
Bidirectional Helmholtz Machines

Samira Shabanian
Department of Computer Science and Operations Research

University of Montreal
Montreal, Quebec, Canada

31 août 2016

Résumé
L’entrâınement sans surveillance efficace et inférence dans les modéles généra-

tifs profonds reste un probléme difficile. Une approche assez simple, la machine
de Helmholtz, consiste à entrâıner du haut vers le bas un modéle génératif dirigé
qui sera utilisé plus tard pour l’inférence approximative. Des résultats récents sug-
gérent que de meilleurs modéles génératifs peuvent étre obtenus par de meilleures
procédures d’inférence approximatives. Au lieu d’améliorer la procédure d’inférence,
nous proposons ici un nouveau modéle, la machine de Helmholtz bidirectionnelle,
qui garantit qu’on peut calculer efficacement les distributions de haut-vers-bas et
de bas-vers-haut. Nous y parvenons en interprétant à les modéles haut-vers-bas et
bas-vers-haut en tant que distributions d’inférence approximative, puis ensuite en
définissant la distribution du modéle comme étant la moyenne géométrique de ces
deux distributions. Nous dérivons une borne inférieure pour la vraisemblance de
ce modéle, et nous démontrons que l’optimisation de cette borne se comporte en
régulisateur. Ce régularisateur sera tel que la distance de Bhattacharyya sera mi-
nisée entre les distributions approximatives haut-vers-bas et bas-vers-haut. Cette
approche produit des résultats de pointe en terme de modéles génératifs qui favo-
risent les réseaux significativement plus profonds. Elle permet aussi une inférence
approximative amérliorée par plusieurs ordres de grandeur. De plus, nous introdui-
sons un modéle génératif profond basé sur les modéles BiHM pour l’entrâınement
semi-supervisé.

i

Summary
Efficient unsupervised training and inference in deep generative models remains

a challenging problem. One basic approach, called Helmholtz machine, involves
training a top-down directed generative model together with a bottom-up auxi-
liary model used for approximate inference. Recent results indicate that better
generative models can be obtained with better approximate inference procedures.
Instead of improving the inference procedure, we here propose a new model, the
bidirectional Helmholtz machine, which guarantees that the top-down and bottom-
up distributions can efficiently invert each other. We achieve this by interpreting
both the top-down and the bottom-up directed models as approximate inference
distributions and by defining the model distribution to be the geometric mean
of these two. We present a lower-bound for the likelihood of this model and we
show that optimizing this bound regularizes the model so that the Bhattacharyya
distance between the bottom-up and top-down approximate distributions is mini-
mized. This approach results in state of the art generative models which prefer
significantly deeper architectures while it allows for orders of magnitude more ef-
ficient approximate inference. Moreover, we introduce a deep generative model for
semi-supervised learning problems based on BiHM models.

ii

Acknowledgements
I would like to thank all people who supported me during my work on this thesis.

Especially, I want to thank my supervisor Yoshua Bengio for his continuous support
and advice and helping me to develop my background in computer science. Also,
I would like to thank the rest of my thesis committee, Aaron Courville and Pascal
Vincent, for their insightful comments. Thanks to my colleague Jörg Bornschein.
It was a pleasure and a lot of fun to work with you !

iii

Contents

Résumé . i

Summary . ii

Acknowledgements . iii

Contents . iii

List of Figures . vi

List of Tables . vii

List of Abbreviations . viii

1 Introduction . 1
1.1 Learning . 1
1.2 Generative Models . 2
1.3 Outline of the thesis . 3

2 Background . 5
2.1 Probabilistic Graphical Models . 5
2.2 Neural Networks . 7
2.3 Basic concepts in probability theory 8
2.4 Sampling Methods . 12
2.5 Optimization . 13
2.6 Helmholtz machine . 15

Prologue to First Article . 18

3 Bidirectional Helmholtz Machines 19
3.1 Introduction and background . 19
3.2 Model definition and properties . 20

3.2.1 Alternative view . 22
3.3 Inference and training with IS . 25
3.4 Sampling and inpainting . 34

iv

3.5 Estimating the partition function 34
3.6 Experimental results . 35

3.6.1 UCI Binary Datasets Expriments 35
3.6.2 Binarized MNIST Experiments 36
3.6.3 Toronto Face Database Experiments 37

3.7 Analysis of IS-based estimates . 38
3.7.1 Estimating the partition function 38
3.7.2 Importance sampling efficiency 39
3.7.3 Symmetry of p and q . 40
3.7.4 Computational cost . 40

Prologue to Second Article . 43

4 Semi-supervised BiHM . 44
4.1 Introduction . 44
4.2 Model Definition and Properties . 45

4.2.1 Importance sampling estimators 46
4.3 Experiments . 49
4.4 Results and Discussion . 49
4.5 Some open questions . 51
4.6 A new direction . 52

5 Conclusion and Future Work . 56
5.1 Summary and Conclusion . 56
5.2 Future Work . 57

Bibliography . 58

Index . 68

v

List of Figures

3.1 Inpainting of binarized MNIST digits 25
3.2 MNIST samples generated in a BiHM model 28
3.3 Sensitivity of LL to the number of samples 29
3.4 Learning curves for MNIST experiments for four different models 30
3.5 Estimating log(Z2) for different values of Kinner as a function of the

number of samples Kouter 31
3.6 Estimating log(Z2) for different values of Kinner in terms of total

number of samples Kinner ·Kouter 31
3.7 Estimating log(Z2) during training on MNIST 32
3.8 Training convergence for binarized MNIST on the validation set. 36
3.9 Results after training on TFD 37
3.10 Samples generated from BiHM trained on TFD data set 39
3.11 Hiistograms of the importance weights 40
4.3 Samples generated from p starting from layer 1, 2, 3, and 4 53
4.1 Samples generated from p starting from layer 5, 6, 7, and 8 50
4.2 Samples generated from p starting from layer 9, 10, 11, and 12 51

vi

List of Tables

3.1 NLL estimation on various binary data sets from the UCI repository 33
3.2 Architectures for best UCI BiHM models 34
3.3 Comparison of BiHMs to other recent methods 38

vii

List of Abbreviations

BiHM bidirectional Helmholtz machine
CAE contractive auto-encoders
DAG directed acyclic graph
DBM deep Boltzmann machine
DBN deep belief network
DB(p, q) Bhattacharyya distance between p and q
DKL(p, q) Kullback-Leibler distance between p and q
ESS effective sample size
Hp(X) entropy of X
HM Helmholtz machine
IID independence and identically distributed
IS importance Sampling
IWAE importance weighted auto-encoder
KL Kullback-Leibler
LL log-likelihood
MCMC Markov Chain Monte Carlo
MLP multilayer perceptron
MTC manifold tangent classifier
NLL negative log-likelihood
NVIL neural variational inference and learning
PGM probabilistic garaphical model
RBM restricted Boltzmann machine
RWS reweighted wake-sleep
SVM support vector machine
TFD Toronto face database
TSVM transductive support vector machine
VAE variational autoencoder
WS wake-sleep

viii

1 Introduction
Machine learning is a general framework for developing and analyzing the al-

gorithms that can learn from data. It is widely used for applications including
visual object recognition, speech perception, language comprehension, and more
[23, 24, 35, 93].

1.1 Learning

Machine learning presents an interesting class of algorithms which is driven from
given data and learning in the context of machine learning corresponds to extracting
and modeling certain principles underlying the data. In many practical problems,
the data set comprises instances of input vectors along with their corresponding
target or label vectors, and a machine learning algorithm generates an output
vector which is encoded in the same way as the target vector. In such problems, the
learning task is to extract and model the relation between input and output values.
These kind of problems are called supervised learning. Some common examples
of supervised learning models are naive Bayes, support vector machines, random
forests, and decision trees [15, 26, 41]. There are two main types of supervised
learning problems that we can consider, classification, which aims to assign each
input vector to one of a finite number of discrete categories; and regression, in
which the desired output consists of one or more continuous variables.

Of course, not all the inputs can be labeled. Consider a case where there is
no labeled input. For instance, it can distinguish that faces are very different from
landscapes, which are very different from horses. We analyzed precisely the learning
problems in which the data is unlabeled. Such problems are called unsupervised.
Some of most widely used unsupervised learning problems are K-means, fuzzy
clustering, hierarchical clustering [30, 77, 86, 98].

Unsupervised learning problems tend to fall into three main categories. The
first category includes problems where the learning task is to discover groups of
similar examples within the data. This is called clustering [30, 98]. The second
category which is called density estimation, includes problems whose learning task
is to determine the distribution of data within the input space [105]. Finally, in
the third category there are problems whose learning goal is to explain the data as
lying on a low-dimensional manifold embedded in the input space [84].

1

For many practical applications, however, we have to deal with cases where part
of the labels is missing or obtaining the labels for the entire data set is expensive
or impossible. Such problems are called called semi-supervised in which only a few
inputs have targets [3, 22].

Semi-supervised learning is really important because of two main reasons besides
the fact that it has many variant applications such as image search, genomics,
natural language parsing, and speech analysis [29, 49, 65, 64, 82, 95]. First, it is often
surprisingly effective using only a few labeled inputs and get better performance
thanks to the unlabelled examples. The second reason for using this kind of learning
is that in certain cases like the task of natural language parsing, it is really hard
to get the labeled data or it might require experts.

As we see in all of the learning problems mentioned in this thesis, the data
set has an important role and it is usually divided into two distinct sets. The
first one, called the training set, is used to tune the parameters of the model and
the second one, called the test set. Every machine learning algorithm can define a
function whose precise form is determined during the training or learning phase.
The learning phase can be viewed as an optimization problem that has an objective
function (also known as cost or loss function) which is a numerical criterion for
quantifying our preference for different models. In other words, the loss function
can be optimized during training and one can provide the answer to the question
of how good the model is in practice based on its values on the test set [8]. It is
really critical that the model performs well on test set on which it is not trained.
This performance is called generalization.

1.2 Generative Models

We often know in advance that we want the learned model to perform well on
a particular task. It is common to consider the task of constructing a model that
describes how data is generated. Such models are called generative models.

Generative models have many advantages. First, these models provide a natural
way of modeling the problems. Importantly, the appropriate choice of these models
are dependent on the applications. Second, generative models can be used for dra-
wing samples from the learned distribution over the data set. If the training data
consists of, for example, images, it can be used to generate textures from these
images, or to solve inpainting tasks by sampling the missing or deteriorated parts
of a given image from the distribution [16, 50, 62, 104].

Another advantage of generative models is that one can use then as feature
extractors. For feature extraction, one makes use of the fact that many generative
models comprise two types of variables. First type is called visible variables which
correspond to the components of the inputs, and the second type is hidden or
latent variables which correspond to the components of hidden layers. In fact,

2

many layers of hidden variables in which each layer captures correlations between
the activities of hidden features in the layer below. If we consider a generative model
with one layer of hidden variables, then after training, the expected states of the
hidden variables given an input can be interpreted as the features extracted from
this input. If the number of hidden units is small, this leads to low dimensional
representations [112, 32, 91].

Besides the fact that generative models are able to deal well with unlabeled
data, if the training set is labeled, then a generative model can learn the joint
distribution over inputs and labels, and then it can be used as a learned classifier. In
fact, one can sample the missing label for a represented image from the distribution
or assign a new image to the class with the highest probability under the model
[90, 58]. Importantly, it can also be used in semi-supervised learning problems [48].

Training good generative models and fitting them to complex and high dimen-
sional training data is a major challenge. This is especially true for models with
multiple layers of deterministic or stochastic variables, which is unfortunate because
it has been argued previously that generative models with multiple hidden layers
have the potential to capture higher-level abstractions [36, 2]. Such abstractions can
lead us to better generalization. Although there has been progress in dealing with
continous-valued latent variables, building a hierarchy of representations, especially
with discrete-valued latent variables, remains a challenge [49].

One basic approach to this problem is called the Helmholtz machine [34]. In
the Helmholtz machine, the generative model is a directed model that starts from
some prior over latent variables at the top, down to a distribution over the data
space at the bottom. Besides the generative model, Helmholtz machines contain
also another model known as the approximate inference model, which runs in the
opposite direction and is typically trained to efficiently infer high probability latent
states given some observed data. Training a Helmholtz machine involves training
an auxiliary model that helps to perform approximate inference for the generative
model [34]. With the Helmholtz machine, a concept was introduced that proposed
to not only fit a powerful but intractable generative model to the training data, but
also to jointly train a parametric approximate inference model [34, 21]. Recent re-
sults indicate that significant improvements can be made when better approximate
inference methods are used [92].

1.3 Outline of the thesis

There are many approaches that aimed at incorporating more powerful inference
methods to gain better approximations of the true posterior [40, 92]. In contrast,
we propose to regularize the top-down model such that the generative model stays
close to the approximate inference model and vice versa. We achieve this by inter-
preting both generative and inference models as approximate inference models for

3

our actual generative model which is defined to be the geometric mean over the
top-down and bottom-up approximate inference models. In this thesis, we intro-
duce our new model and show that this model definition leads to an objective that
can be interpreted as using a regularization term that encourages solutions where
our generative model and approximate inference are close to each other in terms of
the Bhattacharyya distance which is introduced in chapter 2.

In more detail, the thesis can be outlined as follows. Chapter 2 covers the
necessary principles and concepts of machine learning that will be used in the later
chapters including some needed concepts of probabilistic graphical models, neural
networks, and probability theory.

In chapter 3, we propose our new model, referred to as bidirectional Helmholtz
machine (BiHM), that is based on the idea that the generative model should be
close to the class of distributions that can be modeled by our approximate infe-
rence distribution and that both the top-down and bottom-up distributions should
contribute to the model. We achieve this by interpreting the top-down and the
bottom-up directed models as approximate inference distributions and by defining
the target distribution we fit to the training data to be the geometric mean of
these two. We also present a lower-bound for the log-likelihood of this model and
we show that maximizing this bound will pressure the model to stay close to the
approximate inference distributions. Optimizing this bound maximizes the likeli-
hood while it regularizes the model so that the Bhattacharyya distance between
the bottom-up and top-down distributions is minimized. Experiments in this chap-
ter demonstrate that we can use this approach to fit generative models with many
layers of hidden binary stochastic variables to complex training distributions and
that BiHMs prefer significantly deeper architectures than other approaches.

In chapter 4, we first describe a semi-supervised learning model using our gene-
rative model, BiHM. Then we analyze its properties theoretically and empirically.
Using the properties of the model, a lower bound on the marginal likelihood of the
model is derived. Then we show how to use an importance sampling based estimate
for the gradient of this lower bound. Interestingly, this lower bound ensures that
our generative model gets closer to the to the recognition model.

This thesis consists of a paper submitted to a conference and an under pre-
paration paper. Each of them is assigned a separate chapter, and the content of
them remained largely unchanged. Only minimal changes were applied to align the
notation and achieve a consistent formatting throughout the thesis. Furthermore,
all references were gathered in a joint bibliography in the end.

4

2 Background
Machine learning deals with the theoretic, algorithmic and applicative aspects

of learning from a data set. Learning from a data set means that we would like to
have a computer program that can learn to perform a task given this data set and
build a model of the world.

In this chapter, we begin by providing an overview of some important back-
ground material regarding machine learning, probability theory, and graph theory
that are required to understand most of the discussion in the remainder of this
thesis. Most of the topics reviewed in this chapter are discussed in greater technical
depth in [8, 51].

In section 2.1, we introduced some needed concepts of probabilistic graphi-
cal models. Then in section 2.2, neural networks including shallow and deep ones
are introduced. Section 2.3 provides some basic concepts and tools in probability
theory and section 2.4 describes two methods of sampling that will be used in the
later chapters. In section 2.5, optimization is introduced. Finally, in section 2.6,
we present a class of unsupervised artificial neural networks which is called the
Helmholtz machine.

2.1 Probabilistic Graphical Models

In machine learning, it is useful to think that the data set is generated by a dis-
tribution, and probabilistic graphical models (PGMs) are widely used to represent
this distribution as a graph. In fact, this graph is a factorized representation of a
set of independences which hold in this distribution. Moreover, one can think of a
probabilistic graphical models as a general framework for describing and applying
probability theory and graph theory.

First, we will summarize some fundamental concepts from graph theory. A graph
is an ordered pair G = (V, E), where V is a finite set of nodes and E is a set of
directed edges. An edge consists of a pair of nodes uv from V that can be connected
by a directed edge u→ v or an undirected edge u−v. We say that a graph is directed
if all edges are directed and undirected if all edges are undirected. In a directed
graph whenever we have that uv ∈ E , we say that v is the child of u in G, and that u
is the parent of v in G. We use PaG(u) to denote the parents of u in G. On the other
hand, if there exists an edge between two nodes u and v in an undirected graph,
i.e., uv ∈ E , v belongs to the neighborhood of u and vice versa. The neighborhood

5

Nu = {v ∈ V : uv ∈ E} of u is defined by the set of nodes connected to u. A clique
is a subset of V in which all nodes are pairwise connected. We call a sequence of
nodes v1, v2, . . . , vm ∈ V , with vi ↔ vi+1 ∈ E for i = 1, . . . ,m a path from v1 to vm.
A cycle in a directed graph G is a path from v1 to vm where v1 = vm. A directed
acyclic graph (DAG) is a directed graph that contains no cycle.

Now, we are ready to describe the basic principles of PGMs. A general intro-
duction to probabilistic graphical models for machine learning can, for example, be
found in the book by Bishop [8]. The most comprehensive resource on graphical
models is the textbook by Koller and Friedman [51]. In this section, we discuss two
main classes of PGM based on directed and undirected graphs.

The first class is Bayesian networks introduced by Judea Pearl in 1985 and
also known as directed graphical model whose graph is directed [79]. Formally
a Bayesian network is defined by a directed acyclic graph G = (V, E) in which
V = {X1, . . . , Xn} where Xi is a random variable of the model for every i =
1, . . . , n and in addition, we have a set of local conditional probability distributions
p(X|PaG(X)) for every X ∈ V . Then the probability distribution over all the nodes
in G is defined as

p(X) =
n∏
i=1

p(Xi|PaG(Xi)),

where X = (X1, . . . , Xn).
The second class is Markov networks also known as Markov random fields that

go back to a paper of Kindermann in 1980 [46]. Markov networks use an undirected
graph in which the edges do not carry arrows and have no directional significance.
For each clique C in G a factor defined on C denoted by φ is a non-negative real
function. Then, the set of all factors in G defines an unnormalized probability
distribution as

p̃(X) =
∏
C∈G

φ(C),

where X = ∪C∈GC. One can think of the factor φ on C representing the marginal
probability distribution of the variables in C. In such networks, we have no gua-
rantees that p̃(X) is a distribution. However, a joint distribution p over X can be
defined by taking the product of the factors and then normalizing it to become a
well-defined distribution. More formally,

p(X) =
1

Z
p̃(X),

where
Z =

∑
X

p̃(X),

is a normalizing constant also known as the partition function. The bad news is
that the partition function might be intractable.

6

It turns out that the learning tasks can be much more difficult for Markov
networks than its corresponding problem for Bayesian networks. Moreover, Baye-
sian networks are useful for expressing probability relationships between random
variables, however, Markov networks are better to express constraints between ran-
dom variables.

2.2 Neural Networks

Neural networks are applicable in a wide variety of subjects like control systems,
weather forecast, etc. The origin of the term “neural network” can be traced back
to the work of trying to model the neuron in biological systems [28, 66, 111].

Perhaps one of the simplest neural networks in machine learning is the feed-
forward neural network, also known as multilayer perceptron (MLP) [88]. In such
networks, the information moves through multiple layers, known as hidden or latent
layers, in only forward direction to the output layer which is the last layer of the
network. To formalize this intuition, assume a feedforward neural network with L
layers. Then the output of this feedforward neural network is defined as

fL(fL−1(. . . (f1(x)))),

where x is in the data set D and fi is a transformation defined on RNi , the ith
hidden layer, as

fi(u) = g(Wiu+ bi),

where Wi is an Ni+1 ×Ni matrix, bi is a vector of size Ni+1 and g is a real-valued
function, known as activation function, defined on RNi+1 for each i = 1, . . . , L.
Moreover, Wi is called weight connection of the layer i and bi is known as bias
corresponding to the layer i for every i = 1, . . . , L.

Many existing machine learning algorithms fall into two main categories. The
first category includes architectures for which L = 1. These architectures are known
as shallow networks and besides a one hidden layer MLP, there are many other
examples of shallow networks such as kernel regression and support vector machines
[15, 71, 109]. It has been proved that any function can be approximated with any
desired non-zero amount of error by a one hidden layer MLP with sufficient hidden
units [17, 42, 99]. However, to extract meaningful and informative representations
in such networks, we would need large amounts of data and too many hidden units
[59]. In fact, these models have particularly simple analytical and computational
properties. It has been shown that shallow networks are necessarily simple and are
incapable of extracting informative representation and better models must then be
used [2, 5].

7

The key to improving shallow networks is to use deep architectures which are
composed of several layers of parameterized nonlinear modules. This would lead to
introduce the second and much more powerful category known as deep networks.
The earliest deep algorithms that had multiple layers of non-linear features can
be traced back to Ivakhnenko and Lapa in 1965 [43]. As a few examples of deep
models, Geoffrey Hinton and Terry Sejnowski in 1985 propose Boltzmann machines
(BMs) which are undirected graphical model, in which all connections between
layers are undirected [38, 31, 37]. Smolensky in 1986 proposes a particular type of
Markov random field that has a two-layer architecture which is known as restricted
Boltzmann machines (RBMs) [96, 2, 69]. Hinton et al. in 2006 propose deep belief
networks (DBNs) which are probabilistic generative models that contain many
layers of hidden variables with connections between the layers but not between
units within each layer [36]. Convolutional neural networks (CNNs), DBN, stacked
autoencoders, and stacked denoising autoencoders are the models that led to the
current rise in popularity of deep neural networks [4, 36, 52, 107].

Unfortunately, the ability to use several layers of nonlinearity makes the ob-
jective function of a deep neural network almost always nonconvex. It often has
multiple local optima or plateaus. These properties make the optimization hard
in comparison with shallow models [102]. However, it has been shown that local
minima are benign [18, 14, 23, 24, 35, 93].

2.3 Basic concepts in probability theory

In this thesis we focus on cases where all of the random variables are discrete,
however, many of the definitions and the conclusions hold for continuous random
variables as well.

Assume that p is an arbitrary probability distribution over a random vector
X × Y where X and Y are also random vector. One of the important rules in
probability theory is the Bayes sum rule which is:

p(X) =
∑
y∈Y

p(X, y),

and another interesting and useful rule is known as Bayes product rule:

p(X, Y) = p(X|Y)p(Y),

where p(X|Y) is called the conditional probability distribution of X given Y . We
usually expect p(X|Y) be different from p(X), but in some situations we have
p(X|Y) = p(X). In this case, we say X is independent of Y . Clearly, if X is
independent of Y , then Y is also independent of X.

8

Consider θ defined as a set of the parameter variables of a neural network, data
set D defined as a set of random variables, and p as a probability distribution
defined over θ ×D. Then another useful rule in dealing with probability theory is
known as Bayes’ theorem, which takes the form

p(θ|D) =
p(D|θ)p(θ)
p(D)

. (2.1)

The quantity p(θ|D) on the left-hand side of (2.1) is called posterior probability
distribution, which is difficult to approximate in many problems of interest. In this
posterior, the first term in the numerator is the likelihood of the data given θ, which
we should be able to evaluate using exact or approximate inference. The second
is the prior over parameters of the model which is usually given. The posterior is
proportional to the likelihood times the prior which means we have

posterior ∝ likelihood ∗ prior.

An unfortunate general property of maximum likelihood is the phenomenon of
overfitting. This occurs if performing very well on training data leads to very poor
performance on examples that were not in our training set. Adopting this Bayesian
approach, the overfitting problem can be avoided. However, this approach needs to
make assumptions about the form of the model, and if these are wrong then the
results can mislead.

One of the most commonly used operations in probability theory is called ex-
pectation. Expectation of some real function f(x) under p is denoted by Ep[f] and
given by

Ep[f] =
∑
x

p(x)f(x), (2.2)

where p is a probability over a discrete random variable X. Intuitively, the expecta-
tion of f(x) is the average value of f under p. Moreover, if f is a concave function,
i.e.,

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y),

for any x and y in the domain of f and λ ∈ [0, 1], then

Ep[f(x)] ≤ f(Ep[x]).

This inequality is known as Jensen’s inequality.
Unfortunately, in some cases we get an exponential sum of terms in equation

(2.2) which is computationally interactable. One way of avoiding this problem is to
approximate the expectation of f as follows

9

E[f] ' Ê[f] =
1

N

N∑
i=1

f(x(i)), (2.3)

where x(1), . . . , x(N) are generated samples from p. Indeed, this is often applicable
in practice to approximate this expectation by generating a set of N samples, esti-
mating the value of the function or its expectation relative to each of the generated
samples, and then aggregating the results. It is also useful to indicate how far f
deviates from Ep[f]. This is called the variance of f and is defined by

var(f) = Ep[f 2]− Ep[f]2.

In practice, it is typical to use the estimator Ê[f] in equation (2.3) to estimate
the value of E[f]. The mean and variance of this estimator are the two key quantities
for evaluating it. If the mean of the estimator is E[f], it is called an unbiased
estimator, otherwise it is called biased. Importantly, its variance measures how
good this estimator is. In fact, the lower the variance, the higher the probability
that the estimator is close to its mean.

Another important operation is called entropy and is denoted by Hp(X). The
entropy of X is defined to be

Hp(X) =
∑
x∈X

p(x) log(
1

p(x)
),

where we define 0 log(1
0
) = 0 and X is a discrete random variable. This idea of

using the expected value of − log p(X) was developed by Claude E. Shannon in
1948 [94].

It is often really important to measure the distance between two probability
distributions. In probability theory, the Kullback-Leibler (KL) divergence and the
Bhattacharyya distance are two measures of the difference between two discrete
or continuous probability distributions. We discuss each in turn and our attention
here is on discrete distributions.

Solomon Kullback and Richard Leibler in 1951 introduced KL divergence to
probability theory as a measure of dissimilarity between two probability distribu-
tions [56, 54, 55]. Let p and q be two discrete arbitrary distributions over a set X.
Then the KL divergence of q from p, denoted DKL(p‖q), is defined to be

DKL(p‖q) =
∑
x∈X

p(x) log
p(x)

q(x)
.

Interestingly, KL divergence for any two probabilities is always positive unless the
two distributions are equal in which case it is zero.

10

Another measure is the Bhattacharyya distance which is named after Anil K.
Bhattacharyya [7]. For any probability distributions p and q over a set of variables
X, the Bhattacharyya distance of p and q, denoted DB(p, q), is defined as

DB(p, q) = − ln(BC(p, q)),

where
BC(p, q) =

∑
x∈X

√
p(x)q(x).

It is also interesting to mention that these two measures can define a topology on
the space of probability distributions. However, these two defined concepts are not
a true metric on the space of probability distributions. In fact, KL is not symmetric
and neither obey the triangular inequality.

A set of variables is called independent and identically distributed (IID) if each
random variable has the same probability distribution as the others and every event
is independent of any intersection of the other events.

Negative log-likelihood denoted `(θ), is defined as

`(θ) = − log pθ(D).

If the data set D is IID, then we have

`(θ) = − log
∏
x∈D

pθ(x) = −
∑
x∈D

log pθ(x). (2.4)

Using the Bayes’ theorem, one can obtain

p(H|D) =
p(D|H)p(H)

p(D)
.

This procedure is called inference. Unfortunately, only a few interesting problems
have an exact solution and the methods for finding these solutions are important for
solving larger problems. Some of these common methods are variable elimination
and the conditioning algorithms.

Of course, one can use approximate inference methods that trade off the accu-
racy of the results for the ability to scale up to much larger networks. The approxi-
mation inference techniques tend to fall into two categories. The first technique is
called stochastic approximation inference also called Monte Carlo methods, which
are based on numerical sampling methods. Some of the most successful stochastic
approximation methods are importance sampling, the Metropolis sampling, Gibbs
sampling and Slice sampling.

11

2.4 Sampling Methods

The development of sampling methods can lead to dramatic improvements in
the speed and memory capacity of computers. In this section, we briefly describe
two methods to sample from our model of interest.

First one is importance sampling (IS), which is a general approach in which
we generate samples from a different distribution that overweights the important
regions and then adjust weights so as to get an unbiased estimator. Indeed, impor-
tance sampling gives us a recipe on how to estimate the expectation of a function
f over a set of variables X for a distribution p over X. This distribution p is called
the target distribution. In (2.3), we mentioned that

Ep[f] ' Êp[f] =
1

N

N∑
n=1

f(x(n)),

where x(1), x(2), . . . , x(N) are generated samples from the target distribution p. With
this estimation, it might appear that generating samples from p can be difficult or
require an expensive computational procedure.

An alternative solution is to generate samples from a different distribution q
which is called the proposal distribution and from which it is easy to generate
samples. In fact, we can reformulate Ep[f] in terms of the proposal distribution q
as follows:

Ep[f] = Eq[fω],

where ω, called the importance weight, is defined over X as

ω(x) =
p(x)

q(x)
,

for every x ∈ X. Then the unnormalized importance sampling estimator ÊD[f] of
Ep[f] is defined as

ÊD[f] =
1

N

N∑
n=1

f(x(n))ω(x(n)),

where x(1), x(2), . . . , x(N) are generated by q. Note that ÊD[f] is not well defined if
the denominator of ω(x(i)) is zero for some i = 1, . . . , N .

Fortunately, unnormalized importance sampling estimator is unbiased. Of course,
increasing number of samples used for this estimator can improve the quality of the
results since it helps to reduce its variance and thereby reduces the harm done by
a poor set of samples. There is an important measure that can tell us whether we
should continue generating additional samples or not. This measure is called the
effective sampling size (ESS) and is defined by

12

êss =

(∑N
i=1 ω(x(i))

)2
∑N

i=1 ω(x(i))2
(2.5)

In fact, larger values of êss indicate more information extracted per sample [85].
The second sampling method is Gibbs sampling which is specifically designed

for graphical models to produce samples from the joint probability distribution of
multiple random variables. This method is one of the Markov chain Monte Carlo
(MCMC) techniques that defines a Markov chain, or a stochastic sampling process,
and attempts to generate samples from the posterior distribution. In other words,
the basic idea is to construct a Markov chain by updating each variable based on
its conditional distribution given the state of the others. In the following, we will
describe this procedure by explaining how Gibbs sampling can be used to produce
samples.

Assume that G is an undirected graphical model whose set of all nodes is
{X1, . . . , XN} and p is the corresponding joint probability distribution of X =
(X1, . . . , XN). Moreover, assume that the random variable Xi take values which
is shown usually by xi, in a finite set Ω for every i = 1, . . . , N . Furthermore, we
can consider the sequence {X(k)}k of joint random variables X(k) where X(k) =

(X
(k)
1 , . . . , X

(k)
N) is called state at time k ≥ 0 taking values in ΩN . This sequence

is called Markov chain which is a time discrete stochastic process, where the next
state of the system depends only on the current state and not on the sequence
of events that preceded it. We first initialize all the variables in our model with
{x(0)0 , . . . , x

(0)
N }. Between two successive points in time, the new state of the chain

is produced by the following procedure. First one of the variables Xi is randomly
picked with a probability qi given by a strictly positive probability distribution q
on X. Then, the new state for Xi is sampled based on its conditional probability
distribution given the state x−i = (xj)j 6=i of other random variables X−i = (Xj)j 6=i.
We continue this process until all the variables are updated. In this algorithm a
specific number of steps is not discussed and in practice it is really sensitive to this
number. Fortunately, samples drawn after many steps are effectively independent
of the distribution from which the initial states are generated.

2.5 Optimization

One of the optimization problems is to find parameters that minimize the ne-
gative log-likelihood function on a data set D. In fact, the log-likelihood function
measures the probability pθ of D and then this probability can be used for decision
making such as classification and regression.

13

The optimizing problem is to find θ∗ such that minimize `(θ) as define in 2.3.
In other words,

θ∗ = −arg minθ
∑
x∈D

log pθ(x), (2.6)

Using the properties of the logarithm function, clearly θ∗ is also an optimal solution
for arg maxθ pθ(D). One explanation of why the logarithm function used is that it is
more convenient to work with `(θ) than pθ(D), and another most likely explanation
is that a product of several relatively small factors might have a numerical underflow
problem which it can be avoided working with `(θ).

The maximum likelihood estimation wishes to tune the parameters of the mo-
del such that D is generated from the corresponding probability distribution of this
model. As for many functions, the gradient of the negative log-likelihood estimation
must be zero at its minimum point θ∗. Unfortunately in many practical problems,
there is no analytical form for the minimum of the negative log-likelihood estima-
tion. Thus, we have to resort to iterative methods, such as gradient descent for
optimizing the negative log-likelihood over the parameter space.

One approach for dealing with such problems is gradient descent, also known
as sequential gradient descent. We begin with any arbitrary initial point θ0. The
gradient descent algorithm updates the parameter at iteration t by

θt+1 = θt − ηt∇θ`(θ),

where ∇θ`(θ) is the gradient of ` with respect to θ and {ηt} is a sequence of real
positive numbers which are called learning rate [8].

In practice a more efficient approach is to consider a random subset of D at
each iteration t. Let D be this random subset which is called minibatch. Then one
can update the parameter at iteration t by

θt+1 = θt + ηt∇θ

∑
X∈D

log pθ(X).

where {ηt} is the learning rate. This approach is called minibatch stochastic gra-
dient descent.

A particular case of interest arises when the sequence of the parameters of an
estimator {θt}t converges in probability to θ∗ as N increases indefinitely where N
is the cardinality of D. An estimator having this property that is called a consistent
estimator or asymptotically consistent estimator [76]. In other words, the distri-
butions of the estimates become closer to the true value of the parameter being
estimated, so that the probability of the estimator being arbitrarily close to θ∗

converges to one. Fortunately, maximum likelihood estimators are consistent.

14

The second technique is deterministic approximation inference which includes
variational methods and mean field approximation. Here we just explain the varia-
tional inference approach. The key point of variational inference is to approximate
the posterior distribution with a simple family of probability distributions and
hope to obtain a distribution from this family that is close enough to the true
posterior. As we discussed in section 2.3, one of the common tools to measure the
distance of two probability distributions is KL divergence. Clearly, we can rewrite
log-likelihood function as

log p(D) = L(q) +KL(q(H)||p(H|D),

where

L(q) =
∑
H

q(H) log(
p(H,D)

q(H)
).

Importantly, L(q) is a lower-bound of log p(D) and maximizing L(q) is equiva-

lent to minimizing the KL divergence KL(q(H)||p(H|D). This approach is called
variational inference.

2.6 Helmholtz machine

We now present a class of unsupervised artificial neural networks proposed
by Hinton and Dayan in 1995 that can combine stochastic neural computation,
unsupervised learning, and the ability to perform probabilistic inference [34]. This
class is known as Helmholtz machine (HM). A HM network consists of a top-down or
feedback connections to build the probability distribution which is called generative
model and in addition bottom-up connections form a feedforward network to define
another probability distribution which is called the recognition model. Moreover,
both of these models are Bayesian networks and units in one layer are conditionality
independent of the others within the same layer given the previous layer.

As an example of HM, consider the network in figure 2.1. In this case, HM is
composed of three layers: the input layer x which is given and observed; the first
hidden layer h1; and the second hidden layer h2. One can define the generative
model p with the parameters θ and the recognition model q with parameters φ.

To provide a more formal description of HM, assume pθ and qφ are the generative
and recognition models over D × h respectively where D is the data set and h is
the set of all hidden layers. Moreover, assume that we wish to find θ∗ such that

θ∗ = arg max
θ

log pθ(x),

15

q

q p

p

Input

Hidden layer 2

Hidden layer 1

Figure 2.1 – It is an example of HM that has an input layer which is observed and two hidden
layers on top of each other. The layers are connected through h both recognition model q with
parameters φ shown with solid lines and generative model p with parameters θ shown as dashed
lines.

where

log pθ(x) = log(
∑
h

pθ(h) pθ(x|h)). (2.7)

Now set

Eθ(h, x) = − log(pθ(h) pθ(x|h)). (2.8)

Using Bayes’ theorem, it follows that

pθ(h|x) =
pθ(h)pθ(x|h)∑
h′ pθ(h

′)pθ(x|h′)
=

exp(−Eθ(h, x))∑
h′ exp(−Eθ(h′, x))

. (2.9)

Using equations (2.8) and (2.9), we can reformulate equation (2.10) as

16

log pθ(x) =
∑
h

qφ(h|x) log p(x) =
∑
h

qφ(h|x) log(
∑
h′

exp(−Eθ(h′, x)))

= −
∑
h

qφ(h|x)(Eθ(h, x)− Eθ(h, x)) +
∑
h

qφ(h|x) log(
∑
h′

exp(−Eθ(h′, x)))

= −
∑
h

qφ(h|x)Eθ(h, x) +
∑
h

qφ(h|x)[Eθ(h, x) + log(
∑
h′

exp(−Eθ(h′, x)))]

= −
∑
h

qφ(h|x)Eθ(h, x)−
∑
h

qφ(h|x) log pθ(h|x).

(2.10)

So
log pθ(x) = −

∑
h

qφ(h|x)Eθ(h, x)−
∑
h

qφ(h|x) log pθ(h|x).

Thus, we obtain the following

log pθ(x) = −
∑
h

qφ(h|x)Eθ(h, x)−
∑
h

qφ(h|x) log qφ(h|x)

+
∑
h

qφ(h|x) log(
qφ(h|x)

pθ(h|x)
)

= −F(x; θ, φ) +
∑
h

qφ(h|x) log(
qφ(h|x)

pθ(h|x)
),

where the first term F(x; θ, φ) is called the Helmholtz energy function and defined
as

F(x; θ, φ) =
∑
h

qφ(h|x)Eθ(h, x) +
∑
h

qφ(h|x) log qφ(h|x)

relates to concepts from statistical physics, and the latter term is the KL divergence
of pθ(h|x) from qφ(h|x). Since the KL divergence term can not be negative, it means
that we can obtain a lower-bound of the log probability of the data given the model
log pθ(x). In fact, we have

log pθ(x) ≥ −F(x; θ, φ).

Therefore, to maximize the log-likelihood, we can minimize F(x; θ, φ). In fact, the
recognition model is encouraged to be a good approximation to the true posterior
distribution and moreover, the generative model is encouraged to be close to the
recognition model. These models are usually trained using an unsupervised learning
algorithm, such as the wake-sleep algorithm [34].

In the next chapter, we propose a new approach to generative modeling based on
fitting the geometric mean of approximate inference and generative distributions.

17

Prologue to First Article

Bidirectional Helmholtz Machines, J. Bornschein, S. Shabanian, A. Fi-
scher, Y. Bengio (2016). In International Conference on Machine Learning (ICML).

Personal Contribution: J. Bornschein had the main idea. I ran all the UCI
experiments and some explorative MNIST experiments. In particular, I found the
best hyperparameters for UCI datasets. All authors contributed to the writing of
the paper.

18

3 Bidirectional Helmholtz
Machines

The key insight is whether we can achieve a better inference approximation by
introducing a new generative model that is reasonably closer to the approximate
inference model.

After a brief overview over training deep generative models in section 3.1, section
3.2 introduces the bidirectional Helmholtz machine (BiHM) model in detail and
discusses important theoretical properties. In section 3.3, we will explain how to
perform importance sampling-based training and inference. In section 3.4, we show
how our model can be used to solve inpainting tasks by sampling the missing parts
of a given image from the distribution. In section 3.5, we introduce a new way
to estimate the partition function of BiHM model. The ability of BiHM to model
complex distributions is demonstrated empirically in section 3.6. Finally in section
3.7, we empirically analyze our importance sampling-based estimates.

3.1 Introduction and background

Training good generative models and fitting them to complex and high dimen-
sional training data with probability mass in multiple disjunct locations remains
a major challenge. This is especially true for models with multiple layers of deter-
ministic or stochastic variables, which is unfortunate because it has been argued
previously that deeper generative models have the potential to capture higher-level
abstractions and thus generalize better [36, 2]. Although there has been progress
in dealing with continous-valued latent variables, building a hierarchy of represen-
tations, especially with discrete-valued latent variables, remains a challenge [49].

With the Helmholtz machine, a concept was introduced that proposed to not
only fit a powerful but intractable generative model p(x,h) to the training data,
but also to jointly train a parametric approximate inference model q(h|x) [34, 21].
The q model would be used to efficiently perform approximate inference over the
latent variables h of the generative model given an observed example x. This basic
idea has been applied and enhanced many times; initially with the wake-sleep (WS)
algorithm [34] and more recently with the variational autoencoder (VAE) [49], sto-
chastic backpropagation and approximate inference in deep generative models [82],
neural variational inference and learning (NVIL) [68] and reweighted wake-sleep
(RWS) [10]. Most of these approaches rely on the variational bound to perform

19

appropriate inference and to obtain an objective function that contains the para-
meters of both the generative model p and the approximate inference model q in
one joint expression (e.g. WS, VAE and NVIL).

Recent results indicate that significant improvements can be made when better
approximate inference methods are used: Saliman et. al. [92] for example presented
an iterative inference procedure that improves the samples from q by employing
a learned MCMC transition operator. Burda et al. [11] present the importance
weighted auto encoder (IWAE), an improved VAE that, similarly to RWS, uses
multiple samples from q to calculate gradients. And RWS already reported that
autore-gressive q distributions lead to noticeable improvements. In contrast to these
previous approaches, we here propose to interpret both p and q as approximate in-
ference models for our actual generative model p∗(x,h). We define the target distri-
bution p∗ to be the geometric mean over the top-down and bottom-up approximate
inference models, i.e.

p∗(x,h) =
1

Z

√
p(x,h)q(x,h),

where Z is the normalization constant.
The motivation behind this definition is to ensure that the intractable gene-

rative model p∗ stays close to the approximate inference models we have at our
disposal. In fact, we show that the proposed objective can be interpreted as adding
a regularization term to the log-likelihood objective towards solutions where p and
q are close to each other in terms of the Bhattacharyya distance.

3.2 Model definition and properties

We introduce the concept by defining a joint probability distribution over three
variables, an observed random variable vector x and two latent random variable
vectors h1 and h2. Analogous to a Deep Boltzmann Machine, we think of these as
layers in a neural network with links between x and h1 on the one side, and h1

and h2 on the other side. We will present the approach for the specific case of an
architecture with two hidden layers, but it can be applied to arbitrary graphs of
variables without loops. It can especially be used to train architectures with more
than two stacked layers of latent variables.

From now on, we use x to denote an observed random variable vector and h1,h2

to denote a pair of latent random variable vectors. Also assume that p and q are
directed graphical models from h2 to x and vice versa that can be factorized as

p(x,h1,h2) = p(h2) p(h1|h2) p(x|h1),

and
q(x,h1,h2) = q(x) q(h1|x) q(h2|h1),

20

where the prior distribution p(h2) and all conditional distributions belong to pa-
rametrized families of distributions which can be evaluated and sampled from effi-
ciently. We usually do not assume an explicit form for q(x).

The associated joint probability p∗ to p and q is given by

p∗(x,h1,h2) =
1

Z

√
p(x,h1,h2) q(x,h1,h2) , (3.1)

where Z is a normalization constant. Moreover, we assume that the marginal dis-
tributions p∗(x) and q(x) are the same, and then define

q(x) = p∗(x) =
∑
h1,h2

p∗(x,h1,h2)

=

√
q(x)

Z

∑
h1,h2

√
p(x,h1,h2) q(h1|x)q(h2|h1)

=

(
1

Z

∑
h1,h2

√
p(x,h1,h2) q(h1|x)q(h2|h1)

)2

.

Based on the definition of the normalization constant Z, it is guaranteed that∑
x,h1,h2

p∗(x,h1,h2) = 1

In general, for any two arbitrary vectors a and b of a real inner product space,
the Cauchy-Schwarz inequality states that

|〈a, b〉|2 ≤ 〈a, a〉〈b, b〉,

where 〈·, ·〉 is the inner product, and the equality holds if and only if a and
b are linearly dependent. Consider the case where a =

√
p(x,h1,h2) and b =√

q(x,h1,h2). In this case, we can prove that the following property

Z =
∑

x,h1,h2

√
p(x,h1,h2)q(x,h1,h2),

≤
∑
x,h1

√∑
h2

p(x,h1,h2)
∑
h2

q(x,h1,h2) =
∑
x,h1

√
p(x,h1)q(x,h1),

≤
∑
x

√∑
h1

p(x,h1)
∑
h1

q(x,h1) =
∑
x

√
p(x)q(x) ≤ 1,

21

holds on BiHM models. Furthermore, we see that Z = 1 only if

p(x,h1,h2) = q(x,h1,h2),

for every x,h1, and h2.
This upper bound for Z which is the denominator in equation (3.2), provides a

lower-bound p̃∗(x) for the ratio as follows:

p̃∗(x) =

(∑
h1,h2

√
p(x,h1,h2)q(h1|x) q(h2|h1)

)2

= Z2 p∗(x) ≤ p∗(x). (3.2)

This suggests that the model distribution p∗(x) can be fitted to some training
data by maximizing the bound of the log-likelihood log p̃∗(x) instead of log p∗(x),
as we elaborate in the following section. Since log p̃∗(x) can reach the maximum
only when Z → 1, the model is implicitly pressured to find a maximum likelihood
solution that yields

p(x,h1,h2) ≈ q(x,h1,h2) ≈ p∗(x,h1,h2),

for every x,h1, and h2.

3.2.1 Alternative view

We now turn our attention to the model log-likelihood log p∗(x). It can be
decomposed into two terms

log p∗(x) = 2 log
∑
h1,h2

√
p(x,h1,h2)q(h1|x)q(h2|h1)− 2 logZ

= log p̃∗(x)− 2 logZ = log p̃∗(x) + 2DB(p, q)

≥ log p̃∗(x), (3.3)

where Z is given by

Z =
∑

x′,h′
1,h

′
2

√
p(x′,h′1,h

′
2)q(x

′,h′1,h
′
2).

We clearly see that the proposed training objective log p̃∗(x) corresponds preci-
sely to the correct (but intractable) log-likelihood log p∗(x) minus 2 times the Bhat-
tacharyya distance DB(p, q) defined in section 2.3. Of course, maximizing log p̃∗(x)
is maximizing the true log-likelihood and minimizing the distance between p and
q.

22

It is interesting to compare this approach to variational approach which is a
commonly used method for optimizing the log-likelihood. In variational approach
the marginal probability log p(x) of some model containing latent variables h is
rewritten in terms of the KL-divergence DKL(q(h|x) || p(h|x)) to obtain a lower-
bound as follows:

log p(x) = Eh∼q(h|x)[log p(x,h)− log q(h|x)] +DKL(q(h|x) || p(h|x))

≥ Eh∼q(h|x)[log p(x,h)− log q(h|x)].
(3.4)

Analogous to variational methods that maximize the lower bound (3.4), we can
thus maximize log p̃∗(x), and it will tighten the bound as DB(p, q) approaches zero.

At first glance, this seems very similar to the variational lower bound. There
are, however, some important conceptual differences. First, the KL-divergence in
variational methods measures the distance between distributions given some trai-
ning data. The Bhattacharyya distance here in contrast quantifies a property of
the model p∗(x,h1,h2) independently of any training data. In fact, we saw that
DB(p, q) = − logZ.

Second, the variational lower bound is typically used to construct approximate
inference algorithms. We here use our bound p̃∗(x) just to remove the normaliza-
tion constant Z from our target distribution p∗(x,h1,h2). Even after applying the
lower-bound, we still have to tackle the inference problem which manifests itself
in form of the full combinatorial sum over h1 and h2 in equation (3.2). Although
it seems intuitively reasonable to use a variational approximation on top of the
bound p̃∗(x) we will here not follow this direction but rather use importance sam-
pling to perform approximate inference and learning (see section 3.3). Combining
a variational method with the bound p̃∗(x) is therefore subject to future work.

We can also argue that optimizing log p̃∗(x) instead of log p∗(x) is beneficial in
the light of the original goal we formulated in section 3.1: To learn a generative
model p∗(x) that is regularized to be close to the model q which we use to perform
approximate inference for p∗. Let us assume we have two equally well trained models
p∗θ1

and p∗θ2
, i.e., in expectation over the empirical distribution

E[log p∗θ1
(x)] = E[log p∗θ2

(x)],

but the expected bound p̃∗(x) for the first model is closer to the log-likelihood than
the expected bound for the second model

E[log p̃∗θ1
(x)] > E[log p̃∗θ2(x)].

Using equation (3.3) we see that DB(pθ1 , qθ1) < DB(pθ2 , qθ2) which indicates that
qθ1 is closer to p∗θ1

than qθ2 is to p∗θ2
in the sense of Bhattacharyya measure. Ac-

cording to our original goal, we thus prefer solution p∗θ1
where the bound p̃∗(x) is

maximized and the distance DB(p, q) minimized.

23

Algorithm 1 Learning p∗(x) using importance sampling with q as proposal

for number of training iterations do
• Sample x from the training distribution (i.e. x ∼ D)
for k = 1, 2, . . . , K do
• Sample h

(k)
1 ∼ q(h

(k)
1 |x); for each layer l = 2 to L sample

h
(k)
l ∼ q(hl|h(k)

l−1)

• Compute q(h(k)|x) and p(x,h(k)) for h(k) = (h
(k)
1 , . . . ,h

(k)
L)

end for
• Compute unnormalized importance weights

ωk =

√
p(x,h(k))

q(h(k)|x)

• Normalize the weights ω̃k = ωk/
∑

k′ ωk′

• Update parameters of p and q : Gradient decent with gradient estimator

2
∑
k

ω̃k
∂ log p∗(x,h(k))

∂θ

end for

In this algorithm, D is training data set, L is the number of layers, K is the
number of generated samples, and θ denotes the set of the parameters of p and q.

Note that the decomposition (3.3) also emphasizes why our recursive definition

q(x) =
∑
h1,h2

p∗(x,h1,h2)

is a consistent and reasonable one. Clearly, minimizing DB(p, q) during learning
means that the joint distributions p(x,h1,h2) and q(x,h1,h2) approach each other.
This implies that the marginals p(hl) and q(hl) become more similar for every
l = 1, 2. This also implies p(x) ≈ q(x) in the limit of DB(p, q)→ 0; a requirement
that most simple parametrized distributions q(x) could never fulfill.

Although we have focused our formal definitions on discrete variables, the same
analysis applies to the continuous variables.

24

Figure 3.1 – Inpainting of binarized MNIST digits. The left column in each block shows the
original digit randomly sampled from the MNIST test set; the first column shows the masked ver-
sion presented to the algorithm, and the next column show different, independent reconstructions
after 100 Gibbs iterations (see section 3.4). All images were selected randomly.

3.3 Inference and training with IS

Based on the construction of p∗(x) outlined in the previous section, we can define
a wide range of possible models. Furthermore, we have a wide range of potential
training and appropriate inference methods we could employ to maximize log p̃∗(x).

Until now, we did not specify the actual choice of probability distributions that
we use. We now discuss one possible choice of our conditional distributions and top-
level prior. In this section, we concentrate on a binary observed random variable
vector x and binary latent random variable vector hl for l = 1, . . . , L where L is
the number of layers. It is often a notational convenience to set h0 = x. We model
all our conditional distributions by simple sigmoid belief network layers, e.g.,

p(hl−1 |hl) =
∏
i

B(hl−1,i |σ(Wl,i hl + bl,i))

where B(· | c) refers to the Bernoulli distribution with parameter c, Wl,i are the
connection weights between layer hl and latent variable hl−1,i and bl,i is the bias
of hl−1,i for every l = 1, . . . , L and σ(·) which is called sigmoid function, is a real
valued function that maps every a ∈ R to

1

1 + exp(−a)
.

For our top-level prior p(hL), we use a factorized Bernoulli distribution:

p(hL) =
∏
i

B(hL,i |σ(bL,i)).

Similarly, we consider

q(hl |hl−1) =
∏
i

B(hl,i |σ(W ′
l,i hl−1 + b′l,i))

25

where W ′
l,i are the connection weights between layer hl−1 and latent variable hl,i,

and b′l,i is the bias of hl,i for every l = 1, . . . , L.
We form an estimate of p̃∗(x) by using importance sampling instead of the

exhaustive sum over h1 and h2 in equation (3.2). We explain how to estimate p̃∗(x)
for the specific BiHM model with L = 2, but the ideas can be generalized to deeper
network structures. We use q(h1|x)q(h2|h1) as the proposal distribution which is by
construction easy to evaluate and to sample from. Using basic convergence bound,
we can estimate p̃∗(x) as

p̃∗(x) =

(∑
h1,h2

√
p(x,h1,h2) q(h1|x) q(h2|h1)

)2

=

(
Eh2∼q(h2|h1)

h1∼q(h1|x)

[√
p(x,h1,h2)

q(h1|x) q(h2|h1)

])2

'

 1

K

K∑
k=1

√√√√ p(x,h
(k)
1 ,h

(k)
2)

q(h
(k)
1 |x) q(h

(k)
2 |h

(k)
1)

2

, (3.5)

with h
(k)
1 ∼ q(h1|x) and h

(k)
2 ∼ q(h2|h(k)

1), for any k = 1, . . . , K where K is the
number of samples.

26

Algorithm 2 Sampling from p∗(x,h)

• Draw (x,h1, . . . ,hL) ∼ p(x,h1, . . . ,hL) from the top-down model to initialize
state
for number of iterations do

for l = 1, 3, . . . , L− 1︸ ︷︷ ︸
odd layers

, 2, . . . , L︸ ︷︷ ︸
even layers

do

for k = 1, 2, . . . , K do
• Draw proposal sample h

(k)
l ∼ 1

2
p(hl|hl+1) + 1

2
q(hl|hl−1)

• Compute

ω(k) =

√
p(h

(k)
l |hl+1)p(hl−1|h(k)

l)q(hl+1|h(k)
l)q(h

(k)
l |hl−1)

(p(h
(k)
l |hl+1) + q(h

(k)
l |hl−1))

end for
• Randomly pick hl ∈ {h(1)

l , . . .h
(K)
l } with probability proportional to

{ω(1), . . . , ω(K)}
end for
for k = 1, 2, . . . , K do
• Draw proposal sample x(k) ∼ p(x|h1)
• Compute estimated marginals p̃∗(x(k)) using equation (3.5)
• Compute importance weights

ω(k) =
√
p̃∗(x(k))q(h1|x(k))/p(x(k)|h1)

end for
• Randomly pick x ∈ {x(1), . . .x(K)} with probability proportional to
{ω(1), . . . , ω(K)}

end for

To simplify the notation, we here assume p(hL|hL + 1) = p(hL). An algorithm
for inpainting is obtained by drawing the initial state from q(h|x) instead from
p(x,h) and by keeping the known elements of x fixed when sampling from p(x|h1).
Moreover, D is training data set, L is the number of layers, K is the number of
samples, and θ denotes the set of the parameters of p and q.

Using the same approach, we can also derive the well known estimator for the
marginal probability of a datapoint under the top-down generative model p :

27

Figure 3.2 – MNIST experiments: A) Random samples from top-down model p(x). B) Generally
improved samples after running 10 iterations of algorithm 2 starting from the samples in A, i.e.,
approximately from the joint model p∗(x). In A and B we show expected samples instead of
sampling from the bottom-most Bernoulli distribution.

p(x) = Eh2∼q(h2|h1)
h1∼q(h1|x)

[
p(x,h1,h2)

q(h1|x) q(h2|h1)

]
' 1

K

K∑
k=1

p(x,h
(k)
1 ,h

(k)
2)

q(h
(k)
1 |x) q(h

(k)
2 |h

(k)
1)

= p̃(x) , (3.6)

where K is the number of samples.
Comparing (3.5) and (3.6) and making use of Jensen’s inequality it becomes

clear that p(x) ≥ p̃∗(x). Analogous to the parameter updates in RWS [10], we can
derive an importance sampling based estimate for the log-likelihood gradient with
respect to the parameters of p and q which is jointly denoted by θ. Moreover, it
can be used to optimize our proposed regularized objective. To provide a formal
derivation, consider h jointly denotes the binary hidden variables of all hidden
layers that we introduced earlier. Then we can write

∂

∂θ
log p̃∗(x) =

∂

∂θ
log

(∑
h

√
p(x,h)q(h|x)

)2

=
2∑

h

√
p(x,h)q(h|x)

∑
h′

√
p(x,h′)q(h′|x)

∂

∂θ
log
√
p(x,h′)q(h′|x)

' 2
K∑
k=1

ω̃k
∂

∂θ
log
√
p(x,h(k))q(h(k)|x) ,

28

Figure 3.3 – Sensitivity of the test set log-likelihood estimates to the number of samples K.
We plot the log p(x) and log p∗(x) estimates of our best BiHM model together with the log p(x)
estimates of our best RWS and VAE models.

where h(k) ∼ q(h |x) and the importance weight ω̃k is defined

ω̃k =
ωk∑
k′ ωk′

,

where ωk =
√

p(x,h(k))

q(h(k) |x) for k = 1, . . . , K and K is the number of samples. Going

back to our specific BiHM model with L = 2, we see that

∂

∂θ
log p̃∗(x) ' 2

K∑
k=1

ω̃k
∂

∂θ
log

√
p(x,h

(k)
1 ,h

(k)
2)q(h

(k)
1 ,h

(k)
2 |x) (3.7)

where h
(k)
1 ∼ q(h1 |x), h

(k)
2 ∼ q(h2 |h(k)

1), and importance weights

ω̃k =
ωk∑
k′ ωk′

(3.8)

where ωk =

√
p(x,h

(k)
1 ,h

(k)
2)

q(h
(k)
1 ,h

(k)
2 |x)

for any k in {1, . . . , K}, and K is the number of samples.

In contrast to VAEs, the updates do not require any form of backpropagation
through more than one layer because, as far as the gradient computation

∂

∂θ
log p∗(x,h

(k)
1 ,h

(k)
2),

is concerned, these samples are considered fully observed. The gradient approxi-

29

Figure 3.4 – Learning curves for MNIST experiments: For BiHM, RWS and VAE we chose the
learning rate such that we get optimal results after 106 update steps; for IWAE we use the original
learning rate schedule published in [11]. BiHM and RWS use K=10 samples per datapoint; IWAE
uses K=5 and a batch size of 20 (according to the original publication). We generally observe
that BiHM show very good convergence in terms of progress per update step and in terms of total
training time.

mation (3.7) computes the weighted average over the individual gradients. These
properties are basically inherited from the RWS training algorithm. But in contrast
to RWS, and in contrast to most other algorithms which employ a generative model
p and an approximate inference model q, we here automatically obtain parameter
updates for both p and q because we optimize p∗ which contains both. The resulting
training method is summarized in algorithm 1.

Although we have focused our formal definitions on discrete variables, the same
analysis applies to the continuous variables. We now discuss two general approaches
for approximate sampling from a BiHM. One can either easily and efficiently sample
from the directed model p, or one can use Gibbs sampling to draw higher-quality
samples from the undirected model p∗. For the latter, importance resampling is
used to approximately draw samples from the conditional distributions.

In the following, we show how the importance resampling weights for approxi-

30

Figure 3.5 – logZ2 estimates for different values of Kinner as a function of the number of samples
Kouter

Figure 3.6 – logZ2 estimates for different values of Kinner as a function of the total number of
samples Kinner ·Kouter for the BiHM trained on MNIST; the gray region shows the mean and the
standard deviation for 10 runs with Kinner=1. This shows that, from the point of view of total
computation, convergence is fastest with Kinner=1; and that we obtain a high quality estimate of
the partition function with only a few million samples. .

mate sampling from the conditional distributions p∗(hl|hl−1,hl+1) can be derived
for any l in {1, . . . , L} where L is the number of hidden layers in our model. If the
proposal distribution is given by

1

2
p(hl|hl+1) +

1

2
q(hl|hl−1),

the unnormalized importance weight for a sample h
(k)
l from this proposal is

ωkl =
p∗(h

(k)
l |hl−1,hl+1)

1
2
p(h

(k)
l |hl+1) + 1

2
q(h

(k)
l |hl−1)

. (3.9)

31

Figure 3.7 – logZ2 estimates for different values of Kinner as a function of evolution of the
estimates of log p(x), log p∗(x), and 2 logZ during training on MNIST.

Using the product form of p∗ and properties of conditional distributions, we have
that

p∗(h
(k)
l |hl−1,hl+1) =

√
p(h

(k)
l |hl+1)p(hl−1|h(k)

l)q(h
(k)
l |hl−1)q(hl+1|h(k)

l)∑
hl

√
p(hl|hl+1)p(hl−1|hl)q(hl|hl−1)q(hl+1|hl)

.

Plugging this equality into equation (3.9), we get

ωkl = Ck
l

√
p(h

(k)
l |hl+1)p(hl−1|h(k)

l)q(h
(k)
l |hl−1)q(hl+1|h(k)

l)

p(h
(k)
l |hl+1) + q(h

(k)
l |hl−1)

,

where the term

Ck
l =

2∑
hl

√
p(hl|hl+1)p(hl−1|hl)q(hl|x)q(hl+1|hl)

,

does not depend on the sample h
(k)
l and thus can be ignored when drawing samples

from {h(1)
l ,h

(2)
l , . . . ,h

(K)
l } with a probability proportional to {ω1, ω2, . . . , ωK} for

any l = 1, . . . , L where K is the number of samples.

32

Model ADULT CONNE DNA MUSH NIPS OCR RCV1 WEB

auto regressive

FVSBN 13.17 12.39 83.64 10.27 276.88 39.30 49.84 29.35
NADE 13.19 11.99 84.81 9.81 273.08 27.22 46.66 28.39
EoNADE 13.19 12.58 82.31 9.68 272.38 27.31 46.12 27.87
DARN 13.19 11.91 81.04 9.55 274.68 28.17 46.10 28.83
RWS - NADE 13.16 11.68 84.26 9.71 271.11 26.43 46.09 27.92

non AR

RBM 16.26 22.66 96.74 15.15 277.37 43.05 48.88 29.38
RWS - SBN 13.65 12.68 90.63 9.90 272.54 29.99 46.16 28.18

BiHM

− log p̃(x) 13.58 11.98 86.33 9.34 270.33 27.91 45.67 28.02
− log p̃∗(x) 13.79 12.12 86.39 9.4 272.62 29.46 45.78 28.78
− log p(x) 13.78 12.43 86.49 9.40 272.66 27.10 46.12 28.14
− log p∗(x) 13.82 12.31 86.92 9.40 272.71 27.30 46.98 28.22
−2 logZ 0.20 0.27 0.56 0.09 1.97 1.87 0.41 0.54

Table 3.1 – Negative log-likelihood (NLL) on various binary data sets from the UCI repository:
The top rows quote results from shallow models with autoregressive weights between their units
within one layer. The second block shows results from non-autoregressive models (quoted from
[10]). In the third block we show the results obtained by training a BiHMs. We report the estimated
test set NLL when evaluating just the top-down model, log p(x), and when evaluating log p∗(x).
We also reported log p̃(x), log p̃∗(x) and -2 log(Z) on test set. Our BiHM models consistently
obtain similar (or better) results than while they prefer deeper architectures.

In a particular situation that L = 2, importance resampling is used to ap-
proximately draw samples from p∗(h1 |x,h2). We here choose to draw the proposal
samples from the mixture distribution

1/2 p(h1|h2) + 1/2 q(h1|x),

which ensures that we have a symmetric chance of covering the high probability
configurations of p∗(h1|x,h2) induced by p and q. The importance weights we use
to resample a final sample from p∗(h1|x,h2) are thus given by

ωk1 =

√
p(h

(k)
1 |h2)p(x|h(k)

1)q(h
(k)
1 |x)q(h2|h(k)

1)

p(h
(k)
1 |h2) + q(h

(k)
1 |x)

, (3.10)

where h
(k)
1 is randomly drawn from p(h1|h2) or q(h1|x).

33

Dataset BiHM layer sizes RWS layer sizes ess

ADULT 100, 70, 50, 25 100, 20, 5 81.50%

CONNECT4 300, 110, 50, 20 150, 50, 10 89.17%

DNA 200,150,130,100,70,50,30,20,10 150, 10 11.28%

MUSHROOM 150, 100, 90, 60, 40, 20 150, 50, 10 92.56%

NIPS-0-12 200, 100, 50, 25 150, 50, 10 16.83%

OCR 600, 500, 100, 50, 30, 10 300, 100, 10 22.58%

RCV1 500, 120, 70, 30 200, 50, 10 70.60%

WEB 650, 580, 70, 30, 10 300, 50, 10 55.95%

Table 3.2 – Architectures for our best UCI BiHM models compared to our best RWS models.
We observe that BiHMs prefer significantly deeper architectures than RWS.

3.4 Sampling and inpainting

In this section, we show how our model can be used to solve inpainting tasks
by sampling the missing parts of a given image from the distribution.

For p∗(x|h1) we choose to approximate the sample by drawing the proposal
samples from p(x|h1). For Gibbs sampling, we iteratively update all odd layers
followed by all even layers until we consider the chain to be in equilibrium. The
pseudo code can be found in algorithm 2.

Equipped with approximate sampling procedures for the conditional distribu-
tions, it is straightforward to construct an algorithm for inpainting: Given a cor-
rupted input datapoint x̃, we first initialize a Markov chain by drawing h1,h2 ∼
q(h1,h2|x) and then run the Gibbs sampling procedure. Whenever we sample the
bottom layer x ∼ p∗(x|h1) (approximately), we keep the non-corrupted elements of
x̃ fixed. Note that this method approximately samples reconstructions x ∼ p∗(x)
that are consistent with x̃ ; it does not provide a MAP reconstruction which would
maximize log p∗(x) given x̃.

3.5 Estimating the partition function

To compute p∗(x) = 1
Z2 p̃

∗(x) and to monitor the training progress it is desirable
to estimate the normalization constant Z. In stark contrast to undirected models
like RBMs or DBMs, we can here derive an unbiased importance sampling estimator

34

for Z2 :

Z2 = Ex,h∼p(x,h)

[√
q(h|x)

p(x,h)
Eh′∼q(h|x)

[√
p(h′,x)

q(h′|x)

]]

= Ex,h∼p(x,h)
h′∼q(h|x)

[√
p(x,h′)q(h|x)

p(x,h)q(h′|x)

]
. (3.11)

We denote the number of samples used to approximate the outer expectation
and the inner expectation with Kouter and Kinner respectively.

In section 3.6, we show that we obtain high quality estimates for Z2 with
Kinner=1 and a relatively small number of samples Kouter. By taking the logarithm,
we obtain a biased estimator for 2 logZ, which will, unfortunately, underestimate
2 logZ on average due to the concavity of the logarithm and the variance of the
Z2 estimate. This can lead to overestimates for log p∗(x) using equation (3.5) if we
are not careful. Fortunately, the bias on the estimated logZ is induced only by the
concavity of the logarithm; the underlying estimator for Z2 is unbiased. We can
thus effectively minimize the bias by minimizing the variance of the Z2 estimate
for example by taking more samples. This is a much better situation than for Z-
estimating methods that rely on Markov chains in high dimensional spaces, which
might miss entire modes because of mixing issues.

3.6 Experimental results

In this section we present experimental results obtained when applying the
algorithm to various binary data sets. Our main goal is to ensure that the theoretical
properties discussed in previous sections translate into a robust algorithm that
yields competitive results even when used with simple sigmoid belief network layers
as conditional distributions. We train all models using Adam [47] with a mini-batch
size of 100. We initialize the weights according to [33], set the biases to -1, and use
L1 regularization λ=10−3 on all the weights. Our implementation is available at
https://github.com/jbornschein/bihm.

3.6.1 UCI Binary Datasets Expriments

To ascertain that a BiHM with importance sampling as training method works
in general, we applied it to the 8 binary data sets from the UCI data set repository
that were evaluated for example in [60]. We use a learning rate of 10−2 or 10−3

for all the experiments. The final log-likelihood estimates, the corresponding lower
bounds and the estimation of log(Z) are given in table 3.1. The architectures and
layer sizes can be found in tables and 3.2.

35

https://github.com/jbornschein/bihm

Figure 3.8 – Training convergence for binarized MNIST. Convergence of log p̃∗(x) shown by
blue and log p(x) shown by green over SGD updates on the validation set using 10 samples.

We generally observe that BiHM prefers deeper architectures than RWS to
obtain the best results. The results are summarized in table 3.1.

3.6.2 Binarized MNIST Experiments

We use the MNIST data set that was binarized according to [70] and downloa-
ded in binarized form [57]. Compared to RWS, we again observe that BiHM prefers
significantly deeper and narrower models. Our best model consists of 12 layers with
(300-200-100-75-50-35-30-25-20-15-10-10) latent variables. We follow the same ex-
perimental procedure as in the RWS paper: First train the model with K=10
samples and a learning rate of 10−3 until convergence and then fine-tune the para-
meters with K=100 samples and a learning rate of 3× 10−4. All layers are actually
used to model the empirical distribution; we confirmed that training shallower mo-
dels (obtained by leaving out individual layers) decreases the performance. We
obtain test set log-loglikelihoods of log p∗(x) ' -84.8 ± 0.23 and log p(x) ' -84.5
± 0.22.

The next section presents a more detailed analysis of these estimates and their
dependency on the number of samples from the proposal distribution q(h|x). Note
that even though this model is relatively deep, it is not particularly large, with
about 700, 000 parameters in total. The DBMs in [89] contain about 900, 000 and
1.1 million parameters; a variational autoencoder with two deterministic, 500 units
wide encoder and decoder layers, and with 100 top level latent units contains more
than 1.4 million parameters. To highlight the models ability to generate crisp (non-
blurry) digits we use algorithm 2 to draw samples. The results are visualized in

36

Figure 3.9 – Results after training on TFD: A) Random selection of 12 samples drawn from
p∗(x) (10 iterations of Gibbs sampling). B) The left column in each block shows the input; the
right column shows a random output sample generated by the inpaiting algorithm (see section
3.4).

figure 3.2 shows samples obtained when drawing from the top-down generative
model p(x) before running any Gibbs iterations.

To obtain the samples in figure 3.2 we used 10, 000 samples. However, using only
100 samples lead to visually indistinguishable results. Using MCMC to sample from
p∗ results in digits that are visually indistinguishable from 3.2, but without bias
towards 1. We initialized the chains by sampling from p and then running 20 up-
downward sweeps using equation (3.10) with 10, 000 samples each. Again, using 100
samples is enough to obtain visually indistinguishable results. Figure 3.1 visualizes
the results when running the inpainting algorihm to reconstruct partially occluded
images.

3.6.3 Toronto Face Database Experiments

We also trained models on the 98,058 examples from the unlabeled section of
the Toronto face database (TFD) [101]. Each training example is of size 48 × 48
pixels and we interpret the gray-level as Bernoulli probability for the bottommost
layer. We observe that training proceeds rapidly during the first few epochs but
mostly only learns the mean-face. During the next few hundred epochs training
proceeds much slower but the estimated log-likelihood log p∗(x) increases steadily.
Figure 3.9 A shows random samples from a model with (1000-700-700-300) latent
variables in 4 hidden layers. It was trained with a learning rate of 3 ∗ 10−5; all
other hyperparameters were set to the same values as before. Figure 3.9 B shows
the results from inpainting experiments with this model. Figure 3.10 shows 100

37

Moldel ≤ - log p(x) ≈ - log p(x)

NADE − 88.9
continuous latent variables

VAE 96.2 88.7
VAE + HMC (8 iterations) 88.3 85.5
IWAE (2 latent layers) − 85.3

binary latent variables
NVIL (2 latent layers) 99.6 −
RWS (5 latent layers) 96.3 85.4
BiHM (12 latent layers) 89.2 84.5

Table 3.3 – Comparison of BiHMs to other recent methods in the literature. We report the lower
bounds and estimates for the marginal log probability on the binarized MNIST test set.

samples from the BiHM trained on the TFD data set.

3.7 Analysis of IS-based estimates

As we explained earlier, we deal with the fact that inference, learning, and
sampling are all intractable in our model and they can be estimated using impor-
tance sampling. In this section, we discuss the analysis of our estimations using
this approach.

3.7.1 Estimating the partition function

As we discussed, we can perform efficient approximate sampling from p to esti-
mate the partition function Z, as in equation (3.11). We note, however, that some
models , such as DBNs, require to run a Markov chain to estimate Z.

There are many choices of Kinner and Kouter to approximate Z. In figure 3.5 we
plot −2 logZ estimates over the number of outer samples Kouter for our best MNIST
model and for 3 different choices of Kinner, for example Kinner ∈ {1, 10, 100}. The
gray area additionally shows the mean and standard deviation for 10 runs with
Kinner = 1.

In figure 3.6 we plot the estimates over the total number of samplesKouter·Kinner.
We observe that choosing Kinner =1 and using only about 10 million samples results
in high quality estimates for 2 logZ with an standard error far below 0.1 nats.
Estimating based on 10 million samples takes less than 2 minutes on a GTX980
GPU. Figure 3.7 shows that the development of the 2 logZ estimate during learning
and in relation to the log-likelihood estimates.

38

Figure 3.10 – The figure shows 100 samples from the BiHM trained on the TFD data set.

3.7.2 Importance sampling efficiency

As we discussed in section 2.4, one of the most commonly used measures to
estimate the quality of an importance sampling estimator is the ESS, and larger
values of ESS imply more information extracted per sample.

We compute the ESS over the MNIST test set for K=100,000 proposal samples
from q(h|x). For our best RWS model which is a model with (400-300-200-100-10)
latent variables in 5 stochastic layers, we obtain êss ' 0.10%± 0.06; for the BiHM
model we obtain êss ' 11.9% ± 1.1. When we estimate the ESS for using q(h|x)
from the BiHM as a proposal distribution for p(h|x), we obtain êss=1.2% ± 0.2.
The estimated ESS values indicate that training BiHM models indeed results in
distributions whose intractable posterior p∗(h|x) as well as top-down model p(h|x)
are much better modeled by the learned q(h|x).

We also estimated the ESS for a VAE with two deterministic, 500 units wide
ReLU layers in the encoder and decoder. This model has a single stochastic layer
with 100 continuous variables at the top; it reaches a final estimated test set log-

39

Figure 3.11 – Hiistograms of the importance weights when we use q(h|x) as a proposal for
p∗(h|x) (left), and when we use p(x,h) as a proposal distribution for p∗(x,h) (right).

likelihood of log p(x) ' -88.9 ±0.28. The final variational lower bound, which cor-
responds exactly to the importance sampling estimate of log p(x) with K=1 sample,
is −95.8. For this model we obtain an ESS of 0.07%± 0.02. These results indicate
that we need thousands of samples to obtain reliable log-likelihood estimates with
low approximation error.

In figure 3.3 we plot the estimated test set log-likelihood over the number of
samples K used to estimate log p∗(x) and log p(x). For all the models and for
small a number of samples K we significantly underestimate the log-likelihood;
but, in comparison to RWS, the estimates for the BiHM model are much higher
and less sensitive to K. For example, using K=10 samples to evaluate the BiHM
model results in a higher log-likelihood estimate than using K=10,000 samples to
evaluate the RWS model.

3.7.3 Symmetry of p and q

In figure 3.11, we show the histogram of importance weights when using q(h|x)
as proposal for p∗ when performing inference for a given x from the test set, and
when using p as proposal for p∗ when drawing samples according to algorithm 2.
According to our goal formulated in section 3.1, both p and q should stay close to
p∗. The weights of the former occur whenever we perform approximate inference for
example during learning; the weights of the latter occur when we sample from the
model. Unsurprisingly, we observe that the quality of both proposal distributions
is roughly symmetric relative to the target distribution p∗. This indicates that
drawing a sample from p∗ and performing approximate inference h ∼ p∗(h|x) are
now similarly hard problems. This is different from other Helmholtz machines,
where sampling from the model is straight forward and exact, but inference is even
harder by comparing ESS in section 3.7.2.

3.7.4 Computational cost

As we discussed, we can also efficiently and accurately evaluate the log-likelihood
at test time because we obtain unbiased low-variance estimates for the partition

40

function Z with rather small sample sizes and without, e.g., annealed importance
sampling.

To demonstrate the computational efficiency of our approach we show typical
MNIST learning curves in figure 3.4. For BiHM, RWS and VAE the learning rate
was chosen within a factor of 2 to obtain optimal results after 106 update steps
(5 · 10−4 for BiHM and RWS, 3 · 10−3 for VAE; K=10 for BiHM and RWS). For
the IWAE experiment we use the original code, hyperparameters and learning rate
schedule from [11]: This experiment thus uses a mini-batch size of 20 instead of 100,
K=5 training samples and and 8 different learning rates over the course of ≈ 3300
epochs. In all cases we used K=1000 samples to evaluate the test set log-likelihoods.

We generally observe that BiHM show very good convergence in terms of pro-
gress per update step and competitive performance in terms of total training time.
Note that BiHMs and RWS allow for an efficient distributed implementation in the
future: per sample, only the binary activations and a single floating point num-
ber (the importance weight) need to be communicated between layers. VAEs and
IWAEs need to communicate continuous activations during the forward pass and
continuous partial gradients during the backward pass. At test time BiHMs are
typically much more effective than the other methods: BiHMs obtain good LL
estimates with K=10 or 100 samples per datapoint while VAE, RWS and IWAE
models require ≈ 10,000 samples to obtain competitive results (compare figure 3.3).

Comparison to RWS, number of samples used, dependence on the number of
layers, and updated results: By choosing different hyperparameters, using Adam
instead of RMSProp and following the experimental protocol from the RWS paper
(5 samples to estimate the gradient for 1000 epochs; fine-tuning with 100 samples
for gradient estimation for 500 epochs) we obtain a final − log p ' 86.7± 0.23 and
− log p̃∗ ' 89.8±0.24 on MNIST with (400-300-200-100-50-25-10) units in 7 hidden
layers. With RWS we obtain − log p ' 86.1± 0.23. The error bounds indicate the
standard error of the mean over the test set. We repeated the analysis 10 times (10
times 10k samples per test set example) and observe that the variance introduced
by the IS sampling estimators is less than 0.01. The uncertainty introduced by IS
is thus an order of magnitude smaller than the uncertainty introduced by the finite
MNIST test set. Removing any of the layers decreases performance. For example,
for 400-300-200-50-25-10 hidden units we obtain − log p ' 86.9± 23.

The goal of this article was to introduce a new scheme to construct probabilistic
generative models which are automatically regularized to be close to approximate
inference distributions we have at our disposal. Using the Bhattacharyya distance
we derived a lower-bound on the log-likelihood, and we demonstrated that the
bound can be used to fit deep generative models with multiple layers of latent
variables to complex training distributions. Note that our definition for p∗ forced
us to choose a prior distribution q(x) which will be part of our generative model
p∗(x,h). This is different from the typical variational approaches to train Helmholtz
machines where we would think of q(h|x) solely as an approximate inference method

41

given a training example x, and where q(x) would be the (empirical) training
distribution – something we cannot assume because q(x) is part of our model p∗.

42

Prologue to Second Article

Semi-supervised Bidirectional Helmholtz Machines, J. Bornschein, S.
Shabanian, A. Fischer, Y. Bengio. (in preparation)

Personal Contribution: J. Bornschein and I had the main idea. I wrote 70
percent of the code. All authors suggested experiments for understanding the model
and I ran all the experiments for MNIST.

43

4 Semi-supervised BiHM
Semi-supervised learning is very useful in a variety of applications and it is

needed in a broad range of problems that are of interest such as image search,
genomics, natural language parsing, and speech analysis [29, 64, 65, 95]. As we
discussed earlier, it is designed to solve the classification problem when only a few
observations are labeled. Importantly, algorithms for semi-supervised learning are
typically cheaper than the ones for supervised learning since in such algorithms,
each observation does not require a label.

4.1 Introduction

There are many approaches for semi-supervised learning which are surprisin-
gly successful at solving classification problems. One of the earliest approach is
transductive support vector machines (TVSMs) which was proposed by Joachims
in 1999 [44]. This builds on the SVM model and the approach is to label the un-
labeled data such that the decision boundary has maximal margin over all of the
data. A Gaussian based approach similar to TSVMs was proposed by Lawrence
and Jordan in 2005 which makes use of a null category noise model [61]. Perhaps
one of the simplest approaches in semi-supervised learning is a self-training scheme
in which the unlabeled samples are expanded into the labeled ones [87]. However,
these models may not be appropriate with large amounts of unlabeled data, since
obtaining the optimal parameters is difficult in such a setting. In 2003, Zhu et al.
introduced a new semi-supervised model which is based on the idea of constructing
a graph connecting similar data points [114]. Intuitively, such models assume that
similar data points have similar labels and information propagates from labeled
data points. However, computing the probabilities in such models is expensive and
it is highly dependent on the structure of the graph [9, 29]. In all of these models,
the supervised and unsupervised parts are jointly trained at each step. There are
some networks in which the unsupervised portion is trained on unlabeled data se-
parately as a first step, and then its features are the input of a supervised classifier
[12, 13]. We note that all of these networks are shallow.

Recently, many deep semi-supervised models have been proposed. For example,
the manifold tangent classifier (MTC) is an approach that proposes to learn the
manifold on which the data lies using contractive auto-encoders (CAEs), and then
train a classifier [83]. Moreover, several papers have proposed the use of supervised

44

and unsupervised tasks in the same neural network [81, 110]. Such networks attempt
to optimize the combined loss function of an autoencoder and a classifier. There has
been significant work on extending and improving these networks [1, 58, 80, 82].

Many of these improvements are based on using the power of generative models.
In [45], the authors attempt to use non-parametric density models, or more recently,
in [113], a model based on a Gaussian mixture was proposed. Unfortunately, in
many cases, they do not perform very well for reasons such as a large number of
mixture components or a poor inference model. Some of the earliest extensions of
variational approximations for semi-supervised models were developed in [63, 108].
Most recently, a deep generative model for semi-supervised learning was introduced
based on the auto-encoding variational Bayes model with labeled units [49, 48].

Here, we introduce a theoretic framework of semi-supervised learning model
using BiHM.

4.2 Model Definition and Properties

We define a joint probability distribution over all variables – an observed vector
x, a latent variable vector h, and an output layer vector y. We will explain the model
considering one hidden layer, but the discussion is extendable to any arbitrary graph
without loops. It can be specially used to train architectures with more than two
stacked layers of hidden variables.

Assume that p∗(x,h,y) is a joint distribution which is defined as

p∗(x,h,y) =
1

Z

√
p(x,h,y)q(x,h,y)

where p and q are the two joint distributions that can be factorized as

p(x,h,y) = p(y) p(h|y) p(x|h),

and
q(x,h,y) = q(x) q(h|x) q(y|h),

and Z is the normalization constant. We will typically think of the top level
prior p(y) as a simple multinomial distribution over Y different label classes y ∈
{1, · · · , Y } with p(y = y) = πy. In this case we will use a conditioned multinomial
distribution for the bottom-up layer q(y|h) and we implement it with an MLP with
a single Softmax layer defined as

q(y = y|h) =
exp(hTWy + by)∑Y
k=1 exp(hTWk + bk)

,

where Wy and by is the y-th column of weight matrix and bias vector of the last
layer for every y = 1, . . . , Y . We do not assume an explicit form for q(x). In fact,

45

from now on we assume that the marginal distributions p∗(x) and q(x) are the
same.

Given this model definition, there are at least three quantities we are regularly
interested in when we deal with semi-supervised learning tasks. The first quantity
is p∗(x) which is the marginal probability distribution for data points that can be
obtained as

p∗(x) = q(x) =
∑
h,y

p∗(x,h,y)

=

√
q(x)

Z

∑
h,y

√
p(x,h,y) q(h|x)q(y|h) =

1

Z2
A2(x), (4.1)

where

A(x) =
∑
h,y

√
p(x,h,y) q(h|x)q(y|h).

The second quantity is p∗(x,y) which is

p∗(x,y) =
∑
h

p∗(x,h,y)

=

√
q(x)

Z

∑
h

√
p(x,h,y) q(h|x)q(y|h)

=
1

Z2
A(x)

(∑
h

√
p(x,h,y) q(h|x)q(y|h)

)
=

1

Z2
A(x)B(x,y), (4.2)

where
B(x, y) =

∑
h

√
p(x,h,y) q(h|x)q(y|h).

Finally, the last quantity that we are interested in, is the conditional probability
p∗(y|x) which can be obtained as

p∗(y|x) =
p∗(x,y)

p∗(x)
=
B(x,y)

A(x)
(4.3)

Interestingly, p∗(y|x) does not depend on the partition function Z.

4.2.1 Importance sampling estimators

As we can see, A(x) and B(x,y) are intractable for most problems of interest.
In order to evaluate these terms, we use importance sampling. We use q(h|x) and

46

q(y|h) as proposal distributions to estimate A(x) as follows:

A(x) =
∑
h,y

√
p(x,h,y) q(h|x)q(y|h)

= Eh∼q(h|x)
y∼q(y|h)

√
p(x,h,y)

q(h|x)q(y|h)

'
K∑
k=1

√
p(x,h(k),y(k))

q(h(k)|x)q(y(k)|h(k))
= Ã(x) (4.4)

where h(k) is generated by q(h|x) and y(k) is generated by q(y|h(k)) for every k =
1, . . . , K where K is the number of generated samples.

To evaluate B(x,y), we use only q(h|x) as a proposal distribution and then we
have

B(x,y) =
∑
h

√
p(x,h,y) q(h|x)q(y|h)

= Eh∼q(h|x)

√
p(x,h,y)q(y|h)

q(h|x)

'
K∑
k=1

√
p(x,h(k),y)q(y|h)

q(h(k)|x)
= B̃(x,y), (4.5)

where h(k) is generated by q(h|x) for every k = 1, . . . , K, where K is the number
of generated samples.

To provide a generative semi-supervised BiHM objective funtion, we need to
consider that inputs fall into two main categories. The first category includes inputs
whose labels are observed. For this class of inputs, we have

log p∗(y|x) = logB(x,y)− logA(x)

' log B̃(x,y)− log Ã(x). (4.6)

and we use the following objective function:

log B̃(x,y)− γ log Ã(x). (4.7)

where γ is a real number in [−1,+1]. The second category where the labels for
inputs are missing, we use log p∗(x) which can be estimated as:

log p∗(x) = 2 ∗ logA(x)− 2 ∗ log(Z)

' 2 ∗ log Ã(x)− 2 ∗ log(Z) ≥ 2 ∗ log Ã(x), (4.8)

47

using the fact that Z ≤ 1.
Now assume that θ is the set of all parameters in our model. In order to update

θ using stochastic gradient descent, we need to derive estimators for the gradients of
logA(x) and logB(x,y) and use these estimations to compute estimated gradients
for log p∗(x), log p∗(x,y) and log p∗(y|x). We start with the first term logA(x) :

∂

∂θ
logA(x) =

1

A(x)

∑
h,y

∂

∂θ

(√
p(x,h,y) q(h|x)q(y|h)

)
=
∑
h,y

√
p(x,h,y) q(h|x)q(y|h)

A(x)

∂

∂θ

(
log
√
p(x,h,y) q(h|x)q(y|h)

)

= E
y,h∼q(y,h|x)

1

A(x)

√
p(x,h,y)

q(h|x)q(y|h)

∂

∂θ

(
log
√
p(x,h,y) q(h|x)q(y|h)

)
'

K∑
k=1

ω̃kA
∂

∂θ

(
log
√
p(x,h(k),y(k)) q(h(k)|x)q(y(k)|h(k))

)
(4.9)

with

ω̃kA =
ωkA∑
k′ ω

k′
A

,

where

ωkA =

√
p(x,h(k),y(k))

q(h(k)|x)q(y(k)|h)
,

with h(k) ∼ q(h(k)|x) and y(k) ∼ q(y|h(k)) where K is the number of samples. Now,
the estimators for the gradients of the second term logB(x,y) is:

∂

∂θ
logB(x,y) =

1

B(x,y)

∂

∂θ

∑
h

√
p(x,h,y) q(h|x)q(y|h)

=
∑
h

√
p(x,h,y) q(h|x)q(y|h)

B(x,y)

∂

∂θ
log
√
p(x,h,y) q(h|x)q(y|h)

= E
h∼q(y|h)

√
p(x,h,y) q(h|x)

B(x,y)
√
q(y|h)

∂

∂θ
log
√
p(x,h,y) q(h|x)q(y|h)

'
K∑
k=1

ω̃kB
∂

∂θ
log
√
p(x,h(k),y) q(h(k)|x)q(y|h(k)) (4.10)

with ω̃kB =
ωk
B∑

k′ ω
k′
B

where

48

hidden units γ ≤ - log p̃∗(x) - log p̃∗(y|x) error

230,200,170,130,80,50,25 -0.001 110.61 0.54 0.15
200,170,140,110,80,50,25 0 110.03 0.47 0.13
250,200,150,120,80,50,25 0.001 110.32 0.57 0.16

300,200,130,80,50,25 -0.01 109.87 0.50 0.16
250,200,150,100,80,50,25,15 0.1 111.07 0.78 0.25

300,200,130,80,50,25,15 0.01 110.2 0.61 0.15

Table 4.1 – Performance on Binarized MNIST : best achieved results by semi-supervsied BiHM.

ωkB =

√
p(x,h(k),y(k))q(y(k)|h)

q(h(k)|x)
,

with h(k) ∼ q(h(k)|x) for every k = 1, . . . , K where K is the number of samples.

4.3 Experiments

We initialize the weights according to [33], set the biases to −1. The objectives
were optimized using minibatch gradient ascent until convergence, using Adam and
learning rate of 0.001. The model is trained using 10 samples and Minibatch of size
100 and a varied range of γ.

We test performance on the Binarized MNIST dataset that was binarized accor-
ding to [70] and downloaded in binarized form [57]. The dataset for semi-supervised
learning is created by splitting the 50,000 training points between a labelled and
unlabelled set, with the labelled set of size 1000. We ensure that each class has the
same number of labelled points. Table 4.1 shows the best achieved results.

4.4 Results and Discussion

Although careful training of a BiHM model achieves high quality results, it does
not necessarily imply that the hierarchical latent representations are informative
enough to be used for semi-supervised learning problems. If we compare our results
in 4.1 with some existing results in the literature such as in [48], we conclude that
our model does not perform very well.

It is tricky to pinpoint failings of a model, particularly for complex latent va-
riable models. One thing we can try to do is to visually inspect the informativeness
of latent layers – consider our best performing BiHM model which consists of 1

49

Figure 4.1 – Random generated sample from top-down model p starting from a given layer 5
(top left), 6 (top right), 7 (bottom left), and 8 (bottom right).

visible and 12 latent layers with 300, 200, 100, 75, 50, 35, 30, 25, 20, 15, 10, 10 la-
tent variables. Assume that random samples h

(0)
12 , . . . ,h

(0)
1 are generated top-down

from our trained BiHM model where h
(0)
l corresponds to the generated sample for

layer l = 1, . . . , 12. Now we generate random samples from p(x,h1, . . . ,hl0−1|h
(0)
l0

)
for any arbitrary layer l0 = 1, . . . , 12. Figure 4.3 shows the results for l0 = 1, . . . , 4.
Not only do the generated samples get noisier as we go deeper from one layer to
another, but also figures 4.1 and 4.2 show how we generate different digits as we
go back from a deeper layer.

This experiment reveals the likely reason why our proposed semi-supervised
model does not perform well. The problem appears to be that the higher layers of
the BiHM are not informative enough to be well-applicable to a semi-supervised
task. In Sec. 4.6 we shall investigate the usefulness of latent representations of lower
layers in the BiHM.

50

Figure 4.2 – Random generated sample from top-down model p starting from layer 9 (top left),
10 (top right), 11 (bottom left), and 12 (bottom right).

4.5 Some open questions

The experiments raise several important and difficult questions regarding the
semi-supervised BiHM model that can greatly impact performance. The first ques-
tion is how optimizing p∗(x,y) vs. optimizing p∗(y|x) can influence the results for
different fractions of labeled training data. The second question is whether we can
reuse the same h samples to estimate both A(x) and B(x,h). The third question is
whether we can somehow factor out some common terms from A(x) and B(x,y).
The last question is how we can guarantee that log p∗(y|x) is negative.

We start by briefly discussing a basic theoretical solution that one can use for the
last question regarding the positiveness of − log p∗(y|x). Intuitively, if we assume
that we use the same h samples to estimate A(x) and B(x,y), and consider the
situation that y is not one of the samples generated by our proposal distribution

51

q(y|h), then it is seems likely that

B̃(x,y) ≥ Ã(x).

Indeed, in practice, situations like this often occur, perhaps because q(y|h) is not
good yet. Our solution to this problem is to use a better proposal distribution
q′(y|h) which is defined as

q′(y′|h) =
1

2
q(y|h) +

1

2
δy(y′),

where y is the corresponding label for x and δy is a Dirac measure defined for a
given y′ by 1 if y = y′ and 0 otherwise.

Now if we use q(h|x) and q′(y|h) as proposal distributions to estimate A(x),
we obtain

A(x) =
∑
h,y

√
p(x,h,y) q(h|x)q(y|h)

= Eh∼q(h|x)
y∼q(y|h)

1

q′(y|h)

√
p(x,h,y)q(y|h)

q(h|x)

'
K∑
i=1

1

q′(y(i)|h(i))

√
p(x,h(i),y(i))q(y(i)|h(i))

q(h(i)|x)
= Ã(x) (4.11)

where h(i) is generated by q(h|x) and y(i) is generated by q′(y|h(i)) for every i =
1, . . . , K where K is the number of generated samples. Of course if we use more
than two samples, the problem of optimizing − log p∗(y|x) can be solved using this
proposal distribution.

4.6 A new direction

As previously discussed (Sec. 4.4), deeper layers in a BiHM model might not be
appropriate for use in semi-supervised problems and it might be more helpful to
use the lower latent layer representations. More formally, assume that x denotes an
observed random variable vector and h1,h2 denote a pair of latent random variable
vectors. Also assume that p and q are directed graphical models from h2 to x and
vice versa that can be factorized as

p(x,y,h1,h2) = p(h2)p(h1|h2)p(x|h1)p(y|x,h1),

and

52

Figure 4.3 – Random generated sample from top-down model p starting from layer 1 (top left),
2 (top right), 3 (bottom left), and 4 (bottom right).

q(x,y,h1,h2) = q(h2|h1)q(h1|x)q(x)q(y|x,h1),

where p(h2), p(h1|h2), p(x|h1), q(h2|h1), q(h1|x), and q(y|x,h1) belong to parame-
trized families of distributions which can be evaluated and sampled from efficiently.
They difference with our previous formulation is that the conditoning on the label
occurs only in the lower layer. Moreover, we assume p(y|x,h1) = q(y|x,h1) and
p∗(x) = q(x). The associated joint probability p∗ to p and q is given by

p∗(x,y,h1,h2) =
1

Z

√
p(x,y,h1,h2)q(x,y,h1,h2),

where Z is the normalization constant. As before, we are interested in evaluating
three terms. The first one is:

53

p∗(x) =
∑

y,h1,h2

p∗(x,y,h1,h2)

=
1

Z2

[∑
y,h1,h2

q(y|x,h1)
√
p(h2)p(h1|h2)p(x|h1)q(h2|h1)q(h1|x)

]2

=
1

Z2

[∑
h1,h2

√
p(h2)p(h1|h2)p(x|h1)q(h2|h1)q(h1|x)

∑
y

q(y|x,h1)

]2

=
1

Z2

[∑
h1,h2

√
p(h2)p(h1|h2)p(x|h1)q(h2|h1)q(h1|x)

]2

≥

[∑
h1,h2

√
p(h2)p(h1|h2)p(x|h1)q(h2|h1)q(h1|x)

]2
.

Therefore, p∗(x) ≥ A(x)2 where

A(x) =
∑
h1,h2

√
p(h2)p(h1|h2)p(x|h1)q(h2|h1)q(h1|x),

which can be estimated as

A(x) =
∑
h1,h2

√
p(h2)p(h1|h2)p(x|h1)q(h2|h1)q(h1|x)

= Eh2∼q(h2|h1);h1∼q(h1|x)

√
p(h2)p(h1|h2)p(x|h1)

q(h2|h1)q(h1|x)

' 1

K

K∑
k=1

√√√√p(h
(k)
2)p(h

(k)
1 |h

(k)
2)p(x|h(k)

1)

q(h
(k)
2 |h

(k)
1)q(h

(k)
1 |x)

,

with h
(k)
1 ∼ q(h1|x) and h

(k)
2 ∼ q(h2|h(k)

1) for every k = 1, . . . , K where K is the
number of generated samples.

The second term is:

54

p∗(x,y) =
∑
h1,h2

p∗(x,y,h1,h2)

=
1

Z

∑
h1,h2

q(y|x,h1)
√
p(h2)p(h1|h2)p(x|h1)q(h2|h1)q(h1|x)

=
1

Z

∑
h1,h2

√
p(h2)p(h1|h2)p(x|h1)q(h2|h1)q(h1|x)

≥
∑
h1,h2

q(y|x,h1)
√
p(h2)p(h1|h2)p(x|h1)q(h2|h1)q(h1|x).

In this case, we have p∗(x,y) ≥ B(x,y) where

B(x,y) =
∑
h1,h2

q(y|x,h1)
√
p(h2)p(h1|h2)p(x|h1)q(h2|h1)q(h1|x).

Then B(x,y) can be evaluated as follows:

B(x,y) =
∑
h1,h2

q(y|x,h1)
√
p(h2)p(h1|h2)p(x|h1)q(h2|h1)q(h1|x)

' 1

K

K∑
k=1

q(y|x,h1)

√√√√p(h
(k)
2)p(h

(k)
1 |h

(k)
2)p(x|h(k)

1)

q(h
(k)
2 |h

(k)
1)q(h

(k)
1 |x)

,

with h
(k)
1 ∼ q(h1|x) and h

(k)
2 ∼ q(h2|h(k)

1) for every k = 1, . . . , K where K is the
number of samples. The last term is p∗(y|x) :

p∗(y|x) =
p∗(x,y)

p∗(x)
=
B(x,y)

A(x)

One of the important properties of this model is that the gradient of p∗(x) with
respect to the parameters of q(y|x,h1) is zero. It means that we do not update the
parameters of q(y|x,h1) when the label is not given.

Experimental evaluation of this model is left as future work.

55

5 Conclusion and Future
Work

This thesis presented two research articles addressing challenges in the context
of the training of deep generative models for unsupervised and semi-supervised lear-
ning problems. The first article introduced a new approach for defining and training
deep generative models; and the second one presented two different approaches to
use BiHM for a semi-supervised learning task. In the following the main results will
be summarized and discussed.

5.1 Summary and Conclusion

It has been argued previously that generative models with multiple hidden layers
have the potential to capture higher-level abstractions [36, 2]. Such abstractions
can lead to a better generalization. However, training such generative models is a
major challenge. Although there has been progress in dealing with continous-valued
latent variables building a hierarchy of representations, especially with discrete-
valued latent variables, remains a challenge [49]. In this thesis, we introduced a new
approach to this problem referred as bidirectional Helmholtz machine. To present
this model in details, it was required to provide some necessary concepts from
machine learning, probability theory, and probabilistic graph theory in chapter 2.

Chapter 3 theoretically and empirically analyzed the bidirectional Helmholtz
machine. While it is common knowledge that more powerful inference methods can
gain better approximations of true posterior [40, 92], it is shown that this new
model regularize the top-down model such that the generative model stays close
to the approximate inference model and vice versa. In fact, this is achieved by
interpreting both generative and inference models as approximate inference models
for our actual generative model which is defined to be the geometric mean over the
top-down and bottom-up approximate inference models.

The work in chapter 4 propose a BiHM model for semi-supervised problems.
Since the computation of the exact posterior distribution is intractable, a lower
bound on the marginal likelihood of the model is driven. This lower bound ensures
that our generative model is as close as possible to the recognition model. Moreover,
an importance sampling based estimate for the gradient of this lower bound with
respect to the parameters of the model is proposed. Then the properties of such
models theoretically and empirically are analyzed.

56

5.2 Future Work

Most of the work presented in this thesis focused on a new generative model
BiHM in which a wide range of potential choices for our parametrized conditional
distributions could be used. However, in this thesis, BiHMs with binary latent va-
riables are analyzed theoretically and empirically. It would be important to transfer
some of the concepts and ideas to BiHMs with real valued hidden variables. Impor-
tantly, it could be used for constructing models with real valued hidden and visible
variables with a Gaussian conditional distribution.

Furthermore, BiHMs consist of the bottom-up and top-down directed models
which are parameterized with a fully connected neural network. It is interesting to
investigate if these models can be parameterized with a a convolutional network.
It could be a key factor in the success of BiHMs for problems with complex data
distributions such as images and sound.

Another approach is to use modeling sequences based on the BiHMs which could
be a sequence of BiHMs. This lead to an extension of the BiHM that can be used
to model time-series data.

57

Bibliography
[1] Adams, R. P. and Z. Ghahramani (2009). Archipelago: nonparametric Baye-

sian semi-supervised learning. In Proceedings of the International Conference
on Machine Learning (ICML).

[2] Bengio, Y. (2009). Learning deep architectures for AI. In Foundations and
Trends in Machine Learning 2 (1), pp. 1-127, Also published as a book. Now
Publishers, 2009.

[3] Bengio, Y., O. Delalleau, and N. L. Roux (2006). Label propagation and qua-
dratic criterion. In Semi-Supervised Learning, pp. 193-216.

[4] Bengio, Y., P. Lamblin, D. Popovici, and H. Larochelle (2007). Greedy layer-
wise training of deep networks. In B. Scholkopf, J. Platt, and T. Homan (Eds.),
In Advances in Neural Information Processing Systems 19 (NIPS’06), pp. 153-
160, MIT Press.

[5] Bengio, Y. and Y. LeCun (2007). Scaling learning algorithms towards AI. In
Large-Scale Kernel Machines, ed. L. Bottou, O. Chapelle, D. DeCoste, J Wes-
ton, pp. 321-360, Cambridge, MA: MIT Press.

[6] Bergstra, J., O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Des-jardins, J.
Turian, D. Warde-Farley, and Y. Bengio (2010). Theano: a CPU and GPU math
expression compiler. In Proceedings of the 12th Python in Science Conference.

[7] Bhattacharyya, A. (1943). On a measure of divergence between two statistical
populations defined by their probability distribution. In Bulletin of the Calcutta
Mathematical Society, 35, pp. 99-110.

[8] Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

[9] Blum, A., J. Lafferty, M. R. Rwebangira, and R. Reddy (2004). Semi-supervised
learning using randomized mincuts. In Proceedings of the International Confe-
rence on Machine Learning (ICML).

[10] Bornschein, J. and Y. Bengio (2015). Reweighted wake-sleep. In International
Conference on Learning Representations (ICLR).

[11] Burda, Y., R. Grosse, and R. Salakhutdinov (2015). Importance weighted au-
toencoders. arXiv preprint arXiv : 1509.00519.

58

[12] Chapelle, O., J. Weston, and B. Scholkopf (2003). Cluster kernels for semi-
supervised learning. In Advances in Neural Information Processing Systems
(NIPS), pp. 585-592. Cambridge, MA, USA: MIT Press.

[13] Chapelle, O. and A. Zien (2005). Semi-supervised classification by low density
separation. In International Conference on Artificial Intelligence and Statistics
(AISTATS), pp. 57-64.

[14] Choromanska, A., M. Henaff, M. Mathieu, G. B. Arous, Y. LeCun (2015).
The loss surfaces of multilayer networks, International Conference on Artificial
Intelligence and Statistics (AISTATS).

[15] Cortes, C. and V. Vapnik (1995). Support vector networks. In Machine Lear-
ning 20, pp. 273-297.

[16] Courville, A., J. Bergstra, and Y. Bengio (2011). Unsupervised models of
images by spikeand-slab RBMs. In L. Getoor and T. Scheffer, editors, Pro-
ceedings of the 28th International Conference on Machine Learning (ICML),
pp. 1145-1152. ACM.

[17] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.
In Mathematics of Control, Signals, and Systems 2, pp. 303-314.

[18] Dauphin, Y., R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and Y.Bengio
(2014). Identifying and attacking the saddle point problem in high-dimensional
non-convex optimization. In Neural Information Processing Systems (NIPS),
27, pp. 2933 ?2941.

[19] Dayan, P. (2000). Helmholtz machines and wake-sleep learning. Handbook of
Brain Theory and Neural Network. MIT Press, Cambridge, MA, 44(0).

[20] Dayan, P. and G. E. Hinton (1996). Varieties of Helmholtz machine. In Neural
Networks, 9(8), pp. 1385-1403.

[21] Dayan, P., G. E. Hinton, M. R. Neal, and R. S. Zemel (1995). The Helmholtz
machine. In Neural computation, 7(5), pp. 889-904.

[22] Delalleau, O., Y. Bengio, N.Le Roux (2005). Efficient non-parametric function
induction in semi-supervised learning. In International Conference on Artificial
Intelligence and Statistics (AISTAT).

[23] Deng, L., G. E. Hinton, and B. Kingsbury (2013). New types of deep neural
network learning for speech recognition and related applications: An overview.
In Proceedings of International Conference on Acoustics Speech and Signal Pro-
cessing (ICASSP).

59

[24] Deng, L., J. Li, K. Huang, Yao, D. Yu, F. Seide, M. Seltzer, G. Zweig, X. He,
J. Williams, Y. Gong, and A. Acero (2013). Recent advances in deep learning
for speech research at Microsoft. In Proceedings of International Conference on
Acoustics Speech and Signal Processing (ICASSP).

[25] Dietterich, T., G. and G. Bakiri (1995). Solving multiclass learning problems
via error-correcting output codes. arXiv preprint cs/9501101.

[26] Drucker, H., C. J. Burges, L. Kaufman, C. J. C, B. L. Kaufman, A. Smola,
and V. Vapnik (1996). Support vector regression machines.

[27] Duchi, J., E. Hazan, and Y. Singer (2010). Adaptive subgradient methods for
online learning and stochastic optimization. In Journal of Machine Learning
Research, 12, pp. 2121-2159.

[28] Elfadel, I. (1995). Convex potentials and their conjugates in analog mean-field
optimization. In Neural Computation 7, pp. 1079-1104.

[29] Fergus, R., Y. Weiss, and A. Torralba (2009). Semi-supervised learning in gi-
gantic image collections. In Advances in Neural Information Processing Systems
(NIPS).

[30] Fukunaga, K. and L. Hostetler (1975, January). The estimation of the gradient
of a density function, with applications in pattern recognition. In Information
Theory, IEEE Transactions on 21 (1), pp. 32-40.

[31] Fukushima, K. (1980). Neocognitron: A self-organizing neural network mo-
del for a mechanism of pattern recognition unaffected by shift in position. In
Biological Cybernetics 36, pp. 193-202.

[32] Gehler, P. V., A. D. Holub, and M. Welling (2006). The rate adapting pois-
son model for information retrieval and object recognition. In W. Cohen and
A. Moore, editors, Proceedings of 23rd International Conference on Machine
Learning (ICML), pp. 337-344, ACM.

[33] Glorot, X. and Y. Bengio (2010). Understanding the difficulty of training deep
feedforward neural networks. In International Conference on Artificial Intelli-
gence and Statistics (AISTATS).

[34] Hinton, G. E., P. Dayan, B. J. Frey, and R. M. Neal (1995). The wake-sleep
algorithm for unsupervised neural networks. In Science, 268, pp. 1558-1161.

[35] Hinton, G. E., L. Deng, D. Yu, G. Dahl, A. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. Sainath, and B. Kingsbury (2012). Deep neural
networks for acoustic modeling in speech recognition. In IEEE Signal Processing
Magazine, 29(6), pp. 82-97.

60

[36] Hinton, G. E., S. Osindero, and Y. Teh (2006). A fast learning algorithm for
deep belief nets. In Neural Computation 18, pp. 1527-1554.

[37] Hinton, G. E., R. Salakhutdinov (2006). Reducing the dimensionality of data
with neural networks. In Science, 313(5786), pp. 504-507.

[38] Hinton, G. E. and T. Sejnowski (1983). Optimal perceptual inference. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition.

[39] Hinton, G. E. and R. S. Zemel (1994). Autoencoders, minimum description
length, and Helmholtz free energy. In Advances in Neural Information Pro-
cessing Systems 6. J. D. Cowan, G. Tesauro and J. Alspector (Eds.), Morgan
Kaufmann: San Mateo, CA.

[40] Hjelm, R. D., K. Cho, J. Chung, R. Salakhutdinov, V. Calhoun, N. Jojic
(2016). Iterative refinement of approximate posterior for training directed be-
lief networks, In Proceedings of the International Conference on Learning Re-
presentations (ICLR), arXiv preprint arXiv :1511.06382.

[41] Ho, T. K. (1995). Random decision forests. In Proceedings of the 3rd Interna-
tional Conference on Document Analysis and Recognition, Montreal, QC, 14-16,
pp. 278-282.

[42] Hornik, K., M. Stinchcombe, and H. White (1989). Multilayer feedforward
networks are universal approximators. In Neural Networks 2, pp. 359-366.

[43] Ivakhnenko, A. G. and V. G. Lapa (1965). Cybernetic predicting devices. In
CCM Information Corporation.

[44] Joachims, T. (1999). Transductive inference for text classification using sup-
port vector machines. In Proceeding of the International Conference on Machine
Learning (ICML), V. 99, pp. 200-209.

[45] Kemp, C., T. L. Griffiths, S. Stromsten, and J. B. Tenenbaum (2003). Semi-
supervised learning with trees. In Advances in Neural Information Processing
Systems (NIPS).

[46] Kindermann, R. (1980). Markov Random Fields and Their Applications
(Contemporary Mathematics; V. 1). American Mathematical Society.

[47] Kingma, D. P. and J. Ba (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv :1412.6980.

[48] Kingma, D. P., D. J. Rezende, S. Mohamed, and M. Welling (2014).
Semi-supervised learning with deep generative models. arXiv preprint
arXiv :1406.5298.

61

[49] Kingma, D. P. and M. Welling (2014). Auto-encoding variational bayes. In Pro-
ceedings of the International Conference on Learning Representations (ICLR).

[50] Kivinen J. and C. Williams (2012). Multiple texture Boltzmann machines. In
N. Lawrence and M. Girolami, editors, Proceedings of the 14th International
Conference on Artificial Intelligence and Statistics (AISTATS), V. 22 of JMLR
W&CP, pp. 638-646. .

[51] Koller, D. and N. Friedman (2009). Probabilistic graphical models: principles
and techniques. MIT Press.

[52] Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). Imagenet classification
with deep convolutional neural networks. In Advances in Neural Information
Processing Systems 1, pp. 1097-1105.

[53] Kschischang, F., B. Frey, and H. A. Loeliger (2001). Factor graphs and the
sum-product algorithm. In IEEE Transactions on Information Theory 47, pp.
498-519.

[54] Kullback S. (1959). Information Theory and Statistics, John Wiley and Sons.

[55] Kullback, S. (1987). Letter to the Editor: The Kullback-
Leibler distance. In The American Statistician, 41(4), pp. 40-
341.doi101080/00031305.1987.10475510. JSTOR 2684769.

[56] Kullback, S. and R. A. Leibler (1951). On information and sufficiency. In
Annals of Mathematical Statistics 22, pp. 49-86. .

[57] Larochelle, H. (2011). Binarized mnist dataset. URL http://www.cs.

toronto.edu/~larocheh/public/datasets/binarized_mnist/binarized_

mnist_[train|valid|test].amat.

[58] Larochelle H. and Y. Bengio (2008). Classification using discriminative restric-
ted Boltzmann machines. In W. W. Cohen, A. McCallum, and S. T. Roweis,
editors, In Proceedings of the 25th International Conference on Machine lear-
ning (ICML), pp. 536-543, ACM.

[59] Larochelle H., Y. Bengio, J. Louradour , P. Lamblin, (2008). Exploring stra-
tegies for training deep neural networks. In Journal of Machine Learning Re-
search, pp. 1-40

[60] Larochelle, H. and I. Murray (2011). The neural autoregressive distribution
estimator. In Journal of Machine Learning Research, V. 15, pp. 29-37.

[61] Lawrence, N. D. and M. I. Jordan (2005). Semi-supervised learning via Gaus-
sian processes. In Advances in Neural Information Processing Systems (NIPS).

62

http://www.cs.toronto.edu/~larocheh/public/datasets/binarized_mnist/binarized_mnist_[train|valid|test].amat
http://www.cs.toronto.edu/~larocheh/public/datasets/binarized_mnist/binarized_mnist_[train|valid|test].amat
http://www.cs.toronto.edu/~larocheh/public/datasets/binarized_mnist/binarized_mnist_[train|valid|test].amat

[62] Le Roux, N., N. Heess, J. Shotton, and J. M. Winn (2011). Learning a gene-
rative model of images by factoring appearance and shape. In Neural Compu-
tation, 23(3), pp. 593-650.

[63] Li, P., Y. Ying, and C. Campbell (2009). A variational approach to semi-
supervised clustering. In Proceedings of the European Symposium on Artificial
Neural Networks (ESANN), pp. 11-16.

[64] Liang, P. (2005). Semi-supervised learning for natural language. PhD thesis,
Massachusetts Institute of Technology.

[65] Liu, Y. and K. Kirchhoff (2013). Graph-based semi-supervised learning for
phone and segment classification. In Proceedings of Interspeech.

[66] McCulloch, W. S., and W. Pitts (1943). A logical calculus of the ideas im-
manent in nervous activity. In Bulletin of Mathematical Biophysics, V. 5, pp.
115-133.

[67] Mitchell, T. M. (1997). Machine learning. New York: McGraw-Hill.

[68] Mnih, A. and K. Gregor (2014). Neural variational inference and learning in
belief networks. In Proceedings of the 31st International Conference on Machine
Learning (ICML).

[69] Mohamed, A., G. E. Dahl, G. E. Hinton (2012). Acoustic modeling using
deep belief networks. In IEEE Transactions on Audio, Speech, and Language
Processing (20), pp. 14-22.

[70] Murray, I. and R. Salakhutdinov (2009). Evaluating probabilities under high-
dimensional latent variable models. In Advances in Neural Information Proces-
sing Systems (NIPS), V. 21, pp. 1137-1144.

[71] Nadaraya, E. A. (1964). On estimating regression. In Theory of Probability
and its Applications 9(1), pp. 141-142.

[72] Neal, R. M. (1992). Connectionist learning of belief networks, In Artificial
Intelligence, V. 56, pp. 71-113.

[73] Neal, R. M. (2001, April). Annealed importance sampling. In Statistics and
Computing 11 (2), pp. 125-139.

[74] Neal, R. and G. Hinton (1999). A view of the EM algorithm that justifies
incremental, sparse, and other variants. In M. I. Jordan (Ed.), Learning in
Graphical Models. Cambridge, MA: MIT Press.

63

[75] Netzer, Y., T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng (2011). Rea-
ding digits in natural images with unsupervised feature learning. Deep Learning
and Unsupervised Feature Learning Workshop, In Advances in Neural Informa-
tion Processing Systems (NIPS).

[76] Newey, W. and D. McFadden (1994). Large sample estimation and hypothesis
testing. Handbook of Econometrics 4, pp. 2111-2245.

[77] Nock, R. and F. Nielsen (2006). On weighting clustering. In IEEE Transactions
on Pattern Analysis and Machine Intelligence, 28(8), pp. 1-13.

[78] Pal, C., C. Sutton, and A. McCallum (2005). Fast inference and learning with
sparse belief propagation. In Advances in Neural Information Processing Sys-
tems (NIPS).

[79] Pearl, J. (1985, August). Bayesian networks: A model of self-activated memory
for evidential reasoning. In Proceedings of the 7th Conference of the Cognitive
Science Society, University of California, Irvine, pp. 329-334.

[80] Pitelis, N., C. Russell, and L. Agapito (2014). Semi-supervised learning using
an unsupervised atlas. In Proceddings of the European Conference on Machine
Learning (ECML), V. LNCS 8725, pp. 565-580.

[81] Ranzato, M. and M. Szummer (2008). Semi-supervised learning of compact
document representations with deep networks. In Proceedings of the 25th Inter-
national Conference on Machine Learning (ICML), pp. 792-799.

[82] Rezende, D. J., S. Mohamed, and D. Wierstra (2014). Stochastic backpropa-
gation and approximate inference in deep generative models. In International
Conference on Machine Learning (ICML).

[83] Rifai, S., Y. Dauphin, P. Vincent, Y. Bengio, and X. Muller (2011). The ma-
nifold tangent classifier. In Advances in Neural Information Processing Systems
(NIPS), pp. 2294-2302.

[84] Rifai, S., G. Mesnil, P. Vincent, X. Muller, Y. Bengio, Y. Dauphin, and X.
Glorot (2011). Higher order contractive auto-encoder. In European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML PKDD).

[85] Robert, P. C. and G. Casella (2009). Introducing Monte Carlo methods with
R. Springer Science and Business Media.

[86] Rokach, L. and O. Maimon (2005). Clustering methods. Data mining and know-
ledge discovery handbook. Springer US, pp. 321-352.

64

[87] Rosenberg, C., M. Hebert, and H. Schneiderman (2005). Semi-supervised self-
training of object detection models. In Proceedings of the Seventh IEEE Work-
shops on Application of Computer Vision (WACV/MOTION’05).

[88] Rumelhart, D. E., G. E. Hinton, and R. J. Williams (1986). Learning internal
representations by error propagation. In D. E. Rumelhart and J. L. McClelland
(Eds.), Parallel Distributed Processing, V. 1, Chapter 8, pp. 318-362. Cam-
bridge, MIT Press.

[89] Salakhutdinov, R. and G. E. Hinton (2009). Deep Boltzmann machines. In
International Conference on Artificial Intelligence and Statistics, pp. 448-455.

[90] Salakhutdinov, R. and G. E. Hinton (2009). Replicated softmax: an undirected
topic model. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and
A. Culotta, editors, Advances in Neural Information Processing Systems (NIPS
22), pp. 1607-1614, MIT Press.

[91] Salakhutdinov, R., A. Mnih, and G. E. Hinton (2007). Restricted Boltzmann
machines for collaborative filtering. In Z. Ghahramani, editor, Proceedings of
the 24th International Conference on Machine Learning (ICML), pp. 791-798,
ACM.

[92] Salimans, T. and D. Knowles (2013). Fixed-form variational posterior approxi-
mation through stochastic linear regression. In Bayesian Analysis, V. 8, pp.
837-882.

[93] Seide, F., G. Li, X. Chen, and D. Yu (2011). Feature engineering in context-
dependent deep neural networks for conversational speech transcription. In
Proceedings of the Automatic Speech Recognition and Understanding Workshop
(ASRU), pp. 24-29.

[94] Shannon, C. E. (1948). A mathematical theory of communication. In The Bell
System Technical Journal, 27(3), pp. 379-423 and 623-656.

[95] Shi, M. and B. Zhang (2011). Semi-supervised learning improves gene
expression-based prediction of cancer recurrence. In Bioinformatics, 27(21), pp.
3017-3023.

[96] Smolensky, P. (1986). Information processing in dynamical systems: Founda-
tions of harmony theory. In D. E. Rumelhart and J. L. McClelland (Eds.), In
Parallel Distributed Processing, V. 1, Chapter 6, pp. 194-281, Cambridge: MIT
Press.

[97] Sohl-Dickstein, J., E. A. Weiss, N. Maheswaranathan, and S. Ganguli (2015).
Deep unsupervised learning using nonequilibrium thermodynamics. CoRR,
abs/1503.03585. URL http://arxiv.org/abs/1503.03585.

65

http://arxiv.org/abs/1503.03585

[98] Steinhaus, H. (1957). Sur la division des corps materiel en parties. In Bull.
Acad. Polon. Sci., pp. 801-804.

[99] Stinchcombe, M. and H. White (1989). Universal approximation using feed-
forward networks with non-sigmoid hidden layer activation function. In Inter-
national Joint Conference on Neural Networks (IJCNN), Washington DC, pp.
613-617, IEEE.

[100] Stuhlmuller, A., J. Taylor, and N. Goodman (2013). Learning stochastic in-
verses. In Advances in Neural Information Processing Systems, pp. 3048-3056.

[101] Susskind, J. M., A. K. Anderson, and G. E. Hinton (2010). The Toronto face
dataset. Technical Report UTML TR 2010-001, University of Toronto.

[102] Sutskever, I., J. Martens, G. Dahl, and G. E. Hinton (2013). On the im-
portance of initialization and momentum in deep learning. In International
Conference on Machine Learning (ICML).

[103] Tang, Y. and R. Salakhutdinov (2013). Learning stochastic feedforward neu-
ral networks. In Advances in Neural Information Processing Systems (NIPS),
pp. 530-538.

[104] Tang, Y., R. Salakhutdinov, and G. E. Hinton (2012). Robust Boltzmann ma-
chines for recognition and denoising. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2264-2271.

[105] Titterington, D., A. Smith, and U. Makov (1985). Statistical analysis of finite
mixture distributions. Wiley, New York.

[106] Van Merriënboer, B., D. Bahdanau, V. Dumoulin, D. Serdyuk, D. Warde-
Farley, J. Chorowski, and Y. Bengio (2015). Blocks and fuel: Frameworks for
deep learning. ArXiv e-prints, (1506.00619), URL http://adsabs.harvard.

edu/abs/2015arXiv150600619V.

[107] Vincent, P., H. Larochelle, Y. Bengio, and P. A. Manzagol (2008). Extracting
and composing robust features with denoising autoencoders. In International
Conference on Machine Learning (ICML).

[108] Wang, Y., G. Haffari, S. Wang, and G. Mori (2009). A rate distortion ap-
proach for semi-supervised conditional random fields. In Advances in Neural
Information Processing Systems (NIPS), pp. 2008-2016.

[109] Watson, G. S. (1964). Smooth regression analysis. In Sankhyā: The Indian
Journal of Statistics, Series A, 26(4), pp. 359-372.

66

http://adsabs.harvard.edu/abs/2015arXiv150600619V
http://adsabs.harvard.edu/abs/2015arXiv150600619V

[110] Weston, J., F. Ratle, H. Mobahi, and R. Collobert (2012). Deep learning via
semi-supervised embedding. In Neural Networks: Tricks of the Trade, Springer,
pp. 639-655, Springer.

[111] Widrow, B. and M. E. Hoff (1960). Adaptive switching circuits. In IRE WES-
CON Convention Record, V. 4, pp. 96-104, Reprinted in Anderson and Rosenfeld
(1988).

[112] Xing, E. P., R. Yan, and A. G. Hauptmann (2005). Mining associated text
and images with dual-wing harmoniums. In Proceedings of the 21st Conference
on Uncertainty in Artificial Intelligence (UAI). AUAI Press.

[113] Zhu, X. (2006). Semi-supervised learning literature survey. Technical report,
Computer Science, University of Wisconsin-Madison.

[114] Zhu, X., Z. Ghahramani, and J. Lafferty (2003). Semi-supervised learning
using Gaussian fields and harmonic functions. In Proceddings of the Internatio-
nal Conference on Machine Learning (ICML), V. 3, pp. 912-919.

67

Index
activation function, 7
acyclic, 6
approximate inference model, 3
asymptotically consistent estimator, 14

Bayes product, 8
Bayes sum, 8
Bayes’ theorem, 9
Bernoulli distribution, 25
Bhattacharyya distance, 11
bias, 7
biased estimator, 10
bidirectional Helmholtz machine, 19
BiHM, 19

Cauchy-Schwarz inequality, 21
child, 5
CNN, 8
concave function, 9
consistent estimator, 14
Convolutional neural network, 8
cost function, 2
cycle, 6

DAG, 6
deep network, 8
Dirac measure, 52
directed acyclic graph, 6
directed graph, 5

edge, 5
effective sampling size, 12
entropy, 10
ESS, 12
expectation, 9

feedforward neural network, 7

generalization, 2
generative model, 2, 15
Gibbs sampling, 13
gradient descent, 14

Helmholtz machine, 15
hidden layer, 7
hidden variable, 2
HM, 15

IID, 11
Importance sampling, 12
IS, 12
IWAE, 20

Jensen’s inequality, 9

KL divergence, 10
Kullback-Leibler divergence, 10

latent layer, 7
latent variable, 2
likelihood, 9, 13
loss function, 2

Markov chain, 13
Markov chain Monte Carlo, 13
Markov network, 6
Markov random field, 6
MCMC, 13
minibatch, 14
minibatch stochastic gradient descent, 14
MLP, 7
multilayer perceptron, 7

neighborhood, 5
node, 5
NVIL, 19

68

objective function, 2
optimization , 13
overfitting, 9

parent, 5
path, 6
PGM, 5, 6
posterior, 9
prior, 9
probabilistic graphical model, 6
proposal distribution, 12

RBM, 8
recognition model, 15
RWS, 19

sampling, 12
semi-supervised learning, 2
sequential gradient descent, 14
shallow network, 7
sigmoid function, 25
state, 13
supervised learning, 1

target distribution, 12
test data set, 2
training set, 2

unbiased estimator, 10
undirected graph, 5
unsupervised learning, 1

VAE, 19
variance, 10
visible variable, 2

weight connection, 7

69

	Résumé
	Summary
	Acknowledgements
	 Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Learning
	1.2 Generative Models
	1.3 Outline of the thesis

	2 Background
	2.1 Probabilistic Graphical Models
	2.2 Neural Networks
	2.3 Basic concepts in probability theory
	2.4 Sampling Methods
	2.5 Optimization
	2.6 Helmholtz machine

	Prologue to First Article
	3 Bidirectional Helmholtz Machines
	3.1 Introduction and background
	3.2 Model definition and properties
	3.2.1 Alternative view

	3.3 Inference and training with IS
	3.4 Sampling and inpainting
	3.5 Estimating the partition function
	3.6 Experimental results
	3.6.1 UCI Binary Datasets Expriments
	3.6.2 Binarized MNIST Experiments
	3.6.3 Toronto Face Database Experiments

	3.7 Analysis of IS-based estimates
	3.7.1 Estimating the partition function
	3.7.2 Importance sampling efficiency
	3.7.3 Symmetry of p and q
	3.7.4 Computational cost

	Prologue to Second Article
	4 Semi-supervised BiHM
	4.1 Introduction
	4.2 Model Definition and Properties
	4.2.1 Importance sampling estimators

	4.3 Experiments
	4.4 Results and Discussion
	4.5 Some open questions
	4.6 A new direction

	5 Conclusion and Future Work
	5.1 Summary and Conclusion
	5.2 Future Work

	Bibliography
	Index

