059	0.5753	0.6750	0.051
C128	0.1365 (5)	0.5999 (5)	0.62643 (14)	0.0489 (14)
H128	0.0888	0.6568	0.6227	0.059
C129	0.1990 (5)	0.5660 (5)	0.59952 (13)	0.0503 (14)
H129	0.1952	0.6033	0.5786	0.060
C130	0.2635 (5)	0.4805 (5)	0.60428 (12)	0.0490 (13)
H130	0.3037	0.4584	0.5863	0.059
C131	0.2726 (4)	0.4220 (4)	0.63592 (12)	0.0411 (12)
C132	0.3289 (4)	0.3266 (5)	0.63936 (12)	0.0448 (12)
H132	0.3620	0.2988	0.6205	0.054
C133	0.3380 (4)	0.2701 (5)	0.67027 (13)	0.0426 (11)

C134	0.3937 (5)	0.1690 (5)	0.67400 (17)	0.0554 (14)
H134	0.4215	0.1367	0.6548	0.066
C135	0.4069 (5)	0.1192 (6)	0.7044 (2)	0.0644 (17)
H135	0.4408	0.0511	0.7061	0.077
C136	0.3697 (5)	0.1698 (6)	0.73401 (18)	0.0630 (17)
H136	0.3845	0.1383	0.7555	0.076
C137	0.3132 (4)	0.2630 (5)	0.73157 (13)	0.0490 (14)
H137	0.2885	0.2945	0.7514	0.059
C138	0.2904 (4)	0.3145 (4)	0.69955 (12)	0.0414 (11)
N21	0.1317 (3)	0.5210 (3)	0.95372 (9)	0.0285 (7)
C22	0.2090 (4)	0.4823 (3)	0.93637 (11)	0.0320 (9)
H22	0.1994	0.4729	0.9128	0.038
C23	0.3034 (4)	0.4551 (4)	0.95155 (13)	0.0393 (11)
H23	0.3558	0.4267	0.9386	0.047
C24	0.3179 (4)	0.4712 (4)	0.98628 (13)	0.0407 (11)
H24	0.3812	0.4553	0.9972	0.049
C25	0.2385 (4)	0.5110 (4)	1.00468 (12)	0.0395 (10)
H25	0.2473	0.5215	1.0283	0.047
C26	0.1454 (4)	0.5353 (4)	0.98819 (11)	0.0330 (9)
C27	0.0570 (4)	0.5787 (3)	1.00522 (11)	0.0314 (9)
N28	-0.0247 (4)	0.5972 (3)	0.98413 (12)	0.0324 (9)
C29	-0.1131 (4)	0.6368 (4)	0.99550 (11)	0.0313 (10)
C210	-0.1226 (4)	0.6602 (5)	1.02960 (12)	0.0404 (12)
H210	-0.1846	0.6857	1.0377	0.048
C211	-0.0374 (4)	0.6450 (4)	1.05183 (11)	0.0394 (11)
C212	0.0522 (4)	0.6039 (4)	1.03965 (12)	0.0398 (11)
H212	0.1093	0.5929	1.0545	0.048
C213	-0.1907 (4)	0.6577 (3)	0.96762 (10)	0.0309 (9)
N214	-0.1563 (3)	0.6426 (3)	0.93546 (9)	0.0295 (7)
C215	-0.2177 (4)	0.6686 (4)	0.90885 (11)	0.0347 (10)
H215	-0.1937	0.6622	0.8868	0.042
C216	-0.3168 (4)	0.7050 (4)	0.91315 (13)	0.0387 (11)
H216	-0.3589	0.7231	0.8941	0.046
C217	-0.3531 (4)	0.7144 (4)	0.94499 (14)	0.0414 (11)
H217	-0.4210	0.7357	0.9480	0.050
C218	-0.2875 (4)	0.6918 (4)	0.97297 (12)	0.0376 (10)
H218	-0.3099	0.7001	0.9952	0.045
C219	-0.0413 (4)	0.6825 (4)	1.08797 (12)	0.0422 (11)
N220	-0.1328 (4)	0.7033 (4)	1.09973 (11)	0.0517 (12)
C221	-0.1325 (5)	0.7489 (5)	1.13068 (13)	0.0502 (14)
H221	-0.1954	0.7646	1.1401	0.060
C222	-0.0432 (4)	0.7743 (5)	1.14976 (11)	0.0433 (12)
C223	0.0473 (5)	0.7418 (5)	1.13542 (13)	0.0483 (13)
H223	0.1090	0.7521	1.1480	0.058
N224	0.0494 (4)	0.6965 (4)	1.10446 (11)	0.0488 (11)
C225	-0.0426 (4)	0.8377 (4)	1.18203 (13)	0.0432 (11)
C226	-0.0875 (4)	0.7939 (5)	1.21090 (13)	0.0455 (13)
C227	-0.1338 (5)	0.6897 (6)	1.21189 (15)	0.0571 (15)
H227	-0.1355	0.6458	1.1922	0.069
C228	-0.1763 (5)	0.6498 (7)	1.24041 (19)	0.0651 (18)
H228	-0.2073	0.5800	1.2402	0.078
C229	-0.1731 (6)	0.7157 (7)	1.27056 (15)	0.069 (2)
H229	-0.2035	0.6892	1.2902	0.083
C230	-0.1280 (6)	0.8138 (7)	1.27133 (14)	0.0627 (18)
H230	-0.1263	0.8546	1.2916	0.075
C231	-0.0819 (5)	0.8589 (5)	1.24216 (13)	0.0529 (15)
C232	-0.0358 (5)	0.9605 (6)	1.24259 (16)	0.0603 (17)
H232	-0.0340	1.0018	1.2628	0.072
C233	0.0081 (5)	1.0040 (5)	1.21419 (16)	0.0551 (15)
C234	0.0584 (6)	1.1099 (6)	1.2146 (2)	0.076 (2)
H234	0.0627	1.1507	1.2350	0.091
C235	0.0989 (7)	1.1507 (7)	1.1869 (3)	0.082 (2)
H235	0.1329	1.2188	1.1880	0.098
C236	0.0910 (7)	1.0928 (6)	1.1559 (3)	0.077 (2)
H236	0.1182	1.1241	1.1365	0.093

C237	0.0458 (6)	0.9941 (6)	1.15359 (17)	0.0645 (17)
H237	0.0411	0.9578	1.1325	0.077
C238	0.0042 (5)	0.9430 (5)	1.18289 (16)	0.0497 (14)
P1	0.34598 (12)	0.58404 (12)	0.34197 (4)	0.0441 (3)
F11	0.3908 (4)	0.5906 (4)	0.37997 (9)	0.0882 (15)
F12	0.3150 (4)	0.4592 (4)	0.34706 (13)	0.0938 (15)
F13	0.4535 (4)	0.5485 (5)	0.32928 (12)	0.0976 (17)
F14	0.3745 (4)	0.7093 (4)	0.33693 (13)	0.0952 (15)
F15	0.2377 (3)	0.6191 (4)	0.35499 (11)	0.0839 (13)
F16	0.2996 (3)	0.5763 (3)	0.30407 (9)	0.0651 (11)
P2	0.98674 (15)	0.77719 (18)	0.54018 (4)	0.0671 (5)
F21	0.9560 (6)	0.8872 (6)	0.55837 (17)	0.141 (3)
F22	0.8708 (5)	0.7615 (6)	0.52916 (17)	0.137 (3)
F23	0.9733 (4)	0.7104 (6)	0.57401 (13)	0.114 (2)
F24	1.1038 (4)	0.7978 (6)	0.55074 (13)	0.1122 (19)
F25	0.9997 (4)	0.8436 (5)	0.50585 (11)	0.0975 (17)
F26	1.0189 (6)	0.6721 (5)	0.52071 (16)	0.125 (2)
N31	0.0937 (14)	0.8798 (14)	0.0228 (4)	0.200 (6)
C32	0.1570 (14)	0.9076 (11)	0.0429 (4)	0.137 (5)
C33	0.2226 (10)	0.9270 (9)	0.0726 (3)	0.110 (4)
H33A	0.2667	0.8638	0.0766	0.165
Н33B	0.1814	0.9382	0.0922	. 0.165
H33C	0.2638	0.9920	0.0691	0.165
N41	0.2560 (6)	0.0002 (7)	0.8290 (2)	0.092 (2)
C42	0.2087 (6)	0.0688 (6)	0.81796 (18)	0.0627 (17)
C43	0.1439 (8)	0.1547 (8)	0.8055 (3)	0.100 (3)
H43A	0.0793	0.1508	0.8164	0.150
H43B	0.1325	0.1466	0.7811	0.150
H43C	0.1758	0.2253	0.8104	0.150

Table S2. Anisotropic displacement parameters $\left(\AA^{2}\right)$

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Ru	$0.03192(16)$	$0.02836(14)$	$0.02014(13)$	$-0.00168(15)$	$0.00350(9)$	$-0.00237(14)$
N11	$0.028(2)$	$0.0280(17)$	$0.0258(17)$	$-0.0018(13)$	$0.0071(14)$	$-0.0038(13)$
C12	$0.040(3)$	$0.046(3)$	$0.027(2)$	$0.0041(19)$	$0.0059(18)$	$-0.0002(18)$
C13	$0.046(3)$	$0.038(3)$	$0.041(3)$	$-0.004(2)$	$0.013(2)$	$0.004(2)$
C14	$0.053(3)$	$0.035(3)$	$0.046(3)$	$-0.012(2)$	$0.007(2)$	$-0.005(2)$
C15	$0.048(3)$	$0.037(2)$	$0.032(2)$	$-0.006(2)$	$0.004(2)$	$-0.0021(19)$
C16	$0.032(2)$	$0.032(2)$	$0.0249(19)$	$-0.0014(17)$	$0.0029(16)$	$-0.0034(16)$
C17	$0.029(2)$	$0.035(2)$	$0.0236(19)$	$-0.0018(17)$	$0.0026(16)$	$-0.0032(16)$
N18	$0.029(2)$	$0.0311(19)$	$0.0231(18)$	$0.0000(16)$	$0.0003(15)$	$-0.0013(16)$
C19	$0.028(3)$	$0.032(2)$	$0.029(2)$	$-0.0025(17)$	$0.0047(18)$	$0.0041(17)$
C110	$0.029(3)$	$0.036(2)$	$0.032(2)$	$-0.0024(18)$	$0.0057(18)$	$0.0000(19)$
C111	$0.033(3)$	$0.043(2)$	$0.0176(18)$	$0.0008(18)$	$0.0049(16)$	$-0.0043(16)$
C112	$0.031(2)$	$0.038(2)$	$0.026(2)$	$-0.0029(17)$	$0.0056(17)$	$-0.0064(17)$
C113	$0.029(2)$	$0.036(2)$	$0.029(2)$	$0.0008(17)$	$0.0023(16)$	$-0.0015(17)$
N114	$0.036(2)$	$0.0270(17)$	$0.0279(17)$	$-0.0020(14)$	$-0.0013(15)$	$0.0002(14)$
C115	$0.048(3)$	$0.038(2)$	$0.033(2)$	$-0.004(2)$	$0.001(2)$	$-0.0041(18)$
C116	$0.065(4)$	$0.034(3)$	$0.048(3)$	$-0.010(2)$	$-0.002(3)$	$-0.009(2)$
C117	$0.065(4)$	$0.034(3)$	$0.058(4)$	$-0.013(2)$	$0.001(3)$	$0.003(2)$
C118	$0.047(3)$	$0.038(3)$	$0.038(2)$	$-0.008(2)$	$0.003(2)$	$0.004(2)$
C119	$0.028(2)$	$0.046(2)$	$0.025(2)$	$0.0011(18)$	$0.0039(16)$	$-0.0028(17)$
N120	$0.040(2)$	$0.042(2)$	$0.0252(18)$	$0.0040(16)$	$0.0044(16)$	$-0.0011(15)$
C121	$0.040(3)$	$0.050(3)$	$0.0220(19)$	$-0.003(2)$	$0.0049(18)$	$0.0026(18)$
C122	$0.033(3)$	$0.051(3)$	$0.0208(19)$	$0.0045(19)$	$0.0019(18)$	$-0.0013(18)$
C123	$0.041(3)$	$0.045(3)$	$0.029(2)$	$-0.004(2)$	$0.0054(19)$	$-0.0057(19)$
N124	$0.038(2)$	$0.053(2)$	$0.0281(19)$	$-0.0067(18)$	$0.0061(17)$	$-0.0107(17)$
C125	$0.035(3)$	$0.046(3)$	$0.025(2)$	$0.0008(19)$	$0.0077(18)$	$-0.0018(18)$
C126	$0.039(3)$	$0.046(2)$	$0.025(2)$	$-0.001(2)$	$0.0016(19)$	$-0.0028(18)$
C127	$0.045(3)$	$0.054(3)$	$0.030(2)$	$0.009(2)$	$0.006(2)$	$-0.004(2)$
C128	$0.064(4)$	$0.051(3)$	$0.032(3)$	$0.008(3)$	$0.004(2)$	$0.004(2)$
C129	$0.063(4)$	$0.064(3)$	$0.024(2)$	$-0.002(3)$	$0.002(2)$	$0.003(2)$
C130	$0.056(4)$	$0.067(4)$	$0.025(2)$	$-0.002(3)$	$0.008(2)$	$-0.004(2)$
C131	$0.038(3)$	$0.058(3)$	$0.027(2)$	$-0.002(2)$	$0.003(2)$	$-0.004(2)$

A2-3 Supplementary data of single crystal structure of complexes $\mathbf{3} \mathbf{b}$ in Chapter 3.

Acta Cryst. (2004). C60. 000-000

Structure of Gary 41

Garry Hanan, Elaine Medlycott and Francine Bélanger-Gariépy
Département de Chimie. Université de Montréal. C.P. 6128. Succ. Centre-ville. Montréal. Québec. Canada H3C 3J7. E-mail:

Abstract

Here should be written a short abstract

Comment

To finish the structure, it was decided to use the PLATON (Spek, 2000) facility SQUEEZE to handle the disordered solvent. PLATON identified a remarkably large potential solvent volume of $600.8 \AA^{3}$. or 22.1% of the cell volume. The use of PLATON/SQUEEZE resulted in a 3.1% improvement in R. 1 while correcting for 168 electrons/cell. The reported structure is based on the PLATON/SQUEEZE corrected data. The actual solvent content is unknown, so several quantities reported in Table 1 |empirical formula, density, absorption coefficient, $F(000)$] are incorrect and should be indicated as such in future publications.

Experimental

Small details about the preparation of the compound.

Crystal data
$\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{ClN}_{8} \mathrm{Ru} .2\left(\mathrm{~F}_{6} \mathrm{P}\right)$
$M_{r}=1146.27$
Triclinic
P1
$a=10.4037(6) \AA$
$b=12.2602(7) \AA$
$c=21.9324$ (12) A
$\alpha=80.801(3)^{\circ}$
$\beta=85.840(3)^{\circ}$
$\gamma=80.360(3)^{\circ}$
$V=2719.5(3) \mathrm{A}^{3}$
$\mathrm{Cu} K \alpha$ radiation
$\lambda=1.54178 \AA$
Cell parameters from 14369 reflections
$\theta=3.70-68.28^{\circ}$
$\mu=4.059 \mathrm{~mm}^{-1}$
$T=100(2) \mathrm{K}$
Plate
Red
$0.35 \times 0.12 \times 0.03 \mathrm{~mm}$
Crystal source: synthesized by the authors.
See text
$Z=2$
$D_{r}=1.400 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
Data collection

Bruker AXS Smart 2K/Platform diffractom-
eter
ω scans
multi-scan Sadabs (Sheldrick.1996)
$T_{\text {min }}=0.5400, T_{\text {max }}=0.9100$
7740 reflections with

$$
I>2 \sigma(I)
$$

$$
R_{\mathrm{int}}=0.078
$$

Absorption correction:

21145 measured reflections
9562 independent reflections
$\theta_{\max }=68.53^{\circ}$
$h=-11 \rightarrow 12$
$k=-14 \rightarrow 14$
$l=-24 \rightarrow 26$
189 standard reflections
every? reflections
intensity decay: -3.62%
Refinement
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.1359$
$(\Delta / \sigma)_{\max }=0.012$
$\Delta \rho_{\max }=3.283 \mathrm{e} \mathrm{A}^{-3}$
$w R\left(F^{2}\right)=0.4025$
$S=1.148$
9562 reflections
650 parameters
H -atom parameters constrained
$\Delta \rho_{\text {min }}=-2.446 \mathrm{e} \AA^{-3}$
Extinction correction: SHELXL
Extinction coefficient: 0.0022 (6)
Scattering factors from International Tables
for Crystallography (Vol. C)
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.3200 P)^{2}+0.0000 P\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Table 1. Selected geometric parameters $\left(\bar{A},{ }^{\circ}\right)$
Rul-N18
1.970 (8)

Ru1-N28

Supplementary data

The tables of data shown below are not normally printed in Acta Cryst. Section C but the data will be available electronically via the online contents pages at
http://journals.iucr.org/c/journalhomepage.html
Table S1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\hat{A}^{2})

$U_{\mathrm{eq}}=(1 / 3) \Sigma_{\imath} \Sigma_{j} U^{\imath j} a^{2} a^{J} \mathbf{a}_{2} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Rul	0.73957 (6)	0.69278 (5)	0.18709 (3)	0.0440 (4)
N 11	0.5575 (8)	0.7829 (6)	0.2054 (4)	0.0469 (18)
C12	0.4704 (9)	0.8357 (7)	0.1642 (5)	0.048 (2)
H12	0.4945	0.8407	0.1214	0.058
C13	0.3447 (10)	0.8838 (7)	0.1826 (5)	0.050 (2)
H13	0.2846	0.9213	0.1525	0.060
C14	0.3082 (10)	0.8761 (9)	0.2464 (6)	0.060 (3)
H14	0.2231	0.9063	0.2604	0.072
C15	0.4018 (9)	0.8225 (7)	0.2876 (5)	0.053 (2)
H15	0.3822	0.8188	0.3308	0.063
C16	0.5217 (10)	0.7752 (7)	0.2669 (5)	0.050 (2)
C17	0.6199 (9)	0.7109 (8)	0.3091 (5)	0.049 (2)
N18	0.7287 (7)	0.6659 (6)	0.2782 (3)	0.0438 (16)
C19	0.8280 (9)	0.5966 (8)	0.3091 (5)	0.050 (2)
C110	0.8211 (9)	0.5645 (9)	0.3715 (5)	0.056 (2)
H110	0.8900	0.5145	0.3919	0.067
C111	0.7088 (11)	0.6080 (9)	0.4043 (5)	0.057 (2)
C112	0.6086 (9)	0.6765 (8)	0.3728 (5)	0.052 (2)
H112	0.5300	0.7010	0.3950	0.062
C113	0.9397 (9)	0.5573 (9)	0.2656 (5)	0.052 (2)
N114	0.9201 (7)	0.5921 (6)	0.2042 (4)	0.0448 (17)
C115	1.0134 (9)	0.5641 (8)	0.1633 (5)	0.053 (2)
H115	0.9999	0.5893	0.1207	0.063
C116	1.1325 (11)	0.4980 (9)	0.1807 (6)	0.059 (3)
H116	1.1982	0.4784	0.1503	0.071
C117	1.1523 (9)	0.4628 (10)	0.2409 (6)	0.063 (3)
H117	1.2314	0.4170	0.2539	0.075
C118	1.0538 (9)	0.4952 (7)	0.2837 (5)	0.054 (2)
H118	1.0672	0.4732	0.3266	0.065
C119	0.6927 (11)	0.5650 (8)	0.4708 (5)	0.057 (2)
N120	0.7850 (9)	0.4869 (8)	0.4971 (4)	0.063 (2)
C121	0.7700 (13)	0.4499 (10)	0.5576 (5)	0.069 (3)
H121	0.8332	0.3924	0.5776	0.083
C122	0.6620 (11)	0.4975 (9)	0.5905 (5)	0.056 (2)
C123	0.5721 (11)	0.5779 (11)	0.5615 (5)	0.065 (3)
H123	0.4964	0.6059	0.5847	0.078
N124	0.5848 (9)	0.6189 (10)	0.5027 (4)	0.071 (3)
Cl12	0.6429 (3)	0.4526 (3)	0.67016 (13)	0.0694 (8)
N21	0.6499 (7)	0.5651 (6)	0.1683 (4)	0.0446 (17)
C 22	0.6010 (10)	0.4872 (7)	0.2094 (5)	0.051 (2)
H22	0.6105	0.4867	0.2522	0.062
C23	0.5375 (9)	0.4077 (8)	0.1916 (5)	0.049 (2)
H23	0.5006	0.3555	0.2217	0.058
C24	0.5289 (9)	0.4058 (8)	0.1291 (5)	0.053 (2)
H24	0.4880	0.3506	0.1158	0.064
C25	0.5797 (8)	0.4840 (6)	0.0864 (4)	0.042 (2)
H25	0.5731	0.4838	0.0434	0.051
C26	0.6403 (8)	0.5625 (7)	0.1062 (4)	0.0415 (19)
C27	0.6967 (8)	0.6527 (6)	0.0641 (4)	0.0394 (18)
N28	0.7442 (8)	0.7200 (5)	0.0957 (3)	0.0408 (16)
C29	0.7979 (9)	0.8095 (7)	0.0655 (4)	0.0448 (19)

C210	0.7971 (8)	0.8321 (7)	0.0022 (5)	0.045 (2)
H210	0.8267	0.8979	-0.0189	0.054
C211	0.7528 (8)	0.7592 (7)	-0.0316 (4)	0.044 (2)
C212	0.7014 (8)	0.6681 (6)	0.0013 (4)	0.0418 (19)
H212	0.6697	0.6172	-0.0200	0.050
C213	0.8501 (9)	0.8700 (7)	0.1078 (5)	0.0443 (19)
N214	0.8326 (7)	0.8321 (6)	0.1697 (4)	0.0454 (17)
C215	0.8837 (9)	0.8772 (8)	0.2117 (5)	0.054 (2)
H215	0.8736	0.8486	0.2543	0.065
C216	0.9524 (11)	0.9671 (9)	0.1931 (6)	0.067 (3)
H216	0.9907	0.9971	0.2234	0.080
C217	0.9656 (11)	1.0123 (9)	0.1325 (6)	0.064 (3)
H217	1.0103	1.0744	0.1204	0.077
C218	0.9105 (10)	0.9639 (8)	0.0882 (6)	0.055 (2)
H218	0.9146	0.9949	0.0457	0.066
C219	0.7570 (8)	0.7820 (6)	-0.1003 (4)	0.042 (2)
C220	0.6420 (10)	0.8284 (7)	-0.1313 (5)	0.052 (2)
C221	0.5180 (10)	0.8564 (7)	-0.1006 (6)	0.062 (3)
H221	0.5124	0.8447	-0.0567	0.074
C222	0.4088 (11)	0.8988 (8)	-0.1310 (8)	0.086 (5)
H222	0.3296	0.9174	-0.1078	0.103
C223	0.4072 (13)	0.9166 (9)	-0.1962 (9)	0.099 (6)
H223	0.3306	0.9478	-0.2179	0.118
C224	0.5227 (14)	0.8860 (10)	-0.2250 (9)	0.107 (7)
H224	0.5232	0.8919	-0.2687	0.129
C225	0.6435 (11)	0.8459 (8)	-0.1978 (6)	0.061 (3)
C226	0.7620 (13)	0.8258 (10)	-0.2300 (5)	0.068 (3)
H226	0.7651	0.8410	-0.2739	0.081
C227	0.8755 (9)	0.7842 (8)	-0.2001 (5)	0.048 (2)
C228	0.9993 (11)	0.7635 (9)	-0.2331 (5)	0.060 (3)
H228	1.0063	0.7772	-0.2770	0.072
C229	1.1032 (10)	0.7245 (7)	-0.2002 (5)	0.052 (3)
H229	1.1848	0.7204	-0.2229	0.063
C230	1.1093 (9)	0.6907 (9)	-0.1402 (5)	0.059 (3)
H230	1.1888	0.6560	-0.1218	0.071
C231	0.9940 (8)	0.7084 (7)	-0.1056 (4)	0.0432 (19)
H231	0.9944	0.6867	-0.0620	0.052
C232	0.8728 (9)	0.7587 (7)	-0.1333 (5)	0.047 (2)
P1	0.0232 (7)	0.8654 (4)	0.3860 (2)	0.134 (3)
F11	-0.0106 (9)	0.7663 (9)	0.4339 (4)	0.110 (3)
F12	-0.1197 (14)	0.8939 (14)	0.3624 (6)	0.188 (6)
F13	-0.0166 (15)	0.9472 (10)	0.4364 (5)	0.156 (5)
F14	0.1750 (11)	0.8345 (8)	0.4063 (4)	0.120 (3)
F15	0.0642 (10)	0.7851 (9)	0.3330 (4)	0.111 (3)
F16	0.0567 (15)	0.9691 (9)	0.3381 (5)	0.164 (5)
P2	0.2469 (2)	0.7344 (2)	0.04037 (12)	0.0498 (6)
F21	0.2409 (12)	0.8653 (7)	0.0370 (4)	0.119 (3)
F22	0.3975 (7)	0.7283 (9)	0.0423 (5)	0.120 (3)
F23	0.2307 (12)	0.7217 (8)	0.1126 (4)	0.119 (3)
F24	0.0929 (8)	0.7404 (10)	0.0384 (5)	0.115 (3)
F25	0.2603 (10)	0.7467 (8)	-0.0317 (4)	0.104 (3)
F26	0.2507 (12)	0.6067 (8)	0.0420 (5)	0.122 (3)

Table S2. Anisotropic displacement parameters (A^{2})

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
R.11	$0.0403(5)$	$0.0429(5)$	$0.0511(5)$	$-0.0077(3)$	$-0.0051(3)$	$-0.0114(3)$
N11	$0.045(4)$	$0.045(4)$	$0.049(4)$	$-0.002(3)$	$-0.016(3)$	$-0.001(3)$
C12	$0.038(5)$	$0.046(5)$	$0.058(6)$	$0.001(4)$	$-0.009(4)$	$-0.005(4)$
C13	$0.049(5)$	$0.042(4)$	$0.057(6)$	$0.006(4)$	$-0.019(4)$	$-0.004(4)$
C14	$0.034(5)$	$0.063(6)$	$0.085(8)$	$0.004(4)$	$-0.007(5)$	$-0.024(5)$
C15	$0.044(5)$	$0.043(5)$	$0.064(6)$	$0.017(4)$	$-0.001(4)$	$-0.012(4)$
C16	$0.048(6)$	$0.038(4)$	$0.067(6)$	$-0.002(4)$	$-0.008(4)$	$-0.013(4)$
C17	$0.039(5)$	$0.049(5)$	$0.059(6)$	$-0.003(4)$	$-0.008(4)$	$-0.012(4)$
N18	$0.038(4)$	$0.053(4)$	$0.043(4)$	$-0.008(3)$	$-0.006(3)$	$-0.011(3)$

A2-4 Supplementary data of single crystal structure of complexes 3d in Chapter 3.

Acta Cryst. (2003). C59. 000-000
Structure of Gary 36

Garry Hanan. Elaine Medlycott. Joseph Wang and Francine Bélanger-Gariépy
Département de Chimie. Université de Montréal. C.P. 6128. Succ. Centre-ville, Montréal. Québec. Canada H3C 3J7. E-mail:

Abstract

Here should be written the text of the abstract

Comment

To finish the structure, it was decided to use the PLATON (Spek, 2000) facility SQUEEZE to handle the disordered solvent. PLATON identified a large potential solvent volume of $1865.3 \mathrm{~A}^{3}$, or 28.6% of the cell volume. The use of PLATON/SQUEEZE resulted in a 2.0% improvement in R. 1 while correcting for 458 electrons/cell. The reported structure is based on the PLATON/SQUEEZE corrected data. The actual solvent content is unknown, so several quantities reported in Table 1 [empirical formula, density, absorption coefficient, $F(000)$] are incorrect and should be indicated as such in future publications.

Experimental

Small details about the preparation of the compound.

Crystal data

$\mathrm{C}_{54} \mathrm{H}_{35} \mathrm{BrN}_{8} \mathrm{Ru} .2\left(\mathrm{~F}_{6} \mathrm{P}\right)$
$M_{r}=1266.82$
$\mathrm{Cu} K \propto$ radiation

Monoclinic
$P 2_{1} / c$
$a=25.1776$ (18) A
$b=11.4829$ (8) A
$c=23.2866(15) \AA$
$\beta=104.716(3)^{\circ}$
$\lambda=1.54178 \AA$
Cell parameters from 16364 reflections
$\theta=3.85-56.91^{\circ}$
$\mu=3.765 \mathrm{~mm}^{-1}$
$T=220(2) \mathrm{K}$
Block
Red
$V=6511.6(8) \mathrm{A}^{3}$
$0.50 \times 0.11 \times 0.04 \mathrm{~mm}$
$Z=4$
Crystal source: synthesized by the authors.
$D_{r}=1.292 \mathrm{Mg} \mathrm{m}^{-3}$
See text
D_{m} not measured

Data collection.
Bruker AXS Smart 2K/Platform diffractom-
eter

Absorption correction:
multi-scan Sadabs (Sheldrick, 1996)
$T_{\text {min }}=0.6300, T_{\text {max }}=0.9000$
55391 measured reflections
9043 independent reflections
4640 reflections with

$$
\begin{gathered}
I>2 \sigma(I) \\
R_{\mathrm{int}}=0.053 \\
\theta_{\max }=58.15^{\circ} \\
h=-27 \rightarrow 27 \\
k=-12 \rightarrow 12 \\
l=-25 \rightarrow 25
\end{gathered}
$$

358 standard reflections
every ? reflections
intensity decay: none

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0550$
$w R\left(F^{2}\right)=0.0992$
$S=1.011$
9043 reflections
819 parameters
H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0259 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.600 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.366 \mathrm{e} \mathrm{A}^{-3}$
Extinction correction: none
Scattering factors from International Tables
for Crystallography (Vol. C)

Table 1. Selected geometric parameters ($\bar{A},^{\circ}$)

$\mathrm{Ru}-\mathrm{N} 28$	$1.933(4)$	$\mathrm{Ru}-\mathrm{N} 21$	$2.085(4)$
$\mathrm{Ru}-\mathrm{N} 18$	$1.947(5)$	$\mathrm{Br}-\mathrm{C} 228$	$1.871(8)$
$\mathrm{Ru}-\mathrm{N} 11$	$2.070(4)$	$\mathrm{N} 11-\mathrm{C} 12$	$1.325(6)$
$\mathrm{Ru}-\mathrm{N} 124$	$2.079(4)$	$\mathrm{N} 11-\mathrm{C} 16$	$1.360(6)$
$\mathrm{Ru}-\mathrm{N} 214$	$2.080(4)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.374(7)$

Supplementary data

The tables of data shown below are not normally printed in Acta Cryst. Section C but the data will be available electronically via the online contents pages at
http://journals.iucr.org/c/journalhomepage.html
Table S1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\bar{A}^{2})

H141	1	0.1736	0.4396	0.1969	0.127
C142	1	0.1027 (3)	0.3448 (8)	0.1832 (4)	0.083 (2)
N21	1	0.3458 (2)	0.1182 (3)	0.4448 (2)	0.0512 (12)
C22	1	0.3009 (3)	0.0546 (5)	0.4411 (3)	0.0642 (18)
H22	1	0.2683	0.0747	0.4130	0.077
C23	1	0.3013 (3)	-0.0416 (5)	0.4780 (3)	0.075 (2)
H23	1	0.2695	-0.0867	0.4743	0.090
C24	1	0.3483 (3)	-0.0689 (5)	0.5192 (3)	0.074 (2)
H24	1	0.3491	-0.1334	0.5443	0.089
C25	1	0.3946 (3)	-0.0027 (5)	0.5244 (3)	0.0638 (17)
H25	1	0.4270	-0.0206	0.5534	0.077
C26	1	0.3930 (3)	0.0921 (5)	0.4859 (3)	0.0500 (15)
C27	1	0.4396 (3)	0.1699 (5)	0.4881 (3)	0.0472 (15)
N28	1	0.42582 (17)	0.2581 (4)	0.44705 (17)	0.0449 (11)
C29	1	0.4640 (3)	0.3391 (5)	0.4442 (2)	0.0463 (15)
C210	1	0.5161 (3)	0.3357 (4)	0.4810 (3)	0.0493 (15)
H210	1	0.5416	0.3936	0.4779	0.059
C211	1	0.5316 (3)	0.2467 (5)	0.5231 (2)	0.0494 (14)
C212	1	0.4912 (3)	0.1629 (5)	0.5256 (2)	0.0530 (16)
H212	1	0.4998	0.1016	0.5532	0.064
C213	1	0.4435 (3)	0.4246 (5)	0.3981 (2)	0.0430 (14)
N214	1	0.3898 (2)	0.4090 (3)	0.3667 (2)	0.0469 (12)
C215	1	0.3669 (2)	0.4797 (5)	0.3221 (2)	0.0548 (16)
H215	1	0.3303	0.4662	0.3009	0.066
C216	1	0.3950 (3)	0.5722 (5)	0.3058 (3)	0.0590 (17)
H216	1	0.3779	0.6215	0.2742	0.071
C217	1	0.4489 (3)	0.5902 (4)	0.3371 (3)	0.0570 (17)
H217	1	0.4690	0.6526	0.3271	0.069
C218	1	0.4729 (2)	0.5166 (5)	0.3829 (2)	0.0503 (15)
H218	1	0.5096	0.5287	0.4041	0.060
C219	1	0.5863 (3)	0.2395 (5)	0.5631 (3)	0.0534 (15)
N220	1	0.5956 (2)	0.1575 (4)	0.6056 (2)	0.0605 (14)
C221	1	0.6458 (3)	0.1569 (5)	0.6412 (3)	0.0681 (19)
H221	1	0.6536	0.1015	0.6719	0.082
C222	1	0.6880 (3)	0.2322 (6)	0.6364 (3)	0.0620 (16)
C223	1	0.6729 (3)	0.3104 (5)	0.5901 (3)	0.0619 (17)
H223	1	0.6997	0.3622	0.5839	0.074
N224	1	0.6230 (2)	0.3174 (4)	0.5540 (2)	0.0601 (14)
C225	1	0.7436 (3)	0.2267 (5)	0.6754 (3)	0.079 (2)
C226	1	0.7674 (4)	0.1290 (8)	0.7013 (4)	0.142 (3)
H226	1	0.7481	0.0586	0.6923	0.170
C227	1	0.8213 (4)	0.1262 (9)	0.7423 (4)	0.157 (4)
H227	1	0.8350	0.0566	0.7617	0.188
C228	1	0.8495 (3)	0.2171 (7)	0.7517 (4)	0.120 (3)
C229	1	0.8308 (4)	0.3156 (9)	0.7256 (4)	0.138 (3)
H229	1	0.8522	0.3837	0.7330	0.165
C230	1	0.7770 (4)	0.3175 (8)	0.6854 (4)	0.135 (3)
H230	1	0.7649	0.3872	0.6650	0.162
P1	0.38 (2)	0.5603 (6)	0.2475 (13)	0.3299 (7)	0.0697 (10)
F11	0.38 (2)	0.5484 (12)	0.189 (2)	0.3873 (10)	0.108 (9)
F12	0.38 (2)	0.5006 (7)	0.3003 (17)	0.3112 (8)	0.106 (6)
F13	0.38 (2)	0.5377 (10)	0.1342 (12)	0.2936 (10)	0.080 (7)
F14	0.38 (2)	0.6193 (7)	0.192 (3)	0.3494 (10)	0.141 (9)
F15	0.38 (2)	0.5834 (10)	0.3617 (18)	0.3646 (9)	0.103 (7)
F16	0.38 (2)	0.5728 (10)	0.298 (2)	0.2712 (8)	0.094 (7)
P2	0.62 (2)	0.5692 (4)	0.2463 (8)	0.3293 (4)	0.0697 (10)
F21	0.62 (2)	0.5304 (9)	0.3558 (14)	0.3183 (5)	0.126 (6)
F22	0.62 (2)	0.6001 (6)	0.2891 (12)	0.2816 (5)	0.083 (4)
F23	0.62 (2)	0.5253 (5)	0.1785 (16)	0.2798 (5)	0.103 (5)
F24	0.62 (2)	0.5373 (7)	0.2061 (15)	0.3766 (6)	0.094 (5)
F25	0.62 (2)	0.6113 (7)	0.3141 (11)	0.3798 (5)	0.109 (4)
F26	0.62 (2)	0.6079 (5)	0.1365 (8)	0.3408 (5)	0.083 (4)
P3	0.693 (15)	0.1508 (3)	0.7687 (7)	0.4737 (4)	0.143 (2)
F31	0.693 (15)	0.2136 (5)	0.7514 (13)	0.4759 (8)	0.201 (7)
F32	0.693 (15)	0.1345 (7)	0.8460 (11)	0.4163 (5)	0.223 (7)

F33	$0.693(15)$	$0.1712(6)$	$0.8877(9)$	$0.5099(6)$	$0.203(7)$
F34	$0.693(15)$	$0.1655(5)$	$0.7034(10)$	$0.5355(5)$	$0.196(5)$
F35	$0.693(15)$	$0.1309(3)$	$0.6550(9)$	$0.4380(6)$	$0.171(5)$
F36	$0.693(15)$	$0.0910(4)$	$0.7864(12)$	$0.4832(6)$	$0.210(5)$
P4	$0.307(15)$	$0.1558(6)$	$0.8007(16)$	$0.4591(8)$	$0.143(2)$
F41	$0.307(15)$	$0.1729(8)$	$0.9102(19)$	$0.4262(9)$	$0.168(10)$
F42	$0.307(15)$	$0.0995(6)$	$0.857(2)$	$0.4615(11)$	$0.150(9)$
F43	$0.307(15)$	$0.1895(10)$	$0.856(3)$	$0.5196(8)$	$0.188(15)$
F44	$0.307(15)$	$0.2105(7)$	$0.741(2)$	$0.4532(10)$	$0.098(8)$
F45	$0.307(15)$	$0.1268(8)$	$0.739(3)$	$0.3991(10)$	$0.189(11)$
F46	$0.307(15)$	$0.1459(11)$	$0.690(2)$	$0.4969(16)$	$0.188(14)$

Table $S 2$. Anisotropic displacement parameters $\left(\AA^{2}\right)$

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Ru	0.0650 (3)	0.0407 (3)	0.0513 (3)	-0.0001 (3)	0.0184 (2)	0.0007 (3)
Br	0.1054 (8)	0.2131 (12)	0.1917 (11)	0.0082 (8)	-0.0448 (8)	0.0090 (9)
N11	0.051 (4)	0.041 (3)	0.055 (4)	0.005 (3)	0.014 (3)	0.006 (2)
C12	0.060 (5)	0.044 (4)	0.064 (5)	-0.003 (3)	0.014 (4)	-0.008 (3)
C13	0.062 (5)	0.059 (4)	0.072 (5)	0.008 (3)	0.013 (4)	-0.010 (4)
C14	0.093 (6)	0.055 (4)	0.056 (5)	0.000 (4)	0.030 (5)	-0.007 (3)
C15	0.060 (5)	0.060 (4)	0.075 (5)	0.007 (4)	0.021 (4)	-0.004 (4)
C16	0.063 (5)	0.044 (4)	0.046 (4)	0.006 (3)	0.022 (4)	-0.003 (3)
C17	0.047 (5)	0.049 (4)	0.066 (5)	0.005 (3)	0.016 (4)	0.001 (4)
N18	0.070 (4)	0.034 (3)	0.062 (4)	-0.001 (3)	0.041 (3)	-0.004 (3)
C19	0.055 (5)	0.055 (4)	0.050 (5)	-0.010 (4)	0.008 (4)	0.003 (4)
C120	0.077 (6)	0.063 (4)	0.060 (5)	0.002 (4)	0.025 (4)	0.001 (4)
C121	0.034 (5)	0.080 (5)	0.077 (5)	0.001 (4)	0.003 (4)	0.012 (4)
C122	0.065 (5)	0.067 (4)	0.071 (5)	0.003 (4)	0.019 (5)	0.002 (4)
C123	0.070 (5)	0.040 (4)	0.062 (5)	0.000 (4)	0.030 (5)	0.004 (4)
N124	0.068 (4)	0.048 (3)	0.043 (4)	-0.003 (3)	0.019 (3)	0.001 (3)
C125	0.093 (6)	0.052 (4)	0.047 (5)	0.004 (4)	0.022 (5)	-0.005 (3)
C126	0.098 (6)	0.078 (5)	0.059 (5)	-0.008 (5)	0.024 (5)	-0.013 (4)
C127	0.112 (7)	0.074 (5)	0.071 (6)	0.004 (5)	0.046 (5)	-0.015 (4)
C128	0.098 (6)	0.064 (4)	0.085 (6)	0.010 (4)	0.039 (5)	-0.001 (4)
C129	0.082 (7)	0.060 (5)	0.114 (7)	0.001 (5)	0.048 (6)	0.006 (5)
C130	0.062 (7)	0.104 (6)	0.086 (6)	-0.001 (5)	-0.004 (5)	0.004 (5)
C131	0.081 (7)	0.139 (8)	0.137 (8)	-0.013 (6)	0.019 (6)	0.024 (7)
C132	0.122 (9)	0.160 (9)	0.211 (12)	-0.030 (8)	0.036 (9)	0.068 (8)
C133	0.090 (9)	0.184 (11)	0.226 (13)	-0.032 (8)	0.014 (9)	0.055 (10)
C134	0.087 (8)	0.164 (10)	0.190 (12)	-0.018 (8)	0.015 (8)	0.031 (8)
C135	0.077 (8)	0.103 (7)	0.141 (9)	-0.012 (6)	0.034 (8)	-0.002 (6)
C136	0.076 (7)	0.142 (8)	0.115 (8)	-0.002 (7)	0.013 (6)	0.002 (7)
C137	0.077 (8)	0.115 (7)	0.097 (7)	0.001 (6)	0.019 (6)	0.008 (6)
C138	0.121 (9)	0.136 (8)	0.118 (9)	-0.010 (7)	-0.006 (7)	0.014 (7)
C139	0.140 (10)	0.149 (9)	0.131 (9)	-0.008 (8)	-0.011 (8)	0.047 (7)
C140	0.084 (8)	0.167 (9)	0.129 (8)	-0.021 (6)	-0.009 (6)	0.042 (7)
C141	0.105 (7)	0.106 (6)	0.093 (7)	0.002 (6)	0.002 (6)	0.019 (5)
C142	0.054 (6)	0.092 (6)	0.100 (7)	-0.011 (5)	0.016 (6)	-0.008 (5)
N21	0.059 (4)	0.042 (3)	0.056 (3)	-0.004 (3)	0.022 (3)	-0.001 (2)
C22	0.058 (5)	0.061 (4)	0.076 (5)	-0.008 (4)	0.022 (4)	-0.001 (4)
C23	0.096 (6)	0.055 (5)	0.080 (5)	-0.025 (4)	0.034 (5)	0.003 (4)
C24	0.096 (6)	0.058 (4)	0.067 (5)	-0.008 (5)	0.018 (5)	0.012 (4)
C25	0.086 (5)	0.048 (4)	0.060 (5)	-0.006 (4)	0.023 (4)	0.002 (4)
C26	0.056 (5)	0.050 (4)	0.045 (4)	0.004 (4)	0.015 (4)	-0.002 (3)
C27	0.047 (5)	0.046 (4)	0.049 (4)	0.000 (4)	0.012 (4)	-0.009 (3)
N28	0.068 (3)	0.026 (3)	0.046 (3)	0.003 (3)	0.024 (3)	0.004 (3)
C29	0.063 (5)	0.038 (4)	0.034 (4)	0.004 (4)	0.007 (4)	0.001 (3)
C210	0.073 (5)	0.027 (3)	0.046 (4)	-0.002 (3)	0.011 (4)	0.003 (3)
C211	0.064 (5)	0.042 (4)	0.045 (4)	0.004 (4)	0.020 (4)	-0.011 (3)
C212	0.077 (5)	0.039 (4)	0.046 (4)	0.011 (4)	0.021 (4)	0.008 (3)
C213	0.052 (5)	0.036 (4)	0.042 (4)	0.006 (3)	0.014 (4)	-0.006 (3)
N214	0.073 (4)	0.032 (3)	0.039 (3)	0.009 (3)	0.019 (3)	0.005 (2)
C215	0.074 (5)	0.047 (4)	0.045 (4)	0.002 (4)	0.018 (4)	-0.002 (3)
C216	0.076 (5)	0.053 (4)	0.050 (4)	0.009 (4)	0.020 (4)	0.013 (3)

A2-5 Supplementary data of single crystal structure of complexes $\mathbf{2 c}$ in Chapter 4.

Acta. Cryst. (2004). C60, 000-000
Structure of Gary 43 avec squueze

Garry Hanan, Elaine Medlycott, Joseph Wang and Francine Bélanger-Gariépy
Département de Chimie, Université de Montréal, C.P. 6128. Succ. Centre-ville. Montréal. Québec. Canada H3C 3J7. E-mail:

Abstract

Here should be written a short abstract

Comment

To finish the structure, it was decided to use the PLATON (Spek, 2000) facility SQUEEZE to handle the disordered solvent and PF6 anion (2 by asymmetric unit). PLATON identified a remarkably large potential solvent/anion volume of $847.2 \mathrm{~A}^{3}$, or 39.6% of the cell volume. The use of PLATON/SQUEEZE resulted in a 20% improvement in R1 while correcting for 435 electrons/cell. The reported structure is based on the PLATON/SQUEEZE corrected data. The actual solvent content is unknown, so several quantities reported in Table 1 [empirical formula. density, absorption coefficient, $F(000)$) are incorrect and should be indicated as such in future publications.

Experimental

Small details about the preparation of the compound.

Crystal data
$\mathrm{C}_{35} \mathrm{H}_{23} \mathrm{~N}_{9} \mathrm{Ru}$
$M_{r}=670.69$
Triclinic
P1
$a=8.6267$ (4) A
$b=8.8957(3) \AA$
$c=28.2782(11) \mathrm{A}$
$a=81.425(2)^{\circ}$
$\beta=86.118(2)^{\circ}$
$\gamma=86.135(2)^{\circ}$
$V=2137.29(15) \AA^{3}$
$Z=2$
$D_{x}=1.042 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Bruker AXS Smart 4K/Platform diffractometer

ω scans

Absorption correction:
multi-scan Sadabs (Sheldrick,1996)
$T_{\text {min }}=0.4400 . T_{\text {max }}=0.9100$
27039 measured reflections
7540 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0996$
$w R\left(F^{2}\right)=0.2812$
$S=1.076$
7540 reflections
406 parameters
H-atom parameters constrained
$\mathrm{Cu} K a$ radiation
$\lambda=1.54178 \AA$
Cell parameters from 10132 reflections
$\theta=3.17-68.00^{\circ}$
$\mu=3.202 \mathrm{~mm}^{-1}$
$T=100(2) \mathrm{K}$
PLATE
Red
$0.20 \times 0.10 \times 0.03 \mathrm{~mm}$
Crystal source: synthesized by the authors.
See text

5577 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.059$
$\theta_{\text {max }}=68.58^{\circ}$
$h=-9 \rightarrow 10$
$k=-10 \rightarrow 10$
$l=-34 \rightarrow 33$
182 standard reflections
every ? reflections
intensity decay: none
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1771 P)^{2}+4.1539 P\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.000$
$\Delta \rho_{\text {max }}=2.222 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-2.504 \mathrm{e} \AA^{-3}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Supplementary data

The tables of data shown below are not normally printed in Acta Cryst. Section C but the data will be available electronically via the online contents pages at
http://journals.iucr.org/c/journalhomepage.html
Table S1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\dot{A}^{2})

$U_{\mathrm{eq}}=(1 / 3) \Sigma_{l} \Sigma_{j} U^{i j} a^{2} a^{j} \mathbf{a}_{2} \cdot \mathbf{a}_{j}$.				
	${ }^{x}$	y	z	$U_{\text {eq }}$
R.a	0.04718 (7)	0.01817 (6)	0.26569 (2)	0.0338 (3)
N11	-0.0387 (8)	0.2414 (7)	0.2503 (2)	0.0348 (15)
C12	-0.1065 (11)	0.3340 (8)	0.2802 (3)	0.041 (2)
H12	-0.1159	0.2962	0.3134	0.050
C13	-0.1633 (11)	0.4812 (9)	0.2651 (3)	0.044 (2)
H13	-0.2090	0.5423	0.2878	0.052
Cl 4	-0.1536 (11)	0.5387 (10)	0.2172 (3)	0.048 (2)
H14	-0.1954	0.6382	0.2059	0.057
C15	-0.0794 (11)	0.4446 (8)	0.1855 (3)	0.043 (2)
H15	-0.0640	0.4825	0.1524	0.052
Cig	-0.0299 (11)	0.2993 (8)	0.2025 (3)	0.0387 (19)
C17	0.0481 (10)	0.1924 (8)	0.1708 (3)	0.0367 (18)
N18	0.0877 (10)	0.0551 (7)	0.1948 (2)	0.0415 (18)
C19	0.1561 (10)	-0.0586 (8)	0.1723 (3)	0.0374 (19)
C110	0.1887 (11)	-0.0338 (8)	0.1240 (3)	0.042 (2)
H110	0.2380	-0.1128	0.1081	0.051
C111	0.1493 (11)	0.1088 (9)	0.0977 (3)	0.041 (2)
C112	0.0818 (11)	0.2235 (9)	0.1221 (3)	0.042 (2)
H112	0.0590	0.3224	0.1054	0.051
C113	0.1910 (10)	-0.2004 (8)	0.2060 (3)	0.0363 (18)
N114	0.1402 (8)	-0.1951 (7)	0.2528 (2)	0.0328 (14)
C115	0.1616 (10)	-0.3215 (9)	0.2844 (3)	0.0387 (19)
H115	0.1295	-0.3182	0.3170	0.046
C 116	0.2281 (11)	-0.4559 (9)	0.2718 (3)	0.043 (2)
H116	0.2382	-0.5440	0.2951	0.051
C117	0.2799 (11)	-0.4613 (8)	0.2249 (3)	0.043 (2)
H117	0.3308	-0.5513	0.2156	0.052
C118	0.2562 (10)	-0.3345 (8)	0.1923 (3)	0.0374 (19)
H118	0.2851	-0.3383	0.1594	0.045
C119	0.1925 (12)	0.1356 (9)	0.0471 (3)	0.046 (2)
N120	0.2653 (11)	0.0220 (8)	0.0250 (2)	0.054 (2)
C121	0.3030 (12)	0.0472 (10)	-0.0204 (3)	0.052 (2)
H121	0.3468	-0.0345	-0.0360	0.062
C 122	0.2810 (13)	0.1895 (10)	-0.0467 (3)	0.051 (2)
C123	0.2034 (11)	0.3039 (10)	-0.0228 (3)	0.046 (2)
H123	0.1809	0.4018	-0.0403	0.055
N124	0.1612 (9)	0.2780 (8)	0.0233 (2)	0.0449 (18)
C125	0.3356 (13)	0.2231 (11)	-0.0971 (3)	0.056 (3)
N126	0.3765 (14)	0.2431 (10)	-0.1353 (3)	0.080 (3)
N21	0.2487 (8)	0.0911 (6)	0.2882 (2)	0.0349 (15)
C22	0.3707 (9)	0.1505 (8)	0.2616 (3)	0.0347 (18)
H22	0.3718	0.1541	0.2279	0.042
C 23	0.4945 (10)	0.2064 (8)	0.2804 (3)	0.040 (2)
H23	0.5772	0.2499	0.2602	0.048
C24	0.4946 (13)	0.1973 (9)	0.3296 (3)	0.051 (2)
H24	0.5786	0.2352	0.3434	0.062
C 25	0.3752 (12)	0.1344 (10)	0.3587 (3)	0.049 (2)
H25	0.3761	0.1250	0.3926	0.058
C26	0.2503 (10)	0.0837 (7)	0.3362 (3)	0.0368 (19)
C 27	0.1195 (12)	0.0104 (9)	0.3644 (3)	0.047 (2)
N28	0.0118 (10)	-0.0181 (7)	0.3369 (2)	0.0411 (18)

C29	-0.1241 (12)	-0.0831 (9)	0.3546 (3)	0.049 (2)
C210	-0.1555 (13)	-0.1204 (13)	0.4039 (4)	0.063 (3)
H210	-0.2465	-0.1694	0.4170	0.076
C211	-0.0427 (14)	-0.0803 (16)	0.4328 (4)	0.075 (4)
H211	-0.0617	-0.0967	0.4666	0.090
C212	0.0902 (12)	-0.0197 (12)	0.4144 (3)	0.054 (2)
H212	0.1648	0.0029	0.4351	0.065
C213	-0.2274 (11)	-0.1078 (9)	0.3166 (3)	0.045 (2)
N214	-0.1695 (8)	-0.0630 (7)	0.2713 (2)	0.0369 (16)
C215	-0.2640 (10)	-0.0822 (9)	0.2349 (3)	0.040 (2)
H215	-0.2305	-0.0487	0.2026	0.048
C216	-0.4041 (11)	-0.1483 (10)	0.2443 (4)	0.049 (2)
H216	-0.4656	-0.1593	0.2186	0.058
C 217	-0.4554 (12)	-0.1976 (10)	0.2896 (4)	0.060 (3)
H217	-0.5522	-0.2441	0.2954	0.072
C218	-0.3690 (12)	-0.1816 (9)	0.3280 (4)	0.051 (2)
H218	-0.4027	-0.2178	0.3601	0.061

Table S2. Anisotropic displacement parameters $\left(\dot{\mathrm{A}}^{2}\right)$

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Ru	0.0481 (5)	0.0175 (3)	0.0360 (4)	0.0003 (2)	0.0053 (3)	-0.0094 (2)
N11	0.038 (4)	0.024 (3)	0.044 (4)	0.001 (3)	0.008 (3)	-0.015 (3)
C12	0.050 (6)	0.022 (4)	0.054 (5)	0.004 (3)	0.003 (4)	-0.012 (3)
C13	0.046 (6)	0.025 (4)	0.061 (5)	0.001 (4)	0.011 (4)	-0.018 (4)
C14	0.043 (6)	0.035 (4)	0.068 (6)	0.016 (4)	$-0.007(4)$	-0.026 (4)
C15	0.058 (6)	0.021 (4)	0.051 (5)	0.004 (4)	0.001 (4)	-0.010(3)
C16	0.054 (6)	0.022 (3)	0.041 (4)	-0.004 (3)	-0.005 (4)	-0.004 (3)
C17	0.050 (6)	0.025 (4)	0.036 (4)	0.006 (3)	-0.005 (3)	-0.008 (3)
N18	0.076 (6)	0.027 (3)	0.024 (3)	-0.009 (3)	0.002 (3)	-0.011 (2)
C19	0.052 (6)	0.025 (4)	0.034 (4)	0.005 (3)	0.000 (3)	-0.006 (3)
C110	0.064 (6)	0.025 (4)	0.039 (4)	0.004 (4)	0.000 (4)	-0.015 (3)
C111	0.060 (6)	0.027 (4)	0.034 (4)	0.007 (4)	-0.002 (4)	-0.008 (3)
C112	0.050 (6)	0.029 (4)	0.051 (5)	0.006 (4)	-0.005 (4)	-0.015 (3)
C113	0.047 (5)	0.017 (3)	0.044 (4)	-0.006 (3)	0.009 (4)	-0.006 (3)
N114	0.035 (4)	0.024 (3)	0.040 (3)	0.003 (3)	0.005 (3)	-0.011 (3)
C115	0.046 (5)	0.040 (4)	0.031 (4)	-0.005 (4)	0.005 (3)	-0.008 (3)
C116	0.059 (6)	0.023 (4)	0.048 (5)	-0.004 (4)	-0.005 (4)	-0.008 (3)
C117	0.060 (6)	0.018 (3)	0.048 (5)	0.003 (4)	0.011 (4)	-0.001 (3)
C118	0.053 (6)	0.021 (3)	0.038 (4)	0.008 (3)	-0.003 (4)	-0.011 (3)
C119	0.061 (6)	0.029 (4)	0.052 (5)	-0.001 (4)	0.003 (4)	-0.019 (4)
N120	0.092 (7)	0.031 (3)	0.038 (4)	0.007 (4)	0.008 (4)	-0.011 (3)
C121	0.075 (7)	0.038 (5)	0.045 (5)	-0.013 (5)	0.009 (5)	-0.014 (4)
C122	0.071 (7)	0.040 (5)	0.040 (5)	-0.009 (4)	0.003 (4)	-0.004 (4)
C123	0.049 (6)	0.039 (4)	0.048 (5)	-0.007 (4)	0.003 (4)	-0.004 (4)
N124	0.063 (5)	0.035 (3)	0.037 (4)	0.003 (3)	0.002 (3)	-0.010 (3)
C125	0.083 (8)	0.045 (5)	0.041 (5)	0.006 (5)	0.007 (5)	-0.013 (4)
N126	0.130 (10)	0.048 (5)	0.057 (6)	0.013 (5)	0.015 (6)	-0.008 (4)
N21	0.036 (4)	0.019 (3)	0.051 (4)	0.010 (3)	0.000 (3)	-0.015 (3)
C22	0.037 (5)	0.020 (3)	0.046 (4)	0.003 (3)	0.008 (3)	-0.009 (3)
C23	0.042 (5)	0.018 (3)	0.058 (5)	-0.004 (3)	0.010 (4)	-0.004 (3)
C 24	0.075 (7)	0.028 (4)	0.053 (5)	0.001 (4)	0.001 (5)	-0.012 (4)
C25	0.064 (7)	0.040 (4)	0.042 (5)	0.005 (4)	0.004 (4)	-0.012 (4)
C26	0.046 (5)	0.014 (3)	0.051 (5)	0.000 (3)	0.007 (4)	-0.012 (3)
C27	0.071 (7)	0.034 (4)	0.036 (4)	0.002 (4)	0.005 (4)	-0.012 (3)
N28	0.076 (6)	0.027 (3)	0.021 (3)	-0.001 (3)	0.003 (3)	-0.008 (2)
C29	0.066 (7)	0.030 (4)	0.049 (5)	-0.007 (4)	0.018 (4)	-0.003 (3)
C210	0.058 (7)	0.084 (8)	0.051 (6)	-0.009 (6)	0.001 (5)	-0.019 (5)
C211	0.071 (9)	0.111 (10)	0.048 (6)	-0.027 (7)	0.002 (5)	-0.015 (6)
C212	0.045 (6)	0.068 (6)	0.050 (5)	-0.005 (5)	0.011 (4)	-0.015 (4)
C213	0.054 (6)	0.029 (4)	0.053 (5)	0.008 (4)	0.008 (4)	-0.013 (4)
N214	0.037 (4)	0.021 (3)	0.054 (4)	0.010 (3)	-0.005 (3)	-0.015 (3)
C215	0.031 (5)	0.031 (4)	0.064 (5)	0.008 (3)	-0.010 (4)	-0.025 (4)
C216	0.043 (6)	0.045 (5)	0.064 (6)	0.006 (4)	-0.006 (4)	-0.029 (4)
C217	0.051 (7)	0.037 (5)	0.099 (8)	-0.010 (4)	0.008 (6)	-0.038 (5)

A2-6 Supplementary data of single crystal structure of complexes 1a in Chapter 5.

Acta Cryst. (2004). C60, 000-000
Structure of Gary74

Garry Hanan, Elaine Medlycott, Jianhua Wang and Francine Bélanger-Gariépy
Département de Chimie, Université de Montréal. C.P. 6128. Succ. Centre-ville, Montréal. Québec. Canada. H3C 3J7. E-mail:

Abstract

Here should be written a short abstract

Comment

Here should be written the text of the article

Experimental

Small details about the preparation of the compound.

Crystal data
$\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{5} .3\left(\mathrm{H}_{2} \mathrm{O}\right) \quad \mathrm{CuK} K$ radiation
$M_{r}=289.30$
Orthorhombic
$\lambda=1.54178 \AA$
Cell parameters from 4152 reflections
Pbrn
$a=15.4015(3) \AA$
$b=13.4558$ (3) \AA
$c=6.72570(10) \AA$
$V=1393.83(5) \mathrm{A}^{3}$
$Z=4$
$D_{x}=1.379 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured
$\theta=2.87-72.60^{\circ}$
$\mu=0.848 \mathrm{~mm}^{-1}$
$T=100(2) \mathrm{K}$
Block
Colourless
$0.36 \times 0.27 \times 0.17 \mathrm{~mm}$
Crystal source: synthesized by the authors. See text

Data collection.
Bruker Smart 2000 diffractometer
ω scans
Absorption correction:
multi-scan Sadabs (Sheldrick, 1996)
$T_{\mathrm{min}}=0.9000, T_{\mathrm{max}}=0.9000$
11258 measured reflections
1378 independent reflections
1295 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.025$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0528$
$w R\left(F^{2}\right)=0.1383$
$S=1.185$
1378 reflections
109 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& \theta_{\max }=72.74^{\circ} \\
& h=-18 \rightarrow 19 \\
& k=-13 \rightarrow 15 \\
& l=-8 \rightarrow 8
\end{aligned}
$$

119 standard reflections
every ? reflections
intensity decay: 0.03%
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0536 P)^{2}+1.2468 P\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.305 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-0.250 \mathrm{e}^{\AA^{-3}}$
Extinction correction: none
Scattering factors from International Tables
for Crystallography (Vol. C)
${ }^{T}$ Table 1. Selected geometric parameters $\left(\dot{A},{ }^{\circ}\right)$

$\mathrm{N} 1-\mathrm{C} 2$	$1.334(3)$	$\mathrm{C} 1-\mathrm{C} 5$	$1.494(3)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.342(2)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.382(3)$
$\mathrm{N} 2-\mathrm{C} 1$	$1.338(3)$	$\mathrm{C} 3-\mathrm{C} 4$	$1.379(3)$
$\mathrm{N} 2-\mathrm{C} 4$	$1.339(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.396(3)$
$\mathrm{N} 3-\mathrm{C} 5$	$1.338(2)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.377(2)$
$\mathrm{N} 3-\mathrm{C} 5^{\mathrm{i}}$	$1.338(2)$	$\mathrm{C} 7-\mathrm{C} 6^{\mathrm{i}}$	$1.377(2)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 1$	$116.48(17)$	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$116.53(19)$
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 4$	$116.29(16)$	$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$	$122.57(19)$
$\mathrm{C} 5-\mathrm{N} 3-\mathrm{C} 5$	$117.6(2)$	$\mathrm{N} 3-\mathrm{C} 5-\mathrm{C} 6$	$122.92(17)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 1$	$125.66(17)$	$\mathrm{N} 3-\mathrm{C} 5-\mathrm{C} 1$	$117.36(17)$
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 5$	$118.41(16)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 1$	$119.72(16)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 5$	$115.92(17)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$118.73(18)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$122.45(18)$	$\mathrm{C} 6^{\mathrm{i}}-\mathrm{C} 7-\mathrm{C} 6$	$119.1(2)$

Symmetry codes: (i) $1-x, y, \frac{1}{2}-z$.
Table 2. Hydrogen-bonding geometry ($\bar{A},{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 22 \cdots 2^{\mathrm{i}}$	0.84	$1.914(9)$	$2.750(3)$	$173(7)$
$\mathrm{O} 2-\mathrm{H} 21 \cdots \mathrm{O} 1$	0.84	$1.935(6)$	$2.763(2)$	$168(3)$
$\mathrm{O} 1-\mathrm{H} 11 \cdots \mathrm{~N} 2$	0.84	$1.993(2)$	$2.8329(19)$	$178(3)$

Supplementary data

The tables of data shown below are not normally printed in Acta Cryst. Section C but the data will be available electronically via the online contents pages at
http://journals.iucr.org/c/journalhomepage.html
Table S1. Fractional atomic coordinates and equivalent isotropic displacement parameters (\bar{A}^{2})

$$
U_{\mathrm{cq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{i} \cdot \mathbf{a}_{j} .
$$

	x	y	z	$U_{\text {cq }}$
N1	0.72392 (10)	0.99693 (13)	0.1260 (2)	0.0239 (4)
N2	0.64983 (10)	0.84411 (12)	0.1841 (2)	0.0228 (4)
N3	1/2	0.94974 (16)	1/4	0.0188 (5)
C1	0.65349 (12)	0.94331 (14)	0.1738 (3)	0.0203 (4)
C2	0.79586 (13)	0.94593 (16)	0.0837 (3)	0.0292 (5)
H2	0.8471	0.9815	0.0505	0.035
C3	0.79857 (13)	0.84331 (16)	0.0862 (3)	0.0310 (5)
H3	0.8500	0.8077	0.0542	0.037
C4	0.72279 (12)	0.79521 (15)	0.1377 (3)	0.0268 (5)
H4	0.7223	0.7246	0.1403	0.032
C5	0.57280 (11)	1.00123 (14)	0.2156 (3)	0.0195 (4)
C6	0.57552 (13)	1.10492 (14)	0.2147 (3)	0.0249 (5)
H6	0.6285	1.1390	0.1902	0.030
C7	1/2	1.1568 (2)	1/4	0.0282 (6)
H7	1/2	1.2274	1/4	0.034
O1	1/2	0.72652 (13)	1/4	0.0272 (5)
H11	0.5436 (11)	0.7629 (17)	0.232 (5)	0.054 (9)
O2	0.47301 (11)	0.59256 (13)	0.5552 (3)	0.0381 (4)
H21	0.4887 (16)	0.6331 (15)	0.467 (3)	0.038 (7)
H22	0.486 (5)	0.589 (4)	0.676 (3)	0.18 (3)

Table $S 2$. Anisotropic displacement parameters $\left(\mathrm{A}^{2}\right)$

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
N1	$0.0229(8)$	$0.0260(8)$	$0.0229(8)$	$-0.0051(7)$	$0.0007(6)$	$0.0027(6)$
N2	$0.0218(8)$	$0.0216(8)$	$0.0251(8)$	$0.0001(6)$	$-0.0013(6)$	$0.0028(6)$
N3	$0.0218(10)$	$0.0184(10)$	$0.0163(10)$	0.000	$-0.0014(8)$	0.000
C1	$0.0221(9)$	$0.0240(10)$	$0.0149(8)$	$-0.0026(7)$	$-0.0027(7)$	$0.0015(7)$
C2	$0.0204(9)$	$0.0357(12)$	$0.0315(11)$	$-0.0041(8)$	$-0.0007(8)$	$0.0068(8)$
C3	$0.0225(10)$	$0.0356(12)$	$0.0348(11)$	$0.0040(8)$	$-0.0005(8)$	$0.0068(9)$
C4	$0.0250(10)$	$0.0246(10)$	$0.0310(10)$	$0.0032(7)$	$-0.0006(8)$	$0.0045(8)$
C5	$0.0256(9)$	$0.0200(9)$	$0.0130(8)$	$-0.0014(7)$	$-0.0025(7)$	$0.0002(6)$
C6	$0.0323(11)$	$0.0213(10)$	$0.0212(10)$	$-0.0053(7)$	$0.0028(8)$	$0.0009(7)$
C7	$0.0450(17)$	$0.0141(13)$	$0.0256(14)$	0.000	$0.0068(13)$	0.000
O1	$0.0257(10)$	$0.0172(10)$	$0.0389(11)$	0.000	$0.0066(9)$	0.000
O2	$0.0396(9)$	$0.0429(10)$	$0.0318(9)$	$0.0045(7)$	$0.0009(7)$	$0.0130(7)$

Table S3. Geometric parameters ($\bar{A},^{\circ}$)

$\mathrm{N} 1-\mathrm{C} 2$	$1.334(3)$	$\mathrm{C} 2-\mathrm{H} 3$	0.95
$\mathrm{~N} 1-\mathrm{C} 1$	$1.342(2)$	$\mathrm{C} 4-\mathrm{H} 4$	0.95
$\mathrm{~N} 2-\mathrm{C} 1$	$1.338(3)$	$\mathrm{C}-\mathrm{C} 6$	$1.396(3)$
$\mathrm{N} 2-\mathrm{C} 4$	$1.339(2)$	$\mathrm{C}-\mathrm{C} 7$	$1.377(2)$
$\mathrm{N} 3-\mathrm{C} 5$	$1.338(2)$	$\mathrm{C}-\mathrm{H} 6$	0.95
$\mathrm{~N} 3-\mathrm{C} 5^{1}$	$1.338(2)$	$\mathrm{C} 7-\mathrm{C} 6^{\mathrm{i}}$	$1.377(2)$
$\mathrm{C} 1-\mathrm{C} 5$	$1.494(3)$	$\mathrm{C} 7-\mathrm{H} 7$	0.95
$\mathrm{C} 2-\mathrm{C} 3$	$1.382(3)$	$\mathrm{O}-\mathrm{H} 11$	$0.8400(2)$
$\mathrm{C} 2-\mathrm{H} 2$	0.95	$\mathrm{O} 2-\mathrm{H} 21$	$0.84000(12)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.379(3)$	$\mathrm{O} 2-\mathrm{H} 22$	$0.8400(3)$

A2-7 Supplementary data of single crystal structure of complexes 2a in Chapter 5.

Table 1. Crystal data and structure refinement for GH4.

Identification code	gh4
Empirical formula	C31 H25.50 F12 N12.50 O0 P2 Ru
Formula weight	964.15
Temperature	125(2) K
Wavelength	0.71070 A
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$\mathrm{a}=12.9633(18) \AA \quad \alpha=87.483(3)^{\circ}$.
	$\mathrm{b}=14.844(2) \AA \quad \beta=88.590(2)^{\circ}$.
	$\mathrm{c}=19.220(3) \AA \quad \gamma=78.648(2)^{\circ}$
Volume	3622.1(9) \AA^{3}
Z	4
Density (calculated)	$1.768 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.629 \mathrm{~mm}^{-1}$
F(000)	1924
Crystal size	$0.50 \times 0.25 \times 0.10 \mathrm{~mm}^{3}$
Theta range for data collection	1.60 to 28.30°.
Index ranges	$-17<=\mathrm{h}<=17,-19<=\mathrm{k}<=19,-25<=\mathrm{l}<=25$
Reflections collected	41687
Independent reflections	$17852[\mathrm{R}($ int $)=0.0396]$
Completeness to theta $=28.30^{\circ}$	99.0\%
Absorption correction	Multiscan
Max. and min. transmission	0.9398 and 0.7439
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	17852 / 3/1050
Goodness-of-fit on F^{2}	1.031
Final R indices [$1>2$ sigma(I)]	$\mathrm{Rl}=0.0464, \mathrm{wR} 2=0.1158$
R indices (all data)	$\mathrm{RI}=0.0800, \mathrm{wR} 2=0.1340$
Largest diff. peak and hole	1.327 and -0.633 e. \AA^{-3}

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for GH 4 . $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $\mathrm{U}^{i j}$ tensor.

	x	y	z	U (eq)
$\mathrm{Ru}(1)$	3293(1)	7865(1)	265(1)	23(1)
$\mathrm{P}(1)$	2639(1)	8167(1)	3280(1)	37(1)
F(1)	2077(2)	9002(2)	3739(1)	54(1)
F(2)	1589(2)	7758(2)	3309(1)	54(1)
F(3)	3204(2)	7325(2)	2832(1)	54(1)
F(4)	3703(2)	8555(2)	3263(1)	53(1)
F(5)	2262(2)	8741(2)	2584(1)	54(1)
F(6)	3021(2)	7585(2)	3981(1)	46(1)
N(1)	3803(2)	8789(2)	890(1)	27(1)
N(2)	3126(2)	8978(2)	-361(1)	26(1)
N(3)	2755(2)	7388(2)	-633(1)	28(1)
N(4)	4047(2)	10348(2)	872(2)	35(1)
N(5)	2200(2)	7919(2)	-1776(2)	38(1)
N(6)	1830(2)	8082(2)	768(1)	27(1)
N(7)	3423(2)	6746(2)	884(1)	25(1)
N(8)	4807(2)	7197(2)	30(1)	25(1)
N(9)	885(2)	7398(2)	1660(2)	33(1)
N(10)	5980(2)	5757(2)	248(2)	31(1)
C(1)	4152(3)	8670(2)	1543(2)	36(1)
C(2)	4438(3)	9380(3)	1881(2)	43(1)
C(3)	4373(3)	10209(3)	1526(2)	42(1)
C(4)	3769(2)	9646(2)	579(2)	29(1)
C(5)	3373(2)	9756(2)	-135(2)	28(1)
C(6)	3239(3)	10551(2)	-555(2)	33(1)
C(7)	2852(3)	10525(2)	-1216(2)	38(1)
C(8)	2601(3)	9725(3)	-1440(2)	35(1)
C(9)	2741(2)	8949(2)	-1001(2)	29(1)
$\mathrm{C}(10)$	2543(2)	8039(2)	-1156(2)	28(1)
C(11)	2088(3)	7063(3)	-1903(2)	51(1)
C(12)	2328(3)	6352(3)	-1426(2)	47(1)
C(13)	2651(3)	6533(3)	-782(2)	37(1)

C(14)	1011(3)	8770(2)	689(2)	37(1)
C(15)	100(3)	8797(3)	1093(2)	43(1)
C(16)	76(3)	8108(3)	1580(2)	39(1)
C(17)	1719(3)	7415(2)	1254(2)	28(1)
C(18)	2618(3)	6643(2)	1313(2)	28(1)
C(19)	2681(3)	5861(2)	1742(2)	32(1)
C(20)	3581(3)	5185(2)	1715(2)	34(1)
C(21)	4400(3)	5297(2)	1265(2)	30(1)
C(22)	4305(2)	6088(2)	852(2)	26(1)
C(23)	5089(2)	6346(2)	350(2)	26(1)
C(24)	6679(3)	6053(2)	-187(2)	34(1)
C(25)	6498(3)	6912(2)	-512(2)	33(1)
C(26)	5532(3)	7469(2)	-398(2)	31(1)
$\mathrm{Ru}(1 \mathrm{~A})$	3454(1)	2739(1)	5230(1)	23(1)
$\mathrm{P}(1 \mathrm{~A})$	6900(1)	6867(1)	1933(1)	38(1)
F(1A)	6360(2)	7770(2)	2331(1)	53(1)
F(2A)	5804(2)	6527(2)	1965(1)	54(1)
$\mathrm{F}(3 \mathrm{~A})$	7430(2)	5970(2)	1536(1)	57(1)
F(4A)	7977(2)	7235(2)	1891(1)	52(1)
F(5A)	6572(2)	7389(2)	1202(1)	53(1)
F(6A)	7226(2)	6350(2)	2663(1)	51(1)
$\mathrm{N}(1 \mathrm{~A})$	2072(2)	2935(2)	5808(1)	26(1)
N(2A)	3677(2)	1608(2)	5846(1)	25(1)
$\mathrm{N}(3 \mathrm{~A})$	4961(2)	2094(2)	4933(1)	25(1)
N(4A)	1229(2)	2223(2)	6740(2)	33(1)
$\mathrm{N}(5 \mathrm{~A})$	6231(2)	718(2)	5152(2)	31(1)
N(6A)	2767(2)	2273(2)	4384(1)	25(1)
N(7A)	3119(2)	3874(2)	4634(1)	25(1)
N(8A)	4062(2)	3660(2)	5809(1)	24(1)
N(9A)	1972(2)	2820(2)	3299(2)	35(1)
$\mathrm{N}(10 \mathrm{~A})$	4158(2)	5253(2)	5804(2)	35(1)
C(1A)	1258(3)	3643(3)	5797(2)	38(1)
$\mathrm{C}(2 \mathrm{~A})$	427(3)	3680(3)	6264(2)	45(1)
$\mathrm{C}(3 \mathrm{~A})$	445(3)	2961(3)	6735(2)	40(1)
C(4A)	2007(2)	2241(2)	6294(2)	27(1)
C(5A)	2913(3)	1476(2)	6302(2)	27(1)

C(6A)	3028(3)	691 (2)	6721(2)	34(1)
C(7A)	3949(3)	39(2)	6669(2)	36(1)
C(8A)	4736(3)	183(2)	6204(2)	32(1)
C(9A)	4574(3)	980(2)	5787(2)	27(1)
C(10A)	5310(3)	1266(2)	5266(2)	26(1)
C(11A)	6883(3)	1029(2)	4690(2)	33(1)
C(12A)	6619(3)	1868(2)	4341(2)	34(1)
C(13A)	5637(3)	2389(2)	4472(2)	30(1)
$\mathrm{C}(14 \mathrm{~A})$	2653(3)	1417(2)	4246(2)	33(1)
C(15A)	2216(3)	1235(3)	3636(2)	43(1)
C(16A)	1872(3)	1962(3)	3177(2)	43(1)
C(17A)	2424(3)	2940(2)	3886(2)	28(1)
C(18A)	2587(2)	3864(2)	4038(2)	27(1)
C(19A)	2261(3)	4663(2)	3641(2)	32(1)
C(20A)	2480(3)	5479(2)	3867(2)	33(1)
C(21A)	3011(3)	5489(2)	4484(2)	33(1)
C(22A)	3319(2)	4673(2)	4862(2)	27(1)
C(23A)	3882(3)	4540(2)	5527(2)	28(1)
C(24A)	4680(3)	5086(2)	6399(2)	38(1)
C(25A)	4934(3)	4224(2)	6711(2)	36(1)
C(26A)	4604(3)	3515(2)	6399(2)	29(1)
$\mathrm{P}(1 \mathrm{~B})$	740 (1)	1386(1)	1007(1)	49(1)
F(1B)	-22(2)	2265(2)	660(2)	74(1)
$F(2 B)$	1680(2)	1924(2)	976(2)	91(1)
$F(3 B)$	1483(2)	509(2)	1356(2)	75(1)
$F(4 B)$	-208(2)	847(2)	1028(1)	62(1)
F(5B)	1076(2)	994(2)	264(2)	80(1)
$F(6 B)$	394(2)	1764(2)	1753(1)	69(1)
$\mathrm{P}(1 \mathrm{C})$	4865(1)	2589(1)	2495(1)	28(1)
F(1C)	4164(2)	3458(1)	2857(1)	42(1)
$F(2 \mathrm{C})$	5863(2)	2738(2)	2911(1)	45(1)
$F(3 C)$	5567(2)	1718(1)	2140(1)	44(1)
F(4C)	3868(2)	2444(2)	2084(1)	45(1)
$\mathrm{F}(5 \mathrm{C})$	5170(2)	3239(1)	1870(1)	43(1)
F(6C)	4562(2)	1940(1)	3121(1)	43(1)
N(1B)	1029(4)	684(4)	5486(3)	111(2)

$\mathrm{C}(1 \mathrm{~B})$	$300(4)$	$1211(4)$	$5301(2)$	$57(1)$
$\mathrm{C}(2 \mathrm{~B})$	$-555(4)$	$1908(4)$	$5080(3)$	$89(2)$
$\mathrm{N}(1 \mathrm{C})$	$-1024(4)$	$1632(5)$	$3415(3)$	$110(2)$
$\mathrm{C}(1 \mathrm{C})$	$-643(4)$	$956(5)$	$3142(3)$	$74(2)$
$\mathrm{C}(2 \mathrm{C})$	$-166(4)$	$110(4)$	$2798(3)$	$69(1)$
$\mathrm{N}(1 \mathrm{D})$	$-155(5)$	$4030(4)$	$4412(3)$	$122(2)$
$\mathrm{C}(1 \mathrm{D})$	$-703(5)$	$3980(6)$	$3998(4)$	$99(2)$
$\mathrm{C}(2 \mathrm{D})$	$-1365(7)$	$4050(7)$	$3519(5)$	$175(5)$
$\mathrm{N}(1 \mathrm{~F})$	$-1134(3)$	$4363(3)$	$-284(2)$	$57(1)$
$\mathrm{C}(1 \mathrm{~F})$	$-307(3)$	$4006(3)$	$-378(2)$	$44(1)$
$\mathrm{C}(2 \mathrm{~F})$	$768(2)$	$3558(3)$	$-518(2)$	$67(1)$
$\mathrm{N}(1 \mathrm{E})$	$275(2)$	$5120(2)$	$2404(2)$	$110(2)$
$\mathrm{C}(1 \mathrm{E})$	$511(2)$	$4540(2)$	$2032(1)$	$68(1)$
$\mathrm{C}(2 \mathrm{E})$	$546(2)$	$3878(2)$	$1506(2)$	$88(3)$
$\mathrm{N}(1 \mathrm{~K})$	$275(2)$	$5120(2)$	$2404(2)$	$110(2)$
$\mathrm{C}(1 \mathrm{~K})$	$511(2)$	$4540(2)$	$2032(1)$	$68(1)$
$\mathrm{C}(2 \mathrm{~K})$	$1135(2)$	$3792(2)$	$1635(2)$	$88(3)$

A2-8 Supplementary data of single crystal structure of complexes $\mathbf{2 b}$ in Chapter 5.

Table 1. Crystal data and structure refinement for ggh6.

Identification code	ggh6
Empirical formula	C30 H24 Cl4 F12 N12 O2 P2 Ru
Formula weight	1117.42
Temperature	125(2) K
Wavelength	0.71070 £
Crystal system	Monoclinic
Space group	P2/c
Unit cell dimensions	$\mathrm{a}=11.877(3) \AA \quad \alpha=90^{\circ}$.
	$b=10.666(2) \AA \quad \beta=119.990(11)^{\circ}$.
	$c=17.361(3) \AA \quad \gamma=90^{\circ}$.
Volume	1904.8(7) \AA^{3}
Z	2
Density (calculated)	$1.948 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.887 \mathrm{~mm}^{-1}$
F(000)	1108
Crystal size	$0.30 \times 0.10 \times 0.05 \mathrm{~mm}^{3}$
Theta range for data collection	1.91 to 28.25°.
Index ranges	$-15<=h<=15,-14<=\mathrm{k}<=14,-23<=1<=23$
Reflections collected	20615
Independent reflections	$4678[\mathrm{R}(\mathrm{int})=0.0643]$
Completeness to theta $=28.25^{\circ}$	99.2 \%
Absorption correction	Multiscan
Max. and min. transmission	0.9570 and 0.7767
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	4678 / 54 / 308
Goodness-of-fit on F^{2}	1.115
Final R indices [$1>2$ sigma(I]]	$\mathrm{Rl}=0.1066, \mathrm{wR} 2=0.2791$
R indices (all data)	$\mathrm{R} 1=0.1267, \mathrm{wR} 2=0.2930$
Largest diff. peak and hole	2.593 and $-2.551 \mathrm{e} . \AA^{-3}$

Table 2. Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for ggh6. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{Ru}(1)$	5000	2682(1)	2500	11(1)
$\mathrm{Cl}(1)$	1183(2)	6091(2)	-92(2)	23(1)
$\mathrm{Cl}(2)$	9187(2)	-977(2)	4077(2)	28(1)
$\mathrm{N}(1)$	3514(7)	3996(7)	1976(5)	17(2)
N(2)	2028(8)	5042(8)	2313(6)	22(2)
N(3)	4491(7)	2743(7)	3430(5)	14(1)
N(4)	6255(7)	1352(8)	3402(5)	17(2)
N(5)	6727(8)	362(8)	4769(5)	22(2)
C(1)	2961(8)	4568(8)	1180(6)	16(2)
C(2)	1913(9)	5358(8)	933(6)	18(2)
C(3)	1466(9)	5584(9)	1514(6)	21(2)
C(4)	2997(8)	4247(9)	2489(6)	17(2)
C(5)	3589(9)	3573(9)	3348(6)	19(2)
C(6)	3293(10)	3702(11)	4029(7)	26(2)
C(7)	3902(10)	2926(11)	4759(7)	27(2)
C(8)	4811(10)	2021(10)	4819(7)	25(2)
C(9)	5079(9)	1969(9)	4128(6)	18(2)
$\mathrm{C}(10)$	6080(9)	1171(9)	4112(6)	20(2)
C(11)	7682(10)	-284(10)	4750(7)	27(2)
C(12)	7940(10)	-134(9)	4061(7)	25(2)
C(13)	7220(9)	708(9)	3389(7)	20(2)
$\mathrm{P}(1 \mathrm{~A})$	0	1653(4)	2500	28(1)
F(1A)	-220(30)	$1260(30)$	1584(13)	124(11)
$\mathrm{F}(2 \mathrm{~A})$	1486(10)	1628(17)	2806(14)	47(5)
F(3A)	-1471(19)	1570(40)	$2160(30)$	180(20)
$F(4 \mathrm{~A})$	250(30)	1970(20)	3430(11)	88(7)
$F(5 A)$	-180(20)	3043(14)	2224(13)	80(7)
F(6A)	190(20)	249(13)	2787(13)	73(6)
P(1F)	5000	7618(3)	2500	15(1)
F(IF)	5292(5)	6532(6)	1971(4)	26(1)
$\mathrm{F}(2 \mathrm{~F})$	5280(6)	8698(6)	1972(4)	29(1)

$\mathrm{F}(5 \mathrm{~F})$	$3489(5)$	$7558(6)$	$1738(4)$	$26(1)$
$\mathrm{N}(1 \mathrm{~A})$	$1575(12)$	$6984(12)$	$4317(8)$	$49(3)$
$\mathrm{C}(1 \mathrm{~A})$	$1761(12)$	$7425(11)$	$3809(8)$	$35(3)$
$\mathrm{C}(2 \mathrm{~A})$	$2002(12)$	$8055(14)$	$3171(9)$	$40(3)$
$\mathrm{O}(1 \mathrm{~B})$	$802(13)$	$7367(13)$	$5416(10)$	$75(4)$

A2-9 Supplementary data of single crystal structure of complexes $\mathbf{3 b}$ in Chapter 5.

Acta Cryst. (2004). C60, 000-000
Structure of Gary75
Garry Hanan, Elaine Medlycott, Jianhua Wang and Francine Bélanger-Gariépy
Département de Chimie. Université de Montréal, C.P. 6128. Succ. Centre-ville, Montréal. Québec. Canada H3C 3J7. E-mail:

Abstract

Here should be written a short abstract

Comment

Here should be written the text of the article

Experimental

Small details about the preparation of the compound.

Crystal data	
$\mathrm{C}_{28} \mathrm{H}_{18} \mathrm{Cl}_{2} \mathrm{~N}_{8} \mathrm{Ru} .2\left(\mathrm{PF}_{6}\right) .2\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)$	$\mathrm{Cu} K \alpha$ radiation
$M_{r}=1010.52$	$\lambda=1.54178 \AA$
Orthorhombic	Cell parameters from 7885 reflections
$F d_{d 2}$	$\theta=2.81-72.87^{\circ}$
$a=16.3846(2) \AA$	$\mu=6.435 \mathrm{~mm}^{-1}$
$b=62.8985(8) \AA$	$T=100(2) \mathrm{K}$
$c=14.5581(2) \AA$	Block
$V=15003.1(3) \AA^{3}$	Red
$Z=16$	$0.48 \times 0.25 \times 0.07 \mathrm{~mm}$
$D_{r}=1.790 \mathrm{Mg} \mathrm{m}^{-3}$	Crystal source: synthesized by the authors.
D_{m} not measured	See text

Data collection
Bruker Smart 2000 diffractometer
ω scans
Absorption correction:
multi-scan Sadabs (Sheldrick,1996)
$T_{\text {min }}=0.3400, T_{\text {max }}=0.7300$
45518 measured reflections
$\theta_{\max }=72.97^{\circ}$
$h=-19 \rightarrow 18$
$k=-77 \rightarrow 77$
$l=-17 \rightarrow 17$
357 standard reflections
every ? reflections
intensity decay: 0.03%
7121 reflections with
$I>2 \sigma(I)$
$R_{\mathrm{in} .}=0.053$

Refinement
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0277$
$w R\left(F^{2}\right)=0.0685$
$S=1.024$
7327 reflections
588 parameters
H-atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{n}^{2}\right)+(0.0495 P)^{2}+0.0000 P\right]$
where $P=\left(F_{o}^{2}+2 F_{r}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.002$
$\Delta \rho_{\max }=0.680 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.398$ e \AA^{-3}
Extinction correction: none
Scattering factors from International Tables
for Crystallography (Vol. C)
Absolute structure: Flack H D (1983), XXXX Friedel Pairs
Flack parameter $=0.050(5)$

Supplementary data

The tables of data shown below are not normally printed in Acta Cryst. Section C but the data will be available electronically via the online contents pages at
http://journals.iucr.org/c/journalhomepage.html
Table S1. Fractional atomic coordinates and equivalent isotropic displacement parameters (A^{2})

$U_{\mathrm{eq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U^{i j} a^{i} a^{j} \mathbf{a}_{2}, \mathbf{a}_{j}$.					
		Occupancy	y	z	$U_{\text {cq }}$
R.ul	1	-0.209893 (11)	0.172144 (3)	0.684553 (14)	0.01342 (6)
N 1	1	-0.33569 (12)	0.16741 (3)	0.67513 (16)	0.0127 (4)
N2	1	-0.43126 (15)	0.13823 (4)	0.66493 (17)	0.0195 (5)
N3	1	-0.21447 (14)	0.14072 (3)	0.6797 (2)	0.0156 (4)
N4	1	-0.08716 (13)	0.16475 (4)	0.69328 (17)	0.0164 (4)
N5	1	0.00172 (14)	0.13429 (3)	0.69510 (18)	0.0186 (5)
NG	1	-0.19858 (14)	0.17986 (4)	0.54596 (18)	0.0162 (5)
N7	1	-0.19543 (13)	0.20369 (3)	0.6911 (2)	0.0174 (5)
N8	1	-0.21928 (14)	0.17721 (4)	0.82446 (17)	0.0164 (5)
Cl 1	1	-0.55600 (4)	0.191623 (11)	0.68180 (7)	0.03056 (16)
Cl 2	1	0.13958 (4)	0.185780 (12)	0.70296 (5)	0.02673 (17)
Cl	1	-0.39689 (17)	0.18087 (4)	0.6751 (2)	0.0187 (5)
H1	1	-0.3862	0.1957	0.6761	0.022
C2	1	-0.47681 (18)	0.17372 (5)	0.6737 (2)	0.0216 (6)
C3	1	-0.49211 (17)	0.15216 (5)	0.6672 (2)	0.0206 (6)
H3	1	-0.5469	0.1472	0.6643	0.025
C4	1	-0.35612 (16)	0.14580 (4)	0.67060 (19)	0.0158 (5)
C5	1	-0.28719 (16)	0.13087 (4)	0.6745 (2)	0.0163 (6)
C6	1	-0.29219 (17)	0.10875 (4)	0.6751 (2)	0.0180 (6)
H6	1	-0.3436	0.1018	0.6731	0.022
C7	1	-0.21994 (17)	0.09703 (4)	0.6786 (2)	0.0201 (6)
H7	1	-0.2217	0.0819	0.6790	0.024
C8	1	-0.14595 (16)	0.10750 (4)	0.6816 (2)	0.0185 (5)
H8	1	-0.0965	0.0996	0.6820	0.022
C9	1	-0.14402 (15)	0.12949 (4)	0.6840 (2)	0.0160 (5)
C10	1	-0.07210 (16)	0.14325 (4)	0.6912 (2)	0.0153 (5)
C11	1	0.06632 (18)	0.14731 (4)	0.6980 (2)	0.0191 (6)
H11	1	0.1198	0.1415	0.6990	0.023
C12	1	0.05622 (18)	0.16921 (4)	0.6994 (2)	0.0194 (6)
C13	1	-0.02142 (17)	0.17753 (4)	0.69873 (19)	0.0173 (5)
H13	1	-0.0288	0.1925	0.7022	0.021
C21	1	-0.19922 (17)	0.16646 (5)	0.4742 (2)	0.0198 (6)
H21	1	-0.2013	0.1516	0.4855	0.024
C22	1	-0.1970 (2)	0.17362 (5)	0.3844 (2)	0.0245 (7)
H22	1	-0.1971	0.1638	0.3349	0.029
C23	1	-0.19469 (19)	0.19512 (5)	0.3674 (2)	0.0260 (7)
H23	1	-0.1964	0.2003	0.3062	0.031
C24	1	-0.18985 (18)	0.20910 (5)	0.4411 (2)	0.0240 (6)
H24	1	-0.1858	0.2240	0.4308	0.029
C25	1	-0.19098 (17)	0.20110 (5)	0.5296 (2)	0.0175 (6)
C26	1	-0.18346 (17)	0.21438 (4)	0.6127 (2)	0.0180 (6)
C27	1	-0.15949 (19)	0.23559 (5)	0.6156 (2)	0.0235 (6)
H27	1	-0.1513	0.2434	0.5606	0.028
C28	1	-0.1478 (2)	0.24508 (5)	0.7009 (2)	0.0279 (7)
H28	1	-0.1313	0.2595	0.7042	0.033
C29	1	-0.1600 (2)	0.23368 (5)	0.7808 (2)	0.0252 (6)
H29	1	-0.1514	0.2401	0.8390	0.030
C30	1	-0.18519 (18)	0.21251 (5)	0.7748 (2)	0.0191 (6)
C31	1	-0.20148 (17)	0.19767 (5)	0.8507 (2)	0.0193 (6)
C32	1	-0.19980 (19)	0.20343 (5)	0.9418 (2)	0.0258 (7)
H32	1	-0.1849	0.2175	0.9591	0.031

C3:3	1	-0.22029 (19)	0.18834 (6)	1.0089 (2)	0.0263 (7)
H33	1	-0.2195	0.1921	1.0721	0.032
C34	1	-0.24154 (19)	0.16813 (5)	0.9825 (2)	0.0246 (7)
H34	1	-0.2568	0.1578	1.0268	0.029
C35	1	-0.24013 (18)	0.16317 (5)	0.8894 (2)	0.0200 (6)
H35	1	-0.2546	0.1492	0.8711	0.024
P1	1	-0.71632 (4)	0.111539 (11)	0.68014 (7)	0.01984 (14)
F11	0.70	-0.6886 (5)	0.0901 (2)	0.6265 (9)	0.0267 (12)
F12	0.70	-0.7743 (4)	0.09707 (8)	0.7457 (5)	0.0278 (10)
F13	0.70	-0.6428 (9)	0.1091 (2)	0.7486 (10)	0.029 (2)
F14	0.70	-0.6524 (9)	0.1232 (2)	0.6175 (9)	0.044 (3)
F15	0.70	-0.7901 (5)	0.11428 (12)	0.6120 (5)	0.0313 (15)
F16	0.70	-0.7454 (4)	0.13225 (14)	0.7353 (6)	0.0330 (14)
F111	0.30	-0.7084 (15)	0.0906 (5)	0.628 (2)	0.062 (8)
F112	0.30	-0.7886 (11)	0.1043 (3)	0.7445 (15)	0.050 (4)
F113	0.30	-0.651 (2)	0.1040 (5)	0.758 (2)	0.031 (5)
F114	0.30	-0.660 (2)	0.1267 (5)	0.608 (2)	0.037 (5)
F115	0.30	-0.7820 (13)	0.1191 (3)	0.5975 (14)	0.052 (G)
F116	0.30	-0.7214 (12)	0.1345 (4)	0.728 (2)	0.060 (6)
P2	1	0.05209 (5)	0.220275 (12)	0.94247 (7)	0.03008 (18)
F21	1	0.12202 (17)	0.23669 (4)	0.91313 (17)	0.0621 (8)
F22	1	0.11425 (12)	0.20102 (3)	0.9276 (2)	0.0492 (6)
F23	1	0.02255 (16)	0.21836 (4)	0.83809 (16)	0.0484 (6)
F24	1	-0.0107 (2)	0.23941 (4)	0.95773 (18)	0.0690 (9)
F25	1	0.07975 (18)	0.22230 (3)	1.04753 (15)	0.0503 (6)
F26	1	-0.01721 (13)	0.20364 (3)	0.97234 (17)	0.0412 (5)
C41	1	-0.5918 (3)	0.25158 (7)	0.6753 (4)	0.0678 (15)
H41A	1	-0.5658	0.2510	0.7358	0.102
H41B	1	-0.6125	0.2660	0.6642	0.102
H41C	1	-0.5518	0.2479	0.6279	0.102
C42	1	-0.6591 (2)	0.23657 (5)	0.6722 (3)	0.0382 (8)
N43	1	-0.7112 (2)	0.22461 (5)	0.6710 (3)	0.0421 (8)
C51	1	0.0307 (2)	0.20455 (7)	0.4802 (3)	0.0444 (9)
H51A	1	0.0679	0.2006	0.5301	0.067
H51B	1	-0.0048	0.1925	0.4655	0.067
H51C	1	-0.0028	0.2167	0.4995	0.067
C52	1	0.0776 (2)	0.21034 (5)	0.3997 (2)	0.0297 (7)
N53	1	0.1152 (2)	0.21498 (5)	0.3362 (2)	0.0408 (7)

Table S2. Anisotropic displacement parameters $\left(\AA^{2}\right)$

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Ru1	$0.01377(9)$	$0.00815(8)$	$0.01833(9)$	$-0.00001(7)$	$0.00116(8)$	$0.00036(8)$
N1	$0.0078(10)$	$0.0173(11)$	$0.0130(11)$	$-0.0045(7)$	$-0.0004(9)$	$0.0051(10)$
N2	$0.0183(12)$	$0.0201(12)$	$0.0200(13)$	$-0.0040(9)$	$0.0000(9)$	$-0.0001(9)$
N3	$0.0185(11)$	$0.0119(10)$	$0.0162(11)$	$0.0008(8)$	$-0.0001(9)$	$0.0018(12)$
N4	$0.0173(11)$	$0.0153(10)$	$0.0165(11)$	$-0.0015(8)$	$0.0018(10)$	$-0.0008(10)$
N5	$0.0188(12)$	$0.0150(10)$	$0.0220(13)$	$0.0030(8)$	$0.0032(10)$	$0.0018(10)$
N6	$0.0141(11)$	$0.0113(12)$	$0.0234(13)$	$-0.0006(8)$	$0.0009(9)$	$0.0011(10)$
N7	$0.0172(11)$	$0.0103(9)$	$0.0247(12)$	$0.0007(7)$	$0.0027(11)$	$0.0006(11)$
N8	$0.0151(12)$	$0.0148(11)$	$0.0192(13)$	$-0.0002(9)$	$-0.0005(9)$	$-0.0003(10)$
C11	$0.0193(3)$	$0.0266(3)$	$0.0457(4)$	$0.0083(3)$	$0.0040(3)$	$0.0035(4)$
C12	$0.0187(3)$	$0.0255(3)$	$0.0360(4)$	$-0.0047(3)$	$0.0019(3)$	$-0.0041(3)$
C1	$0.0200(13)$	$0.0158(12)$	$0.0203(14)$	$0.0004(10)$	$0.0012(12)$	$0.0024(11)$
C2	$0.0195(13)$	$0.0219(14)$	$0.0234(17)$	$0.0043(11)$	$0.0028(13)$	$0.0015(12)$
C3	$0.0142(13)$	$0.0275(14)$	$0.0201(15)$	$-0.0013(11)$	$-0.0004(11)$	$-0.0004(11)$
C4	$0.0181(13)$	$0.0143(12)$	$0.0151(14)$	$-0.0021(10)$	$0.0033(10)$	$-0.0015(10)$
C5	$0.0196(13)$	$0.0141(12)$	$0.0152(15)$	$-0.0043(10)$	$0.0012(11)$	$-0.0002(11)$
C6	$0.0199(13)$	$0.0131(12)$	$0.0211(16)$	$-0.0048(10)$	$0.0011(11)$	$0.0004(11)$
C7	$0.0281(15)$	$0.0095(11)$	$0.0226(14)$	$0.0010(10)$	$0.0002(13)$	$0.0020(12)$
C8	$0.0243(14)$	$0.0137(12)$	$0.0176(13)$	$0.0043(9)$	$0.0015(13)$	$0.0023(12)$
C9	$0.0189(13)$	$0.0121(11)$	$0.0170(12)$	$0.0006(9)$	$0.0016(12)$	$0.0008(12)$
C10	$0.0174(13)$	$0.0140(11)$	$0.0145(12)$	$0.0040(9)$	$0.0002(11)$	$0.0012(11)$
C11	$0.0158(13)$	$0.0237(14)$	$0.0180(15)$	$0.0037(10)$	$0.0010(11)$	$0.0015(12)$
C12	$0.0190(13)$	$0.0205(14)$	$0.0188(17)$	$-0.0041(10)$	$0.0016(11)$	$-0.0028(11)$

[^0]: ${ }^{a}$ Scan rate 100 mV s - $. E_{1 / 2}=1 / 2\left(E_{\mathrm{pa}}+\mathrm{E}_{\mathrm{pc}}\right)$, where E_{pa} and E_{pc} are the anodic and cathodic peak potential respectively. $\Delta E_{\mathrm{p}}=E_{\mathrm{pa}}-E_{\mathrm{pc}}$. Irreversible process if no ΔE_{p} presented. Reference electrode, SCE. Potentials are corrected by internal reference to ferrocene. ${ }^{b}$ From reference 5 e.

[^1]: ${ }^{a}$ Data was collected in deaerated spectroscopic quality acetonitrile at 298 K .

[^2]: ${ }^{a}$ In deaerated acetonitrile.

[^3]: ${ }^{a} \mathrm{~V}$ vs SHE. Data were collected in Ar purged acetonitrile at rt with 0.1 M supporting electrolyte, $\mathrm{Bu}_{4} \mathrm{NPF}_{6}$. Working electrode, platinum wire. Redox potentials were corrected by internal reference to ferrocence (395 mV vs SCE). ${ }^{b} \mathbf{3}=\mathrm{Ru}(\text { tpy })_{2}{ }^{2+}$, data from ref. 1 g .

[^4]: ${ }^{a}$ See Scheme 5.2 for ${ }^{1} \mathrm{H}$ assignments. ${ }^{b}$ In ligand $1 \mathrm{a}, \mathrm{R}=\mathrm{H}$; ligand $\mathbf{1 b}, \mathrm{R}=\mathrm{Cl}$; ligand $\mathbf{1 c}$, $\mathrm{R}=\mathrm{Ph}$.

[^5]: * To whom correspondence should be addressed. E-mail: (G.S.H.); photochem(a chem.unime.it (S.C.).

 Université de Montrcal.

 - University of Waterloo.
 * Universiti di Messina.
 (1) (a) Encinas. S.: Flamigni. L.: Barigelletti. F.: Constable, E. C.: Housceroft, C. E.; Schoficld. E. R.: Figgemeier, E.; Fenske. D.; Neuburger. M.: Vos. J. G.; Zelnder. M. Chem. Eur: J. 2002. S. 137. (b) Barigelletti. F.: Flamigni, L. Chem. Soc. Rer: 2000, 29, 1. (c) Hissler. M.: Ziessel, R. New J. Chem. 1997. 2/, 843. (d) Macstri, M.; Armaroli, N.; Balzani, V.; Constable, E. C.: Cargill Thompsom. A M. W. Inorg. Chem. 1995, 34. 2759. (c) Savage, J. P.; Collin, J. P.; Chambron, J. C.; Guillerez, S.: Coudret, C.: Balzani. V.: Barigelleti. F., De Cola. L..; Flamigni, L. Chem. Rev: 1994, 94. 993. (f) Constable. E. C.: Thempson, A. M. W.: Tocher, D. A.; Daniels. M. A. M. New J. Chem.. 1992, 16, 855.
 (2) (a) Balzani. V.: Juris, A.: Venturi. M.; Campagna, S.: Serroni, S. Chem Rea. 1996. 96. 956 and references therem. (b) Hagfeldt. A.; Gractzel. M. Acc. Chem. Res. 2000. 33. 269. (c) Sun, L.: Hammarström, L.: Akermark, B.: Styring, S. Chem. Soc. Rev 2001, 30, 36. (d) Ballardini. R.: Balzani. V.: Credh. A.: Gandolfi. M. T.: Venturi. M. Ace Chem. Res. 2001. 34. 445 . (c) Pomeranc, D. Ieitz, V.; Chambron. J.-C. Sauvage. J.-T. J Am. Chem. Soc. 2001, I23. 12215. (f) Kleverlain, C. J: Indelli, M. T.; Bignozzi, C. A.: Pavanin. L.; Scandola. F.: llassehman. G. M.: Meyer. T. J. J. Am. Chem. Soc. 2002. 112, 2840. (g) Benkö. G.: Kallioinen, J.: Korppi-Tomunola. J. E. I.: Yartsev, A. P.: Sundström. V. J. Am. Chem. Soc. 2002. 124, 489.

[^6]: (3) (a) Meyer. T. J. Pwe 4ppl. Chem. 1986, 58. 1193 . (b) Juris, A.: Balzani, V.; Barigelletti, F.: Campagna, S: Belser. P.: von Zelewsky, A. Coord Chem. Reu 1988, 8t, 85 and relerences therein.
 (4) These unfavorable photophysical properties are duc to proximity (in energy) between the lowest-lying MLCT and metal-centered (MC) states, with the latter governing the excited-state decay dynamics by themally activated surface crossing. This topic has been definitely clarificd and is reported in detail in several reviews [refs le, 2a. 3a.b].
 (5) Medlycott. E. A.; Haman, G. S. Chem. Soc. Ret , in press.
 (6) (a) Harriman, A.: Ziessel, R. Chem Commun 1996. 1707. (b) Bemiston. A. C.: Harriman. A.: Grosshemy. V., Zessel. R. New . Chem. 1997, 21, 405. (c) El-ghayoury. A., Harriman, A.: Khatyr, A.; Zicssel. R. I Ph's. Chem 4 2000. 107.1512 (d) Fang. Y -Q.: Taylor. N. J.: Hanan, G. S.: Lorseau, F., Passalacqua. R.: Campagna, S.: Nierengarten, II.: Van Dorsselaer. A. J. Am. Chem. Soe 2002. 124, 7912. (c) Passalacqua. R.: Loiscau. F.: Campagna, S.; Fang. Y -Q.: Hanan. G. S. Angew Chem., Int Ed. 2003. 42, 1608.

[^7]: (7) (a) Bignozzi. C. A.: Schoonover, J. R.: Scandola, F. Prog. Inomg Chem. 1997. 44. 1 and references thercin. (b) Mellace, M. G.: Fagalde. F.; Katz. N. E.; Crivelli, I. G.: Delgadillo, A.; Leiva. A. M.: Loeb. B.: Garland. M. T.: Baggio. R. Inorg. Chem. 2004. +3, 1100.
 (8) (a) Beley, M.: Collin, J.-P.: Louis. R.; Metz: B. Sauvage, J.-P. J. Am. Chem Soc, 1991. /13, 8521. (b) Constablc. E C.; Cargill Thompsom, A. M. W.: Greulieh, S J. Chem. Soc., Chem. Conmum., 1993, 1444. (c) Campagna. S.; Denti, G: Serroni, S.; Juris, A.: Venturi, M.: Riccuuto, V.; Bakami, V. Chem Eur I 1995, 1, 211. (d) Johansson. K. O.: Lotoski, J. A.: Tong, C.: Hanan. G. S. Chem Conmum. 2000, 819. (e) Lotscau. F.: Passalaqua, R.; Campagna. S.: Polson. M. I. I.: Fang. Y.-Q.: Hanan, G. S. Pholochem. Photobiol. Sci 2002, I. 982. (f) Fang. Y.-Q.: Polson. M. L. J.: Hanan. G. S. Inorg Chem. 2003, 4. 5

[^8]: (9) (a) Takagi. K.: Okınoto, T.; Sakakibara. Y.: Ohno, A.: Oka. S.: Hayama, N. Bull. Chem. Soc. Jpn. 1975. 4S, 3298. (b) Sakakibar, Y.: Ohuda, F.; Shimobayashi, A.: Kirino. K.; Sakai, M.: Uchino. N.: Takagi, K. Bull. Chem. Soc. Jpn. 1988. 61, 1985.
 (10) Jin, F.: Confalone, P. N. Terrahetron Lett 2000, 41, 3271.

