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Résumé 
La présentation d'antigène par les molécules d'histocompatibilité majeure de classe I 

(CMHI) permet au système immunitaire adaptatif de détecter et éliminer les agents 
pathogènes intracellulaires et des cellules anormales. La surveillance immunitaire est effectuée 
par les lymphocytes T CD8 qui interagissent avec le répertoire de peptides associés au CMHI 
présentés à la surface de toutes cellules nucléées.  

Les principaux gènes humains de CMHI, HLA-A et HLA-B, sont très polymorphes 
et par conséquent montrent des différences dans la présentation des antigènes. Nous avons 
étudié les différences qualitatives et quantitatives dans l'expression et la liaison peptidique de 
plusieurs allotypes HLA. Utilisant la technique de cytométrie de flux quantitative nous avons 
établi une hiérarchie d'expression pour les quatre HLA-A, B allotypes enquête. Nos résultats 
sont compatibles avec une corrélation inverse entre l'expression allotypique et la diversité des 
peptides bien que d'autres études soient nécessaires pour consolider cette hypothèse.  

Les origines mondiales du répertoire de peptides associés au CMHI restent une 
question centrale à la fois fondamentalement et dans la recherche de cibles 
immunothérapeutiques. Utilisant des techniques protéogénomiques, nous avons identifié et 
analysé 25,172 peptides CMHI isolées à partir des lymphocytes B de 18 personnes qui 
exprime collectivement 27 allotypes HLA-A,B. Alors que 58% des gènes ont été la source de 
1-64 peptides CMHI par gène, 42% des gènes ne sont pas représentés dans 
l'immunopeptidome. Dans l'ensemble, l’immunopeptidome présenté par 27 allotypes HLA-
A,B ne couvrent que 17% des séquences exomiques exprimées dans les cellules des sujets. Nous 
avons identifié plusieurs caractéristiques des transcrits et des protéines qui améliorent la 
production des peptides CMHI. Avec ces données, nous avons construit un modèle de 
régression logistique qui prédit avec une grande précision si un gène de notre ensemble de 
données ou à partir d'ensembles de données indépendants génèrerait des peptides CMHI. Nos 
résultats montrent la sélection préférentielle des peptides CMHI à partir d'un répertoire limité 
de produits de gènes avec des caractéristiques distinctes. L'idée que le système immunitaire 
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peut surveiller des peptides CMHI couvrant seulement une fraction du génome codant des 
protéines a des implications profondes dans l'auto-immunité et l'immunologie du cancer. 

Mots-clés: complexe majeur d'histocompatibilité (CMH) de classe I, antigènes 
d'histocompatibilité humains (HLA), immunopeptidome, expression quantitative, 
spectrométrie de masse, régression logistique, modélisation 
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Abstract 
Antigen presentation by major histocompatibility complex class I (MHCI) molecules 

allows the adaptive immune system to detect and eliminate intracellular pathogens or 
abnormal cells. Immune surveillance is executed by CD8+ T cells that monitor the repertoire 
of MHCI-associated peptides (MAPs) presented at the surface of all nucleated cells.  

The primary human MHCI genes, HLA-A and HLA-B, are highly polymorphic and 
consequentially demonstrate differences in antigen presentation. We investigated qualitative 
and quantitative differences in expression and peptide binding. Using quantitative flow 
cytometry we establish a clear hierarchy of expression for the four HLA-A,B allotypes 
investigated. Our results are consistent with an inverse correlation between expression and 
peptide diversity although further work is necessary to solidify this hypothesis.  

The global origins of the MAP repertoire remains a central question both 
fundamentally and in the search for immunotherapeutic targets. Using proteogenomics, we 
identified and analyzed 25,172 MAPs isolated from B lymphocytes of 18 individuals who 
collectively expressed 27 HLA-A,B allotypes. While 58% of genes were the source of 1-64 
MAPs per gene, 42% of genes were not represented in the immunopeptidome. Overall, we 
estimate the immunopeptidome presented by 27 HLA-A,B allotypes covered only 17% of 
exomic sequences expressed in subjects’ cells. We identified several features of transcripts and 
proteins that enhance MAP production. From these data we built a logistic regression model 
that predicts with high accuracy whether a gene from our dataset or from independent datasets 
would generate MAPs. Our results show preferential selection of MAPs from a limited 
repertoire of gene products with distinct features. The notion that the immune system can 
monitor MAPs covering only a fraction of the protein coding genome has profound 
implications in autoimmunity and cancer immunology. 

Keywords: major histocompatibility complex (MHC) class I , human leukocyte antigen 
(HLA), immunopeptidome, quantitative expression, mass spectrometry, logistic regression, 
modeling 
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Overview 
The adaptive immune system is charged with surveillance and elimination of threats to 

host survival. This is achieved through two pillars of adaptive immunity: self / non-self 
discrimination and diversity. Self versus non-self discrimination describes the ability of effector 
cells to recognize foreign bodies by becoming tolerant of the self. Diversity within the tools of 
the adaptive immune repertoire is essential for detection and recognition of diverse threats to 
survival.   

Allelic polymorphism of the major histocompatibility complex class I (MHCI) genes is 
one mechanism of diversity. In antigen presentation, MHCI bind intracellular protein 
fragments produced by cytosolic degradation and present these peptides at the cell surface. 
Each MHCI allele produces an allotype, a polymorphic protein, capable of presenting 
different repertoires of MHCI associated peptides (MAPs) defined by the variable shape of 
the peptide binding groove. Collectively, the repertoire of MAPs, the immunopeptidome, 
represents a vision of the self from the perspective of the adaptive immune system. The 
antigen presentation pathway also captures peptides derived from pathogens or abnormal 
proteins that will be recognized as non-self and may initiate an immune response.  

In humans, the MHCI locus is polygenic as well as polymorphic and contains the 
major genes: HLA-A, HLA-B and HLA-C. At the population level, HLA polymorphism 
confers different fitness for diseases ranging from infection to autoimmunity to cancer; the 
presence of some HLA allotypes may be protective while others increase susceptibility. The 
mechanism of disease association for different HLA allotypes has yet to be described 
convincingly. Hypotheses include that certain allotypes present specific immunodominant 
peptides which mediate responses in infection or autoimmunity. Another possibility is the 
inherent differences in global peptide repertoire and antigen presentation by different HLA 
allotypes alter the T cell repertoire and subsequent immune responses. 

The global dynamics of antigen production, presentation and recognition are central to 
effective immunosurveillance. Therefore, we studied how allelic diversity impacts expression 
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and antigen binding properties of different HLA allotypes. We also characterized the 
immunopeptidomes of 18 individuals presenting 27 HLA-A,B allotypes to elucidate the 
genetic origins of MAPs.  

This master's thesis is presented in 4 chapters and 4 appendices. Chapter 1 introduces 
the role of antigen presentation in the adaptive immune system and outlines the research 
questions. Chapter 2 presents the central results from studies of differences in HLA allotype 
expression and peptide binding. Chapter 3 presents an article in preparation entitled 'the 
immunopeptidome presents selected portions of human genome with distinct features to 
CD8+ T cells'. Chapter 4 discusses and offers perspectives on results presented in this work. 
Appendix 1 through 3 include optimized protocols corresponding to results presented in 
chapter 2; appendix 4 contains contributions to separate article.1 

Our findings highlight fundamental differences in absolute HLA expression and invite 
complete elucidation of the HLA allotype specific expression cycle to reveal different 
functional properties. We explore in detail the genetic origins of MAPs across 27 allotypes. 
Our results show that MAPs derive from a select portion of the transcribed exome (< 17%) 
since only 58% of genes generate MAPs and MAPs derive preferentially from adjacent 
regions. We annotate MAP source and non-source genes and used features to predict with 
good accuracy whether a given gene will generate MAPs. The notion that the immune system 
can monitor MAPs covering only a fraction of the protein coding genome has profound 
implications in autoimmunity and cancer immunology. 

 



 

 

Chapter 1 - Introduction 

1.1 The adaptive immune system  
The adaptive immune system of jawed vertebrates has evolved with the central purpose 

of eliminating threats to the host at a cellular level. Two challenges are inherent to this goal: 
how to identify diverse threats at a molecular level and how to monitor a complex system with 
many hiding places. To address the first, genetic recombination and somatic hypermutation 
alter the DNA sequence of linear loci to generate receptors that recognize diverse targets. 
Diversity is also inherent in the allelic polymorphism of molecules that bind antigens (protein 
fragments) to present to these receptors. Host-wide surveillance is achieved through 
continuous presentation of antigens derived from intracellular and extracellular compartments 
to diversified receptors. Antigens derived from foreign proteins, for example in infection, 
pregnancy or transplantation, or aberrant proteins, in neoplastic or stressed cells, can initiate 
immune responses. When foreign antigens are detected by receptors, a process of clonal 
selection - proliferation of the cell expressing the recognisant antigen binding receptor - 
engages a host-wide response to identify and eliminate the specific threat.2–4  

1.1.1 Key components of adaptive immunity 
The precision of the adaptive immune system depends on complex interactions 

between many subtypes of haematological cells which may be classified in two major branches: 
B cells and T cells. Each of these make use of clonally distributed antigen binding receptors, 
the B cell receptor (BCR) and T cell receptor (TCR), and rely on crosstalk for activation and 
survival. B cells are responsible for antibody mediated immune responses that identify 
structurally diverse targets in the extracellular environment. TCRs are restricted to recognizing 
protein fragments presented at the surface of antigen presenting cells (APCs). Professional 
APCs initiate an immune response by presenting peptides derived from foreign or aberrant 
proteins to T cells and by providing essential costimulatory signals to guide the expansion of 
appropriate subpopulations. A final cornerstone of adaptive immunity is immunological 
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memory. Once an immune response has been mounted, a subset of antigen detecting cells will 
differentiate into memory cells. Upon re-challenge by the same antigen, a swift protective 
immune response driven by memory cells will eliminate the threat - such is the principle of 
vaccination to stave off infection. The mechanisms of activation, cross-talk and memory in 
each arm of adaptive immunity have been reviewed extensively.5–11 

T cell recognition is contingent of the participation of normal cells, APCs, in immune 
surveillance. Genes within the major histocompatibility complex (MHC) region of the 
genome bind and present peptide antigens derived from the extracellular and intracellular 
environments for MHC class II (MHCII) and MHC class I (MHCI) molecules respectively. 
MHCII molecules interact with T cells bearing the CD4 costimulatory receptor whereas 
MHCI are recognized by CD8+ T cells. MHCII expression is restricted to professional 
antigen presenting cells whereas MHCI is expressed on all nucleated cells. Functionally, 
MHCII antigen presentation stimulates 'helper' T cells to coordinate the immune response 
since MHCII antigens reflect the extracellular environment. Conversely, MHCI antigen 
presentation initiates a cytotoxic response from CD8+ T cells to eliminate cells harbouring 
pathogen derived or abnormal proteins. Over the course of an immune response, the activation 
of CD8 and CD4 T cells is coordinated by professional APCs while effector functions operate 
interdependently.3,12–14 

1.1.2 Tolerance & discrimination by T cells  
The T cell branch of the adaptive immune system uses somatic recombination to 

generate an incredibly diverse repertoire of T cells capable of recognizing unseen targets. T 
cells must discriminate between peptide antigens derived from host proteins and peptides that 
reflect a threat to the host. Self / non-self  discrimination is achieved by T cell education in the 
thymus. Among developing T cells, only a minority survive the process of thymic selection 
which ensures an immunocompetent and self-tolerant T cell repertoire. Positive selection 
provides survival signals in the thymic cortex to T cells bearing receptors that recognize 
MHCI and MHCII molecules. Without these signals, T cells that do not interact with 
MHCI or MHCII on cortical cells will perish. In the thymic medulla, negative selection 
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eliminates autoreactive T cells with high affinity for self antigens bound to MHCI or MHCII. 
Medullary thymic epithelial cells display promiscuous expression of tissue specific genes to 
ensure T cells are tolerized to a comprehensive repertoire of self peptides. Thymic education 
therefore produces a repertoire of  MHC-restricted T cells capable of discriminating between 
the self and the non-self. 15–17 

1.1.3 MHC I genomics & evolution 
Finally, we arrive at the focal point of this work and a keystone of adaptive immunity: 

antigen presentation by MHC class I molecules. The MHCI α-chain is a transmembrane 
protein with a luminal peptide binding groove consisting of a basal beta sheet and lined on 
each side by α-helices (Figure 1). The binding groove can accommodate a variety of peptides 
derived from products of intracellular degradation. The MHCI gene is both polygenic and 
polymorphic. In humans, the three main gene loci are called HLA-A, HLA-B, and HLA-C. 
All exhibit exceptional levels of polymorphism, currently there are 3,356 HLA-A, 4,179 
HLA-B and 2,902 HLA-C alleles documented.18 Polymorphisms are essentially localized to 
the peptide binding grove.19 The allele-specific structure of the groove translates to 
presentation of peptides with different binding motif generally defined by the electrochemical 
properties of anchor residues the P2 and PΩ (terminal) sites. HLA alleles can be organized 
into superfamilies that present peptides with similar binding properties based on the evolution 
of polymorphic loci.20,21 

From an evolutionary point of view, MHCI and the surrounding regions are unique. 
The evolution MHC I is one of few examples of diversifying selection. In all likelihood, 
selection was driven by herd immunity and differential fitness in the face of a plethora 
infectious agents over time. By virtue of the fact that it contains many polymorphisms 
exhibiting linkage disequilibrium, the MHC locus has revealed much about ancestry, 
migration and selection in population genetics.23–25 
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Figure 1. The structure and polymorphism of MHC class I molecules. (A) Top 

view of an HLA-A α-chain binding pocket, highly variable residues are coloured. 
(B) Variability of HLA-A residues within the binding pocket. (C) Side view of 
the HLA-A α-chain. Adapted from Gherardi.22 

MHCI molecules are expressed on nucleated cells in normal tissues in a constitutive 
fashion with ~105 peptide-MHCI complexes at the surface of each cell although this varies 
based on cell type. HLA-C tend to be expressed at ~10% of HLA-A and HLA-B.26–29 
Secondary functions of MHCI include promoting neuronal plasticity, maternal-fetal 
interaction and olfaction.23 

 

1.2 MHC I antigen processing & presentation 
The pathways of MHCI antigen processing and presentation have been a major focus 

of research in immunology for the past three decades.12,13,30 The pathway of class I processing 
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and presentation is well established.13 However, the specific origins of MAPs and the relative 
contribution of different sources remains contentious.30 The global dynamics of antigen 
production, presentation and recognition are central to effective immunosurveillance.  

1.2.1 Classical antigen processing of endogenous peptides 
The classical pathway of antigen processing (visualized in Figure 2) begins with the 

20S proteasome, an enzyme structurally and functionally homologous to a food disposal unit 
one might attach to their kitchen sink. The barrel-shaped set of stacked multi-subunit rings is 
responsible for the degradation of a significant portion of cytosolic proteins. Proteins targeted 
for degradation by ubiquitination are first recognized by the proteasome cap.13 Proteins are 
deubiquitinated, unfolded and fed into the barrel where proteolytic reactions produces 
fragments of roughly 3 to 20 amino acids.31 Interestingly, the incorporation of alternate 
subunits in the caps and barrel of the proteasome dramatically alters the repertoire of MHCI 
presented peptide antigens.32 Degradation products may be further trimmed by cytosolic 
peptidases before translocation into the endoplasmic reticulum (ER) by the transporter 
associated with antigen processing (TAP).  

Meanwhile, the polymorphic MHCI α-chain is translated into the ER and undergoes 
multi-step glycosylation,  resulting primarily in complex N-glycans. Beta 2 microglobulin 
(β2m) associates with the α-chain and confers stability to the nascent MHCI. TAP imports 
peptides into the immediate vicinity of the peptide loading complex (PLC) machinery. ER 
localized aminopeptidases (ERAP1/2) conduct further trimming of potential MHCI peptides. 
Peptide-MHCI binding is facilitated by components of the PLC: the chaperone calreticulin 
(CRT),  the disulphide bond isomerase ERp57, and the bridging protein tapasin (Figure 2). 
The PLC helps stabilize and induce conformational changes that facilitate peptide binding in 
the MHCI groove. In addition to acting as a scaffold for PLC components, tapasin is also 
essential in the process of peptide editing, the exchange of peptides in favour of those with 
higher affinity. High affinity peptide-MHCI-β2m complexes (pMHCI) are released from the 
PLC and exported via the Golgi secretory pathway to the cell surface.13,33  
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Figure 2. Pathways of MHCI processing and presentation. Adapted from 

Blum et al.13 

 Peptide-MHCI expression is dependent on the binding affinity of the particular 
peptide for the MHCI binding pocket; when the peptide dissociates, the MHCI-β2m complex 
becomes less stable and is internalized for recycling or degradation.12,34–36 The past 15 years 
have seen elucidation of the mechanisms and roles of PLC components. The salient finding is 
that the PLC is essential in shaping immune responses through the process of peptide 
selection.33 
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1.2.2 Cross-presentation of exogenous peptides 
An alternate pathway for MHCI presentation of exogenous peptides, cross-

presentation, resembles the MHCII pathway and makes use of MHCII machinery.23 Cross-
presentation may occur via the cytosolic or vacuolar pathways. The cytosolic pathway by 
definition is the presentation of exogenous peptides that is sensitive to proteasome inhibition. 
Processing occurs within the cytosol while peptide loading may occur via the classical ER 
pathway or within the phagosome (Figure 2). The vacuolar pathway permits exogenous 
antigen presentation via phagocytosis of extracellular proteins and phagosomal degradation. 
MHCI molecules may arrive in the phagosome through recycling or trafficking of newly 
synthesized complexes. The contribution of cross-presentation to the MHCI peptide 
repertoire is minimal in normal tissues. Cross-presentation is particularly effective in some 
professional APCs such as dendritic cells and plays an important role in the early stages of 
immune activation by priming naive CD8+ T cells.13,37,38 

1.2.3 Noncanonical pathways of antigen generation 
The major source of MAPs is generally though to be rapidly degraded proteins (RDPs) 

from many contexts. RDPs may include excess subunits form multiprotein complexes, pioneer 
translation products and defective ribosomal products (DRiPs).15 One study showed mRNAs 
carrying premature stop codons will undergo nonsense-mediated decay yet effectively produce 
MAPs, presumably during the pioneer round of translation.39 Recently, MAPs deriving from 
introns, out-of-frame translation and antisense transcripts further implicated immature 
mRNAs in antigen generation.40 The discovery of MAPs derived from traditionally non-
coding regions is one example of how immunology intersects and informs our understanding 
of fundamental biological processes.13 

Another pathway first proposed by Yewdell, the DRiP hypothesis, postulates that 
nascent prematurely terminated and misfolded proteins as well as defective mRNA are the 
major source of MAPs.41 Evidence supporting DRiPs focus on the kinetics of antigen 
presentation: MAP are efficiently generation from stable viral proteins and MHCI 
presentation is swiftly abrogated upon translation inhibition. Selectively presenting newly 



 

10 

synthesized peptides may allow a cell to preferentially include non-self antigens in the MAP 
repertoire prior to viral interference with the canonical antigen presentation pathway.39,40,42–44 
While the DRiP hypothesis remains controversial,45,46 it is becoming increasingly clear the 
immunopeptidome not merely a reflection of the proteome.15 

1.2.4 The role of MHCI in activation of the CD8+ T cell response 
All these roads lead to antigen presentation and potential for T cell recognition. The 

dynamics of recognition remain puzzling: T cells can recognize single agonists presented in a 
sea of self peptides.47 The number of copies of each unique peptide-MHCI complex is 
estimated between 1 to 104 per cell and is MHCI allotype dependent.15 Furthermore, each 
TCR can recognize upwards of a million different peptides bound to MHCI.48 How specific 
recognition is achieved in these conditions remains difficult to explain. Once an immune 
response has been initiated, cytokines including interferons can upregulate HLA gene 
expression to facilitate recognition.49 The liaison of TCR to peptide to MHCI describes the 
immunological synapse between CD8+ T cells and APCs. Signalling and activation following 
recognition at the synapse is defined by CD8 costimulation and the local immune 
environment.47 

While many potential non-self peptides may be presented upon intracellular infection, 
the T cell response tends to be focused on a few immunodominant peptides. 
Immunodominance is shaped by antigen processing, MHCI loading, T cell specificity and 
pMHCI surface expression time. Expression time is intrinsically related to the stability of the 
complex and binding affinity to the MAP; higher affinity interactions promote stability and 
may induce more effective T cell responses.33,50 Once an immune response is mounted, T cells 
demonstrate sticking sensitivity and can recognize even a single pMHCI target.13 High affinity 
recognition by the TCR of a CD8+ T cell initiates a signalling cascade that induces cytotoxic 
killing of the target cell.5  
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1.3 Studying the immunopeptidome 
Immunologists have long hunted MHC class I associated peptides (MAPs) to 

understand how the self is defined for T cells and explore potential therapeutic applications. 
Despite extensive knowledge of antigen processing, it is impossible to predict the composition 
of the MHCI peptide repertoire.12 Early studies identified single peptides; as tens and 
hundreds of peptides were discovered so were alleles specific binding motifs.27 The study 
presented in Chapter 3 identified 25,172 unique HLA-A,B bound peptides; the immune 
epitope database, a repository for discovered MAPs, describes 219,463 peptide epitopes 
identified to date.51 This progression reflects an improvement in techniques employed to 
identify MAPs. Since the advent of high throughput genomics and proteomics, many groups 
have studied immunopeptidomes of various MHCI allotypes in various hosts.14,40,52–56 Their 
contribution to our knowledge of the cellular origins of MHCI presented peptides is outlined 
in the introduction of Chapter 3. Methods to identify MAPs and other focal points of these 
studies including characteristics of MAP sequences and genetic origins are summarized in this 
section.  

1.3.1 Diverse methods identify MAPs 
Current methods to identify MAPs can be broadly classed into two categories: high 

throughput proteomics and in silico screening. The first relies on experimental evidence of 
MAPs via isolating and sequencing peptides using mass spectrometry (MS) while the latter 
predicts and subsequently validates potential MAPs.  

The techniques and challenges involved in experimental characterization of the 
immunopeptidome are expertly reviewed by Caron et al.57 Isolation of MAPs from APCs may 
be achieved through mild acid elution to release peptides from MHCI on the surface of live 
cells or through immunoprecipitation of pMHCI complexes from cell lysate. While the first 
method offers higher sample throughput and yield, the latter has greater specificity and sample 
flexibility. To sequence isolated MAPs, classical data-dependent MS uses known protein 
coding regions matched to MS spectra for large scale identification. Alternatively, targeted 
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data acquisition allows specific identification and quantification of predefined sets of MAPs. 
An emerging technique deemed data-independent acquisition (DIA) combines these two 
strategies but requires detailed libraries of peptide retention time and fragmentation patterns. 
MAPs present a unique challenge to MS because of variable sequences (compared to samples 
treated with proteases with specific cleavage sites) and intra-laboratory differences in 
acquisition that result in limited reproducibility. Only ~10% of spectra in a given experiment 
are confidently assigned to a MAP sequence; these assignments offer a certain if incomplete 
picture of the immunopeptidome. With each new generation of mass spectrometry 
instruments and techniques, the limits of detection are pushed to identify lowly expressed 
peptides and move towards a complete picture of the immunopeptidome.56,57 

Alternatively, in silico MAP identification uses binding affinity predictions along 
protein coding sequences of a particular organism to predict a high affinity 
immunopeptidome. Binding affinity predictions are complex as they must be allele and 
peptide specific. Fundamentally, binding motifs are governed by electrochemical and structural 
rules which have made this problem quite manageable for artificial neural networks such as 
NetMHC.58,59 One study using this approach estimated interallelic differences in binding 
affinity and diversity for several HLA-A and HLA-B allotypes.50 Several studies have 
identified MAPs spanning de novo mutations in tumour cells using this method.60 Certainly, 
the major limitation of in silico approaches is lack of information about antigen processing. As 
a result, the rate of false positives is estimated at ~90%.54 The central question remains: will 
peptides predicted to bind MHCI actually undergo appropriate processing and be presented at 
the cell surface? To address this, such studies must move to relatively low throughput 
experimental validation such as T cell reactivity assays,60,61 or pMHCI multimer staining of T 
cells with flow cytometry.62  

The selection of methods is largely shaped by the goals and setting of each study. 
Those seeking to identify few targets can afford to whittle down many potential targets post-
identification while those seeking a comprehensive picture of the immunopeptidome are 
limited to confident identifications. Each method demands different resources, requires 
specific samples and has limited detection thresholds. To achieve an ultimate goal, the large 
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scale identification of MAPs in clinical tissue samples, will perhaps require convergence of 
these methods. One could imaging a pipeline that marries genomic and bioinformatic 
profiling of a sample with a comprehensive database of experimentally defined MAPs followed 
by high throughput validation via flow cytometry or mass spectrometry. Such an approach will 
require a collaborative effort but has realistic potential to shape personalized therapies in a 
clinical setting (see section 1.4.2 for further details).  

1.3.2 Structural features of MAPs 
Studies of the sequences of MHCI presented peptides have produced two salient 

findings: MAPs are constrained in terms of binding motif and length. As described previously, 
the extensive polymorphism of MHCI HLA-A and HLA-B alleles is localized to the peptide 
binding groove which functionally translates to alleles-specific binding motifs (Figure 3). 
Motifs are generally defined at the second residue, P2, and the C terminal residue, PΩ, 
although exceptions exist such as HLA-B*08:01 which has a P5 anchor. Typically the P2 
anchor relies on charged interactions,25 while the PΩ anchor tends to be more hydrophobic 
including small aliphatic residues or aromatic residues.  

In our study we identified peptides corresponding to conventional motifs for each of 
the 27 alleles studied; motifs of each set of nonamer are shown in Figure 3. Since we predicted 
binding affinities with NetMHC to assign peptides among potential HLA alleles and applied 
a strict predicted affinity threshold of <1250nM, our results can only reinforce known motifs.58 
Evidently, it is difficult to estimate the potential contribution of non-canonical binding motifs 
in multiallelic systems. MAPs that do not conform to the rules of prediction algorithms are 
likely underrepresented in the current literature. 
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Figure 3. Binding motifs of nonamer peptides for 27 HLA-A & HLA-B 

alleles studied in Chapter 3. The number of peptides used to determine the motif 
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is indicated. Binding affinities predicted with NetMHC 3.0 and NetMHCcons 
1.1.63,64 Plotted with motifStack in R.65,66 

The second constraint introduced by antigen processing machinery and HLA binding 
is on the length of MAPs. The canonical length of MHCI peptides is 8-11 amino acids 
although peptides up to 15 amino acids have been identified.67 Ours and previous work reflect 
the dominance of nonamer peptides independent of the allele under consideration (Figure 4), 
although preference for other lengths appears to be allele dependent.53,67 Structural studies of 
pMHCI have identified two modes of binding that allow the MHCI binding groove to 
accommodate longer peptides. Central bulging of the peptide allows the P2 and PΩ residues 
to fit in the same binding pockets as shorter peptides.68,69 Alternatively, N or C terminal 
extensions of the peptide beyond the binding pocket are also possible.70  

 
Figure 4. The length distribution of MAPs presented by 27 HLA-A & HLA-

B allotypes studied in Chapter 3. 

For all of these constraints, an incredible diversity of MAP sequences persists. Of 
course, this allows individuals expressing different allotypes to capture a representative array of 
peptides from self and non-self sources. 
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1.3.3 Genomic origins of MAPs  
MAPs can be segregated in terms of their genomic origins: conventional antigens, 

cryptic antigens, minor histocompatibility antigens (MiHAs), and mutation-derived antigens 
(neo-MAPs). While the majority of studies, including the one presented in Chapter 3, focus 
on identification of conventional peptides, it is becoming increasingly clear that the 
immunopeptidome captures diverse genomic events (Figure 5). 

 
Figure 5. MAPs derive from diverse genomic origins. Origins include (A) 

MiHAs, (B) cryptic MAPs, (C) mutant neo-MAPs and conventional MAPs. 
Adapted from Granados et al.15 
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Conventional MAPs derive from consensus protein coding sequences, that is 
translation products of known protein coding genes that are shuttled into the antigen 
processing pathway. In contrast, cryptic antigens derive from non-canonical protein coding 
regions such as antisense transcripts, introns, UTRs, long non-coding RNA, and alternative 
reading frames. One study estimates the proportion of cryptic MAPs around 10%.40 Potential 
sources of these antigens include i) pioneer translation products in the nucleus, ii) short open 
reading frames, iii) out-of-frame translation of mature transcripts, iv) translation of 
traditionally non-coding RNA and v) unstable transcripts undergoing nonsense mediated 
decay.13,39,40,43   

The immunopeptidome also captures genomic alterations such as non-synonymous 
variants, mutations, and rearrangements with peptides spanning these transformations. 
MiHAs are peptides with non-synonymous genetic polymorphisms (nsSNPs) contained in 
their sequence.1 CD8+ T cells from individuals with different alleles at a MiHA loci recognize 
the MiHA generated from the alternate allele as non-self. MiHA recognition contributes to 
graft versus host disease in bone marrow transplants between HLA matched donor-recipient 
pairs.72 A final class of peptides, neo-MAPs, are derived from mutations or genomic 
rearrangements. From a clinical point of view, these antigens are of particular interest as they 
may be uniquely expressed on a particular subpopulation, such as neoplastic cells, and could be 
used to identify and target harmful cells for destruction (see Section 1.4.2).15 

Some MAPs lack precise genomic origins or are incompletely described by nucleotide 
sequences. Studies of the proteasome have revealed a capacity to splice together peptide 
fragments and highlight the inclusion of splicing products in the immunopeptidome.73 Peptide 
antigens may also contain diverse post-translational modifications.25 Therefore, from a T cell 
perspective, a given MAP encoding sequence may generate structurally distinct epitopes. 

The discovery of various classes of MAPs demonstrates that the antigen presentation 
pathway captures the genomic and translational complexity of each cell. For immunologists 
concerned with identifying MAPs this has important implications. Techniques that rely on a 
reference genome will exclude the discovery of cryptic, polymorphic and mutant MAPs. 
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Presently, techniques relying on six frame translation of personalized RNA sequencing data 
alone may discover such antigens.40 It is essential to be aware of these gaps in our knowledge 
and, with advances in proteogenomics, aim to develop techniques that produce an increasingly 
complete picture of the immunopeptidome.  

 

1.4 The immunopeptidome in disease 
 Of any region in the genome, the MHC locus is associated with the most diseases.23 
Within the locus, MHC class I and II are responsible for the majority of associations due to 
their diversity and central role in modulating immune responses. The MHCI 
immunopeptidome projects fragments from the intracellular environment that reflect the 
metabolic events within the cell. From the perspective of a T cell or a biologist trying to 
identify subpopulations of cells, MAPs offer a wealth of targets that that are accessible at the 
cell surface and specific to the intracellular events of each cell. Recognition of non-self MAPs 
by T cells first and foremost allows the elimination of intracellular infection.  However, when 
the distinction between self and non-self is confused, autoimmune disease results. CD8+ T 
cells naturally recognize mutated targets on neoplastic cells and may effectively stave off cancer 
for years;74 cancer immunotherapy aims to adapt this highly effective target elimination system 
to enhance anti-tumoral responses.  

1.4.1 MHCI in the pathogenicity of infection & autoimmunity 
The advent of genome wide association studies (GWAS) has validated associations 

between the MHC region and disease phenotypes. However, the MHC locus on chromosome 
6 contains such an exceptional density of polymorphism, epistasis, and functionally related 
genes that it has been difficult to tease out exact mechanisms. CD8+ T cell activation mediates 
both infection and autoimmune disease, potentially through recognition of non-self and self 
peptides respectively.23 

The importance of MHCI presentation in combating infection can be illustrated by 
viral genomes, which face strong selection and must be highly economical yet have developed a 
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plethora of mechanisms to impede antigen presentation.75 Conversely, infection is considered 
a major selective pressure driving polymorphism in MHCI. As viruses mutate and evolve, 
different alleles may be selected for their ability to present immunogenic viral epitopes and 
mediate elimination of infections.23 Alternatively, inherent differences in antigen presentation 
by different HLA allotypes will shape the T cell repertoire and subsequent immune responses. 
One well studied example is the differential ability of MHCI allotypes to control HIV 
progression conferring protection or susceptibility. For example, HLA-B*57 is associated with 
lower viral load and slower decline in the number of CD4+ T cells. A SNP linked to HLA-C 
expression levels has also independently been tied to HIV control.76 

The strongest genetic risk factors for autoimmune diseases are consistently ns-SNP loci 
within the class I and class II genes. The subset of diseases characterized by autoantibodies are 
strongly linked with MHCII while other diseases tend to be linked with MHCI.77 One of the 
most potent associations ties susceptibility to ankylosing spondylitis to residues within the 
binding grooves of HLA-B*27 and polymorphism of the PLC aminopeptidase, ERAP1.78 A 
mechanistic hypothesis to explain these associations is that a peptide uniquely processed by 
ERAP1, in complex with HLA-B*27 is structurally homologous to a non-self antigen. This 
'arthritogenic peptide' becomes a target for cross-reactive T cells and autoimmune attack 
ensues. Studies of the immunopeptidomes of linked and unlinked HLA-B*27 allotypes have 
had modest success identifying the elusive arthritogenic peptide.79,80 

Elucidating the role of MHCI in infection and autoimmunity has followed a similar 
progression. GWAS have been indispensible in implicating different MHCI alleles in disease 
although the precise mechanisms remain elusive due in part to the aforementioned challenges 
of studying the immunopeptidome.  

1.4.2 Cancer immunotherapy 
 The potential for antigens within the immunopeptidome to specifically identify and 
mediate targeted destruction of tumour cells is of significant interest for our work. Several 
lines of evidence support immune recognition of neoplastic cells through neo-MAPs. First, 
meta analyses have shown a correlation between the mutational load and immune infiltration 
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of a tumour. Second, checkpoint blockade antibodies such as anti-PD1 and anti-CTLA4 - 
which essentially release the breaks on T cell activation - have effectively cured some 
metastatic cancers.74,81,82 
 Targeted methods in immunotherapy aim to enhance the precise interaction mediating 
tumour elimination and reduce off-target side effects. For example in adoptive cell therapy 
(ACT), autologous tumour infiltrating lymphocytes or genetically engineered T cells that 
recognize neo-MAPs are cultured and selected for tumour recognition ex vivo. Reactive T 
cells are administered to the patient following lymphodepletion to favour a focused anti-
tumoral response. Evidently, the complex protocol of ACT has required challenging 
optimization every step of the way but recent successes, particularly in cases of metastatic 
melanoma, are promising.83 A similar approach harnesses native anti-tumour response by 
administering a peptide vaccine with suitable adjuvants to prime and activate T cells 
recognizing neo-MAPs.81,84   
 A major limiting step for large scale clinical implementation of both methods is the 
identification of suitable targets. The search for targets has revealed one major finding: 
effective neo-MAPs must be considered non-self from the host T cell perspective. The 
mechanism of negative selection (elimination of autoreactive T cells) limits the 
immunogenicity of self peptides. Furthermore, if self peptides are immunogenic, they can 
induce autoimmune-like toxicity towards other tissues.83 Ideal neo-MAP targets therefore 
derive from alterations specific to neoplastic cells such as nonsynonymous mutations, 
frameshift mutations or rearrangements. If neo-MAPs deriving from common driver 
mutations in cancer exist and could be identified, a regularized therapy could be implemented 
for cohorts of patient. Alternatively, novel methods that efficiently predict or experimentally 
identify neo-MAPs derived from unique mutations offer a solution with broader 
applications.85 Unfortunately, such MAPs are difficult to identify using current DDA MS 
techniques which rely on reference databases of non mutated proteins.57 An ideal therapy 
might employ a multi-target approach to match intra-tumoral heterogeneity and thwart 
immune escape. A better understanding of origins of the immunopeptidome and continual 
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improvements in proteogenomics should facilitate neo-MAPs identification through 
predictive or experimental means. 
 

1.5 Research context 

1.5.1 Research objectives 
MHCI is the centerpiece of adaptive immune surveillance and shapes the progression 

of numerous diseases. Questions revolving around MHCI antigen presentation are therefore 
of both fundamental and clinical importance. A fundamental question facing immunologists is 
the extent of differences in expression and peptide presentation brought about by HLA 
polymorphism: what is the impact of HLA allelic diversity on expression and binding of 
peptide repertoires? We were also driven by the question of the genetic origins of the self 
peptide repertoire presented by MHCI: from a T cell perspective, what is the self? To answer 
these questions, we make use of cutting-edge proteomics, genomics, and informatics to 
discover and analyse the immunopeptidome.  

We hypothesized that variation in MHCI expression would be both allotype and 
subject dependent. We also explored linear relationships between MHCI expression and other 
variables including peptide diversity or binding affinity. Regarding the genetic origins of the 
immunopeptidome, we hypothesized that MAPs would derive from a distinct subset of genes 
and gene products with common features that may be related to antigen processing.  

This work has 6 primary experimental objectives addressed in chapter 2 (objectives 1-
3), and chapter 3 (objectives 4-6). 

1. To determine absolute abundance of MHCI expression on B-LCLs. 

2. To compare inter-individual and inter-allotype differences in MHCI expression and 
peptide presentation. 

3. To devise and overall estimate of binding affinity and diversity for MHCI peptides. 

4. To identify MAPs from a broad population of HLA allotypes and different subjects. 
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5. To asses the extent of MAP generation from the entire set of protein coding genes. 

6. To determine whether specific features influence the ability of discrete genes to 
generate MAPs. 

1.5.2 Model cell lines 
We chose to study MHCI expression and antigen presentation on human B cells 

transformed by Epstein-Barr virus (EBV) infection. The resulting immortalized B 
lymphoblastoid cell lines (B-LCLs) are quite amenable to in vitro culture and offer the 
following advantages: 

i. B-LCLs closely resemble primary B cells;86 

ii. B cells in PBMCs from most individuals are easily EBV transformed, therefore we 
were able to study multiple individuals bearing many HLA allotypes; 

iii. B-LCLs grow in suspension and therefore do not require protease mediated digestion 
for analysis, which would otherwise cleave surface MHCI; 

iv. B-LCLs express relatively high levels of MHCI, therefore fewer cells are required for 
the high-throughput proteogenomic pipeline.  

 



 

 

Chapter 2 - Studies of MHCI expression & peptide 
presentation 

HLA polymorphism shapes the selection and development of CD8+ T cells by 
presenting immunopeptidomes with different structures and diversity. The impact of HLA 
polymorphism on peptide binding is well described: each allotype bind peptides with particular 
residues in the appropriate anchor positions and demonstrates a predictable binding motif. 
However, the impact of HLA polymorphism on surface expression has yet to be 
comprehensively described. MHCI antigen presentation shapes each step in the development 
and responses of CD8+ T cells; recent work has highlighted the potential influence of HLA 
expression in thymic selection and disease phenotypes.29,87,88 

With newly available quantitative flow cytometry techniques, we set out to determine 
the absolute abundance of HLA molecules and compare inter-allotype differences in MHCI 
expression. We hypothesized differences in the overall binding affinity and diversity of the 
peptide repertoire would be related to differences in HLA expression. In the context of large 
scale elutions studies, we studied mild acid elution (MAE) efficacy for different HLA 
allotypes. Additionally, we present preliminary results of allotype specific expression recovery 
following MAE or proteolytic cleavage. Finally, we investigated an important subset of 
MAPs, minor histocompatibility antigens, as part of a larger study.1  

 

2.1 Methods 
The study protocol was approved by the Comité d'Éthique de la Recherche de 

l'Hôpital Maisonneuve-Rosemont. Written informed consent was obtained from donors. B 
cells from 18 donors PBMCs were transformed with Epstein-Barr virus to generate 
immortalized B lymphoblastoid cell lines (B-LCLs) as previously described.56 B-LCLs were 
maintained in RPMI 1640 supplemented with 10% FBS, 1% penicillin/streptomycin and 1% 
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L-glutamine at 37°C. Flow cytometry analysis was conducted on a BD FACSCANTO II. 
Statistical analyses were carried out in R version 3.1.3, data visualization was achieved with the 
ggplot2 package.65,71 Detailed protocols for each analysis are included in the appendices for 
reference: 

Annexe 1. Protocol for QIFIKIT quantitation of MHCI expression on B-LCLs.  

Annexe 2. Protocol for mild acid elution of surface MHCI peptides on B-LCLs.  

Annexe 3. Protocol for papain digestion of surface MHCI on B-LCLs.  

 

2.2 Quantitative analysis of MHCI expression 
 Routine flow cytometry (FC) is an immensely powerful technique to comparatively 
assess expression of molecular markers on 104-107 cells in a single experiment. It employs 
fluorescently labeled antibodies with strong affinity and high specificity for their targets to 
measure protein expression. Due to sensitivity to changes in instrument parameters and 
experimental conditions, traditional FC results are limited to relative comparisons. To 
quantify FC fluorescence in absolute terms, the QIFIKIT relies on the fundamentally linear 
relationship between fluorescence and number of antibody-bound fluorescent molecules. 
Control populations of beads with a known number of receptors are used to generate a 
calibration curve that translates MFI of a secondary antibody into specific antibody binding 
capacity (SABC) or the approximate number of molecules per cell. The challenges of exact 
quantitation via FC include i) untangling the contributions of non-specific staining, ii) 
mitigating limiting factors such as antibody concentration, and iii) limiting inter-experiment 
variation. To maximize the precision of our analyses, we examined the influence of total cells, 
antibody concentration, blocking Fc receptors, washing protocol and instrument parameters. 
The optimized parameters are noted in the protocol in appendix 1.  Results show the average 
of 3 independent experiments. 

First, we quantified MHCI expression using a pan HLA-A,B,C antibody. Globally, 
MHC class I expression was 1.1 x 106 molecules per cell with ± 16% inter-individual variation 
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(Figure 6A). Using the same technique, Berlin et al. found between 50,000 and 300,000 
MHCI molecules expressed on acute myeloid leukemia cells and benign leukocytes.89 We 
conclude that B-LCLs exhibit particularly high MHCI expression. Next, we quantified 
expression of 4 common HLA allotypes: HLA-A*02:01, HLA-A*03:01, HLA-A*11:01, and 
HLA-B*07:02. We found relatively consistent expression of each allotype across cell lines 
(Figure 6B). A hierarchy of allotype expression emerged: A*02:01 > A*03:01 > B*07:02 ≈ 
A*11:01. Even when normalized to global HLA-A,B,C expression in each cell line, the 
relative contribution of each allotype to surface expressed was consistent. Finally, to estimate 
the variance attributable to environmental vs. genetic factors, we compared the complete 
profiles of HLA-A,B expression on B-LCLs derived from monozygotic twins (subjects 8 and 
9, Figure 6D). We found very similar profiles of expression between these two subjects in 
global and allotype-specific quantifications. We noted that differences in the process of EBV 
transformation may influence MHCI expression.90 This analysis also confirms that HLA-A,B 
expression makes up for the majority of HLA-A,B,C levels.  

One hypothesis to explain these results is that allotypes forming more stable pMHCI 
complexes persist on the surface longer and exhibit greater surface expression. The fact that 
different alleles demonstrate variable increases in expression in homozygous conditions may 
support this hypothesis. For example, we could imagine in the case of HLA-A*02:01, peptides 
efficiently form highly stable complexes allowing homozygous cell lines to almost double 
expression. In contrast, if peptide-HLA-B*07:02 complexes are less stable, additional proteins 
in homozygous cell lines may be retained intracellularly during quality control steps, or 
recycled from the surface at a greater rate. Notably, transcript level expression for HLA-A was 
~50% of HLA-B genes and was similar in all cell lines. Other factors shaping MHCI 
expression may include protein abundance, peptide supply, the restrictiveness of binding 
motifs,50 or allotypic differences in tapasin and TAP interaction.35,91,92 Globally, a combination 
of these factors may define inter-allotypic variation in MHC expression. We conclude surface 
expression is an intrinsic feature of each allotype.  
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Figure 6. Absolute global and allotype specific HLA expression on B-LCLs. 

(A) Absolute expression of HLA-A, B and C molecules on 11 B-LCL cell lines. 
(B) Absolute expression of 4 HLA allotypes in heterozygous cell lines. The 
number of subjects is indicated. (C) A comparison of absolute expression of 3 
HLA allotypes in B-LCLs with homozygous and heterozygous genotypes. The 
number of subjects and zygosity are indicated. (D) Complete expression profiles 
of HLA-A,B allotypes in monozygotic twin subjects. Results are the average of 3 
experiments. Surface expression is measured in Specific Antibody Binding 
Capacity (SABC), details in appendix 1. The HLA alleles expressed by each 
subject are indicated in Table I. 
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2.3 The efficiency of mild acid elution is HLA allotype dependent 
In large scale proteogenomics studies of the immunopeptidome, MAPs can be isolated 

from surface MHCI molecules using mild acid elution (MAE) to release peptides from 
MHCI binding pockets. With this technique, studies have found differences in the diversity of 
the peptide repertoires detected for different allotypes.42,55,56,93 One hypothesis among many is 
that MAE efficacy differs by allotype and contributes to differences in the number of 
identifications. We investigated this question with small scale MAE studies following the  
protocol in appendix 2. Results are representative of at least one experiment on 2 cell lines per 
allotype in technical triplicate. 

Preliminary results suggest MAE liberates peptides in an allotype dependent manner 
(Figure 7). Relative to untreated cells, we saw a global decrease in expression for all alleles 
following MAE, reflecting the instability of the MHCI α-chain without bound peptide.94 We 
initially remarked poor efficacy of elution for A*03:01 and A*11:01, which belong to the same 
superfamily and have a similar binding motif of T/L/V at P2 and K dominating PΩ (Figure 
3). MAE was considerably more efficient for B*07:02 which has a P2: P, PΩ: L motif. Finally, 
MAE was most effective for A*02:01 which has a P2: L and PΩ: V/L. Interestingly the 
hierarchy of elution efficacy could be related to the types and strengths of interactions 
mediating peptide binding for each allotype. It appears MAE more efficiently elutes peptides 
relying on hydrophobic interactions such as L and V anchors than polar or charged anchors 
such as T, K, and P. Further investigation is warranted to confirm this hierarchy across cell 
lines and allotypes.  

Importantly, these experiments were preformed with ~6 x 105 cells whereas an 
immunopeptidome MAE experiment uses ~5 x 108 cells to have enough material for MS 
analyses. The applicability of these findings on a larger scale is not yet clear. This question 
could be answered simply by incorporating allele specific antibodies and flow cytometry 
analysis following a large scale elution study.  
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Figure 7. Relative MHCI expression of 4 HLA allotypes and global HLA 

expression at during mild acid elution lasting 15, 30 or 60 seconds. Each point 
represents a single experiment on one cell line expressing each allele 
heterozygously, analyses were performed in technical triplicate.  

To limit the potential bias in the MAP repertoire introduced by allotype specific MAE 
efficacy, a longer elution time could be used. Residual MHCI expression after 5 minutes of 
MAE is negligible (< 5%) independent of allotypes although longer elution periods may lead 
to cell death.  

 

2.4 Recovery of HLA expression 
We subsequently investigated inter-allotype differences in recovery of MHCI 

expression  following either MAE or proteolytic cleavage. The papain protease, naturally 
produced by papayas, has been used in immunopeptidome studies to cleave surface MHCI 
molecules.95,96 We expected some variation in recovery given established inter-allotype 
differences in tapasin dependence and peptide editing,97 in the occurrence of the allotypic 
binding motifs in the proteome,50 and in absolute allotype expression. We hypothesized 
allotypes demonstrating more efficient peptide loading would recover expression more quickly. 
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Using the MAE and papain protocols detailed in appendices 2 & 3, we carried out a single 
experiment using triplicate analysis of 2 cell lines for each allele studied. 

First, our findings indicate B-LCLs recover HLA-A,B expression following MAE and 
protease treatment at different rates (Figure 8). Uniquely in the case of MAE, recycled MHCI 
may contribute to recovery. However, recovery in the MAE condition is less efficient which 
invites the possibility that this treatment may influence cellular metabolism. A similar 
hierarchy is found in both treatments, A*02:01, A*03:01 and B*07:02 demonstrate comparable 
recovery whereas A*11:01 is re-expressed more slowly. Altogether, these findings suggest that 
steady state MHCI expression is minimally influenced by the export of pMHC complexes for 
3 of 4 alleles studied. Consequentially, we hypothesize the rate of internalization of MHCI - 
linked to the net stability of allotype-peptide complexes - may be a determinate factor in 
absolute expression, as Meyadera et al. have shown for MHCII.98 

To move forward with these results, more alleles must be studied. Importantly, the 
current literature would classify all 4 of these allotypes as independent or only moderately 
dependent on tapasin, which influences peptide editing.92,97 To assess whether tapasin alters 
the speed of peptide loading one could compare the tapasin dependent B*44:02 or B*08:01 
allotypes.  
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Figure 8. Recovery of MHCI expression over 9 hours following MAE or 

papain digestion. Recovery following MAE (A) or papain protease digestion (C) 
relative to untreated control.  Proportion of cells with full recovery relative to 
untreated control following MAE (B) or papain protease digestion (D). Results 
of a single experiment of triplicate analysis of 2 cell lines heterozygously 
expressing each allotype studied. 
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2.5 Estimating the diversity and binding affinity of HLA allotype 
peptide repertoires 

An emerging hypothesis postulates that HLA allotype expression is inversely correlated 
with the diversity of allotype-specific peptide repertoires.50,93,88 Chappell et al. have proposed 
that some alleles are undergo selection as 'generalists' to present diverse repertoires with 
relatively low expression while other alleles are 'specialists' presenting a fewer peptides with 
high expression. Generalists may manage presentation of common pathogens while specialists 
may be selected for swift presentation of particularly virulent emerging pathogens.29 We 
explored this hypothesis using experimental data describing the immunopeptidomes of 18 
subjects (see Materials & Methods, Chapter 3.5). Predictions of peptide-allotype binding 
affinity by NetMHC 3.0 were also incorporated as a rough estimate of the stability of MHCI 
complexes.63 

A range of peptide diversity and binding affinity are seen across the 21 allotypes 
studied (Figures 9A & B). A single allotype on a given cell line could present from 99 to 2,674 
peptides. The allele under consideration had significantly more influence on diversity than the 
subject (Two way ANOVA, p = 5.5 x 10-6 for allele, p = 0.02 for subject), leading us to believe 
diversity is truly an allotype-specific phenomena. Similarly, the geometric mean of predicted 
binding affinities was shaped primarily by allotype (Two way ANOVA, p < 6.5 x 10-20 for 
allele, p = 0.04 for subject). The correlation between binding affinity and diversity is negligible 
(Spearman's correlation coefficient ρ = 0.02). Our results show limited concordance with 
another study of in silico predicted immunopeptidomes of multiple HLA-A,B allotypes based 
on binding affinity.50 This discrepancy reflects, at least in part, the selection of potential 
MAPs during antigen processing steps and illustrates the importance of in vitro MAP 
identification.  
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Figure 9. Binding affinity, diversity, and expression of MHCI allotypes. (A) 

Peptide repertoire diversity of 21 HLA-A,B allotypes. (B) Geometric mean of 
predicted binding affinities for the peptide repertoires of 21 HLA-A,B allotypes. 
Results for each cell line shown with points, mean per allotype indicated with a 
bar. (C) Diversity and surface expression of 4 HLA-A,B allotypes. Grand means 
shown with filled in points, individual cell lines shown in outlined points. 
Expression averages are shown for 3 independent experiments. 

We examined the correlation of expression and diversity for the 4 allotypes with 
quantitation data (Figure 9C). Our results appear consistent with an inverse relationship 
between diversity and HLA allotype expression although we see significant inter-individual 
heterogeneity (Pearson correlation r = -0.89 for grand means, r = -0.39 for individual cell 
lines). The principles of the specialist-generalist model are intriguing however our results - 
especially in terms of allotype diversity - suggest a spectrum rather than a dichotomy of HLA 
allotype grouping.  
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2.6 Features of minor histocompatibility antigens 
The MiHA subset of the immunopeptidome, those peptides that span nsSNP, are 

enticing targets in the context of allogeneic hematopoietic cell transplantation (AHCT) to 
treat leukemia. A MAP containing a nsSNP present uniquely in the recipient may be 
recognized by donor T cells that have not been tolerized to this particular peptide.  AHCT 
can therefore mount an immune response against neoplastic host cells expressing MiHAs in 
the graft-vs-leukemia effect.99 In collaboration with several groups, we conducted a large scale 
analysis of MiHAs presented by B-LCLs.1 This authors' contributions included assistance in 
experimental procedures, annotation of MAPs, and a study of the promiscuity of MiHA 
binding.  

 We first asked in what contexts have the 100 discovered MiHAs been previously 
described. By conducting a literature review as well as consulting the SYFPEITHI database100 
and the Immune Epitope Database,51 we found the majority of MiHAs were novel (62%) 
while the rest were documented as either MHCI binders (16%) or MiHAs (22%). We 
annotated the genetic origins of MiHAs using pyGeno101 and predicted the binding affinities 
of each MiHA with NetMHC 3.463 for the two HLA allotypes studied: HLA-A*02:01 and 
HLA-B*44:03 (results presented in appendix 4).  
 Next, we investigated the extent of promiscuous binding - the capacity to bind more 
than one HLA allotype - of all MiHAs. We predicted the binding affinity for each MiHA 
and the top 1% most frequent HLA-A,B allotypes in the USA European Caucasian cohort.102 
Predictions were obtained with NetMHC 3.4 or NetMHC cons 1.0 for 35 allotypes.63,64 Only 
42% of discovered MiHAs had the highest affinity for the allotype on which they were 
discovered; other alleles, notably HLA-A*32:01 for HLA-A*02:01 peptides and HLA-
B*18:01 or HLA-B*40:01 for HLA-B*44:03 peptides, could bind the same peptides with 
greater affinity. Out of the 35 most frequent HLA-A,B allotypes, a given MiHA could bind 
upwards of 12 different allotypes with and affinity < 5,000 nM (Figure 10).  
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Figure 10. MiHA promiscuity: the number of allotypes predicted to bind each 

MiHA with an affinity < 5,000 nM out of the top 35 most frequently occurring 
HLA-A,B allotypes.  

 Assuming similar modes of antigen processing between individuals, these results 
suggest that MiHAs identified for HLA-A*02:01 and HLA-B*44:03 could well be presented 
by other HLA allotypes. These findings are especially relevant for AHCT treatment of 
leukemia as the therapeutic applications of this pool of MiHAs could be extended to more 
individuals bearing other HLA alleles.   
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3.1 Abstract 
Using proteogenomics, we identified 25,172 major histocompatibility complex class I-

associated peptides (MAPs) isolated from B lymphocytes of 18 individuals who collectively 
expressed 27 HLA-A,B allotypes. While 58% of genes were the source of 1-64 MAPs per 
gene, 42% of genes were not represented in the immunopeptidome. Overall, we estimate the 
entire MAP repertoire presented by 27 HLA-A,B allotypes covered at most 17% of exomic 
sequences expressed in B lymphocytes. We identified several features of transcripts and 
proteins that enhance MAP production. From these data we built a logistic regression model 
that predicts with high accuracy whether a gene from our dataset or from independent datasets 
would generate MAPs. Our results show preferential selection of MAPs from a limited 
repertoire of proteins with distinct features. The notion that the immune system can monitor 
MAPs covering only a fraction of the protein coding genome has profound implications in 
autoimmunity and cancer immunology.  

 

3.2 Introduction 
Major histocompatibility complex class I molecules (MHCI) present thousands of 

peptides at the cell surface of nucleated somatic cells (Granados et al., 2015). These MHCI-
associated peptides (MAPs), collectively referred to as the immunopeptidome, regulate each 
step in the development and function of CD8+ T cells (Govern et al., 2010; Chakraborty and 
Weiss, 2014). Indeed, real-time monitoring of the immunopeptidome is a vital process that 
allows CD8+ T cells to discriminate between self and nonself, and to swiftly reject infected or 
transformed cells (Butler et al., 2013; Caron et al., 2011; Vrisekoop et al., 2014). Genesis of 
the immunopeptidome can be broadly divided into two events: i) the processing of MAPs and 
ii) their binding to MHCI molecules (Yewdell et al., 2003; Hammer et al., 2007). The rules 
that regulate the second event, binding of MAPs to MHCI, are well-defined: MHCI alleles 
are highly polymorphic and each allotype has a specific peptide binding motif that can be 
accurately predicted by several algorithms (Rammensee et al., 1999; Kim et al., 2014b). 
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However, the first event, processing of MAPs, is a complex multi-step process whose overall 
outcome cannot be predicted (Granados et al., 2015). Some proteins appear to generate more 
MAPs than others, but the mechanistic underpinning for these discrepancies remains elusive 
(de Verteuil et al., 2012).  

Classic biochemical studies have shown that MAP processing is initiated by 
proteasomal degradation of cellular proteins, followed by further trimming by cytosolic 
peptidases, transport in the endoplasmic reticulum (ER) and final trimming by ER peptidases 
(Eisenlohr et al., 2007; Hammer et al., 2007; Vigneron and Van den Eynde, 2012; Rock et al., 
2014; Blum et al., 2013). Other provocative studies suggest that MAPs preferentially originate 
from defective ribosomal products (DRiPs) and can be created by nonsense mediated decay, 
mRNA destabilization or noncanonical translation in the cytosol or the nucleus (Goodenough 
et al., 2014; Anton and Yewdell, 2014; Apcher et al., 2013; Granados et al., 2012; Laumont et 
al., 2016). Large-scale mass spectrometry (MS) offers the sole direct approach to analyze the 
global molecular composition of the immunopeptidome. Previous large-scale MS studies of 
MAPs presented by one or a few MHCI allotypes have shown that thousands of proteins 
located in all cell compartments can be the source of MAPs (Caron et al., 2015a; Hickman et 
al., 2004; Mester et al., 2011; Hassan et al., 2013). However, the rules of MAP processing 
cannot be figured out by studying the immunopeptidome presented by a single HLA allotype 
because the peptide binding motif can bias the ability of different allotypes to present peptides 
coded by different genes (Hoof et al., 2012; Paul et al., 2013).  

The goal of our study was to assess the extent of MAP generation from the entire set 
of protein coding genes and to determine whether specific features influence the ability of 
discrete genes to generate MAPs. We therefore used a well validated high-throughput 
proteogenomic approach in order to identify MAPs presented by 27 HLA-A and HLA-B 
allotypes on B lymphoblastoid cell lines (B-LCLs) derived from 18 subjects. Overall, we 
identified 25,172 non-redundant MAPs, which derived from 6,231 out of the 10,677 genes 
expressed in B-LCLs. Hence, while 58% of genes were the source of 1-64 MAPs per gene, 
42% of genes were not represented in the immunopeptidome. Overall, we estimate the 
immunopeptidome presented by 27 alleles covered at most 17% of exomic sequences expressed 
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in B-LCLs. We then used a series of bioinformatic tools to understand how features of genes, 
transcripts, and proteins could influence MAP generation. With these data we built a logistic 
regression model that was able to predict whether or not a given gene will produce MAPs with 
receiver operating characteristic area under the curve of 0.82. Our results show that the 
immunopeptidome is forged from a limited repertoire of gene products with distinct features 
influencing transcription, translation and proteasomal degradation.   

 

3.3 Results 

3.3.1 Proteogenomic-based definition of the MAP repertoire presented by 27 
HLA allotypes 

To obtain a comprehensive representation of the immunopeptidome presented by 
HLA-A and HLA-B molecules, we applied a well validated high-throughput proteogenomic 
approach that hinges on a combination of next-generation sequencing and high-throughput 
MS (Granados et al., 2014; Laumont et al., 2016; Granados et al., 2016). Transcriptome and 
exome sequencing data were used to build personalized protein databases for B-LCLs of 18 
subjects using pyGeno (Daouda et al., 2016). These personalized databases were used for 
peptide identification by MS. MAPs were eluted from the cell surface by mild acid elution, 
and stringent quality filters were applied to the list of MAPs assigned by MS: i) a peptide 
length of 8–14 amino acids, ii) a 1% false discovery rate based on searches against 
concatenated target/decoy databases (Elias and Gygi, 2007), and iii) a predicted MHCI-
binding affinity ˂1,250 nM according to NetMHC or NetMHCcons algorithms (Lundegaard 
et al., 2008; Karosiene et al., 2012) (Figure 18A). 

We identified 25,172 non-redundant MAPs which derived from 6,231 genes (Figure 
11A, Table I). MAP source genes produced up to 64 individual MAPs and 68% of these 
genes produced more than one MAP (Figure 11B). To estimate the depth of a multi-allelic 
immunopeptidome we computed the size of the MAP repertoire and MAP source gene 
repertoire as a function of the number of HLA allotypes considered (Figure 11C). We 
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counted the number of unique identifications when a given number of randomly selected 
allotypes were considered. For MAPs, the nearly linear nature of this relationship 
demonstrates little redundancy in the peptides presented by different allotypes (Figure 11C, 
left panel). Conversely, the redundancy of the genes generating MAPs across all 27 HLA 
allotypes is much greater (Figure 11C, right panel). As more allotypes are considered, a 
diminishing number of unique genes are represented in the immunopeptidome. A simulation 
examining the size of the peptide and gene repertoires as various numbers of subjects were 
considered showed similar results (Figure 18B). Most MAPs (89%) were presented by a single 
HLA allotype (Figure 11D, left panel). The few promiscuous binders were presented by 
MHCI allotypes with similar peptide binding motifs (i.e., same “superfamily”), such as 
A*03:01 and A*11:01 (Sidney et al., 2008). In contrast, the majority of MAP source genes 
(67%) produced MAPs for multiple allotypes, some for up to 24 of the 27 allotypes studied 
(Figure 11D, right panel). 

 
Figure 11. The depth and breadth of the multi-allelic immunopeptidome 

presented by 27 HLA allotypes. (A) Total number of non-redundant MAPs and 
their source genes in the immunopeptidome of 18 B-LCLs. (B) Histogram 

C

1

10

100

1000

1 10 20
Allotypes presenting MAPs derived 
from non-redundant source genes

To
ta

l g
en

es

1

10

100

1000

10000

1 5
Allotypes presenting 

individual MAPs

To
ta

l p
ep

tid
es

Peptides
0

5000

10000

15000

20000

25000

Genes

To
ta

l i
de

nt
ifi

ca
tio

ns

A
25,172

6,231

B

1

10

100

1000

1 15 30 45 60
MAPs generated per gene

To
ta

l g
en

es

D

0

5000

10000

15000

20000

25000

1 10 20
Number of allotypes considered

Si
ze

 o
f M

AP
 re

pe
rto

ire

0

2000

4000

6000

1 10 20
Number of allotypes considered

Si
ze

 o
f M

AP
 s

ou
rc

e 
ge

ne
 re

pe
rto

ire



 

40 

showing the number of MAPs generated per MAP source gene (range = 1-64). 
(C) The number of unique identifications of MAPs (left panel) and MAP source 
genes (right panel) was counted as each additional randomly selected HLA 
allotype was considered. Results show the average of 1000 simulations. (D) The 
promiscuity of HLA presentation for MAPs (left panel) and their source genes 
(right panel). Histograms show the number of allotypes associated with each 
peptide or gene. 

Two major points can be made from these data: i) a distinct subset of genes produce 
most MAPs and ii) our method captured the majority of MAP source genes (Figure 11C, 
right panel). As a corollary, these results suggest a model whereby a common pool of source 
proteins selectively enter the antigen processing pathway and can generate MAPs with suitable 
motifs for most MHCI allotypes.  

3.3.2 Discrete protein regions are preferential sources of MAPs  
We next asked whether there might be “hotspots” in MAP source genes, i.e., regions 

or domains that provide disproportionally high amounts of MAPs. To this end, we analyzed 
the spatial distribution of MAPs along proteins that generated multiple MAPs. We first 
identified 6,325 pairs of overlapping MAPs formed by 8,228 individual peptides (33% of our 
entire dataset). In a given pair, MAPs differed from each other at their N- and/or C-terminus 
(Figure 12A). These pairs may result from differential trimming of a common precursor by 
various peptidases in the cytosol and ER. Notably, 83% of MAP pairs bound different 
allotypes; of these, 48% bound allotypes from different superfamilies (Figure 12B). Hence, 
from the perspective of an MHCI allotype, generation of overlapping MAP pairs is not 
redundant: members of a pair are seldom presented by the same MHCI allotype. At the 
population level, the net result is that some protein regions are included in the 
immunopeptidome of many people who do not share the same HLA alleles.  

To further evaluate whether selected protein regions were preferential sources of 
MAPs, we analyzed the spatial distribution of non-overlapping MAPs along proteins. For 
each protein, the distances between all MAPs were calculated. To exclude overlapping 
peptides, MAPs within 8 residues of each other were merged. A control distribution was 
generated by randomly placing the same number of MAPs along the same protein length. We 
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found that MAPs colocalized more than expected in both absolute and relative terms (p = 6 x 
10-6 and p = 4 x 10-8 respectively, Figure 12C). We surmise that colocalization must result 
from short-range effects because MAPs were found within a window of ~25 amino acids 
(Figure 12C). The fact that no MAPs could be assigned to 42% of genes and that MAP 
coding sequences are clustered in source genes suggest that the immunopeptidome covers a 
limited portion of the whole exome. To estimate global exome coverage, i) we moved a 
walking window of 150 base pairs (50 amino acids, the rough length of the short range effect) 
along the exome coding for the 10,677 genes expressed in our B-LCLs, and ii) we calculated 
the number of MAPs seen in each window. We found that 83% of windows generated no 
MAPs whereas 17% of windows covered 1-11 MAPs per window (Figure 12D). When we 
reduced the window size to 75 base pairs, only 10% of windows were source of MAPs (data 
not shown). From this, we conclude that the immunopeptidome presented by 27 HLA-A,B 
allotypes covers an unexpectedly small portion of the whole exome.  
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Figure 12. MAP distribution along source proteins. (A) Distribution of overlap 

types for 6,325 pairs of overlapping MAPs formed by 8,228 individual peptides: 
pairs with any overlapping residues and no common ends; pairs with a common 
C-terminus; pairs with a common N-terminus; and pairs with one peptide 
contained within the other. (B) Proportion of overlapping MAP pairs presented 
by the same allotype or different allotypes. For MAP pairs presented by different 
allotypes, the superfamily origins are indicated (Sidney et al., 2008). (C) Spatial 
distribution of MAPs along proteins generating more than one MAP compared 
to a random distribution matched to the length of source proteins. Absolute 
distances were computed and shown for distances up to 150 amino acids, beyond 
this random and actual distributions were largely the same. MAPs within 8 
amino acids of each other, the length of canonical binding motifs, were merged 
in the actual distribution. Overall distances between MAPs are significantly less 
in absolute and relative comparisons with the matched random distribution (p = 
6 x 10-6  and p = 4 x 10-8 respectively). (D) Exome coverage by the 
immunopeptidome. A window of 150 base pairs (50 amino acids) was moved 
along the transcribed exome of B-LCLs. Histogram shows the distribution of 
MAP number per window. 
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3.3.3 Gene expression cannot solely account for differential ability of genes to 
generate MAPs  

Understanding the genetic origins of the immunopeptidome is of paramount 
importance fundamentally and in the search for MAPs that could be used as therapeutic 
targets. Based on RNA-sequencing data, we defined the B-LCL transcriptome as 10,677 
expressed (FPKM > 1) and annotated protein-coding genes; 6,231 genes were a source of 
MAPs while 4,446 were not (Figure 13A, details in Materials & Methods). We then applied a 
variety of analyses and prediction algorithms to study the features of MAP source genes, 
transcripts and proteins. We first asked whether MAP source proteins simply contained more 
potential HLA binding peptides, i.e., peptides with the right binding motif for the 27 HLA 
allotypes considered here. This was not the case: the density of predicted 9mer MHCI binders 
was no greater in source genes than non-source genes (Figure 13B). Since the difference 
between MAP source and non-source genes is unrelated to the number of potential MHC 
binders, it must therefore involve discrepancies in the processing of MAP source proteins.  

Whether gene expression influences MAP generation is a controversial issue according 
to previous studies based on smaller datasets. According to some reports, MAP derive 
preferentially from highly abundant mRNAs or proteins (Granados et al., 2012; Hoof et al., 
2012; Bassani-Sternberg et al., 2015), but other reports cast some doubts on this contention 
(Weinzierl et al., 2007; Mester et al., 2011). By analyzing RNA sequencing data of the 18 B-
LCLs studied herein, we found that the average gene expression was significantly higher for 
MAP source genes (Figure 13C). However expression alone provided an incomplete portrait 
of antigen presentation: some highly expressed genes generated no MAPs and, more 
startlingly, some lowly expressed genes were capable of generating MAPs. Since the 
transcriptome is an imperfect mirror of the proteome (Jovanovic et al., 2015; Liu and 
Aebersold, 2016), we also analyzed the relationship between protein abundance in human B 
cells (Kim et al., 2014a) and MAP generation. MAP source proteins are more abundant than 
non-source proteins (Figure 13D), yet the fact that some proteins with similar expression 
belonged to source or non-source groups suggested that other factors were at play.  
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Figure 13. Features of MAP source genes and transcripts. (A) Total number of 

annotated source and non-source genes with mean expression >1 FPKM in B-
LCLs. (B) Density of 9mer peptides predicted to bind any of the 27 HLA 
allotypes studied with an affinity ≤1250 nM. P value from a one-tailed Student's 
t-test. (C) Average expression of MAP source and non-source transcripts across 
18 B-LCL cell lines. (D) Protein abundance in human B cells in spectral counts 
per gene; obtained from the Human Proteome Map (Kim et al., 2014a). (E) 
Proportion of genes with at least one transcript isoform undergoing nonsense-
mediated decay according to Ensembl assembly 37. (F) Total number of exons 
per transcript. (G) Absolute length of the 5'UTR. (H) Minimum free energy of 
5'UTR secondary structure predicted by RNAfold in the Vienna package 
(Lorenz et al., 2011). (I) Proportion of transcripts containing uORFs with 
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absolute counts indicated by shading. (J) Absolute length of the 3'UTR. (K) 
Density of AU rich elements along the 3'UTR. (L) Density of predicted 
microRNA target sites along the 3'UTR using TargetScan 7.0. 

3.3.4 MAP source transcripts are enriched in features conferring greater 
translation efficiency  

Ultimately, MAP generation must be regulated at the level of translation and protein 
degradation (Princiotta et al., 2003). To gain further insights into the mechanisms regulating 
MAP generation, we analyzed the potential role of factors regulating protein metabolism. We 
first asked whether features enhancing translation efficiency and transcript stability may 
distinguish source from non-source transcripts. Coherent with the concept that nonsense 
mediated decay is a source of MAPs (Apcher et al., 2013), we observed that the proportion of 
genes with at least one transcript with an NMD biotype was higher in source relative to non-
source genes (Figure 13E). Also, consistent with the positive correlation between the number 
of exons and translation efficiency, (Floor and Doudna, 2016), we found that MAPs derived 
from transcripts composed of more exons than non-source transcripts (Figure 13F), even when 
normalized for transcript length (p = 2 x 10-55). 

We next examined features of the 5'UTR for evidence of translational regulation 
related to antigen processing. Upstream open reading frames (uORFs) tend to negatively 
influence translation by destabilizing transcripts and acting as a physical obstacle slowing 
ribosomal scanning (Calvo et al., 2009). The 5'UTRs of MAP source transcripts were 
significantly shorter and contained fewer uORFs (Figure 13G,I). In the same vein, the 
predicted secondary structure of the 5'UTR was less stable for MAP source transcripts (Figure 
13H) although no definitive differences between the amount of pairing in this structure nor 
the GC content were found (Figure 19B,D).  

The 3'UTR is a critical site of translational control containing regulatory elements such 
as AU rich elements and binding sites for microRNAs and RNA binding proteins (Szostak 
and Gebauer, 2013). We initially remarked that 3'UTRs were longer in non-source transcripts 
suggesting greater potential for regulation (Figure 13J). The density of AU rich elements was 



 

46 

greater in source 3'UTRs (Figure 13K) which may implicate transcripts in rapid decay or finer 
stability regulation (Schott and Stoecklin, 2010). Accordingly, slightly lower GC content was 
found in source 3'UTRs (Figure 19C). Stabilizing and destabilizing regulatory elements 
(Figure 19G,H) were queried in the 3'UTRs of all transcripts (Zhao et al., 2014) and revealed 
similar prevalence in source and non-source transcripts. Moreover, we were unable to confirm 
previous results that MAPs derive preferentially from transcripts with microRNA binding 
sites using two independent datasets (Granados et al., 2012) (Figure 13L and Figure 19E,F). 
However, our negative findings regarding binding sites for microRNAs and RNA binding 
proteins must be considered with some reservations. Firstly, because we used a more stringent 
p-value threshold of 0.001. Several differences would have been considered significant at a 
threshold of 0.05 (Figure 19). Secondly, microRNA regulation is highly cell-type specific 
while the methods used to predict microRNA involvement operate at an organism-wide level 
(Agarwal et al., 2015). Finally, since the effects of 3'UTR regulatory elements are heavily 
context-dependent (Szostak and Gebauer, 2013) the role of 3'UTR regulation in MAP 
generation in B-LCLs may be obscured by some lack of specificity. 

Notably, features enriched in MAP source transcripts (Figure 13F-L and Figure19) 
had minimal correlations with protein abundance (absolute Spearman's ρ of 0.22 for number 
of exons and ρ < 0.12 for others, Figure 23). This led us to postulate that gene expression and 
transcript features may provide non-redundant information for the modeling of MAP 
generation.  

3.3.5 The primary and secondary structure of proteins regulates MAP 
generation 

Next, we assessed the electrochemical and structural features of MAP generating 
proteins. We confirmed previous reports that longer proteins generate more MAPs (Hoof et 
al., 2012; Bassani-Sternberg et al., 2015) (Figure 14A). This may reflect that longer proteins, 
relative to shorter proteins, i) contain more appropriate MHCI binding sequences , ii) have a 
greater chance to form DRiPs, and iii) bind more ribosomes (Hoof et al., 2012; Floor and 
Doudna, 2016). MAP source proteins had lower hydropathy scores, indicating more polar 
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amino acid composition (Figure 14B). Furthermore, the predicted isoelectric point revealed 
greater acidic composition of source proteins (Figure 14C). At the next level of complexity, 
the predicted secondary structure of MAP source proteins showed distinct contribution of 
helix, turn and sheet motifs (Figure 14D-F). In particular, MAP source proteins showed a 
conspicuous enrichment in sheet motifs (Figure 14F).  

The ubiquitin proteasome system is a key entry point for proteins into the MHCI 
processing pathway (Yewdell et al., 2003; de Verteuil et al., 2010). We first examined MAP 
proteins for proteasomal degradation motifs. We found that compared to non-source proteins, 
MAP source proteins contained higher frequencies of i) KEN-box and D-box motifs targeted 
by the anaphase promoting complex ubiquitin ligase (Liu et al., 2012) (Figure 14H,I), ii) 
PEST motifs which serve as proteolytic signals for the proteasome and other proteases 
(Rechsteiner and Rogers, 1996) (Figure 14H,I), and iii) canonical lysine ubiquitination sites 
(Chen et al., 2013) (Figure 14J).  

Unstructured protein regions serve as initiation sites for proteasomal degradation 
(Prakash et al., 2004), and intrinsically disordered segments favour proteasome degradation 
(van der Lee et al., 2014). Therefore, to analyze the potential influence of protein disorder on 
MAP generation, we computed the disorder status of proteins in our dataset with the neural 
network predictor PONDR VLXT (Romero et al., 2001). Whether the average disorder of all 
residues, the proportion of disordered residues, the length of N-terminal disorder or the 
presence of internally disordered regions longer than 30 residues were considered, MAP 
source proteins consistently contained greater disorder compared to non-source proteins 
(Figure 14G). Similar results were obtained using two other disorder predictors: DISOPRED 
(Jones and Cozzetto, 2015) and IUPRED (Dosztanyi et al., 2005) (Figure 21B). We conclude 
that primary and secondary structure of proteins, and particularly those linked to proteasomal 
degradation, have a strong influence on MAP generation.  
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Figure 14. Features of MAP source proteins. (A) Protein length with a log10 

transformation. (B-F) Metrics assessing amino acid content and secondary 
structure were predicted using ProtParam within BioPython (Gasteiger et al., 
2005)<sup>103</sup><sup>103</sup>. (G) Protein disorder was predicted using 
PONDR VXLT with a disorder cutoff of 0.7. (H) Proteasomal degradation 
motifs were predicted for all protein sequences using GPS-ARM and EMBOSS 
(Liu et al., 2012; Rice et al., 2000). (I) The total number of degradation motifs 
per protein normalized for protein length. (J) The proportion of lysine residues 
predicted by UbiProber to have a high probability of ubiquitination (Chen et al., 
2013). 



 

49 

3.3.6 GO Terms analysis 
We next compared the enrichment of gene ontology terms in MAP source and non-

source genes using the topGO algorithm to eliminate redundancies (Alexa and Rahnenfuhrer, 
2010). Our findings here confirm and extend reports based on smaller datasets (Hoof et al., 
2012; Hickman et al., 2004; Granados et al., 2012). The source gene population was highly 
enriched in genes coding for intracellular proteins interacting with DNA, RNA and other 
proteins (Figure 15A). This may result from significantly higher expression of genes 
implicated in housekeeping functions such as poly(A) RNA binding, mitotic cell cycle, and 
mRNA processing. However, 16 of the top 100 GO terms enriched in source or non-source 
genes showed no difference in gene expression, suggesting GO annotation describes other 
factors in antigen processing. Non mutually exclusive hypotheses are that source genes have a 
preferential access to the MHC processing machinery, for example via “immunoribosomes” or 
that components of macromolecular complexes have a greater propensity to form DRiPs 
(Anton and Yewdell, 2014). Non source proteins were enriched in membrane components and 
related signalling processes, showing that proteins traversing the secretory pathway are poorly 
represented in the MHCI immunopeptidome (Figure 15B).  

 
Figure 15. Gene ontology analysis of source and non-source genes. Enrichment 

in source (A) and non-source (B) groups was calculated on a background of both 
groups using the topGO algorithm to eliminate redundancies (Alexa and 
Rahnenfuhrer, 2010). The top 10 most enriched functions are shown for each 
group including all three ontology categories. RNP: ribonucleoprotein, GPCR: 
G-protein coupled receptor. 
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3.3.7 Modeling MAP generation 
Having identified features that differentiate MAP source vs. non-source genes, we 

asked whether it might be possible to build a model for predicting whether a given gene 
generates MAPs. Taking into account features listed in Table II, we trained a logistic 
regression model on 80% of our dataset and tested its ability to discriminate source vs. non-
source genes on the remaining 20% of our dataset. The process was repeated 1,000 times with 
randomly divided training and testing datasets. Prediction scores, falling between 0 and 1, 
demonstrated a considerable ability to correctly discriminate between MAP source and non-
source genes (Figure 16A). Although the model was blind to the number of MAPs produced 
by source genes, we found that the predictions corresponded to the rate of MAP production 
(Figure 16B).   

 
Figure 16. A logistic regression model to predict whether or not a gene will 

generate MAPs. (A) Prediction scores for each gene grouped by experimentally 
defined source classification. (B) Prediction scores for each gene and the number 
of MAPs generated. (C) Model performance measured by a ROC plot of 
sensitivity (the rate of true positives) as a function of specificity (the rate of true 
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negatives); the AUC is 0.82.  (D) Frequency of input variable selection in a 
logistic regression model using recursive feature elimination; frequencies above 
0.05 are shown. (E) The relative weight of all input variables in the two class 
logistic regression model. Variables normalized by the length of the 
corresponding UTR, transcript or protein are denoted with †, GO terms denoted 
with *. TS: TargetScan, GSEA: Gene Set Enrichment Analysis database. All 
metrics are averaged over 1000 models (see Materials and Methods). 

To assess the overall predictive power of the model, we constructed receiver operator 
characteristic plots (ROC) with averaged prediction scores and found an area under the curve 
(AUC) of 0.82 (Figure 16C). By examining the parameters of the model, we assessed the 
relative contribution of each feature to learning (Figure 16E). We found that gene expression 
was by far the most informative variable followed by protein length and protein abundance. 
Features of genes, transcripts and proteins were included in the group of relatively less 
important variables indicating that a wide range of fine-tuning processes contribute to MAP 
generation. Since estimates of relative importance can be influenced by related variables, we 
used a second method to asses feature importance. We assessed the predictive capacity of a 
logistic regression model forced to select only the top 10 most informative features. Despite 
this constraint, the model achieved an average AUC of 0.81 (data not shown). The frequency 
with which features were selected in this model (Figure 16D) coincided with the relative 
weight when all input variables were considered (Figure 16E).  

A two class distinction of MAP source and non-source genes does not to take into 
consideration that some source genes generate up to 64 non-redundant MAPs while other 
genes produce only one (Figure 11B). To integrate these findings we produced a nuanced 
version of the classification model that made predictions for three ordered groups: 'none' (no 
MAPs), 'low' (1-2 MAPs), and 'high' (≥ 3 MAPs). Predictions were most accurate for the 
high category which obtained an AUC of 0.87, while the low and none groups had AUCs of 
0.65 and 0.82 respectively (Figure 22A). Clearly, the model had difficulty with the low group 
for which its predictions reached a maximum probability of 0.44 compared to 0.99 for the 
high and none categories (Figure 22C). Interestingly, when we compared the relative 
contribution of different input parameters between the two class and three class models we 



 

52 

found a very similar hierarchy (Figure 16E and Figure 22B). We conclude that no particular 
feature within the model distinguishes genes that generate few vs. numerous MAPs.  

3.3.8 Model validation with independent datasets 
The various strategies used for high-throughput MS analyses of the 

immunopeptidome present strengths and limitations (Caron et al., 2015b). In the present 
study, MAPs were isolated from 18 B-LCLs by mild acid elution and analyzed by data-
dependent MS. To gauge the robustness of the model we tested it on MAPs identified by two 
other groups in the JY B-LCL cell line. MAPs in these two datasets were isolated by MHCI 
immunoprecipitation; one study used data-dependent MS (Bassani-Sternberg et al., 2015) and 
the other used data-independent MS (Caron et al., 2015a). While our dataset contained 
MAPs presented by 27 HLA-A,B allotypes, the two other datasets were limited to two HLA-
A,B allotypes: HLA-A*02:01 and HLA-B*07:02. Notably, 86-87% of source genes for the 
two other datasets were included in our own dataset (Figure 17A). We extracted prediction 
scores for genes classified as source in each dataset. The salient finding was that the 
predictions for MAP source genes were at least as good for the two independent datasets as for 
our own (Figure 17B). We conclude that our prediction model is robust and that its accuracy 
is not biased by the method used for MAP isolation or identification. 
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Figure 17. Evaluation of gene prediction scores with two independent datasets. 

(A) Overlap in source gene identifications between the present study and two 
independent studies of JY B-LCLs  (Caron et al., 2015a; Bassani-Sternberg et 
al., 2015). 86-87% of MAP source genes identified in the two independent 
datasets were included in our MAP source genes. (B) Prediction scores for genes 
classified as source in each study were extracted from the two class logistic 
regression model. 

 

3.4 Discussion 
To the best of our knowledge, this study reports the largest dataset of MHCI-

associated peptides to date. Several points can be made from our comprehensive analyses of 
25,172 MAPs presented by 27 HLA-A,B allotypes which illustrate how there can be 
“strength in numbers” (Benoist et al., 2006). Indeed, while analyses of smaller datasets 
suggested that individual genes were represented in the immunopeptidome by only a single 
MAP (Hoof et al., 2012), we found that MAP source genes generated up to 64 non-
redundant MAPs. Importantly, we found that MAPs presented by 27 MHCI allotypes 
altogether cover an unexpectedly small fraction of the protein-coding exome (10-17%) because 
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i) 42% of genes generate no MAPs, and ii) MAPs derive from the same gene tend to originate 
from adjacent sequences. At the population level, one implication is that even though HLA 
allotypes have different peptide binding motifs, a large fraction of MAPs presented by 
different subjects (two to four HLA-A,B allotypes/individual) will originate from common 
genomic regions. Further studies are certainly warranted in order to explore whether, relative 
to the whole exome, MAP “hotspots” have distinctive features that would make their 
monitoring by T cells of special importance. For instance, are these hotspots preferential sites 
of somatic mutations in cancer cells or do they resemble viral genes?  

Our report suggests that at the systems-level, MAP generation is regulated by 
numerous features of transcripts and proteins that affect translation and proteasomal 
degradation. For example, features of the 5'UTR such as shorter length, looser secondary 
structure and fewer uORFs which are easier for ribosomes to navigate, may confer efficient 
translation and consequently greater MAP generation. The importance of proteasomal 
processing is underscored by the prevalence of disorder and degradation motifs in MAP source 
proteins. Additionally, that MAPs originate preferentially from abundant transcripts is 
consistent with the fact that the immunopeptidome is different from one cell lineage to 
another and is affected by the metabolic status of cells (de Verteuil et al., 2010; Caron et al., 
2011). The relation between transcript abundance and MAP presentation may also be relevant 
to the establishment of self-tolerance in the thymic medulla. Indeed, central self-tolerance 
depends on promiscuous gene expression by medullary thymic epithelial cells which 
collectively express almost all protein coding genes (Sansom et al., 2014; St-Pierre et al., 
2015). Remarkably, this promiscuous gene expression follows a mosaic pattern: individual 
medullary thymic epithelial cells promiscuously express a limited number of genes, but at a 
high level (Sansom et al., 2014; Brennecke et al., 2015). A mosaic pattern of highly expressed 
genes may be instrumental in increasing the breadth of the MAP repertoire that can thereby 
induce central self-tolerance.  

By taking into account the various features enriched in MAP source genes, we were 
able to build a logistic regression models that predicts whether or not a given gene will 
produce MAPs with a ROC AUC of 0.82. The robustness of this model was validated by 
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testing on independent datasets. Would it be possible to build an in silico antigen processing 
machine that would predict with even greater accuracy sources and sites of MAP generation? 
We speculate that this may be possible if we trained the model with more quantitative data. 
Indeed, there are certain limitations to a rather coarse two class output not the least of which is 
a lack of precision for the number of MAPs produced and their location along a protein. 
Recent developments in MS now enable quantification of MAPs in terms of number of copies 
per cell (Caron et al., 2015b). High-throughput quantitative analyses of immunopeptidomes 
could thereby pave the way to the development of improved predictive models and 
community-based efforts to achieve this goal should be encouraged (Caron et al., 2015a).  

Our demonstration that the immunopeptidome covers only a small fraction of the 
protein coding exome has special relevance to cancer immunology. There is a general 
consensus that cancer specific neo-MAPs derived from somatic mutations represent ideal 
targets for cancer immunotherapy (Schumacher and Schreiber, 2015). However, discovery of 
cancer specific MAPs is currently fraught with major difficulties. Typically, neo-MAP 
discovery follows the following path: exome sequencing, identification of mutations, and 
selection of mutations located in peptide regions predicted to have a good MHC binding 
affinity. However, when putative neo-MAPs are tested experimentally, by MS or immune 
assays, the hit rate is below 10% (Robbins et al., 2013; Yadav et al., 2014; Blankenstein et al., 
2015). Our contention is that this low success rate is simply due to the fact that few mutations 
are strategically located in MAP hotspots and that most mutations are in exomic sequences 
that are not covered by the immunopeptidome. We believe that progress in the field neo-
MAP discovery would be greatly facilitated by large scale analyses of cancer cell 
immunopeptidomes. 
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3.5 Materials and Methods 

3.5.1 Proteogenomic identification of MAPs derived from B-LCLs 
We applied our previously described proteogenomic approach to isolate and sequence 

MAPs. The methods of cell culture, transcriptome sequencing, mild acid elution and mass 
spectrometry are outlined and described previously (Granados et al., 2014; Granados et al., 
2016). To mitigate the risk of false positives, stringent quality filters were applied to the list of 
identified MAPs: a peptide length of 8-14 amino acids; a 1% false discovery rate; and a 
predicted binding affinity less than 1,250 nM. When possible binding affinities were predicted 
with NetMHC 3.4 (21 allotypes), otherwise NetMHCcons 1.1 was applied (6 allotypes). 
Peptides were mapped to proteins in ENSEMBL assembly 37 using PyGeno (Daouda et al., 
2016). We applied further filtering steps to facilitate bioinformatic analysis: peptides assigned 
to more than one gene origin, transcripts with incomplete 5' and 3' annotation, and proteins 
with internal stop codons were all excluded. Where multiple isoforms were identified for a 
gene, MAPs were assigned to the most expressed transcript.  

3.5.2 Simulations of the redundancy in MAP and MAP source gene repertoires 
Allotypes were randomly ordered and either peptides or genes were considered. The 

number of non-redundant identifications was counted considering the repertoires of each 
subsequent allotype. The simulation was repeated 1000 times; average repertoire sizes are 
shown. The same simulation considering subjects instead of allotypes was also performed. We 
noted greater redundancy in this simulation due to some subjects sharing the same allotypes.  

3.5.3 Spatial localization of MAPs along source proteins 
Every pair of overlapping MAPs was extracted for each protein generating more than 

one MAP. Overlapping MAP pairs were classified as sharing the same beginning 'C-terminal 
extensions', sharing the same end 'N-terminal extensions', being contained within another 
peptide 'Internal', or sharing at least one amino acid 'Overlap'. Alleles presenting each peptide 
pair and their superfamilies were compared (Sidney et al., 2008). All distances between MAPs 
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on the same protein were computed for the actual distribution. MAPs start sites within 8 
amino acids of each other were considered as one peptide with an averaged start site. For the 
random distribution, an equivalent number of MAPs were randomly placed within the same 
protein length and inter-MAP distances computed. For relative comparisons, distances were 
normalized for the length of each protein. To estimate exome coverage, a window of 150 base 
pairs was moved residue by residue along each of the 10,677 proteins expressed in our B-
LCLs; the number of MAPs seen in each window was counted.  

3.5.4 Evaluating features of transcripts and proteins 
To ensure the quality and relevance of our source and non-source gene sets, we 

considered all genes expressed > 1 FPKM on average in all 18 B-LCLs using TopHat 
mapping to ENSEMBL human assembly 37. For each gene, the most expressed protein-
generating transcript with complete HAVANA annotation and the corresponding protein 
were selected. For MAP source transcripts, the transcript had to generate at least one MAP. 
Feature assembly was executed in Python version 2.7.10, pyGeno was used to extract 
transcript and protein sequences (Daouda et al., 2016). Annotation translation was determined 
with the ENSEMBL BioMart extension (Zerbino et al., 2015).To calculate the predicted 
MAP density, NetMHC was used to predict the binding affinity of overlapping 9mers from 
each protein for all 27 allotypes expressed by the B-LCLs. NetMHC 3.4 was applied 
preferentially to predict binding affinities for 21 allotypes, NetMHCcons 1.1 was applied for 
the remaining 6 allotypes. The fraction of 9mers binding any of the 27 allotypes with an 
affinity ≥1250nM was calculated for each protein.  

B cell protein abundance in average spectral counts per gene was extracted from the 
Human Proteome Map (Kim et al., 2014a). Genes with at least one transcript with an NMD 
biotype in ENSEMBL were considered to have NMD potential. uORFs were defined as non-
overlapping sequences within the 5'UTR beginning with the cognate start codon 'AUG' and 
ending with an in-frame stop codon. 5'UTR secondary structure was predicted using RNAfold 
within the ViennaRNA Package version 2.1.7 (Lorenz et al., 2011). The percentage of AU 
rich elements was defined as the fraction of A and/or U sequence of at least 5 nucleotides in 
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length within the 3'UTR. Stabilizing and destabilizing elements identified by Zhao et al. were 
queried and normalized for 3'UTR length (Zhao et al., 2014). TargetScan 7.0 was employed 
to predict microRNA binding sites within the 3'UTR (Agarwal et al., 2015). 3'UTRs were 
prepared by removing ORFs; the number of non-overlapping microRNA binding sites was 
computed for all families of microRNAs, the summed Context++ score and mean percentile of 
this score were extracted for each transcript. Gene Set Enrichment Analysis microRNA target 
motifs were downloaded and queried in all 3'UTRs. To analyze the structural features of 
proteins, we used BioPython's package SeqUtils (specifically the ProtParam tool) to predict 
the proportion of residues conforming to a helix, turn, or sheet motif as well as the isoelectric 
point, instability index, and hydropathy (Gasteiger et al., 2005).   

3.5.5 Protein degradation prediction softwares 
Anaphase promoting complex target sequences were predicted using GPS-ARM 

version 1.0 using default thresholds for D-box and KEN-box motif (Liu et al., 2012). PEST 
motifs were predicted using the function epestfind within EMBOSS version 6.5.7 (Rice et al., 
2000). Ubiquitination sites were predicted with UbiProber (Chen et al., 2013) with a 
stringency of 70%. Three disorder prediction softwares were selected for the complementarity 
of their approaches: PONDR VLXT is a neural network predictor trained on missing residues 
in X-ray structures as well as known terminal and long disordered segments, DISOPRED 
version 3.16 is a support vector machine and neural network predictor also trained on missing 
residues in X-ray structures, and IUPRED version 1.0 a biophysical model based on local 
interaction energies (Dosztanyi et al., 2010). Where residues were assigned to be disordered or 
not, disorder cutoff values were determined to equate the total disorder of the B-LCL 
proteome for PONDR-VLXT, DISOPRED,  and IUPRED at 0.7, 0.3, and 0.5 respectively 
(Figure 21A).  

3.5.6 Data visualization 
Boxplots were made in R version 3.1.3 using ggplot2 version 1.0.0 (Wickham, 2009). 

Notched boxplots show the median values of each population with boxes extending from the 
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first to the third quartile - the interquartile range (IQR). Whiskers extend from the lowest to 
highest values within 1.5 x IQR. Notches around the median show 1.58 x IQR / sqrt(number 
of samples), roughly a 95% confidence interval. The range of the upper axis was narrowed 
from minimum of the 15th to the maximum of the 85th percentile of either source or non-
source populations. Outliers are not shown.  

3.5.7 Gene ontology analysis 
We compared either source or non-source genes on a background of both groups using 

the R package topGO (Alexa and Rahnenfuhrer, 2010). The Fisher weight algorithm was 
used to reduce redundancies and compute p-values.  

3.5.8 Statistical analysis 
Given that our data comparing source vs. non-source populations included roughly 

10,000 genes, p-values were considered significant if they exceeded the threshold of 0.001. 
Unless otherwise noted, we employed two-sample Wilcoxon rank sum tests to compare 
continuous variables and Fisher's Exact Test to compare count data because of the robustness 
of these tests. All statistical analyses were performed in R version 3.2.2.  

3.5.9 Logistic regression modeling 
The variables listed in Table II were used as input variables for logistic regression 

models run with the R packages caret and MASS (Kuhn, 2016; Venables and Ripley, 2002). 
Genes without 5'UTRs were excluded bringing the total number of genes to 9,807. The top 
50 most enriched GO terms from the source and non-source groups were included.  To limit 
the extent of correlation in input variables which can obscure their relative weight, some 
variables were excluded. Input variables were also normalized by length of the appropriate 
UTR, transcript or protein. Spearman's rank correlation coefficient ρ was calculated for each 
pair of input parameters (Figure 23). Near-zero variance parameters were excluded, we noted 
that this excluded the majority of GO terms. The data was divided into training and testing 
sets containing 80% and 20% of genes respectively. A logistic regression model with or 
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without recursive feature elimination was built with centered and scaled training data using 
10-fold cross validation. The model then predicted the probability of generating MAPs for 
each gene in the testing set. Variable importance was computed based on the t statistic for all 
model parameters. An ordered logistic regression model with three class outcomes was built 
using the same protocol; categories were selected to optimize class balance (number of genes: 
4,075 'none'; 2,957 'low'; 2,775 'high'). All metrics reported are averages of 1000 iterations of 
data division and model building. External datasets studying the immunopeptidome of the JY 
B-LCL cell line (Bassani-Sternberg et al., 2015; Caron et al., 2015a) were used to reclassify 
source genes; 16-20% of genes were excluded with the filters applied to define the expressed 
and annotated B-LCL gene set. Prediction scores for these groups of genes were extracted 
from the two class model using all features. 

 

3.6 Supplementary figures & tables 

 
Figure 18. Supplementary characterization of MAP and MAP source gene 

repertoires. (A) The predicted binding affinities of identified MAPs prior to 
application of the <1250nM filter. (B) The number of unique identifications of 
MAPs (left panel) and MAP source genes (right panel) was counted as each 
additional randomly selected subject was considered. Results show the average of 
1000 simulations. Note: common alleles between subjects increase the 
redundancy of peptides identified between subjects. 
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Table I. MAP identifications by subject and allele. Total number of MAPs discovered 
and assigned to each HLA-A,B allotype expressed in each subject. Peptides were 

assigned based on highest affinity with a global threshold of ≥1,250 nM. 

 HLA-A HLA-B 
B-LCL ID Number of MAPs identified 

1 03:01 29:02 08:01 44:03 
674 370 566 1632 

2 03:01 29:02 08:01 44:03 
584 289 619 1655 

3 02:01 29:02 44:03 57:01 
756 411 2007 783 

4 01:01 02:01 07:02 44:03 
561 661 2219 1954 

5 03:01 11:01 44:03 50:01 
203 946 1077 331 

6 02:01 11:01 40:01 44:03 
587 1203 1380 1600 

7 02:01 23:01 18:01 44:03 
144 111 355 586 

8 02:01 03:01 07:02 
767 657 3107 

9 02:01 03:01 07:02 
478 639 2615 

10 01:01 02:01 18:01 39:24 
544 565 1007 260 

11 02:01 24:02 15:01 73:01 
913 719 1916 179 

12 02:01 13:02 41:01 
1160 39 434 

13 02:01 11:01 27:05 56:01 
1033 1121 1016 712 

14 03:01 32:01 27:05 45:01 
355 308 356 500 

15 01:01 32:01 08:01 
327 491 908 

16 11:01 14:02 44:02 
1087 260 859 

17 11:01 18:03 35:01 
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1426 215 450 
18 03:01 24:02 07:02 27:05 

479 334 918 669 
 

 
Figure 19. Supplementary features of MAP source transcripts. (A-C) 

Proportions of GC bases along transcripts, 5'UTRs and 3'UTR. (D) Proportion 
of bases paired in the most stable predicted secondary structure of the 5'UTR 
predicted by RNAfold in the Vienna package (Lorenz et al., 2011). (E) 
Cumulative gene context ++ score for microRNA binding sites in the 3'UTR 
predicted by TargetScan 7.0 (Agarwal et al., 2015). (F) Density of microRNA 
binding sites along the 3'UTR predicted by Gene Set Enrichment Analysis 
(GSEA) database (Subramanian et al., 2005). (G-H) Density of stabilizing and 
destabilizing elements in the 3'UTR (Zhao et al., 2014). 
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Figure 20. Supplementary features of MAP source proteins. (A) Average 

molecular weight of amino acid residues. (B) Predicted instability index using 
ProtParam within BioPython (Gasteiger et al., 2005). 
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Figure 21. Protein disorder predicted by three complementary methods: 

PONDR VL-XT, DISOPRED and IUPRED. (A) Global proportion of 
disordered residues as a function of cutoff value above which a residue is 
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'disordered' for each predictor. Cutoff values for each predictor were chosen to 
roughly equate proteome wide disorder: 0.3, 0.5 and 0.7 for DISOPRED, 
IUPRED and PONDR VL-XT, respectively. (B) Prediction of 5 metrics of 
disorder for each predictor: the proportion of disordered residues, average residue 
disorder, the length of N and C terminus disorder and occurrence of internally 
disordered regions longer than 30 amino acids (Romero et al., 2001; Jones and 
Cozzetto, 2015; Dosztanyi et al., 2005). 

 

Table II. Features used for predictive modeling of MAP source vs. non-source genes. 

 Description Tool Citation 
Gene Features  
Gene Expression Frequency per kilobase of transcript 

per million mapped reads (FPKM) TopHat Trapnell et al., 2009 
NMD Potential ≥1 'NMD' transcript biotype Ensembl Zerbino et al. 2015 
Transcript Features  
Number of exons Normalized for transcript length PyGeno Daouda et al., 2016 
5'UTR Length Proportion of transcript length PyGeno Daouda et al., 2016 
5’UTR GC Content % composition of 5'UTR PyGeno Daouda et al., 2016 
uORF Total canonical reading frames in 

5'UTR PyGeno Daouda et al., 2016 
5’UTR base pairing % paired RNA residues RNAfold Lorenz et al., 2011 
3'UTR Length proportion of transcript length PyGeno Daouda et al., 2016 
3'UTR destabilizing 
motifs Motif density along 3'UTR - Zhao et al., 2014 
3'UTR stabilizing 
motifs Motif density along 3'UTR - Zhao et al., 2014 
3'UTR AU rich 
elements 

Proportion of 3'UTR A/U 
sequences ≥ 5 nucleotides PyGeno Daouda et al,. 2016 

miR elements 
(GSEA) Total non-overlapping binding sites GSEA miR 

motifs 
Subramanian et al., 
2005 

miR elements (TS) Total non-overlapping binding sites TargetScan Agarwal et al., 2015 
miR context ++ 
precentile (TS) Context++ score percentile TargetScan Agarwal et al., 2015 
Protein Features 
Protein Length - PyGeno Daouda et al., 2016 

B Cell Abundance Spectral counts per gene per 
experiment 

Human 
Proteome 
Map 

Kim et al., 2014 

Predicted MAP 
density 

Proportion of 9mers binding any of 
27 HLA-A,B allotypes >1,250 nM 

NetMHC; 
NetMHCco
ns 

Karosiene et al., 
2012; Lundegaard et 
al., 2008 
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Residue MW Average residue Molecular weight PyGeno Daouda et al., 2016 
Residue Hydropathy Average residue GRAVY Index ProtParam Gasteiger et al., 2005 
Isoelectric Point - ProtParam Gasteiger et al., 2005 
Instability Index - ProtParam Gasteiger et al., 2005 
Helix Proportion of residues in predicted 

motif ProtParam Gasteiger et al., 2005 

Turn Proportion of residues in predicted 
motif ProtParam Gasteiger et al., 2005 

Sheet Proportion of residues in predicted 
motif ProtParam Gasteiger et al., 2005 

N-terminus disorder Length of disordered residues at N-
terminus 

PONDR 
VLXT Romero et al., 2001 

C-terminus disorder Length of disordered residues at C-
terminus 

PONDR 
VLXT Romero et al., 2001 

Internal Disorder Total disordered regions >30 
residues 

PONDR 
VLXT Romero et al., 2001 

Average Disorder Average residue disorder prediction PONDR 
VLXT Romero et al., 2001 

PEST motifs Total motifs EMBOSS Rice et al., 2000 
KEN Box Total motifs GPS-ARM Liu et al., 2012 
D Box Total motifs GPS-ARM Liu et al., 2012 
All Density of KEN, D, PEST motifs GPS-ARM 

+ EMBOSS 
Liu et al., 2012; Rice 
et al., 2000 

Lysine ubiquitination 
sites 

Proportion of Lysine residues 
predicted to be ubiquitinated > 0.7 UbiProber Chen et al., 2013 

Gene Ontology  
GO:0005654 Nucleoplasm topGO Alexa and 

Rahnenfuhrer, 2010 
GO:0032991 Macromolecular complex topGO Alexa and 

Rahnenfuhrer, 2010 
GO:0005730 Nucleolus topGO Alexa and 

Rahnenfuhrer, 2010 
GO:0044822 Poly(A) RNA binding topGO Alexa and 

Rahnenfuhrer, 2010 
GO:0005515 Protein binding topGO Alexa and 

Rahnenfuhrer, 2010 
GO:0005829 Cytosol topGO Alexa and 

Rahnenfuhrer, 2010 
GO:0044877 Macromolecular complex binding topGO Alexa and 

Rahnenfuhrer, 2010 
GO.0044403 Symbiosis topGO Alexa and 

Rahnenfuhrer, 2010 
GO:0010628 Positive regulation of gene expression topGO Alexa and 

Rahnenfuhrer, 2010 
GO:0032559 Adenyl ribonucleotide binding topGO Alexa and 

Rahnenfuhrer, 2010 
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GO:0005737 Cytoplasm topGO Alexa and 
Rahnenfuhrer, 2010 

GO:0031224 Intrinsic component of membrane topGO Alexa and 
Rahnenfuhrer, 2010 

GO:0046872 Metal ion binding topGO Alexa and 
Rahnenfuhrer, 2010 

 

 

 
Figure 22. An ordered logistic regression model predicts whether MAP output 

for a gene will be high, low or nonexistent. (A) Model performance measured by 
a ROC plot; the AUCs are 0.87 for the high category, 0.65 for the low category 
and 0.82 for the none category. (B) The relative weight of the top 10 features 
contributing to prediction scores. Variables normalized by the length of the 
corresponding UTR, transcript or protein are denoted with †, GO terms denoted 
with *. (C) Prediction scores for each category grouped by experimentally defined 
source classification.  
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Figure 23. Correlation matrix of all model input variables using Spearman's ρ. 

Variables normalized by the length of the corresponding UTR, transcript or 
protein are denoted with †, GO terms denoted with *. TS: TargetScan, GSEA: 
Gene Set Enrichment Analysis database.  
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Chapter 4 - Discussion & perspectives 

4.1 Elucidating the dynamics of MHCI expression  
We show integral differences in absolute expression and peptide binding properties of 

different HLA allotypes. The completion of this story is of fundamental importance and will 
inform future studies of antigen presentation. For example, we found that mild acid elution 
efficiency is likely allotype dependent; future immunopeptidome studies should take this into 
account. Quantitative analyses also allow one to estimate adjustments to immunopeptidome 
discovery protocols for cells lineages with fewer MHCI molecules expressed at the cell surface.  

What is the global scope of variation in MHCI expression across allotypes? Is 
expression shaped by superfamily, tapasin and PLC interaction, inherent molecular stability or 
the availability of peptides with suitable motifs? We suspect each of these factors will 
contribute to expression dynamics. A model that considers each step in expression offers the 
most comprehensive approach to comparing HLA allotype expression.   

To complete the story of differential HLA expression would required a broader 
comparison of allotypes with different properties and therefore additional HLA-A,B 
antibodies. Thus far, antibodies specific to HLA-A*01:01, HLA-A*23:01, HLA*24:01 and 
HLA-B*27:05 have been identified and titrated (details presented in appendix 1). A panel of 8 
allotypes (these and the 4 studied in Chapter 2) would offer more generally applicable results. 
A limiting factor is quite simply the availability of appropriate high affinity antibodies with 
specificity for different HLA allotypes - one solution to would be custom recombination of 
available antibodies with appropriate isotypes (mouse IgG) for quantitation. Evidently, by 
conducting further replicates of each experiment one could draw more concrete conclusions 
about patterns of absolute MHCI expression and relative dynamics.  

To obtain a comprehensive view of the entire life cycle of MHCI expression in B-
LCLs, additional quantification of intracellular MHCI and analyses of surface stability should 
be carried out. A simple fixation protocol combined with the quantitative assay would measure 
intracellular allotype expression using flow cytometry. Preliminary results indicate 
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approximately 50% of MHCI are retained intracellularly. Retention may be linked to 
efficiency of peptide loading, quality filtering and/or inherent stability of peptide-allotype 
complexes. Complete intracellular and extracellular quantitation profiles would also describe 
the global abundance of each allotype.  

Furthermore, the duration of extracellular expression could be assessed in vitro by 
inhibiting the transport through secretory pathway. Reagents such as monensin or Brefeldin A 
inhibit the secretory pathway and should block expression of newly formed pMHCI 
complexes.104 By measuring the decline in pMHCI surface expression due to loss of peptides 
and instability without replacement by new pMHCI complexes, one could determine surface 
lifespan of various allotypes. We hypothesize surface expression time will be closely related to 
stability. Another approach could use a recently described surface density profiling assay 
preformed on MHCII to gauge the stability of each allotype.98  

From these data it would be possible to build a complete model of the inter-allele 
dynamics from gene expression, absolute intracellular expression, MHCI recovery or 
expression rate, absolute surface expression, and surface stability or internalization rate. 
Mathematical modeling could highlight global and inter-allotype differences at each step of 
the MHCI life cycle. Differences in expression patterns would help elucidate if HLA allotypes 
have fundamentally different purposes, for example by drawing parallels to thymic selection,88 
or the generalist-specialist paradigm.29 These findings will also be relevant to understanding 
the mechanisms linking HLA alleles to autoimmune disease and HIV control. 

 

4.2 Developing immunopeptidome predictions 
Our study of the genetic origins of the immunopeptidome revealed only 58% of genes 

produce MAPs for 27 allotypes in 18 individuals studied. MAP source genes and gene 
products showed distinct features contributing to MAP generation, for example features 
reflecting greater translational efficiency and preferential proteasomal degradation. Using these 
features, a logistic regression model was built and predicted with good accuracy whether or not 
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a give gene would generate MAPs. We confirmed the defining features of MAP source genes 
included gene expression, protein length and protein abundance with significant contributions 
from other GO annotation, transcript, and protein related features. Our model therefore 
represents a comprehensive look at antigen processing independent of HLA alleles and 
antigen binding. The next steps will be to test and apply the model in different settings.  

The utility of any tool depends on its' availability. The impact of our findings will 
certainly be more important if others can easily make use of these results. To achieve this, 
there are three essential steps to complete. First, the model must be tested on other contexts 
using gene expression data. For example, studies of renal, breast, and lymphoid cell lines could 
serve to validate and adjust model parameters.52,54 Second, we must optimize the model to use 
a few features as possible to speed up the processing time; this could be easily done since a 
model limited to 10 variables had comparable performance (average ROC AUC = 0.81 
compared to 0.82 for the complete model, data not shown). Third, a user-friendly script to 
gather the appropriate features must be made available alongside the model.  

The logistic regression model approach offers the advantages of simplicity, speed and 
allows one to asses the weight of each variable. The model had good performance (ROC AUC 
= 0.82) and accuracy (0.75). There are however limitations using a best-fit logistic function to 
stratify all samples, not the least of which is the extent of misclassification. While false 
positives are of less concern since our MAP identification is not exhaustive, false negatives are 
of interest for improving model performance. The most striking difference between the genes 
classified as false negatives and all positive source genes was lower gene expression. Secondary 
differences included fewer exons, shorter proteins, longer 3'UTRs and lower predicted lysine 
ubiquitination in the false negative population. Remaining features were comparable with the 
positive population. We conclude a limitation of our model is inflexibility with respect to 
dominant variables.  

Alternatively, more complex statistical models such as artificial neural networks or 
support vector machines may show more flexibility with respect to single variables. Other 
options include rule-based algorithms such as random forest or decision tree models. Notably, 
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rule-based algorithms will be more comprehensible than statistical models. However, since we 
have generally understood the role of each feature in our study, application of a statistical 
model - which preform well with continuous variables - could augment preformance. 
Otherwise a combination of results from different models could be more powerful.105,106 

We were unable to identify specific features that stratified highly from lowly MAP-
producing source genes. However the diversity of unique MAP sequences produced is but one 
dimension of MAP production. Quantitative information in terms of the copy number of each 
MAP per cell is becoming available for large scale MS studies using DIA. This techniques 
draws from multiple reaction monitoring and DDA techniques using comprehensive peptide 
libraries for comparison with immunopeptidome samples. Incorporating diversity and copy 
number in future analyses will offer a clearer stratification between highly and lowly MAP 
producing genes.  

While we are able to predict MAP source genes with good accuracy, the specific 
location of true MAPs along source proteins remains a challenging question. We have shown 
that some regions or 'hotspots' preferentially generate multiple MAPs. Further studies might 
identify characteristics of hotspot regions to predict start sites. Do MAPs derive preferentially 
from regions with particular motifs, disorder, or degradation sites? A two step prediction 
model defining i) potential source genes and ii) the most probable locations of MAPs would 
allow for more sensitive predictions. Each predicted 'hotspot' could then be tailored to the 
HLA alleles using binding affinity predictions.  

 

4.3 Applications of immunopeptidome predictions 
As a frontier treatment for cancer, implementation of immunotherapy faces many 

challenges not the least of which is the identification of suitable targets. Immunotherapy co-
opts host or engineered T cells to identify and eliminate cancer cells. MAPs containing 
neoplastic mutations (neo-MAPs) are a particularly fruitful subset of therapeutic targets 
because they may already be targeted by host tumour infiltrating lymphocytes (TILs) and are 
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specific to tumour cells.107 Perhaps the most striking finding of our work is that MAPs derive 
from a small portion of the genome (< 17%). In the context of immunotherapy, this would 
explain at least in part why many predicted neo-MAPs (< 90%) are not presented at the cell 
surface.61,108,109 

 We propose three approaches to applying immunopeptidome predictions to discover 
neo-MAPs. The first is to apply prediction algorithms within current pipelines to optimize 
peptide selection. Presently neo-MAP discovery relies on exome sequencing, identification of 
mutations, and selection of mutations located in peptide regions predicted to have a good 
MHC binding affinity. An addition step predicting the MAP generating potential of genes 
harbouring tumour mutations would prioritize potential neo-MAPs. 

A second approach would predict MAP source genes by incorporating cancer-specific 
gene expression in the logistic regression model. RNA and exome sequencing of tumour 
samples from databases such as The Cancer Genome Atlas are excellent resources to study 
antigen presentation in cancer. HLA alleles can now be accurately predicted from sequencing 
data using OptiType.110 By comparing predicted MAP source genes with mutations identified 
in each sample, a list of candidate neo-MAPs may be generated.111–113 We also note that based 
on the short range effect, examining experimentally defined MAPs in similar tissues may 
facilitate identification of regions that preferentially generate MAPs within source genes.  

Thirdly, one could study the MAP generating potential of frequently mutated 
oncogenes and tumour suppressor genes to identify theoretically common neo-MAPs.114,115 
Notably, mutated and non-functional proteins may undergo rapid proteasomal degradation 
and preferentially generate MAPs.13  

The application of MAP source gene predictions in tumour sequencing data may allow 
one to bypass sample-hungry MS while being more selective than approaches relying solely on 
binding motifs. The feasibility of this approach remains to be tested but we believe that 
progress in the field neo-MAP discovery would be greatly facilitated by large scale analyses of 
cancer cell immunopeptidomes. 
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4.4 How diverse is the MAP repertoire ? 
Our proteogenomic approach identified 25,172 MAPs binding 27 HLA-A,B allotypes 

deriving from 6,231 genes in B-LCLs. Although the use of multiple subjects bearing different 
alleles in this study allowed us to look at the global repertoire of MAP producing genes, we are 
acutely aware that out collection of MAPs is incomplete. MAPs may be lost at any step of the 
proteogenomic workflow: peptides remaining bound to MHCI during elution, lowly abundant 
peptides not detected in MS,57 peptides with noncanonical binding interactions removed by 
prediction algorithms, or peptides presented uniquely under specific conditions. A central 
question remains: how diverse is the MAP repertoire?  

Considering a single cell type in one individual, the diversity of MAPs is limited first 
by the HLA genotype and corresponding binding motifs. Results presented here and 
elsewhere show different HLA allotypes will present different diversity of peptides which may 
be inversely correlated with allele specific expression.29,88,89 To begin to answer the question of 
MAP diversity, one might derive a diversity index for each allele: 

Allotype diversity index = number of unique MAPs / allotype specific expression 

Although the binding properties of each allotype are consistent across contexts, the 
diversity index may be shaped by competition from other allotypes. In principle, the net 
diversity of MAPs can be described quite simply:  

Number of unique MAPs x copy number per cell = Total MHCI expression 

One could estimate each of these parameters relatively easily using available techniques. 
Copy number can be loosely estimated in MS using known amounts of a few nonamers as 
Schellens et al. have done,93 or more accurately with emerging DIA MS techniques.57 Thus 
far, MAP copy numbers are known to range from 1 to 104 per cell.93 Notably, the B-LCL 
model cell line exhibits particularly high MHCI expression, other groups have quantified 
HLA-A,B,C expression at ~100,000 molecules per cell on blood monocytes, roughly 10% of 
B-LCL expression.89 The number of unique MAPs may be derived from studies like ours. 
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Together, these analyses would estimate MAP diversity and may shed light on how much of 
the immunopeptidome has been discovered so far.  

How much of the exome do the entire set of MAPs cover? Our results show only a 
subset of genes can produce MAPs and certain regions of source proteins will preferentially 
produce MAPs in a largely allele-independent manner. We estimate the immunopeptidome 
covers <17% of the whole exome in B-LCLs. Importantly, from the perspective of a CD8+ T 
cell controlling an active infection, the immunopeptidome would still effectively capture highly 
expressed pathogen-derived proteins. Indeed, some mechanisms of viral immune evasion 
simply diminish gene expression.75,116 

Globally, across cell types and HLA allotypes in a given individual the 
immunopeptidome will present a comprehensive overview of the self. To the extent that MAP 
processing depends on the cellular transcriptome, we expect differences in the 
immunopeptidome reflecting the dynamic intracellular and extracellular environments of each 
tissue. At the population level, considerable inter-individual variability in gene expression is 
well established and is known to shape immune response as well as disease sceptibility.117,118,90 
In reality, the tissue-specific immunopeptidomes of each allotype is likely similar between 
individuals but reflects inter-individual heterogeneity and is shaped by interacting dynamic 
systems. 



 

 

Conclusion 
MHCI is the centerpiece of adaptive immune surveillance and shapes the progression 

of numerous diseases. In this work we use cutting-edge proteomics, genomics, and informatics 
to answer two central questions in antigen presentation: what is the impact of allelic diversity 
on expression and peptide binding? What are the genetic origins of MAPs? Our results 
highlight consequences of HLA allotype variability beyond peptide binding motifs and 
underscore the importance of antigen processing in selection of the immunopeptidome.  

We conclude there are fundamental differences in absolute HLA allotype expression 
and peptide binding properties brought about by allelic variation. Our results are consistent 
with the emerging hypothesis that allotype expression is inversely correlated with peptide 
repertoire diversity. The next step will be complete characterization of the allotype specific 
expression cycle to reveal different functional properties. 

Our study of the genetic origins of MAPs stands out because we studied an exceptional 
number of HLA allotypes which was essential to understanding common sources of MAPs. 
We contribute the largest dataset of HLA-A,B MAPs identified to date (25,172 MAPs). Our 
findings show MAPs derive from a subset of genes and gene products with distinct features. 
These features can be used to predict with good accuracy whether or not a given gene can 
produce MAPs. Perhaps our most controversial finding is that CD8+ T cells monitor a 
fraction of the protein coding genome (<17%) because only 58% of genes generate MAPs and 
MAPs occur in clusters. We suggest applying more flexible machine learning techniques to 
the same data and incorporating quantitative information from MS may improve predictive 
power. We also expect our predictive model will facilitate the identification of neo-MAPs for 
immunotherapy based treatments of cancer.  

Our results raise fundamental questions to direct future research: 

• What is the impact of differential HLA expression in associated disease phenotypes? 

• What local sequence features contribute to the short range effect where MAPs co-
localize along source proteins? 
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• What distinguishes genes that produce many versus few MAPs? 

• To what extent can we predict neo-MAPs using modeling and sequencing data? 

• What are the functional consequences of the finding that CD8+ T cells monitor only a 
fraction of the genome? 
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Appendix 1 - Protocol for QIFIKIT quantitation of MHCI 
expression on B-LCLs 

Introduction 
This protocol is for quantitation of MHCI surface molecules on B-LCLs using the QIFIKIT 
and indirect immunofluorescence protocol for flow cytometry. 

Materials 
• FACS tubes (BD Falcon) 
• Cold PBS/BSA (0.1%)  
• Unlabeled Mouse IgG primary antibody (ex. Mouse IgG2b anti-Human HLA-A2 

clone BB7.2, BD cat#551230) 
• Unlabeled Mouse IgG primary isotype control (ex. Mouse IgG2b Isotype Control 

clone MPC-11, BD cat#557351) 
• Fluorochrome labeled secondary antibody (BV421 Goat anti-Mouse Ig polyclonal, BD 

cat#563846) 
• QIFIKIT® vials 1 and 2 (Dako, cat#K0078) 
 

Table III. Primary antibody dilutions and product information for indirect 
immunofluorescence and quantitation of various HLA-A,B allotypes.   

Antibody target Clone Isotype Supplier Product # Dilution 
HLA-ABC W6/32 IgG2a Abcam ab7855 1:4 
HLA-A1 4i93 IgG2a Abcam ab33641 1:8 
HLA-A2 BB7.2 IgG2b BD 551230 1:16 
HLA-A3 GAP.A3 IgG2a eBioscience custom 1:8 
HLA-A11 4i93 IgG2a Abcam 4i93 1:16 

HLA-A23/A24 4i94 IgG2b Abcam 4i94 1:3 
HLA-B7 BB7.1 IgG1 Santa Cruz sc-53304 1:3 
HLA-B27 HLA.ABC.M

3 
IgG2a Merek MAB1285 1:64 
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Notes 
Caution: Use Biosafety level 2 in cell culture room and lab. 
Note 1: Reserve FACS Canto II in advance. Estimate 5-15 minutes for setup + 1-1.5 

minutes per tube + 15 minutes for fluidics shutdown. 
Note 2: Aseptic technique is not necessary unless part of the cells will be kept in culture. 
Note 3: Keep the cells on ice (4°C) all the times. All centrifugation steps must be carried 

out at 4°C, if possible. Use cold PBS/BSA 0.1% for all steps. 
Note 4: Protect the cells from light after labeling with secondary antibody. 
Note 5: Carry out 3-5 replicates of each cell line / condition. 
Note 6: Tests with the Human BD Fc block (Cat#564219) showed no significant 

difference in extracellular staining. 
Preparation 

1. If fresh cell are required, thaw vials 3 days in advance.  
2. Resuspend cells to 0.4 x 106 cells/ml 1 day in advance of FACS start time: 

a. Preform a cell count for each cell line with the Countess.  Ensure samples are 
mixed well before count. Mix 10 µl 0.4% Trypan blue + 10µl cell suspension 
and pipette into counting slide. Record all measurements (including average 
viable cell size) on a USB drive for reference;  

3. Prepare the following in advance of the experiment: 
a. PBS solution (at least 10ml x total number of tubes in experiment); 
b. Labeled FACS tubes; 
c. Experimental setup recording folder on FACS Canto II. 

Procedure 
Cell culture room 

4. Preform a cell counts noting the average concentration and viability of cells for each 
line.  

5. Calculate the volume of cell culture required for the number of cells for each FACS 
tube (50,000 cells). 

  # cells to be labeled / [  ] x 106 (cells/ml) = volume to transfer 
  ex. 50,000 / 0.3 x 10 6 cells per ml = 0.166 or 16.6µl 

6. Transfer slightly more that the total volume required for all FACS tubes to an 
Eppendorf or 15ml Falcon tube for each cell line.  

  Ex. (50 samples + 5 (1 per 10 samples)) x 0.166 = 9.130 ml total 
Benchtop 



 

iii 

7. Pipette calculated volume for 50,000 cells into each FACS tube. 
8. Wash to remove medium:  

a. Add 1-2ml of cold PBS/BSA 0.1% to each tube; 
b. Centrifuge at 1000 rpm x 5 min at 4°C, primary antibody solutions can be 

prepared during centrifugation (step 9); 
c. Discard the supernatant and tap gently the bottom of the tube to destroy the 

pellet. 
9. Prepare the antibody and isotype solutions for primary labeling: 

a. Primary HLA-A2 at a 1:16 dilution; 
 Ex. For 100 tubes:Total Volume  [100 + (100*0.15)] * 10 = 1150 µl 
   Antibody volume  1150*(1/16) = 71.88 µl 
   PBS/BSA (0.1%) volume 1150*(15/16) = 1078.13 µl 

10. Label cells with 1° antibody:   
a. Pipette 10µl of diluted primary purified antibody to each test FACS tube and 

10µl of diluted primary isotype antibody into isotype control tubes; 
b. Vortex gently; 
c. Incubate at 4°C for 30 min, preparation of QIFIKIT® beads can be done 

during this step. 
11. Prepare QIFIKIT® Beads:  

a. Vortex and pipette 50µl of from Vial 1 and Vial 2 into 2 separate FACS tubes; 
b. Treat tubes with beads as samples for the rest of the protocol.  

12. Wash to remove excess 1° antibody:  
a. Add 1-2ml of cold PBS/BSA 0.1% to each tube, vortex gently; 
b. Centrifuge at 1000 rpm x 5 min at 4°C, secondary antibody solutions can be 

prepared during centrifugation (step 12); 
c. Discard the supernatant and tap gently the bottom of the tube to destroy the 

pellet. 
13. Prepare the antibody solution for secondary labeling: 

a. Secondary BV421 antibody at a 1:2 dilution; 
 Ex. For 100 tubes: Total Volume      [100 + (100*0.25)] * 10 =1250 µl 
   Antibody volume  1250*(1/2) = 625.00 µl 
   PBS/BSA (0.1%) volume 1250*(1/2) = 625.00 µl 

14. Label cells with 2° antibody:   
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a. Pipette 10µl of diluted secondary purified antibody to each test FACS tube, 
primary isotype control tubes, secondary isotype control tubes, and QIFIKIT® 
beads tubes; 

b. Vortex gently; 
c. Incubate at 4°C for 30 min. 

15. Wash to remove excess 2° antibody:  
a. Add 1-2ml of cold PBS/BSA 0.1% to each tube; 
b. Centrifuge at 1000 rpm x 5 min at 4°C,  
c. Discard the supernatant and tap gently the bottom of the tube to destroy the 

pellet. 
16. Resuspend the cells in 50 ul of cold PBS/BSA 0.1%. 
17. Store at 4°C until ready for FACS analysis.  
18. Analyze the cells in the FACS CANTO II, keep samples on ice until analysis.  

a. To maximize statistical power, increase # events recorded to 25,000. 
b. Refer to QIFIKIT® protocol (7th edition) for Data Acquisition guidelines. 

19. Setting Window of Analysis 
a. Using the set up beads, adjust laser voltage so positive and negative populations 

fall within 15% of the reference values (below). 
 

Table IV. Reference values for consistent quantitation using the QIFIKIT on a BD 
FACSCANTO II. For best results, approximate voltages should be adjusted to 

place set up bead populations within near to approximate MFI.  
 Approximate values 

Voltages  
(starting point) 

FSC (beads) 400 

SSC (beads) 400 

FSC (cells) 280 

SSC (cells) 520 

BV421 245 

7-AAD 640 

MFI Set Up Beads Negative ~100 a.u. 
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Positive ~20,000 a.u. 

 
20. Flow Cytometry 

a. Pass each FACS tube into appropriately labeled experiments, gather ~10,000 
events per tube, ensuring good viability and sufficient populations in the live 
cell gate. 

b. Save experiment and run clean cycle (5 minutes bleach, 2 x 5 minute rinse).  
21. Data Analysis (See QIFIKIT Manual for reference) 

a. Gate on live cells, obtain BV421 MFI for each population of calibration beads 
and each experiment tube.  

b. Obtain the calibration curve by a log10 transformation of the MFI and 
Antibody Binding Capacity (ABC, lot specific values included with each kit) 
and plotting log(ABC) = a x log(MFI) + b.  

c. Use the linear regression equation of the calibration curve to transform each 
sample MFI value to ABC.  

d. Subtract the ABC of the appropriate isotope control (background antibody 
equivalent) from each sample to obtain the Specific Antibody-Binding 
Capacity (SABC).   
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Appendix 2 - Protocol for mild acid elution of surface MHCI 
peptides on B-LCLs 

Introduction 

This protocol describes mild acid elution of B-LCLs using a citrate phosphate buffer to 
release MHCI bound peptides from the binding groove and induce MHCI internalization. 
The protocol is adapted from various sources (see References). The protocol may be used prior 
to FACS analysis and may have applications elsewhere (ex. isolation of MHCI peptides for 
immunopeptidome analysis, see references). 

Precautions 

Caution: Use Biosafety level 2 in cell culture room and lab. 
Note 1: As the cells will be put in culture during the procedure, aseptic technique is 

required.  

Note 2: Keep the cells on ice (4°C) unless otherwise noted. All centrifugation steps must 
be carried out at 4°C, if possible. Use cold RPMI for washing steps. 

Note 3: Carry out 3-5 replicates of each cell line / condition. 
Materials 

• Citric Acid (Sigma, C2402, CAS# 77-92-9) 
• Cold PBS/BSA (0.1%)  
• Sodium Phosphate Dibasic (Sigma Aldrich, S9390, CAS#7782-85-6) 
• Sodium Chloride (Sigma Aldrich, S7653, CAS#7647-14-5) 
• RPMI Complete (RPMI 1640 + HEPES + L-Glutamine, 10% FBS, 1% L-

Glutamine, 1% Pen-Strep, ThermoFisher #74200047) 
Reagent Preparation 

Table V. Recipe for preparation of citrate phosphate buffer for mild acid elution. 

Reagent Molecular Weight Concentration Quantity per 100 ml 

Citric Acid (C6H8O7) 192.1 g/mol 131 mM 2.5160 g 

Sodium Phosphate Dibasic 268.1 g/mol 66 mM 0.9369 g 
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(Na2HPO4� 7H2O) 

Sodium Chloride (NaCl) 58.44 g/mol 150 mM 0.8766 g 

Water - - 100 mL 

Preparation: Buffer can be prepared in advance, autoclaved, and stored at room temperature; 
verify no contamination has occurred prior to each experiment.  

Procedure 

1. Adjust the citrate phosphate buffer pH to 3.3 using a pH meter and concentrated 
NaOH or HCl accordingly.  

2. Preform a cell count for each cell line.  Ensure samples are mixed well before count.  
a. Mix 10 µl 0.4% Trypan blue + 10µl cell suspension and pipette into counting 

slide.  
b. Calculate the volume of cell culture required for 600,000 cells. 

3. Transfer volume for 600,000 cells to a FACS test tube.  
4. Wash to remove medium:  

a. Add 1-2ml of cold RPMI to each tube; 
b. Centrifuge at 1000 rpm x 5 min at 4°C, primary antibody solutions can be 

prepared during centrifugation (step 9); 
c. Discard the supernatant and tap gently the bottom of the tube to destroy the 

pellet. 
5. Mild acid elution: 

a. Attach a tube rack to a plate vortex machine.  
b. Add 200µL of citrate phosphate buffer to each sample and vortex gently in rack 

for desired time (15 seconds - 1.5 minutes for partial elution; 5 minutes for 
complete elution; exceeding 8 minutes will lead to eventual cell death if cells are 
returned to culture)  

c. Neutralize the medium by adding 1-2 mL RPMI 1640 complete. 
6. Wash to remove citrate phosphate buffer and RPMI:  

a. Add 1-2ml of cold RPMI to each tube; 
b. Centrifuge at 1000 rpm x 5 min at 4°C, primary antibody solutions can be 

prepared during centrifugation (step 9); 
c. Discard the supernatant and tap gently the bottom of the tube to destroy the 

pellet. 
7. Resuspend each pellet in 1 mL PBS/BSA. 



 

viii 

References 

Granados, Diana Paola, Dev Sriranganadane, Tariq Daouda, Antoine Zieger, Céline M 
Laumont, Olivier Caron-Lizotte, Geneviève Boucher, et al. 2014. “Impact of Genomic 
Polymorphisms on the Repertoire of Human MHC Class I-Associated Peptides.” Nature 
Communications 5 (January): 3600. doi:10.1038/ncomms4600. 

Storkus, Walter J, Herbert J Zen III, Russell D Salter, and Michael T Lotze. 1993. 
“Identification of T-Cell Epitopes: Rapid Isolation of Class I-Presented Peptides from 
Viable Cells by Mild Acid Elution.” Journal of Immunotherapy 14 (2). LWW: 94–103. 

  



 

ix 

Appendix 3 - Protocol for papain digestion of surface MHCI 
on B-LCLs 

Introduction 

This protocol describes treatment of B-LCLs with the papain protease to cleave surface MHC 
Class I molecules without inducing cell death. The protocol is adapted from various sources 
(see References). The protocol may be used prior to FACS analysis and may have applications 
elsewhere (ex. isolation of peptide MHC complexes for immunopeptidome analysis, see 
references). 

Precautions 

Caution: Use Biosafety level 2 in cell culture room and lab. 
Note 1: As the cells will be put in culture during the procedure, aseptic technique is 

required.  

Note 2: Keep the cells on ice (4°C) unless otherwise noted. All centrifugation steps must 
be carried out at 4°C, if possible. Use cold RPMI for washing steps. 

Note 3: Carry out 3-5 replicates of each cell line / condition. 
Materials 

• Papain from papaya latex (Sigma, P1325, CAS# 9001-73-4) 
• L-Cysteine (Sigma Aldrich, C7352, CAS#52-90-4) 
• EDTA (Sigma Aldrich, 60-00-4) 
• RPMI Complete (RPMI 1640 + HEPES + L-Glutamine, 10% FBS, 1% L-

Glutamine, 1% Pen-Strep, ThermoFisher #74200047) 
Reagent Preparation 

Table VI. Recipe for preparation of papain buffer. 

Reagent Initial parameters Final Concentration Quantity per ml 

Papain 868 U/ml* 75 units/ml 86.4 ul 

L-Cysteine 121.6 g/mol 20 mM 0.002423 mg 
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EDTA 372.24 g/mol 1 mM 0.00037224 mg 

RPMI Complete - - 913.6 ul 

Preparation: dilute L-Cysteine and EDTA in RPMI complete < 24 hours before experiment 
start. Add Papain just prior to incubation to avoid loss of Proteolytic activity. * Depends on 
lot. 

Procedure 

8. Preform a cell count for each cell line.  Ensure samples are mixed well before count.  
a. Mix 10 µl 0.4% Trypan blue + 10µl cell suspension and pipette into counting 

slide.  
b. Calculate the volume of cell culture required for 600,000 cells. 

9. Transfer volume for 600,000 cells to a FACS test tube.  
10. Wash to remove medium:  

a. Add 1-2ml of cold RPMI to each tube; 
b. Centrifuge at 1000 rpm x 5 min at 4°C, primary antibody solutions can be 

prepared during centrifugation (step 9); 
c. Discard the supernatant and tap gently the bottom of the tube to destroy the 

pellet. 
11. Incubation 

a. Resuspend cells in 913.6 ul Papain Buffer without Papain in a 24 well plate; 
b. Add 86.4 ul Papain to each well; 
c. Incubate at 37°C, 5% CO2 for 45 minutes. 

12. Wash to remove Papain 3X:  
a. Add 1-2ml of cold RPMI to each tube; 
b. Centrifuge at 1000 rpm x 5 min at 4°C, primary antibody solutions can be 

prepared during centrifugation (step 9); 
c. Discard the supernatant and tap gently the bottom of the tube to destroy the 

pellet. 
13. Optional Re-expression Analysis: Incubate 600,000 cells in 1ml RPMI Complete at 

37°C, 5% CO2 for desired time to allow cells to re-express pMHC (1- 12 hours).  
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Appendix 4 - MiHA Annotation 
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